WorldWideScience

Sample records for tissue factor synthesis

  1. Host DNA synthesis-suppressing factor in culture fluid of tissue cultures infected with measles virus

    International Nuclear Information System (INIS)

    Minagawa, T.; Nakaya, C.; Iida, H.

    1974-01-01

    Host DNA synthesis is suppressed by the culture fluid of cell cultures infected with measles virus. This activity in the culture fluid is initiated somewhat later than the growth of infectious virus. Ninety percent of host DNA synthesis in HeLa cells is inhibited by culture fluid of 3-day-old cell cultures of Vero or HeLa cells infected with measles virus. This suppressing activity is not a property of the virion, but is due to nonvirion-associated componentnent which shows none of the activities of measles virus such as hemagglutination, hemolysis, or cell fusion nor does it have the antigenicity of measles virus as tested by complement-fixation or hemagglutination-inhibiting antibody blocking tests. Neutralization of the activity of this component is not attained with the pooled sera of convalescent measles patients. This component has molecular weights of about 45,000, 20,000, and 3,000 and appears to be a heat-stable protein. The production of host DNA suppressing factor (DSF) is blocked by cycloheximide. Neither uv-inactivated nor antiserum-neutralized measles virus produce DSF. Furthermore, such activity of nonvirion-associated component is not detected in the culture fluid of cultures infected with other RNA viruses such as poliovirus, vesicular stomatitis virus, or Sindbis virus. (auth)

  2. Insulin-like growth factor I enhances collagen synthesis in engineered human tendon tissue

    DEFF Research Database (Denmark)

    Herchenhan, Andreas; Bayer, Monika L.; Eliasson, Pernilla

    2015-01-01

    OBJECTIVE: Isolated human tendon cells form 3D tendon constructs that demonstrate collagen fibrillogenesis and feature structural similarities to tendon when cultured under tensile load. The exact role of circulating growth factors for collagen formation in tendon is sparsely examined. We...... investigated the influence of insulin-like growth factor I (IGF-I) on tendon construct formation in 3D cell culture. DESIGN: Tendon constructs were grown in 0.5 or 10% FBS with or without IGF-I (250 mg/ml) supplementation. Collagen content (fluorometric), mRNA levels (PCR) and fibril diameter (transmission...... electron microscopy) were determined at 7, 10, 14, 21 and 28 days. RESULTS: IGF-I revealed a stimulating effect on fibril diameter (up to day 21), mRNA for collagen (to day 28), tenomodulin (to day 28) and scleraxis (at days 10 and 14), and on overall collagen content. 10% FBS diminished the development...

  3. A First Step in De Novo Synthesis of a Living Pulp Tissue Replacement Using Dental Pulp MSCs and Tissue Growth Factors, Encapsulated within a Bioinspired Alginate Hydrogel.

    Science.gov (United States)

    Bhoj, Manasi; Zhang, Chengfei; Green, David W

    2015-07-01

    A living, self-supporting pulp tissue replacement in vitro and for transplantation is an attractive yet unmet bioengineering challenge. Our aim is to create 3-dimensional alginate-based microenvironments that replicate the shape of gutta-percha and comprise key elements for the proliferation of progenitor cells and the release of growth factors. An RGD-bearing alginate framework was used to encapsulate dental pulp stem cells and human umbilical vein endothelial cells in a ratio of 1:1. The alginate hydrogel also retained and delivered 2 key growth factors, vascular endothelial growth factor-121 and fibroblast growth factor, in a sufficient amount to induce proliferation. A method was then devised to replicate the shape of gutta-percha using RGD alginate within a custom-made mold of thermoresponsive N-isopropylacrylamide. Plugs of alginate containing different permutations of growth factor-based encapsulates were tested and evaluated for viability, proliferation, and release kinetics between 1 and 14 days. According to scanning electron microscopic and confocal microscopic observations, the encapsulated human endothelial cells and dental pulp stem cell distribution were frequent and extensive throughout the length of the construct. There were also high levels of viability in all test environments. Furthermore, cell proliferation was higher in the growth factor-based groups. Growth factor release kinetics also showed significant differences between them. Interestingly, the combination of vascular endothelial growth factor and fibroblast growth factor synergize to significantly up-regulate cell proliferation. RGD-alginate scaffolds can be fabricated into shapes to fill the pulp space by simple templating. The addition of dual growth factors to cocultures of stem cells within RGD-alginate scaffolds led to the creation of microenvironments that significantly enhance the proliferation of dental pulp stem cell/human umbilical vein endothelial cell combinations. Copyright

  4. Synthesis of embryonic tendon-like tissue by human marrow stromal/mesenchymal stem cells requires a three-dimensional environment and transforming growth factor β3.

    Science.gov (United States)

    Kapacee, Zoher; Yeung, Ching-Yan Chloé; Lu, Yinhui; Crabtree, David; Holmes, David F; Kadler, Karl E

    2010-10-01

    Tendon-like tissue generated from stem cells in vitro has the potential to replace tendons and ligaments lost through injury and disease. However, thus far, no information has been available on the mechanism of tendon formation in vitro and how to accelerate the process. We show here that human mesenchymal stem cells (MSCs) and bone marrow-derived mononuclear cells (BM-MNCs) can generate tendon-like tissue in 7days mediated by transforming growth factor (TGF) β3. MSCs cultured in fixed-length fibrin gels spontaneously synthesized narrow-diameter collagen fibrils and exhibited fibripositors (actin-rich, collagen fibril-containing plasma membrane protrusions) identical to those that occur in embryonic tendon. In contrast, BM-MNCs did not synthesize tendon-like tissue under these conditions. We performed real-time PCR analysis of MSCs and BM-MNCs. MSCs upregulated genes encoding type I collagen, TGFβ3, and Smad2 at the time of maximum contraction of the tendon-like tissue (7days). Western blot analysis showed phosphorylation of Smad2 at maximum contraction. The TGFβ inhibitor SB-431542, blocked the phosphorylation of Smad2 and stopped the formation of tendon-like tissue. Quantitative PCR showed that BM-MNCs expressed very low levels of TGFβ3 compared to MSCs. Therefore we added exogenous TGFβ3 protein to BM-MNCs in fibrin gels, which resulted in phosphorylation of Smad2, synthesis of collagen fibrils, the appearance of fibripositors at the plasma membrane, and the formation of tendon-like tissue. In conclusion, MSCs that self-generate TGFβ signaling or the addition of TGFβ3 protein to BM-MNCs in fixed-length fibrin gels spontaneously make embryonic tendon-like tissue in vitro within 7days. Copyright © 2010 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  5. Amino acids supply in culture media is not a limiting factor in the matrix synthesis of engineered cartilage tissue

    Science.gov (United States)

    Ng, K. W.; DeFrancis, J. G.; Kugler, L. E.; Kelly, T.-A. N.; Ho, M. M.; O’Conor, C. J.; Ateshian, G. A.; Hung, C. T.

    2013-01-01

    Summary Increased amino acid supplementation (0.5×, 1.0×, and 5.0× recommended concentrations or additional proline) was hypothesized to increase the collagen content in engineered cartilage. No significant differences were found between groups in matrix content or dynamic modulus. Control constructs possessed the highest compressive Young’s modulus on day 42. On day 42, compared to controls, decreased type II collagen was found with 0.5×, 1.0×, and 5.0× supplementation and significantly increased DNA content found in 1.0× and 5.0×. No effects were observed on these measures with added proline. These results lead us to reject our hypothesis and indicate that the low collagen synthesis in engineered cartilage is not due to a limited supply of amino acids in media but may require a further stimulatory signal. The results of this study also highlight the impact that culture environment can play on the development of engineered cartilage. PMID:17713744

  6. Activation of factor VII bound to tissue factor: a key early step in the tissue factor pathway of blood coagulation.

    OpenAIRE

    Rao, L V; Rapaport, S I

    1988-01-01

    Whether the factor VII/tissue factor complex that forms in tissue factor-dependent blood coagulation must be activated to factor VIIa/tissue factor before it can activate its substrates, factor X and factor IX, has been a difficult question to answer because the substrates, once activated, back-activate factor VII. Our earlier studies suggested that human factor VII/tissue factor cannot activate factor IX. Studies have now been extended to the activation of factor X. Reaction mixtures were ma...

  7. Activation of factor VII bound to tissue factor: A key early step in the tissue factor pathway of blood coagulation

    International Nuclear Information System (INIS)

    Rao, L.V.M.; Rapaport, S.I.

    1988-01-01

    Whether the factor VII/tissue factor complex that forms in tissue factor-dependent blood coagulation must be activated to factor VIIa/tissue factor before it can activate its substrates, factor X and IX, has been a difficult question to answer because the substrates, once activated, back-activate factor VII. The earlier studies suggested that human factor VII/tissue factor cannot activate factor IX. Studies have now been extended to the activation of factor X. Reaction mixtures were made with purified factor VII, X, and tissue factor; in some experiments antithrombin III and heparin were added to prevent back-activation of factor VII. Factor X was activated at similar rates in reaction mixtures containing either VII or factor VIIa after an initial 30-sec lag with factor VII. In reaction mixtures with factor VII a linear activation of factor X was established several minutes before cleavage of 125 I-labeled factor VII to the two-chain activated molecule was demonstrable on gel profiles. These data suggest that factor VII/tissue factor cannot activate measurable amounts of factor X over several minutes. Overall, the results support the hypothesis that a rapid preferential activation of factor VII bound to tissue factor by trace amounts of factor Xa is a key early step in tissue factor-dependent blood coagulation

  8. Tissue regenerating functions of coagulation factor XIII

    DEFF Research Database (Denmark)

    Soendergaard, C; Kvist, P H; Seidelin, J B

    2013-01-01

    The protransglutaminase factor XIII (FXIII) has recently gained interest within the field of tissue regeneration, as it has been found that FXIII significantly influences wound healing by exerting a multitude of functions. It supports haemostasis by enhancing platelet adhesion to damaged......-receptor 2 and the αVβ3 integrin is important for angiogenesis supporting formation of granulation tissue. Chronic inflammatory conditions involving bleeding and activation of the coagulation cascade have been shown to lead to reduced FXIII levels in plasma. Of particular importance for this review...

  9. Formation of tissue factor activity following incubation of recombinant human tissue factor apoprotein with plasma lipoproteins

    International Nuclear Information System (INIS)

    Sakai, T.; Kisiel, W.

    1990-01-01

    Incubation of recombinant human tissue factor apoprotein (Apo-TF) with human plasma decreased the recalcified clotting time of this plasma in a time-and dose-dependent manner suggesting relipidation of the Apo-TF by plasma lipoproteins. Incubation of Apo-TF with purified preparations of human very low density, low density and high density lipoproteins resulted in tissue factor activity in a clotting assay. The order of effectiveness was VLDL greater than LDL much greater than HDL. Tissue factor activity generated by incubation of a fixed amount of Apo-TF with plasma lipoproteins was lipoprotein concentration-dependent and saturable. The association of Apo-TF with lipoprotein particles was supported by gel filtration studies in which 125 I-Apo-TF coeluted with the plasma lipoprotein in the void volume of a Superose 6 column in the presence and absence of calcium ions. In addition, void-volume Apo-TF-lipoprotein fractions exhibited tissue factor activity. These results suggest that the factor VIII-bypassing activity of bovine Apo-TF observed in a canine hemophilic model may be due, in part, to its association with plasma lipoproteins and expression of functional tissue factor activity

  10. Inability to fully suppress sterol synthesis rates with exogenous sterol in embryonic and extraembyronic fetal tissues

    OpenAIRE

    Yao, Lihang; Jenkins, Katie; Horn, Paul S.; Lichtenberg, M. Hayden; Woollett, Laura A.

    2007-01-01

    The requirement for cholesterol is greater in developing tissues (fetus, placenta, and yolk sac) as compared to adult tissues. Here, we compared cholesterol-induced suppression of sterol synthesis rates in the adult liver to the fetal liver, fetal body, placenta, and yolk sac of the Golden Syrian hamster. Sterol synthesis rates were suppressed maximally in non-pregnant adult livers when cholesterol concentrations were increased. In contrast, sterol synthesis rates were suppressed only margina...

  11. Proteolytic processing of connective tissue growth factor in normal ocular tissues and during corneal wound healing.

    Science.gov (United States)

    Robinson, Paulette M; Smith, Tyler S; Patel, Dilan; Dave, Meera; Lewin, Alfred S; Pi, Liya; Scott, Edward W; Tuli, Sonal S; Schultz, Gregory S

    2012-12-13

    Connective tissue growth factor (CTGF) is a fibrogenic cytokine that is up-regulated by TGF-β and mediates most key fibrotic actions of TGF-β, including stimulation of synthesis of extracellular matrix and differentiation of fibroblasts into myofibroblasts. This study addresses the role of proteolytic processing of CTGF in human corneal fibroblasts (HCF) stimulated with TGF-β, normal ocular tissues and wounded corneas. Proteolytic processing of CTGF in HCF cultures, normal animal eyes, and excimer laser wounded rat corneas were examined by Western blot. The identity of a 21-kDa band was determined by tandem mass spectrometry, and possible alternative splice variants of CTGF were assessed by 5' Rapid Amplification of cDNA Ends (RACE). HCF stimulated by TGF-β contained full length 38-kDa CTGF and fragments of 25, 21, 18, and 13 kDa, while conditioned medium contained full length 38- and a 21-kDa fragment of CTGF that contained the middle "hinge" region of CTGF. Fragmentation of recombinant CTGF incubated in HCF extracts was blocked by the aspartate protease inhibitor, pepstatin. Normal mouse, rat, and rabbit whole eyes and rabbit ocular tissues contained abundant amounts of C-terminal 25- and 21-kDa fragments and trace amounts of 38-kDa CTGF, although no alternative transcripts were detected. All forms of CTGF (38, 25, and 21 kDa) were detected during healing of excimer ablated rat corneas, peaking on day 11. Proteolytic processing of 38-kDa CTGF occurs during corneal wound healing, which may have important implications in regulation of corneal scar formation.

  12. Analyzing the effects of mechanical and osmotic loading on glycosaminoglycan synthesis rate in cartilaginous tissues.

    Science.gov (United States)

    Gao, Xin; Zhu, Qiaoqiao; Gu, Weiyong

    2015-02-26

    The glycosaminoglycan (GAG) plays an important role in cartilaginous tissues to support and transmit mechanical loads. Many extracellular biophysical stimuli could affect GAG synthesis by cells. It has been hypothesized that the change of cell volume is a primary mechanism for cells to perceive the stimuli. Experimental studies have shown that the maximum synthesis rate of GAG is achieved at an optimal cell volume, larger or smaller than this level the GAG synthesis rate decreases. Based on the hypothesis and experimental findings in the literature, we proposed a mathematical model to quantitatively describe the cell volume dependent GAG synthesis rate in the cartilaginous tissues. Using this model, we investigated the effects of osmotic loading and mechanical loading on GAG synthesis rate. It is found our proposed mathematical model is able to well describe the change of GAG synthesis rate in isolated cells or in cartilage with variations of the osmotic loading or mechanical loading. This model is important for evaluating the GAG synthesis activity within cartilaginous tissues as well as understanding the role of mechanical loading in tissue growth or degeneration. It is also important for designing a bioreactor system with proper extracellular environment or mechanical loading for growing tissue at the maximum synthesis rate of the extracellular matrix. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Tissue Factor and Tissue Factor Pathway Inhibitor in the Wound-Healing Process After Neurosurgery.

    Science.gov (United States)

    Ślusarz, Robert; Głowacka, Mariola; Biercewicz, Monika; Barczykowska, Ewa; Haor, Beata; Rość, Danuta; Gadomska, Grażyna

    2016-03-01

    The aim of the study was to assess the concentrations of tissue factor (TF) and tissue factor pathway inhibitor (TFPI) in the blood of patients with a postoperative wound after neurosurgery. Participants included 20 adult patients who underwent neurosurgery because of degenerative spine changes. The concentration of TF and TFPI in the patients' blood serum was measured 3 times: before surgery, during the first 24 hr after surgery, and between the 5th and 7th days after surgery. The control group comprised 20 healthy volunteers similar to the patient group with respect to gender and age. A statistically significant difference was observed between TF concentration at all three measurement time points in the research group and TF concentration in the control group (p = .018, p = .010, p = .001). A statistically significant difference was found between TFPI concentration at the second time point in the research group and TFPI concentration in the control group (p = .041). No statistically significant within-subject difference was found between TF concentrations before and after surgery. A statistically significant within-subject difference was found between TFPI concentrations within 24 hr after surgery and 5-7 days after surgery (p = .004). High perioperative concentrations of TF indicate not only the presence of thrombophilia but also the importance of TF in the wound-healing process. Perioperative changes in TFPI concentrations are related to its compensatory influence on hemostasis in thrombophilic conditions. © The Author(s) 2015.

  14. Connective tissue growth factor regulates fibrosis-associated renal lymphangiogenesis

    NARCIS (Netherlands)

    Kinashi, Hiroshi; Falke, Lucas L.; Nguyen, Tri Q.; Bovenschen, Niels; Aten, Jan; Leask, Andrew; Ito, Yasuhiko; Goldschmeding, Roel

    2017-01-01

    Lymphangiogenesis is correlated with the degree of renal interstitial fibrosis. Pro-fibrotic transforming growth factor beta induces VEGF-C production, the main driver of lymphangiogenesis. Connective tissue growth factor (CTGF) is an important determinant of fibrotic tissue remodeling, but its

  15. Connective tissue growth factor regulates fibrosis-associated renal lymphangiogenesis

    NARCIS (Netherlands)

    Kinashi, Hiroshi; Falke, Lucas L.; Nguyen, Tri Q.; Bovenschen, Niels; Aten, Jan; Leask, Andrew; Ito, Yasuhiko; Goldschmeding, Roel

    2017-01-01

    Lymphangiogenesis is correlated with the degree of renal interstitial fibrosis. Pro-fibrotic transforming growth factor β induces VEGF-C production, the main driver of lymphangiogenesis. Connective tissue growth factor (CTGF) is an important determinant of fibrotic tissue remodeling, but its

  16. The rate of synthesis and decomposition of tissue proteins in hypokinesia and increased muscular activity

    Science.gov (United States)

    Fedorov, I. V.; Chernyy, A. V.; Fedorov, A. I.

    1978-01-01

    During hypokinesia and physical loading (swimming) of rats, the radioactivity of skeletal muscle, liver, kidney, heart, and blood proteins was determined after administration of radioactive amino acids. Tissue protein synthesis decreased during hypokinesia, and decomposition increased. Both synthesis and decomposition increased during physical loading, but anabolic processes predominated in the total tissue balance. The weights of the animals decreased in hypokinesia and increased during increased muscle activity.

  17. Collagen synthesis in human musculoskeletal tissues and skin

    DEFF Research Database (Denmark)

    Babraj, J A; Cuthbertson, D J R; Smith, K

    2005-01-01

    We have developed a direct method for the measurement of human musculoskeletal collagen synthesis on the basis of the incorporation of stable isotope-labeled proline or leucine into protein and have used it to measure the rate of synthesis of collagen in tendon, ligament, muscle, and skin....... In postabsorptive, healthy young men (28 +/- 6 yr) synthetic rates for tendon, ligament, muscle, and skin collagen were 0.046 +/- 0.005, 0.040 +/- 0.006, 0.016 +/- 0.002, and 0.037 +/- 0.003%/h, respectively (means +/- SD). In postabsorptive, healthy elderly men (70 +/- 6 yr) the rate of skeletal muscle collagen...... synthesis is greater than in the young (0.023 +/- 0.002%/h, P collagen are similar to those of mixed skeletal muscle protein in the postabsorptive state, whereas the rate for muscle collagen synthesis is much lower in both young and elderly men...

  18. Alcohol consumption and synthesis of ethyl esters of fatty acids in adipose tissue

    NARCIS (Netherlands)

    Björntorp, P; Depergola, G; Sjöberg, C; Pettersson-Kymmer, U.; Hallgren, P; Boström, K; Helander, K G; Seidell, J

    1990-01-01

    Ethyl esters of fatty acids (EEFA) have been found to be formed during ethanol metabolism. Human adipose tissue contains high concentrations of free fatty acids, the substrate for EEFA synthesis, and might therefore be a tissue with great potential for EEFA formation. In order to explore their

  19. Growth factor effects on costal chondrocytes for tissue engineering fibrocartilage

    Science.gov (United States)

    Johns, D.E.; Athanasiou, K.A.

    2010-01-01

    Tissue engineered fibrocartilage could become a feasible option for replacing tissues like the knee meniscus or temporomandibular joint disc. This study employed five growth factors insulin-like growth factor-I, transforming growth factor-β1, epidermal growth factor, platelet-derived growth factor-BB, and basic fibroblast growth factor in a scaffoldless approach with costal chondrocytes, attempting to improve biochemical and mechanical properties of engineered constructs. Samples were quantitatively assessed for total collagen, glycosaminoglycans, collagen type I, collagen type II, cells, compressive properties, and tensile properties at two time points. Most treated constructs were worse than the no growth factor control, suggesting a detrimental effect, but the IGF treatment tended to improve the constructs. Additionally, the 6wk time point was consistently better than 3wks, with total collagen, glycosaminoglycans, and aggregate modulus doubling during this time. Further optimization of the time in culture and exogenous stimuli will be important in making a more functional replacement tissue. PMID:18597118

  20. Regulation of leptin synthesis in white adipose tissue of the female fruit bat, Cynopterus sphinx: role of melatonin with or without insulin.

    Science.gov (United States)

    Banerjee, A; Udin, S; Krishna, A

    2011-02-01

    Factors regulating leptin synthesis during adipogenesis in wild species are not well known. Studies in the female Cynopterus sphinx bat have shown that it undergoes seasonal changes in its fat deposition and serum leptin and melatonin levels. The aim of the present study was to investigate the hormonal regulation of leptin synthesis by the white adipose tissue during the period of fat deposition in female C. sphinx. This study showed a significant correlation between the seasonal changes in serum melatonin level with the circulating leptin level (r = 0.78; P sphinx. A significant correlation between circulating insulin and leptin levels (r = 0.65; P sphinx. The study showed MT(2) receptors in adipose tissue and a stimulatory effect of melatonin on leptin synthesis, which was blocked by treatment with an MT(2) receptor antagonist, suggesting that the effect of melatonin on leptin synthesis by adipose tissue is mediated through the MT(2) receptor in C. sphinx. The in vitro study showed that the synthesis of leptin is directly proportional to the amount of glucose uptake by the adipose tissue. It further showed that melatonin together with insulin synergistically enhanced the leptin synthesis by adipose tissue through phosphorylation of mitogen-activated protein kinase in C. sphinx.

  1. Tissue Engineering Using Transfected Growth-Factor Genes

    Science.gov (United States)

    Madry, Henning; Langer, Robert S.; Freed, Lisa E.; Trippel, Stephen; Vunjak-Novakovic, Gordana

    2005-01-01

    A method of growing bioengineered tissues includes, as a major component, the use of mammalian cells that have been transfected with genes for secretion of regulator and growth-factor substances. In a typical application, one either seeds the cells onto an artificial matrix made of a synthetic or natural biocompatible material, or else one cultures the cells until they secrete a desired amount of an extracellular matrix. If such a bioengineered tissue construct is to be used for surgical replacement of injured tissue, then the cells should preferably be the patient s own cells or, if not, at least cells matched to the patient s cells according to a human-leucocyteantigen (HLA) test. The bioengineered tissue construct is typically implanted in the patient's injured natural tissue, wherein the growth-factor genes enhance metabolic functions that promote the in vitro development of functional tissue constructs and their integration with native tissues. If the matrix is biodegradable, then one of the results of metabolism could be absorption of the matrix and replacement of the matrix with tissue formed at least partly by the transfected cells. The method was developed for articular chondrocytes but can (at least in principle) be extended to a variety of cell types and biocompatible matrix materials, including ones that have been exploited in prior tissue-engineering methods. Examples of cell types include chondrocytes, hepatocytes, islet cells, nerve cells, muscle cells, other organ cells, bone- and cartilage-forming cells, epithelial and endothelial cells, connective- tissue stem cells, mesodermal stem cells, and cells of the liver and the pancreas. Cells can be obtained from cell-line cultures, biopsies, and tissue banks. Genes, molecules, or nucleic acids that secrete factors that influence the growth of cells, the production of extracellular matrix material, and other cell functions can be inserted in cells by any of a variety of standard transfection techniques.

  2. Demonstration of synthesis of beta-trace protein in different tissues of squirrel monkey

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, J E; Sandberg, M [Department of Neurology, University Hospital, S-221 85 Lund, Sweden

    1975-01-01

    The sites of synthesis of the low molwculat weight beta-trace protein, present in a seven times higher concentration in normal human CSF than in normal human serum, have been studied by means of a radioactive immunoprecipitation method. Adult squirrel monkey tissue were cultured in Eagle's minium essential medium in the presence of /sup 14/C-labelled valine, threonine and leucine for 24 hours. Synthesis could be demonstrated in cultures of white CNS matter, whereas cultures of grey CNS matter, peripheral nerve, skeletal muscle, kidney and ovary did not show any signs of synthesis. Some cultures of spinal cord, basal ganglia, genital organs except ovary, and liver showed a probable synthesis of beta-trace protein. By means of autoradiography, the synthesis of beta-trace protein in white CNS matter could be confirmed.

  3. Demonstration of synthesis of beta-trace protein in different tissues of squirrel monkey

    International Nuclear Information System (INIS)

    Olsson, J.-E.; Sandberg, M.

    1975-01-01

    The sites of synthesis of the low molwculat weight beta-trace protein, present in a seven times higher concentration in normal human CSF than in normal human serum, have been studied by means of a radioactive immunoprecipitation method. Adult squirrel monkey tissue were cultured in Eagle's minium essential medium in the presence of 14 C-labelled valine, threonine and leucine for 24 hours. Synthesis could be demonstrated in cultures of white CNS matter, whereas cultures of grey CNS matter, peripheral nerve, skeletal muscle, kidney and ovary did not show any signs of synthesis. Some cultures of spinal cord, basal ganglia, genital organs except ovary, and liver showed a probable synthesis of beta-trace protein. By means of autoradiography, the synthesis of beta-trace protein in white CNS matter could be confirmed. (author)

  4. In vivo effects of T-2 mycotoxin on synthesis of proteins and DNA in rat tissues

    International Nuclear Information System (INIS)

    Thompson, W.L.; Wannemacher, R.W. Jr.

    1990-01-01

    Rats were given an ip injection of T-2 mycotoxin (T-2), the T-2 metabolite, T-2 tetraol (tetraol), or cycloheximide. Serum, liver, heart, kidney, spleen, muscle, and intestine were collected at 3, 6, and 9 hr postinjection after a 2-hr pulse at each time with [14C]leucine and [3H]thymidine. Protein and DNA synthesis levels in rats were determined by dual-label counting of the acid-precipitable fraction of tissue homogenates. Rats given a lethal dose of T-2, tetraol, or cycloheximide died between 14 and 20 hr. Maximum inhibition of protein synthesis at the earliest time period was observed in additional rats given the same lethal dose of the three treatments and continued for the duration of the study (9 hr). With sublethal doses of T-2 or tetraol, the same early decrease in protein synthesis was observed but, in most of the tissues, recovery was seen with time. In the T-2-treated rats. DNA synthesis in the six tissues studied was also suppressed, although to a lesser degree. With sublethal doses, complete recovery of DNA synthesis took place in four of the six tissues by 9 hr after toxin exposure. The appearance of newly translated serum proteins did not occur in the animals treated with T-2 mycotoxin or cycloheximide, as evidenced by total and PCA-soluble serum levels of labeled leucine. An increase in tissue-pool levels of free leucine and thymidine in response to T-2 mycotoxin was also noted. T-2 mycotoxin, its metabolite, T-2 tetraol, and cycloheximide cause a rapid inhibition of protein and DNA synthesis in all tissue types studied. These results are compared with the responses seen in in vitro studies

  5. Neutron kerma factors, and water equivalence of some tissue substitutes

    International Nuclear Information System (INIS)

    Singh, V. P.; Badiger, N. M.; Vega C, H. R.

    2014-08-01

    The kerma factors and kerma relative to air and water of 24 compounds used as tissue substitutes were calculated for neutron energy from 2.53 x 10 -8 up to 29 MeV. The kerma ratio of the tissue substitutes relative to air and water were calculated by the ratio of kerma factors of the tissue substitute to air and water respectively. The water equivalence of the selected tissue substitutes was observed above neutron energies 100 eV. Kerma ratio relative to the air for Poly-vinylidene fluoride and Teflon are found to be nearest to unity in very low energy (up to 1 eV) and above 63 eV respectively. It was found that the natural rubber as a water equivalent tissue substitute compound. The results of the kerma factors in our investigation shows a very good agreement with those published in ICRU-44. We found that at higher neutron energies, the kerma factors and kerma ratios of the selected tissue substitute compounds are approximately same, but differences are large for energies below 100 eV. (Author)

  6. Tissue localization of human trefoil factors 1, 2, and 3

    DEFF Research Database (Denmark)

    Madsen, Jens; Nielsen, Ole; Tornøe, Ida

    2007-01-01

    Trefoil factors (TTFs) are small, compact proteins coexpressed with mucins in the gastrointestinal tract. Three trefoil factors are known in mammals: TFF1, TFF2, and TFF3. They are implicated to play diverse roles in maintenance and repair of the gastrointestinal channel. We compared the expression...... pattern of the three trefoil factors analyzing mRNA from a panel of 20 human tissues by conventional reverse transcriptase (RT) PCR and, in addition, by real-time PCR. These findings were supported by immunohistochemical analysis of paraffin-embedded human tissues using rabbit polyclonal antibodies raised...... against these factors. TFF1 showed highest expression in the stomach and colon, whereas TFF2 and TFF3 showed highest expression in stomach and colon, respectively. All three TFFs were found in the ducts of pancreas. Whereas TFF2 was found to be restricted to these two tissues, the structurally more...

  7. Computer modeling the boron compound factor in normal brain tissue

    International Nuclear Information System (INIS)

    Gavin, P.R.; Huiskamp, R.; Wheeler, F.J.; Griebenow, M.L.

    1993-01-01

    The macroscopic distribution of borocaptate sodium (Na 2 B 12 H 11 SH or BSH) in normal tissues has been determined and can be accurately predicted from the blood concentration. The compound para-borono-phenylalanine (p-BPA) has also been studied in dogs and normal tissue distribution has been determined. The total physical dose required to reach a biological isoeffect appears to increase directly as the proportion of boron capture dose increases. This effect, together with knowledge of the macrodistribution, led to estimates of the influence of the microdistribution of the BSH compound. This paper reports a computer model that was used to predict the compound factor for BSH and p-BPA and, hence, the equivalent radiation in normal tissues. The compound factor would need to be calculated for other compounds with different distributions. This information is needed to design appropriate normal tissue tolerance studies for different organ systems and/or different boron compounds

  8. Treatment of Ebola Virus Infection With a Recombinant Inhibitor of Factor Vlla/Tissue Factor: A Study in Rhesus Monkeys

    National Research Council Canada - National Science Library

    Geisbert, Thomas W; Hensley, Lisa E; Jahrling, Peter B; Larsen, Tom; Geisbert, Joan B

    2003-01-01

    Infection with the Ebola virus induces overexpression of the procoagulant tissue factor in primate monocytes and macrophages, suggesting that inhibition of the tissue-factor pathway could ameliorate...

  9. Endogenous synthesis of taurine and GABA in rat ocular tissues

    Energy Technology Data Exchange (ETDEWEB)

    Heinaemaeki, A.A.

    1988-01-01

    The endogenous production of taurine and ..gamma..-aminobutyric acid (GABA) in rat ocular tissues was investigated. The activities of taurine-producing enzyme, cysteine sulfinic acid decarboxylase (CSAD), and GABA-synthesizing enzyme, glutamic acid decarboxylase (GAD), were observed in the retina, lens, iris-ciliary body and cornea. The highest specific activity of CSAD was in the cornea and that of GAD in the retina. The discrepancy between CSAD activity and taurine content within the ocular tissues indicates that intra- or extraocular transport processes may regulate the concentration of taurine on the rat eye. The GAD activity and the content of GABA were distributed in parallel within the rat ocular tissues. The quantitative results suggest that the GAD/GABA system has functional significance only in the retina of the rat eye.

  10. Endogenous synthesis of taurine and GABA in rat ocular tissues

    International Nuclear Information System (INIS)

    Heinaemaeki, A.A.

    1988-01-01

    The endogenous production of taurine and γ-aminobutyric acid (GABA) in rat ocular tissues was investigated. The activities of taurine-producing enzyme, cysteine sulfinic acid decarboxylase (CSAD), and GABA-synthesizing enzyme, glutamic acid decarboxylase (GAD), were observed in the retina, lens, iris-ciliary body and cornea. The highest specific activity of CSAD was in the cornea and that of GAD in the retina. The discrepancy between CSAD activity and taurine content within the ocular tissues indicates that intra- or extraocular transport processes may regulate the concentration of taurine on the rat eye. The GAD activity and the content of GABA were distributed in parallel within the rat ocular tissues. The quantitative results suggest that the GAD/GABA system has functional significance only in the retina of the rat eye. (author)

  11. Synthesis of collagenase-sensitive polyureas for ligament tissue engineering.

    Science.gov (United States)

    Benhardt, Hugh; Sears, Nick; Touchet, Tyler; Cosgriff-Hernandez, Elizabeth

    2011-08-11

    Recently, poly(ester urethanes) were investigated for use as ligament grafts due to their exceptional mechanical properties and highly tunable structure; however, these grafts are susceptible to hydrolytic degradation that occurs independent of tissue regeneration. To address this limitation, polyureas containing collagen-derived peptides were synthesized which enable cellular release of proteases to dictate degradation rate. It is hypothesized that this cell-responsive design will facilitate load transfer from the biodegradable scaffold to neotissue at a rate that promotes proper tissue orientation and function while maintaining construct integrity. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Kinetics of radiation-induced apoptosis in neonatal urogenital tissues with and without protein synthesis inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Gobe, G.C.; Harmon, B.; Schoch, E.; Allan, D.J. [Queensland Univ., St. Lucia, QLD (Australia). Dept. of Chemistry

    1996-12-31

    The difference in incidence of radiation-induced apoptosis between two neonatal urogenital tissues, kidney and testis, was analysed over a 24h period. Concurrent administration of cycloheximide (10mg/kg body weight), a protein synthesis inhibitor, with radiation treatment was used to determine whether new protein synthesis had a role in induction of apoptosis in this in vivo model. Many chemotherapeutic drugs act via protein synthesis inhibition, and we believe that the results of this latter analysis may provide information for the planning of concurrent radio and chemotherapy. Apoptosis was quantified using morphological parameters, and verified by DNA gel electrophoresis for the typical banding pattern, and by electron microscopy. The proliferative index in tissues was studied, using [6-{sup 3}H]-thymidine uptake ( 1h prior to euthanasia and collection of tissues) and autoradiography as indicators of cell proliferation (S-phase). Tissue was collected 2, 4, 6, 8, and 24h after radiation treatment. Expression of one of the apoptosis-associated genes, Bcl-2 (an apoptosis inhibitor/cell survival gene), was studied using immunohistochemistry. Apoptosis peaked at 4h in the testis and 6h in the kidney, emphasising the necessity of knowing tissue differences in radiation response if comparing changes at a particular time. A higher proportion (almost five fold) of the apoptotic cells died in S-phase in the kidney than the testis, over the 24h. Protein synthesis inhibition completely negated induction of apoptosis in both tissues. Necrosis was not identified at any time. Cycloheximide treatment greatly diminished Bcl-2 expression. The differences in response of the two tissues to irradiation relates to their innate cell (genetic) controls, which may be determined by their state of differentiation at time of treatment, or the tissue type. This in vivo study also suggests the model may be useful for analysis of other cancer therapies for example polychemotherapies or chemo

  13. Kinetics of radiation-induced apoptosis in neonatal urogenital tissues with and without protein synthesis inhibition

    International Nuclear Information System (INIS)

    Gobe, G.C.; Harmon, B.; Schoch, E.; Allan, D.J.

    1996-01-01

    The difference in incidence of radiation-induced apoptosis between two neonatal urogenital tissues, kidney and testis, was analysed over a 24h period. Concurrent administration of cycloheximide (10mg/kg body weight), a protein synthesis inhibitor, with radiation treatment was used to determine whether new protein synthesis had a role in induction of apoptosis in this in vivo model. Many chemotherapeutic drugs act via protein synthesis inhibition, and we believe that the results of this latter analysis may provide information for the planning of concurrent radio and chemotherapy. Apoptosis was quantified using morphological parameters, and verified by DNA gel electrophoresis for the typical banding pattern, and by electron microscopy. The proliferative index in tissues was studied, using [6- 3 H]-thymidine uptake ( 1h prior to euthanasia and collection of tissues) and autoradiography as indicators of cell proliferation (S-phase). Tissue was collected 2, 4, 6, 8, and 24h after radiation treatment. Expression of one of the apoptosis-associated genes, Bcl-2 (an apoptosis inhibitor/cell survival gene), was studied using immunohistochemistry. Apoptosis peaked at 4h in the testis and 6h in the kidney, emphasising the necessity of knowing tissue differences in radiation response if comparing changes at a particular time. A higher proportion (almost five fold) of the apoptotic cells died in S-phase in the kidney than the testis, over the 24h. Protein synthesis inhibition completely negated induction of apoptosis in both tissues. Necrosis was not identified at any time. Cycloheximide treatment greatly diminished Bcl-2 expression. The differences in response of the two tissues to irradiation relates to their innate cell (genetic) controls, which may be determined by their state of differentiation at time of treatment, or the tissue type. This in vivo study also suggests the model may be useful for analysis of other cancer therapies for example polychemotherapies or chemo

  14. Combinatorial regulation of tissue specification by GATA and FOG factors

    Science.gov (United States)

    Chlon, Timothy M.; Crispino, John D.

    2012-01-01

    The development of complex organisms requires the formation of diverse cell types from common stem and progenitor cells. GATA family transcriptional regulators and their dedicated co-factors, termed Friend of GATA (FOG) proteins, control cell fate and differentiation in multiple tissue types from Drosophila to man. FOGs can both facilitate and antagonize GATA factor transcriptional regulation depending on the factor, cell, and even the specific gene target. In this review, we highlight recent studies that have elucidated mechanisms by which FOGs regulate GATA factor function and discuss how these factors use these diverse modes of gene regulation to control cell lineage specification throughout metazoans. PMID:23048181

  15. Synthesis of a nanocomposite biomaterial for implant tissue engineering

    OpenAIRE

    Santos Montes, Angélica

    2015-01-01

    In order to improve health and quality of life, the challenge to develop new biomaterials has become extremely relevant. In this project, our main objective is to obtain a nanocomposite biopolymer that serves as a temporal synthetic extracellular matrix for cell growth and tissue regeneration. This matrix consists of a hydrogel lm of chitosan or agarose doped with di erent ceramic nanoparticles: titanium dioxide (TiO2) and aluminum oxide (Al2O3). Once developed, this composite will be tested...

  16. Immunolocalization of transforming growth factor alpha in normal human tissues

    DEFF Research Database (Denmark)

    Christensen, M E; Poulsen, Steen Seier

    1996-01-01

    anchorage-independent growth of normal cells and was, therefore, considered as an "oncogenic" growth factor. Later, its immunohistochemical presence in normal human cells as well as its biological effects in normal human tissues have been demonstrated. The aim of the present investigation was to elucidate...... the distribution of the growth factor in a broad spectrum of normal human tissues. Indirect immunoenzymatic staining methods were used. The polypeptide was detected with a polyclonal as well as a monoclonal antibody. The polyclonal and monoclonal antibodies demonstrated almost identical immunoreactivity. TGF......-alpha was found to be widely distributed in cells of normal human tissues derived from all three germ layers, most often in differentiated cells. In epithelial cells, three different kinds of staining patterns were observed, either diffuse cytoplasmic, cytoplasmic in the basal parts of the cells, or distinctly...

  17. Enzymatic biodiesel synthesis. Key factors affecting efficiency of the process

    Energy Technology Data Exchange (ETDEWEB)

    Szczesna Antczak, Miroslawa; Kubiak, Aneta; Antczak, Tadeusz; Bielecki, Stanislaw [Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Technical University of Lodz, Stefanowskiego 4/10, 90-924 Lodz (Poland)

    2009-05-15

    Chemical processes of biodiesel production are energy-consuming and generate undesirable by-products such as soaps and polymeric pigments that retard separation of pure methyl or ethyl esters of fatty acids from glycerol and di- and monoacylglycerols. Enzymatic, lipase-catalyzed biodiesel synthesis has no such drawbacks. Comprehension of the latter process and an appreciable progress in production of robust preparations of lipases may soon result in the replacement of chemical catalysts with enzymes in biodiesel synthesis. Engineering of enzymatic biodiesel synthesis processes requires optimization of such factors as: molar ratio of substrates (triacylglycerols: alcohol), temperature, type of organic solvent (if any) and water activity. All of them are correlated with properties of lipase preparation. This paper reports on the interplay between the crucial parameters of the lipase-catalyzed reactions carried out in non-aqueous systems and the yield of biodiesel synthesis. (author)

  18. Synthesis of electroactive tetraaniline grafted polyethylenimine for tissue engineering

    Science.gov (United States)

    Dong, Shilei; Han, Lu; Cai, Muhang; Li, Luhai; Wei, Yan

    2015-07-01

    Tetraaniline grafted polyethylenimine (AT-PEI) was successfully synthesized in this study. Proton Nuclear Magnetic Resonance (1H NMR) Spectroscopy was used to determine the structure of carboxyl-capped aniline tetramer (AT-COOH) and AT-PEI. UV-Vis spectroscopy and Fourier transform infrared (FT-IR) spectroscopy were employed to characterize the absorption spectrum of the obtained AT-PEI samples. The morphology of AT-PEI copolymers in aqueous solution was determined by Scanning electron microscope (SEM). Moreover, AT-PEI copolymers demonstrated excellent solubility in aqueous solution and possessed electroactivity by cyclic voltammogram (CV) curves, which showed its potential application in the field of tissue engineering.

  19. Factors Stimulating Internationalisation of Firms: An Attempted Holistic Synthesis

    OpenAIRE

    Magdalena Belniak

    2015-01-01

    The main goal of this paper is the critical and synthetic analysis of internationalisation process factors, with reference to business management. It presents a systematic review of the most important relational ideas in regard to factors of firm-level internationalisation. The text includes the synthesis of previous academic studies and results of empirical researches on internationalisation factors. The motives for going international are explained in reference to external and internal fact...

  20. Transcriptional transitions in Nicotiana benthamiana leaves upon induction of oil synthesis by WRINKLED1 homologs from diverse species and tissues.

    Science.gov (United States)

    Grimberg, Åsa; Carlsson, Anders S; Marttila, Salla; Bhalerao, Rishikesh; Hofvander, Per

    2015-08-08

    Carbon accumulation and remobilization are essential mechanisms in plants to ensure energy transfer between plant tissues with different functions or metabolic needs and to support new generations. Knowledge about the regulation of carbon allocation into oil (triacylglycerol) in plant storage tissue can be of great economic and environmental importance for developing new high-yielding oil crops. Here, the effect on global gene expression as well as on physiological changes in leaves transiently expressing five homologs of the transcription factor WRINKLED1 (WRI1) originating from diverse species and tissues; Arabidopsis thaliana and potato (Solanum tuberosum) seed embryo, poplar (Populus trichocarpa) stem cambium, oat (Avena sativa) grain endosperm, and nutsedge (Cyperus esculentus) tuber parenchyma, were studied by agroinfiltration in Nicotiana benthamiana. All WRI1 homologs induced oil accumulation when expressed in leaf tissue. Transcriptome sequencing revealed that all homologs induced the same general patterns with a drastic shift in gene expression profiles of leaves from that of a typical source tissue to a source-limited sink-like tissue: Transcripts encoding enzymes for plastid uptake and metabolism of phosphoenolpyruvate, fatty acid and oil biosynthesis were up-regulated, as were also transcripts encoding starch degradation. Transcripts encoding enzymes in photosynthesis and starch synthesis were instead down-regulated. Moreover, transcripts representing fatty acid degradation were up-regulated indicating that fatty acids might be degraded to feed the increased need to channel carbons into fatty acid synthesis creating a futile cycle. RT-qPCR analysis of leaves expressing Arabidopsis WRI1 showed the temporal trends of transcripts selected as 'markers' for key metabolic pathways one to five days after agroinfiltration. Chlorophyll fluorescence measurements of leaves expressing Arabidopsis WRI1 showed a significant decrease in photosynthesis, even though

  1. Activation of 125I-Factor IX and 125I-Factor X: Effect of tissue factor and Factor VII, Factor Xsub(a) and thrombin

    International Nuclear Information System (INIS)

    Oesterud, B.; Rapaport, S.I.

    Activation of Factor IX and Factor X was studied by adding 125 I-Factor IX or 125 I-Factor X to reaction mixtures and quantitating cleavage products by reduced sodium dodecylsulfate gel electrophoresis. Thrombin failed to activate Factors IX or X; Factor Xsub(a) produced insignificant amounts of cleavage products of both factors. In contrast, the reaction product of tissue factor and Factor VII cleaved large amounts of both Factor IX and Factor X in purified systems and in plasma. In incubation mixtures of plasma containing added 125 I-Factor IX or 125 I-Factor X, tissue factor and Ca 2+ ions, the percentage of total radioactivity in the heavy chain peak of 125 I-IXsub(a) and the heavy chain of 125 I-Xsub(a) increased at a similar rate. When the tissue factor was diluted, similar curves were obtained for percent cleavage of 125 I-Factor IX and percent cleavage of 125 I-Factor X plotted against tissue factor concentration. These findings support the hypothesis that activation of Factor IX by the tissue factor-Factor VII reaction product represents a physiologically significant step in normal haemostasis. (author)

  2. Tissue factor-dependent vascular endothelial growth factor production by human fibroblasts in response to activated factor VII.

    Science.gov (United States)

    Ollivier, V; Bentolila, S; Chabbat, J; Hakim, J; de Prost, D

    1998-04-15

    The transmembrane protein tissue factor (TF) is the cell surface receptor for coagulation factor VII (FVII) and activated factor VII (FVIIa). Recently, TF has been identified as a regulator of angiogenesis, tumor growth, and metastasis. This study was designed to link the binding of FVII(a) to its receptor, TF, with the subsequent triggering of angiogenesis through vascular endothelial growth factor (VEGF) production by human lung fibroblasts. We report that incubation of fibroblasts, which express constitutive surface TF, with FVII(a) induces VEGF synthesis. FVII(a)-induced VEGF secretion, assessed by a specific enzyme-linked immunosorbent assay, was time- and concentration-dependent. VEGF secretion was maximal after 24 hours of incubation of the cells with 100 nmol/L FVII(a) and represented a threefold induction of the basal VEGF level. Reverse transcriptase-polymerase chain reaction analysis of VEGF detected three mRNA species of 180, 312, and 384 bp corresponding, respectively, to VEGF121, VEGF165, and VEGF189. A 2.5- to 3.5-fold increase was observed for the 180- and 312-bp transcripts at 12 and 24 hours, respectively. FVII(a)-dependent VEGF production was inhibited by a pool of antibodies against TF, pointing to the involvement of this receptor. On specific active-site inhibition with dansyl-glutamyl-glycinyl-arginyl chloromethyl ketone, FVIIa lost 70% of its capacity to elicit VEGF production. Consistent with this, the native form (zymogen) of FVII only had a 1.8-fold stimulating effect. Protein tyrosine kinase and protein kinase C are involved in signal transduction leading to VEGF production, as shown by the inhibitory effects of genistein and GF 109203X. The results of this study indicate that TF is essential for VIIa-induced VEGF production by human fibroblasts and that its role is mainly linked to the proteolytic activity of the TF-VIIa complex.

  3. Local administration of insulin-like growth factor-I (IGF-I) stimulates tendon collagen synthesis in humans

    DEFF Research Database (Denmark)

    Hansen, Mette; Boesen, Anders; Holm, Lars

    2013-01-01

    Collagen is the predominant structural protein in tendons and ligaments, and can be controlled by hormonal changes. In animals, injections of insulin-like growth factor I (IGF-I) has been shown to increase collagen synthesis in tendons and ligaments and to improve structural tissue healing, but t...

  4. Effect of experimentally increased protein supply to postpartum dairy cows on plasma protein synthesis, rumen tissue proliferation, and immune homeostasis.

    Science.gov (United States)

    Larsen, M; Røntved, C M; Theil, P K; Khatun, M; Lauridsen, C; Kristensen, N B

    2017-05-01

    The effect of experimentally increasing the postpartum protein supply on plasma protein synthesis, rumen tissue proliferation, and immune homeostasis was studied using 8 periparturient Holstein cows in a complete randomized design. At calving, cows were assigned to abomasal infusion of water (CTRL) or casein (CAS) in addition to a lactation diet. Casein infusion was gradually decreased from 696 ± 1 g/d at +2 d relative to calving (DRTC) to 212 ± 10 g/d at +29 DRTC to avoid excessive supply. Synthesis rate of plasma proteins was measured at -14, +4, +15, and +29 DRTC by measuring [C]Phe isotopic enrichment in arterial plasma free Phe, total plasma proteins, and albumin after 3, 5, and 7 h of jugular ring[C]Phe infusion. Plasma volume was determined at +4 and +29 DRTC by dilution of a [I]BSA dose. Synthesis rate of tissue protein in biopsied rumen papillae was determined by measuring [C]Phe isotopic enrichment, and mRNA expression of selected genes was measured by real-time qPCR. Total and differential leukocyte counts were performed and immune responsiveness of monocytes was evaluated by tumor necrosis factor ɑ (TNFɑ) concentration on ex vivo whole blood stimulation with Escherichia coli lipopolysaccharide (LPS) and responsiveness of T-lymphocytes by interferon γ (IFNγ) concentration on stimulation with Staphylococcus aureus enterotoxin β (SEB). Further, ELISA plasma concentrations of IgM, IgA, and IgG were determined. The DRTC affected the majority of investigated parameters as expected. The CAS treatment increased milk protein yield (P = 0.04), and tended to lower TNFɑ (P = 0.06), and lowered IFNγ (P = 0.03) responsiveness per monocyte and lymphocyte, respectively, compared with CTRL. Further, fractional synthesis rate of albumin was greater at +4 DRTC for CAS compared with CTRL but did not differ by +29 DRTC (interaction: P = 0.01). In rumen papillae, synthesis rate of tissue protein was greater for CAS compared with CTRL (P protein supply seem to

  5. Fibroblast Growth Factors: Biology, Function, and Application for Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Ye-Rang Yun

    2010-01-01

    Full Text Available Fibroblast growth factors (FGFs that signal through FGF receptors (FGFRs regulate a broad spectrum of biological functions, including cellular proliferation, survival, migration, and differentiation. The FGF signal pathways are the RAS/MAP kinase pathway, PI3 kinase/AKT pathway, and PLCγ pathway, among which the RAS/MAP kinase pathway is known to be predominant. Several studies have recently implicated the in vitro biological functions of FGFs for tissue regeneration. However, to obtain optimal outcomes in vivo, it is important to enhance the half-life of FGFs and their biological stability. Future applications of FGFs are expected when the biological functions of FGFs are potentiated through the appropriate use of delivery systems and scaffolds. This review will introduce the biology and cellular functions of FGFs and deal with the biomaterials based delivery systems and their current applications for the regeneration of tissues, including skin, blood vessel, muscle, adipose, tendon/ligament, cartilage, bone, tooth, and nerve tissues.

  6. Factors affecting the tissues composition of pork belly.

    Science.gov (United States)

    Duziński, K; Knecht, D; Lisiak, D; Janiszewski, P

    2015-11-01

    Bellies derived from the commercial population of pig carcasses are diverse in terms of tissue composition. Knowledge of the factors influencing it and the expected results, permits quick and easy evaluation of raw material. The study was designed to determine the factors affecting the tissues composition of pork bellies and to estimate their lean meat content. The research population (n=140 pig carcasses) was divided into groups according to sex (gilts, barrows), half-carcass mass (meat content class: S (⩾60%), E (55% to 60%), U (50% to 55%), R (meat content affected the growth of the fat and skin mass in a linear way. No differences were observed between class S and E in terms of belly muscle mass. A 0.37% higher share of belly in the half-carcass was found for barrows (Pmeat content in bellies, suggesting they may be used directly in the production line.

  7. Modern concepts for basic radiobiological factors characterizing tumor tissue radiosensitivity

    International Nuclear Information System (INIS)

    Gocheva, L.; Sergieva, K.

    2002-01-01

    Traditionally radiotherapy is prescribed at doses consistent with the expected therapeutic response and tolerance of tumor and normal tissues without consideration to individual differences in radiosensitivity. However, the basic radiobiological knowledge and clinical experience along this line point to significant variations in the observed therapeutic results. It has been established that cells and tissues under experimental and clinical conditions manifest a wide spectrum of individual radiosensitivity. The aim of this survey is to outline the current concepts for the basic radiobiological factors influencing tumor radiosensitivity. A thorough discussion is done of the essence, mechanisms of action, methods of determination and measurement, and effect on the prognosis in patients with malignant diseases of a number of radiobiological factors, such as: tumor-cell proliferation, apoptosis, tumor hypoxia and neovascularization. Although the knowledge of the mechanisms of radiosensitivity is constantly expanding, its clinical implementation is still rather limited. The true role of radiosensitivity in predicting the therapeutic response should be more accurately defined. (authors)

  8. Tissue Factor and Thrombin in Sickle Cell Anemia

    OpenAIRE

    Chantrathammachart, Pichika; Pawlinski, Rafal

    2012-01-01

    Sickle cell anemia is an inherited hematologic disorder associated with hemolytic and vaso-occlusive complications. An activation of coagulation is also a prominent feature of sickle cell anemia. Growing evidence indicates that coagulation may contribute to the inflammation and vascular injury in sickle cell anemia. This review focuses on tissue factor expression and its contribution to the activation of coagulation, thrombosis and vascular inflammation in sickle cell anemia.

  9. Self-production of tissue factor-coagulation factor VII complex by ovarian cancer cells

    OpenAIRE

    Yokota, N; Koizume, S; Miyagi, E; Hirahara, F; Nakamura, Y; Kikuchi, K; Ruf, W; Sakuma, Y; Tsuchiya, E; Miyagi, Y

    2009-01-01

    Background: Thromboembolic events are a major complication in ovarian cancer patients. Tissue factor (TF) is frequently overexpressed in ovarian cancer tissue and correlates with intravascular thrombosis. TF binds to coagulation factor VII (fVII), changing it to its active form, fVIIa. This leads to activation of the extrinsic coagulation cascade. fVII is produced by the liver and believed to be supplied from blood plasma at the site of coagulation. However, we recently showed that ovarian ca...

  10. Indian values of tissue weighting factors for internal dosimetry

    International Nuclear Information System (INIS)

    Mehta, S.K.

    1995-01-01

    In the present work the induced cancer component of detriment by the relative risk (RR) as well as US National Institute of Health (NIH) models using Indian organ based baseline cancer data and the all-causes mortality of the Indian population has been estimated. The Indian values of tissue weighting factors (W T ) have been worked out by the ICRP-60 methodology. The Indian values of detriment from the exposure of principal organs stomach, lung, colon and bone marrow are factors of 1.5 to 2.5 lower than the corresponding ICRP values. The Indian values of W T differ significantly from the ICRP five population average values. A tissue weighting factor of 0.08 for breast, colon, lung and stomach for the Indian population is more appropriate than the ICRP assigned factors of 0.05, 0.12, 0.12 and 0.12 respectively for these organs. For gonads, the appropriate Indian factor is 0.29 instead of the ICRP value of 0.20. The use of appropriate Indian values of W T is advocated for the Indian population in special investigation cases requiring regulatory intervention. (author). 11 refs., 11 figs., 4 tabs

  11. Procoagulant, tissue factor-bearing microparticles in bronchoalveolar lavage of interstitial lung disease patients: an observational study.

    Directory of Open Access Journals (Sweden)

    Federica Novelli

    Full Text Available Coagulation factor Xa appears involved in the pathogenesis of pulmonary fibrosis. Through its interaction with protease activated receptor-1, this protease signals myofibroblast differentiation in lung fibroblasts. Although fibrogenic stimuli induce factor X synthesis by alveolar cells, the mechanisms of local posttranslational factor X activation are not fully understood. Cell-derived microparticles are submicron vesicles involved in different physiological processes, including blood coagulation; they potentially activate factor X due to the exposure on their outer membrane of both phosphatidylserine and tissue factor. We postulated a role for procoagulant microparticles in the pathogenesis of interstitial lung diseases. Nineteen patients with interstitial lung diseases and 11 controls were studied. All subjects underwent bronchoalveolar lavage; interstitial lung disease patients also underwent pulmonary function tests and high resolution CT scan. Microparticles were enumerated in the bronchoalveolar lavage fluid with a solid-phase assay based on thrombin generation. Microparticles were also tested for tissue factor activity. In vitro shedding of microparticles upon incubation with H₂O₂ was assessed in the human alveolar cell line, A549 and in normal bronchial epithelial cells. Tissue factor synthesis was quantitated by real-time PCR. Total microparticle number and microparticle-associated tissue factor activity were increased in interstitial lung disease patients compared to controls (84±8 vs. 39±3 nM phosphatidylserine; 293±37 vs. 105±21 arbitrary units of tissue factor activity; mean±SEM; p<.05 for both comparisons. Microparticle-bound tissue factor activity was inversely correlated with lung function as assessed by both diffusion capacity and forced vital capacity (r² = .27 and .31, respectively; p<.05 for both correlations. Exposure of lung epithelial cells to H₂O₂ caused an increase in microparticle-bound tissue factor

  12. Model of a ternary complex between activated factor VII, tissue factor and factor IX.

    Science.gov (United States)

    Chen, Shu-wen W; Pellequer, Jean-Luc; Schved, Jean-François; Giansily-Blaizot, Muriel

    2002-07-01

    Upon binding to tissue factor, FVIIa triggers coagulation by activating vitamin K-dependent zymogens, factor IX (FIX) and factor X (FX). To understand recognition mechanisms in the initiation step of the coagulation cascade, we present a three-dimensional model of the ternary complex between FVIIa:TF:FIX. This model was built using a full-space search algorithm in combination with computational graphics. With the known crystallographic complex FVIIa:TF kept fixed, the FIX docking was performed first with FIX Gla-EGF1 domains, followed by the FIX protease/EGF2 domains. Because the FIXa crystal structure lacks electron density for the Gla domain, we constructed a chimeric FIX molecule that contains the Gla-EGF1 domains of FVIIa and the EGF2-protease domains of FIXa. The FVIIa:TF:FIX complex has been extensively challenged against experimental data including site-directed mutagenesis, inhibitory peptide data, haemophilia B database mutations, inhibitor antibodies and a novel exosite binding inhibitor peptide. This FVIIa:TF:FIX complex provides a powerful tool to study the regulation of FVIIa production and presents new avenues for developing therapeutic inhibitory compounds of FVIIa:TF:substrate complex.

  13. Effect of different BNCT protocols on DNA synthesis in precancerous and normal tissues in an experimental model of oral cancer

    International Nuclear Information System (INIS)

    Heber, Elisa M.; Aromando, Romina; Trivillin, Veronica A.; Itoiz, Maria E.; Kreimann, Erica L.; Schwint, Amanda E.; Nigg, David W.

    2006-01-01

    We previously reported the therapeutic success of different BNCT protocols in the treatment of oral cancer, employing the hamster cheek pouch model. The aim of the present study was to evaluate the effect of these BNCT protocols on DNA synthesis in precancerous and normal tissue in this model and assess the potential lag in the development of second primary tumors in precancerous tissue. The data are relevant to potential control of field cancerized tissue and tolerance of normal tissue. We evaluated DNA synthesis in precancerous and normal pouch tissue 1-30 days post-BNCT mediated by BPA, GB-10 or BPA + GB-10 employing incorporation of bromo-deoxyuridine as an end-point. The BNCT-induced potential lag in the development of second primary tumors in precancerous tissue was monitored. A drastic, statistically significant reduction in DNA synthesis occurred in pacancerous tissue as early as 1 day post-BNCT and was sustained at virtually all time points until 30 days post-BNCT for all protocols. The histological categories evaluated individually within precancerous tissue (dysplasia, hyperplasia and NUMF [no unusual microscopic features]) responded similarly. DNA synthesis in normal tissue treated with BNCT oscillated around the very low pre-treatment values. A BNCT-induced lag in the development of second primary tumors was observed. BNCT induced a drastic fall in DNA synthesis in precancerous tissue that would be associated to the observed lag in the development of second primary tumors. The minimum variations in DNA synthesis in BNCT-treated normal tissue would correlate with the absence of normal tissue radiotoxicity. The present data would contribute to optimize therapeutic efficacy in the treatment of field-cancerized areas. (author)

  14. Evidence for the ectopic synthesis of melanin in human adipose tissue.

    Science.gov (United States)

    Randhawa, Manpreet; Huff, Tom; Valencia, Julio C; Younossi, Zobair; Chandhoke, Vikas; Hearing, Vincent J; Baranova, Ancha

    2009-03-01

    Melanin is a common pigment in animals. In humans, melanin is produced in melanocytes, in retinal pigment epithelium (RPE) cells, in the inner ear, and in the central nervous system. Previously, we noted that human adipose tissue expresses several melanogenesis-related genes. In the current study, we confirmed the expression of melanogenesis-related mRNAs and proteins in human adipose tissue using real-time polymerase chain reaction and immunohistochemical staining. TYR mRNA signals were also detected by in situ hybridization in visceral adipocytes. The presence of melanin in human adipose tissue was revealed both by Fontana-Masson staining and by permanganate degradation of melanin coupled with liquid chromatography/ultraviolet/mass spectrometry determination of the pyrrole-2,3,5-tricarboxylic acid (PTCA) derivative of melanin. We also compared melanogenic activities in adipose tissues and in other human tissues using the L-[U-(14)C] tyrosine assay. A marked heterogeneity in the melanogenic activities of individual adipose tissue extracts was noted. We hypothesize that the ectopic synthesis of melanin in obese adipose may serve as a compensatory mechanism that uses its anti-inflammatory and its oxidative damage-absorbing properties. In conclusion, our study demonstrates for the first time that the melanin biosynthesis pathway is functional in adipose tissue.

  15. Heparanase enhances the generation of activated factor X in the presence of tissue factor and activated factor VII.

    Science.gov (United States)

    Nadir, Yona; Brenner, Benjamin; Fux, Liat; Shafat, Itay; Attias, Judith; Vlodavsky, Israel

    2010-11-01

    Heparanase is an endo-β-D-glucuronidase dominantly involved in tumor metastasis and angiogenesis. Recently, we demonstrated that heparanase is involved in the regulation of the hemostatic system. Our hypothesis was that heparanase is directly involved in activation of the coagulation cascade. Activated factor X and thrombin were studied using chromogenic assays, immunoblotting and thromboelastography. Heparanase levels were measured by enzyme-linked immunosorbent assay. A potential direct interaction between tissue factor and heparanase was studied by co-immunoprecipitation and far-western assays. Interestingly, addition of heparanase to tissue factor and activated factor VII resulted in a 3- to 4-fold increase in activation of the coagulation cascade as shown by increased activated factor X and thrombin production. Culture medium of human embryonic kidney 293 cells over-expressing heparanase and its derivatives increased activated factor X levels in a non-enzymatic manner. When heparanase was added to pooled normal plasma, a 7- to 8-fold increase in activated factor X level was observed. Subsequently, we searched for clinical data supporting this newly identified role of heparanase. Plasma samples from 35 patients with acute leukemia at presentation and 20 healthy donors were studied for heparanase and activated factor X levels. A strong positive correlation was found between plasma heparanase and activated factor X levels (r=0.735, P=0.001). Unfractionated heparin and an inhibitor of activated factor X abolished the effect of heparanase, while tissue factor pathway inhibitor and tissue factor pathway inhibitor-2 only attenuated the procoagulant effect. Using co-immunoprecipitation and far-western analyses it was shown that heparanase interacts directly with tissue factor. Overall, our results support the notion that heparanase is a potential modulator of blood hemostasis, and suggest a novel mechanism by which heparanase increases the generation of activated

  16. Role of TGF-beta1 in relation to exercise-induced type I collagen synthesis in human tendinous tissue

    DEFF Research Database (Denmark)

    Heinemeier, Katja; Langberg, Henning; Olesen, Jens L

    2003-01-01

    synthesis, is released from cultured tendon fibroblasts in response to mechanical loading. Thus TGF-beta1 could link mechanical loading and collagen synthesis in tendon tissue in vivo. Tissue levels of TGF-beta1 and type I collagen metabolism markers [procollagen I COOH-terminal propeptide (PICP) and COOH...... exercise (P insertion was markedly delayed by exercise compared with the decay seen in resting subjects...

  17. The influence of environmental factors on bone tissue engineering.

    Science.gov (United States)

    Szpalski, Caroline; Sagebin, Fabio; Barbaro, Marissa; Warren, Stephen M

    2013-05-01

    Bone repair and regeneration are dynamic processes that involve a complex interplay between the substrate, local and systemic cells, and the milieu. Although each constituent plays an integral role in faithfully recreating the skeleton, investigators have long focused their efforts on scaffold materials and design, cytokine and hormone administration, and cell-based therapies. Only recently have the intangible aspects of the milieu received their due attention. In this review, we highlight the important influence of environmental factors on bone tissue engineering. Copyright © 2012 Wiley Periodicals, Inc.

  18. Tissue factor-dependent activation of tritium-labeled factor IX and factor X in human plasma

    International Nuclear Information System (INIS)

    Morrison, S.A.; Jesty, J.

    1984-01-01

    A comparism was made of the tissue factor-dependent activation of tritium-labeled factor IX and factor X in a human plasma system and a study was made of the role of proteases known to stimulate factor VII activity. Plasma was defibrinated by heating and depleted of its factors IX and X by passing it through antibody columns. Addition of human brain thromboplastin, Ca2+, and purified 3H-labeled factor X to the plasma resulted, after a short lag, in burst-like activation of the factor X, measured as the release of radiolabeled activation peptide. The progress of activation was slowed by both heparin and a specific inhibitor of factor Xa but factor X activation could not be completely abolished by such inhibitors. In the case of 3H-factor IX activation, the rate also increased for approximately 3 min after addition of thromboplastin, but was not subsequently curtailed. A survey of proteases implicated as activators of factor VII in other settings showed that both factor Xa and factor IXa could accelerate the activation of factor IX. However, factor Xa was unique in obliterating activation when present at concentrations greater than approximately 1 nM. Heparin inhibited the tissue factor-dependent activation of factor IX almost completely, apparently through the effect of antithrombin on the feedback reactions of factors Xa and IXa on factor VII. These results suggest that a very tight, biphasic control of factor VII activity exists in human plasma, which is modulated mainly by factor Xa. At saturation of factor VIIa/tissue factor, factor IX activation was significantly more rapid than was previously found in bovine plasma under similar conditions. The activation of factor X at saturation was slightly more rapid than in bovine plasma, despite the presence of heparin

  19. Estimation of anisotropy factor spectrum for determination of optical properties in biological tissues

    Science.gov (United States)

    Iwamoto, Misako; Honda, Norihiro; Ishii, Katsunori; Awazu, Kunio

    2017-07-01

    Spectroscopic setup for measuring anisotropy factor g spectrum of biological tissues was constructed. g of chicken liver tissue was lower than chicken breast tissue. High absorption of hemoglobin can have an influence on g spectrum.

  20. Factors Stimulating Internationalisation of Firms: An Attempted Holistic Synthesis

    Directory of Open Access Journals (Sweden)

    Magdalena Belniak

    2015-06-01

    Full Text Available The main goal of this paper is the critical and synthetic analysis of internationalisation process factors, with reference to business management. It presents a systematic review of the most important relational ideas in regard to factors of firm-level internationalisation. The text includes the synthesis of previous academic studies and results of empirical researches on internationalisation factors. The motives for going international are explained in reference to external and internal factors. Different definitions of understanding external factors of internationalisation of firms are discussed, among them (i framework factors (market, cost, governmental, competitive and additional factors, (ii conditioning factors (factor and demand conditions, related and supporting industries, firm strategy, structure and rivalry as well as (iii general environment factors (economic environment, demographic environment, political and legal environment, technological, natural and socio-cultural environment. Internal factors of internationalisation are mostly rooted in the resource-based view. Motives for going international mainly depend on top management team, international resources and firms specifics. The paper underlines that there are numerous factors, both external and internal, which influence international activities of firms. Despite the fact that the decision to internationalize is focused on specific motives and goals, the role of managers is crucial.

  1. Connective tissue growth factor is a substrate of ADAM28

    International Nuclear Information System (INIS)

    Mochizuki, Satsuki; Tanaka, Rena; Shimoda, Masayuki; Onuma, Junko; Fujii, Yutaka; Jinno, Hiromitsu; Okada, Yasunori

    2010-01-01

    Research highlights: → The hyper-variable region in the cysteine-rich domain of ADAM28 binds to C-terminal domain of CTGF. → ADAM28 cleaves CTGF alone and CTGF in the CTGF/VEGF 165 complex. → CTGF digestion by ADAM28 releases biologically active VEGF 165 from the complex. → ADAM28, CTGF and VEGF 165 are commonly co-expressed by carcinoma cells in human breast carcinoma tissues. → These suggest that ADAM28 promotes VEGF 165 -induced angiogenesis in the breast carcinomas by selective CTGF digestion in the CTGF/VEGF 165 complex. -- Abstract: ADAM28, a member of the ADAM (a disintegrin and metalloproteinase) gene family, is over-expressed by carcinoma cells and the expression correlates with carcinoma cell proliferation and progression in human lung and breast carcinomas. However, information about substrates of ADAM28 is limited. We screened interacting molecules of ADAM28 in human lung cDNA library by yeast two-hybrid system and identified connective tissue growth factor (CTGF). Binding of CTGF to proADAM28 was demonstrated by yeast two-hybrid assay and protein binding assay. ADAM28 cleaved CTGF in dose- and time-dependent manners at the Ala 181 -Tyr 182 and Asp 191 -Pro 192 bonds in the hinge region of the molecule. ADAM28 selectively digested CTGF in the complex of CTGF and vascular endothelial growth factor 165 (VEGF 165 ), releasing biologically active VEGF 165 from the complex. RT-PCR and immunohistochemical analyses demonstrated that ADAM28, CTGF and VEGF are commonly co-expressed in the breast carcinoma tissues. These data provide the first evidence that CTGF is a novel substrate of ADAM28 and suggest that ADAM28 may promote VEGF 165 -induced angiogenesis in the breast carcinomas by the CTGF digestion in the CTGF/VEGF 165 complex.

  2. Association of intraoperative tissue oxygenation with suspected risk factors for tissue hypoxia.

    Science.gov (United States)

    Spruit, R J; Schwarte, L A; Hakenberg, O W; Scheeren, T W L

    2013-10-01

    Tissue hypoxia may cause organ dysfunction, but not much is known about tissue oxygenation in the intraoperative setting. We studied microcirculatory tissue oxygen saturation (StO₂) to determine representative values for anesthetized patients undergoing urological surgery and to test the hypothesis that StO₂ is associated with known perioperative risk factors for morbidity and mortality, conventionally monitored variables, and hypotension requiring norepinephrine. Using near-infrared spectroscopy, we measured StO₂ on the thenar eminence in 160 patients undergoing open urological surgery under general anesthesia (FiO2 0.35-0.4), and calculated its correlations with age, risk level for general perioperative complications and mortality (high if age ≥70 and procedure is radical cystectomy), mean arterial pressure (MAP), hemoglobin concentration (Hb), central venous oxygen saturation (ScvO₂), and norepinephrine use. The time averaged StO₂ was 86 ± 6 % (mean ± SD). In the multivariate analysis, Hb [standardized coefficient (SC) 0.21, p = 0.003], ScvO₂ (SC 0.53, p SStO₂ was partly dependent on MAP only when this was below 65 mmHg (lowest MAP SC 0.20, p = 0.006, MAP area under the curve <65 mmHg SC 0.03, p = 0.02). Finally, StO₂ was slightly lower in patients requiring norepinephrine (85 ± 6 vs. 89 ± 6 %, p = 0.001). Intraoperative StO₂ in urological patients was comparable to that of healthy volunteers breathing room air as reported in the literature and correlated with known perioperative risk factors. Further research should investigate its association with outcome and the effect of interventions aimed at optimizing StO₂.

  3. Tissue

    Directory of Open Access Journals (Sweden)

    David Morrissey

    2012-01-01

    Full Text Available Purpose. In vivo gene therapy directed at tissues of mesenchymal origin could potentially augment healing. We aimed to assess the duration and magnitude of transene expression in vivo in mice and ex vivo in human tissues. Methods. Using bioluminescence imaging, plasmid and adenoviral vector-based transgene expression in murine quadriceps in vivo was examined. Temporal control was assessed using a doxycycline-inducible system. An ex vivo model was developed and optimised using murine tissue, and applied in ex vivo human tissue. Results. In vivo plasmid-based transgene expression did not silence in murine muscle, unlike in liver. Although maximum luciferase expression was higher in muscle with adenoviral delivery compared with plasmid, expression reduced over time. The inducible promoter cassette successfully regulated gene expression with maximum levels a factor of 11 greater than baseline. Expression was re-induced to a similar level on a temporal basis. Luciferase expression was readily detected ex vivo in human muscle and tendon. Conclusions. Plasmid constructs resulted in long-term in vivo gene expression in skeletal muscle, in a controllable fashion utilising an inducible promoter in combination with oral agents. Successful plasmid gene transfection in human ex vivo mesenchymal tissue was demonstrated for the first time.

  4. Diet-induced obesity alters protein synthesis: Tissue-specific effects in fasted vs. fed mice

    OpenAIRE

    Anderson, Stephanie R.; Gilge, Danielle A.; Steiber, Alison L.; Previs, Stephen F.

    2008-01-01

    The influence of obesity on protein dynamics is not clearly understood. We have designed experiments to test the hypothesis that obesity impairs the stimulation of tissue-specific protein synthesis following nutrient ingestion. C57BL/6J mice were randomized into two groups: group 1 (control, n = 16) were fed a low-fat, high-carbohydrate diet and group 2 (experimental, n = 16) were fed a high-fat, low-carbohydrate diet ad libitum for 9 weeks. On the experiment day, all mice were fasted for 6 h...

  5. Sucrose-induced anthocyanin accumulation in vegetative tissue of Petunia plants requires anthocyanin regulatory transcription factors.

    Science.gov (United States)

    Ai, Trinh Ngoc; Naing, Aung Htay; Arun, Muthukrishnan; Lim, Sun-Hyung; Kim, Chang Kil

    2016-11-01

    The effects of three different sucrose concentrations on plant growth and anthocyanin accumulation were examined in non-transgenic (NT) and transgenic (T 2 ) specimens of the Petunia hybrida cultivar 'Mirage rose' that carried the anthocyanin regulatory transcription factors B-Peru+mPAP1 or RsMYB1. Anthocyanin accumulation was not observed in NT plants in any treatments, whereas a range of anthocyanin accumulation was observed in transgenic plants. The anthocyanin content detected in transgenic plants expressing the anthocyanin regulatory transcription factors (B-Peru+mPAP1 or RsMYB1) was higher than that in NT plants. In addition, increasing sucrose concentration strongly enhanced anthocyanin content as shown by quantitative real-time polymerase chain reaction (qRT-PCR) analysis, wherein increased concentrations of sucrose enhanced transcript levels of the transcription factors that are responsible for the induction of biosynthetic genes involved in anthocyanin synthesis; this pattern was not observed in NT plants. In addition, sucrose affected plant growth, although the effects were different between NT and transgenic plants. Taken together, the application of sucrose could enhance anthocyanin production in vegetative tissue of transgenic Petunia carrying anthocyanin regulatory transcription factors, and this study provides insights about interactive effects of sucrose and transcription factors in anthocyanin biosynthesis in the transgenic plant. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Fibroblast growth factors as tissue repair and regeneration therapeutics

    Directory of Open Access Journals (Sweden)

    Quentin M. Nunes

    2016-01-01

    Full Text Available Cell communication is central to the integration of cell function required for the development and homeostasis of multicellular animals. Proteins are an important currency of cell communication, acting locally (auto-, juxta-, or paracrine or systemically (endocrine. The fibroblast growth factor (FGF family contributes to the regulation of virtually all aspects of development and organogenesis, and after birth to tissue maintenance, as well as particular aspects of organism physiology. In the West, oncology has been the focus of translation of FGF research, whereas in China and to an extent Japan a major focus has been to use FGFs in repair and regeneration settings. These differences have their roots in research history and aims. The Chinese drive into biotechnology and the delivery of engineered clinical grade FGFs by a major Chinese research group were important enablers in this respect. The Chinese language clinical literature is not widely accessible. To put this into context, we provide the essential molecular and functional background to the FGF communication system covering FGF ligands, the heparan sulfate and Klotho co-receptors and FGF receptor (FGFR tyrosine kinases. We then summarise a selection of clinical reports that demonstrate the efficacy of engineered recombinant FGF ligands in treating a wide range of conditions that require tissue repair/regeneration. Alongside, the functional reasons why application of exogenous FGF ligands does not lead to cancers are described. Together, this highlights that the FGF ligands represent a major opportunity for clinical translation that has been largely overlooked in the West.

  7. Connective tissue growth factor (CTGF) and cancer progression.

    Science.gov (United States)

    Chu, Chia-Yu; Chang, Cheng-Chi; Prakash, Ekambaranellore; Kuo, Min-Liang

    2008-11-01

    Connective tissue growth factor (CTGF) is a member of the CCN family of secreted, matrix-associated proteins encoded by immediate early genes that play various roles in angiogenesis and tumor growth. CCN family proteins share uniform modular structure which mediates various cellular functions such as regulation of cell division, chemotaxis, apoptosis, adhesion, motility, angiogenesis, neoplastic transformation, and ion transport. Recently, CTGF expression has been shown to be associated with tumor development and progression. There is growing body of evidence that CTGF may regulate cancer cell migration, invasion, angiogenesis, and anoikis. In this review, we will highlight the influence of CTGF expression on the biological behavior and progression of various cancer cells, as well as its regulation on various types of protein signals and their mechanisms.

