WorldWideScience

Sample records for tissue conversely inhibiting

  1. Response inhibition in motor conversion disorder.

    Science.gov (United States)

    Voon, Valerie; Ekanayake, Vindhya; Wiggs, Edythe; Kranick, Sarah; Ameli, Rezvan; Harrison, Neil A; Hallett, Mark

    2013-05-01

    Conversion disorders (CDs) are unexplained neurological symptoms presumed to be related to a psychological issue. Studies focusing on conversion paralysis have suggested potential impairments in motor initiation or execution. Here we studied CD patients with aberrant or excessive motor movements and focused on motor response inhibition. We also assessed cognitive measures in multiple domains. We compared 30 CD patients and 30 age-, sex-, and education-matched healthy volunteers on a motor response inhibition task (go/no go), along with verbal motor response inhibition (color-word interference) and measures of attention, sustained attention, processing speed, language, memory, visuospatial processing, and executive function including planning and verbal fluency. CD patients had greater impairments in commission errors on the go/no go task (P conversion. Patients with nonepileptic seizures, a different form of conversion disorder, are commonly reported to have lower IQ and multiple cognitive deficits. Our results point toward potential differences between conversion disorder subgroups. © 2013 Movement Disorder Society. Copyright © 2013 Movement Disorder Society.

  2. Methionine metabolism in apple tissue: implications of S-adenosylmethionine as an intermediate in the conversion of methionine to ethylene

    International Nuclear Information System (INIS)

    Adams, D.O.; Yang, S.F.

    1977-01-01

    If S-adenosylmethionine (SAM) is the direct precursor of ethylene as previously proposed, it is expected that 5'-S-methyl-5'-thioadenosine (MTA) would be the fragment nucleoside. When [Me- 14 C] or ( 35 S)methionine was fed to climacteric apple (Malus sylvestris Mill) tissue, radioactive 5-S-methyl-5-thioribose (MTR) was identified as the predominant product and MTA as a minor one. When the conversion of methionine into ethylene was inhibited by L-2-amino-4-(2'-amino-ethoxy)-trans-3-butenoic acid, the conversion of ( 35 S) or (Me- 14 C)methionine into MTR was similarly inhibited. Furthermore, the formation of MTA and MTR from ( 35 S)methionine was observed only in climacteric tissue which produced ethylene and actively converted methionine to ethylene but not in preclimacteric tissue which did not produce ethylene or convert methionine to ethylene. These observations suggest that the conversion of methionine into MTA and MTR is closely related to ethylene biosynthesis and provide indirect evidence that SAM may be an intermediate in the conversion of methionine to ethylene. When ( 35 S)MTA was fed to climacteric or preclimacteric apple tissue, radioactivity was efficiently incorporated into MTR and methionine. However, when ( 35 S)MTR was administered, radioactivity was efficiently incorporated into methionine but not MTA. A scheme is presented for the production of ethylene from methionine

  3. Gingival tissue-produced inhibition of platelet aggregation and the loss of inhibition in streptozotocin-induced diabetic rats

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Keiichiroh; Tamai, Kazuharu; Shirakawa, Masaharu; Okamoto, Hiroshi; Dohi, Toshihiro; Tsujimoto, Akira

    1988-01-01

    Addition of medium incubated with normal rat gingival tissue to platelet-rich plasma inhibited ADP-induced platelet aggregation. The ability of rat gingiva to produce activity inhibiting platelet aggregation was enhanced by the addition of arachidonic acid. Diabetic rat gingiva failed to inhibit platelet aggregation but did produce the anti-platelet aggregating activity in the presence of arachidonic acid. Indomethacin blocked the production of anti-platelet aggregating activity. There was no difference in conversion of (1-/sup 14/C)arachidonic acid to prostaglandins by normal and diabetic rat gingiva. These results suggest that an arachidonic acid metabolite released from gingiva during incubation inhibits platelet aggregation, and the synthesis of the metabolite is impaired in diabetic rat gingiva. A decrease in availability of arachidonic acid may be a causal factor of the defect in diabetic rat gingiva.

  4. Gingival tissue-produced inhibition of platelet aggregation and the loss of inhibition in streptozotocin-induced diabetic rats

    International Nuclear Information System (INIS)

    Kawamura, Keiichiroh; Tamai, Kazuharu; Shirakawa, Masaharu; Okamoto, Hiroshi; Dohi, Toshihiro; Tsujimoto, Akira

    1988-01-01

    Addition of medium incubated with normal rat gingival tissue to platelet-rich plasma inhibited ADP-induced platelet aggregation. The ability of rat gingiva to produce activity inhibiting platelet aggregation was enhanced by the addition of arachidonic acid. Diabetic rat gingiva failed to inhibit platelet aggregation but did produce the anti-platelet aggregating activity in the presence of arachidonic acid. Indomethacin blocked the production of anti-platelet aggregating activity. There was no difference in conversion of [1- 14 C]arachidonic acid to prostaglandins by normal and diabetic rat gingiva. These results suggest that an arachidonic acid metabolite released from gingiva during incubation inhibits platelet aggregation, and the synthesis of the metabolite is impaired in diabetic rat gingiva. A decrease in availability of arachidonic acid may be a causal factor of the defect in diabetic rat gingiva. (author)

  5. Strong cellulase inhibition by Mannan polysaccharides in cellulose conversion to sugars.

    Science.gov (United States)

    Kumar, Rajeev; Wyman, Charles E

    2014-07-01

    Cellulase enzymes contribute a major fraction of the total cost for biological conversion of lignocellulosic biomass to fuels and chemicals. Although a several fold reduction in cellulase production costs and enhancement of cellulase activity and stability have been reported in recent years, sugar yields are still lower at low enzyme doses than desired commercially. We recently reported that hemicellulose xylan and its oligomers strongly inhibit cellulase and that supplementation of cellulase with xylanase and β-xylosidase would significantly reduce such inhibition. In this study, mannan polysaccharides and their enzymatically prepared hydrolyzates were discovered to be strongly inhibitory to fungal cellulase in cellulose conversion (>50% drop in % relative conversion), even at a small concentration of 0.1 g/L, and inhibition was much greater than experienced by other known inhibitors such as cellobiose, xylooligomers, and furfural. Furthermore, cellulase inhibition dramatically increased with heteromannan loading and mannan substitution with galactose side units. In general, enzymatically prepared hydrolyzates were less inhibitory than their respective mannan polysaccharides except highly substituted ones. Supplementation of cellulase with commercial accessory enzymes such as xylanase, pectinase, and β-glucosidase was effective in greatly relieving inhibition but only for less substituted heteromannans. However, cellulase supplementation with purified heteromannan specific enzymes relieved inhibition by these more substituted heteromannans as well, suggesting that commercial preparations need to have higher amounts of such activities to realize high sugar yields at the low enzyme protein loadings needed for low cost fuels production. © 2014 Wiley Periodicals, Inc.

  6. Conversion of 3H-testosterone to dihydrotestosterone in human hypertrophic prostatic tissue

    International Nuclear Information System (INIS)

    Baranowska, B.; Zgliczynski

    1979-01-01

    The aim of the study was to develop a simple method for the determination of the conversion of testosterone to 5α-dihydrotestosterone (5α-DHT) after incubation of human hypertrophic prostatic tissue with 3 H-testosterone. The mean conversion rate of 3 H-testosterone to 5α-DHT in hypertrophic prostatic tissue was found to be higher than in normal and carcinomatous tissue. The results indicate that androgen metabolism in the hypertrophic prostatic gland is enhanced. (orig.) [de

  7. Functional networks of motor inhibition in conversion disorder patients and feigning subjects

    Directory of Open Access Journals (Sweden)

    Thomas Hassa

    2016-01-01

    Full Text Available The neural correlates of motor inhibition leading to paresis in conversion disorder are not well known. The key question is whether they are different of those of normal subjects feigning the symptoms. Thirteen conversion disorder patients with hemiparesis and twelve healthy controls were investigated using functional magnetic resonance tomography under conditions of passive motor stimulation of the paretic/feigned paretic and the non-paretic hand. Healthy controls were also investigated in a non-feigning condition. During passive movement of the affected right hand conversion disorder patients exhibited activations in the bilateral triangular part of the inferior frontal gyri (IFG, with a left side dominance compared to controls in non-feigning condition. Feigning controls revealed for the same condition a weak unilateral activation in the right triangular part of IFG and an activity decrease in frontal midline areas, which couldn't be observed in patients. The results suggest that motor inhibition in conversion disorder patients is mediated by the IFG that was also involved in inhibition processes in normal subjects. The activity pattern in feigning controls resembled that of conversion disorder patients but with a clear difference in the medial prefrontal cortex. Healthy controls showed decreased activity in this region during feigning compared to non-feigning conditions suggesting a reduced sense of self-agency during feigning. Remarkably, no activity differences could be observed in medial prefrontal cortex for patients vs healthy controls in feigning or non-feigning conditions suggesting self-agency related activity in patients to be in between those of non-feigning and feigning healthy subjects.

  8. Functional networks of motor inhibition in conversion disorder patients and feigning subjects.

    Science.gov (United States)

    Hassa, Thomas; de Jel, Esther; Tuescher, Oliver; Schmidt, Roger; Schoenfeld, Mircea Ariel

    2016-01-01

    The neural correlates of motor inhibition leading to paresis in conversion disorder are not well known. The key question is whether they are different of those of normal subjects feigning the symptoms. Thirteen conversion disorder patients with hemiparesis and twelve healthy controls were investigated using functional magnetic resonance tomography under conditions of passive motor stimulation of the paretic/feigned paretic and the non-paretic hand. Healthy controls were also investigated in a non-feigning condition. During passive movement of the affected right hand conversion disorder patients exhibited activations in the bilateral triangular part of the inferior frontal gyri (IFG), with a left side dominance compared to controls in non-feigning condition. Feigning controls revealed for the same condition a weak unilateral activation in the right triangular part of IFG and an activity decrease in frontal midline areas, which couldn't be observed in patients. The results suggest that motor inhibition in conversion disorder patients is mediated by the IFG that was also involved in inhibition processes in normal subjects. The activity pattern in feigning controls resembled that of conversion disorder patients but with a clear difference in the medial prefrontal cortex. Healthy controls showed decreased activity in this region during feigning compared to non-feigning conditions suggesting a reduced sense of self-agency during feigning. Remarkably, no activity differences could be observed in medial prefrontal cortex for patients vs healthy controls in feigning or non-feigning conditions suggesting self-agency related activity in patients to be in between those of non-feigning and feigning healthy subjects.

  9. Conversion of /sup 3/H-testosterone to dihydrotestosterone in human hypertrophic prostatic tissue

    Energy Technology Data Exchange (ETDEWEB)

    Baranowska, B; Zgliczynski, [Centre of Postgraduate Medical Education, Warsaw (Poland). Clinic of Endocrinology

    1979-12-01

    The aim of the study was to develop a simple method for the determination of the conversion of testosterone to 5..cap alpha..-dihydrotestosterone (5..cap alpha..-DHT) after incubation of human hypertrophic prostatic tissue with /sup 3/H-testosterone. The mean conversion rate of /sup 3/H-testosterone to 5..cap alpha..-DHT in hypertrophic prostatic tissue was found to be higher than in normal and carcinomatous tissue. The results indicate that androgen metabolism in the hypertrophic prostatic gland is enhanced.

  10. Direct conversion of injury-site myeloid cells to fibroblast-like cells of granulation tissue.

    Science.gov (United States)

    Sinha, Mithun; Sen, Chandan K; Singh, Kanhaiya; Das, Amitava; Ghatak, Subhadip; Rhea, Brian; Blackstone, Britani; Powell, Heather M; Khanna, Savita; Roy, Sashwati

    2018-03-05

    Inflammation, following injury, induces cellular plasticity as an inherent component of physiological tissue repair. The dominant fate of wound macrophages is unclear and debated. Here we show that two-thirds of all granulation tissue fibroblasts, otherwise known to be of mesenchymal origin, are derived from myeloid cells which are likely to be wound macrophages. Conversion of myeloid to fibroblast-like cells is impaired in diabetic wounds. In cross-talk between keratinocytes and myeloid cells, miR-21 packaged in extracellular vesicles (EV) is required for cell conversion. EV from wound fluid of healing chronic wound patients is rich in miR-21 and causes cell conversion more effectively compared to that by fluid from non-healing patients. Impaired conversion in diabetic wound tissue is rescued by targeted nanoparticle-based delivery of miR-21 to macrophages. This work introduces a paradigm wherein myeloid cells are recognized as a major source of fibroblast-like cells in the granulation tissue.

  11. Lactate dehydrogenase activity is inhibited by methylmalonate in vitro.

    Science.gov (United States)

    Saad, Laura O; Mirandola, Sandra R; Maciel, Evelise N; Castilho, Roger F

    2006-04-01

    Methylmalonic acidemia (MMAemia) is an inherited metabolic disorder of branched amino acid and odd-chain fatty acid metabolism, involving a defect in the conversion of methylmalonyl-coenzyme A to succinyl-coenzyme A. Systemic and neurological manifestations in this disease are thought to be associated with the accumulation of methylmalonate (MMA) in tissues and biological fluids with consequent impairment of energy metabolism and oxidative stress. In the present work we studied the effect of MMA and two other inhibitors of mitochondrial respiratory chain complex II (malonate and 3-nitropropionate) on the activity of lactate dehydrogenase (LDH) in tissue homogenates from adult rats. MMA potently inhibited LDH-catalyzed conversion of lactate to pyruvate in liver and brain homogenates as well as in a purified bovine heart LDH preparation. LDH was about one order of magnitude less sensitive to inhibition by MMA when catalyzing the conversion of pyruvate to lactate. Kinetic studies on the inhibition of brain LDH indicated that MMA inhibits this enzyme competitively with lactate as a substrate (K (i)=3.02+/-0.59 mM). Malonate and 3-nitropropionate also strongly inhibited LDH-catalyzed conversion of lactate to pyruvate in brain homogenates, while no inhibition was observed by succinate or propionate, when present in concentrations of up to 25 mM. We propose that inhibition of the lactate/pyruvate conversion by MMA contributes to lactate accumulation in blood, metabolic acidemia and inhibition of gluconeogenesis observed in patients with MMAemia. Moreover, the inhibition of LDH in the central nervous system may also impair the lactate shuttle between astrocytes and neurons, compromising neuronal energy metabolism.

  12. Inhibition of ethylene production by cobaltous ion

    International Nuclear Information System (INIS)

    Lau, O.L; Yang, S.F.

    1976-01-01

    The effect of Co 2+ on ethylene production by mung bean (Phaseolus aureus Roxb.) and by apple tissues was studied. Co 2+ , depending on concentrations applied, effectively inhibited ethylene production by both tissues. It also strongly inhibited the ethylene production induced by IAA, kinetin, IAA plus kinetin, Ca 2+ , kinetin plus Ca 2+ , or Cu 2+ treatments in mung bean hypocotyl segments. While Co 2+ greatly inhibited ethylene production, it had little effect on the respiration of apple tissue, indicating that Co 2+ does not exert its inhibitory effect as a general metabolic inhibitor. Ni 2+ , which belongs to the same group as Co 2+ in the periodic table, also markedly curtailed both the basal and the induced ethylene production by apple and mung bean hypocotyl tissues. In a system in which kinetin and Ca 2+ were applied together, kinetin greatly enhanced Ca 2+ uptake, thus enhancing ethylene production. Co 2+ , however, slightly inhibited the uptake of Ca 2+ but appreciably inhibited ethylene production, either in the presence or in the absence of kinetin. Tracer experiments using apple tissue indicated that Co 2+ strongly inhibited the in vivo conversion of L-[U-- 14 C]methionine to 14 C-ethylene. These data suggested that Co 2+ inhibited ethylene production by inhibiting the conversion of methionine to ethylene, a common step which is required for ethylene formation by higher plants. Co 2+ is known to promote elongation, leaf expansion, and hook opening in excised plant parts in response to applied auxins or cytokinins.Since ethylene is known to inhibit those growth phenomena, it is suggested that Co 2+ exerts its promotive effect, at least in part, by inhibiting ethylene formation

  13. Inhibition of tissue angiotensin converting enzyme. Quantitation by autoradiography

    International Nuclear Information System (INIS)

    Sakaguchi, K.; Chai, S.Y.; Jackson, B.; Johnston, C.I.; Mendelsohn, F.A.

    1988-01-01

    Inhibition of angiotensin converting enzyme (ACE) in serum and tissues of rats was studied after administration of lisinopril, an ACE inhibitor. Tissue ACE was assessed by quantitative in vitro autoradiography using the ACE inhibitor [ 125 I]351A, as a ligand, and serum ACE was measured by a fluorimetric method. Following oral administration of lisinopril (10 mg/kg), serum ACE activity was acutely reduced but recovered gradually over 24 hours. Four hours after lisinopril administration, ACE activity was markedly inhibited in kidney (11% of control level), adrenal (8%), duodenum (8%), and lung (33%; p less than 0.05). In contrast, ACE in testis was little altered by lisinopril (96%). In brain, ACE activity was markedly reduced 4 hours after lisinopril administration in the circumventricular organs, including the subfornical organ (16-22%) and organum vasculosum of the lamina terminalis (7%; p less than 0.05). In other areas of the brain, including the choroid plexus and caudate putamen, ACE activity was unchanged. Twenty-four hours after administration, ACE activity in peripheral tissues and the circumventricular organs of the brain had only partially recovered toward control levels, as it was still below 50% of control activity levels. These results establish that lisinopril has differential effects on inhibiting ACE in different tissues and suggest that the prolonged tissue ACE inhibition after a single oral dose of lisinopril may reflect targets involved in the hypotensive action of ACE inhibitors

  14. 4 Birds 1 Stone to Inhibit 5androstane-3alpha,17beta-diol Conversion to DHT

    Science.gov (United States)

    2016-09-01

    Award Number: W81XWH-15-1-0409 TITLE: 4 Birds 1 Stone to Inhibit 5androstane-3alpha,17beta-diol Conversion to DHT PRINCIPAL INVESTIGATOR...SUBTITLE 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-15-1-04094 Birds 1 Stone to Inhibit 5androstane-3alpha,17beta-diol Conversion to DHT 5c...testicular androgens, testosterone or dihydrotestosterone ( DHT ). Men diagnosed with advanced prostate cancer or failure potentially curative therapy are

  15. Caffeine inhibits gene conversion by displacing Rad51 from ssDNA

    Science.gov (United States)

    Tsabar, Michael; Mason, Jennifer M.; Chan, Yuen-Ling; Bishop, Douglas K.; Haber, James E.

    2015-01-01

    Efficient repair of chromosomal double-strand breaks (DSBs) by homologous recombination relies on the formation of a Rad51 recombinase filament that forms on single-stranded DNA (ssDNA) created at DSB ends. This filament facilitates the search for a homologous donor sequence and promotes strand invasion. Recently caffeine treatment has been shown to prevent gene targeting in mammalian cells by increasing non-productive Rad51 interactions between the DSB and random regions of the genome. Here we show that caffeine treatment prevents gene conversion in yeast, independently of its inhibition of the Mec1ATR/Tel1ATM-dependent DNA damage response or caffeine's inhibition of 5′ to 3′ resection of DSB ends. Caffeine treatment results in a dosage-dependent eviction of Rad51 from ssDNA. Gene conversion is impaired even at low concentrations of caffeine, where there is no discernible dismantling of the Rad51 filament. Loss of the Rad51 filament integrity is independent of Srs2's Rad51 filament dismantling activity or Rad51's ATPase activity and does not depend on non-specific Rad51 binding to undamaged double-stranded DNA. Caffeine treatment had similar effects on irradiated HeLa cells, promoting loss of previously assembled Rad51 foci. We conclude that caffeine treatment can disrupt gene conversion by disrupting Rad51 filaments. PMID:26019181

  16. Oxidative stress accumulates in adipose tissue during aging and inhibits adipogenesis.

    Science.gov (United States)

    Findeisen, Hannes M; Pearson, Kevin J; Gizard, Florence; Zhao, Yue; Qing, Hua; Jones, Karrie L; Cohn, Dianne; Heywood, Elizabeth B; de Cabo, Rafael; Bruemmer, Dennis

    2011-04-14

    Aging constitutes a major independent risk factor for the development of type 2 diabetes and is accompanied by insulin resistance and adipose tissue dysfunction. One of the most important factors implicitly linked to aging and age-related chronic diseases is the accumulation of oxidative stress. However, the effect of increased oxidative stress on adipose tissue biology remains elusive. In this study, we demonstrate that aging in mice results in a loss of fat mass and the accumulation of oxidative stress in adipose tissue. In vitro, increased oxidative stress through glutathione depletion inhibits preadipocyte differentiation. This inhibition of adipogenesis is at least in part the result of reduced cell proliferation and an inhibition of G(1)→S-phase transition during the initial mitotic clonal expansion of the adipocyte differentiation process. While phosphorylation of the retinoblastoma protein (Rb) by cyclin/cdk complexes remains unaffected, oxidative stress decreases the expression of S-phase genes downstream of Rb. This silencing of S phase gene expression by increased oxidative stress is mediated through a transcriptional mechanism involving the inhibition of E2F recruitment and transactivation of its target promoters. Collectively, these data demonstrate a previously unrecognized role of oxidative stress in the regulation of adipogenesis which may contribute to age-associated adipose tissue dysfunction.

  17. [Conversion methods of freshwater snail tissue dry mass and ash free dry mass].

    Science.gov (United States)

    Zhao, Wei-Hua; Wang, Hai-Jun; Wang, Hong-Zhu; Liu, Xue-Qin

    2009-06-01

    Mollusk biomass is usually expressed as wet mass with shell, but this expression fails to represent real biomass due to the high calcium carbonate content in shells. Tissue dry mass and ash free dry mass are relatively close to real biomass. However, the determination process of these two parameters is very complicated, and thus, it is necessary to establish simple and practical conversion methods for these two parameters. A total of six taxa of freshwater snails (Bellamya sp., Alocinma longicornis, Parafossarulus striatulus, Parafossarulus eximius, Semisulcospira cancellata, and Radix sp.) common in the Yangtze Basin were selected to explore the relations of their five shell dimension parameters, dry and wet mass with shells with their tissue dry mass and ash free dry mass. The regressions of the tissue dry mass and ash free dry mass with the five shell dimension parameters were all exponential (y = ax(b)). Among them, shell width and shell length were more precise (the average percentage error between observed and predicted value being 22.0% and 22.5%, respectively) than the other three parameters in the conversion of dry mass. Wet mass with shell could be directly converted to tissue dry mass and ash free dry mass, with an average percentage error of 21.7%. According to the essence of definition and the errors of conversion, ash free dry mass would be the optimum parameter to express snail biomass.

  18. Controlled cellular energy conversion in brown adipose tissue thermogenesis

    Science.gov (United States)

    Horowitz, J. M.; Plant, R. E.

    1978-01-01

    Brown adipose tissue serves as a model system for nonshivering thermogenesis (NST) since a) it has as a primary physiological function the conversion of chemical energy to heat; and b) preliminary data from other tissues involved in NST (e.g., muscle) indicate that parallel mechanisms may be involved. Now that biochemical pathways have been proposed for brown fat thermogenesis, cellular models consistent with a thermodynamic representation can be formulated. Stated concisely, the thermogenic mechanism in a brown fat cell can be considered as an energy converter involving a sequence of cellular events controlled by signals over the autonomic nervous system. A thermodynamic description for NST is developed in terms of a nonisothermal system under steady-state conditions using network thermodynamics. Pathways simulated include mitochondrial ATP synthesis, a Na+/K+ membrane pump, and ionic diffusion through the adipocyte membrane.

  19. Vaginal Lactobacillus Inhibits HIV-1 Replication in Human Tissues Ex Vivo

    Directory of Open Access Journals (Sweden)

    Rogers A. Ñahui Palomino

    2017-05-01

    Full Text Available Lactobacillus species, which dominate vaginal microbiota of healthy reproductive-age women, lower the risks of sexually transmitted infections, including the risk of human immunodeficiency virus (HIV acquisition. The exact mechanisms of this protection remain to be understood. Here, we investigated these mechanisms in the context of human cervico-vaginal and lymphoid tissues ex vivo. We found that all six Lactobacillus strains tested in these systems significantly suppressed HIV type-1 (HIV-1 infection. We identified at least three factors that mediated this suppression: (i Acidification of the medium. The pH of the undiluted medium conditioned by lactobacilli was between 3.8 and 4.6. Acidification of the culture medium with hydrochloric acid (HCl to this pH in control experiments was sufficient to abrogate HIV-1 replication. However, the pH of the Lactobacillus-conditioned medium (CM diluted fivefold, which reached ∼6.9, was also suppressive for HIV-1 infection, while in control experiments HIV-1 infection was not abrogated when the pH of the medium was brought to 6.9 through the use of HCl. This suggested the existence of other factors responsible for HIV-1 inhibition by lactobacilli. (ii Lactic acid. There was a correlation between the concentration of lactic acid in the Lactobacillus-CM and its ability to suppress HIV-1 infection in human tissues ex vivo. Addition of lactic acid isomers D and L to tissue culture medium at the concentration that corresponded to their amount released by lactobacilli resulted in HIV-1 inhibition. Isomer L was produced in higher quantities than isomer D and was mostly responsible for HIV-1 inhibition. These results indicate that lactic acid, in particular its L-isomer, inhibits HIV-1 independently of lowering of the pH. (iii Virucidal effect. Incubation of HIV-1 in Lactobacillus-CM significantly suppressed viral infectivity for human tissues ex vivo. Finally, lactobacilli adsorb HIV-1, serving as a sink

  20. Inhibition of myostatin in mice improves insulin sensitivity via irisin-mediated cross talk between muscle and adipose tissues.

    Science.gov (United States)

    Dong, Jiangling; Dong, Yanjun; Dong, Yanlan; Chen, Fang; Mitch, William E; Zhang, Liping

    2016-03-01

    In mice, a high-fat diet (HFD) induces obesity, insulin resistance and myostatin production. We tested whether inhibition of myostatin in mice can reverse these HFD-induced abnormalities. C57BL/6 mice were fed a HFD for 16 weeks including the final 4 weeks some mice were treated with an anti-myostatin peptibody. Body composition, the respiratory exchange ratio plus glucose and insulin tolerance tests were examined. Myostatin knock down in C2C12 cells was performed using small hairpin RNA lentivirus. Adipose tissue-derived stem cells were cultured to measure their responses to conditioned media from C2C12 cells lacking myostatin, or to recombinant myostatin or irisin. Isolated peritoneal macrophages were treated with myostatin or irisin to determine whether myostatin or irisin induce inflammatory mechanisms. In HFD-fed mice, peptibody treatment stimulated muscle growth and improved insulin resistance. The improved glucose and insulin tolerances were confirmed when we found increased muscle expression of p-Akt and the glucose transporter, Glut4. In HFD-fed mice, the peptibody suppressed macrophage infiltration and the expression of proinflammatory cytokines in both the muscle and adipocytes. Inhibition of myostatin caused the conversion of white (WAT) to brown adipose tissue, whereas stimulating fatty acid oxidation and increasing energy expenditure. The related mechanism is a muscle-to-fat cross talk mediated by irisin. Myostatin inhibition increased peroxisome proliferator-activated receptor gamma, coactivator 1α expression and irisin production in the muscle. Irisin then stimulated WAT browning. Irisin also suppresses inflammation and stimulates macrophage polarization from M1 to M2 types. These results uncover a metabolic pathway from an increase in myostatin that suppresses irisin leading to the activation of inflammatory cytokines and insulin resistance. Thus, myostatin is a potential therapeutic target to treat insulin resistance of type II diabetes as well

  1. The inhibition of prions through blocking prion conversion by permanently charged branched polyamines of low cytotoxicity.

    Science.gov (United States)

    Lim, Yong-beom; Mays, Charles E; Kim, Younghwan; Titlow, William B; Ryou, Chongsuk

    2010-03-01

    Branched polyamines are effective in inhibiting prions in a cationic surface charge density dependent manner. However, toxicity associated with branched polyamines, in general, often hampers the successful application of the compounds to treat prion diseases. Here, we report that constitutively maintained cationic properties in branched polyamines reduced the intrinsic toxicity of the compounds while retaining the anti-prion activities. In prion-infected neuroblastoma cells, quaternization of amines in polyethyleneimine (PEI) and polyamidoamine (PAMAM) dendrimers markedly increased the nontoxic concentration ranges of the compounds and still supported, albeit reduced, an appreciable level of anti-prion activity in clearing prions from the infected cells. Furthermore, quaternized PEI was able to degrade prions at acidic pH conditions and inhibit the in vitro prion propagation facilitated by conversion of the normal prion protein isoform to its misfolded counterpart, although such activities were decreased by quaternization. Quaternized PAMAM was least effective in degrading prions but efficiently inhibited prion conversion with the same efficacy as unmodified PAMAM. Our results suggest that quaternization represents an effective strategy for developing nontoxic branched polyamines with potent anti-prion activity. This study highlights the importance of polyamine structural control for developing polyamine-based anti-prion agents and understanding of an action mechanism of quaternized branched polyamines. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  2. ROCK1-directed basement membrane positioning coordinates epithelial tissue polarity.

    Science.gov (United States)

    Daley, William P; Gervais, Elise M; Centanni, Samuel W; Gulfo, Kathryn M; Nelson, Deirdre A; Larsen, Melinda

    2012-01-01

    The basement membrane is crucial for epithelial tissue organization and function. However, the mechanisms by which basement membrane is restricted to the basal periphery of epithelial tissues and the basement membrane-mediated signals that regulate coordinated tissue organization are not well defined. Here, we report that Rho kinase (ROCK) controls coordinated tissue organization by restricting basement membrane to the epithelial basal periphery in developing mouse submandibular salivary glands, and that ROCK inhibition results in accumulation of ectopic basement membrane throughout the epithelial compartment. ROCK-regulated restriction of PAR-1b (MARK2) localization in the outer basal epithelial cell layer is required for basement membrane positioning at the tissue periphery. PAR-1b is specifically required for basement membrane deposition, as inhibition of PAR-1b kinase activity prevents basement membrane deposition and disrupts overall tissue organization, and suppression of PAR-1b together with ROCK inhibition prevents interior accumulations of basement membrane. Conversely, ectopic overexpression of wild-type PAR-1b results in ectopic interior basement membrane deposition. Significantly, culture of salivary epithelial cells on exogenous basement membrane rescues epithelial organization in the presence of ROCK1 or PAR-1b inhibition, and this basement membrane-mediated rescue requires functional integrin β1 to maintain epithelial cell-cell adhesions. Taken together, these studies indicate that ROCK1/PAR-1b-dependent regulation of basement membrane placement is required for the coordination of tissue polarity and the elaboration of tissue structure in the developing submandibular salivary gland.

  3. Inhibition of Notch signaling by Dll4-Fc promotes reperfusion of acutely ischemic tissues

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ren [Department of Pathology, University of Southern California, Los Angeles (United States); Trindade, Alexandre [Centro Interdisciplinar de Investigacao em Sanidade Animal (CIISA), Lisbon Technical University, Lisbon (Portugal); Instituto Gulbenkian de Ciencia, Oeiras (Portugal); Sun, Zhanfeng [Department of Vascular Surgery, 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang (China); Kumar, Ram; Weaver, Fred A. [Department of Surgery, University of Southern California, Los Angeles (United States); Krasnoperov, Valery; Naga, Kranthi [Vasgene Therapeutics, Los Angeles, CA (United States); Duarte, Antonio [Centro Interdisciplinar de Investigacao em Sanidade Animal (CIISA), Lisbon Technical University, Lisbon (Portugal); Instituto Gulbenkian de Ciencia, Oeiras (Portugal); Gill, Parkash S., E-mail: parkashg@usc.edu [Department of Pathology, University of Southern California, Los Angeles (United States)

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer Low dose Dll4-Fc increases vascular proliferation and overall perfusion. Black-Right-Pointing-Pointer Low dose Dll4-Fc helps vascular injury recovery in hindlimb ischemia model. Black-Right-Pointing-Pointer Low dose Dll4-Fc helps vascular injury recovery in skin flap model. Black-Right-Pointing-Pointer Dll4 heterozygous deletion promotes vascular injury recovery. Black-Right-Pointing-Pointer Dll4 overexpression delays vascular injury recovery. -- Abstract: Notch pathway regulates vessel development and maturation. Dll4, a high-affinity ligand for Notch, is expressed predominantly in the arterial endothelium and is induced by hypoxia among other factors. Inhibition of Dll4 has paradoxical effects of reducing the maturation and perfusion in newly forming vessels while increasing the density of vessels. We hypothesized that partial and/or intermittent inhibition of Dll4 may lead to increased vascular response and still allow vascular maturation to occur. Thus tissue perfusion can be restored rapidly, allowing quicker recovery from ischemia or tissue injury. Our studies in two different models (hindlimb ischemia and skin flap) show that inhibition of Dll4 at low dose allows faster recovery from vascular and tissue injury. This opens a new possibility for Dll4 blockade's therapeutic application in promoting recovery from vascular injury and restoring blood supply to ischemic tissues.

  4. Transient inhibition of connective tissue infiltration and collagen deposition into porous poly(lactic-co-glycolic acid) discs.

    Science.gov (United States)

    Love, Ryan J; Jones, Kim S

    2013-12-01

    Connective tissue rapidly proliferates on and around biomaterials implanted in vivo, which impairs the function of the engineered tissues, biosensors, and devices. Glucocorticoids can be utilized to suppress tissue ingrowth, but can only be used for a limited time because they nonselectively arrest cell proliferation in the local environment. The present study examined use of a prolyl-4-hydroxylase inhibitor, 1,4-dihydrophenonthrolin-4-one-3-carboxylic acid (1,4-DPCA), to suppress connective tissue ingrowth in porous PLGA discs implanted in the peritoneal cavity for 28 days. The prolyl-4-hydroxylase inhibitor was found to be effective at inhibiting collagen deposition within and on the outer surface of the disc, and also limited connective tissue ingrowth, but not to the extent of glucocorticoid inhibition. Finally, it was discovered that 1,4-DPCA suppressed Scavenger Receptor A expression on a macrophage-like cell culture, which may account for the drug's ability to limit connective tissue ingrowth in vivo. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.

  5. Monte Carlo Method in the calculate of conversion coefficients for dose in children's organs and tissues subjected to dentistric radiography

    International Nuclear Information System (INIS)

    Loureiro, E.C.M.; Khoury, H.; Lima, F.R.A.

    1998-01-01

    The increasing utilization of oral X-rays, specially in youngsters and children, prompts the assessment of equivalent doses in their organs and tissues. With this purpose, Monte Carlo code was adopted to simulate an X-ray source irradiating phantoms of the MIRD-5 type with different ages (10, 15 and 40 years old) to calculate the conversion coefficients which transform the exposure at skin to equivalent doses at several organs and tissues of interest. In order to check the computer program, simulations were performed for adult patients using the original code (ADAM,FOR developed by GSF Germany) and the adapted program (MCDRO,PAS). Good agreement between results obtained by both programs was observed. Applications to incisive, canine and molar teeth were simulated. The conversion factors were calculated for the following organs and tissues: thyroid, active bone marrow (head and whole body), bone (facial skeleton, cranium and whole body), skin (head and whole body) and crystalline. Based on the obtained results, it follows that the younger the patient and the langer the field area, the higher the doses in assessed organs and tissues

  6. Gradual conversion of cellular stress patterns into pre-stressed matrix architecture during in vitro tissue growth.

    Science.gov (United States)

    Bidan, Cécile M; Kollmannsberger, Philip; Gering, Vanessa; Ehrig, Sebastian; Joly, Pascal; Petersen, Ansgar; Vogel, Viola; Fratzl, Peter; Dunlop, John W C

    2016-05-01

    The complex arrangement of the extracellular matrix (ECM) produced by cells during tissue growth, healing and remodelling is fundamental to tissue function. In connective tissues, it is still unclear how both cells and the ECM become and remain organized over length scales much larger than the distance between neighbouring cells. While cytoskeletal forces are essential for assembly and organization of the early ECM, how these processes lead to a highly organized ECM in tissues such as osteoid is not clear. To clarify the role of cellular tension for the development of these ordered fibril architectures, we used an in vitro model system, where pre-osteoblastic cells produced ECM-rich tissue inside channels with millimetre-sized triangular cross sections in ceramic scaffolds. Our results suggest a mechanical handshake between actively contracting cells and ECM fibrils: the build-up of a long-range organization of cells and the ECM enables a gradual conversion of cell-generated tension to pre-straining the ECM fibrils, which reduces the work cells have to generate to keep mature tissue under tension. © 2016 The Author(s).

  7. Contrasting effects of exercise and NOS inhibition on tissue-specific fatty acid and glucose uptake in mice.

    Science.gov (United States)

    Rottman, Jeffrey N; Bracy, Deanna; Malabanan, Carlo; Yue, Zou; Clanton, Jeff; Wasserman, David H

    2002-07-01

    Isotopic techniques were used to test the hypothesis that exercise and nitric oxide synthase (NOS) inhibition have distinct effects on tissue-specific fatty acid and glucose uptakes in a conscious, chronically catheterized mouse model. Uptakes were measured using the radioactive tracers (125)I-labeled beta-methyl-p-iodophenylpentadecanoic acid (BMIPP) and deoxy-[2-(3)H]glucose (DG) during treadmill exercise with and without inhibition of NOS. [(125)I]BMIPP uptake at rest differed substantially among tissues with the highest levels in heart. With exercise, [(125)I]BMIPP uptake increased in both heart and skeletal muscles. In sedentary mice, NOS inhibition induced by nitro-L-arginine methyl ester (L-NAME) feeding increased heart and soleus [(125)I]BMIPP uptake. In contrast, exercise, but not L-NAME feeding, resulted in increased heart and skeletal muscle [2-(3)H]DG uptake. Significant interactions were not observed in the effects of combined exercise and L-NAME feeding on [(125)I]BMIPP and [2-(3)H]DG uptakes. In the conscious mouse, exercise and NOS inhibition produce distinct patterns of tissue-specific fatty acid and glucose uptake; NOS is not required for important components of exercise-associated metabolic signaling, or other mechanisms compensate for the absence of this regulatory mechanism.

  8. p27{sup Kip1} inhibits tissue factor expression

    Energy Technology Data Exchange (ETDEWEB)

    Breitenstein, Alexander, E-mail: alexander.breitenstein@usz.ch [Cardiology, University Heart Center, University Hospital Zurich (Switzerland); Cardiovascular Research, Physiology Institute, University of Zurich (Switzerland); Center for Integrative Human Physiology (ZHIP), University of Zurich (Switzerland); Akhmedov, Alexander; Camici, Giovanni G.; Lüscher, Thomas F.; Tanner, Felix C. [Cardiology, University Heart Center, University Hospital Zurich (Switzerland); Cardiovascular Research, Physiology Institute, University of Zurich (Switzerland); Center for Integrative Human Physiology (ZHIP), University of Zurich (Switzerland)

    2013-10-04

    Highlights: •p27{sup Kip1}regulates the expression of tissue factor at the transcriptional level. •This inhibitory effect of p27{sup Kip1} is independently of its cell regulatory action. •The current study provides new insights into a pleiotrophic function of p27{sup Kip1}. -- Abstract: Background: The cyclin-dependent kinase inhibitor (CDKI) p27{sup Kip1} regulates cell proliferation and thus inhibits atherosclerosis and vascular remodeling. Expression of tissue factor (TF), the key initator of the coagulation cascade, is associated with atherosclerosis. Yet, it has not been studied whether p27{sup Kip1} influences the expression of TF. Methods and results: p27{sup Kip1} overexpression in human aortic endothelial cells was achieved by adenoviral transfection. Cells were rendered quiescent for 24 h in 0.5% fetal-calf serum. After stimulation with TNF-α (5 ng/ml), TF protein expression and activity was significantly reduced (n = 4; P < 0.001) in cells transfected with p27{sup Kip1}. In line with this, p27{sup Kip1} overexpression reduced cytokine-induced TF mRNA expression (n = 4; P < 0.01) and TF promotor activity (n = 4; P < 0.05). In contrast, activation of the MAP kinases p38, ERK and JNK was not affected by p27{sup Kip1} overexpression. Conclusion: This in vitro study suggests that p27{sup Kip1} inhibits TF expression at the transcriptional level. These data indicate an interaction between p27{sup Kip1} and TF in important pathological alterations such as atherosclerosis and vascular remodeling.

  9. Interleukin-6 inhibits apoptosis of exocrine gland tissues under inflammatory conditions.

    Science.gov (United States)

    Zhou, Jing; Jin, Jun-O; Patel, Ekta S; Yu, Qing

    2015-12-01

    Interleukin (IL)-6 is a multi-functional cytokine that can either promote or suppress tissue inflammation depending on the specific disease context. IL-6 is elevated in the exocrine glands and serum of patients with Sjögren's syndrome (SS), but the specific role of IL-6 in the pathogenesis of this disease has not been defined. In this study, we showed that IL-6 expression levels were increased with age in C56BL/6.NOD-Aec1Aec2 mice, a primary SS model, and higher than the control C57BL/6 mice. To assess the role of IL-6 during the immunological phase of SS development, a neutralizing anti-IL-6 antibody was administered into 16 week-old female C56BL/6.NOD-Aec1Aec2 mice, 3 times weekly for a consecutive 8 weeks. Neutralization of endogenous IL-6 throughout the immunological phase of SS development led to increased apoptosis, caspase-3 activation, leukocytic infiltration, and IFN-γ- and TNF-α production in the salivary gland. To further determine the effect of IL-6 on the apoptosis of exocrine gland cells, recombinant human IL-6 or the neutralizing anti-IL-6 antibody was injected into female C57BL/6 mice that received concurrent injection of anti-CD3 antibody to induce the apoptosis of exocrine gland tissues. Neutralization of IL-6 enhanced, whereas administration of IL-6 inhibited apoptosis and caspase-3 activation in salivary and lacrimal glands in this model. The apoptosis-suppressing effect of IL-6 was associated with up-regulation of Bcl-xL and Mcl-1 in both glands. Moreover, IL-6 treatment induced activation of STAT3 and up-regulated Bcl-xL and Mcl-1 gene expression in a human salivary gland epithelial cell line. In conclusion, IL-6 inhibits the apoptosis of exocrine gland tissues and exerts a tissue-protective effect under inflammatory conditions including SS. These findings suggest the possibility of using this property of IL-6 to preserve exocrine gland tissue integrity and function under autoimmune and inflammatory conditions. Copyright © 2015 Elsevier

  10. Kinetics of radiation-induced apoptosis in neonatal urogenital tissues with and without protein synthesis inhibition

    International Nuclear Information System (INIS)

    Gobe, G.C.; Harmon, B.; Schoch, E.; Allan, D.J.

    1996-01-01

    The difference in incidence of radiation-induced apoptosis between two neonatal urogenital tissues, kidney and testis, was analysed over a 24h period. Concurrent administration of cycloheximide (10mg/kg body weight), a protein synthesis inhibitor, with radiation treatment was used to determine whether new protein synthesis had a role in induction of apoptosis in this in vivo model. Many chemotherapeutic drugs act via protein synthesis inhibition, and we believe that the results of this latter analysis may provide information for the planning of concurrent radio and chemotherapy. Apoptosis was quantified using morphological parameters, and verified by DNA gel electrophoresis for the typical banding pattern, and by electron microscopy. The proliferative index in tissues was studied, using [6- 3 H]-thymidine uptake ( 1h prior to euthanasia and collection of tissues) and autoradiography as indicators of cell proliferation (S-phase). Tissue was collected 2, 4, 6, 8, and 24h after radiation treatment. Expression of one of the apoptosis-associated genes, Bcl-2 (an apoptosis inhibitor/cell survival gene), was studied using immunohistochemistry. Apoptosis peaked at 4h in the testis and 6h in the kidney, emphasising the necessity of knowing tissue differences in radiation response if comparing changes at a particular time. A higher proportion (almost five fold) of the apoptotic cells died in S-phase in the kidney than the testis, over the 24h. Protein synthesis inhibition completely negated induction of apoptosis in both tissues. Necrosis was not identified at any time. Cycloheximide treatment greatly diminished Bcl-2 expression. The differences in response of the two tissues to irradiation relates to their innate cell (genetic) controls, which may be determined by their state of differentiation at time of treatment, or the tissue type. This in vivo study also suggests the model may be useful for analysis of other cancer therapies for example polychemotherapies or chemo

  11. Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis II. Quantification of inhibition and suitability of membrane reactors

    DEFF Research Database (Denmark)

    Andric, Pavle; Meyer, Anne S.; Jensen, Peter Arendt

    2010-01-01

    conversion are required for alleviation of glucose product inhibition. Supported by numerous calculations this review assesses the quantitative aspects of glucose product inhibition on enzyme-catalyzed cellulose degradation rates. The significance of glucose product inhibition on dimensioning of different......Product inhibition of cellulolytic enzymes affects the efficiency of the biocatalytic conversion of lignocellulosic biomass to ethanol and other valuable products. New strategies that focus on reactor designs encompassing product removal, notably glucose removal, during enzymatic cellulose...... reactor features, including system set-up, dilution rate, glucose output profile, and the problem of cellobiose are examined to illustrate the quantitative significance of the glucose product inhibition and the total glucose concentration on the cellulolytic conversion rate. Comprehensive overviews...

  12. Inhibition of the acetyl lysine-binding pocket of bromodomain and extraterminal domain proteins interferes with adipogenesis

    International Nuclear Information System (INIS)

    Goupille, Olivier; Penglong, Tipparat; Kadri, Zahra; Granger-Locatelli, Marine; Fucharoen, Suthat; Maouche-Chrétien, Leila; Prost, Stéphane; Leboulch, Philippe; Chrétien, Stany

    2016-01-01

    The bromodomain and extraterminal (BET) domain family proteins are epigenetic modulators involved in the reading of acetylated lysine residues. The first BET protein inhibitor to be identified, (+)-JQ1, a thienotriazolo-1, 4-diazapine, binds selectively to the acetyl lysine-binding pocket of BET proteins. We evaluated the impact on adipogenesis of this druggable targeting of chromatin epigenetic readers, by investigating the physiological consequences of epigenetic modifications through targeting proteins binding to chromatin. JQ1 significantly inhibited the differentiation of 3T3-L1 preadipocytes into white and brown adipocytes by down-regulating the expression of genes involved in adipogenesis, particularly those encoding the peroxisome proliferator-activated receptor (PPAR-γ), the CCAAT/enhancer-binding protein (C/EBPα) and, STAT5A and B. The expression of a constitutively activated STAT5B mutant did not prevent inhibition by JQ1. Thus, the association of BET/STAT5 is required for adipogenesis but STAT5 transcription activity is not the only target of JQ1. Treatment with JQ1 did not lead to the conversion of white adipose tissue into brown adipose tissue (BAT). BET protein inhibition thus interferes with generation of adipose tissue from progenitors, confirming the importance of the connections between epigenetic mechanisms and specific adipogenic transcription factors. - Highlights: • JQ1 prevented the differentiation of 3T3-L1 preadipocytes into white adipocytes. • JQ1 affected clonal cell expansion and abolished lipid accumulation. • JQ1 prevented the differentiation of 3T3-L1 preadipocytes into brown adipocytes. • JQ1 treatment did not lead to the conversion of white adipose tissue into brown adipose tissue. • JQ1 decreased STAT5 expression, but STAT5B"c"a expression did not restore adipogenesis.

  13. Inhibition of the acetyl lysine-binding pocket of bromodomain and extraterminal domain proteins interferes with adipogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Goupille, Olivier [CEA, Institute of Emerging Diseases and Innovative Therapies (IMETI), Fontenay-aux-Roses and Université Paris-Saclay, UMR-E 007 (France); Penglong, Tipparat [CEA, Institute of Emerging Diseases and Innovative Therapies (IMETI), Fontenay-aux-Roses and Université Paris-Saclay, UMR-E 007 (France); Thalassemia Research Center, Mahidol University (Thailand); Kadri, Zahra; Granger-Locatelli, Marine [CEA, Institute of Emerging Diseases and Innovative Therapies (IMETI), Fontenay-aux-Roses and Université Paris-Saclay, UMR-E 007 (France); Fucharoen, Suthat [Thalassemia Research Center, Mahidol University (Thailand); Maouche-Chrétien, Leila [CEA, Institute of Emerging Diseases and Innovative Therapies (IMETI), Fontenay-aux-Roses and Université Paris-Saclay, UMR-E 007 (France); INSERM, Paris (France); Prost, Stéphane [CEA, Institute of Emerging Diseases and Innovative Therapies (IMETI), Fontenay-aux-Roses and Université Paris-Saclay, UMR-E 007 (France); Leboulch, Philippe [CEA, Institute of Emerging Diseases and Innovative Therapies (IMETI), Fontenay-aux-Roses and Université Paris-Saclay, UMR-E 007 (France); Thalassemia Research Center, Mahidol University (Thailand); Chrétien, Stany, E-mail: stany.chretien@cea.fr [CEA, Institute of Emerging Diseases and Innovative Therapies (IMETI), Fontenay-aux-Roses and Université Paris-Saclay, UMR-E 007 (France); INSERM, Paris (France)

    2016-04-15

    The bromodomain and extraterminal (BET) domain family proteins are epigenetic modulators involved in the reading of acetylated lysine residues. The first BET protein inhibitor to be identified, (+)-JQ1, a thienotriazolo-1, 4-diazapine, binds selectively to the acetyl lysine-binding pocket of BET proteins. We evaluated the impact on adipogenesis of this druggable targeting of chromatin epigenetic readers, by investigating the physiological consequences of epigenetic modifications through targeting proteins binding to chromatin. JQ1 significantly inhibited the differentiation of 3T3-L1 preadipocytes into white and brown adipocytes by down-regulating the expression of genes involved in adipogenesis, particularly those encoding the peroxisome proliferator-activated receptor (PPAR-γ), the CCAAT/enhancer-binding protein (C/EBPα) and, STAT5A and B. The expression of a constitutively activated STAT5B mutant did not prevent inhibition by JQ1. Thus, the association of BET/STAT5 is required for adipogenesis but STAT5 transcription activity is not the only target of JQ1. Treatment with JQ1 did not lead to the conversion of white adipose tissue into brown adipose tissue (BAT). BET protein inhibition thus interferes with generation of adipose tissue from progenitors, confirming the importance of the connections between epigenetic mechanisms and specific adipogenic transcription factors. - Highlights: • JQ1 prevented the differentiation of 3T3-L1 preadipocytes into white adipocytes. • JQ1 affected clonal cell expansion and abolished lipid accumulation. • JQ1 prevented the differentiation of 3T3-L1 preadipocytes into brown adipocytes. • JQ1 treatment did not lead to the conversion of white adipose tissue into brown adipose tissue. • JQ1 decreased STAT5 expression, but STAT5B{sup ca} expression did not restore adipogenesis.

  14. Tissue transglutaminase inhibits the TRPV5-dependent calcium transport in an N-glycosylation-dependent manner

    DEFF Research Database (Denmark)

    Boros, Sandor; Xi, Qi; Dimke, Henrik Anthony

    2011-01-01

    Tissue transglutaminase (tTG) is a multifunctional Ca(2+)-dependent enzyme, catalyzing protein crosslinking. The transient receptor potential vanilloid (TRPV) family of cation channels was recently shown to contribute to the regulation of TG activities in keratinocytes and hence skin barrier form......, these observations imply that tTG is a novel extracellular enzyme inhibiting the activity of TRPV5. The inhibition of TRPV5 occurs in an N-glycosylation-dependent manner, signifying a common final pathway by which distinct extracellular factors regulate channel activity....

  15. Kinetics of radiation-induced apoptosis in neonatal urogenital tissues with and without protein synthesis inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Gobe, G.C.; Harmon, B.; Schoch, E.; Allan, D.J. [Queensland Univ., St. Lucia, QLD (Australia). Dept. of Chemistry

    1996-12-31

    The difference in incidence of radiation-induced apoptosis between two neonatal urogenital tissues, kidney and testis, was analysed over a 24h period. Concurrent administration of cycloheximide (10mg/kg body weight), a protein synthesis inhibitor, with radiation treatment was used to determine whether new protein synthesis had a role in induction of apoptosis in this in vivo model. Many chemotherapeutic drugs act via protein synthesis inhibition, and we believe that the results of this latter analysis may provide information for the planning of concurrent radio and chemotherapy. Apoptosis was quantified using morphological parameters, and verified by DNA gel electrophoresis for the typical banding pattern, and by electron microscopy. The proliferative index in tissues was studied, using [6-{sup 3}H]-thymidine uptake ( 1h prior to euthanasia and collection of tissues) and autoradiography as indicators of cell proliferation (S-phase). Tissue was collected 2, 4, 6, 8, and 24h after radiation treatment. Expression of one of the apoptosis-associated genes, Bcl-2 (an apoptosis inhibitor/cell survival gene), was studied using immunohistochemistry. Apoptosis peaked at 4h in the testis and 6h in the kidney, emphasising the necessity of knowing tissue differences in radiation response if comparing changes at a particular time. A higher proportion (almost five fold) of the apoptotic cells died in S-phase in the kidney than the testis, over the 24h. Protein synthesis inhibition completely negated induction of apoptosis in both tissues. Necrosis was not identified at any time. Cycloheximide treatment greatly diminished Bcl-2 expression. The differences in response of the two tissues to irradiation relates to their innate cell (genetic) controls, which may be determined by their state of differentiation at time of treatment, or the tissue type. This in vivo study also suggests the model may be useful for analysis of other cancer therapies for example polychemotherapies or chemo

  16. Inhibition of proliferative activity in tissue culture in vivo of esophagus and stomach tumour cells under preoperative irradiation

    International Nuclear Information System (INIS)

    Zinchenko, V.A.; Okulov, L.V.; Gol'dshmid, B.Ya.

    1988-01-01

    Inhibition of proliferative activity of tumor cells as a result of radiation effect. Tumor tissue taken from patiets with preoperative tumor irradiation by 30 Gy cumulative dose (5 Gy per a session) and from patients whose tumors were not subjected to irradiation (control) was used. The tumor tissue was cultivated in the diffusion chamber and then implanted to the abdominal cavity of the non-inbred male rats. On preparations in the growth area pathomorphological changes were evaluated, the share of mitotically dividing and DNA-synthesizing cells was determined. The absence of growth area around the explant, obvious reduction of mitotic activity and DNA-synthesizing function of cells in preparations of irradiated tumors in 88 % of cases testify to the inhibition of the stomach cardial section and esophagus tumor tissue repopulation after radiation effect. The investigation results confirm the advisability of preoperative irradiation of patients with tumors of the given localization

  17. SA-4-1BBL costimulation inhibits conversion of conventional CD4+ T cells into CD4+ FoxP3+ T regulatory cells by production of IFN-γ.

    Directory of Open Access Journals (Sweden)

    Shravan Madireddi

    Full Text Available Tumors convert conventional CD4(+ T cells into induced CD4(+CD25(+FoxP3(+ T regulatory (iTreg cells that serve as an effective means of immune evasion. Therefore, the blockade of conventional CD4(+ T cell conversion into iTreg cells represents an attractive target for improving the efficacy of various immunotherapeutic approaches. Using a novel form of 4-1BBL molecule, SA-4-1BBL, we previously demonstrated that costimulation via 4-1BB receptor renders both CD4(+and CD8(+ T effector (Teff cells refractory to inhibition by Treg cells and increased intratumoral Teff/Treg cell ratio that correlated with therapeutic efficacy in various preclinical tumor models. Building on these studies, we herein show for the first time, to our knowledge, that signaling through 4-1BB inhibits antigen- and TGF-β-driven conversion of naïve CD4(+FoxP3(- T cells into iTreg cells via stimulation of IFN-γ production by CD4(+FoxP3(- T cells. Importantly, treatment with SA-4-1BBL blocked the conversion of CD4(+FoxP3(- T cells into Treg cells by EG.7 tumors. Taken together with our previous studies, these results show that 4-1BB signaling negatively modulate Treg cells by two distinct mechanisms: i inhibiting the conversion of CD4(+FoxP3(- T cells into iTreg cells and ii endowing Teff cells refractory to inhibition by Treg cells. Given the dominant role of Treg cells in tumor immune evasion mechanisms, 4-1BB signaling represents an attractive target for favorably tipping the Teff:Treg balance toward Teff cells with important implications for cancer immunotherapy.

  18. Initial implementation of the conversion from the energy-subtracted CT number to electron density in tissue inhomogeneity corrections: An anthropomorphic phantom study of radiotherapy treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Tsukihara, Masayoshi [Division of Radiological Technology, Graduate School of Health Sciences, Niigata University, Niigata 951-8518 (Japan); Noto, Yoshiyuki [Department of Radiology, Niigata University Medical and Dental Hospital, Niigata 951-8520 (Japan); Sasamoto, Ryuta; Hayakawa, Takahide; Saito, Masatoshi, E-mail: masaito@clg.niigata-u.ac.jp [Department of Radiological Technology, School of Health Sciences, Faculty of Medicine, Niigata University, Niigata 951-8518 (Japan)

    2015-03-15

    Purpose: To achieve accurate tissue inhomogeneity corrections in radiotherapy treatment planning, the authors had previously proposed a novel conversion of the energy-subtracted computed tomography (CT) number to an electron density (ΔHU–ρ{sub e} conversion), which provides a single linear relationship between ΔHU and ρ{sub e} over a wide range of ρ{sub e}. The purpose of this study is to present an initial implementation of the ΔHU–ρ{sub e} conversion method for a treatment planning system (TPS). In this paper, two example radiotherapy plans are used to evaluate the reliability of dose calculations in the ΔHU–ρ{sub e} conversion method. Methods: CT images were acquired using a clinical dual-source CT (DSCT) scanner operated in the dual-energy mode with two tube potential pairs and an additional tin (Sn) filter for the high-kV tube (80–140 kV/Sn and 100–140 kV/Sn). Single-energy CT using the same DSCT scanner was also performed at 120 kV to compare the ΔHU–ρ{sub e} conversion method with a conventional conversion from a CT number to ρ{sub e} (Hounsfield units, HU–ρ{sub e} conversion). Lookup tables for ρ{sub e} calibration were obtained from the CT image acquisitions for tissue substitutes in an electron density phantom (EDP). To investigate the beam-hardening effect on dosimetric uncertainties, two EDPs with different sizes (a body EDP and a head EDP) were used for the ρ{sub e} calibration. Each acquired lookup table was applied to two radiotherapy plans designed using the XiO TPS with the superposition algorithm for an anthropomorphic phantom. The first radiotherapy plan was for an oral cavity tumor and the second was for a lung tumor. Results: In both treatment plans, the performance of the ΔHU–ρ{sub e} conversion was superior to that of the conventional HU–ρ{sub e} conversion in terms of the reliability of dose calculations. Especially, for the oral tumor plan, which dealt with dentition and bony structures, treatment

  19. Dexmedetomidine Inhibits Inflammatory Reaction in Lung Tissues of Septic Rats by Suppressing TLR4/NF-κB Pathway

    Directory of Open Access Journals (Sweden)

    Yuqing Wu

    2013-01-01

    and 20 μg/kg significantly decreased mortality and pulmonary inflammation of septic rats, as well as suppressed CLP-induced elevation of TNF-α and IL-6 and inhibited TLR4/MyD88 expression and NF-κB activation. These results suggest that dexmedetomidine may decrease mortality and inhibit inflammatory reaction in lung tissues of septic rats by suppressing TLR4/MyD88/NF-κB pathway.

  20. EGCG Inhibited Lipofuscin Formation Based on Intercepting Amyloidogenic β-Sheet-Rich Structure Conversion.

    Directory of Open Access Journals (Sweden)

    Shuxian Cai

    Full Text Available Lipofuscin (LF is formed during lipid peroxidation and sugar glycosylation by carbonyl-amino crosslinks with biomacrolecules, and accumulates slowly within postmitotic cells. The environmental pollution, modern dietary culture and lifestyle changes have been found to be the major sources of reactive carbonyl compounds in vivo. Irreversible carbonyl-amino crosslinks induced by carbonyl stress are essentially toxiferous for aging-related functional losses in modern society. Results show that (--epigallocatechin gallate (EGCG, the main polyphenol in green tea, can neutralize the carbonyl-amino cross-linking reaction and inhibit LF formation, but the underlying mechanism is unknown.We explored the mechanism of the neutralization process from protein, cell, and animal levels using spectrofluorometry, infrared spectroscopy, conformation antibodies, and electron microscopy. LF demonstrated an amyloidogenic β-sheet-rich with antiparallel structure, which accelerated the carbonyl-amino crosslinks formation and disrupted proteolysis in both PC12 cells and D-galactose (D-gal-induced brain aging mice models. Additionally, EGCG effectively inhibited the formation of the amyloidogenic β-sheet-rich structure of LF, and prevented its conversion into toxic and on-pathway aggregation intermediates, thereby cutting off the carbonyl-amino crosslinks.Our study indicated that the amyloidogenic β-sheet structure of LF may be the core driving force for carbonyl-amino crosslinks further formation, which mediates the formation of amyloid fibrils from native state of biomacrolecules. That EGCG exhibits anti-amyloidogenic β-sheet-rich structure properties to prevent the LF formation represents a novel strategy to impede the development of degenerative processes caused by ageing or stress-induced premature senescence in modern environments.

  1. Melatonin alleviates inflammasome-induced pyroptosis through inhibiting NF-κB/GSDMD signal in mice adipose tissue.

    Science.gov (United States)

    Liu, Zhenjiang; Gan, Lu; Xu, Yatao; Luo, Dan; Ren, Qian; Wu, Song; Sun, Chao

    2017-08-01

    Pyroptosis is a proinflammatory form of cell death that is associated with pathogenesis of many chronic inflammatory diseases. Melatonin is substantially reported to possess anti-inflammatory properties by inhibiting inflammasome activation. However, the effects of melatonin on inflammasome-induced pyroptosis in adipocytes remain elusive. Here, we demonstrated that melatonin alleviated lipopolysaccharides (LPS)-induced inflammation and NLRP3 inflammasome formation in mice adipose tissue. The NLRP3 inflammasome-mediated pyroptosis was also inhibited by melatonin in adipocytes. Further analysis revealed that gasdermin D (GSDMD), the key executioner of pyroptosis, was the target for melatonin inhibition of adipocyte pyroptosis. Importantly, we determined that nuclear factor κB (NF-κB) signal was required for the GSDMD-mediated pyroptosis in adipocytes. We also confirmed that melatonin alleviated adipocyte pyroptosis by transcriptional suppression of GSDMD. Moreover, GSDMD physically interacted with interferon regulatory factor 7 (IRF7) and subsequently formed a complex to promote adipocyte pyroptosis. Melatonin also attenuated NLRP3 inflammasome activation and pyroptosis, which was induced by LPS or obesity. In summary, our results demonstrate that melatonin alleviates inflammasome-induced pyroptosis by blocking NF-κB/GSDMD signal in mice adipose tissue. Our data reveal a novel function of melatonin on adipocyte pyroptosis, suggesting a new potential therapy for melatonin to prevent and treat obesity caused systemic inflammatory response. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. PEDF expression is inhibited by insulin treatment in adipose tissue via suppressing 11β-HSD1.

    Directory of Open Access Journals (Sweden)

    Yinli Zhou

    Full Text Available Early intensive insulin therapy improves insulin sensitivity in type 2 diabetic patients; while the underlying mechanism remains largely unknown. Pigment epithelium-derived factor (PEDF, an anti-angiogenic factor, is believed to be involved in the pathogenesis of insulin resistance. Here, we hypothesize that PEDF might be down regulated by insulin and then lead to the improved insulin resistance in type 2 diabetic patients during insulin therapy. We addressed this issue by investigating insulin regulation of PEDF expression in diabetic conditions. The results showed that serum PEDF was reduced by 15% in newly diagnosed type 2 diabetic patients after insulin therapy. In adipose tissue of diabetic Sprague-Dawley rats, PEDF expression was associated with TNF-α elevation and it could be decreased both in serum and in adipose tissue by insulin treatment. In adipocytes, PEDF was induced by TNF-α through activation of NF-κB. The response was inhibited by knockdown and enhanced by over expression of NF-κB p65. However, PEDF expression was indirectly, not directly, induced by NF-κB which promoted 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1 expression in adipocytes. 11β-HSD1 is likely to stimulate PEDF expression through production of active form of glucocorticoids as dexamethasone induced PEDF expression in adipose tissue. Insulin inhibited PEDF by down-regulating 11β-HSD1 expression. The results suggest that PEDF activity is induced by inflammation and decreased by insulin through targeting 11β-HSD1/glucocorticoid pathway in adipose tissue of diabetic patients.

  3. Coeliac disease autoantibodies mediate significant inhibition of tissue transglutaminase.

    LENUS (Irish Health Repository)

    Byrne, Greg

    2012-02-01

    The detection of antibodies directed against tissue transglutaminase (tTG) in serum is a sensitive and specific test for suspected coeliac disease. tTG is a ubiquitous, multifunctional enzyme that has been implicated in many important physiological processes as well as the site-specific deamidation of glutamine residues in gluten-derived peptides. This modification of gluten peptides facilitates their binding to HLA-DQ2, which results in amplification of the T-cell response to gluten. The purpose of this study was to investigate the possibility that patient IgA autoantibodies directed against tTG interfere with the crosslinking activity of the enzyme. IgA autoantibodies against tTG were isolated\\/depleted from patient serum and tested for their capacity to interfere with tTG activity in vitro using a sensitive fluorescence-based activity assay. We have demonstrated that autoantibodies cause significant inhibition of tTG-mediated crosslinking at equimolar and 2:1 ratios of antibody to enzyme.

  4. Radiosensitization In Vivo by Histone Deacetylase Inhibition with No Increase in Early Normal Tissue Radiation Toxicity.

    Science.gov (United States)

    Groselj, Blaz; Ruan, Jia-Ling; Scott, Helen; Gorrill, Jessica; Nicholson, Judith; Kelly, Jacqueline; Anbalagan, Selvakumar; Thompson, James; Stratford, Michael R L; Jevons, Sarah J; Hammond, Ester M; Scudamore, Cheryl L; Kerr, Martin; Kiltie, Anne E

    2018-02-01

    As the population ages, more elderly patients require radiotherapy-based treatment for their pelvic malignancies, including muscle-invasive bladder cancer, as they are unfit for major surgery. Therefore, there is an urgent need to find radiosensitizing agents minimally toxic to normal tissues, including bowel and bladder, for such patients. We developed methods to determine normal tissue toxicity severity in intestine and bladder in vivo , using novel radiotherapy techniques on a small animal radiation research platform (SARRP). The effects of panobinostat on in vivo tumor growth delay were evaluated using subcutaneous xenografts in athymic nude mice. Panobinostat concentration levels in xenografts, plasma, and normal tissues were measured in CD1-nude mice. CD1-nude mice were treated with drug/irradiation combinations to assess acute normal tissue effects in small intestine using the intestinal crypt assay, and later effects in small and large intestine at 11 weeks by stool assessment and at 12 weeks by histologic examination. In vitro effects of panobinostat were assessed by qPCR and of panobinostat, TMP195, and mocetinostat by clonogenic assay, and Western blot analysis. Panobinostat resulted in growth delay in RT112 bladder cancer xenografts but did not significantly increase acute (3.75 days) or 12 weeks' normal tissue radiation toxicity. Radiosensitization by panobinostat was effective in hypoxic bladder cancer cells and associated with class I HDAC inhibition, and protein downregulation of HDAC2 and MRE11. Pan-HDAC inhibition is a promising strategy for radiosensitization, but more selective agents may be more useful radiosensitizers clinically, resulting in fewer systemic side effects. Mol Cancer Ther; 17(2); 381-92. ©2017 AACR See all articles in this MCT Focus section, "Developmental Therapeutics in Radiation Oncology." ©2017 American Association for Cancer Research.

  5. Bioprinting cell-laden matrigel for radioprotection study of liver by pro-drug conversion in a dual-tissue microfluidic chip

    International Nuclear Information System (INIS)

    Snyder, J E; Hamid, Q; Wang, C; Chang, R; Sun, W; Emami, K; Wu, H

    2011-01-01

    The objective of this paper is to introduce a novel cell printing and microfluidic system to serve as a portable ground model for the study of drug conversion and radiation protection of living liver tissue analogs. The system is applied to study behavior in ground models of space stress, particularly radiation. A microfluidic environment is engineered by two cell types to prepare an improved higher fidelity in vitro micro-liver tissue analog. Cell-laden Matrigel printing and microfluidic chips were used to test radiation shielding to liver cells by the pro-drug amifostine. In this work, the sealed microfluidic chip regulates three variables of interest: radiation exposure, anti-radiation drug treatment and single- or dual-tissue culture environments. This application is intended to obtain a scientific understanding of the response of the multi-cellular biological system for long-term manned space exploration, disease models and biosensors.

  6. Bioprinting cell-laden matrigel for radioprotection study of liver by pro-drug conversion in a dual-tissue microfluidic chip

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, J E; Hamid, Q; Wang, C; Chang, R; Sun, W [Department of Mechanical Engineering, Drexel University, Philadelphia, PA 19104 (United States); Emami, K; Wu, H, E-mail: sunwei@drexel.edu, E-mail: weisun@tsinghua.edu.cn [Radiation Biophysics Lab, NASA Johnson Space Center, Houston, TX 77586 (United States)

    2011-09-15

    The objective of this paper is to introduce a novel cell printing and microfluidic system to serve as a portable ground model for the study of drug conversion and radiation protection of living liver tissue analogs. The system is applied to study behavior in ground models of space stress, particularly radiation. A microfluidic environment is engineered by two cell types to prepare an improved higher fidelity in vitro micro-liver tissue analog. Cell-laden Matrigel printing and microfluidic chips were used to test radiation shielding to liver cells by the pro-drug amifostine. In this work, the sealed microfluidic chip regulates three variables of interest: radiation exposure, anti-radiation drug treatment and single- or dual-tissue culture environments. This application is intended to obtain a scientific understanding of the response of the multi-cellular biological system for long-term manned space exploration, disease models and biosensors.

  7. Inhibition of lignin-derived phenolic compounds to cellulase.

    Science.gov (United States)

    Qin, Lei; Li, Wen-Chao; Liu, Li; Zhu, Jia-Qing; Li, Xia; Li, Bing-Zhi; Yuan, Ying-Jin

    2016-01-01

    Lignin-derived phenolic compounds are universal in the hydrolysate of pretreated lignocellulosic biomass. The phenolics reduce the efficiency of enzymatic hydrolysis and increase the cost of ethanol production. We investigated inhibition of phenolics on cellulase during enzymatic hydrolysis using vanillin as one of the typical lignin-derived phenolics and Avicel as cellulose substrate. As vanillin concentration increased from 0 to 10 mg/mL, cellulose conversion after 72-h enzymatic hydrolysis decreased from 53 to 26 %. Enzyme deactivation and precipitation were detected with the vanillin addition. The enzyme concentration and activity consecutively decreased during hydrolysis, but the inhibition degree, expressed as the ratio of the cellulose conversion without vanillin to the conversion with vanillin (A 0 /A), was almost independent on hydrolysis time. Inhibition can be mitigated by increasing cellulose loading or cellulase concentration. The inhibition degree showed linear relationship with the vanillin concentration and exponential relationship with the cellulose loading and the cellulase concentration. The addition of calcium chloride, BSA, and Tween 80 did not release the inhibition of vanillin significantly. pH and temperature for hydrolysis also showed no significant impact on inhibition degree. The presence of hydroxyl group, carbonyl group, and methoxy group in phenolics affected the inhibition degree. Besides phenolics concentration, other factors such as cellulose loading, enzyme concentration, and phenolic structure also affect the inhibition of cellulose conversion. Lignin-blocking agents have little effect on the inhibition effect of soluble phenolics, indicating that the inhibition mechanism of phenolics to enzyme is likely different from insoluble lignin. The inhibition of soluble phenolics can hardly be entirely removed by increasing enzyme concentration or adding blocking proteins due to the dispersity and multiple binding sites of phenolics

  8. Tumour tissue microenvironment can inhibit dendritic cell maturation in colorectal cancer.

    LENUS (Irish Health Repository)

    Michielsen, Adriana J

    2011-01-01

    Inflammatory mediators in the tumour microenvironment promote tumour growth, vascular development and enable evasion of anti-tumour immune responses, by disabling infiltrating dendritic cells. However, the constituents of the tumour microenvironment that directly influence dendritic cell maturation and function are not well characterised. Our aim was to identify tumour-associated inflammatory mediators which influence the function of dendritic cells. Tumour conditioned media obtained from cultured colorectal tumour explant tissue contained high levels of the chemokines CCL2, CXCL1, CXCL5 in addition to VEGF. Pre-treatment of monocyte derived dendritic cells with this tumour conditioned media inhibited the up-regulation of CD86, CD83, CD54 and HLA-DR in response to LPS, enhancing IL-10 while reducing IL-12p70 secretion. We examined if specific individual components of the tumour conditioned media (CCL2, CXCL1, CXCL5) could modulate dendritic cell maturation or cytokine secretion in response to LPS. VEGF was also assessed as it has a suppressive effect on dendritic cell maturation. Pre-treatment of immature dendritic cells with VEGF inhibited LPS induced upregulation of CD80 and CD54, while CXCL1 inhibited HLA-DR. Interestingly, treatment of dendritic cells with CCL2, CXCL1, CXCL5 or VEGF significantly suppressed their ability to secrete IL-12p70 in response to LPS. In addition, dendritic cells treated with a combination of CXCL1 and VEGF secreted less IL-12p70 in response to LPS compared to pre-treatment with either cytokine alone. In conclusion, tumour conditioned media strongly influences dendritic cell maturation and function.

  9. Inhibition of HIV-1 infection in ex vivo cervical tissue model of human vagina by palmitic acid; implications for a microbicide development.

    Directory of Open Access Journals (Sweden)

    Xudong Lin

    Full Text Available BACKGROUND: Approximately 80% of all new HIV-1 infections are acquired through sexual contact. Currently, there is no clinically approved microbicide, indicating a clear and urgent therapeutic need. We recently reported that palmitic acid (PA is a novel and specific inhibitor of HIV-1 fusion and entry. Mechanistically, PA inhibits HIV-1 infection by binding to a novel pocket on the CD4 receptor and blocks efficient gp120-to-CD4 attachment. Here, we wanted to assess the ability of PA to inhibit HIV-1 infection in cervical tissue ex vivo model of human vagina, and determine its effect on Lactobacillus (L species of probiotic vaginal flora. PRINCIPAL FINDINGS: Our results show that treatment with 100-200 µM PA inhibited HIV-1 infection in cervical tissue by up to 50%, and this treatment was not toxic to the tissue or to L. crispatus and jensenii species of vaginal flora. In vitro, in a cell free system that is independent of in vivo cell associated CD4 receptor; we determined inhibition constant (Ki to be ∼2.53 µM. SIGNIFICANCE: These results demonstrate utility of PA as a model molecule for further preclinical development of a safe and potent HIV-1 entry microbicide inhibitor.

  10. Myostatin inhibition in muscle, but not adipose tissue, decreases fat mass and improves insulin sensitivity.

    Directory of Open Access Journals (Sweden)

    Tingqing Guo

    Full Text Available Myostatin (Mstn is a secreted growth factor expressed in skeletal muscle and adipose tissue that negatively regulates skeletal muscle mass. Mstn(-/- mice have a dramatic increase in muscle mass, reduction in fat mass, and resistance to diet-induced and genetic obesity. To determine how Mstn deletion causes reduced adiposity and resistance to obesity, we analyzed substrate utilization and insulin sensitivity in Mstn(-/- mice fed a standard chow. Despite reduced lipid oxidation in skeletal muscle, Mstn(-/- mice had no change in the rate of whole body lipid oxidation. In contrast, Mstn(-/- mice had increased glucose utilization and insulin sensitivity as measured by indirect calorimetry, glucose and insulin tolerance tests, and hyperinsulinemic-euglycemic clamp. To determine whether these metabolic effects were due primarily to the loss of myostatin signaling in muscle or adipose tissue, we compared two transgenic mouse lines carrying a dominant negative activin IIB receptor expressed specifically in adipocytes or skeletal muscle. We found that inhibition of myostatin signaling in adipose tissue had no effect on body composition, weight gain, or glucose and insulin tolerance in mice fed a standard diet or a high-fat diet. In contrast, inhibition of myostatin signaling in skeletal muscle, like Mstn deletion, resulted in increased lean mass, decreased fat mass, improved glucose metabolism on standard and high-fat diets, and resistance to diet-induced obesity. Our results demonstrate that Mstn(-/- mice have an increase in insulin sensitivity and glucose uptake, and that the reduction in adipose tissue mass in Mstn(-/- mice is an indirect result of metabolic changes in skeletal muscle. These data suggest that increasing muscle mass by administration of myostatin antagonists may be a promising therapeutic target for treating patients with obesity or diabetes.

  11. Post-exercise abdominal, subcutaneous adipose tissue lipolysis in fasting subjects is inhibited by infusion of the somatostatin analogue octreotide

    DEFF Research Database (Denmark)

    Enevoldsen, Lotte H; Polak, Jan; Simonsen, Lene

    2007-01-01

    .c., abdominal adipose tissue metabolism, before, during and after exercise in healthy, fasting, young male subjects. The adipose tissue net releases of fatty acids and glycerol were measured by arterio-venous catheterizations and simultaneous measurements of adipose tissue blood flow with the local Xe....... The results show that octreotide infusion during rest increased lipolysis and fatty acid release from the abdominal, s.c. adipose tissue. The exercise-induced increase in lipolysis and fatty acid release does not seem to be affected by octreotide when compared with the control study without octreotide...... infusion while the post-exercise increase in lipolysis is inhibited by octreotide, suggesting that the exercise-induced increase in GH secretion plays a role for the post-exercise lipolysis in s.c., abdominal adipose tissue....

  12. Suramin Inhibits Osteoarthritic Cartilage Degradation by Increasing Extracellular Levels of Chondroprotective Tissue Inhibitor of Metalloproteinases 3.

    Science.gov (United States)

    Chanalaris, Anastasios; Doherty, Christine; Marsden, Brian D; Bambridge, Gabriel; Wren, Stephen P; Nagase, Hideaki; Troeberg, Linda

    2017-10-01

    Osteoarthritis is a common degenerative joint disease for which no disease-modifying drugs are currently available. Attempts to treat the disease with small molecule inhibitors of the metalloproteinases that degrade the cartilage matrix have been hampered by a lack of specificity. We aimed to inhibit cartilage degradation by augmenting levels of the endogenous metalloproteinase inhibitor, tissue inhibitor of metalloproteinases (TIMP)-3, through blocking its interaction with the endocytic scavenger receptor, low-density lipoprotein receptor-related protein 1 (LRP1). We discovered that suramin (C 51 H 40 N 6 O 23 S 6 ) bound to TIMP-3 with a K D value of 1.9 ± 0.2 nM and inhibited its endocytosis via LRP1, thus increasing extracellular levels of TIMP-3 and inhibiting cartilage degradation by the TIMP-3 target enzyme, adamalysin-like metalloproteinase with thrombospondin motifs 5. NF279 (8,8'-[carbonyl bis (imino-4,1-phenylenecarbonylimino-4,1-phenylenecarbonylimino)] bis -1,3,5-naphthalenetrisulfonic acid hexasodium salt), a structural analog of suramin, has an increased affinity for TIMP-3 and increased ability to inhibit TIMP-3 endocytosis and protect cartilage. Suramin is thus a promising scaffold for the development of novel therapeutics to increase TIMP-3 levels and inhibit cartilage degradation in osteoarthritis. Copyright © 2017 by The Author(s).

  13. Inhibition of IL-1R1/MyD88 signalling promotes mesenchymal stem cell-driven tissue regeneration.

    Science.gov (United States)

    Martino, Mikaël M; Maruyama, Kenta; Kuhn, Gisela A; Satoh, Takashi; Takeuchi, Osamu; Müller, Ralph; Akira, Shizuo

    2016-03-22

    Tissue injury and the healing response lead to the release of endogenous danger signals including Toll-like receptor (TLR) and interleukin-1 receptor, type 1 (IL-1R1) ligands, which modulate the immune microenvironment. Because TLRs and IL-1R1 have been shown to influence the repair process of various tissues, we explored their role during bone regeneration, seeking to design regenerative strategies integrating a control of their signalling. Here we show that IL-1R1/MyD88 signalling negatively regulates bone regeneration, in the mouse. Furthermore, IL-1β which is released at the bone injury site, inhibits the regenerative capacities of mesenchymal stem cells (MSCs). Mechanistically, IL-1R1/MyD88 signalling impairs MSC proliferation, migration and differentiation by inhibiting the Akt/GSK-3β/β-catenin pathway. Lastly, as a proof of concept, we engineer a MSC delivery system integrating inhibitors of IL-1R1/MyD88 signalling. Using this strategy, we considerably improve MSC-based bone regeneration in the mouse, demonstrating that this approach may be useful in regenerative medicine applications.

  14. Effect of Water on Ethanol Conversion over ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Muhammad Mahfuzur; Davidson, Stephen D.; Sun, Junming; Wang, Yong

    2015-10-01

    This work focuses on understanding the role of water on ethanol conversion over zinc oxide (ZnO). It was found that a competitive adsorption between ethanol and water occurs on ZnO, which leads to the blockage of the strong Lewis acid site by water on ZnO. As a result, both dehydration and dehydrogenation reactions are inhibited. However, the extent of inhibition for dehydration is orders of magnitude higher than that for dehydrogenation, leading to the shift of reaction pathway from ethanol dehydration to dehydrogenation. In the secondary reactions for acetaldehyde conversion, water inhibits the acetaldehyde aldol-condensation to crotonaldehyde, favoring the oxidation of acetaldehyde to acetic acid, and then to acetone via ketonization at high temperature (i.e., 400 °C).

  15. Inhibition of collagen production in scleroderma fibroblast cultures by a connective tissue glycoprotein extracted from normal dermis

    International Nuclear Information System (INIS)

    Maquart, F.X.; Bellon, G.; Cornillet-Stoupy, J.; Randoux, A.; Triller, R.; Kalis, B.; Borel, J.P.

    1985-01-01

    It was shown in a previous paper that a connective tissue glycoprotein (CTGP) extracted from normal rabbit dermis was able to inhibit total protein and collagen syntheses by normal dermis fibroblast cultures. In the present study, the effects of CTGP on scleroderma fibroblasts were investigated. [ 14 C]Proline incorporation into total proteins of the supernatant was not significantly different from that found in controls. By contrast, the amount of collagen, expressed as percentage of total secreted protein, was far higher in scleroderma cultures than in normal ones (14.4% +/- 6.0% vs 4.6% +/- 0.9%). Addition of CTGP to the medium induced a concentration-dependent inhibition of [ 14 C]proline incorporation into proteins from both control and scleroderma cells. In control cultures, no significant decrease of the percentage of collagen was observed, but over 60 micrograms/ml, both cytotoxic effects and inhibition of protein synthesis occurred. In scleroderma cultures, the inhibition was twice as effective on collagen as on noncollagen protein synthesis. The inhibition of collagen secretion was not related either to changes in collagen hydroxylation or to the intracellular catabolism of newly synthesized procollagen

  16. Chikusetsu saponin IVa ameliorates high fat diet-induced inflammation in adipose tissue of mice through inhibition of NLRP3 inflammasome activation and NF-κB signaling.

    Science.gov (United States)

    Yuan, Chengfu; Liu, Chaoqi; Wang, Ting; He, Yumin; Zhou, Zhiyong; Dun, Yaoyan; Zhao, Haixia; Ren, Dongming; Wang, Junjie; Zhang, Changcheng; Yuan, Ding

    2017-05-09

    Chronic metabolic inflammation in adipose tissue plays an important role in the development of obesity-associated diseases. Our previous study indicated that total saponins of Panax japonicus (SPJ) rhizoma and Chikusetsu saponin V, one main component of SPJ, could exert the anti-oxidative and anti-inflammatory effects. The present study aimed to investigate the in vivo and Ex vivo anti-inflammatory activities of another main component of SPJ, namely Chikusetsu saponin IVa (CS). CS could significantly inhibited HFD-induced lipid homeostasis, and inhibited inflammation in adipose tissue, as reflected by the decreased mRNA expression levels of inflammation-related genes and secretion of the chemokines/cytokines, inhibited the accumulation of adipose tissue macrophages (ATMs) and shifted their polarization from M1 to M2, suppressed HFD-induced expression of NLRP3 inflammasome component genes and decreased IL-1β and Caspase-1 production in mice. Moreover, CS treatment also inhibited the activation of NLRP3 inflammasome in bone marrow-derived macrophages (BMDMs). Meanwhile, CS treatment inhibited an NLRP3-induced ASC pyroptosome formation and lipopolysaccharide (LPS)-induced pyroptosis. Furthermore, CS treatment suppressed HFD-induced NF-κB signaling in vivo and LPS-induced NF-κB activation as reflected by the fact that their phosphorylated forms and the ratios of pNF-κB/NF-κB, pIKK/IKK, and pIκB/IκB were all decreased in EAT from HFD-fed mice treated with CS as compared with those of HFD mice. Taking together, this study has revealed that CS effectively inhibits HFD-induced inflammation in adipose tissue of mice through inhibiting both NLRP3 inflammasome activation and NF-κB signaling. Thus, CS can serve as a potential therapeutic drug in the prevention and treatment of inflammation-associated diseases.

  17. The role of zinc supplementation in the inhibition of tissue damage caused by exposure to electromagnetic field in rat lung and liver tissues.

    Science.gov (United States)

    Baltaci, A K; Mogulkoc, R; Salbacak, A; Celik, I; Sivrikaya, A

    2012-01-01

    The objective of the present study was to examine the effects of zinc supplementation on the oxidant damage in lung and liver tissues in rats exposed to a 50-Hz frequency magnetic field for 5 minutes every other day over a period of 6 months. The study included 24 adult male Sprague-Dawley rats, which were divided into the three groups in equal numbers: Group 1, the control group (G1); Group 2, the group exposed to an electromagnetic field (G2); and Group 3, the group, which was exposed to an EMF and supplemented with zinc (G3). At the end of the 6-month procedures, the animals were decapitated to collect lung and liver tissue samples, in which MDA was analyzed using the "TBARS method (nmol/g/protein)", GSH by the "biuret method (mg/g/protein)" and zinc levels by atomic emission (µg/dl). MDA levels in lung and liver tissues in G2 were higher than those in G1 and G3, and the levels in G3 were higher than those in G1 (pelectromagnetic field caused cellular damage in lung and liver tissues and zinc supplementation inhibited the inflicted cellular damage. Another important result of this study that needs emphasis was that exposure to an electromagnetic field led to a significant decrease in zinc levels in lung and liver tissues (Tab. 3, Ref. 23).

