WorldWideScience

Sample records for tip-tilt speckle imager

  1. LOTTTTUCE: Layer Oriented Tip-Tilt Turbulence Tomography using Covariance and Elevation

    International Nuclear Information System (INIS)

    Lai, Olivier; Hayano, Yutaka; Oya, Shin; Chun, Mark; Lu, Jessica R; Toomey, Douglas

    2015-01-01

    LOTTTTUCE is based upon the fact that turbulence at the pupil produces correlated tip-tilt motion over the entire field (averaging the tip-tilt across the widest field possible gives the strength of the turbulence at the telescope), while the on-axis (any axis) image motion measures the integrated tip-tilt over the line of sight (single stars provide the variance of the tip-tilt, which allows to infer the integrated seeing). Between these two extremes, the amount of correlation across a given field size is the integral of the turbulence from the ground to the altitude where the tip-tilt decorrelates over the meta-pupil. Differentiating the altitude- integrated tip-tilt with respect to altitude generates an estimate of tip-tilt (hence turbulence, assuming Kolmogorov properties) at each altitude. Alternately, the 3D Fourier transform of a data cube containing the time evolution of the tip (or tilt) across the field allows to determine the amount of energy for “field” frequencies (in other words, the integrated seeing across each same size patches) and the temporal spectrum of each of these features. Differentiating the spectrum with respect to spatial frequency would provide the amount of energy, as well as speed and direction, of each layer. The LOTTTTUCE method is a novel method of measuring the vertical turbulence profile that uses wide field tip-tilt information such as that provided by Pan-STARRS. However, the method also has limitations due to tip-tilt decorrelation as a function of meta-pupil overlap, finite outer scale, and non-Kolmogorov power spectrum. (paper)

  2. Tip-tilt compensation: Resolution limits for ground-based telescopes using laser guide star adaptive optics

    International Nuclear Information System (INIS)

    Olivier, S.S.; Max, C.E.; Gavel, D.T.; Brase, J.M.

    1992-01-01

    The angular resolution of long-exposure images from ground-based telescopes equipped with laser guide star adaptive optics systems is fundamentally limited by the the accuracy with which the tip-tilt aberrations introduced by the atmosphere can be corrected. Assuming that a natural star is used as the tilt reference, the residual error due to tilt anisoplanatism can significantly degrade the long-exposure resolution even if the tilt reference star is separated from the object being imaged by a small angle. Given the observed distribution of stars in the sky, the need to find a tilt reference star quite close to the object restricts the fraction of the sky over which long-exposure images with diffraction limited resolution can be obtained. In this paper, the authors present a comprehensive performance analysis of tip-tilt compensation systems that use a natural star as a tilt reference, taking into account properties of the atmosphere and of the Galactic stellar populations, and optimizing over the system operating parameters to determine the fundamental limits to the long-exposure resolution. Their results show that for a ten meter telescope on Mauna Kea, if the image of the tilt reference star is uncorrected, about half the sky can be imaged in the V band with long-exposure resolution less than 60 milli-arc-seconds (mas), while if the image of the tilt reference star is fully corrected, about half the sky can be imaged in the V band with long-exposure resolution less than 16 mas. Furthermore, V band images long-exposure resolution of less than 16 mas may be obtained with a ten meter telescope on Mauna Kea for unresolved objects brighter than magnitude 22 that are fully corrected by a laser guide star adaptive optics system. This level of resolution represents about 70% of the diffraction limit of a ten meter telescope in the V band and is more than a factor of 45 better than the median seeing in the V band on Mauna Kea

  3. Speckle imaging algorithms for planetary imaging

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, E. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    I will discuss the speckle imaging algorithms used to process images of the impact sites of the collision of comet Shoemaker-Levy 9 with Jupiter. The algorithms use a phase retrieval process based on the average bispectrum of the speckle image data. High resolution images are produced by estimating the Fourier magnitude and Fourier phase of the image separately, then combining them and inverse transforming to achieve the final result. I will show raw speckle image data and high-resolution image reconstructions from our recent experiment at Lick Observatory.

  4. Single macroscopic pillars as model system for bioinspired adhesives: influence of tip dimension, aspect ratio, and tilt angle.

    Science.gov (United States)

    Micciché, Maurizio; Arzt, Eduard; Kroner, Elmar

    2014-05-28

    The goal of our study is to better understand the design parameters of bioinspired dry adhesives inspired by geckos. For this, we fabricated single macroscopic pillars of 400 μm diameter with different aspect ratios and different tip shapes (i.e., flat tips, spherical tips with different radii, and mushroom tips with different diameters). Tilt-angle-dependent adhesion measurements showed that although the tip shape of the pillars strongly influences the pull-off force, the pull-off strength is similar for flat and mushroom-shaped tips. We found no tilt-angle dependency of adhesion for spherical tip structures and, except for high tilt angle and low preload experiments, no tilt-angle effect for mushroom-tip pillars. For flat-tip pillars, we found a strong influence of tilt angle on adhesion, which decreased linearly with increasing aspect ratio. The experiments show that for the tested aspect ratios between 1 and 5, a linear decrease of tilt-angle dependency is found. The results of our studies will help to design bioinspired adhesives for application on smooth and rough surfaces.

  5. Tip-tilt disturbance model identification based on non-linear least squares fitting for Linear Quadratic Gaussian control

    Science.gov (United States)

    Yang, Kangjian; Yang, Ping; Wang, Shuai; Dong, Lizhi; Xu, Bing

    2018-05-01

    We propose a method to identify tip-tilt disturbance model for Linear Quadratic Gaussian control. This identification method based on Levenberg-Marquardt method conducts with a little prior information and no auxiliary system and it is convenient to identify the tip-tilt disturbance model on-line for real-time control. This identification method makes it easy that Linear Quadratic Gaussian control runs efficiently in different adaptive optics systems for vibration mitigation. The validity of the Linear Quadratic Gaussian control associated with this tip-tilt disturbance model identification method is verified by experimental data, which is conducted in replay mode by simulation.

  6. Speckle imaging of globular clusters

    International Nuclear Information System (INIS)

    Sams, B.J. III

    1990-01-01

    Speckle imaging is a powerful tool for high resolution astronomy. Its application to the core regions of globular clusters produces high resolution stellar maps of the bright stars, but is unable to image the faint stars which are most reliable dynamical indicators. The limits on resolving these faint, extended objects are physical, not algorithmic, and cannot be overcome using speckle. High resolution maps may be useful for resolving multicomponent stellar systems in the cluster centers. 30 refs

  7. Speckle pattern processing by digital image correlation

    Directory of Open Access Journals (Sweden)

    Gubarev Fedor

    2016-01-01

    Full Text Available Testing the method of speckle pattern processing based on the digital image correlation is carried out in the current work. Three the most widely used formulas of the correlation coefficient are tested. To determine the accuracy of the speckle pattern processing, test speckle patterns with known displacement are used. The optimal size of a speckle pattern template used for determination of correlation and corresponding the speckle pattern displacement is also considered in the work.

  8. An adaptive Kalman filter for speckle reductions in ultrasound images

    International Nuclear Information System (INIS)

    Castellini, G.; Labate, D.; Masotti, L.; Mannini, E.; Rocchi, S.

    1988-01-01

    Speckle is the term used to describe the granular appearance found in ultrasound images. The presence of speckle reduces the diagnostic potential of the echographic technique because it tends to mask small inhomogeneities of the investigated tissue. We developed a new method of speckle reductions that utilizes an adaptive one-dimensional Kalman filter based on the assumption that the observed image can be considered as a superimposition of speckle on a ''true images''. The filter adaptivity, necessary to avoid loss of resolution, has been obtained by statistical considerations on the local signal variations. The results of the applications of this particular Kalman filter, both on A-Mode and B-MODE images, show a significant speckle reduction

  9. Development and applications of a two-dimensional tip-tilting stage system with nanoradian-level positioning resolution

    Energy Technology Data Exchange (ETDEWEB)

    Shu Deming, E-mail: shu@aps.anl.gov [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Lee, Wah-Keat; Liu, Wenjun [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Ice, Gene E. [MST Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6132 (United States); Shvyd' ko, Yuri; Kim, Kwang-Je [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2011-09-01

    In this paper, designs of a novel rotary weak-link stage for a vertical rotation axis and a two-dimensional tip-tilting system are presented. Applications of these new stage systems include: an advanced X-ray stereo imaging instrument for particle tracking velocimetry, an alignment stage system for hard X-ray nano-focusing Montel mirror optics, and an ultra-precision crystal manipulator for cryo-cooling optical cavities of an X-ray free-electron-laser oscillator (XFELO).

  10. Phase-processing as a tool for speckle reduction in pulse-echo images

    DEFF Research Database (Denmark)

    Healey, AJ; Leeman, S; Forsberg, F

    1991-01-01

    . Traditional speckle reduction procedures regard speckle correction as a stochastic process and trade image smoothing (resolution loss) for speckle reduction. Recently, a new phase acknowledging technique has been proposed that is unique in its ability to correct for speckle interference with no image......Due to the coherent nature of conventional ultrasound medical imaging systems interference artefacts occur in pulse echo images. These artefacts are generically termed 'speckle'. The phenomenon may severely limit low contrast resolution with clinically relevant information being obscured...

  11. Statistical Image Recovery From Laser Speckle Patterns With Polarization Diversity

    Science.gov (United States)

    2010-09-01

    several techniques for speckle suppression in optical imaging [19]. However, averaging nonimaged laser speckle patterns does not yield the same result...Comparison”. Applied Optics , 21(15):2758–2769, August 1982. 13. Fienup, James R. “Image Formation from Nonimaged Laser Speckle Patterns”. S. R. Robinson...6 ν Optical Frequency . . . . . . . . . . . . . . . . . . . . . . 6 t Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 ϕ

  12. Laser Speckle Contrast Imaging: theory, instrumentation and applications.

    Science.gov (United States)

    Senarathna, Janaka; Rege, Abhishek; Li, Nan; Thakor, Nitish V

    2013-01-01

    Laser Speckle Contrast Imaging (LSCI) is a wide field of view, non scanning optical technique for observing blood flow. Speckles are produced when coherent light scattered back from biological tissue is diffracted through the limiting aperture of focusing optics. Mobile scatterers cause the speckle pattern to blur; a model can be constructed by inversely relating the degree of blur, termed speckle contrast to the scatterer speed. In tissue, red blood cells are the main source of moving scatterers. Therefore, blood flow acts as a virtual contrast agent, outlining blood vessels. The spatial resolution (~10 μm) and temporal resolution (10 ms to 10 s) of LSCI can be tailored to the application. Restricted by the penetration depth of light, LSCI can only visualize superficial blood flow. Additionally, due to its non scanning nature, LSCI is unable to provide depth resolved images. The simple setup and non-dependence on exogenous contrast agents have made LSCI a popular tool for studying vascular structure and blood flow dynamics. We discuss the theory and practice of LSCI and critically analyze its merit in major areas of application such as retinal imaging, imaging of skin perfusion as well as imaging of neurophysiology.

  13. Multiple speckle illumination for optical-resolution photoacoustic imaging

    Science.gov (United States)

    Poisson, Florian; Stasio, Nicolino; Moser, Christophe; Psaltis, Demetri; Bossy, Emmanuel

    2017-03-01

    Optical-resolution photoacoustic microscopy offers exquisite and specific contrast to optical absorption. Conventional approaches generally involves raster scanning a focused spot over the sample. Here, we demonstrate that a full-field illumination approach with multiple speckle illumination can also provide diffraction-limited optical-resolution photoacoustic images. Two different proof-of-concepts are demonstrated with micro-structured test samples. The first approach follows the principle of correlation/ghost imaging,1, 2 and is based on cross-correlating photoacoustic signals under multiple speckle illumination with known speckle patterns measured during a calibration step. The second approach is a speckle scanning microscopy technique, which adapts the technique proposed in fluorescence microscopy by Bertolotti and al.:3 in our work, spatially unresolved photoacoustic measurements are performed for various translations of unknown speckle patterns. A phase-retrieval algorithm is used to reconstruct the object from the knowledge of the modulus of its Fourier Transform yielded by the measurements. Because speckle patterns naturally appear in many various situations, including propagation through biological tissue or multi-mode fibers (for which focusing light is either very demanding if not impossible), speckle-illumination-based photoacoustic microscopy provides a powerful framework for the development of novel reconstruction approaches, well-suited to compressed sensing approaches.2

  14. Statistical characterization of speckle noise in coherent imaging systems

    Science.gov (United States)

    Yaroslavsky, Leonid; Shefler, A.

    2003-05-01

    Speckle noise imposes fundamental limitation on image quality in coherent radiation based imaging and optical metrology systems. Speckle noise phenomena are associated with properties of objects to diffusely scatter irradiation and with the fact that in recording the wave field, a number of signal distortions inevitably occur due to technical limitations inherent to hologram sensors. The statistical theory of speckle noise was developed with regard to only limited resolving power of coherent imaging devices. It is valid only asymptotically as much as the central limit theorem of the probability theory can be applied. In applications this assumption is not always applicable. Moreover, in treating speckle noise problem one should also consider other sources of the hologram deterioration. In the paper, statistical properties of speckle due to the limitation of hologram size, dynamic range and hologram signal quantization are studied by Monte-Carlo simulation for holograms recorded in near and far diffraction zones. The simulation experiments have shown that, for limited resolving power of the imaging system, widely accepted opinion that speckle contrast is equal to one holds only for rather severe level of the hologram size limitation. For moderate limitations, speckle contrast changes gradually from zero for no limitation to one for limitation to less than about 20% of hologram size. The results obtained for the limitation of the hologram sensor"s dynamic range and hologram signal quantization reveal that speckle noise due to these hologram signal distortions is not multiplicative and is directly associated with the severity of the limitation and quantization. On the base of the simulation results, analytical models are suggested.

  15. Simulations of multi-contrast x-ray imaging using near-field speckles

    Energy Technology Data Exchange (ETDEWEB)

    Zdora, Marie-Christine [Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, 85748 Garching (Germany); Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, United Kingdom and Department of Physics & Astronomy, University College London, London, WC1E 6BT (United Kingdom); Thibault, Pierre [Department of Physics & Astronomy, University College London, London, WC1E 6BT (United Kingdom); Herzen, Julia; Pfeiffer, Franz [Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, 85748 Garching (Germany); Zanette, Irene [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE (United Kingdom); Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, 85748 Garching (Germany)

    2016-01-28

    X-ray dark-field and phase-contrast imaging using near-field speckles is a novel technique that overcomes limitations inherent in conventional absorption x-ray imaging, i.e. poor contrast for features with similar density. Speckle-based imaging yields a wealth of information with a simple setup tolerant to polychromatic and divergent beams, and simple data acquisition and analysis procedures. Here, we present a simulation software used to model the image formation with the speckle-based technique, and we compare simulated results on a phantom sample with experimental synchrotron data. Thorough simulation of a speckle-based imaging experiment will help for better understanding and optimising the technique itself.

  16. Laser speckle imaging based on photothermally driven convection

    Science.gov (United States)

    Regan, Caitlin; Choi, Bernard

    2016-02-01

    Laser speckle imaging (LSI) is an interferometric technique that provides information about the relative speed of moving scatterers in a sample. Photothermal LSI overcomes limitations in depth resolution faced by conventional LSI by incorporating an excitation pulse to target absorption by hemoglobin within the vascular network. Here we present results from experiments designed to determine the mechanism by which photothermal LSI decreases speckle contrast. We measured the impact of mechanical properties on speckle contrast, as well as the spatiotemporal temperature dynamics and bulk convective motion occurring during photothermal LSI. Our collective data strongly support the hypothesis that photothermal LSI achieves a transient reduction in speckle contrast due to bulk motion associated with thermally driven convection. The ability of photothermal LSI to image structures below a scattering medium may have important preclinical and clinical applications.

  17. Speckle imaging using the principle value decomposition method

    International Nuclear Information System (INIS)

    Sherman, J.W.

    1978-01-01

    Obtaining diffraction-limited images in the presence of atmospheric turbulence is a topic of current interest. Two types of approaches have evolved: real-time correction and speckle imaging. A speckle imaging reconstruction method was developed by use of an ''optimal'' filtering approach. This method is based on a nonlinear integral equation which is solved by principle value decomposition. The method was implemented on a CDC 7600 for study. The restoration algorithm is discussed and its performance is illustrated. 7 figures

  18. Speckle Imaging of Binary Stars with Large-Format CCDs

    Science.gov (United States)

    Horch, E.; Ninkov, Z.; Slawson, R. W.; van Altena, W. F.; Meyer, R. D.; Girard, T. M.

    1997-12-01

    In the past, bare (unintensified) CCDs have not been widely used in speckle imaging for two main reasons: 1) the readout rate of most scientific-grade CCDs is too slow to be able to observe at the high frame rates necessary to capture speckle patterns efficiently, and 2) the read noise of CCDs limits the detectability of fainter objects where it becomes difficult to distinguish between speckles and noise peaks in the image. These facts have led to the current supremacy of intensified imaging systems (such as intensified-CCDs) in this field, which can typically be read out at video rates or faster. We have developed a new approach that uses a large format CCD not only to detect the incident photons but also to record many speckle patterns before the chip is read out. This approach effectively uses the large area of the CCD as a physical ``memory cache'' of previous speckle data frames. The method is described, and binary star observations from the University of Toronto Southern Observatory 60-cm telescope and the Wisconsin-Indiana-Yale-NOAO (WIYN) 3.5-m telescope are presented. Plans for future observing and instrumentation improvements are also outlined.

  19. Modeling laser speckle imaging of perfusion in the skin (Conference Presentation)

    Science.gov (United States)

    Regan, Caitlin; Hayakawa, Carole K.; Choi, Bernard

    2016-02-01

    Laser speckle imaging (LSI) enables visualization of relative blood flow and perfusion in the skin. It is frequently applied to monitor treatment of vascular malformations such as port wine stain birthmarks, and measure changes in perfusion due to peripheral vascular disease. We developed a computational Monte Carlo simulation of laser speckle contrast imaging to quantify how tissue optical properties, blood vessel depths and speeds, and tissue perfusion affect speckle contrast values originating from coherent excitation. The simulated tissue geometry consisted of multiple layers to simulate the skin, or incorporated an inclusion such as a vessel or tumor at different depths. Our simulation used a 30x30mm uniform flat light source to optically excite the region of interest in our sample to better mimic wide-field imaging. We used our model to simulate how dynamically scattered photons from a buried blood vessel affect speckle contrast at different lateral distances (0-1mm) away from the vessel, and how these speckle contrast changes vary with depth (0-1mm) and flow speed (0-10mm/s). We applied the model to simulate perfusion in the skin, and observed how different optical properties, such as epidermal melanin concentration (1%-50%) affected speckle contrast. We simulated perfusion during a systolic forearm occlusion and found that contrast decreased by 35% (exposure time = 10ms). Monte Carlo simulations of laser speckle contrast give us a tool to quantify what regions of the skin are probed with laser speckle imaging, and measure how the tissue optical properties and blood flow affect the resulting images.

  20. Speckle reduction in optical coherence tomography images based on wave atoms

    Science.gov (United States)

    Du, Yongzhao; Liu, Gangjun; Feng, Guoying; Chen, Zhongping

    2014-01-01

    Abstract. Optical coherence tomography (OCT) is an emerging noninvasive imaging technique, which is based on low-coherence interferometry. OCT images suffer from speckle noise, which reduces image contrast. A shrinkage filter based on wave atoms transform is proposed for speckle reduction in OCT images. Wave atoms transform is a new multiscale geometric analysis tool that offers sparser expansion and better representation for images containing oscillatory patterns and textures than other traditional transforms, such as wavelet and curvelet transforms. Cycle spinning-based technology is introduced to avoid visual artifacts, such as Gibbs-like phenomenon, and to develop a translation invariant wave atoms denoising scheme. The speckle suppression degree in the denoised images is controlled by an adjustable parameter that determines the threshold in the wave atoms domain. The experimental results show that the proposed method can effectively remove the speckle noise and improve the OCT image quality. The signal-to-noise ratio, contrast-to-noise ratio, average equivalent number of looks, and cross-correlation (XCOR) values are obtained, and the results are also compared with the wavelet and curvelet thresholding techniques. PMID:24825507

  1. Surface tension-induced PDMS micro-pillars with controllable tips and tilt angles

    KAUST Repository

    Li, Huawei; Fan, Yiqiang; Conchouso Gonzalez, David; Foulds, Ian G.

    2013-01-01

    This paper reports a novel method to fabricate three-dimensional (3D) polydimethylsiloxane (PDMS) micro-pillars using a CO2 laser-machined poly(methyl methacrylate) (PMMA) mold with through-holes. This method eliminates the requirements of expensive and complicated facilities to fabricate a 3D mold. The micro-pillars were formed by the capillary force that draws PDMS into the through-holes of the PMMA mold. The tilt angles of the micro-pillars depend on the tilt angles of the through-holes in the mold, and the concave and convex micro-lens tip shapes of the PDMS micro-pillars can be modified by changing the surface wettability of the PMMA through-holes.

  2. Surface tension-induced PDMS micro-pillars with controllable tips and tilt angles

    KAUST Repository

    Li, Huawei

    2013-12-21

    This paper reports a novel method to fabricate three-dimensional (3D) polydimethylsiloxane (PDMS) micro-pillars using a CO2 laser-machined poly(methyl methacrylate) (PMMA) mold with through-holes. This method eliminates the requirements of expensive and complicated facilities to fabricate a 3D mold. The micro-pillars were formed by the capillary force that draws PDMS into the through-holes of the PMMA mold. The tilt angles of the micro-pillars depend on the tilt angles of the through-holes in the mold, and the concave and convex micro-lens tip shapes of the PDMS micro-pillars can be modified by changing the surface wettability of the PMMA through-holes.

  3. Spiking cortical model-based nonlocal means method for speckle reduction in optical coherence tomography images

    Science.gov (United States)

    Zhang, Xuming; Li, Liu; Zhu, Fei; Hou, Wenguang; Chen, Xinjian

    2014-06-01

    Optical coherence tomography (OCT) images are usually degraded by significant speckle noise, which will strongly hamper their quantitative analysis. However, speckle noise reduction in OCT images is particularly challenging because of the difficulty in differentiating between noise and the information components of the speckle pattern. To address this problem, the spiking cortical model (SCM)-based nonlocal means method is presented. The proposed method explores self-similarities of OCT images based on rotation-invariant features of image patches extracted by SCM and then restores the speckled images by averaging the similar patches. This method can provide sufficient speckle reduction while preserving image details very well due to its effectiveness in finding reliable similar patches under high speckle noise contamination. When applied to the retinal OCT image, this method provides signal-to-noise ratio improvements of >16 dB with a small 5.4% loss of similarity.

  4. Integration of image exposure time into a modified laser speckle imaging method

    Energy Technology Data Exchange (ETDEWEB)

    RamIrez-San-Juan, J C; Salazar-Hermenegildo, N; Ramos-Garcia, R; Munoz-Lopez, J [Optics Department, INAOE, Puebla (Mexico); Huang, Y C [Department of Electrical Engineering and Computer Science, University of California, Irvine, CA (United States); Choi, B, E-mail: jcram@inaoep.m [Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA (United States)

    2010-11-21

    Speckle-based methods have been developed to characterize tissue blood flow and perfusion. One such method, called modified laser speckle imaging (mLSI), enables computation of blood flow maps with relatively high spatial resolution. Although it is known that the sensitivity and noise in LSI measurements depend on image exposure time, a fundamental disadvantage of mLSI is that it does not take into account this parameter. In this work, we integrate the exposure time into the mLSI method and provide experimental support of our approach with measurements from an in vitro flow phantom.

  5. Integration of image exposure time into a modified laser speckle imaging method

    International Nuclear Information System (INIS)

    RamIrez-San-Juan, J C; Salazar-Hermenegildo, N; Ramos-Garcia, R; Munoz-Lopez, J; Huang, Y C; Choi, B

    2010-01-01

    Speckle-based methods have been developed to characterize tissue blood flow and perfusion. One such method, called modified laser speckle imaging (mLSI), enables computation of blood flow maps with relatively high spatial resolution. Although it is known that the sensitivity and noise in LSI measurements depend on image exposure time, a fundamental disadvantage of mLSI is that it does not take into account this parameter. In this work, we integrate the exposure time into the mLSI method and provide experimental support of our approach with measurements from an in vitro flow phantom.

  6. M2 FILTER FOR SPECKLE NOISE SUPPRESSION IN BREAST ULTRASOUND IMAGES

    Directory of Open Access Journals (Sweden)

    E.S. Samundeeswari

    2016-11-01

    Full Text Available Breast cancer, commonly found in women is a serious life threatening disease due to its invasive nature. Ultrasound (US imaging method plays an effective role in screening early detection and diagnosis of Breast cancer. Speckle noise generally affects medical ultrasound images and also causes a number of difficulties in identifying the Region of Interest. Suppressing speckle noise is a challenging task as it destroys fine edge details. No specific filter is designed yet to get a noise free BUS image that is contaminated by speckle noise. In this paper M2 filter, a novel hybrid of linear and nonlinear filter is proposed and compared to other spatial filters with 3×3 kernel size. The performance of the proposed M2 filter is measured by statistical quantity parameters like MSE, PSNR and SSI. The experimental analysis clearly shows that the proposed M2 filter outperforms better than other spatial filters by 2% high PSNR values with regards to speckle suppression.

  7. NESSI and `Alopeke: Two new dual-channel speckle imaging instruments

    Science.gov (United States)

    Scott, Nicholas J.

    2018-01-01

    NESSI and `Alopeke are two new speckle imagers built at NASA's Ames Research Center for community use at the WIYN and Gemini telescopes, respectively. The two instruments are functionally similar and include the capability for wide-field imaging in additional to speckle interferometry. The diffraction-limited imaging available through speckle effectively eliminates distortions due to the presence of Earth's atmosphere by `freezing out' changes in the atmosphere by taking extremely short exposures and combining the resultant speckles in Fourier space. This technique enables angular resolutions equal to the theoretical best possible for a given telescope, effectively giving space-based resolution from the ground. Our instruments provide the highest spatial resolution available today on any single aperture telescope.A primary role of these instruments is exoplanet validation for the Kepler, K2, TESS, and many RV programs. Contrast ratios of 6 or more magnitudes are easily obtained. The instrument uses two emCCD cameras providing simultaneous dual-color observations help to characterize detected companions. High resolution imaging enables the identification of blended binaries that contaminate many exoplanet detections, leading to incorrectly measured radii. In this way small, rocky systems, such as Kepler-186b and the TRAPPIST-1 planet family, may be validated and thus the detected planets radii are correctly measured.

  8. Measurement of deformation field in CT specimen using laser speckle

    International Nuclear Information System (INIS)

    Jeon, Moon Chang; Kang, Ki Ju

    2001-01-01

    To obtain A 2 experimentally in the J-A 2 theory, deformation field on the lateral surface of a CT specimen was to be determined using laser speckle method. The crack growth was measured using direct current potential drop method and most procedure of experimental and data reduction was performed according to ASTM Standard E1737-96. Laser speckle images during crack propagation were monitored by two CCD cameras to cancel the effect of rotation and translation of the specimen. An algorithm to pursue displacement of a point from each image was developed and successfully used to measure A 2 continuously as the crack tip was propagated. The effects of specimen thickness on J-R curve and A 2 were explored

  9. Correcting for motion artifact in handheld laser speckle images

    Science.gov (United States)

    Lertsakdadet, Ben; Yang, Bruce Y.; Dunn, Cody E.; Ponticorvo, Adrien; Crouzet, Christian; Bernal, Nicole; Durkin, Anthony J.; Choi, Bernard

    2018-03-01

    Laser speckle imaging (LSI) is a wide-field optical technique that enables superficial blood flow quantification. LSI is normally performed in a mounted configuration to decrease the likelihood of motion artifact. However, mounted LSI systems are cumbersome and difficult to transport quickly in a clinical setting for which portability is essential in providing bedside patient care. To address this issue, we created a handheld LSI device using scientific grade components. To account for motion artifact of the LSI device used in a handheld setup, we incorporated a fiducial marker (FM) into our imaging protocol and determined the difference between highest and lowest speckle contrast values for the FM within each data set (Kbest and Kworst). The difference between Kbest and Kworst in mounted and handheld setups was 8% and 52%, respectively, thereby reinforcing the need for motion artifact quantification. When using a threshold FM speckle contrast value (KFM) to identify a subset of images with an acceptable level of motion artifact, mounted and handheld LSI measurements of speckle contrast of a flow region (KFLOW) in in vitro flow phantom experiments differed by 8%. Without the use of the FM, mounted and handheld KFLOW values differed by 20%. To further validate our handheld LSI device, we compared mounted and handheld data from an in vivo porcine burn model of superficial and full thickness burns. The speckle contrast within the burn region (KBURN) of the mounted and handheld LSI data differed by burns. Collectively, our results suggest the potential of handheld LSI with an FM as a suitable alternative to mounted LSI, especially in challenging clinical settings with space limitations such as the intensive care unit.

  10. Speckle correlation resolution enhancement of wide-field fluorescence imaging (Conference Presentation)

    Science.gov (United States)

    Yilmaz, Hasan

    2016-03-01

    Structured illumination enables high-resolution fluorescence imaging of nanostructures [1]. We demonstrate a new high-resolution fluorescence imaging method that uses a scattering layer with a high-index substrate as a solid immersion lens [2]. Random scattering of coherent light enables a speckle pattern with a very fine structure that illuminates the fluorescent nanospheres on the back surface of the high-index substrate. The speckle pattern is raster-scanned over the fluorescent nanospheres using a speckle correlation effect known as the optical memory effect. A series of standard-resolution fluorescence images per each speckle pattern displacement are recorded by an electron-multiplying CCD camera using a commercial microscope objective. We have developed a new phase-retrieval algorithm to reconstruct a high-resolution, wide-field image from several standard-resolution wide-field images. We have introduced phase information of Fourier components of standard-resolution images as a new constraint in our algorithm which discards ambiguities therefore ensures convergence to a unique solution. We demonstrate two-dimensional fluorescence images of a collection of nanospheres with a deconvolved Abbe resolution of 116 nm and a field of view of 10 µm × 10 µm. Our method is robust against optical aberrations and stage drifts, therefore excellent for imaging nanostructures under ambient conditions. [1] M. G. L. Gustafsson, J. Microsc. 198, 82-87 (2000). [2] H. Yilmaz, E. G. van Putten, J. Bertolotti, A. Lagendijk, W. L. Vos, and A. P. Mosk, Optica 2, 424-429 (2015).

  11. Multiresolution edge detection using enhanced fuzzy c-means clustering for ultrasound image speckle reduction

    Energy Technology Data Exchange (ETDEWEB)

    Tsantis, Stavros [Department of Medical Physics, School of Medicine, University of Patras, Rion, GR 26504 (Greece); Spiliopoulos, Stavros; Karnabatidis, Dimitrios [Department of Radiology, School of Medicine, University of Patras, Rion, GR 26504 (Greece); Skouroliakou, Aikaterini [Department of Energy Technology Engineering, Technological Education Institute of Athens, Athens 12210 (Greece); Hazle, John D. [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Kagadis, George C., E-mail: gkagad@gmail.com, E-mail: George.Kagadis@med.upatras.gr, E-mail: GKagadis@mdanderson.org [Department of Medical Physics, School of Medicine, University of Patras, Rion, GR 26504, Greece and Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States)

    2014-07-15

    Purpose: Speckle suppression in ultrasound (US) images of various anatomic structures via a novel speckle noise reduction algorithm. Methods: The proposed algorithm employs an enhanced fuzzy c-means (EFCM) clustering and multiresolution wavelet analysis to distinguish edges from speckle noise in US images. The edge detection procedure involves a coarse-to-fine strategy with spatial and interscale constraints so as to classify wavelet local maxima distribution at different frequency bands. As an outcome, an edge map across scales is derived whereas the wavelet coefficients that correspond to speckle are suppressed in the inverse wavelet transform acquiring the denoised US image. Results: A total of 34 thyroid, liver, and breast US examinations were performed on a Logiq 9 US system. Each of these images was subjected to the proposed EFCM algorithm and, for comparison, to commercial speckle reduction imaging (SRI) software and another well-known denoising approach, Pizurica's method. The quantification of the speckle suppression performance in the selected set of US images was carried out via Speckle Suppression Index (SSI) with results of 0.61, 0.71, and 0.73 for EFCM, SRI, and Pizurica's methods, respectively. Peak signal-to-noise ratios of 35.12, 33.95, and 29.78 and edge preservation indices of 0.94, 0.93, and 0.86 were found for the EFCM, SIR, and Pizurica's method, respectively, demonstrating that the proposed method achieves superior speckle reduction performance and edge preservation properties. Based on two independent radiologists’ qualitative evaluation the proposed method significantly improved image characteristics over standard baseline B mode images, and those processed with the Pizurica's method. Furthermore, it yielded results similar to those for SRI for breast and thyroid images significantly better results than SRI for liver imaging, thus improving diagnostic accuracy in both superficial and in-depth structures. Conclusions: A

  12. Multiresolution edge detection using enhanced fuzzy c-means clustering for ultrasound image speckle reduction

    International Nuclear Information System (INIS)

    Tsantis, Stavros; Spiliopoulos, Stavros; Karnabatidis, Dimitrios; Skouroliakou, Aikaterini; Hazle, John D.; Kagadis, George C.

    2014-01-01

    Purpose: Speckle suppression in ultrasound (US) images of various anatomic structures via a novel speckle noise reduction algorithm. Methods: The proposed algorithm employs an enhanced fuzzy c-means (EFCM) clustering and multiresolution wavelet analysis to distinguish edges from speckle noise in US images. The edge detection procedure involves a coarse-to-fine strategy with spatial and interscale constraints so as to classify wavelet local maxima distribution at different frequency bands. As an outcome, an edge map across scales is derived whereas the wavelet coefficients that correspond to speckle are suppressed in the inverse wavelet transform acquiring the denoised US image. Results: A total of 34 thyroid, liver, and breast US examinations were performed on a Logiq 9 US system. Each of these images was subjected to the proposed EFCM algorithm and, for comparison, to commercial speckle reduction imaging (SRI) software and another well-known denoising approach, Pizurica's method. The quantification of the speckle suppression performance in the selected set of US images was carried out via Speckle Suppression Index (SSI) with results of 0.61, 0.71, and 0.73 for EFCM, SRI, and Pizurica's methods, respectively. Peak signal-to-noise ratios of 35.12, 33.95, and 29.78 and edge preservation indices of 0.94, 0.93, and 0.86 were found for the EFCM, SIR, and Pizurica's method, respectively, demonstrating that the proposed method achieves superior speckle reduction performance and edge preservation properties. Based on two independent radiologists’ qualitative evaluation the proposed method significantly improved image characteristics over standard baseline B mode images, and those processed with the Pizurica's method. Furthermore, it yielded results similar to those for SRI for breast and thyroid images significantly better results than SRI for liver imaging, thus improving diagnostic accuracy in both superficial and in-depth structures. Conclusions: A

  13. Speckle suppression via sparse representation for wide-field imaging through turbid media.

    Science.gov (United States)

    Jang, Hwanchol; Yoon, Changhyeong; Chung, Euiheon; Choi, Wonshik; Lee, Heung-No

    2014-06-30

    Speckle suppression is one of the most important tasks in the image transmission through turbid media. Insufficient speckle suppression requires an additional procedure such as temporal ensemble averaging over multiple exposures. In this paper, we consider the image recovery process based on the so-called transmission matrix (TM) of turbid media for the image transmission through the media. We show that the speckle left unremoved in the TM-based image recovery can be suppressed effectively via sparse representation (SR). SR is a relatively new signal reconstruction framework which works well even for ill-conditioned problems. This is the first study to show the benefit of using the SR as compared to the phase conjugation (PC) a de facto standard method to date for TM-based imaging through turbid media including a live cell through tissue slice.