  8. p27{sup Kip1} inhibits tissue factor expression

    Energy Technology Data Exchange (ETDEWEB)

    Breitenstein, Alexander, E-mail: alexander.breitenstein@usz.ch [Cardiology, University Heart Center, University Hospital Zurich (Switzerland); Cardiovascular Research, Physiology Institute, University of Zurich (Switzerland); Center for Integrative Human Physiology (ZHIP), University of Zurich (Switzerland); Akhmedov, Alexander; Camici, Giovanni G.; Lüscher, Thomas F.; Tanner, Felix C. [Cardiology, University Heart Center, University Hospital Zurich (Switzerland); Cardiovascular Research, Physiology Institute, University of Zurich (Switzerland); Center for Integrative Human Physiology (ZHIP), University of Zurich (Switzerland)

    2013-10-04

    Highlights: •p27{sup Kip1}regulates the expression of tissue factor at the transcriptional level. •This inhibitory effect of p27{sup Kip1} is independently of its cell regulatory action. •The current study provides new insights into a pleiotrophic function of p27{sup Kip1}. -- Abstract: Background: The cyclin-dependent kinase inhibitor (CDKI) p27{sup Kip1} regulates cell proliferation and thus inhibits atherosclerosis and vascular remodeling. Expression of tissue factor (TF), the key initator of the coagulation cascade, is associated with atherosclerosis. Yet, it has not been studied whether p27{sup Kip1} influences the expression of TF. Methods and results: p27{sup Kip1} overexpression in human aortic endothelial cells was achieved by adenoviral transfection. Cells were rendered quiescent for 24 h in 0.5% fetal-calf serum. After stimulation with TNF-α (5 ng/ml), TF protein expression and activity was significantly reduced (n = 4; P < 0.001) in cells transfected with p27{sup Kip1}. In line with this, p27{sup Kip1} overexpression reduced cytokine-induced TF mRNA expression (n = 4; P < 0.01) and TF promotor activity (n = 4; P < 0.05). In contrast, activation of the MAP kinases p38, ERK and JNK was not affected by p27{sup Kip1} overexpression. Conclusion: This in vitro study suggests that p27{sup Kip1} inhibits TF expression at the transcriptional level. These data indicate an interaction between p27{sup Kip1} and TF in important pathological alterations such as atherosclerosis and vascular remodeling.

  9. Triglyceride synthesis in epididymal adipose tissue: contribution of glucose and non-glucose carbon sources.

    Science.gov (United States)

    Bederman, Ilya R; Foy, Steven; Chandramouli, Visvanathan; Alexander, James C; Previs, Stephen F

    2009-03-06

    The obesity epidemic has generated interest in determining the contribution of various pathways to triglyceride synthesis, including an elucidation of the origin of triglyceride fatty acids and triglyceride glycerol. We hypothesized that a dietary intervention would demonstrate the importance of using glucose versus non-glucose carbon sources to synthesize triglycerides in white adipose tissue. C57BL/6J mice were fed either a low fat, high carbohydrate (HC) diet or a high fat, carbohydrate-free (CF) diet and maintained on 2H2O (to determine total triglyceride dynamics) or infused with [6,6-(2)H]glucose (to quantify the contribution of glucose to triglyceride glycerol). The 2H2O labeling data demonstrate that although de novo lipogenesis contributed approximately 80% versus approximately 5% to the pool of triglyceride palmitate in HC- versus CF-fed mice, the epididymal adipose tissue synthesized approximately 1.5-fold more triglyceride in CF- versus HC-fed mice, i.e. 37+/-5 versus 25+/-3 micromolxday(-1). The [6,6-(2)H]glucose labeling data demonstrate that approximately 69 and approximately 28% of triglyceride glycerol is synthesized from glucose in HC- versus CF-fed mice, respectively. Although these data are consistent with the notion that non-glucose carbon sources (e.g. glyceroneogenesis) can make substantial contributions to the synthesis of triglyceride glycerol (i.e. the absolute synthesis of triglyceride glycerol from non-glucose substrates increased from approximately 8 to approximately 26 micromolxday(-1) in HC- versus CF-fed mice), these observations suggest (i) the importance of nutritional status in affecting flux rates and (ii) the operation of a glycerol-glucose cycle.

  10. Estradiol Synthesis in Gut-Associated Lymphoid Tissue: Leukocyte Regulation by a Sexually Monomorphic System.

    Science.gov (United States)

    Oakley, Oliver R; Kim, Kee Jun; Lin, Po-Ching; Barakat, Radwa; Cacioppo, Joseph A; Li, Zhong; Whitaker, Alexandra; Chung, Kwang Chul; Mei, Wenyan; Ko, CheMyong

    2016-12-01

    17β-estradiol is a potent sex hormone synthesized primarily by gonads in females and males that regulates development and function of the reproductive system. Recent studies show that 17β-estradiol is locally synthesized in nonreproductive tissues and regulates a myriad of events, including local inflammatory responses. In this study, we report that mesenteric lymph nodes (mLNs) and Peyer's patches (Pps) are novel sites of de novo synthesis of 17β-estradiol. These secondary lymphoid organs are located within or close to the gastrointestinal tract, contain leukocytes, and function at the forefront of immune surveillance. 17β-estradiol synthesis was initially identified using a transgenic mouse with red fluorescent protein coexpressed in cells that express aromatase, the enzyme responsible for 17β-estradiol synthesis. Subsequent immunohistochemistry and tissue culture experiments revealed that aromatase expression was localized to high endothelial venules of these lymphoid organs, and these high endothelial venule cells synthesized 17β-estradiol when isolated and cultured in vitro. Both mLNs and Pps contained 17β-estradiol with concentrations that were significantly higher than those of peripheral blood. Furthermore, the total amount of 17β-estradiol in these organs exceeded that of the gonads. Mice lacking either aromatase or estrogen receptor-β had hypertrophic Pps and mLNs with more leukocytes than their wild-type littermates, demonstrating a role for 17β-estradiol in leukocyte regulation. Importantly, we did not observe any sex-dependent differences in aromatase expression, 17β-estradiol content, or steroidogenic capacity in these lymphoid organs.

  11. Elevated plasma factor VIII enhances venous thrombus formation in rabbits: contribution of factor XI, von Willebrand factor and tissue factor.

    Science.gov (United States)

    Sugita, Chihiro; Yamashita, Atsushi; Matsuura, Yunosuke; Iwakiri, Takashi; Okuyama, Nozomi; Matsuda, Shuntaro; Matsumoto, Tomoko; Inoue, Osamu; Harada, Aya; Kitazawa, Takehisa; Hattori, Kunihiro; Shima, Midori; Asada, Yujiro

    2013-07-01

    Elevated plasma levels of factor VIII (FVIII) are associated with increased risk of deep venous thrombosis. The aim of this study is to elucidate how elevated FVIII levels affect venous thrombus formation and propagation in vivo. We examined rabbit plasma FVIII activity, plasma thrombin generation, whole blood coagulation, platelet aggregation and venous wall thrombogenicity before and one hour after an intravenous infusion of recombinant human FVIII (rFVIII). Venous thrombus induced by the endothelial denudation of rabbit jugular veins was histologically assessed. Thrombus propagation was evaluated as indocyanine green fluorescence intensity. Argatroban, a thrombin inhibitor, and neutralised antibodies for tissue factor (TF), factor XI (FXI), and von Willebrand factor (VWF) were infused before or after thrombus induction to investigate their effects on venous thrombus formation or propagation. Recombinant FVIII (100 IU/kg) increased rabbit plasma FVIII activity two-fold and significantly enhanced whole blood coagulation and total plasma thrombin generation, but did not affect initial thrombin generation time, platelet aggregation and venous wall thrombogenicity. The rFVIII infusion also increased the size of venous thrombus 1 hour after thrombus induction. Argatroban and the antibodies for TF, FXI or VWF inhibited such enhanced thrombus formation and all except TF suppressed thrombus propagation. In conclusion, elevated plasma FVIII levels enhance venous thrombus formation and propagation. Excess thrombin generation by FXI and VWF-mediated FVIII recruitment appear to contribute to the growth of FVIII-driven venous thrombus.

  12. Mechanochemical synthesis evaluation of nanocrystalline bone-derived bioceramic powder using for bone tissue engineering

    Directory of Open Access Journals (Sweden)

    Amirsalar Khandan

    2014-01-01

    Full Text Available Introduction: Bone tissue engineering proposes a suitable way to regenerate lost bones. Different materials have been considered for use in bone tissue engineering. Hydroxyapatite (HA is a significant success of bioceramics as a bone tissue repairing biomaterial. Among different bioceramic materials, recent interest has been risen on fluorinated hydroxyapatites, (FHA, Ca 10 (PO 4 6 F x (OH 2−x . Fluorine ions can promote apatite formation and improve the stability of HA in the biological environments. Therefore, they have been developed for bone tissue engineering. The aim of this study was to synthesize and characterize the FHA nanopowder via mechanochemical (MC methods. Materials and Methods: Natural hydroxyapatite (NHA 95.7 wt.% and calcium fluoride (CaF 2 powder 4.3 wt.% were used for synthesis of FHA. MC reaction was performed in the planetary milling balls using a porcelain cup and alumina balls. Ratio of balls to reactant materials was 15:1 at 400 rpm rotation speed. The structures of the powdered particles formed at different milling times were evaluated by X-ray diffraction (XRD, scanning electron microscopy (SEM and transmission electron microscopy (TEM. Results: Fabrication of FHA from natural sources like bovine bone achieved after 8 h ball milling with pure nanopowder. Conclusion: F− ion enhances the crystallization and mechanical properties of HA in formation of bone. The produced FHA was in nano-scale, and its crystal size was about 80-90 nm with sphere distribution in shape and size. FHA powder is a suitable biomaterial for bone tissue engineering.

  13. Expression and localization of tissue factor pathway inhibitor-2 in normal and atherosclerotic human vessels

    NARCIS (Netherlands)

    Crawley, James T. B.; Goulding, David A.; Ferreira, Valérie; Severs, Nicholas J.; Lupu, Florea

    2002-01-01

    Tissue factor pathway inhibitor-2 (TFPI-2) is a Kunitz-type, serine protease inhibitor with inhibitory activity toward activated factor XI, plasma kallikrein, plasmin, certain matrix metalloproteinases, and the tissue factor:activated factor VII complex. In this study, we investigated TFPI-2

  14. Effect of tissue and plasma factors on kidney proliferation.

    Science.gov (United States)

    Inda, A M; García, A L; Errecalde, A L; Badrán, A F

    1997-04-01

    Liver extract, plasma from intact mice, ES2 tumour extract and plasma from tumour bearing mice has an inhibiting effect on the mitotic activity of hepatocytes and duodenal enterocytes. In the present experiments, the effect of these treatments on the mitotic activity of renal tubular cells was studied. C3HS 28 day-old male mice, standardized for periodicity analysis were used. The determination of normal mitotic circadian curve of the renocytes was done. A second batch of mice were injected with 0.01 ml/gr of either liver extract, plasma from intact mice, ES2 tumour extract or plasma from tumour bearing mice, at 16:00 hours and controlled at 08:00, 12:00 and 16:00 hs during 2 consecutive days post treatment. Colchicine (2 micrograms/gr) was injected 4 hours before killing. Kidneys were processed for histology and mitotic index determinations. Results were expressed as colchicine metaphases per 1000 nuclei, and showed that mitotic activity values of treated animals were significantly lower than those of controls. In conclusion, mitotic activity inhibition of renocytes may be due to some non specific plasmatic and/or tissue factors.

  15. FISH SKIN ISOLATED COLLAGEN CRYOGELS FOR TISSUE ENGINEERING APPLICATIONS: PURIFICATION, SYNTHESIS AND CHARACTERIZATION

    Directory of Open Access Journals (Sweden)

    Nimet Bölgen

    2016-09-01

    Full Text Available Tissue engineering aims regenerating damaged tissues by using porous scaffolds, cells and bioactive agents. The scaffolds are produced from a variety of natural and synthetic polymers. Collagen is a natural polymer widely used for scaffold production in the late years because of its being the most important component of the connective tissue and biocompatibility. Cryogelation is a relatively simple technique compared to other scaffold production methods, which enables to produce interconnected porous matrices from the frozen reaction mixtures of polymers or monomeric precursors. Considering these, collagen was isolated in this study from fish skin which is a non-commercial waste material, and scaffolds were produced from this collagen by cryogelation method. By SEM analysis, porous structure of collagen, and by UV-Vis analysis protein structure was proven, and by Zeta potential iso-electrical point of the protein was determined, and,  Amit A, Amit B, Amit I, Amit II and Amit III characteristical peaks were demonstrated by FTIR analysis. The collagen isolation yield was, 14.53% for acid soluble collagen and 2.42% for pepcin soluble collagen. Scaffolds were produced by crosslinking isolated acid soluble collagen with glutaraldehyde at cryogenic conditions. With FTIR analysis, C=N bond belonging to gluteraldehyde reaction with collagen was found to be at 1655 cm-1. It was demonstrated by SEM analysis that collagen and glutaraldeyhde concentration had significant effects on the pore morphology, diameter and wall thickness of the cryogels, which in turned changed the swelling ratio and degradation profiles of the matrices. In this study, synthesis and characterization results of a fish skin isolated collagen cryogel scaffold that may be potentially used in the regeneration of damaged tissues are presented.

  16. Synthesis of hydroxyapatite nanoparticles onto modified polypropylene surface to be used in bone tissue engineering

    International Nuclear Information System (INIS)

    Cellet, Thelma Sley P.; Pereira, Guilherme M.; Fragal, Elizangela H.; Rubira, Adley F.; Companhoni, Mychelle V.P.; Nakamura, Celso V.; Ueda-Nakamura, Tania

    2015-01-01

    Chemical modification of polypropylene (PP) films can be explored to prepare innovative materials, for instance materials which can be used in tissue engineering application. The maleimide synthesis onto PP films was made for later polymerizes glycidyl methacrylate (GMA) and to grow up hydroxyapatite nanoparticles (n-HA) by biomimetization method (BM) in metastable simulated body fluid (SBF) for 7, 14 and 21 days. The modification steps were proved by infrared spectroscopy (FTIR) and the n-HA synthesis evidenced by X-ray diffractometry (XRD), scanning electronic microscopy (SEM) and energy dispersive spectroscopy (EDS). PP films exposed to SBF for 14 and 21 days showed n-HA on all over the films surface. The interaction of pre-osteoblasts with the films after 48 hours was evaluated by SEM. The results demonstrate that cells on the surface of n-HA films showed spreading, and number of filopodia similar to the control, wherein the films with greater amount of n-HA appear to have higher filopodia connections between the cells and appear to have its surface covered with higher cell density. (author)

  17. Tissue Factor-Factor VII Complex As a Key Regulator of Ovarian Cancer Phenotypes.

    Science.gov (United States)

    Koizume, Shiro; Miyagi, Yohei

    2015-01-01

    Tissue factor (TF) is an integral membrane protein widely expressed in normal human cells. Blood coagulation factor VII (fVII) is a key enzyme in the extrinsic coagulation cascade that is predominantly secreted by hepatocytes and released into the bloodstream. The TF-fVII complex is aberrantly expressed on the surface of cancer cells, including ovarian cancer cells. This procoagulant complex can initiate intracellular signaling mechanisms, resulting in malignant phenotypes. Cancer tissues are chronically exposed to hypoxia. TF and fVII can be induced in response to hypoxia in ovarian cancer cells at the gene expression level, leading to the autonomous production of the TF-fVII complex. Here, we discuss the roles of the TF-fVII complex in the induction of malignant phenotypes in ovarian cancer cells. The hypoxic nature of ovarian cancer tissues and the roles of TF expression in endometriosis are discussed. Arguments will be extended to potential strategies to treat ovarian cancers based on our current knowledge of TF-fVII function.

  18. Ocular Safety of Intravitreal Connective Tissue Growth Factor Neutralizing Antibody.

    Science.gov (United States)

    Motevasseli, Tahmineh; Daftarian, Narsis; Kanavi, Mozhgan Rezaei; Ahmadieh, Hamid; Bagheri, Abouzar; Hosseini, Seyed Bagher; Ansari, Shabnam; Soheili, Zahra-Soheila

    2017-08-01

    To detect the safety of intravitreal injection of anti-connective tissue growth factor (CTGF) (IVAC) in rat eyes in order to apply this neutralizing antibody for experimental animal studies. Forty-five Lister Hooded male pigmented rats were divided into five groups that received IVAC (2 μl) corresponding to the doses of 10 (B), 20 (C), 50 (D), and 100 μg/ml (E), equal to 1.25, 2.5, 6.25, and 12.5 µg/ml of antibody concentration in rat vitreous, respectively. The sham group (A) received 2 μl of normal saline. Full field electroretinography (ERG) was performed at baseline and on days 7 and 28 after IVAC. The animals were euthanized and the corresponding eyes were subjected to routine histopathology, immunohistochemistry for glial fibrillary acidic protein (GFAP), and terminal transferase dUTP nick end-labeling (TUNEL) assay. Scotopic rod b-wave amplitude and maximal combined b-wave amplitude were 111.89 ± 71.2 and 178.57 ± 55.58 μV, respectively, at baseline which significantly reduced to 79.31 ± 52.59 and 128.73 ± 41.61 μV, respectively, after 28 days in group E (p < 0.05). There was no significant reduction of amplitudes in other groups with lower doses of anti-CTGF antibody. Retinal ganglion cells were significantly decreased in group E as compared to other groups. GFAP immune reactivity was not significant in any of the groups. TUNEL test showed inner retinal neural cell apoptosis only in group E. ERG, histopathologic, and apoptotic assays revealed no toxic effects of 10-50 μg/ml of IVAC in rat eyes. Using 100 μg/ml IVAC led to a significant toxic effect in terms of functional, histopathologic, and TUNEL findings.

  19. Regulation of the Incorporation of Tissue Factor into Microparticles by Serine Phosphorylation of the Cytoplasmic Domain of Tissue Factor*

    Science.gov (United States)

    Collier, Mary E. W.; Ettelaie, Camille

    2011-01-01

    The mechanisms that regulate the incorporation and release of tissue factors (TFs) into cell-derived microparticles are as yet unidentified. In this study, we have explored the regulation of TF release into microparticles by the phosphorylation of serine residues within the cytoplasmic domain of TF. Wild-type and mutant forms of TF, containing alanine and aspartate substitutions at Ser253 and Ser258, were overexpressed in coronary artery and dermal microvascular endothelial cells and microparticle release stimulated with PAR2 agonist peptide (PAR2-AP). The release of TF antigen and activity was then monitored. In addition, the phosphorylation state of the two serine residues within the released microparticles and the cells was monitored for 150 min. The release of wild-type TF as procoagulant microparticles peaked at 90 min and declined thereafter in both cell types. The TF within these microparticles was phosphorylated at Ser253 but not at Ser258. Aspartate substitution of Ser253 resulted in rapid release of TF antigen but not activity, whereas TF release was reduced and delayed by alanine substitution of Ser253 or aspartate substitution of Ser258. Alanine substitution of Ser258 prolonged the release of TF following PAR2-AP activation. The release of TF was concurrent with phosphorylation of Ser253 and was followed by dephosphorylation at 120 min and phosphorylation of Ser258. We propose a sequential mechanism in which the phosphorylation of Ser253 through PAR2 activation results in the incorporation of TF into microparticles, simultaneously inducing Ser258 phosphorylation. Phosphorylation of Ser258 in turn promotes the dephosphorylation of Ser253 and suppresses the release of TF. PMID:21310953

  20. Measurement of microparticle tissue factor activity in clinical samples: A summary of two tissue factor-dependent FXa generation assays.

    Science.gov (United States)

    Hisada, Yohei; Alexander, Wyeth; Kasthuri, Raj; Voorhees, Peter; Mobarrez, Fariborz; Taylor, Angela; McNamara, Coleen; Wallen, Hakan; Witkowski, Marco; Key, Nigel S; Rauch, Ursula; Mackman, Nigel

    2016-03-01

    Thrombosis is a leading cause of morbidity and mortality. Detection of a prothrombotic state using biomarkers would be of great benefit to identify patients at risk of thrombosis that would benefit from thromboprophylaxis. Tissue factor (TF) is a highly procoagulant protein that under normal conditions is not present in the blood. However, increased levels of TF in the blood in the form of microparticles (MPs) (also called extracellular vesicles) are observed under various pathological conditions. In this review, we will discuss studies that have measured MP-TF activity in a variety of diseases using two similar FXa generation assay. One of the most robust signals for MP-TF activity (16-26 fold higher than healthy controls) is observed in pancreatic cancer patients with venous thromboembolism. In this case, the TF+ MPs appear to be derived from the cancer cells. Surprisingly, cirrhosis and acute liver injury are associated with 17-fold and 38-fold increases in MP-TF activity, respectively. Based on mouse models, we speculate that the TF+ MPs are derived from hepatocytes. More modest increases are observed in patients with urinary tract infections (6-fold) and in a human endotoxemia model (9-fold) where monocytes are the likely source of the TF+ MPs. Finally, there is no increase in MP-TF activity in the majority of cardiovascular disease patients. These studies indicate that MP-TF activity may be a useful biomarker to identify patients with particular diseases that have an increased risk of thrombosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. A facile synthesis method of hydroxyethyl cellulose-silver nanoparticle scaffolds for skin tissue engineering applications.

    Science.gov (United States)

    Zulkifli, Farah Hanani; Hussain, Fathima Shahitha Jahir; Zeyohannes, Senait Sileshi; Rasad, Mohammad Syaiful Bahari Abdull; Yusuff, Mashitah M

    2017-10-01

    Green porous and ecofriendly scaffolds have been considered as one of the potent candidates for tissue engineering substitutes. The objective of this study is to investigate the biocompatibility of hydroxyethyl cellulose (HEC)/silver nanoparticles (AgNPs), prepared by the green synthesis method as a potential host material for skin tissue applications. The substrates which contained varied concentrations of AgNO 3 (0.4%-1.6%) were formed in the presence of HEC, were dissolved in a single step in water. The presence of AgNPs was confirmed visually by the change of color from colorless to dark brown, and was fabricated via freeze-drying technique. The outcomes exhibited significant porosity of >80%, moderate degradation rate, and tremendous value of water absorption up to 1163% in all samples. These scaffolds of HEC/AgNPs were further characterized by SEM, UV-Vis, ATR-FTIR, TGA, and DSC. All scaffolds possessed open interconnected pore size in the range of 50-150μm. The characteristic peaks of Ag in the UV-Vis spectra (417-421nm) revealed the formation of AgNPs in the blend composite. ATR-FTIR curve showed new existing peak, which implies the oxidation of HEC in the cellulose derivatives. The DSC thermogram showed augmentation in T g with increased AgNO 3 concentration. Preliminary studies of cytotoxicity were carried out in vitro by implementation of the hFB cells on the scaffolds. The results substantiated low toxicity of HEC/AgNPs scaffolds, thus exhibiting an ideal characteristic in skin tissue engineering applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. The importance of residues 195-206 of human blood clotting factor VII in the interaction of factor VII with tissue factor

    International Nuclear Information System (INIS)

    Wildgoose, P.; Kisiel, W.; Kazim, A.L.

    1990-01-01

    Previous studies indicated that human and bovine factor VII exhibit 71% amino acid sequence identity. In the present study, competition binding experiments revealed that the interaction of human factor VII with cell-surface human tissue factor was not inhibited by 100-fold molar excess of bovine factor VII. This finding indicated that bovine and human factor VII are not structurally homologous in the region(s) where human factor VII interacts with human tissue factor. On this premise, the authors synthesized three peptides corresponding to regions of human factor VII that exhibited marked structural dissimilarity to bovine factor VII; these regions of dissimilarity included residues 195-206, 263-274, and 314-326. Peptide 195-206 inhibited the interaction of factor VII with cell-surface tissue factor and the activation of factor X by a complex of factor VIIa and tissue factor half-maximally at concentrations of 1-2 mM. A structurally rearranged form of peptide 195-206 containing an aspartimide residue inhibited these reactions half-maximally at concentrations of 250-300 μM. In contrast, neither peptide 263-274 nor peptide 314-326, at 2 mM concentration, significantly affected either factor VIIa interaction with tissue factor or factor VIIa-mediated activation of factor X. The data provide presumptive evidence that residues 195-206 of human factor VII are involved in the interaction of human factor VII with the extracellular domain of human tissue factor apoprotein

  3. Tissue factor activates allosteric networks in factor VIIa through structural and dynamic changes

    DEFF Research Database (Denmark)

    Madsen, Jesper Jonasson; Persson, E.; Olsen, O. H.

    2015-01-01

    that are not likely to be inferred from mutagenesis studies. Furthermore, paths from Met306 to Ile153 (N-terminus) and Trp364, both representing hallmark residues of allostery, are 7% and 37% longer, respectively, in free FVIIa. Thus, there is significantly weaker coupling between the TF contact point and key......Background: Tissue factor (TF) promotes colocalization of enzyme (factorVIIa) and substrate (FX or FIX), and stabilizes the active conformation of FVIIa. Details on how TF induces structural and dynamic changes in the catalytic domain of FVIIa to enhance its efficiency remain elusive. Objective......: To elucidate the activation of allosteric networks in the catalytic domain of the FVIIa protease it is when bound to TF.MethodsLong-timescale molecular dynamics simulations of FVIIa, free and in complex with TF, were executed and analyzed by dynamic network analysis. Results: Allosteric paths of correlated...

  4. Self-production of tissue factor-coagulation factor VII complex by ovarian cancer cells.

    Science.gov (United States)

    Yokota, N; Koizume, S; Miyagi, E; Hirahara, F; Nakamura, Y; Kikuchi, K; Ruf, W; Sakuma, Y; Tsuchiya, E; Miyagi, Y

    2009-12-15

    Thromboembolic events are a major complication in ovarian cancer patients. Tissue factor (TF) is frequently overexpressed in ovarian cancer tissue and correlates with intravascular thrombosis. TF binds to coagulation factor VII (fVII), changing it to its active form, fVIIa. This leads to activation of the extrinsic coagulation cascade. fVII is produced by the liver and believed to be supplied from blood plasma at the site of coagulation. However, we recently showed that ovarian cancer cells express fVII transcripts under normoxia and that this transcription is inducible under hypoxia. These findings led us to hypothesise that ovarian cancer cells are intrinsically associated with TF-fVIIa coagulation activity, which could result in thrombosis. In this study, we examined whether ectopically expressed fVII could cause thrombosis by means of immunohistochemistry, RT-PCR, western blotting and flow cytometry. Ectopic fVII expression occurs frequently in ovarian cancers, particularly in clear cell carcinoma. We further showed that ovarian cancer cells express TF-fVIIa on the cell surface under normoxia and that this procoagulant activity is enhanced by hypoxic stimuli. Moreover, we showed that ovarian cancer cells secrete microparticles (MPs) with TF-fVIIa activity. Production of this procoagulant secretion is enhanced under hypoxia. These results raise the possibility that cancer cell-derived TF-fVIIa could cause thrombotic events in ovarian cancer patients.

  5. Connective tissue growth factor/CCN2-null mouse embryonic fibroblasts retain intact transforming growth factor-β responsiveness

    International Nuclear Information System (INIS)

    Mori, Yasuji; Hinchcliff, Monique; Wu, Minghua; Warner-Blankenship, Matthew; Lyons, Karen M.; Varga, John

    2008-01-01

    Background: The matricellular protein connective tissue growth factor (CCN2) has been implicated in pathological fibrosis, but its physiologic role remains elusive. In vitro, transforming growth factor-β (TGF-β) induces CCN2 expression in mesenchymal cells. Because CCN2 can enhance profibrotic responses elicited by TGF-β, it has been proposed that CCN2 functions as an essential downstream signaling mediator for TGF-β. To explore this notion, we characterized TGF-β-induced activation of fibroblasts from CCN2-null (CCN2 -/- ) mouse embryos. Methods: The regulation of CCN2 expression was examined in vivo in a model of fibrosis induced by bleomycin. Cellular TGF-β signal transduction and regulation of collagen gene expression were examined in CCN2 -/- MEFs by immunohistochemistry, Northern, Western and RT-PCR analysis, immunocytochemistry and transient transfection assays. Results: Bleomycin-induced skin fibrosis in the mouse was associated with substantial CCN2 up-regulation in lesional fibroblasts. Whereas in vitro proliferation rate of CCN2 -/- MEFs was markedly reduced compared to wild type MEFs, TGF-β-induced activation of the Smad pathways, including Smad2 phosphorylation, Smad2/3 and Smad4 nuclear accumulation and Smad-dependent transcriptional responses, were unaffected by loss of CCN2. The stimulation of COL1A2 and fibronectin mRNA expression and promoter activity, and of corresponding protein levels, showed comparable time and dose-response in wild type and CCN2 -/- MEFs, whereas stimulation of alpha smooth muscle actin and myofibroblast transdifferentiation showed subtle impairment in MEFs lacking CCN2. Conclusion: Whereas endogenous CCN2 plays a role in regulation of proliferation and TGF-β-induced myofibroblast transdifferentiation, it appears to be dispensable for Smad-dependent stimulation of collagen and extracellular matrix synthesis in murine embryonic fibroblasts

  6. Low-protein, high-carbohydrate diet increases glucose uptake and fatty acid synthesis in brown adipose tissue of rats.

    Science.gov (United States)

    Aparecida de França, Suélem; Pavani Dos Santos, Maísa; Nunes Queiroz da Costa, Roger Vinícius; Froelich, Mendalli; Buzelle, Samyra Lopes; Chaves, Valéria Ernestânia; Giordani, Morenna Alana; Pereira, Mayara Peron; Colodel, Edson Moleta; Marlise Balbinotti Andrade, Cláudia; Kawashita, Nair Honda

    2014-04-01

    The aim of this study was to evaluate glucose uptake and the contribution of glucose to fatty acid (FA) synthesis and the glycerol-3-phosphate (G3P) of triacylglycerol synthesis by interscapular brown adipose tissue (IBAT) of low-protein, high-carbohydrate (LPHC) diet-fed rats. LPHC (6% protein; 74% carbohydrate) or control (17% protein; 63% carbohydrate) diets were administered to rats (∼ 100 g) for 15 d. Total FA and G3P synthesis and the synthesis of FA and G3P from glucose were evaluated in vivo by (3)H2O and (14)C-glucose. Sympathetic neural contribution for FA synthesis was evaluated by comparing the synthesis in denervated (7 d before) IBAT with that of the contralateral innervated side. The insulin signaling and β3 adrenergic receptor (β3-AR) contents, as well as others, were determined by Western blot (Student's t test or analysis of variance; P ≤ 0.05). Total FA synthesis in IBAT was 133% higher in the LPHC group and was reduced 85% and 70% by denervation for the LPHC and control groups, respectively. Glucose uptake was 3.5-fold higher in the IBAT of LPHC rats than in that of the control rats, and the contribution of glucose to the total FA synthesis increased by 12% in control rats compared with 18% in LPHC rats. The LPHC diet increased the G3P generation from glucose by 270% and the insulin receptor content and the p-AKT insulin stimulation in IBAT by 120% and reduced the β3-AR content by 50%. The LPHC diet stimulated glucose uptake, both the total rates and the rates derived from glucose-dependent FA and G3P synthesis, by increasing the insulin sensitivity and the sympathetic flux, despite a reduction in the β3-AR content. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Effect of connective tissue growth factor (CTGF) expression on radiation pulmonary fibrosis in rats

    International Nuclear Information System (INIS)

    Huang Shanying; Song Liangwen; Zhang Yong; Sun Li; Li Yang

    2005-01-01

    Objective: To explore the effect of connective tissue growth factor (CTGF) on initiation of radiation pulmonary fibrosis (RPF) and the relation to α-smooth muscle actin (α-SMA). Methods: The promotive effect of CTGF on proliferation of human lung fibroblasts (HLF) by 5 Gy of 60 Co γ-rays was determined by MTT colorimetry. The expressions of CTGF and α-SMA in HLF were observed by Western blot. Changes of collagen I and III in rat lungs were determined by Sirius red staining and polarization microscopy. Expressions of CTGF and α-SMA in RPF were observed with immunohisto-chemistry and analysis. Results: Expressions of CTGF and α-SMA were increased. CTGF reached its peak at 24 h after irradiation, whereas α-SMA still kept at a high level 72 h after irradiation. A small amount of collagen was produced in rat lung one month after irradiation, in which type III collagen was the primary component. However, a large amount of collagen was produced in rat lung 3-6 months after irradiation, in which type I was dominant. CTGF began to expression 1 week after irradiation in proliferative fibroblasts of rat lung, and it was most evident 3 months after irradiation. α-SMA began to express in proliferative myofibroblasts 1 week after irradiation, and the high peek was reached at 3 months after irradiation. Conclusion: Irradiation can induce expression of CTGF in pulmonary tissue and the later can promote the transformation of fibroblasts to myofibroblasts, strengthen the ability of synthesis and secretion of type I and III collagen. (authors)

  8. Synthesis and characterization of polyglycerols dendrimers for applications in tissue engineering biological

    International Nuclear Information System (INIS)

    Passos, E.D.; Queiroz, A.A.A. de

    2014-01-01

    Full text: Introduction: Over the last twenty years is the growing development in the manufacture of synthetic scaffold in tissue engineering applications. These new materials are based on polyglycerol dendrimers (PGLD's). PGLD's are highly functional polymers with hydroxymethyl side groups, fulfill all structural prerequisites to replace poly(ethylene glycol)s in medical applications. Furthermore, since these materials are based on naturally occurring compounds that degrades over time in the body and can be safely excreted. The objective of this work was the synthesis, physicochemical, biological characterization of HPGL's with potential use as scaffolds in tissue engineering. HPGL's with oligomeric cores, of diglycerol triglycerol and tetraglycerol was used. Theoretical and Experimental Simulation Details: The synthesis of PGLD procedures involves the etherification of glycerol through anionic polymerization of glycidol. The PGLD's were characterized by chromatographic techniques (SEC and HPLC), spectroscopic (FTIR, 1H-NMR and 13C - NMR) electrochemical (zeta potential) and thermal analysis (DSC and TGA) techniques. The structure- activity relationships (SAR's) of compound prototype and its analogs were studied to determine the generation number (G) of the molecule responsible for the biological activity on the adhesion and cell proliferation process. A detailed study of the structure of PGLD's of G=0-4 was performed using the Hyperchem 7. 5 and Gromacs 4 software packages. The biocompatibility studies were studied by scanning electron microscopy (SEM) and fluorescence microscopy (EPF) technique after PGLD (G=0-4) blood contact. The overall electro-negativity/total charge density, dipole moment, frontier orbital's (HOMO - LUMO) and electrostatic potential maps (EPM) were calculated. The most stable form of the resulting compounds was determined by estimating the hydration energy and energy conformation. Results and Discussion: The techniques SEM and EPF

  9. Endocrine factors influencing radiation injury to central nervous tissue

    International Nuclear Information System (INIS)

    Aristizabal, S.A.; Boone, M.L.; Laguna, J.F.

    1979-01-01

    Corticosteroids have been shown experimentally to lower the tolerance of various normal tissues (lung, kidney, intestine) to irradiation. Pre-existing hypertension also modified the effect of irradiation on the rat spinal cord and brain. Hypercorticism and hypertension co-exist in patients with Cushing's disease. Although these patients are often approached therapeutically by irradiation, no reports concerning differences in the radiation sensitivity of nervous tissue between normal subjects (non-functioning pituitary adenomas) and those with hormonal imbalance and/or hypertension appear to be available. A comprehensive review of the literature revealed 14 patients with radiation damage to brain or to optic pathways following moderate doses for pituitary adenomas. Seven of the 14 patients (50%) had Cushing's disease. This apparent higher incidence of radiation injury is significant if we consider that less than 5% of all patients receiving irradiation for pituitary adenomas have Cushing's disease

  10. Chlorpromazine inhibits tumour necrosis factor synthesis and cytotoxicity in vitro.

    Science.gov (United States)

    Zinetti, M; Galli, G; Demitri, M T; Fantuzzi, G; Minto, M; Ghezzi, P; Alzani, R; Cozzi, E; Fratelli, M

    1995-11-01

    Chlorpromazine (CPZ) has been previously shown to protect against endotoxin [lipopolysaccharide (LPS)] lethality and inhibit the release of tumour necrosis factor in vivo. We investigated at the cellular level whether this was due to direct inhibition of tumour necrosis factor-alpha (TNF-alpha) synthesis, using LPS-stimulated THP-1 human monocytic leukemia cells. We also studied the effect of CPZ on human TNF-alpha action by assessing TNF-alpha cytotoxicity on mouse fibrosarcoma L929 cells. CPZ (1-100 microM) inhibited TNF-alpha production in THP-1 cells in a dose dependent manner by a maximum of 80%. This effect was comparable to that of two well-known inhibitory drugs, dexamethasone and cyclicAMP. Inhibition was also evident at the mRNA level. On the other hand CPZ (10-25 microM) also inhibited TNF-alpha activity: in fact it reduced the cytotoxicity of TNF-alpha on L929 cells (EC50 was increased four times) and could provide protection even as a post-treatment. CPZ inhibited TNF-induced apoptosis in L929 cells, as detected by analysis of nuclear morphology. However, since we showed that apoptosis was very limited, and was not the main mode of cell death in our conditions, this could not explain the overall protection. Since CPZ did not interfere with either the oligomerization state of TNF-alpha or its receptor binding, our data suggest that it reduced cytotoxicity by inhibiting some steps in the TNF-alpha signalling pathways.

  11. Hemophilia as a defect of the tissue factor pathway of blood coagulation: Effect of factors VIII and IX on factor X activation in a continuous-flow reactor

    International Nuclear Information System (INIS)

    Repke, D.; Gemmell, C.H.; Guha, A.; Turitto, V.T.; Nemerson, Y.; Broze, G.J. Jr.

    1990-01-01

    The effect of factors VIII and IX on the ability of the tissue factor-factor VIIa complex to activate factor X was studied in a continuous-flow tubular enzyme reactor. Tissue factor immobilized in a phospholipid bilayer on the inner surface of the tube was exposed to a perfusate containing factors VIIa, VIII, IX, and X flowing at a wall shear rate of 57, 300, or 1130 sec -1 . The addition of factors VIII and IX at their respective plasma concentrations resulted in a further 2 endash-to 3 endash fold increase. The direct activation of factor X by tissue factor-factor VIIa could be virtually eliminated by the lipoprotein-associated coagulation inhibitor. These results suggest that the tissue factor pathway, mediated through factors VIII and IX, produces significant levels of factor Xa even in the presence of an inhibitor of the tissue factor-factor VIIa complex; moreover, the activation is dependent on local shear conditions. These findings are consistent both with a model of blood coagulation in which initiation of the system results from tissue factor and with the bleeding observed in hemophilia

  12. Autoradiographic demonstration of unscheduled DNA synthesis in oral tissues treated with chemical carcinogens in short-term organ culture

    International Nuclear Information System (INIS)

    Ide, F.; Umemura, S.; Ishikawa, T.; Takayama, S.

    1981-01-01

    A system in which oral tissues of inbred F344 adult rats and Syrian golden hamster embryos were used in combination with autoradiography was developed for measurement of unscheduled DNA synthesis (UDS). For this, oral mucosa, submandibular gland, tooth germ and mandible in short-term organ cultures were treated with 4-nitroquinoline l-oxide or N-methyl-N-nitrosourea plus (methyl- 3 H)thymidine. Significant numbers of silver grains, indicating UDS, were detected over the nuclei of cells of all these tissues except rat salivary gland after treatment with carcinogens. This autoradiographic method is suitable for detection of UDS in oral tissues in conditions mimicking those in vivo. Results obtained in this study indicated a potential use of this system for studies on the mechanism of carcinogenesis at a cellular level comparable to in vivo carcinogenesis studies on oral tissues. (author)

  13. Phenolic compounds in cultures of tissues of tea plants and the effect of light on their synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Koretskaya, T.F.; Zaprometov, M.N.

    1975-01-01

    Stem and leaf calluses of tea plants (Camellia sinensis) retain the capacity for synthesis of phenolic compounds. The content of phenolic compounds comprises 2 to 5 percent of dry weight, the main share (80 to 95 percent) belonging to catechins and leucoanthocyans, including their polymeric forms. The following compounds were detected in callus tissue: (--)-epicatechin, (+)-catechin, two leucoanthocyans, and several unidentified phenolic compounds that fluoresce in UV. (--)-Epicatechin is predominant. In contrast to tissues of an intact plant, the callus does not contain gallocatechins or free gallic acid under the given cultivation conditions. The content of phenolic compounds changes in proportion to callus growth, their greatest amount being formed during the phase of intensive growth. Light stimulates synthesis of phenolic compounds, including the most reduced group of flavonoids, viz., leucoanthocyans and catechins.

  14. Effect of administration of oral contraceptives in vivo on collagen synthesis in tendon and muscle connective tissue in young women

    DEFF Research Database (Denmark)

    Hansen, M; Miller, B F; Holm, L

    2009-01-01

    concentrations of estradiol and progesterone (control, n = 12). Subjects performed 1 h of one-legged kicking exercise. The next day collagen fractional synthesis rates (FSR) in tendon and muscle connective tissue were measured after a flooding dose of [(13)C]proline followed by biopsies from the patellar tendon......, body composition, and exercise-training status were included. The two groups were either habitual users of oral contraceptives exposed to a high concentration of synthetic estradiol and progestogens (OC, n = 11), or non-OC-users tested in the follicular phase of the menstrual cycle characterized by low...... bioavailability of IGF-I in OC. In conclusion, synthetic female sex hormones administered as OC had an inhibiting effect on collagen synthesis in tendon, bone, and muscle connective tissue, which may be related to a lower bioavailability of IGF-I....

  15. Connective tissue growth factor in renal development and injury

    NARCIS (Netherlands)

    Ito, Y.

    2011-01-01

    Langdurige weefselbeschadiging leidt vaak tot functieverlies van het betreffende orgaan door het ontstaan van veel littekens (fibrose). Yasuhiko Ito ontdekte dat genexpressie van de factor CTGF sterk is verhoogd bij veelvoorkomende nierziekten waarbij fibrose optreedt. De hoeveelheid CTGF in de

  16. Influence of ionizing radiation on synthesis and molecular heterogeneity of catalase in tissue culture of Rauwolfia serpentina

    International Nuclear Information System (INIS)

    Komov, V.P.; Bespalova, E.V.; Strelkova, M.A.

    1998-01-01

    Changes in activity and molecular heterogeneity of catalase in tissue culture of Rauwolfia serpentina following irradiation in early growth period at the doses of 8 and 50 Gy has been studied. Ionizing radiation accelerate the synthesis and degradation rates of catalase and total protein. A comparative study of changes in enzyme and protein turnover during growth on irradiated and non-irradiated medium has been made [ru

  17. Immobilization and Application of Electrospun Nanofiber Scaffold-based Growth Factor in Bone Tissue Engineering.

    Science.gov (United States)

    Chen, Guobao; Lv, Yonggang

    2015-01-01

    Electrospun nanofibers have been extensively used in growth factor delivery and regenerative medicine due to many advantages including large surface area to volume ratio, high porosity, excellent loading capacity, ease of access and cost effectiveness. Their relatively large surface area is helpful for cell adhesion and growth factor loading, while storage and release of growth factor are essential to guide cellular behaviors and tissue formation and organization. In bone tissue engineering, growth factors are expected to transmit signals that stimulate cellular proliferation, migration, differentiation, metabolism, apoptosis and extracellular matrix (ECM) deposition. Bolus administration is not always an effective method for the delivery of growth factors because of their rapid diffusion from the target site and quick deactivation. Therefore, the integration of controlled release strategy within electrospun nanofibers can provide protection for growth factors against in vivo degradation, and can manipulate desired signal at an effective level with extended duration in local microenvironment to support tissue regeneration and repair which normally takes a much longer time. In this review, we provide an overview of growth factor delivery using biomimetic electrospun nanofiber scaffolds in bone tissue engineering. It begins with a brief introduction of different kinds of polymers that were used in electrospinning and their applications in bone tissue engineering. The review further focuses on the nanofiber-based growth factor delivery and summarizes the strategies of growth factors loading on the nanofiber scaffolds for bone tissue engineering applications. The perspectives on future challenges in this area are also pointed out.

  18. Use of fibroblast growth factor 2 for expansion of chondrocytes and tissue engineering

    Science.gov (United States)

    Vunjak-Novakovic, Gordana (Inventor); Martin, Ivan (Inventor); Freed, Lisa E. (Inventor); Langer, Robert (Inventor)

    2003-01-01

    The present invention provides an improved method for expanding cells for use in tissue engineering. In particular the method provides specific biochemical factors to supplement cell culture medium during the expansion process in order to reproduce events occurring during embryonic development with the goal of regenerating tissue equivalents that resemble natural tissues both structurally and functionally. These specific biochemical factors improve proliferation of the cells and are capable of de-differentiation mature cells isolated from tissue so that the differentiation potential of the cells is preserved. The bioactive molecules also maintain the responsiveness of the cells to other bioactive molecules. Specifically, the invention provides methods for expanding chondrocytes in the presence of fibroblast growth factor 2 for use in regeneration of cartilage tissue.

  19. Effects of different progestin regimens in hormone replacement therapy on blood coagulation factor VII and tissue factor pathway inhibitor

    DEFF Research Database (Denmark)

    Bladbjerg, E-M; Skouby, S O.; Andersen, L F

    2002-01-01

    BACKGROUND: Long-term hormone replacement therapy (HRT) reduces cardiovascular risk, but an early increased risk was reported in women with coronary heart disease. In such women the arterial intima can express tissue factor, and changes in coagulation factor VII (factor VII) and tissue factor...... pathway inhibitor (TFPI) may be deleterious. METHODS: We measured factor VII clotting activity, activated factor VII, and concentrations of factor VII and TFPI during 12 months in healthy post-menopausal women randomized to: (i). cyclic oral estrogen/progestin (n = 25); (ii). long-cycle oral estrogen......: No variations were observed in the reference group. There was a substantial decrease in TFPI concentrations in the HRT groups irrespective of the type of progestin. In women receiving long-cycle treatment, all factor VII measures increased during the unopposed estrogen periods, and the increase was reversed...

  20. Synthesis and characterization of polyglycerols dendrimers for applications in tissue engineering biological

    Energy Technology Data Exchange (ETDEWEB)

    Passos, E.D.; Queiroz, A.A.A. de [Universidade Federal de Itajuba (UNIFEI), MG (Brazil)

    2014-07-01

    Full text: Introduction: Over the last twenty years is the growing development in the manufacture of synthetic scaffold in tissue engineering applications. These new materials are based on polyglycerol dendrimers (PGLD's). PGLD's are highly functional polymers with hydroxymethyl side groups, fulfill all structural prerequisites to replace poly(ethylene glycol)s in medical applications. Furthermore, since these materials are based on naturally occurring compounds that degrades over time in the body and can be safely excreted. The objective of this work was the synthesis, physicochemical, biological characterization of HPGL's with potential use as scaffolds in tissue engineering. HPGL's with oligomeric cores, of diglycerol triglycerol and tetraglycerol was used. Theoretical and Experimental Simulation Details: The synthesis of PGLD procedures involves the etherification of glycerol through anionic polymerization of glycidol. The PGLD's were characterized by chromatographic techniques (SEC and HPLC), spectroscopic (FTIR, 1H-NMR and 13C - NMR) electrochemical (zeta potential) and thermal analysis (DSC and TGA) techniques. The structure- activity relationships (SAR's) of compound prototype and its analogs were studied to determine the generation number (G) of the molecule responsible for the biological activity on the adhesion and cell proliferation process. A detailed study of the structure of PGLD's of G=0-4 was performed using the Hyperchem 7. 5 and Gromacs 4 software packages. The biocompatibility studies were studied by scanning electron microscopy (SEM) and fluorescence microscopy (EPF) technique after PGLD (G=0-4) blood contact. The overall electro-negativity/total charge density, dipole moment, frontier orbital's (HOMO - LUMO) and electrostatic potential maps (EPM) were calculated. The most stable form of the resulting compounds was determined by estimating the hydration energy and energy conformation. Results and

  1. Angiogenesis is not impaired in connective tissue growth factor (CTGF) knock-out mice

    NARCIS (Netherlands)

    Kuiper, Esther J.; Roestenberg, Peggy; Ehlken, Christoph; Lambert, Vincent; van Treslong-de Groot, Henny Bloys; Lyons, Karen M.; Agostini, Hans-Jürgen T.; Rakic, Jean-Marie; Klaassen, Ingeborg; van Noorden, Cornelis J. F.; Goldschmeding, Roel; Schlingemann, Reinier O.

    2007-01-01

    Connective tissue growth factor (CTGF) is a member of the CCN family of growth factors. CTGF is important in scarring, wound healing, and fibrosis. It has also been implicated to play a role in angiogenesis, in addition to vascular endothelial growth factor (VEGF). In the eye, angiogenesis and

  2. Tissue Factor–Factor VII Complex As a Key Regulator of Ovarian Cancer Phenotypes

    OpenAIRE

    Koizume, Shiro; Miyagi, Yohei

    2015-01-01

    Tissue factor (TF) is an integral membrane protein widely expressed in normal human cells. Blood coagulation factor VII (fVII) is a key enzyme in the extrinsic coagulation cascade that is predominantly secreted by hepatocytes and released into the bloodstream. The TF–fVII complex is aberrantly expressed on the surface of cancer cells, including ovarian cancer cells. This procoagulant complex can initiate intracellular signaling mechanisms, resulting in malignant phenotypes. Cancer tissues are...

  3. In vivo bioimaging with tissue-specific transcription factor activated luciferase reporters.

    OpenAIRE

    Buckley, SM; Delhove, JM; Perocheau, DP; Karda, R; Rahim, AA; Howe, SJ; Ward, NJ; Birrell, MA; Belvisi, MG; Arbuthnot, P; Johnson, MR; Waddington, SN; McKay, TR

    2015-01-01

    The application of transcription factor activated luciferase reporter cassettes in vitro is widespread but potential for in vivo application has not yet been realized. Bioluminescence imaging enables non-invasive tracking of gene expression in transfected tissues of living rodents. However the mature immune response limits luciferase expression when delivered in adulthood. We present a novel approach of tissue-targeted delivery of transcription factor activated luciferase reporter lentiviruse...

  4. The influence of tethered epidermal growth factor on connective tissue progenitor colony formation

    OpenAIRE

    Marcantonio, Nicholas A.; Boehm, Cynthia A.; Rozic, Richard J.; Au, Ada; Wells, Alan; Muschler, George F.; Griffith, Linda G.

    2009-01-01

    Strategies to combine aspirated marrow cells with scaffolds to treat connective tissue defects are gaining increasing clinical attention and use. In situations such as large defects where initial survival and proliferation of transplanted connective tissue progenitors (CTPs) are limiting, therapeutic outcomes might be improved by using the scaffold to deliver growth factors that promote the early stages of cell function in the graft. Signaling by the epidermal growth factor receptor (EGFR) pl...

  5. Trefoil factors in saliva and gingival tissues of patients with chronic periodontitis

    DEFF Research Database (Denmark)

    Chaiyarit, Ponlatham; Chayasadom, Anek; Wara-Aswapati, Nawarat

    2012-01-01

    BACKGROUND: Trefoil factors (TFFs) are secreted molecules that are involved in cytoprotection against tissue damage and the immune response. TFFs have been detected in saliva and oral tissues, but their clinical significance has never been investigated in patients with chronic periodontitis....... The objective of this study is to determine whether TFF expression in saliva and gingival tissues is associated with periodontal pathology. METHODS: Saliva and gingival tissue samples were collected from 25 non-periodontitis individuals and 25 patients with chronic periodontitis (CP). Enzyme...... observed in patients with CP (P = 0.003 and P periodontal pathology and number of Porphyromonas gingivalis...

  6. Urokinase-type plasminogen activator receptor (uPAR), tissue factor (TF) and epidermal growth factor receptor (EGFR)

    DEFF Research Database (Denmark)

    Christensen, Anders; Kiss, Katalin; Lelkaitis, Giedrius

    2017-01-01

    Background: Tumor-specific biomarkers are a prerequisite for the development of targeted imaging and therapy in oral squamous cell carcinoma (OSCC). urokinase-type Plasminogen Activator Receptor (uPAR), Tissue Factor (TF) and Epidermal Growth Factor Receptor (EGFR) are three biomarkers that exhib...... with a reduced survival. uPAR seems to be a prognostic biomarker in oral cancer....

  7. Minimizing E-factor in the continuous-flow synthesis of diazepam and atropine.

    Science.gov (United States)

    Bédard, Anne-Catherine; Longstreet, Ashley R; Britton, Joshua; Wang, Yuran; Moriguchi, Hideki; Hicklin, Robert W; Green, William H; Jamison, Timothy F

    2017-12-01

    Minimizing the waste stream associated with the synthesis of active pharmaceutical ingredients (APIs) and commodity chemicals is of high interest within the chemical industry from an economic and environmental perspective. In exploring solutions to this area, we herein report a highly optimized and environmentally conscious continuous-flow synthesis of two APIs identified as essential medicines by the World Health Organization, namely diazepam and atropine. Notably, these approaches significantly reduced the E-factor of previously published routes through the combination of continuous-flow chemistry techniques, computational calculations and solvent minimization. The E-factor associated with the synthesis of atropine was reduced by 94-fold (about two orders of magnitude), from 2245 to 24, while the E-factor for the synthesis of diazepam was reduced by 4-fold, from 36 to 9. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Increased and correlated expression of connective tissue growth factor and transforming growth factor beta 1 in surgically removed periodontal tissues with chronic periodontitis.

    Science.gov (United States)

    Mize, T W; Sundararaj, K P; Leite, R S; Huang, Y

    2015-06-01

    Both gingival tissue destruction and regeneration are associated with chronic periodontitis, although the former overwhelms the latter. Studies have shown that transforming growth factor beta 1 (TGF-β1), a growth factor largely involved in tissue regeneration and remodeling, is upregulated in chronic periodontitis. However, the gingival expression of connective tissue growth factor (CTGF or CCN2), a TGF-β1-upregulated gene, in patients with periodontitis remains undetermined. Although both CTGF/CCN2 and TGF-b1 increase the production of extracellular matrix, they have many different biological functions. Therefore, it is important to delineate the impact of periodontitis on gingival CTGF/CCN2 expression. Periodontal tissue specimens were collected from seven individuals without periodontitis (group 1) and from 14 with periodontitis (group 2). The expression of CTGF and TGFβ1 mRNAs were quantified using real-time PCR. Analysis using the nonparametric Mann-Whitney U-test showed that the levels of expression of both CTGF/CCN2 and TGFβ1 mRNAs were significantly increased in individuals with periodontitis compared with individuals without periodontitis. Furthermore, analysis using a nonparametric correlation (Spearman r) test showed a positive correlation between TGFβ1 and CTGF/CCN2 mRNAs. The gingival expression levels of CTGF/CCN2 and TGFβ1 mRNAs in individuals with periodontitis are upregulated and correlated. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. A probable risk factor of female breast cancer: study on benign and malignant breast tissue samples.

    Science.gov (United States)

    Rehman, Sohaila; Husnain, Syed M

    2014-01-01

    The study reports enhanced Fe, Cu, and Zn contents in breast tissues, a probable risk factor of breast cancer in females. Forty-one formalin-fixed breast tissues were analyzed using atomic absorption spectrophotometry. Twenty malignant, six adjacent to malignant and 15 benign tissues samples were investigated. The malignant tissues samples were of grade 11 and type invasive ductal carcinoma. The quantitative comparison between the elemental levels measured in the two types of specimen (benign and malignant) tissues (removed after surgery) suggests significant elevation of these metals (Fe, Cu, and Zn) in the malignant tissue. The specimens were collected just after mastectomy of women aged 19 to 59 years from the hospitals of Islamabad and Rawalpindi, Pakistan. Most of the patients belong to urban areas of Pakistan. Findings of study depict that these elements have a promising role in the initiation and development of carcinoma as consistent pattern of elevation for Fe, Cu, and Zn was observed. The results showed the excessive accumulation of Fe (229 ± 121 mg/L) in malignant breast tissue samples of patients (p factor of breast cancer. In order to validate our method of analysis, certified reference material muscle tissue lyophilized (IAEA) MA-M-2/TM was analyzed for metal studied. Determined concentrations were quite in good agreement with certified levels. Asymmetric concentration distribution for Fe, Cu, and Zn was observed in both malignant and benign tissue samples.

  10. Enhanced elastin synthesis and maturation in human vascular smooth muscle tissue derived from induced-pluripotent stem cells.

    Science.gov (United States)

    Eoh, Joon H; Shen, Nian; Burke, Jacqueline A; Hinderer, Svenja; Xia, Zhiyong; Schenke-Layland, Katja; Gerecht, Sharon

    2017-04-01

    Obtaining vascular smooth muscle tissue with mature, functional elastic fibers is a key obstacle in tissue-engineered blood vessels. Poor elastin secretion and organization leads to a loss of specialization in contractile smooth muscle cells, resulting in over proliferation and graft failure. In this study, human induced-pluripotent stem cells (hiPSCs) were differentiated into early smooth muscle cells, seeded onto a hybrid poly(ethylene glycol) dimethacrylate/poly (l-lactide) (PEGdma-PLA) scaffold and cultured in a bioreactor while exposed to pulsatile flow, towards maturation into contractile smooth muscle tissue. We evaluated the effects of pulsatile flow on cellular organization as well as elastin expression and assembly in the engineered tissue compared to a static control through immunohistochemistry, gene expression and functionality assays. We show that culturing under pulsatile flow resulted in organized and functional hiPSC derived smooth muscle tissue. Immunohistochemistry analysis revealed hiPSC-smooth muscle tissue with robust, well-organized cells and elastic fibers and the supporting microfibril proteins necessary for elastic fiber assembly. Through qRT-PCR analysis, we found significantly increased expression of elastin, fibronectin, and collagen I, indicating the synthesis of necessary extracellular matrix components. Functionality assays revealed that hiPSC-smooth muscle tissue cultured in the bioreactor had an increased calcium signaling and contraction in response to a cholinergic agonist, significantly higher mature elastin content and improved mechanical properties in comparison to the static control. The findings presented here detail an effective approach to engineering elastic human vascular smooth muscle tissue with the functionality necessary for tissue engineering and regenerative medicine applications. Obtaining robust, mature elastic fibers is a key obstacle in tissue-engineered blood vessels. Human induced-pluripotent stem cells have

  11. Design and synthesis of polyphosphazenes: Hard tissue scaffolding biomaterials and physically crosslinked elastomers

    Science.gov (United States)

    Modzelewski, Tomasz

    The work in this thesis is divided into two main parts. The first part examines the synthesis and characterization of polyphosphazenes as potential scaffolding materials usable for hard tissue repair. The goal of this work was to design polymers containing acidic functional groups in an attempt to encourage the deposition of calcium hydroxyapatite when the polymer is exposed to simulated body fluids. The second part examines the development of a new polymeric architecture which generates elastomeric properties without the use of traditional covalent or physical crosslinks. The goal was to examine the effects of this new architecture on the physical and mechanical properties of the final polymers. Chapter 1 provides a general background for the two main focus areas mentioned above. More specifically: a brief explanation is provided of the necessary physical and chemical properties of a suitable hard tissue engineering scaffolding substrate, and the basis of those requirements; together with an examination of the traditional ways in which elastomeric properties are introduced into a polymeric sample. Chapter 2 details the design and synthesis of polyphosphazenes bearing phosphonic acid and phosphoester side groups using two different routes. The first route utilized a linker unit which was functionalized with phosphoesters prior to its attachment to the polyphosphazene backbone, while the second route involved attachment of the same linking group to the polyphosphazene backbone before the introduction of the phosphoester moieties. In both cases, the samples were treated with iodotrimethylsilane to cleave the ester bonds and afford the parent phosphonic acid. Both routes proved successful. However, varying difficulties were encountered for each route. In Chapter 3 we examine the ability of the phosphonic acid functionalized polyphosphazenes described in Chapter 2 to mineralize calcium hydroxyapatite when exposed to simulated body fluid, which has the same ion

  12. Tissue-engineered cartilage: the crossroads of biomaterials, cells and stimulating factors.

    Science.gov (United States)

    Bhardwaj, Nandana; Devi, Dipali; Mandal, Biman B

    2015-02-01

    Damage to cartilage represents one of the most challenging tasks of musculoskeletal therapeutics due to its limited propensity for healing and regenerative capabilities. Lack of current treatments to restore cartilage tissue function has prompted research in this rapidly emerging field of tissue regeneration of functional cartilage tissue substitutes. The development of cartilaginous tissue largely depends on the combination of appropriate biomaterials, cell source, and stimulating factors. Over the years, various biomaterials have been utilized for cartilage repair, but outcomes are far from achieving native cartilage architecture and function. This highlights the need for exploration of suitable biomaterials and stimulating factors for cartilage regeneration. With these perspectives, we aim to present an overview of cartilage tissue engineering with recent progress, development, and major steps taken toward the generation of functional cartilage tissue. In this review, we have discussed the advances and problems in tissue engineering of cartilage with strong emphasis on the utilization of natural polymeric biomaterials, various cell sources, and stimulating factors such as biophysical stimuli, mechanical stimuli, dynamic culture, and growth factors used so far in cartilage regeneration. Finally, we have focused on clinical trials, recent innovations, and future prospects related to cartilage engineering. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Gene therapy with growth factors for periodontal tissue engineering–A review

    Science.gov (United States)

    Gupta, Shipra; Mahendra, Aneet

    2012-01-01

    The treatment of oral and periodontal diseases and associated anomalies accounts for a significant proportion of the healthcare burden, with the manifestations of these conditions being functionally and psychologically debilitating. A challenge faced by periodontal therapy is the predictable regeneration of periodontal tissues lost as a consequence of disease. Growth factors are critical to the development, maturation, maintenance and repair of oral tissues as they establish an extra-cellular environment that is conducive to cell and tissue growth. Tissue engineering principles aim to exploit these properties in the development of biomimetic materials that can provide an appropriate microenvironment for tissue development. The aim of this paper is to review emerging periodontal therapies in the areas of materials science, growth factor biology and cell/gene therapy. Various such materials have been formulated into devices that can be used as vehicles for delivery of cells, growth factors and DNA. Different mechanisms of drug delivery are addressed in the context of novel approaches to reconstruct and engineer oral and tooth supporting structure. Key words: Periodontal disease, gene therapy, regeneration, tissue repair, growth factors, tissue engineering. PMID:22143705

  14. Genome-wide strategies identify downstream target genes of chick connective tissue-associated transcription factors.

    Science.gov (United States)

    Orgeur, Mickael; Martens, Marvin; Leonte, Georgeta; Nassari, Sonya; Bonnin, Marie-Ange; Börno, Stefan T; Timmermann, Bernd; Hecht, Jochen; Duprez, Delphine; Stricker, Sigmar

    2018-03-29

    Connective tissues support organs and play crucial roles in development, homeostasis and fibrosis, yet our understanding of their formation is still limited. To gain insight into the molecular mechanisms of connective tissue specification, we selected five zinc-finger transcription factors - OSR1, OSR2, EGR1, KLF2 and KLF4 - based on their expression patterns and/or known involvement in connective tissue subtype differentiation. RNA-seq and ChIP-seq profiling of chick limb micromass cultures revealed a set of common genes regulated by all five transcription factors, which we describe as a connective tissue core expression set. This common core was enriched with genes associated with axon guidance and myofibroblast signature, including fibrosis-related genes. In addition, each transcription factor regulated a specific set of signalling molecules and extracellular matrix components. This suggests a concept whereby local molecular niches can be created by the expression of specific transcription factors impinging on the specification of local microenvironments. The regulatory network established here identifies common and distinct molecular signatures of limb connective tissue subtypes, provides novel insight into the signalling pathways governing connective tissue specification, and serves as a resource for connective tissue development. © 2018. Published by The Company of Biologists Ltd.

  15. Nuclear transport factor directs localization of protein synthesis during mitosis

    NARCIS (Netherlands)

    Bogaart, Geert van den; Meinema, Anne C.; Krasnikov, Viktor; Veenhoff, Liesbeth M.; Poolman, Bert

    Export of messenger RNA from the transcription site in the nucleus and mRNA targeting to the translation site in the cytoplasm are key regulatory processes in protein synthesis. In yeast, the mRNA-binding proteins Nab2p and Nab4p/Hrp1p accompany transcripts to their translation site, where the

  16. Effects of experimentally increased protein supply to postpartum dairy cows on plasma protein synthesis, rumen tissue proliferation, and immune homeostasis

    DEFF Research Database (Denmark)

    Larsen, Mogens; Røntved, Christine Maria; Theil, Peter Kappel

    2017-01-01

    The effect of experimentally increasing the postpartum protein supply on plasma protein synthesis, rumen tissue proliferation, and immune homeostasis was studied using 8 periparturient Holstein cows in a complete randomized design. At calving, cows were assigned to abomasal infusion of water (CTRL......) or casein (CAS) in addition to a lactation diet. Casein infusion was gradually decreased from 696 ± 1 g/d at +2 d relative to calving (DRTC) to 212 ± 10 g/d at +29 DRTC to avoid excessive supply. Synthesis rate of plasma proteins was measured at –14, +4, +15, and +29 DRTC by measuring [13C]Phe isotopic...... enrichment in arterial plasma free Phe, total plasma proteins, and albumin after 3, 5, and 7 h of jugular ring[13C]Phe infusion. Plasma volume was determined at +4 and +29 DRTC by dilution of a [125I]BSA dose. Synthesis rate of tissue protein in biopsied rumen papillae was determined by measuring [13C...

  17. Opposite Effects of Soluble Factors Secreted by Adipose Tissue on Proliferating and Quiescent Osteosarcoma Cells.

    Science.gov (United States)

    Avril, Pierre; Duteille, Franck; Ridel, Perrine; Heymann, Marie-Françoise; De Pinieux, Gonzague; Rédini, Françoise; Blanchard, Frédéric; Heymann, Dominique; Trichet, Valérie; Perrot, Pierre

    2016-03-01

    Autologous adipose tissue transfer may be performed for aesthetic needs following resection of osteosarcoma, the most frequent primary malignant tumor of bone, excluding myeloma. The safety of autologous adipose tissue transfer regarding the potential risk of cancer recurrence must be addressed. Adipose tissue injection was tested in a human osteosarcoma preclinical model induced by MNNG-HOS cells. Culture media without growth factors from fetal bovine serum were conditioned with adipose tissue samples and added to two osteosarcoma cell lines (MNNG-HOS and MG-63) that were cultured in monolayer or maintained in nonadherent spheres, favoring a proliferation or quiescent stage, respectively. Proliferation and cell cycle were analyzed. Adipose tissue injection increased local growth of osteosarcoma in mice but was not associated with aggravation of lung metastasis or osteolysis. Adipose tissue-derived soluble factors increased the in vitro proliferation of osteosarcoma cells up to 180 percent. Interleukin-6 and leptin were measured in higher concentrations in adipose tissue-conditioned medium than in osteosarcoma cell-conditioned medium, but the authors' results indicated that they were not implicated alone. Furthermore, adipose tissue-derived soluble factors did not favor a G0-to-G1 phase transition of MNNG-HOS cells in nonadherent oncospheres. This study indicates that adipose tissue-soluble factors activate osteosarcoma cell cycle from G1 to mitosis phases, but do not promote the transition from quiescent G0 to G1 phases. Autologous adipose tissue transfer may not be involved in the activation of dormant tumor cells or cancer stem cells.

  18. A hypothesis: factor VII governs clot formation, tissue repair and apoptosis.

    Science.gov (United States)

    Coleman, Lewis S

    2007-01-01

    A hypothesis: thrombin is a "Universal Enzyme of Energy Transduction" that employs ATP energy in flowing blood to activate biochemical reactions and cell effects in both hemostasis and tissue repair. All cells possess PAR-1 (thrombin) receptors and are affected by thrombin elevations, and thrombin effects on individual cell types are determined by their unique complement of PAR-1 receptors. Disruption of the vascular endothelium (VE) activates a tissue repair mechanism (TRM) consisting of the VE, tissue factor (TF), and circulating Factors VII, IX and X that governs localized thrombin elevations to activate clot formation and cellular effects that repair tissue damage. The culmination of the repair process occurs with the restoration of the VE followed by declines in thrombin production that causes Apoptosis ("programmed cell death") in wound-healing fibroblasts, which functions as a mechanism to draw wound edges together. The location and magnitude of TRM activity governs the location and magnitude of Factor VIII activity and clot formation, but the large size of Factor VIII prevents it from penetrating the clot formed by its activity, so that its effects are self-limiting. Factors VII, IX and X function primarily as tissue repair enzymes, while Factor VIII and Factor XIII are the only serine protease enzymes in the "Coagulation Cascade" that are exclusively associated with hemostasis.

  19. Use of cis-[18F] fluoro-proline for assessment of exercise-related collagen synthesis in musculoskeletal connective tissue

    DEFF Research Database (Denmark)

    Skovgaard, Dorthe; Kjaer, Andreas; Heinemeier, Katja Maria

    2011-01-01

    Protein turnover in collagen rich tissue is influenced by exercise, but can only with difficulty be studied in vivo due to use of invasive procedure. The present study was done to investigate the possibility of applying the PET-tracer, cis-[(18)F]fluoro-proline (cis-Fpro), for non-invasive assess......Protein turnover in collagen rich tissue is influenced by exercise, but can only with difficulty be studied in vivo due to use of invasive procedure. The present study was done to investigate the possibility of applying the PET-tracer, cis-[(18)F]fluoro-proline (cis-Fpro), for non......-invasive assessment of collagen synthesis in rat musculoskeletal tissues at rest and following short-term (3 days) treadmill running. Musculoskeletal collagen synthesis was studied in rats at rest and 24 h post-exercise. At each session, rats were PET scanned at two time points following injection of cis-FPro: (60...... and 240 min p.i). SUV were calculated for Achilles tendon, calf muscle and tibial bone. The PET-derived results were compared to mRNA expression of collagen type I and III. Tibial bone had the highest SUV that increased significantly (p...

  20. Metabolic Circuit Involving Free Fatty Acids, microRNA 122, and Triglyceride Synthesis in Liver and Muscle Tissues.

    Science.gov (United States)

    Chai, Chofit; Rivkin, Mila; Berkovits, Liav; Simerzin, Alina; Zorde-Khvalevsky, Elina; Rosenberg, Nofar; Klein, Shiri; Yaish, Dayana; Durst, Ronen; Shpitzen, Shoshana; Udi, Shiran; Tam, Joseph; Heeren, Joerg; Worthmann, Anna; Schramm, Christoph; Kluwe, Johannes; Ravid, Revital; Hornstein, Eran; Giladi, Hilla; Galun, Eithan

    2017-11-01

    Effective treatments are needed for hepatic steatosis characterized by accumulation of triglycerides in hepatocytes, which leads to hepatocellular carcinoma. MicroRNA 122 (MIR122) is expressed only in the liver, where it regulates lipid metabolism. We investigated the mechanism by which free fatty acids (FFAs) regulate MIR122 expression and the effect of MIR122 on triglyceride synthesis. We analyzed MIR122 promoter activity and validated its target mRNAs by transfection of Luciferase reporter plasmids into Huh7, BNL-1ME, and HEK293 cultured cell lines. We measured levels of microRNAs and mRNAs by quantitative real-time PCR analysis of RNA extracted from plasma, liver, muscle, and adipose tissues of C57BL/6 mice given the FFA-inducer CL316243. MIR122 was inhibited using an inhibitor of MIR122. Metabolic profiles of mice were determined using metabolic chambers and by histologic analyses of liver tissues. We performed RNA sequence analyses to identify metabolic pathways involving MIR122. We validated human Agpat1 and Dgat1 mRNAs, involved in triglyceride synthesis, as targets of MIR122. FFAs increased MIR122 expression in livers of mice by activating the retinoic acid-related orphan receptor alpha, and induced secretion of MIR122 from liver to blood. Circulating MIR122 entered muscle and adipose tissues of mice, reducing mRNA levels of genes involved in triglyceride synthesis. Mice injected with an inhibitor of MIR122 and then given CL316243, accumulated triglycerides in liver and muscle tissues, and had reduced rates of β-oxidation. There was a positive correlation between level of FFAs and level of MIR122 in plasma samples from 6 healthy individuals, collected before and during fasting. In biochemical and histologic studies of plasma, liver, muscle, and adipose tissues from mice, we found that FFAs increase hepatic expression and secretion of MIR122, which regulates energy storage vs expenditure in liver and peripheral tissues. Strategies to reduce

  1. Mitochondrial biogenesis in brown adipose tissue is associated with differential expression of transcription regulatory factors

    Czech Academy of Sciences Publication Activity Database

    Villena, J. A.; Carmona, M. C.; Rodriguez de la Concepción, M.; Rossmeisl, Martin; Vinas, O.; Mampel, T.; Iglesias, R.; Giralt, M.; Villarroya, F.

    2002-01-01

    Roč. 59, č. 11 (2002), s. 1934-1944 ISSN 1420-682X Grant - others:Ministerio de Ciencia y Tecnología (ES) PM98.0188 Institutional research plan: CEZ:AV0Z5011922 Keywords : brown adipose tissue * mitochondria * transcription factors Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.259, year: 2002

  2. Factors promoting increased rate of tissue regeneration: the zebrafish fin as a tool for examining tissue engineering design concepts.

    Science.gov (United States)

    Boominathan, Vijay P; Ferreira, Tracie L

    2012-12-01

    Student interest in topics of tissue engineering is increasing exponentially as the number of universities offering programs in bioengineering are on the rise. Bioengineering encompasses all of the STEM categories: Science, Technology, Engineering, and Math. Inquiry-based learning is one of the most effective techniques for promoting student learning and has been demonstrated to have a high impact on learning outcomes. We have designed program outcomes for our bioengineering program that require tiered activities to develop problem solving skills, peer evaluation techniques, and promote team work. While it is ideal to allow students to ask unique questions and design their own experiments, this can be difficult for instructors to have reagents and supplies available for a variety of activities. Zebrafish can be easily housed, and multiple variables can be tested on a large enough group to provide statistical value, lending them well to inquiry-based learning modules. We have designed a laboratory activity that takes observation of fin regeneration to the next level: analyzing conditions that may impact regeneration. Tissue engineers seek to define the optimum conditions to grow tissue for replacement parts. The field of tissue engineering is likely to benefit from understanding natural mechanisms of regeneration and the factors that influence the rate of regeneration. We have outlined the results of varying temperature on fin regeneration and propose other inquiry modules such as the role of pH in fin regeneration. Furthermore, we have provided useful tools for developing critical thinking and peer review of research ideas, assessment guidelines, and grading rubrics for the activities associated with this exercise.

  3. Anti-human tissue factor antibody ameliorated intestinal ischemia reperfusion-induced acute lung injury in human tissue factor knock-in mice.

    Directory of Open Access Journals (Sweden)

    Xiaolin He

    Full Text Available BACKGROUND: Interaction between the coagulation and inflammation systems plays an important role in the development of acute respiratory distress syndrome (ARDS. Anti-coagulation is an attractive option for ARDS treatment, and this has promoted development of new antibodies. However, preclinical trials for these antibodies are often limited by the high cost and availability of non-human primates. In the present study, we developed a novel alternative method to test the role of a humanized anti-tissue factor mAb in acute lung injury with transgenic mice. METHODOLOGY/PRINCIPAL FINDINGS: Human tissue factor knock-in (hTF-KI transgenic mice and a novel humanized anti-human tissue factor mAb (anti-hTF mAb, CNTO859 were developed. The hTF-KI mice showed a normal and functional expression of hTF. The anti-hTF mAb specifically blocked the pro-coagulation activity of brain extracts from the hTF-KI mice and human, but not from wild type mice. An extrapulmonary ARDS model was used by intestinal ischemia-reperfusion. Significant lung tissue damage in hTF-KI mice was observed after 2 h reperfusion. Administration of CNTO859 (5 mg/kg, i.v. attenuated the severity of lung tissue injury, decreased the total cell counts and protein concentration in bronchoalveolar lavage fluid, and reduced Evans blue leakage. In addition, the treatment significantly reduced alveolar fibrin deposition, and decreased tissue factor and plasminogen activator inhibitor-1 activity in the serum. This treatment also down-regulated cytokine expression and reduced cell death in the lung. CONCLUSIONS: This novel anti-hTF antibody showed beneficial effects on intestinal ischemia-reperfusion induced acute lung injury, which merits further investigation for clinical usage. In addition, the use of knock-in transgenic mice to test the efficacy of antibodies against human-specific proteins is a novel strategy for preclinical studies.

  4. Renal protein synthesis in diabetes mellitus: effects of insulin and insulin-like growth factor I

    International Nuclear Information System (INIS)

    Barac-Nieto, M.; Lui, S.M.; Spitzer, A.

    1991-01-01

    Is increased synthesis of proteins responsible for the hypertrophy of kidney cells in diabetes mellitus? Does the lack of insulin, and/or the effect of insulin-like growth factor I (IGFI) on renal tubule protein synthesis play a role in diabetic renal hypertrophy? To answer these questions, we determined the rates of 3H-valine incorporation into tubule proteins and the valine-tRNA specific activity, in the presence or absence of insulin and/or IGFI, in proximal tubule suspension isolated from kidneys of streptozotocin diabetic and control rats. The rate of protein synthesis increased, while the stimulatory effects of insulin and IGFI on tubule protein synthesis were reduced, early (96 hours) after induction of experimental diabetes. Thus, hypertrophy of the kidneys in experimental diabetes mellitus is associated with increases in protein synthesis, rather than with decreases in protein degradation. Factor(s) other than the lack of insulin, or the effects of IGFI, must be responsible for the high rate of protein synthesis present in the hypertrophying tubules of diabetic rats

  5. Transforming growth factor-beta 1 stimulates synthesis of proteoglycan aggregates in calf articular cartilage organ cultures

    International Nuclear Information System (INIS)

    Morales, T.I.