  18. Selenium deficiency inhibits the conversion of thyroidal thyroxine (T4) to triiodothyronine (T3) in chicken thyroids.

    Science.gov (United States)

    Lin, Shi-lei; Wang, Cong-wu; Tan, Si-ran; Liang, Yang; Yao, Hai-dong; Zhang, Zi-wei; Xu, Shi-wen

    2014-12-01

    Selenium (Se) influences the metabolism of thyroid hormones in mammals. However, the role of Se deficiency in the regulation of thyroid hormones in chickens is not well known. In the present study, we examined the levels of thyroidal triiodothyronine (T3), thyroidal thyroxine (T4), free triiodothyronine, free thyroxine (FT4), and thyroid-stimulating hormone in the serum and the mRNA expression levels of 25 selenoproteins in chicken thyroids. Then, principal component analysis (PCA) was performed to analyze the relationships between the selenoproteins. The results indicated that Se deficiency influenced the conversion of T4 to T3 and induced the accumulation of T4 and FT4. In addition, the mRNA expression levels of the selenoproteins were generally decreased by Se deficiency. The PCA showed that eight selenoproteins (deiodinase 1 (Dio1), Dio2, Dio3, thioredoxin reductase 2 (Txnrd2), selenoprotein i (Seli), selenoprotein u (Selu), glutathione peroxidase 1 (Gpx1), and Gpx2) have similar trends, which indicated that they may play similar roles in the metabolism of thyroid hormones. The results showed that Se deficiency inhibited the conversion of T4 to T3 and decreased the levels of the crucial metabolic enzymes of the thyroid hormones, Dio1, Dio2, and Dio3, in chickens. In addition, the decreased selenoproteins (Dio1, Dio2, Dio3, Txnrd2, Seli, Selu, Gpx1, and Gpx2) induced by Se deficiency may indirectly limit the conversion of T4 to T3 in chicken thyroids. The information presented in this study is helpful to understand the role of Se in the thyroid function of chickens.

  19. Spontaneous and radiation induced gene conversion in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Rao, B.S.; Murthy, M.S.S.

    1977-01-01

    Spontaneous and radiation induced gene conversion to arginine independence was studied in a heteroallelic diploid strain of yeast Saccharomyces cerevisiae BZ 34. When stationary phase cells were incubated in phosphate buffer (pH 7 ) at 30 0 C under aerated condition for 48 hours, the conversion frequency increased by a factor of about 1000 times the background. This was found to be so even when the cells were incubated in saline (0.85%) or distilled water. Various conditions influencing this enhancement have been investigated. Conversion frequency enhancement was not significant under anoxic conditions and was absent at low temperatures and in log phase cells. Caffeine could inhibit this enhancement when present in the suspension medium. These results can be explained on the basis of the induction of meiosis in cells held in buffer. Microscopic examination confirmed this view. Under conditions not favourable for the onset of meiosis there is no significant enhancement in conversion frequency. In stationary phase cells exposed to series of gamma doses, the conversion frequency increases with dose. Post irradiation incubation in buffer further increases the conversion frequency. However, the increase expressed as the ratio of the conversion frequency on buffer holding to that on immediate plating decreased with increasing dose. This decrease in enhancement with increasing dose may be due to the dose dependent inhibition of meiosis. (author)

  20. Perilipin 1 Mediates Lipid Metabolism Homeostasis and Inhibits Inflammatory Cytokine Synthesis in Bovine Adipocytes.

    Science.gov (United States)

    Zhang, Shiqi; Liu, Guowen; Xu, Chuang; Liu, Lei; Zhang, Qiang; Xu, Qiushi; Jia, Hongdou; Li, Xiaobing; Li, Xinwei

    2018-01-01

    Dairy cows with ketosis displayed lipid metabolic disorder and high inflammatory levels. Adipose tissue is an active lipid metabolism and endocrine tissue and is closely related to lipid metabolism homeostasis and inflammation. Perilipin 1 (PLIN1), an adipocyte-specific lipid-coated protein, may be involved in the above physiological function. The aim of this study is to investigate the role of PLIN1 in lipid metabolism regulation and inflammatory factor synthesis in cow adipocytes. The results showed that PLIN1 overexpression upregulated the expression of fatty acid and triglyceride (TAG) synthesis molecule sterol regulator element-binding protein-1c (SREBP-1c) and its target genes, diacylglycerol acyltransferase (DGAT) 1, and DGAT2, but inhibited the expression of lipolysis enzymes hormone-sensitive lipase (HSL) and CGI-58 for adipose triglyceride lipase (ATGL), thus augmenting the fatty acids and TAG synthesis and inhibiting lipolysis. Importantly, PLIN1 overexpression inhibited the activation of the NF-κB inflammatory pathway and decreased the expression and content of tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β), and interleukin 6 (IL-6) induced by lipopolysaccharide. Conversely, PLIN1 silencing inhibited TAG synthesis, promoted lipolysis, and overinduced the activation of the NF-κB inflammatory pathway in cow adipocytes. In ketotic cows, the expression of PLIN1 was markedly decreased, whereas lipid mobilization, NF-κB pathway, and downstream inflammatory cytokines were overinduced in adipose tissue. Taken together, these results indicate that PLIN1 can maintain lipid metabolism homeostasis and inhibit the NF-κB inflammatory pathway in adipocytes. However, low levels of PLIN1 reduced the inhibitory effect on fat mobilization, NF-κB pathway, and inflammatory cytokine synthesis in ketotic cows.

  1. Perilipin 1 Mediates Lipid Metabolism Homeostasis and Inhibits Inflammatory Cytokine Synthesis in Bovine Adipocytes

    Directory of Open Access Journals (Sweden)

    Shiqi Zhang

    2018-03-01

    Full Text Available Dairy cows with ketosis displayed lipid metabolic disorder and high inflammatory levels. Adipose tissue is an active lipid metabolism and endocrine tissue and is closely related to lipid metabolism homeostasis and inflammation. Perilipin 1 (PLIN1, an adipocyte-specific lipid-coated protein, may be involved in the above physiological function. The aim of this study is to investigate the role of PLIN1 in lipid metabolism regulation and inflammatory factor synthesis in cow adipocytes. The results showed that PLIN1 overexpression upregulated the expression of fatty acid and triglyceride (TAG synthesis molecule sterol regulator element-binding protein-1c (SREBP-1c and its target genes, diacylglycerol acyltransferase (DGAT 1, and DGAT2, but inhibited the expression of lipolysis enzymes hormone-sensitive lipase (HSL and CGI-58 for adipose triglyceride lipase (ATGL, thus augmenting the fatty acids and TAG synthesis and inhibiting lipolysis. Importantly, PLIN1 overexpression inhibited the activation of the NF-κB inflammatory pathway and decreased the expression and content of tumor necrosis factor alpha (TNF-α, interleukin 1 beta (IL-1β, and interleukin 6 (IL-6 induced by lipopolysaccharide. Conversely, PLIN1 silencing inhibited TAG synthesis, promoted lipolysis, and overinduced the activation of the NF-κB inflammatory pathway in cow adipocytes. In ketotic cows, the expression of PLIN1 was markedly decreased, whereas lipid mobilization, NF-κB pathway, and downstream inflammatory cytokines were overinduced in adipose tissue. Taken together, these results indicate that PLIN1 can maintain lipid metabolism homeostasis and inhibit the NF-κB inflammatory pathway in adipocytes. However, low levels of PLIN1 reduced the inhibitory effect on fat mobilization, NF-κB pathway, and inflammatory cytokine synthesis in ketotic cows.

  2. MicroRNA-143-3p inhibits hyperplastic scar formation by targeting connective tissue growth factor CTGF/CCN2 via the Akt/mTOR pathway.

    Science.gov (United States)

    Mu, Shengzhi; Kang, Bei; Zeng, Weihui; Sun, Yaowen; Yang, Fan

    2016-05-01

    Post-traumatic hypertrophic scar (HS) is a fibrotic disease with excessive extracellular matrix (ECM) production, which is a response to tissue injury by fibroblasts. Although emerging evidence has indicated that miRNA contributes to hypertrophic scarring, the role of miRNA in HS formation remains unclear. In this study, we found that miR-143-3p was markedly downregulated in HS tissues and fibroblasts (HSFs) using qRT-PCR. The expression of connective tissue growth factor (CTGF/CCN2) was upregulated both in HS tissues and HSFs, which is proposed to play a key role in ECM deposition in HS. The protein expression of collagen I (Col I), collagen III (Col III), and α-smooth muscle actin (α-SMA) was obviously inhibited after treatment with miR-143-3p in HSFs. The CCK-8 assay showed that miR-143-3p transfection reduced the proliferation ability of HSFs, and flow cytometry showed that either early or late apoptosis of HSFs was upregulated by miR-143-3p. In addition, the activity of caspase 3 and caspase 9 was increased after miR-143-3p transfection. On the contrary, the miR-143-3p inhibitor was demonstrated to increase cell proliferation and inhibit apoptosis of HSFs. Moreover, miR-143-3p targeted the 3'-UTR of CTGF and caused a significant decrease of CTGF. Western blot demonstrated that Akt/mTOR phosphorylation and the expression of CTGF, Col I, Col III, and α-SMA were inhibited by miR-143-3p, but increased by CTGF overexpression. In conclusion, we found that miR-143-3p inhibits hypertrophic scarring by regulating the proliferation and apoptosis of human HSFs, inhibiting ECM production-associated protein expression by targeting CTGF, and restraining the Akt/mTOR pathway.

  3. Stuttering Inhibition via Altered Auditory Feedback during Scripted Telephone Conversations

    Science.gov (United States)

    Hudock, Daniel; Kalinowski, Joseph

    2014-01-01

    Background: Overt stuttering is inhibited by approximately 80% when people who stutter read aloud as they hear an altered form of their speech feedback to them. However, levels of stuttering inhibition vary from 60% to 100% depending on speaking situation and signal presentation. For example, binaural presentations of delayed auditory feedback…

  4. Cocaine inhibits extraneuronal O-methylation of exogenous norepinephrine in nasal and oral tissues of the rabbit

    International Nuclear Information System (INIS)

    de la Lande, I.S.; Parker, D.A.S.; Proctor, C.H.; Marino, V.; Mackay-Sim, A.

    1987-01-01

    Nasal mucosa (respirator and olfactory) and lingual gingiva of the rabbit were depleted of their sympathetic nerves by superior cervical ganglionectomy. In the innervated nasal mucosa, exogenous tritiated norepinephrine ( 3 H-NE) was metabolized mainly to tritiated 3,4-dihydroxyphenylethylene glycol ( 3 HDOPEG) and 3,4-dihydroxy mandelic acid ( 3 HDOMA), whereas after denervation it was metabolized mainly to tritiated normetanephrine ( 3 HNMN). In the denervated mucosa, cocaine(30umol/l) inhibited 3 HNMN formation by 50-60%. Cocaine also inhibited 3 HNMN formation by 60% in the denervated lingual gingiva. It is concluded that the tissues metabolize 3 H-NE via a cocaine-sensitive extraneuronal uptake and O-methylating system similar to that which has been shown to be present in dental pulp. 17 references, 1 table

  5. DNA-dependent protein kinase inhibits AID-induced antibody gene conversion.

    Directory of Open Access Journals (Sweden)

    Adam J L Cook

    2007-04-01

    Full Text Available Affinity maturation and class switching of antibodies requires activation-induced cytidine deaminase (AID-dependent hypermutation of Ig V(DJ rearrangements and Ig S regions, respectively, in activated B cells. AID deaminates deoxycytidine bases in Ig genes, converting them into deoxyuridines. In V(DJ regions, subsequent excision of the deaminated bases by uracil-DNA glycosylase, or by mismatch repair, leads to further point mutation or gene conversion, depending on the species. In Ig S regions, nicking at the abasic sites produced by AID and uracil-DNA glycosylases results in staggered double-strand breaks, whose repair by nonhomologous end joining mediates Ig class switching. We have tested whether nonhomologous end joining also plays a role in V(DJ hypermutation using chicken DT40 cells deficient for Ku70 or the DNA-dependent protein kinase catalytic subunit (DNA-PKcs. Inactivation of the Ku70 or DNA-PKcs genes in DT40 cells elevated the rate of AID-induced gene conversion as much as 5-fold. Furthermore, DNA-PKcs-deficiency appeared to reduce point mutation. The data provide strong evidence that double-strand DNA ends capable of recruiting the DNA-dependent protein kinase complex are important intermediates in Ig V gene conversion.

  6. Evaluation of penicillin G residues by kidney inhibition swab tests in sow body fluids and tissues following intramuscular injection

    Science.gov (United States)

    In 2011, the USDA-Food Safety and Inspection Service (FSIS) changed the method used for screening swine tissues for antimicrobial residues from the Fast Antimicrobial Screen Test to the Kidney Inhibition Swab (KIS(TM)). Here, we describe the use of KIS(TM) test for the detection of penicillin G res...

  7. The Addition of Manganese Porphyrins during Radiation Inhibits Prostate Cancer Growth and Simultaneously Protects Normal Prostate Tissue from Radiation Damage

    Directory of Open Access Journals (Sweden)

    Arpita Chatterjee

    2018-01-01

    Full Text Available Radiation therapy is commonly used for prostate cancer treatment; however, normal tissues can be damaged from the reactive oxygen species (ROS produced by radiation. In separate reports, we and others have shown that manganese porphyrins (MnPs, ROS scavengers, protect normal cells from radiation-induced damage but inhibit prostate cancer cell growth. However, there have been no studies demonstrating that MnPs protect normal tissues, while inhibiting tumor growth in the same model. LNCaP or PC3 cells were orthotopically implanted into athymic mice and treated with radiation (2 Gy, for 5 consecutive days in the presence or absence of MnPs. With radiation, MnPs enhanced overall life expectancy and significantly decreased the average tumor volume, as compared to the radiated alone group. MnPs enhanced lipid oxidation in tumor cells but reduced oxidative damage to normal prostate tissue adjacent to the prostate tumor in combination with radiation. Mechanistically, MnPs behave as pro-oxidants or antioxidants depending on the level of oxidative stress inside the treated cell. We found that MnPs act as pro-oxidants in prostate cancer cells, while in normal cells and tissues the MnPs act as antioxidants. For the first time, in the same in vivo model, this study reveals that MnPs enhance the tumoricidal effect of radiation and reduce oxidative damage to normal prostate tissue adjacent to the prostate tumor in the presence of radiation. This study suggests that MnPs are effective radio-protectors for radiation-mediated prostate cancer treatment.

  8. Boron neutron capture therapy (BNCT) inhibits tumor development from precancerous tissue: An experimental study that supports a potential new application of BNCT

    International Nuclear Information System (INIS)

    Monti Hughes, A.; Heber, E.M.; Pozzi, E.; Nigg, D.W.; Calzetta, O.; Blaumann, H.; Longhino, J.; Nievas, S.I.; Aromando, R.F.; Itoiz, M.E.; Trivillin, V.A.; Schwint, A.E.

    2009-01-01

    We previously demonstrated the efficacy of boron neutron capture therapy (BNCT) mediated by boronophenylalanine (BPA), GB-10 (Na 2 10 B 10 H 10 ) and (GB-10+BPA) to control tumors, with no normal tissue radiotoxicity, in the hamster cheek pouch oral cancer model. Herein we developed a novel experimental model of field-cancerization and precancerous lesions (globally termed herein precancerous tissue) in the hamster cheek pouch to explore the long-term potential inhibitory effect of the same BNCT protocols on the development of second primary tumors from precancerous tissue. Clinically, second primary tumor recurrences occur in field-cancerized tissue, causing therapeutic failure. We performed boron biodistribution studies followed by in vivo BNCT studies, with 8 months follow-up. All 3 BNCT protocols induced a statistically significant reduction in tumor development from precancerous tissue, reaching a maximum inhibition of 77-100%. The inhibitory effect of BPA-BNCT and (GB-10+BPA)-BNCT persisted at 51% at the end of follow-up (8 months), whereas for GB-10-BNCT it faded after 2 months. Likewise, beam-only elicited a significant but transient reduction in tumor development. No normal tissue radiotoxicity was observed. At 8 months post-treatment with BPA-BNCT or (GB-10+BPA)-BNCT, the precancerous pouches that did not develop tumors had regained the macroscopic and histological appearance of normal (non-cancerized) pouches. A potential new clinical application of BNCT would lie in its capacity to inhibit local regional recurrences.

  9. Boron neutron capture therapy (BNCT) inhibits tumor development from precancerous tissue: An experimental study that supports a potential new application of BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Monti Hughes, A.; Heber, E.M. [Department of Radiobiology, National Atomic Energy Commission (CNEA), Buenos Aires (Argentina); Pozzi, E. [Department of Radiobiology, National Atomic Energy Commission (CNEA), Buenos Aires (Argentina); Department of Research and Production Reactors, Ezeiza Atomic Center, CNEA, Buenos Aires (Argentina); Nigg, D.W. [Idaho National Laboratory, Idaho Falls, Idaho (United States); Calzetta, O.; Blaumann, H.; Longhino, J. [Department of Nuclear Engineering, Bariloche Atomic Center, CNEA, Rio Negro (Argentina); Nievas, S.I. [Department of Chemistry, CNEA, Buenos Aires (Argentina); Aromando, R.F. [Department of Oral Pathology, Faculty of Dentistry, University of Buenos Aires, Buenos Aires (Argentina); Itoiz, M.E. [Department of Radiobiology, National Atomic Energy Commission (CNEA), Buenos Aires (Argentina); Department of Oral Pathology, Faculty of Dentistry, University of Buenos Aires, Buenos Aires (Argentina); Trivillin, V.A. [Department of Radiobiology, National Atomic Energy Commission (CNEA), Buenos Aires (Argentina); Schwint, A.E. [Department of Radiobiology, National Atomic Energy Commission (CNEA), Buenos Aires (Argentina)], E-mail: schwint@cnea.gov.ar

    2009-07-15

    We previously demonstrated the efficacy of boron neutron capture therapy (BNCT) mediated by boronophenylalanine (BPA), GB-10 (Na{sub 2}{sup 10}B{sub 10}H{sub 10}) and (GB-10+BPA) to control tumors, with no normal tissue radiotoxicity, in the hamster cheek pouch oral cancer model. Herein we developed a novel experimental model of field-cancerization and precancerous lesions (globally termed herein precancerous tissue) in the hamster cheek pouch to explore the long-term potential inhibitory effect of the same BNCT protocols on the development of second primary tumors from precancerous tissue. Clinically, second primary tumor recurrences occur in field-cancerized tissue, causing therapeutic failure. We performed boron biodistribution studies followed by in vivo BNCT studies, with 8 months follow-up. All 3 BNCT protocols induced a statistically significant reduction in tumor development from precancerous tissue, reaching a maximum inhibition of 77-100%. The inhibitory effect of BPA-BNCT and (GB-10+BPA)-BNCT persisted at 51% at the end of follow-up (8 months), whereas for GB-10-BNCT it faded after 2 months. Likewise, beam-only elicited a significant but transient reduction in tumor development. No normal tissue radiotoxicity was observed. At 8 months post-treatment with BPA-BNCT or (GB-10+BPA)-BNCT, the precancerous pouches that did not develop tumors had regained the macroscopic and histological appearance of normal (non-cancerized) pouches. A potential new clinical application of BNCT would lie in its capacity to inhibit local regional recurrences.

  10. Exogenous Bradykinin Inhibits Tissue Factor Induction and Deep Vein Thrombosis via Activating the eNOS/Phosphoinositide 3-Kinase/Akt Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Ruolan Dong

    2015-11-01

    Full Text Available Background/Aims: Bradykinin has been shown to exert a variety of protective effects against vascular injury, and to reduce the levels of several factors involved in the coagulation cascade. A key determinant of thrombin generation is tissue factor (TF. However, whether bradykinin can regulate TF expression remains to be investigated. Methods: To study the effect of bradykinin on TF expression, we used Lipopolysaccharides (LPS to induce TF expression in human umbilical vein endothelial cells and monocytes. Transcript levels were determined by RT-PCR, protein abundance by Western blotting. In the in vivo study, bradykinin and equal saline were intraperitoneally injected into mice for three days ahead of inferior cava vein ligation that we took to induce thrombus formation, after which bradykinin and saline were injected for another two days. Eventually, the mice were sacrificed and tissues were harvested for tests. Results: Exogenous bradykinin markedly inhibited TF expression in mRNA and protein level induced by LPS in a dose-dependent manner. Moreover, the NO synthase antagonist L-NAME and PI3K inhibitor LY294002 dramatically abolished the inhibitory effects of bradykinin on tissue factor expression. PI3K/Akt signaling pathway activation induced by bradykinin administration reduced the activity of GSK-3ß and MAPK, and reduced NF-κB level in the nucleus, thereby inhibiting TF expression. Consistent with this, intraperitoneal injection of C57/BL6 mice with bradykinin also inhibited the thrombus formation induced by ligation of inferior vena cava. Conclusion: Bradykinin suppressed TF protein expression in human umbilical vein endothelial cells and monocytes in vitro; in line with this, it inhibits thrombus formation induced by ligation of inferior vena cava in vivo.

  11. Inhibition of PKCδ reduces cisplatin-induced nephrotoxicity without blocking chemotherapeutic efficacy in mouse models of cancer

    Science.gov (United States)

    Pabla, Navjotsingh; Dong, Guie; Jiang, Man; Huang, Shuang; Kumar, M. Vijay; Messing, Robert O.; Dong, Zheng

    2011-01-01

    Cisplatin is a widely used cancer therapy drug that unfortunately has major side effects in normal tissues, notably nephrotoxicity in kidneys. Despite intensive research, the mechanism of cisplatin-induced nephrotoxicity remains unclear, and renoprotective approaches during cisplatin-based chemotherapy are lacking. Here we have identified PKCδ as a critical regulator of cisplatin nephrotoxicity, which can be effectively targeted for renoprotection during chemotherapy. We showed that early during cisplatin nephrotoxicity, Src interacted with, phosphorylated, and activated PKCδ in mouse kidney lysates. After activation, PKCδ regulated MAPKs, but not p53, to induce renal cell apoptosis. Thus, inhibition of PKCδ pharmacologically or genetically attenuated kidney cell apoptosis and tissue damage, preserving renal function during cisplatin treatment. Conversely, inhibition of PKCδ enhanced cisplatin-induced cell death in multiple cancer cell lines and, remarkably, enhanced the chemotherapeutic effects of cisplatin in several xenograft and syngeneic mouse tumor models while protecting kidneys from nephrotoxicity. Together these results demonstrate a role of PKCδ in cisplatin nephrotoxicity and support targeting PKCδ as an effective strategy for renoprotection during cisplatin-based cancer therapy. PMID:21633170

  12. Inhibition of connective tissue growth factor overexpression decreases growth of hepatocellular carcinoma cells in vitro and in vivo.

    Science.gov (United States)

    Jia, Xiao-Qin; Cheng, Hai-Qing; Li, Hong; Zhu, Yan; Li, Yu-Hua; Feng, Zhen-Qing; Zhang, Jian-Ping

    2011-11-01

    We have previously found that connective tissue growth factor (CTGF) is highly expressed in a rat model of liver cancer. Here, we examined expression of CTGF in human hepatocellular carcinoma (HCC) cells and its effect on cell growth. Real-time PCR was used to observe expression of CTGF in human HCC cell lines HepG2, SMMC-7721, MHCC-97H and LO2. siRNA for the CTGF gene was designed, synthesized and cloned into a Plk0.1-GFP-SP6 vector to construct a lentivirus-mediated shRNA/CTGF. CTGF mRNA and protein expression in HepG2 cells treated by CTGF-specific shRNA was evaluated by real-time PCR and Western blotting. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was utilized to evaluate the growth effect, and a colony formation assay was used for observing clonogenic growth. In vivo, tumor cell proliferation was evaluated in a nude mouse model of xenotransplantation. Statistical significance was determined by t test for comparison between two groups, or analysis of variance (ANOVA) for multiple groups. Immunohistochemical staining of CTGF was seen in 35 of 40 HCC samples (87.5%). CTGF was overexpressed 5-fold in 20 HCC tissues, compared with surrounding non-tumor liver tissue. CTGF mRNA level was 5 - 8-fold higher in HepG2, SMMC-7721 and MHCC-97H than in LO2 cells. This indicated that the inhibition rate of cell growth was 43% after knockdown of CTGF expression (P < 0.05). Soft agar colony formation assay showed that siRNA mediated knockdown of CTGF inhibited colony formation in soft agar of HepG2 cells (P < 0.05). The volume of tumors from CTGF-shRNA-expressing cells only accounted for 35% of the tumors from the scrambled control-infected HepG2 cells (P < 0.05). CTGF was overexpressed in human HCC cells and downregulation of CTGF inhibited HCC growth in vitro and in vivo. Knockdown of CTGF may be a potential therapeutic strategy for treatment of HCC.

  13. Indomethacin inhibits the uptake of 22sodium by ovine trophoblastic tissue in vitro

    International Nuclear Information System (INIS)

    Lewis, G.S.

    1986-01-01

    Blastocysts from several species synthesize prostaglandins in vitro, but the exact functions of the prostaglandins are unknown. The purpose of this study was to determine if indomethacin, an inhibitor of prostaglandin synthesis, would inhibit the uptake of 22sodium ([22Na]) by ovine trophoblastic tissue. To determine the concentration of indomethacin that would inhibit the synthesis of PGF2 alpha and 13,14-dihydro-15-keto-PGF2 alpha (PGFM) by blastocysts, blastocysts were collected from ewes 16 days after mating, sliced into pieces approximately 2 mm in length and incubated for 48 h at 37 degrees C in 2 ml of medium containing either 0, 0.2, 0.4, 0.8 or 1.6 mM of indomethacin. Concentrations of indomethacin greater than or equal to 0.2 mM reduced (P less than .01) trophoblastic release (ng/micrograms DNA) of PGF2 alpha from 205 +/- 71.2 to less than or equal to 3.3 +/- 0.2, reduced PGFM from 0.7 +/- 0.1 to less than or equal to 0.17 +/- 0.01, and inhibited formation of trophoblastic vesicles. In a second experiment, blastocysts were recovered from ewes 16 days after mating and pieces of trophoblast were incubated with [22Na] and either 0 or 0.4 mM of indomethacin. Indomethacin reduced the uptake of [22Na], which is an indirect measure of the transport of water across epithelia, from 3680 +/- 1118 to 934 +/- 248 cpm/micrograms DNA (P less than .03) and prevented formation of trophoblastic vesicles. Prostaglandins produced by ovine blastocysts might be involved in controlling uptake of water, which is essential for expansion of blastocysts

  14. Oral Administration of Semicarbazide Limits Weight Gain together with Inhibition of Fat Deposition and of Primary Amine Oxidase Activity in Adipose Tissue

    Directory of Open Access Journals (Sweden)

    Josep Mercader

    2011-01-01

    Full Text Available An enzyme hitherto named semicarbazide-sensitive amine oxidase (SSAO, involved in the oxidation of primary amines, is abundantly expressed in adipocytes. Although SSAO physiological functions remain unclear, several molecules inhibiting its activity have been described to limit fat accumulation in preadipocyte cultures or to reduce body weight gain in obese rodents. Here, we studied whether oral administration of semicarbazide, a prototypical SSAO inhibitor, limits fat deposition in mice. Prolonged treatment with semicarbazide at 0.125% in drinking water limited food and water consumption, hampered weight gain, and deeply impaired fat deposition. The adiposomatic index was reduced by 31%, while body mass was reduced by 15%. Such treatment completely inhibited SSAO, but did not alter MAO activity in white adipose tissue. Consequently, the insulin-like action of the SSAO substrate benzylamine on glucose transport was abolished in adipocytes from semicarbazide-drinking mice, while their insulin sensitivity was not altered. Although semicarbazide is currently considered as a food contaminant with deleterious effects, the SSAO inhibition it induces appears as a novel concept to modulate adipose tissue development, which is promising for antiobesity drug discovery.

  15. BMP9 inhibits the bone metastasis of breast cancer cells by downregulating CCN2 (connective tissue growth factor, CTGF) expression.

    Science.gov (United States)

    Ren, Wei; Sun, Xiaoxiao; Wang, Ke; Feng, Honglei; Liu, Yuehong; Fei, Chang; Wan, Shaoheng; Wang, Wei; Luo, Jinyong; Shi, Qiong; Tang, Min; Zuo, Guowei; Weng, Yaguang; He, Tongchuan; Zhang, Yan

    2014-03-01

    Bone morphogenetic proteins (BMPs), which belong to the transforming growth factor-β superfamily, regulate a wide range of cellular responses including cell proliferation, differentiation, adhesion, migration, and apoptosis. BMP9, the latest BMP to be discovered, is reportedly expressed in a variety of human carcinoma cell lines, but the role of BMP9 in breast cancer has not been fully clarified. In a previous study, BMP9 was found to inhibit the growth, migration, and invasiveness of MDA-MB-231 breast cancer cells. In the current study, the effect of BMP9 on the bone metastasis of breast cancer cells was investigated. After absent or low expression of BMP9 was detected in the MDA-MB-231 breast cancer cells and breast non-tumor adjacent tissues using Western blot and immunohistochemistry, In our previous study, BMP9 could inhibit the proliferation and invasiveness of breast cancer cells MDA-MB-231 in vitro and in vivo. This paper shows that BMP9 inhibit the bone metastasis of breast cancer cells by activating the BMP/Smad signaling pathway and downregulating connective tissue growth factor (CTGF); however, when CTGF expression was maintained, the inhibitory effect of BMP9 on the MDA-MB-231 cells was abolished. Together, these observations indicate that BMP9 is an important mediator of breast cancer bone metastasis and a potential therapeutic target for treating this deadly disease.

  16. Mechanism of inhibition of myeloperoxidase by anti-inflammatory drugs.

    Science.gov (United States)

    Kettle, A J; Winterbourn, C C

    1991-05-15

    Hypochlorous acid (HOCl) is the most powerful oxidant produced by human neutrophils, and should therefore be expected to contribute to the damage caused by these inflammatory cells. It is produced from H2O2 and Cl- by the heme enzyme myeloperoxidase (MPO). We used a H2O2-electrode to assess the ability of a variety of anti-inflammatory drugs to inhibit conversion of H2O2 to HOCl. Dapsone, mefenamic acid, sulfapyridine, quinacrine, primaquine and aminopyrine were potent inhibitors, giving 50% inhibition of the initial rate of H2O2 loss at concentrations of about 1 microM or less. Phenylbutazone, piroxicam, salicylate, olsalazine and sulfasalazine were also effective inhibitors. Spectral investigations showed that the inhibitors acted by promoting the formation of compound II, which is an inactive redox intermediate of MPO. Ascorbate reversed inhibition by reducing compound II back to the active enzyme. The characteristic properties that allowed the drugs to inhibit MPO reversibly were ascertained by determining the inhibitory capacity of related phenols and anilines. Inhibition increased as substituents on the aromatic ring became more electron withdrawing, until an optimum reduction potential was reached. Beyond this optimum, their inhibitory capacity declined. The best inhibitor was 4-bromoaniline which had an I50 of 45 nM. An optimum reduction potential enables inhibitors to reduce MPO to compound II, but prevents them from reducing compound II back to the active enzyme. Exploitation of this optimum reduction potential will help in targeting drugs against HOCl-dependent tissue damage.

  17. Critical significance of the region between Helix 1 and 2 for efficient dominant-negative inhibition by conversion-incompetent prion protein.

    Directory of Open Access Journals (Sweden)

    Yuzuru Taguchi

    Full Text Available Prion diseases are fatal infectious neurodegenerative disorders in man and animals associated with the accumulation of the pathogenic isoform PrP(Sc of the host-encoded prion protein (PrP(c. A profound conformational change of PrP(c underlies formation of PrP(Sc and prion propagation involves conversion of PrP(c substrate by direct interaction with PrP(Sc template. Identifying the interfaces and modalities of inter-molecular interactions of PrPs will highly advance our understanding of prion propagation in particular and of prion-like mechanisms in general. To identify the region critical for inter-molecular interactions of PrP, we exploited here dominant-negative inhibition (DNI effects of conversion-incompetent, internally-deleted PrP (ΔPrP on co-expressed conversion-competent PrP. We created a series of ΔPrPs with different lengths of deletions in the region between first and second α-helix (H1∼H2 which was recently postulated to be of importance in prion species barrier and PrP fibril formation. As previously reported, ΔPrPs uniformly exhibited aberrant properties including detergent insolubility, limited protease digestion resistance, high-mannose type N-linked glycans, and intracellular localization. Although formerly controversial, we demonstrate here that ΔPrPs have a GPI anchor attached. Surprisingly, despite very similar biochemical and cell-biological properties, DNI efficiencies of ΔPrPs varied significantly, dependant on location and inversely correlated with the size of deletion. This data demonstrates that H1∼H2 and the region C-terminal to it are critically important for efficient DNI. It also suggests that this region is involved in PrP-PrP interaction and conversion of PrP(C into PrP(Sc. To reconcile the paradox of how an intracellular PrP can exert DNI, we demonstrate that ΔPrPs are subject to both proteasomal and lysosomal/autophagic degradation pathways. Using autophagy pathways ΔPrPs obtain access to the locale

  18. Arborvitae (Thuja plicata essential oil significantly inhibited critical inflammation- and tissue remodeling-related proteins and genes in human dermal fibroblasts

    Directory of Open Access Journals (Sweden)

    Xuesheng Han

    2017-06-01

    Full Text Available Arborvitae (Thuja plicata essential oil (AEO is becoming increasingly popular in skincare, although its biological activity in human skin cells has not been investigated. Therefore, we sought to study AEO's effect on 17 important protein biomarkers that are closely related to inflammation and tissue remodeling by using a pre-inflamed human dermal fibroblast culture model. AEO significantly inhibited the expression of vascular cell adhesion molecule 1 (VCAM-1, intracellular cell adhesion molecule 1 (ICAM-1, interferon gamma-induced protein 10 (IP-10, interferon-inducible T-cell chemoattractant (I-TAC, monokine induced by interferon gamma (MIG, and macrophage colony-stimulating factor (M-CSF. It also showed significant antiproliferative activity and robustly inhibited collagen-I, collagen-III, plasminogen activator inhibitor-1 (PAI-1, and tissue inhibitor of metalloproteinase 1 and 2 (TIMP-1 and TIMP-2. The inhibitory effect of AEO on increased production of these protein biomarkers suggests it has anti-inflammatory property. We then studied the effect of AEO on the genome-wide expression of 21,224 genes in the same cell culture. AEO significantly and diversely modulated global gene expression. Ingenuity pathway analysis (IPA showed that AEO robustly affected numerous critical genes and signaling pathways closely involved in inflammatory and tissue remodeling processes. The findings of this study provide the first evidence of the biological activity and beneficial action of AEO in human skin cells.

  19. Tissue-type plasminogen activator-binding RNA aptamers inhibiting low-density lipoprotein receptor family-mediated internalisation.

    Science.gov (United States)

    Bjerregaard, Nils; Bøtkjær, Kenneth A; Helsen, Nicky; Andreasen, Peter A; Dupont, Daniel M

    2015-07-01

    Recombinant tissue-type plasminogen activator (tPA, trade name Alteplase), currently the only drug approved by the US Food and Drug Administration and the European Medicines Agency for the treatment of cerebral ischaemic stroke, has been implicated in a number of adverse effects reportedly mediated by interactions with the low-density lipoprotein (LDL) family receptors, including neuronal cell death and an increased risk of cerebral haemorrhage. The tissue-type plasminogen activator is the principal initiator of thrombolysis in human physiology, an effect that is mediated directly via localised activation of the plasmin zymogen plasminogen at the surface of fibrin clots in the vascular lumen. Here, we sought to identify a ligand to tPA capable of inhibiting the relevant LDL family receptors without interfering with the fibrinolytic activity of tPA. Systematic evolution of ligands by exponential enrichment (SELEX) was employed to isolate tPA-binding RNA aptamers, which were characterised in biochemical assays of tPA association to low density lipoprotein receptor-related protein-1 (LRP-1, an LDL receptor family member); tPA-mediated in vitro and ex vivo clot lysis; and tPA-mediated plasminogen activation in the absence and presence of a stimulating soluble fibrin fragment. Two aptamers, K18 and K32, had minimal effects on clot lysis, but were able to efficiently inhibit tPA-LRP-1 association and LDL receptor family-mediated endocytosis in human vascular endothelial cells and astrocytes. These observations suggest that coadministration alongside tPA may be a viable strategy to improve the safety of thrombolytic treatment of cerebral ischaemic stroke by restricting tPA activity to the vascular lumen.

  20. Comparison of four microbiological inhibition tests for the screening of antimicrobial residues in the tissues of food-producing animals

    Directory of Open Access Journals (Sweden)

    Zuzana Gondová

    2014-10-01

    Full Text Available The study compares two existing microbiological inhibition tests, Screening Test for Antibiotic Residues (STAR and Premi®Test with two recently introduced tests, Nouws Antibiotic Test (NAT and Total Antibiotics for the screening of antimicrobial residues in the tissues of food-producing animals. In the negative or positive sample classification based on inhibition of the growth of test strain sensitive to many antibiotics and sulphonamides, out of 142 samples obtained from slaughterhouses and retail operations, 39 samples yielded a positive result in one or more tests: 4 samples in four tests, 14 samples in three tests, 13 samples in two tests, and 8 samples in one test. As for the numbers of observed positive samples, the descending sequence of tests was: STAR, Total Antibiotics, Premi®Test, NAT. The growth inhibition was observed in three out of seven test strains, namely Bacillus cereus ATCC 11778, Kocuria rhizophila ATCC 9341, and Bacillus stearothermophilus var. calidolactis. Considering the test strains sensitivity and no inhibition on the Bacillus pumilus NCIMB 10822 NAT test plates, our preliminary conclusion is that the animal samples are suspected for the presence of tetracycline, macrolide, and b-lactam antibiotics.

  1. Kinetic analysis of the inhibition of matrix metalloproteinases: lessons from the study of tissue inhibitors of metalloproteinases.

    Science.gov (United States)

    Willenbrock, Frances; Thomas, Daniel A; Amour, Augustin

    2010-01-01

    Tissue inhibitors of metalloproteinases (TIMPs) are a group of highly potent inhibitors of matrix metalloproteinases (MMPs) and disintegrin metalloproteinases (ADAMs). The high affinity and "tight-binding" nature of the inhibition of MMPs or ADAMs by TIMPs presents challenges for the determination of both equilibrium and dissociation rate constants of these inhibitory events. Methodologies that enable some of these challenges to be overcome are described in this chapter and represent valuable lessons for the in vitro assessment of MMP or ADAM inhibitors within a drug discovery context.

  2. Multidrug-Resistant Tuberculosis and Culture Conversion with Bedaquiline

    NARCIS (Netherlands)

    Diacon, Andreas H.; Pym, Alexander; Grobusch, Martin P.; de Los Rios, Jorge M.; Gotuzzo, Eduardo; Vasilyeva, Irina; Leimane, Vaira; Andries, Koen; Bakare, Nyasha; de Marez, Tine; Haxaire-Theeuwes, Myriam; Lounis, Nacer; Meyvisch, Paul; de Paepe, Els; van Heeswijk, Rolf P. G.; Dannemann, Brian; Rolla, Valeria; Dalcomo, Margreth; Gripp, Karla; Escada, Rodrigo; Tavares, Isabel; Borga, Liamar; Thomas, Aleyamma; Rekha, Banu; Nair, Dina; Chandrasekar, Chockalingam; Parthasarathy, Ramavaran Thiruvengadaraj; Sekhar, Gomathi; Ganesh, Krishnamoorthy; Rajagopalan, Krishnakumar; Rajapandian, Gangadevi; Dorairajalu, Rajendran; Sharma, Surendra Kumar; Banavaliker, Jayant; Kadhiravan, Tamilarasu; Gulati, Vinay; Mahmud, Hanif; Gupta, Arvind; Bhatnagar, Anuj; Jain, Vipin; Hari, Smriti; Gupta, Yogesh Kumar; Vaid, Ashok; Cirule, Andra; Dravniece, Gunta; Skripconoka, Vija; Kuksa, Liga; Kreigere, Edite; Ramos, Carlos Rafael Seas; Amat y Leon, Ivan Arapovic

    2014-01-01

    BACKGROUND Bedaquiline (Sirturo, TMC207), a diarylquinoline that inhibits mycobacterial ATP synthase, has been associated with accelerated sputum-culture conversion in patients with multidrug-resistant tuberculosis, when added to a preferred background regimen for 8 weeks. METHODS In this phase 2b

  3. Active spice-derived components can inhibit inflammatory responses of adipose tissue in obesity by suppressing inflammatory actions of macrophages and release of monocyte chemoattractant protein-1 from adipocytes.

    Science.gov (United States)

    Woo, Hae-Mi; Kang, Ji-Hye; Kawada, Teruo; Yoo, Hoon; Sung, Mi-Kyung; Yu, Rina

    2007-02-13

    Inflammation plays a key role in obesity-related pathologies such as cardiovascular disease, type II diabetes, and several types of cancer. Obesity-induced inflammation entails the enhancement of the recruitment of macrophages into adipose tissue and the release of various proinflammatory proteins from fat tissue. Therefore, the modulation of inflammatory responses in obesity may be useful for preventing or ameliorating obesity-related pathologies. Some spice-derived components, which are naturally occurring phytochemicals, elicit antiobesity and antiinflammatory properties. In this study, we investigated whether active spice-derived components can be applied to the suppression of obesity-induced inflammatory responses. Mesenteric adipose tissue was isolated from obese mice fed a high-fat diet and cultured to prepare an adipose tissue-conditioned medium. Raw 264.7 macrophages were treated with the adipose tissue-conditioned medium with or without active spice-derived components (i.e., diallyl disulfide, allyl isothiocyanate, piperine, zingerone and curcumin). Chemotaxis assay was performed to measure the degree of macrophage migration. Macrophage activation was estimated by measuring tumor necrosis factor-alpha (TNF-alpha), nitric oxide, and monocyte chemoattractant protein-1 (MCP-1) concentrations. The active spice-derived components markedly suppressed the migration of macrophages induced by the mesenteric adipose tissue-conditioned medium in a dose-dependent manner. Among the active spice-derived components studied, allyl isothiocyanate, zingerone, and curcumin significantly inhibited the cellular production of proinflammatory mediators such as TNF-alpha and nitric oxide, and significantly inhibited the release of MCP-1 from 3T3-L1 adipocytes. Our findings suggest that the spice-derived components can suppress obesity-induced inflammatory responses by suppressing adipose tissue macrophage accumulation or activation and inhibiting MCP-1 release from adipocytes

  4. SU-F-J-193: Efficient Dose Extinction Method for Water Equivalent Path Length (WEPL) of Real Tissue Samples for Validation of CT HU to Stopping Power Conversion

    International Nuclear Information System (INIS)

    Zhang, R; Baer, E; Jee, K; Sharp, G; Flanz, J; Lu, H

    2016-01-01

    Purpose: For proton therapy, an accurate model of CT HU to relative stopping power (RSP) conversion is essential. In current practice, validation of these models relies solely on measurements of tissue substitutes with standard compositions. Validation based on real tissue samples would be much more direct and can address variations between patients. This study intends to develop an efficient and accurate system based on the concept of dose extinction to measure WEPL and retrieve RSP in biological tissue in large number of types. Methods: A broad AP proton beam delivering a spread out Bragg peak (SOBP) is used to irradiate the samples with a Matrixx detector positioned immediately below. A water tank was placed on top of the samples, with the water level controllable in sub-millimeter by a remotely controlled dosing pump. While gradually lowering the water level with beam on, the transmission dose was recorded at 1 frame/sec. The WEPL were determined as the difference between the known beam range of the delivered SOBP (80%) and the water level corresponding to 80% of measured dose profiles in time. A Gammex 467 phantom was used to test the system and various types of biological tissue was measured. Results: RSP for all Gammex inserts, expect the one made with lung-450 material (<2% error), were determined within ±0.5% error. Depends on the WEPL of investigated phantom, a measurement takes around 10 min, which can be accelerated by a faster pump. Conclusion: Based on the concept of dose extinction, a system was explored to measure WEPL efficiently and accurately for a large number of samples. This allows the validation of CT HU to stopping power conversions based on large number of samples and real tissues. It also allows the assessment of beam uncertainties due to variations over patients, which issue has never been sufficiently studied before.

  5. SU-F-J-193: Efficient Dose Extinction Method for Water Equivalent Path Length (WEPL) of Real Tissue Samples for Validation of CT HU to Stopping Power Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, R; Baer, E; Jee, K; Sharp, G; Flanz, J; Lu, H [Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States)

    2016-06-15

    Purpose: For proton therapy, an accurate model of CT HU to relative stopping power (RSP) conversion is essential. In current practice, validation of these models relies solely on measurements of tissue substitutes with standard compositions. Validation based on real tissue samples would be much more direct and can address variations between patients. This study intends to develop an efficient and accurate system based on the concept of dose extinction to measure WEPL and retrieve RSP in biological tissue in large number of types. Methods: A broad AP proton beam delivering a spread out Bragg peak (SOBP) is used to irradiate the samples with a Matrixx detector positioned immediately below. A water tank was placed on top of the samples, with the water level controllable in sub-millimeter by a remotely controlled dosing pump. While gradually lowering the water level with beam on, the transmission dose was recorded at 1 frame/sec. The WEPL were determined as the difference between the known beam range of the delivered SOBP (80%) and the water level corresponding to 80% of measured dose profiles in time. A Gammex 467 phantom was used to test the system and various types of biological tissue was measured. Results: RSP for all Gammex inserts, expect the one made with lung-450 material (<2% error), were determined within ±0.5% error. Depends on the WEPL of investigated phantom, a measurement takes around 10 min, which can be accelerated by a faster pump. Conclusion: Based on the concept of dose extinction, a system was explored to measure WEPL efficiently and accurately for a large number of samples. This allows the validation of CT HU to stopping power conversions based on large number of samples and real tissues. It also allows the assessment of beam uncertainties due to variations over patients, which issue has never been sufficiently studied before.

  6. Effects of 2-deoxy-D-glucose, oligomycin and theophylline on in vitro glycerol metabolism in rat adipose tissue: response to insulin and epinephrine

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez, M C; Herrera, E [Barcelona Univ. (Spain). Catedra de Fisiologia General

    1976-01-01

    The effects of 2-deoxy-D-glucose (2DG), oligomycin and theophylline on the in vitro production and metabolism of glycerol and its response to insulin and epinephrine were studied in epididymal fat pads from fed rats. 2-DG failed to affect basic or epinephrine-stimulated glycerol production but decreased the uptake of 1-/sup 14/C-glycerol by the tissue and its conversion to glyceride-glycerol. Oligomycin also failed to affect the basic production of glycerol, but it inhibited the affect of epinephrine on this parameter as well as the uptake and utilization of 1-/sup 14/C-glycerol. Theophylline enhanced the production of glycerol by the tissue, and this effect was not further augmented by epinephrine. Theophylline also inhibited the uptake and utilization of 1-/sup 14/C-glycerol; the most pronounced effect of theophylline was observed in the formation of /sup 14/C-fatty acids from 1-/sup 14/C-glycerol in the presence of glucose. Insulin, but not epinephrine, decreased the inhibitory effect of theophylline on glycerol utilization. It is concluded that these compounds affect the ability of adipose tissue to metabolize glycerol more intensely than the ability to release it through lipolysis. The pathway for glycerol utilization in adipose tissue appears to be more sensitive to changes in the availability of ATP than the mechanisms for the release of glycerol from the tissue.

  7. Tumor development in field-cancerized tissue is inhibited by a double application of Boron neutron capture therapy (BNCT) without exceeding radio-tolerance

    International Nuclear Information System (INIS)

    Monti Hughes, Andrea; Heber, Elisa M.; Itoiz, Maria E.; Molinari, Ana J.; Garabalino, Marcela A.; Trivillin, Veronica A.; Schwint, Amanda E.; Aromando, Romina F.

    2009-01-01

    - 10+BPA)-BNCT and 3) beam-only, 6 weeks apart, at RA-3, in the hamster cheek pouch pre cancer model. We followed the animals for 8 months after first irradiation (T0). Results: BPA-BNCT, (GB-10+BPA)-BNCT and beam-only induced a reduction in tumor development from precancerous tissue that persisted until 8, 3 and 2 months post-first application respectively, reaching a maximum inhibition of 100% for all 3 protocols at the earlier times post-treatment. Similarly to the single application of these BNCT protocols evaluated in the previous study, no normal tissue radiotoxicity was observed and precancerous tissue exhibited moderate but reversible mucositis. Conclusions: A double application of the BNCT protocols BPA-BNCT and (GB-10+BPA)-BNCT did not cause radiotoxicity in normal pouch tissue, did not exceed the radio- tolerance of precancerous tissue (the dose-limiting tissue) and is therapeutically useful in terms of inhibiting tumor development from precancerous tissue. Within this context, a double application of BNCT could be used to improve tumor control at no additional cost in terms of radiotoxicity in normal and dose-limiting tissues. (author)

  8. Determination of glutamate dehydrogenase activity and its kinetics in mouse tissues using metabolic mapping (quantitative enzyme histochemistry).

    Science.gov (United States)

    Botman, Dennis; Tigchelaar, Wikky; Van Noorden, Cornelis J F

    2014-11-01

    Glutamate dehydrogenase (GDH) catalyses the reversible conversion of glutamate into α-ketoglutarate with the concomitant reduction of NAD(P)(+) to NAD(P)H or vice versa. GDH activity is subject to complex allosteric regulation including substrate inhibition. To determine GDH kinetics in situ, we assessed the effects of various glutamate concentrations in combination with either the coenzyme NAD(+) or NADP(+) on GDH activity in mouse liver cryostat sections using metabolic mapping. NAD(+)-dependent GDH V(max) was 2.5-fold higher than NADP(+)-dependent V(max), whereas the K(m) was similar, 1.92 mM versus 1.66 mM, when NAD(+) or NADP(+) was used, respectively. With either coenzyme, V(max) was determined at 10 mM glutamate and substrate inhibition was observed at higher glutamate concentrations with a K(i) of 12.2 and 3.95 for NAD(+) and NADP(+) used as coenzyme, respectively. NAD(+)- and NADP(+)-dependent GDH activities were examined in various mouse tissues. GDH activity was highest in liver and much lower in other tissues. In all tissues, the highest activity was found when NAD(+) was used as a coenzyme. In conclusion, GDH activity in mice is highest in the liver with NAD(+) as a coenzyme and highest GDH activity was determined at a glutamate concentration of 10 mM. © The Author(s) 2014.

  9. Inhibition of connective tissue growth factor (CTGF/CCN2) expression decreases the survival and myogenic differentiation of human rhabdomyosarcoma cells.

    Science.gov (United States)

    Croci, Stefania; Landuzzi, Lorena; Astolfi, Annalisa; Nicoletti, Giordano; Rosolen, Angelo; Sartori, Francesca; Follo, Matilde Y; Oliver, Noelynn; De Giovanni, Carla; Nanni, Patrizia; Lollini, Pier-Luigi

    2004-03-01

    Connective tissue growth factor (CTGF/CCN2), a cysteine-rich protein of the CCN (Cyr61, CTGF, Nov) family of genes, emerged from a microarray screen of genes expressed by human rhabdomyosarcoma cells. Rhabdomyosarcoma is a soft tissue sarcoma of childhood deriving from skeletal muscle cells. In this study, we investigated the role of CTGF in rhabdomyosarcoma. Human rhabdomyosarcoma cells of the embryonal (RD/12, RD/18, CCA) and the alveolar histotype (RMZ-RC2, SJ-RH4, SJ-RH30), rhabdomyosarcoma tumor specimens, and normal skeletal muscle cells expressed CTGF. To determine the function of CTGF, we treated rhabdomyosarcoma cells with a CTGF antisense oligonucleotide or with a CTGF small interfering RNA (siRNA). Both treatments inhibited rhabdomyosarcoma cell growth, suggesting the existence of a new autocrine loop based on CTGF. CTGF antisense oligonucleotide-mediated growth inhibition was specifically due to a significant increase in apoptosis, whereas cell proliferation was unchanged. CTGF antisense oligonucleotide induced a strong decrease in the level of myogenic differentiation of rhabdomyosarcoma cells, whereas the addition of recombinant CTGF significantly increased the proportion of myosin-positive cells. CTGF emerges as a survival and differentiation factor and could be a new therapeutic target in human rhabdomyosarcoma.

  10. Stoichiometric estimates of the biochemical conversion efficiencies in tsetse metabolism

    Directory of Open Access Journals (Sweden)

    Custer Adrian V

    2005-08-01

    Full Text Available Abstract Background The time varying flows of biomass and energy in tsetse (Glossina can be examined through the construction of a dynamic mass-energy budget specific to these flies but such a budget depends on efficiencies of metabolic conversion which are unknown. These efficiencies of conversion determine the overall yields when food or storage tissue is converted into body tissue or into metabolic energy. A biochemical approach to the estimation of these efficiencies uses stoichiometry and a simplified description of tsetse metabolism to derive estimates of the yields, for a given amount of each substrate, of conversion product, by-products, and exchanged gases. This biochemical approach improves on estimates obtained through calorimetry because the stoichiometric calculations explicitly include the inefficiencies and costs of the reactions of conversion. However, the biochemical approach still overestimates the actual conversion efficiency because the approach ignores all the biological inefficiencies and costs such as the inefficiencies of leaky membranes and the costs of molecular transport, enzyme production, and cell growth. Results This paper presents estimates of the net amounts of ATP, fat, or protein obtained by tsetse from a starting milligram of blood, and provides estimates of the net amounts of ATP formed from the catabolism of a milligram of fat along two separate pathways, one used for resting metabolism and one for flight. These estimates are derived from stoichiometric calculations constructed based on a detailed quantification of the composition of food and body tissue and on a description of the major metabolic pathways in tsetse simplified to single reaction sequences between substrates and products. The estimates include the expected amounts of uric acid formed, oxygen required, and carbon dioxide released during each conversion. The calculated estimates of uric acid egestion and of oxygen use compare favorably to

  11. Diversification of the Primary Antibody Repertoire by AID-Mediated Gene Conversion.

    Science.gov (United States)

    Lanning, Dennis K; Knight, Katherine L

    2015-01-01

    Gene conversion, mediated by activation-induced cytidine deaminase (AID), has been found to contribute to generation of the primary antibody repertoire in several vertebrate species. Generation of the primary antibody repertoire by gene conversion of immunoglobulin (Ig) genes occurs primarily in gut-associated lymphoid tissues (GALT) and is best described in chicken and rabbit. Here, we discuss current knowledge of the mechanism of gene conversion as well as the contribution of the microbiota in promoting gene conversion of Ig genes. Finally, we propose that the antibody diversification strategy used in GALT species, such as chicken and rabbit, is conserved in a subset of human and mouse B cells.

  12. Cellulose conversion of corn pericarp without pretreatment.

    Science.gov (United States)

    Kim, Daehwan; Orrego, David; Ximenes, Eduardo A; Ladisch, Michael R

    2017-12-01

    We report enzyme hydrolysis of cellulose in unpretreated pericarp at a cellulase loading of 0.25FPU/g pericarp solids using a phenol tolerant Aspergillus niger pectinase preparation. The overall protein added was 5mg/g and gave 98% cellulose conversion in 72h. However, for double the amount of enzyme from Trichoderma reesei, which is significantly less tolerant to phenols, conversion was only 16%. The key to achieving high conversion without pretreatment is combining phenol inhibition-resistant enzymes (such as from A. niger) with unground pericarp from which release of phenols is minimal. Size reduction of the pericarp, which is typically carried out in a corn-to-ethanol process, where corn is first ground to a fine powder, causes release of highly inhibitory phenols that interfere with cellulase enzyme activity. This work demonstrates hydrolysis without pretreatment of large particulate pericarp is a viable pathway for directly producing cellulose ethanol in corn ethanol plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Compound C inhibits macrophage chemotaxis through an AMPK-independent mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youngyi [College of Pharmacy, Woosuk University, Wanju, Jeonbuk 55338 (Korea, Republic of); Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Jeonbuk 54896 (Korea, Republic of); Park, Byung-Hyun, E-mail: bhpark@jbnu.ac.kr [Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Jeonbuk 54896 (Korea, Republic of); Bae, Eun Ju, E-mail: ejbae@woosuk.ac.kr [College of Pharmacy, Woosuk University, Wanju, Jeonbuk 55338 (Korea, Republic of)

    2016-01-15

    Macrophage infiltration in adipose tissue is a well-established cause of obesity-linked insulin resistance. AMP-activated protein kinase (AMPK) activation in peripheral tissues such as adipose tissue has beneficial effects on the protection against obesity-induced insulin resistance, which is mainly mediated by prevention of adipose tissue macrophage infiltration and inflammation. In examining the role of AMPK on adipose tissue inflammation, we unexpectedly found that compound C (CC), despite its inhibition of AMPK, robustly inhibited macrophage chemotaxis in RAW 264.7 cells when adipocyte conditioned medium (CM) was used as a chemoattractant. Here, we report that CC inhibition of macrophage migration occurred independently of AMPK. Mechanistically, this inhibitory effect of cell migration by CC was mediated by inhibition of the focal adhesion kinase, AKT, nuclear factor κB pathways. Moreover, the expression of chemokine monocyte chemoattractant protein-1 and pro-inflammatory genes such as tumor necrosis factor α and inducible nitric oxide synthase were prevented by CC treatment in RAW 264.7 cells stimulated with either adipocyte CM or lipopolysaccharide. Lastly, in accord with the findings of the anti-inflammatory effect of CC, we demonstrated that CC functioned as a repressor of macrophage CM-mediated insulin resistance in adipocytes. Taken together, our results suggest that CC serves as a useful inhibitory molecule against macrophage chemotaxis into adipose tissue and thus might have therapeutic potential for the treatment of obesity-linked adipose inflammation. - Highlights: • Compound C (CC) inhibits macrophage chemotaxis regardless of AMPK suppression. • CC enhances insulin sensitivity in adipocytes. • CC inhibits focal adhesion kinase, AKT, and NF-κB signaling in RAW 264.7 cells.

  14. Derivation of dose conversion factors for tritium

    Energy Technology Data Exchange (ETDEWEB)

    Killough, G. G.

    1982-03-01

    For a given intake mode (ingestion, inhalation, absorption through the skin), a dose conversion factor (DCF) is the committed dose equivalent to a specified organ of an individual per unit intake of a radionuclide. One also may consider the effective dose commitment per unit intake, which is a weighted average of organ-specific DCFs, with weights proportional to risks associated with stochastic radiation-induced fatal health effects, as defined by Publication 26 of the International Commission on Radiological Protection (ICRP). This report derives and tabulates organ-specific dose conversion factors and the effective dose commitment per unit intake of tritium. These factors are based on a steady-state model of hydrogen in the tissues of ICRP's Reference Man (ICRP Publication 23) and equilibrium of specific activities between body water and other tissues. The results differ by 27 to 33% from the estimate on which ICRP Publication 30 recommendations are based. The report also examines a dynamic model of tritium retention in body water, mineral bone, and two compartments representing organically-bound hydrogen. This model is compared with data from human subjects who were observed for extended periods. The manner of combining the dose conversion factors with measured or model-predicted levels of contamination in man's exposure media (air, drinking water, soil moisture) to estimate dose rate to an individual is briefly discussed.

  15. Derivation of dose conversion factors for tritium

    International Nuclear Information System (INIS)

    Killough, G.G.

    1982-03-01

    For a given intake mode (ingestion, inhalation, absorption through the skin), a dose conversion factor (DCF) is the committed dose equivalent to a specified organ of an individual per unit intake of a radionuclide. One also may consider the effective dose commitment per unit intake, which is a weighted average of organ-specific DCFs, with weights proportional to risks associated with stochastic radiation-induced fatal health effects, as defined by Publication 26 of the International Commission on Radiological Protection (ICRP). This report derives and tabulates organ-specific dose conversion factors and the effective dose commitment per unit intake of tritium. These factors are based on a steady-state model of hydrogen in the tissues of ICRP's Reference Man (ICRP Publication 23) and equilibrium of specific activities between body water and other tissues. The results differ by 27 to 33% from the estimate on which ICRP Publication 30 recommendations are based. The report also examines a dynamic model of tritium retention in body water, mineral bone, and two compartments representing organically-bound hydrogen. This model is compared with data from human subjects who were observed for extended periods. The manner of combining the dose conversion factors with measured or model-predicted levels of contamination in man's exposure media (air, drinking water, soil moisture) to estimate dose rate to an individual is briefly discussed

  16. HOXA9 inhibits migration of lung cancer cells and its hypermethylation is associated with recurrence in non-small cell lung cancer.

    Science.gov (United States)

    Hwang, Jung-Ah; Lee, Bo Bin; Kim, Yujin; Hong, Seung-Hyun; Kim, Young-Ho; Han, Joungho; Shim, Young Mog; Yoon, Chae-Yeong; Lee, Yeon-Su; Kim, Duk-Hwan

    2015-06-01

    This study was aimed at understanding the clinicopathological significance of HOXA9 hypermethylation in non-small cell lung cancer (NSCLC). HOXA9 hypermethylation was characterized in six lung cancer cell lines, and its clinicopathological significance was analyzed using methylation-specific PCR in 271 formalin-fixed paraffin-embedded tissues and 27 fresh-frozen tumor and matched normal tissues from 298 NSCLC patients, and Ki-67 expression was analyzed using immunohistochemistry. The promoter region of HOXA9 was highly methylated in six lung cancer cell lines, but not in normal bronchial epithelial cells. The loss of expression was restored by treatment of the cells with a demethylating agent, 5-aza-2'-deoxycytidine (5-Aza-dC). Transient transfection of HOXA9 into H23 lung cancer cells resulted in the inhibition of cell migration but not proliferation. Conversely, sequence-specific siRNA-mediated knockdown of HOXA9 enhanced cell migration. The mRNA levels of HOXA9 in 27 fresh-frozen tumor tissues were significantly lower than in matched normal tissues (Precurrence-free survival (hazard ratio=3.98, 95% confidence interval = 1.07-17.09, P=0.01) in never-smokers, after adjusting for age, sex, tumor size, adjuvant therapy, pathologic stage, and histology. In conclusion, the present study suggests that HOXA9 inhibits migration of lung cancer cells and its hypermethylation is an independent prognostic factor for recurrence-free survival in never-smokers with NSCLC. © 2014 Wiley Periodicals, Inc.

  17. Dose conversion coefficients for high-energy photons, electrons, neutrons and protons

    CERN Document Server

    Sakamoto, Y; Sato, O; Tanaka, S I; Tsuda, S; Yamaguchi, Y; Yoshizawa, N

    2003-01-01

    In the International Commission on Radiological Protection (ICRP) 1990 Recommendations, radiation weighting factors were introduced in the place of quality factors, the tissue weighting factors were revised, and effective doses and equivalent doses of each tissues and organs were defined as the protection quantities. Dose conversion coefficients for photons, electrons and neutrons based on new ICRP recommendations were cited in the ICRP Publication 74, but the energy ranges of theses data were limited and there are no data for high energy radiations produced in accelerator facilities. For the purpose of designing the high intensity proton accelerator facilities at JAERI, the dose evaluation code system of high energy radiations based on the HERMES code was developed and the dose conversion coefficients of effective dose were evaluated for photons, neutrons and protons up to 10 GeV, and electrons up to 100 GeV. The dose conversion coefficients of effective dose equivalent were also evaluated using quality fact...

  18. Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis: I. Significance and mechanism of cellobiose and glucose inhibition on cellulolytic enzymes

    DEFF Research Database (Denmark)

    Andric, Pavle; Meyer, Anne S.; Jensen, Peter Arendt

    2010-01-01

    Achievement of efficient enzymatic degradation of cellulose to glucose is one of the main prerequisites and one of the main challenges in the biological conversion of lignocellulosic biomass to liquid fuels and other valuable products. The specific inhibitory interferences by cellobiose and glucose...... on enzyme-catalyzed cellulose hydrolysis reactions impose significant limitations on the efficiency of lignocellulose conversion especially at high-biomass dry matter conditions. To provide the base for selecting the optimal reactor conditions, this paper reviews the reaction kinetics, mechanisms......, and significance of this product inhibition, notably the cellobiose and glucose inhibition, on enzymatic cellulose hydrolysis. Particular emphasis is put on the distinct complexity of cellulose as a substrate, the multi-enzymatic nature of the cellulolytic degradation, and the particular features of cellulase...

  19. Inhibition of cellulase-catalyzed lignocellulosic hydrolysis by iron and oxidative metal ions and complexes.

    Science.gov (United States)

    Tejirian, Ani; Xu, Feng

    2010-12-01

    Enzymatic lignocellulose hydrolysis plays a key role in microbially driven carbon cycling and energy conversion and holds promise for bio-based energy and chemical industries. Cellulases (key lignocellulose-active enzymes) are prone to interference from various noncellulosic substances (e.g., metal ions). During natural cellulolysis, these substances may arise from other microbial activities or abiotic events, and during industrial cellulolysis, they may be derived from biomass feedstocks or upstream treatments. Knowledge about cellulolysis-inhibiting reactions is of importance for the microbiology of natural biomass degradation and the development of biomass conversion technology. Different metal ions, including those native to microbial activity or employed for biomass pretreatments, are often tested for enzymatic cellulolysis. Only a few metal ions act as inhibitors of cellulases, which include ferrous and ferric ions as well as cupric ion. In this study, we showed inhibition by ferrous/ferric ions as part of a more general effect from oxidative (or redox-active) metal ions and their complexes. The correlation between inhibition and oxidation potential indicated the oxidative nature of the inhibition, and the dependence on air established the catalytic role that iron ions played in mediating the dioxygen inhibition of cellulolysis. Individual cellulases showed different susceptibilities to inhibition. It is likely that the inhibition exerted its effect more on cellulose than on cellulase. Strong iron ion chelators and polyethylene glycols could mitigate the inhibition. Potential microbiological and industrial implications of the observed effect of redox-active metal ions on enzymatic cellulolysis, as well as the prevention and mitigation of this effect in industrial biomass conversion, are discussed.

  20. Skin-Resident T Cells Drive Dermal Dendritic Cell Migration in Response to Tissue Self-Antigen.

    Science.gov (United States)

    Ali, Niwa; Zirak, Bahar; Truong, Hong-An; Maurano, Megan M; Gratz, Iris K; Abbas, Abul K; Rosenblum, Michael D

    2018-05-01

    Migratory dendritic cell (DC) subsets deliver tissue Ags to draining lymph nodes (DLNs) to either initiate or inhibit T cell-mediated immune responses. The signals mediating DC migration in response to tissue self-antigen are largely unknown. Using a mouse model of inducible skin-specific self-antigen expression, we demonstrate that CD103 + dermal DCs (DDCs) rapidly migrate from skin to skin DLN (SDLNs) within the first 48 h after Ag expression. This window of time was characterized by the preferential activation of tissue-resident Ag-specific effector T cells (Teffs), with no concurrent activation of Ag-specific Teffs in SDLNs. Using genetic deletion and adoptive transfer approaches, we show that activation of skin-resident Teffs is required to drive CD103 + DDC migration in response to tissue self-antigen and this Batf3-dependent DC population is necessary to mount a fulminant autoimmune response in skin. Conversely, activation of Ag-specific Teffs in SDLNs played no role in DDC migration. Our studies reveal a crucial role for skin-resident T cell-derived signals, originating at the site of self-antigen expression, to drive DDC migration during the elicitation phase of an autoimmune response. Copyright © 2018 by The American Association of Immunologists, Inc.

  1. Meige's Syndrome: Rare Neurological Disorder Presenting as Conversion Disorder.

    Science.gov (United States)

    Debadatta, Mohapatra; Mishra, Ajay K

    2013-07-01

    Meige's syndrome is a rare neurological syndrome characterized by oromandibular dystonia and blepharospasm. Its pathophysiology is not clearly determined. A 35-year-old female presented to psychiatric department with blepharospasm and oromandibular dystonia with clinical provisional diagnosis of psychiatric disorder (Conversion Disorder). After thorough physical examination including detailed neurological exam and psychiatric evaluation no formal medical or psychiatric diagnosis could be made. The other differential diagnoses of extra pyramidal symptom, tardive dyskinesia, conversion disorder, anxiety disorder were ruled out by formal diagnostic criteria. Consequently with suspicion of Meige's syndrome she was referred to the department of Neurology and the diagnosis was confirmed. Hence, Meige's syndrome could be misdiagnosed as a psychiatric disorder such as conversion disorder or anxiety disorder because clinical features of Meige's syndrome are highly variable and affected by psychological factors and also can be inhibited voluntarily to some extent.

  2. Knockdown of MAGEA6 Activates AMP-Activated Protein Kinase (AMPK) Signaling to Inhibit Human Renal Cell Carcinoma Cells.

    Science.gov (United States)

    Ye, Xueting; Xie, Jing; Huang, Hang; Deng, Zhexian

    2018-01-01

    Melanoma antigen A6 (MAGEA6) is a cancer-specific ubiquitin ligase of AMP-activated protein kinase (AMPK). The current study tested MAGEA6 expression and potential function in renal cell carcinoma (RCC). MAGEA6 and AMPK expression in human RCC tissues and RCC cells were tested by Western blotting assay and qRT-PCR assay. shRNA method was applied to knockdown MAGEA6 in human RCC cells. Cell survival and proliferation were tested by MTT assay and BrdU ELISA assay, respectively. Cell apoptosis was tested by the TUNEL assay and single strand DNA ELISA assay. The 786-O xenograft in nude mouse model was established to test RCC cell growth in vivo. MAGEA6 is specifically expressed in RCC tissues as well as in the established (786-O and A498) and primary human RCC cells. MAGEA6 expression is correlated with AMPKα1 downregulation in RCC tissues and cells. It is not detected in normal renal tissues nor in the HK-2 renal epithelial cells. MAGEA6 knockdown by targeted-shRNA induced AMPK stabilization and activation, which led to mTOR complex 1 (mTORC1) in-activation and RCC cell death/apoptosis. AMPK inhibition, by AMPKα1 shRNA or the dominant negative AMPKα1 (T172A), almost reversed MAGEA6 knockdown-induced RCC cell apoptosis. Conversely, expression of the constitutive-active AMPKα1 (T172D) mimicked the actions by MAGEA6 shRNA. In vivo, MAGEA6 shRNA-bearing 786-O tumors grew significantly slower in nude mice than the control tumors. AMPKα1 stabilization and activation as well as mTORC1 in-activation were detected in MAGEA6 shRNA tumor tissues. MAGEA6 knockdown inhibits human RCC cells via activating AMPK signaling. © 2018 The Author(s). Published by S. Karger AG, Basel.

  3. Glyceroneogenesis is inhibited through HIV protease inhibitor-induced inflammation in human subcutaneous but not visceral adipose tissue

    Science.gov (United States)

    Leroyer, Stéphanie; Vatier, Camille; Kadiri, Sarah; Quette, Joëlle; Chapron, Charles; Capeau, Jacqueline; Antoine, Bénédicte

    2011-01-01

    Glyceroneogenesis, a metabolic pathway that participates during lipolysis in the recycling of free fatty acids to triglycerides into adipocytes, contributes to the lipid-buffering function of adipose tissue. We investigated whether glyceroneogenesis could be affected by human immunodeficiency virus (HIV) protease inhibitors (PIs) responsible or not for dyslipidemia in HIV-infected patients. We treated explants obtained from subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) depots from lean individuals. We observed that the dyslipidemic PIs nelfinavir, lopinavir and ritonavir, but not the lipid-neutral PI atazanavir, increased lipolysis and decreased glyceroneogenesis, leading to an increased release of fatty acids from SAT but not from VAT. At the same time, dyslipidemic PIs decreased the amount of perilipin and increased interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) secretion in SAT but not in VAT. Parthenolide, an inhibitor of the NFκB pathway, counteracted PI-induced increased inflammation and decreased glyceroneogenesis. IL-6 (100 ng) inhibited the activity of phosphoenolpyruvate carboxykinase, the key enzyme of glyceroneogenesis, in SAT but not in VAT. Our data show that dyslipidemic but not lipid-neutral PIs decreased glyceroneogenesis as a consequence of PI-induced increased inflammation in SAT that could have an affect on adipocytes and/or macrophages. These results add a new link between fat inflammation and increased fatty acids release and suggest a greater sensitivity of SAT than VAT to PI-induced inflammation. PMID:21068005

  4. Investigation of real tissue water equivalent path lengths using an efficient dose extinction method

    Science.gov (United States)

    Zhang, Rongxiao; Baer, Esther; Jee, Kyung-Wook; Sharp, Gregory C.; Flanz, Jay; Lu, Hsiao-Ming

    2017-07-01

    For proton therapy, an accurate conversion of CT HU to relative stopping power (RSP) is essential. Validation of the conversion based on real tissue samples is more direct than the current practice solely based on tissue substitutes and can potentially address variations over the population. Based on a novel dose extinction method, we measured water equivalent path lengths (WEPL) on animal tissue samples to evaluate the accuracy of CT HU to RSP conversion and potential variations over a population. A broad proton beam delivered a spread out Bragg peak to the samples sandwiched between a water tank and a 2D ion-chamber detector. WEPLs of the samples were determined from the transmission dose profiles measured as a function of the water level in the tank. Tissue substitute inserts and Lucite blocks with known WEPLs were used to validate the accuracy. A large number of real tissue samples were measured. Variations of WEPL over different batches of tissue samples were also investigated. The measured WEPLs were compared with those computed from CT scans with the Stoichiometric calibration method. WEPLs were determined within  ±0.5% percentage deviation (% std/mean) and  ±0.5% error for most of the tissue surrogate inserts and the calibration blocks. For biological tissue samples, percentage deviations were within  ±0.3%. No considerable difference (extinction measurement took around 5 min to produce ~1000 WEPL values to be compared with calculations. This dose extinction system measures WEPL efficiently and accurately, which allows the validation of CT HU to RSP conversions based on the WEPL measured for a large number of samples and real tissues.

  5. VCC-1 over-expression inhibits cisplatin-induced apoptosis in HepG2 cells

    International Nuclear Information System (INIS)

    Zhou, Zhitao; Lu, Xiao; Zhu, Ping; Zhu, Wei; Mu, Xia; Qu, Rongmei; Li, Ming

    2012-01-01

    Highlights: ► VCC-1 is hypothesized to be associated with carcinogenesis. ► Levels of VCC-1 are increased significantly in HCC. ► Over-expression of VCC-1 could promotes cellular proliferation rate. ► Over-expression of VCC-1 inhibit the cisplatin-provoked apoptosis in HepG2 cells. ► VCC-1 plays an important role in control the tumor growth and apoptosis. -- Abstract: Vascular endothelial growth factor-correlated chemokine 1 (VCC-1), a recently described chemokine, is hypothesized to be associated with carcinogenesis. However, the molecular mechanisms by which aberrant VCC-1 expression determines poor outcomes of cancers are unknown. In this study, we found that VCC-1 was highly expressed in hepatocellular carcinoma (HCC) tissue. It was also associated with proliferation of HepG2 cells, and inhibition of cisplatin-induced apoptosis of HepG2 cells. Conversely, down-regulation of VCC-1 in HepG2 cells increased cisplatin-induced apoptosis of HepG2 cells. In summary, these results suggest that VCC-1 is involved in cisplatin-induced apoptosis of HepG2 cells, and also provides some evidence for VCC-1 as a potential cellular target for chemotherapy.

  6. Development of LC/MS/MS, high-throughput enzymatic and cellular assays for the characterization of compounds that inhibit kynurenine monooxygenase (KMO).

    Science.gov (United States)

    Winkler, Dirk; Beconi, Maria; Toledo-Sherman, Leticia M; Prime, Michael; Ebneth, Andreas; Dominguez, Celia; Muñoz-Sanjuan, Ignacio

    2013-09-01

    Kynurenine monooxygenase (KMO) catalyzes the conversion of kynurenine to 3-hydroxykynurenine. Modulation of KMO activity has been implicated in several neurodegenerative diseases, including Huntington disease. Our goal is to develop potent and selective small-molecule KMO inhibitors with suitable pharmacokinetic characteristics for in vivo proof-of-concept studies and subsequent clinical development. We developed a comprehensive panel of biochemical and cell-based assays that use liquid chromatography/tandem mass spectrometry to quantify unlabeled kynurenine and 3-hydroxykynurenine. We describe assays to measure KMO inhibition in cell and tissue extracts, as well as cellular assays including heterologous cell lines and primary rat microglia and human peripheral blood mononuclear cells.

  7. Recombinant human prion protein inhibits prion propagation in vitro.

    Science.gov (United States)

    Yuan, Jue; Zhan, Yi-An; Abskharon, Romany; Xiao, Xiangzhu; Martinez, Manuel Camacho; Zhou, Xiaochen; Kneale, Geoff; Mikol, Jacqueline; Lehmann, Sylvain; Surewicz, Witold K; Castilla, Joaquín; Steyaert, Jan; Zhang, Shulin; Kong, Qingzhong; Petersen, Robert B; Wohlkonig, Alexandre; Zou, Wen-Quan

    2013-10-09

    Prion diseases are associated with the conformational conversion of the cellular prion protein (PrP(C)) into the pathological scrapie isoform (PrP(Sc)) in the brain. Both the in vivo and in vitro conversion of PrP(C) into PrP(Sc) is significantly inhibited by differences in amino acid sequence between the two molecules. Using protein misfolding cyclic amplification (PMCA), we now report that the recombinant full-length human PrP (rHuPrP23-231) (that is unglycosylated and lacks the glycophosphatidylinositol anchor) is a strong inhibitor of human prion propagation. Furthermore, rHuPrP23-231 also inhibits mouse prion propagation in a scrapie-infected mouse cell line. Notably, it binds to PrP(Sc), but not PrP(C), suggesting that the inhibitory effect of recombinant PrP results from blocking the interaction of brain PrP(C) with PrP(Sc). Our findings suggest a new avenue for treating prion diseases, in which a patient's own unglycosylated and anchorless PrP is used to inhibit PrP(Sc) propagation without inducing immune response side effects.

  8. Pan-FGFR inhibition leads to blockade of FGF23 signaling, soft tissue mineralization, and cardiovascular dysfunction.

    Science.gov (United States)

    Yanochko, Gina M; Vitsky, Allison; Heyen, Jonathan R; Hirakawa, Brad; Lam, Justine L; May, Jeff; Nichols, Tim; Sace, Frederick; Trajkovic, Dusko; Blasi, Eileen

    2013-10-01

    The fibroblast growth factor receptors (FGFR) play a major role in angiogenesis and are desirable targets for the development of therapeutics. Groups of Wistar Han rats were dosed orally once daily for 4 days with a small molecule pan-FGFR inhibitor (5mg/kg) or once daily for 6 days with a small molecule MEK inhibitor (3mg/kg). Serum phosphorous and FGF23 levels increased in all rats during the course of the study. Histologically, rats dosed with either drug exhibited multifocal, multiorgan soft tissue mineralization. Expression levels of the sodium phosphate transporter Npt2a and the vitamin D-metabolizing enzymes Cyp24a1 and Cyp27b1 were modulated in kidneys of animals dosed with the pan-FGFR inhibitor. Both inhibitors decreased ERK phosphorylation in the kidneys and inhibited FGF23-induced ERK phosphorylation in vitro in a dose-dependent manner. A separate cardiovascular outcome study was performed to monitor hemodynamics and cardiac structure and function of telemetered rats dosed with either the pan-FGFR inhibitor or MEK inhibitor for 3 days. Both compounds increased blood pressure (~+ 17 mmHg), decreased heart rate (~-75 bpm), and modulated echocardiography parameters. Our data suggest that inhibition of FGFR signaling following administration of either pan-FGFR inhibitor or MEK inhibitor interferes with the FGF23 pathway, predisposing animals to hyperphosphatemia and a tumoral calcinosis-like syndrome in rodents.

  9. Effect of CO on NO and N2O conversions in nonthermal argon plasma

    International Nuclear Information System (INIS)

    Zhao Guibing; Argyle, Morris D.; Radosz, Maciej

    2006-01-01

    200-600 ppm of CO inhibit NO conversion in nonthermal Ar plasma, but do not produce N 2 O. However, 1.01% of CO has no effect on NO conversion, but produces N 2 O. In general, N 2 O conversion in Ar plasma decreases with increasing CO concentration. These experimental results cannot be explained by charge transfer reactions of Ar + . Selectivity analysis of all excited states of Ar possibly contributing to NO x conversion without and with CO suggests that only Ar( 3 P 2 ) contributes to NO x conversion and CO dissociation. A kinetic model of 43 reactions is required to model NO conversion or N 2 O conversion in Ar without CO, whereas 81 reactions are required to model NO conversion and N 2 O conversion in Ar with CO. At constant gas pressure, a single set of model parameters can predict NO conversion or N 2 O conversion without and with CO. All experimental results can be explained using a reaction mechanism in which excited neutral states of Ar are the only active species, which supports the conclusion that cations have a negligible impact on these nonthermal plasma reactions

  10. Brassicaceae tissues as inhibitors of nitrification in soil.

    Science.gov (United States)

    Brown, Paul D; Morra, Matthew J

    2009-09-09

    Brassicaceae crops often produce an unexplained increase in plant-available soil N possibly related to bioactive compounds produced from glucosinolates present in the tissues. Our objective was to determine if glucosinolate-containing tissues inhibit nitrification, thereby potentially explaining this observation. Ammonium, NO(2)(-), and NO(3)(-) N were measured in soils amended with Brassicaceae ( Isatis tinctoria L., Brassica napus L., Brassica juncea L., and Sinapis alba L.) tissues containing different glucosinolate types and concentrations or Kentucky bluegrass ( Poa pratensis L.) residues with equivalent C/N ratios as the Brassicaceae samples. There was greater accumulation of NH(4)(+) N in soils amended with tissues containing high glucosinolate concentrations as compared to soils amended with tissues containing no or low glucosinolate concentrations. Nitrite N was detected only in soils amended with Brassicaceae tissues having the highest glucosinolate concentrations. The positive correlation of both NH(4)(+) and NO(2)(-) N accumulation with the glucosinolate concentration indicates the participation of glucosinolate hydrolysis products in nitrification inhibition.

  11. Human adipose tissue-derived mesenchymal stem cells inhibit T-cell lymphoma growth in vitro and in vivo.

    Science.gov (United States)

    Ahn, Jin-Ok; Chae, Ji-Sang; Coh, Ye-Rin; Jung, Woo-Sung; Lee, Hee-Woo; Shin, Il-Seob; Kang, Sung-Keun; Youn, Hwa-Young

    2014-09-01

    Human mesenchymal stem cells (hMSCs) are thought to be one of the most reliable stem cell sources for a variety of cell therapies. This study investigated the anti-tumor effect of human adipose tissue-derived mesenchymal stem cells (hAT-MSCs) on EL4 murine T-cell lymphoma in vitro and in vivo. The growth-inhibitory effect of hAT-MSCs on EL4 tumor cells was evaluated using a WST-1 cell proliferation assay. Cell-cycle arrest and apoptosis were investigated by flow cytometry and western blot. To evaluate an anti-tumor effect of hAT-MSCs on T-cell lymphoma in vivo, CM-DiI-labeled hAT-MSCs were circumtumorally injected in tumor-bearing nude mice, and tumor size was measured. hAT-MSCs inhibited T-cell lymphoma growth by altering cell-cycle progression and inducing apoptosis in vitro. hAT-MSCs inhibited tumor growth in tumor-bearing nude mice and prolonged survival time. Immunofluorescence analysis showed that hAT-MSCs migrated to tumor sites. hAT-MSCs suppress the growth of T-cell lymphoma, suggesting a therapeutic option for T-cell lymphoma. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  12. Substituted Indoleacetic Acids Tested in Tissue Cultures

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen

    1978-01-01

    Monochloro substituted IAA inhibited shoot induction in tobacco tissue cultures about as much as IAA. Dichloro substituted IAA inhibited shoot formation less. Other substituted IAA except 5-fluoro- and 5-bromoindole-3-acetic acid were less active than IAA. Callus growth was quite variable...

  13. Quantitative PET Imaging of Tissue Factor Expression Using 18F-labled Active Site Inhibited Factor VII

    DEFF Research Database (Denmark)

    Nielsen, Carsten H; Erlandsson, Maria; Jeppesen, Troels E

    2016-01-01

    Tissue factor (TF) is up regulated in many solid tumors and its expression is linked to tumor angiogenesis, invasion, metastasis and prognosis. A non-invasive assessment of tumor TF expression status is therefore of obvious clinical relevance. Factor VII (FVII) is the natural ligand to TF. Here we...... report the development of a new PET tracer for specific imaging of TF using an (18)F-labeled derivative of FVII. METHODS: Active site inhibited factor VIIa (FVIIai) was obtained by inactivation with phenylalanine-phenylalanine-arginine-chloromethyl ketone. FVIIai was radiolabeled with N-succinimidyl 4......-[(18)F]-fluorobenzoate ([(18)F]SFB) and purified. The corresponding product, [(18)F]FVIIai, was injected into nude mice with subcutaneous human pancreatic xenograft tumors (BxPC-3) and investigated using small animal PET/CT imaging 1, 2 and 4 hours after injection. Ex vivo biodistribution was performed...

  14. Conversion disorder in children and adolescents: a disorder of cognitive control.

    Science.gov (United States)

    Kozlowska, Kasia; Palmer, Donna M; Brown, Kerri J; Scher, Stephen; Chudleigh, Catherine; Davies, Fiona; Williams, Leanne M

    2015-03-01

    To assess cognitive function in children and adolescents presenting with acute conversion symptoms. Fifty-seven participants aged 8.5-18 years (41 girls and 16 boys) with conversion symptoms and 57 age- and gender-matched healthy controls completed the IntegNeuro neurocognitive battery, an estimate of intelligence, and self-report measures of subjective emotional distress. Participants with conversion symptoms showed poorer performance within attention, executive function, and memory domains. Poorer performance was reflected in more errors on specific tests: Switching of Attention (t(79) = 2.17, p = .03); Verbal Interference (t(72) = 2.64, p = .01); Go/No-Go (t(73) = 2.20, p = .03); Memory Recall and Verbal Learning (interference errors for memory recall; t(61) = 3.13, p conversion symptoms have a reduced capacity to manipulate and retain information, to block interfering information, and to inhibit responses, all of which are required for effective attention, executive function, and memory. © 2014 The British Psychological Society.