  14. Optoelectronic imaging of speckle using image processing method

    Science.gov (United States)

    Wang, Jinjiang; Wang, Pengfei

    2018-01-01

    A detailed image processing of laser speckle interferometry is proposed as an example for the course of postgraduate student. Several image processing methods were used together for dealing with optoelectronic imaging system, such as the partial differential equations (PDEs) are used to reduce the effect of noise, the thresholding segmentation also based on heat equation with PDEs, the central line is extracted based on image skeleton, and the branch is removed automatically, the phase level is calculated by spline interpolation method, and the fringe phase can be unwrapped. Finally, the imaging processing method was used to automatically measure the bubble in rubber with negative pressure which could be used in the tire detection.

  15. Three Dimensional Speckle Imaging Employing a Frequency-Locked Tunable Diode Laser

    Energy Technology Data Exchange (ETDEWEB)

    Cannon, Bret D.; Bernacki, Bruce E.; Schiffern, John T.; Mendoza, Albert

    2015-09-01

    We describe a high accuracy frequency stepping method for a tunable diode laser to improve a three dimensional (3D) imaging approach based upon interferometric speckle imaging. The approach, modeled after Takeda, exploits tuning an illumination laser in frequency as speckle interferograms of the object (specklegrams) are acquired at each frequency in a Michelson interferometer. The resulting 3D hypercube of specklegrams encode spatial information in the x-y plane of each image with laser tuning arrayed along its z-axis. We present laboratory data of before and after results showing enhanced 3D imaging resulting from precise laser frequency control.

  16. ARTIFICIAL INCOHERENT SPECKLES ENABLE PRECISION ASTROMETRY AND PHOTOMETRY IN HIGH-CONTRAST IMAGING

    Energy Technology Data Exchange (ETDEWEB)

    Jovanovic, N.; Guyon, O.; Pathak, P.; Kudo, T. [National Astronomical Observatory of Japan, Subaru Telescope, 650 North A’Ohoku Place, Hilo, HI, 96720 (United States); Martinache, F. [Observatoire de la Cote d’Azur, Boulevard de l’Observatoire, F-06304 Nice (France); Hagelberg, J., E-mail: jovanovic.nem@gmail.com [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)

    2015-11-10

    State-of-the-art coronagraphs employed on extreme adaptive optics enabled instruments are constantly improving the contrast detection limit for companions at ever-closer separations from the host star. In order to constrain their properties and, ultimately, compositions, it is important to precisely determine orbital parameters and contrasts with respect to the stars they orbit. This can be difficult in the post-coronagraphic image plane, as by definition the central star has been occulted by the coronagraph. We demonstrate the flexibility of utilizing the deformable mirror in the adaptive optics system of the Subaru Coronagraphic Extreme Adaptive Optics system to generate a field of speckles for the purposes of calibration. Speckles can be placed up to 22.5 λ/D from the star, with any position angle, brightness, and abundance required. Most importantly, we show that a fast modulation of the added speckle phase, between 0 and π, during a long science integration renders these speckles effectively incoherent with the underlying halo. We quantitatively show for the first time that this incoherence, in turn, increases the robustness and stability of the adaptive speckles, which will improve the precision of astrometric and photometric calibration procedures. This technique will be valuable for high-contrast imaging observations with imagers and integral field spectrographs alike.

  17. Software phantom with realistic speckle modeling for validation of image analysis methods in echocardiography

    Science.gov (United States)

    Law, Yuen C.; Tenbrinck, Daniel; Jiang, Xiaoyi; Kuhlen, Torsten

    2014-03-01

    Computer-assisted processing and interpretation of medical ultrasound images is one of the most challenging tasks within image analysis. Physical phenomena in ultrasonographic images, e.g., the characteristic speckle noise and shadowing effects, make the majority of standard methods from image analysis non optimal. Furthermore, validation of adapted computer vision methods proves to be difficult due to missing ground truth information. There is no widely accepted software phantom in the community and existing software phantoms are not exible enough to support the use of specific speckle models for different tissue types, e.g., muscle and fat tissue. In this work we propose an anatomical software phantom with a realistic speckle pattern simulation to _ll this gap and provide a exible tool for validation purposes in medical ultrasound image analysis. We discuss the generation of speckle patterns and perform statistical analysis of the simulated textures to obtain quantitative measures of the realism and accuracy regarding the resulting textures.

  18. Laser speckle imaging: a novel method for detecting dental erosion.

    Directory of Open Access Journals (Sweden)

    Nelson H Koshoji

    Full Text Available Erosion is a highly prevalent condition known as a non-carious lesion that causes progressive tooth wear due to chemical processes that do not involve the action of bacteria. Speckle images proved sensitive to even minimal mineral loss from the enamel. The aim of the present study was to investigate the use of laser speckle imaging analysis in the spatial domain to quantify shifts in the microstructure of the tooth surface in an erosion model. 32 fragments of the vestibular surface of bovine incisors were divided in for groups (10 min, 20 min. 30 min and 40 min of acid etching immersed in a cola-based beverage (pH approximately 2.5 twice a day during 7 days to create an artificial erosion. By analyzing the laser speckle contrast map (LASCA in the eroded region compared to the sound it was observed that the LASCA map shifts, proportionally to the acid each duration, by: 18%; 23%; 39% and 44% for the 10 min; 20 min; 30 min and 40 min groups, respectively. To the best of our knowledge, this is the first study to demonstrate the correlation between speckle patterns and erosion progression.

  19. A practical approach to optimizing the preparation of speckle patterns for digital-image correlation

    International Nuclear Information System (INIS)

    Lionello, Giacomo; Cristofolini, Luca

    2014-01-01

    The quality of strain measurements by digital image correlation (DIC) strongly depends on the quality of the pattern on the specimen’s surface. An ideal pattern should be highly contrasted, stochastic, and isotropic. In addition, the speckle pattern should have an average size that exceeds the image pixel size by a factor of 3–5. (Smaller speckles cause poor contrast, and larger speckles cause poor spatial resolution.) Finally, the ideal pattern should have a limited scatter in terms of speckle sizes. The aims of this study were: (i) to define the ideal speckle size in relation to the specimen size and acquisition system; (ii) provide practical guidelines to identify the optimal settings of an airbrush gun, in order to produce a pattern that is as close as possible to the desired one while minimizing the scatter of speckle sizes. Patterns of different sizes were produced using two different airbrush guns with different settings of the four most influential factors (dilution, airflow setting, spraying distance, and air pressure). A full-factorial DOE strategy was implemented to explore the four factors at two levels each: 36 specimens were analyzed for each of the 16 combinations. The images were acquired using the digital cameras of a DIC system. The distribution of speckle sizes was analyzed to calculate the average speckle size and the standard deviation of the corresponding truncated Gaussian distribution. A mathematical model was built to enable prediction of the average speckle size in relation to the airbrush gun settings. We showed that it is possible to obtain a pattern with a highly controlled average and a limited scatter of speckle sizes, so as to match the ideal distribution of speckle sizes for DIC. Although the settings identified here apply only to the specific equipment being used, this method can be adapted to any airbrush to produce a desired speckle pattern. (technical design note)

  20. Polarization Control with Plasmonic Antenna Tips: A Universal Approach to Optical Nanocrystallography and Vector-Field Imaging

    Science.gov (United States)

    Park, Kyoung-Duck; Raschke, Markus B.

    2018-05-01

    Controlling the propagation and polarization vectors in linear and nonlinear optical spectroscopy enables to probe the anisotropy of optical responses providing structural symmetry selective contrast in optical imaging. Here we present a novel tilted antenna-tip approach to control the optical vector-field by breaking the axial symmetry of the nano-probe in tip-enhanced near-field microscopy. This gives rise to a localized plasmonic antenna effect with significantly enhanced optical field vectors with control of both \\textit{in-plane} and \\textit{out-of-plane} components. We use the resulting vector-field specificity in the symmetry selective nonlinear optical response of second-harmonic generation (SHG) for a generalized approach to optical nano-crystallography and -imaging. In tip-enhanced SHG imaging of monolayer MoS$_2$ films and single-crystalline ferroelectric YMnO$_3$, we reveal nano-crystallographic details of domain boundaries and domain topology with enhanced sensitivity and nanoscale spatial resolution. The approach is applicable to any anisotropic linear and nonlinear optical response, and provides for optical nano-crystallographic imaging of molecular or quantum materials.

  1. Accelerated speckle imaging with the ATST visible broadband imager

    Science.gov (United States)

    Wöger, Friedrich; Ferayorni, Andrew

    2012-09-01

    The Advanced Technology Solar Telescope (ATST), a 4 meter class telescope for observations of the solar atmosphere currently in construction phase, will generate data at rates of the order of 10 TB/day with its state of the art instrumentation. The high-priority ATST Visible Broadband Imager (VBI) instrument alone will create two data streams with a bandwidth of 960 MB/s each. Because of the related data handling issues, these data will be post-processed with speckle interferometry algorithms in near-real time at the telescope using the cost-effective Graphics Processing Unit (GPU) technology that is supported by the ATST Data Handling System. In this contribution, we lay out the VBI-specific approach to its image processing pipeline, put this into the context of the underlying ATST Data Handling System infrastructure, and finally describe the details of how the algorithms were redesigned to exploit data parallelism in the speckle image reconstruction algorithms. An algorithm re-design is often required to efficiently speed up an application using GPU technology; we have chosen NVIDIA's CUDA language as basis for our implementation. We present our preliminary results of the algorithm performance using our test facilities, and base a conservative estimate on the requirements of a full system that could achieve near real-time performance at ATST on these results.

  2. A tip / tilt mirror with large dynamic range for the ESO VLT Four Laser Guide Star Facility

    NARCIS (Netherlands)

    Rijnveld, N.; Henselmans, R.; Nijland, B.A.H.

    2011-01-01

    One of the critical elements in the Four Laser Guide Star Facility (4LGSF) for the ESO Very Large Telescope (VLT) is the Optical Tube Assembly (OTA), consisting of a stable 20x laser beam expander and an active tip/tilt mirror, the Field Selector Mechanism (FSM). This paper describes the design and

  3. Realization of Tip Tilting By 8-Step Line Tilting

    International Nuclear Information System (INIS)

    Chen Yingtian; Zhang Yang; Lim, Boon Ham; Lim, Chen Sin; Hu Sen; Ho, Tso-Hsiu

    2009-01-01

    By direct calculation of rotation matrices of SO(3), we show how certain specific sequence of eight consecutive rotations of digital angles can yield a tilting of a facet mirror. We also design a detailed program specifically to tilt an array of mirrors from planar orientation to the required focusing orientation. We describe how to use the 8-step to realize the focusing of the mirror array. We have found, in our designed program, an important feature of row-sharing during the rotations for the columns and similarly the column-sharing during the rotations for the row. This feature can save a lot of operating time during the actual realization of the mechanical movements.

  4. Speckle Noise Reduction for the Enhancement of Retinal Layers in Optical Coherence Tomography Images

    Directory of Open Access Journals (Sweden)

    Fereydoon Nowshiravan Rahatabad

    2015-09-01

    Full Text Available Introduction One of the most important pre-processing steps in optical coherence tomography (OCT is reducing speckle noise, resulting from multiple scattering of tissues, which degrades the quality of OCT images. Materials and Methods The present study focused on speckle noise reduction and edge detection techniques. Statistical filters with different masks and noise variances were applied on OCT and test images. Objective evaluation of both types of images was performed, using various image metrics such as peak signal-to-noise ratio (PSNR, root mean square error, correlation coefficient and elapsed time. For the purpose of recovery, Kuan filter was used as an input for edge enhancement. Also, a spatial filter was applied to improve image quality. Results The obtained results were presented as statistical tables and images. Based on statistical measures and visual quality of OCT images, Enhanced Lee filter (3×3 with a PSNR value of 43.6735 in low noise variance and Kuan filter (3×3 with a PSNR value of 37.2850 in high noise variance showed superior performance over other filters. Conclusion Based on the obtained results, by using speckle reduction filters such as Enhanced Lee and Kuan filters on OCT images, the number of compounded images, required to achieve a given image quality, could be reduced. Moreover, use of Kuan filters for promoting the edges allowed smoothing of speckle regions, while preserving image tissue texture.

  5. Speckle Reduction on Ultrasound Liver Images Based on a Sparse Representation over a Learned Dictionary

    Directory of Open Access Journals (Sweden)

    Mohamed Yaseen Jabarulla

    2018-05-01

    Full Text Available Ultrasound images are corrupted with multiplicative noise known as speckle, which reduces the effectiveness of image processing and hampers interpretation. This paper proposes a multiplicative speckle suppression technique for ultrasound liver images, based on a new signal reconstruction model known as sparse representation (SR over dictionary learning. In the proposed technique, the non-uniform multiplicative signal is first converted into additive noise using an enhanced homomorphic filter. This is followed by pixel-based total variation (TV regularization and patch-based SR over a dictionary trained using K-singular value decomposition (KSVD. Finally, the split Bregman algorithm is used to solve the optimization problem and estimate the de-speckled image. The simulations performed on both synthetic and clinical ultrasound images for speckle reduction, the proposed technique achieved peak signal-to-noise ratios of 35.537 dB for the dictionary trained on noisy image patches and 35.033 dB for the dictionary trained using a set of reference ultrasound image patches. Further, the evaluation results show that the proposed method performs better than other state-of-the-art denoising algorithms in terms of both peak signal-to-noise ratio and subjective visual quality assessment.

  6. The SKED: speckle knife edge detector

    International Nuclear Information System (INIS)

    Sharpies, S D; Light, R A; Achamfuo-Yeboah, S O; Clark, M; Somekh, M G

    2014-01-01

    The knife edge detector—also known as optical beam deflection—is a simple and robust method of detecting ultrasonic waves using a laser. It is particularly suitable for detection of high frequency surface acoustic waves as the response is proportional to variation of the local tilt of the surface. In the case of a specular reflection of the incident laser beam from a smooth surface, any lateral movement of the reflected beam caused by the ultrasonic waves is easily detected by a pair of photodiodes. The major disadvantage of the knife edge detector is that it does not cope well with optically rough surfaces, those that give a speckled reflection. The optical speckles from a rough surface adversely affect the efficiency of the knife edge detector, because 'dark' speckles move synchronously with 'bright' speckles, and their contributions to the ultrasonic signal cancel each other out. We have developed a new self-adapting sensor which can cope with the optical speckles reflected from a rough surface. It is inelegantly called the SKED—speckle knife edge detector—and like its smooth surface namesake it is simple, cheap, compact, and robust. We describe the theory of its operation, and present preliminary experimental results validating the overall concept and the operation of the prototype device

  7. The SKED: speckle knife edge detector

    Science.gov (United States)

    Sharpies, S. D.; Light, R. A.; Achamfuo-Yeboah, S. O.; Clark, M.; Somekh, M. G.

    2014-06-01

    The knife edge detector—also known as optical beam deflection—is a simple and robust method of detecting ultrasonic waves using a laser. It is particularly suitable for detection of high frequency surface acoustic waves as the response is proportional to variation of the local tilt of the surface. In the case of a specular reflection of the incident laser beam from a smooth surface, any lateral movement of the reflected beam caused by the ultrasonic waves is easily detected by a pair of photodiodes. The major disadvantage of the knife edge detector is that it does not cope well with optically rough surfaces, those that give a speckled reflection. The optical speckles from a rough surface adversely affect the efficiency of the knife edge detector, because 'dark' speckles move synchronously with 'bright' speckles, and their contributions to the ultrasonic signal cancel each other out. We have developed a new self-adapting sensor which can cope with the optical speckles reflected from a rough surface. It is inelegantly called the SKED—speckle knife edge detector—and like its smooth surface namesake it is simple, cheap, compact, and robust. We describe the theory of its operation, and present preliminary experimental results validating the overall concept and the operation of the prototype device.

  8. Optimized digital speckle patterns for digital image correlation by consideration of both accuracy and efficiency.

    Science.gov (United States)

    Chen, Zhenning; Shao, Xinxing; Xu, Xiangyang; He, Xiaoyuan

    2018-02-01

    The technique of digital image correlation (DIC), which has been widely used for noncontact deformation measurements in both the scientific and engineering fields, is greatly affected by the quality of speckle patterns in terms of its performance. This study was concerned with the optimization of the digital speckle pattern (DSP) for DIC in consideration of both the accuracy and efficiency. The root-mean-square error of the inverse compositional Gauss-Newton algorithm and the average number of iterations were used as quality metrics. Moreover, the influence of subset sizes and the noise level of images, which are the basic parameters in the quality assessment formulations, were also considered. The simulated binary speckle patterns were first compared with the Gaussian speckle patterns and captured DSPs. Both the single-radius and multi-radius DSPs were optimized. Experimental tests and analyses were conducted to obtain the optimized and recommended DSP. The vector diagram of the optimized speckle pattern was also uploaded as reference.

  9. Local scattering property scales flow speed estimation in laser speckle contrast imaging

    International Nuclear Information System (INIS)

    Miao, Peng; Chao, Zhen; Feng, Shihan; Ji, Yuanyuan; Yu, Hang; Thakor, Nitish V; Li, Nan

    2015-01-01

    Laser speckle contrast imaging (LSCI) has been widely used in in vivo blood flow imaging. However, the effect of local scattering property (scattering coefficient µ s ) on blood flow speed estimation has not been well investigated. In this study, such an effect was quantified and involved in relation between speckle autocorrelation time τ c and flow speed v based on simulation flow experiments. For in vivo blood flow imaging, an improved estimation strategy was developed to eliminate the estimation bias due to the inhomogeneous distribution of the scattering property. Compared to traditional LSCI, a new estimation method significantly suppressed the imaging noise and improves the imaging contrast of vasculatures. Furthermore, the new method successfully captured the blood flow changes and vascular constriction patterns in rats’ cerebral cortex from normothermia to mild and moderate hypothermia. (letter)

  10. General filtering method for electronic speckle pattern interferometry fringe images with various densities based on variational image decomposition.

    Science.gov (United States)

    Li, Biyuan; Tang, Chen; Gao, Guannan; Chen, Mingming; Tang, Shuwei; Lei, Zhenkun

    2017-06-01

    Filtering off speckle noise from a fringe image is one of the key tasks in electronic speckle pattern interferometry (ESPI). In general, ESPI fringe images can be divided into three categories: low-density fringe images, high-density fringe images, and variable-density fringe images. In this paper, we first present a general filtering method based on variational image decomposition that can filter speckle noise for ESPI fringe images with various densities. In our method, a variable-density ESPI fringe image is decomposed into low-density fringes, high-density fringes, and noise. A low-density fringe image is decomposed into low-density fringes and noise. A high-density fringe image is decomposed into high-density fringes and noise. We give some suitable function spaces to describe low-density fringes, high-density fringes, and noise, respectively. Then we construct several models and numerical algorithms for ESPI fringe images with various densities. And we investigate the performance of these models via our extensive experiments. Finally, we compare our proposed models with the windowed Fourier transform method and coherence enhancing diffusion partial differential equation filter. These two methods may be the most effective filtering methods at present. Furthermore, we use the proposed method to filter a collection of the experimentally obtained ESPI fringe images with poor quality. The experimental results demonstrate the performance of our proposed method.

  11. Objective speckle velocimetry for autonomous vehicle odometry.

    Science.gov (United States)

    Francis, D; Charrett, T O H; Waugh, L; Tatam, R P

    2012-06-01

    Speckle velocimetry is investigated as a means of determining odometry data with potential for application on autonomous robotic vehicles. The technique described here relies on the integration of translation measurements made by normalized cross-correlation of speckle patterns to determine the change in position over time. The use of objective (non-imaged) speckle offers a number of advantages over subjective (imaged) speckle, such as a reduction in the number of optical components, reduced modulation of speckles at the edges of the image, and improved light efficiency. The influence of the source/detector configuration on the speckle translation to vehicle translation scaling factor for objective speckle is investigated using a computer model and verified experimentally. Experimental measurements are presented at velocities up to 80  mm s(-1) which show accuracy better than 0.4%.

  12. Detection of white spot lesions by segmenting laser speckle images using computer vision methods.

    Science.gov (United States)

    Gavinho, Luciano G; Araujo, Sidnei A; Bussadori, Sandra K; Silva, João V P; Deana, Alessandro M

    2018-05-05

    This paper aims to develop a method for laser speckle image segmentation of tooth surfaces for diagnosis of early stages caries. The method, applied directly to a raw image obtained by digital photography, is based on the difference between the speckle pattern of a carious lesion tooth surface area and that of a sound area. Each image is divided into blocks which are identified in a working matrix by their χ 2 distance between block histograms of the analyzed image and the reference histograms previously obtained by K-means from healthy (h_Sound) and lesioned (h_Decay) areas, separately. If the χ 2 distance between a block histogram and h_Sound is greater than the distance to h_Decay, this block is marked as decayed. The experiments showed that the method can provide effective segmentation for initial lesions. We used 64 images to test the algorithm and we achieved 100% accuracy in segmentation. Differences between the speckle pattern of a sound tooth surface region and a carious region, even in the early stage, can be evidenced by the χ 2 distance between histograms. This method proves to be more effective for segmenting the laser speckle image, which enhances the contrast between sound and lesioned tissues. The results were obtained with low computational cost. The method has the potential for early diagnosis in a clinical environment, through the development of low-cost portable equipment.

  13. Simulations of x-ray speckle-based dark-field and phase-contrast imaging with a polychromatic beam

    Energy Technology Data Exchange (ETDEWEB)

    Zdora, Marie-Christine, E-mail: marie-christine.zdora@diamond.ac.uk [Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, 85748 Garching (Germany); Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Department of Physics & Astronomy, University College London, London WC1E 6BT (United Kingdom); Thibault, Pierre [Department of Physics & Astronomy, University College London, London WC1E 6BT (United Kingdom); Pfeiffer, Franz [Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, 85748 Garching (Germany); Zanette, Irene [Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, 85748 Garching (Germany); Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom)

    2015-09-21

    Following the first experimental demonstration of x-ray speckle-based multimodal imaging using a polychromatic beam [I. Zanette et al., Phys. Rev. Lett. 112(25), 253903 (2014)], we present a simulation study on the effects of a polychromatic x-ray spectrum on the performance of this technique. We observe that the contrast of the near-field speckles is only mildly influenced by the bandwidth of the energy spectrum. Moreover, using a homogeneous object with simple geometry, we characterize the beam hardening artifacts in the reconstructed transmission and refraction angle images, and we describe how the beam hardening also affects the dark-field signal provided by speckle tracking. This study is particularly important for further implementations and developments of coherent speckle-based techniques at laboratory x-ray sources.

  14. Color quality improvement of reconstructed images in color digital holography using speckle method and spectral estimation

    Science.gov (United States)

    Funamizu, Hideki; Onodera, Yusei; Aizu, Yoshihisa

    2018-05-01

    In this study, we report color quality improvement of reconstructed images in color digital holography using the speckle method and the spectral estimation. In this technique, an object is illuminated by a speckle field and then an object wave is produced, while a plane wave is used as a reference wave. For three wavelengths, the interference patterns of two coherent waves are recorded as digital holograms on an image sensor. Speckle fields are changed by moving a ground glass plate in an in-plane direction, and a number of holograms are acquired to average the reconstructed images. After the averaging process of images reconstructed from multiple holograms, we use the Wiener estimation method for obtaining spectral transmittance curves in reconstructed images. The color reproducibility in this method is demonstrated and evaluated using a Macbeth color chart film and staining cells of onion.

  15. Quantitative, depth-resolved determination of particle motion using multi-exposure, spatial frequency domain laser speckle imaging.

    Science.gov (United States)

    Rice, Tyler B; Kwan, Elliott; Hayakawa, Carole K; Durkin, Anthony J; Choi, Bernard; Tromberg, Bruce J

    2013-01-01

    Laser Speckle Imaging (LSI) is a simple, noninvasive technique for rapid imaging of particle motion in scattering media such as biological tissue. LSI is generally used to derive a qualitative index of relative blood flow due to unknown impact from several variables that affect speckle contrast. These variables may include optical absorption and scattering coefficients, multi-layer dynamics including static, non-ergodic regions, and systematic effects such as laser coherence length. In order to account for these effects and move toward quantitative, depth-resolved LSI, we have developed a method that combines Monte Carlo modeling, multi-exposure speckle imaging (MESI), spatial frequency domain imaging (SFDI), and careful instrument calibration. Monte Carlo models were used to generate total and layer-specific fractional momentum transfer distributions. This information was used to predict speckle contrast as a function of exposure time, spatial frequency, layer thickness, and layer dynamics. To verify with experimental data, controlled phantom experiments with characteristic tissue optical properties were performed using a structured light speckle imaging system. Three main geometries were explored: 1) diffusive dynamic layer beneath a static layer, 2) static layer beneath a diffuse dynamic layer, and 3) directed flow (tube) submerged in a dynamic scattering layer. Data fits were performed using the Monte Carlo model, which accurately reconstructed the type of particle flow (diffusive or directed) in each layer, the layer thickness, and absolute flow speeds to within 15% or better.

  16. Speckle perception and disturbance limit in laser based projectors

    Science.gov (United States)

    Verschaffelt, Guy; Roelandt, Stijn; Meuret, Youri; Van den Broeck, Wendy; Kilpi, Katriina; Lievens, Bram; Jacobs, An; Janssens, Peter; Thienpont, Hugo

    2016-04-01

    We investigate the level of speckle that can be tolerated in a laser cinema projector. For this purpose, we equipped a movie theatre room with a prototype laser projector. A group of 186 participants was gathered to evaluate the speckle perception of several, short movie trailers in a subjective `Quality of Experience' experiment. This study is important as the introduction of lasers in projection systems has been hampered by the presence of speckle in projected images. We identify a speckle disturbance threshold by statistically analyzing the observers' responses for different values of the amount of speckle, which was monitored using a well-defined speckle measurement method. The analysis shows that the speckle perception of a human observer is not only dependent on the objectively measured amount of speckle, but it is also strongly influenced by the image content. As is also discussed in [Verschaffelt et al., Scientific Reports 5, art. nr. 14105, 2015] we find that, for moving images, the speckle becomes disturbing if the speckle contrast becomes larger than 6.9% for the red, 6.0% for the green, and 4.8% for the blue primary colors of the projector, whereas for still images the speckle detection threshold is about 3%. As we could not independently tune the speckle contrast of each of the primary colors, this speckle disturbance limit seems to be determined by the 6.9% speckle contrast of the red color as this primary color contains the largest amount of speckle. The speckle disturbance limit for movies thus turns out to be substantially larger than that for still images, and hence is easier to attain.

  17. Integration of instrumentation and processing software of a laser speckle contrast imaging system

    Science.gov (United States)

    Carrick, Jacob J.

    Laser speckle contrast imaging (LSCI) has the potential to be a powerful tool in medicine, but more research in the field is required so it can be used properly. To help in the progression of Michigan Tech's research in the field, a graphical user interface (GUI) was designed in Matlab to control the instrumentation of the experiments as well as process the raw speckle images into contrast images while they are being acquired. The design of the system was successful and is currently being used by Michigan Tech's Biomedical Engineering department. This thesis describes the development of the LSCI GUI as well as offering a full introduction into the history, theory and applications of LSCI.

  18. Speckle-learning-based object recognition through scattering media.

    Science.gov (United States)

    Ando, Takamasa; Horisaki, Ryoichi; Tanida, Jun

    2015-12-28

    We experimentally demonstrated object recognition through scattering media based on direct machine learning of a number of speckle intensity images. In the experiments, speckle intensity images of amplitude or phase objects on a spatial light modulator between scattering plates were captured by a camera. We used the support vector machine for binary classification of the captured speckle intensity images of face and non-face data. The experimental results showed that speckles are sufficient for machine learning.

  19. IMAGE ENHANCEMENT AND SPECKLE REDUCTION OF FULL POLARIMETRIC SAR DATA BY GAUSSIAN MARKOV RANDOM FIELD

    Directory of Open Access Journals (Sweden)

    M. Mahdian

    2013-09-01

    Full Text Available In recent years, the use of Polarimetric Synthetic Aperture Radar (PolSAR data in different applications dramatically has been increased. In SAR imagery an interference phenomenon with random behavior exists which is called speckle noise. The interpretation of data encounters some troubles due to the presence of speckle which can be considered as a multiplicative noise affecting all coherent imaging systems. Indeed, speckle degrade radiometric resolution of PolSAR images, therefore it is needful to perform speckle filtering on the SAR data type. Markov Random Field (MRF has proven to be a powerful method for drawing out eliciting contextual information from remotely sensed images. In the present paper, a probability density function (PDF, which is fitted well with the PolSAR data based on the goodness-of-fit test, is first obtained for the pixel-wise analysis. Then the contextual smoothing is achieved with the MRF method. This novel speckle reduction method combines an advanced statistical distribution with spatial contextual information for PolSAR data. These two parts of information are combined based on weighted summation of pixel-wise and contextual models. This approach not only preserves edge information in the images, but also improves signal-to-noise ratio of the results. The method maintains the mean value of original signal in the homogenous areas and preserves the edges of features in the heterogeneous regions. Experiments on real medium resolution ALOS data from Tehran, and also high resolution full polarimetric SAR data over the Oberpfaffenhofen test-site in Germany, demonstrate the effectiveness of the algorithm compared with well-known despeckling methods.

  20. Speckle: Friend or foe?

    Science.gov (United States)

    Goodman, Joseph W.

    2013-05-01

    Speckle appears whenever coherent radiation of any kind is used. We review here the basic properties of speckle, the negative effects it has on imaging systems of various kinds, and the positive benefits it offers in certain nondestructive testing and metrology problems.

  1. Speckle interferometry

    Science.gov (United States)

    Sirohi, Rajpal S.

    2002-03-01

    Illumination of a rough surface by a coherent monochromatic wave creates a grainy structure in space termed a speckle pattern. It was considered a special kind of noise and was the bane of holographers. However, its information-carrying property was soon discovered and the phenomenon was used for metrological applications. The realization that a speckle pattern carried information led to a new measurement technique known as speckle interferometry (SI). Although the speckle phenomenon in itself is a consequence of interference among numerous randomly dephased waves, a reference wave is required in SI. Further, it employs an imaging geometry. Initially SI was performed mostly by using silver emulsions as the recording media. The double-exposure specklegram was filtered to extract the desired information. Since SI can be configured so as to be sensitive to the in-plane displacement component, the out-of-plane displacement component or their derivatives, the interferograms corresponding to these were extracted from the specklegram for further analysis. Since the speckle size can be controlled by the F number of the imaging lens, it was soon realized that SI could be performed with electronic detection, thereby increasing its accuracy and speed of measurement. Furthermore, a phase-shifting technique can also be incorporated. This technique came to be known as electronic speckle pattern interferometry (ESPI). It employed the same experimental configurations as SI. ESPI found many industrial applications as it supplements holographic interferometry. We present three examples covering diverse areas. In one application it has been used to measure residual stress in a blank recordable compact disk. In another application, microscopic ESPI has been used to study the influence of relative humidity on paint-coated figurines and also the effect of a conservation agent applied on top of this. The final application is to find the defects in pipes. These diverse applications

  2. Airplane wing deformation and flight flutter detection method by using three-dimensional speckle image correlation technology.

    Science.gov (United States)

    Wu, Jun; Yu, Zhijing; Wang, Tao; Zhuge, Jingchang; Ji, Yue; Xue, Bin

    2017-06-01

    Airplane wing deformation is an important element of aerodynamic characteristics, structure design, and fatigue analysis for aircraft manufacturing, as well as a main test content of certification regarding flutter for airplanes. This paper presents a novel real-time detection method for wing deformation and flight flutter detection by using three-dimensional speckle image correlation technology. Speckle patterns whose positions are determined through the vibration characteristic of the aircraft are coated on the wing; then the speckle patterns are imaged by CCD cameras which are mounted inside the aircraft cabin. In order to reduce the computation, a matching technique based on Geodetic Systems Incorporated coded points combined with the classical epipolar constraint is proposed, and a displacement vector map for the aircraft wing can be obtained through comparing the coordinates of speckle points before and after deformation. Finally, verification experiments containing static and dynamic tests by using an aircraft wing model demonstrate the accuracy and effectiveness of the proposed method.

  3. A tip/tilt mirror with large dynamic range for the ESO VLT Four Laser Guide Star Facility

    Science.gov (United States)

    Rijnveld, N.; Henselmans, R.; Nijland, B.

    2011-09-01

    One of the critical elements in the Four Laser Guide Star Facility (4LGSF) for the ESO Very Large Telescope (VLT) is the Optical Tube Assembly (OTA), consisting of a stable 20x laser beam expander and an active tip/tilt mirror, the Field Selector Mechanism (FSM). This paper describes the design and performance testing of the FSM. The driving requirement for the FSM is its large stroke of +/-6.1 mrad, in combination with less than 1.5 μrad RMS absolute accuracy. The FSM design consists of a Zerodur mirror, bonded to a membrane spring and strut combination to allow only tip and tilt. Two spindle drives actuate the mirror, using a stiffness based transmission to increase resolution. Absolute accuracy is achieved with two differential inductive sensor pairs. A prototype of the FSM is realized to optimize the control configuration and measure its performance. Friction in the spindle drive is overcome by creating a local velocity control loop between the spindle drives and the shaft encoders. Accuracy is achieved by using a cascaded low bandwidth control loop with feedback from the inductive sensors. The pointing jitter and settling time of the FSM are measured with an autocollimator. The system performance meets the strict requirements, and is ready to be implemented in the first OTA.

  4. Decorrelation and fringe visibility: On the limiting behavior of varous electronic speckle pattern correlation interferometers

    DEFF Research Database (Denmark)

    Owner-Petersen, Mette

    1996-01-01

    I discuss the behavior of fringe formation in image-plane electronic speckle-pattern correlation interferometers as the limit of total decorrelation is approached. The interferometers are supposed to operate in the difference mode. The effect of decorrelation will be a decrease in fringe visibility...... until the limit of total decorrelation, when no fringes will be formed, is reached. A quantitative evaluation of the partially decorrelated fringe pattern is presented for the case of decorrelation due to both tilt and in-plane translation of an object surface element. It is shown that the fringe...

  5. Improved quality of optical coherence tomography imaging of basal cell carcinomas using speckle reduction

    DEFF Research Database (Denmark)

    Mogensen, Mette; Jørgensen, Thomas Martini; Thrane, Lars

    2010-01-01

    suggests a method for improving OCT image quality for skin cancer imaging. EXPERIMENTAL DESIGN: OCT is an optical imaging method analogous to ultrasound. Two basal cell carcinomas (BCC) were imaged using an OCT speckle reduction technique (SR-OCT) based on repeated scanning by altering the distance between...

  6. Estimating 3D tilt from local image cues in natural scenes

    OpenAIRE

    Burge, Johannes; McCann, Brian C.; Geisler, Wilson S.

    2016-01-01

    Estimating three-dimensional (3D) surface orientation (slant and tilt) is an important first step toward estimating 3D shape. Here, we examine how three local image cues from the same location (disparity gradient, luminance gradient, and dominant texture orientation) should be combined to estimate 3D tilt in natural scenes. We collected a database of natural stereoscopic images with precisely co-registered range images that provide the ground-truth distance at each pixel location. We then ana...