    1991-01-01

    Previous work showed that transforming growth factor-beta 1 (TGF-beta 1), added alone to bovine cartilage organ cultures, stimulated [35S]sulfate incorporation into macromolecular material but did not investigate the fidelity of the stimulated system to maintain synthesis of cartilage-type proteoglycans. This paper provides evidence that chondrocytes synthesize the appropriate proteoglycan matrix under TGF-beta 1 stimulation: (1) there is a coordinated increase in hyaluronic acid and proteoglycan monomer synthesis, (2) link-stable proteoglycan aggregates are assembled, (3) the hybrid chondroitin sulfate/keratan sulfate monomeric species is synthesized, and (4) there is an increase in protein core synthesis. Some variation in glycosylation patterns was observed when proteoglycans synthesized under TGF-beta 1 stimulation were compared to those synthesized under basal conditions. Thus comparing TGF-beta 1 to basal samples respectively, the monomers were larger (Kav on Sepharose CL-2B = 0.29 vs 0.41), the chondroitin sulfate chains were longer by approximately 3.5 kDa, the percentage of total glycosaminoglycan in keratan sulfate increased slightly from approximately 4% (basal) to approximately 6%, and the unsulfated disaccharide decreased from 28% (basal) to 12%. All of these variations are in the direction of a more anionic proteoglycan. Since the ability of proteoglycans to confer resiliency to the cartilage matrix is directly related to their anionic nature, these changes would presumably have a beneficial effect on tissue function

  6. Monte Carlo study of voxel S factor dependence on tissue density and atomic composition

    Energy Technology Data Exchange (ETDEWEB)

    Amato, Ernesto, E-mail: eamato@unime.it [University of Messina, Department of Biomedical Sciences and of Morphologic and Functional Imaging, Section of Radiological Sciences, via Consolare Valeria, 1, I-98125 Messina (Italy); Italiano, Antonio [INFN – Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Messina (Italy); Baldari, Sergio [University of Messina, Department of Biomedical Sciences and of Morphologic and Functional Imaging, Section of Radiological Sciences, via Consolare Valeria, 1, I-98125 Messina (Italy)

    2013-11-21

    Voxel dosimetry is a common approach to the internal dosimetry of non-uniform activity distributions in nuclear medicine therapies with radiopharmaceuticals and in the estimation of the radiation hazard due to internal contamination of radionuclides. Aim of the present work is to extend our analytical approach for the calculation of voxel S factors to materials different from the soft tissue. We used a Monte Carlo simulation in GEANT4 of a voxelized region of each material in which the source of monoenergetic electrons or photons was uniformly distributed within the central voxel, and the energy deposition was scored over the surrounding 11×11×11 voxels. Voxel S factors were obtained for the following standard ICRP materials: Adipose tissue, Bone cortical, Brain, Lung, Muscle skeletal and Tissue soft with 1 g cm{sup −3} density. Moreover, we considered the standard ICRU materials: Bone compact and Muscle striated. Voxel S factors were represented as a function of the “normalized radius”, defined as the ratio between the source–target voxel distance and the voxel side. We found that voxel S factors and related analytical fit functions are mainly affected by the tissue density, while the material composition gives only a slight contribution to the difference between data series, which is negligible for practical purposes. Our results can help in broadening the dosimetric three-dimensional approach based on voxel S factors to other tissues where diagnostic and therapeutic radionuclides can be taken up and radiation can propagate.

  7. Monte Carlo study of voxel S factor dependence on tissue density and atomic composition

    International Nuclear Information System (INIS)

    Amato, Ernesto; Italiano, Antonio; Baldari, Sergio

    2013-01-01

    Voxel dosimetry is a common approach to the internal dosimetry of non-uniform activity distributions in nuclear medicine therapies with radiopharmaceuticals and in the estimation of the radiation hazard due to internal contamination of radionuclides. Aim of the present work is to extend our analytical approach for the calculation of voxel S factors to materials different from the soft tissue. We used a Monte Carlo simulation in GEANT4 of a voxelized region of each material in which the source of monoenergetic electrons or photons was uniformly distributed within the central voxel, and the energy deposition was scored over the surrounding 11×11×11 voxels. Voxel S factors were obtained for the following standard ICRP materials: Adipose tissue, Bone cortical, Brain, Lung, Muscle skeletal and Tissue soft with 1 g cm −3 density. Moreover, we considered the standard ICRU materials: Bone compact and Muscle striated. Voxel S factors were represented as a function of the “normalized radius”, defined as the ratio between the source–target voxel distance and the voxel side. We found that voxel S factors and related analytical fit functions are mainly affected by the tissue density, while the material composition gives only a slight contribution to the difference between data series, which is negligible for practical purposes. Our results can help in broadening the dosimetric three-dimensional approach based on voxel S factors to other tissues where diagnostic and therapeutic radionuclides can be taken up and radiation can propagate

  8. Characterization of coagulation factor synthesis in nine human primary cell types

    NARCIS (Netherlands)

    Dashty, Monireh; Akbarkhanzadeh, Vishtaseb; Zeebregts, Clark J.; Spek, C. Arnold; Sijbrands, Eric J.; Peppelenbosch, Maikel P.; Rezaee, Farhad

    2012-01-01

    The coagulation/fibrinolysis system is essential for wound healing after vascular injury. According to the standard paradigm, the synthesis of most coagulation factors is restricted to liver, platelets and endothelium. We challenged this interpretation by measuring coagulation factors in nine human

  9. Human keratinocytes produce the complement inhibitor factor H: synthesis is regulated by interferon-gamma

    NARCIS (Netherlands)

    Timár, Krisztina K.; Pasch, Marcel C.; van den Bosch, Norbert H. A.; Jarva, Hanna; Junnikkala, Sami; Meri, Seppo; Bos, Jan D.; Asghar, Syed S.

    2006-01-01

    Locally synthesized complement is believed to play an important role in host defense and inflammation at organ level. In the epidermis, keratinocytes have so far been shown to synthesize two complement components, C3 and factor B. Here, we studied the synthesis of factor H by human keratinocytes. We

  10. Diet-tissue stable isotope (Δ(13)C and Δ(15)N) discrimination factors for multiple tissues from terrestrial reptiles.

    Science.gov (United States)

    Steinitz, Ronnie; Lemm, Jeffrey M; Pasachnik, Stesha A; Kurle, Carolyn M

    2016-01-15

    Stable isotope analysis is a powerful tool for reconstructing trophic interactions to better understand drivers of community ecology. Taxon-specific stable isotope discrimination factors contribute to the best use of this tool. We determined the first Δ(13)C and Δ(15)N values for Rock Iguanas (Cyclura spp.) to better understand isotopic fractionation and estimate wild reptile foraging ecology. The Δ(13)C and Δ(15)N values between diet and skin, blood, and scat were determined from juvenile and adult iguanas held for 1 year on a known diet. We measured relationships between iguana discrimination factors and size/age and quantified effects of lipid extraction and acid treatment on stable isotope values from iguana tissues. Isotopic and elemental compositions were determined by Dumas combustion using an elemental analyzer coupled to an isotope ratio mass spectrometer using standards of known composition. The Δ(13)C and Δ(15)N values ranged from -2.5 to +6.5‰ and +2.2 to +7.5‰, respectively, with some differences among tissues and between juveniles and adults. The Δ(13)C values from blood and skin differed among species, but not the Δ(15)N values. The Δ(13)C values from blood and skin and Δ(15)N values from blood were positively correlated with size/age. The Δ(13)C values from scat were negatively correlated with size (not age). Treatment with HCl (scat) and lipid extraction (skin) did not affect the isotope values. These results should aid in the understanding of processes driving stable carbon and nitrogen isotope discrimination factors in reptiles. We provide estimates of Δ(13)C and Δ(15)N values and linear relationships between iguana size/age and discrimination factors for the best interpretation of wild reptile foraging ecology. Copyright © 2015 John Wiley & Sons, Ltd.

  11. [Expression of connective tissue growth factor in colorectal cancer and its association with prognosis].

    Science.gov (United States)

    Sun, Zheng; Yang, Ping; Liang, Li-yuan; Zhang, Tong; Zhang, Wei-jian; Cao, Jie

    2012-11-01

    To investigate the expression of connective tissue growth factor (CTGF) in colorectal cancer(CRC) and its association with clinicopathologic parameters and overall survival rate. Fresh tumor tissues and matched distal normal colon tissues were collected from 92 patients diagnosed as CRC by surgical operation. The expression level of CTGF mRNA was quantified by quantitative reverse transcription PCR. Thirty out of 92 pairs of tissue specimens were selected randomly to detect CTGF protein by immunohistochemistry. All the cases were followed up to identify prognostic factors for survival. CTGF mRNA expression was up-regulated in CRC. The positive rate of CTGF protein expression tissues (73.3%) was significantly higher than that in the corresponding normal tissues (23.3%, Ptissues was classified into high and low expression groups. The 5-year cumulative survival rate was lower in patients with low CTGF expression (29.3%) as compared to those with high CTGF expressions (68.3%) (P<0.01). Cox regression analysis revealed that the relative expression level of CTGF was independent factor of overall survival (RR=2.960, 95%CI:1.491-1.587, P<0.01). ROC curve analysis showed that sensitivity and specificity of CTGF mRNA expression for prediction of 5-year survival were 64.9% and 74.5%, respectively. The aberrant expression of CTGF is associated with the malignant biological behaviors of CRC. Low expression of CTGF is associated with worse prognosis of CRC.

  12. COX-2 gene expression in colon cancer tissue related to regulating factors and promoter methylation status

    International Nuclear Information System (INIS)

    Asting, Annika Gustafsson; Carén, Helena; Andersson, Marianne; Lönnroth, Christina; Lagerstedt, Kristina; Lundholm, Kent

    2011-01-01

    Increased cyclooxygenase activity promotes progression of colorectal cancer, but the mechanisms behind COX-2 induction remain elusive. This study was therefore aimed to define external cell signaling and transcription factors relating to high COX-2 expression in colon cancer tissue. Tumor and normal colon tissue were collected at primary curative operation in 48 unselected patients. COX-2 expression in tumor and normal colon tissue was quantified including microarray analyses on tumor mRNA accounting for high and low tumor COX-2 expression. Cross hybridization was performed between tumor and normal colon tissue. Methylation status of up-stream COX-2 promoter region was evaluated. Tumors with high COX-2 expression displayed large differences in gene expression compared to normal colon. Numerous genes with altered expression appeared in tumors of high COX-2 expression compared to tumors of low COX-2. COX-2 expression in normal colon was increased in patients with tumors of high COX-2 compared to normal colon from patients with tumors of low COX-2. IL1β, IL6 and iNOS transcripts were up-regulated among external cell signaling factors; nine transcription factors (ATF3, C/EBP, c-Fos, Fos-B, JDP2, JunB, c-Maf, NF-κB, TCF4) showed increased expression and 5 (AP-2, CBP, Elk-1, p53, PEA3) were decreased in tumors with high COX-2. The promoter region of COX-2 gene did not show consistent methylation in tumor or normal colon tissue. Transcription and external cell signaling factors are altered as covariates to COX-2 expression in colon cancer tissue, but DNA methylation of the COX-2 promoter region was not a significant factor behind COX-2 expression in tumor and normal colon tissue

  13. COX-2 gene expression in colon cancer tissue related to regulating factors and promoter methylation status

    Directory of Open Access Journals (Sweden)

    Lagerstedt Kristina

    2011-06-01

    Full Text Available Abstract Background Increased cyclooxygenase activity promotes progression of colorectal cancer, but the mechanisms behind COX-2 induction remain elusive. This study was therefore aimed to define external cell signaling and transcription factors relating to high COX-2 expression in colon cancer tissue. Method Tumor and normal colon tissue were collected at primary curative operation in 48 unselected patients. COX-2 expression in tumor and normal colon tissue was quantified including microarray analyses on tumor mRNA accounting for high and low tumor COX-2 expression. Cross hybridization was performed between tumor and normal colon tissue. Methylation status of up-stream COX-2 promoter region was evaluated. Results Tumors with high COX-2 expression displayed large differences in gene expression compared to normal colon. Numerous genes with altered expression appeared in tumors of high COX-2 expression compared to tumors of low COX-2. COX-2 expression in normal colon was increased in patients with tumors of high COX-2 compared to normal colon from patients with tumors of low COX-2. IL1β, IL6 and iNOS transcripts were up-regulated among external cell signaling factors; nine transcription factors (ATF3, C/EBP, c-Fos, Fos-B, JDP2, JunB, c-Maf, NF-κB, TCF4 showed increased expression and 5 (AP-2, CBP, Elk-1, p53, PEA3 were decreased in tumors with high COX-2. The promoter region of COX-2 gene did not show consistent methylation in tumor or normal colon tissue. Conclusions Transcription and external cell signaling factors are altered as covariates to COX-2 expression in colon cancer tissue, but DNA methylation of the COX-2 promoter region was not a significant factor behind COX-2 expression in tumor and normal colon tissue.

  14. Risk factors for pedicled flap necrosis in hand soft tissue reconstruction: a multivariate logistic regression analysis.

    Science.gov (United States)

    Gong, Xu; Cui, Jianli; Jiang, Ziping; Lu, Laijin; Li, Xiucun

    2018-03-01

    Few clinical retrospective studies have reported the risk factors of pedicled flap necrosis in hand soft tissue reconstruction. The aim of this study was to identify non-technical risk factors associated with pedicled flap perioperative necrosis in hand soft tissue reconstruction via a multivariate logistic regression analysis. For patients with hand soft tissue reconstruction, we carefully reviewed hospital records and identified 163 patients who met the inclusion criteria. The characteristics of these patients, flap transfer procedures and postoperative complications were recorded. Eleven predictors were identified. The correlations between pedicled flap necrosis and risk factors were analysed using a logistic regression model. Of 163 skin flaps, 125 flaps survived completely without any complications. The pedicled flap necrosis rate in hands was 11.04%, which included partial flap necrosis (7.36%) and total flap necrosis (3.68%). Soft tissue defects in fingers were noted in 68.10% of all cases. The logistic regression analysis indicated that the soft tissue defect site (P = 0.046, odds ratio (OR) = 0.079, confidence interval (CI) (0.006, 0.959)), flap size (P = 0.020, OR = 1.024, CI (1.004, 1.045)) and postoperative wound infection (P < 0.001, OR = 17.407, CI (3.821, 79.303)) were statistically significant risk factors for pedicled flap necrosis of the hand. Soft tissue defect site, flap size and postoperative wound infection were risk factors associated with pedicled flap necrosis in hand soft tissue defect reconstruction. © 2017 Royal Australasian College of Surgeons.

  15. No effect of menstrual cycle on myofibrillar and connective tissue protein synthesis in contracting skeletal muscle

    DEFF Research Database (Denmark)

    Miller, B.F.; Hansen, M.; Olesen, J.L.

    2006-01-01

    We tested the hypothesis that acute exercise would stimulate synthesis of myofibrillar protein and intramuscular collagen in women and that the phase of the menstrual cycle at which the exercise took place would influence the extent of the change. Fifteen young, healthy female subjects were studied...... in the follicular (FP, n=8) or the luteal phase (LP, n=7, n=1 out of phase) 24 h after an acute bout of one-legged exercise (60 min of kicking at 67% W(max)), samples being taken from the vastus lateralis in both the exercised and resting legs. Rates of synthesis of myofibrillar and muscle collagen proteins were...... measured by incorporation of [(13)C]leucine. Myofibrillar protein synthesis (means+/-SD; rest FP: 0.053+/-0.009%/h, LP: 0.055+/-0.013%/h) was increased at 24-h postexercise (FP: 0.131+/-0.018%/h, Psynthesis...

  16. Granulocyte-Colony Stimulating Factor Receptor, Tissue Factor, and VEGF-R Bound VEGF in Human Breast Cancer In Loco.

    Science.gov (United States)

    Wojtukiewicz, Marek Z; Sierko, Ewa; Skalij, Piotr; Kamińska, Magda; Zimnoch, Lech; Brekken, Ralf A; Thorpe, Philip E

    2016-01-01

    Doxorubicin and docetaxel-based chemotherapy regimens used in breast cancer patients are associated with high risk of febrile neutropenia (FN). Granulocyte colony-stimulating factors (G-CSF) are recommended for both treating and preventing chemotherapy-induced neutropenia. Increased thrombosis incidence in G-CSF treated patients was reported; however, the underlying mechanisms remain unclear. The principal activator of blood coagulation in cancer is tissue factor (TF). It additionally contributes to cancer progression and stimulates angiogenesis. The main proangiogenic factor is vascular endothelial growth factor (VEGF). The aim of the study was to evaluate granulocyte-colony stimulating factor receptor (G-CSFR), tissue factor (TF) expression and vascular endothelial growth factor receptor (VEGF-R) bound VEGF in human breast cancer in loco. G-CSFR, TF and VEGFR bound VEGF (VEGF: VEGFR) were assessed in 28 breast cancer tissue samples. Immunohistochemical (IHC) methodologies according to ABC technique and double staining IHC procedure were employed utilizing antibodies against G-CSFR, TF and VEGF associated with VEGFR (VEGF: VEGFR). Expression of G-CSFR was demonstrated in 20 breast cancer tissue specimens (71%). In 6 cases (21%) the expression was strong (IRS 9-12). Strong expression of TF was observed in all investigated cases (100%). Moreover, expression of VEGF: VEGFR was visualized in cancer cells (IRS 5-8). No presence of G-CSFR, TF or VEGF: VEGFR was detected on healthy breast cells. Double staining IHC studies revealed co-localization of G-CSFR and TF, G-CSFR and VEGF: VEGFR, as well as TF and VEGF: VEGFR on breast cancer cells and ECs. The results of the study indicate that GCSFR, TF and VEGF: VEGFR expression as well as their co-expression might influence breast cancer biology, and may increase thromboembolic adverse events incidence.

  17. Factors regulating collagen synthesis and degradation during second-intention healing of wounds in the thoracic region and the distal aspect of the forelimb of horses.

    Science.gov (United States)

    Schwartz, Anne J; Wilson, David A; Keegan, Kevin G; Ganjam, Venkataseshu K; Sun, Yao; Weber, Karl T; Zhang, Jiakun

    2002-11-01

    To determine significant molecular and cellular factors responsible for differences in second-intention healing in thoracic and metacarpal wounds of horses. 6 adult mixed-breed horses. A full-thickness skin wound on the metacarpus and another such wound on the pectoral region were created, photographed, and measured, and tissue was harvested from these sites weekly for 4 weeks. Gene expression of type-I collagen, transforming growth factor (TGF)-beta1, matrix metalloproteinase (MMP)-1, and tissue inhibitor of metalloproteinase (TIMP)-1 were determined by quantitative in situ hybridization. Myofibroblasts were detected by immunohistochemical labeling with alpha-smooth muscle actin (alpha-SMA). Collagen accumulation was detected by use of picrosirius red staining. Tissue morphology was examined by use of H&E staining. Unlike thoracic wounds, forelimb wounds enlarged during the first 2 weeks. Myofibroblasts, detected by week 1, remained abundant with superior organization in thoracic wounds. Type-I collagen mRNA accumulated progressively in both wounds. More type-I collagen and TGF-beta1 mRNA were seen in forelimb wounds. Volume of MMP-1 mRNA decreased from day 0 in both wounds. By week 3, TIMP-1 mRNA concentration was greater in thoracic wounds. Greater collagen synthesis in metacarpal than thoracic wounds was documented by increased concentrations of myofibroblasts, type-I collagen mRNA,TGF-beta1 mRNA, and decreased collagen degradation (ie, MMP-1). Imbalanced collagen synthesis and degradation likely correlate with development of exuberant granulation tissue, delaying healing in wounds of the distal portions of the limbs. Factors that inhibit collagen synthesis or stimulate collagenase may provide treatment options for horses with exuberant granulation tissue.

  18. Energy absorption buildup factors of human organs and tissues at energies and penetration depths relevant for radiotherapy and diagnostics

    DEFF Research Database (Denmark)

    Manohara, S. R.; Hanagodimath, S. M.; Gerward, Leif

    2011-01-01

    Energy absorption geometric progression (GP) fitting parameters and the corresponding buildup factors have been computed for human organs and tissues, such as adipose tissue, blood (whole), cortical bone, brain (grey/white matter), breast tissue, eye lens, lung tissue, skeletal muscle, ovary......, testis, soft tissue, and soft tissue (4-component), for the photon energy range 0.015-15 MeV and for penetration depths up to 40 mfp (mean free path). The chemical composition of human organs and tissues is seen to influence the energy absorption buildup factors. It is also found that the buildup factor...... of human organs and tissues changes significantly with the change of incident photon energy and effective atomic number, Zeff. These changes are due to the dominance of different photon interaction processes in different energy regions and different chemical compositions of human organs and tissues...

  19. Gene expression of tumour necrosis factor and insulin signalling-related factors in subcutaneous adipose tissue during the dry period and in early lactation in dairy cows.

    Science.gov (United States)

    Sadri, H; Bruckmaier, R M; Rahmani, H R; Ghorbani, G R; Morel, I; van Dorland, H A

    2010-10-01

    Gene expression of adipose factors, which may be part of the mechanisms that underlie insulin sensitivity, were studied in dairy cows around parturition. Subcutaneous fat biopsies and blood samples were taken from 27 dairy cows in week 8 antepartum (a.p.), on day 1 postpartum (p.p.) and in week 5 p.p. In the adipose tissue samples, mRNA was quantified by real-time reverse transcription polymerase chain reaction for tumour necrosis factor alpha (TNFα), insulin-independent glucose transporter (GLUT1), insulin-responsive glucose transporter (GLUT4), insulin receptor, insulin receptor substrate 1 (IRS1), insulin receptor substrate 2 (IRS2), regulatory subunit of phosphatidylinositol-3 kinase (p85) and catalytic subunit of phosphatidylinositol-3 kinase. Blood plasma was assayed for concentrations of glucose, β-hydroxybutyric acid, non-esterified fatty acids (NEFA) and insulin. Plasma parameters followed a pattern typically observed in dairy cows. Gene expression changes were observed, but there were no changes in TNFα concentrations, which may indicate its local involvement in catabolic adaptation of adipose tissue. Changes in GLUT4 and GLUT1 mRNA abundance may reflect their involvement in reduced insulin sensitivity and in sparing glucose for milk synthesis in early lactation. Unchanged gene expression of IRS1, IRS2 and p85 over time may imply a lack of their involvement in terms of insulin sensitivity dynamics. Alternatively, it may indicate that post-transcriptional modifications of these factors came into play and may have concealed an involvement. © 2010 Blackwell Verlag GmbH.

  20. Connective Tissue Disorders and Cardiovascular Complications: The indomitable role of Transforming Growth Factor-beta signaling

    Science.gov (United States)

    Wheeler, Jason B.; Ikonomidis, John S.; Jones, Jeffrey A.

    2015-01-01

    Marfan Syndrome (MFS) and Loeys-Dietz Syndrome (LDS) represent heritable connective tissue disorders that cosegregate with a similar pattern of cardiovascular defects (thoracic aortic aneurysm, mitral valve prolapse/regurgitation, and aortic dilatation with regurgitation). This pattern of cardiovascular defects appears to be expressed along a spectrum of severity in many heritable connective tissue disorders and raises suspicion of a relationship between the normal development of connective tissues and the cardiovascular system. Given the evidence of increased transforming growth factor-beta (TGF-β) signaling in MFS and LDS, this signaling pathway may represent the common link in this relationship. To further explore this hypothetical link, this chapter will review the TGF-β signaling pathway, heritable connective tissue syndromes related to TGF-β receptor (TGFBR) mutations, and discuss the pathogenic contribution of TGF-β to these syndromes with a primary focus on the cardiovascular system. PMID:24443024

  1. Connective tissue growth factor immunohistochemical expression is associated with gallbladder cancer progression.

    Science.gov (United States)

    Garcia, Patricia; Leal, Pamela; Alvarez, Hector; Brebi, Priscilla; Ili, Carmen; Tapia, Oscar; Roa, Juan C

    2013-02-01

    Gallbladder cancer (GBC) is an aggressive neoplasia associated with late diagnosis, unsatisfactory treatment, and poor prognosis. Molecular mechanisms involved in GBC pathogenesis remain poorly understood. Connective tissue growth factor (CTGF) is thought to play a role in the pathologic processes and is overexpressed in several human cancers, including GBC. No information is available about CTGF expression in early stages of gallbladder carcinogenesis. Objective.- To evaluate the expression level of CTGF in benign and malignant lesions of gallbladder and its correlation with clinicopathologic features and GBC prognosis. Connective tissue growth factor protein was examined by immunohistochemistry on tissue microarrays containing tissue samples of chronic cholecystitis (n = 51), dysplasia (n = 15), and GBC (n = 169). The samples were scored according to intensity of staining as low/absent and high CTGF expressers. Statistical analysis was performed using the χ(2) test or Fisher exact probability test with a significance level of P Connective tissue growth factor expression showed a progressive increase from chronic cholecystitis to dysplasia and then to early and advanced carcinoma. Immunohistochemical expression (score ≥2) was significantly higher in advanced tumors, in comparison with chronic cholecystitis (P < .001) and dysplasia (P = .03). High levels of CTGF expression correlated with better survival (P = .04). Our results suggest a role for CTGF in GBC progression and a positive association with better prognosis. In addition, they underscore the importance of considering the involvement of inflammation on GBC development.

  2. Human tissue factor: cDNA sequence and chromosome localization of the gene

    International Nuclear Information System (INIS)

    Scarpati, E.M.; Wen, D.; Broze, G.J. Jr.; Miletich, J.P.; Flandermeyer, R.R.; Siegel, N.R.; Sadler, J.E.

    1987-01-01

    A human placenta cDNA library in λgt11 was screened for the expression of tissue factor antigens with rabbit polyclonal anti-human tissue factor immunoglobulin G. Among 4 million recombinant clones screened, one positive, λHTF8, expressed a protein that shared epitopes with authentic human brain tissue factor. The 1.1-kilobase cDNA insert of λHTF8 encoded a peptide that contained the amino-terminal protein sequence of human brain tissue factor. Northern blotting identified a major mRNA species of 2.2 kilobases and a minor species of ∼ 3.2 kilobases in poly(A) + RNA of placenta. Only 2.2-kilobase mRNA was detected in human brain and in the human monocytic U937 cell line. In U937 cells, the quantity of tissue factor mRNA was increased several fold by exposure of the cells to phorbol 12-myristate 13-acetate. Additional cDNA clones were selected by hybridization with the cDNA insert of λHTF8. These overlapping isolates span 2177 base pairs of the tissue factor cDNA sequence that includes a 5'-noncoding region of 75 base pairs, an open reading frame of 885 base pairs, a stop codon, a 3'-noncoding region of 1141 base pairs, and a poly(a) tail. The open reading frame encodes a 33-kilodalton protein of 295 amino acids. The predicted sequence includes a signal peptide of 32 or 34 amino acids, a probable extracellular factor VII binding domain of 217 or 219 amino acids, a transmembrane segment of 23 acids, and a cytoplasmic tail of 21 amino acids. There are three potential glycosylation sites with the sequence Asn-X-Thr/Ser. The 3'-noncoding region contains an inverted Alu family repetitive sequence. The tissue factor gene was localized to chromosome 1 by hybridization of the cDNA insert of λHTF8 to flow-sorted human chromosomes

  3. Tissue factor-expressing tumor cells can bind to immobilized recombinant tissue factor pathway inhibitor under static and shear conditions in vitro.

    Directory of Open Access Journals (Sweden)

    Sara P Y Che

    Full Text Available Mammary tumors and malignant breast cancer cell lines over-express the coagulation factor, tissue factor (TF. High expression of TF is associated with a poor prognosis in breast cancer. Tissue factor pathway inhibitor (TFPI, the endogenous inhibitor of TF, is constitutively expressed on the endothelium. We hypothesized that TF-expressing tumor cells can bind to immobilized recombinant TFPI, leading to arrest of the tumor cells under shear in vitro. We evaluated the adhesion of breast cancer cells to immobilized TFPI under static and shear conditions (0.35 - 1.3 dyn/cm2. We found that high-TF-expressing breast cancer cells, MDA-MB-231 (with a TF density of 460,000/cell, but not low TF-expressing MCF-7 (with a TF density of 1,400/cell, adhered to recombinant TFPI, under static and shear conditions. Adhesion of MDA-MB-231 cells to TFPI required activated factor VII (FVIIa, but not FX, and was inhibited by a factor VIIa-blocking anti-TF antibody. Under shear, adhesion to TFPI was dependent on the TFPI-coating concentration, FVIIa concentration and shear stress, with no observed adhesion at shear stresses greater than 1.0 dyn/cm2. This is the first study showing that TF-expressing tumor cells can be captured by immobilized TFPI, a ligand constitutively expressed on the endothelium, under low shear in vitro. Based on our results, we hypothesize that TFPI could be a novel ligand mediating the arrest of TF-expressing tumor cells in high TFPI-expressing vessels under conditions of low shear during metastasis.

  4. Gamma-ray energy absorption and exposure buildup factor studies in some human tissues with endometriosis

    Energy Technology Data Exchange (ETDEWEB)

    Kurudirek, Murat, E-mail: mkurudirek@gmail.co [Faculty of Science, Department of Physics, Ataturk University, 25240 Erzurum (Turkey); Dogan, Bekir [Faculty of Science, Department of Physics, Ataturk University, 25240 Erzurum (Turkey); Ingec, Metin [Faculty of Medicine, Department of Obstetrics and Gynecology, Ataturk University, 25240 Erzurum (Turkey); Ekinci, Neslihan; Ozdemir, Yueksel [Faculty of Science, Department of Physics, Ataturk University, 25240 Erzurum (Turkey)

    2011-02-15

    Human tissues with endometriosis have been analyzed in terms of energy absorption (EABF) and exposure (EBF) buildup factors using the five-parameter geometric progression (G-P) fitting formula in the energy region 0.015-15 MeV up to a penetration depth of 40 mfp (mean free path). Chemical compositions of the tissue samples were determined using a wavelength dispersive X-ray fluorescence spectrometer (WDXRFS). Possible conclusions were drawn due to significant variations in EABF and EBF for the selected tissues when photon energy, penetration depth and chemical composition changed. Buildup factors so obtained may be of use when the method of choice for treatment of endometriosis is radiotherapy.

  5. Application of chitosan scaffolds on vascular endothelial growth factor and fibroblast growth factor 2 expressions in tissue engineering principles

    Directory of Open Access Journals (Sweden)

    Ariyati Retno Pratiwi

    2015-12-01

    Full Text Available Background: Tissue engineering has given satisfactory results as biological tissue substitutes to restore, replace, or regenerate tissues that have a defect. Chitosan is an organic biomaterial often used in the biomedical field. Chitosan has biocompatible, antifungal, and antibacterial properties. Chitosan is osteoconductive, suitable for bone regeneration applications. Bone defect healing begins with inflammatory phase as a response to the presence of vascular injury, so new vascularization is required. Vascular endothelial growth factor (VEGF and basic fibroblast growth factor-2 (FGF2 are indicators of the beginning of bone regeneration process, playing an important role in angiogenesis. Purpose: This research was aimed to determine the effects of chitosan scaffold application on the expressions of VEGF and FGF2 in tissue engineering principles. Method: Chitosan was dissolved in CH3COOH and NaOH to form a gel. Chitosan gel was then printed in mould to freeze dry for 24 hours. Those rats with defected bones were divided into two groups. Group 1 was the control group which defected bones were not administrated with chitosan scaffolds. Group 2 was the treatment group which defected bones were administrated with chitosan scaffolds. Those rats were sacrificed on day 14. Tissue preparations were made, and then immunohistochemical staining was conducted. Finally, a statistical analysis was conducted using Kruskal Wallis test. Result: There was no significant difference in the expressions of VEGF and FGF2 between the control group and the treatment group (p>0.05. Conclusion: Chitosan scaffolds do not affect the expressions of VEGF and FGF2 during bone regeneration process on day 14 in tissue engineering principles

  6. Connective tissue growth factor is necessary for retinal capillary basal lamina thickening in diabetic mice

    NARCIS (Netherlands)

    Kuiper, Esther J.; van Zijderveld, Rogier; Roestenberg, Peggy; Lyons, Karen M.; Goldschmeding, Roel; Klaassen, Ingeborg; van Noorden, Cornelis J. F.; Schlingemann, Reinier O.

    2008-01-01

    Experimental prevention of basal lamina (BL) thickening of retinal capillaries ameliorates early vascular changes caused by diabetes. Connective tissue growth factor (CTGF) is upregulated early in diabetes in the human retina and is a potent inducer of expression of BL components. We hypothesize

  7. Expression of Connective Tissue Growth Factor in Male Breast Cancer : Clinicopathologic Correlations and Prognostic Value

    NARCIS (Netherlands)

    Lacle, Miangela M.; van Diest, Paul J.; Goldschmeding, Roel; van der Wall, Elsken; Nguyen, Tri Q.

    2015-01-01

    Connective tissue growth factor (CTGF/CCN2) is a member of the CCN family of secreted proteins that are believed to play an important role in the development of neoplasia. In particular, CTGF has been reported to play an important role in mammary tumorigenesis and to have prognostic value in female

  8. Dual growth factor delivery from bilayered, biodegradable hydrogel composites for spatially-guided osteochondral tissue repair

    NARCIS (Netherlands)

    Lu, S.; Lam, J.; Trachtenberg, J.E.; Lee, E.J.; Seyednejad, H.; van den Beucken, J.J.; Tabata, Y.; Wong, M.E.; Jansen, J.A.; Mikos, A.G.; Kasper, F.K.

    2014-01-01

    The present work investigated the use of biodegradable hydrogel composite scaffolds, based on the macromer oligo(poly(ethylene glycol) fumarate) (OPF), to deliver growth factors for the repair of osteochondral tissue in a rabbit model. In particular, bilayered OPF composites were used to mimic the

  9. Involvement of Connective Tissue Growth Factor in Human and Experimental Hypertensive Nephrosclerosis

    NARCIS (Netherlands)

    Ito, Yasuhiko; Aten, Jan; Nguyen, Tri Q.; Joles, Jaap A.; Matsuo, Seiichi; Weening, Jan J.; Goldschmeding, Roel

    2011-01-01

    Background/Aims: Connective tissue growth factor (CTGF; CCN2) has been implicated as a marker and mediator of fibrosis in human and experimental renal disease. Methods: We performed a comparative analysis of CTGF expression in hypertensive patients with and without nephrosclerosis, and in

  10. Pro- and non-coagulant forms of non-cell-bound tissue factor in vivo

    NARCIS (Netherlands)

    Sturk-Maquelin, K. N.; Nieuwland, R.; Romijn, F. P. H. T. M.; Eijsman, L.; Hack, C. E.; Sturk, A.

    2003-01-01

    Background: Concentrations of non-cell-bound (NCB; soluble) tissue factor (TF) are elevated in blood collecting in the pericardial cavity of patients during cardiopulmonary bypass (CPB). Previously, we reported microparticles supporting thrombin generation in such blood samples. In this study we

  11. Tissue factor-dependent blood coagulation is enhanced following delivery irrespective of the mode of delivery

    NARCIS (Netherlands)

    Boer, K.; den Hollander, I. A.; Meijers, J. C. M.; Levi, M. [=Marcel M.

    2007-01-01

    BACKGROUND: The risk of thrombosis is clearly increased in the postpartum period. Mice with a targeted deletion of the transmembrane domain of tissue factor (TF) develop serious activation of blood coagulation and widespread thrombosis after delivery. OBJECTIVE AND METHODS: We hypothesized that TF,

  12. Expression of cyclooxygenase-1 and cyclooxygenase-2, syndecan-1 and connective tissue growth factor in benign and malignant breast tissue from premenopausal women.

    Science.gov (United States)

    Fahlén, M; Zhang, H; Löfgren, L; Masironi, B; von Schoultz, E; von Schoultz, B; Sahlin, L

    2017-05-01

    Stromal factors have been identified as important for tumorigenesis and metastases of breast cancer. From 49 premenopausal women, samples were collected from benign or malignant tumors and the seemingly normal tissue adjacent to the tumor. The factors studied, with real-time polymerase chain reaction (PCR) and immunohistochemistry, were cyclooxygenase-1 and cyclooxygenase-2 (COX-1 and COX-2), syndecan-1 (S-1) and connective tissue growth factor (CTGF). COX-1 and S-1 mRNA levels were higher in the malignant tumors than in normal and benign tissues. The COX-2 mRNA level was lower in the malignant tumor than in the normal tissue, while CTGF mRNA did not differ between the groups. COX-1 immunostaining was higher in stroma from malignant tumors than in benign tissues, whereas COX-2 immunostaining was higher in the malignant tissue. Glandular S-1 immunostaining was lower in malignant tumors compared to benign and normal tissues, and the opposite was found in stroma. Conclusively, mRNA levels of COX-1 and COX-2 were oppositely regulated, with COX-1 being increased in the malignant tumor while COX-2 was decreased. S-1 protein localization switched from glandular to stromal cells in malignant tissues. Thus, these markers are, in premenopausal women, localized and regulated differently in normal/benign breast tissue as compared to the malignant tumor.

  13. Synthesis and characterization of cycloaliphatic hydrophilic polyurethanes, modified with L-ascorbic acid, as materials for soft tissue regeneration

    International Nuclear Information System (INIS)

    Kucinska-Lipka, J.; Gubanska, I.; Strankowski, M.; Cieśliński, H.; Filipowicz, N.; Janik, H.

    2017-01-01

    In this paper we described synthesis and characteristic of obtained hydrophilic polyurethanes (PURs) modified with ascorbic acid (commonly known as vitamin C). Such materials may find an application in the biomedical field, for example in the regenerative medicine of soft tissues, according to ascorbic acid wide influence on tissue regeneration Flora (2009), Szymańska-Pasternak et al. (2011), Taikarimi and Ibrahim (2011), Myrvik and Volk (1954), Li et al. (2001), Cursino et al. (2005) . Hydrophilic PURs were obtained with the use of amorphous α,ω-dihydroxy(ethylene-butylene adipate) (dHEBA) polyol, 1,4-butanediol (BDO) chain extender and aliphatic 4,4′-methylenebis(cyclohexyl isocyanate) (HMDI). HMDI was chosen as a nontoxic diisocyanate, suitable for biomedical PUR synthesis. Modification with L-ascorbic acid (AA) was performed to improve obtained PUR materials biocompatibility. Chemical structure of obtained PURs was provided and confirmed by Fourier transform infrared spectroscopy (FTIR) and Proton nuclear magnetic resonance spectroscopy ( 1 HNMR). Differential scanning calorimetry (DSC) was used to indicate the influence of ascorbic acid modification on such parameters as glass transition temperature, melting temperature and melting enthalpies of obtained materials. To determine how these materials may potentially behave, after implementation in tissue, degradation behavior of obtained PURs in various chemical environments, which were represented by canola oil, saline solution, distilled water and phosphate buffered saline (PBS) was estimated. The influence of AA on hydrophilic-hydrophobic character of obtained PURs was established by contact angle study. This experiment revealed that ascorbic acid significantly improves hydrophilicity of obtained PUR materials and the same cause that they are more suitable candidates for biomedical applications. Good hemocompatibility characteristic of studied PUR materials was confirmed by the hemocompatibility test with

  14. Synthesis and characterization of cycloaliphatic hydrophilic polyurethanes, modified with L-ascorbic acid, as materials for soft tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Kucinska-Lipka, J., E-mail: juskucin@pg.gda.pl [Gdank University of Technology, Faculty of Chemistry, Department of Polymer Technology, Narutowicza St. 11/12, 80-233 Gdansk (Poland); Gubanska, I.; Strankowski, M. [Gdank University of Technology, Faculty of Chemistry, Department of Polymer Technology, Narutowicza St. 11/12, 80-233 Gdansk (Poland); Cieśliński, H.; Filipowicz, N. [Gdansk University of Technology, Faculty of Chemistry, Department of Microbiology, Narutowicza St. 11/12, 80-233 Gdansk (Poland); Janik, H. [Gdank University of Technology, Faculty of Chemistry, Department of Polymer Technology, Narutowicza St. 11/12, 80-233 Gdansk (Poland)

    2017-06-01

    In this paper we described synthesis and characteristic of obtained hydrophilic polyurethanes (PURs) modified with ascorbic acid (commonly known as vitamin C). Such materials may find an application in the biomedical field, for example in the regenerative medicine of soft tissues, according to ascorbic acid wide influence on tissue regeneration Flora (2009), Szymańska-Pasternak et al. (2011), Taikarimi and Ibrahim (2011), Myrvik and Volk (1954), Li et al. (2001), Cursino et al. (2005) . Hydrophilic PURs were obtained with the use of amorphous α,ω-dihydroxy(ethylene-butylene adipate) (dHEBA) polyol, 1,4-butanediol (BDO) chain extender and aliphatic 4,4′-methylenebis(cyclohexyl isocyanate) (HMDI). HMDI was chosen as a nontoxic diisocyanate, suitable for biomedical PUR synthesis. Modification with L-ascorbic acid (AA) was performed to improve obtained PUR materials biocompatibility. Chemical structure of obtained PURs was provided and confirmed by Fourier transform infrared spectroscopy (FTIR) and Proton nuclear magnetic resonance spectroscopy ({sup 1}HNMR). Differential scanning calorimetry (DSC) was used to indicate the influence of ascorbic acid modification on such parameters as glass transition temperature, melting temperature and melting enthalpies of obtained materials. To determine how these materials may potentially behave, after implementation in tissue, degradation behavior of obtained PURs in various chemical environments, which were represented by canola oil, saline solution, distilled water and phosphate buffered saline (PBS) was estimated. The influence of AA on hydrophilic-hydrophobic character of obtained PURs was established by contact angle study. This experiment revealed that ascorbic acid significantly improves hydrophilicity of obtained PUR materials and the same cause that they are more suitable candidates for biomedical applications. Good hemocompatibility characteristic of studied PUR materials was confirmed by the hemocompatibility test

  15. Effects of intratracheal instillation of bleomycin on phospholipid synthesis in hamster lung tissue slices

    International Nuclear Information System (INIS)

    Giri, S.N.

    1987-01-01

    Bleomycin, an antineoplastic drug, is known to produce interstitial pulmonary fibrosis (IPF). As a result, it is commonly employed in various species to produce animal models of fibrosis. We have examined the uptake of [ 14 C] acetate by lung slices and its incorporation into lipids in the slices at various times following intratracheal administration of a fibrogenic dose of bleomycin in hamsters. As compared to saline controls, bleomycin had no effect on [ 14 C] acetate uptake at 4 and 7 days but it increased the uptake at 2 and 14 days after treatment. The incorporation of [ 14 C] acetate into total lipid was significantly reduced to 44, 62, 62, and 75% of the control at 2, 4, 7, and 14 days after bleomycin treatment, respectively. The incorporation into lipid as a percentage of the uptake was 12.2 in control animals whereas in bleomycin-treated animals, it was 4.7, 8.0, 7.3, and 6.9 at the corresponding times. Separation of lipids into various fractions revealed that bleomycin treatment specifically inhibited the synthesis of phosphatidylcholine and neutral lipid at all times of the study. The synthesis of all other phospholipids except phosphatidylethanolamine was depressed at 2 days. The latter was, however, depressed at 7 and 14 days after bleomycin treatment. It was concluded from the present study that bleomycin treatment inhibits the synthesis of phospholipid and neutral lipid and this may eventually lead to decreased surfactant production

  16. The single-biopsy approach in determining protein synthesis in human slow-turning-over tissue: use of flood-primed, continuous infusion of amino acid tracer

    DEFF Research Database (Denmark)

    Holm, Lars; Reitelseder, Søren; Dideriksen, Kasper

    2014-01-01

    Muscle protein synthesis (MPS) rate is determined conventionally by obtaining two or more tissue biopsies during a primed, continuous infusion of a stable isotopically labeled amino acid. The purpose of the present study was to test whether tracer priming given as a flooding dose, thereby securing....... In conclusion, the flood-primed, continuous infusion protocol using phenylalanine as tracer can validly be used to measure the protein synthesis rate in human in vivo experiments by obtaining only a single tissue biopsy after a prolonged infusion period....

  17. Recent progress in the synthesis of poly(organo)phosphazenes and their applications in tissue engineering and drug delivery

    Science.gov (United States)

    Khan, R. U.; Wang, L.; Yu, H.; Zain-ul-Abdin; Akram, M.; Wu, J.; Haroon, M.; Ullah, R. S.; Deng, Zh; Xia, X.

    2018-02-01

    It is a highly desirable goal of researchers to develop effective biomaterials with minimum recovery time and affordable treatment expense for tissue engineering and drug delivery. In this scenario, numerous synthetic and natural polymers have been used. Among those synthetic polymers, polyorganophosphazenes (POPs) have got much attention as highly promising candidates for applications in tissue engineering and drug delivery. Polyorganophosphazenes are hybrid polymers containing inorganic backbone consisting of alternating nitrogen and phosphorus atoms with two organic side groups. POPs possess a wide range of unique properties, i.e., synthetic flexibility, biocompatibility, osteocompatibility, osteoinductivity, sustainability and degradability into harmless end products with predictable degradation rate and adjustable mechanical strength. Moreover, their tunable hydrophilic/hydrophobic and stimuli responsive properties add extra points to their use in biomedical applications. In addition, their various polymeric forms, i.e., microspheres, nano/microfibres, micelles, membranes, polymersomes, hydrogels and nano-conjugate linear polymers provide different carriers to efficiently deliver various hydrophilic/hydrophobic therapeutic agents both in vitro and in vivo. This review focuses on the most recent progress that has been made in the synthesis and applications of POPs in tissue engineering and their different polymeric forms used for drug delivery. Moreover, we have also summarized the effect of different side groups on the overall efficiency of POPs. The bibliography includes 239 references.

  18. Recombinant nematode anticoagulant protein c2, an inhibitor of tissue factor/factor VIIa, attenuates coagulation and the interleukin-10 response in human endotoxemia

    NARCIS (Netherlands)

    de Pont, A. C. J. M.; Moons, A. H. M.; de Jonge, E.; Meijers, J. C. M.; Vlasuk, G. P.; Rote, W. E.; Büller, H. R.; van der Poll, T.; Levi, M. [=Marcel M.

    2004-01-01

    The tissue factor-factor (F)VIIa complex (TF/FVIIa) is responsible for the initiation of blood coagulation under both physiological and pathological conditions. Recombinant nematode anticoagulant protein c2 (rNAPc2) is a potent inhibitor of TF/FVIIa. mechanistically distinct from tissue factor

  19. CMG2 Expression Is an Independent Prognostic Factor for Soft Tissue Sarcoma Patients

    Directory of Open Access Journals (Sweden)

    Thomas Greither

    2017-12-01

    Full Text Available The capillary morphogenesis gene 2 (CMG2, also known as the anthrax toxin receptor 2 (ANTXR2, is a transmembrane protein putatively involved in extracellular matrix (ECM adhesion and tissue remodeling. CMG2 promotes endothelial cell proliferation and exhibits angiogenic properties. Its downregulation is associated with a worsened survival of breast carcinoma patients. Aim of this study was to analyze the CMG2 mRNA and protein expression in soft tissue sarcoma and their association with patient outcome. CMG2 mRNA was measured in 121 tumor samples of soft tissue sarcoma patients using quantitative real-time PCR. CMG2 protein was evaluated in 52 tumor samples by ELISA. CMG2 mRNA was significantly correlated with the corresponding CMG2 protein expression (rs = 0.31; p = 0.027. CMG2 mRNA expression was associated with the mRNA expressions of several ECM and tissue remodeling enzymes, among them CD26 and components of the uPA system. Low CMG2 mRNA expression was correlated with a worsened patients’ disease-specific survival in Kaplan-Meier analyses (mean patient survival was 25 vs. 96 months; p = 0.013, especially in high-stage tumors. A decreased CMG2 expression is a negative prognostic factor for soft tissue sarcoma patients. CMG2 may be an interesting candidate gene for the further exploration of soft tissue sarcoma genesis and progression.

  20. CMG2 Expression Is an Independent Prognostic Factor for Soft Tissue Sarcoma Patients.

    Science.gov (United States)

    Greither, Thomas; Wedler, Alice; Rot, Swetlana; Keßler, Jacqueline; Kehlen, Astrid; Holzhausen, Hans-Jürgen; Bache, Matthias; Würl, Peter; Taubert, Helge; Kappler, Matthias

    2017-12-07

    The capillary morphogenesis gene 2 (CMG2), also known as the anthrax toxin receptor 2 (ANTXR2), is a transmembrane protein putatively involved in extracellular matrix (ECM) adhesion and tissue remodeling. CMG2 promotes endothelial cell proliferation and exhibits angiogenic properties. Its downregulation is associated with a worsened survival of breast carcinoma patients. Aim of this study was to analyze the CMG2 mRNA and protein expression in soft tissue sarcoma and their association with patient outcome. CMG2 mRNA was measured in 121 tumor samples of soft tissue sarcoma patients using quantitative real-time PCR. CMG2 protein was evaluated in 52 tumor samples by ELISA. CMG2 mRNA was significantly correlated with the corresponding CMG2 protein expression (r s = 0.31; p = 0.027). CMG2 mRNA expression was associated with the mRNA expressions of several ECM and tissue remodeling enzymes, among them CD26 and components of the uPA system. Low CMG2 mRNA expression was correlated with a worsened patients' disease-specific survival in Kaplan-Meier analyses (mean patient survival was 25 vs. 96 months; p = 0.013), especially in high-stage tumors. A decreased CMG2 expression is a negative prognostic factor for soft tissue sarcoma patients. CMG2 may be an interesting candidate gene for the further exploration of soft tissue sarcoma genesis and progression.

  1. Muscle Tissue Engineering Using Gingival Mesenchymal Stem Cells Encapsulated in Alginate Hydrogels Containing Multiple Growth Factors.

    Science.gov (United States)

    Ansari, Sahar; Chen, Chider; Xu, Xingtian; Annabi, Nasim; Zadeh, Homayoun H; Wu, Benjamin M; Khademhosseini, Ali; Shi, Songtao; Moshaverinia, Alireza

    2016-06-01

    Repair and regeneration of muscle tissue following traumatic injuries or muscle diseases often presents a challenging clinical situation. If a significant amount of tissue is lost the native regenerative potential of skeletal muscle will not be able to grow to fill the defect site completely. Dental-derived mesenchymal stem cells (MSCs) in combination with appropriate scaffold material, present an advantageous alternative therapeutic option for muscle tissue engineering in comparison to current treatment modalities available. To date, there has been no report on application of gingival mesenchymal stem cells (GMSCs) in three-dimensional scaffolds for muscle tissue engineering. The objectives of the current study were to develop an injectable 3D RGD-coupled alginate scaffold with multiple growth factor delivery capacity for encapsulating GMSCs, and to evaluate the capacity of encapsulated GMSCs to differentiate into myogenic tissue in vitro and in vivo where encapsulated GMSCs were transplanted subcutaneously into immunocompromised mice. The results demonstrate that after 4 weeks of differentiation in vitro, GMSCs as well as the positive control human bone marrow mesenchymal stem cells (hBMMSCs) exhibited muscle cell-like morphology with high levels of mRNA expression for gene markers related to muscle regeneration (MyoD, Myf5, and MyoG) via qPCR measurement. Our quantitative PCR analyzes revealed that the stiffness of the RGD-coupled alginate regulates the myogenic differentiation of encapsulated GMSCs. Histological and immunohistochemical/fluorescence staining for protein markers specific for myogenic tissue confirmed muscle regeneration in subcutaneous transplantation in our in vivo animal model. GMSCs showed significantly greater capacity for myogenic regeneration in comparison to hBMMSCs (p alginate hydrogel with multiple growth factor delivery capacity is a promising candidate for muscle tissue engineering.

  2. Expression of connective tissue growth factor in tumor tissues is an independent predictor of poor prognosis in patients with gastric cancer

    OpenAIRE

    Liu, Lu-Ying; Han, Yan-Chun; Wu, Shu-Hua; Lv, Zeng-Hua

    2008-01-01

    AIM: To examine the expression of connective tissue growth factor (CTGF), also known as CCN2, in gastric carcinoma (GC), and the correlation between the expression of CTGF, clinicopathologic features and clinical outcomes of patients with GC.

  3. Correction factors to convert microdosimetry measurements in silicon to tissue in 12C ion therapy.

    Science.gov (United States)

    Bolst, David; Guatelli, Susanna; Tran, Linh T; Chartier, Lachlan; Lerch, Michael L F; Matsufuji, Naruhiro; Rosenfeld, Anatoly B

    2017-03-21

    Silicon microdosimetry is a promising technology for heavy ion therapy (HIT) quality assurance, because of its sub-mm spatial resolution and capability to determine radiation effects at a cellular level in a mixed radiation field. A drawback of silicon is not being tissue-equivalent, thus the need to convert the detector response obtained in silicon to tissue. This paper presents a method for converting silicon microdosimetric spectra to tissue for a therapeutic 12 C beam, based on Monte Carlo simulations. The energy deposition spectra in a 10 μm sized silicon cylindrical sensitive volume (SV) were found to be equivalent to those measured in a tissue SV, with the same shape, but with dimensions scaled by a factor κ equal to 0.57 and 0.54 for muscle and water, respectively. A low energy correction factor was determined to account for the enhanced response in silicon at low energy depositions, produced by electrons. The concept of the mean path length [Formula: see text] to calculate the lineal energy was introduced as an alternative to the mean chord length [Formula: see text] because it was found that adopting Cauchy's formula for the [Formula: see text] was not appropriate for the radiation field typical of HIT as it is very directional. [Formula: see text] can be determined based on the peak of the lineal energy distribution produced by the incident carbon beam. Furthermore it was demonstrated that the thickness of the SV along the direction of the incident 12 C ion beam can be adopted as [Formula: see text]. The tissue equivalence conversion method and [Formula: see text] were adopted to determine the RBE 10 , calculated using a modified microdosimetric kinetic model, applied to the microdosimetric spectra resulting from the simulation study. Comparison of the RBE 10 along the Bragg peak to experimental TEPC measurements at HIMAC, NIRS, showed good agreement. Such agreement demonstrates the validity of the developed tissue equivalence correction factors and of

  4. Tendon protein synthesis rate in classic Ehlers-Danlos patients can be stimulated with insulin-like growth factor-I

    DEFF Research Database (Denmark)

    Nielsen, Rie Harboe; Holm, Lars; Jensen, Jacob Kildevang

    2014-01-01

    tissue protein turnover is unknown. We investigated whether cEDS affected the protein synthesis rate in skin and tendon, and whether this could be stimulated in tendon tissue with insulin-like growth factor-I (IGF-I). Five patients with cEDS and 10 healthy, matched controls (CTRL) were included. One...... patellar tendon of each participant was injected with 0.1 ml IGF-I (Increlex, Ipsen, 10 mg/ml) and the contralateral tendon with 0.1 ml isotonic saline as control. The injections were performed at both 24 and 6 h prior to tissue sampling. The fractional synthesis rate (FSR) of proteins in skin and tendon.......002 (cEDS) and 0.007 ± 0.002 (CTRL); tendon: 0.008 ± 0.001 (cEDS) and 0.009 ± 0.002 (CTRL) %/h, mean ± SE]. IGF-I injections significantly increased FSR values in cEDS patients but not in controls (delta values: cEDS 0.007 ± 0.002, CTRL 0.001 ± 0.001%/h). In conclusion, baseline protein synthesis rates...

  5. SYNTHESIS OF ARTS AS A FACTOR OF TEENAGE CREATIVE EDUCATION

    Directory of Open Access Journals (Sweden)

    Liudmila Onofrichuk

    2017-03-01

    Full Text Available The article presents the method of teenage creative education by means of musical and theatrical arts at secondary comprehensive school. Showing school musical puppet theater «Fantasy» (secondary school No.12, Vinnytsia the author highlights the ways of pupils’ artistic and creative education during the study of the synthesis of the arts (music, singing, dance and recitation. The conditions affecting successful solution of the problem have been determined. Аmong them the author defines educational activities of a competent teacher who is capable to find out creative innovative solutions. The necessity and importance of using effective methods and techniques in terms of musical and theatrical activities for the development of pupils’ emotional sensitivity and overall creative development have been grounded. During music lessons, pupils successfully master creative abilities and skills (artistic speech, drama, puppet games, dancing, find innovate solutions to practical problems, interpret the original artistic images. Creative combinations of various forms and methods of work, rehearsals, spectacles, concert performances – promote the development of creativity, intensify artistic and performing activities of pupils. The awareness of the character’s motives is the impetus for creating the right stage feeling about reality and naturalness of stage action. It is noted that the art of musical theater helps them not only to acquire art knowledge and skills, but also strive for self-realization and self-improvement, better understanding of themselves and other people, awareness of the beauty of the life. The educational value of the theatrical activity lies in the understanding by teenagers their own attitude to the behavior of characters, developing the abilities to judge them critically, empathize and find alternatives for acquiring creative experience in future life situations.

  6. Biomaterials with persistent growth factor gradients in vivo accelerate vascularized tissue formation.

    Science.gov (United States)

    Akar, Banu; Jiang, Bin; Somo, Sami I; Appel, Alyssa A; Larson, Jeffery C; Tichauer, Kenneth M; Brey, Eric M

    2015-12-01

    Gradients of soluble factors play an important role in many biological processes, including blood vessel assembly. Gradients can be studied in detail in vitro, but methods that enable the study of spatially distributed soluble factors and multi-cellular processes in vivo are limited. Here, we report on a method for the generation of persistent in vivo gradients of growth factors in a three-dimensional (3D) biomaterial system. Fibrin loaded porous poly (ethylene glycol) (PEG) scaffolds were generated using a particulate leaching method. Platelet derived growth factor BB (PDGF-BB) was encapsulated into poly (lactic-co-glycolic acid) (PLGA) microspheres which were placed distal to the tissue-material interface. PLGA provides sustained release of PDGF-BB and its diffusion through the porous structure results in gradient formation. Gradients within the scaffold were confirmed in vivo using near-infrared fluorescence imaging and gradients were present for more than 3 weeks. The diffusion of PDGF-BB was modeled and verified with in vivo imaging findings. The depth of tissue invasion and density of blood vessels formed in response to the biomaterial increased with magnitude of the gradient. This biomaterial system allows for generation of sustained growth factor gradients for the study of tissue response to gradients in vivo. Published by Elsevier Ltd.

  7. Nuclear exclusion of transcription factors associated with apoptosis in developing nervous tissue

    Directory of Open Access Journals (Sweden)

    R. Linden

    1999-07-01

    Full Text Available Programmed cell death in the form of apoptosis involves a network of metabolic events and may be triggered by a variety of stimuli in distinct cells. The nervous system contains several neuron and glial cell types, and developmental events are strongly dependent on selective cell interactions. Retinal explants have been used as a model to investigate apoptosis in nervous tissue. This preparation maintains the structural complexity and cell interactions similar to the retina in situ, and contains cells in all stages of development. We review the finding of nuclear exclusion of several transcription factors during apoptosis in retinal cells. The data reviewed in this paper suggest a link between apoptosis and a failure in the nucleo-cytoplasmic partition of transcription factors. It is argued that the nuclear exclusion of transcription factors may be an integral component of apoptosis both in the nervous system and in other types of cells and tissues.

  8. PET Imaging of Tissue Factor in Pancreatic Cancer Using 64Cu-Labeled Active Site-Inhibited Factor VII

    DEFF Research Database (Denmark)

    Nielsen, Carsten H; Jeppesen, Troels E; Kristensen, Lotte K

    2016-01-01

    with advanced stage, increased microvessel density, metastasis, and poor overall survival. Imaging of TF expression is of clinical relevance as a prognostic biomarker and as a companion diagnostic for TF-directed therapies currently under clinical development. Factor VII (FVII) is the natural ligand to TF......UNLABELLED: Tissue factor (TF) is the main initiator of the extrinsic coagulation cascade. However, TF also plays an important role in cancer. TF expression has been reported in 53%-89% of all pancreatic adenocarcinomas, and the expression level of TF has in clinical studies correlated...

  9. Mammogram synthesis using a 3D simulation. I. Breast tissue model and image acquisition simulation

    International Nuclear Information System (INIS)

    Bakic, Predrag R.; Albert, Michael; Brzakovic, Dragana; Maidment, Andrew D. A.

    2002-01-01

    A method is proposed for generating synthetic mammograms based upon simulations of breast tissue and the mammographic imaging process. A computer breast model has been designed with a realistic distribution of large and medium scale tissue structures. Parameters controlling the size and placement of simulated structures (adipose compartments and ducts) provide a method for consistently modeling images of the same simulated breast with modified position or acquisition parameters. The mammographic imaging process is simulated using a compression model and a model of the x-ray image acquisition process. The compression model estimates breast deformation using tissue elasticity parameters found in the literature and clinical force values. The synthetic mammograms were generated by a mammogram acquisition model using a monoenergetic parallel beam approximation applied to the synthetically compressed breast phantom

  10. PPAR-alpha agonist treatment increases trefoil factor family-3 expression and attenuates apoptosis in the liver tissue of bile duct-ligated rats.

    Science.gov (United States)

    Karakan, Tarkan; Kerem, Mustafa; Cindoruk, Mehmet; Engin, Doruk; Alper, Murat; Akın, Okan

    2013-01-01

    Peroxisome proliferators-activated receptor alpha activation modulates cholesterol metabolism and suppresses bile acid synthesis. The trefoil factor family comprises mucin-associated proteins that increase the viscosity of mucins and help protect epithelial linings from insults. We evaluated the effect of short-term administration of fenofibrate, a peroxisome proliferators activated receptor alpha agonist, on trefoil factor family-3 expression, degree of apoptosis, generation of free radicals, and levels of proinflammatory cytokines in the liver tissue of bile duct-ligated rats. Forty male Wistar rats were randomly divided into four groups: 1 = sham operated, 2 = bile duct ligation, 3 = bile duct-ligated + vehicle (gum Arabic), and 4 = bile duct-ligated + fenofibrate (100 mg/kg/day). All rats were sacrificed on the 7 th day after obtaining blood samples and liver tissue. Liver function tests, tumor necrosis factor-alpha and interleukin 1 beta in serum, and trefoil factor family-3 mRNA expression, degree of apoptosis (TUNEL) and tissue malondialdehyde (malondialdehyde, end-product of lipid peroxidation by reactive oxygen species) in liver tissue were evaluated. Fenofibrate administration significantly reduced serum total bilirubin, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, gamma-glutamyl transferase, and tumor necrosis factor-alpha and interleukin-1β levels. Apoptosis and malondialdehyde were significantly reduced in the fenofibrate group. Trefoil factor family-3 expression increased with fenofibrate treatment in bile duct-ligated rats. The peroxisome proliferators-activated receptor alpha agonist fenofibrate significantly increased trefoil factor family-3 expression and decreased apoptosis and lipid peroxidation in the liver and attenuated serum levels of proinflammatory cytokines in bile duct-ligated rats. Further studies are needed to determine the protective role of fenofibrate in human cholestatic disorders.

  11. Peritumoral adipose tissue as a source of inflammatory and angiogenic factors in colorectal cancer.

    Science.gov (United States)

    Amor, S; Iglesias-de la Cruz, M C; Ferrero, E; García-Villar, O; Barrios, V; Fernandez, N; Monge, L; García-Villalón, A L; Granado, M

    2016-02-01

    Obesity is a risk factor for the development of human colorectal cancer (CC). The aim of this work is to report the inflammatory and angiogenic scenario in lean (BMI  30 kg/m2) patients with and without CC and to assess the role of peritumoral adipose tissue in CC-induced inflammation. Patients were divided in four experimental groups: obese patients with CC (OB-CC), lean patients with CC (LEAN-CC), obese patients without CC (OB), and lean patients without CC (LEAN). Plasma levels of pro-inflammatory cytokines (interleukin (IL)-6, IL-4, IL-8) and granulocyte-macrophage colony-stimulating factor (GM-CSF) were increased in OB-CC patients. Peritumoral adipose tissue (TF) explants and cultured mature adipocytes secreted higher amounts of nitrites and nitrates than did control and non-tumoral (NTF) adipose tissue both alone and in response to lipopolysaccharide (LPS). Nitrite and nitrate secretion was also increased in TF explants from OB-CC patients compared with that from LEAN-CC patients. Gene expression of adiponectin, tumor necrosis factor alpha (TNF-α), insulin-like growth factor type I (IGF-I), cyclooxygenase-2 (COX-2), and peroxisome proliferator-activated receptor γ (PPAR-γ) was increased in TF explants from CC patients. LPS increased the gene expression of IL-6, IL-10, TNF-α, vascular endothelial growth factor (VEGF), and COX-2 in OB and in TF explants from OB-CC patients. COX-2 and PPAR-γ inhibition further increased LPS-induced release of nitrites and nitrates in TF explants and adipocytes from OB-CC patients. In conclusion, OB-CC patients have increased plasma levels of pro-inflammatory and angiogenic factors. TF from OB-CC patients shows an increased secretion of inflammatory markers compared with both TF from LEAN-CC and non-tumoral adipose tissue (AT) through a COX-2- and PPAR-γ-independent mechanism.

  12. Effects of tissue-preparation-induced callose synthesis on estimates of plasmodesma size exclusion limits.

    Science.gov (United States)

    Radford, J E; White, R G

    2001-01-01

    Plasmodesmata are often characterised by their size exclusion limit (SEL), which is the molecular weight of the largest dye, introduced by microinjection, that will move from cell to cell. In this study, we investigated whether commonly used techniques for isolation and manipulation of tissues, and microinjection of fluorescent dyes, affected the SEL, and whether any such effects could be ameliorated by inhibiting callose deposition. We examined young root epidermal cells of Arabidopsis thaliana and staminal hair cells of Tradescantia virginiana, two tissues often used in experiments on symplastic transport. Transport in root tips dissected from the main plant body and in stamen hairs removed from the base of the stamen filament was compared with transport in undissected roots and stamen hairs attached to the base of the filament, respectively. Tissues were microinjected with fluorescent dyes (457 Da to > 3 kDa) with or without prior incubation in the callose deposition inhibitors 2-deoxy-D-glucose or aniline blue fluorochrome. In both tissues, dissection reduced the SEL, which was largely prevented by prior incubation in 2-deoxy-D-glucose but not by incubation in aniline blue fluorochrome. Thus, standard methods for tissue preparation can cause sufficient callose deposition to reduce cell-to-cell transport, and this needs to be considered in studies employing microinjection. Introduction of the dyes by pressure injection rather than iontophoresis decreased the SEL in A. thaliana but increased it in T. virginiana, showing that these two injection techniques do not necessarily give identical results and that plasmodesmata in different tissues may respond differently to similar experimental procedures.

  13. Synthesis of tumor necrosis factor α for use as a mirror-image phage display target.

    Science.gov (United States)

    Petersen, Mark E; Jacobsen, Michael T; Kay, Michael S

    2016-06-21

    Tumor Necrosis Factor alpha (TNFα) is an inflammatory cytokine that plays a central role in the pathogenesis of chronic inflammatory disease. Here we describe the chemical synthesis of l-TNFα along with the mirror-image d-protein for use as a phage display target. The synthetic strategy utilized native chemical ligation and desulfurization to unite three peptide segments, followed by oxidative folding to assemble the 52 kDa homotrimeric protein. This synthesis represents the foundational step for discovering an inhibitory d-peptide with the potential to improve current anti-TNFα therapeutic strategies.

  14. Synergistic and additive effects of hydrostatic pressure and growth factors on tissue formation.

    Directory of Open Access Journals (Sweden)

    Benjamin D Elder

    2008-06-01

    Full Text Available Hydrostatic pressure (HP is a significant factor in the function of many tissues, including cartilage, knee meniscus, temporomandibular joint disc, intervertebral disc, bone, bladder, and vasculature. Though studies have been performed in assessing the role of HP in tissue biochemistry, to the best of our knowledge, no studies have demonstrated enhanced mechanical properties from HP application in any tissue.The objective of this study was to determine the effects of hydrostatic pressure (HP, with and without growth factors, on the biomechanical and biochemical properties of engineered articular cartilage constructs, using a two-phased approach. In phase I, a 3x3 full-factorial design of HP magnitude (1, 5, 10 MPa and frequency (0, 0.1, 1 Hz was used, and the best two treatments were selected for use in phase II. Static HP at 5 MPa and 10 MPa resulted in significant 95% and 96% increases, respectively, in aggregate modulus (H(A, with corresponding increases in GAG content. These regimens also resulted in significant 101% and 92% increases in Young's modulus (E(Y, with corresponding increases in collagen content. Phase II employed a 3x3 full-factorial design of HP (no HP, 5 MPa static, 10 MPa static and growth factor application (no GF, BMP-2+IGF-I, TGF-beta1. The combination of 10 MPa static HP and TGF-beta1 treatment had an additive effect on both H(A and E(Y, as well as a synergistic effect on collagen content. This group demonstrated a 164% increase in H(A, a 231% increase in E(Y, an 85% increase in GAG/wet weight (WW, and a 173% increase in collagen/WW, relative to control.To our knowledge, this is the first study to demonstrate increases in the biomechanical properties of tissue from pure HP application, using a cartilage model. Furthermore, it is the only study to demonstrate additive or synergistic effects between HP and growth factors on tissue functional properties. These findings are exciting as coupling HP stimulation with growth

  15. Curcumin inhibits TGF-β1-induced connective tissue growth factor expression through the interruption of Smad2 signaling in human gingival fibroblasts.

    Science.gov (United States)

    Chen, Jung-Tsu; Wang, Chen-Ying; Chen, Min-Huey

    2018-01-13

    Many fibrotic processes are associated with an increased level of transforming growth factor-β1 (TGF-β1). TGF-β1 can increase synthesis of matrix proteins and enhance secretion of protease inhibitors, resulting in matrix accumulation. Connective tissue growth factor (CTGF) is a downstream profibrotic effector of TGF-β1 and is associated with the fibrosis in several human organs. Curcumin has been applied to reduce matrix accumulation in fibrotic diseases. This study was aimed to evaluate whether curcumin could suppress TGF-β1-induced CTGF expression and its related signaling pathway involving in this inhibitory action in primary human gingival fibroblasts. The differences in CTGF expression among three types of gingival overgrowth and normal gingival tissues were assessed by immunohistochemistry. Gingival fibroblast viability in cultured media with different concentrations of curcumin was studied by MTT assay. The effect of curcumin on TGF-β1-induced CTGF expression in primary human gingival fibroblasts was examined by immunoblotting. Moreover, the proteins involved in TGF-β1 signaling pathways including TGF-β1 receptors and Smad2 were also analyzed by immunoblotting. CTGF was highly expressed in fibroblasts, epithelial cells and some of endothelial cells, smooth muscle cells, and inflammatory cells in phenytoin-induced gingival overgrowth tissues rather than in those of hereditary and inflammatory gingival overgrowth tissues. Moreover, CTGF expression in the epithelial and connective tissue layers was higher in phenytoin-induced gingival overgrowth tissues than in normal gingival tissues. Curcumin was nontoxic and could reduce TGF-β1-induced CTGF expression by attenuating the phosphorylation and nuclear translocation of Smad2. Curcumin can suppress TGF-β1-induced CTGF expression through the interruption of Smad2 signaling. Copyright © 2018. Published by Elsevier B.V.

  16. Factors That Drive RTO Performance: An Overview. Synthesis Report

    Science.gov (United States)

    Misko, Josie

    2017-01-01

    This paper provides an overview of recent research on the factors that drive the performance of registered training organisations (RTOs), with a view to identifying areas for future research. Initially it explores the drivers of RTO performance; then discusses findings from available literature from Australia and from overseas, and discusses some…

  17. Hydrocortisone and triiodothyronine regulate hyaluronate synthesis in a tissue-engineered human dermal equivalent through independent pathways.

    Science.gov (United States)

    Deshpande, Madhura; Papp, Suzanne; Schaffer, Lana; Pouyani, Tara

    2015-02-01

    Hydrocortisone (HC) and triiodothyronine (T3) have both been shown to be capable of independently inhibiting hyaluronate (HA, hyaluronic acid) synthesis in a self-assembled human dermal equivalent (human dermal matrix). We sought to investigate the action of these two hormones in concert on extracellular matrix formation and HA inhibition in the tissue engineered human dermal matrix. To this end, neonatal human dermal fibroblasts were cultured in defined serum-free medium for 21 days in the presence of each hormone alone, or in combination, in varying concentrations. Through a process of self-assembly, a substantial dermal extracellular matrix formed that was characterized. The results of these studies demonstrate that combinations of the hormones T3 and hydrocortisone showed significantly higher levels of hyaluronate inhibition as compared to each hormone alone in the human dermal matrix. In order to gain preliminary insight into the genes regulating HA synthesis in this system, a differential gene array analysis was conducted in which the construct prepared in the presence of 200 μg/mL HC and 0.2 nM T3 was compared to the normal construct (0.4 μg/mL HC and 20 pM T3). Using a GLYCOv4 gene chip containing approximately 1260 human genes, we observed differential expression of 131 genes. These data suggest that when these two hormones are used in concert a different mechanism of inhibition prevails and a combination of degradation and inhibition of HA synthesis may be responsible for HA regulation in the human dermal matrix. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Synthesis and tissue distribution of fluorine-18 labeled trifluorohexadecanoic acids. Considerations in the development of metabolically blocked myocardial imaging agents

    International Nuclear Information System (INIS)

    Pochapsky, S.S.; Katzenellenbogen, J.A.; VanBrocklin, H.F.; Welch, M.J.

    1990-01-01

    A versatile method for the synthesis of trifluoro fatty acids, potential metabolically blocked myocardial imaging agents, has been developed. Two trifluorohexadecanoic (palmitic) acids have been prepared [6,6,16-trifluorohexadecanoic acid (I) and 7,7,16-trifluorohexadecanoic acid (II)], each of which bears two of the fluorine atoms as a gem-difluoromethylene unit on the fatty acid chain (at C-6 or C-7) and the third at the ω (C-16) position. The metabolic stability of carbon-fluorine bonds suggests the gem-difluoro group may block the β-oxidation pathway, while the terminal fluorine could be the site for labeling with fluorine-18. The convergent synthetic approach utilizes a 2-lithio-1,3-dithiane derived from 10-undecenal or 9-decenal, which is alkylated with the OBO (oxabicyclooctyl) ester of 5-bromopentanoic acid or 6-bromohexanoic acid, respectively. Hydroboration-oxidation and alcohol protection are followed by halofluorination to convert the 1,3-dithiane system to a gem-difluoro group. The third fluorine is introduced by fluoride ion displacement of a trifluoromethanesulfonate. This synthesis is adapted to the labeling of these trifluoro fatty acids with the short-lived radionuclide fluorine-18 (t 1/2 = 110 min), with the third fluorine introduced as fluoride ion in the penultimate step. The radiochemical syntheses proceed in 3-34% radiochemical yield (decay corrected), with an overall synthesis and purification time of 90 min. Tissue distribution studies in rats were performed with I and II, as well as with 16-[ 18 F]fluoropalmitic acid (III), [ 11 C]palmitic acid, and [ 11 C]octanoic acid. The heart uptake of the fluoropalmitic acids decreases with substitution, the 2-min activity level for 16-fluoropalmitic acid being 65% and that for both 6,6,16-and 7,7,17-trifluoropalmitic acids being 30% that of palmitic acid

  19. Synthesis, characterization and cells and tissues imaging of carbon quantum dots

    Science.gov (United States)

    Wang, Jing; Li, Qilong; Zhou, JingE.; Wang, Yiting; Yu, Lei; Peng, Hui; Zhu, Jianzhong

    2017-10-01

    Compare to other quantum dots, carbon quantum dots have its own incomparable advantages, such as low cell toxicity, favorable biocompatibility, cheap production cost, mild reaction conditions, easy to large-scale synthesis and functionalization. In this thesis, we took citric acid monohydrate and diethylene glycol bis (3-aMinopropyl) ether as materials, used decomposition method to acquire carbon quantum dots (CQDs) which can emission blue fluorescence under ultraviolet excitation. In the aspect of application, we achieved the biological imaging of CQDs in vivo and in vitro.

  20. In vitro synthesis of tensioned synoviocyte bioscaffolds for meniscal fibrocartilage tissue engineering.

    Science.gov (United States)

    Warnock, Jennifer J; Baker, Lindsay; Ballard, George A; Ott, Jesse

    2013-12-03

    Meniscal injury is a common cause of lameness in the dog. Tissue engineered bioscaffolds may be a treatment option for meniscal incompetency, and ideally would possess meniscus- like extracellular matrix (ECM) and withstand meniscal tensile hoop strains. Synovium may be a useful cell source for meniscal tissue engineering because of its natural role in meniscal deficiency and its in vitro chondrogenic potential. The objective of this study is to compare meniscal -like extracellular matrix content of hyperconfluent synoviocyte cell sheets ("HCS") and hyperconfluent synoviocyte sheets which have been tensioned over wire hoops (tensioned synoviocyte bioscaffolds, "TSB") and cultured for 1 month. Long term culture with tension resulted in higher GAG concentration, higher chondrogenic index, higher collagen concentration, and type II collagen immunoreactivity in TSB versus HCS. Both HCS and TSB were immunoreactive for type I collagen, however, HCS had mild, patchy intracellular immunoreactivity while TSB had diffuse moderate immunoreactivity over the entire bisocaffold. The tissue architecture was markedly different between TSB and HCS, with TSB containing collagen organized in bands and sheets. Both HCS and TSB expressed alpha smooth muscle actin and displayed active contractile behavior. Double stranded DNA content was not different between TSB and HCS, while cell viability decreased in TSB. Long term culture of synoviocytes with tension improved meniscal- like extra cellular matrix components, specifically, the total collagen content, including type I and II collagen, and increased GAG content relative to HCS. Future research is warranted to investigate the potential of TSB for meniscal tissue engineering.

  1. High Dietary Fructose: Direct or Indirect Dangerous Factors Disturbing Tissue and Organ Functions.

    Science.gov (United States)

    Zhang, Dong-Mei; Jiao, Rui-Qing; Kong, Ling-Dong

    2017-03-29

    High dietary fructose is a major contributor to insulin resistance and metabolic syndrome, disturbing tissue and organ functions. Fructose is mainly absorbed into systemic circulation by glucose transporter 2 (GLUT2) and GLUT5, and metabolized in liver to produce glucose, lactate, triglyceride (TG), free fatty acid (FFA), uric acid (UA) and methylglyoxal (MG). Its extrahepatic absorption and metabolism also take place. High levels of these metabolites are the direct dangerous factors. During fructose metabolism, ATP depletion occurs and induces oxidative stress and inflammatory response, disturbing functions of local tissues and organs to overproduce inflammatory cytokine, adiponectin, leptin and endotoxin, which act as indirect dangerous factors. Fructose and its metabolites directly and/or indirectly cause oxidative stress, chronic inflammation, endothelial dysfunction, autophagy and increased intestinal permeability, and then further aggravate the metabolic syndrome with tissue and organ dysfunctions. Therefore, this review addresses fructose-induced metabolic syndrome, and the disturbance effects of direct and/or indirect dangerous factors on the functions of liver, adipose, pancreas islet, skeletal muscle, kidney, heart, brain and small intestine. It is important to find the potential correlations between direct and/or indirect risk factors and healthy problems under excess dietary fructose consumption.

  2. High Dietary Fructose: Direct or Indirect Dangerous Factors Disturbing Tissue and Organ Functions

    Directory of Open Access Journals (Sweden)

    Dong-Mei Zhang

    2017-03-01

    Full Text Available High dietary fructose is a major contributor to insulin resistance and metabolic syndrome, disturbing tissue and organ functions. Fructose is mainly absorbed into systemic circulation by glucose transporter 2 (GLUT2 and GLUT5, and metabolized in liver to produce glucose, lactate, triglyceride (TG, free fatty acid (FFA, uric acid (UA and methylglyoxal (MG. Its extrahepatic absorption and metabolism also take place. High levels of these metabolites are the direct dangerous factors. During fructose metabolism, ATP depletion occurs and induces oxidative stress and inflammatory response, disturbing functions of local tissues and organs to overproduce inflammatory cytokine, adiponectin, leptin and endotoxin, which act as indirect dangerous factors. Fructose and its metabolites directly and/or indirectly cause oxidative stress, chronic inflammation, endothelial dysfunction, autophagy and increased intestinal permeability, and then further aggravate the metabolic syndrome with tissue and organ dysfunctions. Therefore, this review addresses fructose-induced metabolic syndrome, and the disturbance effects of direct and/or indirect dangerous factors on the functions of liver, adipose, pancreas islet, skeletal muscle, kidney, heart, brain and small intestine. It is important to find the potential correlations between direct and/or indirect risk factors and healthy problems under excess dietary fructose consumption.