  15. Altered tissue mineralization, increased hepatic lipid and inhibited ...

    African Journals Online (AJOL)

    Mineral homeostasis is often disrupted in intrauterine growth retardation (IUGR) infants. Most studies focus on calcium or phosphorus metabolism of IUGR infants via determining serum mineral concentrations instead of tissues. This study was conducted to investigate the effects of IUGR on the mineralization and ...

  16. Increased thyroidal T4 to T3 conversion in autonomously functioning thyroid adenoma: from euthyroidism to thyrotoxicosis.

    LENUS (Irish Health Repository)

    Solter, M

    2012-01-31

    AIM: The aim was to investigate whether the intrathyroid conversion of T4 to T3 in autonomously functioning thyroid adenoma (AFTA) tissue could influence serum T3 levels and suppression of TSH, especially in patients with borderline thyroid function. PATIENTS AND METHODS: In ten patients with AFTA, thyroidal conversion of T4 to T3 was investigated in nodular and paranodular, TSH-suppressed tissue. All patients had normal serum T4 and suppressed TSH. Serum T3 was normal in six, and borderline or slightly increased in four. AFTA and paranodular tissues were surgically removed and frozen at -70 degrees C, then homogenized in a glass homogenizer, centrifuged at 100,000xg, and particulate fraction collected as a pellet. Analysis mixture consisted of thyroid enzyme suspension in 50 mumol\\/L TRIS buffer with 5 mumol DTT and 200 muL 1.3 mumol T4. Incubation was performed at 37 degrees C and the generation of T3 measured after 5, 10, 20 and 40 minutes respectively. RESULTS: T3 production (pmol\\/mg protein) was significantly higher in AFTA than in paranodular tissues (8.8 1.2\\/Mean +\\/- SE\\/vs. 1.8 +\\/- 0.2; p<0.01), and excessively high (9.8, 14.1, 14.2 and 15.0) in four patients with borderline or slightly supranormal serum T3. A significant correlation was found between serum T3 concentrations and T3 generation (T4 conversion) in AFTA tissues. CONCLUSION: Results suggest that increased thyroidal T4 to T3 conversion in AFTA tissue could be involved in an increased delivery of T3, increased serum T3 and suppressed serum TSH, particularly in patients with the disease evolving from euthyroid to an early hyperthyroid phase.

  17. Potency of a novel saw palmetto ethanol extract, SPET-085, for inhibition of 5alpha-reductase II.

    Science.gov (United States)

    Pais, Pilar

    2010-08-01

    The nicotinamide adenine dinucleotide phosphate (NADPH)-dependent membrane protein 5alpha-reductase irreversibly catalyses the conversion of testosterone to the most potent androgen, 5alpha-dihydrotestosterone (DHT). In humans, two 5alpha-reductase isoenyzmes are expressed: type I and type II. Type II is found primarily in prostate tissue. Saw palmetto extract (SPE) has been widely used for the treatment of lower urinary tract symptoms secondary to benign prostatic hyperplasia (BPH). The mechanisms of the pharmacological effects of SPE include the inhibition of 5alpha-reductase, among other actions. Clinical studies of SPE have been equivocal, with some showing significant results and others not. These inconsistent results may be due, in part, to varying bioactivities of the SPE used in the studies. The aim of the present study was to determine the in vitro potency of a novel saw palmetto ethanol extract (SPET-085), an inhibitor of the 5alpha-reductase isoenzyme type II, in a cell-free test system. On the basis of the enzymatic conversion of the substrate androstenedione to the 5alpha-reduced product 5alpha-androstanedione, the inhibitory potency was measured and compared to those of finasteride, an approved 5alpha-reductase inhibitor. SPET-085 concentration-dependently inhibited 5alpha-reductase type II in vitro (IC(50)=2.88+/-0.45 microg/mL). The approved 5alpha-reductase inhibitor, finasteride, tested as positive control, led to 61% inhibition of 5alpha-reductase type II. SPET-085 effectively inhibits the enzyme that has been linked to BPH, and the amount of extract required for activity is very low compared to data reported for other extracts. It can be concluded from data in the literature that SPET-085 is as effective as a hexane extract of saw palmetto that exhibited the highest levels of bioactivity, and is more effective than other SPEs tested. This study confirmed that SPET-085 has prostate health-promoting bioactivity that also corresponds favorably to

  18. The mTOR inhibitor sirolimus suppresses renal, hepatic, and cardiac tissue cellular respiration.

    Science.gov (United States)

    Albawardi, Alia; Almarzooqi, Saeeda; Saraswathiamma, Dhanya; Abdul-Kader, Hidaya Mohammed; Souid, Abdul-Kader; Alfazari, Ali S

    2015-01-01

    The purpose of this in vitro study was to develop a useful biomarker (e.g., cellular respiration, or mitochondrial O2 consumption) for measuring activities of mTOR inhibitors. It measured the effects of commonly used immunosuppressants (sirolimus-rapamycin, tacrolimus, and cyclosporine) on cellular respiration in target tissues (kidney, liver, and heart) from C57BL/6 mice. The mammalian target of rapamycin (mTOR), a serine/ threonine kinase that supports nutrient-dependent cell growth and survival, is known to control energy conversion processes within the mitochondria. Consistently, inhibitors of mTOR (e.g., rapamycin, also known as sirolimus or Rapamune®) have been shown to impair mitochondrial function. Inhibitors of the calcium-dependent serine/threonine phosphatase calcineurin (e.g., tacrolimus and cyclosporine), on the other hand, strictly prevent lymphokine production leading to a reduced T-cell function. Sirolimus (10 μM) inhibited renal (22%, P=0.002), hepatic (39%, Prespiration. Tacrolimus and cyclosporine had no or minimum effects on cellular respiration in these tissues. Thus, these results clearly demonstrate that impaired cellular respiration (bioenergetics) is a sensitive biomarker of the immunosuppressants that target mTOR.

  19. The DHEA-sulfate depot following P450c17 inhibition supports the case for AKR1C3 inhibition in high risk localized and advanced castration resistant prostate cancer.

    Science.gov (United States)

    Tamae, Daniel; Mostaghel, Elahe; Montgomery, Bruce; Nelson, Peter S; Balk, Steven P; Kantoff, Philip W; Taplin, Mary-Ellen; Penning, Trevor M

    2015-06-05

    Prostate cancer is the second leading cause of cancer death in the United States. Treatment of localized high-risk disease and de novo metastatic disease frequently leads to relapse. These metastatic castration resistant prostate cancers (mCRPC) claim a high mortality rate, despite the extended survival afforded by the growing armamentarium of androgen deprivation, radiation and immunotherapies. Here, we review two studies of neoadjuvant treatment of high-risk localized prostate cancer prior to prostatectomy, the total androgen pathway suppression (TAPS) trial and the neoadjuvant abiraterone acetate (AA) trial. These two trials assessed the efficacy of the non-specific P450c17 inhibitor, ketoconazole and the specific P450c17 inhibitor, AA, to inhibit tissue and serum androgen levels. Furthermore, a novel and validated stable isotope dilution liquid chromatography electrospray ionization selected reaction monitoring mass spectrometry assay was used to accurately quantify adrenal and gonadal androgens in circulation during the course of these trials. The adrenal androgens, Δ(4)-androstene-3,17-dione, dehydroepiandrosterone and dehydroepiandrosterone sulfate were significantly reduced in the patients receiving ketoconazole or AA compared to those who did not. However, in both trials, a significant amount of DHEA-S (∼20 μg/dL) persists and thus may serve as a depot for intratumoral conversion to the potent androgen receptor ligands, testosterone (T) and 5α-dihydrotestosterone (DHT). The final step in conversion of Δ(4)-androstene-3,17-dione and 5α-androstanedione to T and DHT, respectively, is catalyzed by AKR1C3. We therefore present the case that in the context of the DHEA-S depot, P450c17 and AKR1C3 inhibition may be an effective combinatorial treatment strategy. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. The role of conversation in health care interventions: enabling sensemaking and learning.

    Science.gov (United States)

    Jordan, Michelle E; Lanham, Holly J; Crabtree, Benjamin F; Nutting, Paul A; Miller, William L; Stange, Kurt C; McDaniel, Reuben R

    2009-03-13

    Those attempting to implement changes in health care settings often find that intervention efforts do not progress as expected. Unexpected outcomes are often attributed to variation and/or error in implementation processes. We argue that some unanticipated variation in intervention outcomes arises because unexpected conversations emerge during intervention attempts. The purpose of this paper is to discuss the role of conversation in shaping interventions and to explain why conversation is important in intervention efforts in health care organizations. We draw on literature from sociolinguistics and complex adaptive systems theory to create an interpretive framework and develop our theory. We use insights from a fourteen-year program of research, including both descriptive and intervention studies undertaken to understand and assist primary care practices in making sustainable changes. We enfold these literatures and these insights to articulate a common failure of overlooking the role of conversation in intervention success, and to develop a theoretical argument for the importance of paying attention to the role of conversation in health care interventions. Conversation between organizational members plays an important role in the success of interventions aimed at improving health care delivery. Conversation can facilitate intervention success because interventions often rely on new sensemaking and learning, and these are accomplished through conversation. Conversely, conversation can block the success of an intervention by inhibiting sensemaking and learning. Furthermore, the existing relationship contexts of an organization can influence these conversational possibilities. We argue that the likelihood of intervention success will increase if the role of conversation is considered in the intervention process. The generation of productive conversation should be considered as one of the foundations of intervention efforts. We suggest that intervention facilitators

  1. The role of conversation in health care interventions: enabling sensemaking and learning

    Directory of Open Access Journals (Sweden)

    Stange Kurt C

    2009-03-01

    Full Text Available Abstract Background Those attempting to implement changes in health care settings often find that intervention efforts do not progress as expected. Unexpected outcomes are often attributed to variation and/or error in implementation processes. We argue that some unanticipated variation in intervention outcomes arises because unexpected conversations emerge during intervention attempts. The purpose of this paper is to discuss the role of conversation in shaping interventions and to explain why conversation is important in intervention efforts in health care organizations. We draw on literature from sociolinguistics and complex adaptive systems theory to create an interpretive framework and develop our theory. We use insights from a fourteen-year program of research, including both descriptive and intervention studies undertaken to understand and assist primary care practices in making sustainable changes. We enfold these literatures and these insights to articulate a common failure of overlooking the role of conversation in intervention success, and to develop a theoretical argument for the importance of paying attention to the role of conversation in health care interventions. Discussion Conversation between organizational members plays an important role in the success of interventions aimed at improving health care delivery. Conversation can facilitate intervention success because interventions often rely on new sensemaking and learning, and these are accomplished through conversation. Conversely, conversation can block the success of an intervention by inhibiting sensemaking and learning. Furthermore, the existing relationship contexts of an organization can influence these conversational possibilities. We argue that the likelihood of intervention success will increase if the role of conversation is considered in the intervention process. Summary The generation of productive conversation should be considered as one of the foundations of

  2. Autophagy contributes to gefitinib-induced glioma cell growth inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Cheng-Yi [Department of Surgery, Fong-Yuan Hospital, Taichung 420, Taiwan (China); Graduate Institute of Pharmaceutical Science and Technology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan (China); Kuan, Yu-Hsiang [Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan (China); Department of Pharmacy, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China); Ou, Yen-Chuan; Li, Jian-Ri [Division of Urology, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Wu, Chih-Cheng [Department of Anesthesiology, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Department of Financial and Computational Mathematics, Providence University, Taichung 433, Taiwan (China); Pan, Pin-Ho [Department of Pediatrics, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan (China); Chen, Wen-Ying [Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan (China); Huang, Hsuan-Yi [Department of Surgery, Fong-Yuan Hospital, Taichung 420, Taiwan (China); Chen, Chun-Jung, E-mail: cjchen@vghtc.gov.tw [Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402, Taiwan (China); Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan (China); Center for General Education, Tunghai University, Taichung 407, Taiwan (China); Department of Nursing, HungKuang University, Taichung 433, Taiwan (China)

    2014-09-10

    Epidermal growth factor receptor tyrosine kinase inhibitors, including gefitinib, have been evaluated in patients with malignant gliomas. However, the molecular mechanisms involved in gefitinib-mediated anticancer effects against glioma are incompletely understood. In the present study, the cytostatic potential of gefitinib was demonstrated by the inhibition of glioma cell growth, long-term clonogenic survival, and xenograft tumor growth. The cytostatic consequences were accompanied by autophagy, as evidenced by monodansylcadaverine staining of acidic vesicle formation, conversion of microtubule-associated protein-1 light chain 3-II (LC3-II), degradation of p62, punctate pattern of GFP-LC3, and conversion of GFP-LC3 to cleaved-GFP. Autophagy inhibitor 3-methyladenosine and chloroquine and genetic silencing of LC3 or Beclin 1 attenuated gefitinib-induced growth inhibition. Gefitinib-induced autophagy was not accompanied by the disruption of the Akt/mammalian target of rapamycin signaling. Instead, the activation of liver kinase-B1/AMP-activated protein kinase (AMPK) signaling correlated well with the induction of autophagy and growth inhibition caused by gefitinib. Silencing of AMPK suppressed gefitinib-induced autophagy and growth inhibition. The crucial role of AMPK activation in inducing glioma autophagy and growth inhibition was further supported by the actions of AMP mimetic AICAR. Gefitinib was shown to be capable of reducing the proliferation of glioma cells, presumably by autophagic mechanisms involving AMPK activation. - Highlights: • Gefitinib causes cytotoxic and cytostatic effect on glioma. • Gefitinib induces autophagy. • Gefitinib causes cytostatic effect through autophagy. • Gefitinib induces autophagy involving AMPK.

  3. Autophagy contributes to gefitinib-induced glioma cell growth inhibition

    International Nuclear Information System (INIS)

    Chang, Cheng-Yi; Kuan, Yu-Hsiang; Ou, Yen-Chuan; Li, Jian-Ri; Wu, Chih-Cheng; Pan, Pin-Ho; Chen, Wen-Ying; Huang, Hsuan-Yi; Chen, Chun-Jung

    2014-01-01

    Epidermal growth factor receptor tyrosine kinase inhibitors, including gefitinib, have been evaluated in patients with malignant gliomas. However, the molecular mechanisms involved in gefitinib-mediated anticancer effects against glioma are incompletely understood. In the present study, the cytostatic potential of gefitinib was demonstrated by the inhibition of glioma cell growth, long-term clonogenic survival, and xenograft tumor growth. The cytostatic consequences were accompanied by autophagy, as evidenced by monodansylcadaverine staining of acidic vesicle formation, conversion of microtubule-associated protein-1 light chain 3-II (LC3-II), degradation of p62, punctate pattern of GFP-LC3, and conversion of GFP-LC3 to cleaved-GFP. Autophagy inhibitor 3-methyladenosine and chloroquine and genetic silencing of LC3 or Beclin 1 attenuated gefitinib-induced growth inhibition. Gefitinib-induced autophagy was not accompanied by the disruption of the Akt/mammalian target of rapamycin signaling. Instead, the activation of liver kinase-B1/AMP-activated protein kinase (AMPK) signaling correlated well with the induction of autophagy and growth inhibition caused by gefitinib. Silencing of AMPK suppressed gefitinib-induced autophagy and growth inhibition. The crucial role of AMPK activation in inducing glioma autophagy and growth inhibition was further supported by the actions of AMP mimetic AICAR. Gefitinib was shown to be capable of reducing the proliferation of glioma cells, presumably by autophagic mechanisms involving AMPK activation. - Highlights: • Gefitinib causes cytotoxic and cytostatic effect on glioma. • Gefitinib induces autophagy. • Gefitinib causes cytostatic effect through autophagy. • Gefitinib induces autophagy involving AMPK

  4. Measurement of the tissue to A-150 tissue equivalent plastic kerma ratio at two p(66)Be neutron therapy facilities

    International Nuclear Information System (INIS)

    Langen, K M; Binns, P J; Schreuder, A N; Lennox, A J; Deluca, P M Jr.

    2003-01-01

    The ICRU tissue to A-150 tissue equivalent plastic kerma ratio is needed for neutron therapy dosimetry. The current ICRU protocol for neutron dosimetry recommends using a common conversion factor of 0.95 at all high-energy neutron therapy facilities. In an effort to determine facility specific ICRU tissue to A-150 plastic kerma ratios, an experimental approach was pursued. Four low pressure proportional counters that differed in wall materials (i.e. A-150, carbon, zirconium and zirconium-oxide) were used as dosimeters and integral kerma ratios were determined directly in the clinical beam. Measurements were performed at two p(66)Be facilities: iThemba LABS near Cape Town and Fermilab near Chicago. At the iThemba facility the clinical neutron beam is routinely filtered by a flattening and hardening filter combination. The influence of beam filtration on the kerma ratio was evaluated. Using two recent gas-to-wall dose conversion factor (r m,g value) evaluations a mean ICRU tissue to A-150 plastic kerma ratio of 0.93 ± 0.05 was determined for the clinical beam at iThemba LABS. The respective value for the Fermilab beam is 0.95 ± 0.05. The experimentally determined ICRU tissue to A-150 plastic kerma ratios for the two clinical beams are in agreement with theoretical evaluations. Beam filtration reduces the kerma ratio by 3 ± 2%

  5. Calculation of neutron fluence-to-dose conversion factors for extremities

    International Nuclear Information System (INIS)

    Stewart, R.D.; Harty, R.; McDonald, J.C.; Tanner, J.E.

    1993-04-01

    The Pacific Northwest Laboratory is developing a standard for the performance testing of personnel extremity dosimeters for the US Department of Energy. Part of this effort requires the calculation of neutron fluence-to-dose conversion factors for finger and wrist extremities. This study focuses on conversion factors for two types of extremity models: namely the polymethyl methacrylate (PMMA) phantom (as specified in the draft standard for performance testing of extremity dosimeters) and more realistic extremity models composed of tissue-and-bone. Calculations for each type of model are based on both bare and D 2 O-moderated 252 Cf sources. The results are then tabulated and compared with whole-body conversion factors. More appropriate energy-averaged quality factors for the extremity models have also been computed from the neutron fluence in 50 equally spaced energy bins with energies from 2.53 x 10 -8 to 15 MeV. Tabulated results show that conversion factors for both types of extremity phantom are 15 to 30% lower than the corresponcung whole-body phantom conversion factors for 252 Cf neutron sources. This difference in extremity and whole-body conversion factors is attributable to the proportionally smaller amount of back-scattering that occurs in the extremity phantoms compared with whole-body phantoms

  6. Dissecting engineered cell types and enhancing cell fate conversion via CellNet

    Science.gov (United States)

    Morris, Samantha A.; Cahan, Patrick; Li, Hu; Zhao, Anna M.; San Roman, Adrianna K.; Shivdasani, Ramesh A.; Collins, James J.; Daley, George Q.

    2014-01-01

    SUMMARY Engineering clinically relevant cells in vitro holds promise for regenerative medicine, but most protocols fail to faithfully recapitulate target cell properties. To address this, we developed CellNet, a network biology platform that determines whether engineered cells are equivalent to their target tissues, diagnoses aberrant gene regulatory networks, and prioritizes candidate transcriptional regulators to enhance engineered conversions. Using CellNet, we improved B cell to macrophage conversion, transcriptionally and functionally, by knocking down predicted B cell regulators. Analyzing conversion of fibroblasts to induced hepatocytes (iHeps), CellNet revealed an unexpected intestinal program regulated by the master regulator Cdx2. We observed long-term functional engraftment of mouse colon by iHeps, thereby establishing their broader potential as endoderm progenitors and demonstrating direct conversion of fibroblasts into intestinal epithelium. Our studies illustrate how CellNet can be employed to improve direct conversion and to uncover unappreciated properties of engineered cells. PMID:25126792

  7. Dietary Phenolic Compounds Interfere with the Fate of Hydrogen Peroxide in Human Adipose Tissue but Do Not Directly Inhibit Primary Amine Oxidase Activity

    Directory of Open Access Journals (Sweden)

    Christian Carpéné

    2016-01-01

    Full Text Available Resveratrol has been reported to inhibit monoamine oxidases (MAO. Many substrates or inhibitors of neuronal MAO interact also with other amine oxidases (AO in peripheral organs, such as semicarbazide-sensitive AO (SSAO, known as primary amine oxidase, absent in neurones, but abundant in adipocytes. We asked whether phenolic compounds (resveratrol, pterostilbene, quercetin, and caffeic acid behave as MAO and SSAO inhibitors. AO activity was determined in human adipose tissue. Computational docking and glucose uptake assays were performed in 3D models of human AO proteins and in adipocytes, respectively. Phenolic compounds fully inhibited the fluorescent detection of H2O2 generated during MAO and SSAO activation by tyramine and benzylamine. They also quenched H2O2-induced fluorescence in absence of biological material and were unable to abolish the oxidation of radiolabelled tyramine and benzylamine. Thus, phenolic compounds hampered H2O2 detection but did not block AO activity. Only resveratrol and quercetin partially impaired MAO-dependent [14C]-tyramine oxidation and behaved as MAO inhibitors. Phenolic compounds counteracted the H2O2-dependent benzylamine-stimulated glucose transport. This indicates that various phenolic compounds block downstream effects of H2O2 produced by biogenic or exogenous amine oxidation without directly inhibiting AO. Phenolic compounds remain of interest regarding their capacity to limit oxidative stress rather than inhibiting AO.

  8. Bevacizumab Inhibits Breast Cancer-Induced Osteolysis, Surrounding Soft Tissue Metastasis, and Angiogenesis in Rats as Visualized by VCT and MRI

    Directory of Open Access Journals (Sweden)

    Tobias Bäuerle

    2008-05-01

    Full Text Available The aim of this study was to evaluate the effect of an antiangiogenic treatment with the vascular endothelial growth factor antibody bevacizumab in an experimental model of breast cancer bone metastasis and to monitor osteolysis, soft tissue tumor, and angiogenesis in bone metastasis noninvasively by volumetric computed tomography (VCT and magnetic resonance imaging (MRI. After inoculation of MDA-MB-231 human breast cancer cells into nude rats, bone metastasis was monitored with contrast-enhanced VCT and MRI from day 30 to day 70 after tumor cell inoculation, respectively. Thereby, animals of the treatment group (10 mg/kg bevacizumab IV weekly, n = 15 were compared with sham-treated animals (n = 17. Treatment with bevacizumab resulted in a significant difference versus control in osteolytic as well as soft tissue lesion sizes (days 50 to 70 and 40 to 70 after tumor cell inoculation, respectively; P < .05. This observation was paralleled with significantly reduced vascularization in the treatment group as shown by reduced increase in relative signal intensity in dynamic contrast-enhanced MRI from days 40 to 70 (P < .05. Contrast-enhanced VCT and histology confirmed decreased angiogenesis as well as new bone formation after application of bevacizumab. In conclusion, bevacizumab significantly inhibited osteolysis, surrounding soft tissue tumor growth, and angiogenesis in an experimental model of breast cancer bone metastasis as visualized by VCT and MRI.

  9. Tissue type plasminogen activator regulates myeloid-cell dependent neoangiogenesis during tissue regeneration

    DEFF Research Database (Denmark)

    Ohki, Makiko; Ohki, Yuichi; Ishihara, Makoto

    2010-01-01

    tissue regeneration is not well understood. Bone marrow (BM)-derived myeloid cells facilitate angiogenesis during tissue regeneration. Here, we report that a serpin-resistant form of tPA by activating the extracellular proteases matrix metalloproteinase-9 and plasmin expands the myeloid cell pool......-A. Remarkably, transplantation of BM-derived tPA-mobilized CD11b(+) cells and VEGFR-1(+) cells, but not carrier-mobilized cells or CD11b(-) cells, accelerates neovascularization and ischemic tissue regeneration. Inhibition of VEGF signaling suppresses tPA-induced neovascularization in a model of hind limb...... and mobilizes CD45(+)CD11b(+) proangiogenic, myeloid cells, a process dependent on vascular endothelial growth factor-A (VEGF-A) and Kit ligand signaling. tPA improves the incorporation of CD11b(+) cells into ischemic tissues and increases expression of neoangiogenesis-related genes, including VEGF...

  10. Plasminogen-induced aggregation of PANC-1 cells requires conversion to plasmin and is inhibited by endogenous plasminogen activator inhibitor-1.

    Science.gov (United States)

    Deshet, Naamit; Lupu-Meiri, Monica; Espinoza, Ingrid; Fili, Oded; Shapira, Yuval; Lupu, Ruth; Gershengorn, Marvin C; Oron, Yoram

    2008-09-01

    PANC-1 cells express proteinase-activated receptors (PARs)-1, -2, and respond to their activation by transient elevation of cytosolic [Ca(2+)] and accelerated aggregation (Wei et al., 2006, J Cell Physiol 206:322-328). We studied the effect of plasminogen (PGN), an inactive precursor of the PAR-1-activating protease, plasmin (PN) on aggregation of pancreatic adenocarcinoma (PDAC) cells. A single dose of PGN time- and dose-dependently promoted PANC-1 cells aggregation in serum-free medium, while PN did not. PANC-1 cells express urokinase plasminogen activator (uPA), which continuously converted PGN to PN. This activity and PGN-induced aggregation were inhibited by the uPA inhibitor amiloride. PGN-induced aggregation was also inhibited by alpha-antiplasmin and by the PN inhibitor epsilon-aminocaproic acid (EACA). Direct assay of uPA activity revealed very low rate, markedly enhanced in the presence of PGN. Moreover, in PGN activator inhibitor 1-deficient PANC-1 cells, uPA activity and PGN-induced aggregation were markedly potentiated. Two additional human PDAC cell lines, MiaPaCa and Colo347, were assayed for PGN-induced aggregation. Both cell lines responded by aggregation and exhibited PGN-enhanced uPA activity. We hypothesized that the continuous conversion of PGN to PN by endogenous uPA is limited by PN's degradation and negatively controlled by endogenously produced PAI-1. Indeed, we found that PANC-1 cells inactivate PN with t1/2 of approximately 7 h, while the continuous addition of PN promoted aggregation. Our data suggest that PANC-1 cells possess intrinsic, PAI-1-sensitive mechanism for promotion of aggregation and differentiation by prolonged exposure to PGN and, possibly, additional precursors of PARs agonists.

  11. Tribbles 3 inhibits brown adipocyte differentiation and function by suppressing insulin signaling

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ha-Won; Choi, Ran Hee; McClellan, Jamie L. [Division of Applied Physiology, Department of Exercise Science, University of South Carolina, Columbia, SC 29208 (United States); Piroli, Gerardo G.; Frizzell, Norma [Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208 (United States); Tseng, Yu-Hua; Goodyear, Laurie J. [Research Division, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA 02215 (United States); Koh, Ho-Jin, E-mail: kohh@mailbox.sc.edu [Division of Applied Physiology, Department of Exercise Science, University of South Carolina, Columbia, SC 29208 (United States)

    2016-02-19

    Recent studies have demonstrated that adult humans have substantial amounts of functioning brown adipose tissue (BAT). Since BAT has been implicated as an anti-obese and anti-diabetic tissue, it is important to understand the signaling molecules that regulate BAT function. There has been a link between insulin signaling and BAT metabolism as deletion or pharmaceutical inhibition of insulin signaling impairs BAT differentiation and function. Tribbles 3 (TRB3) is a pseudo kinase that has been shown to regulate metabolism and insulin signaling in multiple tissues but the role of TRB3 in BAT has not been studied. In this study, we found that TRB3 expression was present in BAT and overexpression of TRB3 in brown preadipocytes impaired differentiation and decreased expression of BAT markers. Furthermore, TRB3 overexpression resulted in significantly lower oxygen consumption rates for basal and proton leakage, indicating decreased BAT activity. Based on previous studies showing that deletion or pharmaceutical inhibition of insulin signaling impairs BAT differentiation and function, we assessed insulin signaling in brown preadipocytes and BAT in vivo. Overexpression of TRB3 in cells impaired insulin-stimulated IRS1 and Akt phosphorylation, whereas TRB3KO mice displayed improved IRS1 and Akt phosphorylation. Finally, deletion of IRS1 abolished the function of TRB3 to regulate BAT differentiation and metabolism. These data demonstrate that TRB3 inhibits insulin signaling in BAT, resulting in impaired differentiation and function. - Highlights: • TRB3 is expressed in brown adipose tissue and its expression is increased during differentiation. • Overexpression of TRB3 inhibits differentiation and its activity. • Overexpression of TRB3 in brown preadipocytes inhibits insulin signaling. • TRB3KO mice displays improved insulin signaling in brown adipose tissue. • Insulin signaling is required for the effects of TRB3 to regulate brown adipose tissue differentiation and

  12. Tribbles 3 inhibits brown adipocyte differentiation and function by suppressing insulin signaling

    International Nuclear Information System (INIS)

    Jeong, Ha-Won; Choi, Ran Hee; McClellan, Jamie L.; Piroli, Gerardo G.; Frizzell, Norma; Tseng, Yu-Hua; Goodyear, Laurie J.; Koh, Ho-Jin

    2016-01-01

    Recent studies have demonstrated that adult humans have substantial amounts of functioning brown adipose tissue (BAT). Since BAT has been implicated as an anti-obese and anti-diabetic tissue, it is important to understand the signaling molecules that regulate BAT function. There has been a link between insulin signaling and BAT metabolism as deletion or pharmaceutical inhibition of insulin signaling impairs BAT differentiation and function. Tribbles 3 (TRB3) is a pseudo kinase that has been shown to regulate metabolism and insulin signaling in multiple tissues but the role of TRB3 in BAT has not been studied. In this study, we found that TRB3 expression was present in BAT and overexpression of TRB3 in brown preadipocytes impaired differentiation and decreased expression of BAT markers. Furthermore, TRB3 overexpression resulted in significantly lower oxygen consumption rates for basal and proton leakage, indicating decreased BAT activity. Based on previous studies showing that deletion or pharmaceutical inhibition of insulin signaling impairs BAT differentiation and function, we assessed insulin signaling in brown preadipocytes and BAT in vivo. Overexpression of TRB3 in cells impaired insulin-stimulated IRS1 and Akt phosphorylation, whereas TRB3KO mice displayed improved IRS1 and Akt phosphorylation. Finally, deletion of IRS1 abolished the function of TRB3 to regulate BAT differentiation and metabolism. These data demonstrate that TRB3 inhibits insulin signaling in BAT, resulting in impaired differentiation and function. - Highlights: • TRB3 is expressed in brown adipose tissue and its expression is increased during differentiation. • Overexpression of TRB3 inhibits differentiation and its activity. • Overexpression of TRB3 in brown preadipocytes inhibits insulin signaling. • TRB3KO mice displays improved insulin signaling in brown adipose tissue. • Insulin signaling is required for the effects of TRB3 to regulate brown adipose tissue differentiation and

  13. MicroRNA-145 Inhibits Cell Migration and Invasion and Regulates Epithelial-Mesenchymal Transition (EMT) by Targeting Connective Tissue Growth Factor (CTGF) in Esophageal Squamous Cell Carcinoma.

    Science.gov (United States)

    Han, Qiang; Zhang, Hua-Yong; Zhong, Bei-Long; Wang, Xiao-Jing; Zhang, Bing; Chen, Hua

    2016-10-23

    BACKGROUND This study investigated the mechanism of miR-145 in targeting connective tissue growth factor (CTGF), which affects the proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of ESCC cells. MATERIAL AND METHODS A total of 50 ESCC tissues and their corresponding normal adjacent esophageal tissue samples were collected. Then, miR-145 expression in both ESCC clinical specimens and cell lines was detected using quantitative real-time PCR. CTGF protein was detected using immunohistochemistry. Dual luciferase reporter gene assay was employed to assess the effect of miR-145 on the 3'UTR luciferase activity of CTGF. Eca109 cells were transfected with miR-145 mimics and CTGF siRNA, respectively, and changes in cellular proliferation, migration, and invasion were detected via MTT assay, wound-healing assay, and Transwell assay, respectively. Western blotting assay was used to detect the expression of marker genes related to EMT. RESULTS MiR-145 was significantly down-regulated in ESCC tissues and cell lines compared with normal tissues and cell lines (Ptissues was than in normal adjacent esophageal tissues (Ptissues and cell lines, while the protein expression of CTGF exhibited the opposite trend. MiR-145 inhibited the proliferation, migration, invasiveness, and the EMT process of ESCC cells through targeted regulation of CTGF expression.

  14. Energy-efficient biogas reforming process to produce syngas: The enhanced methane conversion by O_2

    International Nuclear Information System (INIS)

    Chen, Xuejing; Jiang, Jianguo; Li, Kaimin; Tian, Sicong; Yan, Feng

    2017-01-01

    Highlights: • The effect of O_2 content from 0 to 15% on Ni/SiO_2 are studied for biogas reforming. • The presence of O_2 in biogas improves CH_4 conversion and stability of biogas reforming. • An obvious carbon-resistance effect is observed due to the carbon gasification effect of O_2 in biogas. • The presence of O_2 in biogas greatly helps inhibit the catalyst sintering. - Abstract: We report an energy-efficient biogas reforming process with high and stable methane conversions by O_2 presence. During this biogas reforming process, the effects of various O_2 concentrations in biogas on initial conversions and stability at various temperatures on a Ni/SiO_2 catalyst were detailed investigated. In addition, theoretical energy consumption and conversions were calculated based on the Gibbs energy minimization method to compare with experimental results. Carbon formation and sintering during the reforming process were characterized by thermal gravity analysis, the Brunauer-Emmett-Teller method, X-ray diffraction, and high-resolution transmission electron microscopy to investigate the feasibility of applying this process to an inexpensive nickel catalyst. The results showed that 5% O_2 in biogas improved the CH_4 conversion and stability of biogas reforming. The enhancement of stability was attributed to the inhibited sintering, our first finding, and the reduced carbon deposition at the same time, which sustained a stable conversion of CH_4, and proved the applicability of base Ni catalyst to this process. Higher O_2 concentrations (⩾10%) in biogas resulted in severe decrease in CO_2 conversion and greater H_2O productivity. Our proposed biogas reforming process, with a high and stable conversion of CH_4, reduced energy input, and the applicability to inexpensive base metal catalyst, offers a good choice for biogas reforming with low O_2 concentrations (⩽5%) to produce syngas with high energy efficiency.

  15. Requirements' Role in Mobilizing and Enabling Design Conversation

    Science.gov (United States)

    Bergman, Mark

    Requirements play a critical role in a design conversation of systems and products. Product and system design exists at the crossroads of problems, solutions and requirements. Requirements contextualize problems and solutions, pointing the way to feasible outcomes. These are captured with models and detailed specifications. Still, stakeholders need to be able to understand one-another using shared design representations in order to mobilize bias and transform knowledge towards legitimized, desired results. Many modern modeling languages, including UML, as well as detailed, logic-based specifications are beyond the comprehension of key stakeholders. Hence, they inhibit, rather than promote design conversation. Improved design boundary objects (DBO), especially design requirements boundary objects (DRBO), need to be created and refined to improve the communications between principals. Four key features of design boundary objects that improve and promote design conversation are discussed in detail. A systems analysis and design case study is presented which demonstrates these features in action. It describes how a small team of analysts worked with key stakeholders to mobilize and guide a complex system design discussion towards an unexpected, yet desired outcome within a short time frame.

  16. Estradiol inhibits hepatic stellate cell area and collagen synthesis in the chicken liver.

    Science.gov (United States)

    Nishimura, Shotaro; Teshima, Akifumi; Kawabata, Fuminori; Tabata, Shoji

    2017-11-01

    Hepatic stellate cells (HSCs) are the main collagen-producing cells in the liver. The HSC area and amount of collagen fibers are different between male and female chickens. This study was performed to confirm the effect of estradiol on collagen synthesis in the growing chicken liver. Blood estradiol levels in chicks were compared at 4 and 8 weeks of age, and the collagen fibril network in liver tissue was observed at 8 weeks by scanning electron microscopy. Intraperitoneal administrations of estradiol and tamoxifen to male and female chicks, respectively, were performed daily from 5 to 8 weeks of age. The areas of HSCs and collagen contents were measured in the liver tissue. The blood estradiol level was higher in females than in males, and the collagen fibril network was denser in males than in females at 8 weeks of age. Estradiol administration in males induced decreases in the HSC area and collagen content of the liver. Conversely, tamoxifen administration in females induced an increase in the HSC area but did not facilitate collagen synthesis. Based on these results, estradiol inhibits the area and collagen synthesis of HSCs in the growing chicken liver under normal physiological conditions. © 2017 Japanese Society of Animal Science.

  17. Inhibition of hematopoietic prostaglandin D2 synthase (H-PGDS) by an alkaloid extract from Combretum molle.

    Science.gov (United States)

    Moyo, Rejoice; Chimponda, Theresa; Mukanganyama, Stanley

    2014-07-05

    Hematopoietic prostaglandin D2 synthase (H-PGDS, GST Sigma) is a member of the glutathione S-transferase super family of enzymes that catalyses the conjugation of electrophilic substances with reduced glutathione. The enzyme catalyses the conversion of PGH2 to PGD2 which mediates inflammatory responses. The inhibition of H-PGDS is of importance in alleviating damage to tissues due to unwarranted synthesis of PGD2. Combretum molle has been used in African ethno medicinal practices and has been shown to reduce fever and pain. The effect of C. molle alkaloid extract on H-PGDS was thus, investigated. H-PGDS was expressed in Escherichia coli XL1-Blue cells and purified using nickel immobilized metal affinity chromatography. The effect of C. molle alkaloid extract on H-PGDS activity was determined with 1-chloro-2, 4-dinitrobenzene (CDNB) as substrate. The effect of C. molle alkaloid extract with time on H-PGDS was determined. The mechanism of inhibition was then investigated using CDNB and glutathione (GSH) as substrates. A specific activity of 24 μmol/mg/min was obtained after H-PGDS had been purified. The alkaloid extract exhibited a 70% inhibition on H-PGDS with an IC50 of 13.7 μg/ml. C. molle alkaloid extract showed an uncompetitive inhibition of H-PGDS with Ki = 41 μg/ml towards GSH, and non-competitive inhibition towards CDNB with Ki = 7.7 μg/ml and Ki' = 9.2 μg/ml. The data shows that C. molle alkaloid extract is a potent inhibitor of H-PGDS. This study thus supports the traditional use of the plant for inflammation.

  18. Central and peripheral mechanisms of the NPY system in the regulation of bone and adipose tissue.

    Science.gov (United States)

    Shi, Yan-Chuan; Baldock, Paul A

    2012-02-01

    Skeletal research is currently undergoing a period of marked expansion. The boundaries of "bone" research are being re-evaluated and with this, a growing recognition of a more complex and interconnected biology than previously considered. One aspect that has become the focus of particular attention is the relationship between bone and fat homeostasis. Evidence from a number of avenues indicates that bone and adipose regulation are both related and interdependent. This review examines the neuropeptide Y (NPY) system, known to exert powerful control over both bone and fat tissue. The actions of this system are characterized by signaling both within specific nuclei of the hypothalamus and also the target tissues, mediated predominantly through two G-protein coupled receptors (Y1 and Y2). In bone tissue, elevated NPY levels act consistently to repress osteoblast activity. Moreover, both central Y2 receptor and osteoblastic Y1 receptor signaling act similarly to repress bone formation. Conversely, loss of NPY expression or receptor signaling induces increased osteoblast activity and bone mass in both cortical and cancellous envelopes. In fat tissue, NPY action is more complex. Energy homeostasis is powerfully altered by elevations in hypothalamic NPY, resulting in increases in fat accretion and body-wide energy conservation, through the action of locally expressed Y1 receptors, while local Y2 receptors act to inhibit NPY-ergic tone. Loss of central NPY expression has a markedly reduced effect, consistent with a physiological drive to promote fat accretion. In fat tissue, NPY and Y1 receptors act to promote lipogenesis, consistent with their roles in the brain. Y2 receptors expressed in adipocytes also act in this manner, showing an opposing action to their role in the hypothalamus. While direct investigation of these processes has yet to be completed, these responses appear to be interrelated to some degree. The starvation-based signal of elevated central NPY inducing

  19. Equol inhibits growth, induces atresia, and inhibits steroidogenesis of mouse antral follicles in vitro

    International Nuclear Information System (INIS)

    Mahalingam, Sharada; Gao, Liying; Gonnering, Marni; Helferich, William; Flaws, Jodi A.

    2016-01-01

    Equol is a non-steroidal estrogen metabolite produced by microbial conversion of daidzein, a major soy isoflavone, in the gut of some humans and many animal species. Isoflavones and their metabolites can affect endogenous estradiol production, action, and metabolism, potentially influencing ovarian follicle function. However, no studies have examined the effects of equol on intact ovarian antral follicles, which are responsible for sex steroid synthesis and further development into ovulatory follicles. Thus, the present study tested the hypothesis that equol inhibits antral follicle growth, increases follicle atresia, and inhibits steroidogenesis in the adult mouse ovary. To test this hypothesis, antral follicles isolated from adult CD-1 mice were cultured with vehicle control (dimethyl sulfoxide; DMSO) or equol (600 nM, 6 μM, 36 μM, and 100 μM) for 48 and 96 h. Every 24 h, follicle diameters were measured to monitor growth. At 48 and 96 h, the culture medium was subjected to measurement of hormone levels, and the cultured follicles were subjected to gene expression analysis. Additionally, follicles were histologically evaluated for signs of atresia after 96 h of culture. The results indicate that equol (100 μM) inhibited follicle growth, altered the mRNA levels of bcl2-associated X protein and B cell leukemia/lymphoma 2, and induced follicle atresia. Further, equol decreased the levels of estradiol, testosterone, androstenedione, and progesterone, and it decreased mRNA levels of cholesterol side-chain cleavage, steroid 17-α-hydroxalase, and aromatase. Collectively, these data indicate that equol inhibits growth, increases atresia, and inhibits steroidogenesis of cultured mouse antral follicles. - Highlights: • Equol exposure inhibits antral follicle growth. • Equol exposure increases follicle atresia. • Equol exposure inhibits sex steroid hormone levels. • Equol exposure inhibits mRNA levels of certain steroidogenic enzymes.

  20. Equol inhibits growth, induces atresia, and inhibits steroidogenesis of mouse antral follicles in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Mahalingam, Sharada, E-mail: mahalin2@illinois.edu [Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, 2001 S. Lincoln Ave, Urbana, IL 61802 (United States); Gao, Liying, E-mail: lgao@uiuc.edu [Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, 2001 S. Lincoln Ave, Urbana, IL 61802 (United States); Gonnering, Marni, E-mail: mgonne2@illinois.edu [Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, 2001 S. Lincoln Ave, Urbana, IL 61802 (United States); Helferich, William, E-mail: helferic@illinois.edu [Department of Food Science and Human Nutrition, University of Illinois, 905 S. Goodwin, Urbana, IL 61801 (United States); Flaws, Jodi A., E-mail: jflaws@illinois.edu [Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, 2001 S. Lincoln Ave, Urbana, IL 61802 (United States)

    2016-03-15

    Equol is a non-steroidal estrogen metabolite produced by microbial conversion of daidzein, a major soy isoflavone, in the gut of some humans and many animal species. Isoflavones and their metabolites can affect endogenous estradiol production, action, and metabolism, potentially influencing ovarian follicle function. However, no studies have examined the effects of equol on intact ovarian antral follicles, which are responsible for sex steroid synthesis and further development into ovulatory follicles. Thus, the present study tested the hypothesis that equol inhibits antral follicle growth, increases follicle atresia, and inhibits steroidogenesis in the adult mouse ovary. To test this hypothesis, antral follicles isolated from adult CD-1 mice were cultured with vehicle control (dimethyl sulfoxide; DMSO) or equol (600 nM, 6 μM, 36 μM, and 100 μM) for 48 and 96 h. Every 24 h, follicle diameters were measured to monitor growth. At 48 and 96 h, the culture medium was subjected to measurement of hormone levels, and the cultured follicles were subjected to gene expression analysis. Additionally, follicles were histologically evaluated for signs of atresia after 96 h of culture. The results indicate that equol (100 μM) inhibited follicle growth, altered the mRNA levels of bcl2-associated X protein and B cell leukemia/lymphoma 2, and induced follicle atresia. Further, equol decreased the levels of estradiol, testosterone, androstenedione, and progesterone, and it decreased mRNA levels of cholesterol side-chain cleavage, steroid 17-α-hydroxalase, and aromatase. Collectively, these data indicate that equol inhibits growth, increases atresia, and inhibits steroidogenesis of cultured mouse antral follicles. - Highlights: • Equol exposure inhibits antral follicle growth. • Equol exposure increases follicle atresia. • Equol exposure inhibits sex steroid hormone levels. • Equol exposure inhibits mRNA levels of certain steroidogenic enzymes.

  1. D-malate production by permeabilized Pseudomonas pseudoalcaligenes; optimization of conversion and biocatalyst productivity.

    Science.gov (United States)

    Michielsen, M J; Frielink, C; Wijffels, R H; Tramper, J; Beeftink, H H

    2000-04-14

    For the development of a continuous process for the production of solid D-malate from a Ca-maleate suspension by permeabilized Pseudomonas pseudoalcaligenes, it is important to understand the effect of appropriate process parameters on the stability and activity of the biocatalyst. Previously, we quantified the effect of product (D-malate2 -) concentration on both the first-order biocatalyst inactivation rate and on the biocatalytic conversion rate. The effects of the remaining process parameters (ionic strength, and substrate and Ca2 + concentration) on biocatalyst activity are reported here. At (common) ionic strengths below 2 M, biocatalyst activity was unaffected. At high substrate concentrations, inhibition occurred. Ca2+ concentration did not affect biocatalyst activity. The kinetic parameters (both for conversion and inactivation) were determined as a function of temperature by fitting the complete kinetic model, featuring substrate inhibition, competitive product inhibition and first-order irreversible biocatalyst inactivation, at different temperatures simultaneously through three extended data sets of substrate concentration versus time. Temperature affected both the conversion and inactivation parameters. The final model was used to calculate the substrate and biocatalyst costs per mmol of product in a continuous system with biocatalyst replenishment and biocatalyst recycling. Despite the effect of temperature on each kinetic parameter separately, the overall effect of temperature on the costs was found to be negligible (between 293 and 308 K). Within pertinent ranges, the sum of the substrate and biocatalyst costs per mmol of product was calculated to decrease with the influent substrate concentration and the residence time. The sum of the costs showed a minimum as a function of the influent biocatalyst concentration.

  2. Softenin, a novel protein that softens the connective tissue of sea cucumbers through inhibiting interaction between collagen fibrils.

    Directory of Open Access Journals (Sweden)

    Yasuhiro Takehana

    Full Text Available The dermis in the holothurian body wall is a typical catch connective tissue or mutable collagenous tissue that shows rapid changes in stiffness. Some chemical factors that change the stiffness of the tissue were found in previous studies, but the molecular mechanisms of the changes are not yet fully understood. Detection of factors that change the stiffness by working directly on the extracellular matrix was vital to clarify the mechanisms of the change. We isolated from the body wall of the sea cucumber Stichopus chloronotus a novel protein, softenin, that softened the body-wall dermis. The apparent molecular mass was 20 kDa. The N-terminal sequence of 17 amino acids had low homology to that of known proteins. We performed sequential chemical and physical dissections of the dermis and tested the effects of softenin on each dissection stage by dynamic mechanical tests. Softenin softened Triton-treated dermis whose cells had been disrupted by detergent. The Triton-treated dermis was subjected to repetitive freeze-and-thawing to make Triton-Freeze-Thaw (TFT dermis that was softer than the Triton-treated dermis, implying that some force-bearing structure had been disrupted by this treatment. TFT dermis was stiffened by tensilin, a stiffening protein of sea cucumbers. Softenin softened the tensilin-stiffened TFT dermis while it had no effect on the TFT dermis without tensilin treatment. We isolated collagen from the dermis. When tensilin was applied to the suspending solution of collagen fibrils, they made a large compact aggregate that was dissolved by the application of softenin or by repetitive freeze-and-thawing. These results strongly suggested that softenin decreased dermal stiffness through inhibiting cross-bridge formation between collagen fibrils; the formation was augmented by tensilin and the bridges were broken by the freeze-thaw treatment. Softenin is thus the first softener of catch connective tissue shown to work on the cross

  3. Simvastatin inhibits Candida albicans biofilm in vitro.

    Science.gov (United States)

    Liu, Geoffrey; Vellucci, Vincent F; Kyc, Stephanie; Hostetter, Margaret K

    2009-12-01

    By inhibiting the conversion of 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) to mevalonate, statins impair cholesterol metabolism in humans. We reasoned that statins might similarly interfere with the biosynthesis of ergosterol, the major sterol of the yeast cell membrane. As assessed by spectrophotometric and microscopic analysis, significant inhibition of biofilm production was noted after 16-h incubation with 1, 2.5, and 5 muM simvastatin, concentrations that did not affect growth, adhesion, or hyphal formation by C. albicans in vitro. Higher concentrations (10, 20, and 25 muM simvastatin) inhibited biofilm by >90% but also impaired growth. Addition of exogenous ergosterol (90 muM) overcame the effects of 1 and 2.5 muM simvastatin, suggesting that at least one mechanism of inhibition is interference with ergosterol biosynthesis. Clinical isolates from blood, skin, and mucosal surfaces produced biofilms; biofilms from bloodstream isolates were similarly inhibited by simvastatin. In the absence of fungicidal activity, simvastatin's interruption of a critical step in an essential metabolic pathway, highly conserved from yeast to man, has unexpected effects on biofilm production by a eukaryotic pathogen.

  4. Effect of sulfate and nitrate on acetate conversion by anaerobic microorganisms in a freshwater sediment

    NARCIS (Netherlands)

    Scholten, J.C.M.; Bodegom, van P.M.; Vogelaar, J.; Ittersum, van A.; Hordijk, K.; Roelofsen, W.; Stams, A.J.M.

    2002-01-01

    Acetate is quantitatively the most important substrate for methane production in a freshwater sediment in The Netherlands. In the presence of alternative electron acceptors the conversion of acetate by methanogens was strongly inhibited. By modelling the results, obtained in experiments with and

  5. gamma-Glutamyl amino acids. Transport and conversion to 5-oxoproline in the kidney

    International Nuclear Information System (INIS)

    Bridges, R.J.; Meister, A.

    1985-01-01

    Transport of gamma-glutamyl amino acids, a step in the proposed glutathione-gamma-glutamyl transpeptidase-mediated amino acid transport pathway, was examined in mouse kidney. The transport of gamma-glutamyl amino acids was demonstrated in vitro in studies on kidney slices. Transport was followed by measuring uptake of 35 S after incubation of the slices in media containing gamma-glutamyl methionine [ 35 S]sulfone. The experimental complication associated with extracellular conversion of the gamma-glutamyl amino acid to amino acid and uptake of the latter by slices was overcome by using 5-oxoproline formation (catalyzed by intracellular gamma-glutamyl-cyclotransferase) as an indicator of gamma-glutamyl amino acid transport. This method was also successfully applied to studies on transport of gamma-glutamyl amino acids in vivo. Transport of gamma-glutamyl amino acids in vitro and in vivo is inhibited by several inhibitors of gamma-glutamyl transpeptidase and also by high extracellular levels of glutathione. This seems to explain urinary excretion of gamma-glutamylcystine by humans with gamma-glutamyl transpeptidase deficiency and by mice treated with inhibitors of this enzyme. Mice depleted of glutathione by treatment with buthionine sulfoximine (which inhibits glutathione synthesis) or by treatment with 2,6-dimethyl-2,5-heptadiene-4-one (which effectively interacts with tissue glutathione) exhibited significantly less transport of gamma-glutamyl amino acids than did untreated controls. The findings suggest that intracellular glutathione functions in transport of gamma-glutamyl amino acids. Evidence was also obtained for transport of gamma-glutamyl gamma-glutamylphenylalanine into kidney slices

  6. Inhibition of Estrogen-induced Growth of Breast Cancer by Targeting Mitochondrial Oxidants

    National Research Council Canada - National Science Library

    Roy, Deodutta; Felty, Quentin; Kunkle, Brian

    2008-01-01

    ...) Anchorage-independent cell growth, and (c) tumor spheroid formation using new 3D HuBiogel bioassay whether estrogen induced conversion of normal cells to transformed cells is inhibited by treatment with antioxidants, over expression of MnSOD...

  7. Kininase enzymes of cat eye tissues

    International Nuclear Information System (INIS)

    Ryan, J.W.; Anderson, D.R.

    1986-01-01

    Eye tissues contain kininase activities, including an angiotensin converting enzyme (ACE)-like activity. The authors have begun further to characterize the ACE-like activity and to examine for another reputed kininase, carboxypeptidase N (CPN). Homogenates of tissues of 6 cat eyes and paired plasmas were assayed for ACE using 3 acyl-tripeptide substrates, 3 H-benzoylated F-A-P, F-G-P and A-G-P (respectively, BFAP, BFGP and BAGP). CPN was assayed using 3 H-benzoyl-A-R. All eye tissues and fluids contained ACE- and CPN-like activities. The ACE activity was clearly owing to ACE: relative values of Kc/Km for BFAP, BFGP and BAGP were those for pure ACE (2.213, 1.751 and 1.0); reactivities with inhibitors were as expected (Ki for captopril, MK 422 and RAC-X-65: 2.7, 0.62 and 0.31 nM). EDTA inhibited both ACE and CPN (I 50 's: 43 and 47 μM). CPN activity was inhibited by 2-mercaptomethyl-3-guanidinoethylthiopropionate (Ki 2.4 nM). However, distributions of the two enzymes differed markedly. Virtually all tissues contained ACE at specific activities higher than that of plasma. Specific activities appeared to be a function of tissue vascularity (for choroid, ciliary body, iris, retina and plasma: 7.31, 2.57, 1.98, 1.53 and 0.21 pmol/mg protein). Only iris contained more CPN that did plasma (23.0 v. 7.21 pmol/mg protein). The tissue distribution of ACE is that expected for an endothelial-associated enzyme. Plasma may be the major source of CPN in eye tissues other than iris

  8. An assay for secologanin in plant tissues based on enzymatic conversion into strictosidine

    DEFF Research Database (Denmark)

    Hallard, Didier; van der Heijden, Robert; Contin, Adriana

    1998-01-01

    strictosidine, a reaction catalysed by the enzyme strictosidine synthase (STR; E.C. 4.3.3.2). Subsequently, the formation of strictosidine is quantified by HPLC. STR was isolated from transgenic Nicotiana tabacum cells expressing a cDNA-derived gene coding for STR from Catharanthus roseus. The high specificity......The secoiridoid glucoside secologanin is the terpenoid building block in the biosynthesis of terpenoid indole alkaloids. A method for its determination in plant tissues and cell suspension cultures has been developed. This assay is based on the condensation of secologanin with tryptamine, yielding...... of STR for secologanin, in combination with a sensitive and selective HPLC system, allows a simple extraction of secologanin from plant tissue. The detection limit of this methos is 15 ng secologanin. Using this assay, secologanin contents were determined in tissues of various plant species; Lonicera...

  9. Interleukin-4 but not interleukin-10 inhibits the production of leukemia inhibitory factor by rheumatoid synovium and synoviocytes.

    Science.gov (United States)

    Dechanet, J; Taupin, J L; Chomarat, P; Rissoan, M C; Moreau, J F; Banchereau, J; Miossec, P

    1994-12-01

    The expression of the proinflammatory cytokine leukemia inhibitory factor (LIF) has been reported in the cartilage and synovium of rheumatoid arthritis (RA) patients. Here, we show that high levels of LIF were constitutively produced by cultures of synovium pieces. Low levels of LIF were produced spontaneously by isolated synoviocytes, but interleukin (IL)-1 beta caused a fourfold enhancement of this secretion. The anti-inflammatory cytokine IL-4 reduced the production of LIF by synovium pieces by 75%, as observed earlier with IL-6, IL-1 beta and tumor necrosis factor (TNF)-alpha. IL-4 had a direct effect since it inhibited LIF production by unstimulated and IL-1 beta- or TNF-alpha-stimulated synoviocytes. Conversely, IL-4 enhanced the production of IL-6, which shares with LIF biological activities and receptor components. The inhibitory effect of IL-4 was dose dependent and was reversed using a blocking anti-IL-4 receptor antibody. Similar inhibitory action of IL-4 on LIF production was observed on synovium pieces from patients with osteoarthritis and on normal synoviocytes. IL-10, another anti-inflammatory cytokine acting on monocytes, had no effect on LIF production by either synovium pieces or isolated synoviocytes. Thus, the production of LIF by synovium tissue was inhibited by IL-4 through both a direct effect on synoviocytes and an indirect effect by inhibition of the production of LIF-inducing cytokines.

  10. Stochastic cellular automata model of neurosphere growth: Roles of proliferative potential, contact inhibition, cell death, and phagocytosis.

    Science.gov (United States)

    Sipahi, Rifat; Zupanc, Günther K H

    2018-05-14

    Neural stem and progenitor cells isolated from the central nervous system form, under specific culture conditions, clonal cell clusters known as neurospheres. The neurosphere assay has proven to be a powerful in vitro system to study the behavior of such cells and the development of their progeny. However, the theory of neurosphere growth has remained poorly understood. To overcome this limitation, we have, in the present paper, developed a cellular automata model, with which we examined the effects of proliferative potential, contact inhibition, cell death, and clearance of dead cells on growth rate, final size, and composition of neurospheres. Simulations based on this model indicated that the proliferative potential of the founder cell and its progenitors has a major influence on neurosphere size. On the other hand, contact inhibition of proliferation limits the final size, and reduces the growth rate, of neurospheres. The effect of this inhibition is particularly dramatic when a stem cell becomes encapsulated by differentiated or other non-proliferating cells, thereby suppressing any further mitotic division - despite the existing proliferative potential of the stem cell. Conversely, clearance of dead cells through phagocytosis is predicted to accelerate growth by reducing contact inhibition. A surprising prediction derived from our model is that cell death, while resulting in a decrease in growth rate and final size of neurospheres, increases the degree of differentiation of neurosphere cells. It is likely that the cellular automata model developed as part of the present investigation is applicable to the study of tissue growth in a wide range of systems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Budesonide Inhibits Intracellular Infection with Non-Typeable Haemophilus influenzae Despite Its Anti-Inflammatory Effects in Respiratory Cells and Human Lung Tissue: A Role for p38 MAP Kinase.

    Science.gov (United States)

    Wagner, Christopher; Goldmann, Torsten; Rohmann, Kristina; Rupp, Jan; Marwitz, Sebastian; Rotta Detto Loria, Johannes; Limmer, Stefan; Zabel, Peter; Dalhoff, Klaus; Drömann, Daniel

    2015-01-01

    Inhaled corticosteroids (ICS) are widely used in the treatment of obstructive lung diseases. Recent data suggest a higher pneumonia risk in chronic obstructive pulmonary disease (COPD) patients treated with ICS. Since non-typeable Haemophilus influenzae (NTHi) is the most common pathogen associated with acute exacerbations of COPD, we investigated the effects of budesonide (BUD) on NTHi-induced inflammation and invasive infection. The alveolar epithelial cell line A549 and specimens of human lung tissue (HLT) were used in our experiments. Intracellular infection was determined by a lysis/culture assay of infected cells. Activated p38 mitogen-associated protein kinase (MAPK) was assessed using Western blotting and immunohistochemistry, expression of toll-like receptor 2 (TLR2) was determined by PCR, and CXCL-8 levels were measured using ELISA. Immunohistochemistry was used for detection of CXCL-8, platelet-activating factor receptor (PAF-R) and NTHi. BUD significantly reduced CXCL-8 secretion in A549 cells and lung tissue infected with NTHi. Furthermore, BUD decreased the expression of PAF-R in HLT and A549 cells. In A549 cells and HLT, BUD inhibited intracellular infection and - synergistically with NTHi - increased the expression of TLR2 (in A549 cells). TLR2 stimulation did not influence the intracellular infection of A549 cells, but p38 MAPK inhibition resulted in a significant reduction of infection. The present study adds new insights into the effects of glucocorticoids on pulmonary host defence after NTHi infection. Although the inflammatory response to infection is suppressed by BUD, interestingly, the intracellular infection is also inhibited. This effect seems to depend on the inhibition of p38 MAPK - a key enzyme in many pro-inflammatory pathways - as well as of PAF-R expression. © 2015 S. Karger AG, Basel.

  12. Inhibition of TGFbeta1 Signaling Attenutates ATM Activity inResponse to Genotoxic Stress

    Energy Technology Data Exchange (ETDEWEB)

    Kirshner, Julia; Jobling, Michael F.; Pajares, Maria Jose; Ravani, Shraddha A.; Glick, Adam B.; Lavin, Martin J.; Koslov, Sergei; Shiloh, Yosef; Barcellos-Hoff, Mary Helen

    2006-09-15

    Ionizing radiation causes DNA damage that elicits a cellular program of damage control coordinated by the kinase activity of ataxia telangiectasia mutated protein (ATM). Transforming growth factor {beta}1 (TGF{beta}), which is activated by radiation, is a potent and pleiotropic mediator of physiological and pathological processes. Here we show that TGF{beta} inhibition impedes the canonical cellular DNA damage stress response. Irradiated Tgf{beta}1 null murine epithelial cells or human epithelial cells treated with a small molecule inhibitor of TGF{beta} type I receptor kinase exhibit decreased phosphorylation of Chk2, Rad17 and p53, reduced {gamma}H2AX radiation-induced foci, and increased radiosensitivity compared to TGF{beta} competent cells. We determined that loss of TGF{beta} signaling in epithelial cells truncated ATM autophosphorylation and significantly reduced its kinase activity, without affecting protein abundance. Addition of TGF{beta} restored functional ATM and downstream DNA damage responses. These data reveal a heretofore undetected critical link between the microenvironment and ATM that directs epithelial cell stress responses, cell fate and tissue integrity. Thus, TGF{beta}1, in addition to its role in homoeostatic growth control, plays a complex role in regulating responses to genotoxic stress, the failure of which would contribute to the development of cancer; conversely, inhibiting TGF{beta} may be used to advantage in cancer therapy.

  13. Systemic insulin sensitivity is regulated by GPS2 inhibition of AKT ubiquitination and activation in adipose tissue.

    Science.gov (United States)

    Cederquist, Carly T; Lentucci, Claudia; Martinez-Calejman, Camila; Hayashi, Vanessa; Orofino, Joseph; Guertin, David; Fried, Susan K; Lee, Mi-Jeong; Cardamone, M Dafne; Perissi, Valentina

    2017-01-01

    Insulin signaling plays a unique role in the regulation of energy homeostasis and the impairment of insulin action is associated with altered lipid metabolism, obesity, and Type 2 Diabetes. The main aim of this study was to provide further insight into the regulatory mechanisms governing the insulin signaling pathway by investigating the role of non-proteolytic ubiquitination in insulin-mediated activation of AKT. The molecular mechanism of AKT regulation through ubiquitination is first dissected in vitro in 3T3-L1 preadipocytes and then validated in vivo using mice with adipo-specific deletion of GPS2, an endogenous inhibitor of Ubc13 activity (GPS2-AKO mice). Our results indicate that K63 ubiquitination is a critical component of AKT activation in the insulin signaling pathway and that counter-regulation of this step is provided by GPS2 preventing AKT ubiquitination through inhibition of Ubc13 enzymatic activity. Removal of this negative checkpoint, through GPS2 downregulation or genetic deletion, results in sustained activation of insulin signaling both in vitro and in vivo . As a result, the balance between lipid accumulation and utilization is shifted toward storage in the adipose tissue and GPS2-AKO mice become obese under normal laboratory chow diet. However, the adipose tissue of GPS2-AKO mice is not inflamed, the levels of circulating adiponectin are elevated, and systemic insulin sensitivity is overall improved. Our findings characterize a novel layer of regulation of the insulin signaling pathway based on non-proteolytic ubiquitination of AKT and define GPS2 as a previously unrecognized component of the insulin signaling cascade. In accordance with this role, we have shown that GPS2 presence in adipocytes modulates systemic metabolism by restricting the activation of insulin signaling during the fasted state, whereas in absence of GPS2, the adipose tissue is more efficient at lipid storage, and obesity becomes uncoupled from inflammation and insulin

  14. Calculation of dose-rate conversion factors for external exposure to photons and electrons

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1978-01-01

    Methods are presented for the calculation of dose-rate conversion factors for external exposure to photon and electron radiation from radioactive decay. A dose-rate conversion factor is defined as the dose-equivalent rate per unit radionuclide concentration. Exposure modes considered are immersion in contaminated air, immersion in contaminated water, and irradiation from a contaminated ground surface. For each radiation type and exposure mode, dose-rate conversion factors are derived for tissue-equivalent material at the body surface of an exposed individual. In addition, photon dose-rate conversion factors are estimated for 22 body organs. The calculations are based on the assumption that the exposure medium is infinite in extent and that the radionuclide concentration is uniform. The dose-rate conversion factors for immersion in contaminated air and water then follow from the requirement that all of the energy emitted in the radioactive decay is absorbed in the infinite medium. Dose-rate conversion factors for ground-surface exposure are calculated at a reference location above a smooth, infinite plane using the point-kernel integration method and known specific absorbed fractions for photons and electrons in air

  15. Requirements for mammalian carboxylesterase inhibition by substituted ethane-1,2-diones.

    Science.gov (United States)

    Parkinson, Elizabeth I; Jason Hatfield, M; Tsurkan, Lyudmila; Hyatt, Janice L; Edwards, Carol C; Hicks, Latorya D; Yan, Bing; Potter, Philip M

    2011-08-01

    Carboxylesterases (CE) are ubiquitous enzymes found in both human and animal tissues and are responsible for the metabolism of xenobiotics. This includes numerous natural products, as well as a many clinically used drugs. Hence, the activity of these agents is likely dependent upon the levels and location of CE expression. We have recently identified benzil is a potent inhibitor of mammalian CEs, and in this study, we have assessed the ability of analogues of this compound to inhibit these enzymes. Three different classes of molecules were assayed: one containing different atoms vicinal to the carbonyl carbon atom and the benzene ring [PhXC(O)C(O)XPh, where X=CH₂, CHBr, N, S, or O]; a second containing a panel of alkyl 1,2-diones demonstrating increasing alkyl chain length; and a third consisting of a series of 1-phenyl-2-alkyl-1,2-diones. In general, with the former series of molecules, heteroatoms resulted in either loss of inhibitory potency (when X=N), or conversion of the compounds into substrates for the enzymes (when X=S or O). However, the inclusion of a brominated methylene atom resulted in potent CE inhibition. Subsequent analysis with the alkyl diones [RC(O)C(O)R, where R ranged from CH₃ to C₈H₁₇] and 1-phenyl-2-alkyl-1,2-diones [PhC(O)C(O)R where R ranged from CH₃ to C₆H₁₃], demonstrated that the potency of enzyme inhibition directly correlated with the hydrophobicity (clogP) of the molecules. We conclude from these studies that that the inhibitory power of these 1,2-dione derivatives depends primarily upon the hydrophobicity of the R group, but also on the electrophilicity of the carbonyl group. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. In vitro effects of toxaphene on mitochondrial calcium ATPase and calcium uptake in selected rat tissues

    International Nuclear Information System (INIS)

    Trottman, C.H.; Rao, K.S.P.; Morrow, W.; Uzodinma, J.E.; Desaiah, D.

    1985-01-01

    In vitro effects of toxaphene on Ca 2+ -ATPase activity and 45 Ca 2+ -uptake were studied in mitochondrial fractions of heart, kidney and liver tissues of rat. Mitochondrial fractions were prepared by the conventional centrifugation method. Ca 2+ -ATPase activity was determined by measuring the inorganic phosphate liberated during ATP hydrolysis. Toxaphene inhibited Ca 2+ -ATPase in a concentration dependent manner in all the three tissues. Substrate activation kinetics, with heart, kidney and liver tissue fractions, revealed that toxaphene inhibited Ca 2+ -ATPase activity non-competetively by decreasing the maximum velocity of the enzyme without affecting the enzyme-substrate affinity. Toxaphene also inhibited mitochondrial 45 Ca 2+ -uptake in the three selected tissues in a concentration dependent manner. These results indicate that toxaphene is an inhibitor of mitochondrial Ca 2+ -ATPase and calcium transport in heart, kidney and liver tissues of rat. 19 references, 5 figures

  17. Uranium conversion

    International Nuclear Information System (INIS)

    Oliver, Lena; Peterson, Jenny; Wilhelmsen, Katarina

    2006-03-01

    FOI, has performed a study on uranium conversion processes that are of importance in the production of different uranium compounds in the nuclear industry. The same conversion processes are of interest both when production of nuclear fuel and production of fissile material for nuclear weapons are considered. Countries that have nuclear weapons ambitions, with the intention to produce highly enriched uranium for weapons purposes, need some degree of uranium conversion capability depending on the uranium feed material available. This report describes the processes that are needed from uranium mining and milling to the different conversion processes for converting uranium ore concentrate to uranium hexafluoride. Uranium hexafluoride is the uranium compound used in most enrichment facilities. The processes needed to produce uranium dioxide for use in nuclear fuel and the processes needed to convert different uranium compounds to uranium metal - the form of uranium that is used in a nuclear weapon - are also presented. The production of uranium ore concentrate from uranium ore is included since uranium ore concentrate is the feed material required for a uranium conversion facility. Both the chemistry and principles or the different uranium conversion processes and the equipment needed in the processes are described. Since most of the equipment that is used in a uranium conversion facility is similar to that used in conventional chemical industry, it is difficult to determine if certain equipment is considered for uranium conversion or not. However, the chemical conversion processes where UF 6 and UF 4 are present require equipment that is made of corrosion resistant material

  18. Sexy gene conversions: locating gene conversions on the X-chromosome.

    Science.gov (United States)

    Lawson, Mark J; Zhang, Liqing

    2009-08-01

    Gene conversion can have a profound impact on both the short- and long-term evolution of genes and genomes. Here, we examined the gene families that are located on the X-chromosomes of human (Homo sapiens), chimpanzee (Pan troglodytes), mouse (Mus musculus) and rat (Rattus norvegicus) for evidence of gene conversion. We identified seven gene families (WD repeat protein family, Ferritin Heavy Chain family, RAS-related Protein RAB-40 family, Diphosphoinositol polyphosphate phosphohydrolase family, Transcription Elongation Factor A family, LDOC1-related family, Zinc Finger Protein ZIC, and GLI family) that show evidence of gene conversion. Through phylogenetic analyses and synteny evidence, we show that gene conversion has played an important role in the evolution of these gene families and that gene conversion has occurred independently in both primates and rodents. Comparing the results with those of two gene conversion prediction programs (GENECONV and Partimatrix), we found that both GENECONV and Partimatrix have very high false negative rates (i.e. failed to predict gene conversions), which leads to many undetected gene conversions. The combination of phylogenetic analyses with physical synteny evidence exhibits high resolution in the detection of gene conversions.

  19. Nanoparticles containing siRNA to silence CD4 and CCR5 reduce expression of these receptors and inhibit HIV-1 infection in human female reproductive tract tissue explants

    Directory of Open Access Journals (Sweden)

    Susan K. Eszterhas

    2011-09-01

    Full Text Available Human Immunodeficiency Virus-type 1 (HIV- 1 binds to CD4 and CCR5 receptors on target cells in the human female reproductive tract. We sought to determine whether reducing levels of messenger RNA (mRNA transcripts that encode these receptors in female reproductive tract cells could protect mucosal tissue explants from HIV- 1 infection. Explants prepared from the endometrium, endocervix, and ectocervix of hysterectomy tissues from HIV-1 sero-negative women were exposed to nanoparticles containing CD4- and CCR5-specific short-interfering RNA (siRNA sequences. Explants were then exposed two days later to HIV-1, and HIV-1 reverse transcripts were measured five days post-infection. Explants treated with nanoparticles containing CD4- and CCR5-specific siRNA showed reduced levels of CD4 and CCR5 transcripts, and significantly lower levels of HIV-1 reverse transcripts compared to those treated with an irrelevant siRNA. In female reproductive tract explants and in peripheral blood cell cultures, siRNA transfection induced the secretion of IFN-alpha (IFN-α, a potent antiviral cytokine. In female mice, murine-specific Cd4-siRNA nanoparticles instilled within the uterus significantly reduced murine Cd4 transcripts by day 3. Our findings demonstrate that siRNA nanoparticles reduce expression of HIV-1 infectivity receptors in human female reproductive tract tissues and also inhibit HIV-1 infection. Murine studies demonstrate that nanoparticles can penetrate the reproductive tract tissues in vivo and silence gene expression. The induction of IFN-α after siRNA transfection can potentially contribute to the antiviral effect. These findings support the therapeutic development of nanoparticles to deliver siRNA molecules to silence host cell receptors in the female reproductive tract as a novel microbicide to inhibit mucosal HIV-1 transmission.

  20. MicroRNA-195 inhibits the proliferation of human glioma cells by directly targeting cyclin D1 and cyclin E1.

    Directory of Open Access Journals (Sweden)

    Wang Hui

    Full Text Available Glioma proliferation is a multistep process during which a sequence of genetic and epigenetic alterations randomly occur to affect the genes controlling cell proliferation, cell death and genetic stability. microRNAs are emerging as important epigenetic modulators of multiple target genes, leading to abnormal cellular signaling involving cellular proliferation in cancers.In the present study, we found that expression of miR-195 was markedly downregulated in glioma cell lines and human primary glioma tissues, compared to normal human astrocytes and matched non-tumor associated tissues. Upregulation of miR-195 dramatically reduced the proliferation of glioma cells. Flow cytometry analysis showed that ectopic expression of miR-195 significantly decreased the percentage of S phase cells and increased the percentage of G1/G0 phase cells. Overexpression of miR-195 dramatically reduced the anchorage-independent growth ability of glioma cells. Furthermore, overexpression of miR-195 downregulated the levels of phosphorylated retinoblastoma (pRb and proliferating cell nuclear antigen (PCNA in glioma cells. Conversely, inhibition of miR-195 promoted cell proliferation, increased the percentage of S phase cells, reduced the percentage of G1/G0 phase cells, enhanced anchorage-independent growth ability, upregulated the phosphorylation of pRb and PCNA in glioma cells. Moreover, we show that miR-195 inhibited glioma cell proliferation by downregulating expression of cyclin D1 and cyclin E1, via directly targeting the 3'-untranslated regions (3'-UTR of cyclin D1 and cyclin E1 mRNA. Taken together, our results suggest that miR-195 plays an important role to inhibit the proliferation of glioma cells, and present a novel mechanism for direct miRNA-mediated suppression of cyclin D1 and cyclin E1 in glioma.

  1. Inhibition of COX1/2 alters the host response and reduces ECM scaffold mediated constructive tissue remodeling in a rodent model of skeletal muscle injury.

    Science.gov (United States)

    Dearth, Christopher L; Slivka, Peter F; Stewart, Scott A; Keane, Timothy J; Tay, Justin K; Londono, Ricardo; Goh, Qingnian; Pizza, Francis X; Badylak, Stephen F

    2016-02-01

    Extracellular matrix (ECM) has been used as a biologic scaffold material to both reinforce the surgical repair of soft tissue and serve as an inductive template to promote a constructive tissue remodeling response. Success of such an approach is dependent on macrophage-mediated degradation and remodeling of the biologic scaffold. Macrophage phenotype during these processes is a predictive factor of the eventual remodeling outcome. ECM scaffolds have been shown to promote an anti-inflammatory or M2-like macrophage phenotype in vitro that includes secretion of downstream products of cycolooxygenases 1 and 2 (COX1/2). The present study investigated the effect of a common COX1/2 inhibitor (Aspirin) on macrophage phenotype and tissue remodeling in a rodent model of ECM scaffold treated skeletal muscle injury. Inhibition of COX1/2 reduced the constructive remodeling response by hindering myogenesis and collagen deposition in the defect area. The inhibited response was correlated with a reduction in M2-like macrophages in the defect area. The effects of Aspirin on macrophage phenotype were corroborated using an established in vitro macrophage model which showed a reduction in both ECM induced prostaglandin secretion and expression of a marker of M2-like macrophages (CD206). These results raise questions regarding the common peri-surgical administration of COX1/2 inhibitors when biologic scaffold materials are used to facilitate muscle repair/regeneration. COX1/2 inhibitors such as nonsteroidal anti-inflammatory drugs (NSAIDs) are routinely administered post-surgically for analgesic purposes. While COX1/2 inhibitors are important in pain management, they have also been shown to delay or diminish the healing process, which calls to question their clinical use for treating musculotendinous injuries. The present study aimed to investigate the influence of a common NSAID, Aspirin, on the constructive remodeling response mediated by an ECM scaffold (UBM) in a rat skeletal

  2. Characterization of cDNA encoding molt-inhibiting hormone of the crab, Cancer pagurus; expression of MIH in non-X-organ tissues.

    Science.gov (United States)

    Lu, W; Wainwright, G; Olohan, L A; Webster, S G; Rees, H H; Turner, P C

    2001-10-31

    Synthesis of ecdysteroids (molting hormones) by crustacean Y-organs is regulated by a neuropeptide, molt-inhibiting hormone (MIH), produced in eyestalk neural ganglia. We report here the molecular cloning of a cDNA encoding MIH of the edible crab, Cancer pagurus. Full-length MIH cDNA was obtained by using reverse transcription-polymerase chain reaction (RT-PCR) with degenerate oligonucleotides based upon the amino acid sequence of MIH, in conjunction with 5'- and 3'-RACE. Full-length clones of MIH cDNA were obtained that encoded a 35 amino acid putative signal peptide and the mature 78 amino acid peptide. Of various tissues examined by Northern blot analysis, the X-organ was the sole major site of expression of the MIH gene. However, a nested-PCR approach using non-degenerate MIH-specific primers indicated the presence of MIH transcripts in other tissues. Southern blot analysis indicated a simple gene arrangement with at least two copies of the MIH gene in the genome of C. pagurus. Additional Southern blotting experiments detected MIH-hybridizing bands in another Cancer species, Cancer antennarius and another crab species, Carcinus maenas.

  3. Antimicrobial activity of different tissues of snakehead fish Channa striatus (Bloch

    Directory of Open Access Journals (Sweden)

    Pravin Kumar N

    2012-05-01

    Full Text Available Objective: The aim of this study was to identify the presence of antimicrobial activity in different organs/tissues (gills, blood, skin, liver, intestine, kidney, tissue and ovary extract of snakehead fish Channa striatus. Methods: A total of 48 fractions from the organs and tissue extracts were obtained by solid-phase extraction and the fractions were assayed for antimicrobial activity. The screening of antimicrobial activity for all the fractions were tested against 8 human pathogens including Gram positive (Methicillin-resistant Staphylococcus aureus (MRSA, Staphylococcus aureus, Bacillus cereus and Gram negative bacteria (Salmonella enteritidis, Shigella flexneri, Acinetobacter baumanni, Escherichia coli, Klebsiella pneumoniae using the British Society for Antimicrobial Chemotherapy (BSAC standardized disc susceptibility test method. The activity was measured in terms of zone of inhibition in mm. Results: The results indicated that, among the 8 organs/tissues tested only blood and gills extract fractions (40 and 60 % ACN fraction showed inhibition against Escherichia coli and 60 % ACN fraction of gill extract showed inhibition against Salmonella enteritidis. Protein profile analysis by SDS-PAGE showed that antimicrobial activity of the partially purified blood and gill tissue extracts might be due to low molecular weight peptides. Conclusions: The present study showed that, gill and blood extracts of Channa striatus can be a potential source of an antimicrobial protein for specific human pathogens.

  4. The Role of Conversation Policy in Carrying Out Agent Conversations

    International Nuclear Information System (INIS)

    Link, Hamilton E.; Phillips, Laurence R.

    1999-01-01

    Structured conversation diagrams, or conversation specifications, allow agents to have predictable interactions and achieve predefined information-based goals, but they lack the flexibility needed to function robustly in an unpredictable environment. We propose a mechanism that combines a typical conversation structure with a separately established policy to generate an actual conversation. The word ''policy'' connotes a high-level direction external to a specific planned interaction with the environment. Policies, which describe acceptable procedures and influence decisions, can be applied to broad sets of activity. Based on their observation of issues related to a policy, agents may dynamically adjust their communication patterns. The policy object describes limitations, constraints, and requirements that may affect the conversation in certain circumstances. Using this new mechanism of interaction simplifies the description of individual conversations and allows domain-specific issues to be brought to bear more easily during agent communication. By following the behavior of the conversation specification when possible and deferring to the policy to derive behavior in exceptional circumstances, an agent is able to function predictably under normal situations and still act rationally in abnormal situations. Different conversation policies applied to a given conversation specification can change the nature of the interaction without changing the specification

  5. Inhibition of rat mammary microsomal oxidation of ethanol to acetaldehyde by plant polyphenols.

    Science.gov (United States)

    Maciel, María Eugenia; Castro, José Alberto; Castro, Gerardo Daniel

    2011-07-01

    We previously reported that the microsomal fraction from rat mammary tissue is able to oxidize ethanol to acetaldehyde, a mutagenic-carcinogenic metabolite, depending on the presence of NADPH and oxygen but not inhibited by carbon monoxide or other cytochrome P450 inhibitors. The process was strongly inhibited by diphenyleneiodonium, a known inhibitor of NADPH oxidase, and by nordihydroguaiaretic acid, an inhibitor of lipoxygenases. This led us to suggest that both enzymes could be involved. With the purpose of identifying natural compounds present in food with the ability to decrease the production of acetaldehyde in mammary tissue, in the present studies, several plant polyphenols having inhibitory effects on lipoxygenases and of antioxidant nature were tested as potential inhibitors of the rat mammary tissue microsomal pathway of ethanol oxidation. We included in the present screening study 32 polyphenols having ready availability and that were also tested against the rat mammary tissue cytosolic metabolism of ethanol to acetaldehyde. Several polyphenols were also able to inhibit the microsomal ethanol oxidation at concentrations as low was 10-50 μM. The results of these screening experiments suggest the potential of several plant polyphenols to prevent in vivo production and accumulation of acetaldehyde in mammary tissue.

  6. Quantitation of two endogenous lactose-inhibitable lectins in embryonic and adult chicken tissues

    International Nuclear Information System (INIS)

    Beyer, E.C.; Barondes, S.H.

    1982-01-01

    Two lactose-binding lectins from chicken tissues, chicken-lactose-lectin-I (CLL-I) and chicken-lactose-lectin-II (CLL-II) were quantified with a radioimmunoassay in extracts of a number of developing and adult chicken tissues. Both lectins could be measured in the same extract without separation, because they showed no significant immunological cross- reactivity. Many embryonic and adult tissues, including brain, heart, intestine, kidney, liver, lung, muscle, pancreas, and spleen, contained one or both lectins, although their concentrations differed markedly. For example, embryonic muscle, the richest source of CLL-I contained only traces of CLL-II whereas embryonic kidney, a very rich source of CLL-II contained substantial CLL-I. In both muscle and kidney, lectin levels in adulthood were much lower than in the embryonic state. In contrast, CLL-I in liver and CLL-II in intestine were 10-fold to 30-fold more concentrated in the adult than in the 15-d embryo. CLL-I and CLL-II from several tissues were purified by affinity chromatography and their identity in the various tissues was confirmed by polyacrylamide gel electrophoresis, isoelectric focusing, and peptide mapping. The results suggest that these lectins might have different functions in the many developing and adult tissues in which they are found

  7. Peptidoglycan transpeptidase inhibition in Pseudomonas aeruginosa and Escherichia coli by Penicillins and Cephalosporins.

    Science.gov (United States)

    Moore, B A; Jevons, S; Brammer, K W

    1979-04-01

    Peptidoglycan transpeptidase activity has been studied in cells of Escherichia coli 146 and Pseudomonas aeruginosa 56 made permeable to exogenous, nucleotide-sugar peptidoglycan precursors by ether treatment. Transpeptidase activity was inhibited, in both organisms, by a range of penicillins and cephalosporins, the Pseudomonas enzyme being more sensitive to inhibition in each case. Conversely, growth of E. coli 146 was more susceptible to these antibiotics than growth of P. aeruginosa 56. Furthermore, similar transpeptidase inhibition values were ob-obtained for the four penicillins examined against the Pseudomonas enzyme, although only two of these (carbenicillin and pirbenicillin) inhibited the growth of this organism. We therefore conclude that the high resistance of P. aeruginosa 56 to growth inhibition by most beta-lactam antibiotics cannot be due to an insensitive peptidoglycan transpeptidase.

  8. Selective conversion of carbon monoxide to hydrogen by anaerobic mixed culture.

    Science.gov (United States)

    Liu, Yafeng; Wan, Jingjing; Han, Sheng; Zhang, Shicheng; Luo, Gang

    2016-02-01

    A new method for the conversion of CO to H2 was developed by anaerobic mixed culture in the current study. Higher CO consumption rate was obtained by anaerobic granular sludge (AGS) compared to waste activated sludge (WAS) at 55 °C and pH 7.5. However, H2 was the intermediate and CH4 was the final product. Fermentation at pH 5.5 by AGS inhibited CH4 production, while the lower CO consumption rate (50% of that at pH 7.5) and the production of acetate were found. Fermentation at pH 7.5 with the addition of chloroform achieved efficient and selective conversion of CO to H2. Stable and efficient H2 production was achieved in a continuous reactor inoculated with AGS, and gas recirculation was crucial to increase the CO conversion efficiency. Microbial community analysis showed that high abundance (44%) of unclassified sequences and low relative abundance (1%) of known CO-utilizing bacteria Desulfotomaculum were enriched in the reactor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Ions and electrons thermal effects on the fast-slow mode conversion process in a three components plasma

    International Nuclear Information System (INIS)

    Fidone, I.; Gomberoff, L.

    1977-07-01

    Fast-slow mode conversion in a deuterium plasma with a small amount of hydrogen impurity, for frequencies close to the two-ion hybrid frequency, is investigated. It is shown that while electron thermal effects tend to inhibit the wave conversion process, ion thermal effects tend to restore, qualitatively, the cold plasma properties, favouring therefore, the energy exchange between the two modes. The aforementioned effects are competitive for zetasub(o)sup(e)=1/nsub(parall).vsub(e)>=1. For zetasub(o)sup(e)<=1, electron thermal effects, in particular Landau damping, dominate over ion Larmor radius effects, drastically diminishing the wave conversion efficacy. For zetasub(o)sup(e)<<1, the coupling between the modes disappears altogether

  10. DIDS prevents ischemic membrane degradation in cultured hippocampal neurons by inhibiting matrix metalloproteinase release.