  7. Speckle reduction in digital holography with resampling ring masks

    Science.gov (United States)

    Zhang, Wenhui; Cao, Liangcai; Jin, Guofan

    2018-01-01

    One-shot digital holographic imaging has the advantages of high stability and low temporal cost. However, the reconstruction is affected by the speckle noise. Resampling ring-mask method in spectrum domain is proposed for speckle reduction. The useful spectrum of one hologram is divided into several sub-spectra by ring masks. In the reconstruction, angular spectrum transform is applied to guarantee the calculation accuracy which has no approximation. N reconstructed amplitude images are calculated from the corresponding sub-spectra. Thanks to speckle's random distribution, superimposing these N uncorrelated amplitude images would lead to a final reconstructed image with lower speckle noise. Normalized relative standard deviation values of the reconstructed image are used to evaluate the reduction of speckle. Effect of the method on the spatial resolution of the reconstructed image is also quantitatively evaluated. Experimental and simulation results prove the feasibility and effectiveness of the proposed method.

  8. Optically Sectioned Imaging of Microvasculature of In-Vivo and Ex-Vivo Thick Tissue Models with Speckle-illumination HiLo Microscopy and HiLo Image Processing Implementation in MATLAB Architecture

    Science.gov (United States)

    Suen, Ricky Wai

    The work described in this thesis covers the conversion of HiLo image processing into MATLAB architecture and the use of speckle-illumination HiLo microscopy for use of ex-vivo and in-vivo imaging of thick tissue models. HiLo microscopy is a wide-field fluorescence imaging technique and has been demonstrated to produce optically sectioned images comparable to confocal in thin samples. The imaging technique was developed by Jerome Mertz and the Boston University Biomicroscopy Lab and has been implemented in our lab as a stand-alone optical setup and a modification to a conventional fluorescence microscope. Speckle-illumination HiLo microscopy combines two images taken under speckle-illumination and standard uniform-illumination to generate an optically sectioned image that reject out-of-focus fluorescence. The evaluated speckle contrast in the images is used as a weighting function where elements that move out-of-focus have a speckle contrast that decays to zero. The experiments shown here demonstrate the capability of our HiLo microscopes to produce optically-sectioned images of the microvasculature of ex-vivo and in-vivo thick tissue models. The HiLo microscope were used to image the microvasculature of ex-vivo mouse heart sections prepared for optical histology and the microvasculature of in-vivo rodent dorsal window chamber models. Studies in label-free surface profiling with HiLo microscopy is also presented.

  9. Speckle Suppression by Weighted Euclidean Distance Anisotropic Diffusion

    Directory of Open Access Journals (Sweden)

    Fengcheng Guo

    2018-05-01

    Full Text Available To better reduce image speckle noise while also maintaining edge information in synthetic aperture radar (SAR images, we propose a novel anisotropic diffusion algorithm using weighted Euclidean distance (WEDAD. Presented here is a modified speckle reducing anisotropic diffusion (SRAD method, which constructs a new edge detection operator using weighted Euclidean distances. The new edge detection operator can adaptively distinguish between homogenous and heterogeneous image regions, effectively generate anisotropic diffusion coefficients for each image pixel, and filter each pixel at different scales. Additionally, the effects of two different weighting methods (Gaussian weighting and non-linear weighting of de-noising were analyzed. The effect of different adjustment coefficient settings on speckle suppression was also explored. A series of experiments were conducted using an added noise image, GF-3 SAR image, and YG-29 SAR image. The experimental results demonstrate that the proposed method can not only significantly suppress speckle, thus improving the visual effects, but also better preserve the edge information of images.

  10. Effect of different electrode tip angles with tilted torch in stationary gas tungsten arc welding: A 3D simulation

    International Nuclear Information System (INIS)

    Abid, M.; Parvez, S.; Nash, D.H.

    2013-01-01

    In this study, the effect of different tip angles (30°, 60°, 90° and 120°) on the arc and weld pool behavior is analyzed in 2 mm and 5 mm arc lengths with tilted (70°) torch. Arc temperature, velocity, current density, heat flux and gas shear are investigated in the arc region and pool convection and puddle shapes are studied in the weld pool region. The arc temperature at the tungsten electrode is found the maximum with sharp tip and decreases as the tip angle increases. The arc temperature on the anode (workpiece) surface becomes concentrated with increase in tip angle. The arc velocity and gas shear stress are observed large with sharp tip and decreasing as the tip angle increases. Current density on the anode surface does not change with tip angle and observed almost the same in all the tip angles in both 2 mm and 5 mm arc lengths. Heat flux due to conduction and convection is observed more sensitive to the tip angle and decreases as the tip angle increases. The electromagnetic force is slightly observed increasing and the buoyancy force is observed slightly decreasing with increase in tip angle. Analyzing each driving force in the weld pool individually shows that the gas drag and Marangoni forces are much stronger than the electromagnetic and buoyancy forces. The weld pool shape is observed wide and shallow in sharp and narrow and deep in large tip angle. Increasing the arc length does not change the weld pool width; however, the weld pool depth significantly changes with arc length and is observed deep in short arc length. The arc properties and weld pool shapes are observed wide ahead of the electrode tip in the weld direction due to 70° torch angle. Good agreement is observed between the numerical and experimental weld pool shapes

  11. Speckle disturbance limit in laser-based cinema projection systems

    Science.gov (United States)

    Verschaffelt, Guy; Roelandt, Stijn; Meuret, Youri; van den Broeck, Wendy; Kilpi, Katriina; Lievens, Bram; Jacobs, An; Janssens, Peter; Thienpont, Hugo

    2015-09-01

    In a multi-disciplinary effort, we investigate the level of speckle that can be tolerated in a laser cinema projector based on a quality of experience experiment with movie clips shown to a test audience in a real-life movie theatre setting. We identify a speckle disturbance threshold by statistically analyzing the observers’ responses for different values of the amount of speckle, which was monitored using a well-defined speckle measurement method. The analysis shows that the speckle perception of a human observer is not only dependent on the objectively measured amount of speckle, but it is also strongly influenced by the image content. The speckle disturbance limit for movies turns out to be substantially larger than that for still images, and hence is easier to attain.

  12. Texture analysis of speckle in optical coherence tomography images of tissue phantoms

    International Nuclear Information System (INIS)

    Gossage, Kirk W; Smith, Cynthia M; Kanter, Elizabeth M; Hariri, Lida P; Stone, Alice L; Rodriguez, Jeffrey J; Williams, Stuart K; Barton, Jennifer K

    2006-01-01

    Optical coherence tomography (OCT) is an imaging modality capable of acquiring cross-sectional images of tissue using back-reflected light. Conventional OCT images have a resolution of 10-15 μm, and are thus best suited for visualizing tissue layers and structures. OCT images of collagen (with and without endothelial cells) have no resolvable features and may appear to simply show an exponential decrease in intensity with depth. However, examination of these images reveals that they display a characteristic repetitive structure due to speckle.The purpose of this study is to evaluate the application of statistical and spectral texture analysis techniques for differentiating living and non-living tissue phantoms containing various sizes and distributions of scatterers based on speckle content in OCT images. Statistically significant differences between texture parameters and excellent classification rates were obtained when comparing various endothelial cell concentrations ranging from 0 cells/ml to 25 million cells/ml. Statistically significant results and excellent classification rates were also obtained using various sizes of microspheres with concentrations ranging from 0 microspheres/ml to 500 million microspheres/ml. This study has shown that texture analysis of OCT images may be capable of differentiating tissue phantoms containing various sizes and distributions of scatterers

  13. Laser speckle contrast imaging of skin blood perfusion responses induced by laser coagulation

    Energy Technology Data Exchange (ETDEWEB)

    Ogami, M; Kulkarni, R; Wang, H; Reif, R; Wang, R K [University of Washington, Department of Bioengineering, Seattle, Washington 98195 (United States)

    2014-08-31

    We report application of laser speckle contrast imaging (LSCI), i.e., a fast imaging technique utilising backscattered light to distinguish such moving objects as red blood cells from such stationary objects as surrounding tissue, to localise skin injury. This imaging technique provides detailed information about the acute perfusion response after a blood vessel is occluded. In this study, a mouse ear model is used and pulsed laser coagulation serves as the method of occlusion. We have found that the downstream blood vessels lacked blood flow due to occlusion at the target site immediately after injury. Relative flow changes in nearby collaterals and anastomotic vessels have been approximated based on differences in intensity in the nearby collaterals and anastomoses. We have also estimated the density of the affected downstream vessels. Laser speckle contrast imaging is shown to be used for highresolution and fast-speed imaging for the skin microvasculature. It also allows direct visualisation of the blood perfusion response to injury, which may provide novel insights to the field of cutaneous wound healing. (laser biophotonics)

  14. Laser speckle contrast imaging of skin blood perfusion responses induced by laser coagulation

    Science.gov (United States)

    Ogami, M.; Kulkarni, R.; Wang, H.; Reif, R.; Wang, R. K.

    2014-08-01

    We report application of laser speckle contrast imaging (LSCI), i.e., a fast imaging technique utilising backscattered light to distinguish such moving objects as red blood cells from such stationary objects as surrounding tissue, to localise skin injury. This imaging technique provides detailed information about the acute perfusion response after a blood vessel is occluded. In this study, a mouse ear model is used and pulsed laser coagulation serves as the method of occlusion. We have found that the downstream blood vessels lacked blood flow due to occlusion at the target site immediately after injury. Relative flow changes in nearby collaterals and anastomotic vessels have been approximated based on differences in intensity in the nearby collaterals and anastomoses. We have also estimated the density of the affected downstream vessels. Laser speckle contrast imaging is shown to be used for highresolution and fast-speed imaging for the skin microvasculature. It also allows direct visualisation of the blood perfusion response to injury, which may provide novel insights to the field of cutaneous wound healing.

  15. Effect of static scatterers in laser speckle contrast imaging: an experimental study on correlation and contrast

    Science.gov (United States)

    Vaz, Pedro G.; Humeau-Heurtier, Anne; Figueiras, Edite; Correia, Carlos; Cardoso, João

    2018-01-01

    Laser speckle contrast imaging (LSCI) is a non-invasive microvascular blood flow assessment technique with good temporal and spatial resolution. Most LSCI systems, including commercial devices, can perform only qualitative blood flow evaluation, which is a major limitation of this technique. There are several factors that prevent the utilization of LSCI as a quantitative technique. Among these factors, we can highlight the effect of static scatterers. The goal of this work was to study the influence of differences in static and dynamic scatterer concentration on laser speckle correlation and contrast. In order to achieve this, a laser speckle prototype was developed and tested using an optical phantom with various concentrations of static and dynamic scatterers. It was found that the laser speckle correlation could be used to estimate the relative concentration of static/dynamic scatterers within a sample. Moreover, the speckle correlation proved to be independent of the dynamic scatterer velocity, which is a fundamental characteristic to be used in contrast correction.

  16. Rat retinal vasomotion assessed by laser speckle imaging

    DEFF Research Database (Denmark)

    Neganova, Anastasiia Y; Postnov, Dmitry D; Sosnovtseva, Olga

    2017-01-01

    Vasomotion is spontaneous or induced rhythmic changes in vascular tone or vessel diameter that lead to rhythmic changes in flow. While the vascular research community debates the physiological and pathophysiological consequence of vasomotion, there is a great need for experimental techniques...... that can address the role and dynamical properties of vasomotion in vivo. We apply laser speckle imaging to study spontaneous and drug induced vasomotion in retinal network of anesthetized rats. The results reveal a wide variety of dynamical patterns. Wavelet-based analysis shows that (i) spontaneous...

  17. Speckle interferometry of asteroids

    International Nuclear Information System (INIS)

    Drummond, J.

    1988-01-01

    By studying the image two-dimensional power spectra or autocorrelations projected by an asteroid as it rotates, it is possible to locate its rotational pole and derive its three axes dimensions through speckle interferometry under certain assumptions of uniform, geometric scattering, and triaxial ellipsoid shape. However, in cases where images can be reconstructed, the need for making the assumptions is obviated. Furthermore, the ultimate goal for speckle interferometry of image reconstruction will lead to mapping albedo features (if they exist) as impact areas or geological units. The first glimpses of the surface of an asteroid were obtained from images of 4 Vesta reconstructed from speckle interferometric observations. These images reveal that Vesta is quite Moon-like in having large hemispheric-scale albedo features. All of its lightcurves can be produced from a simple model developed from the images. Although undoubtedly more intricate than the model, Vesta's lightcurves can be matched by a model with three dark and four bright spots. The dark areas so dominate one hemisphere that a lightcurve minimum occurs when the maximum cross-section area is visible. The triaxial ellipsoid shape derived for Vesta is not consistent with the notion that the asteroid has an equilibrium shape in spite of its having apparently been differentiated

  18. Speckle dynamics under ergodicity breaking

    Science.gov (United States)

    Sdobnov, Anton; Bykov, Alexander; Molodij, Guillaume; Kalchenko, Vyacheslav; Jarvinen, Topias; Popov, Alexey; Kordas, Krisztian; Meglinski, Igor

    2018-04-01

    Laser speckle contrast imaging (LSCI) is a well-known and versatile approach for the non-invasive visualization of flows and microcirculation localized in turbid scattering media, including biological tissues. In most conventional implementations of LSCI the ergodic regime is typically assumed valid. However, most composite turbid scattering media, especially biological tissues, are non-ergodic, containing a mixture of dynamic and static centers of light scattering. In the current study, we examined the speckle contrast in different dynamic conditions with the aim of assessing limitations in the quantitative interpretation of speckle contrast images. Based on a simple phenomenological approach, we introduced a coefficient of speckle dynamics to quantitatively assess the ratio of the dynamic part of a scattering medium to the static one. The introduced coefficient allows one to distinguish real changes in motion from the mere appearance of static components in the field of view. As examples of systems with static/dynamic transitions, thawing and heating of Intralipid samples were studied by the LSCI approach.

  19. Laser speckle imaging of rat retinal blood flow with hybrid temporal and spatial analysis method

    Science.gov (United States)

    Cheng, Haiying; Yan, Yumei; Duong, Timothy Q.

    2009-02-01

    Noninvasive monitoring of blood flow in retinal circulation will reveal the progression and treatment of ocular disorders, such as diabetic retinopathy, age-related macular degeneration and glaucoma. A non-invasive and direct BF measurement technique with high spatial-temporal resolution is needed for retinal imaging. Laser speckle imaging (LSI) is such a method. Currently, there are two analysis methods for LSI: spatial statistics LSI (SS-LSI) and temporal statistical LSI (TS-LSI). Comparing these two analysis methods, SS-LSI has higher signal to noise ratio (SNR) and TSLSI is less susceptible to artifacts from stationary speckle. We proposed a hybrid temporal and spatial analysis method (HTS-LSI) to measure the retinal blood flow. Gas challenge experiment was performed and images were analyzed by HTS-LSI. Results showed that HTS-LSI can not only remove the stationary speckle but also increase the SNR. Under 100% O2, retinal BF decreased by 20-30%. This was consistent with the results observed with laser Doppler technique. As retinal blood flow is a critical physiological parameter and its perturbation has been implicated in the early stages of many retinal diseases, HTS-LSI will be an efficient method in early detection of retina diseases.

  20. Analyzing speckle contrast for HiLo microscopy optimization

    Science.gov (United States)

    Mazzaferri, J.; Kunik, D.; Belisle, J. M.; Singh, K.; Lefrançois, S.; Costantino, S.

    2011-07-01

    HiLo microscopy is a recently developed technique that provides both optical sectioning and fast imaging with a simple implementation and at a very low cost. The methodology combines widefield and speckled illumination images to obtain one optically sectioned image. Hence, the characteristics of such speckle illumination ultimately determine the quality of HiLo images and the overall performance of the method. In this work, we study how speckle contrast influence local variations of fluorescence intensity and brightness profiles of thick samples. We present this article as a guide to adjust the parameters of the system for optimizing the capabilities of this novel technology.

  1. Estimation of vessel diameter and blood flow dynamics from laser speckle images

    DEFF Research Database (Denmark)

    Postnov, Dmitry D.; Tuchin, Valery V.; Sosnovtseva, Olga

    2016-01-01

    Laser speckle imaging is a rapidly developing method to study changes of blood velocity in the vascular networks. However, to assess blood flow and vascular responses it is crucial to measure vessel diameter in addition to blood velocity dynamics. We suggest an algorithm that allows for dynamical...

  2. X-ray speckle correlation interferometer

    International Nuclear Information System (INIS)

    Eisenhower, Rachel; Materlik, Gerhard

    2000-01-01

    Speckle Pattern Correlation Interferometry (SPCI) is a well-established technique in the visible-light regime for observing surface disturbances. Although not a direct imaging technique, SPCI gives full-field, high-resolution information about an object's motion. Since x-ray synchrotron radiation beamlines with high coherent flux have allowed the observation of x-ray speckle, x-ray SPCI could provide a means to measure strains and other quasi-static motions in disordered systems. This paper therefore examines the feasibility of an x-ray speckle correlation interferometer

  3. A tilted fiber-optic plate coupled CCD detector for high resolution neutron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongyul; Cho, Gyuseong [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kim, Jongyul; Hwy, Limchang; Kim, Taejoo; Lee, Kyehong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Seungwook [Pusan National Univ., Pusan (Korea, Republic of)

    2013-05-15

    One of these efforts is that a tilted scintillator geometry and lens coupled CCD detector for neutron imaging system were used to improve spatial resolution in one dimension. The increased spatial resolution in one dimension was applied to fuel cell study. However, a lens coupled CCD detector has lower sensitivity than a fiber-optic plate coupled CCD detector due to light loss. In this research, a tilted detector using fiber-optic plate coupled CCD detector was developed to improve resolution and sensitivity. In addition, a tilted detector can prevent an image sensor from direct radiation damage. Neutron imaging has been used for fuel cell study, lithium ion battery study, and many scientific applications. High quality neutron imaging is demanded for more detailed studies of applications, and spatial resolution should be considered to get high quality neutron imaging. Therefore, there were many efforts to improve spatial resolution.

  4. Lagrangian speckle model and tissue-motion estimation--theory.

    Science.gov (United States)

    Maurice, R L; Bertrand, M

    1999-07-01

    It is known that when a tissue is subjected to movements such as rotation, shearing, scaling, etc., changes in speckle patterns that result act as a noise source, often responsible for most of the displacement-estimate variance. From a modeling point of view, these changes can be thought of as resulting from two mechanisms: one is the motion of the speckles and the other, the alterations of their morphology. In this paper, we propose a new tissue-motion estimator to counteract these speckle decorrelation effects. The estimator is based on a Lagrangian description of the speckle motion. This description allows us to follow local characteristics of the speckle field as if they were a material property. This method leads to an analytical description of the decorrelation in a way which enables the derivation of an appropriate inverse filter for speckle restoration. The filter is appropriate for linear geometrical transformation of the scattering function (LT), i.e., a constant-strain region of interest (ROI). As the LT itself is a parameter of the filter, a tissue-motion estimator can be formulated as a nonlinear minimization problem, seeking the best match between the pre-tissue-motion image and a restored-speckle post-motion image. The method is tested, using simulated radio-frequency (RF) images of tissue undergoing axial shear.

  5. Speckle imaging with the PAPA detector. [Precision Analog Photon Address

    Science.gov (United States)

    Papaliolios, C.; Nisenson, P.; Ebstein, S.

    1985-01-01

    A new 2-D photon-counting camera, the PAPA (precision analog photon address) detector has been built, tested, and used successfully for the acquisition of speckle imaging data. The camera has 512 x 512 pixels and operates at count rates of at least 200,000/sec. In this paper, technical details on the camera are presented and some of the laboratory and astronomical results are included which demonstrate the detector's capabilities.

  6. Digital Speckle Photography of Subpixel Displacements of Speckle Structures Based on Analysis of Their Spatial Spectra

    Science.gov (United States)

    Maksimova, L. A.; Ryabukho, P. V.; Mysina, N. Yu.; Lyakin, D. V.; Ryabukho, V. P.

    2018-04-01

    We have investigated the capabilities of the method of digital speckle interferometry for determining subpixel displacements of a speckle structure formed by a displaceable or deformable object with a scattering surface. An analysis of spatial spectra of speckle structures makes it possible to perform measurements with a subpixel accuracy and to extend the lower boundary of the range of measurements of displacements of speckle structures to the range of subpixel values. The method is realized on the basis of digital recording of the images of undisplaced and displaced speckle structures, their spatial frequency analysis using numerically specified constant phase shifts, and correlation analysis of spatial spectra of speckle structures. Transformation into the frequency range makes it possible to obtain quantities to be measured with a subpixel accuracy from the shift of the interference-pattern minimum in the diffraction halo by introducing an additional phase shift into the complex spatial spectrum of the speckle structure or from the slope of the linear plot of the function of accumulated phase difference in the field of the complex spatial spectrum of the displaced speckle structure. The capabilities of the method have been investigated in natural experiment.

  7. Shift-Invariant Image Reconstruction of Speckle-Degraded Images Using Bispectrum Estimation

    Science.gov (United States)

    1990-05-01

    process with the requisite negative exponential pelf. I call this model the Negative Exponential Model ( NENI ). The NENI flowchart is seen in Figure 6...Figure ]3d-g. Statistical Histograms and Phase for the RPj NG EXP FDF MULT METHOD FILuteC 14a. Truth Object Speckled Via the NENI HISTOGRAM OF SPECKLE

  8. State of the Art of X-ray Speckle-Based Phase-Contrast and Dark-Field Imaging

    Directory of Open Access Journals (Sweden)

    Marie-Christine Zdora

    2018-04-01

    Full Text Available In the past few years, X-ray phase-contrast and dark-field imaging have evolved to be invaluable tools for non-destructive sample visualisation, delivering information inaccessible by conventional absorption imaging. X-ray phase-sensing techniques are furthermore increasingly used for at-wavelength metrology and optics characterisation. One of the latest additions to the group of differential phase-contrast methods is the X-ray speckle-based technique. It has drawn significant attention due to its simple and flexible experimental arrangement, cost-effectiveness and multimodal character, amongst others. Since its first demonstration at highly brilliant synchrotron sources, the method has seen rapid development, including the translation to polychromatic laboratory sources and extension to higher-energy X-rays. Recently, different advanced acquisition schemes have been proposed to tackle some of the main limitations of previous implementations. Current applications of the speckle-based method range from optics characterisation and wavefront measurement to biomedical imaging and materials science. This review provides an overview of the state of the art of the X-ray speckle-based technique. Its basic principles and different experimental implementations as well as the the latest advances and applications are illustrated. In the end, an outlook for anticipated future developments of this promising technique is given.

  9. Ultrasound speckle reduction based on fractional order differentiation.

    Science.gov (United States)

    Shao, Dangguo; Zhou, Ting; Liu, Fan; Yi, Sanli; Xiang, Yan; Ma, Lei; Xiong, Xin; He, Jianfeng

    2017-07-01

    Ultrasound images show a granular pattern of noise known as speckle that diminishes their quality and results in difficulties in diagnosis. To preserve edges and features, this paper proposes a fractional differentiation-based image operator to reduce speckle in ultrasound. An image de-noising model based on fractional partial differential equations with balance relation between k (gradient modulus threshold that controls the conduction) and v (the order of fractional differentiation) was constructed by the effective combination of fractional calculus theory and a partial differential equation, and the numerical algorithm of it was achieved using a fractional differential mask operator. The proposed algorithm has better speckle reduction and structure preservation than the three existing methods [P-M model, the speckle reducing anisotropic diffusion (SRAD) technique, and the detail preserving anisotropic diffusion (DPAD) technique]. And it is significantly faster than bilateral filtering (BF) in producing virtually the same experimental results. Ultrasound phantom testing and in vivo imaging show that the proposed method can improve the quality of an ultrasound image in terms of tissue SNR, CNR, and FOM values.

  10. Laser speckle contrast imaging using light field microscope approach

    Science.gov (United States)

    Ma, Xiaohui; Wang, Anting; Ma, Fenghua; Wang, Zi; Ming, Hai

    2018-01-01

    In this paper, a laser speckle contrast imaging (LSCI) system using light field (LF) microscope approach is proposed. As far as we known, it is first time to combine LSCI with LF. To verify this idea, a prototype consists of a modified LF microscope imaging system and an experimental device was built. A commercially used Lytro camera was modified for microscope imaging. Hollow glass tubes with different depth fixed in glass dish were used to simulate the vessels in brain and test the performance of the system. Compared with conventional LSCI, three new functions can be realized by using our system, which include refocusing, extending the depth of field (DOF) and gathering 3D information. Experiments show that the principle is feasible and the proposed system works well.

  11. Color speckle in laser displays

    Science.gov (United States)

    Kuroda, Kazuo

    2015-07-01

    At the beginning of this century, lighting technology has been shifted from discharge lamps, fluorescent lamps and electric bulbs to solid-state lighting. Current solid-state lighting is based on the light emitting diodes (LED) technology, but the laser lighting technology is developing rapidly, such as, laser cinema projectors, laser TVs, laser head-up displays, laser head mounted displays, and laser headlamps for motor vehicles. One of the main issues of laser displays is the reduction of speckle noise1). For the monochromatic laser light, speckle is random interference pattern on the image plane (retina for human observer). For laser displays, RGB (red-green-blue) lasers form speckle patterns independently, which results in random distribution of chromaticity, called color speckle2).

  12. Highly porous nanoberyllium for X-ray beam speckle suppression

    Energy Technology Data Exchange (ETDEWEB)

    Goikhman, Alexander, E-mail: agoikhman@ymail.com; Lyatun, Ivan; Ershov, Petr [Immanuel Kant Baltic Federal University, Nevskogo str. 14, Kaliningrad 236041 (Russian Federation); Snigireva, Irina [European Synchrotron Radiation Facility, BP 220, 38043 Grenoble (France); Wojda, Pawel [Immanuel Kant Baltic Federal University, Nevskogo str. 14, Kaliningrad 236041 (Russian Federation); Gdańsk University of Technology, 11/12 G. Narutowicza, Gdańsk 80-233 (Poland); Gorlevsky, Vladimir; Semenov, Alexander; Sheverdyaev, Maksim; Koletskiy, Viktor [A. A. Bochvar High-Technology Scientific Research Institute for Inorganic Materials, Rogova str. 5a, Moscow 123098 (Russian Federation); Snigirev, Anatoly [Immanuel Kant Baltic Federal University, Nevskogo str. 14, Kaliningrad 236041 (Russian Federation); European Synchrotron Radiation Facility, BP 220, 38043 Grenoble (France)

    2015-04-09

    A speckle suppression device containing highly porous nanoberyllium is proposed for manipulating the spatial coherence length and removing undesirable speckle structure during imaging experiments. This paper reports a special device called a ‘speckle suppressor’, which contains a highly porous nanoberyllium plate squeezed between two beryllium windows. The insertion of the speckle suppressor in an X-ray beam allows manipulation of the spatial coherence length, thus changing the effective source size and removing the undesirable speckle structure in X-ray imaging experiments almost without beam attenuation. The absorption of the nanoberyllium plate is below 1% for 1 mm thickness at 12 keV. The speckle suppressor was tested on the ID06 ESRF beamline with X-rays in the energy range from 9 to 15 keV. It was applied for the transformation of the phase–amplitude contrast to the pure amplitude contrast in full-field microscopy.

  13. Highly porous nanoberyllium for X-ray beam speckle suppression

    International Nuclear Information System (INIS)

    Goikhman, Alexander; Lyatun, Ivan; Ershov, Petr; Snigireva, Irina; Wojda, Pawel; Gorlevsky, Vladimir; Semenov, Alexander; Sheverdyaev, Maksim; Koletskiy, Viktor; Snigirev, Anatoly

    2015-01-01

    A speckle suppression device containing highly porous nanoberyllium is proposed for manipulating the spatial coherence length and removing undesirable speckle structure during imaging experiments. This paper reports a special device called a ‘speckle suppressor’, which contains a highly porous nanoberyllium plate squeezed between two beryllium windows. The insertion of the speckle suppressor in an X-ray beam allows manipulation of the spatial coherence length, thus changing the effective source size and removing the undesirable speckle structure in X-ray imaging experiments almost without beam attenuation. The absorption of the nanoberyllium plate is below 1% for 1 mm thickness at 12 keV. The speckle suppressor was tested on the ID06 ESRF beamline with X-rays in the energy range from 9 to 15 keV. It was applied for the transformation of the phase–amplitude contrast to the pure amplitude contrast in full-field microscopy

  14. MLESAC Based Localization of Needle Insertion Using 2D Ultrasound Images

    Science.gov (United States)

    Xu, Fei; Gao, Dedong; Wang, Shan; Zhanwen, A.

    2018-04-01

    In the 2D ultrasound image of ultrasound-guided percutaneous needle insertions, it is difficult to determine the positions of needle axis and tip because of the existence of artifacts and other noises. In this work the speckle is regarded as the noise of an ultrasound image, and a novel algorithm is presented to detect the needle in a 2D ultrasound image. Firstly, the wavelet soft thresholding technique based on BayesShrink rule is used to denoise the speckle of ultrasound image. Secondly, we add Otsu’s thresholding method and morphologic operations to pre-process the ultrasound image. Finally, the localization of the needle is identified and positioned in the 2D ultrasound image based on the maximum likelihood estimation sample consensus (MLESAC) algorithm. The experimental results show that it is valid for estimating the position of needle axis and tip in the ultrasound images with the proposed algorithm. The research work is hopeful to be used in the path planning and robot-assisted needle insertion procedures.

  15. Laser speckle contrast imaging identifies ischemic areas on gastric tube reconstructions following esophagectomy.

    Science.gov (United States)

    Milstein, Dan M J; Ince, Can; Gisbertz, Suzanne S; Boateng, Kofi B; Geerts, Bart F; Hollmann, Markus W; van Berge Henegouwen, Mark I; Veelo, Denise P

    2016-06-01

    Gastric tube reconstruction (GTR) is a high-risk surgical procedure with substantial perioperative morbidity. Compromised arterial blood supply and venous congestion are believed to be the main etiologic factors associated with early and late anastomotic complications. Identifying low blood perfusion areas may provide information on the risks of future anastomotic leakage and could be essential for improving surgical techniques. The aim of this study was to generate a method for gastric microvascular perfusion analysis using laser speckle contrast imaging (LSCI) and to test the hypothesis that LSCI is able to identify ischemic regions on GTRs.Patients requiring elective laparoscopy-assisted GTR participated in this single-center observational investigation. A method for intraoperative evaluation of blood perfusion and postoperative analysis was generated and validated for reproducibility. Laser speckle measurements were performed at 3 different time pointes, baseline (devascularized) stomach (T0), after GTR (T1), and GTR at 20° reverse Trendelenburg (T2).Blood perfusion analysis inter-rater reliability was high, with intraclass correlation coefficients for each time point approximating 1 (P < 0.0001). Baseline (T0) and GTR (T1) mean blood perfusion profiles were highest at the base of the stomach and then progressively declined towards significant ischemia at the most cranial point or anastomotic tip (P < 0.01). After GTR, a statistically significant improvement in mean blood perfusion was observed in the cranial gastric regions of interest (P < 0.05). A generalized significant decrease in mean blood perfusion was observed across all GTR regions of interest during 20° reverse Trendelenburg (P < 0.05).It was feasible to implement LSCI intraoperatively to produce blood perfusion assessments on intact and reconstructed whole stomachs. The analytical design presented in this study resulted in good reproducibility of gastric perfusion measurements

  16. From synchrotron radiation to lab source: advanced speckle-based X-ray imaging using abrasive paper

    Science.gov (United States)

    Wang, Hongchang; Kashyap, Yogesh; Sawhney, Kawal

    2016-02-01

    X-ray phase and dark-field imaging techniques provide complementary and inaccessible information compared to conventional X-ray absorption or visible light imaging. However, such methods typically require sophisticated experimental apparatus or X-ray beams with specific properties. Recently, an X-ray speckle-based technique has shown great potential for X-ray phase and dark-field imaging using a simple experimental arrangement. However, it still suffers from either poor resolution or the time consuming process of collecting a large number of images. To overcome these limitations, in this report we demonstrate that absorption, dark-field, phase contrast, and two orthogonal differential phase contrast images can simultaneously be generated by scanning a piece of abrasive paper in only one direction. We propose a novel theoretical approach to quantitatively extract the above five images by utilising the remarkable properties of speckles. Importantly, the technique has been extended from a synchrotron light source to utilise a lab-based microfocus X-ray source and flat panel detector. Removing the need to raster the optics in two directions significantly reduces the acquisition time and absorbed dose, which can be of vital importance for many biological samples. This new imaging method could potentially provide a breakthrough for numerous practical imaging applications in biomedical research and materials science.

  17. Improvement of image quality of holographic projection on tilted plane using iterative algorithm

    Science.gov (United States)

    Pang, Hui; Cao, Axiu; Wang, Jiazhou; Zhang, Man; Deng, Qiling

    2017-12-01

    Holographic image projection on tilted plane has an important application prospect. In this paper, we propose a method to compute the phase-only hologram that can reconstruct a clear image on tilted plane. By adding a constant phase to the target image of the inclined plane, the corresponding light field distribution on the plane that is parallel to the hologram plane is derived through the titled diffraction calculation. Then the phase distribution of the hologram is obtained by the iterative algorithm with amplitude and phase constrain. Simulation and optical experiment are performed to show the effectiveness of the proposed method.

  18. Simultaneous determination of sample thickness, tilt, and electron mean free path using tomographic tilt images based on Beer-Lambert law.

    Science.gov (United States)

    Yan, Rui; Edwards, Thomas J; Pankratz, Logan M; Kuhn, Richard J; Lanman, Jason K; Liu, Jun; Jiang, Wen

    2015-11-01

    Cryo-electron tomography (cryo-ET) is an emerging technique that can elucidate the architecture of macromolecular complexes and cellular ultrastructure in a near-native state. Some important sample parameters, such as thickness and tilt, are needed for 3-D reconstruction. However, these parameters can currently only be determined using trial 3-D reconstructions. Accurate electron mean free path plays a significant role in modeling image formation process essential for simulation of electron microscopy images and model-based iterative 3-D reconstruction methods; however, their values are voltage and sample dependent and have only been experimentally measured for a limited number of sample conditions. Here, we report a computational method, tomoThickness, based on the Beer-Lambert law, to simultaneously determine the sample thickness, tilt and electron inelastic mean free path by solving an overdetermined nonlinear least square optimization problem utilizing the strong constraints of tilt relationships. The method has been extensively tested with both stained and cryo datasets. The fitted electron mean free paths are consistent with reported experimental measurements. The accurate thickness estimation eliminates the need for a generous assignment of Z-dimension size of the tomogram. Interestingly, we have also found that nearly all samples are a few degrees tilted relative to the electron beam. Compensation of the intrinsic sample tilt can result in horizontal structure and reduced Z-dimension of tomograms. Our fast, pre-reconstruction method can thus provide important sample parameters that can help improve performance of tomographic reconstruction of a wide range of samples. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Speckle-modulating optical coherence tomography in living mice and humans

    Science.gov (United States)

    Liba, Orly; Lew, Matthew D.; Sorelle, Elliott D.; Dutta, Rebecca; Sen, Debasish; Moshfeghi, Darius M.; Chu, Steven; de La Zerda, Adam

    2017-06-01

    Optical coherence tomography (OCT) is a powerful biomedical imaging technology that relies on the coherent detection of backscattered light to image tissue morphology in vivo. As a consequence, OCT is susceptible to coherent noise (speckle noise), which imposes significant limitations on its diagnostic capabilities. Here we show speckle-modulating OCT (SM-OCT), a method based purely on light manipulation that virtually eliminates speckle noise originating from a sample. SM-OCT accomplishes this by creating and averaging an unlimited number of scans with uncorrelated speckle patterns without compromising spatial resolution. Using SM-OCT, we reveal small structures in the tissues of living animals, such as the inner stromal structure of a live mouse cornea, the fine structures inside the mouse pinna, and sweat ducts and Meissner's corpuscle in the human fingertip skin--features that are otherwise obscured by speckle noise when using conventional OCT or OCT with current state of the art speckle reduction methods.