  3. The Gcn4 transcription factor reduces protein synthesis capacity and extends yeast lifespan.

    Science.gov (United States)

    Mittal, Nitish; Guimaraes, Joao C; Gross, Thomas; Schmidt, Alexander; Vina-Vilaseca, Arnau; Nedialkova, Danny D; Aeschimann, Florian; Leidel, Sebastian A; Spang, Anne; Zavolan, Mihaela

    2017-09-06

    In Saccharomyces cerevisiae, deletion of large ribosomal subunit protein-encoding genes increases the replicative lifespan in a Gcn4-dependent manner. However, how Gcn4, a key transcriptional activator of amino acid biosynthesis genes, increases lifespan, is unknown. Here we show that Gcn4 acts as a repressor of protein synthesis. By analyzing the messenger RNA and protein abundance, ribosome occupancy and protein synthesis rate in various yeast strains, we demonstrate that Gcn4 is sufficient to reduce protein synthesis and increase yeast lifespan. Chromatin immunoprecipitation reveals Gcn4 binding not only at genes that are activated, but also at genes, some encoding ribosomal proteins, that are repressed upon Gcn4 overexpression. The promoters of repressed genes contain Rap1 binding motifs. Our data suggest that Gcn4 is a central regulator of protein synthesis under multiple perturbations, including ribosomal protein gene deletions, calorie restriction, and rapamycin treatment, and provide an explanation for its role in longevity and stress response.The transcription factor Gcn4 is known to regulate yeast amino acid synthesis. Here, the authors show that Gcn4 also acts as a repressor of protein biosynthesis in a range of conditions that enhance yeast lifespan, such as ribosomal protein knockout, calorie restriction or mTOR inhibition.

  4. Plasma Tissue Factor Pathway Inhibitor Levels in Angiographically Defined Coronary Artery Disease Among Saudis

    Directory of Open Access Journals (Sweden)

    Syed Shahid Habib

    2013-05-01

    Full Text Available Objectives: This study was aimed to determine plasma levels of total (TFPI-T and free (TFPI-F tissue factor pathway inhibitor, plasminogen activator inhibitor-1 (PAI-1, and tissue plasminogen activator (t-PA in a cohort of Saudi patients with chronic stable angiographically defined coronary artery disease (CAD and to determine its correlation with its severity.Methods: This cross sectional study was conducted in the department of physiology and department of cardiology, College of Medicine, and King Khalid University Hospital and King Saud University, Riyadh. Sixty known cases of CAD who had undergone angiography (35 males and 25 females were selected. A control group included 39 (20 males and 19 females healthy subjects. Fasting venous blood samples were analyzed for total (TFPI-T and free (TFPI-F tissue factor pathway inhibitor, plasminogen activator inhibitor-1 (PAI-1, and tissue plasminogen activator (t-PA. Gensini scores and vessel scores were determined for assessing CAD severity.Results: There were non-significant differences between age, body mass index (BMI and Blood pressure between the controls and CAD subjects. A comparison of hemostatic markers between control and CAD patients showed significantly higher levels of Fibrinogen, PAI-1, TFPI-T and TFPI-F in CAD patients compared to control subjects. But there was no difference in plasma t-PA levels. TFPI-T had a significant positive correlation with severity of disease determined by Gensini Scores (r=0.344; p=0.006 and vessel scores (r=0.338; p=0.015.Conclusion: Plasma levels of total tissue factor pathway inhibitor are significantly related with the presence and severity of CAD. Elevated levels of TFPI-T may be considered as useful diagnostic and prognostic markers in patients with CAD.

  5. O6-methylguanine DNA methyltransferase in human fetal tissues: fetal and maternal factors

    International Nuclear Information System (INIS)

    D'Ambrosio, S.M.; Samuel, M.J.; Dutta-Choudhury, T.A.; Wani, A.A.

    1986-01-01

    O 6 -Methylguanine methyltransferase (O 6 -MT) was measured and compared in extracts of 7 human fetal tissues obtained from 21 different fetal specimens as a function of fetal age and race, and maternal smoking and drug usage. Activity was determined from the proteinase-K solubilized radioactivity transferred from the DNA to the O 6 -MT. S9 homogenates were incubated with a heat depurinated [ 3 H]-methylnitrosourea alkylated DNA. Liver exhibited the highest activity followed by kidney, lung, small intestine, large intestine, skin and brain. Each of the tissues exhibited a 3- to 5-fold level of interindividual variation of O 6 -MT. There did not appear to be any significant difference of O 6 -MT in the tissues obtained from mothers who smoked cigarettes during pregnancy. Also, fetal race and age did not appear to account for the level of variation of O 6 -MT. The fetal tissues obtained from an individual using phenobarbital and smoking exhibited 4-fold increases in O 6 -MT activity. The tissues obtained from another individual on kidney dialysis were 2- to 3-fold higher than the normal population. These data suggest that the variation in human O 6 -MT can not be explained by racial or smoking factors, but may be modulated by certain drugs

  6. Expression and clinical significance of connective tissue growth factor in thyroid carcinomas.

    Science.gov (United States)

    Wang, Guimin; Zhang, Wei; Meng, Wei; Liu, Jia; Wang, Peisong; Lin, Shan; Xu, Liyan; Li, Enmin; Chen, Guang

    2013-08-01

    To examine expression of the connective tissue growth factor (CTGF) gene in human thyroid cancer and establish whether a correlation exists between the presence of CTGF protein and clinicopathological parameters of the disease. CTGF protein expression was investigated retrospectively by immunohistochemical analysis of CTGF protein levels in thyroid tumour tissue. Associations between immunohistochemical score and several clinicopathological parameters were examined. In total, 131 thyroid tissue specimens were included. High levels of CTGF protein were observed in papillary thyroid carcinoma tissue; benign thyroid tumour tissue scored negatively for CTGF protein. In papillary thyroid carcinoma, there was a significant relationship between high CTGF protein levels and Union for International Cancer Control disease stage III-IV, and presence of lymph node metastasis. In papillary thyroid carcinomas, CTGF protein levels were not significantly associated with sex or age. These findings suggest that the CTGF protein level is increased in papillary thyroid carcinoma cells compared with benign thyroid tumours. CTGF expression might play a role in the development of malignant tumours in the thyroid.

  7. Critical review on the physical and mechanical factors involved in tissue engineering of cartilage.

    Science.gov (United States)

    Gaut, Carrie; Sugaya, Kiminobu

    2015-01-01

    Articular cartilage defects often progress to osteoarthritis, which negatively impacts quality of life for millions of people worldwide and leads to high healthcare expenditures. Tissue engineering approaches to osteoarthritis have concentrated on proliferation and differentiation of stem cells by activation and suppression of signaling pathways, and by using a variety of scaffolding techniques. Recent studies indicate a key role of environmental factors in the differentiation of mesenchymal stem cells to mature cartilage-producing chondrocytes. Therapeutic approaches that consider environmental regulation could optimize chondrogenesis protocols for regeneration of articular cartilage. This review focuses on the effect of scaffold structure and composition, mechanical stress and hypoxia in modulating mesenchymal stem cell fate and the current use of these environmental factors in tissue engineering research.

  8. Synthesis and characterization of tissue-retainable methylsulfonyl polychlorinated biphenyl isomers

    International Nuclear Information System (INIS)

    Haraguchi, K.; Kuroki, H.; Masuda, Y.

    1987-01-01

    Eighty-six positional isomers of methylsulfonyl polychlorinated biphenyls (MSF-PCBs) have been synthesized by three synthetic routes: (1) the diazo coupling reaction of 3-(methylsulfonyl)chloroaniline with chlorobenzene; (2) nucleophilic substitution of PCB with methanethiolate and successive oxidation of the corresponding methyl sulfide; (3) the diazo coupling reaction of chloroaniline with chlorothioanisole and successive oxidation of the methyl sulfide. Pure isomers were characterized by their proton magnetic resonance and mass spectra and used to unambiguously identify the MSF metabolites retained in human tissues by using high-resolution capillary gas chromatography (GC). The GC analysis showed that 40 MSF derivatives were positively identified in the tissue of a patient with Yusho on the basis of comparisons of their GC retention data with those of the standard compounds

  9. Synthesis and biodistribution of 18F-labeled fluoronitroimidazoles: Potential in vivo markers of hypoxic tissue

    International Nuclear Information System (INIS)

    Jerabek, P.A.; Kilbourn, M.R.; Dischino, D.D.; Welch, M.J.; Patrick, T.B.; Southern Illinois University, Edwardsville

    1986-01-01

    Three 18 F labeled fluoronitroimidazoles have been prepared as potential in vivo markers of hypoxic cells in tumors, and ischemic areas of the heart and brain. 1-(2-Nitroimidazolyl)-3-[ 18 F]fluoro-2-hydroxy-propanol ([ 18 F]fluoro-normethoxymisonidazole 4, 1-(2-[ 18 F]fluoroethyl)-2-nitroimidazole 7, and 1-(2-[ 18 F]-fluoroethyl)-2-methyl-5-nitromidazole ([ 18 F]fluoro-norhydroxymetronidazole) 10 were prepared in average radiochemical yields of 18 F labeled fluoronitroimidazoles. At 1 and 3 h after administration, the tissue distribution of each of the 18 F labeled nitroimidazoles was quite uniform and consistent with that of nitroimidazoles previously studied. These results suggest the need for a suitable animal model to evaluate their potential as in vivo markers of hypoxic tissue in the brain. (author)

  10. Effect of cadmium on protein synthesis in gill tissue of marine mollusc Mytilus edulis

    International Nuclear Information System (INIS)

    Veldhuizen-Tsoerkan, M.B.; Mast, C.A. van der; Zandee, D.I.

    1988-01-01

    Mussels have a high capacity to accumulate cadmium and other heavy metals without notable toxic effects. However, they have recently found that cadmium is toxic to M. edulis at a relatively low concentration, as anoxic survival time of the animals was significantly shortened after two weeks of exposure to 50 ppb Cd. Based on this finding, a research was started to study the toxic effects of cadmium at a macromolecular level (proteins, RNA). Mussels were exposed to 250 ppb Cd for short periods. Then excised gills were incubated with 35 s-methionine for 4 hours. In the gill tissue of 7 and 15 days Cd-exposed animals, a significantly decrease in the incorporation rate of the introduced label was found of 30 and 37%, respectively. Two-dimensional gel electrophoresis was used to analyze the de novo synthesized gill tissue proteins

  11. Synthesis and radiolabelling of novel nitrogen mustards for the imaging of hypoxic tissue

    International Nuclear Information System (INIS)

    Falzon, C.; Ackermann, U.; Tochon-Danguy, H.J.; O'Keefe, G.J.; White, J.; Spratt, N.; Howells, D.; Scott, A.M.

    2005-01-01

    Hypoxic tissue is of great significance in stroke and oncology. Among the radiotracers currently used to detect hypoxia, derivatives based on the 2-nitro-imidazole ring such as FMISO or FAZA have received considerable attention in medical imaging. Unfortunately, due to slow clearance of these tracers from normoxic tissue a waiting period of two hours is required between tracer injection and the scanning of the patient. In addition the target to background ratio is low and the quality of the image is therefore poor. Nitrogen mustards are another class of compounds that have great affinity to hypoxic tissue. Derivatives of these compounds labelled with a positron emitting radionuclide, such as [ 18 F], may allow for the imaging of hypoxic regions in the ischemic penumbra. It therefore, may be a useful diagnostic tool in stroke. Radiolabeled N-(2-[ 18 F]-fluoroethyl)-N-(2-chloroethyl)-4-methylsulfinylaniline was successfully synthesised using a potassium fluoride kryptofix complex, giving the desired product in 40% radiochemical yield (10 min at 100 Degrees C). In vitro analysis to determine the stability of the radiotracer in plasma and saline indicated no defluorination. Biological evaluation studies of the radiotracer were undertaken using a rat stroke model (Middle cerebral Arterial Occlusion (MCAO)) to determine whether the ischemic penumbra can be imaged using PET. 150//Ci (5.5MBq) of the radiotracer was injected into the tail vein of the rat immediately after the MCAO. The rat was sacrificed 2 hours post injection and ex-vivo autoradiography was performed. Uptake of the radiotracer was observed in hypoxic regions of the brain (n=6). Dynamic PET images revealed that the ischemic penumbra can be imaged 15 minutes post injection of this tracer. With these promising results, we are now synthesizing other analogues to determine their relationship between selectivity for hypoxic tissue and brain uptake

  12. Quantitative PET Imaging of Tissue Factor Expression Using 18F-labled Active Site Inhibited Factor VII

    DEFF Research Database (Denmark)

    Nielsen, Carsten H; Erlandsson, Maria; Jeppesen, Troels E

    2016-01-01

    Tissue factor (TF) is up regulated in many solid tumors and its expression is linked to tumor angiogenesis, invasion, metastasis and prognosis. A non-invasive assessment of tumor TF expression status is therefore of obvious clinical relevance. Factor VII (FVII) is the natural ligand to TF. Here we...... report the development of a new PET tracer for specific imaging of TF using an (18)F-labeled derivative of FVII. METHODS: Active site inhibited factor VIIa (FVIIai) was obtained by inactivation with phenylalanine-phenylalanine-arginine-chloromethyl ketone. FVIIai was radiolabeled with N-succinimidyl 4......-[(18)F]-fluorobenzoate ([(18)F]SFB) and purified. The corresponding product, [(18)F]FVIIai, was injected into nude mice with subcutaneous human pancreatic xenograft tumors (BxPC-3) and investigated using small animal PET/CT imaging 1, 2 and 4 hours after injection. Ex vivo biodistribution was performed...

  13. Synthesis of highly interconnected 3D scaffold from Arothron stellatus skin collagen for tissue engineering application.

    Science.gov (United States)

    Ramanathan, Giriprasath; Singaravelu, Sivakumar; Raja, M D; Sivagnanam, Uma Tiruchirapalli

    2015-11-01

    The substrate which is avidly used for tissue engineering applications should have good mechanical and biocompatible properties, and all these parameters are often considered as essential for dermal reformation. Highly interconnected three dimensional (3D) wound dressing material with enhanced structural integrity was synthesized from Arothron stellatus fish skin (AsFS) collagen for tissue engineering applications. The synthesized 3D collagen sponge (COL-SPG) was further characterized by different physicochemical methods. The scanning electron microscopy analysis of the material demonstrated that well interconnected pores with homogeneous microstructure on the surface aids higher swelling index and that the material also possessed good mechanical properties with a Young's modulus of 0.89±0.2 MPa. Biocompatibility of the 3D COL-SPG showed 92% growth for both NIH 3T3 fibroblasts and keratinocytes. Overall, the study revealed that synthesized 3D COL-SPG from fish skin will act as a promising wound dressing in skin tissue engineering. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Association of Geographical Factors With Administration of Tissue Plasminogen Activator for Acute Ischemic Stroke

    OpenAIRE

    Kunisawa, Susumu; Morishima, Toshitaka; Ukawa, Naoto; Ikai, Hiroshi; Otsubo, Tetsuya; Ishikawa, Koichi B.; Yokota, Chiaki; Minematsu, Kazuo; Fushimi, Kiyohide; Imanaka, Yuichi

    2013-01-01

    Background Intravenous tissue plasminogen activator (tPA) is an effective treatment for acute ischemic stroke if administered within a few hours of stroke onset. Because of this time restriction, tPA administration remains infrequent. Ambulance use is an effective strategy for increasing tPA administration but may be influenced by geographical factors. The objectives of this study are to investigate the relationship between tPA administration and ambulance use and to examine how patient trave...

  15. Adaptive growth factor delivery from a polyelectrolyte coating promotes synergistic bone tissue repair and reconstruction

    Science.gov (United States)

    Shah, Nisarg J.; Hyder, Md. Nasim; Quadir, Mohiuddin A.; Dorval Courchesne, Noémie-Manuelle; Seeherman, Howard J.; Nevins, Myron; Spector, Myron; Hammond, Paula T.

    2014-01-01

    Traumatic wounds and congenital defects that require large-scale bone tissue repair have few successful clinical therapies, particularly for craniomaxillofacial defects. Although bioactive materials have demonstrated alternative approaches to tissue repair, an optimized materials system for reproducible, safe, and targeted repair remains elusive. We hypothesized that controlled, rapid bone formation in large, critical-size defects could be induced by simultaneously delivering multiple biological growth factors to the site of the wound. Here, we report an approach for bone repair using a polyelectrolye multilayer coating carrying as little as 200 ng of bone morphogenetic protein-2 and platelet-derived growth factor-BB that were eluted over readily adapted time scales to induce rapid bone repair. Based on electrostatic interactions between the polymer multilayers and growth factors alone, we sustained mitogenic and osteogenic signals with these growth factors in an easily tunable and controlled manner to direct endogenous cell function. To prove the role of this adaptive release system, we applied the polyelectrolyte coating on a well-studied biodegradable poly(lactic-co-glycolic acid) support membrane. The released growth factors directed cellular processes to induce bone repair in a critical-size rat calvaria model. The released growth factors promoted local bone formation that bridged a critical-size defect in the calvaria as early as 2 wk after implantation. Mature, mechanically competent bone regenerated the native calvaria form. Such an approach could be clinically useful and has significant benefits as a synthetic, off-the-shelf, cell-free option for bone tissue repair and restoration. PMID:25136093

  16. Virulence Factor Genes in Staphylococcus aureus Isolated From Diabetic Foot Soft Tissue and Bone Infections.

    Science.gov (United States)

    Víquez-Molina, Gerardo; Aragón-Sánchez, Javier; Pérez-Corrales, Cristian; Murillo-Vargas, Christian; López-Valverde, María Eugenia; Lipsky, Benjamin A

    2018-03-01

    The aim of this study is to describe the presence of genes encoding for 4 virulence factors (pvl, eta, etb, and tsst), as well as the mecA gene conferring resistance to beta-lactam antibiotics, in patients with diabetes and a staphylococcal foot infection. We have also analyzed whether isolates of Staphylococcus aureus from bone infections have a different profile for these genes compared with those from exclusively soft tissue infections. In this cross-sectional study of a prospectively recruited series of patients admitted to the Diabetic Foot Unit, San Juan de Dios Hospital, San José, Costa Rica with a moderate or severe diabetic foot infection (DFI), we collected samples from infected soft tissue and from bone during debridement. During the study period (June 1, 2014 to May 31, 2016), we treated 379 patients for a DFI. S aureus was isolated from 101 wound samples, of which 43 were polymicrobial infections; we only included the 58 infections that were monomicrobial S aureus for this study. Infections were exclusively soft tissue in 17 patients (29.3%) while 41 (70.7%) had bone involvement (osteomyelitis). The mecA gene was detected in 35 cases (60.3%), pvl gene in 4 cases (6.9%), and tsst gene in 3 (5.2%). We did not detect etA and etB in any of the cases. There were no differences in the profile of S aureus genes encoding for virulence factors (pvl, etA, etB, and tsst) recovered from DFIs between those with just soft tissue compared to those with osteomyelitis. However, we found a significantly higher prevalence of pvl+ strains of S aureus associated with soft tissue compared with bone infections. Furthermore, we observed a significantly longer time to healing among patients infected with mecA+ (methicillin-resistant) S aureus (MRSA).

  17. Distinctive diet-tissue isotopic discrimination factors derived from the exclusive bamboo-eating giant panda.

    Science.gov (United States)

    Han, Han; Wei, Wei; Nie, Yonggang; Zhou, Wenliang; Hu, Yibo; Wu, Qi; Wei, Fuwen

    2016-11-01

    Stable isotope analysis is very useful in animal ecology, especially in diet reconstruction and trophic studies. Differences in isotope ratios between consumers and their diet, termed discrimination factors, are essential for studies of stable isotope ecology and are species-specific and tissue-specific. Given the specialized bamboo diet and clear foraging behavior, here, we calculated discrimination factors for carbon and nitrogen isotopes from diet to tissues (tooth enamel, hair keratin and bone collagen) for the giant panda (Ailuropoda melanoleuca), a species derived from meat-eating ancestors. Our results showed that carbon discrimination factor obtained from giant panda tooth enamel (ε 13 C diet-enamel = 10.0‰) and nitrogen discrimination factors from hair keratin (Δ 15 N diet-hair = 2.2‰) and bone collagen (Δ 15 N diet-collagen = 2.3‰) were lower, and carbon discrimination factors from hair keratin (Δ 13 C diet-hair = 5.0‰) and bone collagen (Δ 13 C diet-collagen = 6.1‰) were higher than those of other mammalian carnivores, omnivores and herbivores. Such distinctive values are likely the result of a low-nutrient and specialized bamboo diet, carnivore-like digestive system and exceptionally low metabolism in giant pandas. © 2016 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  18. * Hierarchically Structured Electrospun Scaffolds with Chemically Conjugated Growth Factor for Ligament Tissue Engineering.

    Science.gov (United States)

    Pauly, Hannah M; Sathy, Binulal N; Olvera, Dinorath; McCarthy, Helen O; Kelly, Daniel J; Popat, Ketul C; Dunne, Nicholas J; Haut Donahue, Tammy Lynn

    2017-08-01

    The anterior cruciate ligament (ACL) of the knee is vital for proper joint function and is commonly ruptured during sports injuries or car accidents. Due to a lack of intrinsic healing capacity and drawbacks with allografts and autografts, there is a need for a tissue-engineered ACL replacement. Our group has previously used aligned sheets of electrospun polycaprolactone nanofibers to develop solid cylindrical bundles of longitudinally aligned nanofibers. We have shown that these nanofiber bundles support cell proliferation and elongation and the hierarchical structure and material properties are similar to the native human ACL. It is possible to combine multiple nanofiber bundles to create a scaffold that attempts to mimic the macroscale structure of the ACL. The goal of this work was to develop a hierarchical bioactive scaffold for ligament tissue engineering using connective tissue growth factor (CTGF)-conjugated nanofiber bundles and evaluate the behavior of mesenchymal stem cells (MSCs) on these scaffolds in vitro and in vivo. CTGF was immobilized onto the surface of individual nanofiber bundles or scaffolds consisting of multiple nanofiber bundles. The conjugation efficiency and the release of conjugated CTGF were assessed using X-ray photoelectron spectroscopy, assays, and immunofluorescence staining. Scaffolds were seeded with MSCs and maintained in vitro for 7 days (individual nanofiber bundles), in vitro for 21 days (scaled-up scaffolds of 20 nanofiber bundles), or in vivo for 6 weeks (small scaffolds of 4 nanofiber bundles), and ligament-specific tissue formation was assessed in comparison to non-CTGF-conjugated control scaffolds. Results showed that CTGF conjugation encouraged cell proliferation and ligament-specific tissue formation in vitro and in vivo. The results suggest that hierarchical electrospun nanofiber bundles conjugated with CTGF are a scalable and bioactive scaffold for ACL tissue engineering.

  19. Cartilage tissue engineering: Role of mesenchymal stem cells along with growth factors & scaffolds

    Directory of Open Access Journals (Sweden)

    M B Gugjoo

    2016-01-01

    Full Text Available Articular cartilage injury poses a major challenge for both the patient and orthopaedician. Articular cartilage defects once formed do not regenerate spontaneously, rather replaced by fibrocartilage which is weaker in mechanical competence than the normal hyaline cartilage. Mesenchymal stem cells (MSCs along with different growth factors and scaffolds are currently incorporated in tissue engineering to overcome the deficiencies associated with currently available surgical methods and to facilitate cartilage healing. MSCs, being readily available with a potential to differentiate into chondrocytes which are enhanced by the application of different growth factors, are considered for effective repair of articular cartilage after injury. However, therapeutic application of MSCs and growth factors for cartilage repair remains in its infancy, with no comparative clinical study to that of the other surgical techniques. The present review covers the role of MSCs, growth factors and scaffolds for the repair of articular cartilage injury.

  20. Some growth factors in neoplastic tissues of brain tumors of different histological structure

    Directory of Open Access Journals (Sweden)

    O. I. Kit

    2016-01-01

    Full Text Available Introduction. Pathologic angiogenesis is typical for angiogenic diseases including tumor growth. Vascular endothelial growth factor (VEGF, fibroblast growth factor (FGF, transforming growth factor alpha and beta (which are also known as “triggers” of angiogenesis, and other factors (Gacche, Meshram, 2013; Nijaguna et al., 2015 play a special role in its development. Evaluation of the important mechanisms of angiogenesis in physiological and pathological conditions remains to be a subject of heightened interest for the past 30 years. It is known that VEGF A is the main trigger of growing blood vessels into the tumor tissue. This is specific mitogen signal for endothelial cells that triggers the mechanisms of cell division and migration. VEGF-induced tumor vasculature has a number of structural and functional features that provide growth and progression of tumors, including increased permeability of blood vessels and their chaotic arrangement.Objective: to study in comparative aspect the level of certain growth factors in the following tissues: glioblastomas, brain metastasis of the breast cancer, meningiomas as well as corresponding peritumoral areas.Materials and methods. Tissue samples were obtained from 56 patients admitted to the surgical treatment in Rostov Research Institute of Oncology: 24 patients had glioblastomas, 19 patients had brain metastasis of the breast cancer, 13 patients with meningiomas without peritumoral edema. Histological control was carried out in all cases. Age of patients ranged from 35 to 72 years. The level of growth factor was detected in the samples of tumor tissue and regions immediately adjacent to the tumor foci (peritumoral area by the method of immunoassay and using standard test systems. The following growth factor were detected: VEGF-A and its receptors VEGF-R1 (BenderMedSystem, Austria, VEGF-C and its receptor VEGF-R3 (BenderMedSystem, Austria, EGF (Biosource, USA, IFR-1 and IFR-2 (Mediagnost, USA, TGF

  1. Laser-induced thermotherapy (LITT) elevates mRNA expression of connective tissue growth factor (CTGF) associated with reduced tumor growth of liver metastases compared to hepatic resection.

    Science.gov (United States)

    Isbert, Christoph; Ritz, Jörg-Peter; Roggan, André; Schuppan, Detlef; Ajubi, Navid; Buhr, Heinz Johannes; Hohenberger, Werner; Germer, Christoph-Thomas

    2007-01-01

    Proliferation and synthesis of hepatocellular tissue after tissue damage are promoted by specific growth factors such as hepatic tissue growth factor (HGF) and connective growth factor (CTGF). Laser-induced thermotherapy (LITT) for the treatment of liver metastases is deemed to be a parenchyma-saving procedure compared to hepatic resection. The aim of this study was to compare the impact of LITT and hepatic resection on intrahepatic residual tumor tissue and expression levels of mRNA HGF/CTGF within liver and tumor tissue. Two independent adenocarcinomas (CC531) were implanted into 75 WAG rats, one in the right (untreated tumor) and one in the left liver lobe (treated tumor). The left lobe tumor was treated either by LITT or partial hepatectomy. The control tumor was submitted to in-situ hybridization of HGF and CTGF 24-96 hours and 14 days after intervention. Volumes of the untreated tumors prior to intervention were 38+/-8 mm(3) in group I (laser), 39 +/- 7 mm(3) in group II (resection), and 42 +/- 12 mm(3) in group III (control) and did not differ significantly (P > 0.05). Fourteen days after the intervention the mean tumor+/-SEM volume of untreated tumor in group I (laser) [223 +/- 36] was smaller than in group II (resection) [1233.28 +/- 181.52; P tumor growth in comparison to hepatic resection. Accelerated tumor growth after hepatic resection is associated with higher mRNA level of HGF and reduced tumor growth after LITT with higher mRNA level of CTGF. The increased CTGF-mediated regulation of ECM may cause reduced residual tumor growth after LITT. (c) 2006 Wiley-Liss, Inc.

  2. Synthesis of biodegradable and electroactive multiblock polylactide and aniline pentamer copolymer for tissue engineering applications.

    Science.gov (United States)

    Huang, Lihong; Zhuang, Xiuli; Hu, Jun; Lang, Le; Zhang, Peibiao; Wang, Yu; Chen, Xuesi; Wei, Yen; Jing, Xiabin

    2008-03-01

    To obtain one biodegradable and electroactive polymer as the scaffold for tissue engineering, the multiblock copolymer PLAAP was designed and synthesized with the condensation polymerization of hydroxyl-capped poly( l-lactide) (PLA) and carboxyl-capped aniline pentamer (AP). The PLAAP copolymer exhibited excellent electroactivity, solubility, and biodegradability. At the same time, as one scaffold material, PLAAP copolymer possesses certain mechanical properties with the tensile strength of 3 MPa, tensile Young 's modulus of 32 MPa, and breaking elongation rate of 95%. We systematically studied the compatibility of PLAAP copolymer in vitro and proved that the electroactive PLAAP copolymer was innocuous, biocompatible, and helpful for the adhesion and proliferation of rat C6 cells. Moreover, the PLAAP copolymer stimulated by electrical signals was demonstrated as accelerating the differentiation of rat neuronal pheochromocytoma PC-12 cells. This biodegradable and electroactive PLAAP copolymer thus possessed the properties in favor of the long-time application in vivo as nerve repair scaffold materials in tissue engineering.

  3. Hypoxia-Inducible Factors: Mediators of Cancer Progression; Prognostic and Therapeutic Targets in Soft Tissue Sarcomas

    International Nuclear Information System (INIS)

    Sadri, Navid; Zhang, Paul J.

    2013-01-01

    Soft-tissue sarcomas remain aggressive tumors that result in death in greater than a third of patients due to either loco-regional recurrence or distant metastasis. Surgical resection remains the main choice of treatment for soft tissue sarcomas with pre- and/or post-operational radiation and neoadjuvant chemotherapy employed in more advanced stage disease. However, in recent decades, there has been little progress in the average five-year survival for the majority of patients with high-grade soft tissue sarcomas, highlighting the need for improved targeted therapeutic agents. Clinical and preclinical studies demonstrate that tumor hypoxia and up-regulation of hypoxia-inducible factors (HIFs) is associated with decreased survival, increased metastasis, and resistance to therapy in soft tissue sarcomas. HIF-mediated gene expression regulates many critical aspects of tumor biology, including cell survival, metabolic programming, angiogenesis, metastasis, and therapy resistance. In this review, we discuss HIFs and HIF-mediated genes as potential prognostic markers and therapeutic targets in sarcomas. Many pharmacological agents targeting hypoxia-related pathways are in development that may hold therapeutic potential for treating both primary and metastatic sarcomas that demonstrate increased HIF expression

  4. Tissue Factor–Factor VII Complex as a Key Regulator of Ovarian Cancer Phenotypes

    Directory of Open Access Journals (Sweden)

    Shiro Koizume

    2015-01-01

    Full Text Available Tissue factor (TF is an integral membrane protein widely expressed in normal human cells. Blood coagulation factor VII (fVII is a key enzyme in the extrinsic coagulation cascade that is predominantly secreted by hepatocytes and released into the bloodstream. The TF–fVII complex is aberrantly expressed on the surface of cancer cells, including ovarian cancer cells. This procoagulant complex can initiate intracellular signaling mechanisms, resulting in malignant phenotypes. Cancer tissues are chronically exposed to hypoxia. TF and fVII can be induced in response to hypoxia in ovarian cancer cells at the gene expression level, leading to the autonomous production of the TF–fVII complex. Here, we discuss the roles of the TF–fVII complex in the induction of malignant phenotypes in ovarian cancer cells. The hypoxic nature of ovarian cancer tissues and the roles of TF expression in endometriosis are discussed. Arguments will be extended to potential strategies to treat ovarian cancers based on our current knowledge of TF–fVII function.

  5. Factors Associated with Decreased Lean Tissue Index in Patients with Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Yi-Wen Wang

    2017-04-01

    Full Text Available Muscle wasting is common and is associated with increased morbidity and mortality in patients with chronic kidney disease (CKD. However, factors associated with decreased muscle mass in CKD patients are seldom reported. We performed a cross-sectional study of 326 patients (age 65.8 ± 13.3 years with stage 3–5 CKD who were not yet on dialysis. Muscle mass was determined using the Body Composition Monitor (BCM, a multifrequency bioimpedance spectroscopy device, and was expressed as the lean tissue index (LTI, lean tissue mass/height2. An LTI of less than 10% of the normal value (low LTI indicates muscle wasting. Patients with low LTI (n = 40 tended to be diabetic, had significantly higher fat tissue index, urine protein creatinine ratio, and interleukin-6 and tumor necrosis factor-α levels, but had significantly lower serum albumin and hemoglobin levels compared with those with normal LTI. In multivariate linear regression analysis, age, sex, cardiovascular disease, and interleukin-6 were independently associated with LTI. Additionally, diabetes mellitus remained an independent predictor of muscle wasting according to low LTI by multivariate logistic regression analysis. We conclude that LTI has important clinical correlations. Determination of LTI may aid in clinical assessment by helping to identify muscle wasting among patients with stage 3–5 CKD.

  6. Tissue factor expression in rheumatoid synovium: a potential role in pannus invasion of rheumatoid arthritis.

    Science.gov (United States)

    Chen, Lujun; Lu, Yahua; Chu, Yang; Xie, Jun; Ding, Wen'ge; Wang, Fengming

    2013-09-01

    Angiogenesis, as well as pannus formation within the joint, plays an important role in the erosion of articular cartilage and bone in the pathological process of rheumatoid arthritis (RA). Tissue factor (TF), an essential initiator of the extrinsic pathway of blood coagulation, is also involved in the angiogenesis and the pannus formation of RA progression. In the present study, we used immunofluorescence and confocal scanning methods to characterize TF immunolocalization in RA synovium. We showed that positive staining of TF could be immunolocalized in synoviocytes, CD19(+) B cells and CD68(+) macrophages, whereas weak or negative staining of tissue factor could be found in CD34(+) endothelial cells of neo-vessels, CD3(+) T cells and CD14(+) monocytes in RA synovium tissues. Our study demonstrates a detailed local expression of TF in the rheumatoid synovium, and supports the notion that TF, expressed not only by the synoviocytes themselves, but also the infiltrating CD19(+) B cells and CD68(+) macrophages, is involved in the pannus invasion in the progression of rheumatoid arthritis. Copyright © 2013 Elsevier GmbH. All rights reserved.

  7. The roles of connective tissue growth factor in the development of anastomotic esophageal strictures.

    Science.gov (United States)

    Zhao, Haibin; Zhao, Lingna; Zhou, Zhihua; Wu, Yaoyi

    2015-08-12

    The aim of this study was to investigate the roles of connective tissue growth factor (CTGF) in the development of anastomotic strictures after surgical repair of the esophagus. Tissues collected from the patients were divided into three groups based on the results of endoscopy and clinical grading. Patients without dysphagia after esophagectomy were used as the control population. The protein levels of CTGF, TGF-β1, Smad2, and Smad4 were determined by immunohistochemistry (IHC) and western blot analyses, while the mRNA levels of the two growth factors were evaluated by real-time polymerase chain reaction. Compared with the control group, significantly increased (p tissues collected from the patients with stenosis were significantly up-regulated (p < 0.05) as compared with those from the control group. In addition, the levels of Smad2 and Smad4 protein were also significantly increased (p < 0.05) with the increasing severity of stenosis, and the protein levels were positively correlated with the levels of CTGF (r = 0.59, p < 0.05) and TGF-β1 (r = 0.63, p < 0.05). Inhibition of CTGF protein or mRNA expression may be a distinctive and effective therapy for the treatment of postoperative anastomotic strictures.

  8. Role of tissue factor and protease-activated receptors in a mouse model of endotoxemia.

    Science.gov (United States)

    Pawlinski, Rafal; Pedersen, Brian; Schabbauer, Gernot; Tencati, Michael; Holscher, Todd; Boisvert, William; Andrade-Gordon, Patricia; Frank, Rolf Dario; Mackman, Nigel

    2004-02-15

    Sepsis is associated with a systemic activation of coagulation and an excessive inflammatory response. Anticoagulants have been shown to inhibit both coagulation and inflammation in sepsis. In this study, we used both genetic and pharmacologic approaches to analyze the role of tissue factor and protease-activated receptors in coagulation and inflammation in a mouse endotoxemia model. We used mice expressing low levels of the procoagulant molecule, tissue factor (TF), to analyze the effects of TF deficiency either in all tissues or selectively in hematopoietic cells. Low TF mice had reduced coagulation, inflammation, and mortality compared with control mice. Similarly, a deficiency of TF expression by hematopoietic cells reduced lipopolysaccharide (LPS)-induced coagulation, inflammation, and mortality. Inhibition of the down-stream coagulation protease, thrombin, reduced fibrin deposition and prolonged survival without affecting inflammation. Deficiency of either protease activated receptor-1 (PAR-1) or protease activated receptor-2 (PAR-2) alone did not affect inflammation or survival. However, a combination of thrombin inhibition and PAR-2 deficiency reduced inflammation and mortality. These data demonstrate that hematopoietic cells are the major pathologic site of TF expression during endotoxemia and suggest that multiple protease-activated receptors mediate crosstalk between coagulation and inflammation.

  9. Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells

    Directory of Open Access Journals (Sweden)

    Rinaldo Florencio-Silva

    2015-01-01

    Full Text Available Bone tissue is continuously remodeled through the concerted actions of bone cells, which include bone resorption by osteoclasts and bone formation by osteoblasts, whereas osteocytes act as mechanosensors and orchestrators of the bone remodeling process. This process is under the control of local (e.g., growth factors and cytokines and systemic (e.g., calcitonin and estrogens factors that all together contribute for bone homeostasis. An imbalance between bone resorption and formation can result in bone diseases including osteoporosis. Recently, it has been recognized that, during bone remodeling, there are an intricate communication among bone cells. For instance, the coupling from bone resorption to bone formation is achieved by interaction between osteoclasts and osteoblasts. Moreover, osteocytes produce factors that influence osteoblast and osteoclast activities, whereas osteocyte apoptosis is followed by osteoclastic bone resorption. The increasing knowledge about the structure and functions of bone cells contributed to a better understanding of bone biology. It has been suggested that there is a complex communication between bone cells and other organs, indicating the dynamic nature of bone tissue. In this review, we discuss the current data about the structure and functions of bone cells and the factors that influence bone remodeling.

  10. Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells.

    Science.gov (United States)

    Florencio-Silva, Rinaldo; Sasso, Gisela Rodrigues da Silva; Sasso-Cerri, Estela; Simões, Manuel Jesus; Cerri, Paulo Sérgio

    2015-01-01

    Bone tissue is continuously remodeled through the concerted actions of bone cells, which include bone resorption by osteoclasts and bone formation by osteoblasts, whereas osteocytes act as mechanosensors and orchestrators of the bone remodeling process. This process is under the control of local (e.g., growth factors and cytokines) and systemic (e.g., calcitonin and estrogens) factors that all together contribute for bone homeostasis. An imbalance between bone resorption and formation can result in bone diseases including osteoporosis. Recently, it has been recognized that, during bone remodeling, there are an intricate communication among bone cells. For instance, the coupling from bone resorption to bone formation is achieved by interaction between osteoclasts and osteoblasts. Moreover, osteocytes produce factors that influence osteoblast and osteoclast activities, whereas osteocyte apoptosis is followed by osteoclastic bone resorption. The increasing knowledge about the structure and functions of bone cells contributed to a better understanding of bone biology. It has been suggested that there is a complex communication between bone cells and other organs, indicating the dynamic nature of bone tissue. In this review, we discuss the current data about the structure and functions of bone cells and the factors that influence bone remodeling.

  11. Effect of hypoxia on tissue factor pathway inhibitor expression in breast cancer.

    Science.gov (United States)

    Cui, X Y; Tinholt, M; Stavik, B; Dahm, A E A; Kanse, S; Jin, Y; Seidl, S; Sahlberg, K K; Iversen, N; Skretting, G; Sandset, P M

    2016-02-01

    ESSENTIALS: A hypoxic microenvironment is a common feature of tumors that may influence activation of coagulation. MCF-7 and SK-BR-3 breast cancer cells and breast cancer tissue samples were used. The results showed transcriptional repression of tissue factor pathway inhibitor expression in hypoxia. Hypoxia-inducible factor 1α may be a target for the therapy of cancer-related coagulation and thrombosis. Activation of coagulation is a common finding in patients with cancer, and is associated with an increased risk of venous thrombosis. As a hypoxic microenvironment is a common feature of solid tumors, we investigated the role of hypoxia in the regulation of tissue factor (TF) pathway inhibitor (TFPI) expression in breast cancer. To explore the transcriptional regulation of TFPI by hypoxia-inducible factor (HIF)-1α in breast cancer cells and their correlation in breast cancer tissues. MCF-7 and SK-BR-3 breast cancer cells were cultured in 1% oxygen or treated with cobalt chloride (CoCl2 ) to mimic hypoxia. Time-dependent and dose-dependent downregulation of TFPI mRNA (quantitative RT-PCR) and of free TFPI protein (ELISA) were observed in hypoxia. Western blotting showed parallel increases in the levels of HIF-1α protein and TF. HIF-1α inhibitor abolished or attenuated the hypoxia-induced downregulation of TFPI. Luciferase reporter assay showed that both hypoxia and HIF-1α overexpression caused strong repression of TFPI promoter activity. Subsequent chromatin immunoprecipitation and mutagenesis analysis demonstrated a functional hypoxia response element within the TFPI promoter, located at -1065 to -1060 relative to the transcriptional start point. In breast cancer tissue samples, gene expression analyses showed a positive correlation between the mRNA expression of TFPI and that of HIF-1α. This study demonstrates that HIF-1α is involved in the transcriptional regulation of the TFPI gene, and suggests that a hypoxic microenvironment inside a breast tumor may

  12. Detection of von Willebrand factor and tissue factor in platelets-fibrin rich coronary thrombi in acute myocardial infarction.

    Science.gov (United States)

    Yamashita, Atsushi; Sumi, Takahiro; Goto, Shinya; Hoshiba, Yasunari; Nishihira, Kensaku; Kawamoto, Riichirou; Hatakeyama, Kinta; Date, Haruhiko; Imamura, Takuroh; Ogawa, Hisao; Asada, Yujiro

    2006-01-01

    The rapid closure of coronary arteries due to occlusive thrombi is the major cause of acute myocardial infarction. However, the mechanisms of coronary thrombus formation have not been elucidated. We immunohistochemically assessed the localizations and their changes over time of glycoprotein IIb/IIIa, fibrin, von Willebrand factor (vWF), and tissue factor (TF), after the onset of chest pain (platelets, fibrin, vWF, and TF from the early phase of onset, and glycoprotein IIb/IIIa and fibrin were closely associated with vWF and TF, respectively. vWF and/or TF may contribute to occlusive thrombus formation and be novel therapeutic candidates for treating patients with coronary thrombosis.

  13. A combined structural dynamics approach identifies a putative switch in factor VIIa employed by tissue factor to initiate blood coagulation

    DEFF Research Database (Denmark)

    Olsen, Ole H; Rand, Kasper D; Østergaard, Henrik

    2007-01-01

    Coagulation factor VIIa (FVIIa) requires tissue factor (TF) to attain full catalytic competency and to initiate blood coagulation. In this study, the mechanism by which TF allosterically activates FVIIa is investigated by a structural dynamics approach that combines molecular dynamics (MD......) simulations and hydrogen/deuterium exchange (HX) mass spectrometry on free and TF-bound FVIIa. The differences in conformational dynamics from MD simulations are shown to be confined to regions of FVIIa observed to undergo structural stabilization as judged by HX experiments, especially implicating activation...... in the presence of TF or an active-site inhibitor. Based on MD simulations, a key switch of the TF-induced structural changes is identified as the interacting pair Leu305{163} and Phe374{225} in FVIIa, whose mutual conformations are guided by the presence of TF and observed to be closely linked to the structural...

  14. Predictive model of thrombospondin-1 and vascular endothelial growth factor in breast tumor tissue.

    Science.gov (United States)

    Rohrs, Jennifer A; Sulistio, Christopher D; Finley, Stacey D

    2016-01-01

    Angiogenesis, the formation of new blood capillaries from pre-existing vessels, is a hallmark of cancer. Thus far, strategies for reducing tumor angiogenesis have focused on inhibiting pro-angiogenic factors, while less is known about the therapeutic effects of mimicking the actions of angiogenesis inhibitors. Thrombospondin-1 (TSP1) is an important endogenous inhibitor of angiogenesis that has been investigated as an anti-angiogenic agent. TSP1 impedes the growth of new blood vessels in many ways, including crosstalk with pro-angiogenic factors. Due to the complexity of TSP1 signaling, a predictive systems biology model would provide quantitative understanding of the angiogenic balance in tumor tissue. Therefore, we have developed a molecular-detailed, mechanistic model of TSP1 and vascular endothelial growth factor (VEGF), a promoter of angiogenesis, in breast tumor tissue. The model predicts the distribution of the angiogenic factors in tumor tissue, revealing that TSP1 is primarily in an inactive, cleaved form due to the action of proteases, rather than bound to its cellular receptors or to VEGF. The model also predicts the effects of enhancing TSP1's interactions with its receptors and with VEGF. To provide additional predictions that can guide the development of new anti-angiogenic drugs, we simulate administration of exogenous TSP1 mimetics that bind specific targets. The model predicts that the CD47-binding TSP1 mimetic dramatically decreases the ratio of receptor-bound VEGF to receptor-bound TSP1, in favor of anti-angiogenesis. Thus, we have established a model that provides a quantitative framework to study the response to TSP1 mimetics.

  15. Effect of cadmium on protein synthesis in gill tissue of the sea mussel Mytilus edulis

    International Nuclear Information System (INIS)

    Veldhuizen-Tsoerkan, M.B.; Holwerda, D.A.; Van der Mast, C.A.; Zandee, D.I.

    1990-01-01

    Cellular toxicity of cadmium was studied in the gill tissue of the sea mussel, Mytilus edulis. Mussels were exposed to cadmium chloride at 50 or 250 microgram Cd/L for short periods. Then the gills were excised and incubated with 35-S-methionine or cysteine for 4 hr. Uptake of radiolabeled amino acids by the isolated gills was not affected by Cd, whereas the incorporation of label was significantly decreased after Cd exposure. Two dimensional gel electrophoresis was used to analyze the de novo synthesized gill proteins. It revealed that the expression of particular proteins was differently altered by Cd. One dimensional gel analysis by 35-S-cysteine labeled gill proteins demonstrated that Cd induced, in a concentration dependent manner, a cysteine-rich protein with a molecular weight of approximately 13 kDa, consisting of two isomers with low isoelectric points

  16. Synthesis and Characterization of Nanodiamond Reinforced Chitosan for Bone Tissue Engineering.

    Science.gov (United States)

    Sun, Yu; Yang, Qiaoqin; Wang, Haidong

    2016-09-15

    Multifunctional tissue scaffold material nanodiamond (ND)/chitosan (CS) composites with different diamond concentrations from 1 wt % to 5 wt % were synthesized through a solution casting method. The microstructure and mechanical properties of the composites were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and nanoindentation. Compared with pristine CS, the addition of ND resulted in a significant improvement of mechanical properties, including a 239%, 276%, 321%, 333%, and 343% increase in Young's modulus and a 68%, 96%, 114%, 118%, and 127% increase in hardness when the ND amount was 1 wt %, 2 wt %, 3 wt %, 4 wt %, and 5 wt %, respectively. The strong interaction between ND surface groups and the chitosan matrix plays an important role in improving mechanical properties.

  17. Synthesis and Characterization of Nanodiamond Reinforced Chitosan for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Yu Sun

    2016-09-01

    Full Text Available Multifunctional tissue scaffold material nanodiamond (ND/chitosan (CS composites with different diamond concentrations from 1 wt % to 5 wt % were synthesized through a solution casting method. The microstructure and mechanical properties of the composites were characterized using scanning electron microscopy (SEM, X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, and nanoindentation. Compared with pristine CS, the addition of ND resulted in a significant improvement of mechanical properties, including a 239%, 276%, 321%, 333%, and 343% increase in Young’s modulus and a 68%, 96%, 114%, 118%, and 127% increase in hardness when the ND amount was 1 wt %, 2 wt %, 3 wt %, 4 wt %, and 5 wt %, respectively. The strong interaction between ND surface groups and the chitosan matrix plays an important role in improving mechanical properties.

  18. A facile route to the synthesis of anilinic electroactive colloidal hydrogels for neural tissue engineering applications.

    Science.gov (United States)

    Zarrintaj, Payam; Urbanska, Aleksandra M; Gholizadeh, Saman Seyed; Goodarzi, Vahabodin; Saeb, Mohammad Reza; Mozafari, Masoud

    2018-04-15

    An innovative drug-loaded colloidal hydrogel was synthesized for applications in neural interfaces in tissue engineering by reacting carboxyl capped aniline dimer and gelatin molecules. Dexamethasone was loaded into the gelatin-aniline dimer solution as a model drug to form an in situ drug-loaded colloidal hydrogel. The conductivity of the hydrogel samples fluctuated around 10 -5  S/cm which appeared suitable for cellular activities. Cyclic voltammetry was used for electroactivity determination, in which 2 redox states were observed, suggesting that the short chain length and steric hindrance prevented the gel from achieving a fully oxidized state. Rheological data depicted the modulus decreasing with aniline dimer increment due to limited hydrogen bonds accessibility. Though the swelling ratio of pristine gelatin (600%) decreased by the introduction and increasing the concentration of aniline dimer because of its hydrophobic nature, it took the value of 300% at worst, which still seems promising for drug delivery uses. Degradation rate of hydrogel was similarly decreased by adding aniline dimer. Drug release was evaluated in passive and stimulated patterns demonstrating tendency of aniline dimer to form a vesicle that controls the drug release behavior. The optimal cell viability, proper cell attachment and neurite extension was achieved in the case of hydrogel containing 10 wt% aniline dimer. Based on tissue/organ behavior, it was promisingly possible to adjust the characteristics of the hydrogels for an optimal drug release. The outcome of this simple and effective approach can potentially offer additional tunable characteristics for recording and stimulating purposes in neural interfaces. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. PCP4: a regulator of aldosterone synthesis in human adrenocortical tissues

    Science.gov (United States)

    Felizola, Saulo J. A.; Nakamura, Yasuhiro; Ono, Yoshikiyo; Kitamura, Kanako; Kikuchi, Kumi; Onodera, Yoshiaki; Ise, Kazue; Takase, Kei; Sugawara, Akira; Hattangady, Namita; Rainey, William E.; Satoh, Fumitoshi; Sasano, Hironobu

    2014-01-01

    Purkinje cell protein 4 (PCP4) is a calmodulin (CaM) binding protein that accelerates calcium association and dissociation with CaM. It has been previously detected in aldosterone-producing adenomas (APA) but details on its expression and function in adrenocortical tissues have remained unknown. Therefore, we performed the immunohistochemical analysis of PCP4 in the following tissues: normal adrenal (NA; n=15), APA (n=15), cortisol producing adenomas (CPA; n=15) and idiopathic hyperaldosteronism cases (IHA; n=5). APA samples (n=45) were also submitted to quantitative RT-PCR (qPCR) of PCP4, CYP11B1, and CYP11B2, as well as DNA sequencing for KCNJ5 mutations. Transient transfection analysis using PCP4 siRNA was also performed in H295R adrenocortical carcinoma cells, following ELISA analysis, and CYP11B2 luciferase assays were also performed after PCP4 vector transfection in order to study the regulation of PCP4 protein expression. In our findings, PCP4 immunoreactivity was predominantly detected in APA and in the zona glomerulosa (ZG) of NA and IHA. In APA, the mRNA levels of PCP4 were significantly correlated with those of CYP11B2 (P<0.0001) and were significantly higher in cases with KCNJ5 mutation than wild-type (P=0.005). Following PCP4 vector transfection, CYP11B2 luciferase reporter activity was significantly higher than controls in the presence of angiotensin-II. Knockdown of PCP4 resulted in a significant decrease in CYP11B2 mRNA levels (P=0.012) and aldosterone production (P=0.011). Our results indicate that PCP4 is a regulator of aldosterone production in normal, hyperplastic and neoplastic human adrenocortical cells. PMID:24403568

  20. Oxygen dependency of epidermal growth factor receptor binding and DNA synthesis of rat hepatocytes

    International Nuclear Information System (INIS)

    Hirose, Tetsuro; Terajima, Hiroaki; Yamauchi, Akira

    1997-01-01

    Background/Aims: Changes in oxygen availability modulate replicative responses in several cell types, but the effects on hepatocyte replication remain unclear. We have studied the effects of transient nonlethal hypoxia on epidermal growth factor receptor binding and epidermal growth factor-induced DNA synthesis of rat hepatocytes. Methods: Lactate dehydrogenase activity in culture supernatant, intracellular adenosine triphosphate content, 125 I-epidermal growth factor specific binding, epidermal growth factor receptor protein expression, and 3 H-thymidine incorporation were compared between hepatocytes cultured in hypoxia and normoxia. Results: Hypoxia up to 3 h caused no significant increase in lactate dehydrogenase activity in the culture supernatant, while intracellular adenosine triphosphate content decreased time-dependently and was restored to normoxic levels by reoxygenation (nonlethal hypoxia). Concomitantly, 125 I-epidermal growth factor specific binding to hepatocytes decreased time-dependently (to 54.1% of normoxia) and was restored to control levels by reoxygenation, although 125 I-insulin specific binding was not affected. The decrease in 125 I-epidermal growth factor specific binding was explained by the decrease in the number or available epidermal growth factor receptors (21.37±3.08 to 12.16±1.42 fmol/10 5 cells), while the dissociation constant of the receptor was not affected. The change in the number of available receptors was not considered to be due to receptor degradation-resynthesis, since immuno-detection of the epidermal growth factor receptor revealed that the receptor protein expression did not change during hypoxia and reoxygenation, and since neither actinomycin D nor cycloheximide affected the recovery of 125 I-epidermal growth factor binding by reoxygenation. Inhibition of epidermal growth factor-induced DNA synthesis after hypoxia (to 75.4% of normoxia by 3 h hypoxia) paralleled the decrease in 125 I-epidermal growth factor binding

  1. Tissue engineering of bladder using vascular endothelial growth factor gene-modified endothelial progenitor cells.

    Science.gov (United States)

    Chen, Bai-Song; Xie, Hua; Zhang, Sheng-Li; Geng, Hong-Quan; Zhou, Jun-Mei; Pan, Jun; Chen, Fang

    2011-12-01

    This study assessed the use of vascular endothelial growth factor (VEGF) gene-modified endothelial progenitor cells (EPCs) seeded onto bladder acellular matrix grafts (BAMGs), to enhance the blood supply in tissue-engineered bladders in a porcine model. Autologous porcine peripheral EPCs were isolated, cultured, expanded, characterized, and modified with the VEGF gene using an adenovirus vector. The expression of VEGF was examined using reverse transcriptase polymerase chain reaction (RT-PCR) and an enzyme-linked immunosorbent assay (ELISA). VEGF gene modified EPCs were seeded onto BAMG and cultured for 3 days before implantation into pigs for bladder tissue engineering. A partial bladder cystectomy was performed in 12 pigs. The experimental group (6 pigs) received VEGF gene-modified EPC-seeded BAMG. The control group (6 pigs) received BAMG without seeded EPCs. The resulting tissue-engineered bladders were subject to a general and histological analysis. Microvessel density (MVD) was assessed using immunohistochemistry. The ex vivo transfection efficiency of EPCs was greater than 60%-70% when concentrated adenovirus was used. The genetically modified cells expressed both VEGF and green fluorescent protein (GFP). Scanning electron microscopy (SEM) and Masson's trichrome staining of cross sections of the cultured cells seeded to BAMG showed cell attachment and proliferation on the surface of the BAMG. Histological examination revealed bladder regeneration in a time-dependent fashion. Significant increases in MVD were observed in the experimental group, in comparison with the control group. VEGF-modified EPCs significantly enhanced neovascularization, compared with BAMG alone. These results indicate that EPCs, combined with VEGF gene therapy, may be a suitable approach for increasing blood supply in the tissue engineering of bladders. Thus, a useful strategy to achieve a tissue-engineered bladder is indicated.

  2. Factors that influence soft tissue thickness over the greater trochanter: application to understanding hip fractures.

    Science.gov (United States)

    Levine, Iris C; Minty, Lauren E; Laing, Andrew C

    2015-03-01

    Fall-related hip injuries are a concern for the growing population of older adults. Evidence suggests that soft tissue overlying the greater trochanter attenuates the forces transmitted to the proximal femur during an impact, reducing mechanical risk of hip fracture. However, there is limited information about the factors that influence trochanteric soft tissue thickness. The current study used ultrasonography and electromyography to determine whether trochanteric soft tissue thickness could be quantified reproducibly and whether it was influenced by: (1) gender; (2) hip postures associated with potential falling configurations in the sagittal plane (from 30° of extension to 60° of flexion, at 15° intervals), combined adduction-flexion, and combined adduction-extension; and (3) activation levels of the tensor fascia lata (TFL) and gluteus medius (GM) muscles. Our results demonstrated that soft tissue thickness can be measured reliably in nine hip postures and three muscle activation conditions (for all conditions, ICC >0.98). Mean (SD) thickness in quiet stance was 2.52 cm. Thickness was 27.0% lower for males than females during quiet stance. It was 16.4% greater at maximum flexion than quiet standing, 27.2% greater at maximum extension, and 12.5% greater during combined adduction-flexion. However, there was no significant difference between combined adduction-extension and quiet standing. Thickness was not affected by changes in muscle activity. Forces applied to the femoral neck during a lateral fall decrease as trochanteric soft tissue thickness increases; gender and postural configuration at impact could influence the loads applied to the proximal femur (and thus hip fracture risk) during falls on the hip. © 2014 Wiley Periodicals, Inc.

  3. Factors associated with deep tissue injury in male wheelchair basketball players of a Japanese national team

    Directory of Open Access Journals (Sweden)

    Hirotaka Mutsuzaki

    2014-04-01

    Full Text Available Maintenance of the sporting activity of elite athletes in adapted sports can be difficult if a secondary disorder, such as a pressure ulcer, occurs. Pressure ulcers result from deep tissue injuries by external pressure. The purpose of this study was to use ultrasonography to investigate deep tissue injuries in male wheelchair basketball players of a Japanese national team, and to determine factors associated with the injuries (e.g., body mass index, class of wheelchair basketball, underlying disease, length of athletic career, and whether use of wheelchair is primarily for playing basketball. Twenty male Japanese wheelchair basketball players on the national team for the 2012 London Paralympic Games (12 representative players and eight candidate representative players participated in this study. The sacral region and bilateral ischial regions in each athlete were examined by ultrasonography to detect low-echoic lesions indicative of deep tissue injuries. Nine (45% players had low-echoic lesions, which were detected in 10 of 60 areas. Eight lesions were detected in the sacral region and two lesions were detected in the ischial region. More players with spinal cord injury had low-echoic lesions [9 (69.2% of 13 players], compared to players with skeletal system disease [0 (0% of 7 players, p = 0.002]. Players who used a wheelchair in daily life were more likely to have low-echoic lesions [8 (66.74% of 12 players], compared to players who primarily used a wheelchair for playing basketball [1 (12.5% of 8 players, p = 0.010]. Deep tissue injuries were detected in 45% of male Japanese wheelchair basketball players on the national team. Players with spinal cord injury and players who used a wheelchair in daily life were more likely to have deep tissue injuries, particularly in the sacral region. The lesions were small, but a periodic medical check should be performed to maintain athletes' sporting life.

  4. Fell-Muir lecture: connective tissue growth factor (CCN2) – a pernicious and pleiotropic player in the development of kidney fibrosis

    Science.gov (United States)

    Mason, Roger M

    2013-01-01

    Connective tissue growth factor (CTGF, CCN2) is a member of the CCN family of matricellular proteins. It interacts with many other proteins, including plasma membrane proteins, modulating cell function. It is expressed at low levels in normal adult kidney cells but is increased in kidney diseases, playing important roles in inflammation and in the development of glomerular and interstitial fibrosis in chronic disease. This review reports the evidence for its expression in human and animal models of chronic kidney disease and summarizes data showing that anti-CTGF therapy can successfully attenuate fibrotic changes in several such models, suggesting that therapies targeting CTGF and events downstream of it in renal cells may be useful for the treatment of human kidney fibrosis. Connective tissue growth factor stimulates the development of fibrosis in the kidney in many ways including activating cells to increase extracellular matrix synthesis, inducing cell cycle arrest and hypertrophy, and prolonging survival of activated cells. The relationship between CTGF and the pro-fibrotic factor TGFβ is examined and mechanisms by which CTGF promotes signalling by the latter are discussed. No specific cellular receptors for CTGF have been discovered but it interacts with and activates several plasma membrane proteins including low-density lipoprotein receptor-related protein (LRP)-1, LRP-6, tropomyosin-related kinase A, integrins and heparan sulphate proteoglycans. Intracellular signalling and downstream events triggered by such interactions are reviewed. Finally, the relationships between CTGF and several anti-fibrotic factors, such as bone morphogenetic factor-4 (BMP4), BMP7, hepatocyte growth factor, CCN3 and Oncostatin M, are discussed. These may determine whether injured tissue heals or progresses to fibrosis. PMID:23110747

  5. Mathematical Model of Growth Factor Driven Haptotaxis and Proliferation in a Tissue Engineering Scaffold

    KAUST Repository

    Pohlmeyer, J. V.

    2013-01-29

    Motivated by experimental work (Miller et al. in Biomaterials 27(10):2213-2221, 2006, 32(11):2775-2785, 2011) we investigate the effect of growth factor driven haptotaxis and proliferation in a perfusion tissue engineering bioreactor, in which nutrient-rich culture medium is perfused through a 2D porous scaffold impregnated with growth factor and seeded with cells. We model these processes on the timescale of cell proliferation, which typically is of the order of days. While a quantitative representation of these phenomena requires more experimental data than is yet available, qualitative agreement with preliminary experimental studies (Miller et al. in Biomaterials 27(10):2213-2221, 2006) is obtained, and appears promising. The ultimate goal of such modeling is to ascertain initial conditions (growth factor distribution, initial cell seeding, etc.) that will lead to a final desired outcome. © 2013 Society for Mathematical Biology.

  6. Matriptase activation connects tissue factor-dependent coagulation initiation to epithelial proteolysis and signaling.

    Science.gov (United States)

    Le Gall, Sylvain M; Szabo, Roman; Lee, Melody; Kirchhofer, Daniel; Craik, Charles S; Bugge, Thomas H; Camerer, Eric

    2016-06-23

    The coagulation cascade is designed to sense tissue injury by physical separation of the membrane-anchored cofactor tissue factor (TF) from inactive precursors of coagulation proteases circulating in plasma. Once TF on epithelial and other extravascular cells is exposed to plasma, sequential activation of coagulation proteases coordinates hemostasis and contributes to host defense and tissue repair. Membrane-anchored serine proteases (MASPs) play critical roles in the development and homeostasis of epithelial barrier tissues; how MASPs are activated in mature epithelia is unknown. We here report that proteases of the extrinsic pathway of blood coagulation transactivate the MASP matriptase, thus connecting coagulation initiation to epithelial proteolysis and signaling. Exposure of TF-expressing cells to factors (F) VIIa and Xa triggered the conversion of latent pro-matriptase to an active protease, which in turn cleaved the pericellular substrates protease-activated receptor-2 (PAR2) and pro-urokinase. An activation pathway-selective PAR2 mutant resistant to direct cleavage by TF:FVIIa and FXa was activated by these proteases when cells co-expressed pro-matriptase, and matriptase transactivation was necessary for efficient cleavage and activation of wild-type PAR2 by physiological concentrations of TF:FVIIa and FXa. The coagulation initiation complex induced rapid and prolonged enhancement of the barrier function of epithelial monolayers that was dependent on matriptase transactivation and PAR2 signaling. These observations suggest that the coagulation cascade engages matriptase to help coordinate epithelial defense and repair programs after injury or infection, and that matriptase may contribute to TF-driven pathogenesis in cancer and inflammation.

  7. MRI-based morphological modeling, synthesis and characterization of cardiac tissue-mimicking materials.

    Science.gov (United States)

    Kossivas, Fotis; Angeli, S; Kafouris, D; Patrickios, C S; Tzagarakis, V; Constantinides, C

    2012-06-01

    This study uses standard synthetic methodologies to produce tissue-mimicking materials that match the morphology and emulate the in vivo murine and human cardiac mechanical and imaging characteristics, with dynamic mechanical analysis, atomic force microscopy (AFM), scanning electron microscopy (SEM) and magnetic resonance imaging. In accordance with such aims, poly(glycerol sebacate) (PGS) elastomeric materials were synthesized (at two different glycerol (G)-sebacic (S) acid molar ratios; the first was synthesized using a G:S molar ratio of 2:2, while the second from a 2:5 G:S molar ratio, resulting in PGS2:2 and PGS2:5 elastomers, respectively). Unlike the synthesized PGS2:2 elastomers, the PGS2:5 materials were characterized by an overall mechanical instability in their loading behavior under the three successive loading conditions tested. An oscillatory response in the mechanical properties of the synthesized elastomers was observed throughout the loading cycles, with measured increased storage modulus values at the first loading cycle, stabilizing to lower values at subsequent cycles. These elastomers were characterized at 4 °C and were found to have storage modulus values of 850 and 1430 kPa at the third loading cycle, respectively, in agreement with previously reported values of the rat and human myocardium. SEM of surface topology indicated minor degradation of synthesized materials at 10 and 20 d post-immersion in the PBS buffer solution, with a noted cluster formation on the PGS2:5 elastomers. AFM nanoindentation experiments were also conducted for the measurement of the Young modulus of the sample surface (no bulk contribution). Correspondingly, the PGS2:2 elastomer indicated significantly decreased surface Young's modulus values 20 d post-PBS immersion, compared to dry conditions (Young's modulus = 1160 ± 290 kPa (dry) and 200 ± 120 kPa (20 d)). In addition to the two-dimensional (2D) elastomers, an integrative platform for accurate construction of

  8. MRI-based morphological modeling, synthesis and characterization of cardiac tissue-mimicking materials

    International Nuclear Information System (INIS)

    Kossivas, Fotis; Angeli, S; Constantinides, C; Kafouris, D; Patrickios, C S; Tzagarakis, V

    2012-01-01

    This study uses standard synthetic methodologies to produce tissue-mimicking materials that match the morphology and emulate the in vivo murine and human cardiac mechanical and imaging characteristics, with dynamic mechanical analysis, atomic force microscopy (AFM), scanning electron microscopy (SEM) and magnetic resonance imaging. In accordance with such aims, poly(glycerol sebacate) (PGS) elastomeric materials were synthesized (at two different glycerol (G)–sebacic (S) acid molar ratios; the first was synthesized using a G:S molar ratio of 2:2, while the second from a 2:5 G:S molar ratio, resulting in PGS2:2 and PGS2:5 elastomers, respectively). Unlike the synthesized PGS2:2 elastomers, the PGS2:5 materials were characterized by an overall mechanical instability in their loading behavior under the three successive loading conditions tested. An oscillatory response in the mechanical properties of the synthesized elastomers was observed throughout the loading cycles, with measured increased storage modulus values at the first loading cycle, stabilizing to lower values at subsequent cycles. These elastomers were characterized at 4 °C and were found to have storage modulus values of 850 and 1430 kPa at the third loading cycle, respectively, in agreement with previously reported values of the rat and human myocardium. SEM of surface topology indicated minor degradation of synthesized materials at 10 and 20 d post-immersion in the PBS buffer solution, with a noted cluster formation on the PGS2:5 elastomers. AFM nanoindentation experiments were also conducted for the measurement of the Young modulus of the sample surface (no bulk contribution). Correspondingly, the PGS2:2 elastomer indicated significantly decreased surface Young's modulus values 20 d post-PBS immersion, compared to dry conditions (Young's modulus = 1160 ± 290 kPa (dry) and 200 ± 120 kPa (20 d)). In addition to the two-dimensional (2D) elastomers, an integrative platform for accurate construction of

  9. In vitro evidence of a tissue factor-independent mode of action of recombinant factor VIIa in hemophilia.

    Science.gov (United States)

    Augustsson, Cecilia; Persson, Egon

    2014-11-13

    Successful competition of activated factor VII (FVIIa) with zymogen factor VII (FVII) for tissue factor (TF) and loading of the platelet surface with FVIIa are plausible driving forces behind the pharmacological effect of recombinant FVIIa (rFVIIa) in hemophilia patients. Thrombin generation measurements in platelet-rich hemophilia A plasma revealed competition for TF, which potentially could reduce the effective (r)FVIIa:TF complex concentration and thereby attenuate factor Xa production. However, (auto)activation of FVII apparently counteracted the negative effect of zymogen binding; a small impact was observed at endogenous concentrations of FVII and FVIIa but was virtually absent at pharmacological amounts of rFVIIa. Moreover, corrections of the propagation phase in hemophilia A required rFVIIa concentrations above the range where a physiological level of FVII was capable to downregulate thrombin generation. These data strongly suggest that rFVIIa acts independently of TF in hemophilia therapy and that FVII displacement by rFVIIa is a negligible mechanistic component. © 2014 by The American Society of Hematology.

  10. Modulation of radiation effects in tissues by keratinocyte growth factor (KGF)

    International Nuclear Information System (INIS)

    Doerr, W.; Lacmann, A.; Noack, R.; Spekl, K.

    2000-01-01

    Keratinocyte Growth Factor (KGF) is a member of the fibroblast growth factor family. KGF is produced by mesenchymal cells, predominantly fibroblasts; target cells are epithelial cells in a variety of tissues. Hence, KGF is a mediator of the mesenchymal-epithelial communication and a regulator of tissue homeostasis in epithelia. Systemic administration of KGF in animal models induces stimulation of proliferation and modulation of migration and differentiation processes in squamous epithelia. This results in a transient increase in cell numbers and epithelial thickness. Radiation exposure of epithelia causes an imbalance between cell production and cell loss, which in consequence causes progressive cell depletion and eventually complete denudation. Systemic application of KGF reduces the radiation-induced cell loss. This effect is most pronounced when KGF is given after the radiation exposure. With regard to epithelial radiation tolerance, KGF-application in animal models results in a significant increase, by a factor of 1.7-2.3, in the doses required to induce epithelial ulceration as a clinically most relevant endpoint. After exposure with a given dose, this translates into a significant reduction of the clinical manifestation of the acute radiation sequelae. This effect is accompanied by a modification of the time course of the response. In conclusion, although the mechanisms underlying the protective efficacy remain unclear, KGF may represent an effective approach for amelioration of radiation effects in oral, gastrointestinal and cutaneous epithelia. Results from a clinical pilot study indicate that KGF is well tolerated and effective in humans. (orig.) [de

  11. Synthesis, characterization and antioxidant activity of a novel electroactive and biodegradable polyurethane for cardiac tissue engineering application

    International Nuclear Information System (INIS)

    Baheiraei, Nafiseh; Yeganeh, Hamid; Ai, Jafar; Gharibi, Reza; Azami, Mahmoud; Faghihi, Faezeh

    2014-01-01

    There has been a growing trend towards applying conducting polymers for electrically excitable cells to increase electrical signal propagation within the cell-loaded substrates. A novel biodegradable electroactive polyurethane containing aniline pentamer (AP-PU) was synthesized and fully characterized by spectroscopic methods. To tune the physico-chemical properties and biocompatibility, the AP-PU was blended with polycaprolactone (PCL). The presence of electroactive moieties and the electroactivity behavior of the prepared films were confirmed by UV–visible spectroscopy and cyclic voltammetry. A conventional four probe analysis demonstrated the electrical conductivity of the films in the semiconductor range (∼ 10 −5 S/cm). MTT assays using L929 mouse fibroblast and human umbilical vein endothelial cells (HUVECs) showed that the prepared blend (PB) displayed more cytocompatibility compared with AP-PU due to the introduction of a biocompatible PCL moiety. The in vitro cell culture also confirmed that PB was as supportive as tissue culture plate. The antioxidant activity of the AP-PU was proved using 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging assay by employing UV–vis spectroscopy. In vitro degradation tests conducted in phosphate-buffered saline, pH 7.4 and pH 5.5, proved that the films were also biodegradable. The results of this study have highlighted the potential application of this bioelectroactive polyurethane as a platform substrate to study the effect of electrical signals on cell activities and to direct desirable cell function for tissue engineering applications. - Highlights: • Straight forward methodology for synthesis of electroactive polyurethane • Biodegradability and non-toxicity through proper selection of starting materials • Supporting cell proliferation and attachment combined with antioxidant property

  12. Synthesis, characterization and antioxidant activity of a novel electroactive and biodegradable polyurethane for cardiac tissue engineering application

    Energy Technology Data Exchange (ETDEWEB)

    Baheiraei, Nafiseh [Department of Tissue Engineering, School of Advanced Medical Technologies, Tehran University of Medical Sciences, 1417755469 Tehran (Iran, Islamic Republic of); Yeganeh, Hamid, E-mail: h.yeganeh@ippi.ac.ir [Department of Polyurethane, Iran Polymer and Petrochemical Institute, P.O. Box: 14965/115, Tehran (Iran, Islamic Republic of); Ai, Jafar [Department of Tissue Engineering, School of Advanced Medical Technologies, Tehran University of Medical Sciences, 1417755469 Tehran (Iran, Islamic Republic of); Brain and Spinal Injury Research Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Gharibi, Reza [Department of Polyurethane, Iran Polymer and Petrochemical Institute, P.O. Box: 14965/115, Tehran (Iran, Islamic Republic of); Azami, Mahmoud; Faghihi, Faezeh [Department of Tissue Engineering, School of Advanced Medical Technologies, Tehran University of Medical Sciences, 1417755469 Tehran (Iran, Islamic Republic of)

    2014-11-01

    There has been a growing trend towards applying conducting polymers for electrically excitable cells to increase electrical signal propagation within the cell-loaded substrates. A novel biodegradable electroactive polyurethane containing aniline pentamer (AP-PU) was synthesized and fully characterized by spectroscopic methods. To tune the physico-chemical properties and biocompatibility, the AP-PU was blended with polycaprolactone (PCL). The presence of electroactive moieties and the electroactivity behavior of the prepared films were confirmed by UV–visible spectroscopy and cyclic voltammetry. A conventional four probe analysis demonstrated the electrical conductivity of the films in the semiconductor range (∼ 10{sup −5} S/cm). MTT assays using L929 mouse fibroblast and human umbilical vein endothelial cells (HUVECs) showed that the prepared blend (PB) displayed more cytocompatibility compared with AP-PU due to the introduction of a biocompatible PCL moiety. The in vitro cell culture also confirmed that PB was as supportive as tissue culture plate. The antioxidant activity of the AP-PU was proved using 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging assay by employing UV–vis spectroscopy. In vitro degradation tests conducted in phosphate-buffered saline, pH 7.4 and pH 5.5, proved that the films were also biodegradable. The results of this study have highlighted the potential application of this bioelectroactive polyurethane as a platform substrate to study the effect of electrical signals on cell activities and to direct desirable cell function for tissue engineering applications. - Highlights: • Straight forward methodology for synthesis of electroactive polyurethane • Biodegradability and non-toxicity through proper selection of starting materials • Supporting cell proliferation and attachment combined with antioxidant property.

  13. Is NAA reduction in normal contralateral cerebral tissue in stroke patients dependent on underlying risk factors?

    Science.gov (United States)

    Walker, P M; Ben Salem, D; Giroud, M; Brunotte, F

    2006-05-01

    This retrospective study investigated the dependence of N-acetyl aspartate (NAA) ratios on risk factors for cerebral vasculopathy such as sex, age, hypertension, diabetes mellitus, carotid stenosis, and dyslipidaemia, which may have affected brain vessels and induced metabolic brain abnormalities prior to stroke. We hypothesise that in stroke patients metabolic alterations in the apparently normal contralateral brain are dependent on the presence or not of such risk factors. Fifty nine patients (31 male, 28 female: 58.8+/-16.1 years old) with cortical middle cerebral artery (MCA) territory infarction were included. Long echo time chemical shift imaging spectroscopy was carried out on a Siemens 1.5 T Magnetom Vision scanner using a multi-voxel PRESS technique. Metabolite ratios (NAA/choline, NAA/creatine, lactate/choline, etc) were studied using uni- and multivariate analyses with respect to common risk factors. The influence of age, stroke lesion size, and time since stroke was studied using a linear regression approach. Age, sex, and hypertension all appeared to individually influence metabolite ratios, although only hypertension was significant after multivariate analysis. In both basal ganglia and periventricular white matter regions in apparently normal contralateral brain, the NAA/choline ratio was significantly lower in hypertensive (1.37+/-0.16 and 1.50+/-0.19, respectively) than in normotensive patients (1.72+/-0.19 and 1.85+/-0.15, respectively). Regarding MCA infarction, contralateral tissue remote from the lesion behaves abnormally in the presence of hypertension, the NAA ratios in hypertensive patients being significantly lower. These data suggest that hypertension may compromise the use of contralateral tissue data as a reference for comparison with ischaemic tissue.

  14. Synthesis and characterization of crosslinked gellan/PVA nanofibers for tissue engineering application.

    Science.gov (United States)

    Vashisth, Priya; Pruthi, Vikas

    2016-10-01

    Electrospun nanofibers based on gellan are considered as promising biomaterial for tissue engineering and wound healing applications. However, major hurdles in usage of these nanofibers are their poor stability and deprived structural consistency in aqueous medium which is a prerequisite for their application in the biomedical sector. In this investigation, three dimensional nanofibers, consisting of gellan and PVA have been fabricated and then stabilized under various crosslinking conditions in order to improve their physiochemical stability. The impacts of different crosslinking procedures on the gellan/PVA nanofibers were examined in terms of changes in morphological, mechanical, swelling and biological properties. Superior tensile strength and strain was recorded in case of crosslinked nanofibers as compared to non-crosslinked nanofibers. Contact angles and swelling properties of fabricated gellan/PVA nanofibers were found to vary with the crosslinking method. All crosslinking conditions were evaluated with regard to their response towards human dermal fibroblast (3T3L1) cells. Biocompatibility studies suggested that the fabricated crosslinked gellan/PVA nanofibers hold a great prospective in the biomedical engineering arena. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Synthesis of chitosan/hydroxyapatite membranes coated with hydroxycarbonate apatite for guided tissue regeneration purposes

    Energy Technology Data Exchange (ETDEWEB)

    Fraga, Alexandre Felix [Federal University of Sao Carlos, Department of Materials Engineering, DEMa, UFSCar, Sao Carlos, SP (Brazil); Almeida Filho, Edson de, E-mail: edsonafilho@yahoo.com.br [University Estadual Paulista, Department of Physical Chemistry - IQ, Araraquara, SP (Brazil); Silva Rigo, Eliana Cristina da [University of Sao Paulo, Department of Basic Science - FZEA-ZAB, Pirassununga, SP (Brazil); Ortega Boschi, Anselmo [Federal University of Sao Carlos, Department of Materials Engineering, DEMa, UFSCar, Sao Carlos, SP (Brazil)

    2011-02-15

    Chitosan, which is a non-toxic, biodegradable and biocompatible biopolymer, has been widely researched for several applications in the field of biomaterials. Calcium phosphate ceramics stand out among the so-called bioceramics for their absence of local or systemic toxicity, their non-response to foreign bodies or inflammations, and their apparent ability to bond to the host tissue. Hydroxyapatite (HA) is one of the most important bioceramics because it is the main component of the mineral phase of bone. The aim of this work was to produce chitosan membranes coated with hydroxyapatite using the modified biomimetic method. Membranes were synthesized from a solution containing 2% of chitosan in acetic acid (weight/volume) via the solvent evaporation method. Specimens were immersed in a sodium silicate solution and then in a 1.5 SBF (simulated body fluid) solution. The crystallinity of the HA formed over the membranes was correlated to the use of the nucleation agent (the sodium silicate solution itself). Coated membranes were characterized by means of scanning electron microscopy - SEM, X-ray diffraction - XRD, and Fourier transform infrared spectroscopy - FTIR. The results indicate a homogeneous coating covering the entire surface of the membrane and the production of a semi-crystalline hydroxyapatite layer similar to the mineral phase of human bone.