    Directory of Open Access Journals (Sweden)

    Matthew E Pamenter

    Full Text Available During stroke, cells in the infarct core exhibit rapid failure of their permeability barriers, which releases ions and inflammatory molecules that are deleterious to nearby tissue (the penumbra. Plasma membrane degradation is key to penumbral spread and is mediated by matrix metalloproteinases (MMPs, which are released via vesicular exocytosis into the extracellular fluid in response to stress. DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid preserves membrane integrity in neurons challenged with an in vitro ischemic penumbral mimic (ischemic solution: IS and we asked whether this action was mediated via inhibition of MMP activity. In cultured murine hippocampal neurons challenged with IS, intracellular proMMP-2 and -9 expression increased 4-10 fold and extracellular latent and active MMP isoform expression increased 2-22 fold. MMP-mediated extracellular gelatinolytic activity increased ∼20-50 fold, causing detachment of 32.1±4.5% of cells from the matrix and extensive plasma membrane degradation (>60% of cells took up vital dyes and >60% of plasma membranes were fragmented or blebbed. DIDS abolished cellular detachment and membrane degradation in neurons and the pathology-induced extracellular expression of latent and active MMPs. DIDS similarly inhibited extracellular MMP expression and cellular detachment induced by the pro-apoptotic agent staurosporine or the general proteinase agonist 4-aminophenylmercuric acetate (APMA. Conversely, DIDS-treatment did not impair stress-induced intracellular proMMP production, nor the intracellular cleavage of proMMP-2 to the active form, suggesting DIDS interferes with the vesicular extrusion of MMPs rather than directly inhibiting proteinase expression or activation. In support of this hypothesis, an antagonist of the V-type vesicular ATPase also inhibited extracellular MMP expression to a similar degree as DIDS. In addition, in a proteinase-independent model of vesicular exocytosis, DIDS

  11. SU-D-209-06: Study On the Dose Conversion Coefficients in Pediatric Radiography with the Development of Children Voxel Phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Q [Institute of Radiation Medicine Fudan University, Shanghai (China); Shanghai General Hospital, Shanghai, Shanghai (China); Zhuo, W; Liu, H [Institute of Radiation Medicine Fudan University, Shanghai (China); Liu, Y; Chen, T [Shanghai General Hospital, Shanghai, Shanghai (China)

    2016-06-15

    Purpose: Conversion coefficients of organ dose normalized to entrance skin dose (ESD) are widely used to evaluate the organ doses directly using ESD without time-consuming dose measurement, this work aims to investigate the dose conversion coefficients in pediatric chest and abdomen radiography with the development of 5 years and 10 years old children voxel phantoms. Methods: After segmentation of organs and tissues from CT slice images of ATOM tissue-equivalent phantoms, a 5-year-old and a 10-year-old children computational voxel phantoms were developed for Monte Carlo simulation. The organ doses and the entrance skin dose for pediatric chest postero-anterior projection and abdominal antero-posterior projection were simulated at the same time, and then the organ dose conversion coefficients were calculated.To verify the simulated results, dose measurement was carried out with ATOM tissue-equivalent phantoms for 5 year chest radiography. Results: Simulated results and experimental results matched very well with each other, the result differences of all the organs covered in radiation field were below 16% for 5-year-old child in chest projection. I showed that the conversion coefficients of organs covered in the radiation field were much larger than organs out of the field for all the study cases, for example, the conversion coefficients of stomach, liver intestines, and pancreas are larger for abdomen radiography while conversion coefficients of lungs are larger for chest radiography. Conclusion: The voxel children phantoms were helpful to evaluate the radiation doses more accurately and efficiently. Radiation field was the essential factor that affects the organ dose, use reasonably small field should be encouraged for radiation protection. This work was supported by the National Natural Science Foundation of China(11475047)

  12. SU-D-209-06: Study On the Dose Conversion Coefficients in Pediatric Radiography with the Development of Children Voxel Phantoms

    International Nuclear Information System (INIS)

    Liu, Q; Zhuo, W; Liu, H; Liu, Y; Chen, T

    2016-01-01

    Purpose: Conversion coefficients of organ dose normalized to entrance skin dose (ESD) are widely used to evaluate the organ doses directly using ESD without time-consuming dose measurement, this work aims to investigate the dose conversion coefficients in pediatric chest and abdomen radiography with the development of 5 years and 10 years old children voxel phantoms. Methods: After segmentation of organs and tissues from CT slice images of ATOM tissue-equivalent phantoms, a 5-year-old and a 10-year-old children computational voxel phantoms were developed for Monte Carlo simulation. The organ doses and the entrance skin dose for pediatric chest postero-anterior projection and abdominal antero-posterior projection were simulated at the same time, and then the organ dose conversion coefficients were calculated.To verify the simulated results, dose measurement was carried out with ATOM tissue-equivalent phantoms for 5 year chest radiography. Results: Simulated results and experimental results matched very well with each other, the result differences of all the organs covered in radiation field were below 16% for 5-year-old child in chest projection. I showed that the conversion coefficients of organs covered in the radiation field were much larger than organs out of the field for all the study cases, for example, the conversion coefficients of stomach, liver intestines, and pancreas are larger for abdomen radiography while conversion coefficients of lungs are larger for chest radiography. Conclusion: The voxel children phantoms were helpful to evaluate the radiation doses more accurately and efficiently. Radiation field was the essential factor that affects the organ dose, use reasonably small field should be encouraged for radiation protection. This work was supported by the National Natural Science Foundation of China(11475047)

  13. Conversion coefficients for determining organ doses in paediatric spine radiography

    Energy Technology Data Exchange (ETDEWEB)

    Seidenbusch, Michael; Schneider, Karl [Ludwig-Maximilians-University of Munich, Institute of Clinical Radiology - Paediatric Radiology, Muenchen (Germany)

    2014-04-15

    Knowledge of organ and effective doses achieved during paediatric x-ray examinations is an important prerequisite for assessment of radiation burden to the patient. Conversion coefficients for reconstruction of organ and effective doses from entrance doses for segmental spine radiographs of 0-, 1-, 5-, 10-, 15- and 30-year-old patients are provided regarding the Guidelines of Good Radiographic Technique of the European Commission. Using the personal computer program PCXMC developed by the Finnish Centre for Radiation and Nuclear Safety (Saeteilyturvakeskus STUK), conversion coefficients for conventional segmental spine radiographs were calculated performing Monte Carlo simulations in mathematical hermaphrodite phantom models describing patients of different ages. The clinical variation of beam collimation was taken into consideration by defining optimal and suboptimal radiation field settings. Conversion coefficients for the reconstruction of organ doses in about 40 organs and tissues from measured entrance doses during cervical, thoracic and lumbar spine radiographs of 0-, 1-, 5-, 10-, 15- and 30-year-old patients were calculated for the standard sagittal and lateral beam projections and the standard focus detector distance of 115 cm. The conversion coefficients presented may be used for organ dose assessments from entrance doses measured during spine radiographs of patients of all age groups and all field settings within the optimal and suboptimal standard field settings. (orig.)

  14. The lectin-like protein 1 in Lactobacillus rhamnosus GR-1 mediates tissue-specific adherence to vaginal epithelium and inhibits urogenital pathogens

    Science.gov (United States)

    Petrova, Mariya I.; Lievens, Elke; Verhoeven, Tine L. A.; Macklaim, Jean M.; Gloor, Gregory; Schols, Dominique; Vanderleyden, Jos; Reid, Gregor; Lebeer, Sarah

    2016-01-01

    The probiotic Lactobacillus rhamnosus GR-1 has been documented to survive implantation onto the vaginal epithelium and interfere with urogenital pathogens. However, the molecular mechanisms involved are largely unknown. Here, we report for the first time the construction of dedicated knock-out mutants in L. rhamnosus GR-1 to enable the study of gene functions. In a search for genes responsible for the adherence capacity of L. rhamnosus GR-1, a genomic region encoding a protein with homology to lectin-like proteins was identified. Phenotypic analyses of the knock-out mutant of L. rhamnosus GR-1 revealed a two-fold decreased adhesion to the vaginal and ectocervical epithelial cell lines compared to wild-type. In contrast, the adhesion to gastro-intestinal epithelial (Caco2) and endocervical cell lines (Hela and End1/E6E7) was not drastically affected by the mutation, suggesting that the LGR-1_Llp1 lectins mediates tissue tropism. The purified LGR-1_Llp1 protein also inhibited biofilm formation and adhesion of uropathogenic Escherichia coli. For the first time, an important role for a novel lectin-like protein in the adhesion capacity and host cell-specific interaction of a vaginal probiotic Lactobacillus strain has been discovered, with an additional role in pathogen inhibition. PMID:27869151

  15. Overview of the ICRP/ICRU adult reference computational phantoms and dose conversion coefficients for external idealised exposures

    CERN Document Server

    Endo, A; Zankl, M; Bolch, W E; Eckerman, K F; Hertel, N E; Hunt, J G; Pelliccioni, M; Schlattl, H; Menzel, H-G

    2014-01-01

    This paper reviews the ICRP Publications 110 and 116 describing the reference computational phantoms and dose conversion coefficients for external exposures. The International Commission on Radiological Protection (ICRP) in its 2007 Recommendations made several revisions to the methods of calculation of the protection quantities. In order to implement these recommendations, the DOCAL task group of the ICRP developed computational phantoms representing the reference adult male and female and then calculated a set of dose conversion coefficients for various types of idealised external exposures. This paper focuses on the dose conversion coefficients for neutrons and investigates their relationship with the conversion coefficients of the protection and operational quantities of ICRP Publication 74. Contributing factors to the differences between these sets of conversion coefficients are discussed in terms of the changes in phantoms employed and the radiation and tissue weighting factors.

  16. Improvement of skeleton conversion in ICRP reference phantom conversion project

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhao Jun; Yeom, Yeon Soo; Thang, Nguyen Tat; Kim, Han Sung; Han, Min Cheol; Kim, Chan Hyeong [Dept. of Nuclear Engineering, Hanyang University, Seoul (Korea, Republic of); Kim, Seong Hoon [Dept. of Radiation Oncology, College of Medicine, Hanyang University, Seoul (Korea, Republic of)

    2014-11-15

    In the previous skeleton conversion, most bones were directly converted from the ICRP voxel phantoms by using the 3D rendering method whereas several complex-shape bones (cranium, ribs, spines, feet, and hands) were not able to be directly converted. We alternatively employed the corresponding well-defined polygonal models and attempted to adjust them to match the voxel models. However, this approach was unsatisfactory. The shapes of the alternative models were significantly different from those of the voxel models, making it virtually impossible to exactly match the voxel models as shown in Fig. 3 (left). In order to overcome the difficulty in the complex bone conversion, the present study developed a new conversion method and converted these complex bones voxel models of the ICRP male phantom to polygonal models. The present study developed the new conversion method and successfully improved polygonal models for cranium, ribs, and spines for the ICRP male phantom. The new conversion method will be also applied to the complex bone conversion for the ICRP female phantom as well as other complex organ conversion in the future.

  17. Improvement of skeleton conversion in ICRP reference phantom conversion project

    International Nuclear Information System (INIS)

    Wang, Zhao Jun; Yeom, Yeon Soo; Thang, Nguyen Tat; Kim, Han Sung; Han, Min Cheol; Kim, Chan Hyeong; Kim, Seong Hoon

    2014-01-01

    In the previous skeleton conversion, most bones were directly converted from the ICRP voxel phantoms by using the 3D rendering method whereas several complex-shape bones (cranium, ribs, spines, feet, and hands) were not able to be directly converted. We alternatively employed the corresponding well-defined polygonal models and attempted to adjust them to match the voxel models. However, this approach was unsatisfactory. The shapes of the alternative models were significantly different from those of the voxel models, making it virtually impossible to exactly match the voxel models as shown in Fig. 3 (left). In order to overcome the difficulty in the complex bone conversion, the present study developed a new conversion method and converted these complex bones voxel models of the ICRP male phantom to polygonal models. The present study developed the new conversion method and successfully improved polygonal models for cranium, ribs, and spines for the ICRP male phantom. The new conversion method will be also applied to the complex bone conversion for the ICRP female phantom as well as other complex organ conversion in the future

  18. Inhibition of prostaglandin synthesis after metabolism of menadione by cultured porcine endothelial cells

    International Nuclear Information System (INIS)

    Barchowsky, A.; Tabrizi, K.; Kent, R.S.; Whorton, A.R.

    1989-01-01

    We have examined the effects of menadione on porcine aortic endothelial cell prostaglandin synthesis. Addition of 1-20 microM menadione caused a dose- and time-dependent inhibition of stimulated prostaglandin synthesis with an IC50 of 5 microM at 15 min. Concentrations greater than 100 microM menadione were necessary to increase 51 Cr release from prelabeled cells. Recovery of enzyme inactivated by menadione required a 6-h incubation in 1% serum. In a microsomal preparation, menadione was shown to have no direct effect on conversion of arachidonic acid to prostaglandins. In intact cells menadione caused only a 40% inhibition of the conversion of PGH2 to prostacyclin. Enzymes involved in the incorporation and the release of arachidonic acid were not affected by menadione (20 microM, 15 min). Menadione undergoes oxidation/reduction reactions in intact cells leading to partial reduction of oxygen-forming, reactive oxygen species. In our cells menadione was found to increase KCN-resistant oxygen consumption. Further, an increased accumulation of H 2 O 2 was observed with a time course consistent with menadione-induced inhibition of prostaglandin synthesis. We conclude that menadione at sublethal doses caused inhibition of prostaglandin synthesis. The mechanism involves inactivation of PGH2 synthase by a reactive species resulting from metabolism of menadione by endothelial cells

  19. Junctional E-cadherin/p120-catenin Is Correlated with the Absence of Supporting Cells to Hair Cells Conversion in Postnatal Mice Cochleae

    Directory of Open Access Journals (Sweden)

    Wen-wei Luo

    2018-02-01

    Full Text Available Notch inhibition is known to generate supernumerary hair cells (HCs at the expense of supporting cells (SCs in the mammalian inner ear. However, inhibition of Notch activity becomes progressively less effective at inducing SC-to-HC conversion in the postnatal cochlea and balance organs as the animal ages. It has been suggested that the SC-to-HC conversion capacity is inversely correlated with E-cadherin accumulation in postnatal mammalian utricles. However, whether E-cadherin localization is linked to the SC-to-HC conversion capacity in the mammalian inner ear is poorly understood. In the present study, we treated cochleae from postnatal day 0 (P0 with the Notch signaling inhibitor DAPT and observed apparent SC-to-HC conversion along with E-cadherin/p120ctn disruption in the sensory region. In addition, the SC-to-HC conversion capacity and E-cadherin/p120ctn disorganization were robust in the apex but decreased toward the base. We further demonstrated that the ability to regenerate HCs and the disruption of E-cadherin/p120ctn concomitantly decreased with age and ceased at P7, even after extended DAPT treatments. This timing is consistent with E-cadherin/p120ctn accumulation in the postnatal cochleae. These results suggest that the decreasing capacity of SCs to transdifferentiate into HCs correlates with E-cadherin/p120ctn localization in the postnatal cochleae, which might account for the absence of SC-to-HC conversion in the mammalian cochlea.

  20. Junctional E-cadherin/p120-catenin Is Correlated with the Absence of Supporting Cells to Hair Cells Conversion in Postnatal Mice Cochleae.

    Science.gov (United States)

    Luo, Wen-Wei; Wang, Xin-Wei; Ma, Rui; Chi, Fang-Lu; Chen, Ping; Cong, Ning; Gu, Yu-Yan; Ren, Dong-Dong; Yang, Juan-Mei

    2018-01-01

    Notch inhibition is known to generate supernumerary hair cells (HCs) at the expense of supporting cells (SCs) in the mammalian inner ear. However, inhibition of Notch activity becomes progressively less effective at inducing SC-to-HC conversion in the postnatal cochlea and balance organs as the animal ages. It has been suggested that the SC-to-HC conversion capacity is inversely correlated with E-cadherin accumulation in postnatal mammalian utricles. However, whether E-cadherin localization is linked to the SC-to-HC conversion capacity in the mammalian inner ear is poorly understood. In the present study, we treated cochleae from postnatal day 0 (P0) with the Notch signaling inhibitor DAPT and observed apparent SC-to-HC conversion along with E-cadherin/p120ctn disruption in the sensory region. In addition, the SC-to-HC conversion capacity and E-cadherin/p120ctn disorganization were robust in the apex but decreased toward the base. We further demonstrated that the ability to regenerate HCs and the disruption of E-cadherin/p120ctn concomitantly decreased with age and ceased at P7, even after extended DAPT treatments. This timing is consistent with E-cadherin/p120ctn accumulation in the postnatal cochleae. These results suggest that the decreasing capacity of SCs to transdifferentiate into HCs correlates with E-cadherin/p120ctn localization in the postnatal cochleae, which might account for the absence of SC-to-HC conversion in the mammalian cochlea.

  1. Cartilage proteoglycans inhibit fibronectin-mediated adhesion

    Science.gov (United States)

    Rich, A. M.; Pearlstein, E.; Weissmann, G.; Hoffstein, S. T.

    1981-09-01

    Normal tissues and organs show, on histological examination, a pattern of cellular and acellular zones that is characteristic and unique for each organ or tissue. This pattern is maintained in health but is sometimes destroyed by disease. For example, in mobile joints, the articular surfaces consist of relatively acellular hyaline cartilage, and the joint space is enclosed by a capsule of loose connective tissue with a lining of fibroblasts and macrophages. In the normal joint these cells are confined to the synovial lining and the articular surface remains acellular. In in vitro culture, macrophages and their precursor monocytes are very adhesive, and fibroblasts can migrate and overgrow surfaces such as collagen or plastic used for tissue culture. The fibroblasts adhere to collagen by means of fibronectin, which they synthesize and secrete1. Because the collagen of cartilage is capable of binding serum fibronectin2 and fibronectin is present in cartilage during its development3, these cells should, in theory, slowly migrate from the synovial lining to the articular surface. It is their absence from the articular cartilage in normal circumstances, and then presence in such pathological states as rheumatoid arthritis, that is striking. We therefore set out to determine whether a component of cartilage could prevent fibroblast adherence in a defined adhesion assay. As normal cartilage is composed of 50% proteoglycans and 50% collagen by dry weight4, we tested the possibility that the proteoglycans in cartilage inhibit fibroblast adhesion to collagen. We present here evidence that fibroblast spreading and adhesion to collagenous substrates is inhibited by cartilage proteoglycans.

  2. Novel Role of Endogenous Catalase in Macrophage Polarization in Adipose Tissue.

    Science.gov (United States)

    Park, Ye Seul; Uddin, Md Jamal; Piao, Lingjuan; Hwang, Inah; Lee, Jung Hwa; Ha, Hunjoo

    2016-01-01

    Macrophages are important components of adipose tissue inflammation, which results in metabolic diseases such as insulin resistance. Notably, obesity induces a proinflammatory phenotypic switch in adipose tissue macrophages, and oxidative stress facilitates this switch. Thus, we examined the role of endogenous catalase, a key regulator of oxidative stress, in the activity of adipose tissue macrophages in obese mice. Catalase knockout (CKO) exacerbated insulin resistance, amplified oxidative stress, and accelerated macrophage infiltration into epididymal white adipose tissue in mice on normal or high-fat diet. Interestingly, catalase deficiency also enhanced classical macrophage activation (M1) and inflammation but suppressed alternative activation (M2) regardless of diet. Similarly, pharmacological inhibition of catalase activity using 3-aminotriazole induced the same phenotypic switch and inflammatory response in RAW264.7 macrophages. Finally, the same phenotypic switch and inflammatory responses were observed in primary bone marrow-derived macrophages from CKO mice. Taken together, the data indicate that endogenous catalase regulates the polarization of adipose tissue macrophages and thereby inhibits inflammation and insulin resistance.

  3. Connective tissue activation. XVII

    International Nuclear Information System (INIS)

    Weiss, J.J.; Donakowski, C.; Anderson, B.; Meyers, S.; Castor, C.W.

    1980-01-01

    The platelet-derived connective tissue activating peptide (CTAP-III) has been shown to be an important factor stimulating the metabolism and proliferation of human connective tissue cell strains, including synovial tissue cells. The quantities of CTAP-III affecting the cellular changes and the amounts in various biologic fluids and tissues are small. The objectives of this study were to develop a radioimmunoassay (RIA) for CTAP-III and to ascertain the specificities of the anti-CTAP-III sera reagents. The antisera were shown not to cross-react with a number of polypeptide hormones. However, two other platelet proteins β-thromboglobulin and low affinity platelet factor-4, competed equally as well as CTAP-III for anti-CTAP-III antibodies in the RIA system. Thus, the three platelet proteins are similar or identical with respect to those portions of the molecules constituting the reactive antigenic determinants. The levels of material in normal human platelet-free plasma that inhibited anti-CTAP-III- 125 I-CTAP-III complex formation were determined to be 34+-13 (S.D.) ng/ml. (Auth.)

  4. Effective dose conversion coefficients for X-ray radiographs of the chest and the abdomen

    Energy Technology Data Exchange (ETDEWEB)

    Lima, F.R.A. [Centro regional de Ciencias Nucleares, CRCN/CNEN, Rua Conego Barata, 999, Tamarineira, Recife, PE (Brazil); Kramer, R.; Vieira, J.W.; Khoury, H.J. [Departamento de Energia Nuclear, DEN/UFPE, Cidade Universitaria, Recife, PE (Brazil)]. E-mail: falima@cnen.gov.br

    2004-07-01

    The recently developed MAX (Male Adult voXel) and the FAXht (Female Adult voXel) head and trunk phantoms have been used to calculate organ and tissue equivalent dose conversion coefficients for X-ray radiographs of the chest and the abdomen as a function of source and field parameters, like voltage, filtration, field size, focus-to-skin distance, etc. Based on the equivalent doses to twenty three organs and tissues at risk, the effective dose has been determined and compared with corresponding data for others phantoms. The influence of different radiation transport codes, different tissue compositions and different human anatomies have been investigated separately. (Author)

  5. Effective dose conversion coefficients for X-ray radiographs of the chest and the abdomen

    International Nuclear Information System (INIS)

    Lima, F.R.A.; Kramer, R.; Vieira, J.W.; Khoury, H.J.

    2004-01-01

    The recently developed MAX (Male Adult voXel) and the FAXht (Female Adult voXel) head and trunk phantoms have been used to calculate organ and tissue equivalent dose conversion coefficients for X-ray radiographs of the chest and the abdomen as a function of source and field parameters, like voltage, filtration, field size, focus-to-skin distance, etc. Based on the equivalent doses to twenty three organs and tissues at risk, the effective dose has been determined and compared with corresponding data for others phantoms. The influence of different radiation transport codes, different tissue compositions and different human anatomies have been investigated separately. (Author)

  6. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase

    DEFF Research Database (Denmark)

    Madiraju, Anila K; Erion, Derek M; Rahimi, Yasmeen

    2014-01-01

    Metformin is considered to be one of the most effective therapeutics for treating type 2 diabetes because it specifically reduces hepatic gluconeogenesis without increasing insulin secretion, inducing weight gain or posing a risk of hypoglycaemia. For over half a century, this agent has been...... prescribed to patients with type 2 diabetes worldwide, yet the underlying mechanism by which metformin inhibits hepatic gluconeogenesis remains unknown. Here we show that metformin non-competitively inhibits the redox shuttle enzyme mitochondrial glycerophosphate dehydrogenase, resulting in an altered...... hepatocellular redox state, reduced conversion of lactate and glycerol to glucose, and decreased hepatic gluconeogenesis. Acute and chronic low-dose metformin treatment effectively reduced endogenous glucose production, while increasing cytosolic redox and decreasing mitochondrial redox states. Antisense...

  7. Melatonin inhibits endothelin-1 and induces endothelial nitric oxide ...

    African Journals Online (AJOL)

    Although, I/R augmented the endothelin-1 (ET-1) gene expression and the level of big endothelin-1 (big ET-1) in liver tissue, melatonin attenuated these increases. Conversely, non-significant decrease in endothelial nitric oxide synthase (eNOS) mRNA expression in I/R group was significantly elevated by melatonin in ...

  8. Discourse analysis: Conversational analysis of the internal conversation in Oracle Corporation Malaysia

    Directory of Open Access Journals (Sweden)

    Marwa Marwa

    2017-07-01

    Full Text Available This study highlights the internal conversation which takes place in Oracle CorporationMalaysia. Through the study, it will be shown how conversational analysis is used toanalyze the transcription of a telephone conversation between Oracle staffs. The analysisof the transcriptions will apply a few basic concepts of conversational analysis; turntakingorganization, and the adjacency pair. The objective of the study is to find out howthe internal conversations takes place by focusing on the conversation itself, that is, theconversational structures spontaneously produced by people during talk ranging fromturn-taking strategies, how topics are introduced, conversation closings and so on. Bylooking in detail at such talk, we can gain a detailed understanding of how the staffs seethemselves in relation to the company that influence their daily lives.Keywords: conversational analysis, turn-taking, adjacency pairs

  9. Effect of fenitrothion and disulfoton on lipid metabolism in tissues of white leghorn chicks (Gallus domesticus)

    International Nuclear Information System (INIS)

    Gopal, P.K.; Chopra, Arvind; Ahuja, S.P.

    1990-01-01

    The effects of acute and chronic toxicity due to Disulfoton (diethyl S-(2-ehtyl thio) ethyl phosphorothionate) and Fenitrothion (dimethyl P-3-methyl-4 nitrophenyl phosphorothionate) on the lipid metabolism in tissues of white leghorn chicks (Gallus domesticus) was studied by using 32 P-phosphate, 2- 14 C-acetate and U- 14 C-glucose as precursors. During acute toxicity, the biosynthesis of fatty acids and aerobic oxidation of glucose appear to be inhibited in nervous tissues. However, during chronic toxicity, the biosynthesis of fatty acids is not inhibited. The biosynthesis of phospholipids is depressed in certain tissues due to decreased availability of diglyceride precursors during acute toxicity. During chronic toxicity, the formation of diglyceride from phosphatidic acid appears to be inhibited. (author). 14 refs., 4 tabs

  10. Finasteride inhibited brain dopaminergic system and open-field behaviors in adolescent male rats.

    Science.gov (United States)

    Li, Li; Kang, Yun-Xiao; Ji, Xiao-Ming; Li, Ying-Kun; Li, Shuang-Cheng; Zhang, Xiang-Jian; Cui, Hui-Xian; Shi, Ge-Ming

    2018-02-01

    Finasteride inhibits the conversion of testosterone to dihydrotestosterone. Because androgen regulates dopaminergic system in the brain, it could be hypothesized that finasteride may inhibit dopaminergic system. The present study therefore investigates the effects of finasteride in adolescent and early developmental rats on dopaminergic system, including contents of dopamine and its metabolites (dihydroxy phenyl acetic acid and homovanillic acid) and tyrosine hydroxylase expressions both at gene and protein levels. Meanwhile, open-field behaviors of the rats are examined because of the regulatory effect of dopaminergic system on the behaviors. Open-field behaviors were evaluated by exploratory and motor behaviors. Dopamine and its metabolites were assayed by liquid chromatography-mass spectrometry. Tyrosine hydroxylase mRNA and protein expressions were determined by real-time qRT-PCR and western blot, respectively. It was found that in adolescent male rats, administration of finasteride at doses of 25 and 50 mg/kg for 14 days dose dependently inhibited open-field behaviors, reduced contents of dopamine and its metabolites in frontal cortex, hippocampus, caudate putamen, nucleus accumbens, and down-regulated tyrosine hydroxylase mRNA and protein expressions in substantia nigra and ventral tegmental area. However, there was no significant change of these parameters in early developmental rats after finasteride treatment. These results suggest that finasteride inhibits dopaminergic system and open-field behaviors in adolescent male rats by inhibiting the conversion of testosterone to dihydrotestosterone, and imply finasteride as a potential therapeutic option for neuropsychiatric disorders associated with hyperactivities of dopaminergic system and androgen. © 2017 John Wiley & Sons Ltd.

  11. Tissue distribution, isozyme abundance and sensitivity to chlorpyrifos-oxon of carboxylesterases in the earthworm Lumbricus terrestris

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Hernandez, Juan C. [Laboratory of Ecotoxicology, Faculty of Environmental Science, University of Castilla-La Mancha, Avda. Carlos III, 45071 Toledo (Spain)], E-mail: juancarlos.sanchez@uclm.es; Wheelock, Craig E. [Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 171 77, Stockholm (Sweden)

    2009-01-15

    A laboratory-based study was conducted to determine the basal carboxylesterase (CbE) activity in different tissues of the earthworm Lumbricus terrestris, and its sensitivity to the organophosphate (OP) pesticide chlorpyrifos-oxon (CPx). Carboxylesterase activity was found in the pharynx, crop, gizzard, anterior intestine, wall muscle and reproductive tissues of L. terrestris, and multiple tissue-specific isozymes were observed by native gel electrophoresis. Esterase activity and sensitivity to CPx inhibition varied on a tissue- and substrate-specific basis, suggesting isoforms-specific selectivity to OP-mediated inhibition. Three practical issues are recommended for the use of earthworm CbE activity as a biomarker of pesticide exposure: (i) CbE should be measured using several routine substrates, (ii) it should be determined in selected tissues instead of whole organism homogenate, and (iii) earthworm CbE activity should be used in conjuncture with other common biomarkers (e.g., ChE) within a multibiomarker approach to assess field exposure of OPs, and potentially other agrochemicals. - The measurement of carboxylesterase inhibition in earthworm is a sensitive and complementary biomarker of pesticide exposure.

  12. Tissue distribution, isozyme abundance and sensitivity to chlorpyrifos-oxon of carboxylesterases in the earthworm Lumbricus terrestris

    International Nuclear Information System (INIS)

    Sanchez-Hernandez, Juan C.; Wheelock, Craig E.

    2009-01-01

    A laboratory-based study was conducted to determine the basal carboxylesterase (CbE) activity in different tissues of the earthworm Lumbricus terrestris, and its sensitivity to the organophosphate (OP) pesticide chlorpyrifos-oxon (CPx). Carboxylesterase activity was found in the pharynx, crop, gizzard, anterior intestine, wall muscle and reproductive tissues of L. terrestris, and multiple tissue-specific isozymes were observed by native gel electrophoresis. Esterase activity and sensitivity to CPx inhibition varied on a tissue- and substrate-specific basis, suggesting isoforms-specific selectivity to OP-mediated inhibition. Three practical issues are recommended for the use of earthworm CbE activity as a biomarker of pesticide exposure: (i) CbE should be measured using several routine substrates, (ii) it should be determined in selected tissues instead of whole organism homogenate, and (iii) earthworm CbE activity should be used in conjuncture with other common biomarkers (e.g., ChE) within a multibiomarker approach to assess field exposure of OPs, and potentially other agrochemicals. - The measurement of carboxylesterase inhibition in earthworm is a sensitive and complementary biomarker of pesticide exposure

  13. Rapid analysis of aminoglycoside antibiotics in bovine tissues using disposable pipette extraction and ultrahigh performance liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Lehotay, Steven J; Mastovska, Katerina; Lightfield, Alan R; Nuñez, Alberto; Dutko, Terry; Ng, Chilton; Bluhm, Louis

    2013-10-25

    A high-throughput qualitative screening and identification method for 9 aminoglycosides of regulatory interest has been developed, validated, and implemented for bovine kidney, liver, and muscle tissues. The method involves extraction at previously validated conditions, cleanup using disposable pipette extraction, and analysis by a 3 min ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method. The drug analytes include neomycin, streptomycin, dihydrosptreptomycin, and spectinomycin, which have residue tolerances in bovine in the US, and kanamicin, gentamicin, apramycin, amikacin, and hygromycin, which do not have US tolerances established in bovine tissues. Tobramycin was used as an internal standard. An additional drug, paromomycin also was validated in the method, but it was dropped during implementation due to conversion of neomycin into paromomycin. Proposed fragmentation patterns for the monitored ions of each analyte were elucidated with the aid of high resolution MS using a quadrupole-time-of-flight instrument. Recoveries from spiking experiments at regulatory levels of concern showed that all analytes averaged 70-120% recoveries in all tissues, except hygromycin averaged 61% recovery. Lowest calibrated levels were as low as 0.005 μg/g in matrix extracts, which approximately corresponded to the limit of detection for screening purposes. Drug identifications at levels advantages compared to the previous microbial inhibition screening assay, especially for distinguishing individual drugs from a mixture and improving identification of gentamicin in tissue samples. Published by Elsevier B.V.

  14. Conversion coefficients for individual monitoring calculated with integrated tiger series, ITS3, Monte Carlo code

    International Nuclear Information System (INIS)

    Devine, R.T.; Hsu, Hsiao-Hua

    1994-01-01

    The current basis for conversion coefficients for calibrating individual photon dosimeters in terms of dose equivalents is found in the series of papers by Grosswent. In his calculation the collision kerma inside the phantom is determined by calculation of the energy fluence at the point of interest and the use of the mass energy absorption coefficient. This approximates the local absorbed dose. Other Monte Carlo methods can be sued to provide calculations of the conversion coefficients. Rogers has calculated fluence-to-dose equivalent conversion factors with the Electron-Gamma Shower Version 3, EGS3, Monte Carlo program and produced results similar to Grosswent's calculations. This paper will report on calculations using the Integrated TIGER Series Version 3, ITS3, code to calculate the conversion coefficients in ICRU Tissue and in PMMA. A complete description of the input parameters to the program is given and comparison to previous results is included

  15. TNF-driven adaptive response mediates resistance to EGFR inhibition in lung cancer.

    Science.gov (United States)

    Gong, Ke; Guo, Gao; Gerber, David E; Gao, Boning; Peyton, Michael; Huang, Chun; Minna, John D; Hatanpaa, Kimmo J; Kernstine, Kemp; Cai, Ling; Xie, Yang; Zhu, Hong; Fattah, Farjana J; Zhang, Shanrong; Takahashi, Masaya; Mukherjee, Bipasha; Burma, Sandeep; Dowell, Jonathan; Dao, Kathryn; Papadimitrakopoulou, Vassiliki A; Olivas, Victor; Bivona, Trever G; Zhao, Dawen; Habib, Amyn A

    2018-06-01

    Although aberrant EGFR signaling is widespread in cancer, EGFR inhibition is effective only in a subset of non-small cell lung cancer (NSCLC) with EGFR activating mutations. A majority of NSCLCs express EGFR wild type (EGFRwt) and do not respond to EGFR inhibition. TNF is a major mediator of inflammation-induced cancer. We find that a rapid increase in TNF level is a universal adaptive response to EGFR inhibition in NSCLC, regardless of EGFR status. EGFR signaling actively suppresses TNF mRNA levels by inducing expression of miR-21, resulting in decreased TNF mRNA stability. Conversely, EGFR inhibition results in loss of miR-21 and increased TNF mRNA stability. In addition, TNF-induced NF-κB activation leads to increased TNF transcription in a feed-forward loop. Inhibition of TNF signaling renders EGFRwt-expressing NSCLC cell lines and an EGFRwt patient-derived xenograft (PDX) model highly sensitive to EGFR inhibition. In EGFR-mutant oncogene-addicted cells, blocking TNF enhances the effectiveness of EGFR inhibition. EGFR plus TNF inhibition is also effective in NSCLC with acquired resistance to EGFR inhibition. We suggest concomitant EGFR and TNF inhibition as a potentially new treatment approach that could be beneficial for a majority of lung cancer patients.

  16. Neodymium conversion layers formed on zinc powder for improving electrochemical properties of zinc electrodes

    International Nuclear Information System (INIS)

    Zhu Liqun; Zhang Hui; Li Weiping; Liu Huicong

    2008-01-01

    Zinc powder, as active material of secondary alkaline zinc electrode, can greatly limit the performance of zinc electrode due to corrosion and dendritic growth of zinc resulting in great capacity-loss and short cycle life of the electrode. This work is devoted to modification study of zinc powder with neodymium conversion films coated directly onto it using ultrasonic immersion method for properties improvement of zinc electrodes. Scanning electron microscopy and other characterization techniques are applied to prove that neodymium conversion layers are distributing on the surface of modified zinc powder. The electrochemical performance of zinc electrodes made of such modified zinc powder is investigated through potentiodynamic polarization, potentiostatic polarization and cyclic voltammetry. The neodymium conversion films are found to have a significant effect on inhibition corrosion capability of zinc electrode in a beneficial way. It is also confirmed that the neodymium conversion coatings can obviously suppress dendritic growth of zinc electrode, which is attributed to the amelioration of deposition state of zinc. Moreover, the results of cyclic voltammetry reveal that surface modification of zinc powder enhances the cycle performance of the electrode mainly because the neodymium conversion films decrease the amounts of ZnO or Zn(OH) 2 dissolved in the electrolyte

  17. Connective tissue growth factor inhibits gastric cancer peritoneal metastasis by blocking integrin α3β1-dependent adhesion.

    Science.gov (United States)

    Chen, Chiung-Nien; Chang, Cheng-Chi; Lai, Hong-Shiee; Jeng, Yung-Ming; Chen, Chia-I; Chang, King-Jeng; Lee, Po-Huang; Lee, Hsinyu

    2015-07-01

    Connective tissue growth factor (CTGF) plays important roles in normal and pathological conditions. The aim of this study was to investigate the role of CTGF in peritoneal metastasis as well as the underlying mechanism in gastric cancer progression. CTGF expression levels for wild-type and stable overexpression clones were determined by Western blotting and quantitative polymerase chain reaction (Q-PCR). Univariate and multivariate analyses, immunohistochemistry, and survival probability analyses were performed on gastric cancer patients. The extracellular matrix components involved in CTGF-regulated adhesion were determined. Recombinant CTGF was added to cells or coinoculated with gastric cancer cells into mice to evaluate its therapeutic potential. CTGF overexpression and treatment with the recombinant protein significantly inhibited cell adhesion. In vivo peritoneal metastasis demonstrated that CTGF-stable transfectants markedly decreased the number and size of tumor nodules in the mesentery. Statistical analysis of gastric cancer patient data showed that patients expressing higher CTGF levels had earlier TNM staging and a higher survival probability after the surgery. Integrin α3β1 was the cell adhesion molecule mediating gastric cancer cell adhesion to laminin, and blocking of integrin α3β1 prevented gastric cancer cell adhesion to recombinant CTGF. Coimmunoprecipitation results indicated that CTGF binds to integrin α3. Coinoculation of recombinant CTGF and gastric cancer cell lines in mice showed effective inhibition of peritoneal dissemination. Our results suggested that gastric cancer peritoneal metastasis is mediated through integrin α3β1 binding to laminin, and CTGF effectively blocks the interaction by binding to integrin α3β1, thus demonstrating the therapeutic potential of recombinant CTGF in gastric cancer patients.

  18. Photon Entanglement Through Brain Tissue.

    Science.gov (United States)

    Shi, Lingyan; Galvez, Enrique J; Alfano, Robert R

    2016-12-20

    Photon entanglement, the cornerstone of quantum correlations, provides a level of coherence that is not present in classical correlations. Harnessing it by study of its passage through organic matter may offer new possibilities for medical diagnosis technique. In this work, we study the preservation of photon entanglement in polarization, created by spontaneous parametric down-conversion, after one entangled photon propagates through multiphoton-scattering brain tissue slices with different thickness. The Tangle-Entropy (TS) plots show the strong preservation of entanglement of photons propagating in brain tissue. By spatially filtering the ballistic scattering of an entangled photon, we find that its polarization entanglement is preserved and non-locally correlated with its twin in the TS plots. The degree of entanglement correlates better with structure and water content than with sample thickness.

  19. Next generation bone tissue engineering: non-viral miR-133a inhibition using collagen-nanohydroxyapatite scaffolds rapidly enhances osteogenesis

    Science.gov (United States)

    Mencía Castaño, Irene; Curtin, Caroline M.; Duffy, Garry P.; O'Brien, Fergal J.

    2016-06-01

    Bone grafts are the second most transplanted materials worldwide at a global cost to healthcare systems valued over $30 billion every year. The influence of microRNAs in the regenerative capacity of stem cells offers vast therapeutic potential towards bone grafting; however their efficient delivery to the target site remains a major challenge. This study describes how the functionalisation of porous collagen-nanohydroxyapatite (nHA) scaffolds with miR-133a inhibiting complexes, delivered using non-viral nHA particles, enhanced human mesenchymal stem cell-mediated osteogenesis through the novel focus on a key activator of osteogenesis, Runx2. This study showed enhanced Runx2 and osteocalcin expression, as well as increased alkaline phosphatase activity and calcium deposition, thus demonstrating a further enhanced therapeutic potential of a biomaterial previously optimised for bone repair applications. The promising features of this platform offer potential for a myriad of applications beyond bone repair and tissue engineering, thus presenting a new paradigm for microRNA-based therapeutics.

  20. High Concentrations of Tranexamic Acid Inhibit Ionotropic Glutamate Receptors.

    Science.gov (United States)

    Lecker, Irene; Wang, Dian-Shi; Kaneshwaran, Kirusanthy; Mazer, C David; Orser, Beverley A

    2017-07-01

    The antifibrinolytic drug tranexamic acid is structurally similar to the amino acid glycine and may cause seizures and myoclonus by acting as a competitive antagonist of glycine receptors. Glycine is an obligatory co-agonist of the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors. Thus, it is plausible that tranexamic acid inhibits NMDA receptors by acting as a competitive antagonist at the glycine binding site. The aim of this study was to determine whether tranexamic acid inhibits NMDA receptors, as well as α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and kainate subtypes of ionotropic glutamate receptors. Tranexamic acid modulation of NMDA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, and kainate receptors was studied using whole cell voltage-clamp recordings of current from cultured mouse hippocampal neurons. Tranexamic acid rapidly and reversibly inhibited NMDA receptors (half maximal inhibitory concentration = 241 ± 45 mM, mean ± SD; 95% CI, 200 to 281; n = 5) and shifted the glycine concentration-response curve for NMDA-evoked current to the right. Tranexamic acid also inhibited α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (half maximal inhibitory concentration = 231 ± 91 mM; 95% CI, 148 to 314; n = 5 to 6) and kainate receptors (half maximal inhibitory concentration = 90 ± 24 mM; 95% CI, 68 to 112; n = 5). Tranexamic acid inhibits NMDA receptors likely by reducing the binding of the co-agonist glycine and also inhibits α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and kainate receptors. Receptor blockade occurs at high millimolar concentrations of tranexamic acid, similar to the concentrations that occur after topical application to peripheral tissues. Glutamate receptors in tissues including bone, heart, and nerves play various physiologic roles, and tranexamic acid inhibition of these receptors may contribute to adverse drug effects.

  1. Gambogic Acid Is a Tissue-Specific Proteasome Inhibitor In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Xiaofen Li

    2013-01-01

    Full Text Available Gambogic acid (GA is a natural compound derived from Chinese herbs that has been approved by the Chinese Food and Drug Administration for clinical trials in cancer patients; however, its molecular targets have not been thoroughly studied. Here, we report that GA inhibits tumor proteasome activity, with potency comparable to bortezomib but much less toxicity. First, GA acts as a prodrug and only gains proteasome-inhibitory function after being metabolized by intracellular CYP2E1. Second, GA-induced proteasome inhibition is a prerequisite for its cytotoxicity and anticancer effect without off-targets. Finally, because expression of the CYP2E1 gene is very high in tumor tissues but low in many normal tissues, GA could therefore produce tissue-specific proteasome inhibition and tumor-specific toxicity, with clinical significance for designing novel strategies for cancer treatment.

  2. BCL-2 family protein, BAD is down-regulated in breast cancer and inhibits cell invasion

    Energy Technology Data Exchange (ETDEWEB)

    Cekanova, Maria, E-mail: mcekanov@utk.edu [Department of Small Animal Clinical Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN (United States); Fernando, Romaine I. [Department of Obstetrics and Gynecology, Graduate School of Medicine, Medical Center, The University of Tennessee, Knoxville, TN (United States); Siriwardhana, Nalin [Department of Animal Science, The University of Tennessee, Knoxville, TN (United States); Sukhthankar, Mugdha [Department of Biomedical and Diagnostics Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN (United States); Parra, Columba de la [Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, PR (United States); Woraratphoka, Jirayus [Department of Obstetrics and Gynecology, Graduate School of Medicine, Medical Center, The University of Tennessee, Knoxville, TN (United States); Malone, Christine [Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, NC (United States); Ström, Anders [Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX (United States); Baek, Seung J. [Department of Biomedical and Diagnostics Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN (United States); Wade, Paul A. [Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, NC (United States); Saxton, Arnold M. [Department of Animal Science, The University of Tennessee, Knoxville, TN (United States); Donnell, Robert M. [Department of Biomedical and Diagnostics Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN (United States); Pestell, Richard G. [Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA (United States); and others

    2015-02-01

    We have previously demonstrated that the anti-apoptotic protein BAD is expressed in normal human breast tissue and shown that BAD inhibits expression of cyclin D1 to delay cell-cycle progression in breast cancer cells. Herein, expression of proteins in breast tissues was studied by immunohistochemistry and results were analyzed statistically to obtain semi-quantitative data. Biochemical and functional changes in BAD-overexpressing MCF7 breast cancer cells were evaluated using PCR, reporter assays, western blotting, ELISA and extracellular matrix invasion assays. Compared to normal tissues, Grade II breast cancers expressed low total/phosphorylated forms of BAD in both cytoplasmic and nuclear compartments. BAD overexpression decreased the expression of β-catenin, Sp1, and phosphorylation of STATs. BAD inhibited Ras/MEK/ERK and JNK signaling pathways, without affecting the p38 signaling pathway. Expression of the metastasis-related proteins, MMP10, VEGF, SNAIL, CXCR4, E-cadherin and TlMP2 was regulated by BAD with concomitant inhibition of extracellular matrix invasion. Inhibition of BAD by siRNA increased invasion and Akt/p-Akt levels. Clinical data and the results herein suggest that in addition to the effect on apoptosis, BAD conveys anti-metastatic effects and is a valuable prognostic marker in breast cancer. - Highlights: • BAD and p-BAD expressions are decreased in breast cancer compared with normal breast tissue. • BAD impedes breast cancer invasion and migration. • BAD inhibits the EMT and transcription factors that promote cancer cell migration. • Invasion and migration functions of BAD are distinct from the BAD's role in apoptosis.

  3. BCL-2 family protein, BAD is down-regulated in breast cancer and inhibits cell invasion

    International Nuclear Information System (INIS)

    Cekanova, Maria; Fernando, Romaine I.; Siriwardhana, Nalin; Sukhthankar, Mugdha; Parra, Columba de la; Woraratphoka, Jirayus; Malone, Christine; Ström, Anders; Baek, Seung J.; Wade, Paul A.; Saxton, Arnold M.; Donnell, Robert M.; Pestell, Richard G.

    2015-01-01

    We have previously demonstrated that the anti-apoptotic protein BAD is expressed in normal human breast tissue and shown that BAD inhibits expression of cyclin D1 to delay cell-cycle progression in breast cancer cells. Herein, expression of proteins in breast tissues was studied by immunohistochemistry and results were analyzed statistically to obtain semi-quantitative data. Biochemical and functional changes in BAD-overexpressing MCF7 breast cancer cells were evaluated using PCR, reporter assays, western blotting, ELISA and extracellular matrix invasion assays. Compared to normal tissues, Grade II breast cancers expressed low total/phosphorylated forms of BAD in both cytoplasmic and nuclear compartments. BAD overexpression decreased the expression of β-catenin, Sp1, and phosphorylation of STATs. BAD inhibited Ras/MEK/ERK and JNK signaling pathways, without affecting the p38 signaling pathway. Expression of the metastasis-related proteins, MMP10, VEGF, SNAIL, CXCR4, E-cadherin and TlMP2 was regulated by BAD with concomitant inhibition of extracellular matrix invasion. Inhibition of BAD by siRNA increased invasion and Akt/p-Akt levels. Clinical data and the results herein suggest that in addition to the effect on apoptosis, BAD conveys anti-metastatic effects and is a valuable prognostic marker in breast cancer. - Highlights: • BAD and p-BAD expressions are decreased in breast cancer compared with normal breast tissue. • BAD impedes breast cancer invasion and migration. • BAD inhibits the EMT and transcription factors that promote cancer cell migration. • Invasion and migration functions of BAD are distinct from the BAD's role in apoptosis

  4. Propranolol inhibits the in vitro conversion of thyroxine into triiodothyronine by isolated rat liver parenchymal cells

    NARCIS (Netherlands)

    van Noorden, C. J.; Wiersinga, W. M.; Touber, J. L.

    1979-01-01

    A model for the in vitro study of the conversion of thyroxine into triiodothyronine using isolated rat liver parenchymal cells is described. Isolated liver cells (mean protein content 18 mg/ml) convert approximately 0.8% of 1.3 microM exogenously added T4 into T3 during thirty minutes incubation.

  5. Thiazolopyridines Improve Adipocyte Function by Inhibiting 11 Beta-HSD1 Oxoreductase Activity

    Directory of Open Access Journals (Sweden)

    Thirumurugan Rathinasabapathy

    2017-01-01

    Full Text Available Background. Glucocorticoid excess has been linked to clinical observations associated with the pathophysiology of metabolic syndrome. The intracellular glucocorticoid levels are primarily modulated by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1 enzyme that is highly expressed in key metabolic tissues including fat, liver, and the central nervous system. Methods. In this study we synthesized a set of novel tetrahydrothiazolopyridine derivatives, TR-01–4, that specifically target 11β-HSD1 and studied their ability to interfere with the glucocorticoid and lipid metabolism in the 3T3-L1 adipocytes. Results. Based on the docking model and structure-activity relationships, tetrahydrothiazolopyridine derivatives TR-02 and TR-04 showed the highest potency against 11β-HSD1 by dose-dependently inhibiting conversion of cortisone to cortisol (IC50 values of 1.8 μM and 0.095 μM, resp.. Incubation of fat cells with 0.1–10 μM TR-01–4 significantly decreased cortisone-induced lipid accumulation in adipocytes and suppressed 11β-HSD1 mRNA expression. Observed reduction in adipocyte fat stores could be partially explained by decreased expression levels of adipogenic markers (PPAR-γ, aP2 and key enzymes of lipid metabolism, including fatty acid synthase (FAS, hormone sensitive lipase (HSL, and lipoprotein lipase (LPL. Conclusions. The tetrahydrothiazolopyridine moiety served as an active pharmacophore for inhibiting 11β-HSD1 and offered a novel therapeutic strategy to ameliorate metabolic alterations found in obesity and diabetes.

  6. Prevention of formation of acid drainage from high-sulfur coal refuse by inhibition of iron- and sulfur-oxidizing microorganisms. II. Inhibition in run of mine refuse under simulated field conditions

    Energy Technology Data Exchange (ETDEWEB)

    Dugan, P.R.

    1987-01-01

    The combination of sodium lauryl sulfate and benzoic acid effectively inhibits iron- and sulfur-oxidizing bacteria in coal refuse and prevents the conversion of iron pyrite to sulfate, ferric iron, and sulfuric acid, thereby significantly reducing the formation of acidic drainage from coal refuse. The inhibitors were effective in a concentration of 1.1. mg/kg refuse, and data indicate that the SLS was in excess of the concentration required. The treatment was compatible with the use of lime for neutralization of acid present prior to inhibition of its formation.

  7. Uranium conversion; Urankonvertering

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, Lena; Peterson, Jenny; Wilhelmsen, Katarina [Swedish Defence Research Agency (FOI), Stockholm (Sweden)

    2006-03-15

    FOI, has performed a study on uranium conversion processes that are of importance in the production of different uranium compounds in the nuclear industry. The same conversion processes are of interest both when production of nuclear fuel and production of fissile material for nuclear weapons are considered. Countries that have nuclear weapons ambitions, with the intention to produce highly enriched uranium for weapons purposes, need some degree of uranium conversion capability depending on the uranium feed material available. This report describes the processes that are needed from uranium mining and milling to the different conversion processes for converting uranium ore concentrate to uranium hexafluoride. Uranium hexafluoride is the uranium compound used in most enrichment facilities. The processes needed to produce uranium dioxide for use in nuclear fuel and the processes needed to convert different uranium compounds to uranium metal - the form of uranium that is used in a nuclear weapon - are also presented. The production of uranium ore concentrate from uranium ore is included since uranium ore concentrate is the feed material required for a uranium conversion facility. Both the chemistry and principles or the different uranium conversion processes and the equipment needed in the processes are described. Since most of the equipment that is used in a uranium conversion facility is similar to that used in conventional chemical industry, it is difficult to determine if certain equipment is considered for uranium conversion or not. However, the chemical conversion processes where UF{sub 6} and UF{sub 4} are present require equipment that is made of corrosion resistant material.

  8. Peripheral conversion and uptake of androgens in a XXY-man with Klinefelter's syndrome

    International Nuclear Information System (INIS)

    Sulcova, J.; Jirasek, J.E.; Neuwirth, J.; Raboch, J.; Starka, L.

    1978-01-01

    The conversion of 3 H-testosterone and the uptake of 3 H-testosterone and 3 H-5α-dihydrotestosterone were investigated in pubic skin and pubic hair follicles of a XXY-man with inadequate pubic hair. The uptake of both androgens was demonstrated in the skin as well as in the hair follicles. Similarly the activity of steroid 5α-reductase was present in both tissues. The total conversion of 3 H-testosterone was 2-3 times higher in the patient than in control persons. In the XXY-man the major metabolites were 5α- and 5β-androstanediols, whereas in the normal men 5α-dihydrotestosterone and 4-androstenedione were mainly formed from testosterone. An explanation of the inadequate growth of pubic hair in our patient seems to be related to a conversion of testosterone - at its low plasma level - to its relatively inactive metabolites. (author)

  9. Acyclovir inhibition of IDO to decrease Tregs as a glioblastoma treatment adjunct

    Directory of Open Access Journals (Sweden)

    Söderlund Johan

    2010-08-01

    Full Text Available Abstract Regulatory T cells, Tregs, are a subset of lymphocytes that have immunosuppressive attributes. They are elevated in blood of glioblastoma patients and within this tumor's tissue itself. Indoleamine 2,3-dioxygenase, IDO, converts tryptophan to kynurenine. IDO activity enhances Treg formation by pathways that are unknown. Experimentally, inhibition of IDO decreases Treg function and number in rodents. The common anti-viral agent acyclovir inhibits IDO. Acyclovir may thereby decrease Treg function in glioblastoma. If it can be confirmed that Treg counts are elevated in glioblastoma patients' tumor tissue, and if we can document acyclovir's lowering of tissue Treg counts by a small trial of acyclovir in pre-operative glioblastoma patients, a trial of acyclovir effect on survival should be done given the current poor prognosis of glioblastoma and the well-established safety and low side effect burden of acyclovir.

  10. Depletion of Pokemon gene inhibits hepatocellular carcinoma cell growth through inhibition of H-ras.

    Science.gov (United States)

    Zhang, Quan-Le; Tian, De-An; Xu, Xiang-Jiang

    2011-01-01

    Pokemon is a transcription repressor which plays a critical role in cell transformation and malignancy. However, little is known about its effect on the development and progression of hepatocellular carcinoma (HCC). The aim of this study was to investigate the expression of Pokemon in human HCC tissues and the biological behavior of Pokemon in HCC cells in which it is overexpressed. We also explored the expression of potential downstream cofactors of Pokemon. Reverse transcription polymerase chain reaction and Western blot analysis were used to investigate the expression of Pokemon in tissues of 30 HCC patients. We then examined cell proliferation or apoptosis and β-catenin or H-ras expression in Pokemon-depleted HepG(2) cells using DNA vector-based RNA interference technology. Pokemon was markedly expressed in 22/30 (73.3%) HCC tissues, with expression levels higher than in adjacent normal liver tissues (p Pokemon inhibited proliferation of HepG(2) or induced apoptosis. Also, H-ras expression decreased to a large extent. Pokemon exerts its oncogenic activity in the development of HCC by promoting cancer cell growth and reducing apoptosis, and the effect may be mediated by H-ras. Copyright © 2011 S. Karger AG, Basel.

  11. Genotype, development and tissue-derived variation of cell-wall properties in the lignocellulosic energy crop Miscanthus.

    Science.gov (United States)

    da Costa, Ricardo M F; Lee, Scott J; Allison, Gordon G; Hazen, Samuel P; Winters, Ana; Bosch, Maurice

    2014-10-01

    Species and hybrids of the genus Miscanthus contain attributes that make them front-runners among current selections of dedicated bioenergy crops. A key trait for plant biomass conversion to biofuels and biomaterials is cell-wall quality; however, knowledge of cell-wall composition and biology in Miscanthus species is limited. This study presents data on cell-wall compositional changes as a function of development and tissue type across selected genotypes, and considers implications for the development of miscanthus as a sustainable and renewable bioenergy feedstock. Cell-wall biomass was analysed for 25 genotypes, considering different developmental stages and stem vs. leaf compositional variability, by Fourier transform mid-infrared spectroscopy and lignin determination. In addition, a Clostridium phytofermentans bioassay was used to assess cell-wall digestibility and conversion to ethanol. Important cell-wall compositional differences between miscanthus stem and leaf samples were found to be predominantly associated with structural carbohydrates. Lignin content increased as plants matured and was higher in stem tissues. Although stem lignin concentration correlated inversely with ethanol production, no such correlation was observed for leaves. Leaf tissue contributed significantly to total above-ground biomass at all stages, although the extent of this contribution was genotype-dependent. It is hypothesized that divergent carbohydrate compositions and modifications in stem and leaf tissues are major determinants for observed differences in cell-wall quality. The findings indicate that improvement of lignocellulosic feedstocks should encompass tissue-dependent variation as it affects amenability to biological conversion. For gene-trait associations relating to cell-wall quality, the data support the separate examination of leaf and stem composition, as tissue-specific traits may be masked by considering only total above-ground biomass samples, and sample

  12. Inhibition of high affinity choline uptake by N-allyl-3-quinuclidinol

    International Nuclear Information System (INIS)

    Asermely, K.E.; O'Neill, J.J.

    1986-01-01

    The peripheral actions of N-allyl-3-quinuclidinol (N-Al-3-OHQ) on high affinity choline uptake (HAChU) on rat phrenic nerve diaphragm are described. Endplate regions (EPA) identified by the Koelle histochemical techniques for acetylcholinesterase, were dissected from adult rat hemidiaphragms and placed in cold Krebs solution (pH-7.35). All measurements of HAChU were at 37 0 C in buffers containing tritium choline (5 μM 0.124 μC/mmole) at intervals of 1, 2, 4, 8, 15 and 30 min. Tissues were washed 3x, digested in 1N NaOH and counted for tritium in Chaikoff's solution. All data are expressed as pmole Ch/g wet weight. Comparison between EPA and non-EPA tissue demonstrate HAChU and slow choline diffusion, respectively. Steady state is observed in 15 min. N-Al-3-OHQ produces 15% inhibition at 5 x 10 -5 M compared with 50% inhibition on brain synaptosomes. At 5 x 10 -4 M N-Al-3-OHQ, 30% inhibition is observed. Attempts to deplete ACh by pre-stimulation with high K + -ion (25 mM) were unsuccessful; tissue 3 H-choline uptake appeared to oscillate over a 30 min period

  13. Inhibition of high affinity choline uptake by N-allyl-3-quinuclidinol

    Energy Technology Data Exchange (ETDEWEB)

    Asermely, K.E.; O' Neill, J.J.

    1986-03-01

    The peripheral actions of N-allyl-3-quinuclidinol (N-Al-3-OHQ) on high affinity choline uptake (HAChU) on rat phrenic nerve diaphragm are described. Endplate regions (EPA) identified by the Koelle histochemical techniques for acetylcholinesterase, were dissected from adult rat hemidiaphragms and placed in cold Krebs solution (pH-7.35). All measurements of HAChU were at 37/sup 0/C in buffers containing tritium choline (5 ..mu..M 0.124 ..mu..C/mmole) at intervals of 1, 2, 4, 8, 15 and 30 min. Tissues were washed 3x, digested in 1N NaOH and counted for tritium in Chaikoff's solution. All data are expressed as pmole Ch/g wet weight. Comparison between EPA and non-EPA tissue demonstrate HAChU and slow choline diffusion, respectively. Steady state is observed in 15 min. N-Al-3-OHQ produces 15% inhibition at 5 x 10/sup -5/ M compared with 50% inhibition on brain synaptosomes. At 5 x 10/sup -4/ M N-Al-3-OHQ, 30% inhibition is observed. Attempts to deplete ACh by pre-stimulation with high K/sup +/-ion (25 mM) were unsuccessful; tissue /sup 3/H-choline uptake appeared to oscillate over a 30 min period.

  14. Ochratoxin A inhibits the production of tissue factor and plasminogen activator inhibitor-2 by human blood mononuclear cells: Another potential mechanism of immune-suppression

    International Nuclear Information System (INIS)

    Rossiello, Maria R.; Rotunno, Crescenzia; Coluccia, Addolorata; Carratu, Maria R.; Di Santo, Angelomaria; Evangelista, Virgilio; Semeraro, Nicola; Colucci, Mario

    2008-01-01

    The mycotoxin ochratoxin A (OTA), an ubiquitous contaminant of food products endowed with a wide spectrum of toxicity, affects several functions of mononuclear leukocytes. Monocytes/macrophages play a major role in fibrin accumulation associated with immune-inflammatory processes through the production of tissue factor (TF) and plasminogen activator inhibitor 2 (PAI-2). We studied the effect of OTA on TF and PAI-2 production by human blood mononuclear cells (MNC). The cells were incubated for 3 or 18 h at 37 deg. C with non toxic OTA concentrations in the absence and in the presence of lipopolysaccharide (LPS) or other inflammatory agents. TF activity was measured by a one-stage clotting test. Antigen assays were performed by specific ELISAs in cell extracts or conditioned media and specific mRNAs were assessed by RT-PCR. OTA had no direct effect on TF and PAI-2 production by MNC. However, OTA caused a dose-dependent reduction in LPS-induced TF (activity, antigen and mRNA) and PAI-2 (antigen and mRNA) production with > 85% inhibition at 1 μg/ml. Similar results were obtained when monocyte-enriched preparations were used instead of MNC. TF production was also impaired by OTA (1 μg/ml) when MNC were stimulated with phorbol myristate acetate (98% inhibition), IL-1β (83%) or TNF-α (62%). The inhibition of TF and PAI-2 induction might represent a hitherto unrecognized mechanism whereby OTA exerts immunosuppressant activity

  15. The metabolism of L-arginine and its significance for the biosynthesis of endothelium-derived relaxing factor: L-glutamine inhibits the generation of L-arginine by cultured endothelial cells

    International Nuclear Information System (INIS)

    Sessa, W.C.; Hecker, M.; Mitchell, J.A.; Vane, J.R.

    1990-01-01

    The mechanism by which L-glutamine (L-Gln) inhibits the release of endothelium-derived factor from bovine aortic cultured endothelial cells was investigated. The intracellular concentration of L-arginine (L-Arg) in Arg-depleted endothelial cells was inversely related to the level of L-Gln. Removal of L-Gln from the culture medium (usually containing L-Gln at 2 mM) abolished the inhibitory effect of the culture medium on L-Arg generation. L-Gln (0.2 and 2 mM) but not D-Gln inhibited the generation of L-Arg by both Arg-depleted and nondepleted endothelial cells. L-Gln did not interfere with the uptake of L-Arg or the metabolism of L-Arg-L-Phe to L-Arg but inhibited the formation of L-Arg from L-citrulline (L-Cit), L-Cit-L-Phe, and N G -monomethyl-L-arginine. L-Gln also inhibited the conversion of L-[ 14 C]Cit to L-[ 14 C]Arg by Arg-depleted endothelial cells. However, L-Gln did not inhibit the conversion of L-argininosuccinic acid to L-Arg by endothelial cell homogenates. Thus, L-Gln interferes with the conversion of L-Cit to L-Arg probably by acting on argininosuccinate synthetase rather than argininosuccinate lyase. L-Gln also inhibited the generation of L-Arg by the monocyte-macrophage cell line J774 but had no effect on the conversion of L-Cit to L-Arg by these cells. As the release of endothelium-derived relaxing factor from cultured and non-cultured endothelial cells is limited by the availability of L-Arg, endogenous L-Gln may play a regulatory role in the biosynthesis of endothelium-derived relaxing factor

  16. Noninvasive optical inhibition with a red-shifted microbial rhodopsin

    DEFF Research Database (Denmark)

    Chuong, Amy S; Miri, Mitra L; Busskamp, Volker

    2014-01-01

    Optogenetic inhibition of the electrical activity of neurons enables the causal assessment of their contributions to brain functions. Red light penetrates deeper into tissue than other visible wavelengths. We present a red-shifted cruxhalorhodopsin, Jaws, derived from Haloarcula (Halobacterium......) salinarum (strain Shark) and engineered to result in red light-induced photocurrents three times those of earlier silencers. Jaws exhibits robust inhibition of sensory-evoked neural activity in the cortex and results in strong light responses when used in retinas of retinitis pigmentosa model mice. We also...... demonstrate that Jaws can noninvasively mediate transcranial optical inhibition of neurons deep in the brains of awake mice. The noninvasive optogenetic inhibition opened up by Jaws enables a variety of important neuroscience experiments and offers a powerful general-use chloride pump for basic and applied...

  17. Impact of Sulfide on Nitrate Conversion in Eutrophic Nitrate-Rich Marine Sludge

    DEFF Research Database (Denmark)

    Schwermer, Carsten U.; Krieger, Bärbel; Lavik, Gaute

    2006-01-01

    IMPACT OF SULFIDE ON NITRATE CONVERSION IN EUTROPHIC NITRATE-RICH MARINE SLUDGE C.U. Schwermer 1, B.U. Krieger 2, G. Lavik 1, A. Schramm 3, J. van Rijn 4, D. de Beer 1, D. Minz 5, E. Cytryn 4, M. Kuypers 1, A. Gieseke 1 1 Max Planck Institute for Marine Microbiology, Bremen, Germany; 2 Dept...... nitrate conversion from denitrification to dissimilatory nitrate-reduction to ammonium (DNRA). In situ microsensor profiling in stagnant sludge revealed the typical stratification of nitrate reduction on top of sulfate reduction. Increasing the bulk nitrate concentration lead to a downward shift....... Our results show that the presence of sulfide generally decreased growth rates but increased N2O production. We conclude that sulfide plays a key role in causing incomplete denitrification, presumably by inhibiting the N2O reductase, and enhancing DNRA compared to denitrification.  ...

  18. Biocatalytic conversion of methane to methanol as a key step for development of methane-based biorefineries.

    Science.gov (United States)

    Hwang, In Yeub; Lee, Seung Hwan; Choi, Yoo Seong; Park, Si Jae; Na, Jeong Geol; Chang, In Seop; Kim, Choongik; Kim, Hyun Cheol; Kim, Yong Hwan; Lee, Jin Won; Lee, Eun Yeol

    2014-12-28

    Methane is considered as a next-generation carbon feedstock owing to the vast reserves of natural and shale gas. Methane can be converted to methanol by various methods, which in turn can be used as a starting chemical for the production of value-added chemicals using existing chemical conversion processes. Methane monooxygenase is the key enzyme that catalyzes the addition of oxygen to methane. Methanotrophic bacteria can transform methane to methanol by inhibiting methanol dehydrogenase. In this paper, we review the recent progress made on the biocatalytic conversion of methane to methanol as a key step for methane-based refinery systems and discuss future prospects for this technology.

  19. Aspartate inhibits Staphylococcus aureus biofilm formation.

    Science.gov (United States)

    Yang, Hang; Wang, Mengyue; Yu, Junping; Wei, Hongping

    2015-04-01

    Biofilm formation renders Staphylococcus aureus highly resistant to conventional antibiotics and host defenses. Four D-amino acids (D-Leu, D-Met, D-Trp and D-Tyr) have been reported to be able to inhibit biofilm formation and disassemble established S. aureus biofilms. We report here for the first time that both D- and L-isoforms of aspartate (Asp) inhibited S. aureus biofilm formation on tissue culture plates. Similar biofilm inhibition effects were also observed against other staphylococcal strains, including S. saprophyticus, S. equorum, S. chromogenes and S. haemolyticus. It was found that Asp at high concentrations (>10 mM) inhibited the growth of planktonic N315 cells, but at subinhibitory concentrations decreased the cellular metabolic activity without influencing cell growth. The decreased cellular metabolic activity might be the reason for the production of less protein and DNA in the matrix of the biofilms formed in the presence of Asp. However, varied inhibition efficacies of Asp were observed for biofilms formed by clinical staphylococcal isolates. There might be mechanisms other than decreasing the metabolic activity, e.g. the biofilm phenotypes, affecting biofilm formation in the presence of Asp. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Bioengineered Hydrogel to Inhibit Post-Traumatic Central Nervous System Scarring

    Science.gov (United States)

    2016-10-01

    AWARD NUMBER: W81XWH-14-1-0586 TITLE: Bioengineered Hydrogel to Inhibit Post-Traumatic Central Nervous System Scarring PRINCIPAL...Hydrogel to Inhibit Post-Traumatic Central Nervous System Scarring 5a. CONTRACT NUMBER W81XWH-14-1-0586 5b. GRANT NUMBER W81XWH- 14-1-0586 5c...barriers that prevent the optimal delivery of biologics and cells to the injured nervous system . A significant problem is the formation of scar tissue

  1. Arginase Inhibition Reverses Monocrotaline-Induced Pulmonary Hypertension

    Directory of Open Access Journals (Sweden)

    Christian Jung

    2017-07-01

    Full Text Available Pulmonary hypertension (PH is a heterogeneous disorder associated with a poor prognosis. Thus, the development of novel treatment strategies is of great interest. The enzyme arginase (Arg is emerging as important player in PH development. The aim of the current study was to determine the expression of ArgI and ArgII as well as the effects of Arg inhibition in a rat model of PH. PH was induced in 35 Sprague–Dawley rats by monocrotaline (MCT, 60 mg/kg as single-dose. There were three experimental groups: sham-treated controls (control group, n = 11, MCT-induced PH (MCT group, n = 11 and MCT-induced PH treated with the Arg inhibitor Nω-hydroxy-nor-l-arginine (nor-NOHA; MCT/NorNoha group, n = 13. ArgI and ArgII expression was determined by immunohistochemistry and Western blot. Right ventricular systolic pressure (RVPsys was measured and lung tissue remodeling was determined. Induction of PH resulted in an increase in RVPsys (81 ± 16 mmHg compared to the control group (41 ± 15 mmHg, p = 0.002 accompanied by a significant elevation of histological sum-score (8.2 ± 2.4 in the MCT compared to 1.6 ± 1.6 in the control group, p < 0.001. Both, ArgI and ArgII were relevantly expressed in lung tissue and there was a significant increase in the MCT compared to the control group (p < 0.01. Arg inhibition resulted in a significant reduction of RVPsys to 52 ± 19 mmHg (p = 0.006 and histological sum-score to 5.8 ± 1.4 compared to the MCT group (p = 0.022. PH leads to increased expression of Arg. Arg inhibition leads to reduction of RVPsys and diminished lung tissue remodeling and therefore represents a potential treatment strategy in PH.

  2. Inhibition of histone acetylation as a tool in bone tissue engineering

    NARCIS (Netherlands)

    de Boer, Jan; Licht, R.; Bongers, Marloes; van der Klundert, Tessa; Arends, Roel; van Blitterswijk, Clemens

    2006-01-01

    Our approach to bone tissue engineering is the in vitro expansion and osteogenic differentiation of bone marrow–derived human mesenchymal stem cells (hMSCs) and their subsequent implantation on porous ceramic materials. Current osteogenic differentiation protocols use dexamethasone to initiate the

  3. Traction force microscopy of engineered cardiac tissues.

    Science.gov (United States)

    Pasqualini, Francesco Silvio; Agarwal, Ashutosh; O'Connor, Blakely Bussie; Liu, Qihan; Sheehy, Sean P; Parker, Kevin Kit

    2018-01-01

    Cardiac tissue development and pathology have been shown to depend sensitively on microenvironmental mechanical factors, such as extracellular matrix stiffness, in both in vivo and in vitro systems. We present a novel quantitative approach to assess cardiac structure and function by extending the classical traction force microscopy technique to tissue-level preparations. Using this system, we investigated the relationship between contractile proficiency and metabolism in neonate rat ventricular myocytes (NRVM) cultured on gels with stiffness mimicking soft immature (1 kPa), normal healthy (13 kPa), and stiff diseased (90 kPa) cardiac microenvironments. We found that tissues engineered on the softest gels generated the least amount of stress and had the smallest work output. Conversely, cardiomyocytes in tissues engineered on healthy- and disease-mimicking gels generated significantly higher stresses, with the maximal contractile work measured in NRVM engineered on gels of normal stiffness. Interestingly, although tissues on soft gels exhibited poor stress generation and work production, their basal metabolic respiration rate was significantly more elevated than in other groups, suggesting a highly ineffective coupling between energy production and contractile work output. Our novel platform can thus be utilized to quantitatively assess the mechanotransduction pathways that initiate tissue-level structural and functional remodeling in response to substrate stiffness.

  4. Effects of ionizing radiation on plant tissue cultures

    International Nuclear Information System (INIS)

    Hell, K.G.

    1978-01-01

    A short review is done of the biological effects of ionizing radiations on plant tissues kept in culture, from the work of Gladys King, in 1949, with X-ray irradiated tobacco. The role of plant hormones is discussed in the processes of growth inhibition and growth restoration of irradiated tissues, as well as morphogenesis. Radioresistance of cells kept in culture and the use of ionizing radiations as mutagens are also commented. Some aspects of the biological effects of ionizing radiations that need to be investigated are discussed, and the problem of genome instability of plant tissues kept in culture is pointed out. (M.A.) [pt

  5. Nanotechnology and picotechnology to increase tissue growth: a summary of in vivo studies

    Directory of Open Access Journals (Sweden)

    Alpaslan E

    2014-05-01

    Full Text Available Ece Alpaslan,1 Thomas J Webster1,21Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, USA; 2Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi ArabiaAbstract: The aim of tissue engineering is to develop functional substitutes for damaged tissues or malfunctioning organs. Since only nanomaterials can mimic the surface properties (ie, roughness of natural tissues and have tunable properties (such as mechanical, magnetic, electrical, optical, and other properties, they are good candidates for increasing tissue growth, minimizing inflammation, and inhibiting infection. Recently, the use of nanomaterials in various tissue engineering applications has demonstrated improved tissue growth compared to what has been achieved until today with our conventional micron structured materials. This short report paper will summarize some of the more relevant advancements nanomaterials have made in regenerative medicine, specifically improving bone and bladder tissue growth. Moreover, this short report paper will also address the continued potential risks and toxicity concerns, which need to be accurately addressed by the use of nanomaterials. Lastly, this paper will emphasize a new field, picotechnology, in which researchers are altering electron distributions around atoms to promote surface energy to achieve similar increased tissue growth, decreased inflammation, and inhibited infection without potential nanomaterial toxicity concerns.Keywords: nanomaterials, tissue engineering, toxicity

  6. Computers and conversation

    CERN Document Server

    Luff, Paul; Gilbert, Nigel G

    1986-01-01

    In the past few years a branch of sociology, conversation analysis, has begun to have a significant impact on the design of human*b1computer interaction (HCI). The investigation of human*b1human dialogue has emerged as a fruitful foundation for interactive system design.****This book includes eleven original chapters by leading researchers who are applying conversation analysis to HCI. The fundamentals of conversation analysis are outlined, a number of systems are described, and a critical view of their value for HCI is offered.****Computers and Conversation will be of interest to all concerne

  7. Aging and Adipose Tissue: Potential Interventions for Diabetes and Regenerative Medicine

    Science.gov (United States)

    Palmer, Allyson K.; Kirkland, James L.

    2016-01-01

    Adipose tissue dysfunction occurs with aging and has systemic effects, including peripheral insulin resistance, ectopic lipid deposition, and inflammation. Fundamental aging mechanisms, including cellular senescence and progenitor cell dysfunction, occur in adipose tissue with aging and may serve as potential therapeutic targets in age-related disease. In this review, we examine the role of adipose tissue in healthy individuals and explore how aging leads to adipose tissue dysfunction, redistribution, and changes in gene regulation. Adipose tissue plays a central role in longevity, and interventions restricted to adipose tissue may impact lifespan. Conversely, obesity may represent a state of accelerated aging. We discuss the potential therapeutic potential of targeting basic aging mechanisms, including cellular senescence, in adipose tissue, using type II diabetes and regenerative medicine as examples. We make the case that aging should not be neglected in the study of adipose-derived stem cells for regenerative medicine strategies, as elderly patients make up a large portion of individuals in need of such therapies. PMID:26924669

  8. Formation of a cerium conversion coating on magnesium alloy using ascorbic acid as additive. Characterisation and anticorrosive properties of the formed films

    Directory of Open Access Journals (Sweden)

    A.P. Loperena

    2016-12-01

    The presence of HAsc in the conversion solution causes changes in the morphology, adherence and anticorrosive performance of the films. The improvement in the corrosion resistance is closely associated with the corrosion inhibition properties of HAsc.

  9. Silencing of BAG3 inhibits the epithelial-mesenchymal transition in human cervical cancer.

    Science.gov (United States)

    Song, Fei; Wang, Geng; Ma, Zhifang; Ma, Yuebing; Wang, Yingying

    2017-11-10

    Bcl2-associated athanogene 3 (BAG3) has been reported to be involved in aggressive progression of many tumors. In the present study, we examined the expression of BAG3 in human cervical cancer (CC) tissues and investigated the role of BAG3 in SiHa and HeLa cell growth, migration, and invasion. Here, we found that most of CC tissues highly expressed the protein and mRNA of BAG3, while their expression was obviously lower in paired normal tissues (all pBAG3 expression was associated with FIGO stage and metastasis (all pBAG3 siRNAs inhibited SiHa and HeLa cell growth, invasion and migration. Mechanically, BAG3 siRNAs inhibited the expression of EMT-regulating markers, involving MMP2, Slug and N-cadherin, and increased the expression of E-cadherin. In a xenograft nude model, BAG3 siRNAs inhibited tumor growth and the expression of EMT biomarkers. In conclusion, BAG3 is involved in the EMT process, including cell growth, invasion and migration in the development of CC. Thus, BAG3 target might be recommended as a novel therapeutic approach.

  10. Increased MiR-221 expression in hepatocellular carcinoma tissues and its role in enhancing cell growth and inhibiting apoptosis in vitro

    International Nuclear Information System (INIS)

    Rong, Minhua; Chen, Gang; Dang, Yiwu

    2013-01-01

    MiR-221 is over-expressed in human hepatocellular carcinoma (HCC), but its clinical significance and function in HCC remains uncertain. The aim of the study was to investigate the relationship between miR-221 overexpression and clinicopathological parameters in HCC formalin-fixed paraffin-embedded (FFPE) tissues, and the effect of miR-221 inhibitor and mimic on different HCC cell lines in vitro. MiR-221 expression was detected using real time RT-qPCR in FFPE HCC and the adjacent noncancerous liver tissues. The relationship between miR-221 level and clinicopathological features was also analyzed. Furthermore, miR-221 inhibitor and mimic were transfected into HCC cell lines HepB3, HepG2 and SNU449. The effects of miR-221 on cell growth, cell cycle, caspase activity and apoptosis were also investigated by spectrophotometry, fluorimetry, fluorescence microscopy and flow cytometry, respectively. The relative expression of miR-221 in clinical TNM stages III and IV was significantly higher than that in the stages I and II. The miR-221 level was also upregulated in the metastatic group compared to the nonmetastatic group. Furthermore, miR-221 over-expression was related to the status of tumor capsular infiltration in HCC clinical samples. Functionally, cell growth was inhibited, cell cycle was arrested in G1/S-phase and apoptosis was increased by miR-221 inhibitor in vitro. Likewise, miR-221 mimic accelerated the cell growth. Expression of miR-221 in FFPE tissues could provide predictive significance for prognosis of HCC patients. Moreover, miR-221 inhibitor could be useful to suppress proliferation and induce apoptosis in HCC cells. Thus miR-221 might be a critical targeted therapy strategy for HCC

  11. Elements of energy conversion

    CERN Document Server

    Russell, Charles R

    2013-01-01

    Elements of Energy Conversion brings together scattered information on the subject of energy conversion and presents it in terms of the fundamental thermodynamics that apply to energy conversion by any process. Emphasis is given to the development of the theory of heat engines because these are and will remain most important power sources. Descriptive material is then presented to provide elementary information on all important energy conversion devices. The book contains 10 chapters and opens with a discussion of forms of energy, energy sources and storage, and energy conversion. This is foll

  12. MicroRNA-144 inhibits hepatocellular carcinoma cell proliferation

    Indian Academy of Sciences (India)

    MiR-144 was shown to besignificantly down-regulated in HCC tissues and cell lines. Subsequently, overexpression of miR-144 was transfectedinto HCC cell lines so as to investigate its biological function, including MTT, colony formation, and transwell assays.Gain of function assay revealed miR-144 remarkably inhibited ...

  13. Refreshing Rubbers as Customized Photothermal Conversion Materials through Post-Darkening Modeling Production.

    Science.gov (United States)

    Li, Ruiting; Wang, Zhen; Han, Peng; He, Yonglin; Zhang, Xiaohong; Wang, Yapei

    2017-12-19

    Organic conjugated polymers with low energy bandgaps are emerging as a particular class of near-infrared (NIR) photothermal conversion materials. However, these polymers routinely possess high phase transition temperatures due to the rigid skeleton and strong intermolecular interactions. Conjugated polymers can rarely be thermally processed at low temperature, especially below 100 °C. This work formulates a concept of post-darkening modeling production (p-DMP) by which the thermoplastic non-conjugated trans-polyisoprene (TPI) is refreshed into a photothermal conversion material with high light use efficiency. Two steps, including the customizable shaping at low temperature and iodine vapor-tailored "darkening", ensure the ease of preparing photothermal conversion devices with desirable topologies. A few characterizations, with the combination of density functional theory (DFT) calculations, provide reasonable explanations for understanding the "darkening" process of TPI in iodine atmosphere. In particular, the p-DMP is successfully extended to three-dimension (3D) printing, opening an avenue to fabricate personalized photothermal products, for example, a sunlight-directed physiotherapy device for healthcare of articular tissues. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Norepinephrine transporter inhibition alters the hemodynamic response to hypergravitation.

    Science.gov (United States)

    Strempel, Sebastian; Schroeder, Christoph; Hemmersbach, Ruth; Boese, Andrea; Tank, Jens; Diedrich, André; Heer, Martina; Luft, Friedrich C; Jordan, Jens

    2008-03-01

    Sympathetically mediated tachycardia and vasoconstriction maintain blood pressure during hypergravitational stress, thereby preventing gravitation-induced loss of consciousness. Norepinephrine transporter (NET) inhibition prevents neurally mediated (pre)syncope during gravitational stress imposed by head-up tilt testing. Thus it seems reasonable that NET inhibition could increase tolerance to hypergravitational stress. We performed a double-blind, randomized, placebo-controlled crossover study in 11 healthy men (26 +/- 1 yr, body mass index 24 +/- 1 kg/m2), who ingested the selective NET inhibitor reboxetine (4 mg) or matching placebo 25, 13, and 1 h before testing on separate days. We monitored heart rate, blood pressure, and thoracic impedance in three different body positions (supine, seated, standing) and during a graded centrifuge run (incremental steps of 0.5 g for 3 min each, up to a maximal vertical acceleration load of 3 g). NET inhibition increased supine blood pressure and heart rate. With placebo, blood pressure increased in the seated position and was well maintained during standing. However, with NET inhibition, blood pressure decreased in the seated and standing position. During hypergravitation, blood pressure increased in a graded fashion with placebo. With NET inhibition, the increase in blood pressure during hypergravitation was profoundly diminished. Conversely, the tachycardic responses to sitting, standing, and hypergravitation all were greatly increased with NET inhibition. In contrast to our expectation, short-term NET inhibition did not improve tolerance to hypergravitation. Redistribution of sympathetic activity to the heart or changes in baroreflex responses could explain the excessive tachycardia that we observed.

  15. Oleanolic and maslinic acid sensitize soft tissue sarcoma cells to doxorubicin by inhibiting the multidrug resistance protein MRP-1, but not P-glycoprotein.

    Science.gov (United States)

    Villar, Victor Hugo; Vögler, Oliver; Barceló, Francisca; Gómez-Florit, Manuel; Martínez-Serra, Jordi; Obrador-Hevia, Antònia; Martín-Broto, Javier; Ruiz-Gutiérrez, Valentina; Alemany, Regina

    2014-04-01

    The pentacyclic triterpenes oleanolic acid (OLA) and maslinic acid (MLA) are natural compounds present in many plants and dietary products consumed in the Mediterranean diet (e.g., pomace and virgin olive oils). Several nutraceutical activities have been attributed to OLA and MLA, whose antitumoral effects have been extensively evaluated in human adenocarcinomas, but little is known regarding their effectiveness in soft tissue sarcomas (STS). We assessed efficacy and molecular mechanisms involved in the antiproliferative effects of OLA and MLA as single agents or in combination with doxorubicin (DXR) in human synovial sarcoma SW982 and leiomyosarcoma SK-UT-1 cells. As single compound, MLA (10-100 μM) was more potent than OLA, inhibiting the growth of SW982 and SK-UT-1 cells by 70.3 ± 1.11% and 68.8 ± 1.52% at 80 μM, respectively. Importantly, OLA (80 μM) or MLA (30 μM) enhanced the antitumoral effect of DXR (0.5-10 μM) by up to 2.3-fold. On the molecular level, efflux activity of the multidrug resistance protein MRP-1, but not of the P-glycoprotein, was inhibited. Most probably as a consequence, DXR accumulated in these cells. Kinetic studies showed that OLA behaved as a competitive inhibitor of substrate-mediated MRP-1 transport, whereas MLA acted as a non-competitive one. Moreover, none of both triterpenes induced a compensatory increase in MRP-1 expression. In summary, OLA or MLA sensitized cellular models of STS to DXR and selectively inhibited MRP-1 activity, but not its expression, leading to a higher antitumoral effect possibly relevant for clinical treatment. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. BCL-2 family protein, BAD is down-regulated in breast cancer and inhibits cell invasion.