  20. X-ray pulse wavefront metrology using speckle tracking

    International Nuclear Information System (INIS)

    Berujon, Sebastien; Ziegler, Eric; Cloetens, Peter

    2015-01-01

    The theoretical description and experimental implementation of a speckle-tracking-based instrument which permits the characterisation of X-ray pulse wavefronts. An instrument allowing the quantitative analysis of X-ray pulsed wavefronts is presented and its processing method explained. The system relies on the X-ray speckle tracking principle to accurately measure the phase gradient of the X-ray beam from which beam optical aberrations can be deduced. The key component of this instrument, a semi-transparent scintillator emitting visible light while transmitting X-rays, allows simultaneous recording of two speckle images at two different propagation distances from the X-ray source. The speckle tracking procedure for a reference-less metrology mode is described with a detailed account on the advanced processing schemes used. A method to characterize and compensate for the imaging detector distortion, whose principle is also based on speckle, is included. The presented instrument is expected to find interest at synchrotrons and at the new X-ray free-electron laser sources under development worldwide where successful exploitation of beams relies on the availability of an accurate wavefront metrology

  1. SPECKLE IMAGING EXCLUDES LOW-MASS COMPANIONS ORBITING THE EXOPLANET HOST STAR TRAPPIST-1

    International Nuclear Information System (INIS)

    Howell, Steve B.; Scott, Nicholas J.; Everett, Mark E.; Horch, Elliott P.; Winters, Jennifer G.; Hirsch, Lea; Nusdeo, Dan

    2016-01-01

    We have obtained the highest-resolution images available of TRAPPIST-1 using the Gemini-South telescope and our speckle imaging camera. Observing at 692 and 883 nm, we reached the diffraction limit of the telescope providing a best resolution of 27 mas or, at the distance of TRAPPIST-1, a spatial resolution of 0.32 au. Our imaging of the star extends from 0.32 to 14.5 au. We show that to a high confidence level, we can exclude all possible stellar and brown dwarf companions, indicating that TRAPPIST-1 is a single star.

  2. SPECKLE IMAGING EXCLUDES LOW-MASS COMPANIONS ORBITING THE EXOPLANET HOST STAR TRAPPIST-1

    Energy Technology Data Exchange (ETDEWEB)

    Howell, Steve B.; Scott, Nicholas J. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Everett, Mark E. [National Optical Astronomy Observatory, 950 N. Cherry Avenue, Tucson, AZ 85719 (United States); Horch, Elliott P. [Department of Physics, Southern Connecticut State University, 501 Crescent Street, New Haven, CT, 06515 (United States); Winters, Jennifer G. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, 02138 (United States); Hirsch, Lea [Astronomy Department, University of California, Berkeley, 510 Campbell Hall, Berkeley, CA, 94720 (United States); Nusdeo, Dan [Department of Physics and Astronomy, Georgia State University, P.O. Box 5060, Atlanta, GA 30302 (United States)

    2016-09-20

    We have obtained the highest-resolution images available of TRAPPIST-1 using the Gemini-South telescope and our speckle imaging camera. Observing at 692 and 883 nm, we reached the diffraction limit of the telescope providing a best resolution of 27 mas or, at the distance of TRAPPIST-1, a spatial resolution of 0.32 au. Our imaging of the star extends from 0.32 to 14.5 au. We show that to a high confidence level, we can exclude all possible stellar and brown dwarf companions, indicating that TRAPPIST-1 is a single star.

  3. A new method to detect and correct sample tilt in scanning transmission electron microscopy bright-field imaging

    Energy Technology Data Exchange (ETDEWEB)

    Brown, H.G. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Ishikawa, R.; Sánchez-Santolino, G. [Institute of Engineering Innovation, School of Engineering, University of Tokyo, Tokyo 113-8656 (Japan); Lugg, N.R., E-mail: shibata@sigma.t.u-tokyo.ac.jp [Institute of Engineering Innovation, School of Engineering, University of Tokyo, Tokyo 113-8656 (Japan); Ikuhara, Y. [Institute of Engineering Innovation, School of Engineering, University of Tokyo, Tokyo 113-8656 (Japan); Allen, L.J. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Shibata, N. [Institute of Engineering Innovation, School of Engineering, University of Tokyo, Tokyo 113-8656 (Japan)

    2017-02-15

    Important properties of functional materials, such as ferroelectric shifts and octahedral distortions, are associated with displacements of the positions of lighter atoms in the unit cell. Annular bright-field scanning transmission electron microscopy is a good experimental method for investigating such phenomena due to its ability to image light and heavy atoms simultaneously. To map atomic positions at the required accuracy precise angular alignment of the sample with the microscope optical axis is necessary, since misalignment (tilt) of the specimen contributes to errors in position measurements of lighter elements in annular bright-field imaging. In this paper it is shown that it is possible to detect tilt with the aid of images recorded using a central bright-field detector placed within the inner radius of the annular bright-field detector. For a probe focus near the middle of the specimen the central bright-field image becomes especially sensitive to tilt and we demonstrate experimentally that misalignment can be detected with a precision of less than a milliradian, as we also confirm in simulation. Coma in the probe, an aberration that can be misidentified as tilt of the specimen, is also investigated and it is shown how the effects of coma and tilt can be differentiated. The effects of tilt may be offset to a large extent by shifting the diffraction plane detector an amount equivalent to the specimen tilt and we provide an experimental proof of principle of this using a segmented detector system. - Highlights: • Octahedral distortions are associated with displacements of lighter atoms. • Annular bright-field imaging is sensitive to light and heavy atoms simultaneously. • Mistilt of the specimen leads to errors in position measurements of lighter elements. • It is possible to detect tilt using images taken by a central bright-field detector. • Tilt may be offset by shifting the diffraction plane detector by an equivalent amount.

  4. Investigation of the ripeness of oil palm fresh fruit bunches using bio-speckle imaging

    Science.gov (United States)

    Salambue, R.; Adnan, A.; Shiddiq, M.

    2018-03-01

    The ripeness of the oil palm Fresh Fruit Bunches (FFB) determines the yield of the oil produced. Traditionally there are two ways to determine FFB ripeness which are the number of loose fruits and the color changes. Nevertheless, one drawback of visual determination is subjective and qualitative judgment. In this study, the FFB ripeness was investigated using laser based image processing technique. The advantages of using this technique are non-destructive, simple and quantitative. The working principle of the investigation is that a FFB is inserted into a light tight box which contains a laser diode and a CMOS camera, the FFB is illuminated, and then an image is recorded. The FFB image recorder was performed on four FFB fractions i.e. F0, F3, F4 and F5 on the front and rear surfaces at three sections. The recorded images are speckled granules that have light intensity variation (bio-speckle imaging). The feature extracted from the specked image is the contrast value obtained from the average gray value intensity and the standard deviation. Based on the contrast values, the four fractions of FFB can be grouped into three levels of ripeness of unripe (F0), ripe (F3) and overripe (F4 and F5) on the front surface of base section of FFB by 75%.

  5. Exploiting the speckle-correlation scattering matrix for a compact reference-free holographic image sensor.

    Science.gov (United States)

    Lee, KyeoReh; Park, YongKeun

    2016-10-31

    The word 'holography' means a drawing that contains all of the information for light-both amplitude and wavefront. However, because of the insufficient bandwidth of current electronics, the direct measurement of the wavefront of light has not yet been achieved. Though reference-field-assisted interferometric methods have been utilized in numerous applications, introducing a reference field raises several fundamental and practical issues. Here we demonstrate a reference-free holographic image sensor. To achieve this, we propose a speckle-correlation scattering matrix approach; light-field information passing through a thin disordered layer is recorded and retrieved from a single-shot recording of speckle intensity patterns. Self-interference via diffusive scattering enables access to impinging light-field information, when light transport in the diffusive layer is precisely calibrated. As a proof-of-concept, we demonstrate direct holographic measurements of three-dimensional optical fields using a compact device consisting of a regular image sensor and a diffusor.

  6. Edge Probability and Pixel Relativity-Based Speckle Reducing Anisotropic Diffusion.

    Science.gov (United States)

    Mishra, Deepak; Chaudhury, Santanu; Sarkar, Mukul; Soin, Arvinder Singh; Sharma, Vivek

    2018-02-01

    Anisotropic diffusion filters are one of the best choices for speckle reduction in the ultrasound images. These filters control the diffusion flux flow using local image statistics and provide the desired speckle suppression. However, inefficient use of edge characteristics results in either oversmooth image or an image containing misinterpreted spurious edges. As a result, the diagnostic quality of the images becomes a concern. To alleviate such problems, a novel anisotropic diffusion-based speckle reducing filter is proposed in this paper. A probability density function of the edges along with pixel relativity information is used to control the diffusion flux flow. The probability density function helps in removing the spurious edges and the pixel relativity reduces the oversmoothing effects. Furthermore, the filtering is performed in superpixel domain to reduce the execution time, wherein a minimum of 15% of the total number of image pixels can be used. For performance evaluation, 31 frames of three synthetic images and 40 real ultrasound images are used. In most of the experiments, the proposed filter shows a better performance as compared to the state-of-the-art filters in terms of the speckle region's signal-to-noise ratio and mean square error. It also shows a comparative performance for figure of merit and structural similarity measure index. Furthermore, in the subjective evaluation, performed by the expert radiologists, the proposed filter's outputs are preferred for the improved contrast and sharpness of the object boundaries. Hence, the proposed filtering framework is suitable to reduce the unwanted speckle and improve the quality of the ultrasound images.

  7. Speckle Interferometry

    Science.gov (United States)

    Chiang, F. P.; Jin, F.; Wang, Q.; Zhu, N.

    Before the milestone work of Leedertz in 1970 coherent speckles generated from a laser illuminated object are considered noise to be eliminated or minimized. Leedertz shows that coherent speckles are actually information carriers. Since then the speckle technique has found many applications to fields of mechanics, metrology, nondestructive evaluation and material sciences. Speckles need not be coherent. Artificially created socalled white light speckles can also be used as information carriers. In this paper we present two recent developments of speckle technique with applications to micromechanics problems using SIEM (Speckle Interferometry with Electron Microscopy), to nondestructive evaluation of crevice corrosion and composite disbond and vibration of large structures using TADS (Time-Average Digital Specklegraphy).

  8. SU-D-210-05: The Accuracy of Raw and B-Mode Image Data for Ultrasound Speckle Tracking in Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    O’Shea, T; Bamber, J; Harris, E [The Institute of Cancer Research & Royal Marsden, Sutton and London (United Kingdom)

    2015-06-15

    Purpose: For ultrasound speckle tracking there is some evidence that the envelope-detected signal (the main step in B-mode image formation) may be more accurate than raw ultrasound data for tracking larger inter-frame tissue motion. This study investigates the accuracy of raw radio-frequency (RF) versus non-logarithmic compressed envelope-detected (B-mode) data for ultrasound speckle tracking in the context of image-guided radiation therapy. Methods: Transperineal ultrasound RF data was acquired (with a 7.5 MHz linear transducer operating at a 12 Hz frame rate) from a speckle phantom moving with realistic intra-fraction prostate motion derived from a commercial tracking system. A normalised cross-correlation template matching algorithm was used to track speckle motion at the focus using (i) the RF signal and (ii) the B-mode signal. A range of imaging rates (0.5 to 12 Hz) were simulated by decimating the imaging sequences, therefore simulating larger to smaller inter-frame displacements. Motion estimation accuracy was quantified by comparison with known phantom motion. Results: The differences between RF and B-mode motion estimation accuracy (2D mean and 95% errors relative to ground truth displacements) were less than 0.01 mm for stable and persistent motion types and 0.2 mm for transient motion for imaging rates of 0.5 to 12 Hz. The mean correlation for all motion types and imaging rates was 0.851 and 0.845 for RF and B-mode data, respectively. Data type is expected to have most impact on axial (Superior-Inferior) motion estimation. Axial differences were <0.004 mm for stable and persistent motion and <0.3 mm for transient motion (axial mean errors were lowest for B-mode in all cases). Conclusions: Using the RF or B-mode signal for speckle motion estimation is comparable for translational prostate motion. B-mode image formation may involve other signal-processing steps which also influence motion estimation accuracy. A similar study for respiratory-induced motion

  9. The POKEMON Speckle Survey of Nearby M-Dwarfs

    Science.gov (United States)

    van Belle, Gerard; von Braun, Kaspar; Horch, Elliott; Clark, Catherine; DSSI Speckle Team

    2018-01-01

    The POKEMON (Pervasive Overview of Kompanions of Every M-dwarf in Our Neighborhood) survey of nearby M-dwarfs intends to inspect, at diffraction-limited resolution, every low-mass star out to 15pc, along with selected additional objects to 25pc. The primary emphasis of the survey is detection of low-mass companions to these M-dwarfs for refinement of the low-mass star multiplicity rate. The resultant catalog of M-dwarf companions will also guide immediate refinement of transit planet detection results from surveys such as TESS. POKEMON is using Lowell Observatory's 4.3-m Discovery Channel Telescope (DCT) with the Differential Speckle Survey Instrument (DSSI) speckle camera, along with the NN-Explore Exoplanet Stellar Speckle Imager (NESSI) speckle imager on 3.5-m WIYN; the survey takes advantage of the extremely rapid observing cadence rates possible with WIYN and (especially) DCT. The current status and preliminary results from the first 20+ nights of observing will be presented. Gotta observe them all!

  10. Compensation for the signal processing characteristics of ultrasound B-mode scanners in adaptive speckle reduction.

    Science.gov (United States)

    Crawford, D C; Bell, D S; Bamber, J C

    1993-01-01

    A systematic method to compensate for nonlinear amplification of individual ultrasound B-scanners has been investigated in order to optimise performance of an adaptive speckle reduction (ASR) filter for a wide range of clinical ultrasonic imaging equipment. Three potential methods have been investigated: (1) a method involving an appropriate selection of the speckle recognition feature was successful when the scanner signal processing executes simple logarithmic compressions; (2) an inverse transform (decompression) of the B-mode image was effective in correcting for the measured characteristics of image data compression when the algorithm was implemented in full floating point arithmetic; (3) characterising the behaviour of the statistical speckle recognition feature under conditions of speckle noise was found to be the method of choice for implementation of the adaptive speckle reduction algorithm in limited precision integer arithmetic. In this example, the statistical features of variance and mean were investigated. The third method may be implemented on commercially available fast image processing hardware and is also better suited for transfer into dedicated hardware to facilitate real-time adaptive speckle reduction. A systematic method is described for obtaining ASR calibration data from B-mode images of a speckle producing phantom.

  11. Tilted Light Sheet Microscopy with 3D Point Spread Functions for Single-Molecule Super-Resolution Imaging in Mammalian Cells.

    Science.gov (United States)

    Gustavsson, Anna-Karin; Petrov, Petar N; Lee, Maurice Y; Shechtman, Yoav; Moerner, W E

    2018-02-01

    To obtain a complete picture of subcellular nanostructures, cells must be imaged with high resolution in all three dimensions (3D). Here, we present tilted light sheet microscopy with 3D point spread functions (TILT3D), an imaging platform that combines a novel, tilted light sheet illumination strategy with engineered long axial range point spread functions (PSFs) for low-background, 3D super localization of single molecules as well as 3D super-resolution imaging in thick cells. TILT3D is built upon a standard inverted microscope and has minimal custom parts. The axial positions of the single molecules are encoded in the shape of the PSF rather than in the position or thickness of the light sheet, and the light sheet can therefore be formed using simple optics. The result is flexible and user-friendly 3D super-resolution imaging with tens of nm localization precision throughout thick mammalian cells. We validated TILT3D for 3D super-resolution imaging in mammalian cells by imaging mitochondria and the full nuclear lamina using the double-helix PSF for single-molecule detection and the recently developed Tetrapod PSF for fiducial bead tracking and live axial drift correction. We envision TILT3D to become an important tool not only for 3D super-resolution imaging, but also for live whole-cell single-particle and single-molecule tracking.

  12. Tilted light sheet microscopy with 3D point spread functions for single-molecule super-resolution imaging in mammalian cells

    Science.gov (United States)

    Gustavsson, Anna-Karin; Petrov, Petar N.; Lee, Maurice Y.; Shechtman, Yoav; Moerner, W. E.

    2018-02-01

    To obtain a complete picture of subcellular nanostructures, cells must be imaged with high resolution in all three dimensions (3D). Here, we present tilted light sheet microscopy with 3D point spread functions (TILT3D), an imaging platform that combines a novel, tilted light sheet illumination strategy with engineered long axial range point spread functions (PSFs) for low-background, 3D super localization of single molecules as well as 3D super-resolution imaging in thick cells. TILT3D is built upon a standard inverted microscope and has minimal custom parts. The axial positions of the single molecules are encoded in the shape of the PSF rather than in the position or thickness of the light sheet, and the light sheet can therefore be formed using simple optics. The result is flexible and user-friendly 3D super-resolution imaging with tens of nm localization precision throughout thick mammalian cells. We validated TILT3D for 3D superresolution imaging in mammalian cells by imaging mitochondria and the full nuclear lamina using the double-helix PSF for single-molecule detection and the recently developed Tetrapod PSF for fiducial bead tracking and live axial drift correction. We envision TILT3D to become an important tool not only for 3D super-resolution imaging, but also for live whole-cell single-particle and single-molecule tracking.

  13. Vegetation Detection in Stress of Moisture Shortage Based on Laser Speckle Recognition

    Science.gov (United States)

    Ishizawa, Hiroaki; Matsuo, Tsukasa; Miki, Takashi

    This paper describes a new measuring method of plant vigor by using Laser speckle pattern. Furthermore, this proposes a practical application of this presented measurement system. The measuring instrument is consisted by a He-Ne Laser as the light source, and a set of optics, such as reflectors, a beam expander. The speckle pattern could be measured by a CCD camera through lenses. A Pothos (Epiremnum aureum) and Japanese morning glory (Ipomoea nil) were used as the sample plant. Their intact leaves were measured the speckle pattern images. Visible but small vigor veins could be clearly observed in the images obtained by the speckle patterns. On the other hand, withered ones have shown different images. The relationship has been obtained between the feature of the images and the chlorophyll degradation. It would be expected that the symptom of plant against some stress could be detected by measuring the Laser speckle pattern. It could be used as the sensor of the field server system at every field monitoring site.

  14. Imaging Inelastic Fracture Processes in Biomimetic Nanocomposites and Nacre by Laser Speckle for Better Toughness.

    Science.gov (United States)

    Verho, Tuukka; Karppinen, Pasi; Gröschel, André H; Ikkala, Olli

    2018-01-01

    Mollusk nacre is a prototypical biological inorganic-organic composite that combines high toughness, stiffness, and strength by its brick-and-mortar microstructure, which has inspired several synthetic mimics. Its remarkable fracture toughness relies on inelastic deformations at the process zone at the crack tip that dissolve stress concentrations and stop cracks. The micrometer-scale structure allows resolving the size and shape of the process zone to understand the fracture processes. However, for better scalability, nacre-mimetic nanocomposites with aligned inorganic or graphene nanosheets are extensively pursued, to avoid the packing problems of mesoscale sheets like in nacre or slow in situ biomineralization. This calls for novel methods to explore the process zone of biomimetic nanocomposites. Here the fracture of nacre and nacre-inspired clay/polymer nanocomposite is explored using laser speckle imaging that reveals the process zone even in absence of changes in optical scattering. To demonstrate the diagnostic value, compared to nacre, the nacre-inspired nanocomposite develops a process zone more abruptly with macroscopic crack deflection shown by a flattened process zone. In situ scanning electron microscopy suggests similar toughening mechanisms in nanocomposite and nacre. These new insights guide the design of nacre-inspired nanocomposites toward better mechanical properties to reach the level of synergy of their biological model.

  15. Optically sectioned in vivo imaging with speckle illumination HiLo microscopy

    Science.gov (United States)

    Lim, Daryl; Ford, Tim N.; Chu, Kengyeh K.; Mertz, Jerome

    2011-01-01

    We present a simple wide-field imaging technique, called HiLo microscopy, that is capable of producing optically sectioned images in real time, comparable in quality to confocal laser scanning microscopy. The technique is based on the fusion of two raw images, one acquired with speckle illumination and another with standard uniform illumination. The fusion can be numerically adjusted, using a single parameter, to produce optically sectioned images of varying thicknesses with the same raw data. Direct comparison between our HiLo microscope and a commercial confocal laser scanning microscope is made on the basis of sectioning strength and imaging performance. Specifically, we show that HiLo and confocal 3-D imaging of a GFP-labeled mouse brain hippocampus are comparable in quality. Moreover, HiLo microscopy is capable of faster, near video rate imaging over larger fields of view than attainable with standard confocal microscopes. The goal of this paper is to advertise the simplicity, robustness, and versatility of HiLo microscopy, which we highlight with in vivo imaging of common model organisms including planaria, C. elegans, and zebrafish.

  16. Signal-to-noise based local decorrelation compensation for speckle interferometry applications

    International Nuclear Information System (INIS)

    Molimard, Jerome; Cordero, Raul; Vautrin, Alain

    2008-01-01

    Speckle-based interferometric techniques allow assessing the whole-field deformation induced on a specimen due to the application of load. These high sensitivity optical techniques yield fringe images generated by subtracting speckle patterns captured while the specimen undergoes deformation. The quality of the fringes, and in turn the accuracy of the deformation measurements, strongly depends on the speckle correlation. Specimen rigid body motion leads to speckle decorrelation that, in general, cannot be effectively counteracted by applying a global translation to the involved speckle patterns. In this paper, we propose a recorrelation procedure based on the application of locally evaluated translations. The proposed procedure implies dividing the field into several regions, applying a local translation, and calculating, in every region, the signal-to-noise ratio (SNR). Since the latter is a correlation indicator (the noise increases with the decorrelation) we argue that the proper translation is that which maximizes the locally evaluated SNR. The search of the proper local translations is, of course, an interactive process that can be facilitated by using a SNR optimization algorithm. The performance of the proposed recorrelation procedure was tested on two examples. First, the SNR optimization algorithm was applied to fringe images obtained by subtracting simulated speckle patterns. Next, it was applied to fringe images obtained by using a shearography optical setup from a specimen subjected to mechanical deformation. Our results show that the proposed SNR optimization method can significantly improve the reliability of measurements performed by using speckle-based techniques

  17. Design and construction of an optical test bed for LISA imaging systems and tilt-to-length coupling

    International Nuclear Information System (INIS)

    Chwalla, M; Fitzsimons, E; Danzmann, K; Fernández Barranco, G; Gerberding, O; Heinzel, G; Lieser, M; Schuster, S; Schwarze, T S; Tröbs, M; Zwetz, M; Killow, C J; Perreur-Lloyd, M; Robertson, D I; Ward, H

    2016-01-01

    The laser interferometer space antenna (LISA) is a future space-based interferometric gravitational-wave detector consisting of three spacecraft in a triangular configuration. The interferometric measurements of path length changes between satellites will be performed on optical benches in the satellites. Angular misalignments of the interfering beams couple into the length measurement and represent a significant noise source. Imaging systems will be used to reduce this tilt-to-length coupling. We designed and constructed an optical test bed to experimentally investigate tilt-to-length coupling. It consists of two separate structures, a minimal optical bench and a telescope simulator. The minimal optical bench comprises the science interferometer where the local laser is interfered with light from a remote spacecraft. In our experiment, a simulated version of this received beam is generated on the telescope simulator. The telescope simulator provides a tilting beam, a reference interferometer and an additional static beam as a phase reference. The tilting beam can either be a flat-top beam or a Gaussian beam. We avoid tilt-to-length coupling in the reference interferometer by using a small photo diode placed at an image of the beam rotation point. We show that the test bed is operational with an initial measurement of tilt-to-length coupling without imaging systems. Furthermore, we show the design of two different imaging systems whose performance will be investigated in future experiments. (paper)

  18. Granulometry use for the study of dynamics speckles patterns

    International Nuclear Information System (INIS)

    Mavilioa, Adriana; Fernandez, Margarita; Trivi, Marcelo; Rabal, Hector; Arizaga, Ricardo

    2009-01-01

    Dynamic speckle patterns are generated by laser light scattering on surfaces that exhibit some kind of activity, due to physical or biological processes that take place in the illuminated object. The characterization of this dynamic process is carried out by studying the texture changes of auxiliary images: temporal history of the speckle pattern (THSP) obtained from this speckles patterns. The drying process of water borne paint is studied through a method based on mathematical morphology applied to the THSP image processing. It is based on obtaining the granulometry of these images and their characteristic granulometric spectrum. From the granulometric size distribution of each THSP image four parameters are obtained: mean length, standard deviation, asymmetry and kurtosis. These parameters are found to be suitable as texture features. The Mahalanobis distance is calculated between the texture features of the THSP images representative of the temporary stages of the drying process and the features of the final stage or pattern texture. The behavior of the distance function describes satisfactorily the drying process of the water borne paint. Finally, these results are compared with the obtained by other methods. Compared with others, the granulometric method reported in this work distinguished by its simplicity and easy implementation and can be used to characterize the evolution of any process recorded through dynamic speckles. (Author)

  19. Tilting the jaw to improve the image quality or to reduce the dose in cone-beam computed tomography

    International Nuclear Information System (INIS)

    Luckow, Marlen; Deyhle, Hans; Beckmann, Felix; Dagassan-Berndt, Dorothea; Müller, Bert

    2011-01-01

    Objective: The image quality in cone-beam computed tomography (CBCT) should be improved tilting the mandible that contains two dental titanium implants, within the relevant range of motion. Materials and methods: Using the mandible of a five-month-old pig, CBCT was performed varying the accelerating voltage, beam current, the starting rotation angle of the mandible in the source-detector plane and the tilt angles of the jaw with respect to the source-detector plane. The different datasets were automatically registered with respect to micro CT data to extract the common volume and the deviance to the pre-defined standard that characterizes the image quality. Results: The variations of the accelerating voltage, beam current and the rotation within the source-detection plane provided the expected quantitative behavior indicating the appropriate choice of the imaging quality factor. The tilting of the porcine mandible by about 14° improves the image quality by almost a factor of two. Conclusions: The tilting of the mandible with two dental implants can be used to significantly reduce the artifacts of the strongly X-ray absorbing materials in the CBCT images. The comparison of 14° jaw tilting with respect to the currently recommended arrangement in plane with the teeth demonstrates that the applied exposure time and the related dose can be reduced by a factor of four without decreasing the image quality.

  20. Direct cone beam SPECT reconstruction with camera tilt

    International Nuclear Information System (INIS)

    Jianying Li; Jaszczak, R.J.; Greer, K.L.; Coleman, R.E.; Zongjian Cao; Tsui, B.M.W.

    1993-01-01

    A filtered backprojection (FBP) algorithm is derived to perform cone beam (CB) single-photon emission computed tomography (SPECT) reconstruction with camera tilt using circular orbits. This algorithm reconstructs the tilted angle CB projection data directly by incorporating the tilt angle into it. When the tilt angle becomes zero, this algorithm reduces to that of Feldkamp. Experimentally acquired phantom studies using both a two-point source and the three-dimensional Hoffman brain phantom have been performed. The transaxial tilted cone beam brain images and profiles obtained using the new algorithm are compared with those without camera tilt. For those slices which have approximately the same distance from the detector in both tilt and non-tilt set-ups, the two transaxial reconstructions have similar profiles. The two-point source images reconstructed from this new algorithm and the tilted cone beam brain images are also compared with those reconstructed from the existing tilted cone beam algorithm. (author)

  1. Dynamical properties of speckled speckles

    DEFF Research Database (Denmark)

    Hanson, Steen Grüner; Iversen, Theis Faber Quist; Hansen, Rene Skov

    2010-01-01

    the static diffuser and the plane of observation consist of an optical system that can be characterized by a complex-valued ABCD-matrix (e.g. simple and complex imaging systems, free space propagation in both the near-and far-field, and Fourier transform systems). The use of the complex ABCD-method means...... to be Gaussian but the derived expressions are not restricted to a plane incident beam. The results are applicable for speckle-based systems for determining mechanical displacements, especially for long-range systems, and for analyzing systems for measuring biological activity beyond a diffuse layer, e.g. blood...

  2. Simulation of speckle patterns with pre-defined correlation distributions

    Science.gov (United States)

    Song, Lipei; Zhou, Zhen; Wang, Xueyan; Zhao, Xing; Elson, Daniel S.

    2016-01-01

    We put forward a method to easily generate a single or a sequence of fully developed speckle patterns with pre-defined correlation distribution by utilizing the principle of coherent imaging. The few-to-one mapping between the input correlation matrix and the correlation distribution between simulated speckle patterns is realized and there is a simple square relationship between the values of these two correlation coefficient sets. This method is demonstrated both theoretically and experimentally. The square relationship enables easy conversion from any desired correlation distribution. Since the input correlation distribution can be defined by a digital matrix or a gray-scale image acquired experimentally, this method provides a convenient way to simulate real speckle-related experiments and to evaluate data processing techniques. PMID:27231589

  3. Precise Orientation of a Single C60 Molecule on the Tip of a Scanning Probe Microscope

    Science.gov (United States)

    Chiutu, C.; Sweetman, A. M.; Lakin, A. J.; Stannard, A.; Jarvis, S.; Kantorovich, L.; Dunn, J. L.; Moriarty, P.

    2012-06-01

    We show that the precise orientation of a C60 molecule which terminates the tip of a scanning probe microscope can be determined with atomic precision from submolecular contrast images of the fullerene cage. A comparison of experimental scanning tunneling microscopy data with images simulated using computationally inexpensive Hückel theory provides a robust method of identifying molecular rotation and tilt at the end of the probe microscope tip. Noncontact atomic force microscopy resolves the atoms of the C60 cage closest to the surface for a range of molecular orientations at tip-sample separations where the molecule-substrate interaction potential is weakly attractive. Measurements of the C60C60 pair potential acquired using a fullerene-terminated tip are in excellent agreement with theoretical predictions based on a pairwise summation of the van der Waals interactions between C atoms in each cage, i.e., the Girifalco potential [L. Girifalco, J. Phys. Chem. 95, 5370 (1991)JPCHAX0022-365410.1021/j100167a002].

  4. Pixel-size-maintained image reconstruction of digital holograms on arbitrarily tilted planes by the angular spectrum method.

    Science.gov (United States)

    Jeong, Seung Jun; Hong, Chung Ki

    2008-06-01

    We present an effective method for the pixel-size-maintained reconstruction of images on arbitrarily tilted planes in digital holography. The method is based on the plane wave expansion of the diffraction wave fields and the three-axis rotation of the wave vectors. The images on the tilted planes are reconstructed without loss of the frequency contents of the hologram and have the same pixel sizes. Our method shows good results in the extreme cases of large tilting angles and in the region closer than the paraxial case. The effectiveness of the method is demonstrated by both simulation and experiment.

  5. AFM tip characterization by using FFT filtered images of step structures

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yongda, E-mail: yanyongda@hit.edu.cn [Key Laboratory of Micro-systems and Micro-structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin, Heilongjiang 150001 (China); Center For Precision Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001 (China); Xue, Bo [Key Laboratory of Micro-systems and Micro-structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin, Heilongjiang 150001 (China); Center For Precision Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001 (China); Hu, Zhenjiang; Zhao, Xuesen [Center For Precision Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001 (China)

    2016-01-15

    The measurement resolution of an atomic force microscope (AFM) is largely dependent on the radius of the tip. Meanwhile, when using AFM to study nanoscale surface properties, the value of the tip radius is needed in calculations. As such, estimation of the tip radius is important for analyzing results taken using an AFM. In this study, a geometrical model created by scanning a step structure with an AFM tip was developed. The tip was assumed to have a hemispherical cone shape. Profiles simulated by tips with different scanning radii were calculated by fast Fourier transform (FFT). By analyzing the influence of tip radius variation on the spectra of simulated profiles, it was found that low-frequency harmonics were more susceptible, and that the relationship between the tip radius and the low-frequency harmonic amplitude of the step structure varied monotonically. Based on this regularity, we developed a new method to characterize the radius of the hemispherical tip. The tip radii estimated with this approach were comparable to the results obtained using scanning electron microscope imaging and blind reconstruction methods. - Highlights: • The AFM tips with different radii were simulated to scan a nano-step structure. • The spectra of the simulation scans under different radii were analyzed. • The functions of tip radius and harmonic amplitude were used for evaluating tip. • The proposed method has been validated by SEM imaging and blind reconstruction.

  6. Optical design of the comet Shoemaker-Levy speckle camera

    Energy Technology Data Exchange (ETDEWEB)

    Bissinger, H. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    An optical design is presented in which the Lick 3 meter telescope and a bare CCD speckle camera system was used to image the collision sites of the Shoemaker-Levy 9 comet with the Planet Jupiter. The brief overview includes of the optical constraints and system layout. The choice of a Risley prism combination to compensate for the time dependent atmospheric chromatic changes are described. Plate scale and signal-to-noise ratio curves resulting from imaging reference stars are compared with theory. Comparisons between un-corrected and reconstructed images of Jupiter`s impact sites. The results confirm that speckle imaging techniques can be used over an extended time period to provide a method to image large extended objects.

  7. Feasibility of speckle variance OCT for imaging cutaneous microvasculature regeneration during healing of wounds in diabetic mice

    Science.gov (United States)

    Sharma, P.; Kumawat, J.; Kumar, S.; Sahu, K.; Verma, Y.; Gupta, P. K.; Rao, K. D.

    2018-02-01

    We report on a study to assess the feasibility of a swept source-based speckle variance optical coherence tomography setup for monitoring cutaneous microvasculature. Punch wounds created in the ear pinnae of diabetic mice were monitored at different times post wounding to assess the structural and vascular changes. It was observed that the epithelium thickness increases post wounding and continues to be thick even after healing. Also, the wound size assessed by vascular images is larger than the physical wound size. The results show that the developed speckle variance optical coherence tomography system can be used to monitor vascular regeneration during wound healing in diabetic mice.

  8. Deformation measurements of materials at low temperatures using laser speckle photography method

    International Nuclear Information System (INIS)

    Sumio Nakahara; Yukihide Maeda; Kazunori Matsumura; Shigeyoshi Hisada; Takeyoshi Fujita; Kiyoshi Sugihara

    1992-01-01

    The authors observed deformations of several materials during cooling down process from room temperature to liquid nitrogen temperature using the laser speckle photography method. The in-plane displacements were measured by the image plane speckle photography and the out-of-plane displacement gradients by the defocused speckle photography. The results of measurements of in-plane displacement are compared with those of FEM analysis. The applicability of laser speckle photography method to cryogenic engineering are also discussed

  9. Speckle imaging of active galactic nuclei: NGC 1068 and NGC 4151

    International Nuclear Information System (INIS)

    Ebstein, S.M.