  16. Radiation synthesis of gelatin/CM-chitosan/{beta}-tricalcium phosphate composite scaffold for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Ying [College of Engineering, Peking University, Beijing 100871 (China); Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Xu Ling, E-mail: lingxu@pku.edu.cn [College of Engineering, Peking University, Beijing 100871 (China); Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Zhang Xiangmei; Zhao Yinghui [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Wei Shicheng, E-mail: sc-wei@pku.edu.cn [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University, Beijing 100081 (China); Zhai Maolin [Beijing National Laboratory for Molecular Sciences, Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)

    2012-05-01

    A series of biodegradable composite scaffolds was fabricated from an aqueous solution of gelatin, carboxymethyl chitosan (CM-chitosan) and {beta}-tricalcium phosphate ({beta}-TCP) by radiation-induced crosslinking at ambient temperature. Ultrasonic treatment on the polymer solutions significantly influenced the distribution of {beta}-TCP particles. An ultrasonic time of 20 min, followed by 30 kGy irradiation induced a crosslinked scaffold with homogeneous distribution of {beta}-TCP particles, interconnected porous structure, sound swelling capacity and mechanical strength. Fourier Transform Infrared Spectroscopy and X-ray Diffraction analysis indicated that {beta}-TCP successfully incorporated with the network of gelatin and CM-chitosan. In vivo implantation of the scaffold into the mandible of beagle dog revealed that the scaffolds had excellent biocompatibility and the presence of {beta}-TCP can accelerate bone regeneration. The comprehensive results of this study paved way for the application of gelatin/CM-chitosan/{beta}-TCP composite scaffolds as candidate of bone tissue engineering material. - Highlights: Black-Right-Pointing-Pointer Radiation induced a crosslinked scaffold with interconnected porous structure. Black-Right-Pointing-Pointer Ultrasonic time of 20 min led to homogenerously distribution of {beta}-TCP. Black-Right-Pointing-Pointer Increasing amount of {beta}-TCP would restrict the swelling properties. Black-Right-Pointing-Pointer Proper fraction of {beta}-TCP will promote the mechanical properties of the scaffolds. Black-Right-Pointing-Pointer Hybrid of {beta}-TCP promoted the bone regeneration of the mandibles of beagle dogs.

  17. Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors.

    Science.gov (United States)

    Butler, Jason M; Kobayashi, Hideki; Rafii, Shahin

    2010-02-01

    The precise mechanisms whereby anti-angiogenesis therapy blocks tumour growth or causes vascular toxicity are unknown. We propose that endothelial cells establish a vascular niche that promotes tumour growth and tissue repair not only by delivering nutrients and O2 but also through an 'angiocrine' mechanism by producing stem and progenitor cell-active trophogens. Identification of endothelial-derived instructive angiocrine factors will allow direct tumour targeting, while diminishing the unwanted side effects associated with the use of anti-angiogenic agents.

  18. Phosphate functionalized and lactic acid containing graft copolymer: synthesis and evaluation as biomaterial for bone tissue engineering applications.

    Science.gov (United States)

    Datta, Pallab; Chatterjee, Jyotirmoy; Dhara, Santanu

    2013-01-01

    Polyvinyl alcohol (PVA) and polylactic acids (PLA) are biocompatible materials possessing some inherent contrasting limitations which have reduced the scope of their individual applicability. Specifically, overcoming strong hydrophobicity and introducing chemical groups for biofunctionalization are unmet challenges for PLA whilst chemical endeavors to render adequate aqueous stability and cell adhesion properties to PVA have not produced completely intended results. Objective of the present work is to explore synthesis of a graft polymer as an approach towards coupling biofunctional groups with PLA materials. In a two-step reaction, PPVA (phosphorylated polyvinyl alcohol or PVA pre-functionalized with phosphate) is esterified with lactic acid followed by polymerization into PLA in presence of stannous chloride as catalyst to obtain phosphorylated polyvinyl alcohol-graft-polylactic acid (PPVA-g-LA) copolymer. Product is characterized by nuclear magnetic resonance, X-ray diffraction, and thermogravimetric analysis. PPVA-g-LA shows an increase in uniaxial elongation compared to parent PPVA under condition of tensile loading. The graft copolymer also exhibits higher water contact angles compared to PPVA, but a more hydrophilic surface compared to PLA. Culture of MG-63 cells on solvent cast films of polymers demonstrates that PPVA-g-LA as a cell substrate can significantly (p acid-based biomaterials with subsequent improvement in cell response on the polymers. In this attempt, it also affords materials with tunable surface or bulk properties of relevance for tissue engineering applications.

  19. Trophic factors from adipose tissue-derived multi-lineage progenitor cells promote cytodifferentiation of periodontal ligament cells

    Energy Technology Data Exchange (ETDEWEB)

    Sawada, Keigo [Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka (Japan); Takedachi, Masahide, E-mail: takedati@dent.osaka-u.ac.jp [Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka (Japan); Yamamoto, Satomi; Morimoto, Chiaki; Ozasa, Masao; Iwayama, Tomoaki [Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka (Japan); Lee, Chun Man [Medical Center for Translational Research, Osaka University Hospital, Osaka (Japan); Okura, Hanayuki; Matsuyama, Akifumi [Research on Disease Bioresources, Platform of Therapeutics for Rare Disease, National Institute of Biomedical Innovation, Osaka (Japan); Kitamura, Masahiro; Murakami, Shinya [Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka (Japan)

    2015-08-14

    Stem and progenitor cells are currently being investigated for their applicability in cell-based therapy for periodontal tissue regeneration. We recently demonstrated that the transplantation of adipose tissue-derived multi-lineage progenitor cells (ADMPCs) enhances periodontal tissue regeneration in beagle dogs. However, the molecular mechanisms by which transplanted ADMPCs induce periodontal tissue regeneration remain to be elucidated. In this study, trophic factors released by ADMPCs were examined for their paracrine effects on human periodontal ligament cell (HPDL) function. ADMPC conditioned medium (ADMPC-CM) up-regulated osteoblastic gene expression, alkaline phosphatase activity and calcified nodule formation in HPDLs, but did not significantly affect their proliferative response. ADMPCs secreted a number of growth factors, including insulin-like growth factor binding protein 6 (IGFBP6), hepatocyte growth factor and vascular endothelial growth factor. Among these, IGFBP6 was most highly expressed. Interestingly, the positive effects of ADMPC-CM on HPDL differentiation were significantly suppressed by transfecting ADMPCs with IGFBP6 siRNA. Our results suggest that ADMPCs transplanted into a defect in periodontal tissue release trophic factors that can stimulate the differentiation of HPDLs to mineralized tissue-forming cells, such as osteoblasts and cementoblasts. IGFBP6 may play crucial roles in ADMPC-induced periodontal regeneration. - Highlights: • ADMPC-derived humoral factors stimulate cytodifferentiation of HPDLs. • ADMPCs secret growth factors including IGFBP6, VEGF and HGF. • IGFBP6 is involved in the promotion effect of ADMPC-CM on HPDL cytodifferentiation.

  20. Trophic factors from adipose tissue-derived multi-lineage progenitor cells promote cytodifferentiation of periodontal ligament cells

    International Nuclear Information System (INIS)

    Sawada, Keigo; Takedachi, Masahide; Yamamoto, Satomi; Morimoto, Chiaki; Ozasa, Masao; Iwayama, Tomoaki; Lee, Chun Man; Okura, Hanayuki; Matsuyama, Akifumi; Kitamura, Masahiro; Murakami, Shinya

    2015-01-01

    Stem and progenitor cells are currently being investigated for their applicability in cell-based therapy for periodontal tissue regeneration. We recently demonstrated that the transplantation of adipose tissue-derived multi-lineage progenitor cells (ADMPCs) enhances periodontal tissue regeneration in beagle dogs. However, the molecular mechanisms by which transplanted ADMPCs induce periodontal tissue regeneration remain to be elucidated. In this study, trophic factors released by ADMPCs were examined for their paracrine effects on human periodontal ligament cell (HPDL) function. ADMPC conditioned medium (ADMPC-CM) up-regulated osteoblastic gene expression, alkaline phosphatase activity and calcified nodule formation in HPDLs, but did not significantly affect their proliferative response. ADMPCs secreted a number of growth factors, including insulin-like growth factor binding protein 6 (IGFBP6), hepatocyte growth factor and vascular endothelial growth factor. Among these, IGFBP6 was most highly expressed. Interestingly, the positive effects of ADMPC-CM on HPDL differentiation were significantly suppressed by transfecting ADMPCs with IGFBP6 siRNA. Our results suggest that ADMPCs transplanted into a defect in periodontal tissue release trophic factors that can stimulate the differentiation of HPDLs to mineralized tissue-forming cells, such as osteoblasts and cementoblasts. IGFBP6 may play crucial roles in ADMPC-induced periodontal regeneration. - Highlights: • ADMPC-derived humoral factors stimulate cytodifferentiation of HPDLs. • ADMPCs secret growth factors including IGFBP6, VEGF and HGF. • IGFBP6 is involved in the promotion effect of ADMPC-CM on HPDL cytodifferentiation

  1. Nuclear factor 1 regulates adipose tissue-specific expression in the mouse GLUT4 gene

    International Nuclear Information System (INIS)

    Miura, Shinji; Tsunoda, Nobuyo; Ikeda, Shinobu; Kai, Yuko; Cooke, David W.; Lane, M. Daniel; Ezaki, Osamu

    2004-01-01

    Previous studies demonstrated that an adipose tissue-specific element(s) (ASE) of the murine GLUT4 gene is located between -551 and -506 in the 5'-flanking sequence and that a high-fat responsive element(s) for down-regulation of the GLUT4 gene is located between bases -701 and -552. A binding site for nuclear factor 1 (NF1), that mediates insulin and cAMP-induced repression of GLUT4 in 3T3-L1 adipocytes is located between bases -700 and -688. To examine the role of NF1 in the regulation of GLUT4 gene expression in white adipose tissues (WAT) in vivo, we created two types of transgenic mice harboring mutated either 5' or 3' half-site of NF1-binding sites in GLUT4 minigene constructs. In both cases, the GLUT4 minigene was not expressed in WAT, while expression was maintained in brown adipose tissue, skeletal muscle, and heart. This was an unexpected finding, since a -551 GLUT4 minigene that did not have the NF1-binding site was expressed in WAT. We propose a model that explains the requirement for both the ASE and the NF1-binding site for expression of GLUT4 in WAT

  2. Fibroblast Growth Factor 21 Deficiency Attenuates Experimental Colitis-Induced Adipose Tissue Lipolysis

    Directory of Open Access Journals (Sweden)

    Liming Liu

    2017-01-01

    Full Text Available Aims. Nutrient deficiencies are common in patients with inflammatory bowel disease (IBD. Adipose tissue plays a critical role in regulating energy balance. Fibroblast growth factor 21 (FGF21 is an important endocrine metabolic regulator with emerging beneficial roles in lipid homeostasis. We investigated the impact of FGF21 in experimental colitis-induced epididymal white adipose tissue (eWAT lipolysis. Methods. Mice were given 2.5% dextran sulfate sodium (DSS ad libitum for 7 days to induce colitis. The role of FGF21 was investigated using antibody neutralization or knockout (KO mice. Lipolysis index and adipose lipolytic enzymes were determined. In addition, 3T3-L1 cells were pretreated with IL-6, followed by recombinant human FGF21 (rhFGF21 treatment; lipolysis was assessed. Results. DSS markedly decreased eWAT/body weight ratio and increased serum concentrations of free fatty acid (FFA and glycerol, indicating increased adipose tissue lipolysis. eWAT intracellular lipolytic enzyme expression/activation was significantly increased. These alterations were significantly attenuated in FGF21 KO mice and by circulating FGF21 neutralization. Moreover, DSS treatment markedly increased serum IL-6 and FGF21 levels. IL-6 pretreatment was necessary for the stimulatory effect of FGF21 on adipose lipolysis in 3T3-L1 cells. Conclusions. Our results demonstrate that experimental colitis induces eWAT lipolysis via an IL-6/FGF21-mediated signaling pathway.

  3. Ontogeny of basic fibroblast growth factor binding sites in mouse ocular tissues

    International Nuclear Information System (INIS)

    Fayein, N.A.; Courtois, Y.; Jeanny, J.C.

    1990-01-01

    Basic fibroblast growth factor (bFGF) binding to ocular tissues has been studied by autoradiographical and biochemical approaches directly performed on sections during mouse embryonic and postnatal development. Frozen sections of embryos (9 to 18 days), newborns, and adults (1 day to 6 months) were incubated with iodinated bFGF. One specific FGF binding site (KD = 2.5 nM) is colocalized with heparan sulfate proteoglycans of the basement membranes and is heparitinase sensitive. It first appears at Day 9 around the neural tube, the optic vesicles, and below the head ectoderm and by Day 14 of embryonic development is found in all basement membranes of the eye. At Day 16, very intensely labeled patches appear, corresponding to mast cells which have been characterized by metachromatic staining of their heparin-rich granulations with toluidine blue. In addition to the latter binding, we have also observed a general diffuse distribution of silver grains on all tissues and preferentially in the ecto- and neuroectodermic tissues. From Days 17-18, there is heterogeneous labeling inside the retina, localized in the pigmented epithelium and in three different layers colocalized with the inner and outer plexiform layers and with the inner segments of the photoreceptors. This binding is heparitinase resistant but N-glycanase sensitive and may represent a second specific binding site corresponding to cellular FGF receptors (KD = 280 pM). Both types of binding patterns observed suggest a significant role for bFGF in eye development and physiology

  4. [Role of connective tissue growth factor (CTGF) in proliferation and migration of pancreatic cancer cells].

    Science.gov (United States)

    Bai, Yu-chun; Kang, Quan; Luo, Qing; Wu, Dao-qi; Ye, Wei-xia; Lin, Xue-mei; Zhao, Yong

    2011-10-01

    To explore the expression of connective tissue growth factor (CTGF) in pancreatic cancer and its influence on the proliferation and migration of cancer cells. The expression of CTGF in pancreatic cell line PANC-1 cells was analyzed by real-time PCR and in pancreatic carcinoma (50 cases) tissues by immunohistochemistry. The ability of proliferation and migration in vitro of PANC-1 cells was tested by MTT assay, scratch test and Boyden chamber test after the CTGF gene was overexpressed by Ad5-CTGF or silenced with Ad5-siCTGF transfection. CTGF was overexpressed in both pancreatic cancer cells and tissues. Overxpression of CTGF leads to increased proliferation and migration of PANC-1 cells. The CTGF-transfected PANC-1 cells showed apparent stronger proliferation ability and scratch-repair ability than that of empty vector controls. The results of Boyden chamber test showed that there were 34 cells/field (200× magnificantion) of the CTGF-transfected overexpressing cells, much more than the 11 cells/field of the empty vector control cells; and 6 cells/microscopic field of the Ad5-siCTGF-transfected silenced cells, much less than the 15 cells/field of the control cells. CTGF is overexpressed in both pancreatic cancer cells in vitro and in vivo, indicating that it may play an important role in the cell proliferation and migration in pancreatic cancer.

  5. Synthesis and characterization of designed BMHP1-derived self-assembling peptides for tissue engineering applications.

    Science.gov (United States)

    Silva, Diego; Natalello, Antonino; Sanii, Babak; Vasita, Rajesh; Saracino, Gloria; Zuckermann, Ronald N; Doglia, Silvia Maria; Gelain, Fabrizio

    2013-01-21

    The importance of self-assembling peptides (SAPs) in regenerative medicine is becoming increasingly recognized. The propensity of SAPs to form nanostructured fibers is governed by multiple forces including hydrogen bonds, hydrophobic interactions and π-π aromatic interactions among side chains of the amino acids. Single residue modifications in SAP sequences can significantly affect these forces. BMHP1-derived SAPs is a class of biotinylated oligopeptides, which self-assemble in β-structured fibers to form a self-healing hydrogel. In the current study, selected modifications in previously described BMHP1-derived SAPs were designed in order to investigate the influence of modified residues on self-assembly kinetics and scaffold formation properties. The Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis demonstrated the secondary structure (β-sheet) formation in all modified SAP sequences, whereas atomic force microscopy (AFM) analysis further confirmed the presence of nanofibers. Furthermore, the fiber shape and dimension analysis by AFM showed flattened and twisted fiber morphology ranging from ∼8 nm to ∼70 nm. The mechanical properties of the pre-assembled and post assembled solution were investigated by rheometry. The shear-thinning behavior and rapid re-healing properties of the pre-assembled solutions make them a preferable choice for injectable scaffolds. The wide range of stiffnesses (G')--from ∼1000 to ∼27,000 Pa--exhibited by the post-assembled scaffolds demonstrated their potential for a variety of tissue engineering applications. The extra cellular matrix (ECM) mimicking (physically and chemically) properties of SAP scaffolds enhanced cell adhesion and proliferation. The capability of the scaffold to facilitate murine neural stem cell (mNSC) proliferation was evaluated in vitro: the increased mNSCs adhesion and proliferation demonstrated the potential of newly synthesized SAPs for regenerative medicine

  6. Tissue factor is an angiogenic-specific receptor for factor VII-targeted immunotherapy and photodynamic therapy.

    Science.gov (United States)

    Hu, Zhiwei; Cheng, Jijun; Xu, Jie; Ruf, Wolfram; Lockwood, Charles J

    2017-02-01

    Identification of target molecules specific for angiogenic vascular endothelial cells (VEC), the inner layer of pathological neovasculature, is critical for discovery and development of neovascular-targeting therapy for angiogenesis-dependent human diseases, notably cancer, macular degeneration and endometriosis, in which vascular endothelial growth factor (VEGF) plays a central pathophysiological role. Using VEGF-stimulated vascular endothelial cells (VECs) isolated from microvessels, venous and arterial blood vessels as in vitro angiogenic models and unstimulated VECs as a quiescent VEC model, we examined the expression of tissue factor (TF), a membrane-bound receptor on the angiogenic VEC models compared with quiescent VEC controls. We found that TF is specifically expressed on angiogenic VECs in a time-dependent manner in microvessels, venous and arterial vessels. TF-targeted therapeutic agents, including factor VII (fVII)-IgG1 Fc and fVII-conjugated photosensitizer, can selectively bind angiogenic VECs, but not the quiescent VECs. Moreover, fVII-targeted photodynamic therapy can selectively and completely eradicate angiogenic VECs. We conclude that TF is an angiogenic-specific receptor and the target molecule for fVII-targeted therapeutics. This study supports clinical trials of TF-targeted therapeutics for the treatment of angiogenesis-dependent diseases such as cancer, macular degeneration and endometriosis.

  7. Tissue Factor Pathway Inhibitor: Multiple Anticoagulant Activities for a Single Protein.

    Science.gov (United States)

    Mast, Alan E

    2016-01-01

    Tissue factor (TF) pathway inhibitor (TFPI) is an anticoagulant protein that inhibits early phases of the procoagulant response. Alternatively spliced isoforms of TFPI are differentially expressed by endothelial cells and human platelets and plasma. The TFPIβ isoform localizes to the endothelium surface where it is a potent inhibitor of TF-factor VIIa complexes that initiate blood coagulation. The TFPIα isoform is present in platelets. TFPIα contains a stretch of 9 amino acids nearly identical to those found in the B-domain of factor V that are well conserved in mammals. These amino acids provide exosite binding to activated factor V, which allows for TFPIα to inhibit prothrombinase during the initiation phase of blood coagulation. Endogenous inhibition at this point in the coagulation cascade was only recently recognized and has provided a biochemical rationale to explain the pathophysiological mechanisms underlying several clinical disorders. These include the east Texas bleeding disorder that is caused by production of an altered form of factor V with high affinity for TFPI and a paradoxical procoagulant effect of heparins. In addition, these findings have led to ideas for pharmacological targeting of TFPI that may reduce bleeding in hemophilia patients. © 2015 American Heart Association, Inc.

  8. Common Virulence Factors and Tissue Targets of Entomopathogenic Bacteria for Biological Control of Lepidopteran Pests

    Directory of Open Access Journals (Sweden)

    Anaïs Castagnola

    2014-01-01

    Full Text Available This review focuses on common insecticidal virulence factors from entomopathogenic bacteria with special emphasis on two insect pathogenic bacteria Photorhabdus (Proteobacteria: Enterobacteriaceae and Bacillus (Firmicutes: Bacillaceae. Insect pathogenic bacteria of diverse taxonomic groups and phylogenetic origin have been shown to have striking similarities in the virulence factors they produce. It has been suggested that the detection of phage elements surrounding toxin genes, horizontal and lateral gene transfer events, and plasmid shuffling occurrences may be some of the reasons that virulence factor genes have so many analogs throughout the bacterial kingdom. Comparison of virulence factors of Photorhabdus, and Bacillus, two bacteria with dissimilar life styles opens the possibility of re-examining newly discovered toxins for novel tissue targets. For example, nematodes residing in the hemolymph may release bacteria with virulence factors targeting neurons or neuromuscular junctions. The first section of this review focuses on toxins and their context in agriculture. The second describes the mode of action of toxins from common entomopathogens and the third draws comparisons between Gram positive and Gram negative bacteria. The fourth section reviews the implications of the nervous system in biocontrol.

  9. Calculated dose factors for the radiosensitive tissues in bone irradiated by surface-deposited radionuclides

    International Nuclear Information System (INIS)

    Spiers, F.W.; Whitwell, J.R.; Beddoe, A.H.

    1978-01-01

    The method of calculating dose factors for the haemopoietic marrow and endosteal tissues in human trabecular bone, used by Whitwell and Spiers for volume-seeking radionuclides, has been developed for the case of radionuclides which are deposited as very thin layers on bone surfaces. The Monte Carlo method is again used, but modifications to the computer program are made to allow for a surface rather than a volume source of particle emission. The principal change is the introduction of a surface-orientation factor which is shown to have a value of approximately 2, varying slightly with bone structure. Results are given for β-emitting radionuclides ranging from 171 Tm(anti Esub(β) = 0.025 MeV) to 90 Y(anti Esub(β) = 0.93 MeV), and also for the α-emitter 239 Pu. It is shown that where the particle ranges are short compared with the dimensions of the bone structures the dose factors for the surface seekers are much greater than those for the volume seekers. For long range particles the dose factors for surface- and volume-seeking radionuclides converge. Comparisons are given relating the dose factors calculated in this paper on the basis of measured bone structures to those of other workers based on single plane geometry. (author)

  10. Predictive and prognostic factors associated with soft tissue sarcoma response to chemotherapy

    DEFF Research Database (Denmark)

    Young, Robin J; Litière, Saskia; Lia, Michela

    2017-01-01

    BACKGROUND: The European Organization for Research and Treatment of Cancer (EORTC) 62012 study was a Phase III trial of doxorubicin versus doxorubicin-ifosfamide chemotherapy in 455 patients with advanced soft tissue sarcoma (STS). Analysis of the main study showed that combination chemotherapy...... improved tumor response and progression-free survival, but differences in overall survival (OS) were not statistically significant. We analyzed factors prognostic for tumor response and OS, and assessed histological subgroup and tumor grade as predictive factors to identify patients more likely to benefit...... patients had improved tumor response compared to other histological subgroups, whilst patients with metastases other than lung, liver or bone had a poorer response [odds ratio (OR) 0.42, 95% confidence interval (CI) 0.23-0.78; p = 0.006]. Patients with bone metastases had reduced OS [hazard ratio (HR) 1...

  11. Growth factor and proteinase profile of Vivostat® platelet-rich fibrin linked to tissue repair

    DEFF Research Database (Denmark)

    Ågren, Sven Per Magnus; Rasmussen, Karina; Pakkenberg, Bente

    2014-01-01

    . Leucocyte, erythrocyte and platelet counts in whole blood and fibrin-I were determined by automated haematology analyser. Platelet concentration in PRF was quantified manually by stereologic analysis of Giemsa-stained tissue sections, and the total content of five growth factors and MMP-9 by enzyme......·001]. MMP-9 was reduced 139-fold (P tissue regenerative applications....

  12. Bothrops jararaca venom metalloproteinases are essential for coagulopathy and increase plasma tissue factor levels during envenomation.

    Directory of Open Access Journals (Sweden)

    Karine M Yamashita

    2014-05-01

    Full Text Available BACKGROUND/AIMS: Bleeding tendency, coagulopathy and platelet disorders are recurrent manifestations in snakebites occurring worldwide. We reasoned that by damaging tissues and/or activating cells at the site of the bite and systemically, snake venom toxins might release or decrypt tissue factor (TF, resulting in activation of blood coagulation and aggravation of the bleeding tendency. Thus, we addressed (a whether TF and protein disulfide isomerase (PDI, an oxireductase involved in TF encryption/decryption, were altered in experimental snake envenomation; (b the involvement and significance of snake venom metalloproteinases (SVMP and serine proteinases (SVSP to hemostatic disturbances. METHODS/PRINCIPAL FINDINGS: Crude Bothrops jararaca venom (BjV was preincubated with Na2-EDTA or AEBSF, which are inhibitors of SVMP and SVSP, respectively, and injected subcutaneously or intravenously into rats to analyze the contribution of local lesion to the development of hemostatic disturbances. Samples of blood, lung and skin were collected and analyzed at 3 and 6 h. Platelet counts were markedly diminished in rats, and neither Na2-EDTA nor AEBSF could effectively abrogate this fall. However, Na2-EDTA markedly reduced plasma fibrinogen consumption and hemorrhage at the site of BjV inoculation. Na2-EDTA also abolished the marked elevation in TF levels in plasma at 3 and 6 h, by both administration routes. Moreover, increased TF activity was also noticed in lung and skin tissue samples at 6 h. However, factor VII levels did not decrease over time. PDI expression in skin was normal at 3 h, and downregulated at 6 h in all groups treated with BjV. CONCLUSIONS: SVMP induce coagulopathy, hemorrhage and increased TF levels in plasma, but neither SVMP nor SVSP are directly involved in thrombocytopenia. High levels of TF in plasma and TF decryption occur during snake envenomation, like true disseminated intravascular coagulation syndrome, and might be implicated in

  13. General evaluation of hard dental tissue and risk factors of dental caries in young people

    Directory of Open Access Journals (Sweden)

    Антоніна Михайлівна Політун

    2016-04-01

    Full Text Available The prognostication of caries in youth is important for determination and prescription of individual prophylactic arrangements and its further influence on mineralization of the hard dental tissues.Aim of the work: the study of the prevalence and intensity of caries among the young people and determination of possible connection with the risk factor of caries development for further choice of the reasonable prophylactic arrangement.Materials and methods of research: epidemiological, clinical, statistic ones.Results of research: The article describes results of the comprehensive dental examination of 135 persons18-25 years old. There was determined the high prevalence of caries (96,3±0,74 % with considerable intensity (8,87±0,39. The main etiological factors among youth are: poor nutrition with prevalence of carbohydrate (74,81±0,56 %, lack of oral hygiene (59,27±0,73 %, quantitative and qualitative composition of oral fluid, presence of somatic diseases (40±0,30 %, bad habits (31,85±0,24 %, neglect of the sport (48,88±0,36 %, chronic emotional stress (38,51±0,29 %, due to the increased workload and related stress factors.Conclusions: the high prevalence (96,3±0,74 % and intensity of carious process (8,87±0,39 is caused by the unsatisfactory state of oral cavity, (1,91±0,06, under the influence of general factors (somatic diseases, stress, poor nutrition the reactivity of protective mechanisms is lowered and the risk of dental morbidity of youth increases. So, it proves the necessity of elaboration and introduction of the active arrangements of primary prophylaxis directed on the raise of caries resistance of the hard dental tissues in young people

  14. Recent Advances in Laser-Ablative Synthesis of Bare Au and Si Nanoparticles and Assessment of Their Prospects for Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    Ahmed Al-Kattan

    2018-05-01

    Full Text Available Driven by surface cleanness and unique physical, optical and chemical properties, bare (ligand-free laser-synthesized nanoparticles (NPs are now in the focus of interest as promising materials for the development of advanced biomedical platforms related to biosensing, bioimaging and therapeutic drug delivery. We recently achieved significant progress in the synthesis of bare gold (Au and silicon (Si NPs and their testing in biomedical tasks, including cancer imaging and therapy, biofuel cells, etc. We also showed that these nanomaterials can be excellent candidates for tissue engineering applications. This review is aimed at the description of our recent progress in laser synthesis of bare Si and Au NPs and their testing as functional modules (additives in innovative scaffold platforms intended for tissue engineering tasks.

  15. C-terminal peptides of tissue factor pathway inhibitor are novel host defense molecules.

    Science.gov (United States)

    Papareddy, Praveen; Kalle, Martina; Kasetty, Gopinath; Mörgelin, Matthias; Rydengård, Victoria; Albiger, Barbara; Lundqvist, Katarina; Malmsten, Martin; Schmidtchen, Artur

    2010-09-03

    Tissue factor pathway inhibitor (TFPI) inhibits tissue factor-induced coagulation, but may, via its C terminus, also modulate cell surface, heparin, and lipopolysaccharide interactions as well as participate in growth inhibition. Here we show that C-terminal TFPI peptide sequences are antimicrobial against the gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, gram-positive Bacillus subtilis and Staphylococcus aureus, as well as the fungi Candida albicans and Candida parapsilosis. Fluorescence studies of peptide-treated bacteria, paired with analysis of peptide effects on liposomes, showed that the peptides exerted membrane-breaking effects similar to those seen for the "classic" human antimicrobial peptide LL-37. The killing of E. coli, but not P. aeruginosa, by the C-terminal peptide GGLIKTKRKRKKQRVKIAYEEIFVKNM (GGL27), was enhanced in human plasma and largely abolished in heat-inactivated plasma, a phenomenon linked to generation of antimicrobial C3a and activation of the classic pathway of complement activation. Furthermore, GGL27 displayed anti-endotoxic effects in vitro and in vivo in a mouse model of LPS shock. Importantly, TFPI was found to be expressed in the basal layers of normal epidermis, and was markedly up-regulated in acute skin wounds as well as wound edges of chronic leg ulcers. Furthermore, C-terminal fragments of TFPI were associated with bacteria present in human chronic leg ulcers. These findings suggest a new role for TFPI in cutaneous defense against infections.

  16. Common factors method to predict the carcass composition tissue in kid goats

    Directory of Open Access Journals (Sweden)

    Helen Fernanda Barros Gomes

    2013-03-01

    Full Text Available The objective of this work was to analyze the interrelations among weights and carcass measures of the longissimus lumborum muscle thickness and area, and of sternum tissue thickness, measured directly on carcass and by ultrasound scan. Measures were taken on live animals and after slaughter to develop models of multiple linear regression, to estimate the composition of shoulder blade, from selected variables in 89 kids of both genders and five breed groups, raised in feedlot system. The variables considered relevant and not redundant on the information they carry, for the common factor analysis, were used in the carcass composition estimate development models. The presuppositions of linear regression models relative to residues were evaluated, the estimated residues were subjected to analysis of variance and the means were compared by the Student t test. Based in these results, the group of 32 initial variables could be reduced to four variables: hot carcass weight, rump perimeter, leg length and tissue height at the fourth sternum bone. The analysis of common factors was shown as an effective technique to study the interrelations among the independent variables. The measures of carcass dimension, alone, did not add any information to hot carcass weight. The carcass muscle weight can be estimated with high precision from simple models, without the need for information related to gender and breed, and they could be built based on carcass weight, which makes it easy to be applied. The fat and bones estimate models were not as accurate.

  17. Microporous silk fibroin scaffolds embedding PLGA microparticles for controlled growth factor delivery in tissue engineering.

    Science.gov (United States)

    Wenk, Esther; Meinel, Anne J; Wildy, Sarah; Merkle, Hans P; Meinel, Lorenz

    2009-05-01

    The development of prototype scaffolds for either direct implantation or tissue engineering purposes and featuring spatiotemporal control of growth factor release is highly desirable. Silk fibroin (SF) scaffolds with interconnective pores, carrying embedded microparticles that were loaded with insulin-like growth factor I (IGF-I), were prepared by a porogen leaching protocol. Treatments with methanol or water vapor induced water insolubility of SF based on an increase in beta-sheet content as analyzed by FTIR. Pore interconnectivity was demonstrated by SEM. Porosities were in the range of 70-90%, depending on the treatment applied, and were better preserved when methanol or water vapor treatments were prior to porogen leaching. IGF-I was encapsulated into two different types of poly(lactide-co-glycolide) microparticles (PLGA MP) using uncapped PLGA (50:50) with molecular weights of either 14 or 35 kDa to control IGF-I release kinetics from the SF scaffold. Embedded PLGA MP were located in the walls or intersections of the SF scaffold. Embedment of the PLGA MP into the scaffolds led to more sustained release rates as compared to the free PLGA MP, whereas the hydrolytic degradation of the two PLGA MP types was not affected. The PLGA types used had distinct effects on IGF-I release kinetics. Particularly the supernatants of the lower molecular weight PLGA formulations turned out to release bioactive IGF-I. Our studies justify future investigations of the developed constructs for tissue engineering applications.

  18. The glycoprotein Ib-IX-V complex contributes to tissue factor-independent thrombin generation by recombinant factor VIIa on the activated platelet surface

    NARCIS (Netherlands)

    Weeterings, Cees; de Groot, Philip G.; Adelmeijer, Jelle; Lisman, Ton

    2008-01-01

    Several lines of evidence suggest that recombinant factor VIIa (rFVIIa) is able to activate factor X on an activated platelet, in a tissue factor-independent manner. We hypothesized that, besides the anionic surface, a receptor on the activated platelet surface is involved in this process. Here, we

  19. Catalytic synthesis of enantiopure mixed diacylglycerols - synthesis of a major M. tuberculosis phospholipid and platelet activating factor

    NARCIS (Netherlands)

    Fodran, Peter; Minnaard, Adriaan J.

    2013-01-01

    An efficient catalytic one-pot synthesis of TBDMS-protected diacylglycerols has been developed, starting from enantiopure glycidol. Subsequent migration-free deprotection leads to stereo- and regiochemically pure diacylglycerols. This novel strategy has been applied to the synthesis of a major

  20. PET Imaging of Tissue Factor in Pancreatic Cancer Using 64Cu-Labeled Active Site-Inhibited Factor VII.

    Science.gov (United States)

    Nielsen, Carsten H; Jeppesen, Troels E; Kristensen, Lotte K; Jensen, Mette M; El Ali, Henrik H; Madsen, Jacob; Wiinberg, Bo; Petersen, Lars C; Kjaer, Andreas

    2016-07-01

    Tissue factor (TF) is the main initiator of the extrinsic coagulation cascade. However, TF also plays an important role in cancer. TF expression has been reported in 53%-89% of all pancreatic adenocarcinomas, and the expression level of TF has in clinical studies correlated with advanced stage, increased microvessel density, metastasis, and poor overall survival. Imaging of TF expression is of clinical relevance as a prognostic biomarker and as a companion diagnostic for TF-directed therapies currently under clinical development. Factor VII (FVII) is the natural ligand to TF. The purpose of this study was to investigate the possibility of using active site-inhibited FVII (FVIIai) labeled with (64)Cu for PET imaging of TF expression. FVIIai was conjugated to 2-S-(4-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid (p-SCN-Bn-NOTA) and labeled with (64)Cu ((64)Cu-NOTA-FVIIai). Longitudinal in vivo PET imaging was performed at 1, 4, 15, and 36 h after injection of (64)Cu-NOTA-FVIIai in mice with pancreatic adenocarcinomas (BxPC-3). The specificity of TF imaging with (64)Cu-NOTA-FVIIai was investigated in subcutaneous pancreatic tumor models with different levels of TF expression and in a competition experiment. In addition, imaging of orthotopic pancreatic tumors was performed using (64)Cu-NOTA-FVIIai and PET/MRI. In vivo imaging data were supported by ex vivo biodistribution, flow cytometry, and immunohistochemistry. Longitudinal PET imaging with (64)Cu-NOTA-FVIIai showed a tumor uptake of 2.3 ± 0.2, 3.7 ± 0.3, 3.4 ± 0.3, and 2.4 ± 0.3 percentage injected dose per gram at 1, 4, 15, and 36 h after injection, respectively. An increase in tumor-to-normal-tissue contrast was observed over the imaging time course. Competition with unlabeled FVIIai significantly (P < 0.001) reduced the tumor uptake. The tumor uptake observed in models with different TF expression levels was significantly different from each other (P < 0.001) and was in agreement with

  1. Quantitative PET Imaging of Tissue Factor Expression Using 18F-Labeled Active Site-Inhibited Factor VII.

    Science.gov (United States)

    Nielsen, Carsten H; Erlandsson, Maria; Jeppesen, Troels E; Jensen, Mette M; Kristensen, Lotte K; Madsen, Jacob; Petersen, Lars C; Kjaer, Andreas

    2016-01-01

    Tissue factor (TF) is upregulated in many solid tumors, and its expression is linked to tumor angiogenesis, invasion, metastasis, and prognosis. A noninvasive assessment of tumor TF expression status is therefore of obvious clinical relevance. Factor VII is the natural ligand to TF. Here we report the development of a new PET tracer for specific imaging of TF using an (18)F-labeled derivative of factor VII. Active site-inhibited factor VIIa (FVIIai) was obtained by inactivation with phenylalanine-phenylalanine-arginine-chloromethyl ketone. FVIIai was radiolabeled with N-succinimidyl 4-(18)F-fluorobenzoate and purified. The corresponding product, (18)F-FVIIai, was injected into nude mice with subcutaneous human pancreatic xenograft tumors (BxPC-3) and investigated using small-animal PET/CT imaging 1, 2, and 4 h after injection. Ex vivo biodistribution was performed after the last imaging session, and tumor tissue was preserved for molecular analysis. A blocking experiment was performed in a second set of mice. The expression pattern of TF in the tumors was visualized by immunohistochemistry and the amount of TF in tumor homogenates was measured by enzyme-linked immunosorbent assay and correlated with the uptake of (18)F-FVIIai in the tumors measured in vivo by PET imaging. The PET images showed high uptake of (18)F-FVIIai in the tumor regions, with a mean uptake of 2.5 ± 0.3 percentage injected dose per gram (%ID/g) (mean ± SEM) 4 h after injection of 7.3-9.3 MBq of (18)F-FVIIai and with an average maximum uptake in the tumors of 7.1 ± 0.7 %ID/g at 4 h. In comparison, the muscle uptake was 0.2 ± 0.01 %ID/g at 4 h. At 4 h, the tumors had the highest uptake of any organ. Blocking with FVIIai significantly reduced the uptake of (18)F-FVIIai from 2.9 ± 0.1 to 1.4 ± 0.1 %ID/g (P < 0.001). The uptake of (18)F-FVIIai measured in vivo by PET imaging correlated (r = 0.72, P < 0.02) with TF protein level measured ex vivo. (18)F-FVIIai is a promising PET tracer for

  2. Connective tissue growth factor is involved in structural retinal vascular changes in long-term experimental diabetes

    NARCIS (Netherlands)

    Van Geest, Rob J; Leeuwis, Jan Willem; Dendooven, Amélie; Pfister, Frederick; Bosch, Klazien; Hoeben, Kees A; Vogels, Ilse M C; Van der Giezen, Dionne M; Dietrich, Nadine; Hammes, Hans-Peter; Goldschmeding, Roel; Klaassen, Ingeborg; Van Noorden, Cornelis J F; Schlingemann, Reinier O

    Early retinal vascular changes in the development of diabetic retinopathy (DR) include capillary basal lamina (BL) thickening, pericyte loss and the development of acellular capillaries. Expression of the CCN (connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed) family

  3. Connective tissue growth factor is involved in structural retinal vascular changes in long-term experimental diabetes

    NARCIS (Netherlands)

    van Geest, Rob J.; Leeuwis, Jan Willem; Dendooven, Amélie; Pfister, Frederick; Bosch, Klazien; Hoeben, Kees A.; Vogels, Ilse M. C.; van der Giezen, Dionne M.; Dietrich, Nadine; Hammes, Hans-Peter; Goldschmeding, Roel; Klaassen, Ingeborg; van Noorden, Cornelis J. F.; Schlingemann, Reinier O.

    2014-01-01

    Early retinal vascular changes in the development of diabetic retinopathy (DR) include capillary basal lamina (BL) thickening, pericyte loss and the development of acellular capillaries. Expression of the CCN (connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed) family

  4. Air pollution upregulates endothelial cell procoagulant activity via ultrafine particle-induced oxidant signaling and tissue factor expression.

    Science.gov (United States)

    Snow, S J; Cheng, W; Wolberg, A S; Carraway, M S

    2014-07-01

    Air pollution exposure is associated with cardiovascular events triggered by clot formation. Endothelial activation and initiation of coagulation are pathophysiological mechanisms that could link inhaled air pollutants to vascular events. Here we investigated the underlying mechanisms of increased endothelial cell procoagulant activity following exposure to soluble components of ultrafine particles (soluble UF). Human coronary artery endothelial cells (HCAEC) were exposed to soluble UF and assessed for their ability to trigger procoagulant activity in platelet-free plasma. Exposed HCAEC triggered earlier thrombin generation and faster fibrin clot formation, which was abolished by an anti-tissue factor (TF) antibody, indicating TF-dependent effects. Soluble UF exposure increased TF mRNA expression without compensatory increases in key anticoagulant proteins. To identify early events that regulate TF expression, we measured endothelial H2O2 production following soluble UF exposure and identified the enzymatic source. Soluble UF exposure increased endothelial H2O2 production, and antioxidants attenuated UF-induced upregulation of TF, linking the procoagulant responses to reactive oxygen species (ROS) formation. Chemical inhibitors and RNA silencing showed that NOX-4, an important endothelial source of H2O2, was involved in UF-induced upregulation of TF mRNA. These data indicate that soluble UF exposure induces endothelial cell procoagulant activity, which involves de novo TF synthesis, ROS production, and the NOX-4 enzyme. These findings provide mechanistic insight into the adverse cardiovascular effects associated with air pollution exposure. Published by Oxford University Press on behalf of Toxicological Sciences 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  5. Diet and lifestyle factors associated with miRNA expression in colorectal tissue

    Directory of Open Access Journals (Sweden)

    Slattery ML

    2016-12-01

    Full Text Available Martha L Slattery,1 Jennifer S Herrick,1 Lila E Mullany,1 John R Stevens,2 Roger K Wolff1 1Department of Internal Medicine, The University of Utah, Salt Lake City, 2Department of Mathematics and Statistics, Utah State University, Logan, UT, USA Abstract: MicroRNAs (miRNAs are small non-protein-coding RNA molecules that regulate gene expression. Diet and lifestyle factors have been hypothesized to be involved in the regulation of miRNA expression. In this study it was hypothesized that diet and lifestyle factors are associated with miRNA expression. Data from 1,447 cases of colorectal cancer to evaluate 34 diet and lifestyle variables using miRNA expression in normal colorectal mucosa as well as for differential expression between paired carcinoma and normal tissue were used. miRNA data were obtained using an Agilent platform. Multiple comparisons were adjusted for using the false discovery rate q-value. There were 250 miRNAs differentially expressed between carcinoma and normal colonic tissue by level of carbohydrate intake and 198 miRNAs differentially expressed by the level of sucrose intake. Of these miRNAs, 166 miRNAs were differentially expressed for both carbohydrate intake and sucrose intake. Ninety-nine miRNAs were differentially expressed by the level of whole grain intake in normal colonic mucosa. Level of oxidative balance score was associated with 137 differentially expressed miRNAs between carcinoma and paired normal rectal mucosa. Additionally, 135 miRNAs were differentially expressed in colon tissue based on recent NSAID use. Other dietary factors, body mass index, waist and hip circumference, and long-term physical activity levels did not alter miRNA expression after adjustment for multiple comparisons. These results suggest that diet and lifestyle factors regulate miRNA level. They provide additional support for the influence of carbohydrate, sucrose, whole grains, NSAIDs, and oxidative balance score on colorectal cancer risk

  6. Macrophage migration inhibitory factor is involved in ectopic endometrial tissue growth and peritoneal-endometrial tissue interaction in vivo: a plausible link to endometriosis development.

    Directory of Open Access Journals (Sweden)

    Halima Rakhila

    Full Text Available Pelvic inflammation is a hallmark of endometriosis pathogenesis and a major cause of the disease's symptoms. Abnormal immune and inflammatory changes may not only contribute to endometriosis-major symptoms, but also contribute to ectopic endometrial tissue growth and endometriosis development. A major pro-inflammatory factors found elevated in peritoneal fluid of women with endometriosis and to be overexpressed in peritoneal fluid macrophages and active, highly vascularized and early stage endometriotic lesions, macrophage migration inhibitory factor (MIF appeared to induce angiogenic and inflammatory and estrogen producing phenotypes in endometriotic cells in vitro and to be a possible therapeutic target in vivo. Using a mouse model where MIF-knock out (KO mice received intra-peritoneal injection of endometrial tissue from MIF-KO or syngeneic wild type (WT mice and vice versa, our current study revealed that MIF genetic depletion resulted in a marked reduction ectopic endometrial tissue growth, a disrupted tissue structure and a significant down regulation of the expression of major inflammatory (cyclooxygenease-2, cell adhesion (αv and β3 integrins, survival (B-cell lymphoma-2 and angiogenic (vascular endothelial cell growth factors relevant to endometriosis pathogenesis, whereas MIF add-back to MIF-KO mice significantly restored endometriosis-like lesions number and size. Interestingly, cross-experiments revealed that MIF presence in both endometrial and peritoneal host tissues is required for ectopic endometrial tissue growth and pointed to its involvement in endometrial-peritoneal interactions. This study provides compelling evidence for the role of MIF in endometriosis development and its possible interest for a targeted treatment of endometriosis.

  7. Macrophage migration inhibitory factor is involved in ectopic endometrial tissue growth and peritoneal-endometrial tissue interaction in vivo: a plausible link to endometriosis development.

    Science.gov (United States)

    Rakhila, Halima; Girard, Karine; Leboeuf, Mathieu; Lemyre, Madeleine; Akoum, Ali

    2014-01-01

    Pelvic inflammation is a hallmark of endometriosis pathogenesis and a major cause of the disease's symptoms. Abnormal immune and inflammatory changes may not only contribute to endometriosis-major symptoms, but also contribute to ectopic endometrial tissue growth and endometriosis development. A major pro-inflammatory factors found elevated in peritoneal fluid of women with endometriosis and to be overexpressed in peritoneal fluid macrophages and active, highly vascularized and early stage endometriotic lesions, macrophage migration inhibitory factor (MIF) appeared to induce angiogenic and inflammatory and estrogen producing phenotypes in endometriotic cells in vitro and to be a possible therapeutic target in vivo. Using a mouse model where MIF-knock out (KO) mice received intra-peritoneal injection of endometrial tissue from MIF-KO or syngeneic wild type (WT) mice and vice versa, our current study revealed that MIF genetic depletion resulted in a marked reduction ectopic endometrial tissue growth, a disrupted tissue structure and a significant down regulation of the expression of major inflammatory (cyclooxygenease-2), cell adhesion (αv and β3 integrins), survival (B-cell lymphoma-2) and angiogenic (vascular endothelial cell growth) factors relevant to endometriosis pathogenesis, whereas MIF add-back to MIF-KO mice significantly restored endometriosis-like lesions number and size. Interestingly, cross-experiments revealed that MIF presence in both endometrial and peritoneal host tissues is required for ectopic endometrial tissue growth and pointed to its involvement in endometrial-peritoneal interactions. This study provides compelling evidence for the role of MIF in endometriosis development and its possible interest for a targeted treatment of endometriosis.

  8. The diagnostic value of plasma N-terminal connective tissue growth factor levels in children with heart failure.

    Science.gov (United States)

    Li, Gang; Song, Xueqing; Xia, Jiyi; Li, Jing; Jia, Peng; Chen, Pengyuan; Zhao, Jian; Liu, Bin

    2017-01-01

    The aim of this study was to assess the diagnostic value of plasma N-terminal connective tissue growth factor in children with heart failure. Methods and results Plasma N-terminal connective tissue growth factor was determined in 61 children, including 41 children with heart failure, 20 children without heart failure, and 30 healthy volunteers. The correlations between plasma N-terminal connective tissue growth factor levels and clinical parameters were investigated. Moreover, the diagnostic value of N-terminal connective tissue growth factor levels was evaluated. Compared with healthy volunteers and children without heart failure, plasma N-terminal connective tissue growth factor levels were significantly elevated in those with heart failure (p0.05), but it obviously improved the ability of diagnosing heart failure in children, as demonstrated by the integrated discrimination improvement (6.2%, p=0.013) and net re-classification improvement (13.2%, p=0.017) indices. Plasma N-terminal connective tissue growth factor is a promising diagnostic biomarker for heart failure in children.

  9. Factors associated with collagen deposition in lymphoid tissue in long-term treated HIV-infected patients.

    Science.gov (United States)

    Diaz, Alba; Alós, Llúcia; León, Agathe; Mozos, Anna; Caballero, Miguel; Martinez, Antonio; Plana, Montserrat; Gallart, Teresa; Gil, Cristina; Leal, Manuel; Gatell, Jose M; García, Felipe

    2010-08-24

    The factors associated with fibrosis in lymphoid tissue in long-term treated HIV-infected patients and their correlation with immune reconstitution were assessed. Tonsillar biopsies were performed in seven antiretroviral-naive patients and 29 successfully treated patients (median time on treatment, 61 months). Twenty patients received protease inhibitors-sparing regimens and nine protease inhibitor-containing regimens. Five tonsillar resections of HIV-negative individuals were used as controls. Lymphoid tissue architecture, collagen deposition (fibrosis) and the mean interfollicular CD4(+) cell count per mum were assessed. Naive and long-term treated HIV-infected patients had a higher proportion of fibrosis than did HIV-uninfected persons (P lymphoid tissue (P = 0.03) and smaller increase in peripheral CD4(+) T cells (r = -0.40, P = 0.05). The factors independently associated with fibrosis in lymphoid tissue were age (P lymphoid tissue viral load when compared with patients with undetectable lymphoid tissue viral load (median 5 vs. 12%, respectively, P = 0.017) and patients receiving a protease inhibitor-sparing vs. a protease inhibitor-containing regimen (median 8 vs. 2.5%, respectively, P = 0.04). Fibrosis in lymphoid tissue was associated with a poor reconstitution of CD4(+) T cells and long-term antiretroviral therapy did not reverse this abnormality. HIV infection, older age, a detectable level of lymphoid tissue viral load in treated patients and protease inhibitor-sparing regimens seem to favour fibrosis in lymphoid tissue.

  10. Do methodological differences account for the current controversy on tissue factor expression in platelets?

    Science.gov (United States)

    Brambilla, Marta; Rossetti, Laura; Zara, Chiara; Canzano, Paola; Giesen, Peter L A; Tremoli, Elena; Camera, Marina

    2018-06-01

    Tissue factor (TF), the key activator of the blood coagulation cascade and of thrombus formation, is also expressed by circulating human platelets. Despite the documented in-depth characterization of platelet TF carried out in the past 15 years, some authors still fail to identify TF in platelets, especially when assessment in platelet-rich plasma (PRP) or washed platelets is carried out. This study aims to extend the characterization of the subset of TF-positive platelets in PRP from healthy subjects and to verify how different centrifugation forces, used to prepare the PRP, could affect the analysis of TF-positive platelets. Data indicate that large-size platelets express significantly higher amount of TF compared to small-size cells, in terms of both TF protein and TF mRNA. Upon stimulation, large platelets readily expose on the cell membrane TF, which is functionally active, i.e., able to generate factor Xa (FXa) as well as thrombin. By contrast, TF activity in small platelets is almost completely quenched by tissue factor pathway inhibitor (TFPI), becoming indeed detectable only after treatment with an anti-TFPI antibody. Our data highlight that particular attention must be paid to the preparation and collection of the PRP since such preanalytical variables may influence the platelet recovery and in turn affect subsequent analysis, whether it is flow cytometry, functional activity tests, proteome, or transcriptome analysis. Indeed, the TF-positive subset of large platelets can easily be lost if centrifugation protocols are not optimized, thus erroneously leading to a false-negative result.

  11. Hypoxia-Inducible Factor-1α: A Potential Factor for the Enhancement of Osseointegration between Dental Implants and Tissue-Engineered Bone

    Directory of Open Access Journals (Sweden)

    Duohong Zou

    2011-07-01

    Full Text Available Introduction: Tissue-engineered bones are widely utilized to protect healthy tissue, reduce pain, and increase the success rate of dental implants. one of the most challenging obstacles lies in obtaining effective os-seointegration between dental implants and tissue-engineered structures. Deficiencies in vascularization, osteogenic factors, oxygen, and other nutrients inside the tissue-engineered bone during the early stages following implantation all inhibit effective osseointe-gration. Oxygen is required for aerobic metabolism in bone and blood vessel tissues, but oxygen levels inside tissue-engineered bone are not suf-ficient for cell proliferation. HIF-1α is a pivotal regulator of hypoxic and ischemic vascular responses, driving transcriptional activation of hundreds of genes involved in vascular reactivity, angiogenesis, arteriogenesis, and osteogenesis.The hypothesis: Hypoxia-Inducible Factor-1α seems a potential factor for the enhancement of osseointegration between dental implants and tissue-engineered bone.Evaluation of the hypothesis: Enhancement of HIF-1α protein expression is recognized as the most promising approach for angiogenesis, because it can induce multiple angiogenic targets in a coordinated manner. Therefore, it will be a novel potential therapeutic methods targeting HIF-1α expression to enhance osseointegration be-tween dental implants and tissue-engineered bone.

  12. Platelet-Derived Short-Chain Polyphosphates Enhance the Inactivation of Tissue Factor Pathway Inhibitor by Activated Coagulation Factor XI.

    Directory of Open Access Journals (Sweden)

    Cristina Puy

    Full Text Available Factor (F XI supports both normal human hemostasis and pathological thrombosis. Activated FXI (FXIa promotes thrombin generation by enzymatic activation of FXI, FIX, FX, and FV, and inactivation of alpha tissue factor pathway inhibitor (TFPIα, in vitro. Some of these reactions are now known to be enhanced by short-chain polyphosphates (SCP derived from activated platelets. These SCPs act as a cofactor for the activation of FXI and FV by thrombin and FXIa, respectively. Since SCPs have been shown to inhibit the anticoagulant function of TFPIα, we herein investigated whether SCPs could serve as cofactors for the proteolytic inactivation of TFPIα by FXIa, further promoting the efficiency of the extrinsic pathway of coagulation to generate thrombin.Purified soluble SCP was prepared by size-fractionation of sodium polyphosphate. TFPIα proteolysis was analyzed by western blot. TFPIα activity was measured as inhibition of FX activation and activity in coagulation and chromogenic assays. SCPs significantly accelerated the rate of inactivation of TFPIα by FXIa in both purified systems and in recalcified plasma. Moreover, platelet-derived SCP accelerated the rate of inactivation of platelet-derived TFPIα by FXIa. TFPIα activity was not affected by SCP in recalcified FXI-depleted plasma.Our data suggest that SCP is a cofactor for TFPIα inactivation by FXIa, thus, expanding the range of hemostatic FXIa substrates that may be affected by the cofactor functions of platelet-derived SCP.

  13. Association of Polymorphisms in Connective Tissue Growth Factor and Epidermal Growth Factor Receptor Genes With Human Longevity.

    Science.gov (United States)

    Donlon, Timothy A; Morris, Brian J; He, Qimei; Chen, Randi; Masaki, Kamal H; Allsopp, Richard C; Willcox, D Craig; Tranah, Gregory J; Parimi, Neeta; Evans, Daniel S; Flachsbart, Friederike; Nebel, Almut; Kim, Duk-Hwan; Park, Joobae; Willcox, Bradley J

    2017-08-01

    Growth pathways play key roles in longevity. The present study tested single-nucleotide polymorphisms (SNPs) in the connective tissue growth factor gene (CTGF) and the epidermal growth factor receptor gene (EGFR) for association with longevity. Comparison of allele and genotype frequencies of 12 CTGF SNPs and 41 EGFR SNPs between 440 American men of Japanese ancestry aged ≥95 years and 374 men of average life span revealed association with longevity at the p cases, consistent with heterozygote advantage in living to extreme old age. No associations of the most significant SNPs were observed in whites or Koreans. In conclusion, the present findings indicate that genetic variation in CTGF and EGFR may contribute to the attainment of extreme old age in Japanese. More research is needed to confirm that genetic variation in CTGF and EGFR contributes to the attainment of extreme old age across human populations. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Risk Factors for Complications Differ Between Stages of Tissue-Expander Breast Reconstruction.

    Science.gov (United States)

    Lovecchio, Francis; Jordan, Sumanas W; Lim, Seokchun; Fine, Neil A; Kim, John Y S

    2015-09-01

    Tissue-expander (TE) placement followed by implant exchange is currently the most popular method of breast reconstruction. There is a relative paucity of data demonstrating patient factors that predict complications specifically by stage of surgery. The present study attempts to determine what complications are most likely to occur at each stage and how the risk factors for complications vary by stage of reconstruction. A retrospective chart review was performed on all 1275 patients who had TEs placed by the 2 senior authors between 2004 and 2013. Complication rates were determined at each stage of reconstruction, and these rates were further compared between patients who had pre-stage I radiation, post-stage I radiation, and no radiation exposure. Multivariate logistic regression was used to identify independent predictors of complications at each stage of reconstruction. A total of 1639 consecutive TEs were placed by the senior authors during the study period. The overall rate for experiencing a complication at any stage of surgery was 17%. Complications occurred at uniformly higher rates during stage I for all complications (92% stage I vs 7% stage II vs 1% stage III, P higher intraoperative percent fill (OR, 3.3; 95% CI, 1.7-6.3). Post-stage I radiation was the only independent risk factor for a stage II complication (OR, 4.5; 95% CI, 1.4-15.2). Complications occur at higher rates after stage I than after stage II, and as expected, stage III complications are exceedingly rare. Risk factors for stage I complications are different from risk factors for stage II complications. Body mass index and smoking are associated with complications at stage I, but do not predict complications at stage II surgery. The stratification of risk factors by stage of surgery will help surgeons and patients better manage both risk and expectations.

  15. Factorization and the synthesis of optimal feedback gains for distributed parameter systems

    Science.gov (United States)

    Milman, Mark H.; Scheid, Robert E.

    1990-01-01

    An approach based on Volterra factorization leads to a new methodology for the analysis and synthesis of the optimal feedback gain in the finite-time linear quadratic control problem for distributed parameter systems. The approach circumvents the need for solving and analyzing Riccati equations and provides a more transparent connection between the system dynamics and the optimal gain. The general results are further extended and specialized for the case where the underlying state is characterized by autonomous differential-delay dynamics. Numerical examples are given to illustrate the second-order convergence rate that is derived for an approximation scheme for the optimal feedback gain in the differential-delay problem.

  16. Impact of pre-analytical factors on the proteomic analysis of formalin-fixed paraffin-embedded tissue.

    Science.gov (United States)

    Thompson, Seonaid M; Craven, Rachel A; Nirmalan, Niroshini J; Harnden, Patricia; Selby, Peter J; Banks, Rosamonde E

    2013-04-01

    Formalin-fixed paraffin-embedded (FFPE) tissue samples represent a tremendous potential resource for biomarker discovery, with large numbers of samples in hospital pathology departments and links to clinical information. However, the cross-linking of proteins and nucleic acids by formalin fixation has hampered analysis and proteomic studies have been restricted to using frozen tissue, which is more limited in availability as it needs to be collected specifically for research. This means that rare disease subtypes cannot be studied easily. Recently, improved extraction techniques have enabled analysis of FFPE tissue by a number of proteomic techniques. As with all clinical samples, pre-analytical factors are likely to impact on the results obtained, although overlooked in many studies. The aim of this review is to discuss the various pre-analytical factors, which include warm and cold ischaemic time, size of sample, fixation duration and temperature, tissue processing conditions, length of storage of archival tissue and storage conditions, and to review the studies that have considered these factors in more detail. In those areas where investigations are few or non-existent, illustrative examples of the possible importance of specific factors have been drawn from studies using frozen tissue or from immunohistochemical studies of FFPE tissue. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Overexpressed connective tissue growth factor in cardiomyocytes attenuates left ventricular remodeling induced by angiotensin II perfusion.

    Science.gov (United States)

    Zhang, Ying; Yan, Hua; Guang, Gong-Chang; Deng, Zheng-Rong

    2017-01-01

    To evaluate the improving effects of specifically overexpressed connective tissue growth factor (CTGF) in cardiomyocytes on mice with hypertension induced by angiotensin II (AngII) perfusion, 24 transgenic mice with cardiac-restricted overexpression of CTGF (Tg-CTGF) were divided into two equal groups that were perfused with acetic acid and AngII, respectively, for 7 days. Another 24 cage-control wild-type C57BL/6 mice (NLC) were divided and treated identically. Blood pressure was detected by caudal artery cannulation. Cardiac structural and functional changes were observed by echocardiography. Cardiac fibrosis was detected by Masson staining. After AngII perfusion, blood pressures of NLC and Tg-CTGF mice, especially those of the formers, significantly increased. Compared with NLC + AngII group, Tg-CTGF + AngII group had significantly lower left ventricular posterior wall thickness at end-diastole and left ventricular posterior wall thickness at end-systole as well as significantly higher left ventricular end-systolic diameter and left ventricular end-diastolic diameter (P tissues (P < 0.05). Tg-CTGF can protect AngII-induced cardiac remodeling of mice with hypertension by mitigating inflammatory response. CTGF may be a therapy target for hypertension-induced myocardial fibrosis, but the detailed mechanism still needs in-depth studies.

  18. Expression of Tissue Factor in Epithelial Ovarian Carcinoma Is Involved in the Development of Venous Thromboembolism.

    Science.gov (United States)

    Sakurai, Manabu; Matsumoto, Koji; Gosho, Masahiko; Sakata, Akiko; Hosokawa, Yoshihiko; Tenjimbayashi, Yuri; Katoh, Takashi; Shikama, Ayumi; Komiya, Haruna; Michikami, Hiroo; Tasaka, Nobutaka; Akiyama-Abe, Azusa; Nakao, Sari; Ochi, Hiroyuki; Onuki, Mamiko; Minaguchi, Takeo; Yoshikawa, Hiroyuki; Satoh, Toyomi

    2017-01-01

    Our 2007 study of 32 patients with ovarian cancer reported the possible involvement of tissue factor (TF) in the development of venous thromboembolism (VTE) before treatment, especially in clear cell carcinoma (CCC). This follow-up study further investigated this possibility in a larger cohort. We investigated the intensity of TF expression (ITFE) and other variables for associations with VTE using univariate and multivariate analyses in 128 patients with epithelial ovarian cancer initially treated between November 2004 and December 2010, none of whom had received neoadjuvant chemotherapy. Before starting treatment, all patients were ultrasonographically screened for VTE. The ITFE was graded based on immunostaining of surgical specimens. Histological types were serous carcinoma (n = 42), CCC (n = 12), endometrioid carcinoma (n = 15), mucinous carcinoma (n = 53), and undifferentiated carcinoma (n = 6). The prevalence of VTE was significantly higher in CCC (34%) than in non-CCC (17%, P = 0.03). As ITFE increased, the frequencies of CCC and VTE increased significantly (P epithelial ovarian cancer may involve TF expression in cancer tissues.

  19. Plasmin-dependent proteolysis of tissue factor pathway inhibitor in a mouse model of endotoxemia.

    Science.gov (United States)

    Lupu, C; Herlea, O; Tang, H; Lijnen, R H; Lupu, F

    2013-01-01

    The development of a procoagulant state in sepsis, owing to aberrant expression of tissue factor (TF) and a sharp decrease in the level of its major inhibitor, TF pathway inhibitor (TFPI), could lead to microthrombotic organ failure. The mechanism for the decline in TFPI activity in the lung could involve plasmin-mediated cleavage of the inhibitor. To investigate the effect of plasmin generation on lung-associated TFPI activity, in normal conditions and during infusion of endotoxin (lipopolysaccharide [LPS]) in mice. Plasmin generation and TFPI activity were assayed in the lungs of mice deficient in tissue-type plasminogen (Plg) activator (t-PA) or Plg, at 2 h after LPS or saline injection. The sharp loss of lung-associated TFPI activity at 2 h after LPS challenge paralleled the abrupt increase in plasmin generation. TFPI activity was significantly retained in both t-PA(-/-) and Plg(-/-) mice, which are unable to generate plasmin. The increased plasmin generation during the early stages of sepsis could cleave/inactivate TFPI and thus lead to thrombotic complications. © 2012 International Society on Thrombosis and Haemostasis.

  20. Generation of hyaline cartilaginous tissue from mouse adult dermal fibroblast culture by defined factors

    Science.gov (United States)

    Hiramatsu, Kunihiko; Sasagawa, Satoru; Outani, Hidetatsu; Nakagawa, Kanako; Yoshikawa, Hideki; Tsumaki, Noriyuki

    2011-01-01

    Repair of cartilage injury with hyaline cartilage continues to be a challenging clinical problem. Because of the limited number of chondrocytes in vivo, coupled with in vitro de-differentiation of chondrocytes into fibrochondrocytes, which secrete type I collagen and have an altered matrix architecture and mechanical function, there is a need for a novel cell source that produces hyaline cartilage. The generation of induced pluripotent stem (iPS) cells has provided a tool for reprogramming dermal fibroblasts to an undifferentiated state by ectopic expression of reprogramming factors. Here, we show that retroviral expression of two reprogramming factors (c-Myc and Klf4) and one chondrogenic factor (SOX9) induces polygonal chondrogenic cells directly from adult dermal fibroblast cultures. Induced cells expressed marker genes for chondrocytes but not fibroblasts, i.e., the promoters of type I collagen genes were extensively methylated. Although some induced cell lines formed tumors when subcutaneously injected into nude mice, other induced cell lines generated stable homogenous hyaline cartilage–like tissue. Further, the doxycycline-inducible induction system demonstrated that induced cells are able to respond to chondrogenic medium by expressing endogenous Sox9 and maintain chondrogenic potential after substantial reduction of transgene expression. Thus, this approach could lead to the preparation of hyaline cartilage directly from skin, without generating iPS cells. PMID:21293062

  1. Tissue factor activated thromboelastography correlates to clinical signs of bleeding in dogs

    DEFF Research Database (Denmark)

    Wiinberg, Bo; Jensen, Asger Lundorff; Rozanski, Elizabeth

    2009-01-01

    The ability of a laboratory assay to correlate to clinical phenotype is crucial for the accurate diagnosis and monitoring of haemostasis and is therefore challenging with currently used routine haemostasis assays. Thromboelastography (TEG) is increasingly used to evaluate haemostasis in humans...... and may well be of value in the workup of dogs suspected of having a haemostatic disorder. This study was undertaken to evaluate prospectively how tissue factor (TF) activated TEG correlated to clinical signs of bleeding in dogs, compared to a routine coagulation profile. A prospective case-control study...... was performed over a 2 year period from 2004-2006. Eligible dogs were those where the primary clinician requested a coagulation profile to evaluate haemostasis. The dogs were simultaneously evaluated with a TF-activated TEG assay. Twenty-seven dogs, characterised as hypo-coagulable based on the TEG parameter G...

  2. Factors affecting recruitment into depression trials: Systematic review, meta-synthesis and conceptual framework.

    Science.gov (United States)

    Hughes-Morley, Adwoa; Young, Bridget; Waheed, Waquas; Small, Nicola; Bower, Peter

    2015-02-01

    Depression is common and clinical trials are crucial for evaluating treatments. Difficulties in recruiting participants into depression trials are well-documented, yet no study has examined the factors affecting recruitment. This review aims to identify the factors affecting recruitment into depression trials and to develop a conceptual framework through systematic assessment of published qualitative research. Systematic review and meta-synthesis of published qualitative studies. Meta-synthesis involves a synthesis of themes across a number of qualitative studies to produce findings that are "greater than the sum of the parts". ASSIA, CINAHL, Embase, Medline and PsychInfo were searched up to April 2013. Reference lists of included studies, key publications and relevant reviews were also searched. Quality appraisal adopted the "prompts for appraising qualitative research". 7977 citations were identified, and 15 studies were included. Findings indicate that the decision to enter a depression trial is made by patients and gatekeepers based on the patient׳s health state at the time of being approached to participate; on their attitude towards the research and trial interventions; and on the extent to which patients become engaged with the trial. Our conceptual framework highlights that the decision to participate by both the patient and the gatekeeper involves a judgement between risk and reward. Only English language publications were included in this review. Findings from this review have implications for the design of interventions to improve recruitment into depression trials. Such interventions may aim to diminish the perceived risks and increase the perceived rewards of participation. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Epicardial adipose tissue and cardiometabolic risk factors in overweight and obese children and adolescents.

    Science.gov (United States)

    Schusterova, I; Leenen, F H H; Jurko, A; Sabol, F; Takacova, J

    2014-02-01

    What is already known about this subject The prevalence of childhood obesity has increased markedly in the past 2 decades. Abdominal fat is a better predictor of risk than body mass index. Waist circumference (WC) as a measure of abdominal fat has limited sensitivity and specificity. What this study adds Epicardial adipose tissue (EAT) as measured by echocardiography represents a simple and reliable marker of visceral adiposity. In children, both body mass index and EAT show a similar or better correlation with markers of cardiometabolic risk than does waist circumference. Epicardial adipose tissue (EAT) is the visceral fat deposit around the heart and is commonly increased in obese subjects. EAT is related to cardiometabolic risk factors and non-alcoholic fatty liver disease (NAFLD) in adults, but this relationship is not well known in children. Echocardiographic assessment of EAT and its association with cardiometabolic risk factors in overweight and obese children. In 25 (mean age 13.0 ± 2.3) overweight and obese subjects and 24 lean controls, blood pressure (BP), WC, fasting plasma glucose and insulin, lipids, uric acid and hepatic enzymes were measured. EAT thickness was measured by transthoracic echocardiography. In overweight and obese subjects, EAT was significantly higher compared to normal weight children. Overweight and obese children had significantly higher body mass index (BMI), WC, BP, triglycerides (TAG), low-density lipoprotein and total cholesterol, hepatic enzymes alanine aminotransferase (ALT) and γ-glutamyl transferase, and lower high-density lipoprotein cholesterol (HDL-C). EAT correlated significantly with BP, TAG, uric acid, HDL-C, apoprotein B and ALT. Correlation coefficients were similar or better than for WC, but similar or lower than for BMI. EAT thickness in children is associated with an unfavourable cardiometabolic risk profile including biochemical signs of NAFLD and hyperuricaemia, but is not a stronger indicator than BMI.

  4. Genistein-mediated inhibition of glycosaminoglycan synthesis, which corrects storage in cells of patients suffering from mucopolysaccharidoses, acts by influencing an epidermal growth factor-dependent pathway

    Directory of Open Access Journals (Sweden)

    Barańska Sylwia

    2009-03-01

    Full Text Available Abstract Background Mucopolysaccharidoses (MPS are inherited metabolic disorders caused by mutations leading to dysfunction of one of enzymes involved in degradation of glycosaminoglycans (GAGs. Due to their impaired degradation, GAGs accumulate in cells of patients, which results in dysfunction of tissues and organs. Substrate reduction therapy is one of potential treatment of these diseases. It was demonstrated previously that genistein (4', 5, 7-trihydroxyisoflavone inhibits synthesis and reduces levels of GAGs in cultures of fibroblasts of MPS patients. Recent pilot clinical study indicated that such a therapy may be effective in MPS III (Sanfilippo syndrome. Methods To learn on details of the molecular mechanism of genistein-mediated inhibition of GAG synthesis, efficiency of this process was studied by measuring of incorporation of labeled sulfate, storage of GAGs in lysosomes was estimated by using electron microscopic techniques, and efficiency of phosphorylation of epidermal growth factor (EGF receptor was determined by using an ELISA-based assay with fluorogenic substrates. Results Effects of genistein on inhibition of GAG synthesis and accumulation in fibroblasts from patients suffering from various MPS types were abolished in the presence of an excess of EGF, and were partially reversed by an increased concentration of genistein. No such effects were observed when an excess of 17β-estradiol was used instead of EGF. Moreover, EGF-mediated stimulation of phsophorylation of the EGF receptor was impaired in the presence of genistein in both wild-type and MPS fibroblasts. Conclusion The results presented in this report indicate that the mechanism of genistein-mediated inhibition of GAG synthesis operates through epidermal growth factor (EGF-dependent pathway.

  5. Influence of environmental factors on growth and pigment synthesis by purple thiobacteria

    Directory of Open Access Journals (Sweden)

    Y. О. Pavlova

    2007-12-01

    Full Text Available The influence of different environmental factors on growth and pigment biosynthesis by particular strains of purple thiobacteria was investigated. These strains belong to the genus Chromatium, Thiocystis, Thiocapsa and Lamprocystis and were isolated from Yavoriv sulphur mine. Calcium, magnesium, manganese, iron and sodium chloride should be included in the medium for optimal growth of these bacteria. Addition of these elements entails increasing the biomass production and synthesis of carotenoids and bacteriochlorophyll a. Initial concentration of inoculum and electron donor has essential influence on growth of purple thiobacteria. Early in the development of culture, sulphide was oxidized, and then the growth impairment and destruction of cells under exposure of light were observed. For the optimization of bacteria growth the electron donor (sulphide must be added many times during the cultivation process in the concentration, which is not exceed an inhibition dose. The additional bringing of the electron donor in the medium promotes the raise of cells’ biomass. The acetate introduction in the medium has positive influence on the pigments’ biosynthesis. The essential factor of growth and pigments’ biosynthesis is the light intensity. Peak gain of the culture growth was observed under 400 lx. The amplification of light exposure is accompanied by the decrease of growth and content of pigments in cells. Oxygen inhibits the synthesis of pigments in all strains

  6. Isolation of cDNA clones coding for human tissue factor: primary structure of the protein and cDNA

    International Nuclear Information System (INIS)

    Spicer, E.K.; Horton, R.; Bloem, L.

    1987-01-01

    Tissue factor is a membrane-bound procoagulant protein that activates the extrinsic pathway of blood coagulation in the presence of factor VII and calcium. λ Phage containing the tissue factor gene were isolated from a human placental cDNA library. The amino acid sequence deduced from the nucleotide sequence of the cDNAs indicates that tissue factor is synthesized as a higher molecular weight precursor with a leader sequence of 32 amino acids, while the mature protein is a single polypeptide chain composed of 263 residues. The derived primary structure of tissue factor has been confirmed by comparison to protein and peptide sequence data. The sequence of the mature protein suggests that there are three distinct domains: extracellular, residues 1-219; hydrophobic, residues 220-242; and cytoplasmic, residues 243-263. Three potential N-linked carbohydrate attachment sites occur in the extracellular domain. The amino acid sequence of tissue factor shows no significant homology with the vitamin K-dependent serine proteases, coagulation cofactors, or any other protein in the National Biomedical Research Foundation sequence data bank (Washington, DC)

  7. A shift in the balance of vascular endothelial growth factor and connective tissue growth factor by bevacizumab causes the angiofibrotic switch in proliferative diabetic retinopathy

    NARCIS (Netherlands)

    van Geest, Rob J.; Lesnik-Oberstein, Sarit Y.; Tan, H. Stevie; Mura, Marco; Goldschmeding, Roel; van Noorden, Cornelis J. F.; Klaassen, Ingeborg; Schlingemann, Reinier O.

    2012-01-01

    Introduction In proliferative diabetic retinopathy (PDR), vascular endothelial growth factor (VEGF) and connective tissue growth factor (CTGF) may cause blindness by neovascularisation followed by fibrosis of the retina. It has previously been shown that a shift in the balance between levels of CTGF

  8. Progestin and thrombin regulate tissue factor expression in human term decidual cells.

    Science.gov (United States)

    Lockwood, C J; Murk, W; Kayisli, U A; Buchwalder, L F; Huang, S-T; Funai, E F; Krikun, G; Schatz, F

    2009-06-01

    Perivascular cell membrane-bound tissue factor (TF) initiates hemostasis via thrombin generation. The identity and potential regulation of TF-expressing cells at the human maternal-fetal interface that confers hemostatic protection during normal and preterm delivery is unclear. The objective of the study were to identify TF-expressing cells at the maternal-fetal interface in term and preterm decidual sections by immunohistochemistry and evaluate progestin, thrombin, TNF-alpha, and IL-1beta effects on TF expression by cultured human term decidual cells (DCs). Serial placental sections were immunostained for TF. Leukocyte-free term DC monolayers were incubated with 10(-8) M estradiol (E2) or E2 plus 10(-7) M medroxyprogestrone acetate (MPA) +/- thrombin or TNF-alpha or IL-1beta. ELISA and Western blotting assessed TF in cell lysates. Quantitative real-time RT-PCR measured TF mRNA levels. Immunolocalized TF in DC membranes in preterm and term placental sections displayed higher Histologic Scores than villous mesenchymal cells (P term placental sections, DC-expressed TF exceeds that of other cell types at the maternal-fetal interface and is localized at the cell membranes in which it can bind to factor VII and meet the hemostatic demands of labor and delivery via thrombin formation. Unlike the general concept that TF is constitutive in cells that highly express it, MPA and thrombin significantly enhanced TF expression in term DC monolayers.

  9. Microcapsule Technology for Controlled Growth Factor Release in Musculoskeletal Tissue Engineering.

    Science.gov (United States)

    Della Porta, Giovanna; Ciardulli, Maria C; Maffulli, Nicola

    2018-06-01

    Tissue engineering strategies have relied on engineered 3-dimensional (3D) scaffolds to provide architectural templates that can mimic the native cell environment. Among the several technologies proposed for the fabrication of 3D scaffold, that can be attractive for stem cell cultivation and differentiation, moulding or bioplotting of hydrogels allow the stratification of layers loaded with cells and with specific additives to obtain a predefined microstructural organization. Particularly with bioplotting technology, living cells, named bio-ink, and additives, such as biopolymer microdevices/nanodevices for the controlled delivery of growth factors or biosignals, can be organized spatially into a predesigned 3D pattern by automated fabrication with computer-aided digital files. The technologies for biopolymer microcarrier/nanocarrier fabrication can be strategic to provide a controlled spatiotemporal delivery of specific biosignals within a microenvironment that can better or faster address the stem cells loaded within it. In this review, some examples of growth factor-controlled delivery by biopolymer microdevices/nanodevices embedded within 3D hydrogel scaffolds will be described, to achieve a bioengineered 3D interactive microenvironment for stem cell differentiation. Conventional and recently proposed technologies for biopolymer microcapsule fabrication for controlled delivery over several days will also be illustrated and critically discussed.