    Science.gov (United States)

    Cekanova, Maria; Fernando, Romaine I; Siriwardhana, Nalin; Sukhthankar, Mugdha; De la Parra, Columba; Woraratphoka, Jirayus; Malone, Christine; Ström, Anders; Baek, Seung J; Wade, Paul A; Saxton, Arnold M; Donnell, Robert M; Pestell, Richard G; Dharmawardhane, Suranganie; Wimalasena, Jay

    2015-02-01

    We have previously demonstrated that the anti-apoptotic protein BAD is expressed in normal human breast tissue and shown that BAD inhibits expression of cyclin D1 to delay cell-cycle progression in breast cancer cells. Herein, expression of proteins in breast tissues was studied by immunohistochemistry and results were analyzed statistically to obtain semi-quantitative data. Biochemical and functional changes in BAD-overexpressing MCF7 breast cancer cells were evaluated using PCR, reporter assays, western blotting, ELISA and extracellular matrix invasion assays. Compared to normal tissues, Grade II breast cancers expressed low total/phosphorylated forms of BAD in both cytoplasmic and nuclear compartments. BAD overexpression decreased the expression of β-catenin, Sp1, and phosphorylation of STATs. BAD inhibited Ras/MEK/ERK and JNK signaling pathways, without affecting the p38 signaling pathway. Expression of the metastasis-related proteins, MMP10, VEGF, SNAIL, CXCR4, E-cadherin and TlMP2 was regulated by BAD with concomitant inhibition of extracellular matrix invasion. Inhibition of BAD by siRNA increased invasion and Akt/p-Akt levels. Clinical data and the results herein suggest that in addition to the effect on apoptosis, BAD conveys anti-metastatic effects and is a valuable prognostic marker in breast cancer. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Disrupted G1 to S phase clearance via cyclin signaling impairs liver tissue repair in thioacetamide-treated type 1 diabetic rats

    International Nuclear Information System (INIS)

    Devi, Sachin S.; Mehendale, Harihara M.

    2005-01-01

    Previously we reported that a nonlethal dose of thioacetamide (TA, 300 mg/kg) causes 90% mortality in type 1 diabetic (DB) rats because of irreversible acute liver injury owing to inhibited hepatic tissue repair, primarily due to blockage of G 0 to S phase progression of cell division cycle. On the other hand, DB rats receiving 30 mg TA/kg exhibited equal initial liver injury and delayed tissue repair compared to nondiabetic (NDB) rats receiving 300 mg TA/kg, resulting in a delay in recovery from liver injury and survival. The objective of the present study was to test the hypothesis that impaired cyclin-regulated progression of G 1 to S phase of the cell cycle may explain inhibited liver tissue repair, hepatic failure, and death, contrasted with delayed liver tissue repair but survival observed in the DB rats receiving 300 in contrast to 30 mg TA/kg. In the TA-treated NDB rats sustained MAPKs and cyclin expression resulted in higher phosphorylation of retinoblastoma (pRb), explaining prompt tissue repair and survival. In contrast, DB rats receiving the same dose of TA (300 mg/kg) exhibited suppressed MAPKs and cyclin expression that led to inhibition of pRb, inhibited tissue repair, and death. On the other hand, DB rats receiving 30 mg TA/kg exhibited delayed up regulation of MAPK signaling that delayed the expression of CD1 and pRb, explaining delayed stimulation of tissue repair observed in this group. In conclusion, the hepatotoxicant TA has a dose-dependent adverse effect on cyclin-regulated pRb signaling: the lower dose causes a recoverable delay, whereas the higher dose inhibits it with corresponding effect on the ultimate outcomes on hepatic tissue repair; this dose-dependent adverse effect is substantially shifted to the left of the dose response curve in diabetes

  18. Iterated multidimensional wave conversion

    International Nuclear Information System (INIS)

    Brizard, A. J.; Tracy, E. R.; Johnston, D.; Kaufman, A. N.; Richardson, A. S.; Zobin, N.

    2011-01-01

    Mode conversion can occur repeatedly in a two-dimensional cavity (e.g., the poloidal cross section of an axisymmetric tokamak). We report on two novel concepts that allow for a complete and global visualization of the ray evolution under iterated conversions. First, iterated conversion is discussed in terms of ray-induced maps from the two-dimensional conversion surface to itself (which can be visualized in terms of three-dimensional rooms). Second, the two-dimensional conversion surface is shown to possess a symplectic structure derived from Dirac constraints associated with the two dispersion surfaces of the interacting waves.

  19. Dose-rate conversion factors for external exposure to photon and electron radiation from radionuclides occurring in routine releases from nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1980-01-01

    Dose-rate conversion factors for external exposure to photon and electron radiation are calculated for 240 radionuclides of potential importance in routine releases from nuclear fuel cycle facilities. Exposure modes considered are immersion in contaminated air, immersion in contaminated water, and irradiation from a contaminated ground surface. For each exposure mode, dose-rate conversion factors for photons and electrons are calculated for tissue-equivalent material at the body surface of an exposed individual. Dose-rate conversion factors for photons only are calculated for 22 body organs. (author)

  20. Identification, purification, and localization of tissue kallikrein in rat heart.

    OpenAIRE

    Xiong, W; Chen, L M; Woodley-Miller, C; Simson, J A; Chao, J

    1990-01-01

    A tissue kallikrein has been isolated from rat heart extracts by DEAE-Sepharose and aprotinin-affinity column chromatography. The purified cardiac enzyme has both N-tosyl-L-arginine methyl ester esterolytic and kinin-releasing activities, and displays parallelism with standard curves in a kallikrein radioimmunoassay, indicating it to have immunological identity with tissue kallikrein. The enzyme is inhibited by aprotinin, antipain, leupeptin and by high concentrations of soybean trypsin inhib...

  1. MiR-34a inhibits colon cancer proliferation and metastasis by inhibiting platelet-derived growth factor receptor α.

    Science.gov (United States)

    Li, Chunyan; Wang, Yulin; Lu, Shuming; Zhang, Zhuqing; Meng, Hua; Liang, Lina; Zhang, Yan; Song, Bo

    2015-11-01

    The microRNA (miRNA), miR‑34a is significant in colon cancer progression. In the present study, the role of miR‑34a in colon cancer cell proliferation and metastasis was investigated. It was found that the expression of miR‑34a in colon cancer tissues and cell lines was lower when compared with that of normal tissues and cells. Further research demonstrated that miR‑34a inhibited cell proliferation, induced G1 phase arrest, and suppressed metastasis and epithelial mesenchymal transition in colon cancer cells. Bioinformatic prediction indicated that platelet‑derived growth factor receptor α (PDGFRA) was a potential target gene of miR‑34a and a luciferase assay identified that PDGFRA was a novel direct target gene of miR‑34a. In addition, assays of western blot analyses and quantitative reverse‑transcription polymerase chain reaction confirmed that miR‑34a decreased PDGFRA mRNA expression and protein levels in colon cancer cells. Assessment of cellular function indicated that miR‑34a inhibited colon cancer progression via PDGFRA. These findings demonstrate that miR‑34a may act as a negative regulator in colon cancer by targeting PDGFRA.

  2. Effects of polymorphisms in ovine and caprine prion protein alleles on cell-free conversion

    Directory of Open Access Journals (Sweden)

    Eiden Martin

    2011-02-01

    Full Text Available Abstract In sheep polymorphisms of the prion gene (PRNP at the codons 136, 154 and 171 strongly influence the susceptibility to scrapie and bovine spongiform encephalopathy (BSE infections. In goats a number of other gene polymorphisms were found which are suspected to trigger similar effects. However, no strong correlation between polymorphisms and TSE susceptibility in goats has yet been obtained from epidemiological studies and only a low number of experimental challenge data are available at present. We have therefore studied the potential impact of these polymorphisms in vitro by cell-free conversion assays using mouse scrapie strain Me7. Mouse scrapie brain derived PrPSc served as seeds and eleven recombinant single mutation variants of sheep and goat PrPC as conversion targets. With this approach it was possible to assign reduced conversion efficiencies to specific polymorphisms, which are associated to low frequency in scrapie-affected goats or found only in healthy animals. Moreover, we could demonstrate a dominant-negative inhibition of prion polymorphisms associated with high susceptibility by alleles linked to low susceptibility in vitro.

  3. Cell Cycle Inhibition To Treat Sleeping Sickness

    Directory of Open Access Journals (Sweden)

    Conrad L. Epting

    2017-09-01

    Full Text Available African trypanosomiasis is caused by infection with the protozoan parasite Trypanosoma brucei. During infection, this pathogen divides rapidly to high density in the bloodstream of its mammalian host in a manner similar to that of leukemia. Like all eukaryotes, T. brucei has a cell cycle involving the de novo synthesis of DNA regulated by ribonucleotide reductase (RNR, which catalyzes the conversion of ribonucleotides into their deoxy form. As an essential enzyme for the cell cycle, RNR is a common target for cancer chemotherapy. We hypothesized that inhibition of RNR by genetic or pharmacological means would impair parasite growth in vitro and prolong the survival of infected animals. Our results demonstrate that RNR inhibition is highly effective in suppressing parasite growth both in vitro and in vivo. These results support drug discovery efforts targeting the cell cycle, not only for African trypanosomiasis but possibly also for other infections by eukaryotic pathogens.

  4. A possible connective tissue primary lymphoepithelioma-like carcinoma (LELC)

    OpenAIRE

    Aurilio, G; Ricci, V; De Vita, F; Fasano, M; Fazio, N; Orditura, M; Funicelli, L; De Luca, G; Iasevoli, D; Iovino, F; Ciardiello, F; Conzo, G; Nol?, F; Lamendola, MG

    2010-01-01

    Lymphoepithelial carcinoma is an undifferentiated nasopharyngeal carcinoma with lymphoid stroma and non-keratinizing squamous cells with distinctive clinical, epidemiological and etiological features. Conversely, lymphoepithelioma-like carcinomas (LELCs) are carcinomas that arise outside the nasopharynx but resemble a lymphoepithelioma histologically. In this case study, LELC presentation in connective tissue (left sternocleidomastoid muscle) is peculiar and unusual, but its diagnosis is supp...

  5. ERα inhibited myocardin-induced differentiation in uterine fibroids

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Xing-Hua, E-mail: xinghualiao@hotmail.com [Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, 430065 (China); Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457 (China); Li, Jun-Yan [Henan Vocational College of Applied Technology, Zhengzhou 450042 (China); Dong, Xiu-Mei [Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, 430065 (China); Yuncheng County People' s Hospital, Shandong 274700 (China); Wang, Xiuhong [Xianning Central Hospital, Department of Obstetrics and Gynecology, Xianning, Hubei 437100 (China); Xiang, Yuan; Li, Hui; Yu, Cheng-Xi; Li, Jia-Peng; Yuan, Bai-Yin [Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, 430065 (China); Zhou, Jun, E-mail: zhoujun@wust.edu.cn [Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, 430065 (China); School of Medicine, Wuhan University of Science and Technology, Wuhan 430065 (China); Zhang, Tong-Cun, E-mail: zhangtongcun@wust.edu.cn [Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, 430065 (China); Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457 (China)

    2017-01-01

    Uterine fibroids, also known as uterine leiomyomas, are a benign tumor of the human uterus and the commonest estrogen-dependent benign tumor found in women. Myocardin is an important transcriptional regulator in smooth and cardiac muscle development. The role of myocardin and its relationship with ERα in uterine fibroids have barely been addressed. We noticed that the expression of myocardin was markedly reduced in human uterine fibroid tissue compared with corresponding normal or adjacent myometrium tissue. Here we reported that myocardin induced the transcription and expression of differentiation markers SM22α and alpha smooth muscle actin (α-SMA) in rat primary uterine smooth muscle cells (USMCs) and this effect was inhibited by ERα. Notably, we showed that, ERα induced expression of proliferation markers PCNA and ki-67 in rat primary USMCs. We also found ERα interacted with myocardin and formed complex to bind to CArG box and inhibit the SM22α promoter activity. Furthermore, ERα inhibited the transcription and expression of myocardin, and reduced the levels of transcription and expression of downstream target SM22α, a SMC differentiation marker. Our data thus provided important and novel insights into how ERα and myocardin interact to control the cell differentiation and proliferation of USMCs. Thus, it may provide potential therapeutic target for uterine fibroids.

  6. ACE polymorphism does not determine short-term renal response to ACE-inhibition in proteinuric patients

    NARCIS (Netherlands)

    vanderKleij, FGH; Navis, GJ; Gansevoort, RT; Scheffer, H; deZeeuw, D; deJong, PE

    1997-01-01

    Background. The renal response to ACE inhibition is known to vary between individuals. The ACE genotype is a determinant of the ACE concentrations in plasma and tissue, and therefore might affect the renal response to ACE inhibition in renal patients. Methods. To test this hypothesis we studied the

  7. Biological conversion of coal synthesis gas to methane

    Energy Technology Data Exchange (ETDEWEB)

    Barik, S; Corder, R E; Clausen, E C; Gaddy, J L

    1987-09-01

    High temperatures and pressures are required, and therefore, high costs incurred during catalytic upgrading of coal synthesis gas to methane. Thus, the feasibility of biological reactions in converting synthesis gas to methane has been demonstrated in mixed and pure cultures. Complete conversion has been achieved in 2 hours with a mixed culture, and 45 minutes to 1.5 hours in pure cultures of P. productus and Methanothrix sp.. Typical sulfur levels involved during the process are found not to inhibit the bacteria and so sulfur does not have to be removed prior to biomethanation. Preliminary economic analyses indicate that coal gas may be biologically methanated for 50-60 cents/million Btu. Further studies with pure culture bacteria and increased pressure are expected to enhance biomethanation economics.

  8. Kinetic and thermodynamic control of butyrate conversion in non-defined methanogenic communities.

    Science.gov (United States)

    Junicke, H; van Loosdrecht, M C M; Kleerebezem, R

    2016-01-01

    Many anaerobic conversions proceed close to thermodynamic equilibrium and the microbial groups involved need to share their low energy budget to survive at the thermodynamic boundary of life. This study aimed to investigate the kinetic and thermodynamic control mechanisms of the electron transfer during syntrophic butyrate conversion in non-defined methanogenic communities. Despite the rather low energy content of butyrate, results demonstrate unequal energy sharing between the butyrate-utilizing species (17 %), the hydrogenotrophic methanogens (9-10 %), and the acetoclastic methanogens (73-74 %). As a key finding, the energy disproportion resulted in different growth strategies of the syntrophic partners. Compared to the butyrate-utilizing partner, the hydrogenotrophic methanogens compensated their lower biomass yield per mole of electrons transferred with a 2-fold higher biomass-specific electron transfer rate. Apart from these thermodynamic control mechanisms, experiments revealed a ten times lower hydrogen inhibition constant on butyrate conversion than proposed by the Anaerobic Digestion Model No. 1, suggesting a much stronger inhibitory effect of hydrogen on anaerobic butyrate conversion. At hydrogen partial pressures exceeding 40 Pa and at bicarbonate limited conditions, a shift from methanogenesis to reduced product formation was observed which indicates an important role of the hydrogen partial pressure in redirecting electron fluxes towards reduced products such as butanol. The findings of this study demonstrate that a careful consideration of thermodynamics and kinetics is required to advance our current understanding of flux regulation in energy-limited syntrophic ecosystems.

  9. Ruscogenin inhibits lipopolysaccharide-induced acute lung injury in mice: involvement of tissue factor, inducible NO synthase and nuclear factor (NF)-κB.

    Science.gov (United States)

    Sun, Qi; Chen, Ling; Gao, Mengyu; Jiang, Wenwen; Shao, Fangxian; Li, Jingjing; Wang, Jun; Kou, Junping; Yu, Boyang

    2012-01-01

    Acute lung injury is still a significant clinical problem with a high mortality rate and there are few effective therapies in clinic. Here, we studied the inhibitory effect of ruscogenin, an anti-inflammatory and anti-thrombotic natural product, on lipopolysaccharide (LPS)-induced acute lung injury in mice basing on our previous studies. The results showed that a single oral administration of ruscogenin significantly decreased lung wet to dry weight (W/D) ratio at doses of 0.3, 1.0 and 3.0 mg/kg 1 h prior to LPS challenge (30 mg/kg, intravenous injection). Histopathological changes such as pulmonary edema, coagulation and infiltration of inflammatory cells were also attenuated by ruscogenin. In addition, ruscogenin markedly decreased LPS-induced myeloperoxidase (MPO) activity and nitrate/nitrite content, and also downregulated expression of tissue factor (TF), inducible NO synthase (iNOS) and nuclear factor (NF)-κB p-p65 (Ser 536) in the lung tissue at three doses. Furthermore, ruscogenin reduced plasma TF procoagulant activity and nitrate/nitrite content in LPS-induced ALI mice. These findings confirmed that ruscogenin significantly attenuate LPS-induced acute lung injury via inhibiting expressions of TF and iNOS and NF-κB p65 activation, indicating it as a potential therapeutic agent for ALI or sepsis. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Infrared up-conversion microscope

    DEFF Research Database (Denmark)

    2014-01-01

    There is presented an up-conversion infrared microscope (110) arranged for imaging an associated object (130), wherein the up-conversion infrared microscope (110) comprises a non-linear crystal (120) arranged for up-conversion of infrared electromagnetic radiation, and wherein an objective optical...

  11. Infrared up-conversion telescope

    DEFF Research Database (Denmark)

    2014-01-01

    There is presented to an up-conversion infrared telescope (110) arranged for imaging an associated scene (130), wherein the up-conversion infrared telescope (110) comprises a non-linear crystal (120) arranged for up-conversion of infrared electromagnetic radiation, and wherein a first optical...

  12. A Model for Conversation

    DEFF Research Database (Denmark)

    Ayres, Phil

    2012-01-01

    This essay discusses models. It examines what models are, the roles models perform and suggests various intentions that underlie their construction and use. It discusses how models act as a conversational partner, and how they support various forms of conversation within the conversational activity...

  13. Mechanical homeostasis regulating adipose tissue volume

    Directory of Open Access Journals (Sweden)

    Svedman Paul

    2007-09-01

    Full Text Available Abstract Background The total body adipose tissue volume is regulated by hormonal, nutritional, paracrine, neuronal and genetic control signals, as well as components of cell-cell or cell-matrix interactions. There are no known locally acting homeostatic mechanisms by which growing adipose tissue might adapt its volume. Presentation of the hypothesis Mechanosensitivity has been demonstrated by mesenchymal cells in tissue culture. Adipocyte differentiation has been shown to be inhibited by stretching in vitro, and a pathway for the response has been elucidated. In humans, intermittent stretching of skin for reconstructional purposes leads to thinning of adipose tissue and thickening of epidermis – findings matching those observed in vitro in response to mechanical stimuli. Furthermore, protracted suspension of one leg increases the intermuscular adipose tissue volume of the limb. These findings may indicate a local homeostatic adipose tissue volume-regulating mechanism based on movement-induced reduction of adipocyte differentiation. This function might, during evolution, have been of importance in confined spaces, where overgrowth of adipose tissue could lead to functional disturbance, as for instance in the turtle. In humans, adipose tissue near muscle might in particular be affected, for instance intermuscularly, extraperitoneally and epicardially. Mechanical homeostasis might also contribute to protracted maintainment of soft tissue shape in the face and neck region. Testing of the hypothesis Assessment of messenger RNA-expression of human adipocytes following activity in adjacent muscle is planned, and study of biochemical and volumetric adipose tissue changes in man are proposed. Implications of the hypothesis The interpretation of metabolic disturbances by means of adipose tissue might be influenced. Possible applications in the head and neck were discussed.

  14. PET Imaging of Tissue Factor in Pancreatic Cancer Using 64Cu-Labeled Active Site-Inhibited Factor VII.

    Science.gov (United States)

    Nielsen, Carsten H; Jeppesen, Troels E; Kristensen, Lotte K; Jensen, Mette M; El Ali, Henrik H; Madsen, Jacob; Wiinberg, Bo; Petersen, Lars C; Kjaer, Andreas

    2016-07-01

    Tissue factor (TF) is the main initiator of the extrinsic coagulation cascade. However, TF also plays an important role in cancer. TF expression has been reported in 53%-89% of all pancreatic adenocarcinomas, and the expression level of TF has in clinical studies correlated with advanced stage, increased microvessel density, metastasis, and poor overall survival. Imaging of TF expression is of clinical relevance as a prognostic biomarker and as a companion diagnostic for TF-directed therapies currently under clinical development. Factor VII (FVII) is the natural ligand to TF. The purpose of this study was to investigate the possibility of using active site-inhibited FVII (FVIIai) labeled with (64)Cu for PET imaging of TF expression. FVIIai was conjugated to 2-S-(4-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid (p-SCN-Bn-NOTA) and labeled with (64)Cu ((64)Cu-NOTA-FVIIai). Longitudinal in vivo PET imaging was performed at 1, 4, 15, and 36 h after injection of (64)Cu-NOTA-FVIIai in mice with pancreatic adenocarcinomas (BxPC-3). The specificity of TF imaging with (64)Cu-NOTA-FVIIai was investigated in subcutaneous pancreatic tumor models with different levels of TF expression and in a competition experiment. In addition, imaging of orthotopic pancreatic tumors was performed using (64)Cu-NOTA-FVIIai and PET/MRI. In vivo imaging data were supported by ex vivo biodistribution, flow cytometry, and immunohistochemistry. Longitudinal PET imaging with (64)Cu-NOTA-FVIIai showed a tumor uptake of 2.3 ± 0.2, 3.7 ± 0.3, 3.4 ± 0.3, and 2.4 ± 0.3 percentage injected dose per gram at 1, 4, 15, and 36 h after injection, respectively. An increase in tumor-to-normal-tissue contrast was observed over the imaging time course. Competition with unlabeled FVIIai significantly (P < 0.001) reduced the tumor uptake. The tumor uptake observed in models with different TF expression levels was significantly different from each other (P < 0.001) and was in agreement with

  15. ATR technique, an appropriate method for determining the degree of conversion in dental giomers

    International Nuclear Information System (INIS)

    Prejmerean, Cristina; Prodan, Doina; Vlassa, Mihaela; Prejmerean, Vasile; Cuc, Stanca; Moldovan, Marioara; Streza, Mihaela; Buruiana, Tinca; Colceriu, Loredana

    2016-01-01

    Dental light-curing giomers were developed to combine the favourable properties of diacrylic resin composites (DRCs) and glass-ionomer cements (GICs) in a single material and to eliminate their inherent drawbacks. Giomers are characterized by their aesthetic appearance, high mechanical properties, adhesion to dental tissues as well as fluoride release and recharge abilities. The qualities of the giomers are greatly influenced by the level of conversion of the component resins. Infrared spectroscopy is one of the most largely used techniques for the determination of the degree of conversion in resin-based dental materials. However different results were obtained due to the performances of the used methods. The present work presents the determination of conversion degree in a series of dental copolymers and their corresponding giomers using transmission Fourier transform infrared spectroscopy (FTIR) and an attenuated total reflection technique (ATR) technique, respectively, the main aim being the study of the influence of the materials composition and of the light curing modes upon the achieved conversion in the cured giomers. Beautifil II commercial giomer was used as a control. A halogen lamp and a diode-blue LED lamp were used for the curing of the materials. The results showed that the composition of the resins greatly influenced the conversion. The highest conversions (up to 79%) were obtained in the case of the experimental giomers which contained the experimental Bis-GMA urethane analogue, followed by the Beautifil II giomer (61%) and experimental giomers based on commercial Bis-GMA (up to 50%), respectively. The resins light-cured by using the diode-blue LED lamp presented slightly higher conversions than the resins cured by halogen lamp. The study demonstrates the possibility to evaluate easily and reproducibly the conversion in light-curing composite materials with complex chemical composition and structure, particularly in the case of giomers by using the

  16. Down-regulation of connective tissue growth factor by inhibition of transforming growth factor beta blocks the tumor-stroma cross-talk and tumor progression in hepatocellular carcinoma.

    Science.gov (United States)

    Mazzocca, Antonio; Fransvea, Emilia; Dituri, Francesco; Lupo, Luigi; Antonaci, Salvatore; Giannelli, Gianluigi

    2010-02-01

    Tumor-stroma interactions in hepatocellular carcinoma (HCC) are of key importance to tumor progression. In this study, we show that HCC invasive cells produce high levels of connective tissue growth factor (CTGF) and generate tumors with a high stromal component in a xenograft model. A transforming growth factor beta (TGF-beta) receptor inhibitor, LY2109761, inhibited the synthesis and release of CTGF, as well as reducing the stromal component of the tumors. In addition, the TGF-beta-dependent down-regulation of CTGF diminished tumor growth, intravasation, and metastatic dissemination of HCC cells by inhibiting cancer-associated fibroblast proliferation. By contrast, noninvasive HCC cells were found to produce low levels of CTGF. Upon TGF-beta1 stimulation, noninvasive HCC cells form tumors with a high stromal content and CTGF expression, which is inhibited by treatment with LY2109761. In addition, the acquired intravasation and metastatic spread of noninvasive HCC cells after TGF-beta1 stimulation was blocked by LY2109761. LY2109761 interrupts the cross-talk between cancer cells and cancer-associated fibroblasts, leading to a significant reduction of HCC growth and dissemination. Interestingly, patients with high CTGF expression had poor prognosis, suggesting that treatment aimed at reducing TGF-beta-dependent CTGF expression may offer clinical benefits. Taken together, our preclinical results indicate that LY2109761 targets the cross-talk between HCC and the stroma and provide a rationale for future clinical trials.

  17. CTRP6 inhibits fibrogenesis in TGF-β1-stimulated human dermal fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Rong-hui, E-mail: fan_ronghuixa@163.com [Department of Burn and Plastic Surgery, Shaanxi Provincial People’s Hospital, Xi’an 710068 (China); Zhu, Xiu-mei; Sun, Yao-wen [Department of Burn and Plastic Surgery, Shaanxi Provincial People’s Hospital, Xi’an 710068 (China); Peng, Hui-zi [Department of Cosmetology Plastic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061 (China); Wu, Hang-li; Gao, Wen-jie [Department of Burn and Plastic Surgery, Shaanxi Provincial People’s Hospital, Xi’an 710068 (China)

    2016-07-08

    Skin fibrosis is characterized by excessive proliferation of fibroblasts and overproduction of extracellular matrix (ECM). C1q/tumor necrosis factor-related protein 6 (CTRP6), a member of CTRPs, has been involved in the development of cardiac fibrosis. However, the function and detailed regulatory mechanism of CTRP6 in skin fibrosis remain unclear. The aim of this study was to investigate the effect of CTRP6 on the activation of human dermal fibroblasts. Our results showed that CTRP6 was lowly expressed in scar tissues and transforming growth factor-β1 (TGF-β1)-treated dermal fibroblasts. CTRP6 overexpression significantly inhibited the proliferation of dermal fibroblasts, as well as suppressed the expression of ECM in TGF-β1-treated dermal fibroblasts. Furthermore, CTRP6 overexpression markedly inhibited TGF-β1-induced phosphorylation of Smad3 in dermal fibroblasts. In conclusion, the data reported here demonstrate that CTRP6 is able to inhibit the proliferation and ECM expression in human dermal fibroblasts through suppressing the TGF-β1/Smad3 signaling pathway. These findings suggest that CTRP6 may be a potential therapeutic target for the prevention of skin fibrosis. -- Highlights: •CTRP6 expression was decreased in scar tissues and TGF-β1-treated dermal fibroblasts. •CTRP6 inhibits TGF-β1-induced the proliferation of dermal fibroblasts. •CTRP6 inhibits expression of collagen type I and α-SMA. •CTRP6 inhibits the activation of TGF-β1/Smad3 signaling pathway in dermal fibroblasts.

  18. CTRP6 inhibits fibrogenesis in TGF-β1-stimulated human dermal fibroblasts

    International Nuclear Information System (INIS)

    Fan, Rong-hui; Zhu, Xiu-mei; Sun, Yao-wen; Peng, Hui-zi; Wu, Hang-li; Gao, Wen-jie

    2016-01-01

    Skin fibrosis is characterized by excessive proliferation of fibroblasts and overproduction of extracellular matrix (ECM). C1q/tumor necrosis factor-related protein 6 (CTRP6), a member of CTRPs, has been involved in the development of cardiac fibrosis. However, the function and detailed regulatory mechanism of CTRP6 in skin fibrosis remain unclear. The aim of this study was to investigate the effect of CTRP6 on the activation of human dermal fibroblasts. Our results showed that CTRP6 was lowly expressed in scar tissues and transforming growth factor-β1 (TGF-β1)-treated dermal fibroblasts. CTRP6 overexpression significantly inhibited the proliferation of dermal fibroblasts, as well as suppressed the expression of ECM in TGF-β1-treated dermal fibroblasts. Furthermore, CTRP6 overexpression markedly inhibited TGF-β1-induced phosphorylation of Smad3 in dermal fibroblasts. In conclusion, the data reported here demonstrate that CTRP6 is able to inhibit the proliferation and ECM expression in human dermal fibroblasts through suppressing the TGF-β1/Smad3 signaling pathway. These findings suggest that CTRP6 may be a potential therapeutic target for the prevention of skin fibrosis. -- Highlights: •CTRP6 expression was decreased in scar tissues and TGF-β1-treated dermal fibroblasts. •CTRP6 inhibits TGF-β1-induced the proliferation of dermal fibroblasts. •CTRP6 inhibits expression of collagen type I and α-SMA. •CTRP6 inhibits the activation of TGF-β1/Smad3 signaling pathway in dermal fibroblasts.

  19. Capacity of Lung Stroma to Educate Dendritic Cells Inhibiting Mycobacteria-Specific T-Cell Response Depends upon Genetic Susceptibility to Tuberculosis

    OpenAIRE

    Kapina, Marina A.; Rubakova, Elvira I.; Majorov, Konstantin B.; Logunova, Nadezhda N.; Apt, Alexander S.

    2013-01-01

    The balance between activation and inhibition of local immune responses in affected tissues during prolonged chronic infections is important for host protection. There is ample evidence that regulatory, tolerogenic dendritic cells (DC) are developed and present in tissues and inhibit overwhelming inflammatory reactions. Also, it was firmly established that stromal microenvironment of many organs is able to induce development of immature regulatory DC (DCreg), an essential element of a general...

  20. Decreased prothrombin conversion and reduced thrombin inactivation explain rebalanced thrombin generation in liver cirrhosis.

    Directory of Open Access Journals (Sweden)

    Romy M W Kremers

    Full Text Available Impaired coagulation factor synthesis in cirrhosis causes a reduction of most pro- and anticoagulant factors. Cirrhosis patients show no clear bleeding or thrombotic phenotype, although they are at risk for both types of hemostatic event. Thrombin generation (TG is a global coagulation test and its outcome depends on underlying pro- and anticoagulant processes (prothrombin conversion and thrombin inactivation. We quantified the prothrombin conversion and thrombin inactivation during TG in 30 healthy subjects and 52 Child-Pugh (CP- A, 15 CP-B and 6 CP-C cirrhosis patients to test the hypothesis that coagulation is rebalanced in liver cirrhosis patients. Both prothrombin conversion and thrombin inactivation are reduced in cirrhosis patients. The effect on pro- and anticoagulant processes partially cancel each other out and as a result TG is comparable at 5 pM tissue factor between healthy subjects and patients. This supports the hypothesis of rebalanced hemostasis, as TG in cirrhosis patients remains within the normal range, despite large changes in prothrombin conversion and thrombin inactivation. Nevertheless, in silico analysis shows that normalization of either prothrombin conversion or thrombin inactivation to physiological levels, by for example the administration of prothrombin complex concentrates would cause an elevation of TG, whereas the normalization of both simultaneously maintains a balanced TG. Therefore, cirrhosis patients might require adapted hemostatic treatment.

  1. Inhibition of Release of Vasoactive and Inflammatory Mediators in Airway and Vascular Tissues and Macrophages by a Chinese Herbal Medicine Formula for Allergic Rhinitis

    Directory of Open Access Journals (Sweden)

    George Binh Lenon

    2007-01-01

    Full Text Available Herbal therapies are being used increasingly for the treatment of allergic rhinitis. The aim of this study was to investigate the possible pharmacological actions and cellular targets of a Chinese herbal formula (RCM-101, which was previously shown to be effective in reducing seasonal allergic rhinitis symptoms in a randomized, placebo-controlled clinical trial. Rat and guinea pig isolated tissues (trachea and aorta were used to study the effects of RCM-101 on responses to various mediators. Production of leukotriene B4 in porcine neutrophils and of prostaglandin E2 and nitric oxide (NO in Raw 264.7 cells were also measured. In rat and guinea pig tracheal preparations, RCM-101 inhibited contractile responses to compound 48/80 but not those to histamine (guinea pig preparations or serotonin (rat preparations. Contractile responses of guinea pig tracheal preparations to carbachol and leukotriene C4, and relaxant responses to substance P and prostaglandin E2 were not affected by RCM-101. In rat aortic preparations, precontracted with phenylephrine, endothelium-dependent relaxant responses to acetylcholine and endothelium-independent relaxant responses to sodium nitroprusside were not affected by RCM-101. However, RCM-101 inhibited relaxations to l-arginine in endothelium-denuded rat aortic preparations, which had been pre-incubated with lipopolysaccharide. RCM-101 did not affect leukotriene B4 formation in isolated porcine neutrophils, induced by the calcium ionophore A23187; however, it inhibited prostaglandin E2 and NO production in lipopolysaccharide-stimulated murine macrophages (Raw 264.7 cells.The findings indicate that RCM-101 may have multiple inhibitory actions on the release and/or synthesis of inflammatory mediators involved in allergic rhinitis.

  2. Nanomaterials for photovoltaic conversion

    International Nuclear Information System (INIS)

    Davenas, J.; Ltaief, A.; Barlier, V.; Boiteux, G.; Bouazizi, A.

    2008-01-01

    A promising route for photovoltaic conversion has emerged from the combination of electroactive nanomaterials and small bandgap polymers. The formation of bulk heterojunctions resulting from the extended interfaces leads to efficient dissociation of the charge pairs generated under sunlight shown by the rapid extinction of the polymer photoluminescence for increasing contents of fullerenes or TiO 2 nanoparticles in MEH-PPV or PVK. Unconventional elaboration routes of the blends have been developed to increase the nanofiller dispersion and inhibit phase separation at high concentration. The size reduction of the acceptor domains led to a complete quenching of the radiative recombinations, obtained by specific solvent processing of MEH-PPV / C 60 nanocomposites or sol gel elaboration of TiO 2 nanoparticles in a PVK film. A simultaneous increase of the photocurrents could be achieved by the dispersion and size optimisation of the nanofillers. In situ generation of silver particles in MEH-PPV provides an example of enhanced charge separation induced by the plasmon resonance at the metal/polymer interface. The strong influence of the molecular morphology on the nanocomposite properties emphasizes the large improvements which can still be gained on the performances of organic solar cells

  3. Metformin inhibits age-related centrosome amplification in Drosophila midgut stem cells through AKT/TOR pathway.

    Science.gov (United States)

    Na, Hyun-Jin; Park, Joung-Sun; Pyo, Jung-Hoon; Jeon, Ho-Jun; Kim, Young-Shin; Arking, Robert; Yoo, Mi-Ae

    2015-07-01

    We delineated the mechanism regulating the inhibition of centrosome amplification by metformin in Drosophila intestinal stem cells (ISCs). Age-related changes in tissue-resident stem cells may be closely associated with tissue aging and age-related diseases, such as cancer. Centrosome amplification is a hallmark of cancers. Our recent work showed that Drosophila ISCs are an excellent model for stem cell studies evaluating age-related increase in centrosome amplification. Here, we showed that metformin, a recognized anti-cancer drug, inhibits age- and oxidative stress-induced centrosome amplification in ISCs. Furthermore, we revealed that this effect is mediated via down-regulation of AKT/target of rapamycin (TOR) activity, suggesting that metformin prevents centrosome amplification by inhibiting the TOR signaling pathway. Additionally, AKT/TOR signaling hyperactivation and metformin treatment indicated a strong correlation between DNA damage accumulation and centrosome amplification in ISCs, suggesting that DNA damage might mediate centrosome amplification. Our study reveals the beneficial and protective effects of metformin on centrosome amplification via AKT/TOR signaling modulation. We identified a new target for the inhibition of age- and oxidative stress-induced centrosome amplification. We propose that the Drosophila ISCs may be an excellent model system for in vivo studies evaluating the effects of anti-cancer drugs on tissue-resident stem cell aging. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  4. CRPS: A contingent hypothesis with prostaglandins as crucial conversion factor.

    Science.gov (United States)

    van der Veen, Phe

    2015-11-01

    CRPS is an acute pain disease expressed as chronic pain with a severe loss of tissue and function. CRPS usually occurs after minor injuries and then progresses in a way that is scarcely controllable, or completely uncontrollable. This article addresses the functional control mechanism of a biological organism, a comparison of techniques, and the way the negative feedback mechanisms fail in regulated feedback systems. The measurement and regulation system is controlled at the local, regional, and central levels in a biological system. Locally generated substances such as prostaglandins and hormones, as well as the central nervous system, play important roles in this process. Prostaglandins fulfil many conversion functions and are involved in vasoactive processes, pain, and inflammation. They play an intermediating role between the activity of the autonomic nervous system and local occurrences. The insufficiently explored conversion function of prostaglandins as a ubiquitously present cofactor may be related to the development of CRPS at sites which have had minor injuries in the past. Chronic Regional Pain Syndrome (CRPS) is a moderately prevalent disease, which occurs more frequently with age. Even though there are diseases known to have a precipitating effect on the aetiology of CRPS, for example Carpal tunnel syndrome, the mechanism of onset is unknown. The disease falls under the category of chronic pain, and seldom has an effective treatment based on scientific research. The economic and psychosocial aspects of the disease are substantial. CRPS is the final position of a positive feedback measurement and control system. Homoeostasis is directed by measurement and control processes. In electronics, a rapid conversion system, which quickly adapts to changing circumstances, superimposed with a delayed conversion system, which ensures a stable basis of homoeostasis. Measured changes are compensatorily controlled. An analogy is expected for a Complex Adaptive System

  5. Ionic liquid-tolerant microorganisms and microbial communities for lignocellulose conversion to bioproducts.

    Science.gov (United States)

    Yu, Chaowei; Simmons, Blake A; Singer, Steven W; Thelen, Michael P; VanderGheynst, Jean S

    2016-12-01

    Chemical and physical pretreatment of biomass is a critical step in the conversion of lignocellulose to biofuels and bioproducts. Ionic liquid (IL) pretreatment has attracted significant attention due to the unique ability of certain ILs to solubilize some or all components of the plant cell wall. However, these ILs inhibit not only the enzyme activities but also the growth and productivity of microorganisms used in downstream hydrolysis and fermentation processes. While pretreated biomass can be washed to remove residual IL and reduce inhibition, extensive washing is costly and not feasible in large-scale processes. IL-tolerant microorganisms and microbial communities have been discovered from environmental samples and studies begun to elucidate mechanisms of IL tolerance. The discovery of IL tolerance in environmental microbial communities and individual microbes has lead to the proposal of molecular mechanisms of resistance. In this article, we review recent progress on discovering IL-tolerant microorganisms, identifying metabolic pathways and mechanisms of tolerance, and engineering microorganisms for IL tolerance. Research in these areas will yield new approaches to overcome inhibition in lignocellulosic biomass bioconversion processes and increase opportunities for the use of ILs in biomass pretreatment.

  6. Treatment of Ebola Virus Infection With a Recombinant Inhibitor of Factor Vlla/Tissue Factor: A Study in Rhesus Monkeys

    National Research Council Canada - National Science Library

    Geisbert, Thomas W; Hensley, Lisa E; Jahrling, Peter B; Larsen, Tom; Geisbert, Joan B

    2003-01-01

    Infection with the Ebola virus induces overexpression of the procoagulant tissue factor in primate monocytes and macrophages, suggesting that inhibition of the tissue-factor pathway could ameliorate...

  7. Evaluation of cytotoxicity and degree of conversion of orthodontic adhesives over different time periods

    Directory of Open Access Journals (Sweden)

    Matheus Melo Pithon

    2010-06-01

    Full Text Available As new orthodontic resin adhesives continue to be marketed, rapid and sensitive tests for examining their toxic effects at the ' cell and tissue level ' are needed because patient safety has been identifi ed as a legal concept. The objective of the present study was to evaluate the cytotoxicity and degree of monomer conversion of orthodontic adhesives over different time periods. Seven adhesives: Transbond® XT, Transbond® Color Change, Quick Cure, EagleBond, Orthobond®, Fill Mágic® and Biofix® were evaluated for their cytotoxicity in L929 fibroblastic cells and for their degree of monomer conversion over different time periods. Three control groups were also analysed: Positive control (C+, consisting of Tween 80 cell detergent; Negative control (C-, consisting of PBS; and cell control (CC, consisting of cells exposed to any material. The dye-uptake technique that involves the absorption of a neutral red dye in viable cells was used for the cytotoxicity evaluation and the degree of conversion was evaluated using spectroscopy with infrared. The results showed the cytotoxicity of the adhesives at 24, 48, 72 and 168 hours. At these times, the viability values presented for these materials were statistically different from the groups CC and C- (p 0.05. In the monomer conversions there was a percentage increase of monomer conversion from 24 to 72 hours. A direct correlation could be observed between cytotoxicity and monomer conversions. From this work it can be concluded that all adhesives evaluated are cytotoxic at the times of 24, 48 and 72 hours. Monomers continued conversion even after photopolymerization had stopped.

  8. Four questions and a conversation: Can theory enrich conversation partner training?

    DEFF Research Database (Denmark)

    Pound, Carole; Ahlsén, Elisabeth; Simmons-Mackie, NIna

    Background and aimsConversation partner training (CPT) is an umbrella term for different approaches to intervention aiming to facilitate and improve communication between people with aphasia (PWA) and their conversation partners (CP). Some approaches are grounded in a bottom-up approach...... and interactions. Philosophically informed by existential-phenomenological perspectives, the humanisation framework encourages reflection on what practices can make people feel more (or less) human. Reviewing experiences of conversation against the eight suggested dimensions of what it means to be human may offer...

  9. Direct Conversion of Energy.

    Science.gov (United States)

    Corliss, William R.

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Direct energy conversion involves energy transformation without moving parts. The concepts of direct and dynamic energy conversion plus the laws governing energy conversion are investigated. Among the topics…

  10. Combined treatment with D-allose, docetaxel and radiation inhibits the tumor growth in an in vivo model of head and neck cancer

    Science.gov (United States)

    Hoshikawa, Hiroshi; Kamitori, Kazuyo; Indo, Kanako; Mori, Terushige; Kamata, Mizuna; Takahashi, Tomoko; Tokuda, Masaaki

    2018-01-01

    The present study was designed to evaluate the effect of one rare sugar, D-allose, on normal human cells and cutaneous tissue, and to investigate the radiosensitizing and chemosensitizing potential of D-allose in an in vivo model of head and neck cancer. Results indicated that D-allose did not inhibit the growth of normal human fibroblasts TIG-1 cells, and no apoptotic changes were observed after D-allose and D-glucose treatment. The mRNA expression levels of thioredoxin interacting protein (TXNIP) in TIG-1 cells after D-allose treatment increased by 2-fold (50.4 to 106.5). Conversely, the mRNA expression levels of TXNIP in HSC3 cancer cells increased by 74-fold (1.5 to 110.6), and the thioredoxin (TRX)/TXNIP ratio was markedly reduced from 61.7 to 1.4 following D-allose treatment. Combined multiple treatments with docetaxel, radiation and D-allose resulted in the greatest antitumor response in the in vivo model. Hyperkeratosis, epidermal thickening and tumor necrosis factor-α immunostaining were observed following irradiation treatment, but these pathophysiological reactions were reduced following D-allose administration. Thus, the present findings suggest that D-allose may enhance the antitumor effects of chemoradiotherapy whilst sparing normal tissues. PMID:29456721

  11. Comparison of the effectiveness of Basta, Bialaphos and Glufosinate Ammonium for selecting Transformed Oil Palm Tissues

    International Nuclear Information System (INIS)

    A Rahman Nurfahisza; Md Aman Rafiqah; Ghulam Kadir Ahmad Parveez; Omar Abdul Rashid

    2016-01-01

    One of the important requirements for producing transgenic plants is the ability to isolate true transformed cells and regenerate into complete plants without chimera and escapes. Therefore, an efficient selection process is essential. In this study, three different selection agents, namely Basta, bialaphos and glufosinate ammonium were evaluated on embryogenic calli and embryoids, for their effectiveness on selecting transformed oil palm tissues. Un transformed tissues were used in this study as the minimal concentrations which inhibit the growth of the tissues would be the optimum concentrations for selecting the transformed cells. Based on this study, the growth of embryogenic calli was shown to be fully inhibited at 10 mg litre -1 of Basta. Meanwhile, only 3 mg litre -1 of bialaphos and glufosinate ammonium are needed to inhibit the embryogenic calli. For oil palm embryo id cultures, the minimal concentration for Basta was determined at 20 mg litre -1 as compared to 5 mg litre -1 for bialaphos and glufosinate ammonium. This result indicated that a higher concentration of Basta is needed to completely inhibit the growth of oil palm tissues as compared to bialaphos and glufosinate ammonium. Furthermore, these observations revealed that embryogenic calli are more sensitive to the three selection agents as compared to embryoids. The information gained from this study will be used as a guideline to increase the efficiency for selecting transformed oil palm cells and producing transgenic oil palm. (author)

  12. Glucocorticoids inhibit glucose transport and glutamate uptake in hippocampal astrocytes: implications for glucocorticoid neurotoxicity.

    Science.gov (United States)

    Virgin, C E; Ha, T P; Packan, D R; Tombaugh, G C; Yang, S H; Horner, H C; Sapolsky, R M

    1991-10-01

    Glucocorticoids (GCs), the adrenal steroid hormones secreted during stress, can damage the hippocampus and impair its capacity to survive coincident neurological insults. This GC endangerment of the hippocampus is energetic in nature, as it can be prevented when neurons are supplemented with additional energy substrates. This energetic endangerment might arise from the ability of GCs to inhibit glucose transport into both hippocampal neurons and astrocytes. The present study explores the GC inhibition in astrocytes. (1) GCs inhibited glucose transport approximately 15-30% in both primary and secondary hippocampal astrocyte cultures. (2) The parameters of inhibition agreed with the mechanisms of GC inhibition of glucose transport in peripheral tissues: A minimum of 4 h of GC exposure were required, and the effect was steroid specific (i.e., it was not triggered by estrogen, progesterone, or testosterone) and tissue specific (i.e., it was not triggered by GCs in cerebellar or cortical cultures). (3) Similar GC treatment caused a decrease in astrocyte survival during hypoglycemia and a decrease in the affinity of glutamate uptake. This latter observation suggests that GCs might impair the ability of astrocytes to aid neurons during times of neurologic crisis (i.e., by impairing their ability to remove damaging glutamate from the synapse).

  13. Rap1 integrates tissue polarity, lumen formation, and tumorigenicpotential in human breast epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Masahiko; Nelson, Celeste M.; Myers, Connie A.; Bissell,Mina J.

    2006-09-29

    Maintenance of apico-basal polarity in normal breast epithelial acini requires a balance between cell proliferation, cell death, and proper cell-cell and cell-extracellular matrix signaling. Aberrations in any of these processes can disrupt tissue architecture and initiate tumor formation. Here we show that the small GTPase Rap1 is a crucial element in organizing acinar structure and inducing lumen formation. Rap1 activity in malignant HMT-3522 T4-2 cells is appreciably higher than in S1 cells, their non-malignant counterparts. Expression of dominant-negative Rap1 resulted in phenotypic reversion of T4-2 cells, led to formation of acinar structures with correct apico-basal polarity, and dramatically reduced tumor incidence despite the persistence of genomic abnormalities. The resulting acini contained prominent central lumina not observed when other reverting agents were used. Conversely, expression of dominant-active Rap1 in T4-2 cells inhibited phenotypic reversion and led to increased invasiveness and tumorigenicity. Thus, Rap1 acts as a central regulator of breast architecture, with normal levels of activation instructing apical polarity during acinar morphogenesis, and increased activation inducing tumor formation and progression to malignancy.

  14. MicroRNA-375 inhibits colorectal cancer growth by targeting PIK3CA

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yihui [Department of Colorectal Surgery, The Third Affiliated Hospital of Harbin Medical University, 150 Haping Road, 150081 Harbin (China); Tang, Qingchao [Cancer Center, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, 150086 Harbin (China); Li, Mingqi; Jiang, Shixiong [Department of Colorectal Surgery, The Third Affiliated Hospital of Harbin Medical University, 150 Haping Road, 150081 Harbin (China); Wang, Xishan, E-mail: wxshan12081@163.com [Cancer Center, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, 150086 Harbin (China)

    2014-02-07

    Highlights: • miR-375 is downregulated in colorectal cancer cell lines and tissues. • miR-375 inhibits colorectal cancer cell growth by targeting PIK3CA. • miR-375 inhibits colorectal cancer cell growth in xenograft nude mice model. - Abstract: Colorectal cancer (CRC) is the second most common cause of death from cancer. MicroRNAs (miRNAs) represent a class of small non-coding RNAs that control gene expression by triggering RNA degradation or interfering with translation. Aberrant miRNA expression is involved in human disease including cancer. Herein, we showed that miR-375 was frequently down-regulated in human colorectal cancer cell lines and tissues when compared to normal human colon tissues. PIK3CA was identified as a potential miR-375 target by bioinformatics. Overexpression of miR-375 in SW480 and HCT15 cells reduced PIK3CA protein expression. Subsequently, using reporter constructs, we showed that the PIK3CA untranslated region (3′-UTR) carries the directly binding site of miR-375. Additionally, miR-375 suppressed CRC cell proliferation and colony formation and led to cell cycle arrest. Furthermore, miR-375 overexpression resulted in inhibition of phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. SiRNA-mediated silencing of PIK3CA blocked the inhibitory effect of miR-375 on CRC cell growth. Lastly, we found overexpressed miR-375 effectively repressed tumor growth in xenograft animal experiments. Taken together, we propose that overexpression of miR-375 may provide a selective growth inhibition for CRC cells by targeting PI3K/Akt signaling pathway.

  15. miR-150-5p inhibits hepatoma cell migration and invasion by targeting MMP14.

    Directory of Open Access Journals (Sweden)

    Tao Li

    Full Text Available Hepatocellular carcinoma (HCC is one of the leading causes of cancer-related mortality worldwide. Despite progress in diagnostics and treatment of HCC, its prognosis remains poor because the molecular mechanisms underlying hepatocarcinogenesis are not well understood. In the study, we focused on identifying the role of miRNAs in HCC progression. miRNA microarray was used to analyze the differentially expressed miRNAs, and the results were validated by qPCR. We found that the miR-150-5p expression is down-regulated in HCC tissues compared with pair non-tumor tissues. miR-150-5p expression is also decreased in metastatic cancer tissues compared with pair primary tissues, indicating that miR-150-5p may be involved in HCC metastasis. Functionally, miR-150-5p inhibition significantly promotes hepatoma cell migration and invasion, whereas miR-150-5p overexpression suppresses cancer cell migration and invasion in vitro. The matrix metalloproteinase 14 (MMP14 is identified as a new target gene of miR-150-5p. miR-150-5p markedly inhibits MMP14 expression in hepatoma cells, and miR-150-5p expression is negative correlation with MMP14 expression in vivo. More important, re-expression of MMP14 in hepatoma cells partially reverses the effect of miR-150-5p in inhibiting cell invasion.

  16. Radiation-induced sprout and growth inhibition in vegetables with special reference to the susceptibility to microbial attacks and the effect of calcium

    International Nuclear Information System (INIS)

    Skou, J.P.

    1979-03-01

    Experiments have shown ionizing irradiation to be an effective method for sprout and growth inhibition but it is necessary to keep the doses at the absolute minimum in order to avoid unwanted by-effects One of the by-effects is an increased susceptibility to storage rot in potatoes, onions and carrots. This effect is connected with the wounding and bruising caused by digging up and handling as the wound healing process is inhibited simultaneously with the sprout inhibition. Patogens increase tissue permeability during pathogenesis and, as irradiation has an analogous effect on tissues it might facilitate the growth of the pathogens. Irradiation softens the tissue and mobilizes the calcium in the tissue; this may thereby make the tissue more accessible to microbial attack. An external supply of calcium increases the firmness of tissue, reduces tissue permeability, and may compensate for the loss of calcium in irradiated tissue mainly as a result of a surplus of calcium in the wounds. Botrytis cinerea and Sclerotinia sclerotiorum were some of the most wide spread and serious pathogens in carrots, which vegetable were the main object of the studies. Culture filtrates of these fungi had a strong macerating activity on carrot tissues. The effect, which results from activity and interaction of pectolytic enzymes and oxalic acid, could be reduced or nullified by calcium. A diversity of the groups of pectolytic enzymes are widely distributed among organisms and not confined to plant pathogens. Because of this, because there exists pectolytic enzymes for every condition and pectic substances, and because calcium is not very inhibiting to all kinds of pectolytic enzymes it is not to be expected that the protective effect of calcium will always be expressed to the same extent on storage of the products. (author)

  17. Peripheral site ligand conjugation to a non-quaternary oxime enhances reactivation of nerve agent-inhibited human acetylcholinesterase

    NARCIS (Netherlands)

    Koning, M.C. de; Grol, M. van; Noort, D.

    2011-01-01

    Commonly employed pyridinium-oxime (charged) reactivators of nerve agent inhibited acetylcholinesterase (AChE) do not readily pass the blood brain barrier (BBB) because of the presence of charge(s). Conversely, non-ionic oxime reactivators often suffer from a lack of reactivating potency due to a

  18. Energy conversion statics

    CERN Document Server

    Messerle, H K; Declaris, Nicholas

    2013-01-01

    Energy Conversion Statics deals with equilibrium situations and processes linking equilibrium states. A development of the basic theory of energy conversion statics and its applications is presented. In the applications the emphasis is on processes involving electrical energy. The text commences by introducing the general concept of energy with a survey of primary and secondary energy forms, their availability, and use. The second chapter presents the basic laws of energy conversion. Four postulates defining the overall range of applicability of the general theory are set out, demonstrating th

  19. Uranium Conversion & Enrichment

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-06

    The isotopes of uranium that are found in nature, and hence in ‘fresh’ Yellowcake’, are not in relative proportions that are suitable for power or weapons applications. The goal of conversion then is to transform the U3O8 yellowcake into UF6. Conversion and enrichment of uranium is usually required to obtain material with enough 235U to be usable as fuel in a reactor or weapon. The cost, size, and complexity of practical conversion and enrichment facilities aid in nonproliferation by design.

  20. Freely flowing conversations

    DEFF Research Database (Denmark)

    Aakjær, Marie Kirstejn; Andrade, David; Dexters, Peter

    and in regards to rehabilitation efforts. In the context of prisons UDI is inspired by the complexity approach (Stacey 2005). We seek to facilitate freely flowing conversations between inmates, staff and managers – pushing the boundaries of existing norms, roles and beliefs. In the end however we rely...... relations by changing conversations. Through the theoretical framework of the complexity approach, we discuss how this may lead to organizational change. Finally we suggest that inviting inmates to take part in conversations about core organizational development may be a fundamental strategy in trying...

  1. CTC-ask: a new algorithm for conversion of CT numbers to tissue parameters for Monte Carlo dose calculations applying DICOM RS knowledge

    International Nuclear Information System (INIS)

    Ottosson, Rickard O; Behrens, Claus F

    2011-01-01

    One of the building blocks in Monte Carlo (MC) treatment planning is to convert patient CT data to MC compatible phantoms, consisting of density and media matrices. The resulting dose distribution is highly influenced by the accuracy of the conversion. Two major contributing factors are precise conversion of CT number to density and proper differentiation between air and lung. Existing tools do not address this issue specifically. Moreover, their density conversion may depend on the number of media used. Differentiation between air and lung is an important task in MC treatment planning and misassignment may lead to local dose errors on the order of 10%. A novel algorithm, CTC-ask, is presented in this study. It enables locally confined constraints for the media assignment and is independent of the number of media used for the conversion of CT number to density. MC compatible phantoms were generated for two clinical cases using a CT-conversion scheme implemented in both CTC-ask and the DICOM-RT toolbox. Full MC dose calculation was subsequently conducted and the resulting dose distributions were compared. The DICOM-RT toolbox inaccurately assigned lung in 9.9% and 12.2% of the voxels located outside of the lungs for the two cases studied, respectively. This was completely avoided by CTC-ask. CTC-ask is able to reduce anatomically irrational media assignment. The CTC-ask source code can be made available upon request to the authors. (note)

  2. Outlines of ICRP publication 74 and new dose conversion coefficients for external radiation

    International Nuclear Information System (INIS)

    Yamaguchi, Yasuhiro

    1998-01-01

    Combined task group of ICRP and ICRU reported the ICRP Publication 74 (1996) which is a summary report of their collection, analysis and evaluation of many data and dose conversion coefficients. Concerning the new coefficients, the author described this review as follows: History until Publication 74. Doses recommended at present: for protection quantity, the mean absorption dose of organ and tissue, equivalent dose and effective dose and for operational quantity, the ambient dose equivalent, directional dose equivalent and individual dose equivalent. Changes which can have an influence on the dose evaluation; introduction of radiation weighting factor (WR), changing of tissue weighting factor (WR), changing of the equation for Q-L relation and updating of physical data. New dose conversion coefficients; for photon, neutron and electron. Comparison of new and present coefficients; concerning the quality factor Q, particularly for neutron Q. New relations of protection and operational quantities; for field and individual monitoring. General conclusion of Publication 74. The Publication gives a certain direction for problems in evaluation of external exposure dose which have been discussed since the ICRP Fundamental Recommendation 1990 was issued. However, there still remain many problems especially in validity of the WR and of equation for Q-L relation. (K.H.)

  3. Noncanonical Wnt signaling promotes obesity-induced adipose tissue inflammation and metabolic dysfunction independent of adipose tissue expansion.

    Science.gov (United States)

    Fuster, José J; Zuriaga, María A; Ngo, Doan Thi-Minh; Farb, Melissa G; Aprahamian, Tamar; Yamaguchi, Terry P; Gokce, Noyan; Walsh, Kenneth

    2015-04-01

    Adipose tissue dysfunction plays a pivotal role in the development of insulin resistance in obese individuals. Cell culture studies and gain-of-function mouse models suggest that canonical Wnt proteins modulate adipose tissue expansion. However, no genetic evidence supports a role for endogenous Wnt proteins in adipose tissue dysfunction, and the role of noncanonical Wnt signaling remains largely unexplored. Here we provide evidence from human, mouse, and cell culture studies showing that Wnt5a-mediated, noncanonical Wnt signaling contributes to obesity-associated metabolic dysfunction by increasing adipose tissue inflammation. Wnt5a expression is significantly upregulated in human visceral fat compared with subcutaneous fat in obese individuals. In obese mice, Wnt5a ablation ameliorates insulin resistance, in parallel with reductions in adipose tissue inflammation. Conversely, Wnt5a overexpression in myeloid cells augments adipose tissue inflammation and leads to greater impairments in glucose homeostasis. Wnt5a ablation or overexpression did not affect fat mass or adipocyte size. Mechanistically, Wnt5a promotes the expression of proinflammatory cytokines by macrophages in a Jun NH2-terminal kinase-dependent manner, leading to defective insulin signaling in adipocytes. Exogenous interleukin-6 administration restores insulin resistance in obese Wnt5a-deficient mice, suggesting a central role for this cytokine in Wnt5a-mediated metabolic dysfunction. Taken together, these results demonstrate that noncanonical Wnt signaling contributes to obesity-induced insulin resistance independent of adipose tissue expansion. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  4. Political conversations on Facebook

    DEFF Research Database (Denmark)

    Sørensen, Mads P.

    2016-01-01

    Political conversations are according to theories on deliberative democracy essential to well-functioning democracies. Traditionally these conversations have taken place in face-to-face settings, in e.g. party meetings and town meetings. However, social media such as Facebook and Twitter offers new...... possibilities for online political conversations between citizens and politicians. This paper examines the presence on Facebook and Twitter of Members of the Danish national Parliament, the Folketing, and focusses on a quantitative mapping of the political conversation activities taking place in the threads...... following Facebook posts from Danish Members of Parliament (MPs). The paper shows that, in comparison with previous findings from other countries, Danish MPs have a relatively high degree of engagement in political conversations with citizens on Facebook – and that a large number of citizens follow MPs...

  5. 11C-meta-hydroxyephedrine PET/CT imaging allows in vivo study of adaptive thermogenesis and white-to-brown fat conversion

    Science.gov (United States)

    Quarta, Carmelo; Lodi, Filippo; Mazza, Roberta; Giannone, Ferdinando; Boschi, Laura; Nanni, Cristina; Nisoli, Enzo; Boschi, Stefano; Pasquali, Renato; Fanti, Stefano; Iozzo, Patricia; Pagotto, Uberto

    2013-01-01

    Several lines of evidence suggest that novel pharmacological approaches aimed at converting white adipose tissue (WAT) into brown adipose tissue (BAT) may represent an effective therapeutic strategy for obesity and related disorders. (18)F-fluorodeoxyglucose (18F-FDG) is the only positron emission tomography (PET) tracer commonly used to study BAT function, and so far no functional tools have been described to investigate in vivo white-to-brown fat conversion. In this report, we show that the PET tracer 11C-meta-hydroxyephedrine (11C-MHED, a norepinephrine analogue) is a useful tool to investigate the sympathetic nervous system (SNS) activity in BAT of lean and dietary obese mice. Moreover, we demonstrate that 11C-MHED is a specific marker of the SNS-mediated thermogenesis in typical BAT depots, and that this tracer can detect in vivo WAT to BAT conversion. PMID:24049730

  6. [Conversation analysis for improving nursing communication].

    Science.gov (United States)

    Yi, Myungsun

    2007-08-01

    Nursing communication has become more important than ever before because quality of nursing services largely depends on the quality of communication in a very competitive health care environment. This article was to introduce ways to improve nursing communication using conversation analysis. This was a review study on conversation analysis, critically examining previous studies in nursing communication and interpersonal relationships. This study provided theoretical backgrounds and basic assumptions of conversation analysis which was influenced by ethnomethodology, phenomenology, and sociolinguistic. In addition, the characteristics and analysis methods of conversation analysis were illustrated in detail. Lastly, how conversation analysis could help improve communication was shown, by examining researches using conversation analysis not only for ordinary conversations but also for extraordinary or difficult conversations such as conversations between patients with dementia and their professional nurses. Conversation analysis can help in improving nursing communication by providing various structures and patterns as well as prototypes of conversation, and by suggesting specific problems and problem-solving strategies in communication.

  7. Long noncoding RNA AK126698 inhibits proliferation and migration of non-small cell lung cancer cells by targeting Frizzled-8 and suppressing Wnt/β-catenin signaling pathway

    Directory of Open Access Journals (Sweden)

    Fu X

    2016-06-01

    Full Text Available Xiao Fu,1 Hui Li,1 Chunxiao Liu,2 Bin Hu,1 Tong Li,1 Yang Wang1 1Department of Thoracic Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 2Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, People’s Republic of China Background: Recent studies indicate that long noncoding RNAs (lncRNAs play a key role in the control of cellular processes such as proliferation, metastasis, and differentiation. The lncRNA dysregulation has been identified in all types of cancer. We previously found that lncRNA AK126698 suppresses cisplatin resistance in A549 cells through the Wnt/β-catenin signaling pathway. However, the clinical significance of lncRNA AK126698 and the molecular mechanisms through which it regulates cancer cell proliferation and migration are largely unknown. Methods: We examined the expression of lncRNA AK126698 in 56 non-small cell lung cancer (NSCLC tissue samples and three NSCLC cell lines using quantitative real-time polymerase chain reaction. Gain and loss of function approaches were used to evaluate the biological function of AK126698 in NSCLC cells. The effects of lncRNA AK126698 on cell proliferation were investigated using cell counting kit-8 and 5-ethynyl-2'-deoxyuridine assays, and apoptosis was measured by flow cytometry. Protein levels of AK126698 targets were evaluated by Western blotting. Results: Our results showed that lncRNA AK126698 was significantly downregulated in NSCLC tissues, compared with paired adjacent nontumor tissue samples. Furthermore, lower AK126698 expression was associated with larger tumor size and advanced tumor stage. Ectopic AK126698 expression inhibited cell proliferation and migration and induced apoptosis. Conversely, decreased AK126698 expression promoted cell proliferation and migration and inhibited cell apoptosis. Importantly, we demonstrated that Frizzled-8, a receptor of Wnt/β-catenin pathway, was a target of AK126698. Furthermore

  8. Anti-inflammatory effects of embelin in A549 cells and human asthmatic airway epithelial tissues.

    Science.gov (United States)

    Lee, In-Seung; Cho, Dong-Hyuk; Kim, Ki-Suk; Kim, Kang-Hoon; Park, Jiyoung; Kim, Yumi; Jung, Ji Hoon; Kim, Kwanil; Jung, Hee-Jae; Jang, Hyeung-Jin

    2018-02-01

    Allergic asthma is the most common type in asthma, which is defined as a chronic inflammatory disease of the lung. In this study, we investigated whether embelin (Emb), the major component of Ardisia japonica BL. (AJB), exhibits anti-inflammatory effects on allergic asthma via inhibition of NF-κB activity using A549 cells and asthmatic airway epithelial tissues. Inflammation was induced in A549 cells, a human airway epithelial cell line, by IL-1β (10 ng/ml) treatment for 4 h. The effects of Emb on NF-κB activity and COX-2 protein expression in inflamed airway epithelial cells and human asthmatic airway epithelial tissues were analyzed via western blot. The secretion levels of NF-κB-mediated cytokines/chemokines, including IL-4, 6, 9, 13, TNF-α and eotaxin, were measured by a multiplex assay. Emb significantly blocked NF-κB activity in IL-1β-treated A549 cells and human asthmatic airway epithelial tissues. COX-2 expression was also reduced in both IL-1β-treated A549 cells and asthmatic tissues Emb application. Emb significantly reduced the secretion of IL-4, IL-6 and eotaxin in human asthmatic airway epithelial tissues by inhibiting activity of NF-κB. The results of this study suggest that Emb may be used as an anti-inflammatory agent via inhibition of NF-κB and related cytokines.

  9. Inhibition of NET Release Fails to Reduce Adipose Tissue Inflammation in Mice

    NARCIS (Netherlands)

    Braster, Quinte; Silvestre Roig, Carlos; Hartwig, Helene; Beckers, Linda; den Toom, Myrthe; Döring, Yvonne; Daemen, Mat J.; Lutgens, Esther; Soehnlein, Oliver

    2016-01-01

    Obesity-associated diseases such as Type 2 diabetes, liver disease and cardiovascular diseases are profoundly mediated by low-grade chronic inflammation of the adipose tissue. Recently, the importance of neutrophils and neutrophil-derived myeloperoxidase and neutrophil elastase on the induction of

  10. Inhibition of neutrophil migration by aggregated immunoglobulin attached to micropore membranes.

    Science.gov (United States)

    Kemp, A S; Brown, S

    1980-01-01

    The effect of substrate-bound immunoglobulin on neutrophil migration was examined. Immunoglobulin aggregates bound to micropore membranes inhibited the neutrophil response to a chemotactic stimulus. This inhibition was reversed by the presence of aggregates in suspension suggesting competition between substrate-bound and free aggregates for neutrophil surface binding sites. The immobilization of neutrophils by substrate-bound aggregated immunoglobulin suggests a mechanism for the accumulation of neutrophils at sites of immune complex deposition and tissue-bound antibodies in vivo. PMID:7380477

  11. Role of tissue factor and protease-activated receptors in a mouse model of endotoxemia.

    Science.gov (United States)

    Pawlinski, Rafal; Pedersen, Brian; Schabbauer, Gernot; Tencati, Michael; Holscher, Todd; Boisvert, William; Andrade-Gordon, Patricia; Frank, Rolf Dario; Mackman, Nigel

    2004-02-15

    Sepsis is associated with a systemic activation of coagulation and an excessive inflammatory response. Anticoagulants have been shown to inhibit both coagulation and inflammation in sepsis. In this study, we used both genetic and pharmacologic approaches to analyze the role of tissue factor and protease-activated receptors in coagulation and inflammation in a mouse endotoxemia model. We used mice expressing low levels of the procoagulant molecule, tissue factor (TF), to analyze the effects of TF deficiency either in all tissues or selectively in hematopoietic cells. Low TF mice had reduced coagulation, inflammation, and mortality compared with control mice. Similarly, a deficiency of TF expression by hematopoietic cells reduced lipopolysaccharide (LPS)-induced coagulation, inflammation, and mortality. Inhibition of the down-stream coagulation protease, thrombin, reduced fibrin deposition and prolonged survival without affecting inflammation. Deficiency of either protease activated receptor-1 (PAR-1) or protease activated receptor-2 (PAR-2) alone did not affect inflammation or survival. However, a combination of thrombin inhibition and PAR-2 deficiency reduced inflammation and mortality. These data demonstrate that hematopoietic cells are the major pathologic site of TF expression during endotoxemia and suggest that multiple protease-activated receptors mediate crosstalk between coagulation and inflammation.

  12. Assimilate unloading from maize (Zea mays L.) pedicel tissues

    International Nuclear Information System (INIS)

    Porter, G.A.; Knievel, D.P.; Shannon, J.C.

    1987-01-01

    Sugar and 14 C-assimilate release from the pedicel tissue of attached maize (Zea mays L.) kernels was studied following treatment with solute concentrations of up to 800 millimolal. Exposure and collection times ranged from 3 to 6 hours. Sugar and 14 C-assimilate unloading and collection in agar traps was reduced by 25 and 43%, respectively, following exposure to 800 millimolal mannitol. Inhibition of unloading was not specific to mannitol, since similar concentrations of glucose, fructose, or equimolar glucose plus fructose resulted in comparable inhibition. Ethylene glycol, a rapidly permeating solute which should not greatly influence cell turgor, did not inhibit 14 C-assimilate unloading. Based on these results, they suggest that inhibition of unloading by high concentrations of sugar or mannitol was due to reduced pedicel cell turgor. Changes in pedicel cell turgor may play a role in the regulation of assimilate transfer within the maize kernel

  13. Inhibiting actin depolymerization enhances osteoblast differentiation and bone formation in human stromal stem cells

    DEFF Research Database (Denmark)

    Chen, Li; Shi, Kaikai; Frary, Charles

    2015-01-01

    Remodeling of the actin cytoskeleton through actin dynamics is involved in a number of biological processes, but its role in human stromal (skeletal) stem cells (hMSCs) differentiation is poorly understood. In the present study, we demonstrated that stabilizing actin filaments by inhibiting gene...... expression of the two main actin depolymerizing factors (ADFs): Cofilin 1 (CFL1) and Destrin (DSTN) in hMSCs, enhanced cell viability and differentiation into osteoblastic cells (OB) in vitro, as well as heterotopic bone formation in vivo. Similarly, treating hMSC with Phalloidin, which is known to stabilize...... polymerized actin filaments, increased hMSCs viability and OB differentiation. Conversely, Cytocholasin D, an inhibitor of actin polymerization, reduced cell viability and inhibited OB differentiation of hMSC. At a molecular level, preventing Cofilin phosphorylation through inhibition of LIM domain kinase 1...

  14. Effect of sulfate and nitrate on acetate conversion by anaerobic microorganisms in a freshwater sediment.

    Science.gov (United States)

    Scholten, Johannes C M; Bodegom, Peter M; Vogelaar, Jaap; Ittersum, Alexander; Hordijk, Kees; Roelofsen, Wim; Stams, Alfons J M

    2002-12-01

    Acetate is quantitatively the most important substrate for methane production in a freshwater sediment in The Netherlands. In the presence of alternative electron acceptors the conversion of acetate by methanogens was strongly inhibited. By modelling the results, obtained in experiments with and without (13)C-labelled acetate, we could show that the competition for acetate between methanogens and sulfate reducers is the main cause of inhibition of methanogenesis in the sediment. Although nitrate led to a complete inhibition of methanogenesis, acetate-utilising nitrate-reducing bacteria hardly competed with methanogens for the available acetate in the presence of nitrate. Most-probable-number enumerations showed that methanogens (2x10(8) cells cm(-3) sediment) and sulfate reducers (2x10(8) cells cm(-3) sediment) were the dominant acetate-utilising organisms in the sediment, while numbers of acetate-utilising nitrate reducers were very low (5x10(5) cells cm(-3) sediment). However, high numbers of sulfide-oxidising nitrate reducers were detected. Denitrification might result in the formation of toxic products. We speculate that the accumulation of low concentrations of NO (<0.2 mM) may result in an inhibition of methanogenesis.

  15. Modulation of epithelial tissue and cell migration by microgrooves.

    NARCIS (Netherlands)

    Dalton, B.A.; Walboomers, X.F.; Dziegielewski, M.; Evans, M.D.; Taylor, S.; Jansen, J.A.; Steele, J.G.

    2001-01-01

    We used a polystyrene substratum to study the response of migrating epithelium to 1- or 5-microm depth microgrooves with groove/ridge widths of 1, 2, 5, or 10 microm. The migration of a tissue sheet was enhanced along the microgrooves, while migration across the microgrooves was inhibited. Changing

  16. Carbon conversion predictor for fluidized bed gasification of biomass fuels - from TGA measurements to char gasification particle model

    Energy Technology Data Exchange (ETDEWEB)

    Konttinen, J.T. [University of Jyvaeskylae, Department of Chemistry, Renewable Energy Programme, POB 35, Jyvaeskylae (Finland); Moilanen, A. [VTT Technical Research Centre of Finland, POB 1000, Espoo (Finland); Martini, N. de; Hupa, M. [Abo Akademi University, Process Chemistry Centre, Combustion and Materials Chemistry, Turku (Finland)

    2012-09-15

    When a solid fuel particle is injected into a hot fluidized bed, the reactivity of fuel char in gasification reactions (between char carbon and steam and CO{sub 2}) plays a significant role for reaching a good carbon conversion. In this paper, the gasification reactivity data of some solid waste recovered fuels (SRF) obtained from thermogravimetric analysis (TGA) experiments is presented. Gas mixtures (H{sub 2}O, H{sub 2}, CO{sub 2}, CO), were used in the experiments to find the inhibitive effects of CO and H{sub 2}. Average char gasification reactivity values are determined from the TGA results. Kinetic parameters for char carbon gasification reactivity correlations are determined from this data. The Uniform Conversion model is used to account for the change of gasification reaction rate as function of carbon conversion. Some discrepancies, due to complicated ash-carbon interactions, are subjects of further research. In the carbon conversion predictor, laboratory measured reactivity numbers are converted into carbon conversion numbers in a real-scale fluidized bed gasifier. The predictor is a relatively simple and transparent tool for the comparison of the gasification reactivity of different fuels in fluidized bed gasification. The residence times for solid fuels in fluidized bed gasifiers are simulated. Simulations against some pilot-scale results show reasonable agreement. (orig.)

  17. Postoperative conversion disorder.

    Science.gov (United States)

    Afolabi, Kola; Ali, Sameer; Gahtan, Vivian; Gorji, Reza; Li, Fenghua; Nussmeier, Nancy A

    2016-05-01

    Conversion disorder is a psychiatric disorder in which psychological stress causes neurologic deficits. A 28-year-old female surgical patient had uneventful general anesthesia and emergence but developed conversion disorder 1 hour postoperatively. She reported difficulty speaking, right-hand numbness and weakness, and right-leg paralysis. Neurologic examination and imaging revealed no neuronal damage, herniation, hemorrhage, or stroke. The patient mentioned failing examinations the day before surgery and discontinuing her prescribed antidepressant medication, leading us to diagnose conversion disorder, with eventual confirmation by neuroimaging and follow-up examinations. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Uranium conversion wastes

    International Nuclear Information System (INIS)

    Vicente, R.; Dellamano, J.C.

    1989-12-01

    A set of mathematical equations was developed and used to estimate the radiological significance of each radionuclide potentially present in the uranium refining industry effluents. The equations described the evolution in time of the radionuclides activities in the uranium fuel cycle, from mining and milling, through the yellowcake, till the conversion effluents. Some radionuclides that are not usually monitored in conversion effluents (e.g. Pa-231 and Ac-227) were found to be potentially relevant from the radiological point of view in conversion facilities, and are certainly relevant in mining and milling industry, at least in a few waste streams. (author) [pt

  19. 5 CFR 317.302 - Conversion procedures.

    Science.gov (United States)

    2010-01-01

    ... conversion. (2) Pay. Upon conversion to the Senior Executive Service, an employee's SES rate will be... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Conversion procedures. 317.302 Section... IN THE SENIOR EXECUTIVE SERVICE Conversion to the Senior Executive Service § 317.302 Conversion...

  20. Radiosensitization effects of nicotinamide on malignant and normal mouse tissue

    International Nuclear Information System (INIS)

    Jonsson, G.G.; Kjellen, E.; Pero, R.W.; Cameron, R.

    1985-01-01

    Inhibitors of the chromatin-associated enzyme adenosine diphosphate ribosyltransferase have been found to inhibit DNA strand rejoining and to potentiate lethality of DNA-damaging agents both in vivo and in vitro. The authors have in this work examined the radiosensitizing potential of one such inhibitor, nicotinamide, on tumor tissue by using transplanted C3H mouse mammary adenocarcinomas and on normal tissue in a tail-stunting experiment using BALB/cA mice. The data indicate a radiosensitizing effect of nicotinamide on tumor cells as well as on normal tissue. The data indicate a possible role of adenosine diphosphate ribosyltransferase inhibitors as a sensitizing agent in the radiotherapy of malignant tumors

  1. Inhibition of autophagy induced by proteasome inhibition increases cell death in human SHG-44 glioma cells.

    Science.gov (United States)

    Ge, Peng-Fei; Zhang, Ji-Zhou; Wang, Xiao-Fei; Meng, Fan-Kai; Li, Wen-Chen; Luan, Yong-Xin; Ling, Feng; Luo, Yi-Nan

    2009-07-01

    The ubiquitin-proteasome system (UPS) and lysosome-dependent macroautophagy (autophagy) are two major intracellular pathways for protein degradation. Recent studies suggest that proteasome inhibitors may reduce tumor growth and activate autophagy. Due to the dual roles of autophagy in tumor cell survival and death, the effect of autophagy on the destiny of glioma cells remains unclear. In this study, we sought to investigate whether inhibition of the proteasome can induce autophagy and the effects of autophagy on the fate of human SHG-44 glioma cells. The proteasome inhibitor MG-132 was used to induce autophagy in SHG-44 glioma cells, and the effect of autophagy on the survival of SHG-44 glioma cells was investigated using an autophagy inhibitor 3-MA. Cell viability was measured by MTT assay. Apoptosis and cell cycle were detected by flow cytometry. The expression of autophagy related proteins was determined by Western blot. MG-132 inhibited cell proliferation, induced cell death and cell cycle arrest at G(2)/M phase, and activated autophagy in SHG-44 glioma cells. The expression of autophagy-related Beclin-1 and LC3-I was significantly up-regulated and part of LC3-I was converted into LC3-II. However, when SHG-44 glioma cells were co-treated with MG-132 and 3-MA, the cells became less viable, but cell death and cell numbers at G(2)/M phase increased. Moreover, the accumulation of acidic vesicular organelles was decreased, the expression of Beclin-1 and LC3 was significantly down-regulated and the conversion of LC3-II from LC3-I was also inhibited. Inhibition of the proteasome can induce autophagy in human SHG-44 glioma cells, and inhibition of autophagy increases cell death. This discovery may shed new light on the effect of autophagy on modulating the fate of SHG-44 glioma cells.Acta Pharmacologica Sinica (2009) 30: 1046-1052; doi: 10.1038/aps.2009.71.

  2. Mesenchymal stem cells derived from normal gingival tissue inhibit the proliferation of oral cancer cells in vitro and in vivo.

    Science.gov (United States)

    Ji, Xiaoli; Zhang, Zhihui; Han, Ying; Song, Jiangyuan; Xu, Xiangliang; Jin, Jianqiu; Su, Sha; Mu, Dongdong; Liu, Xiaodan; Xu, Si; Cui, Hongwei; Zhao, Zhongfang; Wang, Yixiang; Liu, Hongwei

    2016-11-01

    The interplay between tumor cells and mesenchymal stem cells (MSCs) within tumor microenvironment plays a significant role in tumor development, and thus might be exploited for therapeutic intervention. In this study, we isolated MSCs from normal gingival tissue (GMSCs), and detected the effect of GMSCs on oral cancer cells via direct co-culture and indirect co-culture systems. The cell proliferation assay of direct co-culture showed that GMSCs could inhibit the growth of oral cancer cells. Conditioned medium derived from GMSCs (GMSCs-CM) also exerted an anticancer effect, which indicates that soluble factors in GMSCs-CM played a dominant role in GMSCs-induced cancer cell growth inhibition. To investigate the mechanism, we performed apoptosis assay by flow cytometry, and confirmed that cancer cell apoptosis induced by GMSCs could be a reason for the effect of GMSCs on the growth of oral cancer cells. Western blotting also confirmed that GMSCs could upregulate expression of pro-apoptotic genes including p-JNK, cleaved PARP, cleaved caspase-3, Bax expression and downregulate proliferation- and anti-apoptosis-related gene expression such as p-ERK1/2, Bcl-2, CDK4, cyclin D1, PCNA and survivin. Importantly, the inhibitory effect of GMSCs on cancer cells can partially be restored by blockade of JNK pathway. Moreover, animal studies showed that GMSCs exerted an anticancer effect after oral cancer cells and GMSCs were co-injected with oral cancer cells. Taken together, our data suggest that GMSCs can suppress oral cancer cell growth in vitro and in vivo via altering the surrounding microenvironment of oral cancer cells, which indicates that GMSCs have a potential use in the management of oral dysplasia and oral cancer in future.

  3. Cannabinoids inhibit angiogenic capacities of endothelial cells via release of tissue inhibitor of matrix metalloproteinases-1 from lung cancer cells.

    Science.gov (United States)

    Ramer, Robert; Fischer, Sascha; Haustein, Maria; Manda, Katrin; Hinz, Burkhard

    2014-09-15

    Cannabinoids inhibit tumor neovascularization as part of their tumorregressive action. However, the underlying mechanism is still under debate. In the present study the impact of cannabinoids on potential tumor-to-endothelial cell communication conferring anti-angiogenesis was studied. Cellular behavior of human umbilical vein endothelial cells (HUVEC) associated with angiogenesis was evaluated by Boyden chamber, two-dimensional tube formation and fibrin bead assay, with the latter assessing three-dimensional sprout formation. Viability was quantified by the WST-1 test. Conditioned media (CM) from A549 lung cancer cells treated with cannabidiol, Δ(9)-tetrahydrocannabinol, R(+)-methanandamide or the CB2 agonist JWH-133 elicited decreased migration as well as tube and sprout formation of HUVEC as compared to CM of vehicle-treated cancer cells. Inhibition of sprout formation was further confirmed for cannabinoid-treated A549 cells co-cultured with HUVEC. Using antagonists to cannabinoid-activated receptors the antimigratory action was shown to be mediated via cannabinoid receptors or transient receptor potential vanilloid 1. SiRNA approaches revealed a cannabinoid-induced expression of tissue inhibitor of matrix metalloproteinases-1 (TIMP-1) as well as its upstream trigger, the intercellular adhesion molecule-1, to be causally linked to the observed decrease of HUVEC migration. Comparable anti-angiogenic effects were not detected following direct exposure of HUVEC to cannabinoids, but occurred after addition of recombinant TIMP-1 to HUVEC. Finally, antimigratory effects were confirmed for CM of two other cannabinoid-treated lung cancer cell lines (H460 and H358). Collectively, our data suggest a pivotal role of the anti-angiogenic factor TIMP-1 in intercellular tumor-endothelial cell communication resulting in anti-angiogenic features of endothelial cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Conversational flow promotes solidarity.

    Science.gov (United States)

    Koudenburg, Namkje; Postmes, Tom; Gordijn, Ernestine H

    2013-01-01

    Social interaction is fundamental to the development of various aspects of "we-ness". Previous research has focused on the role the content of interaction plays in establishing feelings of unity, belongingness and shared reality (a cluster of variables referred to as solidarity here). The present paper is less concerned with content, but focuses on the form of social interaction. We propose that the degree to which conversations flow smoothly or not is, of itself, a cue to solidarity. We test this hypothesis in samples of unacquainted and acquainted dyads who communicate via headsets. Conversational flow is disrupted by introducing a delay in the auditory feedback (vs. no delay). Results of three studies show that smoothly coordinated conversations (compared with disrupted conversations and a control condition) increase feelings of belonging and perceptions of group entitativity, independently of conversation content. These effects are driven by the subjective experience of conversational flow. Our data suggest that this process occurs largely beyond individuals' control. We conclude that the form of social interaction is a powerful cue for inferring group solidarity. Implications for the impact of modern communication technology on developing a shared social identity are discussed.

  5. Conversational flow promotes solidarity.

    Directory of Open Access Journals (Sweden)

    Namkje Koudenburg

    Full Text Available Social interaction is fundamental to the development of various aspects of "we-ness". Previous research has focused on the role the content of interaction plays in establishing feelings of unity, belongingness and shared reality (a cluster of variables referred to as solidarity here. The present paper is less concerned with content, but focuses on the form of social interaction. We propose that the degree to which conversations flow smoothly or not is, of itself, a cue to solidarity. We test this hypothesis in samples of unacquainted and acquainted dyads who communicate via headsets. Conversational flow is disrupted by introducing a delay in the auditory feedback (vs. no delay. Results of three studies show that smoothly coordinated conversations (compared with disrupted conversations and a control condition increase feelings of belonging and perceptions of group entitativity, independently of conversation content. These effects are driven by the subjective experience of conversational flow. Our data suggest that this process occurs largely beyond individuals' control. We conclude that the form of social interaction is a powerful cue for inferring group solidarity. Implications for the impact of modern communication technology on developing a shared social identity are discussed.

  6. Long Noncoding RNA lncCAMTA1 Promotes Proliferation and Cancer Stem Cell-Like Properties of Liver Cancer by Inhibiting CAMTA1

    Directory of Open Access Journals (Sweden)

    Li-Juan Ding

    2016-09-01

    Full Text Available Hepatocellular carcinoma (HCC is the most common subtype of liver malignancy, and it is characterized by poor prognosis because of cancer stem cell (CSC-mediated high postsurgical recurrence rates. Thus, targeting CSCs, or HCC cells with CSC-like properties, is an effective strategy for HCC therapy. Here, using long noncoding RNA (lncRNA microarray analysis, we identified a novel lncRNA termed lncCAMTA1 that is increased in both liver CSCs and HCC. High lncCAMTA1 expression in HCC indicates poor clinical outcome. In vitro and in vivo functional experiments showed that overexpression of lncCAMTA1 promotes HCC cell proliferation, CSC-like properties, and tumorigenesis. Conversely, depletion of lncCAMTA1 inhibits HCC cell proliferation, CSC-like properties, and tumorigenesis. Mechanistically, we demonstrated that lncCAMTA1 physically associates with the calmodulin binding transcription activator 1 (CAMTA1 promoter, induces a repressive chromatin structure, and inhibits CAMTA1 transcription. Furthermore, CAMTA1 is required for the effects of lncCAMTA1 on HCC cell proliferation and CSC-like properties, and the expression of lncCAMTA1 and CAMTA1 is significantly negatively correlated in HCC tissues. Collectively, our study revealed the important roles and underlying molecular mechanisms of lncCAMTA1 on HCC, and suggested that lncCAMTA1 could be an effective prognostic factor and a potential therapeutic target for HCC.