    1987-01-01

    High-resolution images of NGC 1068 and NGC 4151 in the [O III) 5007A line the nearby continuum produced from data taken with the PAPA photon-counting imaging detector using the technique of speckle imaging are presented. The images show an unresolved core of [O III] 5007A emission in the middle of an extended emission region. The extended emission tends to lie alongside the subarcsecond radio structure. In NGC 4151, the extended emission comes from a nearly linear structure extending on both sides of the unresolved core. In NGC 1068, the extended emission is also a linear structure centered on the unresolved core but the emission is concentrated in lobes lying to either side of the major axis. The continuum of NGC 4151 is spatially unresolved. The continuum of NGC 1068 is extended ∼1'' to the SW of the center of the [O III] 5007A emission. Certain aspects of the PAPA detector are discussed, including the variable-threshold discriminators that track the image intensifier pulse height and the camera artifacts. The data processing is described in detail

  10. Nanometric locking of the tight focus for optical microscopy and tip-enhanced microscopy

    International Nuclear Information System (INIS)

    Hayazawa, N; Furusawa, K; Kawata, S

    2012-01-01

    We have successfully stabilized the tight focus onto the sample surface of an optical microscope within ±1.0 nm for a virtually unlimited time duration. The time-dependent thermal drift of the tight focus and the mechanical tilt of the sample surface were simultaneously sensed by a non-optical means based on a capacitive sensor and were compensated for in real-time. This non-optical scheme is promising for the suppression of background light sources for optical microscopy. The focus stabilization is crucial for microscopic measurement at an interface, particularly when scanning a large surface area, because there is always a certain amount of mechanical tilt of the sample substrate, which degrades the contrast of the image. When imaging nanoscopic materials such as carbon nanotubes or silicon nanowires, more stringent nanometric stabilization of the focus position relative to such samples is required, otherwise it is often difficult to interpret the results from the observations. Moreover, the smaller the sample volume is, the smaller the signal becomes, resulting in a long exposure time at each position. In this sense, long-term stability of the tight focus is essential for both microscopic large area scanning and nanosized sample scanning (high-resolution/large-area imaging). In addition, the recently developed tip-enhanced microscopy requires long-term stability of the relative position of the tip, sample and focus position. We were able to successfully demonstrate a stability improvement for tip-enhanced microscopy in the same manner. The stabilization of the tight focus enables us to perform long-term and robust measurements without any degradation of optical signal, resulting in the capability of true nanometric optical imaging with good reproducibility and high precision. The technique presented is a simple add-on for any kind of optical microscope. (paper)

  11. Synchronized renal blood flow dynamics mapped with wavelet analysis of laser speckle flowmetry data

    DEFF Research Database (Denmark)

    Brazhe, Alexey R; Marsh, Donald J; von Holstein-Rathlou, Niels-Henrik

    2014-01-01

    of rat kidneys. The regulatory mechanism in the renal microcirculation generates oscillations in arterial blood flow at several characteristic frequencies. Our approach to laser speckle image processing allows detection of frequency and phase entrainments, visualization of their patterns, and estimation......Full-field laser speckle microscopy provides real-time imaging of superficial blood flow rate. Here we apply continuous wavelet transform to time series of speckle-estimated blood flow from each pixel of the images to map synchronous patterns in instantaneous frequency and phase on the surface...... of the extent of synchronization in renal cortex dynamics....

  12. Acousto-electrical speckle pattern in Lorentz force electrical impedance tomography

    International Nuclear Information System (INIS)

    Grasland-Mongrain, Pol; Destrempes, François; Cloutier, Guy; Mari, Jean-Martial; Souchon, Rémi; Catheline, Stefan; Chapelon, Jean-Yves; Lafon, Cyril

    2015-01-01

    Ultrasound speckle is a granular texture pattern appearing in ultrasound imaging. It can be used to distinguish tissues and identify pathologies. Lorentz force electrical impedance tomography is an ultrasound-based medical imaging technique of the tissue electrical conductivity. It is based on the application of an ultrasound wave in a medium placed in a magnetic field and on the measurement of the induced electric current due to Lorentz force. Similarly to ultrasound imaging, we hypothesized that a speckle could be observed with Lorentz force electrical impedance tomography imaging. In this study, we first assessed the theoretical similarity between the measured signals in Lorentz force electrical impedance tomography and in ultrasound imaging modalities. We then compared experimentally the signal measured in both methods using an acoustic and electrical impedance interface. Finally, a bovine muscle sample was imaged using the two methods. Similar speckle patterns were observed. This indicates the existence of an ‘acousto-electrical speckle’ in the Lorentz force electrical impedance tomography with spatial characteristics driven by the acoustic parameters but due to electrical impedance inhomogeneities instead of acoustic ones as is the case of ultrasound imaging. (paper)

  13. Acousto-electrical speckle pattern in Lorentz force electrical impedance tomography

    Science.gov (United States)

    Grasland-Mongrain, Pol; Destrempes, François; Mari, Jean-Martial; Souchon, Rémi; Catheline, Stefan; Chapelon, Jean-Yves; Lafon, Cyril; Cloutier, Guy

    2015-05-01

    Ultrasound speckle is a granular texture pattern appearing in ultrasound imaging. It can be used to distinguish tissues and identify pathologies. Lorentz force electrical impedance tomography is an ultrasound-based medical imaging technique of the tissue electrical conductivity. It is based on the application of an ultrasound wave in a medium placed in a magnetic field and on the measurement of the induced electric current due to Lorentz force. Similarly to ultrasound imaging, we hypothesized that a speckle could be observed with Lorentz force electrical impedance tomography imaging. In this study, we first assessed the theoretical similarity between the measured signals in Lorentz force electrical impedance tomography and in ultrasound imaging modalities. We then compared experimentally the signal measured in both methods using an acoustic and electrical impedance interface. Finally, a bovine muscle sample was imaged using the two methods. Similar speckle patterns were observed. This indicates the existence of an ‘acousto-electrical speckle’ in the Lorentz force electrical impedance tomography with spatial characteristics driven by the acoustic parameters but due to electrical impedance inhomogeneities instead of acoustic ones as is the case of ultrasound imaging.

  14. Speckle Reduction and Structure Enhancement by Multichannel Median Boosted Anisotropic Diffusion

    Directory of Open Access Journals (Sweden)

    Yang Zhi

    2004-01-01

    Full Text Available We propose a new approach to reduce speckle noise and enhance structures in speckle-corrupted images. It utilizes a median-anisotropic diffusion compound scheme. The median-filter-based reaction term acts as a guided energy source to boost the structures in the image being processed. In addition, it regularizes the diffusion equation to ensure the existence and uniqueness of a solution. We also introduce a decimation and back reconstruction scheme to further enhance the processing result. Before the iteration of the diffusion process, the image is decimated and a subpixel shifted image set is formed. This allows a multichannel parallel diffusion iteration, and more importantly, the speckle noise is broken into impulsive or salt-pepper noise, which is easy to remove by median filtering. The advantage of the proposed technique is clear when it is compared to other diffusion algorithms and the well-known adaptive weighted median filtering (AWMF scheme in both simulation and real medical ultrasound images.

  15. Mobile phone based laser speckle contrast imager for assessment of skin blood flow

    Science.gov (United States)

    Jakovels, Dainis; Saknite, Inga; Krievina, Gita; Zaharans, Janis; Spigulis, Janis

    2014-10-01

    Assessment of skin blood flow is of interest for evaluation of skin viability as well as for reflection of the overall condition of the circulatory system. Laser Doppler perfusion imaging (LDPI) and laser speckle contrast imaging (LASCI) are optical techniques used for assessment of skin perfusion. However, these systems are still too expensive and bulky to be widely available. Implementation of such techniques as connection kits for mobile phones have a potential for primary diagnostics. In this work we demonstrate simple and low cost LASCI connection kit for mobile phone and its comparison to laser Doppler perfusion imager. Post-occlusive hyperemia and local thermal hyperemia tests are used to compare both techniques and to demonstrate the potential of LASCI device.

  16. Optical imaging beyond the diffraction limit by SNEM: Effects of AFM tip modifications with thiol monolayers on imaging quality

    Energy Technology Data Exchange (ETDEWEB)

    Cumurcu, Aysegul [Materials Science and Technology of Polymers, MESA+ Institute for Nanotechnology, University of Twente, Enschede NL-7500 (Netherlands); Dutch Polymer Institute (DPI), P.O. Box 902, 5600 AX, Eindhoven (Netherlands); Diaz, Jordi [Scientific and Technological Centers of the University of Barcelona, C/ Lluís Solé i Sabaris, 1-3, 08028 Barcelona (Spain); Lindsay, Ian D. [Nanophysics and Soft Matter Group, H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Beer, Sissi de; Duvigneau, Joost [Materials Science and Technology of Polymers, MESA+ Institute for Nanotechnology, University of Twente, Enschede NL-7500 (Netherlands); Schön, Peter [Materials Science and Technology of Polymers, MESA+ Institute for Nanotechnology, University of Twente, Enschede NL-7500 (Netherlands); NanoBioInterface, Research Center Design and Technology, Saxion University of Applied Sciences, 7500 KB Enschede (Netherlands); Julius Vancso, G., E-mail: g.j.vancso@utwente.nl [Materials Science and Technology of Polymers, MESA+ Institute for Nanotechnology, University of Twente, Enschede NL-7500 (Netherlands)

    2015-03-15

    Tip-enhanced nanoscale optical imaging techniques such as apertureless scanning near-field optical microscopy (a-SNOM) and scanning near-field ellipsometric microscopy (SNEM) applications can suffer from a steady degradation in performance due to adhesion of atmospheric contaminants to the metal coated tip. Here, we demonstrate that a self-assembled monolayer (SAM) of ethanethiol (EtSH) is an effective means of protecting gold-coated atomic force microscopy (AFM) probe tips from accumulation of surface contaminants during prolonged exposure to ambient air. The period over which they yield consistent and reproducible results for scanning near-field ellipsometric microscopy (SNEM) imaging is thus extended. SNEM optical images of a microphase separated polystyrene-block-poly (methylmethacrylate) (PS-b-PMMA) diblock copolymer film, which were captured with bare and SAM-protected gold-coated AFM probes, both immediately after coating and following five days of storage in ambient air, were compared. During this period the intensity of the optical signals from the untreated gold tip fell by 66%, while those from the SAM protected tip fell by 14%. Additionally, gold coated AFM probe tips were modified with various lengths of alkanethiols to measure the change in intensity variation in the optical images with SAM layer thickness. The experimental results were compared to point dipole model calculations. While a SAM of 1-dodecanethiol (DoSH) was found to strongly suppress field enhancement we find that it can be locally removed from the tip apex by deforming the molecules under load, restoring SNEM image contrast. - Highlights: • SAM of ethanethiol is used to prevent contamination of gold coated tips. • Functionalizing gold coated tips with a SAM lead to reproducible SNEM imaging. • Point dipole model agreed with the experimental results of the SNEM images. • SAM of 1-dodecanethiol was found to strongly suppress field enhancement in SNEM. • SAM of 1-dodecanethiol

  17. Dynamic laser speckle for non-destructive quality evaluation of bread

    Science.gov (United States)

    Stoykova, E.; Ivanov, B.; Shopova, M.; Lyubenova, T.; Panchev, I.; Sainov, V.

    2010-10-01

    Coherent illumination of a diffuse object yields a randomly varying interference pattern, which changes over time at any modification of the object. This phenomenon can be used for detection and visualization of physical or biological activity in various objects (e.g. fruits, seeds, coatings) through statistical description of laser speckle dynamics. The present report aims at non-destructive full-field evaluation of bread by spatial-temporal characterization of laser speckle. The main purpose of the conducted experiments was to prove the ability of the dynamic speckle method to indicate activity within the studied bread samples. In the set-up for acquisition and storage of dynamic speckle patterns an expanded beam from a DPSS laser (532 nm and 100mW) illuminated the sample through a ground glass diffuser. A CCD camera, adjusted to focus the sample, recorded regularly a sequence of images (8 bits and 780 x 582 squared pixels, sized 8.1 × 8.1 μm) at sampling frequency 0.25 Hz. A temporal structure function was calculated to evaluate activity of the bread samples in time using the full images in the sequence. In total, 7 samples of two types of bread were monitored during a chemical and physical process of bread's staling. Segmentation of images into matrixes of isometric fragments was also utilized. The results proved the potential of dynamic speckle as effective means for monitoring the process of bread staling and ability of this approach to differentiate between different types of bread.

  18. Tip radius preservation for high resolution imaging in amplitude modulation atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Jorge R., E-mail: jorge.rr@cea.cu [Instituto de Ciencia de Materiales de Madrid, Sor Juana Inés de la Cruz 3, Canto Blanco, 28049 Madrid, España (Spain)

    2014-07-28

    The acquisition of high resolution images in atomic force microscopy (AFM) is correlated to the cantilever's tip shape, size, and imaging conditions. In this work, relative tip wear is quantified based on the evolution of a direct experimental observable in amplitude modulation atomic force microscopy, i.e., the critical amplitude. We further show that the scanning parameters required to guarantee a maximum compressive stress that is lower than the yield/fracture stress of the tip can be estimated via experimental observables. In both counts, the optimized parameters to acquire AFM images while preserving the tip are discussed. The results are validated experimentally by employing IgG antibodies as a model system.

  19. A New Approach for Speckle Reduction in Holographic 3D printer

    International Nuclear Information System (INIS)

    Utsugi, Takeru; Yamaguchi, Masahiro

    2013-01-01

    A Holographic 3D printer produces a high quality 3D image reproduced by a full-color, full-parallax holographic stereogram with high-density light-ray recording. But speckle-pattern noise localized behind the reconstructed image is causing a loss of the display quality. This noise is originated from the speckle generated by a diffuser for equalizing the intensity distribution of the object light on the recording medium. We analyze some conventional ways for speckle reduction using a band-limited diffuser, and it is found that these ways cannot reduce the noise sufficiently. Then we propose two methods, one introduces a moving diffuser and the other introduces multiple exposures and a digital diffuser called as 4L-PRPS.

  20. A decade of innovation with laser speckle metrology

    Science.gov (United States)

    Ettemeyer, Andreas

    2003-05-01

    Speckle Pattern Interferometry has emerged from the experimental substitution of holographic interferometry to become a powerful problem solving tool in research and industry. The rapid development of computer and digital imaging techniques in combination with minaturization of the optical equipment led to new applications which had not been anticipated before. While classical holographic interferometry had always required careful consideration of the environmental conditions such as vibration, noise, light, etc. and could generally only be performed in the optical laboratory, it is now state of the art, to handle portable speckle measuring equipment at almost any place. During the last decade, the change in design and technique has dramatically influenced the range of applications of speckle metrology and opened new markets. The integration of recent research results into speckle measuring equipment has led to handy equipment, simplified the operation and created high quality data output.

  1. Speckle-illuminated fluorescence confocal microscopy, using a digital micro-mirror device

    International Nuclear Information System (INIS)

    Jiang, Shi-Hong; Walker, John G

    2009-01-01

    An implementation of a speckle-illuminated fluorescence confocal microscope using a digital micro-mirror device (DMD) is described. The DMD not only projects a sequence of imaged binary speckle patterns onto the specimen at a very high frame rate but also operates as a spatial light modulator to perform real-time optical data processing. Frame averaging is accomplished by CCD charge accumulation during a single exposure. The recorded time-averaged image is a confocal image plus an unwanted non-confocal image which can be removed by recording a separate image. Experimental results with image acquisition within a fraction of a second are shown. Images of a thin biological sample are also shown to demonstrate practical application of the technique

  2. Laser speckle imaging identification of increases in cortical microcirculatory blood flow induced by motor activity during awake craniotomy

    NARCIS (Netherlands)

    Klijn, Eva; Hulscher, Hester C.; Balvers, Rutger K.; Holland, Wim P. J.; Bakker, Jan; Vincent, Arnaud J. P. E.; Dirven, Clemens M. F.; Ince, Can

    2013-01-01

    The goal of awake neurosurgery is to maximize resection of brain lesions with minimal injury to functional brain areas. Laser speckle imaging (LSI) is a noninvasive macroscopic technique with high spatial and temporal resolution used to monitor changes in capillary perfusion. In this study, the

  3. A Rotor Tip Vortex Tracing Algorithm for Image Post-Processing

    Science.gov (United States)

    Overmeyer, Austin D.

    2015-01-01

    A neurite tracing algorithm, originally developed for medical image processing, was used to trace the location of the rotor tip vortex in density gradient flow visualization images. The tracing algorithm was applied to several representative test images to form case studies. The accuracy of the tracing algorithm was compared to two current methods including a manual point and click method and a cross-correlation template method. It is shown that the neurite tracing algorithm can reduce the post-processing time to trace the vortex by a factor of 10 to 15 without compromising the accuracy of the tip vortex location compared to other methods presented in literature.

  4. Early diagnosis of teeth erosion using polarized laser speckle imaging

    Science.gov (United States)

    Nader, Christelle Abou; Pellen, Fabrice; Loutfi, Hadi; Mansour, Rassoul; Jeune, Bernard Le; Brun, Guy Le; Abboud, Marie

    2016-07-01

    Dental erosion starts with a chemical attack on dental tissue causing tooth demineralization, altering the tooth structure and making it more sensitive to mechanical erosion. Medical diagnosis of dental erosion is commonly achieved through a visual inspection by the dentist during dental checkups and is therefore highly dependent on the operator's experience. The detection of this disease at preliminary stages is important since, once the damage is done, cares become more complicated. We investigate the difference in light-scattering properties between healthy and eroded teeth. A change in light-scattering properties is observed and a transition from volume to surface backscattering is detected by means of polarized laser speckle imaging as teeth undergo acid etching, suggesting an increase in enamel surface roughness.

  5. A novel effective method for the assessment of microvascular function in male patients with coronary artery disease: a pilot study using laser speckle contrast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Borges, J.P. [Laboratório de Atividade Física e Promoção è Saúde, Departamento de Desporto Coletivo, Instituto de Educação Física e Desportos, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Lopes, G.O. [Laboratório de Atividade Física e Promoção è Saúde, Departamento de Desporto Coletivo, Instituto de Educação Física e Desportos, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Instituto Nacional de Cardiologia, Rio de Janeiro, RJ (Brazil); Verri, V.; Coelho, M.P.; Nascimento, P.M.C.; Kopiler, D.A. [Instituto Nacional de Cardiologia, Rio de Janeiro, RJ (Brazil); Tibirica, E. [Instituto Nacional de Cardiologia, Rio de Janeiro, RJ (Brazil); Laboratório de Investigação Cardiovascular, Departamento Osório de Almeida, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ (Brazil)

    2016-09-01

    Evaluation of microvascular endothelial function is essential for investigating the pathophysiology and treatment of cardiovascular and metabolic diseases. Although laser speckle contrast imaging technology is well accepted as a noninvasive methodology for assessing microvascular endothelial function, it has never been used to compare male patients with coronary artery disease with male age-matched healthy controls. Thus, the aim of this study was to determine whether laser speckle contrast imaging could be used to detect differences in the systemic microvascular functions of patients with established cardiovascular disease (n=61) and healthy age-matched subjects (n=24). Cutaneous blood flow was assessed in the skin of the forearm using laser speckle contrast imaging coupled with the transdermal iontophoretic delivery of acetylcholine and post-occlusive reactive hyperemia. The maximum increase in skin blood flow induced by acetylcholine was significantly reduced in the cardiovascular disease patients compared with the control subjects (74 vs 116%; P<0.01). With regard to post-occlusive reactive hyperemia-induced vasodilation, the patients also presented reduced responses compared to the controls (0.42±0.15 vs 0.50±0.13 APU/mmHg; P=0.04). In conclusion, laser speckle contrast imaging can identify endothelial and microvascular dysfunctions in male individuals with cardiovascular disease. Thus, this technology appears to be an efficient non-invasive technique for evaluating systemic microvascular and endothelial functions, which could be valuable as a peripheral marker of atherothrombotic diseases in men.

  6. A novel effective method for the assessment of microvascular function in male patients with coronary artery disease: a pilot study using laser speckle contrast imaging

    International Nuclear Information System (INIS)

    Borges, J.P.; Lopes, G.O.; Verri, V.; Coelho, M.P.; Nascimento, P.M.C.; Kopiler, D.A.; Tibirica, E.

    2016-01-01

    Evaluation of microvascular endothelial function is essential for investigating the pathophysiology and treatment of cardiovascular and metabolic diseases. Although laser speckle contrast imaging technology is well accepted as a noninvasive methodology for assessing microvascular endothelial function, it has never been used to compare male patients with coronary artery disease with male age-matched healthy controls. Thus, the aim of this study was to determine whether laser speckle contrast imaging could be used to detect differences in the systemic microvascular functions of patients with established cardiovascular disease (n=61) and healthy age-matched subjects (n=24). Cutaneous blood flow was assessed in the skin of the forearm using laser speckle contrast imaging coupled with the transdermal iontophoretic delivery of acetylcholine and post-occlusive reactive hyperemia. The maximum increase in skin blood flow induced by acetylcholine was significantly reduced in the cardiovascular disease patients compared with the control subjects (74 vs 116%; P<0.01). With regard to post-occlusive reactive hyperemia-induced vasodilation, the patients also presented reduced responses compared to the controls (0.42±0.15 vs 0.50±0.13 APU/mmHg; P=0.04). In conclusion, laser speckle contrast imaging can identify endothelial and microvascular dysfunctions in male individuals with cardiovascular disease. Thus, this technology appears to be an efficient non-invasive technique for evaluating systemic microvascular and endothelial functions, which could be valuable as a peripheral marker of atherothrombotic diseases in men

  7. Analysis of the speckle properties in a laser projection system based on a human eye model.

    Science.gov (United States)

    Cui, Zhe; Wang, Anting; Ma, Qianli; Ming, Hai

    2014-03-01

    In this paper, the properties of the speckle that is observed by humans in laser projection systems are theoretically analyzed. The speckle pattern on the fovea of the human retina is numerically simulated by introducing a chromatic human eye model. The results show that the speckle contrast experienced by humans is affected by the light intensity of the projected images and the wavelength of the laser source when considering the paracentral vision. Furthermore, the image quality is also affected by these two parameters. We believe that these results are useful for evaluating the speckle noise in laser projection systems.

  8. Speckle reduction methods in laser-based picture projectors

    Science.gov (United States)

    Akram, M. Nadeem; Chen, Xuyuan

    2016-02-01

    Laser sources have been promised for many years to be better light sources as compared to traditional lamps or light-emitting diodes (LEDs) for projectors, which enable projectors having wide colour gamut for vivid image, super brightness and high contrast for the best picture quality, long lifetime for maintain free operation, mercury free, and low power consumption for green environment. A major technology obstacle in using lasers for projection has been the speckle noise caused by to the coherent nature of the lasers. For speckle reduction, current state of the art solutions apply moving parts with large physical space demand. Solutions beyond the state of the art need to be developed such as integrated optical components, hybrid MOEMS devices, and active phase modulators for compact speckle reduction. In this article, major methods reported in the literature for the speckle reduction in laser projectors are presented and explained. With the advancement in semiconductor lasers with largely reduced cost for the red, green and the blue primary colours, and the developed methods for their speckle reduction, it is hoped that the lasers will be widely utilized in different projector applications in the near future.

  9. MODERN POSSIBILITIES OF SPECKLE TRACKING ECHOCARDIOGRAPHY IN CLINICAL PRACTICE

    Directory of Open Access Journals (Sweden)

    V. S. Nikiforov

    2017-01-01

    Full Text Available Speckle-tracking echocardiography is promising modern technique for evaluation of structural and functional changes in the myocardium. It evaluates the indicator of global longitudinal myocardial deformation, which is more sensitive than ejection fraction to early changes of left ventricular contractility. The diagnostic capabilities of speckle tracking echocardiography are reflected in clinical recommendations and consensus statements of European Society of Cardiology (ESC, European Association of Cardiovascular Imaging (EACVI and American Society of Echocardiography (ASE. The aim of this paper is describe basic principles of speckle tracking echocardiography and clinical applications of this new technology. Attention is paid to the use of speckle tracking echocardiography in such heart pathologies as heart failure, coronary heart disease and myocardial infarction, left ventricular hypertrophy in arterial hypertension, hypertrophic cardiomyopathy and amyloidosis of the heart, valvular heart disease, constrictive pericarditis and cancer therapy-induced cardiotoxicity.

  10. CT patellar cortex tilt angle: A radiological method to measure patellar tilt

    International Nuclear Information System (INIS)

    Mirza Toluei, F.; Afshar, A.; Salarilak, S.; Sina, A.

    2005-01-01

    Background/Objectives: the role of patellar tilt in the anterior knee pain is indisputable. Traditionally. the lateral patello-femoral angle of Laurin has been defined in both the axial view and CT images for measuring the tilt of patella. We present a new angle. which is independent of the morphology of patella and directly relates to clinical assessment of the tilt. which is appreciated from palpation of the edges of the patella. Patients and Methods: 38 patients with anterior knee pain and forty normal control subjects were examined using CT scan of patello-femoral joint in 15 degrees of knee flexion. The amount of lateral patellar tilt was quantitatively assessed using the lateral patello-femoral angle, as described by Laurin et al, and the newly defined patellar cortex tilt angle. This angle is subtended by the line drawn along the posterior femoral condyles and the one parallel to the subchondral bone of patellar cortex. The fifteen-degree tilt was taken as normal cut-off point for patellar cortex tilt angle in the control group. Results: in patients, the average tilt of patella. using the patellar cortex tilt angle was 15.26 versus 7.05 in the control group. Using Student's t test, the difference between the two means was significant (P<0.001). The sensitivity and specificity of patellar cortex tilt angle were 40 and 90 percent, respectively There was a moderate agreement between our presented test and the lateral tilt angle test (kappa=0.40. P<0.001). Conclusion: our results indicate that patellar tilt can also be detected using patellar cortex tilt angle. We need more specific studies ta determine the validity of the test

  11. Mechanical and charge transport properties of alkanethiol self-assembled monolayers on Au (111) surface: The Role of Molecular Tilt

    Energy Technology Data Exchange (ETDEWEB)

    Mulleregan, Alice; Qi, Yabing; Ratera, Imma; Park, Jeong Y.; Ashby, Paul D.; Quek, Su Ying; Neaton, J. B.; Salmeron, Miquel

    2007-11-12

    The relationship between charge transport and mechanical properties of alkanethiol self-assembled monolayers (SAM) on Au(111) films has been investigated using an atomic force microscope with a conductive tip. Molecular tilts induced by the pressure applied by the tip cause stepwise increases in film conductivity. A decay constant {beta} = 0.57 {+-} 0.03 {angstrom}{sup -1} was found for the current passing through the film as a function of tip-substrate separation due to this molecular tilt. This is significantly smaller than the value of {approx} 1 {angstrom}{sup -1} found when the separation is changed by changing the length of the alkanethiol molecules. Calculations indicate that for isolated dithiol molecules S-bonded to hollow sites, the junction conductance does not vary significantly as a function of molecular tilt. The impact of S-Au bonding on SAM conductance is discussed.

  12. Wavelet tree structure based speckle noise removal for optical coherence tomography

    Science.gov (United States)

    Yuan, Xin; Liu, Xuan; Liu, Yang

    2018-02-01

    We report a new speckle noise removal algorithm in optical coherence tomography (OCT). Though wavelet domain thresholding algorithms have demonstrated superior advantages in suppressing noise magnitude and preserving image sharpness in OCT, the wavelet tree structure has not been investigated in previous applications. In this work, we propose an adaptive wavelet thresholding algorithm via exploiting the tree structure in wavelet coefficients to remove the speckle noise in OCT images. The threshold for each wavelet band is adaptively selected following a special rule to retain the structure of the image across different wavelet layers. Our results demonstrate that the proposed algorithm outperforms conventional wavelet thresholding, with significant advantages in preserving image features.

  13. In-vivo brain blood flow imaging based on laser speckle contrast imaging and synchrotron radiation microangiography

    International Nuclear Information System (INIS)

    Miao, Peng; Feng, Shihan; Zhang, Qi; Lin, Xiaojie; Xie, Bohua; Liu, Chenwei; Yang, Guo-Yuan

    2014-01-01

    Abstract In-vivo imaging of blood flow in the cortex and sub-cortex is still a challenge in biological and pathological studies of cerebral vascular diseases. Laser speckle contrast imaging (LSCI) only provides cortex blood flow information. Traditional synchrotron radiation micro-angiography (SRA) provides sub-cortical vasculature information with high resolution. In this study, a bolus front-tracking method was developed to extract blood flow information based on SRA. Combining LSCI and SRA, arterial blood flow in the ipsilateral cortex and sub-cortex was monitored after experimental intracerebral hemorrhage of mice. At 72 h after injury, a significant blood flow increase was observed in the lenticulostriate artery along with blood flow decrease in cortical branches of the middle cerebral artery. This combined strategy provides a new approach for the investigation of brain vasculature and blood flow changes in preclinical studies. (paper)

  14. Optical imaging beyond the diffraction limit by SNEM: effects of AFM tip modifications with thiol monolayers on imaging quality.

    Science.gov (United States)

    Cumurcu, Aysegul; Diaz, Jordi; Lindsay, Ian D; de Beer, Sissi; Duvigneau, Joost; Schön, Peter; Julius Vancso, G

    2015-03-01

    Tip-enhanced nanoscale optical imaging techniques such as apertureless scanning near-field optical microscopy (a-SNOM) and scanning near-field ellipsometric microscopy (SNEM) applications can suffer from a steady degradation in performance due to adhesion of atmospheric contaminants to the metal coated tip. Here, we demonstrate that a self-assembled monolayer (SAM) of ethanethiol (EtSH) is an effective means of protecting gold-coated atomic force microscopy (AFM) probe tips from accumulation of surface contaminants during prolonged exposure to ambient air. The period over which they yield consistent and reproducible results for scanning near-field ellipsometric microscopy (SNEM) imaging is thus extended. SNEM optical images of a microphase separated polystyrene-block-poly (methylmethacrylate) (PS-b-PMMA) diblock copolymer film, which were captured with bare and SAM-protected gold-coated AFM probes, both immediately after coating and following five days of storage in ambient air, were compared. During this period the intensity of the optical signals from the untreated gold tip fell by 66%, while those from the SAM protected tip fell by 14%. Additionally, gold coated AFM probe tips were modified with various lengths of alkanethiols to measure the change in intensity variation in the optical images with SAM layer thickness. The experimental results were compared to point dipole model calculations. While a SAM of 1-dodecanethiol (DoSH) was found to strongly suppress field enhancement we find that it can be locally removed from the tip apex by deforming the molecules under load, restoring SNEM image contrast. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Speckle noise reduction for optical coherence tomography based on adaptive 2D dictionary

    Science.gov (United States)

    Lv, Hongli; Fu, Shujun; Zhang, Caiming; Zhai, Lin

    2018-05-01

    As a high-resolution biomedical imaging modality, optical coherence tomography (OCT) is widely used in medical sciences. However, OCT images often suffer from speckle noise, which can mask some important image information, and thus reduce the accuracy of clinical diagnosis. Taking full advantage of nonlocal self-similarity and adaptive 2D-dictionary-based sparse representation, in this work, a speckle noise reduction algorithm is proposed for despeckling OCT images. To reduce speckle noise while preserving local image features, similar nonlocal patches are first extracted from the noisy image and put into groups using a gamma- distribution-based block matching method. An adaptive 2D dictionary is then learned for each patch group. Unlike traditional vector-based sparse coding, we express each image patch by the linear combination of a few matrices. This image-to-matrix method can exploit the local correlation between pixels. Since each image patch might belong to several groups, the despeckled OCT image is finally obtained by aggregating all filtered image patches. The experimental results demonstrate the superior performance of the proposed method over other state-of-the-art despeckling methods, in terms of objective metrics and visual inspection.

  16. Understanding the exposure-time effect on speckle contrast measurements for laser displays

    Science.gov (United States)

    Suzuki, Koji; Kubota, Shigeo

    2018-02-01

    To evaluate the influence of exposure time on speckle noise for laser displays, speckle contrast measurement method was developed observable at a human eye response time using a high-sensitivity camera which has a signal multiplying function. The nonlinearity of camera light sensitivity was calibrated to measure accurate speckle contrasts, and the measuring lower limit noise of speckle contrast was improved by applying spatial-frequency low pass filter to the captured images. Three commercially available laser displays were measured over a wide range of exposure times from tens of milliseconds to several seconds without adjusting the brightness of laser displays. The speckle contrast of raster-scanned mobile projector without any speckle-reduction device was nearly constant over various exposure times. On the contrary to this, in full-frame projection type laser displays equipped with a temporally-averaging speckle-reduction device, some of their speckle contrasts close to the lower limits noise were slightly increased at the shorter exposure time due to the noise. As a result, the exposure-time effect of speckle contrast could not be observed in our measurements, although it is more reasonable to think that the speckle contrasts of laser displays, which are equipped with the temporally-averaging speckle-reduction device, are dependent on the exposure time. This discrepancy may be attributed to the underestimation of temporal averaging factor. We expected that this method is useful for evaluating various laser displays and clarify the relationship between the speckle noise and the exposure time for a further verification of speckle reduction.

  17. High-resolution brain SPECT imaging by combination of parallel and tilted detector heads.

    Science.gov (United States)

    Suzuki, Atsuro; Takeuchi, Wataru; Ishitsu, Takafumi; Morimoto, Yuichi; Kobashi, Keiji; Ueno, Yuichiro

    2015-10-01

    To improve the spatial resolution of brain single-photon emission computed tomography (SPECT), we propose a new brain SPECT system in which the detector heads are tilted towards the rotation axis so that they are closer to the brain. In addition, parallel detector heads are used to obtain the complete projection data set. We evaluated this parallel and tilted detector head system (PT-SPECT) in simulations. In the simulation study, the tilt angle of the detector heads relative to the axis was 45°. The distance from the collimator surface of the parallel detector heads to the axis was 130 mm. The distance from the collimator surface of the tilted detector heads to the origin on the axis was 110 mm. A CdTe semiconductor panel with a 1.4 mm detector pitch and a parallel-hole collimator were employed in both types of detector head. A line source phantom, cold-rod brain-shaped phantom, and cerebral blood flow phantom were evaluated. The projection data were generated by forward-projection of the phantom images using physics models, and Poisson noise at clinical levels was applied to the projection data. The ordered-subsets expectation maximization algorithm with physics models was used. We also evaluated conventional SPECT using four parallel detector heads for the sake of comparison. The evaluation of the line source phantom showed that the transaxial FWHM in the central slice for conventional SPECT ranged from 6.1 to 8.5 mm, while that for PT-SPECT ranged from 5.3 to 6.9 mm. The cold-rod brain-shaped phantom image showed that conventional SPECT could visualize up to 8-mm-diameter rods. By contrast, PT-SPECT could visualize up to 6-mm-diameter rods in upper slices of a cerebrum. The cerebral blood flow phantom image showed that the PT-SPECT system provided higher resolution at the thalamus and caudate nucleus as well as at the longitudinal fissure of the cerebrum compared with conventional SPECT. PT-SPECT provides improved image resolution at not only upper but also at

  18. Nephron blood flow dynamics measured by laser speckle contrast imaging

    DEFF Research Database (Denmark)

    von Holstein-Rathlou, Niels-Henrik; Sosnovtseva, Olga V; Pavlov, Alexey N

    2011-01-01

    Tubuloglomerular feedback (TGF) has an important role in autoregulation of renal blood flow and glomerular filtration rate (GFR). Because of the characteristics of signal transmission in the feedback loop, the TGF undergoes self-sustained oscillations in single-nephron blood flow, GFR, and tubular...... simultaneously. The interacting nephron fields are likely to be more extensive. We have turned to laser speckle contrast imaging to measure the blood flow dynamics of 50-100 nephrons simultaneously on the renal surface of anesthetized rats. We report the application of this method and describe analytic...... pressure and flow. Nephrons interact by exchanging electrical signals conducted electrotonically through cells of the vascular wall, leading to synchronization of the TGF-mediated oscillations. Experimental studies of these interactions have been limited to observations on two or at most three nephrons...