  10. Glucose impairs tamoxifen responsiveness modulating connective tissue growth factor in breast cancer cells.

    Science.gov (United States)

    Ambrosio, Maria Rosaria; D'Esposito, Vittoria; Costa, Valerio; Liguoro, Domenico; Collina, Francesca; Cantile, Monica; Prevete, Nella; Passaro, Carmela; Mosca, Giusy; De Laurentiis, Michelino; Di Bonito, Maurizio; Botti, Gerardo; Franco, Renato; Beguinot, Francesco; Ciccodicola, Alfredo; Formisano, Pietro

    2017-12-12

    Type 2 diabetes and obesity are negative prognostic factors in patients with breast cancer (BC). We found that sensitivity to tamoxifen was reduced by 2-fold by 25 mM glucose (High Glucose; HG) compared to 5.5 mM glucose (Low Glucose; LG) in MCF7 BC cells. Shifting from HG to LG ameliorated MCF7 cell responsiveness to tamoxifen. RNA-Sequencing of MCF7 BC cells revealed that cell cycle-related genes were mainly affected by glucose. Connective Tissue Growth Factor (CTGF) was identified as a glucose-induced modulator of cell sensitivity to tamoxifen. Co-culturing MCF7 cells with human adipocytes exposed to HG, enhanced CTGF mRNA levels and reduced tamoxifen responsiveness of BC cells. Inhibition of adipocyte-released IL8 reverted these effects. Interestingly, CTGF immuno-detection in bioptic specimens from women with estrogen receptor positive (ER + ) BC correlated with hormone therapy resistance, distant metastases, reduced overall and disease-free survival. Thus, glucose affects tamoxifen responsiveness directly modulating CTGF in BC cells, and indirectly promoting IL8 release by adipocytes.

  11. Chronic intermittent hypoxia activates nuclear factor-κB in cardiovascular tissues in vivo

    International Nuclear Information System (INIS)

    Greenberg, Harly; Ye Xiaobing; Wilson, David; Htoo, Aung K.; Hendersen, Todd; Liu Shufang

    2006-01-01

    Obstructive sleep apnea (OSA) is an important risk factor for cardiovascular morbidity and mortality. The mechanisms through which OSA promotes the development of cardiovascular disease are poorly understood. In this study, we tested the hypotheses that chronic exposure to intermittent hypoxia and reoxygenation (CIH) is a major pathologic factor causing cardiovascular inflammation, and that CIH-induces cardiovascular inflammation and pathology by activating the NF-κB pathway. We demonstrated that exposure of mice to CIH activated NF-κB in cardiovascular tissues, and that OSA patients had markedly elevated monocyte NF-κB activity, which was significantly decreased when obstructive apneas and their resultant CIH were eliminated by nocturnal CPAP therapy. The elevated NF-κB activity induced by CIH is accompanied by and temporally correlated to the increased expression of iNOS protein, a putative and important NF-κB-dependent gene product. Thus, CIH-mediated NF-κB activation may be a molecular mechanism linking OSA and cardiovascular pathologies seen in OSA patients

  12. Regulation of tissue factor and inflammatory mediators by Egr-1 in a mouse endotoxemia model.

    Science.gov (United States)

    Pawlinski, Rafal; Pedersen, Brian; Kehrle, Bettina; Aird, William C; Frank, Rolf D; Guha, Mausumee; Mackman, Nigel

    2003-05-15

    In septic shock, tissue factor (TF) activates blood coagulation, and cytokines and chemokines orchestrate an inflammatory response. In this study, the role of Egr-1 in lipopolysaccharide (LPS) induction of TF and inflammatory mediators in vivo was evaluated using Egr-1(+/+) and Egr-1(-/-) mice. Administration of LPS transiently increased the steady-state levels of Egr-1 mRNA in the kidneys and lungs of Egr-1(+/+) mice with maximal induction at one hour. Egr-1 was expressed in epithelial cells in the kidneys and lungs in untreated and LPS-treated mice. LPS induction of monocyte chemoattractant protein mRNA in the kidneys and lungs of Egr-1(-/-) mice was not affected at 3 hours, but its expression was significantly reduced at 8 hours compared with the expression observed in Egr-1(+/+) mice. Similarly, LPS induction of TF mRNA expression in the kidneys and lungs at 8 hours was reduced in Egr-1(-/-) mice. However, Egr-1 deficiency did not affect plasma levels of tumor necrosis factor alpha in endotoxemic mice. Moreover, Egr-1(+/+) and Egr-1(-/-) mice exhibited similar survival times in a model of acute endotoxemia. These data indicate that Egr-1 does not contribute to the early inflammatory response in the kidneys and lungs or the early systemic inflammatory response in endotoxemic mice. However, Egr-1 does contribute to the sustained expression of inflammatory mediators and to the maximal expression of TF at 8 hours in the kidneys and lungs.

  13. Comparison of telomere length and insulin-like growth factor-binding protein 7 promoter methylation between breast cancer tissues and adjacent normal tissues in Turkish women.

    Science.gov (United States)

    Kaya, Zehra; Akkiprik, Mustafa; Karabulut, Sevgi; Peker, Irem; Gullu Amuran, Gokce; Ozmen, Tolga; Gulluoglu, Bahadır M; Kaya, Handan; Ozer, Ayse

    2017-09-01

    Both insulin-like growth factor-binding protein 7 (IGFBP7) and telomere length (TL) are associated with proliferation and senescence of human breast cancer. This study assessed the clinical significance of both TL and IGFBP7 methylation status in breast cancer tissues compared with adjacent normal tissues. We also investigated whether IGFBP7 methylation status could be affecting TL. Telomere length was measured by quantitative PCR to compare tumors with their adjacent normal tissues. The IGFBP7 promoter methylation status was evaluated by methylation-specific PCR and its expression levels were determined by western blotting. Telomeres were shorter in tumor tissues compared to controls (Pbreast cancer with invasive ductal carcinoma (IDC; n=72; P=.014) compared with other histological type (n=29), and TL in IDC with HER2 negative (n=53; P=.017) was higher than TL in IDC with HER2 positive (n=19). However, telomeres were shortened in advanced stages and growing tumors. IGFBP7 methylation was observed in 90% of tumor tissues and 59% of controls (P=.0002). Its frequency was significantly higher in IDC compared with invasive mixed carcinoma (IMC; P=.002) and it was not correlated either with protein expression or the other clinicopathological parameters. These results suggest that IGFBP7 promoter methylation and shorter TL in tumor compared with adjacent tissues may be predictive biomarkers for breast cancer. Telomere maintenance may be indicative of IDC and IDC with HER2 (-) of breast cancer. Further studies with larger number of cases are necessary to verify this association. © 2016 Wiley Periodicals, Inc.

  14. The regulation of protein synthesis and translation factors by CD3 and CD28 in human primary T lymphocytes

    Directory of Open Access Journals (Sweden)

    Proud Christopher G

    2002-05-01

    Full Text Available Abstract Background Activation of human resting T lymphocytes results in an immediate increase in protein synthesis. The increase in protein synthesis after 16–24 h has been linked to the increased protein levels of translation initiation factors. However, the regulation of protein synthesis during the early onset of T cell activation has not been studied in great detail. We studied the regulation of protein synthesis after 1 h of activation using αCD3 antibody to stimulate the T cell receptor and αCD28 antibody to provide the co-stimulus. Results Activation of the T cells with both antibodies led to a sustained increase in the rate of protein synthesis. The activities and/or phosphorylation states of several translation factors were studied during the first hour of stimulation with αCD3 and αCD28 to explore the mechanism underlying the activation of protein synthesis. The initial increase in protein synthesis was accompanied by activation of the guanine nucleotide exchange factor, eukaryotic initiation factor (eIF 2B, and of p70 S6 kinase and by dephosphorylation of eukaryotic elongation factor (eEF 2. Similar signal transduction pathways, as assessed using signal transduction inhibitors, are involved in the regulation of protein synthesis, eIF2B activity and p70 S6 kinase activity. A new finding was that the p38 MAPK α/β pathway was involved in the regulation of overall protein synthesis in primary T cells. Unexpectedly, no changes were detected in the phosphorylation state of the cap-binding protein eIF4E and the eIF4E-binding protein 4E-BP1, or the formation of the cap-binding complex eIF4F. Conclusions Both eIF2B and p70 S6 kinase play important roles in the regulation of protein synthesis during the early onset of T cell activation.

  15. Investigating the association between polymorphisms in connective tissue growth factor and susceptibility to colon carcinoma.

    Science.gov (United States)

    Ahmad, Abrar; Askari, Shlear; Befekadu, Rahel; Hahn-Strömberg, Victoria

    2015-04-01

    There have been numerous studies on the gene expression of connective tissue growth factor (CTGF) in colorectal cancer, however very few have investigated polymorphisms in this gene. The present study aimed to determine whether single nucleotide polymorphisms (SNPs) in the CTGF gene are associated with a higher susceptibility to colon cancer and/or an invasive tumor growth pattern. The CTGF gene was genotyped for seven SNPs (rs6918698, rs1931002, rs9493150, rs12526196, rs12527705, rs9399005 and rs12527379) by pyrosequencing. Formalin‑fixed paraffin‑embedded tissue samples (n=112) from patients diagnosed with colon carcinoma, and an equal number of blood samples from healthy controls, were selected for genomic DNA extraction. The complexity index was measured using images of tumor samples (n=64) stained for cytokeratin‑8. The images were analyzed and correlated with the identified CTGF SNPs and clinicopathological parameters of the patients, including age, gender, tumor penetration, lymph node metastasis, systemic metastasis, differentiation and localization of tumor. It was demonstrated that the frequency of the SNP rs6918698 GG genotype was significantly associated (P=0.05) with an increased risk of colon cancer, as compared with the GC and CC genotypes. The other six SNPs (rs1931002, rs9493150, rs12526196, rs12527705, rs9399005 and rs12527379) exhibited no significant difference in the genotype and allele frequencies between patients diagnosed with colon carcinoma and the normal healthy population. A trend was observed between genotype variation at rs6918698 and the complexity index (P=0.052). The complexity index and genotypes for any of the studied SNPs were not significantly correlated with clinical or pathological parameters of the patients. These results indicate that the rs6918698 GG genotype is associated with an increased risk of developing colon carcinoma, and genetic variations at the rs6918698 are associated with the growth pattern of the tumor

  16. The Effects of Environmental Factors on Smooth Muscle Cells Differentiation from Adipose-Derived Stem Cells and Esophagus Tissues Engineering

    DEFF Research Database (Denmark)

    Wang, Fang

    Adipose-derived stem cells (ASCs) are increasingly being used for regenerative medicine and tissue engineering. Smooth muscle cells (SMCs) can be differentiated from ASCs. Oxygen is a key factor influencing the stem cell differentiation. Tissue engineered esophagus has been a preferred solution...... of esophagus was studied. Our results showed that both SMCs and ASCs could attach on the porcine esophageal acellular matrix (EAM) scaffold in vitro after 24 hours and survive until 7 days. Thus ASCs might be a substitute for SMCs in the construction of tissue engineered esophageal muscle layer....

  17. Deregulated expression of connective tissue growth factor (CTGF/CCN2) is linked to poor outcome in human cancer.

    Science.gov (United States)

    Wells, Julia E; Howlett, Meegan; Cole, Catherine H; Kees, Ursula R

    2015-08-01

    Connective tissue growth factor (CTGF/CCN2) has long been associated with human cancers. The role it plays in these neoplasms is diverse and tumour specific. Recurring patterns in clinical outcome, histological desmoplasia and mechanisms of action have been found. When CTGF is overexpressed compared to low-expressing normal tissue or is underexpressed compared to high-expressing normal tissue, the functional outcome favours tumour survival and disease progression. CTGF acts by altering proliferation, drug resistance, angiogenesis, adhesion and migration contributing to metastasis. The pattern of CTGF expression and tumour response helps to clarify the role of this matricellular protein across a multitude of human cancers. © 2014 UICC.

  18. Expression of connective tissue growth factor and interleukin-11 in intratumoral tissue is associated with poor survival after curative resection of hepatocellular carcinoma.

    Science.gov (United States)

    Xiang, Zuo-Lin; Zeng, Zhao-Chong; Fan, Jia; Tang, Zhao-You; Zeng, Hai-Ying

    2012-05-01

    In the present study, we evaluated the prognostic value of intratumoral and peritumoral expression of connective tissue growth factor (CTGF), transforming growth factor-beta 1 (TGF-β1), and interleukin-11 (IL-11) in patients with hepatocellular carcinoma (HCC) after curative resection. Expression of CTGF, TGF-β1, and IL-11 was assessed by immunohistochemical staining of tissue microarrays containing paired tumor and peritumoral liver tissue from 290 patients who had undergone hepatectomy for histologically proven HCC. The prognostic value of these and other clinicopathologic factors were evaluated. The median follow-up time was 54.3 months (range, 4.3-118.3 months). High intratumoral CTGF expression was associated with vascular invasion (P = 0.015), intratumoral IL-11 expression correlated with higher tumor node metastasis (TNM) stage (P = 0.009), and peritumoral CTGF overexpression correlated with lack of tumor encapsulation (P = 0.031). Correlation analysis of these proteins revealed that intratumoral CTGF and IL-11 correlated with high intratumoral TGF-β1 expression (r = 0.325, P < 0.001; and r = 0.273, P < 0.001, respectively). TNM stage (P < 0.001), high intratumoral CTGF levels (P = 0.010), and intratumoral IL-11 expression (P = 0.015) were independent prognostic factors for progression-free survival (PFS). Vascular invasion (P = 0.032), TNM stage (P < 0.001), high intratumoral CTGF levels (P = 0.036), and intratumoral IL-11 expression (P = 0.013) were independent prognostic factors for overall survival (OS). High intratumoral CTGF and intratumoral IL-11 expression were associated with PFS and OS after hepatectomy, and the combination of intratumoral CTGF with IL-11 may be predictive of survival.

  19. Activation of anthocyanin synthesis genes by white light in eggplant hypocotyl tissues, and identification of an inducible P-450 cDNA

    International Nuclear Information System (INIS)

    Toguri, T.; Umemoto, N.; Kobayashi, O.; Ohtani, T.

    1993-01-01

    Eggplant seedlings (Solanum melongena) grown under red light irradiation showed a normal morphology with green, fully expanded cotyledons. When the seedlings grown under red light were irradiated with ultraviolet-containing white light, anthocyanin synthesis was induced in the hypocotyl tissues, especially when a UV light supplement was added. The accumulation of pigments was closely associated with the expression of genes involved in flavonoid synthesis. These genes include chalcone synthase (CHS) and dihydroflavonol 4-reductase (DFR). Using subtracted probes, which had been enriched for the accumulated mRNA, one white light-responsive cDNA was identified as being a P450 gene by comparison with database sequences. The maximal amino acid homology this cDNA had with other P450s was 36%. This was with CYP71 from avocado (Persea americana). Thus it represents a new P-450 family, which has been named CYP75. The mRNA of this gene was localized in the hypocotyl tissues of eggplant seedlings, which had been white light-irradiated. The transcript was accumulated by changing the light source, as in the case of other flavonoid biosynthesis genes. In delphinidin producing petunia plants, the mRNAs corresponding to the eggplant P-450 and flavonoid biosynthesis genes such as CHS and DFR were most abundant during the mid stage of flower bud development, but could not be detected in leaf tissues. These results suggest that this P-450 gene encodes a hydroxylating enzyme involved in flavonoid biosynthesis. (author)

  20. Whey protein and essential amino acids promote the reduction of adipose tissue and increased muscle protein synthesis during caloric restriction-induced weight loss in elderly, obese individuals

    Directory of Open Access Journals (Sweden)

    Coker Robert H

    2012-12-01

    Full Text Available Abstract Background Excess adipose tissue and sarcopenia presents a multifaceted clinical challenge that promotes morbidity and mortality in the obese, elderly population. Unfortunately, the mortality risks of muscle loss may outweigh the potential benefits of weight loss in the elderly. We have previously demonstrated the effectiveness of whey protein and essential amino acids towards the preservation of lean tissue, even under the conditions of strict bedrest in the elderly. Methods In the context of caloric restriction-based weight loss, we hypothesized that a similar formulation given as a meal replacement (EAAMR would foster the retention of lean tissue through an increase in the skeletal muscle fractional synthesis rate (FSR. We also proposed that EAAMR would promote the preferential loss of adipose tissue through the increased energy cost of skeletal muscle FSR. We recruited and randomized 12 elderly individuals to an 8 week, caloric restriction diet utilizing equivalent caloric meal replacements (800 kcal/day: 1 EAAMR or a 2 competitive meal replacement (CMR in conjunction with 400 kcal of solid food that totaled 1200 kcal/day designed to induce 7% weight loss. Combined with weekly measurements of total body weight and body composition, we also measured the acute change in the skeletal muscle FSR to EAAMR and CMR. Results By design, both groups lost ~7% of total body weight. While EAAMR did not promote a significant preservation of lean tissue, the reduction in adipose tissue was greater in EAAMR compared to CMR. Interestingly, these results corresponded to an increase in the acute skeletal muscle protein FSR. Conclusion The provision of EAAMR during caloric restriction-induced weight loss promotes the preferential reduction of adipose tissue and the modest loss of lean tissue in the elderly population.

  1. Phosphorylation of protein synthesis initiation factor 2 (elF-2) in the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Romero, D.P.

    1986-01-01

    Initiation Factor 2 (elF-2) in the yeast Saccharomyces cerevisiae is comprised of 3 subunits. The control of protein synthesis in mammalian cells have been shown to involve the phosphorylation of the small (alpha) subunit by a specific protein kinase. Phosphorylation results in an inhibition of protein synthesis. In order to determine whether or not an analogous system is operative in yeast, the phosphorylation state of the alpha subunit of elF-2 in Saccharomyces was determined during various growth and nongrowth conditions. Cells were radiolabelled with 32 P and 35 S, and the whole cell lysates were analyzed by two dimensional gel electrophoresis. These experiments revealed that the smallest subunit (alpha, M/sub r/ = 31,000) is a phosphoprotein in vivo under a variety of growth and nongrowth conditions. This is in direct contrast to the pattern exhibited in mammalian cells. The fact that the small subunit of elF-2 in yeast is phosphorylated under a variety of physiological conditions indicates that such a covalent modification is important for some aspects of elF-2 function. In order to investigate this problem further, a protein kinase that specifically labels the alpha subunit of elF-2 in vitro was isolated. The kinase is not autophosphorylating, utilizes ATP as a phosphate donor, phosphorylates an exogenous protein, casein, modifies serine residues in elF-2, is cyclic nucleotide-independent, and is strongly inhibited by heparin

  2. Injectable Biodegradable Polyurethane Scaffolds with Release of Platelet-derived Growth Factor for Tissue Repair and Regeneration

    Science.gov (United States)

    Hafeman, Andrea E.; Li, Bing; Yoshii, Toshitaka; Zienkiewicz, Katarzyna; Davidson, Jeffrey M.; Guelcher, Scott A.

    2013-01-01

    Purpose The purpose of this work was to investigate the effects of triisocyanate composition on the biological and mechanical properties of biodegradable, injectable polyurethane scaffolds for bone and soft tissue engineering. Methods Scaffolds were synthesized using reactive liquid molding techniques, and were characterized in vivo in a rat subcutaneous model. Porosity, dynamic mechanical properties, degradation rate, and release of growth factors were also measured. Results Polyurethane scaffolds were elastomers with tunable damping properties and degradation rates, and they supported cellular infiltration and generation of new tissue. The scaffolds showed a two-stage release profile of platelet-derived growth factor, characterized by a 75% burst release within the first 24 h and slower release thereafter. Conclusions Biodegradable polyurethanes synthesized from triisocyanates exhibited tunable and superior mechanical properties compared to materials synthesized from lysine diisocyanates. Due to their injectability, biocompatibility, tunable degradation, and potential for release of growth factors, these materials are potentially promising therapies for tissue engineering. PMID:18516665

  3. The effect of growth factors on both collagen synthesis and tensile strength of engineered human ligaments.

    Science.gov (United States)

    Hagerty, Paul; Lee, Ann; Calve, Sarah; Lee, Cassandra A; Vidal, Martin; Baar, Keith

    2012-09-01

    Growth factors play a central role in the development and remodelling of musculoskeletal tissues. To determine which growth factors optimized in vitro ligament formation and mechanics, a Box-Behnken designed array of varying concentrations of growth factors and ascorbic acid were applied to engineered ligaments and the collagen content and mechanics of the grafts were determined. Increasing the amount of transforming growth factor (TGF) β1 and insulin-like growth factor (IGF)-1 led to an additive effect on ligament collagen and maximal tensile load (MTL). In contrast, epidermal growth factor (EGF) had a negative effect on both collagen content and MTL. The predicted optimal growth media (50 μg/ml TGFβ, IGF-1, and GDF-7 and 200 μM ascorbic acid) was then validated in two separate trials: showing a 5.7-fold greater MTL and 5.2-fold more collagen than a minimal media. Notably, the effect of the maximized growth media was scalable such that larger constructs developed the same material properties, but larger MTL. These results show that optimizing the interactions between growth factors and engineered ligament volume results in an engineered ligament of clinically relevant function. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. The serum levels of connective tissue growth factor in patients with systemic lupus erythematosus and lupus nephritis.

    Science.gov (United States)

    Wang, F-M; Yu, F; Tan, Y; Liu, G; Zhao, M-H

    2014-06-01

    The expression of connective tissue growth factor mRNA in human kidneys may serve as an early marker for lupus nephritis progression. Therefore, we speculated that connective tissue growth factor may be involved in the pathogenesis of systemic lupus erythematosus and lupus nephritis. In this study, we set out to investigate the associations between serum connective tissue growth factor levels and clinicopathological features of patients with systemic lupus erythematosus and lupus nephritis. Serum samples from patients with non-renal systemic lupus erythematosus, renal biopsy-proven lupus nephritis and healthy control subjects were detected by enzyme-linked immunosorbent assay for serum connective tissue growth factor levels. The associations between connective tissue growth factor levels and clinicopathological features of the patients were further analysed. The levels of serum connective tissue growth factor in patients with non-renal systemic lupus erythematosus and lupus nephritis were both significantly higher than those in the normal control group (34.14 ± 12.17 ng/ml vs. 22.8 ± 3.0 ng/ml, plupus erythematosus and lupus nephritis group (34.14 ± 12.17 ng/ml vs. 44.1 ± 46.8 ng/ml, p = 0.183). Serum connective tissue growth factor levels were significantly higher in lupus nephritis patients with the following clinical manifestations, including anaemia (51.3 ± 51.4 ng/ml vs. 23.4 ± 9.7 ng/ml, plupus nephritis (63.3 ± 63.4 ng/ml vs. 38.3 ± 37.9 ng/ml, p = 0.035, respectively). Serum connective tissue growth factor levels were negatively associated with estimated glomerular filtration rate (r = -0.46, plupus nephritis (plupus and correlated with chronic renal interstitial injury and doubling of serum creatinine in patients with lupus nephritis. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  5. Errors in estimating neutron quality factor using lineal energy distributions measured in tissue-equivalent proportional counters

    International Nuclear Information System (INIS)

    Borak, T.B.; Stinchcomb, T.G.

    1982-01-01

    Neutron dose equivalent is obtained from quality factors which are defined in terms of LET. It is possible to estimate the dose averaged quality factor, antiQ, directly from distributions in lineal energy, y, that are measured in tissue-equivalent proportional counters. This eliminates a mathematical transformation of the absorbed dose from D(y) to D(L). We evaluate the inherent error in computing Q from D(y) rather than D(L) for neutron spectra below 4 MeV. The effects of neutron energy and simulated tissue diameters within a gas cavity are examined in detail. (author)

  6. A synthesis of studies of access point density as a risk factor for road accidents.

    Science.gov (United States)

    Elvik, Rune

    2017-10-01

    Studies of the relationship between access point density (number of access points, or driveways, per kilometre of road) and accident frequency or rate (number of accidents per unit of exposure) have consistently found that accident rate increases when access point density increases. This paper presents a formal synthesis of the findings of these studies. It was found that the addition of one access point per kilometre of road is associated with an increase of 4% in the expected number of accidents, controlling for traffic volume. Although studies consistently indicate an increase in accident rate as access point density increases, the size of the increase varies substantially between studies. In addition to reviewing studies of access point density as a risk factor, the paper discusses some issues related to formally synthesising regression coefficients by applying the inverse-variance method of meta-analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Tissue factor/FVIIa activates Bcl-2 and prevents doxorubicin-induced apoptosis in neuroblastoma cells

    International Nuclear Information System (INIS)

    Fang, Jun; Gu, Lubing; Zhu, Ningxi; Tang, Hao; Alvarado, Carlos S; Zhou, Muxiang

    2008-01-01

    Tissue factor (TF) is a transmembrane protein that acts as a receptor for activated coagulation factor VII (FVIIa), initiating the coagulation cascade. Recent studies demonstrate that expression of tumor-derived TF also mediates intracellular signaling relevant to tumor growth and apoptosis. Our present study investigates the possible mechanism by which the interaction between TF and FVIIa regulates chemotherapy resistance in neuroblastoma cell lines. Gene and siRNA transfection was used to enforce TF expression in a TF-negative neuroblastoma cell line and to silence endogenous TF expression in a TF-overexpressing neuroblastoma line, respectively. The expression of TF, Bcl-2, STAT5, and Akt as well as the phosphorylation of STAT5 and Akt in gene transfected cells or cells treated with JAK inhibitor and LY294002 were determined by Western blot assay. Tumor cell growth was determined by a clonogenic assay. Cytotoxic and apoptotic effect of doxorubicin on neuroblastoma cell lines was analyzed by WST assay and annexin-V staining (by flow cytometry) respectively. Enforced expression of TF in a TF-negative neuroblastoma cell line in the presence of FVIIa induced upregulation of Bcl-2, leading to resistance to doxorubicin. Conversely, inhibition of endogenous TF expression in a TF-overexpressing neuroblastoma cell line using siRNA resulted in down-regulation of Bcl-2 and sensitization to doxorubicin-induced apoptosis. Additionally, neuroblastoma cells expressing high levels of either endogenous or transfected TF treated with FVIIa readily phosphorylated STAT5 and Akt. Using selective pharmacologic inhibitors, we demonstrated that JAK inhibitor I, but not the PI3K inhibitor LY294002, blocked the TF/FVIIa-induced upregulation of Bcl-2. This study shows that in neuroblastoma cell lines overexpressed TF ligated with FVIIa produced upregulation of Bcl-2 expression through the JAK/STAT5 signaling pathway, resulting in resistance to apoptosis. We surmise that this TF

  8. Suppression of human monocyte tissue factor induction by red wine phenolics and synthetic derivatives of resveratrol.

    Science.gov (United States)

    Kaur, Gurjeet; Roberti, Marinella; Raul, Francis; Pendurthi, Usha R

    2007-01-01

    Prevention of cardiovascular disease through nutritional supplements is growing in popularity throughout the world. Multiple epidemiologic studies found that moderate consumption of alcohol, particularly red wine, lowers mortality rates from coronary heart diseases (CHD). Chronic inflammation and atherosclerosis associated with CHD culminate in aberrant intravascular expression of tissue factor (TF), which triggers blood coagulation leading to thrombosis, a major cause for heart attack. We showed earlier that two red wine phenolics, resveratrol and quercetin, suppressed TF induction in endothelial cells. In the present study, we investigated efficacy of seven resveratrol derivatives, which were shown to be effective in regulating cancer cell growth in vitro at much lower concentrations than the parent compound resveratrol, in inhibiting TF induction in peripheral blood mononuclear cells (PBMCs). We also tested possible synergistic effects of resveratrol and quercetin with the other major red wine phenolics in suppression of lipopolysaccharide-induced TF expression in human PBMCs. We found that several resveratrol derivatives were 2- to 10-fold more efficient than resveratrol in inhibiting TF induction. Our study found no evidence for synergism among red wine polyphenolics. These data suggest that structural alterations of resveratrol can be effective in producing potent antithrombotic agents that will have therapeutic potential in the improvement of cardiovascular health and prevention of CHD. Among major red wine phenolics, quercetin appears to be the predominant suppressor of TF induction.

  9. Suppression of human monocyte tissue factor induction by red wine phenolics and synthetic derivatives of resveratrol

    Science.gov (United States)

    Kaur, Gurjeet; Roberti, Marinella; Raul, Francis; Pendurthi, Usha R.

    2010-01-01

    Prevention of cardiovascular disease through nutritional supplements is growing in popularity throughout the world. Multiple epidemiologic studies found that moderate consumption of alcohol, particularly red wine, lowers mortality rates from coronary heart diseases (CHD). Chronic inflammation and atherosclerosis associated with CHD culminate in aberrant intravascular expression of tissue factor (TF), which triggers blood coagulation leading to thrombosis, a major cause for heart attack. We showed earlier that two red wine phenolics, resveratrol and quercetin, suppressed TF induction in endothelial cells. In the present study, we investigated efficacy of seven resveratrol derivatives, which were shown to be effective in regulating cancer cell growth in vitro at much lower concentrations than the parent compound resveratrol, in inhibiting TF induction in peripheral blood mononuclear cells (PBMCs). We also tested possible synergistic effects of resveratrol and quercetin with the other major red wine phenolics in suppression of lipopolysaccharide-induced TF expression in human PBMCs. We found that several resveratrol derivatives were 2- to 10-fold more efficient than resveratrol in inhibiting TF induction. Our study found no evidence for synergism among red wine polyphenolics. These data suggest that structural alterations of resveratrol can be effective in producing potent antithrombotic agents that will have therapeutic potential in the improvement of cardiovascular health and prevention of CHD. Among major red wine phenolics, quercetin appears to be the predominant suppressor of TF induction. PMID:16507316

  10. Tissue factor expression by myeloid cells contributes to protective immune response against Mycobacterium tuberculosis infection.

    Science.gov (United States)

    Venkatasubramanian, Sambasivan; Tripathi, Deepak; Tucker, Torry; Paidipally, Padmaja; Cheekatla, Satyanarayana; Welch, Elwyn; Raghunath, Anjana; Jeffers, Ann; Tvinnereim, Amy R; Schechter, Melissa E; Andrade, Bruno B; Mackman, Nizel; Idell, Steven; Vankayalapati, Ramakrishna

    2016-02-01

    Tissue factor (TF) is a transmembrane glycoprotein that plays an essential role in hemostasis by activating coagulation. TF is also expressed by monocytes/macrophages as part of the innate immune response to infections. In the current study, we determined the role of TF expressed by myeloid cells during Mycobacterium tuberculosis (M. tb) infection by using mice lacking the TF gene in myeloid cells (TF(Δ) ) and human monocyte derived macrophages (MDMs). We found that during M. tb infection, a deficiency of TF in myeloid cells was associated with reduced inducible nitric oxide synthase (iNOS) expression, enhanced arginase 1 (Arg1) expression, enhanced IL-10 production and reduced apoptosis in infected macrophages, which augmented M. tb growth. Our results demonstrate that a deficiency of TF in myeloid cells promotes M2-like phenotype in M .tb infected macrophages. A deficiency in TF expression by myeloid cells was also associated with reduced fibrin deposition and increased matrix metalloproteases (MMP)-2 and MMP-9 mediated inflammation in M. tb infected lungs. Our studies demonstrate that TF expressed by myeloid cells has newly recognized abilities to polarize macrophages and to regulate M. tb growth. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Hormonal receptors and vascular endothelial growth factor in juvenile nasopharyngeal angiofibroma: immunohistochemical and tissue microarray analysis.

    Science.gov (United States)

    Liu, Zhuofu; Wang, Jingjing; Wang, Huan; Wang, Dehui; Hu, Li; Liu, Quan; Sun, Xicai

    2015-01-01

    This work demonstrated that juvenile nasopharyngeal angiofibromas (JNAs) express high levels of hormone receptors and vascular endothelial growth factor (VEGF) compared with normal nasal mucosa. The interaction between hormone receptors and VEGF may be involved in the initiation and growth of JNA. JNA is a rare benign tumor that occurs almost exclusively in male adolescents. Although generally regarded as a hormone-dependent tumor, this has not been proven in previous studies. The aim of this study was to investigate the role of hormone receptors in JNA and the relationship with clinical characteristics. Standard immunohistochemical microarray analysis was performed on 70 JNA samples and 10 turbinate tissue samples. Specific antibodies for androgen receptor (AR), estrogen receptor-α (ER-α), estrogen receptor-β (ER-β), progesterone receptor (PR), and VEGF were examined, and the relationships of receptor expression with age, tumor stage, and bleeding were evaluated. RESULTS showed that JNA expressed ER-α (92.9%), ER-β (91.4%), AR (65.7%), PR (12.8%), and VEGF (95.7%) at different levels. High level of VEGF was linked to elevated ER-α and ER-β. There was no significant relationship between hormonal receptors and age at diagnosis, tumor stage or bleeding. However, overexpression of ER-α was found to be an indicator of poor prognosis (p = 0.031).

  12. Tissue tropisms in group A Streptococcus: what virulence factors distinguish pharyngitis from impetigo strains?

    Science.gov (United States)

    Bessen, Debra E

    2016-06-01

    Group A streptococci (GAS) are a common cause of pharyngitis and impetigo, and distinct throat strains and skin strains have been long recognized. This review aims to describe recent advances in molecular differences between throat and skin strains, and the pathogenic mechanisms used by virulence factors that may distinguish between these two groups. Recent findings include a new typing scheme for GAS strains based on sequence clusters of genes encoding the entire surface-exposed portion of M protein; correlations between emm-based typing schemes, clinical disease and surface adhesins; covalent bond formation mediated by GAS pili and other adhesins in binding to host ligands; a key role for superantigens in oropharyngeal infection via binding major histocompatibility complex class II antigen; and migration of GAS-specific Th17 cells from the upper respiratory tract to the brain, which may be relevant to autoimmune sequelae. The gap between molecular markers of disease (correlation) and virulence mechanisms (causation) in the establishment of tissue tropisms for GAS infection currently remains wide, but the gap also continues to narrow. Whole genome sequencing combined with mutant construction and improvements in animal models for oropharyngeal infection by GAS may help pave the way for new discoveries.

  13. Connective tissue growth factor as a novel therapeutic target in high grade serous ovarian cancer.

    Science.gov (United States)

    Moran-Jones, Kim; Gloss, Brian S; Murali, Rajmohan; Chang, David K; Colvin, Emily K; Jones, Marc D; Yuen, Samuel; Howell, Viive M; Brown, Laura M; Wong, Carol W; Spong, Suzanne M; Scarlett, Christopher J; Hacker, Neville F; Ghosh, Sue; Mok, Samuel C; Birrer, Michael J; Samimi, Goli

    2015-12-29

    Ovarian cancer is the most common cause of death among women with gynecologic cancer. We examined molecular profiles of fibroblasts from normal ovary and high-grade serous ovarian tumors to identify novel therapeutic targets involved in tumor progression. We identified 2,300 genes that are significantly differentially expressed in tumor-associated fibroblasts. Fibroblast expression of one of these genes, connective tissue growth factor (CTGF), was confirmed by immunohistochemistry. CTGF protein expression in ovarian tumor fibroblasts significantly correlated with gene expression levels. CTGF is a secreted component of the tumor microenvironment and is being pursued as a therapeutic target in pancreatic cancer. We examined its effect in in vitro and ex vivo ovarian cancer models, and examined associations between CTGF expression and clinico-pathologic characteristics in patients. CTGF promotes migration and peritoneal adhesion of ovarian cancer cells. These effects are abrogated by FG-3019, a human monoclonal antibody against CTGF, currently under clinical investigation as a therapeutic agent. Immunohistochemical analyses of high-grade serous ovarian tumors reveal that the highest level of tumor stromal CTGF expression was correlated with the poorest prognosis. Our findings identify CTGF as a promoter of peritoneal adhesion, likely to mediate metastasis, and a potential therapeutic target in high-grade serous ovarian cancer. These results warrant further studies into the therapeutic efficacy of FG-3019 in high-grade serous ovarian cancer.

  14. Downregulation of connective tissue growth factor reduces migration and invasiveness of osteosarcoma cells.

    Science.gov (United States)

    Huang, Yinjun; Zhao, Shichang; Zhang, Changqing; Li, Xiaolin

    2016-02-01

    As one of the most serious types of primary bone tumor, osteosarcoma (OSA) features metastatic lesions, and resistance to chemotherapy is common. The underlying mechanisms of these characteristics may account for the failure of treatments and the poor prognosis of patients with OSA. It has been reported that inhibition of Cyr61 suppresses OSA cell proliferation as it represents a target of statins. In addition to cystein‑rich protein 61 (Cyr61) and nephroblastoma overexpression, connective tissue growth factor (CTGF) is a member of the CCN family and may therefore exhibit effects on human OSA cells similar to those of Cyr61. In the current study, acridine orange/ethidium bromide staining were used to determine the rate of apoptosis. The present study demonstrated that small interfering RNA‑mediated silencing of CTGF promoted cell death and suppressed OSA cell migration and invasion, as indicated by wound healing and Transwell assays, while lentivirus‑mediated overexpression of CTGF reversed these effects. Furthermore, a colorimetric caspase assay demonstrated that CTGF knockdown enhanced the efficacy of chemotherapeutic drugs. The results of the present study provided a novel molecular target which may be utilized for the treatment of metastatic OSA.

  15. Extracellular Histones Increase Tissue Factor Activity and Enhance Thrombin Generation by Human Blood Monocytes.

    Science.gov (United States)

    Gould, Travis J; Lysov, Zakhar; Swystun, Laura L; Dwivedi, Dhruva J; Zarychanski, Ryan; Fox-Robichaud, Alison E; Liaw, Patricia C

    2016-12-01

    Sepsis is characterized by systemic activation of inflammatory and coagulation pathways in response to infection. Recently, it was demonstrated that histones released into the circulation by dying/activated cells may contribute to sepsis pathology. Although the ability of extracellular histones to modulate the procoagulant activities of several cell types has been investigated, the influence of histones on the hemostatic functions of circulating monocytes is unknown. To address this, we investigated the ability of histones to modulate the procoagulant potential of THP-1 cells and peripheral blood monocytes, and examined the effects of plasmas obtained from septic patients to induce a procoagulant phenotype on monocytic cells. Tissue factor (TF) activity assays were performed on histone-treated THP-1 cells and blood monocytes. Exposure of monocytic cells to histones resulted in increases in TF activity, TF antigen, and phosphatidylserine exposure. Histones modulate the procoagulant activity via engagement of Toll-like receptors 2 and 4, and this effect was abrogated with inhibitory antibodies. Increased TF activity of histone-treated cells corresponded to enhanced thrombin generation in plasma determined by calibrated automated thrombography. Finally, TF activity was increased on monocytes exposed to plasma from septic patients, an effect that was attenuated in plasma from patients receiving unfractionated heparin (UFH). Our studies suggest that increased levels of extracellular histones found in sepsis contribute to dysregulated coagulation by increasing TF activity of monocytes. These procoagulant effects can be partially ameliorated in sepsis patients receiving UFH, thereby identifying extracellular histones as a potential therapeutic target for sepsis treatment.

  16. Cardiovascular risk factors cause premature rarefaction of the collateral circulation and greater ischemic tissue injury.

    Science.gov (United States)

    Moore, Scott M; Zhang, Hua; Maeda, Nobuyo; Doerschuk, Claire M; Faber, James E

    2015-07-01

    Collaterals lessen tissue injury in occlusive disease. However, aging causes progressive decline in their number and smaller diameters in those that remain (collateral rarefaction), beginning at 16 months of age in mice (i.e., middle age), and worse ischemic injury-effects that are accelerated in even 3-month-old eNOS(-/-) mice. These findings have found indirect support in recent human studies. We sought to determine whether other cardiovascular risk factors (CVRFs) associated with endothelial dysfunction cause collateral rarefaction, investigate possible mechanisms, and test strategies for prevention. Mice with nine different models of CVRFs of 4-12 months of age were assessed for number and diameter of native collaterals in skeletal muscle and brain and for collateral-dependent perfusion and ischemic injury after arterial occlusion. Hypertension caused collateral rarefaction whose severity increased with duration and level of hypertension, accompanied by greater hindlimb ischemia and cerebral infarct volume. Chronic treatment of wild-type mice with L-N (G)-nitro-arginine methylester caused similar rarefaction and worse ischemic injury which were not prevented by lowering arterial pressure with hydralazine. Metabolic syndrome, hypercholesterolemia, diabetes mellitus, and obesity also caused collateral rarefaction. Neither chronic statin treatment nor exercise training lessened hypertension-induced rarefaction. Chronic CVRF presence caused collateral rarefaction and worse ischemic injury, even at relatively young ages. Rarefaction was associated with increased proliferation rate of collateral endothelial cells, effects that may promote accelerated endothelial cell senescence.

  17. Influence of Expression Plasmid of Connective Tissue Growth Factor and Tissue Inhibitor of Metalloproteinase-1 shRNA on Hepatic Precancerous Fibrosis in Rats.

    Science.gov (United States)

    Zhang, Qun; Shu, Fu-Li; Jiang, Yu-Feng; Huang, Xin-En

    2015-01-01

    In this study, influence caused by expression plasmids of connective tissue growth factor (CTGF) and tissue inhibitor of metalloproteinase-1 (TIMP-1) short hairpin RNA (shRNA) on mRNA expression of CTGF,TIMP-1,procol-α1 and PCIII in hepatic tissue with hepatic fibrosis, a precancerous condition, in rats is analyzed. To screen and construct shRNA expression plasimid which effectively interferes RNA targets of CTGF and TIMP-1 in rats. 50 cleaning Wistar male rats are allocated randomly at 5 different groups after precancerous fibrosis models and then injection of shRNA expression plasimids. Plasmid psiRNA-GFP-Com (CTGF and TIMP-1 included), psiRNA-GFP-CTGF, psiRNA-GFP-TIMP-1 and psiRNA- DUO-GFPzeo of blank plasmid are injected at group A, B, C and D, respectively, and as model control group that none plasimid is injected at group E. In 2 weeks after last injection, to hepatic tissue at different groups, protein expression of CTGF, TIMP-1, procol-α1and PC III is tested by immunohistochemical method and,mRNA expression of CTGF,TIMP-1,procol-α1 and PCIII is measured by real-time PCR. One-way ANOVA is used to comparison between-groups. Compared with model group, there is no obvious difference of mRNA expression among CTGF,TIMP-1,procol-α1,PC III and of protein expression among CTGF, TIMP-1, procol-α1, PC III in hepatic tissue at group injected with blank plasmid. Expression quantity of mRNA of CTGF, TIMP-1, procol-α1 and PCIII at group A, B and C decreases, protein expression of CTGF, TIMP-1, procol-α1, PC III in hepatic tissue is lower, where the inhibition of combination RNA interference group (group A) on procol-α1 mRNA transcription and procol-α1 protein expression is superior to that of single interference group (group B and C) (P<0.01 or P<0.05). RNA interference on CTGF and/or TIMP-1 is obviously a inhibiting factor for mRNA and protein expression of CTGF, TIMP-1, procol-α1 and PCIII. Combination RNA interference on genes of CTGF and TIMP-1 is superior

  18. Low transformation growth factor-β1 production and collagen synthesis correlate with the lack of hepatic periportal fibrosis development in undernourished mice infected with Schistosoma mansoni

    Directory of Open Access Journals (Sweden)

    Andreia Ferreira Barros

    2014-04-01

    Full Text Available Undernourished mice infected (UI submitted to low and long-lasting infections by Schistosoma mansoni are unable to develop the hepatic periportal fibrosis that is equivalent to Symmers’ fibrosis in humans. In this report, the effects of the host’s nutritional status on parasite (worm load, egg viability and maturation and host (growth curves, biology, collagen synthesis and characteristics of the immunological response were studied and these are considered as interdependent factors influencing the amount and distribution of fibrous tissue in hepatic periovular granulomas and portal spaces. The nutritional status of the host influenced the low body weight and low parasite burden detected in UI mice as well as the number, viability and maturation of released eggs. The reduced oviposition and increased number of degenerated or dead eggs were associated with low protein synthesis detected in deficient hosts, which likely induced the observed decrease in transformation growth factor (TGF-β1 and liver collagen. Despite the reduced number of mature eggs in UI mice, the activation of TGF-β1 and hepatic stellate cells occurred regardless of the unviability of most miracidia, due to stimulation by fibrogenic proteins and eggshell glycoproteins. However, changes in the repair mechanisms influenced by the nutritional status in deficient animals may account for the decreased liver collagen detected in the present study.

  19. NATURAL MUTATION IN THE GENE OF RESPONSE REGULATOR BgrR RESULTING IN REPRESSION OF Bac PROTEIN SYNTHESIS, A PATHOGENICITY FACTOR OF STREPTOCOCCUS AGALACTIAE

    Directory of Open Access Journals (Sweden)

    A. S. Rozhdestvenskaya

    2013-01-01

    Full Text Available Abstract. Streptococcus agalactiae can cause variety of diseases of newborns and adults. For successful colonization of different human tissues and organs as well as for suppression of the host immune system S. agalactiae expresses numerous virulence factors. For coordinated expression of the virulence genes S. agalactiae employs regulatory molecules including regulatory proteins of two-component systems. Results of the present study demonstrated that in S. agalactiae strain A49V the natural mutation in the brgR gene encoding for BgrR regulatory protein, which is component of regulatory system BgrRS, resulted in the repression of Bac protein synthesis, a virulence factor of S. agalactiae. A single nucleotide deletion in the bgrR gene has caused a shift of the reading frame and the changes in the primary, secondary and tertiary structures of the BgrR protein. The loss of functional activity of BgrR protein in A49V strain and repression of Bac protein synthesis have increased virulence of the strain in experimental animal streptococcal infection.

  20. Normal breast tissue DNA methylation differences at regulatory elements are associated with the cancer risk factor age.

    Science.gov (United States)

    Johnson, Kevin C; Houseman, E Andres; King, Jessica E; Christensen, Brock C

    2017-07-10

    The underlying biological mechanisms through which epidemiologically defined breast cancer risk factors contribute to disease risk remain poorly understood. Identification of the molecular changes associated with cancer risk factors in normal tissues may aid in determining the earliest events of carcinogenesis and informing cancer prevention strategies. Here we investigated the impact cancer risk factors have on the normal breast epigenome by analyzing DNA methylation genome-wide (Infinium 450 K array) in cancer-free women from the Susan G. Komen Tissue Bank (n = 100). We tested the relation of established breast cancer risk factors, age, body mass index, parity, and family history of disease, with DNA methylation adjusting for potential variation in cell-type proportions. We identified 787 cytosine-guanine dinucleotide (CpG) sites that demonstrated significant associations (Q value breast cancer risk factors. Age-related DNA methylation changes are primarily increases in methylation enriched at breast epithelial cell enhancer regions (P = 7.1E-20), and binding sites of chromatin remodelers (MYC and CTCF). We validated the age-related associations in two independent populations, using normal breast tissue samples (n = 18) and samples of normal tissue adjacent to tumor tissue (n = 97). The genomic regions classified as age-related were more likely to be regions altered in both pre-invasive (n = 40, P = 3.0E-03) and invasive breast tumors (n = 731, P = 1.1E-13). DNA methylation changes with age occur at regulatory regions, and are further exacerbated in cancer, suggesting that age influences breast cancer risk in part through its contribution to epigenetic dysregulation in normal breast tissue.

  1. Investigation of trefoil factor expression in saliva and oral mucosal tissues of patients with oral squamous cell carcinoma

    DEFF Research Database (Denmark)

    Chaiyarit, Ponlatham; Utrawichian, Akasith; Leelayuwat, Chanvit

    2012-01-01

    Objectives The aims of our study were to determine levels of trefoil factor (TFF) peptides in saliva and oral mucosal tissues from patients with oral squamous cell carcinoma (OSCC), and to evaluate whether individual members of TFFs (TFF1, TFF2, and TFF3) might act as biomarkers of disease....... Materials and methods Saliva samples were from 23 healthy subjects and 23 OSCC patients. Tissue samples were collected from 32 normal oral mucosa (NOM) and 32 OSCC biopsy specimens. ELISA and immunohistochemical methods were used to evaluate the expression of TFF1, TFF2, and TFF3 in saliva and oral mucosal...... tissues, respectively. Results Expression of TFF2 and TFF3 in oral mucosal tissues of OSCC patients was strongly downregulated when compared to healthy subjects (p 

  2. Downregulation of connective tissue growth factor inhibits the growth and invasion of gastric cancer cells and attenuates peritoneal dissemination.

    Science.gov (United States)

    Jiang, Cheng-Gang; Lv, Ling; Liu, Fu-Rong; Wang, Zhen-Ning; Liu, Fu-Nan; Li, Yan-Shu; Wang, Chun-Yu; Zhang, Hong-Yan; Sun, Zhe; Xu, Hui-Mian

    2011-09-28

    Connective tissue growth factor (CTGF) has been shown to be implicated in tumor development and progression. However, the role of CTGF in gastric cancer remains largely unknown. In this study, we showed that CTGF was highly expressed in gastric cancer tissues compared with matched normal gastric tissues. The CTGF expression in tumor tissue was associated with histologic grade, lymph node metastasis and peritoneal dissemination (P cancer cells and decreased cyclin D1 expression. Moreover, knockdown of CTGF expression also markedly reduced the migration and invasion of gastric cancer cells and decreased the expression of matrix metalloproteinase (MMP)-2 and MMP-9. Animal studies revealed that nude mice injected with the CTGF knockdown stable cell lines featured a smaller number of peritoneal seeding nodules than the control cell lines. These data suggest that CTGF plays an important role in cell growth and invasion in human gastric cancer and it appears to be a potential prognostic marker for patients with gastric cancer.

  3. Downregulation of connective tissue growth factor inhibits the growth and invasion of gastric cancer cells and attenuates peritoneal dissemination

    Directory of Open Access Journals (Sweden)

    Zhang Hong-Yan

    2011-09-01

    Full Text Available Abstract Background Connective tissue growth factor (CTGF has been shown to be implicated in tumor development and progression. However, the role of CTGF in gastric cancer remains largely unknown. Results In this study, we showed that CTGF was highly expressed in gastric cancer tissues compared with matched normal gastric tissues. The CTGF expression in tumor tissue was associated with histologic grade, lymph node metastasis and peritoneal dissemination (P 1 expression. Moreover, knockdown of CTGF expression also markedly reduced the migration and invasion of gastric cancer cells and decreased the expression of matrix metalloproteinase (MMP-2 and MMP-9. Animal studies revealed that nude mice injected with the CTGF knockdown stable cell lines featured a smaller number of peritoneal seeding nodules than the control cell lines. Conclusions These data suggest that CTGF plays an important role in cell growth and invasion in human gastric cancer and it appears to be a potential prognostic marker for patients with gastric cancer.

  4. Prognostic factors in adult soft-tissue sarcomas of the head and neck

    International Nuclear Information System (INIS)

    Le, Quynh-Thu X.; Fu, Karen K.; Kroll, Stew; Fitts, Linda; Massullo, Vincent; Ferrell, Linda; Kaplan, Michael J.; Phillips, Theodore L.

    1997-01-01

    Purpose: The main objectives of this study were (a) to review the treatment results of primary head and neck soft-tissue sarcoma at our institution, (b) to identify important prognostic factors in local control and survival, and (c) to assess the efficacy of salvage therapy. Methods and Materials: Sixty-five patients were treated at the University of California, San Francisco, between 1961 and 1993. Seventeen patients (27%) had low-grade, 10 (15%) had intermediate-grade, and 38 (58%) had high-grade sarcomas. Tumors were > 5 cm in 35 patients. Local management consisted of surgery alone in 14 patients (22%), surgery and radiotherapy in 40 (61%), and radiotherapy alone in 11 (17%) patients. The median follow-up was 64 months. Results: The 5-year actuarial local control rate of the entire group was 66%. Tumor size and grade were important predictors for local control on multivariate analysis. The actuarial local control rate at 5 years was 92% for T1 vs. 40% for T2 primaries (p = 0.004), and 80% for Grade 1-2 vs. 48% for Grade 3 tumors (p 0.01). None of the patients treated with radiotherapy alone with a dose of 50-65 Gy were controlled locally. Combined radiotherapy and surgery appeared to yield superior local control compared to surgery alone (77% vs. 59%); however, the difference was not statistically significant. The 5-year actuarial overall and cause-specific survivals were 56% and 60%, respectively. Unfavorable prognostic factors for cause-specific survival on multivariate analysis were age > 55 (p = 0.009), high tumor grade (p 0.0002), inadequate surgery (p = 0.008), and positive surgical margins (p 0.0009). In patients who underwent salvage therapy for treatment failure, the 5-year actuarial survival after salvage treatment was 26%. Conclusion: Tumor size and grade were important predictors for local control. Age, grade, adequacy of surgery, and status of surgical margins were significant prognostic factors for survival. There was a trend of improved local

  5. The relaxing effect of perivascular tissue on porcine retinal arterioles in vitro is mimicked by N-methyl-D-aspartate and is blocked by prostaglandin synthesis inhibition

    DEFF Research Database (Denmark)

    Jensen, Kim Holmgaard; Aalkjær, Christian; Lambert, John D. C.

    2008-01-01

    . However, previous in vitro studies of the influence of perivascular retinal tissue on retinal tone regulation have been hampered by the release of an endogenous relaxing factor that renders the arteriole insensitive to vasoconstrictors. The purpose of the present study was to test whether N-methyl-D-aspartate...... (NMDA) and gamma-amino butyric acid (GABA) receptors, and a cyclooxygenase (COX) product influence this effect of perivascular retinal tissue in vitro. METHODS: Porcine retinal arterioles were mounted in a wire myograph for isometric force measurements. The contractile effect of the prostaglandin...... analogue U46619 was studied on vessels with preserved perivascular retinal tissue and after this tissue had been removed. The influence of the perivascular tissue was studied after addition of NMDA (a specific agonist for a subtype of the glutamate receptor), DL-amino-5-phosphonovaleric acid (DL...

  6. A nanoparticulate injectable hydrogel as a tissue engineering scaffold for multiple growth factor delivery for bone regeneration

    Directory of Open Access Journals (Sweden)

    Dyondi D

    2012-12-01

    Full Text Available Deepti Dyondi,1 Thomas J Webster,2 Rinti Banerjee11Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India; 2Nanomedicine Laboratories, Division of Engineering and Department of Orthopedics, Brown University, Providence, RI, USAAbstract: Gellan xanthan gels have been shown to be excellent carriers for growth factors and as matrices for several tissue engineering applications. Gellan xanthan gels along with chitosan nanoparticles of 297 ± 61 nm diameter, basic fibroblast growth factor (bFGF, and bone morphogenetic protein 7 (BMP7 were employed in a dual growth factor delivery system to promote the differentiation of human fetal osteoblasts. An injectable system with ionic and temperature gelation was optimized and characterized. The nanoparticle loaded gels showed significantly improved cell proliferation and differentiation due to the sustained release of growth factors. A differentiation marker study was conducted, analyzed, and compared to understand the effect of single vs dual growth factors and free vs encapsulated growth factors. Dual growth factor loaded gels showed a higher alkaline phosphatase and calcium deposition compared to single growth factor loaded gels. The results suggest that encapsulation and stabilization of growth factors within nanoparticles and gels are promising for bone regeneration. Gellan xanthan gels also showed antibacterial effects against Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis, the common pathogens in implant failure.Keywords: bone tissue engineering, bone morphogenetic protein 7 (BMP7, basic fibroblast growth factor (bFGF, hydrogel, nanoparticles, osteoblasts

  7. Cloning Changes the Response to Obesity of Innate Immune Factors in Blood, Liver, and Adipose Tissues in Domestic Pigs

    DEFF Research Database (Denmark)

    Højbøge, Tina Rødgaard; Skovgaard, Kerstin; Stagsted, Jan

    2013-01-01

    The objective of this study was to evaluate the usefulness of cloned pigs as porcine obesity models reflecting obesity-associated changes in innate immune factor gene expression profiles. Liver and adipose tissue expression of 43 innate immune genes as well as serum concentrations of six immune...... factors were analyzed in lean and diet-induced obese cloned domestic pigs and compared to normal domestic pigs (obese and lean). The number of genes affected by obesity was lower in cloned animals than in control animals. All genes affected by obesity in adipose tissues of clones were downregulated; both...... upregulation and downregulation were observed in the controls. Cloning resulted in a less differentiated adipose tissue expression pattern. Finally, the serum concentrations of two acute-phase proteins (APPs), haptoglobin (HP) and orosomucoid (ORM), were increased in obese clones as compared to obese controls...

  8. The rotator cuff: from bench to bedside. Developments in tissue engineering, surgical techniques and pathogenetic factors

    NARCIS (Netherlands)

    Longo, U.G.

    2012-01-01

    This thesis originates from the difficulties in the management of patients with rotator cuff tears. Since tendon healing rate is relatively slow compared with other connective tissues, we reviewed the available literature on tissue engineered biological augmentation for tendon healing, including

  9. Insulin-like Growth Factor 1 Analogs Clicked in the C Domain: Chemical Synthesis and Biological Activities

    Czech Academy of Sciences Publication Activity Database

    Macháčková, Kateřina; Collinsová, Michaela; Chrudinová, Martina; Selicharová, Irena; Pícha, Jan; Buděšínský, Miloš; Vaněk, Václav; Žáková, Lenka; Brzozowski, A. M.; Jiráček, Jiří

    2017-01-01

    Roč. 60, č. 24 (2017), s. 10105-10117 ISSN 0022-2623 Institutional support: RVO:61388963 Keywords : IGF-1 * receptor * synthesis * triazole Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 6.259, year: 2016 http://pubs.acs.org/doi/full/10.1021/acs.jmedchem.7b01331

  10. Nitric oxide-releasing agents enhance cytokine-induced tumor necrosis factor synthesis in human mononuclear cells

    NARCIS (Netherlands)

    Eigler, A; Sinha, B; Endres, S

    1993-01-01

    In septic shock tumor necrosis factor (TNF) leads to increased nitric oxide (NO) production by induction of NO synthase. An inverse regulatory effect, the influence of NO on cytokine synthesis, has rarely been investigated. The present study assessed the influence of NO-releasing agents on TNF

  11. Evaluation of human epidermal growth factor receptor 2 (HER2) single nucleotide polymorphisms (SNPs) in normal and breast tumor tissues and their link with breast cancer prognostic factors.

    Science.gov (United States)

    Furrer, Daniela; Lemieux, Julie; Côté, Marc-André; Provencher, Louise; Laflamme, Christian; Barabé, Frédéric; Jacob, Simon; Michaud, Annick; Diorio, Caroline

    2016-12-01

    Amplification of the human epidermal growth factor receptor 2 (HER2) gene is associated with worse prognosis and decreased overall survival in breast cancer patients. The HER2 gene contains several polymorphisms; two of the best-characterized HER2 polymorphisms are Ile655Val and Ala1170Pro. The aim of this study was to evaluate the association between these two HER2 polymorphisms in normal breast and breast cancer tissues and known breast cancer prognostic factors in a retrospective cohort study of 73 women with non-metastatic HER2-positive breast cancer. HER2 polymorphisms were assessed in breast cancer tissue and normal breast tissue using TaqMan assay. Ala1170Pro polymorphism in normal breast tissue was associated with age at diagnosis (p = 0.007), tumor size (p = 0.004) and lymphovascular invasion (p = 0.06). Similar significant associations in cancer tissues were observed. No association between the Ile655Val polymorphism and prognostic factors were observed. However, we found significant differences in the distribution of Ile655Val (p = 0.03) and Ala1170Pro (p = 0.01) genotypes between normal breast and breast tumor tissues. This study demonstrates that only the Ala1170Pro polymorphism is associated with prognostic factors in HER2-positive breast cancer patients. Moreover, our results suggest that both HER2 polymorphisms could play a significant role in carcinogenesis in non-metastatic HER2-positive breast cancer women. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Expression of insulin-like growth factor system components in colorectal tissue and its relation with serum IGF levels

    NARCIS (Netherlands)

    Vrieling, A.; Voskuil, D.W.; Bosma, A.; Majoor, D.M.; Doorn, van J.; Cats, A.; Depla, A.; Timmer, R.; Witteman, B.J.M.; Wesseling, J.; Kampman, E.; van't Veer, L.J.

    2009-01-01

    Context: The insulin-like growth factor (IGF)-system has been implicated in colorectal tumor carcinogenesis. Although both tumor expression levels and serum concentrations of IGF-system components are related to colorectal cancer risk, it is unknown whether IGF levels in tissue and serum are

  13. Expression of insulin-like growth factor system components in colorectal tissue and its relation with serum IGF levels.

    NARCIS (Netherlands)

    Vrieling, A.; Voskuil, D.W.; Bosma, A.; Majoor, D.M.; Doorn, J. van; Cats, A.; Depla, A.C.; Timmer, R.; Witteman, B.J.; Wesseling, J.; Kampman, E.; Veer, L.J. van 't

    2009-01-01

    CONTEXT: The insulin-like growth factor (IGF)-system has been implicated in colorectal tumor carcinogenesis. Although both tumor expression levels and serum concentrations of IGF-system components are related to colorectal cancer risk, it is unknown whether IGF levels in tissue and serum are

  14. Characterization of connective tissue growth factor expression in primary cultures of human tubular epithelial cells: modulation by hypoxia

    NARCIS (Netherlands)

    Kroening, Sven; Neubauer, Emily; Wullich, Bernd; Aten, Jan; Goppelt-Struebe, Margarete

    2010-01-01

    Kroening S, Neubauer E, Wullich B, Aten J, Goppelt-Struebe M. Characterization of connective tissue growth factor expression in primary cultures of human tubular epithelial cells: modulation by hypoxia. Am J Physiol Renal Physiol 298:F796-F806, 2010. First published December 23, 2009;

  15. Recombinant human tissue factor pathway inhibitor exerts anticoagulant, anti-inflammatory and antimicrobial effects in murine pneumococcal pneumonia

    NARCIS (Netherlands)

    van den Boogaard, F. E.; Brands, X.; Schultz, M. J.; Levi, M. [=Marcel M.; Roelofs, J. J. T. H.; van 't Veer, C.; van der Poll, T.

    2011-01-01

    Background: Streptococcus (S.) pneumoniae is the most common causative pathogen in community-acquired pneumonia and a major cause of sepsis. Recombinant human tissue factor pathway inhibitor (rh-TFPI) attenuates sepsis-induced coagulation and has been evaluated in clinical trials involving patients

  16. Connective tissue growth factor (CTGF/CCN2) is increased in peritoneal dialysis patients with high peritoneal solute transport rate

    NARCIS (Netherlands)

    Mizutani, Makoto; Ito, Yasuhiko; Mizuno, Masashi; Nishimura, Hayato; Suzuki, Yasuhiro; Hattori, Ryohei; Matsukawa, Yoshihisa; Imai, Masaki; Oliver, Noelynn; Goldschmeding, Roel; Aten, Jan; Krediet, Raymond T.; Yuzawa, Yukio; Matsuo, Seiichi

    2010-01-01

    Mizutani M, Ito Y, Mizuno M, Nishimura H, Suzuki Y, Hattori R, Matsukawa Y, Imai M, Oliver N, Goldschmeding R, Aten J, Krediet RT, Yuzawa Y, Matsuo S. Connective tissue growth factor (CTGF/CCN2) is increased in peritoneal dialysis patients with high peritoneal solute transport rate. Am J Physiol

  17. Synthesis and characterization of 18F-labeled active site inhibited factor VII (ASIS)

    DEFF Research Database (Denmark)

    Erlandsson, Maria; Nielsen, Carsten Haagen; Jeppesen, Troels Elmer

    2015-01-01

    Activated factor VII blocked in the active site with Phe-Phe-Arg-chloromethyl ketone (active site inhibited factor VII (ASIS)) is a 50-kDa protein that binds with high affinity to its receptor, tissue factor (TF). TF is a transmembrane glycoprotein that plays an important role in, for example......, thrombosis, metastasis, tumor growth, and tumor angiogenesis. The aim of this study was to develop an 18F-labeled ASIS derivative to assess TF expression in tumors. Active site inhibited factor VII was labeled using N-succinimidyl-4-[18F]fluorobenzoate, and the [18F]ASIS was purified on a PD-10 desalting...... column. The radiochemical yield was 25 ± 6%, the radiochemical purity was >97%, and the pseudospecific radioactivity was 35 ± 9 GBq/µmol. The binding efficacy was evaluated in pull-down experiments, which monitored the binding of unlabeled ASIS and [18F]ASIS to TF and to a specific anti-factor VII...

  18. Downregulation of Connective Tissue Growth Factor by Three-Dimensional Matrix Enhances Ovarian Carcinoma Cell Invasion

    Science.gov (United States)

    Barbolina, Maria V.; Adley, Brian P.; Kelly, David L.; Shepard, Jaclyn; Fought, Angela J.; Scholtens, Denise; Penzes, Peter; Shea, Lonnie D.; Sharon Stack, M

    2010-01-01

    Epithelial ovarian carcinoma (EOC) is a leading cause of death from gynecologic malignancy, due mainly to the prevalence of undetected metastatic disease. The process of cell invasion during intra-peritoneal anchoring of metastatic lesions requires concerted regulation of many processes, including modulation of adhesion to the extracellular matrix and localized invasion. Exploratory cDNA microarray analysis of early response genes (altered after 4 hours of 3-dimensional collagen culture) coupled with confirmatory real-time RT-PCR, multiple three-dimensional cell culture matrices, Western blot, immunostaining, adhesion, migration, and invasion assays were used to identify modulators of adhesion pertinent to EOC progression and metastasis. cDNA microarray analysis indicated a dramatic downregulation of connective tissue growth factor (CTGF) in EOC cells placed in invasion-mimicking conditions (3-dimensional type I collagen). Examination of human EOC specimens revealed that CTGF expression was absent in 46% of the tested samples (n=41), but was present in 100% of normal ovarian epithelium samples (n=7). Reduced CTGF expression occurs in many types of cells and may be a general phenomenon displayed by cells encountering a 3D environment. CTGF levels were inversely correlated with invasion such that downregulation of CTGF increased, while its upregulation reduced, collagen invasion. Cells adhered preferentially to a surface comprised of both collagen I and CTGF relative to either component alone using α6β1 and α3β1 integrins. Together these data suggest that downregulation of CTGF in EOC cells may be important for cell invasion through modulation of cell-matrix adhesion. PMID:19382180

  19. Connective Tissue Growth Factor Promotes Pulmonary Epithelial Cell Senescence and Is Associated with COPD Severity.

    Science.gov (United States)

    Jang, Jun-Ho; Chand, Hitendra S; Bruse, Shannon; Doyle-Eisele, Melanie; Royer, Christopher; McDonald, Jacob; Qualls, Clifford; Klingelhutz, Aloysius J; Lin, Yong; Mallampalli, Rama; Tesfaigzi, Yohannes; Nyunoya, Toru

    2017-04-01

    The purpose of this study was to determine whether expression of connective tissue growth factor (CTGF) protein in chronic obstructive pulmonary disease (COPD) is consistent in humans and animal models of COPD and to investigate the role of this protein in lung epithelial cells. CTGF in lung epithelial cells of ex-smokers with COPD was compared with ex-smokers without COPD by immunofluorescence. A total of twenty C57Bl/6 mice and sixteen non-human primates (NHPs) were exposed to cigarette smoke (CS) for 4 weeks. Ten mice of these CS-exposed mice and eight of the CS-exposed NHPs were infected with H3N2 influenza A virus (IAV), while the remaining ten mice and eight NHPs were mock-infected with vehicle as control. Both mRNA and protein expression of CTGF in lung epithelial cells of mice and NHPs were determined. The effects of CTGF overexpression on cell proliferation, p16 protein, and senescence-associated β-galactosidase (SA-β-gal) activity were examined in cultured human bronchial epithelial cells (HBECs). In humans, CTGF expression increased with increasing COPD severity. We found that protein expression of CTGF was upregulated in lung epithelial cells in both mice and NHPs exposed to CS and infected with IAV compared to those exposed to CS only. When overexpressed in HBECs, CTGF accelerated cellular senescence accompanied by p16 accumulation. Both CTGF and p16 protein expression in lung epithelia are positively associated with the severity of COPD in ex-smokers. These findings show that CTGF is consistently expressed in epithelial cells of COPD lungs. By accelerating lung epithelial senescence, CTGF may block regeneration relative to epithelial cell loss and lead to emphysema.

  20. HFE gene mutation is a risk factor for tissue iron accumulation in hemodialysis patients.

    Science.gov (United States)

    Turkmen, Ercan; Yildirim, Tolga; Yilmaz, Rahmi; Hazirolan, Tuncay; Eldem, Gonca; Yilmaz, Engin; Aybal Kutlugun, Aysun; Altindal, Mahmut; Altun, Bulent

    2017-07-01

    HFE gene mutations are responsible from iron overload in general population. Studies in hemodialysis patients investigated the effect of presence of HFE gene mutations on serum ferritin and transferrin saturation (TSAT) with conflicting results. However effect of HFE mutations on iron overload in hemodialysis patients was not previously extensively studied. 36 hemodialysis patients (age 51.3 ± 15.6, (18/18) male/female) and 44 healthy control subjects included in this cross sectional study. Hemoglobin, ferritin, TSAT in the preceding 2 years were recorded. Iron and erythropoietin (EPO) administered during this period were calculated. Iron accumulation in heart and liver was detected by MRI. Relationship between HFE gene mutation, hemoglobin, iron parameters and EPO doses, and tissue iron accumulation were determined. Iron overload was detected in nine (25%) patients. Hemoglobin, iron parameters, weekly EPO doses, and monthly iron doses of patients with and without iron overload were similar. There was no difference between control group and hemodialysis patients with respect to the prevalence of HFE gene mutations. Iron overload was detected in five of eight patients who had HFE gene mutations, but iron overload was present in 4 of 28 patients who had no mutations (P = 0.01). Hemoglobin, iron parameters, erythropoietin, and iron doses were similar in patients with and without gene mutations. HFE gene mutations remained the main determinant of iron overload after multivariate logistic regression analysis (P = 0.02; OR, 11.6). Serum iron parameters were not adequate to detect iron overload and HFE gene mutation was found to be an important risk factor for iron accumulation. © 2017 International Society for Hemodialysis.

  1. Expression of connective tissue growth factor in male breast cancer: clinicopathologic correlations and prognostic value.

    Science.gov (United States)

    Lacle, Miangela M; van Diest, Paul J; Goldschmeding, Roel; van der Wall, Elsken; Nguyen, Tri Q

    2015-01-01

    Connective tissue growth factor (CTGF/CCN2) is a member of the CCN family of secreted proteins that are believed to play an important role in the development of neoplasia. In particular, CTGF has been reported to play an important role in mammary tumorigenesis and to have prognostic value in female breast cancer (FBC). The aim of the present study was to investigate clinicopathologic correlations and prognostic value of CTGF in male breast cancer (MBC) and to compare these findings with FBC. For this, we studied CTGF protein expression by immunohistochemistry in 109 MBC cases and 75 FBC cases. In MBC, stromal CTGF expression was seen in the majority of the cases 78% (85/109) with high expression in 31/109 cases (28.4%), but expression in tumor cells was only seen in 9.2% (10/109) of cases. High stromal CTGF expression correlated with high grade and high proliferation index (>15%) assessed by MIB-1 immunohistochemical staining. CTGF expression in tumor epithelial cells did not correlate with any of the clinicopathologic features. In FBC, stromal CTGF expression positively correlated with mitotic count and tumor CTGF expression was associated with triple negative status of the tumor (p = 0.002). Neither stromal nor tumor epithelial cell CTGF expression had prognostic value in MBC and FBC. In conclusion, stromal CTGF expression was seen in a high percentage of MBC and was correlated with high grade and high proliferation index. In view of the important role of the microenvironment in cancer progression, this might suggest that stromal CTGF could be an interesting target for novel therapies and molecular imaging. However, the lack of association with prognosis warrants caution. The potential role of CTGF as a therapeutic target for triple negative FBC deserves to be further studied.

  2. Tissue Factor Coagulant Activity is Regulated by the Plasma Membrane Microenvironment.

    Science.gov (United States)

    Yu, Yuanjie; Böing, Anita N; Hau, Chi M; Hajji, Najat; Ruf, Wolfram; Sturk, Auguste; Nieuwland, Rienk

    2018-06-01

    Tissue factor (TF) can be present in a non-coagulant and coagulant form. Whether the coagulant activity is affected by the plasma membrane microenvironment is unexplored.  This article studies the presence and coagulant activity of human TF in plasma membrane micro-domains.  Plasma membranes were isolated from human MIA PaCa2 cells, MDA-MB-231 cells and human vascular smooth muscle cells by Percoll gradient ultracentrifugation after cell disruption. Plasma membranes were fractionated by OptiPrep gradient ultracentrifugation, and the presence of TF, flotillin, caveolin, clathrin, protein disulphide isomerase (PDI), TF pathway inhibitor (TFPI) and phosphatidylserine (PS) were determined.  Plasma membranes contain two detergent-resistant membrane (DRM) compartments differing in density and biochemical composition. High-density DRMs (DRM-H) have a density ( ρ ) of 1.15 to 1.20 g/mL and contain clathrin, whereas low-density DRMs (DRM-L) have a density between 1.09 and 1.13 g/mL and do not contain clathrin. Both DRMs contain TF, flotillin and caveolin. PDI is detectable in DRM-H, TFPI is not detectable in either DMR-H or DRM-L and PS is detectable in DRM-L. The DRM-H-associated TF (> 95% of the TF antigen) lacks detectable coagulant activity, whereas the DRM-L-associated TF triggers coagulation. This coagulant activity is inhibited by lactadherin and thus PS-dependent, but seemed insensitive to 16F16, an inhibitor of PDI.  Non-coagulant and coagulant TF are present within different types of DRMs in the plasma membrane, and the composition of these DRMs may affect the TF coagulant activity. Schattauer GmbH Stuttgart.

  3. Molecular characterization of Quercus suber MYB1, a transcription factor up-regulated in cork tissues.

    Science.gov (United States)

    Almeida, Tânia; Menéndez, Esther; Capote, Tiago; Ribeiro, Teresa; Santos, Conceição; Gonçalves, Sónia

    2013-01-15

    The molecular processes associated with cork development in Quercus suber L. are poorly understood. A previous molecular approach identified a list of genes potentially important for cork formation and differentiation, providing a new basis for further molecular studies. This report is the first molecular characterization of one of these candidate genes, QsMYB1, coding for an R2R3-MYB transcription factor. The R2R3-MYB gene sub-family has been described as being involved in the phenylpropanoid and lignin pathways, both involved in cork biosynthesis. The results showed that the expression of QsMYB1 is putatively mediated by an alternative splicing (AS) mechanism that originates two different transcripts (QsMYB1.1 and QsMYB1.2), differing only in the 5'-untranslated region, due to retention of the first intron in one of the variants. Moreover, within the retained intron, a simple sequence repeat (SSR) was identified. The upstream regulatory region of QsMYB1 was extended by a genome walking approach, which allowed the identification of the putative gene promoter region. The relative expression pattern of QsMYB1 transcripts determined by reverse transcription quantitative polymerase chain reaction (RT-qPCR) revealed that both transcripts were up-regulated in cork tissues; the detected expression was several times higher in newly formed cork harvested from trees producing virgin, second or reproduction cork when compared with wood. Moreover, the expression analysis of QsMYB1 in several Q. suber organs showed very low expression in young branches and roots, whereas in leaves, immature acorns or male flowers, no expression was detected. These preliminary results suggest that QsMYB1 may be related to secondary growth and, in particular, with the cork biosynthesis process with a possible alternative splicing mechanism associated with its regulatory function. Copyright © 2012 Elsevier GmbH. All rights reserved.

  4. Pharmacokinetics and tissue distribution of recombinant human tumor necrosis factor-alpha in mice

    International Nuclear Information System (INIS)

    Ferraiolo, B.L.; Moore, J.A.; Crase, D.; Gribling, P.; Wilking, H.; Baughman, R.A.

    1988-01-01

    The serum pharmacokinetics and the major organs of accumulation of recombinant human tumor necrosis factor-alpha (rHuTNF) were determined in BDF1 mice after intravenous and intramuscular administration. Serum concentrations of immunoreactive protein were determined by enzyme-linked immunosorbent assay, and radioactivity was quantitated by beta and gamma scintigraphy. The serum pharmacokinetics of labeled and unlabeled rHuTNF were identical when administered by the intravenous route. After intravenous doses of 165 to 320 micrograms/kg, the clearance was 2.9-3.6 ml/hr, the initial volume of distribution was 1.4-1.6 ml (70-80 ml/kg), and the half-life was 18.5-19.2 min. Intramuscular administration of 320 micrograms/kg resulted in a peak serum concentration of 112 ng/ml. The time of the peak concentration was 1 hr, and the bioavailability of the intramuscular dose was 12%. The data suggest that the disposition of this protein may be biexponential. If this is the case, the terminal phase would appear to account for less than 1% of the total AUC. Since serum concentrations in the terminal phase are at the sensitivity limit of the assay, a single half-life is reported. 125I-Labeled and metabolically labeled 3H-rHuTNF were used to examine tissue distribution. After intravenous 125I-rHuTNF administration, the rank order of accumulation of the 125I-radiolabel in the major organs (per cent dose per organ over 1440 min) was: liver greater than kidney greater than lung greater than heart greater than spleen. This rank order of accumulation was confirmed by intravenous 3H-rHuTNF administration

  5. Factors Associated with Decision to Hospitalize Emergency Department Patients with Skin and Soft Tissue Infection

    Directory of Open Access Journals (Sweden)

    Talan, David A.