  7. Catabolic factors and osteoarthritis-conditioned medium inhibit chondrogenesis of human mesenchymal stem cells.

    Science.gov (United States)

    Heldens, Genoveva T H; Blaney Davidson, Esmeralda N; Vitters, Elly L; Schreurs, B Willem; Piek, Ester; van den Berg, Wim B; van der Kraan, Peter M

    2012-01-01

    Articular cartilage has a very limited intrinsic repair capacity leading to progressive joint damage. Therapies involving tissue engineering depend on chondrogenic differentiation of progenitor cells. This chondrogenic differentiation will have to survive in a diseased joint. We postulate that catabolic factors in this environment inhibit chondrogenesis of progenitor cells. We investigated the effect of a catabolic environment on chondrogenesis in pellet cultures of human mesenchymal stem cells (hMSCs). We exposed chondrogenically differentiated hMSC pellets, to interleukin (IL)-1α, tumor necrosis factor (TNF)-α or conditioned medium derived from osteoarthritic synovium (CM-OAS). IL-1α and TNF-α in CM-OAS were blocked with IL-1Ra or Enbrel, respectively. Chondrogenesis was determined by chondrogenic markers collagen type II, aggrecan, and the hypertrophy marker collagen type X on mRNA. Proteoglycan deposition was analyzed by safranin o staining on histology. IL-1α and TNF-α dose-dependently inhibited chondrogenesis when added at onset or during progression of differentiation, IL-1α being more potent than TNF-α. CM-OAS inhibited chondrogenesis on mRNA and protein level but varied in extent between patients. Inhibition of IL-1α partially overcame the inhibitory effect of the CM-OAS on chondrogenesis whereas the TNF-α contribution was negligible. We show that hMSC chondrogenesis is blocked by either IL-1α or TNF-α alone, but that there are additional factors present in CM-OAS that contribute to inhibition of chondrogenesis, demonstrating that catabolic factors present in OA joints inhibit chondrogenesis, thereby impairing successful tissue engineering.

  8. Induction of hyperresponsiveness in human airway tissue by neutrophils--mechanism of action.

    Science.gov (United States)

    Anticevich, S Z; Hughes, J M; Black, J L; Armour, C L

    1996-05-01

    The two main features of asthma are bronchial hyperresponsiveness and inflammation. The inflammatory response in asthma consists of infiltration and activation of a variety of inflammatory cells including neutrophils. Our previous studies have shown that stimulated neutrophil supernatants cause hyperresponsiveness of human bronchial tissue in vitro. To investigate the effect of the sensitization status of the tissue and the albumin concentration used to prepare supernatants on the response of human bronchial tissue to stimulated neutrophil supernatants. Neutrophil supernatants were prepared from human isolated blood in the presence of varying concentrations of albumin (0%, 0.1% and 4%). Neutrophil supernatants were added to sensitized and non-sensitized human isolated bronchial tissue which was stimulated with electrical field stimulation (EFS) (20 s every 4 min). Receptor antagonists specific for the prostaglandin and thromboxane (10(-7) M GR32191), platelet activating factor (10(-6) M WEB 2086), leukotriene D4 (10(-6) M MK-679) and neurokinin A (10(-7) M SR48968) receptors were used to identify neutrophil products responsible for the effects observed in the bronchial tissue. In non-sensitized human bronchial tissue, stimulated neutrophil supernatants induced a direct contraction in the presence of 0% and 0.1% but not 4% albumin. This contraction was due to leukotriene D4 as MK-679 completely inhibited the contraction. In contrast, stimulated neutrophil supernatants increased responsiveness of sensitized human bronchial tissue to EFS. The increased responsiveness was observed only in the presence of 0.1% albumin, with the site of modulation likely to be prejunctional on the parasympathetic nerve. The increased responsiveness was not inhibited by any of the antagonists tested. Sensitization status of the tissue and albumin concentration effect the responsiveness of human bronchial tissue to stimulated neutrophil supernatant. Our results suggest a possible role for

  9. Seeded amplification of chronic wasting disease prions in nasal brushings and recto-anal mucosal associated lymphoid tissues from elk by real time quaking-induced conversion

    Science.gov (United States)

    Haley, Nicholas J.; Siepker, Chris; Hoon-Hanks , Laura L.; Mitchell, Gordon; Walter, W. David; Manca, Matteo; Monello, Ryan J.; Powers, Jenny G.; Wild, Margaret A.; Hoover, Edward A.; Caughey, Byron; Richt, Jürgen a.; Fenwick, B.W.

    2016-01-01

    Chronic wasting disease (CWD), a transmissible spongiform encephalopathy of cervids, was first documented nearly 50 years ago in Colorado and Wyoming and has since been detected across North America and the Republic of Korea. The expansion of this disease makes the development of sensitive diagnostic assays and antemortem sampling techniques crucial for the mitigation of its spread; this is especially true in cases of relocation/reintroduction or prevalence studies of large or protected herds, where depopulation may be contraindicated. This study evaluated the sensitivity of the real-time quaking-induced conversion (RT-QuIC) assay of recto-anal mucosa-associated lymphoid tissue (RAMALT) biopsy specimens and nasal brushings collected antemortem. These findings were compared to results of immunohistochemistry (IHC) analysis of ante- and postmortem samples. RAMALT samples were collected from populations of farmed and free-ranging Rocky Mountain elk (Cervus elaphus nelsoni; n = 323), and nasal brush samples were collected from a subpopulation of these animals (n = 205). We hypothesized that the sensitivity of RT-QuIC would be comparable to that of IHC analysis of RAMALT and would correspond to that of IHC analysis of postmortem tissues. We found RAMALT sensitivity (77.3%) to be highly correlative between RT-QuIC and IHC analysis. Sensitivity was lower when testing nasal brushings (34%), though both RAMALT and nasal brush test sensitivities were dependent on both the PRNP genotype and disease progression determined by the obex score. These data suggest that RT-QuIC, like IHC analysis, is a relatively sensitive assay for detection of CWD prions in RAMALT biopsy specimens and, with further investigation, has potential for large-scale and rapid automated testing of antemortem samples for CWD.

  10. Nuclear spin conversion in formaldehyde

    OpenAIRE

    Chapovsky, Pavel L.

    2000-01-01

    Theoretical model of the nuclear spin conversion in formaldehyde (H2CO) has been developed. The conversion is governed by the intramolecular spin-rotation mixing of molecular ortho and para states. The rate of conversion has been found equal 1.4*10^{-4}~1/s*Torr. Temperature dependence of the spin conversion has been predicted to be weak in the wide temperature range T=200-900 K.

  11. Feast and famine: Adipose tissue adaptations for healthy aging.

    Science.gov (United States)

    Lettieri Barbato, Daniele; Aquilano, Katia

    2016-07-01

    Proper adipose tissue function controls energy balance with favourable effects on metabolic health and longevity. The molecular and metabolic asset of adipose tissue quickly and dynamically readapts in response to nutrient fluctuations. Once delivered into cells, nutrients are managed by mitochondria that represent a key bioenergetics node. A persistent nutrient overload generates mitochondrial exhaustion and uncontrolled reactive oxygen species ((mt)ROS) production. In adipocytes, metabolic/molecular reorganization is triggered culminating in the acquirement of a hypertrophic and hypersecretory phenotype that accelerates aging. Conversely, dietary regimens such as caloric restriction or time-controlled fasting endorse mitochondrial functionality and (mt)ROS-mediated signalling, thus promoting geroprotection. In this perspective view, we argued some important molecular and metabolic aspects related to adipocyte response to nutrient stress. Finally we delineated hypothetical routes by which molecularly and metabolically readapted adipose tissue promotes healthy aging. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. H+-ATPase activity from storage tissue of Beta vulgaris. IV. N,N'-dicyclohexylcarbodiimide binding and inhibition of the plasma membrane H+-ATPase

    International Nuclear Information System (INIS)

    Oleski, N.A.; Bennett, A.B.

    1987-01-01

    The molecular weight and isoelectric point of the plasma membrane H + -ATPase from red beet storage tissue were determined using N,N'-dicyclohexylcarbodiimide (DCCD) and a H + -ATPase antibody. When plasma membrane vesicles were incubated with 20 micromolar [ 14 C]-DCCD at 0 0 C, a single 97,000 dalton protein was visualized on a fluorography of a sodium dodecyl sulfate polyacrylamide gel. A close correlation between [ 14 C]DCCD labeling of the 97,000 dalton protein and the extent of ATPase inhibition over a range of DCCD concentration suggests that this 97,000 dalton protein is a component of the plasma membrane H + -ATPase. An antibody raised against the plasma membrane H + -ATPase of Neurospora crassa cross-reacted with the 97,000 dalton DCCD-binding protein, further supporting the identity of this protein. Immunoblots of two-dimensional gels of red beet plasma membrane vesicles indicated the isoelectric point of the H + -ATPase to be 6.5

  13. Conversion of adult endothelium to immunocompetent haematopoietic stem cells.

    Science.gov (United States)

    Lis, Raphael; Karrasch, Charles C; Poulos, Michael G; Kunar, Balvir; Redmond, David; Duran, Jose G Barcia; Badwe, Chaitanya R; Schachterle, William; Ginsberg, Michael; Xiang, Jenny; Tabrizi, Arash Rafii; Shido, Koji; Rosenwaks, Zev; Elemento, Olivier; Speck, Nancy A; Butler, Jason M; Scandura, Joseph M; Rafii, Shahin

    2017-05-25

    Developmental pathways that orchestrate the fleeting transition of endothelial cells into haematopoietic stem cells remain undefined. Here we demonstrate a tractable approach for fully reprogramming adult mouse endothelial cells to haematopoietic stem cells (rEC-HSCs) through transient expression of the transcription-factor-encoding genes Fosb, Gfi1, Runx1, and Spi1 (collectively denoted hereafter as FGRS) and vascular-niche-derived angiocrine factors. The induction phase (days 0-8) of conversion is initiated by expression of FGRS in mature endothelial cells, which results in endogenous Runx1 expression. During the specification phase (days 8-20), RUNX1 + FGRS-transduced endothelial cells commit to a haematopoietic fate, yielding rEC-HSCs that no longer require FGRS expression. The vascular niche drives a robust self-renewal and expansion phase of rEC-HSCs (days 20-28). rEC-HSCs have a transcriptome and long-term self-renewal capacity similar to those of adult haematopoietic stem cells, and can be used for clonal engraftment and serial primary and secondary multi-lineage reconstitution, including antigen-dependent adaptive immune function. Inhibition of TGFβ and CXCR7 or activation of BMP and CXCR4 signalling enhanced generation of rEC-HSCs. Pluripotency-independent conversion of endothelial cells into autologous authentic engraftable haematopoietic stem cells could aid treatment of haematological disorders.

  14. MDM2 beyond cancer: podoptosis, development, inflammation, and tissue regeneration.

    Science.gov (United States)

    Ebrahim, Martrez; Mulay, Shrikant R; Anders, Hans-Joachim; Thomasova, Dana

    2015-11-01

    Murine double minute (MDM)-2 is an intracellular molecule with diverse biological functions. It was first described to limit p53-mediated cell cycle arrest and apoptosis, hence, gain of function mutations are associated with malignancies. This generated a rationale for MDM2 being a potential therapeutic target in cancer therapy. Meanwhile, several additional functions and pathogenic roles of MDM2 have been identified that either enforce therapeutic MDM2 blockade or raise caution about potential side effects. MDM2 is also required for organ development and tissue homeostasis because unopposed p53 activation leads to p53-overactivation-dependent cell death, referred to as podoptosis. Podoptosis is caspase-independent and, therefore, different from apoptosis. The mitogenic role of MDM2 is also needed for wound healing upon tissue injury, while MDM2 inhibition impairs re-epithelialization upon epithelial damage. In addition, MDM2 has p53-independent transcription factor-like effects in nuclear factor-kappa beta (NFκB) activation. Therefore, MDM2 promotes tissue inflammation and MDM2 inhibition has potent anti-inflammatory effects in tissue injury. Here we review the biology of MDM2 in the context of tissue development, homeostasis, and injury and discuss how the divergent roles of MDM2 could be used for certain therapeutic purposes. MDM2 blockade had mostly anti-inflammatory and anti-mitotic effects that can be of additive therapeutic efficacy in inflammatory and hyperproliferative disorders such as certain cancers or lymphoproliferative autoimmunity, such as systemic lupus erythematosus or crescentic glomerulonephritis.

  15. Conversion coefficients for determining organ doses in paediatric pelvis and hip joint radiography

    International Nuclear Information System (INIS)

    Seidenbusch, Michael C.; Schneider, Karl

    2014-01-01

    Knowledge of organ and effective doses achieved during paediatric X-ray examinations is an important prerequisite for assessment of radiation burden to the patient. Conversion coefficients for reconstruction of organ and effective doses from entrance doses for pelvis and hip joint radiographs of 0-, 1-, 5-, 10-, 15- and 30-year-old patients are provided regarding the Guidelines of Good Radiographic Technique of the European Commission. Using the personal computer program PCXMC developed by the Finnish Centre for Radiation and Nuclear Safety (Saeteilyturvakeskus STUK), conversion coefficients for conventional pelvis and hip joint radiographs were calculated by performing Monte Carlo simulations in mathematical hermaphrodite phantom models representing patients of different ages. The clinical variation of radiation field settings was taken into consideration by defining optimal and suboptimal standard field settings. Conversion coefficients for the reconstruction of organ doses in about 40 organs and tissues from measured entrance doses during pelvis and hip joint radiographs of 0-, 1-, 5-, 10-, 15- and 30-year-old patients were calculated for the standard sagittal beam projection and the standard focus detector distance of 115 cm. The conversion coefficients presented can be used for organ dose assessments from entrance doses measured during pelvis and hip joint radiographs of children and young adults with all field settings within the optimal and suboptimal standard field settings. (orig.)

  16. MicroRNA-202 inhibits tumor progression by targeting LAMA1 in esophageal squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Xiangrui, E-mail: xiangruimengzz@163.com [Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou 450000, Henan Province (China); Chen, Xiaoqi [Department of Digestion and Oncology, The First Affiliated Hospital of Henan Uninversity of TCM, 19 Renmin Road, Zhengzhou 450000, Henan Province (China); Lu, Peng [Department of Gastrointestinal Surgery, The People' s Hospital of Zhengzhou, 33 Huanghe Road, Zhengzhou 450000, Henan Province (China); Ma, Wang; Yue, Dongli; Song, Lijie; Fan, Qingxia [Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou 450000, Henan Province (China)

    2016-05-13

    Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive malignancies in the gastrointestinal tract. Emerging studies have indicated that microRNAs (miRNAs) are strongly implicated in the development and progression of ESCC. Here, we focused on the function and the underlying molecular mechanism of miR-202 in ESCC. The results showed that miR-202 was significantly down-regulated in ESCC tissues and cell lines. Overexpression of miR-202 in ECa-109 and KYSE-510 cells markedly suppressed cell proliferation and cell migration, and induced cell apoptosis. Furthermore, laminin α1 (LAMA1) expression was frequently positive in ESCC tissues and inversely correlated with miR-202 expression. Then we demonstrated that miR-202 targeted 3'-untranslated region (UTR) of LAMA1 and inhibited its protein expression. Additionally, LAMA1 overexpression rescued the proliferation inhibition and cell apoptosis elevation induced by miR-202. MiR-202 also inhibited the protein expression of p-FAK and p-Akt, which were all reversed by LAMA1 overexpression. Taken together, these findings suggest that miR-202 may function as a novel tumor suppressor in ESCC by repressing cell proliferation and migration, and its biological effects may attribute the inhibition of LAMA1-mediated FAK-PI3K-Akt signaling. - Highlights: • Expression of miR-202 was decreased in ESCC tissues and cell lines. • MiR-202 overexpression inhibited ESCC cell growth and induced apoptosis. • MiR-202 directly targeted LAMA1 in ESCC. • The LAMA1-FAK-PI3K signaling mediated the suppressive role of miR-202.

  17. Practical concept of pharmacokinetics/pharmacodynamics in the management of skin and soft tissue infections.

    Science.gov (United States)

    Pea, Federico

    2016-04-01

    This article gives an overview of the practical concept of pharmacokinetic/pharmacodynamic principles useful for clinicians in the management of skin and soft tissue infections (SSTIs). Recent studies suggest that distinguishing between bacteriostatic or bactericidal activity when choosing an antimicrobial for the treatment of severe infections could probably be clinically irrelevant. Conversely, what could help clinicians in maximizing the therapeutic efficacy of the various drugs in routine practice is taking care of some pharmacokinetic/pharmacodynamic principles. Concentration-dependent agents may exhibit more rapid bacterial killing than observed with time-dependent agents. Serum concentrations may not always adequately predict tissue exposure in patients with SSTIs, and measuring concentrations at the infection site is preferable. Hydrophilic antimicrobials showed generally lower penetration rates than the lipophilic ones and might require alternative dosing approaches in the presence of severe sepsis or septic shock. Conversely, tissue penetration of lipophilic antimicrobials is often unaffected by the pathophysiological status. Real-time therapeutic drug monitoring may be a very helpful tool for optimizing therapy of severe infections. Taking care of pharmacokinetic/pharmacodynamic principles deriving from the most recent findings may help clinicians in maximizing treatment of SSTIs with antimicrobials in every situation.

  18. Large enhancement of functional activity of active site-inhibited factor VIIa due to protein dimerization: insights into mechanism of assembly/disassembly from tissue factor.

    Science.gov (United States)

    Stone, Matthew D; Harvey, Stephen B; Martinez, Michael B; Bach, Ronald R; Nelsestuen, Gary L

    2005-04-26

    Active site-inhibited blood clotting factor VIIa (fVIIai) binds to tissue factor (TF), a cell surface receptor that is exposed upon injury and initiates the blood clotting cascade. FVIIai blocks binding of the corresponding enzyme (fVIIa) or zymogen (fVII) forms of factor VII and inhibits coagulation. Although several studies have suggested that fVIIai may have superior anticoagulation effects in vivo, a challenge for use of fVIIai is cost of production. This study reports the properties of dimeric forms of fVIIai that are cross-linked through their active sites. Dimeric wild-type fVIIai was at least 75-fold more effective than monomeric fVIIai in blocking fVIIa association with TF. The dimer of a mutant fVIIai with higher membrane affinity was 1600-fold more effective. Anticoagulation by any form of fVIIai differed substantially from agents such as heparin and showed a delayed mode of action. Coagulation proceeded normally for the first minutes, and inhibition increased as equilibrium binding was established. It is suggested that association of fVIIa(i) with TF in a collision-dependent reaction gives equal access of inhibitor and enzyme to TF. Assembly was not influenced by the higher affinity and slower dissociation of the dimer. As a result, anticoagulation was delayed until the reaction reached equilibrium. Properties of different dissociation experiments suggested that dissociation of fVIIai from TF occurred by a two-step mechanism. The first step was separation of TF-fVIIa(i) while both proteins remained bound to the membrane, and the second step was dissociation of the fVIIa(i) from the membrane. These results suggest novel actions of fVIIai that distinguish it from most of the anticoagulants that block later steps of the coagulation cascade.

  19. A comparison of cell proliferation in normal and neoplastic intestinal epithelia following either biogenic amine depletion or monoamine oxidase inhibition.

    Science.gov (United States)

    Tutton, P J; Barkla, D H

    1976-08-11

    Epithelial cell proliferation was studied in the jejunum and in the colon of normal rats, in the colon of dimethylhydrazine-treated rats and in dimethylhydrazine-induced adenocarcinoma of the colon using a stathmokinetic technique. Estimates of cell proliferation rates in these four tissues were then repeated in animals which had been depleted of biogenic animes by treatment with reserpine and in animals whose monoamine oxidase was inhibited by treatment with nialamide. In amine-depleted animals cell proliferation essentially ceased in all four tissues examined. Inhibition of monoamine oxidase did not significantly influence cell proliferation in nonmalignant tissues but accelerated cell division in colonic tumours.

  20. Trans-10, cis 12-Conjugated Linoleic Acid-Induced Milk Fat Depression Is Associated with Inhibition of PPARγ Signaling and Inflammation in Murine Mammary Tissue

    Directory of Open Access Journals (Sweden)

    Anil K. G. Kadegowda

    2013-01-01

    Full Text Available Exogenous trans-10, cis-12-CLA (CLA reduces lipid synthesis in murine adipose and mammary (MG tissues. However, genomewide alterations in MG and liver (LIV associated with dietary CLA during lactation remain unknown. We fed mice (n=5/diet control or control + trans-10, cis-12-CLA (37 mg/day between d 6 and d 10 postpartum. The 35,302 annotated murine exonic evidence-based oligo (MEEBO microarray and quantitative RT-PCR were used for transcript profiling. Milk fat concentration was 44% lower on d 10 versus d 6 due to CLA. The CLA diet resulted in differential expression of 1,496 genes. Bioinformatics analyses underscored that a major effect of CLA on MG encompassed alterations in cellular signaling pathways and phospholipid species biosynthesis. Dietary CLA induced genes related to ER stress (Xbp1, apoptosis (Bcl2, and inflammation (Orm1, Saa2, and Cp. It also induced marked inhibition of PPARγ signaling, including downregulation of Pparg and Srebf1 and several lipogenic target genes (Scd, Fasn, and Gpam. In LIV, CLA induced hepatic steatosis probably through perturbations in the mitochondrial functions and induction of ER stress. Overall, results from this study underscored the role of PPARγ signaling on mammary lipogenic target regulation. The proinflammatory effect due to CLA could be related to inhibition of PPARγ signaling.

  1. Determination of glutamate dehydrogenase activity and its kinetics in mouse tissues using metabolic mapping (quantitative enzyme histochemistry)

    NARCIS (Netherlands)

    Botman, Dennis; Tigchelaar, Wikky; van Noorden, Cornelis J. F.

    2014-01-01

    Glutamate dehydrogenase (GDH) catalyses the reversible conversion of glutamate into α-ketoglutarate with the concomitant reduction of NAD(P)(+) to NAD(P)H or vice versa. GDH activity is subject to complex allosteric regulation including substrate inhibition. To determine GDH kinetics in situ, we

  2. Evaluation of five DNA extraction methods for purification of DNA from atherosclerotic tissue and estimation of prevalence of Chlamydia pneumoniae in tissue from a Danish population undergoing vascular repair

    Directory of Open Access Journals (Sweden)

    Lindholt Jes S

    2003-09-01

    Full Text Available Abstract Background To date PCR detection of Chlamydia pneumoniae DNA in atherosclerotic lesions from Danish patients has been unsuccessful. To establish whether non-detection was caused by a suboptimal DNA extraction method, we tested five different DNA extraction methods for purification of DNA from atherosclerotic tissue. Results The five different DNA extraction methods were tested on homogenate of atherosclerotic tissue spiked with C. pneumoniae DNA or EB, on pure C. pneumoniae DNA samples and on whole C. pneumoniae EB. Recovery of DNA was measured with a C. pneumoniae-specific quantitative real-time PCR. A DNA extraction method based on DNA-binding to spin columns with a silica-gel membrane (DNeasy Tissue kit showed the highest recovery rate for the tissue samples and pure DNA samples. However, an automated extraction method based on magnetic glass particles (MagNA Pure performed best on intact EB and atherosclerotic tissue spiked with EB. The DNeasy Tissue kit and MagNA Pure methods and the highly sensitive real-time PCR were subsequently used on 78 atherosclerotic tissue samples from Danish patients undergoing vascular repair. None of the samples were positive for C. pneumoniae DNA. The atherosclerotic samples were tested for inhibition by spiking with two different, known amounts of C. pneumoniae DNA and no samples showed inhibition. Conclusion As a highly sensitive PCR method and an optimised DNA extraction method were used, non-detection in atherosclerotic tissue from the Danish population was probably not caused by use of inappropriate methods. However, more samples may need to be analysed per patient to be completely certain on this. Possible methodological and epidemiological reasons for non-detection of C. pneumoniae DNA in atherosclerotic tissue from the Danish population are discussed. Further testing of DNA extraction methods is needed as this study has shown considerable intra- and inter-method variation in DNA recovery.

  3. Quantitative PET Imaging of Tissue Factor Expression Using 18F-Labeled Active Site-Inhibited Factor VII.

    Science.gov (United States)

    Nielsen, Carsten H; Erlandsson, Maria; Jeppesen, Troels E; Jensen, Mette M; Kristensen, Lotte K; Madsen, Jacob; Petersen, Lars C; Kjaer, Andreas

    2016-01-01

    Tissue factor (TF) is upregulated in many solid tumors, and its expression is linked to tumor angiogenesis, invasion, metastasis, and prognosis. A noninvasive assessment of tumor TF expression status is therefore of obvious clinical relevance. Factor VII is the natural ligand to TF. Here we report the development of a new PET tracer for specific imaging of TF using an (18)F-labeled derivative of factor VII. Active site-inhibited factor VIIa (FVIIai) was obtained by inactivation with phenylalanine-phenylalanine-arginine-chloromethyl ketone. FVIIai was radiolabeled with N-succinimidyl 4-(18)F-fluorobenzoate and purified. The corresponding product, (18)F-FVIIai, was injected into nude mice with subcutaneous human pancreatic xenograft tumors (BxPC-3) and investigated using small-animal PET/CT imaging 1, 2, and 4 h after injection. Ex vivo biodistribution was performed after the last imaging session, and tumor tissue was preserved for molecular analysis. A blocking experiment was performed in a second set of mice. The expression pattern of TF in the tumors was visualized by immunohistochemistry and the amount of TF in tumor homogenates was measured by enzyme-linked immunosorbent assay and correlated with the uptake of (18)F-FVIIai in the tumors measured in vivo by PET imaging. The PET images showed high uptake of (18)F-FVIIai in the tumor regions, with a mean uptake of 2.5 ± 0.3 percentage injected dose per gram (%ID/g) (mean ± SEM) 4 h after injection of 7.3-9.3 MBq of (18)F-FVIIai and with an average maximum uptake in the tumors of 7.1 ± 0.7 %ID/g at 4 h. In comparison, the muscle uptake was 0.2 ± 0.01 %ID/g at 4 h. At 4 h, the tumors had the highest uptake of any organ. Blocking with FVIIai significantly reduced the uptake of (18)F-FVIIai from 2.9 ± 0.1 to 1.4 ± 0.1 %ID/g (P < 0.001). The uptake of (18)F-FVIIai measured in vivo by PET imaging correlated (r = 0.72, P < 0.02) with TF protein level measured ex vivo. (18)F-FVIIai is a promising PET tracer for

  4. Mechanisms of mercurial and arsenical inhibition of tyrosine absorption in intestine of the winter flounder Pseudopleuronectus americanus

    International Nuclear Information System (INIS)

    Musch, M.W.; Chauncey, B.; Schmid, E.C.; Kinne, R.K.; Goldstein, L.

    1990-01-01

    Effects of HgCl2 (100 microM) para-chloromercuribenzene sulfonate (PCMBS) (1 mM), and oxophenylarsine (OPA) (250 microM) were determined on (a) the rate of Na pump activity in intact winter flounder intestine; (b) activity of Na-K-ATPase in tissue homogenates; and (c) Na-dependent and Na-independent uptake of tyrosine in brush border membrane vesicles. Initial rate of uptake (influx) of 86Rb from the serosal solution of tissues mounted in Ussing chambers, a measure of Na-K-ATPase activity in the intact cell, was inhibited by all three agents with differing time courses. Rapidly permeating HgCl2 inhibited influx to the same degree as ouabain at 30 min, whereas the effects of PCMBS and OPA required 90 min. Cell potassium was also measured as an indirect indicator of ATPase activity and cell membrane permeability. All three agents decreased cell K, although effects on cell K lagged behind those for inhibition of the ATPase. At the concentrations used in the Ussing chamber (or at one-tenth concentration), all agents completely inhibited Na-K-ATPase activity in enzyme assays performed with tissue homogenates. In contrast, only HgCl2 decreased Na-dependent uptake of tyrosine by brush border membrane vesicles. These results suggest that mercurial and arsenical effects on tyrosine absorption are due to inhibition of the Na-K-ATPase thus decreasing the driving force for the cellular uptake by the Na-tyrosine cotransport system. Direct effects on Na-tyrosine cotransport may play a role in the inhibition observed with HgCl2, but not for PCMBS or OPA

  5. Development of a cell culture surface conversion technique using alginate thin film for evaluating effect upon cellular differentiation

    International Nuclear Information System (INIS)

    Nakashima, Y.; Tsusu, K.; Minami, K.; Nakanishi, Y.

    2014-01-01

    Here, we sought to develop a cell culture surface conversion technique that would not damage living cells. An alginate thin film, formed on a glass plate by spin coating of sodium alginate solution and dipping into calcium chloride solution, was used to inhibit adhesion of cells. The film could be removed by ethylenediaminetetraacetate (EDTA) at any time during cell culture, permitting observation of cellular responses to conversion of the culture surface in real time. Additionally, we demonstrated the validity of the alginate thin film coating method and the performance of the film. The thickness of the alginate thin film was controlled by varying the rotation speed during spin coating. Moreover, the alginate thin film completely inhibited the adhesion of cultured cells to the culture surface, irrespective of the thickness of the film. When the alginate thin film was removed from the culture surface by EDTA, the cultured cells adhered to the culture surface, and their morphology changed. Finally, we achieved effective differentiation of C2C12 myoblasts into myotube cells by cell culture on the convertible culture surface, demonstrating the utility of our novel technique

  6. Selenium inhibits the phytotoxicity of mercury in garlic (Allium sativum)

    International Nuclear Information System (INIS)

    Zhao, Jiating; Gao, Yuxi; Li, Yu-Feng; Hu, Yi; Peng, Xiaomin; Dong, Yuanxing; Li, Bai; Chen, Chunying; Chai, Zhifang

    2013-01-01

    To investigate the influence of selenium on mercury phytotoxicity, the levels of selenium and mercury were analyzed with inductively coupled plasma-mass spectrometry (ICP-MS) in garlic tissues upon exposure to different dosages of inorganic mercury (Hg 2+ ) and selenite (SeO 3 2− ) or selenate (SeO 4 2− ). The distributions of selenium and mercury were examined with micro-synchrotron radiation X-ray fluorescence (μ-SRXRF), and the mercury speciation was investigated with micro-X-ray absorption near edge structure (μ-XANES). The results show that Se at higher exposure levels (>1 mg/L of SeO 3 2− or SeO 4 2− ) would significantly inhibit the absorption and transportation of Hg when Hg 2+ levels are higher than 1 mg/L in culture media. SeO 3 2− and SeO 4 2− were found to be equally effective in reducing Hg accumulation in garlic. The inhibition of Hg uptake by Se correlates well with the influence of Se on Hg phytotoxicity as indicated by the growth inhibition factor. Elemental imaging using μ-SRXRF also shows that Se could inhibit the accumulation and translocation of Hg in garlic. μ-XANES analysis shows that Hg is mainly present in the forms of Hg–S bonding as Hg(GSH) 2 and Hg(Met) 2 . Se exposure elicited decrease of Hg–S bonding in the form of Hg(GSH) 2 , together with Se-mediated alteration of Hg absorption, transportation and accumulation, may account for attenuated Hg phytotoxicity by Se in garlic. -- Highlights: ► Hg phytotoxicity can be mitigated by Se supplement in garlic growth. ► Se can inhibit the accumulation and transportation of Hg in garlic tissues. ► Localization and speciation of Hg in garlic can be modified by Se

  7. Conversion of ionization measurements to radiation absorbed dose in non-water density material

    International Nuclear Information System (INIS)

    El-Khatib, E.; Connors, S.

    1992-01-01

    In bone-equivalent materials two different calculations of absorbed dose are possible: the absorbed dose to soft tissue plastic (polystyrene) within bone-equivalent material and the dose to the bone-equivalent material itself. Both can be calculated from ionization measurements in phantoms. These two calculations result in significantly different doses in a heterogeneous phantom composed of polystyrene and aluminium (a bone substitute). The dose to a thin slab of polystyrene in aluminium is much higher than the dose to the aluminium itself at the same depth in the aluminium. Monte Carlo calculations confirm that the calculation of dose to polystyrene in aluminium can be accurately carried out using existing dosimetry protocols. However, the conversion of ionization measurements to absorbed dose to high atomic number materials cannot be accurately carried out with existing protocols and appropriate conversion factors need to be determined. (author)

  8. Rooibos Flavonoids Inhibit the Activity of Key Adrenal Steroidogenic Enzymes, Modulating Steroid Hormone Levels in H295R Cells

    Directory of Open Access Journals (Sweden)

    Lindie Schloms

    2014-03-01

    Full Text Available Major rooibos flavonoids—dihydrochalcones, aspalathin and nothofagin, flavones—orientin and vitexin, and a flavonol, rutin, were investigated to determine their influence on the activity of adrenal steroidogenic enzymes, 3β-hydroxysteroid dehydrogenase (3βHSD2 and cytochrome P450 (P450 enzymes, P450 17α-hydroxylase/17,20-lyase (CYP17A1, P450 21-hydroxylase (CYP21A2 and P450 11β-hydroxylase (CYP11B1. All the flavonoids inhibited 3βHSD2 and CYP17A1 significantly, while the inhibition of downstream enzymes, CYP21A2 and CYP11B1, was both substrate and flavonoid specific. The dihydrochalcones inhibited the activity of CYP21A2, but not that of CYP11B1. Although rutin, orientin and vitexin inhibited deoxycortisol conversion by CYP11B1 significantly, inhibition of deoxycorticosterone was <20%. These three flavonoids were unable to inhibit CYP21A2, with negligible inhibition of deoxycortisol biosynthesis only. Rooibos inhibited substrate conversion by CYP17A1 and CYP21A2, while the inhibition of other enzyme activities was <20%. In H295R cells, rutin had the greatest inhibitory effect on steroid production upon forskolin stimulation, reducing total steroid output 2.3-fold, while no effect was detected under basal conditions. Nothofagin and vitexin had a greater inhibitory effect on overall steroid production compared to aspalathin and orientin, respectively. The latter compounds contain two hydroxyl groups on the B ring, while nothofagin and vitexin contain a single hydroxyl group. In addition, all of the flavonoids are glycosylated, albeit at different positions—dihydrochalcones at C3' and flavones at C8 on ring A, while rutin, a larger molecule, has a rutinosyl moiety at C3 on ring C. Structural differences regarding the number and position of hydroxyl and glucose moieties as well as structural flexibility could indicate different mechanisms by which these flavonoids influence the activity of adrenal steroidogenic enzymes.

  9. Naringenin Inhibits Adipogenesis and Reduces Insulin Sensitivity and Adiponectin Expression in Adipocytes

    Directory of Open Access Journals (Sweden)

    Allison J. Richard

    2013-01-01

    Full Text Available Adipose tissue development and function are widely studied to examine the relationship between obesity and the metabolic syndrome. It is well documented that the inability of adipose tissue to properly increase its lipid storage capacity during the obese state can lead to metabolic dysfunction. In a blind screen of 425 botanicals, we identified naringenin as an inhibitor of adipocyte differentiation. Naringenin is one of the most abundant citrus flavonoids, and recent studies have demonstrated antihyperlipidemic capabilities. These studies have largely focused on the effects of naringenin on the liver. Our biochemical studies clearly demonstrate that naringenin inhibits adipogenesis and impairs mature fat cell function. Naringenin specifically inhibited adipogenesis in a dose-dependent fashion as judged by examining lipid accumulation and induction of adipocyte marker protein expression. In mature 3T3-L1 adipocytes, naringenin reduced the ability of insulin to induce IRS-1 tyrosine phosphorylation and substantially inhibited insulin-stimulated glucose uptake in a dose-dependent manner and over a time frame of 1.5 to 24 hours. Exposure to naringenin also inhibited adiponectin protein expression in mature murine and human adipocytes. Our studies have revealed that naringenin may have a negative impact on adipocyte-related diseases by limiting differentiation of preadipocytes, by significantly inducing insulin resistance, and by decreasing adiponectin expression in mature fat cells.

  10. Gene conversion in the rice genome

    DEFF Research Database (Denmark)

    Xu, Shuqing; Clark, Terry; Zheng, Hongkun

    2008-01-01

    -chromosomal conversions distributed between chromosome 1 and 5, 2 and 6, and 3 and 5 are more frequent than genome average (Z-test, P ... is not tightly linked to natural selection in the rice genome. To assess the contribution of segmental duplication on gene conversion statistics, we determined locations of conversion partners with respect to inter-chromosomal segment duplication. The number of conversions associated with segmentation is less...... involved in conversion events. CONCLUSION: The evolution of gene families in the rice genome may have been accelerated by conversion with pseudogenes. Our analysis suggests a possible role for gene conversion in the evolution of pathogen-response genes....

  11. Conversation after Right Hemisphere Brain Damage: Motivations for Applying Conversation Analysis

    Science.gov (United States)

    Barnes, Scott; Armstrong, Elizabeth

    2010-01-01

    Despite the well documented pragmatic deficits that can arise subsequent to Right Hemisphere Brain Damage (RHBD), few researchers have directly studied everyday conversations involving people with RHBD. In recent years, researchers have begun applying Conversation Analysis (CA) to the everyday talk of people with aphasia. This research programme…

  12. Inhibition of the immune response to experimental fresh osteoarticular allografts

    International Nuclear Information System (INIS)

    Rodrigo, J.J.; Schnaser, A.M.; Reynolds, H.M. Jr.; Biggart, J.M. III; Leathers, M.W.; Chism, S.E.; Thorson, E.; Grotz, T.; Yang, Q.M.

    1989-01-01

    The immune response to osteoarticular allografts is capable of destroying the cartilage--a tissue that has antigens on its cells identical to those on the bone and marrow cells. Osteoarticular allografts of the distal femur were performed in rats using various methods to attempt to temporarily inhibit the antibody response. The temporary systemic immunosuppressant regimens investigated were cyclophosphamide, azathioprine and prednisolone, cyclosporine A, and total lymphoid irradiation. The most successful appeared to be cyclosporine A, but significant side effects were observed. To specifically inhibit the immune response in the allograft antigens without systemically inhibiting the entire immune system, passive enhancement and preadministration of donor blood were tried. Neither was as effective as coating the donor bone with biodegradable cements, a method previously found to be successful. Cyclosporine A was investigated in dogs in a preliminary study of medial compartmental knee allografts and was found to be successful in inhibiting the antibody response and in producing a more successful graft; however, some significant side effects were similarly observed

  13. A hydroxylated flavonol, fisetin inhibits the formation of a carcinogenic estrogen metabolite.

    Science.gov (United States)

    Meng, Xin; Sun, Hui; Yang, Lianrong; Yin, Rui; Qi, Lehui

    2017-03-01

    Fisetin can be found in a wide variety of plants and possesses strong efficacy against many cancers. 17β-Estradiol (E2) is hydrolyzed to 4-hydroxy-E2 (4-OHE2) via cytochrome P450 (CYP) 1B1 in vivo. In estrogen target tissues including the mammary gland, ovaries, and uterus, CYP1B1 is highly expressed, and 4-OHE2 is predominantly formed in cancerous tissues. Herein, we investigated the inhibitory activity of fisetin and flavone against CYP1B1 using estrogen E2 as substrate in vitro to reveal structure-activity relationship between structure of flavonoids and inhibition. The results showed that fisetin possessed inhibitory effect on CYP1B1 activity. Compared with flavone, the inhibition of fisetin was stronger. The V max and K i values were 1.950±0.157pmol/μgprotein/min and 4.925±0.689nM for fisetin and 2.277±0.231pmol/μgprotein/min and 9.148±2.150nM for flavone, respectively. By kinetic analyses, both fisetin and flavone displayed mixed inhibition. Taken together the data suggested that fisetin is able to inhibit the formation of carcinogenic 4-OHE2 from E2, which reveals one of its anti-cancer mechanisms and helps to reveal the relationship between the structure of flavonoids and the inhibition CYP1B1 for discovering new drugs in cancer therapy and prevention. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Salinomycin, a polyether ionophoric antibiotic, inhibits adipogenesis

    International Nuclear Information System (INIS)

    Szkudlarek-Mikho, Maria; Saunders, Rudel A.; Yap, Sook Fan; Ngeow, Yun Fong; Chin, Khew-Voon

    2012-01-01

    Highlights: ► Salinomycin inhibits preadipocyte differentiation into adipocytes. ► Salinomycin inhibits transcriptional regulation of adipogenesis. ► Pharmacological effects of salinomycin suggest toxicity in cancer therapy. -- Abstract: The polyether ionophoric antibiotics including monensin, salinomycin, and narasin, are widely used in veterinary medicine and as food additives and growth promoters in animal husbandry including poultry farming. Their effects on human health, however, are not fully understood. Recent studies showed that salinomycin is a cancer stem cell inhibitor. Since poultry consumption has risen sharply in the last three decades, we asked whether the consumption of meat tainted with growth promoting antibiotics might have effects on adipose cells. We showed in this report that the ionophoric antibiotics inhibit the differentiation of preadipocytes into adipocytes. The block of differentiation is not due to the induction of apoptosis nor the inhibition of cell proliferation. In addition, salinomycin also suppresses the transcriptional activity of the CCAAT/enhancer binding proteins and the peroxisome proliferator-activated receptor γ. These results suggest that the ionophoric antibiotics can be exploited as novel anti-obesity therapeutics and as pharmacological probes for the study of adipose biology. Further, the pharmacological effects of salinomycin could be a harbinger of its toxicity on the adipose tissue and other susceptible target cells in cancer therapy.

  15. Determination of the potency of a novel saw palmetto supercritical CO2 extract (SPSE) for 5α-reductase isoform II inhibition using a cell-free in vitro test system.

    Science.gov (United States)

    Pais, Pilar; Villar, Agustí; Rull, Santiago

    2016-01-01

    The nicotinamide adenine dinucleotide phosphate-dependent membrane protein 5α-reductase catalyses the conversion of testosterone to the most potent androgen - 5α-dihydrotestosterone. Two 5α-reductase isoenzymes are expressed in humans: type I and type II. The latter is found primarily in prostate tissue. Saw palmetto extract (SPE) has been used extensively in the treatment of lower urinary tract symptoms secondary to benign prostatic hyperplasia (BPH). The pharmacological effects of SPE include the inhibition of 5α-reductase, as well as anti-inflammatory and antiproliferative effects. Clinical studies of SPE have been inconclusive - some have shown significant results, and others have not - possibly the result of varying bioactivities of the SPEs used in the studies. To determine the in vitro potency in a cell-free test system of a novel SP supercritical CO2 extract (SPSE), an inhibitor of the 5α-reductase isoenzyme type II. The inhibitory potency of SPSE was compared to that of finasteride, an approved 5α-reductase inhibitor, on the basis of the enzymatic conversion of the substrate androstenedione to the 5α-reduced product 5α-androstanedione. By concentration-dependent inhibition of 5α-reductase type II in vitro (half-maximal inhibitory concentration 3.58±0.05 μg/mL), SPSE demonstrated competitive binding toward the active site of the enzyme. Finasteride, the approved 5α-reductase inhibitor tested as positive control, led to 63%-75% inhibition of 5α-reductase type II. SPSE effectively inhibits the enzyme that has been linked to BPH, and the amount of extract required for activity is comparatively low. It can be confirmed from the results of this study that SPSE has bioactivity that promotes prostate health at a level that is superior to that of many other phytotherapeutic extracts. The bioactivity of SPSE corresponds favorably to that reported for the hexane extract used in a large number of positive BPH clinical trials, as well as to finasteride

  16. Dopamine induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages in rat C6 glioma

    International Nuclear Information System (INIS)

    Qin, Tian; Wang, Chenlong; Chen, Xuewei; Duan, Chenfan; Zhang, Xiaoyan; Zhang, Jing; Chai, Hongyan; Tang, Tian; Chen, Honglei; Yue, Jiang; Li, Ying; Yang, Jing

    2015-01-01

    Dopamine (DA), a monoamine catecholamine neurotransmitter with antiangiogenic activity, stabilizes tumor vessels in colon, prostate and ovarian cancers, thus increases chemotherapeutic efficacy. Here, in the rat C6 glioma models, we investigated the vascular normalization effects of DA and its mechanisms of action. DA (25, 50 mg/kg) inhibited tumor growth, while a precursor of DA (levodopa) prolonged the survival time of rats bearing orthotopic C6 glioma. DA improved tumor perfusion, with significant effects from day 3, and a higher level at days 5 to 7. In addition, DA decreased microvessel density and hypoxia-inducible factor-1α expression in tumor tissues, while increasing the coverage of pericyte. Conversely, an antagonist of dopamine receptor 2 (DR2) (eticlopride) but not DR1 (butaclamol) abrogated DA-induced tumor regression and vascular normalization. Furthermore, DA improved the delivery and efficacy of temozolomide therapy. Importantly, DA increased representative M1 markers (iNOS, CXCL9, etc.), while decreasing M2 markers (CD206, arginase-1, etc.). Depletion of macrophages by clodronate or zoledronic acid attenuated the effects of DA. Notably, DA treatment induced M2-to-M1 polarization in RAW264.7 cells and mouse peritoneal macrophages, and enhanced the migration of pericyte-like cells (10T1/2), which was reversed by eticlopride or DR2-siRNA. Such changes were accompanied by the downregulation of VEGF/VEGFR2 signaling. In summary, DA induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages. Thus, targeting the tumor microvasculature by DA represents a promising strategy for human glioma therapy. - Highlights: • Dopamine induces tumor growth inhibition and vascular normalization in rat C6 glioma. • Dopamine switches macrophage phenotype from M2 to M1. • Dopamine-induced vascular normalization is mediated by macrophage polarization. • Dopamine is a promising agent targeting the microvasculature in tumor

  17. Dopamine induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages in rat C6 glioma

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Tian; Wang, Chenlong; Chen, Xuewei; Duan, Chenfan; Zhang, Xiaoyan [Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Zhang, Jing [Animal Experimental Center of Wuhan University, Wuhan 430071 (China); Chai, Hongyan [Center for Gene Diagnosis, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Tang, Tian [Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060 (China); Chen, Honglei [Department of Pathology and Pathophysiology, School of Medicine, Wuhan University, Wuhan 430071 (China); Yue, Jiang [Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Li, Ying, E-mail: lyying0@163.com [Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Yang, Jing, E-mail: yangjingliu2013@163.com [Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China)

    2015-07-15

    Dopamine (DA), a monoamine catecholamine neurotransmitter with antiangiogenic activity, stabilizes tumor vessels in colon, prostate and ovarian cancers, thus increases chemotherapeutic efficacy. Here, in the rat C6 glioma models, we investigated the vascular normalization effects of DA and its mechanisms of action. DA (25, 50 mg/kg) inhibited tumor growth, while a precursor of DA (levodopa) prolonged the survival time of rats bearing orthotopic C6 glioma. DA improved tumor perfusion, with significant effects from day 3, and a higher level at days 5 to 7. In addition, DA decreased microvessel density and hypoxia-inducible factor-1α expression in tumor tissues, while increasing the coverage of pericyte. Conversely, an antagonist of dopamine receptor 2 (DR2) (eticlopride) but not DR1 (butaclamol) abrogated DA-induced tumor regression and vascular normalization. Furthermore, DA improved the delivery and efficacy of temozolomide therapy. Importantly, DA increased representative M1 markers (iNOS, CXCL9, etc.), while decreasing M2 markers (CD206, arginase-1, etc.). Depletion of macrophages by clodronate or zoledronic acid attenuated the effects of DA. Notably, DA treatment induced M2-to-M1 polarization in RAW264.7 cells and mouse peritoneal macrophages, and enhanced the migration of pericyte-like cells (10T1/2), which was reversed by eticlopride or DR2-siRNA. Such changes were accompanied by the downregulation of VEGF/VEGFR2 signaling. In summary, DA induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages. Thus, targeting the tumor microvasculature by DA represents a promising strategy for human glioma therapy. - Highlights: • Dopamine induces tumor growth inhibition and vascular normalization in rat C6 glioma. • Dopamine switches macrophage phenotype from M2 to M1. • Dopamine-induced vascular normalization is mediated by macrophage polarization. • Dopamine is a promising agent targeting the microvasculature in tumor

  18. Intermittent fasting results in tissue-specific changes in bioenergetics and redox state.

    Science.gov (United States)

    Chausse, Bruno; Vieira-Lara, Marcel A; Sanchez, Angélica B; Medeiros, Marisa H G; Kowaltowski, Alicia J

    2015-01-01

    Intermittent fasting (IF) is a dietary intervention often used as an alternative to caloric restriction (CR) and characterized by 24 hour cycles alternating ad libitum feeding and fasting. Although the consequences of CR are well studied, the effects of IF on redox status are not. Here, we address the effects of IF on redox state markers in different tissues in order to uncover how changes in feeding frequency alter redox balance in rats. IF rats displayed lower body mass due to decreased energy conversion efficiency. Livers in IF rats presented increased mitochondrial respiratory capacity and enhanced levels of protein carbonyls. Surprisingly, IF animals also presented an increase in oxidative damage in the brain that was not related to changes in mitochondrial bioenergetics. Conversely, IF promoted a substantial protection against oxidative damage in the heart. No difference in mitochondrial bioenergetics or redox homeostasis was observed in skeletal muscles of IF animals. Overall, IF affects redox balance in a tissue-specific manner, leading to redox imbalance in the liver and brain and protection against oxidative damage in the heart.

  19. Intermittent fasting results in tissue-specific changes in bioenergetics and redox state.

    Directory of Open Access Journals (Sweden)

    Bruno Chausse

    Full Text Available Intermittent fasting (IF is a dietary intervention often used as an alternative to caloric restriction (CR and characterized by 24 hour cycles alternating ad libitum feeding and fasting. Although the consequences of CR are well studied, the effects of IF on redox status are not. Here, we address the effects of IF on redox state markers in different tissues in order to uncover how changes in feeding frequency alter redox balance in rats. IF rats displayed lower body mass due to decreased energy conversion efficiency. Livers in IF rats presented increased mitochondrial respiratory capacity and enhanced levels of protein carbonyls. Surprisingly, IF animals also presented an increase in oxidative damage in the brain that was not related to changes in mitochondrial bioenergetics. Conversely, IF promoted a substantial protection against oxidative damage in the heart. No difference in mitochondrial bioenergetics or redox homeostasis was observed in skeletal muscles of IF animals. Overall, IF affects redox balance in a tissue-specific manner, leading to redox imbalance in the liver and brain and protection against oxidative damage in the heart.

  20. Inhibition of radiation-induced lipid peroxidation by means of gallic polydisulphide

    International Nuclear Information System (INIS)

    Losev, Yu.P.; Amadyan, M.G.; Oganesyan, N.M.; Fedulov, A.S.; Abramyan, A.K.; Shagoyan, A.G.; Khachkavanktsyan, A.S.

    1999-01-01

    Inhibition of radiation-induced lipid peroxidation by means of gallic polydisulphade has been studied. Rats were exposed to X-rays in doses 4,8 and 5,25 Gy. Lipid peroxidation was analysed in blood plasma, membranes of erythrocytes and homogenates of liver and spleen tissues of rats. Polydisulphide of gallic acid was used as inhibitor of lipid peroxidation because of its effective antioxidant properties as have been reported previously. It has been demonstrated that gallic disulphide exhibited high inhibition efficiency in conditions of radiation-induced lipid peroxidation due to the effect of intra-molecular synergism

  1. Comparison of x ray computed tomography number to proton relative linear stopping power conversion functions using a standard phantom.

    Science.gov (United States)

    Moyers, M F

    2014-06-01

    Adequate evaluation of the results from multi-institutional trials involving light ion beam treatments requires consideration of the planning margins applied to both targets and organs at risk. A major uncertainty that affects the size of these margins is the conversion of x ray computed tomography numbers (XCTNs) to relative linear stopping powers (RLSPs). Various facilities engaged in multi-institutional clinical trials involving proton beams have been applying significantly different margins in their patient planning. This study was performed to determine the variance in the conversion functions used at proton facilities in the U.S.A. wishing to participate in National Cancer Institute sponsored clinical trials. A simplified method of determining the conversion function was developed using a standard phantom containing only water and aluminum. The new method was based on the premise that all scanners have their XCTNs for air and water calibrated daily to constant values but that the XCTNs for high density/high atomic number materials are variable with different scanning conditions. The standard phantom was taken to 10 different proton facilities and scanned with the local protocols resulting in 14 derived conversion functions which were compared to the conversion functions used at the local facilities. For tissues within ±300 XCTN of water, all facility functions produced converted RLSP values within ±6% of the values produced by the standard function and within 8% of the values from any other facility's function. For XCTNs corresponding to lung tissue, converted RLSP values differed by as great as ±8% from the standard and up to 16% from the values of other facilities. For XCTNs corresponding to low-density immobilization foam, the maximum to minimum values differed by as much as 40%. The new method greatly simplifies determination of the conversion function, reduces ambiguity, and in the future could promote standardization between facilities. Although it

  2. Arginase Inhibition Ameliorates Hepatic Metabolic Abnormalities in Obese Mice

    Science.gov (United States)

    Moon, Jiyoung; Do, Hyun Ju; Cho, Yoonsu; Shin, Min-Jeong

    2014-01-01

    Objectives We examined whether arginase inhibition influences hepatic metabolic pathways and whole body adiposity in diet-induced obesity. Methods and Results After obesity induction by a high fat diet (HFD), mice were fed either the HFD or the HFD with an arginase inhibitor, Nω-hydroxy-nor-L-arginine (nor-NOHA). Nor-NOHA significantly prevented HFD-induced increases in body, liver, and visceral fat tissue weight, and ameliorated abnormal lipid profiles. Furthermore, nor-NOHA treatment reduced lipid accumulation in oleic acid-induced hepatic steatosis in vitro. Arginase inhibition increased hepatic nitric oxide (NO) in HFD-fed mice and HepG2 cells, and reversed the elevated mRNA expression of hepatic genes in lipid metabolism. Expression of phosphorylated 5′ AMPK-activated protein kinase α was increased by arginase inhibition in the mouse livers and HepG2 cells. Conclusions Arginase inhibition ameliorated obesity-induced hepatic lipid abnormalities and whole body adiposity, possibly as a result of increased hepatic NO production and subsequent activation of metabolic pathways involved in hepatic triglyceride metabolism and mitochondrial function. PMID:25057910

  3. Uncertainty of the thyroid dose conversion factor for inhalation intakes of 131I and its parametric uncertainty

    International Nuclear Information System (INIS)

    Harvey, R. P.; Hamby, D. M.; Palmer, T. S.

    2006-01-01

    Inhalation exposures of 131 I may occur in the physical form of a gas as well as a particulate. The physical characteristics pertaining to these different types of releases influence the intake and subsequent dose to an exposed individual. The thyroid dose received is influenced by the route through which 131 I enters the body and its subsequent clearance, absorption and movement throughout the body. The radioactive iodine taken up in the gas-exchange tissues is cleared to other tissues or absorbed into the bloodstream of the individual and transferred to other organs. Iodine in the circulatory system is then taken up by the thyroid gland with resulting dose to that tissue. The magnitude of and uncertainty in the thyroid dose is important to the assessment of individuals exposed to airborne releases of radioiodine. Age- and gender-specific modelling parameters have resulted in significant differences between gas uptake, particulate deposition and inhalation dose conversion factors for each age and gender group. Inhalation dose conversion factors and their inherent uncertainty are markedly affected by the type of iodine intake. These differences are expected due to the modelling of particulate deposition versus uptake of gas in the respiratory tract. Inhalation dose estimates via iodine gases are very similar and separate classifications may not be necessarily based on this assessment. (authors)

  4. Effects of Alkali and Counter Ions in Sn-Beta Catalyzed Carbohydrate Conversion

    DEFF Research Database (Denmark)

    Elliot, Samuel G.; Tolborg, Søren; Madsen, Robert

    2018-01-01

    Alkali ions have been shown to strongly influence the catalytic behavior of stannosilicates in the conversion of carbohydrates. An effect of having alkali ions present is a pronounced increase in selectivity towards methyl lactate. Mechanistic details of this effect have remained obscure and are ......Alkali ions have been shown to strongly influence the catalytic behavior of stannosilicates in the conversion of carbohydrates. An effect of having alkali ions present is a pronounced increase in selectivity towards methyl lactate. Mechanistic details of this effect have remained obscure...... and are herein addressed experimentally through kinetic experiments and isotope tracking. Alkali ions have a differential effect in competing reaction pathways: they promote the rate of carbon-carbon bond breakage of carbohydrate substrates, but decrease the rates of competing dehydration pathways. Further...... addition of alkali inhibits activity of Sn-Beta in all major reaction pathways. The alkali effects on product distributions and on rates of product formation are similar, thus pointing to a kinetic reaction control and to irreversible reaction steps in the main pathways. Additionally, an effect...

  5. Identification of tissue sites for increased albumin degradation in sarcoma-bearing mice

    International Nuclear Information System (INIS)

    Andersson, C.; Iresjoe, B.M.L.; Lundholm, K.

    1991-01-01

    Plasma albumin concentration declines in both experimental and clinical cancer. Previous investigations have demonstrated that this is partly explained by increased breakdown of albumin. The present study has identified the tissue sites for increased albumin degradation in a nonmetastasizing sarcoma mouse (C57/BL6J) model. Results have been compared to nontumor-bearing animals either freely fed or food restricted (pair-weighed) so that their body composition was similar to tumor-bearing animals. Tumor-bearing mice had increased albumin degradation (0.13 +/- 0.02 mg/hr/g bw) compared to both freely fed (0.09 +/- 0.007) and pair-weighed control animals (0.05 +/- 0.008). Radioactivity from circulating [3H]raffine aldehyde labeled albumin appeared with maximum peak values in lysosomes isolated from both tumor and nontumor tissues at 48 hr following iv injection. The intralysosomal accumulation of radioactivity was two- to threefold higher in tumor tissue compared to liver tissue, although the specific activity of protease(s) for albumin degradation measured in vitro was not higher in tumor tissue (30.4 +/- 3.6 mg/hr/g tissue) compared to normal liver tissue (36.9 +/- 1.7). Accounting for the entire tumor the proteolytic capacity for albumin breakdown was however much larger in the tumor (161.6 +/- 32.6 mg/organ) compared to both normal liver (37.5 +/- 2.3) and tumor-host liver (56.4 +/- 2.8). Pepstatin inhibited 78 +/- 6% of the proteolytic activity in the tumor measured by 125I-labeled undenatured mouse albumin as the substrate. Leupeptin inhibited 49 +/- 6%. There was a significantly decreased breakdown of albumin in both skeletal muscles and the gastrointestinal tract from tumor-bearing animals

  6. Effects of deoxynivalenol on content of chloroplast pigments in barley leaf tissues.

    Science.gov (United States)

    Bushnell, W R; Perkins-Veazie, P; Russo, V M; Collins, J; Seeland, T M

    2010-01-01

    To understand further the role of deoxynivalenol (DON) in development of Fusarium head blight (FHB), we investigated effects of the toxin on uninfected barley tissues. Leaf segments, 1 to 1.2 cm long, partially stripped of epidermis were floated with exposed mesophyll in contact with DON solutions. In initial experiments with the leaf segments incubated in light, DON at 30 to 90 ppm turned portions of stripped tissues white after 48 to 96 h. The bleaching effect was greatly enhanced by addition of 1 to 10 mM Ca(2+), so that DON at 10 to 30 ppm turned virtually all stripped tissues white within 48 h. Content of chlorophylls a and b and of total carotenoid pigment was reduced. Loss of electrolytes and uptake of Evans blue indicated that DON had a toxic effect, damaging plasmalemmas in treated tissues before chloroplasts began to lose pigment. When incubated in the dark, leaf segments also lost electrolytes, indicating DON was toxic although the tissues remained green. Thus, loss of chlorophyll in light was due to photobleaching and was a secondary effect of DON, not required for toxicity. In contrast to bleaching effects, some DON treatments that were not toxic kept tissues green without bleaching or other signs of injury, indicating senescence was delayed compared with slow yellowing of untreated leaf segments. Cycloheximide, which like DON, inhibits protein synthesis, also bleached some tissues and delayed senescence of others. Thus, the effects of DON probably relate to its ability to inhibit protein synthesis. With respect to FHB, the results suggest DON may have multiple roles in host cells of infected head tissues, including delayed senescence in early stages of infection and contributing to bleaching and death of cells in later stages.

  7. Dietary arginine silicate inositol complex inhibits periodontal tissue loss in rats with ligature-induced periodontitis.

    Science.gov (United States)

    Dundar, Serkan; Eltas, Abubekir; Hakki, Sema S; Malkoc, Sıddık; Uslu, M Ozay; Tuzcu, Mehmet; Komorowski, James; Ozercan, I Hanifi; Akdemir, Fatih; Sahin, Kazim

    2016-01-01

    The purpose of this study was to induce experimental periodontitis in rats previously fed diets containing arginine silicate inositol (ASI) complex and examine the biochemical, immunological, and radiological effects. Fifty two 8-week-old female Sprague Dawley rats were equally divided into four groups. The control group included those fed a standard rat diet with no operation performed during the experiment. The periodontitis, ASI I, and ASI II groups were subjected to experimental periodontitis induction for 11 days after being fed a standard rat diet alone, a diet containing 1.81 g/kg ASI complex, or a diet containing 3.62 g/kg ASI complex, respectively, for 8 weeks. Throughout the 11-day duration of periodontitis induction, all rats were fed standard feed. The rats were euthanized on the eleventh day, and their tissue and blood samples were collected. In the periodontitis group, elevated tissue destruction parameters and reduced tissue formation parameters were found, as compared to the ASI groups. Levels of enzymes, cytokines, and mediators associated with periodontal tissue destruction were lower in rats fed a diet containing ASI complex after experimental periodontitis. These results indicate that ASI complex could be an alternative agent for host modulation.

  8. Inverse Regulation of Early and Late Chondrogenic Differentiation by Oxygen Tension Provides Cues for Stem Cell-Based Cartilage Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Sophie Portron

    2015-01-01

    Full Text Available Background/Aims: Multipotent stem/stromal cells (MSC are considered promising for cartilage tissue engineering. However, chondrogenic differentiation of MSC can ultimately lead to the formation of hypertrophic chondrocytes responsible for the calcification of cartilage. To prevent the production of this calcified matrix at the articular site, the late hypertrophic differentiation of MSCs must be carefully controlled. Given that articular cartilage is avascular, we hypothesized that in addition to its stimulatory role in the early differentiation of chondrogenic cells, hypoxia may prevent their late hypertrophic conversion. Methods: Early and late chondrogenic differentiation were evaluated using human adipose MSC and murine ATDC5 cells cultured under either normoxic (21%O2 or hypoxic (5%O2 conditions. To investigate the effect of hypoxia on late chondrogenic differentiation, the transcriptional activity of hypoxia-inducible factor-1alpha (HIF-1α and HIF-2α were evaluated using the NoShift DNA-binding assay and through modulation of their activity (chemical inhibitor, RNA interference. Results: Our data demonstrate that low oxygen tension not only stimulates the early chondrogenic commitment of two complementary models of chondrogenic cells, but also inhibits their hypertrophic differentiation. Conclusion: These results suggest that hypoxia can be used as an instrumental tool to prevent the formation of a calcified matrix in MSC-based cartilage tissue engineering.

  9. La conversion de Paul, regards croisés Paul’s conversion. Cross perspectives

    Directory of Open Access Journals (Sweden)

    Elian Cuvillier

    2009-09-01

    Full Text Available Au plan historique, les traditions relatives à la conversion de Paul, chutant de son cheval sur le chemin de Damas, confrontent l’exégète à trois problèmes importants : y avait-il un cheval, cela se passait-il sur le chemin de Damas et était-ce bien une conversion ? Entendues avec l’humour et la distance critique nécessaires, ces trois questions constituent les trois chapitres de cet article. Le premier « Y avait-il un cheval ? » s’intéresse à l’histoire de la réception de l’épisode de la conversion de Paul, en particulier dans la peinture et la littérature. Le second « Cela se passait-il sur le chemin de Damas ? » est consacrée au récit que l’auteur du livre des Actes propose de la conversion de Paul, récit qui constitue, bien souvent, la porte d’entrée exclusive pour aborder le thème. Le troisième « Etait-ce bien une conversion ? » analyse les témoignages de l’apôtre lui-même à travers deux passages clés de ses épîtres authentiques.Historically speaking, the traditions concerning the conversion of Paul, falling from his horse on the road to Damascus, confront the exegete with three important problems : was there a horse, did it happen on the road to Damacus and was it really a conversion ? These three questions, considered with humor and critical distance, constitute the three sections of this article. The first part « Was there a horse ? » considers the history of the reception of the episode of the conversion of Paul, particularly in art and literature. The second one « Did it happen on the road to Damascus ? » is devoted to the story of the conversion of Paul proposed by the author of the book of Acts, which is very often the exclusive entrance to the discussion of this theme. The third section « Was it really a conversion ? » analyzes the account given by the apostle himself in two key passages of his authentic epistles.

  10. Conversational Agents in E-Learning

    Science.gov (United States)

    Kerry, Alice; Ellis, Richard; Bull, Susan

    This paper discusses the use of natural language or 'conversational' agents in e-learning environments. We describe and contrast the various applications of conversational agent technology represented in the e-learning literature, including tutors, learning companions, language practice and systems to encourage reflection. We offer two more detailed examples of conversational agents, one which provides learning support, and the other support for self-assessment. Issues and challenges for developers of conversational agent systems for e-learning are identified and discussed.

  11. Boiler conversions for biomass

    Energy Technology Data Exchange (ETDEWEB)

    Kinni, J [Tampella Power Inc., Tampere (Finland)

    1997-12-31

    Boiler conversions from grate- and oil-fired boilers to bubbling fluidized bed combustion have been most common in pulp and paper industry. Water treatment sludge combustion, need for additional capacity and tightened emission limits have been the driving forces for the conversion. To accomplish a boiler conversion for biofuel, the lower part of the boiler is replaced with a fluidized bed bottom and new fuel, ash and air systems are added. The Imatran Voima Rauhalahti pulverized-peat-fired boiler was converted to bubbling fluidized bed firing in 1993. In the conversion the boiler capacity was increased by 10 % to 295 MWth and NO{sub x} emissions dropped. In the Kymmene Kuusankoski boiler, the reason for conversion was the combustion of high chlorine content biosludge. The emissions have been under general European limits. During the next years, the emission limits will tighten and the boilers will be designed for most complete combustion and compounds, which can be removed from flue gases, will be taken care of after the boiler. (orig.) 3 refs.

  12. Boiler conversions for biomass

    Energy Technology Data Exchange (ETDEWEB)

    Kinni, J. [Tampella Power Inc., Tampere (Finland)

    1996-12-31

    Boiler conversions from grate- and oil-fired boilers to bubbling fluidized bed combustion have been most common in pulp and paper industry. Water treatment sludge combustion, need for additional capacity and tightened emission limits have been the driving forces for the conversion. To accomplish a boiler conversion for biofuel, the lower part of the boiler is replaced with a fluidized bed bottom and new fuel, ash and air systems are added. The Imatran Voima Rauhalahti pulverized-peat-fired boiler was converted to bubbling fluidized bed firing in 1993. In the conversion the boiler capacity was increased by 10 % to 295 MWth and NO{sub x} emissions dropped. In the Kymmene Kuusankoski boiler, the reason for conversion was the combustion of high chlorine content biosludge. The emissions have been under general European limits. During the next years, the emission limits will tighten and the boilers will be designed for most complete combustion and compounds, which can be removed from flue gases, will be taken care of after the boiler. (orig.) 3 refs.

  13. Reduction of regurgitation in aortic insufficiency by inhibition of the renin/angiotensin conversion enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Reske, S.N.; Heck, I.; Mattern, H.

    1984-10-01

    The effect of captopril-mediated afterload reduction on regurgitation was investigated in 10 patients with aortic insufficiency. Regurgitation was quantitated by the regurgitation fraction and the relation of regurgitant volume to end-diastolic volume, which were derived from gated radionuclide ventriculography. 19 patients with coronary artery disease and no evidence of valvular heart disease served as controls. In patients with coronary artery disease no significant reguration was found. In patients with aortic regurgitation the blood concentration of angiotensin I increased whereas that of angiotensin II decreased significantly after captopril-medication; thus, the conversion of angiotensin I to II was reduced to about 50% of the control value. Whereas blood pressure and heart rate did not change significantly, the regurgitation fraction and the normalized regurgitant volume were significantly reduced. The ejection fraction remained essentially unchanged. These findings suggest a favorable influence of captopril-induced afterload reduction on hemodynamics in aortic regurgitation.

  14. Up-regulation of eEF1A2 promotes proliferation and inhibits apoptosis in prostate cancer

    International Nuclear Information System (INIS)

    Sun, Yue; Du, Chengli; Wang, Bo; Zhang, Yanling; Liu, Xiaoyan; Ren, Guoping

    2014-01-01

    Highlights: • The expression of eEF1A2 is up-regulated in prostate cancer tissues. • Suppression of eEF1A2 inhibits the proliferation and promotes apoptosis. • Inhibition of eEF1A2 enhances the expression of apoptotic relevant proteins. • The expressions of eEF1A2 and cleavage-caspase3 are inversely correlated. - Abstract: Background: eEF1A2 is a protein translation factor involved in protein synthesis, which possesses important function roles in cancer development. This study aims at investigating the expression pattern of eEF1A2 in prostate cancer and its potential role in prostate cancer development. Methods: We examined the expression level of eEF1A2 in 30 pairs of prostate cancer tissues by using RT-PCR and immunohistochemical staining (IHC). Then we applied siRNA specifically targeting eEF1A2 to down-regulate its expression in DU-145 and PC-3 cells. Flow cytometer was used to explore apoptosis and Western-blot was used to detect the pathway proteins of apoptosis. Results: Our results showed that the expression level of eEF1A2 in prostate cancer tissues was significantly higher compared to their corresponding normal tissues. Reduction of eEF1A2 expression in DU-145 and PC-3 cells led to a dramatic inhibition of proliferation accompanied with enhanced apoptosis rate. Western blot revealed that apoptosis pathway proteins (caspase3, BAD, BAX, PUMA) were significantly up-regulated after suppression of eEF1A2. More importantly, the levels of eEF1A2 and caspase3 were inversely correlated in prostate cancer tissues. Conclusion: Our data suggests that eEF1A2 plays an important role in prostate cancer development, especially in inhibiting apoptosis. So eEF1A2 might serve as a potential therapeutic target in prostate cancer

  15. Solar energy conversion systems

    CERN Document Server

    Brownson, Jeffrey R S

    2013-01-01

    Solar energy conversion requires a different mind-set from traditional energy engineering in order to assess distribution, scales of use, systems design, predictive economic models for fluctuating solar resources, and planning to address transient cycles and social adoption. Solar Energy Conversion Systems examines solar energy conversion as an integrative design process, applying systems thinking methods to a solid knowledge base for creators of solar energy systems. This approach permits different levels of access for the emerging broad audience of scientists, engineers, architects, planners

  16. Direct conversion of fusion energy

    International Nuclear Information System (INIS)

    Johansson, Markus

    2003-03-01

    Deuterium and tritium are expected to be used as fuel in the first fusion reactors. Energy is released as kinetic energy of ions and neutrons, when deuterium reacts with tritium. One way to convert the kinetic energy to electrical energy, is to let the ions and neutrons hit the reactor wall and convert the heat that is caused by the particle bombardment to electrical energy with ordinary thermal conversion. If the kinetic energy of the ions instead is converted directly to electrical energy, a higher efficiency of the energy conversion is possible. The majority of the fusion energy is released as kinetic energy of neutrons, when deuterium reacts with tritium. Fusion reactions such as the D-D reactions, the D- 3 He reaction and the p- 11 B reaction, where a larger part of the fusion energy becomes kinetic energy of charged particles, appears therefore more suitable for direct conversion. Since they have lower reactivity than the D-T reaction, they need a larger βB 2 0 to give sufficiently high fusion power density. Because of this, the fusion configurations spherical torus (ST) and field-reversed configuration (FRC), where high β values are possible, appear interesting. Rosenbluth and Hinton come to the conclusion that efficient direct conversion isn't possible in closed field line systems and that open geometries, which facilitate direct conversion, provide inadequate confinement for D- 3 He. It is confirmed in this study that it doesn't seem possible to achieve as high direct conversion efficiency in closed systems as in open systems. ST and FRC fusion power plants that utilize direct conversion seem however interesting. Calculations with the help of Maple indicate that the reactor parameters needed for a D-D ST and a D 3 He ST hopefully are possible to achieve. The best energy conversion option for a D-D or D 3 He ST appears to be direct electrodynamic conversion (DEC) together with ordinary thermal conversion or liquid metal MHD conversion (LMMHD). For a D

  17. Direct conversion of fusion energy

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Markus

    2003-03-01

    Deuterium and tritium are expected to be used as fuel in the first fusion reactors. Energy is released as kinetic energy of ions and neutrons, when deuterium reacts with tritium. One way to convert the kinetic energy to electrical energy, is to let the ions and neutrons hit the reactor wall and convert the heat that is caused by the particle bombardment to electrical energy with ordinary thermal conversion. If the kinetic energy of the ions instead is converted directly to electrical energy, a higher efficiency of the energy conversion is possible. The majority of the fusion energy is released as kinetic energy of neutrons, when deuterium reacts with tritium. Fusion reactions such as the D-D reactions, the D-{sup 3}He reaction and the p-{sup 11}B reaction, where a larger part of the fusion energy becomes kinetic energy of charged particles, appears therefore more suitable for direct conversion. Since they have lower reactivity than the D-T reaction, they need a larger {beta}B{sup 2}{sub 0} to give sufficiently high fusion power density. Because of this, the fusion configurations spherical torus (ST) and field-reversed configuration (FRC), where high {beta} values are possible, appear interesting. Rosenbluth and Hinton come to the conclusion that efficient direct conversion isn't possible in closed field line systems and that open geometries, which facilitate direct conversion, provide inadequate confinement for D-{sup 3}He. It is confirmed in this study that it doesn't seem possible to achieve as high direct conversion efficiency in closed systems as in open systems. ST and FRC fusion power plants that utilize direct conversion seem however interesting. Calculations with the help of Maple indicate that the reactor parameters needed for a D-D ST and a D{sub 3} He ST hopefully are possible to achieve. The best energy conversion option for a D-D or D{sub 3} He ST appears to be direct electrodynamic conversion (DEC) together with ordinary thermal conversion

  18. Seeded Amplification of Chronic Wasting Disease Prions in Nasal Brushings and Recto-anal Mucosa-Associated Lymphoid Tissues from Elk by Real-Time Quaking-Induced Conversion.

    Science.gov (United States)

    Haley, Nicholas J; Siepker, Chris; Hoon-Hanks, Laura L; Mitchell, Gordon; Walter, W David; Manca, Matteo; Monello, Ryan J; Powers, Jenny G; Wild, Margaret A; Hoover, Edward A; Caughey, Byron; Richt, Jürgen A

    2016-04-01

    Chronic wasting disease (CWD), a transmissible spongiform encephalopathy of cervids, was first documented nearly 50 years ago in Colorado and Wyoming and has since been detected across North America and the Republic of Korea. The expansion of this disease makes the development of sensitive diagnostic assays and antemortem sampling techniques crucial for the mitigation of its spread; this is especially true in cases of relocation/reintroduction or prevalence studies of large or protected herds, where depopulation may be contraindicated. This study evaluated the sensitivity of the real-time quaking-induced conversion (RT-QuIC) assay of recto-anal mucosa-associated lymphoid tissue (RAMALT) biopsy specimens and nasal brushings collected antemortem. These findings were compared to results of immunohistochemistry (IHC) analysis of ante- and postmortem samples. RAMALT samples were collected from populations of farmed and free-ranging Rocky Mountain elk (Cervus elaphus nelsoni;n= 323), and nasal brush samples were collected from a subpopulation of these animals (n= 205). We hypothesized that the sensitivity of RT-QuIC would be comparable to that of IHC analysis of RAMALT and would correspond to that of IHC analysis of postmortem tissues. We found RAMALT sensitivity (77.3%) to be highly correlative between RT-QuIC and IHC analysis. Sensitivity was lower when testing nasal brushings (34%), though both RAMALT and nasal brush test sensitivities were dependent on both thePRNPgenotype and disease progression determined by the obex score. These data suggest that RT-QuIC, like IHC analysis, is a relatively sensitive assay for detection of CWD prions in RAMALT biopsy specimens and, with further investigation, has potential for large-scale and rapid automated testing of antemortem samples for CWD. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  19. [Neuropsychological assessment in conversion disorder].

    Science.gov (United States)

    Demır, Süleyman; Çelıkel, Feryal Çam; Taycan, Serap Erdoğan; Etıkan, İlker

    2013-01-01

    Conversion disorder is characterized by functional impairment in motor, sensory, or neurovegetative systems that cannot be explained by a general medical condition. Diagnostic systems emphasize the absence of an organic basis for the dysfunction observed in conversion disorder. Nevertheless, there is a growing body of data on the specific functional brain correlates of conversion symptoms, particularly those obtained via neuroimaging and neurophysiological assessment. The present study aimed to determine if there are differences in measures of cognitive functioning between patients with conversion disorder and healthy controls. The hypothesis of the study was that the patients with conversion disorder would have poorer neurocognitive performance than the controls. The patient group included 43 patients diagnosed as conversion disorder and other psychiatric comorbidities according to DSM-IV-TR. Control group 1 included 44 patients diagnosed with similar psychiatric comorbidities, but not conversion diosorder, and control group 2 included 43 healthy individuals. All participants completed a sociodemographic questionnaire and were administered the SCID-I and a neuropsychological test battery of 6 tests, including the Serial Digit Learning Test (SDLT), Auditory Verbal Learning Test (AVLT), Wechsler Memory Scale, Stroop Color Word Interference Test, Benton Judgment of Line Orientation Test (BJLOT), and Cancellation Test. The patient group had significantly poorer performance on the SDLT, AVLT, Stroop Color Word Interference Test, and BJLOT than both control groups. The present findings highlight the differences between the groups in learning and memory, executive and visuospatial functions, and attention, which seemed to be specific to conversion disorder.

  20. Corrosion behaviour of chemical conversion treatments on as-cast Mg-Al alloys: Electrochemical and non-electrochemical methods

    International Nuclear Information System (INIS)

    Rocca, E.; Juers, C.; Steinmetz, J.

    2010-01-01

    Magnesium alloys are often used in as-cast conditions. So, the aim of this work is to characterize the corrosion protection of as-cast AZ91D alloys coated with simple chemical conversion (phosphate-permanganate, and cerium-based coatings). With the two coatings, the electrochemical measurements show that the corrosion protection is due to both the inhibition of cathodic and anodic reactions, because of the presence of stable CeO 2 or manganese oxides in basic pH. Nevertheless, the non-electrochemical tests of corrosion are required to bring to light the healing effect of phosphate-permanganate coating compared to Ce-coating and to describe the corrosion behaviour completely. Finally phosphoric and soda pickling associated to phosphate-permanganate conversion treatment or cerium coating are ecologically efficient alternatives to fluoride-based pickling and the chromating treatment.

  1. Organotypic culture of human bone marrow adipose tissue.

    Science.gov (United States)

    Uchihashi, Kazuyoshi; Aoki, Shigehisa; Shigematsu, Masamori; Kamochi, Noriyuki; Sonoda, Emiko; Soejima, Hidenobu; Fukudome, Kenji; Sugihara, Hajime; Hotokebuchi, Takao; Toda, Shuji

    2010-04-01

    The precise role of bone marrow adipose tissue (BMAT) in the marrow remains unknown. The purpose of the present study was therefore to describe a novel method for studying BMAT using 3-D collagen gel culture of BMAT fragments, immunohistochemistry, ELISA and real-time reverse transcription-polymerase chain reaction. Mature adipocytes and CD45+ leukocytes were retained for >3 weeks. Bone marrow stromal cells (BMSC) including a small number of lipid-laden preadipocytes and CD44+/CD105+ mesenchymal stem cell (MSC)-like cells, developed from BMAT. Dexamethasone (10 micromol/L), but not insulin (20 mU/mL), significantly increased the number of preadipocytes. Dexamethasone and insulin also promoted leptin production and gene expression in BMAT. Adiponectin production by BMAT was BMAT, in which adiponectin protein secretion is normally very low, and that BMAT may exhibit a different phenotype from that of the visceral and subcutaneous adipose tissues. BMAT-osteoblast interactions were also examined, and it was found that osteoblasts inhibited the development of BMSC and reduced leptin production, while BMAT inhibited the growth and differentiation of osteoblasts. The present novel method proved to be useful for the study of BMAT biology.

  2. Dexamethasone-mediated inhibition of Glioblastoma neurosphere dispersal in an ex vivo organotypic neural assay

    Science.gov (United States)

    Meleis, Ahmed M.; Mahtabfar, Aria; Danish, Shabbar

    2017-01-01

    Glioblastoma is highly aggressive. Early dispersal of the primary tumor renders localized therapy ineffective. Recurrence always occurs and leads to patient death. Prior studies have shown that dispersal of Glioblastoma can be significantly reduced by Dexamethasone (Dex), a drug currently used to control brain tumor related edema. However, due to high doses and significant side effects, treatment is tapered and discontinued as soon as edema has resolved. Prior analyses of the dispersal inhibitory effects of Dex were performed on tissue culture plastic, or polystyrene filters seeded with normal human astrocytes, conditions which inherently differ from the parenchymal architecture of neuronal tissue. The aim of this study was to utilize an ex-vivo model to examine Dex-mediated inhibition of tumor cell migration from low-passage, human Glioblastoma neurospheres on multiple substrates including mouse retina, and slices of mouse, pig, and human brain. We also determined the lowest possible Dex dose that can inhibit dispersal. Analysis by Two-Factor ANOVA shows that for GBM-2 and GBM-3, Dex treatment significantly reduces dispersal on all tissue types. However, the magnitude of the effect appears to be tissue-type specific. Moreover, there does not appear to be a difference in Dex-mediated inhibition of dispersal between mouse retina, mouse brain and human brain. To estimate the lowest possible dose at which Dex can inhibit dispersal, LogEC50 values were compared by Extra Sum-of-Squares F-test. We show that it is possible to achieve 50% reduction in dispersal with Dex doses ranging from 3.8 x10-8M to 8.0x10-9M for GBM-2, and 4.3x10-8M to 1.8x10-9M for GBM-3, on mouse retina and brain slices, respectively. These doses are 3-30-fold lower than those used to control edema. This study extends our previous in vitro data and identifies the mouse retina as a potential substrate for in vivo studies of GBM dispersal. PMID:29040322

  3. Dexamethasone-mediated inhibition of Glioblastoma neurosphere dispersal in an ex vivo organotypic neural assay.

    Directory of Open Access Journals (Sweden)

    Ahmed M Meleis

    Full Text Available Glioblastoma is highly aggressive. Early dispersal of the primary tumor renders localized therapy ineffective. Recurrence always occurs and leads to patient death. Prior studies have shown that dispersal of Glioblastoma can be significantly reduced by Dexamethasone (Dex, a drug currently used to control brain tumor related edema. However, due to high doses and significant side effects, treatment is tapered and discontinued as soon as edema has resolved. Prior analyses of the dispersal inhibitory effects of Dex were performed on tissue culture plastic, or polystyrene filters seeded with normal human astrocytes, conditions which inherently differ from the parenchymal architecture of neuronal tissue. The aim of this study was to utilize an ex-vivo model to examine Dex-mediated inhibition of tumor cell migration from low-passage, human Glioblastoma neurospheres on multiple substrates including mouse retina, and slices of mouse, pig, and human brain. We also determined the lowest possible Dex dose that can inhibit dispersal. Analysis by Two-Factor ANOVA shows that for GBM-2 and GBM-3, Dex treatment significantly reduces dispersal on all tissue types. However, the magnitude of the effect appears to be tissue-type specific. Moreover, there does not appear to be a difference in Dex-mediated inhibition of dispersal between mouse retina, mouse brain and human brain. To estimate the lowest possible dose at which Dex can inhibit dispersal, LogEC50 values were compared by Extra Sum-of-Squares F-test. We show that it is possible to achieve 50% reduction in dispersal with Dex doses ranging from 3.8 x10-8M to 8.0x10-9M for GBM-2, and 4.3x10-8M to 1.8x10-9M for GBM-3, on mouse retina and brain slices, respectively. These doses are 3-30-fold lower than those used to control edema. This study extends our previous in vitro data and identifies the mouse retina as a potential substrate for in vivo studies of GBM dispersal.

  4. Control of Scar Tissue Formation in the Cornea: Strategies in Clinical and Corneal Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Samantha L. Wilson

    2012-09-01

    Full Text Available Corneal structure is highly organized and unified in architecture with structural and functional integration which mediates transparency and vision. Disease and injury are the second most common cause of blindness affecting over 10 million people worldwide. Ninety percent of blindness is permanent due to scarring and vascularization. Scarring caused via fibrotic cellular responses, heals the tissue, but fails to restore transparency. Controlling keratocyte activation and differentiation are key for the inhibition and prevention of fibrosis. Ophthalmic surgery techniques are continually developing to preserve and restore vision but corneal regression and scarring are often detrimental side effects and long term continuous follow up studies are lacking or discouraging. Appropriate corneal models may lead to a reduced need for corneal transplantation as presently there are insufficient numbers or suitable tissue to meet demand. Synthetic optical materials are under development for keratoprothesis although clinical use is limited due to implantation complications and high rejection rates. Tissue engineered corneas offer an alternative which more closely mimic the morphological, physiological and biomechanical properties of native corneas. However, replication of the native collagen fiber organization and retaining the phenotype of stromal cells which prevent scar-like tissue formation remains a challenge. Careful manipulation of culture environments are under investigation to determine a suitable environment that simulates native ECM organization and stimulates keratocyte migration and generation.