  19. Evaluation of digital image correlation techniques using realistic ground truth speckle images

    International Nuclear Information System (INIS)

    Cofaru, C; Philips, W; Van Paepegem, W

    2010-01-01

    Digital image correlation (DIC) has been acknowledged and widely used in recent years in the field of experimental mechanics as a contactless method for determining full field displacements and strains. Even though several sub-pixel motion estimation algorithms have been proposed in the literature, little is known about their accuracy and limitations in reproducing complex underlying motion fields occurring in real mechanical tests. This paper presents a new method for evaluating sub-pixel motion estimation algorithms using ground truth speckle images that are realistically warped using artificial motion fields that were obtained following two distinct approaches: in the first, the horizontal and vertical displacement fields are created according to theoretical formulas for the given type of experiment while the second approach constructs the displacements through radial basis function interpolation starting from real DIC results. The method is applied in the evaluation of five DIC algorithms with results indicating that the gradient-based DIC methods generally have a quality advantage when using small sized blocks and are a better choice for calculating very small displacements and strains. The Newton–Raphson is the overall best performing method with a notable quality advantage when large block sizes are employed and in experiments where large strain fields are of interest

  20. Speckle Filtering of GF-3 Polarimetric SAR Data with Joint Restriction Principle.

    Science.gov (United States)

    Xie, Jinwei; Li, Zhenfang; Zhou, Chaowei; Fang, Yuyuan; Zhang, Qingjun

    2018-05-12

    Polarimetric SAR (PolSAR) scattering characteristics of imagery are always obtained from the second order moments estimation of multi-polarization data, that is, the estimation of covariance or coherency matrices. Due to the extra-paths that signal reflected from separate scatterers within the resolution cell has to travel, speckle noise always exists in SAR images and has a severe impact on the scattering performance, especially on single look complex images. In order to achieve high accuracy in estimating covariance or coherency matrices, three aspects are taken into consideration: (1) the edges and texture of the scene are distinct after speckle filtering; (2) the statistical characteristic should be similar to the object pixel; and (3) the polarimetric scattering signature should be preserved, in addition to speckle reduction. In this paper, a joint restriction principle is proposed to meet the requirement. Three different restriction principles are introduced to the processing of speckle filtering. First, a new template, which is more suitable for the point or line targets, is designed to ensure the morphological consistency. Then, the extent sigma filter is used to restrict the pixels in the template aforementioned to have an identical statistic characteristic. At last, a polarimetric similarity factor is applied to the same pixels above, to guarantee the similar polarimetric features amongst the optional pixels. This processing procedure is named as speckle filtering with joint restriction principle and the approach is applied to GF-3 polarimetric SAR data acquired in San Francisco, CA, USA. Its effectiveness of keeping the image sharpness and preserving the scattering mechanism as well as speckle reduction is validated by the comparison with boxcar filters and refined Lee filter.

  1. Laser-induced speckle scatter patterns in Bacillus colonies

    Directory of Open Access Journals (Sweden)

    Huisung eKim

    2014-10-01

    Full Text Available Label-free bacterial colony phenotyping technology called BARDOT (BActerial Rapid Detection using Optical scattering Technology provided successful classification of several different bacteria at the genus, species, and serovar level. Recent experiments with colonies of Bacillus species provided strikingly different characteristics of elastic light scatter (ELS patterns, which were comprised of random speckles compared to other bacteria, which are dominated by concentric rings and spokes. Since this laser-based optical sensor interrogates the whole volume of the colony, 3-D information of micro- and macro-structures are all encoded in the far-field scatter patterns. Here, we present a theoretical model explaining the underlying mechanism of the speckle formation by the colonies from Bacillus species. Except for Bacillus polymyxa, all Bacillus spp. produced random bright spots on the imaging plane, which presumably dependent on the cellular and molecular organization and content within the colony. Our scatter model-based analysis revealed that colony spread resulting in variable surface roughness can modify the wavefront of the scatter field. As the center diameter of the Bacillus spp. colony grew from 500 μm to 900 μm, average speckles area decreased 2-fold and the number of small speckles increased 7-fold. In conclusion, as Bacillus colony grows, the average speckle size in the scatter pattern decreases and the number of smaller speckle increases due to the swarming growth characteristics of bacteria within the colony.

  2. Entendue invariance in speckle fields

    International Nuclear Information System (INIS)

    Medina, F.F.; Garcia-Sucerquia, J.; Henao, R.; Trivi, M.

    2000-04-01

    Experimental evidence is shown that confirms the Entendue invariance in speckle fields. Because of this condition, the coherence patch of the speckle field can be significantly greater than the mean size of the speckles, as is shown by double exposure speckle interferometry. (author)

  3. Speckle reduction in optical coherence tomography images of human skin by a spatial diversity method - art. no. 66270P

    DEFF Research Database (Denmark)

    Jørgensen, Thomas Martini; Thrane, Lars; Mogensen, M.

    2007-01-01

    the scheme with a mobile fiber-based time-domain real-time OCT system. Essential enhancement was obtained in image contrast when performing in vivo imaging of normal skin and lesions. Resulting images show improved delineation of structure in correspondence with the observed improvements in contrast...... system. Here, we consider a method that in principle can be fitted to most OCT systems without major modifications. Specifically, we address a spatial diversity technique for suppressing speckle noise in OCT images of human skin. The method is a variant of changing the position of the sample relative...

  4. A method for 3D-reconstruction of a muscle thick filament using the tilt series images of a single filament electron tomogram.

    Science.gov (United States)

    Márquez, G; Pinto, A; Alamo, L; Baumann, B; Ye, F; Winkler, H; Taylor, K; Padrón, R

    2014-05-01

    Myosin interacting-heads (MIH) motifs are visualized in 3D-reconstructions of thick filaments from striated muscle. These reconstructions are calculated by averaging methods using images from electron micrographs of grids prepared using numerous filament preparations. Here we propose an alternative method to calculate the 3D-reconstruction of a single thick filament using only a tilt series images recorded by electron tomography. Relaxed thick filaments, prepared from tarantula leg muscle homogenates, were negatively stained. Single-axis tilt series of single isolated thick filaments were obtained with the electron microscope at a low electron dose, and recorded on a CCD camera by electron tomography. An IHRSR 3D-recontruction was calculated from the tilt series images of a single thick filament. The reconstruction was enhanced by including in the search stage dual tilt image segments while only single tilt along the filament axis is usually used, as well as applying a band pass filter just before the back projection. The reconstruction from a single filament has a 40 Å resolution and clearly shows the presence of MIH motifs. In contrast, the electron tomogram 3D-reconstruction of the same thick filament - calculated without any image averaging and/or imposition of helical symmetry - only reveals MIH motifs infrequently. This is - to our knowledge - the first application of the IHRSR method to calculate a 3D reconstruction from tilt series images. This single filament IHRSR reconstruction method (SF-IHRSR) should provide a new tool to assess structural differences between well-ordered thick (or thin) filaments in a grid by recording separately their electron tomograms. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. New developments in NDT through electronic speckle pattern interferometry

    International Nuclear Information System (INIS)

    Mohan, S.; Murugesan, P; Mas, R.H.

    2007-01-01

    experiment was carried out using mechanical and thermal loading techniques. different types of defects are introduced in the test specimen and the corresponding interference fringe patterns generated are studied for the identification and detection of defects. The nature of fringe anomalies in the presence of defects in the case of mechanical and thermal loading are studied for the characterization defects. This technique is also successfully used in medical diagnosis. Endoscopy is minimally invasive diagnostic medical procedure used to evaluate the interior surfaces of an organ by inserting a small tube into body, often, but not necessarily, through a natural body opening. Through endoscope, one can see lesions and the other surface conditions. An endoscopic electronic speckle pattern interferometer camera can be applied to examine objects as well as for in vitro and in vivo minimal invasive medical diagnostics. The combination of holographic interferometric metrology with endoscopic imaging allows the development of a special class of instruments for nondestructive quantitative diagnostics with in body cavities. The development of digital imaging, digital holographic interferometry, electronic speckle pattern interferometry are very useful in medical diagnosis. In the present investigation, the non destructive dynamic holographic endoscopy was used to study the disturbances of stomach wall intensity using speckle images. The various speckle images were recorded at different portions of the human stomach and esophagus. It is concluded that this method is very good method to study deformations, abnormalities in the stomach and related organs. The speckle interferometry is a very useful tool in biological and medical fields to study the deformations and displacements in tissues and related parameters. (author)

  6. Speckle Reduction for Ultrasonic Imaging Using Frequency Compounding and Despeckling Filters along with Coded Excitation and Pulse Compression

    Directory of Open Access Journals (Sweden)

    Joshua S. Ullom

    2012-01-01

    Full Text Available A method for improving the contrast-to-noise ratio (CNR while maintaining the −6 dB axial resolution of ultrasonic B-mode images is proposed. The technique proposed is known as eREC-FC, which enhances a recently developed REC-FC technique. REC-FC is a combination of the coded excitation technique known as resolution enhancement compression (REC and the speckle-reduction technique frequency compounding (FC. In REC-FC, image CNR is improved but at the expense of a reduction in axial resolution. However, by compounding various REC-FC images made from various subband widths, the tradeoff between axial resolution and CNR enhancement can be extended. Further improvements in CNR can be obtained by applying postprocessing despeckling filters to the eREC-FC B-mode images. The despeckling filters evaluated were the following: median, Lee, homogeneous mask area, geometric, and speckle-reducing anisotropic diffusion (SRAD. Simulations and experimental measurements were conducted with a single-element transducer (f/2.66 having a center frequency of 2.25 MHz and a −3 dB bandwidth of 50%. In simulations and experiments, the eREC-FC technique resulted in the same axial resolution that would be typically observed with conventional excitation with a pulse. Moreover, increases in CNR of 348% were obtained in experiments when comparing eREC-FC with a Lee filter to conventional pulsing methods.

  7. Laser speckle imaging identification of increases in cortical microcirculatory blood flow induced by motor activity during awake craniotomy ; Clinical article

    NARCIS (Netherlands)

    E. Klijn (Elko); M.E.J.L. Hulscher (Marlies); R.K. Balvers (Rutger); W.P.J. Holland (Wim); J. Bakker (Jan); A.J.P.E. Vincent (Arnoud); C.M.F. Dirven (Clemens); C. Ince (Can)

    2013-01-01

    textabstractObject. The goal of awake neurosurgery is to maximize resection of brain lesions with minimal injury to functional brain areas. Laser speckle imaging (LSI) is a noninvasive macroscopic technique with high spatial and temporal resolution used to monitor changes in capillary perfusion. In

  8. Off-axis holographic laser speckle contrast imaging of blood vessels in tissues

    Science.gov (United States)

    Abdurashitov, Arkady; Bragina, Olga; Sindeeva, Olga; Sergey, Sindeev; Semyachkina-Glushkovskaya, Oxana V.; Tuchin, Valery V.

    2017-09-01

    Laser speckle contrast imaging (LSCI) has become one of the most common tools for functional imaging in tissues. Incomplete theoretical description and sophisticated interpretation of measurement results are completely sidelined by a low-cost and simple hardware, fastness, consistent results, and repeatability. In addition to the relatively low measuring volume with around 700 μm of the probing depth for the visible spectral range of illumination, there is no depth selectivity in conventional LSCI configuration; furthermore, in a case of high NA objective, the actual penetration depth of light in tissues is greater than depth of field (DOF) of an imaging system. Thus, the information about these out-of-focus regions persists in the recorded frames but cannot be retrieved due to intensity-based registration method. We propose a simple modification of LSCI system based on the off-axis holography to introduce after-registration refocusing ability to overcome both depth-selectivity and DOF problems as well as to get the potential possibility of producing a cross-section view of the specimen.

  9. SPECKLE CAMERA OBSERVATIONS FOR THE NASA KEPLER MISSION FOLLOW-UP PROGRAM

    International Nuclear Information System (INIS)

    Howell, Steve B.; Everett, Mark E.; Sherry, William; Horch, Elliott; Ciardi, David R.

    2011-01-01

    We present the first results from a speckle imaging survey of stars classified as candidate exoplanet host stars discovered by the Kepler mission. We use speckle imaging to search for faint companions or closely aligned background stars that could contribute flux to the Kepler light curves of their brighter neighbors. Background stars are expected to contribute significantly to the pool of false positive candidate transiting exoplanets discovered by the Kepler mission, especially in the case that the faint neighbors are eclipsing binary stars. Here, we describe our Kepler follow-up observing program, the speckle imaging camera used, our data reduction, and astrometric and photometric performance. Kepler stars range from R = 8 to 16 and our observations attempt to provide background non-detection limits 5-6 mag fainter and binary separations of ∼0.05-2.0 arcsec. We present data describing the relative brightness, separation, and position angles for secondary sources, as well as relative plate limits for non-detection of faint nearby stars around each of 156 target stars. Faint neighbors were found near 10 of the stars.

  10. Momentum transfer Monte Carlo for the simulation of laser speckle imaging and its application in the skin.

    Science.gov (United States)

    Regan, Caitlin; Hayakawa, Carole; Choi, Bernard

    2017-12-01

    Due to its simplicity and low cost, laser speckle imaging (LSI) has achieved widespread use in biomedical applications. However, interpretation of the blood-flow maps remains ambiguous, as LSI enables only limited visualization of vasculature below scattering layers such as the epidermis and skull. Here, we describe a computational model that enables flexible in-silico study of the impact of these factors on LSI measurements. The model uses Monte Carlo methods to simulate light and momentum transport in a heterogeneous tissue geometry. The virtual detectors of the model track several important characteristics of light. This model enables study of LSI aspects that may be difficult or unwieldy to address in an experimental setting, and enables detailed study of the fundamental origins of speckle contrast modulation in tissue-specific geometries. We applied the model to an in-depth exploration of the spectral dependence of speckle contrast signal in the skin, the effects of epidermal melanin content on LSI, and the depth-dependent origins of our signal. We found that LSI of transmitted light allows for a more homogeneous integration of the signal from the entire bulk of the tissue, whereas epi-illumination measurements of contrast are limited to a fraction of the light penetration depth. We quantified the spectral depth dependence of our contrast signal in the skin, and did not observe a statistically significant effect of epidermal melanin on speckle contrast. Finally, we corroborated these simulated results with experimental LSI measurements of flow beneath a thin absorbing layer. The results of this study suggest the use of LSI in the clinic to monitor perfusion in patients with different skin types, or inhomogeneous epidermal melanin distributions.

  11. A pilot study to image the vascular network of small melanocytic choroidal tumors with speckle noise-free 1050-nm swept source optical coherence tomography (OCT choroidal angiography).

    Science.gov (United States)

    Maloca, Peter; Gyger, Cyrill; Hasler, Pascal W

    2016-06-01

    To visualize and measure the vascular network of melanocytic choroidal tumors with speckle noise-free swept source optical coherence tomography (SS-OCT choroidal angiography). Melanocytic choroidal tumors from 24 eyes were imaged with 1050-nm optical coherence tomography (Topcon DRI OCT-1 Atlantis). A semi-automated algorithm was developed to remove speckle noise and to extract and measure the volume of the choroidal vessels from the obtained OCT data. In all cases, analysis of the choroidal vessels could be performed with SS-OCT without the need for pupillary dilation. The proposed method allows speckle noise-free, structure-guided visualization and measurement of the larger choroidal vessels in three dimensions. The obtained data suggest that speckle noise-free OCT may be more effective at identifying choroidal structures than traditional OCT methods. The measured volume of the extracted choroidal vessels of Haller's layer and Sattler's layer in the examined tumorous eyes was on average 0.982463955 mm(3) /982463956 μm(3) (range of 0.209764406 mm(3) /209764405.9 μm(3)to 1.78105544 mm(3) /1781055440 μm(3)). Full thickness obstruction of the choroidal vasculature by the tumor was found in 18 cases (72 %). In seven cases (18 %), choroidal vessel architecture did not show pronounced morphological abnormalities (18 %). Speckle noise-free OCT may serve as a new illustrative imaging technology and enhance visualization of the choroidal vessels without the need for dye injection. OCT can be used to identify and evaluate the choroidal vessels of melanocytic choroidal tumors, and may represent a potentially useful tool for imaging and monitoring of choroidal nevi and melanoma.

  12. Modeled and Measured Partially Coherent Illumination Speckle Effects from Sloped Surfaces for Tactical Tracking

    Science.gov (United States)

    2015-03-26

    the number of speckle samples obtained, laser power and coherence length, spot size, target reflectance, speckle size, and pixels per speckle width...gated imaging systems,” Proc. SPIE, 6542: 654218, April 2007. 90 St. Pierre, Randall J. and others. “Active Tracker Laser (ATLAS),” IEEE J. Sel...numerical model developed here and existing theory developed by Hu. A 671 nm diode laser source with coherence length of 259 +/- 7 µm is reflected

  13. En face speckle reduction in optical coherence microscopy by frequency compounding.

    Science.gov (United States)

    Magnain, Caroline; Wang, Hui; Sakadžić, Sava; Fischl, Bruce; Boas, David A

    2016-05-01

    We report the use of frequency compounding to significantly reduce speckle noise in optical coherence microscopy, more specifically on the en face images. This method relies on the fact that the speckle patterns recorded from different wavelengths simultaneously are independent; hence their summation yields significant reduction in noise, with only a single acquisition. The results of our experiments with microbeads show that the narrow confocal parameter, due to a high numerical aperture objective, restricts the axial resolution loss that would otherwise theoretically broaden linearly with the number of optical frequency bands used. This speckle reduction scheme preserves the lateral resolution since it is performed on individual A-scans. Finally, we apply this technique to images of fixed human brain tissue, showing significant improvements in contrast-to-noise ratio with only moderate loss of axial resolution, in an effort to improve automatic three-dimensional detection of cells and fibers in the cortex.

  14. Waveguide generated mitigation of speckle and scintillation on an actively illuminated target

    Science.gov (United States)

    Moore, Trevor D.; Raynor, Robert A.; Spencer, Mark F.; Schmidt, Jason D.

    2016-09-01

    Active illumination is often used when passive illumination cannot produce enough signal intensity to be a reliable imaging method. However, an increase in signal intensity is often achieved by using highly coherent laser sources, which produce undesirable effects such as speckle and scintillation. The deleterious effects of speckle and scintillation are often so immense that the imaging camera cannot receive intelligible data, thereby rendering the active illumination technique useless. By reducing the spatial coherence of the laser beam that is actively illuminating the object, it is possible to reduce the corruption of the received data caused by speckle and scintillation. The waveguide method discussed in this paper reduces spatial coherence through multiple total internal reflections, which create multiple virtual sources of diverse path lengths. The differing path lengths between the virtual sources and the target allow for the temporal coherence properties of the laser to be translated into spatial coherence properties. The resulting partial spatial coherence helps to mitigate the self-interference of the beam as it travels through the atmosphere and reflects off of optically rough targets. This mitigation method results in a cleaner, intelligible image that may be further processed for the intended use, unlike its unmitigated counterpart. Previous research has been done to independently reduce speckle or scintillation by way of spatial incoherence, but there has been no focus on modeling the waveguide, specifically the image plane the waveguide creates. Utilizing a ray-tracing method we can determine the coherence length of the source necessary to create incoherent spots in the image plane, as well as accurately modeling the image plane.

  15. Quantitative X-ray dark-field and phase tomography using single directional speckle scanning technique

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongchang, E-mail: hongchang.wang@diamond.ac.uk; Kashyap, Yogesh; Sawhney, Kawal [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom)

    2016-03-21

    X-ray dark-field contrast tomography can provide important supplementary information inside a sample to the conventional absorption tomography. Recently, the X-ray speckle based technique has been proposed to provide qualitative two-dimensional dark-field imaging with a simple experimental arrangement. In this letter, we deduce a relationship between the second moment of scattering angle distribution and cross-correlation degradation of speckle and establish a quantitative basis of X-ray dark-field tomography using single directional speckle scanning technique. In addition, the phase contrast images can be simultaneously retrieved permitting tomographic reconstruction, which yields enhanced contrast in weakly absorbing materials. Such complementary tomography technique can allow systematic investigation of complex samples containing both soft and hard materials.

  16. The importance of prostate bed tilt during postprostatectomy intensity-modulated radiotherapy

    International Nuclear Information System (INIS)

    Bell, Linda J.; Cox, Jennifer; Eade, Thomas; Rinks, Marianne; Kneebone, Andrew

    2014-01-01

    Variations in rectal and bladder filling can create a tilt of the prostate bed, which generates the potential for a geographic miss during postprostatectomy radiotherapy. The aim of this study is to assess the effect that bladder and rectum filling has on planning target volume angle, to determine a method to assess prostate bed tilt leading to potential geographic miss, and to discuss possible implementation issues. The cone-beam computed tomography images (n = 377) of 40 patients who received postprostatectomy radiotherapy with intensity-modulated radiotherapy were reviewed. The amount of tilt in the prostate bed was defined as the angle change between 2 surgical clips, one in the upper prostate bed and another in the lower. A potential geographic miss was defined as movement of any clip of more than 1 cm in any direction or 0.5 cm posteriorly when aligned to bone anatomy. Variations in bladder and rectum size were correlated with the degree of prostate bed tilt, and the rate of potential geographic miss was determined. A possible clinical use of prostate bed tilt was then assessed for different imaging techniques. A tilt of more than 10° was seen in 20.2% of images, which resulted in a 57.9% geographic miss rate of the superior clip. When tilt remained within 10°, there was only a 9% rate of geographic miss. Potential geographic miss of the inferior surgical clip was rare, occurring in only 1.9% of all images reviewed. The most common occurrence when the prostate bed tilt increased by more than 10° was a smaller bladder and larger rectum (6.4% of all images). The most common occurrence when the prostate bed tilt decreased by more than 10° was a larger bladder and smaller rectum (1.3% of all images). Significant prostate bed tilt (>± 10°) occurred in more than 20% of images, creating a 58% rate of geographic miss. Greatest prostate bed tilt occurred when the bladder size increased or reduced by more than 2 cm or the superior rectum size increased by more

  17. The importance of prostate bed tilt during postprostatectomy intensity-modulated radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Linda J., E-mail: Linda.Bell1@health.nsw.gov.au [Northern Sydney Cancer Centre, Radiation Oncology Department, Royal North Shore Hospital, St Leonards, New South Wales (Australia); Faculty of Health Sciences, University of Sydney, Lidcombe, New South Wales (Australia); Cox, Jennifer [Northern Sydney Cancer Centre, Radiation Oncology Department, Royal North Shore Hospital, St Leonards, New South Wales (Australia); Faculty of Health Sciences, University of Sydney, Lidcombe, New South Wales (Australia); Eade, Thomas; Rinks, Marianne; Kneebone, Andrew [Northern Sydney Cancer Centre, Radiation Oncology Department, Royal North Shore Hospital, St Leonards, New South Wales (Australia)

    2014-10-01

    Variations in rectal and bladder filling can create a tilt of the prostate bed, which generates the potential for a geographic miss during postprostatectomy radiotherapy. The aim of this study is to assess the effect that bladder and rectum filling has on planning target volume angle, to determine a method to assess prostate bed tilt leading to potential geographic miss, and to discuss possible implementation issues. The cone-beam computed tomography images (n = 377) of 40 patients who received postprostatectomy radiotherapy with intensity-modulated radiotherapy were reviewed. The amount of tilt in the prostate bed was defined as the angle change between 2 surgical clips, one in the upper prostate bed and another in the lower. A potential geographic miss was defined as movement of any clip of more than 1 cm in any direction or 0.5 cm posteriorly when aligned to bone anatomy. Variations in bladder and rectum size were correlated with the degree of prostate bed tilt, and the rate of potential geographic miss was determined. A possible clinical use of prostate bed tilt was then assessed for different imaging techniques. A tilt of more than 10° was seen in 20.2% of images, which resulted in a 57.9% geographic miss rate of the superior clip. When tilt remained within 10°, there was only a 9% rate of geographic miss. Potential geographic miss of the inferior surgical clip was rare, occurring in only 1.9% of all images reviewed. The most common occurrence when the prostate bed tilt increased by more than 10° was a smaller bladder and larger rectum (6.4% of all images). The most common occurrence when the prostate bed tilt decreased by more than 10° was a larger bladder and smaller rectum (1.3% of all images). Significant prostate bed tilt (>± 10°) occurred in more than 20% of images, creating a 58% rate of geographic miss. Greatest prostate bed tilt occurred when the bladder size increased or reduced by more than 2 cm or the superior rectum size increased by more

  18. A Nonlinear Diffusion Equation-Based Model for Ultrasound Speckle Noise Removal

    Science.gov (United States)

    Zhou, Zhenyu; Guo, Zhichang; Zhang, Dazhi; Wu, Boying

    2018-04-01

    Ultrasound images are contaminated by speckle noise, which brings difficulties in further image analysis and clinical diagnosis. In this paper, we address this problem in the view of nonlinear diffusion equation theories. We develop a nonlinear diffusion equation-based model by taking into account not only the gradient information of the image, but also the information of the gray levels of the image. By utilizing the region indicator as the variable exponent, we can adaptively control the diffusion type which alternates between the Perona-Malik diffusion and the Charbonnier diffusion according to the image gray levels. Furthermore, we analyze the proposed model with respect to the theoretical and numerical properties. Experiments show that the proposed method achieves much better speckle suppression and edge preservation when compared with the traditional despeckling methods, especially in the low gray level and low-contrast regions.

  19. Neural network approximation of tip-abrasion effects in AFM imaging

    International Nuclear Information System (INIS)

    Bakucz, Peter; Dziomba, Thorsten; Koenders, Ludger; Krüger-Sehm, Rolf; Yacoot, Andrew

    2008-01-01

    The abrasion (wear) of tips used in scanning force microscopy (SFM) directly influences SFM image quality and is therefore of great relevance to quantitative SFM measurements. The increasing implementation of automated SFM measurement schemes has become a strong driving force for increasing efforts towards the prediction of tip wear, as it needs to be ensured that the probe is exchanged before a level of tip wear is reached that adversely affects the measurement quality. In this paper, we describe the identification of tip abrasion in a system of SFM measurements. We attempt to model the tip-abrasion process as a concatenation of a mapping from the measured AFM data to a regression vector and a nonlinear mapping from the regressor space to the output space. The mapping is formed as a basis function expansion. Feedforward neural networks are used to approximate this mapping. The one-hidden layer network gave a good quality of fit for the training and test sets for the tip-abrasion system. We illustrate our method with AFM measurements of both fine periodic structures and randomly oriented sharp features and compare our neural network results with those obtained using other methods

  20. Neural network approximation of tip-abrasion effects in AFM imaging

    Science.gov (United States)

    Bakucz, Peter; Yacoot, Andrew; Dziomba, Thorsten; Koenders, Ludger; Krüger-Sehm, Rolf

    2008-06-01

    The abrasion (wear) of tips used in scanning force microscopy (SFM) directly influences SFM image quality and is therefore of great relevance to quantitative SFM measurements. The increasing implementation of automated SFM measurement schemes has become a strong driving force for increasing efforts towards the prediction of tip wear, as it needs to be ensured that the probe is exchanged before a level of tip wear is reached that adversely affects the measurement quality. In this paper, we describe the identification of tip abrasion in a system of SFM measurements. We attempt to model the tip-abrasion process as a concatenation of a mapping from the measured AFM data to a regression vector and a nonlinear mapping from the regressor space to the output space. The mapping is formed as a basis function expansion. Feedforward neural networks are used to approximate this mapping. The one-hidden layer network gave a good quality of fit for the training and test sets for the tip-abrasion system. We illustrate our method with AFM measurements of both fine periodic structures and randomly oriented sharp features and compare our neural network results with those obtained using other methods.

  1. Enhanced diagnostic of skin conditions by polarized laser speckles: phantom studies and computer modeling

    Science.gov (United States)

    Tchvialeva, Lioudmila; Lee, Tim K.; Markhvida, Igor; Zeng, Haishan; Doronin, Alexander; Meglinski, Igor

    2014-03-01

    The incidence of the skin melanoma, the most commonly fatal form of skin cancer, is increasing faster than any other potentially preventable cancer. Clinical practice is currently hampered by the lack of the ability to rapidly screen the functional and morphological properties of tissues. In our previous study we show that the quantification of scattered laser light polarization provides a useful metrics for diagnostics of the malignant melanoma. In this study we exploit whether the image speckle could improve skin cancer diagnostic in comparison with the previously used free-space speckle. The study includes skin phantom measurements and computer modeling. To characterize the depolarization of light we measure the spatial distribution of speckle patterns and analyse their depolarization ratio taken into account radial symmetry. We examine the dependences of depolarization ratio vs. roughness for phantoms which optical properties are of the order of skin lesions. We demonstrate that the variation in bulk optical properties initiates the assessable changes in the depolarization ratio. We show that image speckle differentiates phantoms significantly better than free-space speckle. The results of experimental measurements are compared with the results of Monte Carlo simulation.

  2. Accuracy concerns in digital speckle photography combined with Fresnel digital holographic interferometry

    Science.gov (United States)

    Zhao, Yuchen; Zemmamouche, Redouane; Vandenrijt, Jean-François; Georges, Marc P.

    2018-05-01

    A combination of digital holographic interferometry (DHI) and digital speckle photography (DSP) allows in-plane and out-of-plane displacement measurement between two states of an object. The former can be determined by correlating the two speckle patterns whereas the latter is given by the phase difference obtained from DHI. We show that the amplitude of numerically reconstructed object wavefront obtained from Fresnel in-line digital holography (DH), in combination with phase shifting techniques, can be used as speckle patterns in DSP. The accuracy of in-plane measurement is improved after correcting the phase errors induced by reference wave during reconstruction process. Furthermore, unlike conventional imaging system, Fresnel DH offers the possibility to resize the pixel size of speckle patterns situated on the reconstruction plane under the same optical configuration simply by zero-padding the hologram. The flexibility of speckle size adjustment in Fresnel DH ensures the accuracy of estimation result using DSP.

  3. Optical diagnostics of vascular reactions triggered by weak allergens using laser speckle-contrast imaging technique

    International Nuclear Information System (INIS)

    Kuznetsov, Yu L; Kalchenko, V V; Astaf'eva, N G; Meglinski, I V

    2014-01-01

    The capability of using the laser speckle contrast imaging technique with a long exposure time for visualisation of primary acute skin vascular reactions caused by a topical application of a weak contact allergen is considered. The method is shown to provide efficient and accurate detection of irritant-induced primary acute vascular reactions of skin. The presented technique possesses a high potential in everyday diagnostic practice, preclinical studies, as well as in the prognosis of skin reactions to the interaction with potentially allergenic materials. (laser biophotonics)

  4. Optical diagnostics of vascular reactions triggered by weak allergens using laser speckle-contrast imaging technique

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, Yu L; Kalchenko, V V [Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, 76100 (Israel); Astaf' eva, N G [V.I.Razumovsky Saratov State Medical University, Saratov (Russian Federation); Meglinski, I V [N.G. Chernyshevsky Saratov State University, Saratov (Russian Federation)

    2014-08-31

    The capability of using the laser speckle contrast imaging technique with a long exposure time for visualisation of primary acute skin vascular reactions caused by a topical application of a weak contact allergen is considered. The method is shown to provide efficient and accurate detection of irritant-induced primary acute vascular reactions of skin. The presented technique possesses a high potential in everyday diagnostic practice, preclinical studies, as well as in the prognosis of skin reactions to the interaction with potentially allergenic materials. (laser biophotonics)

  5. Single-shot speckle reduction in numerical reconstruction of digitally recorded holograms.

    Science.gov (United States)

    Hincapie, Diego; Herrera-Ramírez, Jorge; Garcia-Sucerquia, Jorge

    2015-04-15

    A single-shot method to reduce the speckle noise in the numerical reconstructions of electronically recorded holograms is presented. A recorded hologram with the dimensions N×M is split into S=T×T sub-holograms. The uncorrelated superposition of the individually reconstructed sub-holograms leads to an image with the speckle noise reduced proportionally to the 1/S law. The experimental results are presented to support the proposed methodology.

  6. Multiple rotation assessment through isothetic fringes in speckle photography

    International Nuclear Information System (INIS)

    Angel, Luciano; Tebaldi, Myrian; Bolognini, Nestor

    2007-01-01

    The use of different pupils for storing each speckled image in speckle photography is employed to determine multiple in-plane rotations. The method consists of recording a four-exposure specklegram where the rotations are done between exposures. This specklegram is then optically processed in a whole field approach rendering isothetic fringes, which give detailed information about the multiple rotations. It is experimentally demonstrated that the proposed arrangement permits the depiction of six isothetics in order to measure either six different angles or three nonparallel components for two local general in-plane displacements

  7. Research on calculation of the IOL tilt and decentration based on surface fitting.

    Science.gov (United States)

    Li, Lin; Wang, Ke; Yan, Yan; Song, Xudong; Liu, Zhicheng

    2013-01-01

    The tilt and decentration of intraocular lens (IOL) result in defocussing, astigmatism, and wavefront aberration after operation. The objective is to give a method to estimate the tilt and decentration of IOL more accurately. Based on AS-OCT images of twelve eyes from eight cases with subluxation lens after operation, we fitted spherical equation to the data obtained from the images of the anterior and posterior surfaces of the IOL. By the established relationship between IOL tilt (decentration) and the scanned angle, at which a piece of AS-OCT image was taken by the instrument, the IOL tilt and decentration were calculated. IOL tilt angle and decentration of each subject were given. Moreover, the horizontal and vertical tilt was also obtained. Accordingly, the possible errors of IOL tilt and decentration existed in the method employed by AS-OCT instrument. Based on 6-12 pieces of AS-OCT images at different directions, the tilt angle and decentration values were shown, respectively. The method of the surface fitting to the IOL surface can accurately analyze the IOL's location, and six pieces of AS-OCT images at three pairs symmetrical directions are enough to get tilt angle and decentration value of IOL more precisely.

  8. Research on Calculation of the IOL Tilt and Decentration Based on Surface Fitting

    Directory of Open Access Journals (Sweden)

    Lin Li

    2013-01-01

    Full Text Available The tilt and decentration of intraocular lens (IOL result in defocussing, astigmatism, and wavefront aberration after operation. The objective is to give a method to estimate the tilt and decentration of IOL more accurately. Based on AS-OCT images of twelve eyes from eight cases with subluxation lens after operation, we fitted spherical equation to the data obtained from the images of the anterior and posterior surfaces of the IOL. By the established relationship between IOL tilt (decentration and the scanned angle, at which a piece of AS-OCT image was taken by the instrument, the IOL tilt and decentration were calculated. IOL tilt angle and decentration of each subject were given. Moreover, the horizontal and vertical tilt was also obtained. Accordingly, the possible errors of IOL tilt and decentration existed in the method employed by AS-OCT instrument. Based on 6–12 pieces of AS-OCT images at different directions, the tilt angle and decentration values were shown, respectively. The method of the surface fitting to the IOL surface can accurately analyze the IOL’s location, and six pieces of AS-OCT images at three pairs symmetrical directions are enough to get tilt angle and decentration value of IOL more precisely.