    2014-12-01

    Full Text Available Introduction: Emergency department (ED hospitalizations for skin and soft tissue infection (SSTI have increased, while concern for costs has grown and outpatient parenteral antibiotic options have expanded. To identify opportunities to reduce admissions, we explored factors that influence the decision to hospitalize an ED patient with a SSTI. Methods: We conducted a prospective study of adults presenting to 12 U.S. EDs with a SSTI in which physicians were surveyed as to reason(s for admission, and clinical characteristics were correlated with disposition. We employed chi-square binary recursive partitioning to assess independent predictors of admission. Serious adverse events were recorded. Results: Among 619 patients, median age was 38.7 years. The median duration of symptoms was 4.0 days, 96 (15.5% had a history of fever, and 46 (7.5% had failed treatment. Median maximal length of erythema was 4.0cm (IQR, 2.0-7.0. Upon presentation, 39 (6.3% had temperature >38oC, 81 (13.1% tachycardia, 35 (5.7%, tachypnea, and 5 (0.8% hypotension; at the time of the ED disposition decision, these findings were present in 9 (1.5%, 11 (1.8%, 7 (1.1%, and 3 (0.5% patients, respectively. Ninety-four patients (15.2% were admitted, 3 (0.5% to the intensive care unit (ICU. Common reasons for admission were need for intravenous antibiotics in 80 (85.1%; the only reason in 41.5%, surgery in 23 (24.5%, and underlying disease in 11 (11.7%. Hospitalization was significantly associated with the following factors in decreasing order of importance: history of fever (present in 43.6% of those admitted, and 10.5% discharged; maximal length of erythema >10cm (43.6%, 11.3%; history of failed treatment (16.1%, 6.0%; any co-morbidity (61.7%, 27.2%; and age >65 years (5.4%, 1.3%. Two patients required amputation and none had ICU transfer or died. Conclusion: ED SSTI patients with fever, larger lesions, and co-morbidities tend to be hospitalized, almost all to non-critical areas

  6. Elevated procoagulant endothelial and tissue factor expressing microparticles in women with recurrent pregnancy loss.

    Directory of Open Access Journals (Sweden)

    Rucha Patil

    Full Text Available BACKGROUND: 15% of reproducing couples suffer from pregnancy loss(PL and recurs in 2-3%. One of the most frequently hypothesized causes of unexplained PL refers to a defective maternal haemostatic response leading to uteroplacental thrombosis. Hereditary thrombophilia and antiphospholipid antibodies have been extensively described as risk factors for PL in women with unknown aetiology. Recently, a new marker has emerged: the cell-derived procoagulant circulating microparticles(MPs which have been reported to have a major role in many thrombosis complicated diseases. This study aims to analyze the significance of procoagulant MPs in women suffering from unexplained recurrent pregnancy loss(RPL, and characterize their cellular origin. METHOD AND FINDINGS: 115 women with RPL were analyzed for common thrombophilia markers and different cell derived MPs-total annexinV, platelet(CD41a, endothelial(CD146,CD62e, leukocyte(CD45, erythrocyte(CD235a and tissue factor(CD142(TF expressing MPs and were compared with 20 healthy non-pregnant women. Methodology for MP analysis was standardized by participating in the "Vascular Biology Scientific and Standardization Committee workshop". RESULTS: Total annexinV, TF and endothelial MPs were found significantly increased(p<0.05, 95% confidence interval in women with RPL. The procoagulant activity of MPs measured by STA-PPL clotting time assay was found in correspondence with annexinV MP levels, wherein the clot time was shortened in samples with increased MP levels. Differences in platelet, leukocyte and erythrocyte derived MPs were not significant. Thirty seven of 115 women were found to carry any of the acquired or hereditary thrombophilia markers. No significant differences were seen in the MP profile of women with and without thrombophilia marker. CONCLUSION: The presence of elevated endothelial, TF and phosphatidylserine expressing MPs at a distance (at least 3 months from the PL suggests a continued chronic

  7. Effect of brain- and tumor-derived connective tissue growth factor on glioma invasion.

    Science.gov (United States)

    Edwards, Lincoln A; Woolard, Kevin; Son, Myung Jin; Li, Aiguo; Lee, Jeongwu; Ene, Chibawanye; Mantey, Samuel A; Maric, Dragan; Song, Hua; Belova, Galina; Jensen, Robert T; Zhang, Wei; Fine, Howard A

    2011-08-03

    Tumor cell invasion is the principal cause of treatment failure and death among patients with malignant gliomas. Connective tissue growth factor (CTGF) has been previously implicated in cancer metastasis and invasion in various tumors. We explored the mechanism of CTGF-mediated glioma cell infiltration and examined potential therapeutic targets. Highly infiltrative patient-derived glioma tumor-initiating or tumor stem cells (TIC/TSCs) were harvested and used to explore a CTGF-induced signal transduction pathway via luciferase reporter assays, chromatin immunoprecipitation (ChIP), real-time polymerase chain reaction, and immunoblotting. Treatment of TIC/TSCs with small-molecule inhibitors targeting integrin β1 (ITGB1) and the tyrosine kinase receptor type A (TrkA), and short hairpin RNAs targeting CTGF directly were used to reduce the levels of key protein components of CTGF-induced cancer infiltration. TIC/TSC infiltration was examined in real-time cell migration and invasion assays in vitro and by immunohistochemistry and in situ hybridization in TIC/TSC orthotopic xenograft mouse models (n = 30; six mice per group). All statistical tests were two-sided. Treatment of TIC/TSCs with CTGF resulted in CTGF binding to ITGB1-TrkA receptor complexes and nuclear factor kappa B (NF-κB) transcriptional activation as measured by luciferase reporter assays (mean relative luciferase activity, untreated vs CTGF(200 ng/mL): 0.53 vs 1.87, difference = 1.34, 95% confidence interval [CI] = 0.69 to 2, P < .001). NF-κB activation resulted in binding of ZEB-1 to the E-cadherin promoter as demonstrated by ChIP analysis with subsequent E-cadherin suppression (fold increase in ZEB-1 binding to the E-cadherin promoter region: untreated + ZEB-1 antibody vs CTGF(200 ng/mL) + ZEB-1 antibody: 1.5 vs 6.4, difference = 4.9, 95% CI = 4.8 to 5.0, P < .001). Immunohistochemistry and in situ hybridization revealed that TrkA is selectively expressed in the most infiltrative glioma cells in situ

  8. Connective Tissue Growth Factor Transgenic Mouse Develops Cardiac Hypertrophy, Lean Body Mass and Alopecia.

    Science.gov (United States)

    Nuglozeh, Edem

    2017-07-01

    Connective Tissue Growth Factor (CTGF/CCN2) is one of the six members of cysteine-rich, heparin-binding proteins, secreted as modular protein and recognised to play a major function in cell processes such as adhesion, migration, proliferation and differentiation as well as chondrogenesis, skeletogenesis, angiogenesis and wound healing. The capacity of CTGF to interact with different growth factors lends an important role during early and late development, especially in the anterior region of the embryo. CTGF Knockout (KO) mice have several craniofacial defects and bone miss shaped due to an impairment of the vascular system development during chondrogenesis. The aim of the study was to establish an association between multiple modular functions of CTGF and the phenotype and cardiovascular functions in transgenic mouse. Bicistronic cassette was constructed using pIRES expressing vector (Clontech, Palo Alto, CA). The construct harbours mouse cDNA in tandem with LacZ cDNA as a reporter gene under the control of Cytomegalovirus (CMV) promoter. The plasmid was linearised with NotI restriction enzyme, and 50 ng of linearised plasmid was injected into mouse pronucleus for the chimaera production. Immunohistochemical methods were used to assess the colocalisation renin and CTGF as well as morphology and rheology of the cardiovascular system. The chimeric mice were backcrossed against the wild-type C57BL/6 to generate hemizygous (F1) mouse. Most of the offsprings died as a result of respiratory distress and those that survived have low CTGF gene copy number, approximately 40 molecules per mouse genome. The copy number assessment on the dead pups showed 5×10 3 molecules per mouse genome explaining the threshold of the gene in terms of toxicity. Interestingly, the result of this cross showed 85% of the progenies to be positive deviating from Mendelian first law. All F2 progenies died excluding the possibility of establishing the CTGF transgenic mouse line, situation that

  9. Pulp tissue inflammation and angiogenesis after pulp capping with transforming growth factor β1

    Directory of Open Access Journals (Sweden)

    Sri Kunarti

    2008-06-01

    Full Text Available In Restorative dentistry the opportunity to develop biomemitic approaches has been signalled by the possible use of various biological macromolecules in direct pulp capping reparation. The presence of growth factors in dentin matrix and the putative role indicating odontoblast differentiation during embryogenesis has led to the examination on the effect of endogenous TGF-β1. TGF-β1 is one of the Growth Factors that plays an important role in pulp healing. The application of exogenous TGF-β1 in direct pulp capping treatment should be experimented in fibroblast tissue in-vivo to see the responses of inflammatory cells and development of new blood vessels. The increase in food supplies always occurs in the process of inflammation therefore the development of angiogenesis is required to fulfil the requirement. This in-vivo study done on orthodontic patients indicated for premolar extraction between 10–15 years of age. A class V cavity preparation was created in the buccal aspect 1 mm above gingival margin to pulp exposure. The cavity was slowly irrigated with saline solution and dried using a sterile small cotton pellet. The sterile absorbable collagen membrane was applied and soaked in 5 ml TGF-β1. It was covered by a Teflon pledge to separate from Glass Ionomer Cement restoration. Evaluation was performed on day 7; 14; and 21. All samples were histopathologycally examined and data was statistically analysed using one way ANOVA and Dunnet T3.There were no inflammatory symptoms in clinical examination on both Ca(OH2 and TGF-β1, but they increased the infiltration of inflammatory cells on histopathological examination. There were no significant differences (p > 0.05 between Ca(OH2 and TGF-β1 in inflammation cell and significant differences (p < 0.05 in angiogenesis on day 7 and 14. There were no significant differences (p > 0.05 in inflammation cell with in TGF-β1 groups and significant differences (p < 0.05 with in Ca(OH2 groups on day 7

  10. Oxygen regulation of uricase and sucrose synthase synthesis in soybean callus tissue is exerted at the mRNA level

    DEFF Research Database (Denmark)

    Xue, Z T; Larsen, K; Jochimsen, B U

    1991-01-01

    The effect of lowering oxygen concentration on the expression of nodulin genes in soybean callus tissue devoid of the microsymbiont has been examined. Poly(A)+ RNA was isolated from tissue cultivated in 4% oxygen and in normal atmosphere. Quantitative mRNA hybridization experiments using nodule...

  11. Factors associated with community reintegration in the first year after stroke: a qualitative meta-synthesis.

    Science.gov (United States)

    Walsh, Mary E; Galvin, Rose; Loughnane, Cliona; Macey, Chris; Horgan, N Frances

    2015-01-01

    Although acute stroke care has improved survival, many individuals report dissatisfaction with community reintegration after stroke. The aim of this qualitative meta-synthesis was to examine the barriers and facilitators of community reintegration in the first year after stroke from the perspective of people with stroke. A systematic literature search was conducted. Papers that used qualitative methods to explore the experiences of individuals with stroke around community reintegration in the first year after stroke were included. Two reviewers independently assessed the methodological quality of papers. Themes, concepts and interpretations were extracted from each study, compared and meta-synthesised. From the 18 included qualitative studies four themes related to community reintegration in the first year after stroke were identified: (i) the primary effects of stroke, (ii) personal factors, (iii) social factors and (iv) relationships with professionals. This review suggests that an individual's perseverance, adaptability and ability to overcome emotional challenges can facilitate reintegration into the community despite persisting effects of their stroke. Appropriate support from family, friends, the broader community and healthcare professionals is important. Therapeutic activities should relate to meaningful activities and should be tailored to the individual stroke survivor. Stroke survivors feel that rehabilitation in familiar environments and therapeutic activities that reflect real-life could help their community re-integration. In addition to the physical sequelae of stroke, emotional consequences of stroke should be addressed during rehabilitation. Healthcare professionals can provide clear and locally relevant advice to facilitate aspects of community reintegration, including the return to driving and work.

  12. Effects of hepatocyte growth factor on glutathione synthesis, growth, and apoptosis is cell density-dependent

    International Nuclear Information System (INIS)

    Yang Heping; Magilnick, Nathaniel; Xia Meng; Lu, Shelly C.

    2008-01-01

    Hepatocyte growth factor (HGF) is a potent hepatocyte mitogen that exerts opposing effects depending on cell density. Glutathione (GSH) is the main non-protein thiol in mammalian cells that modulates growth and apoptosis. We previously showed that GSH level is inversely related to cell density of hepatocytes and is positively related to growth. Our current work examined whether HGF can modulate GSH synthesis in a cell density-dependent manner and how GSH in turn influence HGF's effects. We found HGF treatment of H4IIE cells increased cell GSH levels only under subconfluent density. The increase in cell GSH under low density was due to increased transcription of GSH synthetic enzymes. This correlated with increased protein levels and nuclear binding activities of c-Jun, c-Fos, p65, p50, Nrf1 and Nrf2 to the promoter region of these genes. HGF acts as a mitogen in H4IIE cells under low cell density and protects against tumor necrosis factor α (TNFα)-induced apoptosis by limiting JNK activation. However, HGF is pro-apoptotic under high cell density and exacerbates TNFα-induced apoptosis by potentiating JNK activation. The increase in cell GSH under low cell density allows HGF to exert its full mitogenic effect but is not necessary for its anti-apoptotic effect

  13. Transforming growth factor-β1/Smad/connective tissue growth factor axis: The main pathway in radiation-induced fibrosis of osteoradionecrosis?

    Directory of Open Access Journals (Sweden)

    Qian Wei Zhuang

    2013-01-01

    Full Text Available Introduction: Osteoradionecrosis (ORN of the mandible is a serious complication following radiation therapy for malignancies of the head and neck. Radiation-induced fibrosis (RIF is a new theory that accounts for the damage to normal tissues after radiotherapy, and the radiation-induced fibroatrophic mechanism includes the free-radical formation, endothelial dysfunction, inflammation, microvascular thrombosis, fibrosis and remodeling, and finally bone and tissue necrosis. The Hypothesis: Previous studies revealed that transforming growth factor-β1 (TGF-β1 is the master switch cytokine responsible for the regulation of fibroblast proliferation and differentiation that result in RIF. Among the targets of TGF-β1, connective tissue growth factor (CTGF is a downstream mediator through the Smad3/4 pathway and plays an important role in connective tissue homeostasis and fibroblast proliferation. Studies have proved that the TGF-β1/Smad/CTGF signaling pathway is involved in the RIF of soft tissues, so the authors put forward a hypothesis that the TGF-β1/Smad/CTGF axis is also the main pathway in RIF of ORN. Evaluation of the Hypothesis: The validation of our hypothesis may provide new insights for better understanding the pathogenesis of ORN and open new perspectives for anti-fibrotic therapies, and pioneer novel approaches to treat ORN.

  14. Expression of the stem cell factor in fibroblasts, endothelial cells, and macrophages in periapical tissues in human chronic periapical diseases.

    Science.gov (United States)

    Shen, S Q; Wang, R; Huang, S G

    2017-03-08

    Stem cell factor (SCF), an important stem cell cytokine, has multiple functions. Fibroblasts (FBs), mature mast cells, endothelial cells (ECs), and eosinophil granulocytes can produce SCF in the inflammatory process. Therefore, we aimed to observe SCF expression in FBs, ECs, and macrophages (MPs) in periapical tissues in human chronic periapical disease and investigate the effects of cells expressing SCF in pathogenesis of the disease. Healthy (N = 20), periapical cyst (N = 15), and periapical granuloma (N = 15) tissues were fixed in 10% formalin for 48 h, embedded in paraffin, and stained with hematoxylin and eosin to observe histological changes. SCF expression was observed in FBs, ECs, and MPs in periapical tissues by double immunofluorescence. CD334, CD31, and CD14 are specific markers of FBs, ECs, and MPs, respectively. Results showed that densities of CD334-SCF double-positive FBs, CD31-SCF double-positive ECs, and CD14-SCF double-positive MPs were significantly increased in periapical tissue groups (P periapical tissue groups (P > 0.05). CD14-SCF double-positive MP density was considerably higher in periapical granulomas than in cysts (P periapical tissues, suggesting that the cells might be related to occurrence, development, and pathogenesis of chronic periapical disease.

  15. Articular cartilage tissue engineering with plasma-rich in growth factors and stem cells with nano scaffolds

    Science.gov (United States)

    Montaser, Laila M.; Abbassy, Hadeer A.; Fawzy, Sherin M.

    2016-09-01

    The ability to heal soft tissue injuries and regenerate cartilage is the Holy Grail of musculoskeletal medicine. Articular cartilage repair and regeneration is considered to be largely intractable due to the poor regenerative properties of this tissue. Due to their low self-repair ability, cartilage defects that result from joint injury, aging, or osteoarthritis, are the most often irreversible and are a major cause of joint pain and chronic disability. However, current methods do not perfectly restore hyaline cartilage and may lead to the apparition of fibro- or continue hypertrophic cartilage. The lack of efficient modalities of treatment has prompted research into tissue engineering combining stem cells, scaffold materials and environmental factors. The field of articular cartilage tissue engineering, which aims to repair, regenerate, and/or improve injured or diseased cartilage functionality, has evoked intense interest and holds great potential for improving cartilage therapy. Plasma-rich in growth factors (PRGF) and/or stem cells may be effective for tissue repair as well as cartilage regenerative processes. There is a great promise to advance current cartilage therapies toward achieving a consistently successful approach for addressing cartilage afflictions. Tissue engineering may be the best way to reach this objective via the use of stem cells, novel biologically inspired scaffolds and, emerging nanotechnology. In this paper, current and emergent approach in the field of cartilage tissue engineering is presented for specific application. In the next years, the development of new strategies using stem cells, in scaffolds, with supplementation of culture medium could improve the quality of new formed cartilage.

  16. Central Role of Core Binding Factor β2 in Mucosa-Associated Lymphoid Tissue Organogenesis in Mouse.

    Science.gov (United States)

    Nagatake, Takahiro; Fukuyama, Satoshi; Sato, Shintaro; Okura, Hideaki; Tachibana, Masashi; Taniuchi, Ichiro; Ito, Kosei; Shimojou, Michiko; Matsumoto, Naomi; Suzuki, Hidehiko; Kunisawa, Jun; Kiyono, Hiroshi

    2015-01-01

    Mucosa-associated lymphoid tissue (MALT) is a group of secondary and organized lymphoid tissue that develops at different mucosal surfaces. Peyer's patches (PPs), nasopharynx-associated lymphoid tissue (NALT), and tear duct-associated lymphoid tissue (TALT) are representative MALT in the small intestine, nasal cavity, and lacrimal sac, respectively. A recent study has shown that transcriptional regulators of core binding factor (Cbf) β2 and promotor-1-transcribed Runt-related transcription factor 1 (P1-Runx1) are required for the differentiation of CD3-CD4+CD45+ lymphoid tissue inducer (LTi) cells, which initiate and trigger the developmental program of PPs, but the involvement of this pathway in NALT and TALT development remains to be elucidated. Here we report that Cbfβ2 plays an essential role in NALT and TALT development by regulating LTi cell trafficking to the NALT and TALT anlagens. Cbfβ2 was expressed in LTi cells in all three types of MALT examined. Indeed, similar to the previous finding for PPs, we found that Cbfβ2-/- mice lacked NALT and TALT lymphoid structures. However, in contrast to PPs, NALT and TALT developed normally in the absence of P1-Runx1 or other Runx family members such as Runx2 and Runx3. LTi cells for NALT and TALT differentiated normally but did not accumulate in the respective lymphoid tissue anlagens in Cbfβ2-/- mice. These findings demonstrate that Cbfβ2 is a central regulator of the MALT developmental program, but the dependency of Runx proteins on the lymphoid tissue development would differ among PPs, NALT, and TALT.

  17. Energetic soft-tissue treatment technologies: an overview of procedural fundamentals and safety factors

    NARCIS (Netherlands)

    van de Berg, N. J.; van den Dobbelsteen, J. J.; Jansen, F. W.; Grimbergen, C. A.; Dankelman, J.

    2013-01-01

    Energy administered during soft-tissue treatments may cauterize, coagulate, seal, or otherwise affect underlying structures. A general overview of the functionality, procedural outcomes, and associated risks of these treatments, however, is not yet generally available. In addition, literature is

  18. Expression of vascular endothelial factor protein in the tumor tissues of patients with Stages I-II ovarian cancer

    Directory of Open Access Journals (Sweden)

    V. L. Karapetyan

    2010-01-01

    Full Text Available To define tumor markers is presently the most interesting and promising direction for the diagnosis of malignancies. The expression of the major angiogenesis factor vascular endothelial growth factor (VEGF in primary tumor tissue was studied in ovarian cancer (OC patients to define the prognostic value of the marker.The study enrolled 48 patients with OC. The immunohistochemical technique was used to examine VEGF expression in the primary tu- mor tissue. The frequency of VEGF expression, which was associated with lower relapse-free survival rates, was found to be high (85.4% in OC patients (p > 0.05.The tumor expression of the angiogenic factor VEGF was shown to provide prognostic information in early-stage ovarian epithelial cancer.

  19. Connective tissue growth factor stimulates the proliferation, migration and differentiation of lung fibroblasts during paraquat-induced pulmonary fibrosis.

    Science.gov (United States)

    Yang, Zhizhou; Sun, Zhaorui; Liu, Hongmei; Ren, Yi; Shao, Danbing; Zhang, Wei; Lin, Jinfeng; Wolfram, Joy; Wang, Feng; Nie, Shinan

    2015-07-01

    It is well established that paraquat (PQ) poisoning can cause severe lung injury during the early stages of exposure, finally leading to irreversible pulmonary fibrosis. Connective tissue growth factor (CTGF) is an essential growth factor that is involved in tissue repair and pulmonary fibrogenesis. In the present study, the role of CTGF was examined in a rat model of pulmonary fibrosis induced by PQ poisoning. Histological examination revealed interstitial edema and extensive cellular thickening of interalveolar septa at the early stages of poisoning. At 2 weeks after PQ administration, lung tissue sections exhibited a marked thickening of the alveolar walls with an accumulation of interstitial cells with a fibroblastic appearance. Masson's trichrome staining revealed a patchy distribution of collagen deposition, indicating pulmonary fibrogenesis. Western blot analysis and immunohistochemical staining of tissue samples demonstrated that CTGF expression was significantly upregulated in the PQ-treated group. Similarly, PQ treatment of MRC-5 human lung fibroblast cells caused an increase in CTGF in a dose-dependent manner. Furthermore, the addition of CTGF to MRC-5 cells triggered cellular proliferation and migration. In addition, CTGF induced the differentiation of fibroblasts to myofibroblasts, as was evident from increased expression of α-smooth muscle actin (α-SMA) and collagen. These findings demonstrate that PQ causes increased CTGF expression, which triggers proliferation, migration and differentiation of lung fibroblasts. Therefore, CTGF may be important in PQ-induced pulmonary fibrogenesis, rendering this growth factor a potential pharmacological target for reducing lung injury.

  20. Influence factor on automated synthesis yield of 3'-deoxy-3'-[18F] fluorothymidine

    International Nuclear Information System (INIS)

    Zhang Jinming; Tian Jiahe; Liu Changbin; Liu Jian; Luo Zhigang

    2009-01-01

    3'-deoxy-3'-[ 18 F] fluorothymidine ( 18 F-FLT) was prepared from N-BOC precursor to improve the synthesis yield, chemical purity and radiochemical purity of 18 F-FLT by home-made automated synthesis module. The results showed that residual water in synthesis system and the amount of precursor could affect the synthesis yield dramatically. The more the amount of precursor, the higher the synthesis yield of N-BOC. The residual water can decrease the synthesis yield. In the presence of excess base, the precursor was consumed by elimination before substitution was completed. The precursor to base was optimal in 1 to 1. The balance of semi-preparatiove HPLC Column can affect purified the final 18 F-FLT product. The chemical purity of 18 F-FLT could be decreased with 8% EtOH as mobile phase in semi-preparatiove HPLC. The high chemical purity, radiochemical purity and synthesis yield could be obtained by optimized the parameter of synthesis with home-made automated synthesis module. (authors)

  1. Extremity Regeneration of Soft Tissue Injury Using Growth Factor-Impregnated Gels

    Science.gov (United States)

    2017-10-01

    vascular endothelial growth factor (VEGF) and insulin-like growth factor-1 (IGF-1). Repeated injections of growth factor-alginate material are... Vascularized endothelial growth factor (VEGF) Insulin-like growth factor-1 (IGF-1) Alginate gel Ischemia-reperfusion Large animal model...operative complications including skin necrosis and seroma development. The IACUC protocol was reevaluated and modified thought multiple discussions

  2. Synthesis and secretion of platelet-derived growth factor by human breast cancer cell lines

    International Nuclear Information System (INIS)

    Bronzert, D.A.; Pantazis, P.; Antoniades, H.N.; Kasid, A.; Davidson, N.; Dickson, R.B.; Lippman, M.E.

    1987-01-01

    The authors report that human breast cancer cells secrete a growth factor that is biologically and immunologically similar to platelet-derived growth factor (PDGF). Serum-free medium conditioned by estrogen-independent MDA-MB-231 or estrogen-dependent MCF-7 cells contains a mitogenic or competence activity that is capable of inducing incorporation of [ 3 H] thymidine into quiescent Swiss 3T3 cells in the presence of platelet-poor plasma. Like authentic PDGF, the PDGF-like activity produced by breast cancer cells is stable after acid and heat treatment (95 0 C) and inhibited by reducing agents. The mitogenic activity comigrates with a material of ≅30 kDa on NaDodSO 4 /polyacrylamide gels. Immunoprecipitation with PDGF antiserum of proteins from metabolically labeled cell lysates and conditioned medium followed by analysis on nonreducing NaDodSO 4 /polyacrylamide gels identified proteins of 30 and 34 kDa. Upon reduction, the 30- and 34-kDa bands were converted to 15- and 16-kDa bands suggesting that the immunoprecipitated proteins were made up of two disulfide-linked polypeptides similar to PDGF. Hybridization studies with cDNA probes for the A chain PDGF and the B chain of PDGF/SIS identified transcripts for both PDGF chains in the MCF-7 and MDA-MB-231 cells. The data summarized above provide conclusive evidence for the synthesis and hormonally regulated secretion of a PDGF-like mitogen by breast carcinoma cells. Production of a PDGF-like growth factor by breast cancer cell lines may be important in mediating paracrine stimulation of tumor growth

  3. Connective tissue growth factor (CTGF/CCN2 is negatively regulated during neuron-glioblastoma interaction.

    Directory of Open Access Journals (Sweden)

    Luciana F Romão

    Full Text Available Connective-tissue growth factor (CTGF/CCN2 is a matricellular-secreted protein involved in complex processes such as wound healing, angiogenesis, fibrosis and metastasis, in the regulation of cell proliferation, migration and extracellular matrix remodeling. Glioblastoma (GBM is the major malignant primary brain tumor and its adaptation to the central nervous system microenvironment requires the production and remodeling of the extracellular matrix. Previously, we published an in vitro approach to test if neurons can influence the expression of the GBM extracellular matrix. We demonstrated that neurons remodeled glioma cell laminin. The present study shows that neurons are also able to modulate CTGF expression in GBM. CTGF immnoreactivity and mRNA levels in GBM cells are dramatically decreased when these cells are co-cultured with neonatal neurons. As proof of particular neuron effects, neonatal neurons co-cultured onto GBM cells also inhibit the reporter luciferase activity under control of the CTGF promoter, suggesting inhibition at the transcription level. This inhibition seems to be contact-mediated, since conditioned media from embryonic or neonatal neurons do not affect CTGF expression in GBM cells. Furthermore, the inhibition of CTGF expression in GBM/neuronal co-cultures seems to affect the two main signaling pathways related to CTGF. We observed inhibition of TGFβ luciferase reporter assay; however phopho-SMAD2 levels did not change in these co-cultures. In addition levels of phospho-p44/42 MAPK were decreased in co-cultured GBM cells. Finally, in transwell migration assay, CTGF siRNA transfected GBM cells or GBM cells co-cultured with neurons showed a decrease in the migration rate compared to controls. Previous data regarding laminin and these results demonstrating that CTGF is down-regulated in GBM cells co-cultured with neonatal neurons points out an interesting view in the understanding of the tumor and cerebral microenvironment

  4. Expression of Tissue factor in Adenocarcinoma and Squamous Cell Carcinoma of the Uterine Cervix: Implications for immunotherapy with hI-con1, a factor VII-IgGFc chimeric protein targeting tissue factor

    International Nuclear Information System (INIS)

    Cocco, Emiliano; Azodi, Masoud; Schwartz, Peter E; Rutherford, Thomas J; Pecorelli, Sergio; Lockwood, Charles J; Santin, Alessandro D; Varughese, Joyce; Buza, Natalia; Bellone, Stefania; Glasgow, Michelle; Bellone, Marta; Todeschini, Paola; Carrara, Luisa; Silasi, Dan-Arin

    2011-01-01

    Cervical cancer continues to be an important worldwide health problem for women. Up to 35% of patients who are diagnosed with and appropriately treated for cervical cancer will recur and treatment results are poor for recurrent disease. Given these sobering statistics, development of novel therapies for cervical cancer remains a high priority. We evaluated the expression of Tissue Factor (TF) in cervical cancer and the potential of hI-con1, an antibody-like-molecule targeted against TF, as a novel form of immunotherapy against multiple primary cervical carcinoma cell lines with squamous- and adenocarcinoma histology. Because TF is a transmembrane receptor for coagulation factor VII/VIIa (fVII), in this study we evaluated the in vitro expression of TF in cervical carcinoma cell lines by immunohistochemistry (IHC), real time-PCR (qRT-PCR) and flow cytometry. Sensitivity to hI-con1-dependent cell-mediated-cytotoxicity (IDCC) was evaluated in 5-hrs- 51 chromium-release-assays against cervical cancer cell lines in vitro. Cytoplasmic and/or membrane TF expression was observed in 8 out of 8 (100%) of the tumor tissues tested by IHC and in 100% (11 out of 11) of the cervical carcinoma cell lines tested by real-time-PCR and flow cytometry but not in normal cervical keratinocytes (p = 0.0023 qRT-PCR; p = 0.0042 flow cytometry). All primary cervical cancer cell lines tested overexpressing TF, regardless of their histology, were highly sensitive to IDCC (mean killing ± SD, 56.2% ± 15.9%, range, 32.4%-76.9%, p < 0.001), while negligible cytotoxicity was seen in the absence of hI-con1 or in the presence of rituximab-control-antibody. Low doses of interleukin-2 further increased the cytotoxic effect induced by hI-con1 (p = 0.025) while human serum did not significantly decrease IDCC against cervical cancer cell lines (p = 0.597). TF is highly expressed in squamous and adenocarcinoma of the uterine cervix. hI-con1 induces strong cytotoxicity against primary cervical cancer cell

  5. Elevated circulating soluble thrombomodulin activity, tissue factor activity and circulating procoagulant phospholipids: new and useful markers for pre-eclampsia?

    Science.gov (United States)

    Rousseau, Aurélie; Favier, Rémi; Van Dreden, Patrick

    2009-09-01

    One of the most frequently proposed mechanisms for pre-eclampsia refers to uteroplacental thrombosis. However, the contribution of classical thrombotic risk factors remains questionable. The aims of this study were to investigate the activities of thrombomodulin, tissue factor and procoagulant phospholipids to assess endothelial cell injury in pregnant women with pre-eclampsia and to compare them with other classical markers of vascular injury and thrombotic risk. Using three new functional assays we studied the plasma levels of these new markers in 35 healthy women, 30 healthy pregnant women, and 35 women with pre-eclampsia. We found that plasma levels of thrombomodulin activity, tissue factor activity and procoagulant phospholipids were significantly elevated in women with pre-eclampsia versus normal pregnant and non-pregnant women. It is thus suggested that elevated levels of these parameters in pre-eclampsia may reflect vascular endothelium damage, and may be a more valuable biomarker than antigen for the assessment of endothelial damage in pre-eclampsia. The high increased levels of procoagulant phospholipids and tissue factor activities in pre-eclampsia could suggest that the procoagulant potential may be implicated in this complication and makes these markers very promising for the understanding, follow-up and therapeutic handling of complicated pregnancy.

  6. Connective tissue growth factor and bone morphogenetic protein 2 are induced following myocardial ischemia in mice and humans.

    Science.gov (United States)

    Rutkovskiy, Arkady; Sagave, Julia; Czibik, Gabor; Baysa, Anton; Zihlavnikova Enayati, Katarina; Hillestad, Vigdis; Dahl, Christen Peder; Fiane, Arnt; Gullestad, Lars; Gravning, Jørgen; Ahmed, Shakil; Attramadal, Håvard; Valen, Guro; Vaage, Jarle

    2017-09-01

    We aimed to study the cardiac expression of bone morphogenetic protein 2, its receptor 1 b, and connective tissue growth factor, factors implicated in cardiac embryogenesis, following ischemia/hypoxia, heart failure, and in remodeling hearts from humans and mice. Biopsies from the left ventricle of patients with end-stage heart failure due to dilated cardiomyopathy or coronary artery disease were compared with donor hearts and biopsies from patients with normal heart function undergoing coronary artery bypass grafting. Mouse model of post-infarction remodeling was made by permanent ligation of the left coronary artery. Hearts were analyzed by real-time polymerase chain reaction and Western blotting after 24 hours and after 2 and 4 weeks. Patients with dilated cardiomyopathy and mice post-infarction had increased cardiac expression of connective tissue growth factor. Bone morphogenetic protein 2 was increased in human hearts failing due to coronary artery disease and in mice post-infarction. Gene expression of bone morphogenetic protein receptor 1 beta was reduced in hearts of patients with failure, but increased two weeks following permanent ligation of the left coronary artery in mice. In conclusion, connective tissue growth factor is upregulated in hearts of humans with dilated cardiomyopathy, bone morphogenetic protein 2 is upregulated in remodeling due to myocardial infarction while its receptor 1 b in human failing hearts is downregulated. A potential explanation might be an attempt to engage regenerative processes, which should be addressed by further, mechanistic studies.

  7. Characteristics of adipose tissue macrophages and macrophage-derived insulin-like growth factor-1 in virus-induced obesity.

    Science.gov (United States)

    Park, S; Park, H-L; Lee, S-Y; Nam, J-H

    2016-03-01

    Various pathogens are implicated in the induction of obesity. Previous studies have confirmed that human adenovirus 36 (Ad36) is associated with increased adiposity, improved glycemic control and induction of inflammation. The Ad36-induced inflammation is reflected in the infiltration of macrophages into adipose tissue. However, the characteristics and role of adipose tissue macrophages (ATMs) and macrophage-secreted factors in virus-induced obesity (VIO) are unclear. Although insulin-like growth factor-1 (IGF-1) is involved in obesity metabolism, the contribution of IGF secreted by macrophages in VIO has not been studied. Four-week-old male mice were studied 1 week and 12 weeks after Ad36 infection for determining the characteristics of ATMs in VIO and diet-induced obesity (DIO). In addition, macrophage-specific IGF-1-deficient (MIKO) mice were used to study the involvement of IGF-1 in VIO. In the early stage of VIO (1 week after Ad36 infection), the M1 ATM sub-population increased, which increased the M1/M2 ratio, whereas DIO did not cause this change. In the late stage of VIO (12 weeks after Ad36 infection), the M1/M2 ratio did not change because the M1 and M2 ATM sub-populations increased to a similar extent, despite an increase in adiposity. By contrast, DIO increased the M1/M2 ratio. In addition, VIO in wild-type mice upregulated angiogenesis in adipose tissue and improved glycemic control. However, MIKO mice showed no increase in adiposity, angiogenesis, infiltration of macrophages into adipose tissue, or improvement in glycemic control after Ad36 infection. These data suggest that IGF-1 secreted by macrophages may contribute to hyperplasia and hypertrophy in adipose tissue by increasing angiogenesis, which helps to maintain the 'adipose tissue robustness'.

  8. Obesity-associated insulin resistance is correlated to adipose tissue vascular endothelial growth factors and metalloproteinase levels

    Directory of Open Access Journals (Sweden)

    Tinahones Francisco

    2012-04-01

    Full Text Available Abstract Background The expansion of adipose tissue is linked to the development of its vasculature, which appears to have the potential to regulate the onset of obesity. However, at present, there are no studies highlighting the relationship between human adipose tissue angiogenesis and obesity-associated insulin resistance (IR. Results Our aim was to analyze and compare angiogenic factor expression levels in both subcutaneous (SC and omentum (OM adipose tissues from morbidly obese patients (n = 26 with low (OB/L-IR (healthy obese and high (OB/H-IR degrees of IR, and lean controls (n = 17. Another objective was to examine angiogenic factor correlations with obesity and IR. Here we found that VEGF-A was the isoform with higher expression in both OM and SC adipose tissues, and was up-regulated 3-fold, together with MMP9 in OB/L-IR as compared to leans. This up-regulation decreased by 23% in OB/-H-IR compared to OB/L-IR. On the contrary, VEGF-B, VEGF-C and VEGF-D, together with MMP15 was down-regulated in both OB/H-IR and OB/L-IR compared to lean patients. Moreover, MMP9 correlated positively and VEGF-C, VEGF-D and MMP15 correlated negatively with HOMA-IR, in both SC and OM. Conclusion We hereby propose that the alteration in MMP15, VEGF-B, VEGF-C and VEGF-D gene expression may be caused by one of the relevant adipose tissue processes related to the development of IR, and the up-regulation of VEGF-A in adipose tissue could have a relationship with the prevention of this pathology.

  9. Altered expression of hypoxia-inducible factor-1α (HIF-1α and its regulatory genes in gastric cancer tissues.

    Directory of Open Access Journals (Sweden)

    Jihan Wang

    Full Text Available Tissue hypoxia induces reprogramming of cell metabolism and may result in normal cell transformation and cancer progression. Hypoxia-inducible factor 1-alpha (HIF-1α, the key transcription factor, plays an important role in gastric cancer development and progression. This study aimed to investigate the underlying regulatory signaling pathway in gastric cancer using gastric cancer tissue specimens. The integration of gene expression profile and transcriptional regulatory element database (TRED was pursued to identify HIF-1α ↔ NFκB1 → BRCA1 → STAT3 ← STAT1 gene pathways and their regulated genes. The data showed that there were 82 differentially expressed genes that could be regulated by these five transcription factors in gastric cancer tissues and these genes formed 95 regulation modes, among which seven genes (MMP1, TIMP1, TLR2, FCGR3A, IRF1, FAS, and TFF3 were hub molecules that are regulated at least by two of these five transcription factors simultaneously and were associated with hypoxia, inflammation, and immune disorder. Real-Time PCR and western blot showed increasing of HIF-1α in mRNA and protein levels as well as TIMP1, TFF3 in mRNA levels in gastric cancer tissues. The data are the first study to demonstrate HIF-1α-regulated transcription factors and their corresponding network genes in gastric cancer. Further study with a larger sample size and more functional experiments is needed to confirm these data and then translate into clinical biomarker discovery and treatment strategy for gastric cancer.

  10. Physiological levels of blood coagulation factors IX and X control coagulation kinetics in an in vitro model of circulating tissue factor

    International Nuclear Information System (INIS)

    Tormoen, Garth W; Khader, Ayesha; Gruber, András; McCarty, Owen J T

    2013-01-01

    Thrombosis significantly contributes to cancer morbidity and mortality. The mechanism behind thrombosis in cancer may be circulating tissue factor (TF), as levels of circulating TF are associated with thrombosis. However, circulating TF antigen level alone has failed to predict thrombosis in patients with cancer. We hypothesize that coagulation factor levels regulate the kinetics of circulating TF-induced thrombosis. Coagulation kinetics were measured as a function of individual coagulation factor levels and TF particle concentration. Clotting times increased when pooled plasma was mixed at or above a ratio of 4:6 with PBS. Clotting times increased when pooled plasma was mixed at or above a ratio of 8:2 with factor VII-depleted plasma, 7:3 with factor IX- or factor X-depleted plasmas, or 2:8 with factor II-, V- or VIII-depleted plasmas. Addition of coagulation factors VII, X, IX, V and II to depleted plasmas shortened clotting and enzyme initiation times, and increased enzyme generation rates in a concentration-dependent manner. Only additions of factors IX and X from low-normal to high-normal levels shortened clotting times and increased enzyme generation rates. Our results demonstrate that coagulation kinetics for TF particles are controlled by factor IX and X levels within the normal physiological range. We hypothesize that individual patient factor IX and X levels may be prognostic for susceptibility to circulating TF-induced thrombosis. (paper)

  11. Quercetin suppresses hypoxia-induced accumulation of hypoxia-inducible factor-1alpha (HIF-1alpha) through inhibiting protein synthesis.

    Science.gov (United States)

    Lee, Dae-Hee; Lee, Yong J

    2008-10-01

    Quercetin, a ubiquitous bioactive plant flavonoid, has been shown to inhibit the proliferation of cancer cells and induce the accumulation of hypoxia-inducible factor-1alpha (HIF-1alpha) in normoxia. In this study, under hypoxic conditions (1% O(2)), we examined the effect of quercetin on the intracellular level of HIF-1alpha and extracellular level of vascular endothelial growth factor (VEGF) in a variety of human cancer cell lines. Surprisingly, we observed that quercetin suppressed the HIF-1alpha accumulation during hypoxia in human prostate cancer LNCaP, colon cancer CX-1, and breast cancer SkBr3 cells. Quercetin treatment also significantly reduced hypoxia-induced secretion of VEGF. Suppression of HIF-1alpha accumulation during treatment with quercetin in hypoxia was not prevented by treatment with 26S proteasome inhibitor MG132 or PI3K inhibitor LY294002. Interestingly, hypoxia (1% O(2)) in the presence of 100 microM quercetin inhibited protein synthesis by 94% during incubation for 8 h. Significant quercetin concentration-dependent inhibition of protein synthesis and suppression of HIF-1alpha accumulation were observed under hypoxic conditions. Treatment with 100 microM cycloheximide, a protein synthesis inhibitor, replicated the effect of quercetin by inhibiting HIF-1alpha accumulation during hypoxia. These results suggest that suppression of HIF-1alpha accumulation during treatment with quercetin under hypoxic conditions is due to inhibition of protein synthesis. (c) 2008 Wiley-Liss, Inc.

  12. Synthesis and characterization of (18)F-labeled active site inhibited factor VII (ASIS).

    Science.gov (United States)

    Erlandsson, Maria; Nielsen, Carsten H; Jeppesen, Troels E; Kristensen, Jesper B; Petersen, Lars C; Madsen, Jacob; Kjaer, Andreas

    2015-05-15

    Activated factor VII blocked in the active site with Phe-Phe-Arg-chloromethyl ketone (active site inhibited factor VII (ASIS)) is a 50-kDa protein that binds with high affinity to its receptor, tissue factor (TF). TF is a transmembrane glycoprotein that plays an important role in, for example, thrombosis, metastasis, tumor growth, and tumor angiogenesis. The aim of this study was to develop an (18)F-labeled ASIS derivative to assess TF expression in tumors. Active site inhibited factor VII was labeled using N-succinimidyl-4-[(18)F]fluorobenzoate, and the [(18)F]ASIS was purified on a PD-10 desalting column. The radiochemical yield was 25 ± 6%, the radiochemical purity was >97%, and the pseudospecific radioactivity was 35 ± 9 GBq/µmol. The binding efficacy was evaluated in pull-down experiments, which monitored the binding of unlabeled ASIS and [(18)F]ASIS to TF and to a specific anti-factor VII antibody (F1A2-mAb). No significant difference in binding efficacy between [(18)F]ASIS and ASIS could be detected. Furthermore, [(18)F]ASIS was relatively stable in vitro and in vivo in mice. In conclusion, [(18)F]ASIS has for the first time been successfully synthesized as a possible positron emission tomography tracer to image TF expression levels. In vivo positron emission tomography studies to evaluate the full potential of [(18)F]ASIS are in progress. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Increasing pro-survival factors within whole brain tissue of Sprague Dawley rats via intracerebral administration of modified valproic acid

    Directory of Open Access Journals (Sweden)

    Ryan C. Bates

    2015-08-01

    Full Text Available Neural tissue exposure to valproic acid (VPA increases several pro-survival phospho-proteins that can be used as biomarkers for indicating a beneficial drug response (pAktSer473, pGSK3βSer9, pErk1/2Thr202/Tyr204. Unfortunately, targeting VPA to neural tissue is a problem due to severe asymmetrical distribution, wherein the drug tends to remain in peripheral blood rather than localizing within the brain. Intracerebral delivery of an amide-linked VPA–PEG conjugate could address these issues by enhancing retention and promoting cerebro-global increases in pro-survival phospho-proteins. It is necessary to assay for the retained bioactivity of a PEGylated valproic acid molecule, along with locating an intracranial cannula placement that optimizes the increase of a known downstream biomarker for chronic VPA exposure. Here we show an acute injection of VPA–PEG conjugate within brain tissue increased virtually all of the assayed phospho-proteins, including well-known pro-survival factors. In contrast, an acute injection of VPA expectedly decreased signaling throughout the hour. Needle penetration into whole brain tissue is the intentional cause of trauma in this procedure. The trauma to brain tissue was observed to overcome known phospho-protein increases for unmodified VPA in the injected solution, while VPA–PEG conjugate appeared to induce significant increases in pro-survival phospho-proteins, despite the procedural trauma.

  14. Design, synthesis, and protein crystallography of biaryltriazoles as potent tautomerase inhibitors of macrophage migration inhibitory factor.

    Science.gov (United States)

    Dziedzic, Pawel; Cisneros, José A; Robertson, Michael J; Hare, Alissa A; Danford, Nadia E; Baxter, Richard H G; Jorgensen, William L

    2015-03-04

    Optimization is reported for biaryltriazoles as inhibitors of the tautomerase activity of human macrophage migration inhibitory factor (MIF), a proinflammatory cytokine associated with numerous inflammatory diseases and cancer. A combined approach was taken featuring organic synthesis, enzymatic assaying, crystallography, and modeling including free-energy perturbation (FEP) calculations. X-ray crystal structures for 3a and 3b bound to MIF are reported and provided a basis for the modeling efforts. The accommodation of the inhibitors in the binding site is striking with multiple hydrogen bonds and aryl-aryl interactions. Additional modeling encouraged pursuit of 5-phenoxyquinolinyl analogues, which led to the very potent compound 3s. Activity was further enhanced by addition of a fluorine atom adjacent to the phenolic hydroxyl group as in 3w, 3z, 3aa, and 3bb to strengthen a key hydrogen bond. It is also shown that physical properties of the compounds can be modulated by variation of solvent-exposed substituents. Several of the compounds are likely the most potent known MIF tautomerase inhibitors; the most active ones are more than 1000-fold more active than the well-studied (R)-ISO-1 and more than 200-fold more active than the chromen-4-one Orita-13.

  15. Cloning changes the response to obesity of innate immune factors in blood, liver, and adipose tissues in domestic pigs.

    Science.gov (United States)

    Rødgaard, Tina; Skovgaard, Kerstin; Stagsted, Jan; Heegaard, Peter M H

    2013-06-01

    The objective of this study was to evaluate the usefulness of cloned pigs as porcine obesity models reflecting obesity-associated changes in innate immune factor gene expression profiles. Liver and adipose tissue expression of 43 innate immune genes as well as serum concentrations of six immune factors were analyzed in lean and diet-induced obese cloned domestic pigs and compared to normal domestic pigs (obese and lean). The number of genes affected by obesity was lower in cloned animals than in control animals. All genes affected by obesity in adipose tissues of clones were downregulated; both upregulation and downregulation were observed in the controls. Cloning resulted in a less differentiated adipose tissue expression pattern. Finally, the serum concentrations of two acute-phase proteins (APPs), haptoglobin (HP) and orosomucoid (ORM), were increased in obese clones as compared to obese controls as well as lean clones and controls. Generally, the variation in phenotype between individual pigs was not reduced in cloned siblings as compared to normal siblings. Therefore, we conclude that cloning limits both the number of genes responding to obesity as well as the degree of tissue-differentiated gene expression, concomitantly with an increase in APP serum concentrations only seen in cloned, obese pigs. This may suggest that the APP response seen in obese, cloned pigs is a consequence of the characteristic skewed gene response to obesity in cloned pigs, as described in this work. This should be taken into consideration when using cloned animals as models for innate responses to obesity.

  16. [Characteristics of sublingual vein and expressions of vascular endothelial growth factor and hypoxia-inducible factor 1alpha proteins in sublingual tissues of Beagle dogs with portal hypertension].

    Science.gov (United States)

    Li, Bai-yu; Wang, Li-na; Yue, Xiao-qiang; Li, Bai

    2009-05-01

    To observe sublingual vein characteristics and the expressions of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor 1alpha (HIF-1alpha) proteins in sublingual tissues of Beagle dogs with cirrhotic portal hypertension. Twelve Beagle dogs were randomly divided into normal control group and cirrhotic portal hypertension group. There were 6 dogs in each group. A canine model of cirrhosis portal hypertension was established by injecting dimethylnitrosamine (DMN) into portal vein once a week for 7 weeks. The characteristics of sublingual vein were observed. Portal venous pressure was measured by using bioelectric recording techniques. The expressions of VEGF and HIF-1alpha proteins in sublingual vein were detected by immunohistochemical method. The shape and color of sublingual vein in beagle dogs in the cirrhotic portal hypertension group changed obviously as compared with the normal control group. Immunohistochemical results showed that there were almost no expressions of VEGF and HIF-1alpha proteins in sublingual tissues in the normal control group; however, the expressions of VEGF and HIF-1alpha proteins in sublingual tissues in the cirrhotic portal hypertension group significantly increased. Changes of portal pressure may lead to the formation of the abnormal sublingual vein by increasing the expressions of VEGF and HIF-1alpha proteins in sublingual tissues in Beagle dogs with portal hypertension.

  17. Down-regulation of connective tissue growth factor by inhibition of transforming growth factor beta blocks the tumor-stroma cross-talk and tumor progression in hepatocellular carcinoma.

    Science.gov (United States)

    Mazzocca, Antonio; Fransvea, Emilia; Dituri, Francesco; Lupo, Luigi; Antonaci, Salvatore; Giannelli, Gianluigi

    2010-02-01

    Tumor-stroma interactions in hepatocellular carcinoma (HCC) are of key importance to tumor progression. In this study, we show that HCC invasive cells produce high levels of connective tissue growth factor (CTGF) and generate tumors with a high stromal component in a xenograft model. A transforming growth factor beta (TGF-beta) receptor inhibitor, LY2109761, inhibited the synthesis and release of CTGF, as well as reducing the stromal component of the tumors. In addition, the TGF-beta-dependent down-regulation of CTGF diminished tumor growth, intravasation, and metastatic dissemination of HCC cells by inhibiting cancer-associated fibroblast proliferation. By contrast, noninvasive HCC cells were found to produce low levels of CTGF. Upon TGF-beta1 stimulation, noninvasive HCC cells form tumors with a high stromal content and CTGF expression, which is inhibited by treatment with LY2109761. In addition, the acquired intravasation and metastatic spread of noninvasive HCC cells after TGF-beta1 stimulation was blocked by LY2109761. LY2109761 interrupts the cross-talk between cancer cells and cancer-associated fibroblasts, leading to a significant reduction of HCC growth and dissemination. Interestingly, patients with high CTGF expression had poor prognosis, suggesting that treatment aimed at reducing TGF-beta-dependent CTGF expression may offer clinical benefits. Taken together, our preclinical results indicate that LY2109761 targets the cross-talk between HCC and the stroma and provide a rationale for future clinical trials.

  18. Fibroblast growth factor 23 inhibits extrarenal synthesis of 1,25-dihydroxyvitamin D in human monocytes.

    Science.gov (United States)

    Bacchetta, Justine; Sea, Jessica L; Chun, Rene F; Lisse, Thomas S; Wesseling-Perry, Katherine; Gales, Barbara; Adams, John S; Salusky, Isidro B; Hewison, Martin

    2013-01-01

    Vitamin D is a potent stimulator of monocyte innate immunity, and this effect is mediated via intracrine conversion of 25-hydroxyvitamin D (25OHD) to 1,25-dihydroxyvitamin D (1,25(OH)(2) D). In the kidney, synthesis of 1,25(OH)(2) D is suppressed by fibroblast growth factor 23 (FGF23), via transcriptional suppression of the vitamin D-activating enzyme 1α-hydroxylase (CYP27B1). We hypothesized that FGF23 also suppresses CYP27B1 in monocytes, with concomitant effects on intracrine responses to 1,25(OH)(2) D. Healthy donor peripheral blood mononuclear cell monocytes (PBMCm) and peritoneal dialysate monocyte (PDm) effluent from kidney disease patients were assessed at baseline to confirm the presence of mRNA for FGF23 receptors (FGFRs), with Klotho and FGFR1 being more strongly expressed than FGFR2/3/4 in both cell types. Immunohistochemistry showed coexpression of Klotho and FGFR1 in PBMCm and PDm, with this effect being enhanced following treatment with FGF23 in PBMCm but not PDm. Treatment with FGF23 activated mitogen-activated protein kinase (MAPK) and protein kinase B (Akt) pathways in PBMCm, demonstrating functional FGFR signaling in these cells. FGF23 treatment of PBMCm and PDm decreased expression of mRNA for CYP27B1. In PBMCm this was associated with downregulation of 25OHD to 1,25(OH)(2) D metabolism, and concomitant suppression of intracrine induced 24-hydroxylase (CYP24A1) and antibacterial cathelicidin (LL37). FGF23 suppression of CYP27B1 was particularly pronounced in PBMCm treated with interleukin-15 to stimulate synthesis of 1,25(OH)(2) D. These data indicate that FGF23 can inhibit extra-renal expression of CYP27B1 and subsequent intracrine responses to 1,25(OH)(2) D in two different human monocyte models. Elevated expression of FGF23 may therefore play a crucial role in defining immune responses to vitamin D and this, in turn, may be a key determinant of infection in patients with chronic kidney disease (CKD). Copyright © 2013 American Society for

  19. Genetic Testing and Tissue Banking for Personalized Oncology: Analytical and Institutional Factors.

    Science.gov (United States)

    Miles, George; Rae, James; Ramalingam, Suresh S; Pfeifer, John

    2015-10-01

    Personalized oncology, or more aptly precision oncogenomics, refers to the identification and implementation of clinically actionable targets tailored to an individual patient's cancer genomic information. Banking of human tissue and other biospecimens establishes a framework to extract and collect the data essential to our understanding of disease pathogenesis and treatment. Cancer cooperative groups in the United States have led the way in establishing robust biospecimen collection mechanisms to facilitate translational research, and combined with technological advances in molecular testing, tissue banking has expanded from its traditional base in academic research and is assuming an increasingly pivotal role in directing the clinical care of cancer patients. Comprehensive screening of tumors by DNA sequencing and the ability to mine and interpret these large data sets from well-organized tissue banks have defined molecular subtypes of cancer. Such stratification by genomic criteria has revolutionized our perspectives on cancer diagnosis and treatment, offering insight into prognosis, progression, and susceptibility or resistance to known therapeutic agents. In turn, this has enabled clinicians to offer treatments tailored to patients that can greatly improve their chances of survival. Unique challenges and opportunities accompany the rapidly evolving interplay between tissue banking and genomic sequencing, and are the driving forces underlying the revolution in precision medicine. Molecular testing and precision medicine clinical trials are now becoming the major thrust behind the cooperative groups' clinical research efforts. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Effects of growth factors and cytokins on soft tissue regeneration in patients with diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Ekaterina Leonidovna Zaytseva

    2014-03-01

    Full Text Available Delayed wound healing is characteristic of a glycemic disorder and often results in trophic ulcer formation, ? a process still poorly understood but likely multifaceted. Current review addresses latest reports from cellular and molecular studies of soft tissue regeneration in patients with diabetes mellitus.

  1. State of oral hygiene and identification of the main risk factors for inflammatory diseases of periodontal tissues in young people.

    OpenAIRE

    Makarenko, M. V.

    2014-01-01

    A high percentage of prevalence of inflammatory periodontal diseases in young age causes urgency of treatment and prevention of inflammatory diseases of periodontal tissue in young age. Therefore, the research purpose was to investigate the hygienic condition and identification of the main risk factors for gingivitis in patients aged 18-30 years. 286 people aged from 18 to 30 years were observed in the study. To assess hygienic condition of the oral cavity and to determine the thickness of pl...

  2. The transcription factor GLI1 modulates the inflammatory response during pancreatic tissue remodeling.

    Science.gov (United States)

    Mathew, Esha; Collins, Meredith A; Fernandez-Barrena, Maite G; Holtz, Alexander M; Yan, Wei; Hogan, James O; Tata, Zachary; Allen, Benjamin L; Fernandez-Zapico, Martin E; di Magliano, Marina Pasca

    2014-10-03

    Pancreatic cancer, one of the deadliest human malignancies, is almost uniformly associated with a mutant, constitutively active form of the oncogene Kras. Studies in genetically engineered mouse models have defined a requirement for oncogenic KRAS in both the formation of pancreatic intraepithelial neoplasias, the most common precursor lesions to pancreatic cancer, and in the maintenance and progression of these lesions. Previous work using an inducible model allowing tissue-specific and reversible expression of oncogenic Kras in the pancreas indicates that inactivation of this GTPase at the pancreatic intraepithelial neoplasia stage promotes pancreatic tissue repair. Here, we extend these findings to identify GLI1, a transcriptional effector of the Hedgehog pathway, as a central player in pancreatic tissue repair upon Kras inactivation. Deletion of a single allele of Gli1 results in improper stromal remodeling and perdurance of the inflammatory infiltrate characteristic of pancreatic tumorigenesis. Strikingly, this partial loss of Gli1 affects activated fibroblasts in the pancreas and the recruitment of immune cells that are vital for tissue recovery. Analysis of the mechanism using expression and chromatin immunoprecipitation assays identified a subset of cytokines, including IL-6, mIL-8, Mcp-1, and M-csf (Csf1), as direct GLI1 target genes potentially mediating this phenomenon. Finally, we demonstrate that canonical Hedgehog signaling, a known regulator of Gli1 activity, is required for pancreas recovery. Collectively, these data delineate a new pathway controlling tissue repair and highlight the importance of GLI1 in regulation of the pancreatic microenvironment during this cellular process. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Key role of integrin α(IIb)β (3) signaling to Syk kinase in tissue factor-induced thrombin generation.

    Science.gov (United States)

    van der Meijden, Paola E J; Feijge, Marion A H; Swieringa, Frauke; Gilio, Karen; Nergiz-Unal, Reyhan; Hamulyák, Karly; Heemskerk, Johan W M

    2012-10-01

    The fibrin(ogen) receptor, integrin α(IIb)β(3), has a well-established role in platelet spreading, aggregation and clot retraction. How α(IIb)β(3) contributes to platelet-dependent coagulation is less well resolved. Here, we demonstrate that the potent suppressing effect of clinically used α(IIb)β(3) blockers on tissue factor-induced thrombin generation is linked to diminished platelet Ca(2+) responses and phosphatidylserine (PS) exposure. The same blockers suppress these responses in platelets stimulated with collagen and thrombin receptor agonists, whereas added fibrinogen potentiates these responses. In platelets spreading on fibrinogen, outside-in α(IIb)β(3) signaling similarly enhances thrombin-induced Ca(2+) rises and PS exposure. These responses are reduced in α(IIb)β(3)-deficient platelets from patients with Glanzmann's thrombasthenia. Furthermore, the contribution of α(IIb)β(3) to tissue factor-induced platelet Ca(2+) rises, PS exposure and thrombin generation in plasma are fully dependent on Syk kinase activity. Tyrosine phosphorylation analysis confirms a key role of Syk activation, which is largely but not exclusively dependent on α(IIb)β(3) activation. It is concluded that the majority of tissue factor-induced procoagulant activity of platelets relies on Syk activation and ensuing Ca(2+) signal generation, and furthermore that a considerable part of Syk activation relies on α(IIb)β(3) signaling. These results hence point to a novel role of Syk in integrin-dependent thrombin generation.

  4. Revised age-dependent doses to members of the public from intake of radionuclides using the new tissue weighting factors

    International Nuclear Information System (INIS)

    Jain, S.C.; Gupta, M.M.; Nagaratnam, A.; Reddy, A.R.; Mehta, S.C.

    1992-01-01

    ICRP 56 gave age-dependent dose coefficients to members of the public from intake of most radiologically significant radionuclides that might be released to the environment due to various human activities. It has computed effective dose equivalent (now called effective dose) from these dose coefficients utilising the tissue weighting factors as given by ICRP 26. The recent ICRP 1990 recommendations have revised the tissue weighting factors based on new information on risk estimates of fatal cancer and hereditary disorders. This change in the tissue weighting factors will subsequently affect the computation of effective dose due to intake of various radio-nuclides considered by ICRP 56. The revised effective doses for ingested as well as inhaled radionuclides have been worked out and compared from corresponding earlier values. No change was found in the case of tritiated water, organically bound tritium and 14 C. For the majority of the radionuclides, the revised effective dose was within ± 20% of the earlier values. Larger variations in effective dose were noted for radionuclides which deposit preferentially in one or two organs. (author)

  5. The association between measurement sites of visceral adipose tissue and cardiovascular risk factors after caloric restriction in obese Korean women.

    Science.gov (United States)

    Lee, Hye-Ok; Yim, Jung-Eun; Lee, Jeong-Sook; Kim, Young-Seol; Choue, Ryowon

    2013-02-01

    Quantities as well as distributions of adipose tissue (AT) are significantly related to cardiovascular disease (CVD) risk factors and can be altered with caloric restriction. This study investigated which cross-sectional slice location of AT is most strongly correlated with changes in CVD risk factors after caloric restriction in obese Korean women. Thirty-three obese pre-menopausal Korean women (32.4 ± 8.5 yrs, BMI 27.1 ± 2.3 kg/m(2)) participated in a 12 weeks caloric restriction program. Subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) were measured using computed tomography (CT) scans at the sites of L2-L3, L3-L4, and L4-L5. Fasting serum levels of glucose, insulin, triglyceride, total cholesterol (TC), low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), leptin and homeostasis model assessment-insulin resistance (HOMA-IR) were observed. Pearson's partial correlation coefficients were used to assess the relationship between AT measurement sites and changes in CVD risk factors after calorie restriction. When calories were reduced by 350 kcal/day for 12 weeks, body weight (-2.7%), body fat mass (-8.2%), and waist circumference (-5.8%) all decreased (P restriction, serum levels of glucose (-4.6%), TC (-6.2%), LDL-C (-5.3%), leptin (-17.6%) and HOMA-IR (-18.2%) decreased significantly (P restriction.

  6. Alkaline stress and iron deficiency regulate iron uptake and riboflavin synthesis gene expression differently in root and leaf tissue: implications for iron deficiency chlorosis.

    Science.gov (United States)

    Hsieh, En-Jung; Waters, Brian M

    2016-10-01

    Iron (Fe) is an essential mineral that has low solubility in alkaline soils, where its deficiency results in chlorosis. Whether low Fe supply and alkaline pH stress are equivalent is unclear, as they have not been treated as separate variables in molecular physiological studies. Additionally, molecular responses to these stresses have not been studied in leaf and root tissues simultaneously. We tested how plants with the Strategy I Fe uptake system respond to Fe deficiency at mildly acidic and alkaline pH by measuring root ferric chelate reductase (FCR) activity and expression of selected Fe uptake genes and riboflavin synthesis genes. Alkaline pH increased cucumber (Cucumis sativus L.) root FCR activity at full Fe supply, but alkaline stress abolished FCR response to low Fe supply. Alkaline pH or low Fe supply resulted in increased expression of Fe uptake genes, but riboflavin synthesis genes responded to Fe deficiency but not alkalinity. Iron deficiency increased expression of some common genes in roots and leaves, but alkaline stress blocked up-regulation of these genes in Fe-deficient leaves. In roots of the melon (Cucumis melo L.) fefe mutant, in which Fe uptake responses are blocked upstream of Fe uptake genes, alkaline stress or Fe deficiency up-regulation of certain Fe uptake and riboflavin synthesis genes was inhibited, indicating a central role for the FeFe protein. These results suggest a model implicating shoot-to-root signaling of Fe status to induce Fe uptake gene expression in roots. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  7. In vitro effects of heparin and tissue factor pathway inhibitor on factor VII assays. possible implications for measurements in vivo after heparin therapy

    DEFF Research Database (Denmark)

    Bladbjerg, E-M; Larsen, L F; Ostergaard, P

    2000-01-01

    The coagulant activity of blood coagulation factor VII (FVII:C) can be lowered by changes in lifestyle and by therapeutic intervention, e.g. heparin infusion. The question is, however, whether FVII:C determined ex vivo is a valid measure of the FVII activity in vivo. We measured plasma FVII......:C, activated FVII (FVIIa), FVII protein (FVII:Ag), tissue factor pathway inhibitor (TFPI), triglycerides, and free fatty acids (FFA) before and 15 min after infusion of a bolus of unfractionated heparin (50 IU/kg body weight) in 12 healthy subjects. Additionally, we conducted in vitro experiments...

  8. Growth factor and proteinase profile of Vivostat® platelet-rich fibrin linked to tissue repair.

    Science.gov (United States)

    Agren, M S; Rasmussen, K; Pakkenberg, B; Jørgensen, B

    2014-07-01

    Autologous platelet-rich fibrin (PRF(®)) is prepared by the automatic Vivostat(®) system. Conflicting results with Vivostat PRF in acute wound healing prompted us to examine its cellular and biomolecular composition. Specifically, platelets, selected growth factors and matrix metalloproteinase (MMP)-9 were quantified using novel analytical methods. Ten healthy non-thrombocytopenic volunteers donated blood for generation of intermediate fibrin-I and final PRF. Anticoagulated whole blood and serum procured in parallel served as baseline controls. Leucocyte, erythrocyte and platelet counts in whole blood and fibrin-I were determined by automated haematology analyser. Platelet concentration in PRF was quantified manually by stereologic analysis of Giemsa-stained tissue sections, and the total content of five growth factors and MMP-9 by enzyme-linked immunosorbent assays. The number of leucocytes and erythrocytes was reduced (P platelets increased (P fibrin-I versus whole blood. PRF contained 982 ± 206 × 10(9) platelets/l representing 3·9-fold (P platelet-derived growth factor (PDGF)-AB [2·5-fold, P PDGF-BB [1·6-fold, P vascular endothelial growth factor > basic fibroblast growth factor [75-fold, P platelet enrichment and biomolecular constituents may guide clinicians in their optimal use of Vivostat PRF for tissue regenerative applications. © 2013 International Society of Blood Transfusion.

  9. Members of the LBD Family of Transcription Factors Repress Anthocyanin Synthesis and Affect Additional Nitrogen Responses in Arabidopsis

    OpenAIRE

    Rubin, G.; Tohge, T.; Matsuda, F.; Saito, K.; Scheible, W.

    2009-01-01

    Nitrogen (N) and nitrate (NO3-) per se regulate many aspects of plant metabolism, growth, and development. N/NO3- also suppresses parts of secondary metabolism, including anthocyanin synthesis. Molecular components for this repression are unknown. We report that three N/NO3--induced members of the LATERAL ORGAN BOUNDARY DOMAIN (LBD) gene family of transcription factors (LBD37, LBD38, and LBD39) act as negative regulators of anthocyanin biosynthesis in Arabidopsis thaliana. Overexpression of e...

  10. Synthesis, characterization and in vitro biocompatibility assessment of a novel tripeptide hydrogelator, as a promising scaffold for tissue engineering applications.

    Science.gov (United States)

    Pospišil, Tihomir; Ferhatović Hamzić, Lejla; Brkić Ahmed, Lada; Lovrić, Marija; Gajović, Srećko; Frkanec, Leo

    2016-10-20

    We have synthesized and characterized a self-assembling tripeptide hydrogelator Ac-l-Phe-l-Phe-l-Ala-NH2. A series of experiments showed that the hydrogel material could serve as a stabile and biocompatible physical support as it improves the survival of HEK293T cells in vitro, thus being a promising biomaterial for use in tissue engineering applications.

  11. Expression of connective tissue growth factor in tumor tissues is an independent predictor of poor prognosis in patients with gastric cancer.

    Science.gov (United States)

    Liu, Lu-Ying; Han, Yan-Chun; Wu, Shu-Hua; Lv, Zeng-Hua

    2008-04-07

    To examine the expression of connective tissue growth factor (CTGF), also known as CCN2, in gastric carcinoma (GC), and the correlation between the expression of CTGF, clinicopathologic features and clinical outcomes of patients with GC. One hundred and twenty-two GC patients were included in the present study. All patients were followed up for at least 5 years. Proteins of CTGF were detected using the Powervision two-step immunostaining method. Of the specimens from 122 GC patients analyzed for CTGF expression, 58 (58/122, 47.5%) had a high CTGF expression in cytoplasm of gastric carcinoma cells and 64 (64/122, 52.5%) had a low CTGF expression. Patients with a high CTGF expression showed a higher incidence of lymph node metastasis than those with a low CTGF expression (P = 0.032). Patients with a high CTGF expression had significantly lower 5-year survival rate than those with a low CTGF expression (27.6% vs 46.9%, P = 0.0178), especially those staging I + II + III (35.7% vs 65.2%, P = 0.0027). GC patients with an elevated CTGF expression have more lymph node metastases and a shorter survival time. CTGF seems to be an independent prognostic factor for the successful differentiation of high-risk GC patients staging I + II + III. Over-expression of CTGF in human GC cells results in an increased aggressive ability.

  12. Hydrogen isotope ratios of mouse tissues are influenced by a variety of factors other than diet

    International Nuclear Information System (INIS)

    DeNiro, M.J.; Epstein, S.

    1981-01-01

    Hydrogen isotopes are fractionated during biochemical reactions in a variety of organisms. A number of experiments have shown that the D/H ratios of animals and their tissues are not controlled solely by the D/H ratios of their food. The authors performed a simple experiment which indicated that the D/H ratios of a significant fraction of the organically bonded hydrogen in animal tissues must be determined by the isotopic composition of water that the samples encounter. Aliquots of dried mouse brain and liver and mouse food were exposed to water vapors of different D/H ratios prior to isotopic analysis. The results of the experiment showed that at least 16 percent of the hydrogen in mouse brain is exchangeable with the hydrogen of water; the corresponding values for mouse liver and mouse food were 25 to 29 percent

  13. Low light and low ammonium are key factors for guayule leaf tissue shoot organogenesis and transformation.

    Science.gov (United States)

    Dong, Niu; Montanez, Belen; Creelman, Robert A; Cornish, Katrina

    2006-02-01

    A new method has been developed for guayule tissue culture and transformation. Guayule leaf explants have a poor survival rate when placed on normal MS medium and under normal culture room light conditions. Low light and low ammonium treatment greatly improved shoot organogenesis and transformation from leaf tissues. Using this method, a 35S promoter driven BAR gene and an ubiquitin-3 promoter driven GUS gene (with intron) have been successfully introduced into guayule. These transgenic guayule plants were resistant to the herbicide ammonium-glufosinate and were positive to GUS staining. Molecular analysis showed the expected band and signal in all GUS positive transformants. The transformation efficiency with glufosinate selection ranged from 3 to 6%. Transformation with a pBIN19-based plasmid containing a NPTII gene and then selection with kanamycin also works well using this method. The ratio of kanamycin-resistant calli to total starting explants reached 50% in some experiments.

  14. Co-culture with infrapatellar fat pad differentially stimulates proteoglycan synthesis and accumulation in cartilage and meniscus tissues.

    Science.gov (United States)

    Nishimuta, James F; Bendernagel, Monica F; Levenston, Marc E

    2017-09-01

    Although osteoarthritis is widely viewed as a disease of the whole joint, relatively few studies have focused on interactions among joint tissues in joint homeostasis and degeneration. In particular, few studies have examined the effects of the infrapatellar fat pad (IFP) on cartilaginous tissues. The aim of this study was to test the hypothesis that co-culture with healthy IFP would induce degradation of cartilage and meniscus tissues. Bovine articular cartilage, meniscus, and IFP were cultured isolated or as cartilage-fat or meniscus-fat co-cultures for up to 14 days. Conditioned media were assayed for sulfated glycosaminoglycan (sGAG) content, nitrite content, and matrix metalloproteinase (MMP) activity, and explants were assayed for sGAG and DNA contents. Co-cultures exhibited increased cumulative sGAG release and sGAG release rates for both cartilage and meniscus, and the cartilage (but not meniscus) exhibited a substantial synergistic effect of co-culture (sGAG release in co-culture was significantly greater than the summed release from isolated cartilage and fat). Fat co-culture did not significantly alter the sGAG content of either cartilage or meniscus explants, indicating that IFP co-culture stimulated net sGAG production by cartilage. Nitrite release was increased relative to isolated tissue controls in co-cultured meniscus, but not the cartilage, with no synergistic effect of co-culture. Interestingly, MMP-2 production was decreased by co-culture for both cartilage and meniscus. This study demonstrates that healthy IFP may modulate joint homeostasis by stimulating sGAG production in cartilage. Counter to our hypothesis, healthy IFP did not promote degradation of either cartilage or meniscus tissues.

  15. The Effect of Intra-articular Injection of Autologous Microfragmented Fat Tissue on Proteoglycan Synthesis in Patients with Knee Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Damir Hudetz

    2017-10-01

    Full Text Available Osteoarthritis (OA is one of the leading musculoskeletal disorders in the adult population. It is associated with cartilage damage triggered by the deterioration of the extracellular matrix tissue. The present study explores the effect of intra-articular injection of autologous microfragmented adipose tissue to host chondrocytes and cartilage proteoglycans in patients with knee OA. A prospective, non-randomized, interventional, single-center, open-label clinical trial was conducted from January 2016 to April 2017. A total of 17 patients were enrolled in the study, and 32 knees with osteoarthritis were assessed. Surgical intervention (lipoaspiration followed by tissue processing and intra-articular injection of the final microfragmented adipose tissue product into the affected knee(s was performed in all patients. Patients were assessed for visual analogue scale (VAS, delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC and immunoglobulin G (IgG glycans at the baseline, three, six and 12 months after the treatment. Magnetic resonance sequence in dGEMRIC due to infiltration of the anionic, negatively charged contrast gadopentetate dimeglumine (Gd-DTPA2− into the cartilage indicated that the contents of cartilage glycosaminoglycans significantly increased in specific areas of the treated knee joint. In addition, dGEMRIC consequently reflected subsequent changes in the mechanical axis of the lower extremities. The results of our study indicate that the use of autologous and microfragmented adipose tissue in patients with knee OA (measured by dGEMRIC MRI increased glycosaminoglycan (GAG content in hyaline cartilage, which is in line with observed VAS and clinical results.

  16. Apoptotic factors in physiological and pathological processes of teeth and periodontal tissues – literature review

    Directory of Open Access Journals (Sweden)

    Orzedala-Koszel Urszula

    2014-12-01

    Full Text Available Apoptosis is a physiological process that occurs in the human body throughout the entire life span. This process can be seen in the tissues of the stomatognathic system. A disorder in such programmed cell death processes leads to the development of pathological lesions. Among these are inflammation, osteolytic lesions and neoplastic hyperplasia. We put forward that future studies should concentrate on how to use the knowledge of apoptotic processes and their inhibitors in therapeutic processes involving the stomatognathic system.

  17. Somatomedin-C/insulin-like growth factor-I and Insulin-like growth factor-II mRNAs in rate fetal and adult tissues

    International Nuclear Information System (INIS)

    Lund, P.K.; Moats-Staats, B.M.; Hynes, M.A.; Simmons, J.G.; Jansen, M.; D'ercole, A.J.; Van Wyk, J.J.

    1986-01-01

    Somatomedin-C or insulin-like growth factor I (Sm-C/IGF-I) and insulin-like growth factor II (IGF-II) have been implicated in the regulation of fetal growth and development. In the present study 32 P-labeled complementary DNA probes encoding human and mouse Sm-C/IGF-I and human IGF-II were used in Northern blot hybridizations to analyze rat Sm-C/IGF-I and IGF-II mRNAs in poly(A + ) RNAs from intestine, liver, lung, and brain of adult rats and fetal rats between day 14 and 17 of gestation. In fetal rats, all four tissues contained a major mRNA of 1.7 kilobase (kb) that hybridized with the human Sm-C/IGF-I cDNA and mRNAs of 7.5, 4.7, 1.7, and 1.2 kb that hybridized with the mouse Sm-C/IGF-I cDNA. Adult rat intestine, liver, and lung also contained these mRNAs but Sm-C/IGF-I mRNAs were not detected in adult rat brain. These findings provide direct support for prior observations that multiple tissues in the fetus synthesize immunoreactive Sm-C/IGF-I and imply a role for Sm-C/IGF-I in fetal development as well as postnatally. Multiple IGF-II mRNAs of estimated sizes 4.7, 3.9, 2.2, 1.75, and 1.2 kb were observed in fetal rat intestine, liver, lung, and brain. The 4.7- and 3.9-kb mRNAs were the major hybridizing IGF-II mRNAs in all fetal tissues. Higher abundance of IGF-II mRNAs in rat fetal tissues compared with adult tissues supports prior hypotheses, based on serum IGF-II concentrations, that IGF-II is predominantly a fetal somatomedin. IGF-II mRNAs are present, however, in some poly(A + ) RNAs from adult rat tissues. The brain was the only tissue in the adult rat where the 4.7- and 3.9-kb IGF-II mRNAs were consistently detected. These findings suggest that a role for IGF-II in the adult rat, particularly in the central nervous system, cannot be excluded

  18. Evaluation of Frequency and Risk Factors of Soft Tissue Rheumatism of Upper Limbs in Diabetic Patients in Kerman in 2001

    Directory of Open Access Journals (Sweden)

    M.R. Shakibi

    2003-10-01

    Full Text Available Diabetes mellitus is a metabolic disorder that affect different systems in human. Wide range of musculoskeletal syndromes have been described in association with diabetes. To determine the prevalence of upper limb soft tissue rheumatism in diabetes patients. In a cross sectional study 300 diabetic patients was examined by COPCORD questionnaire. The examination was performed by internist and rheumatologist . Data was analyzed by logistic regression. 73.3% of patients were female. Average age of cases was 51.2±13.7 years and mean of duration of disease was 7±6.4 years. 152 cases (50.7% had soft tissue rheumatism in upper limbs. 66 cases had carpal tannel syndrome, 23 cases with Dupuytren’s disease, 23 cases with Flexortenosynovitis, 91 cases with shoulder periarthritis, 4 cases had limited joint mobility and 12 had Elbow Epicandititis. Logestic regression analysis showed that type 2 diabetes, weak control of blood sugur and duration of disease>5years were risk factors for incidence of soft tissue rheumatism in upper limbs. Results have showed the high prevalence of soft tissue rheumatism in diabetic patients.

  19. Determination of scattering coefficient considering wavelength and absorption dependence of anisotropy factor measured by polarized beam for biological tissues

    Science.gov (United States)

    Fukutomi, D.; Ishii, K.; Awazu, K.

    2015-12-01

    Anisotropy factor g, one of the optical properties of biological tissues, is the most important parameter to accurately determine scattering coefficient μs in the inverse Monte Carlo (iMC) simulation. It has been reported that g has wavelength and absorption dependence, however, there are few attempts in order to calculate μs of biological tissue considering the wavelength and absorption dependence of g. In this study, the scattering angular distributions of biological tissue phantoms were measured in order to determine g by using goniometric measurements with three polarization conditions at strongly and weakly absorbing wavelengths of hemoglobin. Then, optical properties, especially, μs were measured by integrating sphere measurements and iMC simulation in order to confirm the influence of measured g on optical properties in comparison of with general value of g (0.9) for soft biological tissue. Consequently, it was found that μs was overestimated at strongly absorbing wavelength, however, μs was underestimated at weakly absorbing wavelength if the g was not considered its wavelength and absorption dependence.