  5. Neutron organ dose and the influence of adipose tissue

    Science.gov (United States)

    Simpkins, Robert Wayne

    Neutron fluence to dose conversion coefficients have been assessed considering the influences of human adipose tissue. Monte Carlo code MCNP4C was used to simulate broad parallel beam monoenergetic neutrons ranging in energy from thermal to 10 MeV. Simulated Irradiations were conducted for standard irradiation geometries. The targets were on gender specific mathematical anthropomorphic phantoms modified to approximate human adipose tissue distributions. Dosimetric analysis compared adipose tissue influence against reference anthropomorphic phantom characteristics. Adipose Male and Post-Menopausal Female Phantoms were derived introducing interstitial adipose tissue to account for 22 and 27 kg additional body mass, respectively, each demonstrating a Body Mass Index (BMI) of 30. An Adipose Female Phantom was derived introducing specific subcutaneous adipose tissue accounting for 15 kg of additional body mass demonstrating a BMI of 26. Neutron dose was shielded in the superficial tissues; giving rise to secondary photons which dominated the effective dose for Incident energies less than 100 keV. Adipose tissue impact on the effective dose was a 25% reduction at the anterior-posterior incidence ranging to a 10% increase at the lateral incidences. Organ dose impacts were more distinctive; symmetrically situated organs demonstrated a 15% reduction at the anterior-posterior Incidence ranging to a 2% increase at the lateral incidences. Abdominal or asymmetrically situated organs demonstrated a 50% reduction at the anterior-posterior incidence ranging to a 25% increase at the lateral incidences.

  6. Dose-dependent platelet stimulation and inhibition induced by anti-PIA1 IgG

    International Nuclear Information System (INIS)

    Ryu, T.; Davis, J.M.; Schwartz, K.A.

    1990-01-01

    The PIA1 antibody produces several clinically distinct and severe thrombocytopenias. Investigations have demonstrated divergent effects on platelet function; prior reports demonstrated inhibition, while a conflicting publication showed platelet activation. We have resolved this conflict using anti-PIA1 IgG produced by a patient with posttransfusion purpura. Relatively low concentrations stimulated platelet aggregation and release of adenosine triphosphate (ATP) whereas high concentrations inhibited platelet function, producing a thrombasthenia-like state. The number of molecules of platelet-associated IgG necessary to initiate aggregation and ATP release (2,086 +/- 556) or produce maximum aggregation (23,420 +/- 3,706) or complete inhibition (63,582 +/- 2654) were measured with a quantitative radiometric assay for bound anti-PIA1. Preincubation of platelets with high concentrations of PIA1 antibody inhibited platelet aggregation with 10 mumol/L adenosine diphosphate and blocked 125I-labeled fibrinogen platelet binding. Platelet activation with nonfibrinogen dependent agonist, 1 U/ml thrombin, was not inhibited by this high concentration of PIA1 IgG. In conclusion, anti-PIAI IgG produces (1) stimulation of platelet aggregation and ATP release that is initiated with 2000 molecules IgG per platelet and is associated with an increase of 125I-fibrinogen binding; (2) conversely, inhibition of platelet aggregation is observed with maximum antibody binding, 63,000 molecules IgG per platelet, and is mediated via a blockade of fibrinogen binding

  7. Triptonide inhibits the pathological functions of gastric cancer-associated fibroblasts.

    Science.gov (United States)

    Wang, Zhenfei; Ma, Daguang; Wang, Changshan; Zhu, Zhe; Yang, Yongyan; Zeng, Fenfang; Yuan, Jianlong; Liu, Xia; Gao, Yue; Chen, Yongxia; Jia, Yongfeng

    2017-12-01

    Direct attacks on tumour cells with chemotherapeutic drugs have the drawbacks of accelerating tumour metastasis and inducing tumour stem cell phenotypes. Inhibition of tumour-associated fibroblasts, which provide nourishment and support to tumour cells, is a novel and promising anti-tumour strategy. However, effective drugs against tumour-associated fibroblasts are currently lacking. In the present study, we explored the possibility of inhibiting the pathological functions of tumour-associated fibroblasts with triptonide. Paired gastric normal fibroblasts (GNFs) and gastric cancer-associated fibroblasts (GCAFs) were obtained from resected tissues. GCAFs showed higher capacities to induce colony formation, migration, and invasion of gastric cancer cells than GNFs. Triptonide treatment strongly inhibited the colony formation-, migration-, and invasion-promoting capacities of GCAFs. The expression of microRNA-301a was higher and that of microRNA-149 was lower in GCAFs than in GNFs. Triptonide treatment significantly down-regulated microRNA-301a expression and up-regulated microRNA-149 expression in GCAFs. Re-establishment of microRNA expression balance increased the production and secretion of tissue inhibitor of metalloproteinase 2, a tumour suppressive factor, and suppressed the production and secretion of IL-6, an oncogenic factor, in GCAFs. Moreover, triptonide treatment abolished the ability of GCAFs to induce epithelial-mesenchymal transition in gastric cancer cells. These results indicate that triptonide inhibits the malignancy-promoting capacity of GCAFs by correcting abnormalities in microRNA expression. Thus, triptonide is a promisingly therapeutic agent for gastric cancer treatment, and traditional herbs may be a valuable source for developing new drugs that can regulate the tumour microenvironment. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Cysteinesulfinate decarboxylase: Characterization, inhibition, and metabolic role in taurine formation

    International Nuclear Information System (INIS)

    Weinstein, C.L.

    1988-01-01

    Cysteinesulfinate decarboxylase, an enzyme that plays a major role in the formation of taurine from cysteine, has been purified from rat liver to homogeneity and characterized. The physical properties of the enzyme were studied, along with its substrate specificity. Multiple forms of the enzyme were found in rat liver, kidney, and brain with isoelectric points ranging from pH 5.6 to 4.9. These multiple forms did not differ in their substrate specificity. It was found by using gel electrofocusing and polyclonal antibodies raised to the liver enzyme that the different forms of cysteinesulfinate decarboxylase are identical in the various rat tissues studied. Various inhibitors of the enzyme were tested both in vitro and in vivo in order to evaluate the role of cysteinesulfinate decarboxylase in taurine formation in mammalian tissues. In in vitro studies, cysteinesulfinate decarboxylase was irreversibly inhibited by β-ethylidene-DL-aspartate (Ki = 10 mM), and competitive inhibition was found using mercaptomethylsuccinate (Ki = 0.1 mM) and D-cysteinesulfinate (Ki = 0.32 mM) when L-cysteinesulfinate was used as a substrate. In order to be able to test these inhibitors in vivo, L-[1- 14 C]cysteinesulfonate was evaluated as a probe for the in vivo measurement of cysteinesulfinate decarboxylase activity. The metabolism of cysteinesulfonate and the product of its transamination, β-sulfopyruvate, was studied, and it was found that L-[1- 14 C]cysteinesulfonate is an accurate and convenient probe for cysteinesulfinate decarboxylase activity. Using L-[1- 14 C]cysteinesulfonate, it was found that D-cysteinesulfinate inhibits cysteinesulfinate decarboxylase activity by greater than 90% in the intact mouse and that inhibition lasts for up to fifteen hours

  9. Effects of aminoisobutyric acid on 1-aminocyclopropane-1-carboxylic acid uptake, ethylene production and content of ACC in water-stressed tomato plants

    International Nuclear Information System (INIS)

    Kalantari, Kh.M.; Bolourani, P.

    2000-01-01

    The effect of water stress on the regulation of ethylene biosynthesis has not yet clearly been established. Both the formation and utilization of aminocyclopropane-1-carboxylic acid, ACC, are considered to be major regulatory points in ethylene biosynthesis. There is evidence that ACC synthase is the key control enzyme in response to various stimuli associated with the induction of ethylene biosynthesis. It has been reported that aminoisobutyric acid, AIB, inhibits ethylene production in some plants and AIB may inhibit the conversion of ACC to ethylene. For this reason, the possibility of inhibition of ACC uptake in the presence of AIB was examined. It was observed that the rate of 14 C-ACC uptake decreased with an increase in the concentration of AIB in the solution. Calculating the percentage of ACC converted to ethylene on the basis of uptake shows that AIB inhibits the conversion of 14 C-ACC to ethylene and that this inhibition is increased with an increase in the concentration of AIB in the solution. This suggests that a portion of the inhibition of the conversion of ACC to ethylene in the presence of AIB is partly due to the competition for absorption. However, the ability of AIB to inhibit ethylene production in leaf tissue without an exogenous supply of ACC clearly indicates that AIB inhibits ethylene production. The present study was undertaken to elucidate the regulation of ethylene biosynthesis in water-stressed plants and the results are discussed

  10. Conversion coefficients for determination of dispersed photon dose during radiotherapy: NRUrad input code for MCNP.

    Science.gov (United States)

    Shahmohammadi Beni, Mehrdad; Ng, C Y P; Krstic, D; Nikezic, D; Yu, K N

    2017-01-01

    Radiotherapy is a common cancer treatment module, where a certain amount of dose will be delivered to the targeted organ. This is achieved usually by photons generated by linear accelerator units. However, radiation scattering within the patient's body and the surrounding environment will lead to dose dispersion to healthy tissues which are not targets of the primary radiation. Determination of the dispersed dose would be important for assessing the risk and biological consequences in different organs or tissues. In the present work, the concept of conversion coefficient (F) of the dispersed dose was developed, in which F = (Dd/Dt), where Dd was the dispersed dose in a non-targeted tissue and Dt is the absorbed dose in the targeted tissue. To quantify Dd and Dt, a comprehensive model was developed using the Monte Carlo N-Particle (MCNP) package to simulate the linear accelerator head, the human phantom, the treatment couch and the radiotherapy treatment room. The present work also demonstrated the feasibility and power of parallel computing through the use of the Message Passing Interface (MPI) version of MCNP5.

  11. Changing the conversation: the influence of emotions on conversational valence and alcohol consumption.

    Science.gov (United States)

    Hendriks, Hanneke; van den Putte, Bas; de Bruijn, Gert-Jan

    2014-10-01

    Health campaign effects may be improved by taking interpersonal communication processes into account. The current study, which employed an experimental, pretest-posttest, randomized exposure design (N = 208), investigated whether the emotions induced by anti-alcohol messages influence conversational valence about alcohol and subsequent persuasion outcomes. The study produced three main findings. First, an increase in the emotion fear induced a negative conversational valence about alcohol. Second, fear was most strongly induced by a disgusting message, whereas a humorous appeal induced the least fear. Third, a negative conversational valence elicited healthier binge drinking attitudes, subjective norms, perceived behavioral control, intentions, and behaviors. Thus, health campaign planners and health researchers should pay special attention to the emotional characteristics of health messages and should focus on inducing a healthy conversational valence.

  12. Curcumin Inhibits Growth of Human NCI-H292 Lung Squamous Cell Carcinoma Cells by Increasing FOXA2 Expression

    Directory of Open Access Journals (Sweden)

    Lingling Tang

    2018-02-01

    Full Text Available Lung squamous cell carcinoma (LSCC is a common histological lung cancer subtype, but unlike lung adenocarcinoma, limited therapeutic options are available for treatment. Curcumin, a natural compound, may have anticancer effects in various cancer cells, but how it may be used to treat LSCC has not been well studied. Here, we applied curcumin to a human NCI-H292 LSCC cell line to test anticancer effects and explored underlying potential mechanisms of action. Curcumin treatment inhibited NCI-H292 cell growth and increased FOXA2 expression in a time-dependent manner. FOXA2 expression was decreased in LSCC tissues compared with adjacent normal tissues and knockdown of FOXA2 increased NCI-H292 cells proliferation. Inhibition of cell proliferation by curcumin was attenuated by FOXA2 knockdown. Moreover inhibition of STAT3 pathways by curcumin increased FOXA2 expression in NCI-H292 cells whereas a STAT3 activator (IL-6 significantly inhibited curcumin-induced FOXA2 expression. Also, SOCS1 and SOCS3, negative regulators of STAT3 activity, were upregulated by curcumin treatment. Thus, curcumin inhibited human NCI-H292 cells growth by increasing FOXA2 expression via regulation of STAT3 signaling pathways.

  13. Optimal Zn-Modified Ca–Si-Based Ceramic Nanocoating with Zn Ion Release for Osteoblast Promotion and Osteoclast Inhibition in Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Jiangming Yu

    2017-01-01

    Full Text Available We investigated the slow release of Zn ion (Zn2+ from nanocoatings and compared the in vitro response of osteoblasts (MC3T3-E1 and proosteoclasts (RAW 264.7 cultured on Ca2ZnSi2O7 nanocoated with different Zn/Ca molar ratios on a Ti-6Al-4V (i.e., Ti substrate to optimize cell behaviors and molecule levels. Significant morphology differences were observed among samples. By comparing with pure Ti and CaSiO3 nanocoating, the morphology of Ca2ZnSi2O7 ceramic nanocoatings was rough and contained small nanoparticles or aggregations. Slow Zn2+ release from nanocoatings was observed and Zn2+ concentration was regulated by varying the Zn/Ca ratios. The cell-response results showed Ca2ZnSi2O7 nanocoating at different Zn/Ca molar ratios for osteoblasts and osteoclasts. Compared to other nanocoatings and Ti, sample Zn/Ca (0.3 showed the highest cell viability and upregulated expression of the osteogenic differentiation genes ALP, COL-1, and OCN. Additionally, sample Zn/Ca (0.3 showed the greatest inhibition of RAW 264.7 cell growth and decreased the mRNA levels of osteoclast-related genes OAR, TRAP, and HYA1. Therefore, the optimal Zn-Ca ratio of 0.3 in Ca2ZnSi2O7 ceramic nanocoating on Ti had a dual osteoblast-promoting and osteoclast-inhibiting effect to dynamically balance osteoblasts/osteoclasts. These optimal Zn-Ca ratios are valuable for Ca2ZnSi2O7 ceramic nanocoating on Ti-coated implants for potential applications in bone tissue regeneration.

  14. Endogenous inotropic substance from heart tissue has digitalis-like properties

    Energy Technology Data Exchange (ETDEWEB)

    Khatter, J.C.; Agbanyo, M.; Navaratnam, S. (Univ. of Manitoba, Winnipeg (Canada))

    1991-01-01

    In the past few years, we developed an extraction procedure which we successfully used to isolate a crude fraction containing digitalis-like substance (DLS) from porcine left ventricular tissue. In this study, the crude fraction was found to cross-react with digoxin antibodies and showed immunoreactivity of 4.25 {plus minus} 0.6 ng digoxin equivalent/ml. On further purification of the crude fraction using silica gel G column chromatography, a fraction C was obtained, which was highly positive inotropic on canine trabeculae and it dose-dependently inhibited ouabain sensitive {sup 86}Rb{sup +} uptake in rate heart slices. A 50% inhibition of uptake was obtained by 25 ul of fraction C. Fraction C also inhibited canine kidney Na{sup +}, K{sup +}-ATPase dose-dependently and a 50% inhibition of this enzyme required 17 ul of fraction C. Ashing of the fraction C at 500{degree}C resulted in loss of inotropic and enzyme inhibitory activities, indicating an organic nature of the unknown digitalis-like substance.

  15. Supplementation with xylanase and β-xylosidase to reduce xylo-oligomer and xylan inhibition of enzymatic hydrolysis of cellulose and pretreated corn stover

    Science.gov (United States)

    2011-01-01

    Background Hemicellulose is often credited with being one of the important physical barriers to enzymatic hydrolysis of cellulose, and acts by blocking enzyme access to the cellulose surface. In addition, our recent research has suggested that hemicelluloses, particularly in the form of xylan and its oligomers, can more strongly inhibit cellulase activity than do glucose and cellobiose. Removal of hemicelluloses or elimination of their negative effects can therefore become especially pivotal to achieving higher cellulose conversion with lower enzyme doses. Results In this study, cellulase was supplemented with xylanase and β-xylosidase to boost conversion of both cellulose and hemicellulose in pretreated biomass through conversion of xylan and xylo-oligomers to the less inhibitory xylose. Although addition of xylanase and β-xylosidase did not necessarily enhance Avicel hydrolysis, glucan conversions increased by 27% and 8% for corn stover pretreated with ammonia fiber expansion (AFEX) and dilute acid, respectively. In addition, adding hemicellulase several hours before adding cellulase was more beneficial than later addition, possibly as a result of a higher adsorption affinity of cellulase and xylanase to xylan than glucan. Conclusions This key finding elucidates a possible mechanism for cellulase inhibition by xylan and xylo-oligomers and emphasizes the need to optimize the enzyme formulation for each pretreated substrate. More research is needed to identify advanced enzyme systems designed to hydrolyze different substrates with maximum overall enzyme efficacy. PMID:21702938

  16. U.S. Domestic Reactor Conversion Programs

    International Nuclear Information System (INIS)

    Woolstenhulme, Eric

    2008-01-01

    The Conversion Projects Include: the revision of the facilities safety basis documents and supporting analysis, the fabrication of new LEU fuel, the change-out of the reactor core, and the removal of the used HEU fuel (by INL University Fuels Program or DOE-NE). The major entities involved are: the U.S. Nuclear Regulatory Commission, the University reactor department, the fuel and hardware fabricators, the Spent fuel receipt facilities, the Spent fuel shipping services, and the U.S. Department of Energy and their subcontractors. Three major Reactor Conversion Program milestones have been accomplished since 2006: the conversion of the TRIGA reactor at Texas A and M University Nuclear Science Center, the conversion of the University of Florida Training Reactor, and the conversion of the Purdue University Reactor. Four Reactor Conversion Program milestones yet to be accomplished in 2008 and 2009: the Washington State University Nuclear Radiation Center reactor, the Oregon State University TRIGA Reactor, the University of Wisconsin Nuclear Reactor, and the Neutron Radiography Reactor Facility. NNSA is committed to doing things cheaper, better, smarter, safer through a 'Lessons Learned' process. The conversion team assessed each major activity grouping: Project Initiation, Conversion Proposal Development, Fuel Fabrication and Hardware, Core Conversion, and Spent Nuclear Fuel Removal. Issues were identified and recommendations were given

  17. Metabolic aspects of growth in HU-treated crown-gall tissue cultures. I. Nicotiana tabacum

    Directory of Open Access Journals (Sweden)

    Aldona Rennert

    2015-01-01

    Full Text Available An influence of hydroxyurea (HU on the growth, DNA and RNA contents and protein synthesis in the tobacco tumour tissue culture was studied in comparison with a homologous callus tissue. In conformity with expectations considerable decrease of DNA level in both tissues is a primary effect of HU activity. This results in the growth inhibition and in the secondary metabolic effects; these effects depend not only on the concentration of inhibitor but also on the age of tissue. In spite of some common features the character of these changes shows a distinct differentiation depending on the tissue type. TMs points to specific modifications of the biochemical regulation of growth in a tumour.

  18. Estrogen inhibits chloride secretion caused by cholera and Escherichia coli enterotoxins in female rat distal colon.

    LENUS (Irish Health Repository)

    Alzamora, Rodrigo

    2011-05-08

    Excessive Cl(-) secretion is the driving force for secretory diarrhea. 17β-Estradiol has been shown to inhibit Cl(-) secretion in rat distal colon through a nongenomic pathway. We examined whether 17β-estradiol inhibits Cl(-) secretion in an animal model of secretory diarrhea and the downstream effectors involved. The effect of 17β-estradiol on cholera toxin and heat-stable enterotoxin induced Cl(-) secretion in rat colonic mucosal sheets was studied by current-voltage clamping. Selective permeabilization of apical or basolateral membranes with amphotericin B or nystatin was used to isolate basolateral K(+) channel and apical Cl(-) channel activity, respectively. 17β-Estradiol dose-dependently inhibited secretory responses to both toxins with IC(50) values of approximately 1nM. This effect was female-gender specific, with no inhibition observed in male tissues. 17β-Estradiol responses were insensitive to the pure anti-estrogen ICI 182,720. 17β-Estradiol exerted its effects downstream of enterotoxin-induced production of second messengers (cAMP and cGMP) but was dependent on PKCδ activation. In nystatin-permeabilized tissues, apical Cl(-) currents were unaffected by 17β-estradiol treatment while basolateral K(+) current was profoundly inhibited by the hormone. This current was sensitive to the specific KCNQ1 channel inhibitors chromanol 293B and HMR-1556. In conclusion, 17β-estradiol inhibits enterotoxin-induced Cl(-) secretion via a PKCδ-dependent mechanism involving inhibition of basolateral KCNQ1 channels. These data elucidate mechanisms of 17β-estradiol inhibition of Cl(-) secretion induced by enterotoxins in intestinal epithelia, which may be relevant for the treatment of diarrheal diseases.

  19. Estrogen inhibits chloride secretion caused by cholera and Escherichia coli enterotoxins in female rat distal colon.

    LENUS (Irish Health Repository)

    Alzamora, Rodrigo

    2012-02-01

    Excessive Cl(-) secretion is the driving force for secretory diarrhea. 17beta-Estradiol has been shown to inhibit Cl(-) secretion in rat distal colon through a nongenomic pathway. We examined whether 17beta-estradiol inhibits Cl(-) secretion in an animal model of secretory diarrhea and the downstream effectors involved. The effect of 17beta-estradiol on cholera toxin and heat-stable enterotoxin induced Cl(-) secretion in rat colonic mucosal sheets was studied by current-voltage clamping. Selective permeabilization of apical or basolateral membranes with amphotericin B or nystatin was used to isolate basolateral K(+) channel and apical Cl(-) channel activity, respectively. 17beta-Estradiol dose-dependently inhibited secretory responses to both toxins with IC(50) values of approximately 1nM. This effect was female-gender specific, with no inhibition observed in male tissues. 17beta-Estradiol responses were insensitive to the pure anti-estrogen ICI 182,720. 17beta-Estradiol exerted its effects downstream of enterotoxin-induced production of second messengers (cAMP and cGMP) but was dependent on PKCdelta activation. In nystatin-permeabilized tissues, apical Cl(-) currents were unaffected by 17beta-estradiol treatment while basolateral K(+) current was profoundly inhibited by the hormone. This current was sensitive to the specific KCNQ1 channel inhibitors chromanol 293B and HMR-1556. In conclusion, 17beta-estradiol inhibits enterotoxin-induced Cl(-) secretion via a PKCdelta-dependent mechanism involving inhibition of basolateral KCNQ1 channels. These data elucidate mechanisms of 17beta-estradiol inhibition of Cl(-) secretion induced by enterotoxins in intestinal epithelia, which may be relevant for the treatment of diarrheal diseases.

  20. Special issue: Plasma Conversion

    NARCIS (Netherlands)

    Nozaki, T.; Bogaerts, A.; Tu, X.; van de Sanden, M. C. M.

    2017-01-01

    With growing concern of energy and environmental issues, the combination of plasma and heterogeneous catalysts receives special attention in greenhouse gas conversion, nitrogen fixation and hydrocarbon chemistry. Plasma gas conversion driven by renewable electricity is particularly important for the

  1. Rac inhibition reverses the phenotype of fibrotic fibroblasts.

    Directory of Open Access Journals (Sweden)

    Shi-wen Xu

    Full Text Available BACKGROUND: Fibrosis, the excessive deposition of scar tissue by fibroblasts, is one of the largest groups of diseases for which there is no therapy. Fibroblasts from lesional areas of scleroderma patients possess elevated abilities to contract matrix and produce alpha-smooth muscle actin (alpha-SMA, type I collagen and CCN2 (connective tissue growth factor, CTGF. The basis for this phenomenon is poorly understood, and is a necessary prerequisite for developing novel, rational anti-fibrotic strategies. METHODS AND FINDINGS: Compared to healthy skin fibroblasts, dermal fibroblasts cultured from lesional areas of scleroderma (SSc patients possess elevated Rac activity. NSC23766, a Rac inhibitor, suppressed the persistent fibrotic phenotype of lesional SSc fibroblasts. NSC23766 caused a decrease in migration on and contraction of matrix, and alpha-SMA, type I collagen and CCN2 mRNA and protein expression. SSc fibroblasts possessed elevated Akt phosphorylation, which was also blocked by NSC23766. Overexpression of rac1 in normal fibroblasts induced matrix contraction and alpha-SMA, type I collagen and CCN2 mRNA and protein expression. Rac1 activity was blocked by PI3kinase/Akt inhibition. Basal fibroblast activity was not affected by NSC23766. CONCLUSION: Rac inhibition may be considered as a novel treatment for the fibrosis observed in SSc.

  2. The tissue microarray OWL schema: An open-source tool for sharing tissue microarray data

    Directory of Open Access Journals (Sweden)

    Hyunseok P Kang

    2010-01-01

    Full Text Available Background: Tissue microarrays (TMAs are enormously useful tools for translational research, but incompatibilities in database systems between various researchers and institutions prevent the efficient sharing of data that could help realize their full potential. Resource Description Framework (RDF provides a flexible method to represent knowledge in triples, which take the form Subject- Predicate-Object. All data resources are described using Uniform Resource Identifiers (URIs, which are global in scope. We present an OWL (Web Ontology Language schema that expands upon the TMA data exchange specification to address this issue and assist in data sharing and integration. Methods: A minimal OWL schema was designed containing only concepts specific to TMA experiments. More general data elements were incorporated from predefined ontologies such as the NCI thesaurus. URIs were assigned using the Linked Data format. Results: We present examples of files utilizing the schema and conversion of XML data (similar to the TMA DES to OWL. Conclusion: By utilizing predefined ontologies and global unique identifiers, this OWL schema provides a solution to the limitations of XML, which represents concepts defined in a localized setting. This will help increase the utilization of tissue resources, facilitating collaborative translational research efforts.

  3. Prevention of pink-pigmented methylotrophic bacteria (Methylohacterium mesophilicum) contamination of plant tissue cultures.

    Science.gov (United States)

    Chanprame, S; Todd, J J; Widholm, J M

    1996-12-01

    Pink-pigmented facultative methylotrophic bacteria (PPFMs) have been found on the surfaces of leaves of most plants tested. We found PPFMs on the leaf surfaces of all 40 plants (38 species) tested and on soybean pods by pressing onto AMS medium with methanol as the sole carbon source. The abundance ranged from 0.5 colony forming unit (cfu) /cm(2) to 69.4 cfu/cm(2) on the leaf surfaces. PPFMs were found in homogenized leaf tissues of only 4 of the species after surface disinfestation with 1.05% sodium hypochlorite and were rarely found in cultures initiated from surface disinfested Datura innoxia leaves or inside surface disinfested soybean pods. Of 20 antibiotics tested for PPFM growth inhibition, rifampicin was the most effective and of seven others which also inhibited PPFM growth, cefotaxime should be the most useful due to the expected low plant cell toxicity. These antibiotics could be used in concert with common surface sterilization procedures to prevent the introduction or to eliminate PPFM bacteria in tissue cultures. Thus, while PPFMs are present on the surfaces of most plant tissues, surface disinfestation alone can effectively remove them so that uncontaminated tissue cultures can be initiated in most cases.

  4. Salinomycin, a polyether ionophoric antibiotic, inhibits adipogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Szkudlarek-Mikho, Maria; Saunders, Rudel A. [Department of Medicine, Biochemistry and Cancer Biology, Center for Diabetes and Endocrine Research, College of Medicine, University of Toledo, Toledo, OH 43614 (United States); Yap, Sook Fan [Faculty of Medicine and Health Sciences, Department of Pre-Clinical Sciences, University of Tunku Abdul Rahman (Malaysia); Ngeow, Yun Fong [Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603 (Malaysia); Chin, Khew-Voon, E-mail: khew-voon.chin@utoledo.edu [Department of Medicine, Biochemistry and Cancer Biology, Center for Diabetes and Endocrine Research, College of Medicine, University of Toledo, Toledo, OH 43614 (United States)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer Salinomycin inhibits preadipocyte differentiation into adipocytes. Black-Right-Pointing-Pointer Salinomycin inhibits transcriptional regulation of adipogenesis. Black-Right-Pointing-Pointer Pharmacological effects of salinomycin suggest toxicity in cancer therapy. -- Abstract: The polyether ionophoric antibiotics including monensin, salinomycin, and narasin, are widely used in veterinary medicine and as food additives and growth promoters in animal husbandry including poultry farming. Their effects on human health, however, are not fully understood. Recent studies showed that salinomycin is a cancer stem cell inhibitor. Since poultry consumption has risen sharply in the last three decades, we asked whether the consumption of meat tainted with growth promoting antibiotics might have effects on adipose cells. We showed in this report that the ionophoric antibiotics inhibit the differentiation of preadipocytes into adipocytes. The block of differentiation is not due to the induction of apoptosis nor the inhibition of cell proliferation. In addition, salinomycin also suppresses the transcriptional activity of the CCAAT/enhancer binding proteins and the peroxisome proliferator-activated receptor {gamma}. These results suggest that the ionophoric antibiotics can be exploited as novel anti-obesity therapeutics and as pharmacological probes for the study of adipose biology. Further, the pharmacological effects of salinomycin could be a harbinger of its toxicity on the adipose tissue and other susceptible target cells in cancer therapy.

  5. In vitro toxicity of polycyclic aromatic hydrocarbons and halogenated aromatic hydrocarbons to cetacean cells and tissues

    Energy Technology Data Exchange (ETDEWEB)

    Carvan, M.J. III.

    1993-01-01

    Cetaceans bioaccumulate high aromatic hydrocarbon tissue residues, and elevated levels of PCB residues in tissues are proposed to have occurred concurrently with recent epizootic deaths of dolphins. The objectives of this study were: (1) to develop and characterize an epithelial cell line derived from dolphin tissues, (2) to investigate the effects of hydrocarbon pollutants on those cells, and (3) to analyze the toxicity of hydrocarbon pollutants on cetacean tissues in vitro. An epithelial cell line, Carvan dolphin kidney (CDK), isolated from a spontaneously aborted female bottlenose dolphin, Tursiops truncatus, grew rapidly. These cells were neither transformed nor immortal. Velocity sedimentation analysis showed CDK cells contained nuclear aryl hydrocarbon receptor, suggestive of cytochrome P450 inducibility. BaP inhibited mitosis in CDK cells in a dose-dependent manner. Data indicate that CDK cells metabolize BaP, that BaP metabolites bind to cellular DNA initiating unscheduled DNA synthesis, and that the inhibition of cytochrome P450 metabolism decrease the BaP-associated inhibition of mitosis in dolphin cells. The data also suggest that TCDD acts synergistically to increase the levels of DNA damage by the procarcinogen BaP. Cetacean liver microsomes was isolated and evaluated for the presence of cytochrome P450 proteins by SDS-PAGE, apparent minimum molecular weight determination, and immunoblot analysis. P450 activity was induced in cetacean tissue samples and CDK cells by exposure in vitro to one of several cytochrome P450-inducing chemicals. The data suggest that cetacean tissues and cells can be utilized to study the in vitro induction of cytochrome P450, resultant metabolism of xenobiotic contaminants, and the subsequent cellular and molecular responses. However, the identity of specific P450 isozymes involved in this process will remain undetermined until monoclonal antibodies that recognize cetacean P450s can be generated.

  6. Increasing conversion efficiency of two-step photon up-conversion solar cell with a voltage booster hetero-interface.

    Science.gov (United States)

    Asahi, Shigeo; Kusaki, Kazuki; Harada, Yukihiro; Kita, Takashi

    2018-01-17

    Development of high-efficiency solar cells is one of the attractive challenges in renewable energy technologies. Photon up-conversion can reduce the transmission loss and is one of the promising concepts which improve conversion efficiency. Here we present an analysis of the conversion efficiency, which can be increased by up-conversion in a single-junction solar cell with a hetero-interface that boosts the output voltage. We confirm that an increase in the quasi-Fermi gap and substantial photocurrent generation result in a high conversion efficiency.

  7. Lipid-Lowering Pharmaceutical Clofibrate Inhibits Human Sweet Taste

    Science.gov (United States)

    Kochem, Matthew

    2017-01-01

    T1R2-T1R3 is a heteromeric receptor that binds sugars, high potency sweeteners, and sweet taste blockers. In rodents, T1R2-T1R3 is largely responsible for transducing sweet taste perception. T1R2-T1R3 is also expressed in non-taste tissues, and a growing body of evidence suggests that it helps regulate glucose and lipid metabolism. It was previously shown that clofibric acid, a blood lipid-lowering drug, binds T1R2-T1R3 and inhibits its activity in vitro. The purpose of this study was to determine whether clofibric acid inhibits sweetness perception in humans and is, therefore, a T1R2-T1R3 antagonist in vivo. Fourteen participants rated the sweetness intensity of 4 sweeteners (sucrose, sucralose, Na cyclamate, acesulfame K) across a broad range of concentrations. Each sweetener was prepared in solution neat and in mixture with either clofibric acid or lactisole. Clofibric acid inhibited sweetness of every sweetener. Consistent with competitive binding, inhibition by clofibric acid was diminished with increasing sweetener concentration. This study provides in vivo evidence that the lipid-lowering drug clofibric acid inhibits sweetness perception and is, therefore, a T1R carbohydrate receptor inhibitor. Our results are consistent with previous in vitro findings. Given that T1R2-T1R3 may in part regulate glucose and lipid metabolism, future studies should investigate the metabolic effects of T1R inhibition. PMID:27742692

  8. Anti-inflammatory and Anti-apoptotic Effect of Valproic Acid and Doxycycline Independent from MMP Inhibition in Early Radiation Damage

    Directory of Open Access Journals (Sweden)

    Ferda Hoşgörler

    2016-10-01

    Full Text Available Background: Matrix metalloproteinase (MMP inhibitors decrease inflammation in normal tissues and suppress cancer progress in normal tissues. Valproic acid (VA and doxycycline (DX are MMP inhibitors that have radio-protective effects. Their ability to inhibit MMPs in irradiated tissue is unknown and the role of MMPs in radio-protective effects has not been tested to date. Aims: The purpose of this study was to examine whether administration of VA and DX to rats before irradiation affects tissue inflammation and apoptosis in the early phase of radiation, and whether the effect of these drugs is mediated by MMP inhibition. Study Design: Animal experimentation. Methods: Twenty-six Wistar rats were randomized into four groups: control (CTRL, radiation (RT, VA plus radiation (VA+RT, and DX plus radiation (DX+RT.Three study groups were exposed to a single dose of abdominal 10 Gy gamma radiation; the CTRL group received no radiation. Single doses of VA 300 mg/kg and DX 100 mg/kg were administered to each rat before radiation and all rats were sacrificed 8 hours after irradiation, at which point small intestine tissue samples were taken for analyses. Levels of inflammatory cytokines (TNF-α, IL-1β, and IL-6 and matrix metalloproteinases (MMP-2 and MMP 9 were measured by ELISA, MMP activities were measured by gelatin and casein zymography and apoptosis was assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Results: VA decreased the levels of TNF-α and IL-1β proteins insignificantly and decreased apoptosis significantly in the irradiated tissue, but did not inhibit MMPs. In contrast, VA protected the basal MMP activities, which decreased in response to irradiation. No effect of DX was observed on the levels of inflammatory cytokines or activities of MMPs in the early phases of radiation apoptosis. Conclusion: Our findings indicated that VA protects against inflammation and apoptosis, and DX exhibits anti-apoptotic effects in

  9. Brown Adipose Tissue Can Be Activated or Inhibited within an Hour before 18F-FDG Injection: A Preliminary Study with MicroPET

    Directory of Open Access Journals (Sweden)

    Chenxi Wu

    2011-01-01

    Full Text Available Brown adipose tissue (BAT is emerging as a potential target for treating human obesity. It has been indicated that BAT is rich in innervations of sympathetic nerve control. Using 18F-FDG microPET imaging, this study aims at evaluating how factors related to sympathetic activation/inhibition changed BAT metabolism of mice. BAT 18F-FDG uptake were semiquantitatively evaluated in different groups of mice under temperature (cold or warm stimulus or pharmacological interventions (norepinephrine, epinephrine, isoprenaline, or propranolol and were compared with the corresponding controls. It was found that BAT activation can be stimulated by cold exposure (P=1.96×10−4, norepinephrine (P=.002, or both (P=2.19×10−6 within an hour before 18F-FDG injection and can also be alleviated by warming up (P=.001 or propranolol lavage (P=.027. This preliminary study indicated that BAT function could be evaluated by 18F-FDG PET imaging through short-term interventions, which paved the way for further investigation of the relationship between human obesity and BAT dysfunction.

  10. The epithelial-mesenchymal interactions: insights into physiological and pathological aspects of oral tissues.

    Science.gov (United States)

    Santosh, Arvind Babu Rajendra; Jones, Thaon Jon

    2014-03-17

    In the human biological system, the individual cells divide and form tissues and organs. These tissues are hetero-cellular. Basically any tissue consists of an epithelium and the connective tissue. The latter contains mainly mesenchymally-derived tissues with a diversified cell population. The cell continues to grow and differentiate in a pre-programmed manner using a messenger system. The epithelium and the mesenchymal portion of each tissue have two different origins and perform specific functions, but there is a well-defined interaction mechanism, which mediates between them. Epithelial mesenchymal interactions (EMIs) are part of this mechanism, which can be regarded as a biological conversation between epithelial and mesenchymal cell populations involved in the cellular differentiation of one or both cell populations. EMIs represent a process that is essential for cell growth, cell differentiation and cell multiplication. EMIs are associated with normal physiological processes in the oral cavity, such as odontogenesis, dentino-enamel junction formation, salivary gland development, palatogenesis, and also pathological processes, such as oral cancer. This paper focuses the role EMIs in odontogenesis, salivary gland development, palatogenesis and oral cancer.

  11. Ownership conversions and nursing home performance.

    Science.gov (United States)

    Grabowski, David C; Stevenson, David G

    2008-08-01

    To examine the effects of ownership conversions on nursing home performance. Online Survey, Certification, and Reporting system data from 1993 to 2004, and the Minimum Data Set (MDS) facility reports from 1998 to 2004. Regression specification incorporating facility fixed effects, with terms to identify trends in the pre- and postconversion periods. The annual rate of nursing home conversions almost tripled between 1994 and 2004. Our regression results indicate converting facilities are generally different throughout the pre/postconversion years, suggesting little causal effect of ownership conversions on nursing home performance. Before and after conversion, nursing homes converting from nonprofit to for-profit status generally exhibit deterioration in their performance, while nursing homes converting from for-profit to nonprofit status generally exhibit improvement. Policy makers have expressed concern regarding the implications of ownership conversions for nursing home performance. Our results imply that regulators and policy makers should not only monitor the outcomes of nursing home conversions, but also the targets of these conversions.

  12. miR-206 inhibits cell proliferation, migration, and invasion by targeting BAG3 in human cervical cancer.

    Science.gov (United States)

    Wang, Yingying; Tian, Yongjie

    2018-01-02

    miR-206 and bcl2-associated athanogene 3 (BAG3) have been suggested as important regulators in various cancer types. However, the biological role of miR-206 and BAG3 in cervical cancer (CC) remains unclear. Here, we investigated the expressions and mechanisms of miR-206 and BAG3 in cervical cancer using in vitro and in vivo assays. In the present study, miR-206 expression was expressed at a lower level in CC tissues and cells than adjacent normal tissues and NEEC cells. By contrast, BAG3 mRNA and protein were expressed at higher levels in CC tissues and cells. Furthermore, miR-206 overexpression repressed cell proliferation, migration and invasion in vitro, and the 3'-untranslated region (3'-UTR) of BAG3 was a direct target of miR-206. miR-206 overexpression also inhibited EGFR, Bcl-2 and MMP2/9 protein expression, but promoted Bax protein expression. Besides, BAG3 over-expression partially abrogated miR-206-inhibited cell proliferation and invasion, while BAG3 silencing enhanced miR206-mediated inhibition. In vivo assay revealed that miR-206 repressed tumor growth in nude mice xenograft model. In conclusion, miR-206 inhibits cell proliferation, migration, and invasion by targeting BAG3 in human cervical cancer. Thus, miR-206-BAG3 can be used as a useful target for cervical cancer.

  13. Visualizing metabolite distribution and enzymatic conversion in plant tissues by desorption electrospray ionization mass spectrometry imaging

    DEFF Research Database (Denmark)

    Li, Bin; Baden, Camilla Knudsen; Hansen, Natascha Kristine Krahl

    2013-01-01

    In comparison to the technology platforms developed to localize transcripts and proteins, imaging tools for visualization of metabolite distributions in plant tissues are less well developed and lack versatility. This hampers our understanding of plant metabolism and dynamics. In this study we...... demonstrate that Desorption Electrospray Ionization Mass Spectrometry Imaging (DESI-MSI) of tissue imprints on porous Teflon can be used to accurately image the distribution of even labile plant metabolites such as hydroxynitrile glucosides, which normally undergo enzymatic hydrolysis by specific ß......-glucosidases upon cell disruption. This fast and simple sample preparation resulted in no substantial differences in the distribution and ratios of all hydroxynitrile glucosides between leaves from wildtype Lotus japonicus and a ß-glucosidase mutant plant lacking the ability to hydrolyze certain hydroxynitrile...

  14. Gender discrimination in the influence of hyperglycemia and hyperosmolarity on rat aortic tissue responses to insulin.

    Science.gov (United States)

    Wong, Nikki L; Achike, Francis I

    2010-08-09

    Hyperglycaemia initiates endothelial dysfunction causing diabetic macro- and micro-vasculopathy, the main causes of morbidity and mortality in diabetes mellitus. The vasculopathy exhibits gender peculiarities. We therefore explored gender differences in comparing the effects of hyperglycaemia (50 mM) per se with its hyperosmolar (50 mM) effects on vascular tissue responses to insulin. Endothelium-intact or denuded thoracic aortic rings from age-matched male and female Sprague-Dawley rats were incubated for 10 min or 6 h (acute versus chronic exposure) in normal, hyperglycaemic or hyperosmolar Krebs solution. Relaxant responses to insulin (6.9x10(-7)-6.9x10(-5) M) of the phenylephrine-contracted tissues were recorded. Endothelium denudation in both genders inhibited relaxation to insulin in all conditions, more significantly in female than in male tissues, suggesting the female response to insulin is more endothelium-dependent than the male. Acutely and chronically exposed normoglycemic endothelium-intact or -denuded tissues responded similarly to insulin. Chronic hyperglycemic or hyperosmolar exposure did not alter the endothelium-denuded tissue responses to insulin, whereas the responses of the endothelium-intact male and female hyperosmolar, and male hyperglycemic tissues were enhanced. The results show that insulin exerts an endothelium-dependent and independent relaxation with the female tissue responses more endothelium-dependent than the male. The data also suggest that hyperosmolarity per se enhances aortic tissue relaxant responses to insulin whereas hyperglycemia per se inhibits the same and more so in female than male tissues. These effects are endothelium-dependent. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  15. Milk Fat Globule Membrane Attenuates High-Fat Diet-Induced Obesity by Inhibiting Adipogenesis and Increasing Uncoupling Protein 1 Expression in White Adipose Tissue of Mice

    Directory of Open Access Journals (Sweden)

    Tiange Li

    2018-03-01

    Full Text Available Milk fat globule membrane (MFGM, a protein-lipid complex surrounding the fat globules in milk, has many health benefits. The aim of the current study was to investigate whether MFGM could prevent obesity through inhibiting adipogenesis and promoting brown remodeling of white adipose tissue (WAT in mice fed with high-fat diet. C57BL/6 mice were fed a normal diet (ND, high-fat diet (HFD, HFD plus MFGM at 100 mg/kg BW, 200 mg/kg BW or 400 mg/kg BW for 8 weeks. Results showed that MFGM suppressed body weight gain induced by HFD, reduced white adipose tissue (WAT mass accompanied with the decrease in adipocyte sizes. MFGM was found to have partially improved serum lipid profiles, as well as to have suppressed HFD-induced adipogenesis as shown by reduced expression of peroxisome proliferators-activator receptor-γ (PPARγ, CCAAT/enhancer-binding protein-α (C/EBPα and sterol regulatory element-binding protein-1c (SREBP-1c. MFGM also markedly increased the phosphorylation of AMP-activated protein kinase (AMPK and acetyl-CoA carboxylase (ACC, showing activation of AMPK pathway. Moreover, MFGM promoted browning of inguinal WAT by upregulation the protein expression of uncoupling protein 1 (UCP1 in HFD mice. Taken together, these findings provide evidence that MFGM may protect against diet-induced adiposity by suppressing adipogenesis and promoting brown-like transformation in WAT.

  16. Perforated Peptic Ulcer Repair: Factors Predicting Conversion in Laparoscopy and Postoperative Septic Complications.

    Science.gov (United States)

    Muller, Markus K; Wrann, Simon; Widmer, Jeannette; Klasen, Jennifer; Weber, Markus; Hahnloser, Dieter

    2016-09-01

    The surgical treatment for perforated peptic ulcers can be safely performed laparoscopically. The aim of the study was to define simple predictive factors for conversion and septic complications. This retrospective case-control study analyzed patients treated with either laparoscopic surgery or laparotomy for perforated peptic ulcers. A total of 71 patients were analyzed. Laparoscopically operated patients had a shorter hospital stay (13.7 vs. 15.1 days). In an intention-to-treat analysis, patients with conversion to open surgery (analyzed as subgroup from laparoscopic approach group) showed no prolonged hospital stay (15.3 days) compared to patients with a primary open approach. Complication and mortality rates were not different between the groups. The statistical analysis identified four intraoperative risk factors for conversion: Mannheim peritonitis index (MPI) > 21 (p = 0.02), generalized peritonitis (p = 0.04), adhesions, and perforations located in a region other than the duodenal anterior wall. We found seven predictive factors for septic complications: age >70 (p = 0.02), cardiopulmonary disease (p = 0.04), ASA > 3 (p = 0.002), CRP > 100 (p = 0.005), duration of symptoms >24 h (p = 0.02), MPI > 21(p = 0.008), and generalized peritonitis (p = 0.02). Our data suggest that a primary laparoscopic approach has no disadvantages. Factors necessitating conversions emerged during the procedure inhibiting a preoperative selection. Factors suggesting imminent septic complications can be assessed preoperatively. An assessment of the proposed parameters may help optimize the management of possible septic complications.

  17. Hydrothermal conversion of biomass

    NARCIS (Netherlands)

    Knezevic, D.

    2009-01-01

    This thesis presents research of hydrothermal conversion of biomass (HTC). In this process, hot compressed water (subcritical water) is used as the reaction medium. Therefore this technique is suitable for conversion of wet biomass/ waste streams. By working at high pressures, the evaporation of

  18. Effects of 5,5'-diphenylhydantoin on thyroxine and 3,5,3'-triiodothyronine concentrations in several tissues of the rat

    International Nuclear Information System (INIS)

    Schroeder-van der Elst, J.Pv.; van der Heide, D.

    1990-01-01

    We studied the effect of 5,5'-diphenylhydantoin (phenytoin, DPH) on the metabolism of thyroid hormones, the intracellular concentration of T4, and the source and concentration of T3. Two groups of six male Wistar rats received a continuous infusion of 10 ml saline/rat. day. One group received DPH in their food (50 mg/kg BW) for 20 days. For both groups [125I]T4 and [131I]T3 were added to the infusion fluid for the last 10 and 7 days, respectively. At isotopic equilibrium the rats were bled and perfused. Compared to the controls, plasma T4 and T3 in the DPH group were reduced (22% and 31%, respectively); TSH did not change. The rate of production of T4 and the plasma appearance rate for T3 were decreased. Thyroidal T3 production was markedly reduced. From the increased [125I]T3/[125I]T4 ratio for plasma, it follows that total body conversion was enhanced. The tissue T4 concentrations decreased in parallel with the plasma T4 level. Total T3 was reduced in all organs. In tissues in which local conversion does not occur, i.e. heart and muscle, the decrease reflected the decrease in plasma T3. In the liver both plasma-derived T3 and locally produced T3 were diminished. In cerebellum and brain the plasma-derived T3 pool was even smaller than was expected from the decrease in plasma T3. This was partly compensated by an increase in local conversion. Only for these two organs was the decrease in the tissue/plasma ratio for [131I]T3 significant. Our results suggest tissue hypothyroidism, caused by a decrease in the production of T4 and T3, which is partly compensated by increased conversion in several organs. The transport of T3 into cerebellum and brain is disturbed, which can be attributed to the mode of action of DPH

  19. Impairment of the chondrogenic phase of endochondral ossification in vivo by inhibition of cyclooxygenase-2

    Directory of Open Access Journals (Sweden)

    MPF Janssen

    2017-10-01

    Full Text Available Many studies have reported on the effects of cyclooxygenase-2 (COX-2 inhibition on osteogenesis. However, far less is known about the effects of COX-2 inhibition on chondrogenic differentiation. Previous studies conducted by our group show that COX-2 inhibition influences in vitro chondrogenic differentiation. Importantly, this might have consequences on endochondral ossification processes occurring in vivo, such as bone fracture healing, growth plate development and ectopic generation of cartilage. The goal of our study was to investigate, in vivo, the effect of COX-2 inhibition by celecoxib on the cartilaginous phase of three different endochondral ossification scenarios. 10 mg/kg/day celecoxib or placebo were orally administered for 25 d to skeletally-immature New Zealand White rabbits (n = 6 per group. Endochondral ossification during fracture healing of a non-critical size defect in the ulna, femoral growth plate and ectopically-induced cartilaginous tissue were examined by radiography, micro-computed tomography (µ-CT, histology and gene expression analysis. Celecoxib treatment resulted in delayed bone fracture healing, alterations in growth plate development and progression of mineralisation. In addition, chondrogenic differentiation of ectopically-induced cartilaginous tissue was severely impaired by celecoxib. In conclusion, we found that celecoxib impaired the chondrogenic phase of endochondral ossification.

  20. Sociocultural perspective on organ and tissue donation among reservation-dwelling American Indian adults.

    Science.gov (United States)

    Fahrenwald, Nancy L; Stabnow, Wendy

    2005-11-01

    To discover the sociocultural patterns that influence decisions about organ and tissue donation among American Indian (AI) adults. This qualitative ethnographic study used a social-ecological framework. A snowball sampling technique was used to recruit 21 Oglala Lakota Sioux participants (age >or= 19 years) living on the Pine Ridge Indian Reservation in South Dakota, USA. Face-to-face interviews were conducted using open-ended questions derived from the social-ecological perspective of Stokols (1992). Interviews were audiotaped and transcribed. Data were categorized into construct codes to identify concepts and to discover emerging themes. Personal and environmental themes regarding organ and tissue donation emerged. There were two personal themes: uncertain knowledge and the diabetes crisis. Participants knew very little about organ and tissue donation but there was a basic understanding of donor/recipient compatibility. The prevalence of diabetes in the community is contributing to a dire need for kidney donors. The diabetes crisis was acknowledged by every participant. There were three environmental themes: cultural transitions, healthcare system competence and outreach efforts. Traditional cultural beliefs such as entering the spirit world with an intact body were acknowledged. However, conversations reflected re-examination of traditional beliefs because of the need for kidney donors. The healthcare environmental context of organ and tissue donation emerged as a theme. Participants were not confident that the local health system was prepared to either address traditional beliefs about organ and tissue donation or implement a donation protocol. The final theme was the environmental context of outreach efforts. Participants desired relevant outreach targeted to the community and disseminated through local communication networks including the family, the media and tribal leaders. Sociocultural factors relevant to the personal and environmental context of the

  1. Selenium inhibits the phytotoxicity of mercury in garlic (Allium sativum)

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jiating [CAS Key Laboratory of Nuclear Analytical Techniques, Key Lab for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Gao, Yuxi, E-mail: gaoyx@ihep.ac.cn [CAS Key Laboratory of Nuclear Analytical Techniques, Key Lab for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Li, Yu-Feng; Hu, Yi; Peng, Xiaomin [CAS Key Laboratory of Nuclear Analytical Techniques, Key Lab for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Dong, Yuanxing [Department of Physics, Xinzhou Teachers University, Xinzhou 034000 (China); Li, Bai; Chen, Chunying [CAS Key Laboratory of Nuclear Analytical Techniques, Key Lab for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Chai, Zhifang, E-mail: chaizf@ihep.ac.cn [CAS Key Laboratory of Nuclear Analytical Techniques, Key Lab for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2013-08-15

    To investigate the influence of selenium on mercury phytotoxicity, the levels of selenium and mercury were analyzed with inductively coupled plasma-mass spectrometry (ICP-MS) in garlic tissues upon exposure to different dosages of inorganic mercury (Hg{sup 2+}) and selenite (SeO{sub 3}{sup 2−}) or selenate (SeO{sub 4}{sup 2−}). The distributions of selenium and mercury were examined with micro-synchrotron radiation X-ray fluorescence (μ-SRXRF), and the mercury speciation was investigated with micro-X-ray absorption near edge structure (μ-XANES). The results show that Se at higher exposure levels (>1 mg/L of SeO{sub 3}{sup 2−} or SeO{sub 4}{sup 2−}) would significantly inhibit the absorption and transportation of Hg when Hg{sup 2+} levels are higher than 1 mg/L in culture media. SeO{sub 3}{sup 2−} and SeO{sub 4}{sup 2−} were found to be equally effective in reducing Hg accumulation in garlic. The inhibition of Hg uptake by Se correlates well with the influence of Se on Hg phytotoxicity as indicated by the growth inhibition factor. Elemental imaging using μ-SRXRF also shows that Se could inhibit the accumulation and translocation of Hg in garlic. μ-XANES analysis shows that Hg is mainly present in the forms of Hg–S bonding as Hg(GSH){sub 2} and Hg(Met){sub 2}. Se exposure elicited decrease of Hg–S bonding in the form of Hg(GSH){sub 2}, together with Se-mediated alteration of Hg absorption, transportation and accumulation, may account for attenuated Hg phytotoxicity by Se in garlic. -- Highlights: ► Hg phytotoxicity can be mitigated by Se supplement in garlic growth. ► Se can inhibit the accumulation and transportation of Hg in garlic tissues. ► Localization and speciation of Hg in garlic can be modified by Se.

  2. Engineering Cell Fate for Tissue Regeneration by In Vivo Transdifferentiation.

    Science.gov (United States)

    de Lázaro, I; Kostarelos, K

    2016-02-01

    Changes in cell identity occur in adult mammalian organisms but are rare and often linked to disease. Research in the last few decades has thrown light on how to manipulate cell fate, but the conversion of a particular cell type into another within a living organism (also termed in vivo transdifferentiation) has only been recently achieved in a limited number of tissues. Although the therapeutic promise of this strategy for tissue regeneration and repair is exciting, important efficacy and safety concerns will need to be addressed before it becomes a reality in the clinical practice. Here, we review the most relevant in vivo transdifferentiation studies in adult mammalian animal models, offering a critical assessment of this potentially powerful strategy for regenerative medicine.

  3. Conversational Styles and Misunderstanding in Cross-Sex Conversations in He’s Just Not That into You Movie

    Directory of Open Access Journals (Sweden)

    Ayu Nyoman Aryani

    2017-01-01

    Full Text Available Conversation is a social interaction among societies. In this case, gender differences in daily communication lead to men’s and women’s different point of views in performing styles of the conversations. Misunderstanding is likely to occur in crosssex conversations when the idea or thought are understood differently by men and women. This study was intended to analyze the use of conversational styles by men and women and also investigate the misunderstanding phenomena that happened in cross-sex conversations. The researcher identified that the conversational styles used by Alex as a male character in the cross-sex conversations were qualifiers, controlling the topics, verbal fillers, intensifiers, swear words, compound requests, tag questions, questions, interruptions, overlapping, and talk domination. Meanwhile, Gigi, as a female character used qualifiers, controlling the topics, verbal fillers, intensifiers, swear words, tag questions, questions, interruptions, overlapping, talk domination, and silence. In answering the second question, the researcher discovered factors that affected the misunderstanding in the cross-sex conversations between Alex and Gigi were involvement versus independence and message versus metamessage.   DOI: https://doi.org/10.24071/llt.2016.190101

  4. Extracellular matrix remodeling and matrix metalloproteinase inhibition in visceral adipose during weight cycling in mice.

    Science.gov (United States)

    Caria, Cíntia Rabelo E Paiva; Gotardo, Érica Martins Ferreira; Santos, Paola Souza; Acedo, Simone Coghetto; de Morais, Thainá Rodrigues; Ribeiro, Marcelo Lima; Gambero, Alessandra

    2017-10-15

    Extracellular matrix (ECM) remodeling is necessary for a health adipose tissue (AT) expansion and also has a role during weight loss. We investigate the ECM alteration during weight cycling (WC) in mice and the role of matrix metalloproteinases (MMPs) was assessed using GM6001, an MMP inhibitor, during weight loss (WL). Obesity was induced in mice by a high-fat diet. Obese mice were subject to caloric restriction for WL followed by reintroduction to high-fat diet for weight regain (WR), resulting in a WC protocol. In addition, mice were treated with GM6001 during WL period and the effects were observed after WR. Activity and expression of MMPs was intense during WL. MMP inhibition during WL results in inflammation and collagen content reduction. MMP inhibition during WL period interferes with the period of subsequent expansion of AT resulting in improvements in local inflammation and systemic metabolic alterations induced by obesity. Our results suggest that MMPs inhibition could be an interesting target to improve adipose tissue inflammation during WL and to support weight cyclers. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Platelet inhibition by nitrite is dependent on erythrocytes and deoxygenation.

    Directory of Open Access Journals (Sweden)

    Sirada Srihirun

    Full Text Available Nitrite is a nitric oxide (NO metabolite in tissues and blood, which can be converted to NO under hypoxia to facilitate tissue perfusion. Although nitrite is known to cause vasodilation following its reduction to NO, the effect of nitrite on platelet activity remains unclear. In this study, the effect of nitrite and nitrite+erythrocytes, with and without deoxygenation, on platelet activity was investigated.Platelet aggregation was studied in platelet-rich plasma (PRP and PRP+erythrocytes by turbidimetric and impedance aggregometry, respectively. In PRP, DEANONOate inhibited platelet aggregation induced by ADP while nitrite had no effect on platelets. In PRP+erythrocytes, the inhibitory effect of DEANONOate on platelets decreased whereas nitrite at physiologic concentration (0.1 µM inhibited platelet aggregation and ATP release. The effect of nitrite+erythrocytes on platelets was abrogated by C-PTIO (a membrane-impermeable NO scavenger, suggesting an NO-mediated action. Furthermore, deoxygenation enhanced the effect of nitrite as observed from a decrease of P-selectin expression and increase of the cGMP levels in platelets. The ADP-induced platelet aggregation in whole blood showed inverse correlations with the nitrite levels in whole blood and erythrocytes.Nitrite alone at physiological levels has no effect on platelets in plasma. Nitrite in the presence of erythrocytes inhibits platelets through its reduction to NO, which is promoted by deoxygenation. Nitrite may have role in modulating platelet activity in the circulation, especially during hypoxia.

  6. Properties of a polygalacturonase-inhibiting protein isolated from 'Oroblanco' grapefruit.

    Science.gov (United States)

    D'hallewin, Guy; Schirra, Mario; Powell, Ann L. T.; Greve, L. Carl; Labavitch, John M.

    2004-03-01

    Polygalacturonase inhibiting protein (PGIP) was extracted from 'Oroblanco' grapefruit type (triploid pummelo-grapefruit) albedo tissue, purified and partially characterized. Extraction was carried out at 4 degrees C with a high ionic strength extraction buffer. After dialysis and concentration by ultrafiltration the extract was chromatographed on concanavalin A-Sepharose. The PGIP activity was bound by the lectin and then eluted using 250 mM alpha-methyl mannopyranoside, resulting in a 17-fold purification of the PGIP and demonstrating its glycoprotein nature. The anion-exchange and size-exclusion chromatography steps that followed gave a PGIP that was 857-fold purified relative to the initial tissue extract, and having a 44 kDa molecular weight, as estimated by SDS-PAGE electrophoresis. PGIP inhibition activity was tested with endo-polygalacturonase (EC 3.2.1.15) produced by Penicillium italicum and Botrytis cinerea. The radial diffusion and reducing sugar assays showed that P. italicum and B. cinerea endo-PGs were affected by PGIP, whereas no endo-PG activity was detected in the culture filtrate of P. digitatum. In vitro tests revealed that PGIP inhibited P. italicum and B. cinerea growth. By contrast, the influence of PGIP on P. digitatum, growth was negligible, perhaps because this fungus does not produce endo-PG. Following heating for 10 min at 65 degrees C the inhibitory activity of PGIP was reduced by 43%. PGIP activity decreased further as heating temperature increased, and was completely suppressed after heating at 100 degrees C for 10 min.

  7. Hypoxia inhibits colonic ion transport via activation of AMP kinase.

    LENUS (Irish Health Repository)

    Collins, Danielle

    2012-02-01

    BACKGROUND AND AIMS: Mucosal hypoxia is a common endpoint for many pathological processes including ischemic colitis, colonic obstruction and anastomotic failure. Previous studies suggest that hypoxia modulates colonic mucosal function through inhibition of chloride secretion. However, the molecular mechanisms underlying this observation are poorly understood. AMP-activated protein kinase (AMPK) is a metabolic energy regulator found in a wide variety of cells and has been linked to cystic fibrosis transmembrane conductance regulator (CFTR) mediated chloride secretion in several different tissues. We hypothesized that AMPK mediates many of the acute effects of hypoxia on human and rat colonic electrolyte transport. METHODS: The fluorescent chloride indicator dye N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide was used to measure changes in intracellular chloride concentrations in isolated single rat colonic crypts. Ussing chamber experiments in human colonic mucosa were conducted to evaluate net epithelial ion transport. RESULTS: This study demonstrates that acute hypoxia inhibits electrogenic chloride secretion via AMPK mediated inhibition of CFTR. Pre-treatment of tissues with the AMPK inhibitor 6-[4-(2-piperidin-1-yl-ethoxy)-phenyl)]-3-pyridin-4-yl-pyyrazolo [1,5-a] pyrimidine (compound C) in part reversed the effects of acute hypoxia on chloride secretion. CONCLUSION: We therefore suggest that AMPK is a key component of the adaptive cellular response to mucosal hypoxia in the colon. Furthermore, AMPK may represent a potential therapeutic target in diseased states or in prevention of ischemic intestinal injury.

  8. Vertical Scan-Conversion for Filling Purposes

    OpenAIRE

    Hersch, R. D.

    1988-01-01

    Conventional scan-conversion algorithms were developed independently of filling algorithms. They cause many problems, when used for filling purposes. However, today's raster printers and plotters require extended use of filling, especially for the generation of typographic characters and graphic line art. A new scan-conversion algorithm, called vertical scan-conversion has been specifically designed to meet the requirements of parity scan line fill algorithms. Vertical scan-conversion ensures...

  9. Menadione (vitamin K3) is a catabolic product of oral phylloquinone (vitamin K1) in the intestine and a circulating precursor of tissue menaquinone-4 (vitamin K2) in rats.

    Science.gov (United States)

    Hirota, Yoshihisa; Tsugawa, Naoko; Nakagawa, Kimie; Suhara, Yoshitomo; Tanaka, Kiyoshi; Uchino, Yuri; Takeuchi, Atsuko; Sawada, Natsumi; Kamao, Maya; Wada, Akimori; Okitsu, Takashi; Okano, Toshio

    2013-11-15

    Mice have the ability to convert dietary phylloquinone (vitamin K1) into menaquinone-4 (vitamin K2) and store the latter in tissues. A prenyltransferase enzyme, UbiA prenyltransferase domain-containing 1 (UBIAD1), is involved in this conversion. There is evidence that UBIAD1 has a weak side chain cleavage activity for phylloquinone but a strong prenylation activity for menadione (vitamin K3), which has long been postulated as an intermediate in this conversion. Further evidence indicates that when intravenously administered in mice phylloquinone can enter into tissues but is not converted further to menaquinone-4. These findings raise the question whether phylloquinone is absorbed and delivered to tissues in its original form and converted to menaquinone-4 or whether it is converted to menadione in the intestine followed by delivery of menadione to tissues and subsequent conversion to menaquinone-4. To answer this question, we conducted cannulation experiments using stable isotope tracer technology in rats. We confirmed that the second pathway is correct on the basis of structural assignments and measurements of phylloquinone-derived menadione using high resolution MS analysis and a bioassay using recombinant UBIAD1 protein. Furthermore, high resolution MS and (1)H NMR analyses of the product generated from the incubation of menadione with recombinant UBIAD1 revealed that the hydroquinone, but not the quinone form of menadione, was an intermediate of the conversion. Taken together, these results provide unequivocal evidence that menadione is a catabolic product of oral phylloquinone and a major source of tissue menaquinone-4.

  10. Menadione (Vitamin K3) Is a Catabolic Product of Oral Phylloquinone (Vitamin K1) in the Intestine and a Circulating Precursor of Tissue Menaquinone-4 (Vitamin K2) in Rats*

    Science.gov (United States)

    Hirota, Yoshihisa; Tsugawa, Naoko; Nakagawa, Kimie; Suhara, Yoshitomo; Tanaka, Kiyoshi; Uchino, Yuri; Takeuchi, Atsuko; Sawada, Natsumi; Kamao, Maya; Wada, Akimori; Okitsu, Takashi; Okano, Toshio

    2013-01-01

    Mice have the ability to convert dietary phylloquinone (vitamin K1) into menaquinone-4 (vitamin K2) and store the latter in tissues. A prenyltransferase enzyme, UbiA prenyltransferase domain-containing 1 (UBIAD1), is involved in this conversion. There is evidence that UBIAD1 has a weak side chain cleavage activity for phylloquinone but a strong prenylation activity for menadione (vitamin K3), which has long been postulated as an intermediate in this conversion. Further evidence indicates that when intravenously administered in mice phylloquinone can enter into tissues but is not converted further to menaquinone-4. These findings raise the question whether phylloquinone is absorbed and delivered to tissues in its original form and converted to menaquinone-4 or whether it is converted to menadione in the intestine followed by delivery of menadione to tissues and subsequent conversion to menaquinone-4. To answer this question, we conducted cannulation experiments using stable isotope tracer technology in rats. We confirmed that the second pathway is correct on the basis of structural assignments and measurements of phylloquinone-derived menadione using high resolution MS analysis and a bioassay using recombinant UBIAD1 protein. Furthermore, high resolution MS and 1H NMR analyses of the product generated from the incubation of menadione with recombinant UBIAD1 revealed that the hydroquinone, but not the quinone form of menadione, was an intermediate of the conversion. Taken together, these results provide unequivocal evidence that menadione is a catabolic product of oral phylloquinone and a major source of tissue menaquinone-4. PMID:24085302

  11. Corrosion behaviour of chemical conversion treatments on as-cast Mg-Al alloys: Electrochemical and non-electrochemical methods

    Energy Technology Data Exchange (ETDEWEB)

    Rocca, E. [Institut Jean Lamour UMR CNRS 7198, Nancy Universite - Corrosion Group, B.P. 70239, 54506 Vandoeuvre-Les-Nancy (France)], E-mail: emmanuel.rocca@lcsm.uhp-nancy.fr; Juers, C.; Steinmetz, J. [Institut Jean Lamour UMR CNRS 7198, Nancy Universite - Corrosion Group, B.P. 70239, 54506 Vandoeuvre-Les-Nancy (France)

    2010-06-15

    Magnesium alloys are often used in as-cast conditions. So, the aim of this work is to characterize the corrosion protection of as-cast AZ91D alloys coated with simple chemical conversion (phosphate-permanganate, and cerium-based coatings). With the two coatings, the electrochemical measurements show that the corrosion protection is due to both the inhibition of cathodic and anodic reactions, because of the presence of stable CeO{sub 2} or manganese oxides in basic pH. Nevertheless, the non-electrochemical tests of corrosion are required to bring to light the healing effect of phosphate-permanganate coating compared to Ce-coating and to describe the corrosion behaviour completely. Finally phosphoric and soda pickling associated to phosphate-permanganate conversion treatment or cerium coating are ecologically efficient alternatives to fluoride-based pickling and the chromating treatment.

  12. Optical analysis of down-conversion OLEDs

    Science.gov (United States)

    Krummacher, Benjamin; Klein, Markus; von Malm, Norwin; Winnacker, Albrecht

    2008-02-01

    Phosphor down-conversion of blue organic light-emitting diodes (OLEDs) is one approach to generate white light, which offers the possibility of easy color tuning, a simple device architecture and color stability over lifetime. In this article previous work on down-conversion devices in the field of organic solid state lighting is briefly reviewed. Further, bottom emitting down-conversion OLEDs are studied from an optical point of view. Therefore the physical processes occurring in the down-conversion layer are translated into a model which is implemented in a ray tracing simulation. By comparing its predictions to experimental results the model is confirmed. For the experiments a blue-emitting polymer OLED (PLED) panel optically coupled to a series of down-conversion layers is used. Based on results obtained from ray tracing simulation some of the implications of the model for the performance of down-conversion OLEDs are discussed. In particular it is analysed how the effective reflectance of the underlying blue OLED and the particle size distribution of the phosphor powder embedded in the matrix of the down-conversion layer influence extraction efficiency.

  13. A software to edit voxel phantoms and to calculate conversion coefficients for radiation protection

    International Nuclear Information System (INIS)

    Vieira, J.W.; Stosic, B.; Lima, F.R.A.; Kramer, R.; Santos, A.M.; Lima, V.J.M.

    2005-01-01

    The MAX and FAX phantoms have been developed based on a male and female, respectively, adult body from ICRP and coupled to the Monte Carlo code (EGS4). These phantoms permit the calculating of the equivalent dose in organs and tissues of the human body for the radiation protection purposes . In the constructing of these anthropomorphic models, the software developed called FANTOMAS, which performs tasks as file format conversion, filtering 2D and 3D images, exchange of identifying numbers of organs, body mass adjustments based in volume, resampling of 2D and 3D images, resize images, preview consecutive slices of the phantom, running computational models of exposure FANTOMA/EGS4 and viewing graphics of conversion factors between equivalent dose and a measurable dosimetric quantity. This paper presents the main abilities of FANTOMAS and uses the MAX and/or FAX to exemplify some procedures

  14. Overcoming Chemoresistance of Pediatric Ependymoma by Inhibition of STAT3 Signaling

    Directory of Open Access Journals (Sweden)

    Ji Hoon Phi

    2015-10-01

    Full Text Available The long-term clinical outcome of pediatric intracranial epepdymoma is poor with a high rate of recurrence. One of the main reasons for this poor outcome is the tumor’s inherent resistance to chemotherapy. Signal transducer and activator of transcription 3 (STAT3 is overactive in many human cancers, and inhibition of STAT3 signaling is an emerging area of interest in oncology. In this study, the possibility of STAT3 inhibition as a treatment was investigated in pediatric intracranial ependymoma tissues and cell lines. STAT3 activation status was checked in ependymoma tissues. The responses to conventional chemotherapeutic agents and a STAT3 inhibitor WP1066 in primarily cultured ependymoma cells were measured by cell viability assay. Apoptosis assays were conducted to reveal the cytotoxic mechanism of applied agents. Knockdown of STAT3 was tried to confirm the effects of STAT3 inhibition in ependymoma cells. High levels of phospho-STAT3 (p-STAT3 expression were observed in ependymoma tissue, especially in the anaplastic histology group. There was no cytotoxic effect of cisplatin, ifosfamide, and etoposide. Both brain tumor-initiating cells (BTICs and bulk tumor cells (BCs showed considerably decreased viability after WP1066 treatment. However, BTICs had fewer responses than BCs. No additive or synergistic effect was observed for combination therapy of WP1066 and cisplatin. WP1066 effectively abrogated p-STAT3 expression. An increased apoptosis and decreased Survivin expression were observed after WP1066 treatment. Knockdown of STAT3 also decreased cell survival, supporting the critical role of STAT3 in sustaining ependymoma cells. In this study, we observed a cytotoxic effect of STAT3 inhibitor on ependymoma BTICs and BCs. There is urgent need to develop new therapeutic agents for pediatric ependymoma. STAT3 inhibitors may be a new group of drugs for clinical application.

  15. Responsive turns in Indonesian informal conversation

    Directory of Open Access Journals (Sweden)

    M.J. van Naerssen

    2015-04-01

    Full Text Available People have all sorts of expectations about how interlocutors will and should behave linguistically when engaged in a conversation. These conversational norms are usually implicit and are sometimes difficult to master in a language that is new to you. This paper presents a model of different types of responses in informal conversation, illustrated with Indonesian examples. It builds upon the conversation analytic notion of preference; distinguishing preferred – or constructive – responses and dispreferred – or competitive – responses. The model is meant as a tool to cross-linguistically compare response behaviour to gain insight in language specific expectations about interaction in informal conversation.

  16. Biomass Thermochemical Conversion Program: 1986 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1987-01-01

    Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. Thermochemical conversion processes can generate a variety of products such as gasoline hydrocarbon fuels, natural gas substitutes, or heat energy for electric power generation. The US Department of Energy is sponsoring research on biomass conversion technologies through its Biomass Thermochemical Conversion Program. Pacific Northwest Laboratory has been designated the Technical Field Management Office for the Biomass Thermochemical Conversion Program with overall responsibility for the Program. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1986. 88 refs., 31 figs., 5 tabs.

  17. Inhibition of coagulation factors by recombinant barley serpin BSZx

    DEFF Research Database (Denmark)

    Dahl, Søren Weis; Rasmussen, S.K.; Petersen, L..C.

    1996-01-01

    Barley serpin BSZx is a potent inhibitor of trypsin and chymotrypsin at overlapping reactive sites (Dahl, S.W., Rasmussen, S.K. and Hejgaard, J. (1996) J. Biol, Chem., in press), We have now investigated the interactions of BSZx with a range of serine proteinases from human plasma, pancreas......, urokinase and tissue type plasminogen activator, plasmin and pancreas kallikrein and elastase were not or only weakly affected, The inhibition pattern with mammalian proteinases reveal a specificity of BSZx similar to that of antithrombin III. Trypsin from Fusarium was not inhibited while interaction...... with subtilisin Carlsberg and Novo was rapid but most BSZx was cleaved as a substrate, Identification of a monoclonal antibody specific for native BSZx indicate that complex formation and loop cleavage result in similar conformational changes....

  18. Conversations in African Philosophy

    African Journals Online (AJOL)

    JONATHAN

    Conversational philosophy is articulated by Jonathan O. Chimakonam as the new wave of philosophical practice both in “place” and in “space”. This journal adopts and promotes this approach to philosophizing for African philosophy. Readers are encouraged to submit their conversational piece (maximum of 2000 words) ...

  19. Irradiation inhibits the regeneration of aneurogenic limbs

    International Nuclear Information System (INIS)

    Wallace, H.; Maden, M.

    1976-01-01

    The developing arms of axolotl larvae from the 2-digit stage onward and the aneurogenic arms of surgically denervated larvae maintained in parabiosis are able to regenerate after amputation. Such regeneration is uniformly inhibited by local irradiation of the arm, whether innervated or not. This demonstration refutes a recent hypothesis that x-rays interfere with a special activity of nerves required for regeneration, and supports the earlier concept that x-rays act directly on those cells which must proliferate to form the regenerated tissues

  20. Predictability of Conversation Partners

    Science.gov (United States)

    Takaguchi, Taro; Nakamura, Mitsuhiro; Sato, Nobuo; Yano, Kazuo; Masuda, Naoki

    2011-08-01

    Recent developments in sensing technologies have enabled us to examine the nature of human social behavior in greater detail. By applying an information-theoretic method to the spatiotemporal data of cell-phone locations, [C. Song , ScienceSCIEAS0036-8075 327, 1018 (2010)] found that human mobility patterns are remarkably predictable. Inspired by their work, we address a similar predictability question in a different kind of human social activity: conversation events. The predictability in the sequence of one’s conversation partners is defined as the degree to which one’s next conversation partner can be predicted given the current partner. We quantify this predictability by using the mutual information. We examine the predictability of conversation events for each individual using the longitudinal data of face-to-face interactions collected from two company offices in Japan. Each subject wears a name tag equipped with an infrared sensor node, and conversation events are marked when signals are exchanged between sensor nodes in close proximity. We find that the conversation events are predictable to a certain extent; knowing the current partner decreases the uncertainty about the next partner by 28.4% on average. Much of the predictability is explained by long-tailed distributions of interevent intervals. However, a predictability also exists in the data, apart from the contribution of their long-tailed nature. In addition, an individual’s predictability is correlated with the position of the individual in the static social network derived from the data. Individuals confined in a community—in the sense of an abundance of surrounding triangles—tend to have low predictability, and those bridging different communities tend to have high predictability.

  1. Predictability of Conversation Partners

    Directory of Open Access Journals (Sweden)

    Taro Takaguchi

    2011-09-01

    Full Text Available Recent developments in sensing technologies have enabled us to examine the nature of human social behavior in greater detail. By applying an information-theoretic method to the spatiotemporal data of cell-phone locations, [C. Song et al., Science 327, 1018 (2010SCIEAS0036-8075] found that human mobility patterns are remarkably predictable. Inspired by their work, we address a similar predictability question in a different kind of human social activity: conversation events. The predictability in the sequence of one’s conversation partners is defined as the degree to which one’s next conversation partner can be predicted given the current partner. We quantify this predictability by using the mutual information. We examine the predictability of conversation events for each individual using the longitudinal data of face-to-face interactions collected from two company offices in Japan. Each subject wears a name tag equipped with an infrared sensor node, and conversation events are marked when signals are exchanged between sensor nodes in close proximity. We find that the conversation events are predictable to a certain extent; knowing the current partner decreases the uncertainty about the next partner by 28.4% on average. Much of the predictability is explained by long-tailed distributions of interevent intervals. However, a predictability also exists in the data, apart from the contribution of their long-tailed nature. In addition, an individual’s predictability is correlated with the position of the individual in the static social network derived from the data. Individuals confined in a community—in the sense of an abundance of surrounding triangles—tend to have low predictability, and those bridging different communities tend to have high predictability.

  2. Obtaining the conversion curve of CT numbers to electron density from the effective energy of the CT using the dummy SEFM; Obtencion de la curva de conversion de numeros TC a densidad electronica a partir de la energia efectiva del TC usando el maniqui de la SEFM

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Viera Cueto, J. A.; Garcia Pareja, S.; Benitez Villegas, E. M.; Moreno Saiz, E. M.; Bodineau Gil, C.; Caudepon Moreno, F.

    2011-07-01

    The objective of this work is to obtain the conversion curve of Hounsfield units (A) versus electron densities using a mannequin with different tissue equivalent materials. This provides for the effective energy beam CT and is used to characterize the linear coefficients of absorption of different materials that comprise the dummy.

  3. Statistical thermodynamics foundation for photovoltaic and photothermal conversion. II. Application to photovoltaic conversion

    Science.gov (United States)

    Badescu, Viorel; Landsberg, Peter T.

    1995-08-01

    The general theory developed in part I was applied to build up two models of photovoltaic conversion. To this end two different systems were analyzed. The first system consists of the whole absorber (converter), for which the balance equations for energy and entropy are written and then used to derive an upper bound for solar energy conversion. The second system covers a part of the absorber (converter), namely the valence and conduction electronic bands. The balance of energy is used in this case to derive, under additional assumptions, another upper limit for the conversion efficiency. This second system deals with the real location where the power is generated. Both models take into consideration the radiation polarization and reflection, and the effects of concentration. The second model yields a more accurate upper bound for the conversion efficiency. A generalized solar cell equation is derived. It is proved that other previous theories are particular cases of the present more general formalism.

  4. Inhibition of Fatty Acid Synthase in Prostate Cancer by Olristat, a Novel Therapeutic

    Science.gov (United States)

    2006-11-01

    is a natural antibiotic product of the fungus Cephalosporium ceruleans (Omura, 1976). Cerulenin irreversibly inhibits FAS by binding covalently to the...toxicity in normal tissues (Pizer et al, 2000). More recently, an activity-based proteomics strategy revealed in vitro and in vivo antitumour activity for

  5. Direct antioxidant properties of methotrexate: Inhibition of malondialdehyde-acetaldehyde-protein adduct formation and superoxide scavenging

    Directory of Open Access Journals (Sweden)

    Matthew C. Zimmerman

    2017-10-01

    Full Text Available Methotrexate (MTX is an immunosuppressant commonly used for the treatment of autoimmune diseases. Recent observations have shown that patients treated with MTX also exhibit a reduced risk for the development of cardiovascular disease (CVD. Although MTX reduces systemic inflammation and tissue damage, the mechanisms by which MTX exerts these beneficial effects are not entirely known. We have previously demonstrated that protein adducts formed by the interaction of malondialdehyde (MDA and acetaldehyde (AA, known as MAA-protein adducts, are present in diseased tissues of individuals with rheumatoid arthritis (RA or CVD. In previously reported studies, MAA-adducts were shown to be highly immunogenic, supporting the concept that MAA-adducts not only serve as markers of oxidative stress but may have a direct role in the pathogenesis of inflammatory diseases. Because MAA-adducts are commonly detected in diseased tissues and are proposed to mitigate disease progression in both RA and CVD, we tested the hypothesis that MTX inhibits the generation of MAA-protein adducts by scavenging reactive oxygen species. Using a cell free system, we found that MTX reduces MAA-adduct formation by approximately 6-fold, and scavenges free radicals produced during MAA-adduct formation. Further investigation revealed that MTX directly scavenges superoxide, but not hydrogen peroxide. Additionally, using the Nrf2/ARE luciferase reporter cell line, which responds to intracellular redox changes, we observed that MTX inhibits the activation of Nrf2 in cells treated with MDA and AA. These studies define previously unrecognized mechanisms by which MTX can reduce inflammation and subsequent tissue damage, namely, scavenging free radicals, reducing oxidative stress, and inhibiting MAA-adduct formation.

  6. The importance of residues 195-206 of human blood clotting factor VII in the interaction of factor VII with tissue factor

    International Nuclear Information System (INIS)

    Wildgoose, P.; Kisiel, W.; Kazim, A.L.

    1990-01-01

    Previous studies indicated that human and bovine factor VII exhibit 71% amino acid sequence identity. In the present study, competition binding experiments revealed that the interaction of human factor VII with cell-surface human tissue factor was not inhibited by 100-fold molar excess of bovine factor VII. This finding indicated that bovine and human factor VII are not structurally homologous in the region(s) where human factor VII interacts with human tissue factor. On this premise, the authors synthesized three peptides corresponding to regions of human factor VII that exhibited marked structural dissimilarity to bovine factor VII; these regions of dissimilarity included residues 195-206, 263-274, and 314-326. Peptide 195-206 inhibited the interaction of factor VII with cell-surface tissue factor and the activation of factor X by a complex of factor VIIa and tissue factor half-maximally at concentrations of 1-2 mM. A structurally rearranged form of peptide 195-206 containing an aspartimide residue inhibited these reactions half-maximally at concentrations of 250-300 μM. In contrast, neither peptide 263-274 nor peptide 314-326, at 2 mM concentration, significantly affected either factor VIIa interaction with tissue factor or factor VIIa-mediated activation of factor X. The data provide presumptive evidence that residues 195-206 of human factor VII are involved in the interaction of human factor VII with the extracellular domain of human tissue factor apoprotein

  7. Computer code conversion using HISTORIAN

    International Nuclear Information System (INIS)

    Matsumoto, Kiyoshi; Kumakura, Toshimasa.

    1990-09-01

    When a computer program written for a computer A is converted for a computer B, in general, the A version source program is rewritten for B version. However, in this way of program conversion, the following inconvenient problems arise. 1) The original statements to be rewritten for B version are lost. 2) If the original statements of the A version rewritten for B version would remain as comment lines, the B version source program becomes quite large. 3) When update directives of the program are mailed from the organization which developed the program or when some modifications are needed for the program, it is difficult to point out the part to be updated or modified in the B version source program. To solve these problems, the conversion method using the general-purpose software management aid system, HISTORIAN, has been introduced. This conversion method makes a large computer code a easy-to-use program for use to update, modify or improve after the conversion. This report describes the planning and procedures of the conversion method and the MELPROG-PWR/MOD1 code conversion from the CRAY version to the JAERI FACOM version as an example. This report would provide useful information for those who develop or introduce large programs. (author)

  8. Frequency conversion of structured light.

    Science.gov (United States)

    Steinlechner, Fabian; Hermosa, Nathaniel; Pruneri, Valerio; Torres, Juan P

    2016-02-15

    Coherent frequency conversion of structured light, i.e. the ability to manipulate the carrier frequency of a wave front without distorting its spatial phase and intensity profile, provides the opportunity for numerous novel applications in photonic technology and fundamental science. In particular, frequency conversion of spatial modes carrying orbital angular momentum can be exploited in sub-wavelength resolution nano-optics and coherent imaging at a wavelength different from that used to illuminate an object. Moreover, coherent frequency conversion will be crucial for interfacing information stored in the high-dimensional spatial structure of single and entangled photons with various constituents of quantum networks. In this work, we demonstrate frequency conversion of structured light from the near infrared (803 nm) to the visible (527 nm). The conversion scheme is based on sum-frequency generation in a periodically poled lithium niobate crystal pumped with a 1540-nm Gaussian beam. We observe frequency-converted fields that exhibit a high degree of similarity with the input field and verify the coherence of the frequency-conversion process via mode projection measurements with a phase mask and a single-mode fiber. Our results demonstrate the suitability of exploiting the technique for applications in quantum information processing and coherent imaging.

  9. Antioxidant enzymes activity in embryogenic and non-embryogenic tissues in Sugarcane

    International Nuclear Information System (INIS)

    Marina Medeiros de Araujo Silva; Ulisses, Claudia; Lacerda E Medeiros, Maria Jaislanny; Cavalcante Granja, Manuela Maria; Willadino, Lilia; Camara, Terezinha

    2014-01-01

    The objective of this work was to induce direct somatic embryogenesis from segments of immature leaves of the RB872552 variety of sugarcane and to correlate this morphogenic event with oxidative stress. Two previously described protocols were utilized for the induction of somatic embryogenesis in sugarcane with different supplementations of the culture medium and different incubation conditions. For the conversion of embryos into plants was used ms medium without phytoregulators. Histological analyses and activity of antioxidant enzymes were also conducted for the embryogenic and non-embryogenic tissues. The formation of somatic embryos was obtained in 81 % of the explants with the combination of regulators 2,4-D (2,4-dichlorophenoxyacetic acid)and BAP (6-benzylaminopurine) when incubated under 16 h photoperiod. With regards to the antioxidant enzymes, there was increased activity of peroxidase and an increase in the soluble protein content in embryogenic tissues, whereas lower activities of polyphenol oxidase and catalase appeared in these tissues compared to nonembryogenic tissues. It could be inferred that oxidative stress plays an important role in the induction of somatic embryogenesis in sugarcane.

  10. Fatty acid profiles in tissues of mice fed conjugated linoleic acid

    DEFF Research Database (Denmark)

    Gøttsche, Jesper; Straarup, Ellen Marie

    2006-01-01

    The incorporation of vaccenic acid (VA, 0.5 and 1.2%), conjugated linoleic acid (CLA, mixture of primarily c9,t11- and t10,c12-CLA, 1.2%), linoleic acid (LA, 1.2%) and oleic acid (OA, 1.2%) into different tissues of mice was examined. The effects on the fatty acid composition of triacylglycerols...... (TAG) and phospholipids (PL) in kidney, spleen, liver and adipose tissue were investigated. VA and CLA (c9,t11- and t10,c12-CLA) were primarily found in TAG, especially in kidney and adipose tissue, respectively. Conversion of VA to c9,t11-CLA was indicated by our results, as both fatty acids were...... incorporated into all the analyzed tissues when a diet containing VA but not c9,t11-CLA was fed. Most of the observed effects on the fatty acid profiles were seen in the CLA group, whereas only minor effects were observed in the VA groups compared with the CA group. Thus, CLA increased n-3 polyunsaturated...