  9. A Horizontal Tilt Correction Method for Ship License Numbers Recognition

    Science.gov (United States)

    Liu, Baolong; Zhang, Sanyuan; Hong, Zhenjie; Ye, Xiuzi

    2018-02-01

    An automatic ship license numbers (SLNs) recognition system plays a significant role in intelligent waterway transportation systems since it can be used to identify ships by recognizing the characters in SLNs. Tilt occurs frequently in many SLNs because the monitors and the ships usually have great vertical or horizontal angles, which decreases the accuracy and robustness of a SLNs recognition system significantly. In this paper, we present a horizontal tilt correction method for SLNs. For an input tilt SLN image, the proposed method accomplishes the correction task through three main steps. First, a MSER-based characters’ center-points computation algorithm is designed to compute the accurate center-points of the characters contained in the input SLN image. Second, a L 1- L 2 distance-based straight line is fitted to the computed center-points using M-estimator algorithm. The tilt angle is estimated at this stage. Finally, based on the computed tilt angle, an affine transformation rotation is conducted to rotate and to correct the input SLN horizontally. At last, the proposed method is tested on 200 tilt SLN images, the proposed method is proved to be effective with a tilt correction rate of 80.5%.

  10. Speckle contrast diffuse correlation tomography of complex turbid medium flow

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chong; Irwin, Daniel; Lin, Yu; Shang, Yu; He, Lian; Kong, Weikai; Yu, Guoqiang [Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky 40506 (United States); Luo, Jia [Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky 40506 (United States)

    2015-07-15

    Purpose: Developed herein is a three-dimensional (3D) flow contrast imaging system leveraging advancements in the extension of laser speckle contrast imaging theories to deep tissues along with our recently developed finite-element diffuse correlation tomography (DCT) reconstruction scheme. This technique, termed speckle contrast diffuse correlation tomography (scDCT), enables incorporation of complex optical property heterogeneities and sample boundaries. When combined with a reflectance-based design, this system facilitates a rapid segue into flow contrast imaging of larger, in vivo applications such as humans. Methods: A highly sensitive CCD camera was integrated into a reflectance-based optical system. Four long-coherence laser source positions were coupled to an optical switch for sequencing of tomographic data acquisition providing multiple projections through the sample. This system was investigated through incorporation of liquid and solid tissue-like phantoms exhibiting optical properties and flow characteristics typical of human tissues. Computer simulations were also performed for comparisons. A uniquely encountered smear correction algorithm was employed to correct point-source illumination contributions during image capture with the frame-transfer CCD and reflectance setup. Results: Measurements with scDCT on a homogeneous liquid phantom showed that speckle contrast-based deep flow indices were within 12% of those from standard DCT. Inclusion of a solid phantom submerged below the liquid phantom surface allowed for heterogeneity detection and validation. The heterogeneity was identified successfully by reconstructed 3D flow contrast tomography with scDCT. The heterogeneity center and dimensions and averaged relative flow (within 3%) and localization were in agreement with actuality and computer simulations, respectively. Conclusions: A custom cost-effective CCD-based reflectance 3D flow imaging system demonstrated rapid acquisition of dense boundary

  11. Fabrication of nanoscale speckle using broad ion beam milling on polymers for deformation analysis

    Directory of Open Access Journals (Sweden)

    Qinghua Wang

    2016-07-01

    Full Text Available We first report a fabrication technique of nanoscale speckle patterns on polymers using broad ion beam milling. The proposed technique is simple and low-cost to produce speckles ranging from dozens of nanometers to less than three micrometers in a large area of several millimeters. Random patterns were successfully produced with an argon (Ar ion beam on the surfaces of four kinds of polymers: the epoxy matrix of carbon fiber reinforced plastic, polyester, polyvinyl formal-acetal, and polyimide. The speckle morphologies slightly vary with different polymers. The fabricated speckle patterns have good time stability and are promising to be used to measure the nanoscale deformations of polymers using the digital image correlation method.

  12. Intrinsic speckle noise in in-line particle holography due to polydisperse and continuous particle sizes

    Science.gov (United States)

    Edwards, Philip J.; Hobson, Peter R.; Rodgers, G. J.

    2000-08-01

    In-line particle holography is subject to image deterioration due to intrinsic speckle noise. The resulting reduction in the signal to noise ratio (SNR) of the replayed image can become critical for applications such as holographic particle velocimetry (HPV) and 3D visualisation of marine plankton. Work has been done to extend the mono-disperse model relevant to HPV to include poly-disperse particle fields appropriate for the visualisation of marine plankton. Continuous and discrete particle fields are both considered. It is found that random walk statistics still apply for the poly-disperse case. The speckle field is simply the summation of the individual speckle patters due to each scatter size. Therefor the characteristic speckle parameter (which encompasses particle diameter, concentration and sample depth) is alos just the summation of the individual speckle parameters. This reduces the SNR calculation to the same form as for the mono-disperse case. For the continuous situation three distributions, power, exponential and Gaussian are discussed with the resulting SNR calcuated. The work presented here was performed as part of the Holomar project to produce a working underwater holographic camera for recording plankton.

  13. Computer vision elastography: speckle adaptive motion estimation for elastography using ultrasound sequences.

    Science.gov (United States)

    Revell, James; Mirmehdi, Majid; McNally, Donal

    2005-06-01

    We present the development and validation of an image based speckle tracking methodology, for determining temporal two-dimensional (2-D) axial and lateral displacement and strain fields from ultrasound video streams. We refine a multiple scale region matching approach incorporating novel solutions to known speckle tracking problems. Key contributions include automatic similarity measure selection to adapt to varying speckle density, quantifying trajectory fields, and spatiotemporal elastograms. Results are validated using tissue mimicking phantoms and in vitro data, before applying them to in vivo musculoskeletal ultrasound sequences. The method presented has the potential to improve clinical knowledge of tendon pathology from carpel tunnel syndrome, inflammation from implants, sport injuries, and many others.

  14. Speckle-based spectrometer

    DEFF Research Database (Denmark)

    Chakrabarti, Maumita; Jakobsen, Michael Linde; Hanson, Steen Grüner

    2015-01-01

    A novel spectrometer concept is analyzed and experimentally verified. The method relies on probing the speckle displacement due to a change in the incident wavelength. A rough surface is illuminated at an oblique angle, and the peak position of the covariance between the speckle patterns observed...

  15. An electronic pan/tilt/magnify and rotate camera system

    International Nuclear Information System (INIS)

    Zimmermann, S.; Martin, H.L.

    1992-01-01

    A new camera system has been developed for omnidirectional image-viewing applications that provides pan, tilt, magnify, and rotational orientation within a hemispherical field of view (FOV) without any moving parts. The imaging device is based on the fact that the image from a fish-eye lens, which produces a circular image of an entire hemispherical FOV, can be mathematically corrected using high-speed electronic circuitry. More specifically, an incoming fish-eye image from any image acquisition source is captured in the memory of the device, a transformation is performed for the viewing region of interest and viewing direction, and a corrected image is output as a video image signal for viewing, recording, or analysis. The image transformation device can provide corrected images at frame rates compatible with RS-170 standard video equipment. As a result, this device can accomplish the functions of pan, tilt, rotation, and magnification throughout a hemispherical FOV without the need for any mechanical devices. Multiple images, each with different image magnifications and pan-tilt-rotate parameters, can be obtained from a single camera

  16. Visualized Multiprobe Electrical Impedance Measurements with STM Tips Using Shear Force Feedback Control

    Directory of Open Access Journals (Sweden)

    Luis Botaya

    2016-05-01

    Full Text Available Here we devise a multiprobe electrical measurement system based on quartz tuning forks (QTFs and metallic tips capable of having full 3D control over the position of the probes. The system is based on the use of bent tungsten tips that are placed in mechanical contact (glue-free solution with a QTF sensor. Shear forces acting in the probe are measured to control the tip-sample distance in the Z direction. Moreover, the tilting of the tip allows the visualization of the experiment under the optical microscope, allowing the coordination of the probes in X and Y directions. Meanwhile, the metallic tips are connected to a current–voltage amplifier circuit to measure the currents and thus the impedance of the studied samples. We discuss here the different aspects that must be addressed when conducting these multiprobe experiments, such as the amplitude of oscillation, shear force distance control, and wire tilting. Different results obtained in the measurement of calibration samples and microparticles are presented. They demonstrate the feasibility of the system to measure the impedance of the samples with a full 3D control on the position of the nanotips.

  17. Towards easy and reliable AFM tip shape determination using blind tip reconstruction

    International Nuclear Information System (INIS)

    Flater, Erin E.; Zacharakis-Jutz, George E.; Dumba, Braulio G.; White, Isaac A.; Clifford, Charles A.

    2014-01-01

    Quantitative determination of the geometry of an atomic force microscope (AFM) probe tip is critical for robust measurements of the nanoscale properties of surfaces, including accurate measurement of sample features and quantification of tribological characteristics. Blind tip reconstruction, which determines tip shape from an AFM image scan without knowledge of tip or sample shape, was established most notably by Villarrubia [J. Res. Natl. Inst. Stand. Tech. 102 (1997)] and has been further developed since that time. Nevertheless, the implementation of blind tip reconstruction for the general user to produce reliable and consistent estimates of tip shape has been hindered due to ambiguity about how to choose the key input parameters, such as tip matrix size and threshold value, which strongly impact the results of the tip reconstruction. These key parameters are investigated here via Villarrubia's blind tip reconstruction algorithms in which we have added the capability for users to systematically vary the key tip reconstruction parameters, evaluate the set of possible tip reconstructions, and determine the optimal tip reconstruction for a given sample. We demonstrate the capabilities of these algorithms through analysis of a set of simulated AFM images and provide practical guidelines for users of the blind tip reconstruction method. We present a reliable method to choose the threshold parameter corresponding to an optimal reconstructed tip shape for a given image. Specifically, we show that the trend in how the reconstructed tip shape varies with threshold number is so regular that the optimal, or Goldilocks, threshold value corresponds with the peak in the derivative of the RMS difference with respect to the zero threshold curve vs. threshold number. - Highlights: • Blind tip reconstruction algorithms have been implemented and augmented to determine the optimal input parameters. • We demonstrate the capabilities of the algorithms using a simulated AFM

  18. Tilt-effect of holograms and images displayed on a spatial light modulator.

    Science.gov (United States)

    Harm, Walter; Roider, Clemens; Bernet, Stefan; Ritsch-Marte, Monika

    2015-11-16

    We show that a liquid crystal spatial light modulator (LCOS-SLM) can be used to display amplitude images, or phase holograms, which change in a pre-determined way when the display is tilted, i.e. observed under different angles. This is similar to the tilt-effect (also called "latent image effect") known from various security elements ("kinegrams") on credit cards or bank notes. The effect is achieved without any specialized optical components, simply by using the large phase shifting capability of a "thick" SLM, which extends over several multiples of 2π, in combination with the angular dependence of the phase shift. For hologram projection one can use the fact that the phase of a monochromatic wave is only defined modulo 2π. Thus one can design a phase pattern extending over several multiples of 2π, which transforms at different readout angles into different 2π-wrapped phase structures, due to the angular dependence of the modulo 2π operation. These different beams then project different holograms at the respective readout angles. In amplitude modulation mode (with inserted polarizer) the intensity of each SLM pixel oscillates over several periods when tuning its control voltage. Since the oscillation period depends on the readout angle, it is possible to find a certain control voltage which produces two (or more) selectable gray levels at a corresponding number of pre-determined readout angles. This is done with all SLM pixels individually, thus constructing different images for the selected angles. We experimentally demonstrate the reconstruction of multiple (Fourier- and Fresnel-) holograms, and of different amplitude images, by readout of static diffractive patterns in a variable angular range between 0° and 60°.

  19. Technology Tips

    Science.gov (United States)

    Mathematics Teacher, 2004

    2004-01-01

    Some inexpensive or free ways that enable to capture and use images in work are mentioned. The first tip demonstrates the methods of using some of the built-in capabilities of the Macintosh and Windows-based PC operating systems, and the second tip describes methods to capture and create images using SnagIt.

  20. 3-color photometry of a sunspot using speckle masking techniques

    NARCIS (Netherlands)

    Wiehr, E.; Sütterlin, P.

    1998-01-01

    A three-colour photometry is used to deduce the temperature of sunspot fine-structures. Using the Speckle-Masking method for image restoration, the resulting images (one per colour and burst) have a spatial resolution only limited by the telescope's aperture, i.e. 95km (blue), 145 km (red) and

  1. Monitoring of bread cooling by statistical analysis of laser speckle patterns

    Science.gov (United States)

    Lyubenova, Tanya; Stoykova, Elena; Nacheva, Elena; Ivanov, Branimir; Panchev, Ivan; Sainov, Ventseslav

    2013-03-01

    The phenomenon of laser speckle can be used for detection and visualization of physical or biological activity in various objects (e.g. fruits, seeds, coatings) through statistical description of speckle dynamics. The paper presents the results of non-destructive monitoring of bread cooling by co-occurrence matrix and temporal structure function analysis of speckle patterns which have been recorded continuously within a few days. In total, 72960 and 39680 images were recorded and processed for two similar bread samples respectively. The experiments proved the expected steep decrease of activity related to the processes in the bread samples during the first several hours and revealed its oscillating character within the next few days. Characterization of activity over the bread sample surface was also obtained.

  2. Modeling of electro-statically actuated two-axis (tip-tilt) MEMS torsion micro-mirrors for laser beamsteering

    Science.gov (United States)

    Edwards, C. L.; Boone, B. G.; Levine, W. S.; Davis, C. C.

    2007-04-01

    The availability of recently developed MEMS micro-mirror technology provides an opportunity to replace macro-scale actuators for free-space laser beamsteering in lidar and communication systems. Such an approach is under investigation at the Johns Hopkins University Applied Physics Laboratory for use on space-based platforms. Precision modeling of mirror pointing and its dynamics are critical to optimal design and control of MEMS beamsteerers. Beginning with Hornbeck's torque approach, this paper presents a first-principle, analytically closed-form torque model for an electro-statically actuated two-axis (tip-tilt) MEMS structure. An Euler dynamic equation formulation describes the gimbaled motion as a coupled pair of damped harmonic oscillators with a common forcing function. Static physical parameters such as MEMS mirror dimensions, facet mass, and height are inputs to the model as well as dynamic harmonic oscillator parameters such as damping and restoring constants fitted from measurements. A Taylor series expansion of the torque function provides valuable insights into basic one dimensional as well as two dimensional MEMS behavior, including operational sensitivities near "pull-in." The model also permits the natural inclusion and analysis of pointing noise sources such as electrical drive noise, platform vibration, and molecular Brownian motion. MATLAB and SIMULINK simulations illustrate performance sensitivities, controllability, and physical limitations, important considerations in the design of optimal pointing systems.

  3. OBSERVATIONS OF BINARY STARS WITH THE DIFFERENTIAL SPECKLE SURVEY INSTRUMENT. I. INSTRUMENT DESCRIPTION AND FIRST RESULTS

    International Nuclear Information System (INIS)

    Horch, Elliott P.; Veillette, Daniel R.; Shah, Sagar C.; O'Rielly, Grant V.; Baena Galle, Roberto; Van Altena, William F.

    2009-01-01

    First results of a new speckle imaging system, the Differential Speckle Survey Instrument, are reported. The instrument is designed to take speckle data in two filters simultaneously with two independent CCD imagers. This feature results in three advantages over other speckle cameras: (1) twice as many frames can be obtained in the same observation time which can increase the signal-to-noise ratio for astrometric measurements, (2) component colors can be derived from a single observation, and (3) the two colors give substantial leverage over atmospheric dispersion, allowing for subdiffraction-limited separations to be measured reliably. Fifty-four observations are reported from the first use of the instrument at the Wisconsin-Indiana-Yale-NOAO 3.5 m Telescope 9 The WIYN Observatory is a joint facility of the University of Wisconsin-Madison, Indiana University, Yale University, and the National Optical Astronomy Observatories. in 2008 September, including seven components resolved for the first time. These observations are used to judge the basic capabilities of the instrument.

  4. Application of speckle image correlation for real-time assessment of metabolic activity in herpes virus-infected cells

    Science.gov (United States)

    Vladimirov, A. P.; Malygin, A. S.; Mikhailova, J. A.; Borodin, E. M.; Bakharev, A. A.; Poryvayeva, A. P.

    2014-09-01

    Earlier we reported developing a speckle interferometry technique and a device designed to assess the metabolic activity of a cell monolayer cultivated on a glass substrate. This paper aimed at upgrading the technique and studying its potential for real-time assessment of herpes virus development process. Speckle dynamics was recorded in the image plane of intact and virus-infected cell monolayer. HLE-3, L-41 and Vero cells were chosen as research targets. Herpes simplex virus-1-(HSV-1)- infected cell cultures were studied. For 24 h we recorded the digital value of optical signal I in one pixel and parameter η characterizing change in the distribution of the optical signal on 10 × 10-pixel areas. The coefficient of multiple determination calculated by η time dependences for three intact cell cultures equals 0.94. It was demonstrated that the activity parameters are significantly different for intact and virus-infected cells. The difference of η value for intact and HSV-1-infected cells is detectable 10 minutes from the experiment start.

  5. Application of speckle image correlation for real-time assessment of metabolic activity in herpes virus-infected cells

    International Nuclear Information System (INIS)

    Vladimirov, A P; Malygin, A S; Mikhailova, J A; Borodin, E M; Bakharev, A A; Poryvayeva, A P

    2014-01-01

    Earlier we reported developing a speckle interferometry technique and a device designed to assess the metabolic activity of a cell monolayer cultivated on a glass substrate. This paper aimed at upgrading the technique and studying its potential for real-time assessment of herpes virus development process. Speckle dynamics was recorded in the image plane of intact and virus-infected cell monolayer. HLE-3, L-41 and Vero cells were chosen as research targets. Herpes simplex virus-1-(HSV-1)- infected cell cultures were studied. For 24 h we recorded the digital value of optical signal I in one pixel and parameter η characterizing change in the distribution of the optical signal on 10 × 10-pixel areas. The coefficient of multiple determination calculated by η time dependences for three intact cell cultures equals 0.94. It was demonstrated that the activity parameters are significantly different for intact and virus-infected cells. The difference of η value for intact and HSV-1-infected cells is detectable 10 minutes from the experiment start.

  6. Numerical tilting compensation in microscopy based on wavefront sensing using transport of intensity equation method

    Science.gov (United States)

    Hu, Junbao; Meng, Xin; Wei, Qi; Kong, Yan; Jiang, Zhilong; Xue, Liang; Liu, Fei; Liu, Cheng; Wang, Shouyu

    2018-03-01

    Wide-field microscopy is commonly used for sample observations in biological research and medical diagnosis. However, the tilting error induced by the oblique location of the image recorder or the sample, as well as the inclination of the optical path often deteriorates the imaging quality. In order to eliminate the tilting in microscopy, a numerical tilting compensation technique based on wavefront sensing using transport of intensity equation method is proposed in this paper. Both the provided numerical simulations and practical experiments prove that the proposed technique not only accurately determines the tilting angle with simple setup and procedures, but also compensates the tilting error for imaging quality improvement even in the large tilting cases. Considering its simple systems and operations, as well as image quality improvement capability, it is believed the proposed method can be applied for tilting compensation in the optical microscopy.

  7. Development of Speckle Interferometry Algorithm and System

    International Nuclear Information System (INIS)

    Shamsir, A. A. M.; Jafri, M. Z. M.; Lim, H. S.

    2011-01-01

    Electronic speckle pattern interferometry (ESPI) method is a wholefield, non destructive measurement method widely used in the industries such as detection of defects on metal bodies, detection of defects in intergrated circuits in digital electronics components and in the preservation of priceless artwork. In this research field, this method is widely used to develop algorithms and to develop a new laboratory setup for implementing the speckle pattern interferometry. In speckle interferometry, an optically rough test surface is illuminated with an expanded laser beam creating a laser speckle pattern in the space surrounding the illuminated region. The speckle pattern is optically mixed with a second coherent light field that is either another speckle pattern or a smooth light field. This produces an interferometric speckle pattern that will be detected by sensor to count the change of the speckle pattern due to force given. In this project, an experimental setup of ESPI is proposed to analyze a stainless steel plate using 632.8 nm (red) wavelength of lights.

  8. Real time processor for array speckle interferometry

    International Nuclear Information System (INIS)

    Chin, G.; Florez, J.; Borelli, R.; Fong, W.; Miko, J.; Trujillo, C.

    1989-01-01

    With the construction of several new large aperture telescopes and the development of large format array detectors in the near IR, the ability to obtain diffraction limited seeing via IR array speckle interferometry offers a powerful tool. We are constructing a real-time processor to acquire image frames, perform array flat-fielding, execute a 64 x 64 element 2D complex FFT, and to average the power spectrum all within the 25 msec coherence time for speckles at near IR wavelength. The processor is a compact unit controlled by a PC with real time display and data storage capability. It provides the ability to optimize observations and obtain results on the telescope rather than waiting several weeks before the data can be analyzed and viewed with off-line methods

  9. 3D single-molecule super-resolution microscopy with a tilted light sheet.

    Science.gov (United States)

    Gustavsson, Anna-Karin; Petrov, Petar N; Lee, Maurice Y; Shechtman, Yoav; Moerner, W E

    2018-01-09

    Tilted light sheet microscopy with 3D point spread functions (TILT3D) combines a novel, tilted light sheet illumination strategy with long axial range point spread functions (PSFs) for low-background, 3D super-localization of single molecules as well as 3D super-resolution imaging in thick cells. Because the axial positions of the single emitters are encoded in the shape of each single-molecule image rather than in the position or thickness of the light sheet, the light sheet need not be extremely thin. TILT3D is built upon a standard inverted microscope and has minimal custom parts. The result is simple and flexible 3D super-resolution imaging with tens of nm localization precision throughout thick mammalian cells. We validate TILT3D for 3D super-resolution imaging in mammalian cells by imaging mitochondria and the full nuclear lamina using the double-helix PSF for single-molecule detection and the recently developed tetrapod PSFs for fiducial bead tracking and live axial drift correction.

  10. Speckle interferometry. Data acquisition and control for the SPID instrument.

    Science.gov (United States)

    Altarac, S.; Tallon, M.; Thiebaut, E.; Foy, R.

    1998-08-01

    SPID (SPeckle Imaging by Deconvolution) is a new speckle camera currently under construction at CRAL-Observatoire de Lyon. Its high spectral resolution and high image restoration capabilities open new astrophysical programs. The instrument SPID is composed of four main optical modules which are fully automated and computer controlled by a software written in Tcl/Tk/Tix and C. This software provides an intelligent assistance to the user by choosing observational parameters as a function of atmospheric parameters, computed in real time, and the desired restored image quality. Data acquisition is made by a photon-counting detector (CP40). A VME-based computer under OS9 controls the detector and stocks the data. The intelligent system runs under Linux on a PC. A slave PC under DOS commands the motors. These 3 computers communicate through an Ethernet network. SPID can be considered as a precursor for VLT's (Very Large Telescope, four 8-meter telescopes currently built in Chile by European Southern Observatory) very high spatial resolution camera.

  11. Camera-based speckle noise reduction for 3-D absolute shape measurements.

    Science.gov (United States)

    Zhang, Hao; Kuschmierz, Robert; Czarske, Jürgen; Fischer, Andreas

    2016-05-30

    Simultaneous position and velocity measurements enable absolute 3-D shape measurements of fast rotating objects for instance for monitoring the cutting process in a lathe. Laser Doppler distance sensors enable simultaneous position and velocity measurements with a single sensor head by evaluating the scattered light signals. The superposition of several speckles with equal Doppler frequency but random phase on the photo detector results in an increased velocity and shape uncertainty, however. In this paper, we present a novel image evaluation method that overcomes the uncertainty limitations due to the speckle effect. For this purpose, the scattered light is detected with a camera instead of single photo detectors. Thus, the Doppler frequency from each speckle can be evaluated separately and the velocity uncertainty decreases with the square root of the number of camera lines. A reduction of the velocity uncertainty by the order of one magnitude is verified by the numerical simulations and experimental results, respectively. As a result, the measurement uncertainty of the absolute shape is not limited by the speckle effect anymore.

  12. Impact of transducer frequency setting on speckle tracking measures

    DEFF Research Database (Denmark)

    Olsen, Flemming Javier; Svendsen, Jesper Hastrup; Køber, Lars

    2018-01-01

    .5/3.0 MHz. The images were obtained immediately after each other at the exact same position for the two settings. Speckle tracking was performed in three apical projections, allowing for acquisition of layered global longitudinal strain (GLS) and strain rate measures. Concordance between the frequency...

  13. Computational analysis of Pelton bucket tip erosion using digital image processing

    Science.gov (United States)

    Shrestha, Bim Prasad; Gautam, Bijaya; Bajracharya, Tri Ratna

    2008-03-01

    Erosion of hydro turbine components through sand laden river is one of the biggest problems in Himalayas. Even with sediment trapping systems, complete removal of fine sediment from water is impossible and uneconomical; hence most of the turbine components in Himalayan Rivers are exposed to sand laden water and subject to erode. Pelton bucket which are being wildly used in different hydropower generation plant undergoes erosion on the continuous presence of sand particles in water. The subsequent erosion causes increase in splitter thickness, which is supposed to be theoretically zero. This increase in splitter thickness gives rise to back hitting of water followed by decrease in turbine efficiency. This paper describes the process of measurement of sharp edges like bucket tip using digital image processing. Image of each bucket is captured and allowed to run for 72 hours; sand concentration in water hitting the bucket is closely controlled and monitored. Later, the image of the test bucket is taken in the same condition. The process is repeated for 10 times. In this paper digital image processing which encompasses processes that performs image enhancement in both spatial and frequency domain. In addition, the processes that extract attributes from images, up to and including the measurement of splitter's tip. Processing of image has been done in MATLAB 6.5 platform. The result shows that quantitative measurement of edge erosion of sharp edges could accurately be detected and the erosion profile could be generated using image processing technique.

  14. Multi-wavelength speckle reduction for laser pico-projectors using diffractive optics

    Science.gov (United States)

    Thomas, Weston H.

    Personal electronic devices, such as cell phones and tablets, continue to decrease in size while the number of features and add-ons keep increasing. One particular feature of great interest is an integrated projector system. Laser pico-projectors have been considered, but the technology has not been developed enough to warrant integration. With new advancements in diode technology and MEMS devices, laser-based projection is currently being advanced for pico-projectors. A primary problem encountered when using a pico-projector is coherent interference known as speckle. Laser speckle can lead to eye irritation and headaches after prolonged viewing. Diffractive optical elements known as diffusers have been examined as a means to lower speckle contrast. Diffusers are often rotated to achieve temporal averaging of the spatial phase pattern provided by diffuser surface. While diffusers are unable to completely eliminate speckle, they can be utilized to decrease the resultant contrast to provide a more visually acceptable image. This dissertation measures the reduction in speckle contrast achievable through the use of diffractive diffusers. A theoretical Fourier optics model is used to provide the diffuser's stationary and in-motion performance in terms of the resultant contrast level. Contrast measurements of two diffractive diffusers are calculated theoretically and compared with experimental results. In addition, a novel binary diffuser design based on Hadamard matrices will be presented. Using two static in-line Hadamard diffusers eliminates the need for rotation or vibration of the diffuser for temporal averaging. Two Hadamard diffusers were fabricated and contrast values were subsequently measured, showing good agreement with theory and simulated values. Monochromatic speckle contrast values of 0.40 were achieved using the Hadamard diffusers. Finally, color laser projection devices require the use of red, green, and blue laser sources; therefore, using a

  15. Close Binary Star Speckle Interferometry on the McMath-Pierce 0.8-Meter Solar Telescope

    Science.gov (United States)

    Wiley, Edward; Harshaw, Richard; Jones, Gregory; Branston, Detrick; Boyce, Patrick; Rowe, David; Ridgely, John; Estrada, Reed; Genet, Russell

    2015-09-01

    Observations were made in April 2014 to assess the utility of the 0.8-meter solar telescope at the McMath-Pierce Solar Observatory at Kitt Peak National Observatory for performing speckle interferometry observations of close binary stars. Several configurations using science cameras, acquisition cameras, eyepieces, and flip mirrors were evaluated. Speckle images were obtained and recommendations for further improvement of the acquisition system are presented.

  16. Tilt measurements at Vulcano Island

    Directory of Open Access Journals (Sweden)

    B. Saraceno

    2007-06-01

    Full Text Available A network of tiltmeters has been operational on Vulcano Island for numerous years. At present, the network comprises five functioning borehole stations, four of which are installed at 8-10 m and allow recording very stable, high precision signals with very low noise. We report observations over the last 12 years that illustrate impulsive variations linked to seismicity and long-term (several years trends in the signals. We suggest a relationship between tilt changes correlated to the strongest regional seismic events and site acceleration; long-term tilt variations analyzed in combination with other ground deformation data seem to represent the evidence of a contraction of the La Fossa cone. We also analyzed how the tilt device has the capability to detect possible magma migrations; we considered previous studies that have imaged spatially well-defined levels of magma accumulation beneath La Fossa, and Vulcanello; we concluded that the Vulcano tilt network should be capable of detecting the upward migration of small magma volumes. Finally, we show that no evidence of changes are visible on tilt signals during anomalous degassing episodes (linked to a building up input of magmatic fluids at the La Fossa thereby evidencing that no magma migration occurred during such events.

  17. Tip-Dependent Scanning Tunneling Microscopy Imaging of Ultrathin FeO Films on Pt(111)

    DEFF Research Database (Denmark)

    Merte, Lindsay Richard; Grabow, Lars C.; Peng, Guowen

    2011-01-01

    High-resolution scanning tunneling microscope (STM) images of moiré-structured FeO films on Pt(111) were obtained in a number of different tip-dependent imaging modes. For the first time, the STM images are distinguished and interpreted unambiguously with the help of distinct oxygen...

  18. A PHOTOMETRIC ANALYSIS OF SEVENTEEN BINARY STARS USING SPECKLE IMAGING

    International Nuclear Information System (INIS)

    Davidson, James W.; Baptista, Brian J.; Horch, Elliott P.; Franz, Otto; Van Altena, William F.

    2009-01-01

    Magnitude differences obtained from speckle imaging are used in combination with other data in the literature to place the components of binary star systems on the H-R diagram. Isochrones are compared with the positions obtained, and a best-fit isochrone is determined for each system, yielding both masses of the components as well as an age range consistent with the system parameters. Seventeen systems are studied, 12 of which were observed with the 0.6 m Lowell-Tololo Telescope at Cerro Tololo Inter-American Observatory and six of which were observed with the WIYN 3.5 m Telescope (The WIYN Observatory is a joint facility of the University of Wisconsin-Madison, Indiana University, Yale University, and the National Optical Astronomy Observatories) at Kitt Peak. One system was observed from both sites. In comparing photometric masses to mass information from orbit determinations, we find that the photometric masses agree very well with the dynamical masses, and are generally more precise. For three systems, no dynamical masses exist at present, and therefore the photometrically determined values are the first mass estimates derived for these components.

  19. Speckle and fringe dynamics in imagingspeckle-pattern interferometry for spatial-filtering velocimetry

    DEFF Research Database (Denmark)

    Jakobsen, Michael Linde; Iversen, Theis F. Q.; Yura, Harold T.

    2011-01-01

    This paper analyzes the dynamics of laser speckles and fringes, formed in an imaging-speckle-pattern interferometer with the purpose of sensing linear three-dimensional motion and out-of-plane components of rotation in real time, using optical spatial-filtering-velocimetry techniques. The ensemble......-average definition of the cross-correlation function is applied to the intensity distributions, obtained in the observation plane at two positions of the object. The theoretical analysis provides a description for the dynamics of both the speckles and the fringes. The analysis reveals that both the magnitude...... and direction of all three linear displacement components of the object movement can be determined. Simultaneously, out-ofplane rotation of the object including the corresponding directions can be determined from the spatial gradient of the in-plane fringe motion throughout the observation plane. The theory...

  20. Near-Field Imaging of Free Carriers in ZnO Nanowires with a Scanning Probe Tip Made of Heavily Doped Germanium

    Science.gov (United States)

    Sakat, Emilie; Giliberti, Valeria; Bollani, Monica; Notargiacomo, Andrea; Pea, Marialilia; Finazzi, Marco; Pellegrini, Giovanni; Hugonin, Jean-Paul; Weber-Bargioni, Alexander; Melli, Mauro; Sassolini, Simone; Cabrini, Stefano; Biagioni, Paolo; Ortolani, Michele; Baldassarre, Leonetta

    2017-11-01

    A novel scanning probe tip made of heavily doped semiconductor is fabricated and used instead of standard gold-coated tips in infrared scattering-type near-field microscopy. Midinfrared near-field microscopy experiments are conducted on ZnO nanowires with a lateral resolution better than 100 nm, using tips made of heavily electron-doped germanium with a plasma frequency in the midinfrared (plasma wavelength of 9.5 μ m ). Nanowires embedded in a dielectric matrix are imaged at two wavelengths, 11.3 and 8.0 μ m , above and below the plasma wavelength of the tips. An opposite sign of the imaging contrasts between the nanowire and the dielectric matrix is observed at the two infrared wavelengths, indicating a clear role of the free-electron plasma in the heavily doped germanium tip in building the imaging contrast. Electromagnetic simulations with a multispherical dipole model accounting for the finite size of the tip are well consistent with the experiments. By comparison of the simulated and measured imaging contrasts, an estimate for the local free-carrier density in the investigated ZnO nanowires in the low 1019 cm-3 range is retrieved. The results are benchmarked against the scattering intensity and phase maps obtained on the same sample with a gold-coated probe tip in pseudoheterodyne detection mode.

  1. MATLAB for laser speckle contrast analysis (LASCA): a practice-based approach

    Science.gov (United States)

    Postnikov, Eugene B.; Tsoy, Maria O.; Postnov, Dmitry E.

    2018-04-01

    Laser Speckle Contrast Analysis (LASCA) is one of the most powerful modern methods for revealing blood dynamics. The experimental design and theory for this method are well established, and the computational recipie is often regarded to be trivial. However, the achieved performance and spatial resolution may considerable differ for different implementations. We comprise a minireview of known approaches to the spatial laser speckle contrast data processing and their realization in MATLAB code providing an explicit correspondence to the mathematical representation, a discussion of available implementations. We also present the algorithm based on the 2D Haar wavelet transform, also supplied with the program code. This new method provides an opportunity to introduce horizontal, vertical and diagonal speckle contrasts; it may be used for processing highly anisotropic images of vascular trees. We provide the comparative analysis of the accuracy of vascular pattern detection and the processing times with a special attention to details of the used MATLAB procedures.

  2. Detection of early carious lesions using contrast enhancement with coherent light scattering (speckle imaging)

    International Nuclear Information System (INIS)

    Deana, A M; Jesus, S H C; Koshoji, N H; Bussadori, S K; Oliveira, M T

    2013-01-01

    Currently, dental caries still represent one of the chronic diseases with the highest prevalence and present in most countries. The interaction between light and teeth (absorption, scattering and fluorescence) is intrinsically connected to the constitution of the dental tissue. Decay induced mineral loss introduces a shift in the optical properties of the affected tissue; therefore, study of these properties may produce novel techniques aimed at the early diagnosis of carious lesions. Based on the optical properties of the enamel, we demonstrate the application of first-order spatial statistics in laser speckle imaging, allowing the detection of carious lesions in their early stages. A highlight of this noninvasive, non-destructive, real time and cost effective approach is that it allows a dentist to detect a lesion even in the absence of biofilm or moisture. (paper)

  3. Tracking speckle displacement by double Kalman filtering

    Institute of Scientific and Technical Information of China (English)

    Donghui Li; Li Guo

    2006-01-01

    @@ A tracking technique using two sequentially-connected Kalman filter for tracking laser speckle displacement is presented. One Kalman filter tracks temporal speckle displacement, while another Kalman filter tracks spatial speckle displacement. The temporal Kalman filter provides a prior for the spatial Kalman filter, and the spatial Kalman filter provides measurements for the temporal Kalman filter. The contribution of a prior to estimations of the spatial Kalman filter is analyzed. An optical analysis system was set up to verify the double-Kalman-filter tracker's ability of tracking laser speckle's constant displacement.