  20. Novel chitosan/collagen scaffold containing transforming growth factor-β1 DNA for periodontal tissue engineering

    International Nuclear Information System (INIS)

    Zhang Yufeng; Cheng Xiangrong; Wang Jiawei; Wang Yining; Shi Bin; Huang Cui; Yang Xuechao; Liu Tongjun

    2006-01-01

    The current rapid progression in tissue engineering and local gene delivery system has enhanced our applications to periodontal tissue engineering. In this study, porous chitosan/collagen scaffolds were prepared through a freeze-drying process, and loaded with plasmid and adenoviral vector encoding human transforming growth factor-β1 (TGF-β1). These scaffolds were evaluated in vitro by analysis of microscopic structure, porosity, and cytocompatibility. Human periodontal ligament cells (HPLCs) were seeded in this scaffold, and gene transfection could be traced by green fluorescent protein (GFP). The expression of type I and type III collagen was detected with RT-PCR, and then these scaffolds were implanted subcutaneously into athymic mice. Results indicated that the pore diameter of the gene-combined scaffolds was lower than that of pure chitosan/collagen scaffold. The scaffold containing Ad-TGF-β1 exhibited the highest proliferation rate, and the expression of type I and type III collagen up-regulated in Ad-TGF-β1 scaffold. After implanted in vivo, EGFP-transfected HPLCs not only proliferated but also recruited surrounding tissue to grow in the scaffold. This study demonstrated the potential of chitosan/collagen scaffold combined Ad-TGF-β1 as a good substrate candidate in periodontal tissue engineering

  1. A two-compartment mechanochemical model of the roles of transforming growth factor and tissue tension in dermal wound healing

    KAUST Repository

    Murphy, Kelly E.; Hall, Cameron L.; McCue, Scott W.; Sean McElwain, D.L.

    2011-01-01

    The repair of dermal tissue is a complex process of interconnected phenomena, where cellular, chemical and mechanical aspects all play a role, both in an autocrine and in a paracrine fashion. Recent experimental results have shown that transforming growth factor -β (TGF β) and tissue mechanics play roles in regulating cell proliferation, differentiation and the production of extracellular materials. We have developed a 1D mathematical model that considers the interaction between the cellular, chemical and mechanical phenomena, allowing the combination of TGF β and tissue stress to inform the activation of fibroblasts to myofibroblasts. Additionally, our model incorporates the observed feature of residual stress by considering the changing zero-stress state in the formulation for effective strain. Using this model, we predict that the continued presence of TGF β in dermal wounds will produce contractures due to the persistence of myofibroblasts; in contrast, early elimination of TGF β significantly reduces the myofibroblast numbers resulting in an increase in wound size. Similar results were obtained by varying the rate at which fibroblasts differentiate to myofibroblasts and by changing the myofibroblast apoptotic rate. Taken together, the implication is that elevated levels of myofibroblasts is the key factor behind wounds healing with excessive contraction, suggesting that clinical strategies which aim to reduce the myofibroblast density may reduce the appearance of contractures. © 2010 Elsevier Ltd.

  2. A two-compartment mechanochemical model of the roles of transforming growth factor and tissue tension in dermal wound healing

    KAUST Repository

    Murphy, Kelly E.

    2011-03-01

    The repair of dermal tissue is a complex process of interconnected phenomena, where cellular, chemical and mechanical aspects all play a role, both in an autocrine and in a paracrine fashion. Recent experimental results have shown that transforming growth factor -β (TGF β) and tissue mechanics play roles in regulating cell proliferation, differentiation and the production of extracellular materials. We have developed a 1D mathematical model that considers the interaction between the cellular, chemical and mechanical phenomena, allowing the combination of TGF β and tissue stress to inform the activation of fibroblasts to myofibroblasts. Additionally, our model incorporates the observed feature of residual stress by considering the changing zero-stress state in the formulation for effective strain. Using this model, we predict that the continued presence of TGF β in dermal wounds will produce contractures due to the persistence of myofibroblasts; in contrast, early elimination of TGF β significantly reduces the myofibroblast numbers resulting in an increase in wound size. Similar results were obtained by varying the rate at which fibroblasts differentiate to myofibroblasts and by changing the myofibroblast apoptotic rate. Taken together, the implication is that elevated levels of myofibroblasts is the key factor behind wounds healing with excessive contraction, suggesting that clinical strategies which aim to reduce the myofibroblast density may reduce the appearance of contractures. © 2010 Elsevier Ltd.

  3. Peroxisome Proliferator-Activated Receptor γ Induces the Expression of Tissue Factor Pathway Inhibitor-1 (TFPI-1 in Human Macrophages

    Directory of Open Access Journals (Sweden)

    G. Chinetti-Gbaguidi

    2016-01-01

    Full Text Available Tissue factor (TF is the initiator of the blood coagulation cascade after interaction with the activated factor VII (FVIIa. Moreover, the TF/FVIIa complex also activates intracellular signalling pathways leading to the production of inflammatory cytokines. The TF/FVIIa complex is inhibited by the tissue factor pathway inhibitor-1 (TFPI-1. Peroxisome proliferator-activated receptor gamma (PPARγ is a transcription factor that, together with PPARα and PPARβ/δ, controls macrophage functions. However, whether PPARγ activation modulates the expression of TFP1-1 in human macrophages is not known. Here we report that PPARγ activation increases the expression of TFPI-1 in human macrophages in vitro as well as in vivo in circulating peripheral blood mononuclear cells. The induction of TFPI-1 expression by PPARγ ligands, an effect shared by the activation of PPARα and PPARβ/δ, occurs also in proinflammatory M1 and in anti-inflammatory M2 polarized macrophages. As a functional consequence, treatment with PPARγ ligands significantly reduces the inflammatory response induced by FVIIa, as measured by variations in the IL-8, MMP-2, and MCP-1 expression. These data identify a novel role for PPARγ in the control of TF the pathway.

  4. Expression of von Willebrand factor and caldesmon in the placental tissues of pregnancies complicated with intrauterine growth restriction.

    Science.gov (United States)

    Göksever Çelik, Hale; Uhri, Mehmet; Yildirim, Gökhan

    2017-11-02

    The decreased placental perfusion is the underlying reason for intrauterine growth restriction that in turn leads to reduced placental perfusion and ischemia. However, there are several issues to be understood in the pathophysiology of intrauterine growth restriction. We aimed to study whether any compensatory response in placental vascular bed occur in pregnancies complicated with intrauterine growth restriction by the immunohistochemical staining of von Willebrand factor and caldesmon in placental tissues. A total of 103 pregnant women was enrolled in the study including 50 patients who were complicated with IUGR and 50 uncomplicated control patients. The study was designed in a prospective manner. All placentas were also stained with von Willebrand factor and caldesmon monoclonal kits. The immunohistochemical staining of von Willebrand factor and caldesmon expressions in placental tissues were different between normal and intrauterine growth restriction group. The percentages of 2+ and 3+ von Willebrand factor expression were higher in the intrauterine growth restriction group comparing with the normal group, although the difference was not statistically significant. The intensity of caldesmon expression was significantly lower in the intrauterine growth restriction group in comparison with the normal group (p intrauterine growth restriction which is a hypoxic condition. But newly formed vessels are immature and not strong enough. Our study is important to clarify the pathophysiology and placental compensatory responses in intrauterine growth restriction.

  5. Growth differentiation factor-15 (GDF-15) suppresses in vitro angiogenesis through a novel interaction with connective tissue growth factor (CCN2).

    Science.gov (United States)

    Whitson, Ramon J; Lucia, Marshall Scott; Lambert, James R

    2013-06-01

    Growth differentiation factor-15 (GDF-15) and the CCN family member, connective tissue growth factor (CCN2), are associated with cardiac disease, inflammation, and cancer. The precise role and signaling mechanism for these factors in normal and diseased tissues remains elusive. Here we demonstrate an interaction between GDF-15 and CCN2 using yeast two-hybrid assays and have mapped the domain of interaction to the von Willebrand factor type C domain of CCN2. Biochemical pull down assays using secreted GDF-15 and His-tagged CCN2 produced in PC-3 prostate cancer cells confirmed a direct interaction between these proteins. To investigate the functional consequences of this interaction, in vitro angiogenesis assays were performed. We demonstrate that GDF-15 blocks CCN2-mediated tube formation in human umbilical vein endothelial (HUVEC) cells. To examine the molecular mechanism whereby GDF-15 inhibits CCN2-mediated angiogenesis, activation of αV β3 integrins and focal adhesion kinase (FAK) was examined. CCN2-mediated FAK activation was inhibited by GDF-15 and was accompanied by a decrease in αV β3 integrin clustering in HUVEC cells. These results demonstrate, for the first time, a novel signaling pathway for GDF-15 through interaction with the matricellular signaling molecule CCN2. Furthermore, antagonism of CCN2 mediated angiogenesis by GDF-15 may provide insight into the functional role of GDF-15 in disease states. Copyright © 2012 Wiley Periodicals, Inc.

  6. Electrical and Thermal Modulation of Protein Synthesis in Cartilage: A Model for Field Effects on Biological Tissues.

    Science.gov (United States)

    1988-01-15

    76] under physiological conditions. Oscillatory streaming currents of 1-5 pA/cm’ were recently demonstrated in bovine knee articular cartilage...in cellular metabolism or cellular acidosis ). In general, these agents are lethal in high enough doses. The stress proteins are highly conserved...which under reducing conditions subdivides into subunits of 35 kD (on SDS-PAGE) in bovine fetal epiphyseal and articular cartilage [170]. The tissue

  7. Injury induces in vivo expression of platelet-derived growth factor (PDGF) and PDGF receptor mRNAs in skin epithelial cells and PDGF mRNA in connective tissue fibroblasts

    International Nuclear Information System (INIS)

    Antoniades, H.N.; Galanopoulos, T.; Neville-Golden, J.; Kiritsy, C.P.; Lynch, S.E.

    1991-01-01

    Platelet-derived growth factor (PDGF) stimulates many of the processes important in tissue repair, including proliferation of fibroblasts and synthesis of extracellular matrices. In this study, the authors have demonstrated with in situ hydridization and immunocytochemistry the reversible expression of 3-sis/PDGF-2 and PDGF receptor (PDGF-R) b mRNAs and their respective protein products in epithelial cells and fibroblasts following cutaneous injury in pigs. Epithelial cells in control, unwounded skin did not express c-sis and PDGF-R mRNAs, and fibroblasts expressed only PDGF-R mRNA. The expression levels in the injured site were correlated with the stage of tissue repair, being highest during the initial stages of the repair process and declining at the time of complete re-epithelialization and tissue remodeling. These studies provide a mulecular basis for understanding the mechanisms contributing to normal tissue repair. They suggest the possibility that a defect in these mechanisms may be associated with defective wound healing. It is also conceivable that chronic injury may induce irreversible gene expression leading to pathologic, unregulated cell growth

  8. Effects of growth factors and glucosamine on porcine mandibular condylar cartilage cells and hyaline cartilage cells for tissue engineering applications.

    Science.gov (United States)

    Wang, Limin; Detamore, Michael S

    2009-01-01

    Temporomandibular joint (TMJ) condylar cartilage is a distinct cartilage that has both fibrocartilaginous and hyaline-like character, with a thin proliferative zone that separates the fibrocartilaginous fibrous zone at the surface from the hyaline-like mature and hypertrophic zones below. In this study, we compared the effects of insulin-like growth factor-I (IGF-I), basic fibroblast growth factor (bFGF), transforming growth factor beta1 (TGF-beta1), and glucosamine sulphate on porcine TMJ condylar cartilage and ankle cartilage cells in monolayer culture. In general, TMJ condylar cartilage cells proliferated faster than ankle cartilage cells, while ankle cells produced significantly greater amounts of glycosaminoglycans (GAGs) and collagen than TMJ condylar cartilage cells. IGF-I and bFGF were potent stimulators of TMJ cell proliferation, while no signals statistically outperformed controls for ankle cell proliferation. IGF-I was the most effective signal for GAG production with ankle cells, and the most potent upregulator of collagen synthesis for both cell types. Glucosamine sulphate promoted cell proliferation and biosynthesis at specific concentrations and outperformed growth factors in certain instances. In conclusion, hyaline cartilage cells had lower cell numbers and superior biosynthesis compared to TMJ condylar cartilage cells, and we have found IGF-I at 100 ng/mL and glucosamine sulphate at 100 microg/mL to be the most effective signals for these cells under the prescribed conditions.

  9. The two-way relationship between iatrogenic factor and periodontal tissues

    Directory of Open Access Journals (Sweden)

    Sri Oktawati

    2016-06-01

    Full Text Available Iatrogenic factors refer to anyinadequate medical treatment or diagnostic proceduresconducted inadvertently by practitioners who precipitate adverse injuries or symptoms. The unavoidable consequences of these factors should be corrected promptly, as they may result in erroneous treatment or new injury either on the tooth or the periodontium or both. Periodontal disease has a multifactorial etiology, which results from the interaction of local and systemic factors, intrinsically or extrinsically. Therefore, in most cases of periodontal disease, aninterdisciplinary approach is needed, such as restorative treatment of interproximal cavities that may induced food impacted. In contrary, a periodontal therapy could also act as an iatrogenic factor in the case of dentinal hypersensitivity or gingival recessionthat frequently creates an adverse effect in esthetic. Our discussion here is presented so that dentists could treat carefully and give a lot of attention to potential danger of other consequences of iatrogenic factors.

  10. Dihydrotestosterone induces pro-angiogenic factors and assists homing of MSC into the cardiac tissue.

    Science.gov (United States)

    Popa, Mirel-Adrian; Mihai, Maria-Cristina; Constantin, Alina; Şuică, Viorel; Ţucureanu, Cătălin; Costache, Raluca; Antohe, Felicia; Dubey, Raghvendra K; Simionescu, Maya

    2018-01-01

    The use of mesenchymal stem cells (MSC) as a therapeutic tool in cardiovascular diseases is promising. Since androgens exert some beneficial actions on the cardiovascular system, we tested our hypothesis that this hormone could promote MSC-mediated repair processes, also. Cultured MSCs isolated from Wharton's jelly were exposed to 30 nM dihydrotestosterone (DHT) for 1 or 4 days and the effects of the hormone on their growth/migration/adhesion and the underlying mechanisms were assessed. Results were obtained by real-time cell impedance measurements, and DNA quantification showed that DHT increased MSC proliferation by ~30%. As determined by xCELLigence system, DHT augmented (~2 folds) the migration of MSC toward cardiac tissue slices (at 12 h), and this effect was blocked by flutamide, an androgen receptor (AR) antagonist. Exposure of cells to DHT, upregulated the gene and protein expression of AR , EMMPRIN and MMP-9 and downregulated the expression of MMP-2 DHT significantly induced the release of nitric oxide by MSC (≥2-fold) and flutamide blocked this effect. When MSCs were co-cultured with cardiac slices, immunohistochemical analysis and qRT-PCR showed that the integration of DHT-stimulated MSC was significantly higher than that of in controls. In conclusion, our findings provide the first evidence that DHT promotes MSC growth, migration and integration into the cardiac slices. The modulating effects of DHT were associated with upregulation of ARs and of key molecules known to promote tissue remodeling and angiogenesis. Our findings suggest that priming of MSC with DHT may potentially increase their capability to regenerate cardiac tissue; in vivo studies are needed to confirm our in vitro findings. © 2018 Society for Endocrinology.

  11. Fuz regulates craniofacial development through tissue specific responses to signaling factors.

    Directory of Open Access Journals (Sweden)

    Zichao Zhang

    Full Text Available The planar cell polarity effector gene Fuz regulates ciliogenesis and Fuz loss of function studies reveal an array of embryonic phenotypes. However, cilia defects can affect many signaling pathways and, in humans, cilia defects underlie several craniofacial anomalies. To address this, we analyzed the craniofacial phenotype and signaling responses of the Fuz(-/- mice. We demonstrate a unique role for Fuz in regulating both Hedgehog (Hh and Wnt/β-catenin signaling during craniofacial development. Fuz expression first appears in the dorsal tissues and later in ventral tissues and craniofacial regions during embryonic development coincident with cilia development. The Fuz(-/- mice exhibit severe craniofacial deformities including anophthalmia, agenesis of the tongue and incisors, a hypoplastic mandible, cleft palate, ossification/skeletal defects and hyperplastic malformed Meckel's cartilage. Hh signaling is down-regulated in the Fuz null mice, while canonical Wnt signaling is up-regulated revealing the antagonistic relationship of these two pathways. Meckel's cartilage is expanded in the Fuz(-/- mice due to increased cell proliferation associated with the up-regulation of Wnt canonical target genes and decreased non-canonical pathway genes. Interestingly, cilia development was decreased in the mandible mesenchyme of Fuz null mice, suggesting that cilia may antagonize Wnt signaling in this tissue. Furthermore, expression of Fuz decreased expression of Wnt pathway genes as well as a Wnt-dependent reporter. Finally, chromatin IP experiments demonstrate that β-catenin/TCF-binding directly regulates Fuz expression. These data demonstrate a new model for coordination of Hh and Wnt signaling and reveal a Fuz-dependent negative feedback loop controlling Wnt/β-catenin signaling.

  12. Extracellular vesicles, tissue factor, cancer and thrombosis – discussion themes of the ISEV 2014 Educational Day

    Directory of Open Access Journals (Sweden)

    Chris Gardiner

    2015-03-01

    Full Text Available Although the association between cancer and venous thromboembolism (VTE has long been known, the mechanisms are poorly understood. Circulating tissue factor–bearing extracellular vesicles have been proposed as a possible explanation for the increased risk of VTE observed in some types of cancer. The International Society for Extracellular Vesicles (ISEV and International Society on Thrombosis and Haemostasis (ISTH held a joint Educational Day in April 2014 to discuss the latest developments in this field. This review discusses the themes of that event and the ISEV 2014 meeting that followed.

  13. The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy

    International Nuclear Information System (INIS)

    Gray, L.H.; Conger, A.D.; Ebert, M.; Hornsey, S.; Scott, O.C.A.

    1984-01-01

    The sensitivity of tumour cells to X rays has been shown to be about three times as great when irradiated in a well-oxygenated medium as under anoxic conditions. The manner in which sensitivity depends on oxygen tension closely resembles that found by other workers for plant and insect tissues. The sensitivity of the tumour cells to fast neutron radiation is only slightly affected by oxygen tension. Consideration is given to the supply of oxygen to tissues as a factor in radiotherapy, and it is concluded on the basis of existing knowledge that in certain circumstances the effectiveness of X-ray treatment might be increased if the patient were breathing oxygen at the time of irradiation

  14. Serial analysis of gene expression identifies connective tissue growth factor expression as a prognostic biomarker in gallbladder cancer.

    Science.gov (United States)

    Alvarez, Hector; Corvalan, Alejandro; Roa, Juan C; Argani, Pedram; Murillo, Francisco; Edwards, Jennifer; Beaty, Robert; Feldmann, Georg; Hong, Seung-Mo; Mullendore, Michael; Roa, Ivan; Ibañez, Luis; Pimentel, Fernando; Diaz, Alfonso; Riggins, Gregory J; Maitra, Anirban

    2008-05-01

    Gallbladder cancer (GBC) is an uncommon neoplasm in the United States, but one with high mortality rates. This malignancy remains largely understudied at the molecular level such that few targeted therapies or predictive biomarkers exist. We built the first series of serial analysis of gene expression (SAGE) libraries from GBC and nonneoplastic gallbladder mucosa, composed of 21-bp long-SAGE tags. SAGE libraries were generated from three stage-matched GBC patients (representing Hispanic/Latino, Native American, and Caucasian ethnicities, respectively) and one histologically alithiasic gallbladder. Real-time quantitative PCR was done on microdissected epithelium from five matched GBC and corresponding nonneoplastic gallbladder mucosa. Immunohistochemical analysis was done on a panel of 182 archival GBC in high-throughput tissue microarray format. SAGE tags corresponding to connective tissue growth factor (CTGF) transcripts were identified as differentially overexpressed in all pairwise comparisons of GBC (P Cancer Genome Anatomy Project web site and should facilitate much needed research into this lethal neoplasm.

  15. Hypoxia enhances the interaction between pancreatic stellate cells and cancer cells via increased secretion of connective tissue growth factor.

    Science.gov (United States)

    Eguchi, Daiki; Ikenaga, Naoki; Ohuchida, Kenoki; Kozono, Shingo; Cui, Lin; Fujiwara, Kenji; Fujino, Minoru; Ohtsuka, Takao; Mizumoto, Kazuhiro; Tanaka, Masao

    2013-05-01

    Pancreatic cancer (PC), a hypovascular tumor, thrives under hypoxic conditions. Pancreatic stellate cells (PSCs) promote PC progression by secreting soluble factors, but their functions in hypoxia are poorly understood. This study aimed to clarify the effects of hypoxic conditions on the interaction between PC cells and PSCs. We isolated human PSCs from fresh pancreatic ductal adenocarcinomas and analyzed functional differences in PSCs between normoxia (21% O2) and hypoxia (1% O2), including expression of various factors related to tumor-stromal interactions. We particularly analyzed effects on PC invasiveness of an overexpressed molecule-connective tissue growth factor (CTGF)-in PSCs under hypoxic conditions, using RNA interference techniques. Conditioned media from hypoxic PSCs enhanced PC cell invasiveness more intensely than that from normoxic PSCs (P cancer. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Risk factors for, and prevention of, shoulder injuries in overhead sports: a systematic review with best-evidence synthesis.

    Science.gov (United States)

    Asker, Martin; Brooke, Hannah L; Waldén, Markus; Tranaeus, Ulrika; Johansson, Fredrik; Skillgate, Eva; Holm, Lena W

    2018-03-26

    To assess the evidence for risk factors and prevention measures for shoulder injuries in overhead sports. Systematic review with best-evidence synthesis. Medline (Ovid), PubMed (complementary search), Embase (Elsevier), Cochrane (Wiley), SPORTDiscus (Ebsco) and Web of Science Core Collection (Thomson Reuters), from 1 January 1990 to 15 May 2017. Randomised controlled trials, cohort studies and case-control studies on risk factors or prevention measures for shoulder injuries in overhead sports. The eligible studies were quality assessed using the Scottish Intercollegiate Guidelines Network criteria. Of 4778 studies identified, 38 were eligible for quality review and 17 met the quality criteria to be included in the evidence synthesis. One additional quality study presented a shoulder injury prevention programme. Most studies focused on baseball, lacrosse or volleyball (n=13). The risk factors examined included participation level (competition vs training) (n=10), sex (n=4), biomechanics (n=2) and external workload (n=2). The evidence for all risk factors was limited or conflicting. The effect of the prevention programme within the subgroup of uninjured players at baseline was modest and possibly lacked statistical power. All investigated potential risk factors for shoulder injury in overhead sports had limited evidence, and most were non-modifiable (eg, sex). There is also limited evidence for the effect of shoulder injury prevention measures in overhead sports. CRD42015026850. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  17. Periodontitis increases rheumatic factor serum levels and citrullinated proteins in gingival tissues and alter cytokine balance in arthritic rats.

    Directory of Open Access Journals (Sweden)

    Mônica G Corrêa

    Full Text Available This study investigated some immunological features by experimental periodontitis (EP and rheumatoid arthritis (RA disease interact in destructive processes in arthritic rats. Rats were assigned to the following groups: EP +RA; RA; EP; and Negative Control. RA was induced by immunizations with type-II collagen and a local immunization with Complete Freund's adjuvant in the paw. Periodontitis was induced by ligating the right first molars. The serum level of rheumatoid factor (RF and anti-citrullinated protein antibody (ACCPA were measured before the induction of EP (T1 and at 28 days after (T2 by ELISA assay. ACCPA levels were also measured in the gingival tissue at T2. The specimens were processed for morphometric analysis of bone loss, and the gingival tissue surrounding the first molar was collected for the quantification of interleukin IL-1β, IL-4, IL-6, IL-17 and TNF-α using a Luminex/MAGpix assay. Paw edema was analyzed using a plethysmometer. Periodontitis increased the RF and ACCPA levels in the serum and in the gingival tissue, respectively. Besides, the level of paw swelling was increased by EP and remained in progress until the end of the experiment, when EP was associated with RA. Greater values of IL-17 were observed only when RA was present, in spite of PE. It can be concluded that periodontitis increases rheumatic factor serum levels and citrullinated proteins level in gingival tissues and alter cytokine balance in arthritic rats; at the same time, arthritis increases periodontal destruction, confirming the bidirectional interaction between diseases.

  18. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy

    Science.gov (United States)

    Askari, Arman T.; Unzek, Samuel; Popovic, Zoran B.; Goldman, Corey K.; Forudi, Farhad; Kiedrowski, Matthew; Rovner, Aleksandr; Ellis, Stephen G.; Thomas, James D.; DiCorleto, Paul E.; hide

    2003-01-01

    BACKGROUND: Myocardial regeneration via stem-cell mobilisation at the time of myocardial infarction is known to occur, although the mechanism for stem-cell homing to infarcted tissue subsequently and whether this approach can be used for treatment of ischaemic cardiomyopathy are unknown. We investigated these issues in a Lewis rat model (ligation of the left anterior descending artery) of ischaemic cardiomyopathy. METHODS: We studied the effects of stem-cell mobilisation by use of granulocyte colony-stimulating factor (filgrastim) with or without transplantation of syngeneic cells. Shortening fraction and myocardial strain by tissue doppler imaging were quantified by echocardiography. FINDINGS: Stem-cell mobilisation with filgrastim alone did not lead to engraftment of bone-marrow-derived cells. Stromal-cell-derived factor 1 (SDF-1), required for stem-cell homing to bone marrow, was upregulated immediately after myocardial infarction and downregulated within 7 days. 8 weeks after myocardial infarction, transplantation into the peri-infarct zone of syngeneic cardiac fibroblasts stably transfected to express SDF-1 induced homing of CD117-positive stem cells to injured myocardium after filgrastim administration (control vs SDF-1-expressing cardiac fibroblasts mean 7.2 [SD 3.4] vs 33.2 [6.0] cells/mm2, n=4 per group, pcell homing to injured myocardium and suggest a strategy for directed stem-cell engraftment into injured tissues. Our findings also indicate that therapeutic strategies focused on stem-cell mobilisation for regeneration of myocardial tissue must be initiated within days of myocardial infarction unless signalling for stem-cell homing is re-established.

  19. Factors of late radiosensitivity of normal tissues; Facteurs de radiosensibilite tardive des tissus sains

    Energy Technology Data Exchange (ETDEWEB)

    Azria, A. [CRLC Val d' Aurelle-Paul-Lamarque, departement de radiotherapie, 34 - Montpellier (France); Pointreau, Y. [CHRU Bretonneau, 37 - Tours (France); Toledano, A. [Clinique Hartman, 92 - Neuilly-sur-Seine (France); Ozsahin, M. [CHU Vaudois, Lausanne (Switzerland)

    2010-07-15

    The impact of curative radiotherapy depends mainly on the total dose delivered homogeneously in the targeted volume. Nevertheless, the dose delivered to the surrounding healthy tissues may reduce the therapeutic ratio of many radiation treatments. Two different side effects (acute and late) can occur during and after radiotherapy. Of particular interest are the radiation-induced sequelae due to their irreversibility and the potential impact on daily quality of life. In a same population treated in one centre with the same technique, it appears that individual radiosensitivity clearly exists. In the hypothesis that genetic is involved in this area of research, lymphocytes seem to be the tissue of choice due to easy accessibility. Recently, low percentage of CD4 and CD8 lymphocyte apoptosis were shown to be correlated with high grade of sequelae. In addition, recent data suggest that patients with severe radiation-induced late side effects possess four or more single nucleotide polymorphisms (SNP) in candidate genes (ATM, SOD2, TGFB1, XRCC1, and XRCC3) and low radiation-induced CD8 lymphocyte apoptosis in vitro. On-going studies are being analyzing the entire genome using a Genome-wide association study (GWAS) analysis. (authors)

  20. Monitoring of treatment with vitamin K antagonists: recombinant thromboplastins are more sensitive to factor VII than tissue-extract thromboplastins.

    Science.gov (United States)

    Biedermann, J S; van den Besselaar, A M H P; de Maat, M P M; Leebeek, F W G; Kruip, M J H A

    2017-03-01

    Essentials Differences in sensitivity to factor VII (FVII) have been suggested between thromboplastins. FVII-induced International Normalized Ratio (INR) changes differ between commercial reagents. Recombinant human thromboplastins are more sensitive to FVII than tissue-extract thromboplastins. Thromboplastin choice may affect FVII-mediated INR stability. Background Differences regarding sensitivity to factor VII have been suggested for recombinant human and tissue-extract thromboplastins used for International Normalized Ratio (INR) measurement, but the evidence is scarce. Differences in FVII sensitivity are clinically relevant, as they can affect INR stability during treatment with vitamin K antagonists (VKAs). Objectives To determine whether commercial thromboplastins react differently to changes in FVII. Methods We studied the effect of addition of FVII on the INR in plasma by using three tissue-extract (Neoplastin C1+, Hepato Quick, and Thromborel S) and three recombinant human (Recombiplastin 2G, Innovin, and CoaguChek XS) thromboplastins. Three different concentrations of purified human FVII (0.006, 0.012 and 0.062 μg mL -1 plasma), or buffer, were added to five certified pooled plasmas of patients using VKAs (INR of 1.5-3.5). Changes in FVII activity were measured with two bioassays (Neoplastin and Recombiplastin), and relative INR changes were compared between reagents. Results After addition of 0.062 μg mL -1 FVII, FVII activity in the pooled plasmas increased by approximately 20% (Neoplastin) or 32% (Recombiplastin) relative to the activity in pooled normal plasma. All thromboplastins showed dose-dependent INR decreases. The relative INR change in the pooled plasmas significantly differed between the six thromboplastins. No differences were observed among recombinant or tissue-extract thromboplastins. Pooled results indicated that the FVII-induced INR change was greater for recombinant than for tissue-extract thromboplastins. Conclusions Differences

  1. Formation of proteoglycan and collagen-rich scaffold-free stiff cartilaginous tissue using two-step culture methods with combinations of growth factors.

    Science.gov (United States)

    Miyazaki, Tatsuya; Miyauchi, Satoshi; Matsuzaka, Satoshi; Yamagishi, Chie; Kobayashi, Kohei

    2010-05-01

    Tissue-engineered cartilage may be expected to serve as an alternative to autologous chondrocyte transplantation treatment. Several methods for producing cartilaginous tissue have been reported. In this study, we describe the production of scaffold-free stiff cartilaginous tissue of pig and human, using allogeneic serum and growth factors. The tissue was formed in a mold using chondrocytes recovered from alginate bead culture and maintained in a medium with transforming growth factor-beta and several other additives. In the case of porcine tissue, the tear strength of the tissue and the contents of proteoglycan (PG) and collagen per unit of DNA increased dose-dependently with transforming growth factor-beta. The length of culture was significantly and positively correlated with thickness, tear strength, and PG and collagen contents. Tear strength showed positive high correlations with both PG and collagen contents. A positive correlation was also seen between PG content and collagen content. Similar results were obtained with human cartilaginous tissue formed from chondrocytes expanded in monolayer culture. Further, an in vivo pilot study using pig articular cartilage defect model demonstrated that the cartilaginous tissue was well integrated with surrounding tissue at 13 weeks after the implantation. In conclusion, we successfully produced implantable scaffold-free stiff cartilaginous tissue, which characterized high PG and collagen contents.

  2. Controllable mineral coatings on scaffolds as carriers for growth factor release for bone tissue engineering

    Science.gov (United States)

    Saurez-Gonzalez, Darilis

    The work presented in this document, focused on the development and characterization of mineral coatings on scaffold materials to serve as templates for growth factor binding and release. Mineral coatings were formed using a biomimetic approach that consisted in the incubation of scaffolds in modified simulated body fluids (mSBF). To modulate the properties of the mineral coating, which we hypothesized would dictate growth factor release, we used carbonate (HCO3) concentration in mSBF of 4.2 mM, 25mM, and 100mM. Analysis of the mineral coatings formed using scanning electron microscopy indicated growth of a continuous layer of mineral with different morphologies. X-ray diffraction analysis showed peaks associated with hydroxyapatite. FTIR data confirmed the substitution of HCO3 in the mineral. As the extent of HCO3 substitution increased, the coating exhibited more rapid dissolution kinetics in an environment deficient in calcium and phosphate. The mineral coatings provided an effective mechanism for bioactive growth factor binding and release. Peptide versions of vascular endothelial growth factor (VEGF) and bone morphogenetic protein 2 (BMP2) were bound with efficiencies up to 90% to mineral-coated PCL scaffolds. Recombinant human vascular endothelial growth factor (rhVEGF) also bound to mineral coated scaffolds with lower efficiency (20%) and released with faster release kinetics compared to peptides growth factor. Released rhVEGF induced human umbilical vein endothelial cell (HUVEC) proliferation in vitro and enhanced blood vessel formation in vivo in an intramuscular sheep model. In addition to the use the mineral coatings for single growth factor release, we expanded the concept and bound both an angiogenic (rhVEGF) and osteogenic (mBMP2) growth factor by a simple double dipping process. Sustained release of both growth factors was demonstrated for over 60 days. Released rhVEGF enhanced blood vessel formation in vivo in sheep and its biological activity was

  3. Design and synthesis of a biotinylated chemical probe for detecting the molecular targets of an inhibitor of the production of the Pseudomonas aeruginosa virulence factor pyocyanin.

    Science.gov (United States)

    Baker, Ysobel R; Galloway, Warren R J D; Hodgkinson, James T; Spring, David R

    2013-09-25

    Pseudomonas aeruginosa is a human pathogen associated with a variety of life-threatening nosocomial infections. This organism produces a range of virulence factors which actively cause damage to host tissues. One such virulence factor is pyocyanin, known to play a crucial role in the pathogenesis of P. aeruginosa infections. Previous studies had identified a novel compound capable of strongly inhibiting the production of pyocyanin. It was postulated that this inhibition results from modulation of an intercellular communication system termed quorum sensing, via direct binding of the compound with the LasR protein receptor. This raised the possibility that the compound could be an antagonist of quorum sensing in P. aeruginosa, which could have important implications as this intercellular signaling mechanism is known to regulate many additional facets of P. aeruginosa pathogenicity. However, there was no direct evidence for the binding of the active compound to LasR (or any other targets). Herein we describe the design and synthesis of a biotin-tagged version of the active compound. This could potentially be used as an affinity-based chemical probe to ascertain, in a direct fashion, the active compound's macromolecular biological targets, and thus better delineate the mechanism by which it reduces the level of pyocyanin production.

  4. Insulin-like growth factor I enhances proenkephalin synthesis and dopamine β-hydroxylase activity in adrenal chromaffin cells

    International Nuclear Information System (INIS)

    Wilson, S.P.

    1991-01-01

    Insulin-like growth factor I (IGF-I) increased both the contents of proenkephalin derived enkephalin-containing peptides and the activity of dopamine β-hydroxylase in bovine adrenal chromaffin cells. These increases in dopamine β-hydroxylase and enkephalin-containing peptides continued for at least 8 days. The half-maximal IGF-I concentration for these effects was ∼ 1 nM, with maximal effects observed at 10-30 nM. In contrast, insulin was 1,000-fold less potent. Pretreatment of chromaffin cells with IGF-I increased the rate of [ 35 S]proenkephalin synthesis 4-fold compared to untreated cells. Total protein synthesis increased only 1.5-fold under these conditions. These results suggest that IGF-I may be a normal regulator of chromaffin cell function

  5. Insulin-like growth factor I enhances proenkephalin synthesis and dopamine. beta. -hydroxylase activity in adrenal chromaffin cells

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, S.P. (Univ. of South Carolina School of Medicine, Columbia (USA))

    1991-01-01

    Insulin-like growth factor I (IGF-I) increased both the contents of proenkephalin derived enkephalin-containing peptides and the activity of dopamine {beta}-hydroxylase in bovine adrenal chromaffin cells. These increases in dopamine {beta}-hydroxylase and enkephalin-containing peptides continued for at least 8 days. The half-maximal IGF-I concentration for these effects was {approximately} 1 nM, with maximal effects observed at 10-30 nM. In contrast, insulin was 1,000-fold less potent. Pretreatment of chromaffin cells with IGF-I increased the rate of ({sup 35}S)proenkephalin synthesis 4-fold compared to untreated cells. Total protein synthesis increased only 1.5-fold under these conditions. These results suggest that IGF-I may be a normal regulator of chromaffin cell function.

  6. Comparison of effective doses using tissue-weighting factors in the 1977, 1990, and 2007 recommendations of the ICRP

    International Nuclear Information System (INIS)

    Matsunaga, Yuta; Kawaguchi, Ai; Suzuki, Shoichi

    2013-01-01

    The International Commission on Radiological Protection (ICRP) has established recommended tissue-weighting factors. Although there have been international reports on effective doses using the factors listed in the 1977, 1990, and 2007 recommendations of the ICRP, there have been no papers in Japan. The aim of this study was to evaluate effective doses using the tissue-weighting factors listed in each recommendation of the ICRP under 2011 exposure conditions in Japan. We used a human body phantom to estimate patient exposure doses during chest, abdomen, lumbar spine (anteroposterior and lateral), and head radiographs. With thermoluminescence dosimeters placed at various positions on and in the phantom, radiation doses were determined. There was little change in the effective doses to the chest and head from each recommendation. However, the effective doses recommended in 1977 were 0.2 mSv to the abdomen, 0.1 mSv to the lumbar spine anteroposteriorally, and 0.1 mSv to the lumbar spine laterally; these values are lower than those recommended in 1990 and 2007, which were 0.5 mSv to the abdomen, 0.4 mSv to the lumbar spine anteroposteriorally, and 0.6 mSv to the lumbar spine laterally. We could evaluate the effective doses using each recommendation and 2011 exposure conditions in Japan. (author)

  7. Correlation between increasing tissue ischemia and circulating levels of angiogenic growth factors in peripheral artery disease.

    Science.gov (United States)

    Jalkanen, Juho; Hautero, Olli; Maksimow, Mikael; Jalkanen, Sirpa; Hakovirta, Harri

    2018-04-21

    The aim of the present study was to assess the circulating levels of vascular endothelial growth factor (VEGF) and other suggested therapeutic growth factors with the degree of ischemia in patients with different clinical manifestations of peripheral arterial disease (PAD) according to the Rutherford grades. The study cohort consists of 226 consecutive patients admitted to a Department of Vascular Surgery for elective invasive procedures. PAD patients were grouped according to the Rutherford grades after a clinical assessment. Ankle-brachial pressure indices (ABI) and absolute toe pressure (TP) values were measured. Serum levels of circulating VEGF, hepatocyte growth factor (HGF), basic fibroblast growth factor (bFGF), and platelet derived growth factor (PDGF) were measured from serum and analysed against Rutherford grades and peripheral hemodynamic measurements. The levels of VEGF (P = 0.009) and HGF (P correlations between Rutherford grades was detected as follows; VEGF (Pearson's correlation = 0.183, P = 0.004), HGF (Pearson's correlation = 0.253, P Pearson's correlation = 0.169, P = 0.008) and PDGF (Pearson's correlation = 0.296, P correlation with ABI (Pearson's correlation -0.19, P = 0.009) and TP (Pearson's correlation -0.20, P = 0.005) measurements. Our present observations show that the circulating levels of VEGF and other suggested therapeutic growth factors are significantly increased along with increasing ischemia. These findings present a new perspective to anticipated positive effects of gene therapies utilizing VEGF, HGF, and bFGF, because the levels of these growth factors are endogenously high in end-stage PAD. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Specific receptors for epidermal growth factor in human bone tumour cells and its effect on synthesis of prostaglandin E2 by cultured osteosarcoma cell line

    International Nuclear Information System (INIS)

    Hirata, Y.; Uchihashi, M.; Nakashima, H.; Fujita, T.; Matsukura, S.; Matsui, K.

    1984-01-01

    Using tumour cell lines derived from human bone tumours, specific binding sites for epidermal growth factor (EGF), a potent growth stimulator in many tissues, and its effect on synthesis of prostaglandin (PG) E 2 , a potent bone-resorbing factor, by cultured osteosarcoma cell line were studied. Three tumour cell lines, one osteosarcoma (HOSO) and two giant cell tumours of the bone (G-1 and G-2), all possessed specific binding sites for 125 I-labelled EGF: the apparent dissociation constant was approximately 4-10 x 10 -10 M and the maximal binding capacity was 50 000-80 000 sites/cell. EGF had no mitogenic effect in these cell lines. However, these cell lines did not have specific binding sites for 125 I-labelled parathyroid hormone (PTH) or calcitonin. HOSO line produced and secreted PGE 2 into medium, while no significant amount of PGE 2 was demonstrated in G-1 or G-2 line. EGF significantly stimulated PGE 2 production in HOSO line in a dose-dependent manner (0.5-50 ng/ml); its stimulatory effect was completely abolished by indomethacin, an inhibitor of PG biosynthesis. Exogenous PGE 1 significantly stimulated cyclic AMP formation in HOSO line, whereas PGFsub(2α) PTH, calcitonin, or EGF had no effect. None of these calcium-regulating hormones affected cyclic AMP generation in either G-1 of G-2 line. These data indicate that human bone tumour cells have specific EGF receptors unrelated to cell growth, and suggest that EGF may be involved in bone resorption through a PGE 2 -mediated process in human osseous tissues. (author)

  9. A Tissue-Mapped Axolotl De Novo Transcriptome Enables Identification of Limb Regeneration Factors

    Directory of Open Access Journals (Sweden)

    Donald M. Bryant

    2017-01-01

    Full Text Available Mammals have extremely limited regenerative capabilities; however, axolotls are profoundly regenerative and can replace entire limbs. The mechanisms underlying limb regeneration remain poorly understood, partly because the enormous and incompletely sequenced genomes of axolotls have hindered the study of genes facilitating regeneration. We assembled and annotated a de novo transcriptome using RNA-sequencing profiles for a broad spectrum of tissues that is estimated to have near-complete sequence information for 88% of axolotl genes. We devised expression analyses that identified the axolotl orthologs of cirbp and kazald1 as highly expressed and enriched in blastemas. Using morpholino anti-sense oligonucleotides, we find evidence that cirbp plays a cytoprotective role during limb regeneration whereas manipulation of kazald1 expression disrupts regeneration. Our transcriptome and annotation resources greatly complement previous transcriptomic studies and will be a valuable resource for future research in regenerative biology.

  10. Hemophilia B with mutations at glycine-48 of factor IX exhibited delayed activation by the factor VIIa-tissue factor complex.

    Science.gov (United States)

    Wu, P C; Hamaguchi, N; Yu, Y S; Shen, M C; Lin, S W

    2000-10-01

    Gly-48 is in the conserved DGDQC sequence (residues 47-51 of human factor IX) of the first EGF (EGF-1)-like domain of factor IX. The importance of the Gly-48 is manifested by two hemophilia B patients; factor IXTainan and factor IXMalmo27, with Gly-48 replaced by arginine (designated IXG48R) and valine (IXG48V), respectively. Both patients were CRM+ exhibiting mild hemophilic episodes with 25% (former) and 19% (latter) normal clotting activities. We characterize both factor IX variants to show the roles of Gly-48 and the conservation of the DGDQC sequence in factor IX. Purified plasma and recombinant factor IX variants exhibited approximately 26%-27% normal factor IX's clotting activities with G48R or G48V mutation. Both variants depicted normal quenching of the intrinsic fluorescence by increasing concentrations of calcium ions and Tb3+, indicating that arginine and valine substitution for Gly-48 did not perturb the calcium site in the EGF-1 domain. Activation of both mutants by factor XIa appeared normal. The reduced clotting activity of factors IXG48R and IXG48V was attributed to the failure of both mutants to cleavage factor X: in the presence of only phospholipids and calcium ions, both mutants showed a 4 to approximately 7-fold elevation in Km, and by adding factor VIIIa to the system, although factor VIIIa potentiated the activation of factor X by the mutants factor IXaG48R and factor IXaG48V, a 2 to approximately 3-fold decrease in the catalytic function was observed with the mutant factor IXa's, despite that they bound factor VIIIa on the phospholipid vesicles with only slightly reduced affinity when compared to wild-type factor IXa. The apparent Kd for factor VIIIa binding was 0.83 nM for normal factor IXa, 1.74 nM for IXaG48R and 1.4 nM for IXaG48V. Strikingly, when interaction with the factor VIIa-TF complex was examined, both mutations were barely activated by the VIIa-TF complex and they also showed abnormal interaction with VIIa-TF in bovine

  11. Effects of epidermal growth factor on neural crest cells in tissue culture

    International Nuclear Information System (INIS)

    Erickson, C.A.; Turley, E.A.

    1987-01-01

    Epidermal growth factor (EGF) stimulates the release of hyaluronic acid (HA) and chondroitin sulfate proteoglycan (CSPG) from quail trunk neural crest cultures in a dose-dependent fashion. It also promotes the expression of cell-associated heparan sulfate proteoglycan (HSPG) as detected by immunofluorescence and immunoprecipitation of the 3 H-labeled proteoglycan. Furthermore, EGF stimulates [ 3 H]thymidine incorporation into total cell DNA. These results raise the possibility that EGF or an analogous growth factor is involved in regulation of neural crest cell morphogenesis

  12. Tissue factor pathway inhibitor for prediction of placenta-mediated adverse pregnancy outcomes in high-risk women: AngioPred study.

    Directory of Open Access Journals (Sweden)

    Aurélie Di Bartolomeo

    Full Text Available The study aimed to evaluate if the rate of tissue factor pathway inhibitor during pregnancy and following delivery could be a predictive factor for placenta-mediated adverse pregnancy outcomes in high-risk women.This was a prospective multicentre cohort study of 200 patients at a high risk of occurrence or recurrence of placenta-mediated adverse pregnancy outcomes conducted between June 2008 and October 2010. Measurements of tissue factor pathway inhibitor resistance (normalized ratio and tissue factor pathway inhibitor activity were performed for the last 72 patients at 20, 24, 28, 32, and 36 weeks of gestation and during the postpartum period.Overall, 15 patients presented a placenta-mediated adverse pregnancy outcome. There was no difference in normalized tissue factor pathway inhibitor ratios between patients with and without placenta-mediated adverse pregnancy outcomes during pregnancy and in the post-partum period. Patients with placenta-mediated adverse pregnancy outcomes had tissue factor pathway inhibitor activity rates that were significantly higher than those in patients without at as early as 24 weeks of gestation. The same results were observed following delivery.Among high-risk women, the tissue factor pathway inhibitor activity of patients with gestational vascular complications is higher than that in other patients. Hence, these markers could augment a screening strategy that includes an analysis of angiogenic factors as well as clinical and ultrasound imaging with Doppler measurement of the uterine arteries.

  13. Analysis of factors causing signal loss in the measurement of lung tissue water by nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Fukuzaki, Minoru; Shioya, Sumie; Haida, Munetaka

    1997-01-01

    The water content of lung, brain, and muscle tissue was measured by nuclear magnetic resonance (NMR) and compared with gravimetric determinations. The NMR signal intensity of water was measured by a single 90 degree pulse and by a spin-echo sequence. The absolute water content was determined by the difference in the sample's weight before and after desiccation. The NMR detectable water in each tissue was expressed as a percentage of the signal intensity for an equal weight of distilled water. Using the single pulse measurement, 67% of the gravimetrically-measured water was detected in collapsed lung samples (consisting of about 47% retained air), in contrast to 96% for brain and 98% for muscle. For degassed lung samples, the NMR detectability of water increased to 87% with the single pulse measurement and to 90% with the spin-echo measurement, but the values remained significantly less than those of brain or muscle. Factors that caused the NMR signal loss of 33% in collapsed lung samples were: air-tissue interfaces (20%), microscopic field inhomogeneity (3%), and a water component with an extremely short magnetization decay time constant (10%). (author)

  14. Elevation of transforming growth factor beta (TGFbeta) and its downstream mediators in subcutaneous foreign body capsule tissue.

    Science.gov (United States)

    Li, Allen G; Quinn, Matthew J; Siddiqui, Yasmin; Wood, Michael D; Federiuk, Isaac F; Duman, Heather M; Ward, W Kenneth

    2007-08-01

    Foreign body encapsulation represents a chronic fibrotic response and has been a major obstacle that reduces the useful life of implanted biomedical devices. The precise mechanism underlying such an encapsulation is still unknown. We hypothesized that, considering its central role in many other fibrotic conditions, transforming growth factor beta (TGFbeta) may play an important role during the formation of foreign body capsule (FBC). In the present study, we implanted mock sensors in rats subcutaneously and excised FBC samples at day 7, 21, and 48-55 postimplantation. The most abundant TGFbeta isoform in all tissues was TGFbeta1, which was expressed minimally in control tissue. The expression of both TGFbeta1 RNA and protein was significantly increased in FBC tissues at all time points, with the highest level in day 7 FBC. The number of cells stained for phosphorylated Smad2, an indication of activated TGFbeta signaling, paralleled the expression of TGFbeta. A similar dynamic change was also observed in the numbers of FBC myofibroblasts, which in response to TGFbeta, differentiate from quiescent fibroblasts and synthesize collagen. Type I collagen, the most prominent downstream target of TGFbeta in fibrosis, was found in abundance in the FBC, especially during the latter time periods. We suggest that TGFbeta plays an important role in the FBC formation. Inhibition of TGFbeta signaling could be a promising strategy in the prevention of FBC formation, thereby extending the useful life of subcutaneous implants.

  15. Effects of epidermal growth factor in artificial tear on vitamin C levels of corneal wounded eye tissues.

    Science.gov (United States)

    Gönül, B; Kaplan, B; Bilgihan, K; Budak, M T

    2001-04-01

    To investigate the effect of artificial tear (AT) solution and epidermal growth factor (EGF) treatment on the cornea and aqueous humour ascorbic acid (AA) levels of full-thickness corneal wounded eyes. The effect of EGF on the AA levels of aqueous humour and corneal wound tissue was determined in full-thickness corneal wounded rabbit eyes on the seventh post-operative day. There were three groups: untreated controls, AT-treated controls and an EGF+AT-treated experimental group (n = 6 in each group). Corneal wounded eyes were topically treated with 5 microl AT or 5 microl EGF in AT (1 mg/l EGF in AT prepaaration which contained 3.0% carbopol 940) twice daily for 6 days after operation. The wound strengths were also measured on the seventh post-operative day as a measure of wound healing. Statistical analysis was carried out using the Mann-Whitney U-test by Statview program. The wound strengths of corneas, and AA levels of wound tissues and aqueous humour, increased significantly following AT and EGF treatment (p < 0.05). In the corneal wounded eye, aqueous humour serves as a source of vitamin C and there may be a relation between EGF treatment in AT and AA levels of corneal wounded eye tissues.

  16. Connective tissue growth factor is activated by gastrin and involved in gastrin-induced migration and invasion.

    Science.gov (United States)

    Bhandari, Sabin; Bakke, Ingunn; Kumar, J; Beisvag, Vidar; Sandvik, Arne K; Thommesen, Liv; Varro, Andrea; Nørsett, Kristin G

    2016-06-17

    Connective tissue growth factor (CTGF) has been reported in gastric adenocarcinoma and in carcinoid tumors. The aim of this study was to explore a possible link between CTGF and gastrin in gastric epithelial cells and to study the role of CTGF in gastrin induced migration and invasion of AGS-GR cells. The effects of gastrin were studied using RT-qPCR, Western blot and assays for migration and invasion. We report an association between serum gastrin concentrations and CTGF abundancy in the gastric corpus mucosa of hypergastrinemic subjects and mice. We found a higher expression of CTGF in gastric mucosa tissue adjacent to tumor compared to normal control tissue. We showed that gastrin induced expression of CTGF in gastric epithelial AGS-GR cells via MEK, PKC and PKB/AKT pathways. CTGF inhibited gastrin induced migration and invasion of AGS-GR cells. We conclude that CTGF expression is stimulated by gastrin and involved in remodeling of the gastric epithelium. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Tissue engineering

    CERN Document Server

    Fisher, John P; Bronzino, Joseph D

    2007-01-01

    Increasingly viewed as the future of medicine, the field of tissue engineering is still in its infancy. As evidenced in both the scientific and popular press, there exists considerable excitement surrounding the strategy of regenerative medicine. To achieve its highest potential, a series of technological advances must be made. Putting the numerous breakthroughs made in this field into a broad context, Tissue Engineering disseminates current thinking on the development of engineered tissues. Divided into three sections, the book covers the fundamentals of tissue engineering, enabling technologies, and tissue engineering applications. It examines the properties of stem cells, primary cells, growth factors, and extracellular matrix as well as their impact on the development of tissue engineered devices. Contributions focus on those strategies typically incorporated into tissue engineered devices or utilized in their development, including scaffolds, nanocomposites, bioreactors, drug delivery systems, and gene t...

  18. Energy absorption buildup factors for thermoluminescent dosimetric materials and their tissue equivalence

    DEFF Research Database (Denmark)

    Manohara, S.R.; Hanagodimath, S.M.; Gerward, Leif

    2010-01-01

    Gamma ray energy-absorption buildup factors were computed using the five-parameter geometric progression (G-P) fitting formula for seven thermoluminescent dosimetric (TLD) materials in the energy range 0.015-15 MeV, and for penetration depths up to 40 mfp (mean free path). The generated energy-absorption...

  19. Radiation damage of hemopoietic tissue: circulating stem cells and growth factor responses

    International Nuclear Information System (INIS)

    Wagemaker, G.

    1997-01-01

    Briefly, evidence in rodents and nonhuman primates demonstrated two types of immature cells to be involved in regeneration following total body irradiation (X-rays). These cell populations can be separated and there is good responses differ. Related to these observations, experimental growth factor therapy has been ineffective at doses larger than 6-7 Gy X-rays and was shown to be optimally effective at the mid-lethal dose of 5 Gy. Consequently, at relatively high doses of radiation, treatment should initially be directed at reconstitution of growth factor responding stem cell subsets rather than at accelerated production of mature blood cells. Following cytotoxic insult to bone marrow, hemopoietic reconstitution is characterized by an increased fraction of stem cells that enters circulation. This might reflect a physiological mechanism to regulate the activities of the scattered bone marrow sites. In experimental studies with nonhuman primates, we showed that the number of circulating immature cells are proportional to those in the bone marrow and can be used for quantitative evaluation of residual stem cells numbers and to monitor the effectiveness of growth factor therapy at the immature cell level. The latter observations enables the design of growth factor treatment schedules for radiation induced myelosuppression in which thrombopenia is reduced and the recovery of immature bone marrow cells is promoted. (N.C.)

  20. Mathematical Model of Growth Factor Driven Haptotaxis and Proliferation in a Tissue Engineering Scaffold

    KAUST Repository

    Pohlmeyer, J. V.; Waters, S. L.; Cummings, L. J.

    2013-01-01

    nutrient-rich culture medium is perfused through a 2D porous scaffold impregnated with growth factor and seeded with cells. We model these processes on the timescale of cell proliferation, which typically is of the order of days. While a quantitative

  1. The membrane attack complex of complement contributes to plasmin-induced synthesis of platelet-activating factor by endothelial cells and neutrophils.

    Science.gov (United States)

    Lupia, Enrico; Del Sorbo, Lorenzo; Bergerone, Serena; Emanuelli, Giorgio; Camussi, Giovanni; Montrucchio, Giuseppe

    2003-08-01

    Thrombolytic agents, used to restore blood flow to ischaemic tissues, activate several enzymatic systems with pro-inflammatory effects, thus potentially contributing to the pathogenesis of ischaemia-reperfusion injury. Platelet-activating factor (PAF), a phospholipid mediator of inflammation, has been implicated in the pathogenesis of this process. We previously showed that the infusion of streptokinase (SK) induces the intravascular release of PAF in patients with acute myocardial infarction (AMI), and that cultured human endothelial cells (EC) synthesized PAF in response to SK and plasmin (PLN). In the present study, we investigated the role of the membrane attack complex (MAC) of complement in the PLN-induced synthesis of PAF. In vivo, we showed a correlation between the levels of soluble terminal complement components (sC5b-9) and the concentrations of PAF detected in blood of patients with AMI infused with SK. In vitro both EC and polymorphonuclear neutrophils (PMN), incubated in the presence of PLN and normal human serum, showed an intense staining for the MAC neoepitope, while no staining was detected when they were incubated with PLN in the presence of heat-inactivated normal human serum. Moreover, the insertion of MAC on EC and PMN plasmamembrane elicited the synthesis of PAF. In conclusion, our results elucidate the mechanisms involved in PAF production during the activation of the fibrinolytic system, showing a role for complement products in this setting. The release of PAF may increase the inflammatory response, thus limiting the beneficial effects of thrombolytic therapy. Moreover, it may have a pathogenic role in other pathological conditions, such as transplant rejection, tumoral angiogenesis, and septic shock, where fibrinolysis is activated.

  2. Factors causing risks of caries evolvement in dental solid tissues under acclimatization

    Directory of Open Access Journals (Sweden)

    R.S. Rakhmanov

    2017-12-01

    Full Text Available We analyzed parameters characterizing mineral balance in a body and dental state in two groups of healthy men (n = 15 in each, aged 34.7 ± 0.6 in hot and humid marine climate conditions; one group was made of people undergoing acclimatization, the second one consisted of local population. We assessed working conditions and their category, and metrological data with determining environmental thermal load (ETL-index. Both groups worked outdoors; their labor had IIb category; they had to work overtime and under increased psy-choemotional loads; their working conditions differed as per nutrition and accommodation. When people from both groups had to work beyond their permanent location, their nutrition was represented by individual rations. Labor hardness was assessed as 3.2; labor intensity, as 3.2. Daytime temperature reached 30,0 С, relative air humidity was 77.3 ± 2.6 %, wind speed was 4.3 ± 0.3 m/sec. Microclimate was assessed as having 3.1 hazard category. Overall, working conditions were assessed as hazardous (3.3 hazard category. Electrolyte balance in a body was violated and it was proved by ower contents of K, Na, and Cl in blood serum; it was more apparent in people who were undergoing acclimatization. 70.0 % of local people had Ca contents in blood serum lower than the physiological standard. Lower Ca and increased P contents in blood serum were also detected in those undergoing acclimatization which could be evidence that Ca was washed out of a body and greater risk of dental caries occurred. As per observation dynamics we detected the following processes in people undergoing acclimatization: pH saliva and its mineralizing function shifting to acidity, salivation rate, and lower enamel resistance; they proved there was a growth in dental solid tissues demineralization. These parameters corresponded to those detected in local population. It calls for primary prevention activities aimed at fighting caries of dental solid tissues.

  3. Synthesis, characterization and antioxidant activity of a novel electroactive and biodegradable polyurethane for cardiac tissue engineering application.

    Science.gov (United States)

    Baheiraei, Nafiseh; Yeganeh, Hamid; Ai, Jafar; Gharibi, Reza; Azami, Mahmoud; Faghihi, Faezeh

    2014-11-01

    There has been a growing trend towards applying conducting polymers for electrically excitable cells to increase electrical signal propagation within the cell-loaded substrates. A novel biodegradable electroactive polyurethane containing aniline pentamer (AP-PU) was synthesized and fully characterized by spectroscopic methods. To tune the physico-chemical properties and biocompatibility, the AP-PU was blended with polycaprolactone (PCL). The presence of electroactive moieties and the electroactivity behavior of the prepared films were confirmed by UV-visible spectroscopy and cyclic voltammetry. A conventional four probe analysis demonstrated the electrical conductivity of the films in the semiconductor range (~10(-5)S/cm). MTT assays using L929 mouse fibroblast and human umbilical vein endothelial cells (HUVECs) showed that the prepared blend (PB) displayed more cytocompatibility compared with AP-PU due to the introduction of a biocompatible PCL moiety. The in vitro cell culture also confirmed that PB was as supportive as tissue culture plate. The antioxidant activity of the AP-PU was proved using 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging assay by employing UV-vis spectroscopy. In vitro degradation tests conducted in phosphate-buffered saline, pH7.4 and pH5.5, proved that the films were also biodegradable. The results of this study have highlighted the potential application of this bioelectroactive polyurethane as a platform substrate to study the effect of electrical signals on cell activities and to direct desirable cell function for tissue engineering applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Greener synthesis of electrospun collagen/hydroxyapatite composite fibers with an excellent microstructure for bone tissue engineering

    Science.gov (United States)

    Zhou, Yuanyuan; Yao, Hongchang; Wang, Jianshe; Wang, Dalu; Liu, Qian; Li, Zhongjun

    2015-01-01

    In bone tissue engineering, collagen/hydroxyapatite (HAP) fibrous composite obtained via electrospinning method has been demonstrated to support the cells’ adhesion and bone regeneration. However, electrospinning of natural collagen often requires the use of cytotoxic organic solvents, and the HAP crystals were usually aggregated and randomly distributed within a fibrous matrix of collagen, limiting their clinical potential. Here, an effective and greener method for the preparation of collagen/HAP composite fibers was developed for the first time, and this green product not only had 40 times higher mechanical properties than that previously reported, but also had an excellent microstructure similar to that of natural bone. By dissolving type I collagen in environmentally friendly phosphate buffered saline/ethanol solution instead of the frequently-used cytotoxic organic solvents, followed with the key step of desalination, co-electrospinning the collagen solution with the HAP sol, generates a collagen/HAP composite with a uniform and continuous fibrous morphology. Interestingly, the nano-HAP needles were found to preferentially orient along the longitudinal direction of the collagen fibers, which mimicked the nanostructure of natural bones. Based on the characterization of the related products, the formation mechanism for this novel phenomenon was proposed. After cross-linking with 1-ethyl-3-(3-dimethyl-aminopropyl)-1-carbodiimide hydrochloride/N-hydroxysuccinimide, the obtained composite exhibited a significant enhancement in mechanical properties. In addition, the biocompatibility of the obtained composite fibers was evaluated by in vitro culture of the human myeloma cells (U2-OS). Taken together, the process outlined herein provides an effective, non-toxic approach for the fabrication of collagen/HAP composite nanofibers that could be good candidates for bone tissue engineering. PMID:25995630

  5. Endothelium trans differentiated from Wharton's jelly mesenchymal cells promote tissue regeneration: potential role of soluble pro-angiogenic factors.

    Science.gov (United States)

    Aguilera, Valeria; Briceño, Luis; Contreras, Hector; Lamperti, Liliana; Sepúlveda, Esperanza; Díaz-Perez, Francisca; León, Marcelo; Veas, Carlos; Maura, Rafael; Toledo, Jorge Roberto; Fernández, Paulina; Covarrubias, Ambart; Zuñiga, Felipe Andrés; Radojkovic, Claudia; Escudero, Carlos; Aguayo, Claudio

    2014-01-01

    Mesenchymal stem cells have a high capacity for trans-differentiation toward many adult cell types, including endothelial cells. Feto-placental tissue, such as Wharton's jelly is a potential source of mesenchymal stem cells with low immunogenic capacity; make them an excellent source of progenitor cells with a potential use for tissue repair. We evaluated whether administration of endothelial cells derived from mesenchymal stem cells isolated from Wharton's jelly (hWMSCs) can accelerate tissue repair in vivo. Mesenchymal stem cells were isolated from human Wharton's jelly by digestion with collagenase type I. Endothelial trans-differentiation was induced for 14 (hWMSC-End14d) and 30 (hWMSC-End30d) days. Cell phenotyping was performed using mesenchymal (CD90, CD73, CD105) and endothelial (Tie-2, KDR, eNOS, ICAM-1) markers. Endothelial trans-differentiation was demonstrated by the expression of endothelial markers and their ability to synthesize nitric oxide (NO). hWMSCs can be differentiated into adipocytes, osteocytes, chondrocytes and endothelial cells. Moreover, these cells show high expression of CD73, CD90 and CD105 but low expression of endothelial markers prior to differentiation. hWMSCs-End express high levels of endothelial markers at 14 and 30 days of culture, and also they can synthesize NO. Injection of hWMSC-End30d in a mouse model of skin injury significantly accelerated wound healing compared with animals injected with undifferentiated hWMSC or injected with vehicle alone. These effects were also observed in animals that received conditioned media from hWMSC-End30d cultures. These results demonstrate that mesenchymal stem cells isolated from Wharton's jelly can be cultured in vitro and trans-differentiated into endothelial cells. Differentiated hWMSC-End may promote neovascularization and tissue repair in vivo through the secretion of soluble pro-angiogenic factors.

  6. Predictive factors for complete removal in soft tissue sarcomas: a retrospective analysis in a series of 592 cases.

    Science.gov (United States)

    Sastre-Garau, X; Coindre, J M; Leroyer, A; Terrier, P; Ollivier, L; Stöckle, E; Bonichon, F; Collin, F; Le Doussal, V; Contesso, G; Vilain, M O; Jacquemier, J; Nguyen, B B

    1997-07-01

    In order to specify the indications for conservative surgery and preoperative therapeutic approaches of soft tissues sarcomas (STS), we looked for the clinico-pathological parameters associated with the failure to obtain a complete removal (CRm) of the tumor. We retrospectively analyzed a series of 592 cases of primary non-metastatic STS. Surgery was performed in 495 cases as a primary treatment and in 88 cases after chemo- or radiotherapy. Nine patients were treated by chemotherapy-radiotherapy. In a univariate analysis, 20 parameters were tested for their association with CRm. A multivariate analysis was then used to define the independent parameters linked to the achievement of a CRm. In the univariate analysis, 15 parameters were found to be linked to the achievement of a CRm. Three of them proved to be independent in the multivariate analysis: T in the TNM classification, tumor location, and tumor necrosis. By the combination of these risk factors, four groups of patients were defined, with respective rates of CRm of 97% (no factor), 95% (one factor), 70% (two factors), and 48% (three factors). The achievement of a CRm after surgery of STS depends not only on the accessibility of the lesion, but also on tumor aggressiveness, a reflection of which is necrosis. The detection of necrosis by imaging procedures may thus help predicting the resectability of tumors and defining the indications for neoadjuvant therapies, likely to broaden the use of conservative surgery.

  7. Upregulation of innate antiviral restricting factor expression in the cord blood and decidual tissue of HIV-infected mothers.

    Science.gov (United States)

    Pereira, Nátalli Zanete; Cardoso, Elaine Cristina; Oliveira, Luanda Mara da Silva; de Lima, Josenilson Feitosa; Branco, Anna Cláudia Calvielli Castelo; Ruocco, Rosa Maria de Souza Aveiro; Zugaib, Marcelo; de Oliveira Filho, João Bosco; Duarte, Alberto José da Silva; Sato, Maria Notomi

    2013-01-01

    Programs for the prevention of mother-to-child transmission of HIV have reduced the transmission rate of perinatal HIV infection and have thereby increased the number of HIV-exposed uninfected (HEU) infants. Natural immunity to HIV-1 infection in both mothers and newborns needs to be further explored. In this study, we compared the expression of antiviral restricting factors in HIV-infected pregnant mothers treated with antiretroviral therapy (ART) in pregnancy (n=23) and in cord blood (CB) (n=16), placental tissues (n=10-13) and colostrum (n=5-6) samples and compared them to expression in samples from uninfected (UN) pregnant mothers (n=21). Mononuclear cells (MNCs) were prepared from maternal and CB samples following deliveries by cesarean section. Maternal (decidua) and fetal (chorionic villus) placental tissues were obtained, and colostrum was collected 24 h after delivery. The mRNA and protein expression levels of antiviral factors were then evaluated. We observed a significant increase in the mRNA expression levels of antiviral factors in MNCs from HIV-infected mothers and CB, including the apolipoprotein B mRNA-editing enzyme 3G (A3G), A3F, tripartite motif family-5α (TRIM-5α), TRIM-22, myxovirus resistance protein A (MxA), stimulator of interferon (IFN) genes (STING) and IFN-β, compared with the levels detected in uninfected (UN) mother-CB pairs. Moreover, A3G transcript and protein levels and α-defensin transcript levels were decreased in the decidua of HIV-infected mothers. Decreased TRIM-5α protein levels in the villi and increased STING mRNA expression in both placental tissues were also observed in HIV-infected mothers compared with uninfected (UN) mothers. Additionally, colostrum cells from infected mothers showed increased tetherin and IFN-β mRNA levels and CXCL9 protein levels. The data presented here indicate that antiviral restricting factor expression can be induced in utero in HIV-infected mothers. Future studies are warranted to determine

  8. Factors affecting callus and protoplast production and regeneration of plants from garlic tissue cultures

    International Nuclear Information System (INIS)

    Al-Safadi, B.; Nabulsi, I.

    2001-08-01

    Five cultivars of garlic, two explants, six callusing media, six regeneration media, two kinds of light and several doses of gamma irradiation were used to determine the best conditions for callus induction and plant regeneration from garlic tissue cultures. Also, some experiments were conducted to study the possibility to isolate protoplast and regenerate plants. The experiment showed that medium MS9 was good for regenerating plant directly from basal plate without going through callus phase. ANOVA exhibited significant differences among used cultivars in their ability to form callus. No significant difference was observed between 16 hr light and complete darkness in callus growth. However, appearance of callus was generally better on darkness. Cultivar varied in their ability to regenerate and interaction between cultivars and media was observed. Cultivar kisswany was the best in regeneration (38%) and medium MS47 was the best among used media (35%). Light type played a significant role in regeneration of plants where red light was much better than white light in inducing regeneration (68% vs 36%). ANOVA revealed significant effect of low doses of gamma irradiation on stimulation regeneration of plant whereas high doses prevented regeneration. Many experiments were conducted to isolate protoplast and regenerate plants. The best method for culturing was the droplet and the best conditions for incubation were complete darkness at 25 Degreed centigrade. This lead to formation of cell wall but no cell division was observed (author)

  9. Calcitriol enhances fat synthesis factors and calpain activity in co-cultured cells.

    Science.gov (United States)

    Choi, Hyuck; Myung, Kyuho

    2014-08-01

    We have conducted an in vitro experiment to determine whether calcitriol can act as a fat synthesizer and/or meat tenderizer when skeletal muscle cells, adipose tissue, and macrophages are co-cultured. When co-cultured, pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) expression increased, whereas decreased anti-inflammatory cytokine (IL-10 and IL-15) expression decreased in both C2C12 and 3T3-L1 cells. Calcitriol increased reactive oxygen species (ROS) production in the media. While adiponectin gene expression decreased, leptin, resistin, CCAAT-enhancer-binding protein-beta (C/EBP-β), and peroxisome proliferator-activated receptor gamma (PPAR-γ) gene expression was significantly (P cultured with two different cell types. Inducible nitric oxide synthase (iNOS) protein levels were also stimulated in the C2C12 and 3T3-L1 cells, but arginase l was attenuated by calcitriol. Cacitriol highly amplified (P = 0.008) µ-calpain gene expression in co-cultured C2C12 cells. The results showed an overall increase in pro-inflammatory cytokines and a decrease in anti-inflammatory cytokines of C2C12 and 3T3-L1 cells with calcitriol in co-culture systems. µ-Calpain protein was also augmented in differentiated C2C12 cells with calcitriol. These findings suggest that calcitriol can be used as not only fat synthesizer, but meat tenderizer, in meat-producing animals. © 2014 International Federation for Cell Biology.

  10. Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in Arabidopsis.

    Science.gov (United States)

    Rubin, Grit; Tohge, Takayuki; Matsuda, Fumio; Saito, Kazuki; Scheible, Wolf-Rüdiger

    2009-11-01

    Nitrogen (N) and nitrate (NO(3)(-)) per se regulate many aspects of plant metabolism, growth, and development. N/NO(3)(-) also suppresses parts of secondary metabolism, including anthocyanin synthesis. Molecular components for this repression are unknown. We report that three N/NO(3)(-)-induced members of the LATERAL ORGAN BOUNDARY DOMAIN (LBD) gene family of transcription factors (LBD37, LBD38, and LBD39) act as negative regulators of anthocyanin biosynthesis in Arabidopsis thaliana. Overexpression of each of the three genes in the absence of N/NO(3)(-) strongly suppresses the key regulators of anthocyanin synthesis PAP1 and PAP2, genes in the anthocyanin-specific part of flavonoid synthesis, as well as cyanidin- but not quercetin- or kaempferol-glycoside production. Conversely, lbd37, lbd38, or lbd39 mutants accumulate anthocyanins when grown in N/NO(3)(-)-sufficient conditions and show constitutive expression of anthocyanin biosynthetic genes. The LBD genes also repress many other known N-responsive genes, including key genes required for NO(3)(-) uptake and assimilation, resulting in altered NO(3)(-) content, nitrate reductase activity/activation, protein, amino acid, and starch levels, and N-related growth phenotypes. The results identify LBD37 and its two close homologs as novel repressors of anthocyanin biosynthesis and N availability signals in general. They also show that, besides being developmental regulators, LBD genes fulfill roles in metabolic regulation.

  11. Promoter hypermethylation contributes to frequent inactivation of a putative conditional tumor suppressor gene connective tissue growth factor in ovarian cancer.

    Science.gov (United States)

    Kikuchi, Ryoko; Tsuda, Hitoshi; Kanai, Yae; Kasamatsu, Takahiro; Sengoku, Kazuo; Hirohashi, Setsuo; Inazawa, Johji; Imoto, Issei

    2007-08-01

    Connective tissue growth factor (CTGF) is a secreted protein belonging to the CCN family, members of which are implicated in various biological processes. We identified a homozygous loss of CTGF (6q23.2) in the course of screening a panel of ovarian cancer cell lines for genomic copy number aberrations using in-house array-based comparative genomic hybridization. CTGF mRNA expression was observed in normal ovarian tissue and immortalized ovarian epithelial cells but was reduced in many ovarian cancer cell lines without its homozygous deletion (12 of 23 lines) and restored after treatment with 5-aza 2'-deoxycytidine. The methylation status around the CTGF CpG island correlated inversely with the expression, and a putative target region for methylation showed promoter activity. CTGF methylation was frequently observed in primary ovarian cancer tissues (39 of 66, 59%) and inversely correlated with CTGF mRNA expression. In an immunohistochemical analysis of primary ovarian cancers, CTGF protein expression was frequently reduced (84 of 103 cases, 82%). Ovarian cancer tended to lack CTGF expression more frequently in the earlier stages (stages I and II) than the advanced stages (stages III and IV). CTGF protein was also differentially expressed among histologic subtypes. Exogenous restoration of CTGF expression or treatment with recombinant CTGF inhibited the growth of ovarian cancer cells lacking its expression, whereas knockdown of endogenous CTGF accelerated growth of ovarian cancer cells with expression of this gene. These results suggest that epigenetic silencing by hypermethylation of the CTGF promoter leads to a loss of CTGF function, which may be a factor in the carcinogenesis of ovarian cancer in a stage-dependent and/or histologic subtype-dependent manner.

  12. State of oral hygiene and identification of the main risk factors for inflammatory diseases of periodontal tissues in young people

    Directory of Open Access Journals (Sweden)

    Makarenko M.V.

    2014-09-01

    Full Text Available A high percentage of prevalence of inflammatory periodontal diseases in young age causes urgency of treatment and prevention of inflammatory diseases of periodontal tissue in young age. Therefore, the research purpose was to investigate the hygienic condition and identification of the main risk factors for gingivitis in patients aged 18-30 years. 286 people aged from 18 to 30 years were observed in the study. To assess hygienic condition of the oral cavity and to determine the thickness of plaque indices OHI-S (simplified oral hygiene index Green Vermilyona and Silness Loe were used. Studies of oral hygiene status suggests that in patients with different etiologies of periodontal tissue inflammation, oral hygienic condition ranged from "satisfactory" to "poor." Therefore the results of study of hygiene and periodontal indices and samples confirmed presence of moderately expressed inflammation in the gums in young adults with chronic catarrhal gingivitis. Most often inflammation in the gums, namely, chronic catarrhal gingivitis was determined in patients with fixed prosthesis designs in the mouth or in violation of the bite, related to the major risk factors for periodontal disease occurring in young adults aged from 18 to 30 years.

  13. Impact of geriatric factors on surgical and prognostic outcomes in elderly patients with soft-tissue sarcoma.

    Science.gov (United States)

    Tsuda, Yusuke; Ogura, Koichi; Kobayashi, Eisuke; Hiruma, Toru; Iwata, Shintaro; Asano, Naofumi; Kawai, Akira; Chuman, Hirokazu; Ishii, Takeshi; Morioka, Hideo; Kobayashi, Hiroshi; Kawano, Hirotaka

    2017-05-01

    Patients aged ≥65 years requiring surgery for soft-tissue sarcoma are a concern in an aging society. We aimed to reveal the association of clinical/geriatric factors with survival period or postoperative events in such patients who underwent surgery. We enrolled patients aged ≥65 years who underwent surgery for localized soft-tissue sarcoma at five institutions. We retrospectively collected clinical/geriatric factors and laboratory data, and analyzed their association with outcomes using univariate and multivariate analyses. Among the 202 patients included, mean age at presentation was 73 years. Surgical margin was R0 in 139 patients (69%). The Eastern Cooperative Oncology Group performance status was ≥2 in 15 (7%). Thirty patients (15%) showed thinness (body mass index sarcoma-specific survival (hazard ratio for R1 vs. R0, 3.17; P = 0.001) and event-free survival (hazard ratio for R1 vs. R0, 2.56; P sarcoma-specific survival (hazard ratio for ≥2 vs. 0 or 1, 2.15; P = 0.038), and higher sensitivity-modified Glasgow prognostic score was significantly associated with poor event-free survival (hazard ratio for ≥1 vs. 0, 1.74; P = 0.046). Severe thinness (body mass index sarcoma patients. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Tissue factor levels and the fibrinolytic system in thin and thick intraluminal thrombus and underlying walls of abdominal aortic aneurysms.

    Science.gov (United States)

    Siennicka, Aldona; Zuchowski, Marta; Kaczmarczyk, Mariusz; Cnotliwy, Miłosław; Clark, Jeremy Simon; Jastrzębska, Maria

    2018-03-20

    The hemostatic system cooperates with proteolytic degradation in processes allowing abdominal aortic aneurysm (AAA) formation. In previous studies, it has been suggested that aneurysm rupture depends on intraluminal thrombus (ILT) thickness, which varies across each individual aneurysm. We hypothesized that hemostatic components differentially accumulate in AAA tissue in relation to ILT thickness. Thick (A1) and thin (B1) segments of ILTs and aneurysm wall sections A (adjacent to A1) and B (adjacent to B1) from one aneurysm sac were taken from 35 patients undergoing elective repair. Factor levels were measured using enzyme-linked immunosorbent assay of protein extract. Tissue factor (TF) activities were significantly higher in thinner segments of AAA (B1 vs A1, P = .003; B vs A, P thick thrombus-covered wall segments (A) than in B, A1, and B1 (P = .015, P t