  11. Radionuclide investigation of the blood flow in tumor and normal rat tissues in induced hyperglycemia

    International Nuclear Information System (INIS)

    Istomin, Yu.P.; Shitikov, B.D.; Markova, L.V.

    1991-01-01

    Radionuclide angiography was performed in rats with transplantable tumors. Induced hyperglycemia was shown to result in blood flow inhibition in tumor and normal tissues of tumor-bearing rats. Some differences were revealed in a degree of reversibility of blood flow disorders in tissues of the above strains. The results obtained confirmed the advisability of radiation therapy at the height of a decrease in tumor blood

  12. Overcoming difficult conversations in clinical supervision

    Directory of Open Access Journals (Sweden)

    Williams B

    2016-06-01

    Full Text Available Brett Williams,1 Christine King,1 Tanya Edlington,21Department of Community Emergency Health and Paramedic Practice, Monash University, Franskton, VIC, 2The Conversation Clinic Pty Ltd, Melbourne, VIC, Australia Background: Clinical supervisors are responsible for managing many facets of clinical learning and face a range of challenges when the need for "difficult" conversations arises, including the need to manage conflict and relationships. Methods: Spotlight on Conversations Workshop was developed to improve the capacity of clinical supervisors to engage in difficult conversations. They were designed to challenge the mindset of clinical supervisors about difficult conversations with students, the consequences of avoiding difficult conversations, and to offer activities for practicing difficult conversations. Preworkshop, postworkshop, and 4-month follow-up evaluations assessed improvements in knowledge, intent to improve, and confidence along with workshop satisfaction. Results: Nine workshops were delivered in a range of locations across Victoria, Australia, involving a total of 117 clinical supervisors. Preworkshop evaluations illustrated that more than half of the participants had avoided up to two difficult conversations in the last month in their workplace. Postworkshop evaluation at 4 months showed very high levels of satisfaction with the workshop's relevancy, content, and training, as well as participants' intention to apply knowledge and skills. Also shown were significant changes in participants' confidence to have difficult conversations not only with students but also with other peers and colleagues. In follow-up in-depth interviews with 20 of the 117 participants, 75% said they had made definite changes in their practice because of what they learned in the workshop and another 10% said they would make changes to their practice, but had not had the opportunity yet to do so. Conclusion: We conclude that the Spotlight on

  13. Differential Regulation of Telomerase Reverse Transcriptase Promoter Activation and Protein Degradation by Histone Deacetylase Inhibition.

    Science.gov (United States)

    Qing, Hua; Aono, Jun; Findeisen, Hannes M; Jones, Karrie L; Heywood, Elizabeth B; Bruemmer, Dennis

    2016-06-01

    Telomerase reverse transcriptase (TERT) maintains telomeres and is rate limiting for replicative life span. While most somatic tissues silence TERT transcription resulting in telomere shortening, cells derived from cancer or cardiovascular diseases express TERT and activate telomerase. In the present study, we demonstrate that histone deacetylase (HDAC) inhibition induces TERT transcription and promoter activation. At the protein level in contrast, HDAC inhibition decreases TERT protein abundance through enhanced degradation, which decreases telomerase activity and induces senescence. Finally, we demonstrate that HDAC inhibition decreases TERT expression during vascular remodeling in vivo. These data illustrate a differential regulation of TERT transcription and protein stability by HDAC inhibition and suggest that TERT may constitute an important target for the anti-proliferative efficacy of HDAC inhibitors. © 2015 Wiley Periodicals, Inc.

  14. Fabrication and in vitro degradation of porous fumarate-based polymer/alumoxane nanocomposite scaffolds for bone tissue engineering.

    Science.gov (United States)

    Mistry, Amit S; Cheng, Stacy H; Yeh, Tiffany; Christenson, Elizabeth; Jansen, John A; Mikos, Antonios G

    2009-04-01

    In this work, the fabrication and in vitro degradation of porous fumarate-based/alumoxane nanocomposites were evaluated for their potential as bone tissue engineering scaffolds. The biodegradable polymer poly (propylene fumarate)/propylene fumarate-diacrylate (PPF/PF-DA), a macrocomposite composed of PPF/PF-DA and boehmite microparticles, and a nanocomposite composed of PPF/PF-DA and surface-modified alumoxane nanoparticles were used to fabricate porous scaffolds by photo-crosslinking and salt-leaching. Scaffolds then underwent 12 weeks of in vitro degradation in phosphate buffered saline at 37 degrees C. The presence of boehmite microparticles and alumoxane nanoparticles in the polymer inhibited scaffold shrinkage during crosslinking. Furthermore, the incorporation of alumoxane nanoparticles into the polymer limited salt-leaching, perhaps due to tighter crosslinking within the nanocomposite. Analysis of crosslinking revealed that the acrylate and overall double bond conversions in the nanocomposite were higher than in the PPF/PF-DA polymer alone, though these differences were not significant. During 12 weeks of in vitro degradation, the nanocomposite lost 5.3% +/- 2.4% of its mass but maintained its compressive mechanical properties and porous architecture. The addition of alumoxane nanoparticles into the fumarate-based polymer did not significantly affect the degradation of the nanocomposite compared with the other materials in terms of mass loss, compressive properties, and porous structure. These results demonstrate the feasibility of fabricating degradable nanocomposite scaffolds for bone tissue engineering by photo-crosslinking and salt-leaching mixtures of fumarate-based polymers, alumoxane nanoparticles, and salt microparticles. Copyright 2008 Wiley Periodicals, Inc.

  15. Overview of the ICRP/ICRU adult reference computational phantoms and dose conversion coefficients for external idealised exposures

    International Nuclear Information System (INIS)

    Endo, Akira; Petoussi-Henss, Nina; Zankl, Maria; Schlattl, Helmut; Bolch, Wesley E.; Eckerman, Keith F.; Hertel, Nolan E.; Hunt, John G.; Pelliccioni, Maurizio; Menzel, Hans-Georg

    2014-01-01

    This paper reviews the ICRP Publications 110 and 116 describing the reference computational phantoms and dose conversion coefficients for external exposures. The International Commission on Radiological Protection (ICRP) in its 2007 Recommendations made several revisions to the methods of calculation of the protection quantities. In order to implement these recommendations, the DOCAL task group of the ICRP developed computational phantoms representing the reference adult male and female and then calculated a set of dose conversion coefficients for various types of idealised external exposures. This paper focuses on the dose conversion coefficients for neutrons and investigates their relationship with the conversion coefficients of the protection and operational quantities of ICRP Publication 74. Contributing factors to the differences between these sets of conversion coefficients are discussed in terms of the changes in phantoms employed and the radiation and tissue weighting factors. This paper briefly reviews the reference computational phantoms and dose conversion coefficients for external exposures that were published jointly by ICRP and ICRU. Both these publications appeared as a consequence of the ICRP 2007 Recommendations; to implement these recommendations, the ICRP has developed reference computational phantoms representing the adult male and female. These phantoms are used to calculate reference dose conversion coefficients for external and internal sources. Using the reference phantoms and methodology consistent with the 2007 Recommendations, dose conversion coefficients for both effective doses and organ-absorbed doses for various types of idealised external exposures have been calculated. These data sets supersede the existing ICRP/ICRU data sets and expand the particle types and energy ranges. For neutrons, the new effective dose conversion coefficients become smaller compared with those in ICRP74, for energies below hundreds of keV. This is mainly

  16. Lemongrass-Incorporated Tissue Conditioner Against Candida albicans Culture

    Science.gov (United States)

    Amornvit, Pokpong; Srithavaj, Theerathavaj

    2014-01-01

    Background: Tissue conditioner is applied popularly with dental prosthesis during wound healing process but it becomes a reservoir of oral microbiota, especially Candida species after long-term usage. Several antifungal drugs have been mixed with this material to control fungal level. In this study, lemongrass essential oil was added into COE-COMFORT tissue conditioner before being determined for anti-Candida efficacy. Materials and Methods: Lemongrass (Cymbopogon citratus) essential oil was primarily determined for antifungal activity against C. albicans American type culture collection (ATCC) 10231 and MIC (minimum inhibitory concentration) value by agar disk diffusion and broth microdilution methods, respectively. COE-COMFORT tissue conditioner was prepared as recommended by the manufacturer after a fixed volume of the oil at its MIC or higher concentrations were mixed thoroughly in its liquid part. Antifungal efficacy of the tissue conditioner with/without herb was finally analyzed. Results: Lemongrass essential oil displayed potent antifungal activity against C. albicans ATCC 10231and its MIC value was 0.06% (v/v). Dissimilarly, the tissue conditioner containing the oil at MIC level did not cease the growth of the tested fungus. Both reference and clinical isolates of C. albicans were completely inhibited after exposed to the tissue conditioner containing at least 0.25% (v/v) of the oil (approximately 4-time MIC). The tissue conditioner without herb or with nystatin was employed as negative or positive control, respectively. Conclusion: COE-COMFORT tissue conditioner supplemented with lemongrass essential oil obviously demonstrated another desirable property as in vitro anti-Candida efficacy to minimize the risk of getting Candidal infection. PMID:25177638

  17. Paradoxical therapy in conversion disorder

    OpenAIRE

    ATAOĞLU, Ahmet

    1998-01-01

    Paradoxical therapy consists of suggesting that the patient intentionally engages in the unwanted behaviour, such as performing complusive ritual or bringing on a conversion attack. In this study paradoxical intention (PI) was used with to half of the patients with conversion disorders, while the other half were treated with diazepam in order to examine the efficiency of the PI versus diazepam in conversion disorder. Patients treated with PI appeared to have a greater improvement r...

  18. Genetic ablation and short-duration inhibition of lipoxygenase results in increased macroautophagy

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Insook; Park, Sujin; Cho, Jin Won [Department of Integrated OMICS for Biomedical Science, WCU Program of Graduate School, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Yigitkanli, Kazim; Leyen, Klaus van [Neuroprotection Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129 (United States); Roth, Jürgen, E-mail: jurgen.roth@bluewin.ch [Department of Integrated OMICS for Biomedical Science, WCU Program of Graduate School, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of)

    2014-02-15

    12/15-lipoxygenase (12/15-LOX) is involved in organelle homeostasis by degrading mitochondria in maturing red blood cells and by eliminating excess peroxisomes in liver. Furthermore, 12/15-LOX contributes to diseases by exacerbating oxidative stress-related injury, notably in stroke. Nonetheless, it is unclear what the consequences are of abolishing 12/15-LOX activity. Mice in which the alox15 gene has been ablated do not show an obvious phenotype, and LOX enzyme inhibition is not overtly detrimental. We show here that liver histology is also unremarkable. However, electron microscopy demonstrated that 12/15-LOX knockout surprisingly leads to increased macroautophagy in the liver. Not only macroautophagy but also mitophagy and pexophagy were increased in hepatocytes, which otherwise showed unaltered fine structure and organelle morphology. These findings were substantiated by immunofluorescence showing significantly increased number of LC3 puncta and by Western blotting demonstrating a significant increase for LC3-II protein in both liver and brain homogenates of 12/15-LOX knockout mice. Inhibition of 12/15-LOX activity by treatment with four structurally different inhibitors had similar effects in cultured HepG2 hepatoma cells and SH-SY5Y neuroblastoma cells with significantly increased autophagy discernable already after 2 hours. Hence, our study reveals a link between ablation or inhibition of 12/15-LOX and stimulation of macroautophagy. The enhanced macroautophagy may be related to the known tissue-protective effects of LOX ablation or inhibition under various diseased conditions caused by oxidative stress and ischemia. This could provide an important cleaning mechanism of cells and tissues to prevent accumulation of damaged mitochondria and other cellular components. - Highlights: • A relationship between lipoxygenases and autophagy is disclosed. • 12/15-lipoxygenase knockout increases autophagy in mice liver and brain. • Lipoxygenase inhibition boosts

  19. Genetic ablation and short-duration inhibition of lipoxygenase results in increased macroautophagy

    International Nuclear Information System (INIS)

    Jang, Insook; Park, Sujin; Cho, Jin Won; Yigitkanli, Kazim; Leyen, Klaus van; Roth, Jürgen

    2014-01-01

    12/15-lipoxygenase (12/15-LOX) is involved in organelle homeostasis by degrading mitochondria in maturing red blood cells and by eliminating excess peroxisomes in liver. Furthermore, 12/15-LOX contributes to diseases by exacerbating oxidative stress-related injury, notably in stroke. Nonetheless, it is unclear what the consequences are of abolishing 12/15-LOX activity. Mice in which the alox15 gene has been ablated do not show an obvious phenotype, and LOX enzyme inhibition is not overtly detrimental. We show here that liver histology is also unremarkable. However, electron microscopy demonstrated that 12/15-LOX knockout surprisingly leads to increased macroautophagy in the liver. Not only macroautophagy but also mitophagy and pexophagy were increased in hepatocytes, which otherwise showed unaltered fine structure and organelle morphology. These findings were substantiated by immunofluorescence showing significantly increased number of LC3 puncta and by Western blotting demonstrating a significant increase for LC3-II protein in both liver and brain homogenates of 12/15-LOX knockout mice. Inhibition of 12/15-LOX activity by treatment with four structurally different inhibitors had similar effects in cultured HepG2 hepatoma cells and SH-SY5Y neuroblastoma cells with significantly increased autophagy discernable already after 2 hours. Hence, our study reveals a link between ablation or inhibition of 12/15-LOX and stimulation of macroautophagy. The enhanced macroautophagy may be related to the known tissue-protective effects of LOX ablation or inhibition under various diseased conditions caused by oxidative stress and ischemia. This could provide an important cleaning mechanism of cells and tissues to prevent accumulation of damaged mitochondria and other cellular components. - Highlights: • A relationship between lipoxygenases and autophagy is disclosed. • 12/15-lipoxygenase knockout increases autophagy in mice liver and brain. • Lipoxygenase inhibition boosts

  20. Olaratumab for advanced soft tissue sarcoma.

    Science.gov (United States)

    Tobias, Alexander; O'brien, Michael P; Agulnik, Mark

    2017-07-01

    Olaratumab is a humanized IgG1 monoclonal antibody that blocks the platelet-derived growth factor receptor alpha (PDGFRα). Its antagonistic behavior inhibits the receptor's tyrosine kinase activity, thereby, turning off the downstream signaling cascades responsible for soft tissue sarcoma tumorigenesis. In October 2016, olaratumab received Food and Drug Administration (FDA) approval for its use in combination with doxorubicin for treatment of advanced soft tissue sarcoma. Areas covered: This drug profile takes a comprehensive look at the clinical studies leading to FDA approval of olaratumab as well as its safety and efficacy as a front-line treatment option for sarcoma patients. The literature search was primarily conducted using PubMed. Expert commentary: The combination of olaratumab plus doxorubicin has provided a new front-line therapeutic option for soft tissue sarcoma patients. An open-label phase Ib and randomized phase II trial in patients with advanced soft tissue sarcoma demonstrated that the addition of olaratumab to doxorubicin prolonged progression-free survival by 2.5 months and overall survival by 11.8 months when compared to doxorubicin alone. Of importance, this clinically meaningful increase in overall survival did not come at the expense of a significantly greater number of toxicities. A phase III confirmatory trial (ClinicalTrials.gov Identifier NCT02451943) will be completed in 2020.

  1. Obtaining the conversion curve of CT numbers to electron density from the effective energy of the CT using the dummy SEFM

    International Nuclear Information System (INIS)

    Martin-Viera Cueto, J. A.; Garcia Pareja, S.; Benitez Villegas, E. M.; Moreno Saiz, E. M.; Bodineau Gil, C.; Caudepon Moreno, F.

    2011-01-01

    The objective of this work is to obtain the conversion curve of Hounsfield units (A) versus electron densities using a mannequin with different tissue equivalent materials. This provides for the effective energy beam CT and is used to characterize the linear coefficients of absorption of different materials that comprise the dummy.

  2. Endoplasmic reticulum stress is increased in adipose tissue of women with gestational diabetes.

    Directory of Open Access Journals (Sweden)

    Stella Liong

    Full Text Available Maternal obesity and gestational diabetes mellitus (GDM are two increasingly common and important obstetric complications that are associated with severe long-term health risks to mothers and babies. IL-1β, which is increased in obese and GDM pregnancies, plays an important role in the pathophysiology of these two pregnancy complications. In non-pregnant tissues, endoplasmic (ER stress is increased in diabetes and can induce IL-1β via inflammasome activation. The aim of this study was to determine whether ER stress is increased in omental adipose tissue of women with GDM, and if ER stress can also upregulate inflammasome-dependent secretion of IL-1β. ER stress markers IRE1α, GRP78 and XBP-1s were significantly increased in adipose tissue of obese compared to lean pregnant women. ER stress was also increased in adipose tissue of women with GDM compared to BMI-matched normal glucose tolerant (NGT women. Thapsigargin, an ER stress activator, induced upregulated secretion of mature IL-1α and IL-1β in human omental adipose tissue explants primed with bacterial endotoxin LPS, the viral dsRNA analogue poly(I:C or the pro-inflammatory cytokine TNF-α. Inhibition of capase-1 with Ac-YVAD-CHO resulted in decreased IL-1α and IL-1β secretion, whereas inhibition of pannexin-1 with carbenoxolone suppressed IL-1β secretion only. Treatment with anti-diabetic drugs metformin and glibenclamide also reduced IL-1α and IL-1β secretion in infection and cytokine-primed adipose tissue. In conclusion, this study has demonstrated ER stress to activate the inflammasome in pregnant adipose tissue. Therefore, increased ER stress may contribute towards the pathophysiology of obesity in pregnancy and GDM.

  3. Microwave plasma mode conversion

    International Nuclear Information System (INIS)

    Torres, H.S.; Sakanaka, P.H.; Villarroel, C.H.

    1985-01-01

    The behavior of hot electrons during the process of laser-produced plasma is studied. The basic equations of mode conversion from electromagnetic waves to electrostatic waves are presented. It is shown by mode conversion, that, the resonant absorption and parametric instabilities appear simultaneously, but in different plasma regions. (M.C.K.) [pt

  4. Azacytidine and miR156 promote rooting in adult but not in juvenile Arabidopsis tissues.

    Science.gov (United States)

    Massoumi, Mehdi; Krens, Frans A; Visser, Richard G F; De Klerk, Geert-Jan M

    2017-01-01

    Poor adventitious root (AR) formation is a major obstacle in micropropagation and conventional vegetative propagation of many crops. It is affected by many endogenous and exogenous factors. With respect to endogenous factors, the phase change from juvenile to adult has a major influence on AR formation and rooting is usually much reduced or even fully inhibited in adult tissues. It has been reported that the phase change is characterized by an increase in DNA-methylation and a decrease in the expression of microRNA156 (miR156). In this paper, we examined the effect of azacytidine (AzaC) and miR156 on AR formation in adult and juvenile Arabidopsis tissues. To identify the ontogenetic state researchers have used flowering or leaf morphology. We have used the rootability which allows - in contrast with both other characteristics- to examine the ontogenetic state at the cellular level. Overexpression of miR156 promoted only the rooting of adult tissues indicating that the phase change-associated loss in tissues' competence to develop ARs is also under the control of miR156. Azacytidine inhibits DNA methylation during DNA replication. Azacytidine treatment also promoted AR formation in nonjuvenile tissues but had no or little effect in juvenile tissues. Its addition during seedling growth (by which all tissues become hypomethylated) or during the rooting treatment (by which only those cells become hypomethylated that are generated after taking the explant) are both effective in the promotion of rooting. An AzaC treatment may be useful in tissue culture for crops that are recalcitrant to root. Copyright © 2016 Elsevier GmbH. All rights reserved.

  5. Tanshinon IIA injection accelerates tissue expansion by reducing the formation of the fibrous capsule.

    Science.gov (United States)

    Yu, Qingxiong; Sheng, Lingling; Yang, Mei; Zhu, Ming; Huang, Xiaolu; Li, Qingfeng

    2014-01-01

    The tissue expansion technique has been applied to obtain new skin tissue to repair large defects in clinical practice. The implantation of tissue expander could initiate a host response to foreign body (FBR), which leads to fibrotic encapsulation around the expander and prolongs the period of tissue expansion. Tanshinon IIA (Tan IIA) has been shown to have anti-inflammation and immunoregulation effect. The rat tissue expansion model was used in this study to observe whether Tan IIA injection systematically could inhibit the FBR to reduce fibrous capsule formation and accelerate the process of tissue expansion. Forty-eight rats were randomly divided into the Tan IIA group and control group with 24 rats in each group. The expansion was conducted twice a week to maintain a capsule pressure of 60 mmHg. The expansion volume and expanded area were measured. The expanded tissue in the two groups was harvested, and histological staining was performed; proinflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) and transforming growth factor-β (TGF-β) were examined. The expansion volume and the expanded area in the Tan IIA group were greater than that of the control group. The thickness of the fibrous capsule in the Tan IIA group was reduced with no influence on the normal skin regeneration. Decreased infiltration of macrophages, lower level of TNF-α, IL-6, IL-1β and TGF-β, less proliferating myofibroblasts and enhanced neovascularization were observed in the Tan IIA group. Our findings indicated that the Tan IIA injection reduced the formation of the fibrous capsule and accelerated the process of tissue expansion by inhibiting the FBR.

  6. Tanshinon IIA injection accelerates tissue expansion by reducing the formation of the fibrous capsule.

    Directory of Open Access Journals (Sweden)

    Qingxiong Yu

    Full Text Available The tissue expansion technique has been applied to obtain new skin tissue to repair large defects in clinical practice. The implantation of tissue expander could initiate a host response to foreign body (FBR, which leads to fibrotic encapsulation around the expander and prolongs the period of tissue expansion. Tanshinon IIA (Tan IIA has been shown to have anti-inflammation and immunoregulation effect. The rat tissue expansion model was used in this study to observe whether Tan IIA injection systematically could inhibit the FBR to reduce fibrous capsule formation and accelerate the process of tissue expansion. Forty-eight rats were randomly divided into the Tan IIA group and control group with 24 rats in each group. The expansion was conducted twice a week to maintain a capsule pressure of 60 mmHg. The expansion volume and expanded area were measured. The expanded tissue in the two groups was harvested, and histological staining was performed; proinflammatory cytokines such as tumor necrosis factor-α (TNF-α, interleukin-6 (IL-6 and interleukin-1β (IL-1β and transforming growth factor-β (TGF-β were examined. The expansion volume and the expanded area in the Tan IIA group were greater than that of the control group. The thickness of the fibrous capsule in the Tan IIA group was reduced with no influence on the normal skin regeneration. Decreased infiltration of macrophages, lower level of TNF-α, IL-6, IL-1β and TGF-β, less proliferating myofibroblasts and enhanced neovascularization were observed in the Tan IIA group. Our findings indicated that the Tan IIA injection reduced the formation of the fibrous capsule and accelerated the process of tissue expansion by inhibiting the FBR.

  7. Conversing as Metaphor of Human Thinking: Is Mind like a Conversation?

    Science.gov (United States)

    Sorsana, Christine; Trognon, Alain

    2018-06-01

    How can researchers shape their ideas so that they understand the mind better? This theoretical paper discusses the merits of the conversation metaphor as a means of analyzing the human mind. We will develop arguments concerning conversation as i) a situated and distributed activity, ii) a "product" in perpetual construction, and iii) the amount of credence and belief we afford it. Finally, we will advocate for metaphorical tools that promote a more dynamic conceptualization of human thinking.

  8. Supplementation with xylanase and β-xylosidase to reduce xylo-oligomer and xylan inhibition of enzymatic hydrolysis of cellulose and pretreated corn stover

    Directory of Open Access Journals (Sweden)

    Qing Qing

    2011-06-01

    Full Text Available Abstract Background Hemicellulose is often credited with being one of the important physical barriers to enzymatic hydrolysis of cellulose, and acts by blocking enzyme access to the cellulose surface. In addition, our recent research has suggested that hemicelluloses, particularly in the form of xylan and its oligomers, can more strongly inhibit cellulase activity than do glucose and cellobiose. Removal of hemicelluloses or elimination of their negative effects can therefore become especially pivotal to achieving higher cellulose conversion with lower enzyme doses. Results In this study, cellulase was supplemented with xylanase and β-xylosidase to boost conversion of both cellulose and hemicellulose in pretreated biomass through conversion of xylan and xylo-oligomers to the less inhibitory xylose. Although addition of xylanase and β-xylosidase did not necessarily enhance Avicel hydrolysis, glucan conversions increased by 27% and 8% for corn stover pretreated with ammonia fiber expansion (AFEX and dilute acid, respectively. In addition, adding hemicellulase several hours before adding cellulase was more beneficial than later addition, possibly as a result of a higher adsorption affinity of cellulase and xylanase to xylan than glucan. Conclusions This key finding elucidates a possible mechanism for cellulase inhibition by xylan and xylo-oligomers and emphasizes the need to optimize the enzyme formulation for each pretreated substrate. More research is needed to identify advanced enzyme systems designed to hydrolyze different substrates with maximum overall enzyme efficacy.

  9. Conversational Styles and Misunderstanding in Cross-Sex Conversations in He’s Just Not That into You Movie

    OpenAIRE

    Ayu Nyoman Aryani

    2017-01-01

    Conversation is a social interaction among societies. In this case, gender differences in daily communication lead to men’s and women’s different point of views in performing styles of the conversations. Misunderstanding is likely to occur in crosssex conversations when the idea or thought are understood differently by men and women. This study was intended to analyze the use of conversational styles by men and women and also investigate the misunderstanding phenomena that happened in cross-s...

  10. Conversational evidence in therapeutic dialogue.

    Science.gov (United States)

    Strong, Tom; Busch, Robbie; Couture, Shari

    2008-07-01

    Family therapists' participation in therapeutic dialogue with clients is typically informed by evidence of how such dialogue is developing. In this article, we propose that conversational evidence, the kind that can be empirically analyzed using discourse analyses, be considered a contribution to widening psychotherapy's evidence base. After some preliminaries about what we mean by conversational evidence, we provide a genealogy of evaluative practice in psychotherapy, and examine qualitative evaluation methods for their theoretical compatibilities with social constructionist approaches to family therapy. We then move on to examine the notion of accomplishment in therapeutic dialogue given how such accomplishments can be evaluated using conversation analysis. We conclude by considering a number of research and pedagogical implications we associate with conversational evidence.

  11. Effective communication during difficult conversations.

    Science.gov (United States)

    Polito, Jacquelyn M

    2013-06-01

    A strong interest and need exist in the workplace today to master the skills of conducting difficult conversations. Theories and strategies abound, yet none seem to have found the magic formula with universal appeal and success. If it is such an uncomfortable skill to master is it better to avoid or initiate such conversations with employees? Best practices and evidence-based management guide us to the decision that quality improvement dictates effective communication, even when difficult. This brief paper will offer some suggestions for strategies to manage difficult conversations with employees. Mastering the skills of conducting difficult conversations is clearly important to keeping lines of communication open and productive. Successful communication skills may actually help to avert confrontation through employee engagement, commitment and appropriate corresponding behavior

  12. 5 CFR 536.303 - Geographic conversion.

    Science.gov (United States)

    2010-01-01

    ... after geographic conversion is the employee's existing payable rate of basic pay in effect immediately before the action. (b) Geographic conversion when a retained rate employee's official worksite is changed... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Geographic conversion. 536.303 Section...

  13. Uric Acid Secretion from Adipose Tissue and Its Increase in Obesity*

    Science.gov (United States)

    Tsushima, Yu; Nishizawa, Hitoshi; Tochino, Yoshihiro; Nakatsuji, Hideaki; Sekimoto, Ryohei; Nagao, Hirofumi; Shirakura, Takashi; Kato, Kenta; Imaizumi, Keiichiro; Takahashi, Hiroyuki; Tamura, Mizuho; Maeda, Norikazu; Funahashi, Tohru; Shimomura, Iichiro

    2013-01-01

    Obesity is often accompanied by hyperuricemia. However, purine metabolism in various tissues, especially regarding uric acid production, has not been fully elucidated. Here we report, using mouse models, that adipose tissue could produce and secrete uric acid through xanthine oxidoreductase (XOR) and that the production was enhanced in obesity. Plasma uric acid was elevated in obese mice and attenuated by administration of the XOR inhibitor febuxostat. Adipose tissue was one of major organs that had abundant expression and activities of XOR, and adipose tissues in obese mice had higher XOR activities than those in control mice. 3T3-L1 and mouse primary mature adipocytes produced and secreted uric acid into culture medium. The secretion was inhibited by febuxostat in a dose-dependent manner or by gene knockdown of XOR. Surgical ischemia in adipose tissue increased local uric acid production and secretion via XOR, with a subsequent increase in circulating uric acid levels. Uric acid secretion from whole adipose tissue was increased in obese mice, and uric acid secretion from 3T3-L1 adipocytes was increased under hypoxia. Our results suggest that purine catabolism in adipose tissue could be enhanced in obesity. PMID:23913681

  14. Cell-cycle inhibition by Helicobacter pylori L-asparaginase.

    Directory of Open Access Journals (Sweden)

    Claudia Scotti

    Full Text Available Helicobacter pylori (H. pylori is a major human pathogen causing chronic gastritis, peptic ulcer, gastric cancer, and mucosa-associated lymphoid tissue lymphoma. One of the mechanisms whereby it induces damage depends on its interference with proliferation of host tissues. We here describe the discovery of a novel bacterial factor able to inhibit the cell-cycle of exposed cells, both of gastric and non-gastric origin. An integrated approach was adopted to isolate and characterise the molecule from the bacterial culture filtrate produced in a protein-free medium: size-exclusion chromatography, non-reducing gel electrophoresis, mass spectrometry, mutant analysis, recombinant protein expression and enzymatic assays. L-asparaginase was identified as the factor responsible for cell-cycle inhibition of fibroblasts and gastric cell lines. Its effect on cell-cycle was confirmed by inhibitors, a knockout strain and the action of recombinant L-asparaginase on cell lines. Interference with cell-cycle in vitro depended on cell genotype and was related to the expression levels of the concurrent enzyme asparagine synthetase. Bacterial subcellular distribution of L-asparaginase was also analysed along with its immunogenicity. H. pylori L-asparaginase is a novel antigen that functions as a cell-cycle inhibitor of fibroblasts and gastric cell lines. We give evidence supporting a role in the pathogenesis of H. pylori-related diseases and discuss its potential diagnostic application.

  15. 24 CFR 972.109 - Conversion of developments.

    Science.gov (United States)

    2010-04-01

    ... writing whether it has approved the conversion plan. Units that are vacant or vacated on or after the... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Conversion of developments. 972.109... DEVELOPMENT CONVERSION OF PUBLIC HOUSING TO TENANT-BASED ASSISTANCE Required Conversion of Public Housing...

  16. Doxycycline-loaded nanotube-modified adhesives inhibit MMP in a dose-dependent fashion.

    Science.gov (United States)

    Palasuk, Jadesada; Windsor, L Jack; Platt, Jeffrey A; Lvov, Yuri; Geraldeli, Saulo; Bottino, Marco C

    2018-04-01

    This article evaluated the drug loading, release kinetics, and matrix metalloproteinase (MMP) inhibition of doxycycline (DOX) released from DOX-loaded nanotube-modified adhesives. DOX was chosen as the model drug, since it is the only MMP inhibitor approved by the U.S. Food and Drug Administration. Drug loading into the nanotubes was accomplished using DOX solution at distinct concentrations. Increased concentrations of DOX significantly improved the amount of loaded DOX. The modified adhesives were fabricated by incorporating DOX-loaded nanotubes into the adhesive resin of a commercial product. The degree of conversion (DC), Knoop microhardness, DOX release kinetics, antimicrobial, cytocompatibility, and anti-MMP activity of the modified adhesives were investigated. Incorporation of DOX-loaded nanotubes did not compromise DC, Knoop microhardness, or cell compatibility. Higher concentrations of DOX led to an increase in DOX release in a concentration-dependent manner from the modified adhesives. DOX released from the modified adhesives did not inhibit the growth of caries-related bacteria, but more importantly, it did inhibit MMP-1 activity. The loading of DOX into the nanotube-modified adhesives did not compromise the physicochemical properties of the adhesives and the released levels of DOX were able to inhibit MMP activity without cytotoxicity. Doxycycline released from the nanotube-modified adhesives inhibited MMP activity in a concentration-dependent fashion. Therefore, the proposed nanotube-modified adhesive may hold clinical potential as a strategy to preserve resin/dentin bond stability.

  17. [Management of patients with conversion disorder].

    Science.gov (United States)

    Vermeulen, Marinus; Hoekstra, Jan; Kuipers-van Kooten, Mariëtte J; van der Linden, Els A M

    2014-01-01

    The symptoms of conversion disorder are not due to conscious simulation. There should be no doubt that the symptoms of conversion disorder are genuine, even if scans do not reveal any abnormalities. The management of patients with conversion disorder starts with an explanation of the diagnosis. The essence of this explanation is that patients first hear about what the diagnosis actually means and only after this about what they do not have. When explaining the diagnosis it is a good idea to use metaphors. The treatment of patients with conversion disorder is carried out together with a physical therapist. The collaboration of healthcare professionals who are involved in the treatment of a patient with conversion disorder should preferably be coordinated by the patient's general practitioner.

  18. Curcumin Inhibits Chondrocyte Hypertrophy of Mesenchymal Stem Cells through IHH and Notch Signaling Pathways.

    Science.gov (United States)

    Cao, Zhen; Dou, Ce; Dong, Shiwu

    2017-01-01

    Using tissue engineering technique to repair cartilage damage caused by osteoarthritis is a promising strategy. However, the regenerated tissue usually is fibrous cartilage, which has poor mechanical characteristics compared to hyaline cartilage. Chondrocyte hypertrophy plays an important role in this process. Thus, it is very important to find out a suitable way to maintain the phenotype of chondrocytes and inhibit chondrocyte hypertrophy. Curcumin deriving from turmeric was reported with anti-inflammatory and anti-tumor pharmacological effects. However, the role of curcumin in metabolism of chondrocytes, especially in the chondrocyte hypertrophy remains unclear. Mesenchymal stem cells (MSCs) are widely used in cartilage tissue engineering as seed cells. So we investigated the effect of curcumin on chondrogenesis and chondrocyte hypertrophy in MSCs through examination of cell viability, glycosaminoglycan synthesis and specific gene expression. We found curcumin had no effect on expression of chondrogenic markers including Sox9 and Col2a1 while hypertrophic markers including Runx2 and Col10a1 were down-regulated. Further exploration showed that curcumin inhibited chondrocyte hypertrophy through Indian hedgehog homolog (IHH) and Notch signalings. Our results indicated curcumin was a potential agent in modulating cartilage homeostasis and maintaining chondrocyte phenotype.

  19. Mono-carboxylate conversion coatings for AZ31 Mg alloy protection

    Energy Technology Data Exchange (ETDEWEB)

    Frignani, A.; Grassi, V.; Zucchi, F.; Zanotto, F. [Corrosion Study Centre A. Dacco, University of Ferrara (Italy)

    2011-11-15

    Conversion coatings on a magnesium alloy were obtained by dipping AZ31 specimens in aqueous solutions of sodium salts of mono-carboxylic acids (stearic, palmitic, myristic, lauric, mono-carboxylate ion concentration from 1 to 5 mM, depending on the salt solubility) for 24 and 72 h at room temperature, or 24 h at 50 C. The influence exerted by the treatment time, bath temperature and alkyl chain length on the efficiency of these coatings was studied. The performances of the coatings were evaluated by potentiodynamic polarization curve recording after 1 h immersion in 0.05 M Na{sub 2}SO{sub 4} solution, while their temporal evolution was monitored by electrochemical impedance spectroscopy (EIS) spectra during 24 h. Further and long lasting tests were carried out also in 0.1 M NaCl solution. The efficiency of the coatings depended on the aliphatic chain length, and increased as the treatment time and the bath temperature were increased. The coating of lower homologue only hindered the cathodic process, while those of the higher homologues markedly inhibited the anodic process too. The best performances were displayed by 24 h-50 C stearic conversion coating, which maintained a very high efficiency for over 800 h immersion in 0.05 M sulphate solution. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Energy conversion alternatives study

    Science.gov (United States)

    Shure, L. T.

    1979-01-01

    Comparison of coal based energy systems is given. Study identifies and compares various advanced energy conversion systems using coal or coal derived fuels for baselaoad electric power generation. Energy Conversion Alternatives Study (ECAS) reports provede government, industry, and general public with technically consistent basis for comparison of system's options of interest for fossilfired electric-utility application.

  1. Analysis of internal conversion coefficients

    International Nuclear Information System (INIS)

    Coursol, N.; Gorozhankin, V.M.; Yakushev, E.A.; Briancon, C.; Vylov, Ts.

    2000-01-01

    An extensive database has been assembled that contains the three most widely used sets of calculated internal conversion coefficients (ICC): [Hager R.S., Seltzer E.C., 1968. Internal conversion tables. K-, L-, M-shell Conversion coefficients for Z=30 to Z=103, Nucl. Data Tables A4, 1-237; Band I.M., Trzhaskovskaya M.B., 1978. Tables of gamma-ray internal conversion coefficients for the K-, L- and M-shells, 10≤Z≤104, Special Report of Leningrad Nuclear Physics Institute; Roesel F., Fries H.M., Alder K., Pauli H.C., 1978. Internal conversion coefficients for all atomic shells, At. Data Nucl. Data Tables 21, 91-289] and also includes new Dirac-Fock calculations [Band I.M. and Trzhaskovskaya M.B., 1993. Internal conversion coefficients for low-energy nuclear transitions, At. Data Nucl. Data Tables 55, 43-61]. This database is linked to a computer program to plot ICCs and their combinations (sums and ratios) as a function of Z and energy, as well as relative deviations of ICC or their combinations for any pair of tabulated data. Examples of these analyses are presented for the K-shell and total ICCs of the gamma-ray standards [Hansen H.H., 1985. Evaluation of K-shell and total internal conversion coefficients for some selected nuclear transitions, Eur. Appl. Res. Rept. Nucl. Sci. Tech. 11.6 (4) 777-816] and for the K-shell and total ICCs of high multipolarity transitions (total, K-, L-, M-shells of E3 and M3 and K-shell of M4). Experimental data sets are also compared with the theoretical values of these specific calculations

  2. Irisin inhibition of growth hormone secretion in cultured tilapia pituitary cells.

    Science.gov (United States)

    Lian, Anji; Li, Xin; Jiang, Quan

    2017-01-05

    Irisin, the product of fibronectin type III domain-containing protein 5 (FNDC5) gene, is well-documented to be a regulator of energy metabolism. At present, not much is known about its biological function in non-mammalian species. In this study, a full-length tilapia FDNC5 was cloned and its tissue expression pattern has been confirmed. Based on the sequence obtained, we produced and purified recombinant irisin which could induce uncoupling protein 1 (UCP1) gene expression in tilapia hepatocytes. Further, the rabbit polyclonal irisin antiserum was produced and its specificity was confirmed by antiserum preabsorption. In tilapia pituitary cells, irisin inhibited growth hormone (GH) gene expression and secretion and triggered rapid phosphorylation of Akt, Erk1/2, and p38 MAPK. Furthermore, irisin-inhibited GH mRNA expression could be prevented by inhibiting PI3K/Akt, MEK1/2, and p38 MAPK, respectively. Apparently, fish irisin can act directly at the pituitary level to inhibit GH transcript expression via multiple signaling pathways. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Binding of tissue plasminogen activator to human umbilical vein endothelial cells

    International Nuclear Information System (INIS)

    Beebe, D.P.

    1987-01-01

    The binding of purified, recombinant tissue plasminogen activator (tPA) to human umbilical vein endothelial cells (HUVEC) was studied in vitro using immunofluorescence as well as radiolabeled tPA. Immunofluorescence was performed on HUVEC grown on round glass coverslips using rabbit anti-human tPA and fluorescein-conjugated anti-rabbit immunoglobulin. Positive fluorescence was observed only after incubation of HUVEC with tPA. HUVEC were grown to confluence in 24-well tissue culture plates, washed, and incubated with a constant amount of 125 I-tPA and various concentrations of unlabeled tPA. The binding of tPA to HUVEC was found to be specific, saturable, and reversible. Scatchard analysis yielded as equilibrium constant (K/sub eq/) of 4.2 x 10 6 M -1 and 1.2 x 10 7 binding sites per cell. Binding was inhibited by positively charged amino acids and by D-phenylalanyl-L-prolyl-L-arginine chloromethyl ketone but not by carbohydrates including mannose, galactose, N-acetyl glucosamine and N-acetyl galactosamine. Neat human plasma abrogates but does not totally inhibit binding of tPA to HUVEC. Binding was neither enhanced nor inhibited by fibronectin. Although the affinity of binding of tPA to HUVEC is low, the endothelial cell may be involved in regulating plasma levels of tPA in vivo which may have therapeutic significance

  4. Inhibition of inducible Nitric Oxide Synthase by a mustard gas analog in murine macrophages

    Directory of Open Access Journals (Sweden)

    Smith Milton

    2006-11-01

    Full Text Available Abstract Background 2-Chloroethyl ethyl sulphide (CEES is a sulphur vesicating agent and an analogue of the chemical warfare agent 2,2'-dichlorodiethyl sulphide, or sulphur mustard gas (HD. Both CEES and HD are alkylating agents that influence cellular thiols and are highly toxic. In a previous publication, we reported that lipopolysaccharide (LPS enhances the cytotoxicity of CEES in murine RAW264.7 macrophages. In the present investigation, we studied the influence of CEES on nitric oxide (NO production in LPS stimulated RAW264.7 cells since NO signalling affects inflammation, cell death, and wound healing. Murine macrophages stimulated with LPS produce NO almost exclusively via inducible nitric oxide synthase (iNOS activity. We suggest that the influence of CEES or HD on the cellular production of NO could play an important role in the pathophysiological responses of tissues to these toxicants. In particular, it is known that macrophage generated NO synthesised by iNOS plays a critical role in wound healing. Results We initially confirmed that in LPS stimulated RAW264.7 macrophages NO is exclusively generated by the iNOS form of nitric oxide synthase. CEES treatment inhibited the synthesis of NO (after 24 hours in viable LPS-stimulated RAW264.7 macrophages as measured by either nitrite secretion into the culture medium or the intracellular conversion of 4,5-diaminofluorescein diacetate (DAF-2DA or dichlorofluorescin diacetate (DCFH-DA. Western blots showed that CEES transiently decreased the expression of iNOS protein; however, treatment of active iNOS with CEES in vitro did not inhibit its enzymatic activity Conclusion CEES inhibits NO production in LPS stimulated macrophages by decreasing iNOS protein expression. Decreased iNOS expression is likely the result of CEES induced alteration in the nuclear factor kappa B (NF-κB signalling pathway. Since NO can act as an antioxidant, the CEES induced down-regulation of iNOS in LPS

  5. Dopamine inhibition of anterior pituitary adenylate cyclase is mediated through the high-affinity state of the D2 receptor

    International Nuclear Information System (INIS)

    Borgundvaag, B.; George, S.R.

    1985-01-01

    The diterpinoid forskolin stimulated adenylate cyclase activity (measured by conversion of [ 3 H]-ATP to [ 3 H]-cAMP) in anterior pituitary from male and female rats. Inhibition of stimulated adenylate cyclase activity by potent dopaminergic agonists was demonstrable only in female anterior pituitary. The inhibition of adenylate cyclase activity displayed a typically dopaminergic rank order of agonist potencies and could be completely reversed by a specific dopamine receptor antagonist. The IC 50 values of dopamine agonist inhibition of adenylate cyclase activity correlated with equal molarity with the dissociation constant of the high-affinity dopamine agonist-detected receptor binding site and with the IC 50 values for inhibition of prolactin secretion. These findings support the hypothesis that it is the high-affinity form of the D 2 dopamine receptor in anterior pituitary which is responsible for mediating the dopaminergic function of attenuating adenylate cyclase activity. 12 references, 4 figures, 1 table

  6. ITE inhibits growth of human pulmonary artery endothelial cells.

    Science.gov (United States)

    Pang, Ling-Pin; Li, Yan; Zou, Qing-Yun; Zhou, Chi; Lei, Wei; Zheng, Jing; Huang, Shi-An

    2017-10-01

    Pulmonary arterial hypertension (PAH), a deadly disorder is associated with excessive growth of human pulmonary artery endothelial (HPAECs) and smooth muscle (HPASMCs) cells. Current therapies primarily aim at promoting vasodilation, which only ameliorates clinical symptoms without a cure. 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) is an endogenous aryl hydrocarbon receptor (AhR) ligand, and mediates many cellular function including cell growth. However, the roles of ITE in human lung endothelial cells remain elusive. Herein, we tested a hypothesis that ITE inhibits growth of human pulmonary artery endothelial cells via AhR. Immunohistochemistry was performed to localize AhR expression in human lung tissues. The crystal violet method and MTT assay were used to determine ITE's effects on growth of HPAECs. The AhR activation in HPAECs was confirmed using Western blotting and RT-qPCR. The role of AhR in ITE-affected proliferation of HPAECs was assessed using siRNA knockdown method followed by the crystal violet method. Immunohistochemistry revealed that AhR was present in human lung tissues, primarily in endothelial and smooth muscle cells of pulmonary veins and arteries, as well as in bronchial and alveolar sac epithelia. We also found that ITE dose- and time-dependently inhibited proliferation of HPAECs with a maximum inhibition of 83% at 20 µM after 6 days of treatment. ITE rapidly decreased AhR protein levels, while it increased mRNA levels of cytochrome P450 (CYP), family 1, member A1 (CYP1A1) and B1 (CYP1B1), indicating activation of the AhR/CYP1A1 and AhR/CYP1B1 pathways in HPAECs. The AhR siRNA significantly suppressed AhR protein expression, whereas it did not significantly alter ITE-inhibited growth of HPAECs. ITE suppresses growth of HPAECs independent of AhR, suggesting that ITE may play an important role in preventing excessive growth of lung endothelial cells.

  7. [Hydroxylamine conversion by anammox enrichment].

    Science.gov (United States)

    Hu, Anhui; Zheng, Ping; Lu, Huifeng; Ding, Shuang; Wang, Caihua

    2010-04-01

    Hydroxylamine is an important intermediate product of anammox. This study was focused on the characteristics of hydroxylamine and nitrite conversions by anammox enrichment. The changes of nitrogenous substrates and related products with time were measured using batch tests with anammox enrichment as inoculum. Since hydroxylamine didn't react with nitrite in uninoculated control culture, these two compounds were chemically stable. Both of them decreased with time in anammox enrichment inoculated cultures, in which ammonia as intermediate product would be produced and converted with the maximum concentration being 0.338 mg/L. The total nitrogen concentration decreased from 4.694 mmol/L to 0.812 mmol/L with conversion rate 82.7% in the end. When hydroxylamine and nitrite concentrations were about 2.5 mmol/L respectively, the maximum specific sludge conversion rates of hydroxylamine was 0.535 mmol/(gVSS.h), which was 1.81 times bigger than that of ammonia in ammonia reaction system; the maximum specific sludge rate of total nitrogen was slightly higher than that in ammonia reaction system. When hydroxylamine concentration increased to 5.0 mmol/L, the hydroxylamine and nitrite conversion rates promoted by 26.7% and 120.7% respectively; and the maximum ammonia accumulated was 1.810 mmol/L. When nitrite concentration increased to 5.0 mmol/L, the hydroxylamine and nitrite conversion rates promoted by 6.9% and 9.0% respectively; and the maximum ammonia accumulated was 0.795 mmol/L. Anammox enrichment was capable of converting hydroxylamine and nitrite simultaneously and had the higher conversion rate of hydroxylamine than ammonia conversion rate. Hydroxylamine and nitrite conversion rates were less affected by increase in nitrite concentration, but more significantly influenced by increase in hydroxylamine. The maximum ammonia concentration accumulated would rise as the result of increasing both hydroxylamine and nitrite. The result of experiment was consistent with pathway

  8. Low intensity 635 nm diode laser irradiation inhibits fibroblast-myofibroblast transition reducing TRPC1 channel expression/activity: New perspectives for tissue fibrosis treatment.

    Science.gov (United States)

    Sassoli, Chiara; Chellini, Flaminia; Squecco, Roberta; Tani, Alessia; Idrizaj, Eglantina; Nosi, Daniele; Giannelli, Marco; Zecchi-Orlandini, Sandra

    2016-03-01

    Low-level laser therapy (LLLT) or photobiomodulation therapy is emerging as a promising new therapeutic option for fibrosis in different damaged and/or diseased organs. However, the anti-fibrotic potential of this treatment needs to be elucidated and the cellular and molecular targets of the laser clarified. Here, we investigated the effects of a low intensity 635 ± 5 nm diode laser irradiation on fibroblast-myofibroblast transition, a key event in the onset of fibrosis, and elucidated some of the underlying molecular mechanisms. NIH/3T3 fibroblasts were cultured in a low serum medium in the presence of transforming growth factor (TGF)-β1 and irradiated with a 635 ± 5 nm diode laser (continuous wave, 89 mW, 0.3 J/cm(2) ). Fibroblast-myofibroblast differentiation was assayed by morphological, biochemical, and electrophysiological approaches. Expression of matrix metalloproteinase (MMP)-2 and MMP-9 and of Tissue inhibitor of MMPs, namely TIMP-1 and TIMP-2, after laser exposure was also evaluated by confocal immunofluorescence analyses. Moreover, the effect of the diode laser on transient receptor potential canonical channel (TRPC) 1/stretch-activated channel (SAC) expression and activity and on TGF-β1/Smad3 signaling was investigated. Diode laser treatment inhibited TGF-β1-induced fibroblast-myofibroblast transition as judged by reduction of stress fibers formation, α-smooth muscle actin (sma) and type-1 collagen expression and by changes in electrophysiological properties such as resting membrane potential, cell capacitance and inwardly rectifying K(+) currents. In addition, the irradiation up-regulated the expression of MMP-2 and MMP-9 and downregulated that of TIMP-1 and TIMP-2 in TGF-β1-treated cells. This laser effect was shown to involve TRPC1/SAC channel functionality. Finally, diode laser stimulation and TRPC1 functionality negatively affected fibroblast-myofibroblast transition by interfering with TGF-β1 signaling, namely reducing the

  9. A tiered approach to evaluate an iodine recycling inhibition adverse outcome pathway (AOP) in amphibians

    Science.gov (United States)

    The enzyme iodotyrosine deiodinase (dehalogenase, IYD) catalyzes iodide recycling and promotes iodide retention in thyroid follicular cells. Loss of function or chemical inhibition of IYD reduces thyroid hormone synthesis, which leads to insufficiency in tissues and subsequent ne...

  10. Microbial Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, Merry [American Society for Microbiology (ASM), Washington, DC (United States); Wall, Judy D. [Univ. of Missouri, Columbia, MO (United States)

    2006-10-01

    The American Academy of Microbiology convened a colloquium March 10-12, 2006, in San Francisco, California, to discuss the production of energy fuels by microbial conversions. The status of research into various microbial energy technologies, the advantages and disadvantages of each of these approaches, research needs in the field, and education and training issues were examined, with the goal of identifying routes for producing biofuels that would both decrease the need for fossil fuels and reduce greenhouse gas emissions. Currently, the choices for providing energy are limited. Policy makers and the research community must begin to pursue a broader array of potential energy technologies. A diverse energy portfolio that includes an assortment of microbial energy choices will allow communities and consumers to select the best energy solution for their own particular needs. Funding agencies and governments alike need to prepare for future energy needs by investing both in the microbial energy technologies that work today and in the untested technologies that will serve the world’s needs tomorrow. More mature bioprocesses, such as ethanol production from starchy materials and methane from waste digestors, will find applications in the short term. However, innovative techniques for liquid fuel or biohydrogen production are among the longer term possibilities that should also be vigorously explored, starting now. Microorganisms can help meet human energy needs in any of a number of ways. In their most obvious role in energy conversion, microorganisms can generate fuels, including ethanol, hydrogen, methane, lipids, and butanol, which can be burned to produce energy. Alternatively, bacteria can be put to use in microbial fuel cells, where they carry out the direct conversion of biomass into electricity. Microorganisms may also be used some day to make oil and natural gas technologies more efficient by sequestering carbon or by assisting in the recovery of oil and

  11. The epithelial-mesenchymal interactions: insights into physiological and pathological aspects of oral tissues

    Directory of Open Access Journals (Sweden)

    Arvind Babu Rajendra Santosh

    2014-03-01

    Full Text Available In the human biological system, the individual cells divide and form tissues and organs. These tissues are hetero-cellular. Basically any tissue consists of an epithelium and the connective tissue. The latter contains mainly mesenchymally-derived tissues with a diversified cell population. The cell continues to grow and differentiate in a pre-programmed manner using a messenger system. The epithelium and the mesenchymal portion of each tissue have two different origins and perform specific functions, but there is a well-defined interaction mechanism, which mediates between them. Epithelial mesenchymal interactions (EMIs are part of this mechanism, which can be regarded as a biological conversation between epithelial and mesenchymal cell populations involved in the cellular differentiation of one or both cell populations. EMIs represent a process that is essential for cell growth, cell differentiation and cell multiplication. EMIs are associated with normal physiological processes in the oral cavity, such as odontogenesis, dentino-enamel junction formation, salivary gland development, palatogenesis, and also pathological processes, such as oral cancer. This paper focuses the role EMIs in odontogenesis, salivary gland development, palatogenesis and oral cancer.

  12. Long Non-Coding RNA MEG3 Inhibits Cell Proliferation and Induces Apoptosis in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Gang Luo

    2015-11-01

    Full Text Available Background/Aims: Long non-coding RNAs (lncRNAs play important roles in diverse biological processes, such as cell growth, apoptosis and migration. Although downregulation of lncRNA maternally expressed gene 3 (MEG3 has been identified in several cancers, little is known about its role in prostate cancer progression. The aim of this study was to detect MEG3 expression in clinical prostate cancer tissues, investigate its biological functions in the development of prostate cancer and the underlying mechanism. Methods: MEG3 expression levels were detected by qRT-PCR in both tumor tissues and adjacent non-tumor tissues from 21 prostate cancer patients. The effects of MEG3 on PC3 and DU145 cells were assessed by MTT assay, colony formation assay, western blot and flow cytometry. Transfected PC3 cells were transplanted into nude mice, and the tumor growth curves were determined. Results: MEG3 decreased significantly in prostate cancer tissues relative to adjacent normal tissues. MEG3 inhibited intrinsic cell survival pathway in vitro and in vivo by reducing the protein expression of Bcl-2, enhancing Bax and activating caspase 3. We further demonstrated that MEG3 inhibited the expression of cell cycle regulatory protein Cyclin D1 and induced cell cycle arrest in G0/G1 phase. Conclusions: Our study presents an important role of MEG3 in the molecular etiology of prostate cancer and implicates the potential application of MEG3 in prostate cancer therapy.

  13. Determination of the potency of a novel saw palmetto supercritical CO2 extract (SPSE for 5α-reductase isoform II inhibition using a cell-free in vitro test system

    Directory of Open Access Journals (Sweden)

    Pais P

    2016-04-01

    Full Text Available Pilar Pais, Agustí Villar, Santiago Rull Euromed, Barcelona, Spain Background: The nicotinamide adenine dinucleotide phosphate-dependent membrane protein 5α-reductase catalyses the conversion of testosterone to the most potent androgen – 5α-dihydrotestosterone. Two 5α-reductase isoenzymes are expressed in humans: type I and type II. The latter is found primarily in prostate tissue. Saw palmetto extract (SPE has been used extensively in the treatment of lower urinary tract symptoms secondary to benign prostatic hyperplasia (BPH. The pharmacological effects of SPE include the inhibition of 5α-reductase, as well as anti-inflammatory and antiproliferative effects. Clinical studies of SPE have been inconclusive – some have shown significant results, and others have not – possibly the result of varying bioactivities of the SPEs used in the studies. Purpose: To determine the in vitro potency in a cell-free test system of a novel SP supercritical CO2 extract (SPSE, an inhibitor of the 5α-reductase isoenzyme type II. Materials and methods: The inhibitory potency of SPSE was compared to that of finasteride, an approved 5α-reductase inhibitor, on the basis of the enzymatic conversion of the substrate androstenedione to the 5α-reduced product 5α-androstanedione. Results: By concentration-dependent inhibition of 5α-reductase type II in vitro (half-maximal inhibitory concentration 3.58±0.05 µg/mL, SPSE demonstrated competitive binding toward the active site of the enzyme. Finasteride, the approved 5α-reductase inhibitor tested as positive control, led to 63%–75% inhibition of 5α-reductase type II. Conclusion: SPSE effectively inhibits the enzyme that has been linked to BPH, and the amount of extract required for activity is comparatively low. It can be confirmed from the results of this study that SPSE has bioactivity that promotes prostate health at a level that is superior to that of many other phytotherapeutic extracts. The

  14. MicroRNA-144-3p suppresses gastric cancer progression by inhibiting epithelial-to-mesenchymal transition through targeting PBX3

    International Nuclear Information System (INIS)

    Li, Butian; Zhang, Shengping; Shen, Hao; Li, Chenglong

    2017-01-01

    MicroRNAs are aberrantly expressed in a wide variety of human cancers. The present study aims to elucidate the effects and molecular mechanisms of miR-144-3p that underlie gastric cancer (GC) development. It was observed that miR-144-3p expression was significantly decreased in GC tissues compared to that in paired non-tumor tissues; moreover, its expression was lower in tissues of advanced stage and larger tumor size, as well as in lymph node metastasis tissues compared to that in control groups. miR-144-3p expression was associated with depth of invasion (P = 0.030), tumor size (P = 0.047), lymph node metastasis (P = 0.047), and TNM stage (P = 0.048). Additionally, miR-144-3p significantly inhibited proliferation, migration, and invasion in GC cells. It also reduced F-actin expression and suppressed epithelial-to-mesenchymal transition (EMT) in GC cells. Furthermore, pre-leukemia transcription factor 3 (PBX3) was a direct target gene of miR-144-3p. PBX3 was overexpressed in GC tissues and promoted EMT in GC cells. The effects of miR-144-3p mimics or inhibitors on cell migration, invasion, and proliferation were reversed by PBX3 overexpression or downregulation respectively. These results suggest that miR-144-3p suppresses GC progression by inhibiting EMT through targeting PBX3. - Highlights: • miR-144-3p is downregulated in gastric cancer tissues and associated with malignant clinical factors. • miR-144-3p inhibits proliferation, migration, and invasion in gastric cancer cells. • PBX3 is a direct target of miR-144-3p and promotes EMT in gastric cancer. • miR-144-3p suppresses EMT in gastric cancer by regulating PBX3.

  15. 5 CFR 534.506 - Conversion provisions.

    Science.gov (United States)

    2010-01-01

    ... conversion, other than to the minimum rate under 5 U.S.C. 5376, the increase must be approved by the head of... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Conversion provisions. 534.506 Section... OTHER SYSTEMS Pay for Senior-Level and Scientific and Professional Positions § 534.506 Conversion...

  16. 47 CFR 80.761 - Conversion graphs.

    Science.gov (United States)

    2010-10-01

    ... MARITIME SERVICES Standards for Computing Public Coast Station VHF Coverage § 80.761 Conversion graphs. The following graphs must be employed where conversion from one to the other of the indicated types of units is... 47 Telecommunication 5 2010-10-01 2010-10-01 false Conversion graphs. 80.761 Section 80.761...

  17. Dose conversion factors for inhalation applicable to the mining and milling of radioactive ores

    International Nuclear Information System (INIS)

    Hartley, B.M.

    1992-01-01

    The ICRP recommended revised dose limits for exposure to ionising radiation in November 1990. As well as reducing the annual occupational dose equivalent limit to an average of 20 mSv over 5 years, modified organ weighting factors were recommended, reflecting improved understanding of cancer risk factors for tissues and organs. The adjustment of weighting factors means that derived air concentrations conversion factors and annual limits on intake for exposure to airborne radionuclides are not simply modified by the ratio of the old to the new limits. A recalculation of these factors for radionuclides of interest in the mining and milling of radioactive ores is presented. A computer program for this purpose, based on the ICRP 30 inhalation model, is described. Rapid calculations of dose conversion factors are possible for the naturally occurring radionuclides in the 235 U, 238 U and 232 Th decay chains for which data are given in the supplements to ICRP 30. 7 refs., 12 tabs., 5 figs

  18. Micro-mechanical model for the tension-stabilized enzymatic degradation of collagen tissues

    Science.gov (United States)

    Nguyen, Thao; Ruberti, Jeffery

    We present a study of how the collagen fiber structure influences the enzymatic degradation of collagen tissues. Experiments of collagen fibrils and tissues show that mechanical tension can slow and halt enzymatic degradation. Tissue-level experiments also show that degradation rate is minimum at a stretch level coincident with the onset of strain-stiffening in the stress response. To understand these phenomena, we developed a micro-mechanical model of a fibrous collagen tissue undergoing enzymatic degradation. Collagen fibers are described as sinusoidal elastica beams, and the tissue is described as a distribution of fibers. We assumed that the degradation reaction is inhibited by the axial strain energy of the crimped collagen fibers. The degradation rate law was calibrated to experiments on isolated single fibrils from bovine sclera. The fiber crimp and properties were fit to uniaxial tension tests of tissue strips. The fibril-level kinetic and tissue-level structural parameters were used to predict tissue-level degradation-induced creep rate under a constant applied force. We showed that we could accurately predict the degradation-induce creep rate of the pericardium and cornea once we accounted for differences in the fiber crimp structure and properties.

  19. 11β-Hydroxysteroid Dehydrogenases: Intracellular Gate-Keepers of Tissue Glucocorticoid Action

    Science.gov (United States)

    Chapman, Karen; Holmes, Megan

    2013-01-01

    Glucocorticoid action on target tissues is determined by the density of “nuclear” receptors and intracellular metabolism by the two isozymes of 11β-hydroxysteroid dehydrogenase (11β-HSD) which catalyze interconversion of active cortisol and corticosterone with inert cortisone and 11-dehydrocorticosterone. 11β-HSD type 1, a predominant reductase in most intact cells, catalyzes the regeneration of active glucocorticoids, thus amplifying cellular action. 11β-HSD1 is widely expressed in liver, adipose tissue, muscle, pancreatic islets, adult brain, inflammatory cells, and gonads. 11β-HSD1 is selectively elevated in adipose tissue in obesity where it contributes to metabolic complications. Similarly, 11β-HSD1 is elevated in the ageing brain where it exacerbates glucocorticoid-associated cognitive decline. Deficiency or selective inhibition of 11β-HSD1 improves multiple metabolic syndrome parameters in rodent models and human clinical trials and similarly improves cognitive function with ageing. The efficacy of inhibitors in human therapy remains unclear. 11β-HSD2 is a high-affinity dehydrogenase that inactivates glucocorticoids. In the distal nephron, 11β-HSD2 ensures that only aldosterone is an agonist at mineralocorticoid receptors (MR). 11β-HSD2 inhibition or genetic deficiency causes apparent mineralocorticoid excess and hypertension due to inappropriate glucocorticoid activation of renal MR. The placenta and fetus also highly express 11β-HSD2 which, by inactivating glucocorticoids, prevents premature maturation of fetal tissues and consequent developmental “programming.” The role of 11β-HSD2 as a marker of programming is being explored. The 11β-HSDs thus illuminate the emerging biology of intracrine control, afford important insights into human pathogenesis, and offer new tissue-restricted therapeutic avenues. PMID:23899562

  20. Kinetic study on the inhibition of xanthine oxidase by acylated derivatives of flavonoids synthesised enzymatically.

    Science.gov (United States)

    de Araújo, Maria Elisa Melo Branco; Franco, Yollanda Edwirges Moreira; Alberto, Thiago Grando; Messias, Marcia Cristina Fernandes; Leme, Camila Wielewski; Sawaya, Alexandra Christine Helena Frankland; Carvalho, Patricia de Oliveira

    2017-12-01

    Studies have reported that flavonoids inhibit xanthine oxidase (XO) activity; however, poor solubility and stability in lipophilic media limit their bioavailability and applications. This study evaluated the kinetic parameters of XO inhibition and partition coefficients of flavonoid esters biosynthesised from hesperidin, naringin, and rutin via enzymatic acylation with hexanoic, octanoic, decanoic, lauric, and oleic acids catalysed by Candida antarctica lipase B (CALB). Quantitative determination by ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) showed higher conversion yields (%) for naringin and rutin esters using acyl donors with 8C and 10C. Rutin decanoate had higher partition coefficients (0.95), and naringin octanoate and naringin decanoate showed greater inhibitory effects on XO (IC 50 of 110.35 and 117.51 μM, respectively). Kinetic analysis showed significant differences (p flavonoids before and after acylation regarding K m values, whereas the values for V max were the same, implying the competitive nature of XO inhibition.

  1. Neural correlates of saccadic inhibition in healthy elderly and patients with amnestic mild cognitive impairment

    Science.gov (United States)

    Alichniewicz, K. K.; Brunner, F.; Klünemann, H. H.; Greenlee, M. W.

    2013-01-01

    Performance on tasks that require saccadic inhibition declines with age and altered inhibitory functioning has also been reported in patients with Alzheimer's disease. Although mild cognitive impairment (MCI) is assumed to be a high-risk factor for conversion to AD, little is known about changes in saccadic inhibition and its neural correlates in this condition. Our study determined whether the neural activation associated with saccadic inhibition is altered in persons with amnestic mild cognitive impairment (aMCI). Functional magnetic resonance imaging (fMRI) revealed decreased activation in parietal lobe in healthy elderly persons compared to young persons and decreased activation in frontal eye fields in aMCI patients compared to healthy elderly persons during the execution of anti-saccades. These results illustrate that the decline in inhibitory functions is associated with impaired frontal activation in aMCI. This alteration in function might reflect early manifestations of AD and provide new insights in the neural activation changes that occur in pathological ageing. PMID:23898312

  2. Treatment of near-skull brain tissue with a focused device using shear-mode conversion: a numerical study

    International Nuclear Information System (INIS)

    Pichardo, Samuel; Hynynen, Kullervo

    2007-01-01

    Shear mode transmission through the skull has been previously proposed as a new trans-skull propagation technique for noninvasive therapeutic ultrasound (Clement 2004 J. Acoust. Soc. Am. 115 1356-64). The main advantage of choosing shear over longitudinal mode resides on the fact that there is less wavefront distortion with the former. In the present study, the regions of the brain suitable for shear-mode transmission were established for a simple focused ultrasound device. The device consists of a spherically curved transducer that has a focal length of 10 cm, an aperture between 30 0 and 60 0 and operates at 0.74 MHz. The regions suitable for shear-mode transmission were determined by the shear wave acoustic windows that matched the shape of the device acoustic field. The acoustic windows were calculated using segmentation and triangulation of outer and inner faces of skull from 3D-MRI head datasets. Nine heads of healthy adults were analyzed. The surface considered for the calculations was the head region found above the supra-orbital margin. For every inspected point in the brain volume, the axis of the device was determined by the vector between this inspection point and a point located in the center of the brain. Numerical predictions of the acoustic field, where shear-mode conversion through the skull was considered, were obtained and compared to the case of water-only conditions. The brain tissue that is close to the skull showed suitable acoustic windows for shear waves. The central region of the brain seems to be unreachable using shear-mode. Analysis of the acoustic fields showed a proportional relation between the acoustic window for shear mode and the effective degree of focusing. However, this relation showed significant differences among specimens. In general, highly focused fields were obtained when the acoustic window for shear waves (A SW ) intersected more than 67% of the entering acoustic window (A TX ) of the device. The average depth from the

  3. Fluorescent Photo-conversion: A second chance to label unique cells.

    Science.gov (United States)

    Mellott, Adam J; Shinogle, Heather E; Moore, David S; Detamore, Michael S

    2015-03-01

    Not all cells behave uniformly after treatment in tissue engineering studies. In fact, some treated cells display no signs of treatment or show unique characteristics not consistent with other treated cells. What if the "unique" cells could be isolated from a treated population, and further studied? Photo-convertible reporter proteins, such as Dendra2 , allow for the ability to selectively identify unique cells with a secondary label within a primary labeled treated population. In the current study, select cells were identified and labeled through photo-conversion of Dendra2 -transfected human Wharton's Jelly cells (hWJCs) for the first time. Robust photo-conversion of green-to-red fluorescence was achieved consistently in arbitrarily selected cells, allowing for precise cell identification of select hWJCs. The current study demonstrates a method that offers investigators the opportunity to selectively label and identify unique cells within a treated population for further study or isolation from the treatment population. Photo-convertible reporter proteins, such as Dendra2 , offer the ability over non-photo-convertible reporter proteins, such as green fluorescent protein, to analyze unique individual cells within a treated population, which allows investigators to gain more meaningful information on how a treatment affects all cells within a target population.

  4. The Conversion of Wiswesser Line Notations to Ring Codes. I. The Conversion of Ring Systems

    Science.gov (United States)

    Granito, Charles E.; And Others

    1972-01-01

    The computerized conversion of Wiswesser Line Notations to Ring Codes, using a two-part approach, and the set of computer programs generated for the conversion of ring systems are described. (9 references) (Author)

  5. The conversational interface talking to smart devices

    CERN Document Server

    McTear, Michael; Griol, David

    2016-01-01

    This book provides a comprehensive introduction to the conversational interface, which is becoming the main mode of interaction with virtual personal assistants, smart devices, various types of wearables, and social robots. The book consists of four parts: Part I presents the background to conversational interfaces, examining past and present work on spoken language interaction with computers; Part II covers the various technologies that are required to build a conversational interface along with practical chapters and exercises using open source tools; Part III looks at interactions with smart devices, wearables, and robots, and then goes on to discusses the role of emotion and personality in the conversational interface; Part IV examines methods for evaluating conversational interfaces and discusses future directions. · Presents a comprehensive overview of the various technologies that underlie conversational user interfaces; · Combines descriptions of conversational user interface technologies with a gui...

  6. Adenoviral gene transfer of angiostatic ATF-BPTI inhibits tumour growth

    International Nuclear Information System (INIS)

    Lefesvre, Pierre; Attema, Joline; Bekkum, Dirk van

    2002-01-01

    The outgrowth of new vessels – angiogenesis – in the tumour mass is considered to be a limiting factor of tumour growth. To inhibit the matrix lysis that is part of the tumour angiogenesis, we employed the chimeric protein mhATF-BPTI, composed of the receptor binding part of the urokinase (ATF) linked to an inhibitor of plasmin (BPTI). For delivery, recombinant adenovirus encoding the transgene of interest was injected intravenously or locally into the tumour. The anti tumour effect of this compound was compared to that of human endostatin and of mhATF alone in two different rat bronchial carcinomas growing either as subcutaneous implants or as metastases. Significant inhibition of the tumour growth and decrease of the number of lung metastasis was achieved when the concentration of mhATF-BPTI at the tumour site was above 400 of ng / g tissue. This concentration could be achieved via production by the liver, only if permissive to the recombinant adenovirus. When the tumour cells could be transduced, local delivery of the vector was enough to obtain a response. In the case of metastasis, the capacity of the lung tissue to concentrate the encoded protein was essential to reach the required therapeutic levels. Further, endostatin or mhATF could not reproduce the effects of mhATF-BPTI, at similar concentrations (mhATF) and even at 10-fold higher concentration (endostatin). The ATF-BPTI was shown to inhibit tumour growth of different rat lung tumours when critical concentration was reached. In these tumour models, endostatin or ATF induce almost no tumour response

  7. Dose conversion factors

    International Nuclear Information System (INIS)

    Kocher, D.C.; Eckerman, K.F.

    1992-01-01

    The following is discussed in this report: concepts and quantities used in calculating radiation dose from internal and external exposure. Tabulations of dose conversion factor for internal and external exposure to radionuclides. Dose conversion factors give dose per unit intake (internal) or dose per unit concentration in environment (external). Intakes of radionuclides for internal exposure and concentrations of radionuclides in environment for external exposure are assumed to be known. Intakes and concentrations are obtained, e.g., from analyses of environmental transport and exposure pathways. differences between dosimetry methods for radionuclides and hazardous chemicals are highlighted

  8. Magnetohydrodynamic energy conversion

    International Nuclear Information System (INIS)

    Rosa, R.J.

    1987-01-01

    The object of this book is to present a review of the basic principles and practical aspects of magnetohydrodynamic (MHD) energy conversion. The author has tried to give qualitative semiphysical arguments where possible for the benefit of the reader who is unfamiliar with plasma physics. The aim of MHD energy conversion is to apply to a specific practical goal a part of what has become a vast area of science called plasma physics. The author has attempted to note in the text where a broader view might be fruitful and to give appropriate references

  9. Effects of 5,5'-diphenylhydantoin on thyroxine and 3,5,3'-triiodothyronine concentrations in several tissues of the rat

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder-van der Elst, J.Pv.; van der Heide, D. (University Hospital, Leiden (Netherlands))

    1990-01-01

    We studied the effect of 5,5'-diphenylhydantoin (phenytoin, DPH) on the metabolism of thyroid hormones, the intracellular concentration of T4, and the source and concentration of T3. Two groups of six male Wistar rats received a continuous infusion of 10 ml saline/rat. day. One group received DPH in their food (50 mg/kg BW) for 20 days. For both groups (125I)T4 and (131I)T3 were added to the infusion fluid for the last 10 and 7 days, respectively. At isotopic equilibrium the rats were bled and perfused. Compared to the controls, plasma T4 and T3 in the DPH group were reduced (22% and 31%, respectively); TSH did not change. The rate of production of T4 and the plasma appearance rate for T3 were decreased. Thyroidal T3 production was markedly reduced. From the increased (125I)T3/(125I)T4 ratio for plasma, it follows that total body conversion was enhanced. The tissue T4 concentrations decreased in parallel with the plasma T4 level. Total T3 was reduced in all organs. In tissues in which local conversion does not occur, i.e. heart and muscle, the decrease reflected the decrease in plasma T3. In the liver both plasma-derived T3 and locally produced T3 were diminished. In cerebellum and brain the plasma-derived T3 pool was even smaller than was expected from the decrease in plasma T3. This was partly compensated by an increase in local conversion. Only for these two organs was the decrease in the tissue/plasma ratio for (131I)T3 significant. Our results suggest tissue hypothyroidism, caused by a decrease in the production of T4 and T3, which is partly compensated by increased conversion in several organs. The transport of T3 into cerebellum and brain is disturbed, which can be attributed to the mode of action of DPH.

  10. Mycobacterium tuberculosis nuoG is a virulence gene that inhibits apoptosis of infected host cells.

    Directory of Open Access Journals (Sweden)

    Kamalakannan Velmurugan

    2007-07-01

    Full Text Available The survival and persistence of Mycobacterium tuberculosis depends on its capacity to manipulate multiple host defense pathways, including the ability to actively inhibit the death by apoptosis of infected host cells. The genetic basis for this anti-apoptotic activity and its implication for mycobacterial virulence have not been demonstrated or elucidated. Using a novel gain-of-function genetic screen, we demonstrated that inhibition of infection-induced apoptosis of macrophages is controlled by multiple genetic loci in M. tuberculosis. Characterization of one of these loci in detail revealed that the anti-apoptosis activity was attributable to the type I NADH-dehydrogenase of M. tuberculosis, and was mainly due to the subunit of this multicomponent complex encoded by the nuoG gene. Expression of M. tuberculosis nuoG in nonpathogenic mycobacteria endowed them with the ability to inhibit apoptosis of infected human or mouse macrophages, and increased their virulence in a SCID mouse model. Conversely, deletion of nuoG in M. tuberculosis ablated its ability to inhibit macrophage apoptosis and significantly reduced its virulence in mice. These results identify a key component of the genetic basis for an important virulence trait of M. tuberculosis and support a direct causal relationship between virulence of pathogenic mycobacteria and their ability to inhibit macrophage apoptosis.

  11. Blind-date Conversation Joining

    Directory of Open Access Journals (Sweden)

    Luca Cesari

    2013-07-01

    Full Text Available We focus on a form of joining conversations among multiple parties in service-oriented applications where a client may asynchronously join an existing conversation without need to know in advance any information about it. More specifically, we show how the correlation mechanism provided by orchestration languages enables a form of conversation joining that is completely transparent to clients and that we call 'blind-date joining'. We provide an implementation of this strategy by using the standard orchestration language WS-BPEL. We then present its formal semantics by resorting to COWS, a process calculus specifically designed for modelling service-oriented applications. We illustrate our approach by means of a simple, but realistic, case study from the online games domain.

  12. Tissue-specific biomass recalcitrance in corn stover pretreated with liquid hot-water: enzymatic hydrolysis (part 1).

    Science.gov (United States)

    Zeng, Meijuan; Ximenes, Eduardo; Ladisch, Michael R; Mosier, Nathan S; Vermerris, Wilfred; Huang, Chia-Ping; Sherman, Debra M

    2012-02-01

    Lignin content, composition, distribution as well as cell wall thickness, structures, and type of tissue have a measurable effect on enzymatic hydrolysis of cellulose in lignocellulosic feedstocks. The first part of our work combined compositional analysis, pretreatment and enzyme hydrolysis for fractionated pith, rind, and leaf tissues from a hybrid stay-green corn, in order to identify the role of structural characteristics on enzyme hydrolysis of cell walls. The extent of enzyme hydrolysis follows the sequence rind cellulose to glucose in 24 h in the best cases. Physical fractionation of corn stalks or other C(4) grasses into soft and hard tissue types could reduce cost of cellulose conversion by enabling reduced enzyme loadings to hydrolyze soft tissue, and directing the hard tissue to other uses such as thermal processing, combustion, or recycle to the land from which the corn was harvested. Copyright © 2011 Wiley Periodicals, Inc.

  13. Biomass thermochemical conversion program: 1987 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1988-01-01

    The objective of the Biomass Thermochemical Conversion Program is to generate a base of scientific data and conversion process information that will lead to establishment of cost-effective processes for conversion of biomass resources into clean fuels. To accomplish this objective, in fiscal year 1987 the Thermochemical Conversion Program sponsored research activities in the following four areas: Liquid Hydrocarbon Fuels Technology; Gasification Technology; Direct Combustion Technology; Program Support Activities. In this report an overview of the Thermochemical Conversion Program is presented. Specific research projects are then described. Major accomplishments for 1987 are summarized.

  14. Biomass thermochemical conversion program. 1985 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1986-01-01

    Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. The US Department of Energy (DOE) is sponsoring research on this conversion technology for renewable energy through its Biomass Thermochemical Conversion Program. The Program is part of DOE's Biofuels and Municipal Waste Technology Division, Office of Renewable Technologies. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1985. 32 figs., 4 tabs.

  15. The relationship between bone mineral density and adipose tissue of postmenopausal women

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Hwa [Dept. of Radiology, HwaMyeong Iisin christian Hospital, Busan (Korea, Republic of); Kim, Jung Hoon [Dept. of Radiological Science, Catholic University of Pusan, Busan (Korea, Republic of); Im, In Chul [Dept. of Radiological Science, Dong Eui University, Busan (Korea, Republic of)

    2017-06-15

    Postmenopausal women are at increased risk for osteoporosis and obesity due to changes in hormones. The relationship between osteoporosis and body weight is known, and its relation with body fat mass is discussed. The purpose of this study was to evaluate the bone mineral density(BMD) changes of epicardial adipose tissue(EAT) and abdominal subcutaneous fat. The subjects of this study were 160 postmenopausal women who underwent BMD and echocardiography. The thickness of the epicardial adipose tissue was measured in three sections and the BMD were meassured according to the diagnostic criteria. The results of this study that age increase the risk of osteoporosis increases, and as the weight and BMI decrease, the risk of osteoporosis increases(p<0.05). The relationship between changes in bone mineral density and adipose tissue in postmenopausal women, increased epicardial adipose tissue was negatively correlated with the bone mineral density(p<0.05). conversely, increased abdominal subcutaneous fat thickness was positively correlated with bone mineral density(p<0.05). In other words, the effect of bone mineral density on the location of adipose tissue was different. If Echocardiography is used to periodically examine changes in the thickness of the epicardial adipose tissue, it may be prevented before proceeding to osteoporosis.

  16. Conversational sensemaking

    Science.gov (United States)

    Preece, Alun; Webberley, Will; Braines, Dave

    2015-05-01

    Recent advances in natural language question-answering systems and context-aware mobile apps create opportunities for improved sensemaking in a tactical setting. Users equipped with mobile devices act as both sensors (able to acquire information) and effectors (able to act in situ), operating alone or in collectives. The currently- dominant technical approaches follow either a pull model (e.g. Apple's Siri or IBM's Watson which respond to users' natural language queries) or a push model (e.g. Google's Now which sends notifications to a user based on their context). There is growing recognition that users need more flexible styles of conversational interaction, where they are able to freely ask or tell, be asked or told, seek explanations and clarifications. Ideally such conversations should involve a mix of human and machine agents, able to collaborate in collective sensemaking activities with as few barriers as possible. Desirable capabilities include adding new knowledge, collaboratively building models, invoking specific services, and drawing inferences. As a step towards this goal, we collect evidence from a number of recent pilot studies including natural experiments (e.g. situation awareness in the context of organised protests) and synthetic experiments (e.g. human and machine agents collaborating in information seeking and spot reporting). We identify some principles and areas of future research for "conversational sensemaking".

  17. Mechanisms of Ectopic Gene Conversion

    Directory of Open Access Journals (Sweden)

    P.J. Hastings

    2010-11-01

    Full Text Available Gene conversion (conversion, the unidirectional transfer of DNA sequence information, occurs as a byproduct of recombinational repair of broken or damaged DNA molecules. Whereas excision repair processes replace damaged DNA by copying the complementary sequence from the undamaged strand of duplex DNA, recombinational mechanisms copy similar sequence, usually in another molecule, to replace the damaged sequence. In mitotic cells the other molecule is usually a sister chromatid, and the repair does not lead to genetic change. Less often a homologous chromosome or homologous sequence in an ectopic position is used. Conversion results from repair in two ways. First, if there was a double-strand gap at the site of a break, homologous sequence will be used as the template for synthesis to fill the gap, thus transferring sequence information in both strands. Second, recombinational repair uses complementary base pairing, and the heteroduplex molecule so formed is a source of conversion, both as heteroduplex and when donor (undamaged template information is retained after correction of mismatched bases in heteroduplex. There are mechanisms that favour the use of sister molecules that must fail before ectopic homology can be used. Meiotic recombination events lead to the formation of crossovers required in meiosis for orderly segregation of pairs of homologous chromosomes. These events result from recombinational repair of programmed double-strand breaks, but in contrast with mitotic recombination, meiotic recombinational events occur predominantly between homologous chromosomes, so that transfer of sequence differences by conversion is very frequent. Transient recombination events that do not form crossovers form both between homologous chromosomes and between regions of ectopic homology, and leave their mark in the occurrence of frequent non-crossover conversion, including ectopic conversion.

  18. Adiponectin inhibits insulin function in primary trophoblasts by PPARα-mediated ceramide synthesis.

    Science.gov (United States)

    Aye, Irving L M H; Gao, Xiaoli; Weintraub, Susan T; Jansson, Thomas; Powell, Theresa L

    2014-04-01

    Maternal adiponectin (ADN) levels are inversely correlated with birth weight, and ADN infusion in pregnant mice down-regulates placental nutrient transporters and decreases fetal growth. In contrast to the insulin-sensitizing effects in adipose tissue and muscle, ADN inhibits insulin signaling in the placenta. However, the molecular mechanisms involved are unknown. We hypothesized that ADN inhibits insulin signaling and insulin-stimulated amino acid transport in primary human trophoblasts by peroxisome proliferator-activated receptor-α (PPARα)-mediated ceramide synthesis. Primary human term trophoblast cells were treated with ADN and/or insulin. ADN increased the phosphorylation of p38 MAPK and PPARα. ADN inhibited insulin signaling and insulin-stimulated amino acid transport. This effect was dependent on PPARα, because activation of PPARα with an agonist (GW7647) inhibited insulin signaling and function, whereas PPARα-small interfering RNA reversed the effects of ADN on the insulin response. ADN increased ceramide synthase expression and stimulated ceramide production. C2-ceramide inhibited insulin signaling and function, whereas inhibition of ceramide synthase (with Fumonisin B1) reversed the effects of ADN on insulin signaling and amino acid transport. These findings are consistent with the model that maternal ADN limits fetal growth mediated by activation of placental PPARα and ceramide synthesis, which inhibits placental insulin signaling and amino acid transport, resulting in reduced fetal nutrient availability.

  19. Conversion factors and oil statistics

    International Nuclear Information System (INIS)

    Karbuz, Sohbet

    2004-01-01

    World oil statistics, in scope and accuracy, are often far from perfect. They can easily lead to misguided conclusions regarding the state of market fundamentals. Without proper attention directed at statistic caveats, the ensuing interpretation of oil market data opens the door to unnecessary volatility, and can distort perception of market fundamentals. Among the numerous caveats associated with the compilation of oil statistics, conversion factors, used to produce aggregated data, play a significant role. Interestingly enough, little attention is paid to conversion factors, i.e. to the relation between different units of measurement for oil. Additionally, the underlying information regarding the choice of a specific factor when trying to produce measurements of aggregated data remains scant. The aim of this paper is to shed some light on the impact of conversion factors for two commonly encountered issues, mass to volume equivalencies (barrels to tonnes) and for broad energy measures encountered in world oil statistics. This paper will seek to demonstrate how inappropriate and misused conversion factors can yield wildly varying results and ultimately distort oil statistics. Examples will show that while discrepancies in commonly used conversion factors may seem trivial, their impact on the assessment of a world oil balance is far from negligible. A unified and harmonised convention for conversion factors is necessary to achieve accurate comparisons and aggregate oil statistics for the benefit of both end-users and policy makers

  20. Conversational AI: The Science Behind the Alexa Prize

    OpenAIRE

    Ram, Ashwin; Prasad, Rohit; Khatri, Chandra; Venkatesh, Anu; Gabriel, Raefer; Liu, Qing; Nunn, Jeff; Hedayatnia, Behnam; Cheng, Ming; Nagar, Ashish; King, Eric; Bland, Kate; Wartick, Amanda; Pan, Yi; Song, Han

    2018-01-01

    Conversational agents are exploding in popularity. However, much work remains in the area of social conversation as well as free-form conversation over a broad range of domains and topics. To advance the state of the art in conversational AI, Amazon launched the Alexa Prize, a 2.5-million-dollar university competition where sixteen selected university teams were challenged to build conversational agents, known as socialbots, to converse coherently and engagingly with humans on popular topics ...