  4. Speckle-based three-dimensional velocity measurement using spatial filtering velocimetry

    DEFF Research Database (Denmark)

    Iversen, Theis Faber Quist; Jakobsen, Michael Linde; Hanson, Steen Grüner

    2011-01-01

    pattern is formed in the observation plane of the imaging system due to reflection from an area of the object illuminated by a coherent light source. The speckle pattern translates in response to in-plane translation of the object, and the presence of an angular offset reference wave coinciding...

  5. Tipping solutions: emerging 3D nano-fabrication/ -imaging technologies

    Directory of Open Access Journals (Sweden)

    Seniutinas Gediminas

    2017-06-01

    Full Text Available The evolution of optical microscopy from an imaging technique into a tool for materials modification and fabrication is now being repeated with other characterization techniques, including scanning electron microscopy (SEM, focused ion beam (FIB milling/imaging, and atomic force microscopy (AFM. Fabrication and in situ imaging of materials undergoing a three-dimensional (3D nano-structuring within a 1−100 nm resolution window is required for future manufacturing of devices. This level of precision is critically in enabling the cross-over between different device platforms (e.g. from electronics to micro-/nano-fluidics and/or photonics within future devices that will be interfacing with biological and molecular systems in a 3D fashion. Prospective trends in electron, ion, and nano-tip based fabrication techniques are presented.

  6. Research on Calculation of the IOL Tilt and Decentration Based on Surface Fitting

    OpenAIRE

    Li, Lin; Wang, Ke; Yan, Yan; Song, Xudong; Liu, Zhicheng

    2013-01-01

    The tilt and decentration of intraocular lens (IOL) result in defocussing, astigmatism, and wavefront aberration after operation. The objective is to give a method to estimate the tilt and decentration of IOL more accurately. Based on AS-OCT images of twelve eyes from eight cases with subluxation lens after operation, we fitted spherical equation to the data obtained from the images of the anterior and posterior surfaces of the IOL. By the established relationship between IOL tilt (decentrati...

  7. Intraoperative laser speckle contrast imaging for monitoring cerebral blood flow: results from a 10-patient pilot study

    Science.gov (United States)

    Richards, Lisa M.; Weber, Erica L.; Parthasarathy, Ashwin B.; Kappeler, Kaelyn L.; Fox, Douglas J.; Dunn, Andrew K.

    2012-02-01

    Monitoring cerebral blood flow (CBF) during neurosurgery can provide important physiological information for a variety of surgical procedures. Although multiple intraoperative vascular monitoring technologies are currently available, a quantitative method that allows for continuous monitoring is still needed. Laser speckle contrast imaging (LSCI) is an optical imaging method with high spatial and temporal resolution that has been widely used to image CBF in animal models in vivo. In this pilot clinical study, we adapted a Zeiss OPMI Pentero neurosurgical microscope to obtain LSCI images by attaching a camera and a laser diode. This LSCI adapted instrument has been used to acquire full field flow images from 10 patients during tumor resection procedures. The patient's ECG was recorded during acquisition and image registration was performed in post-processing to account for pulsatile motion artifacts. Digital photographs confirmed alignment of vasculature and flow images in four cases, and a relative change in blood flow was observed in two patients after bipolar cautery. The LSCI adapted instrument has the capability to produce real-time, full field CBF image maps with excellent spatial resolution and minimal intervention to the surgical procedure. Results from this study demonstrate the feasibility of using LSCI to monitor blood flow during neurosurgery.

  8. Blood Perfusion in Human Eyelid Skin Flaps Examined by Laser Speckle Contrast Imaging-Importance of Flap Length and the Use of Diathermy.

    Science.gov (United States)

    Nguyen, Cu Dinh; Hult, Jenny; Sheikh, Rafi; Tenland, Kajsa; Dahlstrand, Ulf; Lindstedt, Sandra; Malmsjö, Malin

    2017-10-11

    It is well known that blood perfusion is important for the survival of skin flaps. As no study has been conducted to investigate how the blood perfusion in human eyelid skin flaps is affected by the flap length and diathermy, the present study was carried out to investigate these in patients. Fifteen upper eyelids were dissected as part of a blepharoplastic procedure, releasing a 30-mm long piece of skin, while allowing the 5 mm wide distal part of the skin to remain attached, to mimic a skin flap (hereafter called a "skin flap"). Blood perfusion was measured before and after repeated diathermy, using laser speckle contrast imaging. Blood perfusion decreased from the base to the tip of the flap: 5 mm from the base, the perfusion was 69%, at 10 mm it was 40%, at 15 mm it was 20%, and at 20 mm it was only 13% of baseline values. Diathermy further decreased blood perfusion (measured 15 mm from the base) to 13% after applying diathermy for the first time, to 6% after the second and to 4% after the third applications of diathermy. Blood perfusion falls rapidly with distance from the base of skin flaps on the human eyelid, and diathermy reduces blood perfusion even further. Clinically, it may be advised that flaps with a width of 5 mm be no longer than 15 mm (i.e., a width:length ratio of 1:3), and that the use of diathermy should be carefully considered.

  9. Atomic force and shear force based tip-enhanced Raman spectroscopy and imaging

    NARCIS (Netherlands)

    Kharintsev, S.S.; Hoffmann, G.G.; Dorozhkin, P.S.; With, de G.; Loos, J.

    2007-01-01

    Underlying near-field optibal effects on the nanoscale have stimulated the development of apertureless vibrational spectroscopy and imaging with ultrahigh spatial resolution. We demonstrate tip-enhanced Raman spectra of single-walled carbon nanotubes (SWCNTs), recorded with a scanning near-field

  10. An Approximate Cone Beam Reconstruction Algorithm for Gantry-Tilted CT Using Tangential Filtering

    Directory of Open Access Journals (Sweden)

    Ming Yan

    2006-01-01

    Full Text Available FDK algorithm is a well-known 3D (three-dimensional approximate algorithm for CT (computed tomography image reconstruction and is also known to suffer from considerable artifacts when the scanning cone angle is large. Recently, it has been improved by performing the ramp filtering along the tangential direction of the X-ray source helix for dealing with the large cone angle problem. In this paper, we present an FDK-type approximate reconstruction algorithm for gantry-tilted CT imaging. The proposed method improves the image reconstruction by filtering the projection data along a proper direction which is determined by CT parameters and gantry-tilted angle. As a result, the proposed algorithm for gantry-tilted CT reconstruction can provide more scanning flexibilities in clinical CT scanning and is efficient in computation. The performance of the proposed algorithm is evaluated with turbell clock phantom and thorax phantom and compared with FDK algorithm and a popular 2D (two-dimensional approximate algorithm. The results show that the proposed algorithm can achieve better image quality for gantry-tilted CT image reconstruction.

  11. Sound recovery via intensity variations of speckle pattern pixels selected with variance-based method

    Science.gov (United States)

    Zhu, Ge; Yao, Xu-Ri; Qiu, Peng; Mahmood, Waqas; Yu, Wen-Kai; Sun, Zhi-Bin; Zhai, Guang-Jie; Zhao, Qing

    2018-02-01

    In general, the sound waves can cause the vibration of the objects that are encountered in the traveling path. If we make a laser beam illuminate the rough surface of an object, it will be scattered into a speckle pattern that vibrates with these sound waves. Here, an efficient variance-based method is proposed to recover the sound information from speckle patterns captured by a high-speed camera. This method allows us to select the proper pixels that have large variances of the gray-value variations over time, from a small region of the speckle patterns. The gray-value variations of these pixels are summed together according to a simple model to recover the sound with a high signal-to-noise ratio. Meanwhile, our method will significantly simplify the computation compared with the traditional digital-image-correlation technique. The effectiveness of the proposed method has been verified by applying a variety of objects. The experimental results illustrate that the proposed method is robust to the quality of the speckle patterns and costs more than one-order less time to perform the same number of the speckle patterns. In our experiment, a sound signal of time duration 1.876 s is recovered from various objects with time consumption of 5.38 s only.

  12. Sensitivity evaluation of dynamic speckle activity measurements using clustering methods

    International Nuclear Information System (INIS)

    Etchepareborda, Pablo; Federico, Alejandro; Kaufmann, Guillermo H.

    2010-01-01

    We evaluate and compare the use of competitive neural networks, self-organizing maps, the expectation-maximization algorithm, K-means, and fuzzy C-means techniques as partitional clustering methods, when the sensitivity of the activity measurement of dynamic speckle images needs to be improved. The temporal history of the acquired intensity generated by each pixel is analyzed in a wavelet decomposition framework, and it is shown that the mean energy of its corresponding wavelet coefficients provides a suited feature space for clustering purposes. The sensitivity obtained by using the evaluated clustering techniques is also compared with the well-known methods of Konishi-Fujii, weighted generalized differences, and wavelet entropy. The performance of the partitional clustering approach is evaluated using simulated dynamic speckle patterns and also experimental data.

  13. Development of an optimized algorithm for the characterization of microflow using speckle patterns present in optical coherence tomography signal; Desenvolvimento de um algoritimo otimizado para caracterizacao de fluxos microfluidicos utilizando padroes de speckle presentes no sinal de tomografia por coerencia optica

    Energy Technology Data Exchange (ETDEWEB)

    Pretto, Lucas Ramos de

    2015-07-01

    This work discusses the Optical Coherence Tomography system (OCT) and its application to the microfluidics area. To this end, physical characterization of microfluidic circuits were performed using 3D (three-dimensional) models constructed from OCT images of such circuits. The technique was thus evaluated as a potential tool to aid in the inspection of microchannels. Going further, this work paper studies and develops analytical techniques for microfluidic flow, in particular techniques based on speckle pattern. In the first instance, existing methods were studied and improved, such as Speckle Variance - OCT, where a gain of 31% was obtained in processing time. Other methods, such as LASCA (Laser Speckle Contrast Analysis), based on speckle autocorrelation, are adapted to OCT images. Derived from LASCA, the developed analysis technique based on intensity autocorrelation motivated the development of a custom OCT system as well as an optimized acquisition software, with a sampling rate of 8 kHz. The proposed method was, then, able to distinguish different flow rates, and limits of detection were tested, proving its feasibility for implementation on Brownian motion analysis and flow rates below 10 μl/min. (author)

  14. Real time processor for array speckle interferometry

    Science.gov (United States)

    Chin, Gordon; Florez, Jose; Borelli, Renan; Fong, Wai; Miko, Joseph; Trujillo, Carlos

    1989-02-01

    The authors are constructing a real-time processor to acquire image frames, perform array flat-fielding, execute a 64 x 64 element two-dimensional complex FFT (fast Fourier transform) and average the power spectrum, all within the 25 ms coherence time for speckles at near-IR (infrared) wavelength. The processor will be a compact unit controlled by a PC with real-time display and data storage capability. This will provide the ability to optimize observations and obtain results on the telescope rather than waiting several weeks before the data can be analyzed and viewed with offline methods. The image acquisition and processing, design criteria, and processor architecture are described.

  15. Finding small displacements of recorded speckle patterns: revisited

    DEFF Research Database (Denmark)

    Hanson, Steen Grüner; Jakobsen, Michael Linde; Chakrabarti, Maumita

    2015-01-01

    An analytical expression for the bias effect in digital speckle correlation is derived based on a Gaussian approximation of the spatial pixel size and array extent. The evaluation is carried out having assumed an incident speckle field. The analysis is focused on speckle displacements in the order...

  16. Evaluation of tilted cone-beam CT orbits in the development of a dedicated hybrid mammotomograph

    International Nuclear Information System (INIS)

    Madhav, P; Crotty, D J; Tornai, M P; McKinley, R L

    2009-01-01

    A compact dedicated 3D breast SPECT-CT (mammotomography) system is currently under development. In its initial prototype, the cone-beam CT sub-system is restricted to a fixed-tilt circular rotation around the patient's pendant breast. This study evaluated stationary-tilt angles for the CT sub-system that will enable maximal volumetric sampling and viewing of the breast and chest wall. Images of geometric/anthropomorphic phantoms were acquired using various fixed-tilt circular and 3D sinusoidal trajectories. The iteratively reconstructed images showed more distortion and attenuation coefficient inaccuracy from tilted cone-beam orbits than from the complex trajectory. Additionally, line profiles illustrated cupping artifacts in planes distal to the central plane of the tilted cone-beam, otherwise not apparent for images acquired with complex trajectories. This indicates that undersampled cone-beam data may be an additional cause of cupping artifacts. High-frequency objects could be distinguished for all trajectories, but their shapes and locations were corrupted by out-of-plane frequency information. Although more acrylic balls were visualized with a fixed-tilt and nearly flat cone-beam at the posterior of the breast, 3D complex trajectories have less distortion and more complete sampling throughout the reconstruction volume. While complex trajectories would ideally be preferred, negatively fixed-tilt source-detector configuration demonstrates minimally distorted patient images.

  17. Plasmonic superfocusing on metallic tips for near-field optical imaging and spectroscopy

    Science.gov (United States)

    Neacsu, Catalin C.; Olmon, Rob; Berweger, Samuel; Kappus, Alexandria; Kirchner, Friedrich; Ropers, Claus; Saraf, Lax; Raschke, Markus B.

    2008-03-01

    Realization of localized light sources through nonlocal excitation is important in the context of plasmon photonics, molecular sensing, and in particular near-field optical techniques. Here, the efficient conversion of propagating surface plasmons, launched on the shaft of a scanning probe tip, into localized plasmon at the apex provides a true nanoconfined light source. Focused ion beam milling is used to generate periodic surface nanostructures on the tip shaft that allow for tailoring the plasmon excitation. Using ultrashort visible and mid-IR transients the dynamics of the propagation and subsequent scattered emission is characterized. The strong field enhancement and spatial field confinement at the apex is demonstrated studying the coupling of the tip in near-field interaction with a flat sample surface. It is used in scattering near-field spectroscopic imaging (s-SNOM) to probe surface nanostructures with spatial resolution down to 10 nm.

  18. Tip-Enhanced Nano-Spectroscopy, Imaging, and Control: From Single Molecules to van der Waals Materials

    Science.gov (United States)

    Park, Kyoung-Duck

    Photon-induced phenomena in molecules and other materials play a significant role in device applications as well as understanding their physical properties. While a range of device applications using organic and inorganic molecules and soft and hard materials have led striking developments in modern technologies, using bulk systems has reached the limit in their functions, performance, and regarding application range. Recently, low-dimensional systems have emerged as appealing resources for the advanced technologies based on their significantly improved functions and properties. Hence, understanding light-matter interactions at their natural length scale is of fundamental significance, in addition to the next generation device applications. This thesis demonstrates a range of new functions and behaviors of low-dimensional materials revealed and controlled by the advanced tip-enhanced near-field spectroscopy and imaging techniques exceeding the current instrumental limits. To understand the behaviors of zero-dimensional (0D) molecular systems in interacting environments, we explore new regimes in tip-enhanced Raman spectroscopy (TERS) and scanning near-field optical microscopy (SNOM), revealing the fundamental nature of single-molecule dynamics and nanoscale spatial heterogeneity of biomolecules on the cell membranes. To gain insight into intramolecular properties and dynamic processes of single molecules, we use TERS at cryogenic temperatures. From temperature-dependent line narrowing and splitting, we investigate and quantify ultrafast vibrational dephasing, intramolecular coupling, and conformational heterogeneity. Through correlation analysis of fluctuations of individual modes, we observe rotational motion and spectral fluctuations of single-molecule. We extend single-molecule spectroscopy study into in situ nano-biomolecular imaging of cancer cells by developing in-liquid SNOM. We use a new mechanical resonance control, achieving a high-Q force sensing of the

  19. Twisted speckle entities inside wave-front reversal mirrors

    International Nuclear Information System (INIS)

    Okulov, A. Yu

    2009-01-01

    The previously unknown property of the optical speckle pattern reported. The interference of a speckle with the counterpropagating phase-conjugated (PC) speckle wave produces a randomly distributed ensemble of a twisted entities (ropes) surrounding optical vortex lines. These entities appear in a wide range of a randomly chosen speckle parameters inside the phase-conjugating mirrors regardless to an internal physical mechanism of the wave-front reversal. These numerically generated interference patterns are relevant to the Brillouin PC mirrors and to a four-wave mixing PC mirrors based upon laser trapped ultracold atomic cloud.

  20. Type I Diabetic Akita Mouse Model is Characterized by Abnormal Cardiac Deformation During Early Stages of Diabetic Cardiomyopathy with Speckle-Tracking Based Strain Imaging.

    Science.gov (United States)

    Zhou, Yingchao; Xiao, Hong; Wu, Jianfei; Zha, Lingfeng; Zhou, Mengchen; Li, Qianqian; Wang, Mengru; Shi, Shumei; Li, Yanze; Lyu, Liangkun; Wang, Qing; Tu, Xin; Lu, Qiulun

    2018-01-01

    Diabetes mellitus (DM) has been demonstrated to have a strong association with heart failure. Conventional echocardiographic analysis cannot sensitively monitor cardiac dysfunction in type I diabetic Akita hearts, but the phenotype of heart failure is observed in molecular levels during the early stages. Male Akita (Ins2WT/C96Y) mice were monitored with echocardiographic imaging at various ages, and then with conventional echocardiographic analysis and speckle-tracking based strain analyses. With speckle-tracking based strain analyses, diabetic Akita mice showed changes in average global radial strain at the age of 12 weeks, as well as decreased longitudinal strain. These changes occurred in the early stage and remained throughout the progression of diabetic cardiomyopathy in Akita mice. Speckle-tracking showed that the detailed and precise changes of cardiac deformation in the progression of diabetic cardiomyopathy in the genetic type I diabetic Akita mice were uncoupled. We monitored early-stage changes in the heart of diabetic Akita mice. We utilize this technique to elucidate the underlying mechanism for heart failure in Akita genetic type I diabetic mice. It will further advance the assessment of cardiac abnormalities, as well as the discovery of new drug treatments using Akita genetic type I diabetic mice. © 2018 The Author(s). Published by S. Karger AG, Basel.

  1. Statistics of spatially integrated speckle intensity difference

    DEFF Research Database (Denmark)

    Hanson, Steen Grüner; Yura, Harold

    2009-01-01

    We consider the statistics of the spatially integrated speckle intensity difference obtained from two separated finite collecting apertures. For fully developed speckle, closed-form analytic solutions for both the probability density function and the cumulative distribution function are derived...... here for both arbitrary values of the mean number of speckles contained within an aperture and the degree of coherence of the optical field. Additionally, closed-form expressions are obtained for the corresponding nth statistical moments....

  2. Comparison of phase unwrapping algorithms for topography reconstruction based on digital speckle pattern interferometry

    Science.gov (United States)

    Li, Yuanbo; Cui, Xiaoqian; Wang, Hongbei; Zhao, Mengge; Ding, Hongbin

    2017-10-01

    Digital speckle pattern interferometry (DSPI) can diagnose the topography evolution in real-time, continuous and non-destructive, and has been considered as a most promising technique for Plasma-Facing Components (PFCs) topography diagnostic under the complicated environment of tokamak. It is important for the study of digital speckle pattern interferometry to enhance speckle patterns and obtain the real topography of the ablated crater. In this paper, two kinds of numerical model based on flood-fill algorithm has been developed to obtain the real profile by unwrapping from the wrapped phase in speckle interference pattern, which can be calculated through four intensity images by means of 4-step phase-shifting technique. During the process of phase unwrapping by means of flood-fill algorithm, since the existence of noise pollution, and other inevitable factors will lead to poor quality of the reconstruction results, this will have an impact on the authenticity of the restored topography. The calculation of the quality parameters was introduced to obtain the quality-map from the wrapped phase map, this work presents two different methods to calculate the quality parameters. Then quality parameters are used to guide the path of flood-fill algorithm, and the pixels with good quality parameters are given priority calculation, so that the quality of speckle interference pattern reconstruction results are improved. According to the comparison between the flood-fill algorithm which is suitable for speckle pattern interferometry and the quality-guided flood-fill algorithm (with two different calculation approaches), the errors which caused by noise pollution and the discontinuous of the strips were successfully reduced.

  3. AFM tip-sample convolution effects for cylinder protrusions

    Science.gov (United States)

    Shen, Jian; Zhang, Dan; Zhang, Fei-Hu; Gan, Yang

    2017-11-01

    A thorough understanding about the AFM tip geometry dependent artifacts and tip-sample convolution effect is essential for reliable AFM topographic characterization and dimensional metrology. Using rigid sapphire cylinder protrusions (diameter: 2.25 μm, height: 575 nm) as the model system, a systematic and quantitative study about the imaging artifacts of four types of tips-two different pyramidal tips, one tetrahedral tip and one super sharp whisker tip-is carried out through comparing tip geometry dependent variations in AFM topography of cylinders and constructing the rigid tip-cylinder convolution models. We found that the imaging artifacts and the tip-sample convolution effect are critically related to the actual inclination of the working cantilever, the tip geometry, and the obstructive contacts between the working tip's planes/edges and the cylinder. Artifact-free images can only be obtained provided that all planes and edges of the working tip are steeper than the cylinder sidewalls. The findings reported here will contribute to reliable AFM characterization of surface features of micron or hundreds of nanometers in height that are frequently met in semiconductor, biology and materials fields.

  4. Comet Shoemaker-Levy 9/Jupiter collision observed with a high resolution speckle imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Gravel, D. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    During the week of July 16, 1994, comet Shoemaker-Levy 9, broken into 20 plus pieces by tidal forces on its last orbit, smashed into the planet Jupiter, releasing the explosive energy of 500 thousand megatons. A team of observers from LLNL used the LLNL Speckle Imaging Camera mounted on the University of California`s Lick Observatory 3 Meter Telescope to capture continuous sequences of planet images during the comet encounter. Post processing with the bispectral phase reconstruction algorithm improves the resolution by removing much of the blurring due to atmospheric turbulence. High resolution images of the planet surface showing the aftermath of the impact are probably the best that were obtained from any ground-based telescope. We have been looking at the regions of the fragment impacts to try to discern any dynamic behavior of the spots left on Jupiter`s cloud tops. Such information can lead to conclusions about the nature of the comet and of Jupiter`s atmosphere. So far, the Hubble Space Telescope has observed expanding waves from the G impact whose mechanism is enigmatic since they appear to be too slow to be sound waves and too fast to be gravity waves, given the present knowledge of Jupiter`s atmosphere. Some of our data on the G and L impact region complements the Hubble observations but, so far, is inconclusive about spot dynamics.

  5. Identification of a chemical inhibitor for nuclear speckle formation: Implications for the function of nuclear speckles in regulation of alternative pre-mRNA splicing

    Energy Technology Data Exchange (ETDEWEB)

    Kurogi, Yutaro; Matsuo, Yota; Mihara, Yuki; Yagi, Hiroaki; Shigaki-Miyamoto, Kaya; Toyota, Syukichi; Azuma, Yuko [Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Chuo-ku, Kumamoto 860-8555 (Japan); Igarashi, Masayuki [Laboratory of Disease Biology, Institute of Microbial Chemistry, Shinagawa-ku, Tokyo 141-0021 (Japan); Tani, Tokio, E-mail: ttani@sci.kumamoto-u.ac.jp [Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Chuo-ku, Kumamoto 860-8555 (Japan)

    2014-03-28

    Highlights: • We identified tubercidin as a compound inducing aberrant formation of the speckles. • Tubercidin causes delocalization of poly (A){sup +}RNAs from nuclear speckles. • Tubercidin induces dispersion of splicing factors from nuclear speckles. • Tubercidin affects alternative pre-mRNA splicing. • Nuclear speckles play a role in regulation of alternative pre-mRNA splicing. - Abstract: Nuclear speckles are subnuclear structures enriched with RNA processing factors and poly (A){sup +} RNAs comprising mRNAs and poly (A){sup +} non-coding RNAs (ncRNAs). Nuclear speckles are thought to be involved in post-transcriptional regulation of gene expression, such as pre-mRNA splicing. By screening 3585 culture extracts of actinomycetes with in situ hybridization using an oligo dT probe, we identified tubercidin, an analogue of adenosine, as an inhibitor of speckle formation, which induces the delocalization of poly (A){sup +} RNA and dispersion of splicing factor SRSF1/SF2 from nuclear speckles in HeLa cells. Treatment with tubercidin also decreased steady-state MALAT1 long ncRNA, thought to be involved in the retention of SRSF1/SF2 in nuclear speckles. In addition, we found that tubercidin treatment promoted exon skipping in the alternative splicing of Clk1 pre-mRNA. These results suggest that nuclear speckles play a role in modulating the concentration of splicing factors in the nucleoplasm to regulate alternative pre-mRNA splicing.

  6. Speckle-tracking echocardiography for predicting outcome in chronic aortic regurgitation during conservative management and after surgery

    DEFF Research Database (Denmark)

    Olsen, Niels Thue; Søgaard, Peter; Larsson, Henrik B W

    2011-01-01

    Objectives The aim of this study was to test myocardial deformation imaging using speckle-tracking echocardiography for predicting outcomes in chronic aortic regurgitation. Background In chronic aortic regurgitation, left ventricular (LV) dysfunction must be detected early to allow timely surgery....... Speckle-tracking echocardiography has been proposed for this purpose, but the clinical value of this method in aortic regurgitation has not been established. Methods A longitudinal study was performed in 64 patients with moderate to severe aortic regurgitation. Thirty-five patients were managed...... conservatively with frequent clinical visits and sequential echocardiography and followed for an average of 19 ± 8 months, while 29 patients underwent surgery for the valve lesion and were followed for 6 months post-operatively. Baseline LV function by speckle-tracking and conventional echocardiography...

  7. Real-time three-dimensional speckle tracking echocardiography: technical aspects and clinical applications

    Directory of Open Access Journals (Sweden)

    Sorrentino R

    2016-11-01

    Full Text Available Regina Sorrentino, Roberta Esposito, Enrica Pezzullo, Maurizio Galderisi Department of Advanced Biomedical Sciences, Interdepartmental Laboratory of Cardiac Imaging, Federico II University Hospital, Naples, Italy Abstract: Three-dimensional speckle tracking echocardiography (3D STE is a novel technique for the quantification of cardiac deformation based on tracking of ultrasonic speckles in gray scale full-volume 3D images. Developments in ultrasound technologies have made 3D speckle tracking widely available. Two-dimensional echocardiography has intrinsic limitations regarding estimation of left ventricular (LV volumes, ejection fraction, and LV mechanics, due to its inherent foreshortening errors and dependency on geometric models. The development of 3D echocardiography has improved reproducibility and accuracy. Data regarding the feasibility, accuracy, and clinical applications of 3D STE are rapidly assembling. From the tracking results, 3D STE derives several parameters, including longitudinal, circumferential and radial strain, as well as a combined assessment of longitudinal and circumferential strain, termed area strain. 3D STE can also quantify LV rotational movements such as rotation, twist, and torsion. 3D STE provides a better insight on global and regional myocardial deformation. Main applications include detection of subclinical myocardial involvement in heart failure, arterial hypertension, dyssynchrony, and ischemic heart disease. Emerging areas of application include a large spectrum of heart-involving systemic conditions, such as prediction of rejection in heart transplant patients, early detection of cardiotoxicity in patients receiving chemotherapy for cancer, and deeper physiological understanding of LV contraction mechanics in different types of athletes. Aim of this review is to discuss background, technical acquisition and processing aspects as well as recognized and developing clinical applications of this emerging

  8. Development of an optimized algorithm for the characterization of microflow using speckle patterns present in optical coherence tomography signal

    International Nuclear Information System (INIS)

    Pretto, Lucas Ramos de

    2015-01-01

    This work discusses the Optical Coherence Tomography system (OCT) and its application to the microfluidics area. To this end, physical characterization of microfluidic circuits were performed using 3D (three-dimensional) models constructed from OCT images of such circuits. The technique was thus evaluated as a potential tool to aid in the inspection of microchannels. Going further, this work paper studies and develops analytical techniques for microfluidic flow, in particular techniques based on speckle pattern. In the first instance, existing methods were studied and improved, such as Speckle Variance - OCT, where a gain of 31% was obtained in processing time. Other methods, such as LASCA (Laser Speckle Contrast Analysis), based on speckle autocorrelation, are adapted to OCT images. Derived from LASCA, the developed analysis technique based on intensity autocorrelation motivated the development of a custom OCT system as well as an optimized acquisition software, with a sampling rate of 8 kHz. The proposed method was, then, able to distinguish different flow rates, and limits of detection were tested, proving its feasibility for implementation on Brownian motion analysis and flow rates below 10 μl/min. (author)

  9. On the link between the speckle free nature of optoacoustics and visibility of structures in limited-view tomography

    Directory of Open Access Journals (Sweden)

    Xosé Luís Deán-Ben

    2016-12-01

    Full Text Available Similar to pulse-echo ultrasound, optoacoustic imaging encodes the location of optical absorbers by the time-of-flight of ultrasound waves. Yet, signal generation mechanisms are fundamentally different for the two modalities, leading to significant distinction between the optimum image formation strategies. While interference of back-scattered ultrasound waves with random phases causes speckle noise in ultrasound images, speckle formation is hindered by the strong correlation between the optoacoustic responses corresponding to individual sources. However, visibility of structures is severely hampered when attempting to acquire optoacoustic images under limited-view tomographic geometries. In this tutorial article, we systematically describe the basic principles of optoacoustic signal generation and image formation for objects ranging from individual sub-resolution absorbers to a continuous absorption distribution. The results are of relevance for the proper interpretation of optoacoustic images acquired under limited-view scenarios and may also serve as a basis for optimal design of tomographic acquisition geometries and image formation strategies.

  10. Dynamic of charged planar geometry in tilted and non-tilted frames

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, M., E-mail: msharif.math@pu.edu.pk; Zaeem Ul Haq Bhatti, M., E-mail: mzaeem.math@pu.edu.pk [University of the Punjab, Department of Mathematics (Pakistan)

    2015-05-15

    We investigate the dynamics of charged planar symmetry with an anisotropic matter field subject to a radially moving observer called a tilted observer. The Einstein-Maxwell field equations are used to obtain a relation between non-tilted and tilted frames and between kinematical and dynamical quantities. Using the Taub mass formalism and conservation laws, two evolution equations are developed to analyze the inhomogeneities in the tilted congruence. It is found that the radial velocity (due to the tilted observer) and the electric charge have a crucial effect on the inhomogeneity factor. Finally, we discuss the stability in the non-tilted frame in the pure diffusion case and examine the effects of the electromagnetic field.

  11. Utility of spatial frequency domain imaging (SFDI) and laser speckle imaging (LSI) to non-invasively diagnose burn depth in a porcine model☆

    Science.gov (United States)

    Burmeister, David M.; Ponticorvo, Adrien; Yang, Bruce; Becerra, Sandra C.; Choi, Bernard; Durkin, Anthony J.; Christy, Robert J.

    2015-01-01

    Surgical intervention of second degree burns is often delayed because of the difficulty in visual diagnosis, which increases the risk of scarring and infection. Non-invasive metrics have shown promise in accurately assessing burn depth. Here, we examine the use of spatial frequency domain imaging (SFDI) and laser speckle imaging (LSI) for predicting burn depth. Contact burn wounds of increasing severity were created on the dorsum of a Yorkshire pig, and wounds were imaged with SFDI/LSI starting immediately after-burn and then daily for the next 4 days. In addition, on each day the burn wounds were biopsied for histological analysis of burn depth, defined by collagen coagulation, apoptosis, and adnexal/vascular necrosis. Histological results show that collagen coagulation progressed from day 0 to day 1, and then stabilized. Results of burn wound imaging using non-invasive techniques were able to produce metrics that correlate to different predictors of burn depth. Collagen coagulation and apoptosis correlated with SFDI scattering coefficient parameter ( μs′) and adnexal/vascular necrosis on the day of burn correlated with blood flow determined by LSI. Therefore, incorporation of SFDI scattering coefficient and blood flow determined by LSI may provide an algorithm for accurate assessment of the severity of burn wounds in real time. PMID:26138371

  12. Measurements of 427 Double Stars With Speckle Interferometry: The Winter/Spring 2017 Observing Program at Brilliant Sky Observatory, Part 1

    Science.gov (United States)

    Harshaw, Richard

    2018-04-01

    In the winter and spring of 2017, an aggressive observing program of measuring close double stars with speckle interferometry and CCD imaging was undertaken at Brilliant Sky Observatory, my observing site in Cave Creek, Arizona. A total of 596 stars were observed, 8 of which were rejected for various reasons, leaving 588 pairs. Of these, 427 were observed and measured with speckle interferometry, while the remaining 161 were measured with a CCD. This paper reports the results of the observations of the 427 speckle cases. A separate paper in this issue will report the CCD measurements of the 161 other pairs.

  13. A SIMPLE HETERODYNE TEMPORAL SPECKLE-PATTERN INTERFEROMETER

    International Nuclear Information System (INIS)

    Wong, W. O.; Gao, Z.; Lu, J.

    2010-01-01

    A common light path design of heterodyne speckle pattern interferometer based on temporal speckle pattern interferometry is proposed for non-contact, full-field and real-time continuous displacement measurement. Double frequency laser is produced by rotating a half wave plate. An experiment was carried out to measure the dynamic displacement of a cantilever plate for testing the proposed common path heterodyne speckle pattern interferometer. The accuracy of displacement measurement was checked by measuring the motion at the mid-point of the plate with a point displacement sensor.

  14. Lensless Photoluminescence Hyperspectral Camera Employing Random Speckle Patterns.

    Czech Academy of Sciences Publication Activity Database

    Žídek, Karel; Denk, Ondřej; Hlubuček, Jiří

    2017-01-01

    Roč. 7, č. 1 (2017), č. článku 15309. ISSN 2045-2322 R&D Projects: GA MŠk(CZ) LO1206; GA ČR(CZ) GJ17-26284Y Institutional support: RVO:61389021 Keywords : compressed sensing * photoluminescence imaging * laser speckles * single-pixel camera Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 4.259, year: 2016 https://www.nature.com/articles/s41598-017-14443-4

  15. Quantitative assessment of intermolecular interactions by atomic force microscopy imaging using copper oxide tips

    Science.gov (United States)

    Mönig, Harry; Amirjalayer, Saeed; Timmer, Alexander; Hu, Zhixin; Liu, Lacheng; Díaz Arado, Oscar; Cnudde, Marvin; Strassert, Cristian Alejandro; Ji, Wei; Rohlfing, Michael; Fuchs, Harald

    2018-05-01

    Atomic force microscopy is an impressive tool with which to directly resolve the bonding structure of organic compounds1-5. The methodology usually involves chemical passivation of the probe-tip termination by attaching single molecules or atoms such as CO or Xe (refs 1,6-9). However, these probe particles are only weakly connected to the metallic apex, which results in considerable dynamic deflection. This probe particle deflection leads to pronounced image distortions, systematic overestimation of bond lengths, and in some cases even spurious bond-like contrast features, thus inhibiting reliable data interpretation8-12. Recently, an alternative approach to tip passivation has been used in which slightly indenting a tip into oxidized copper substrates and subsequent contrast analysis allows for the verification of an oxygen-terminated Cu tip13-15. Here we show that, due to the covalently bound configuration of the terminal oxygen atom, this copper oxide tip (CuOx tip) has a high structural stability, allowing not only a quantitative determination of individual bond lengths and access to bond order effects, but also reliable intermolecular bond characterization. In particular, by removing the previous limitations of flexible probe particles, we are able to provide conclusive experimental evidence for an unusual intermolecular N-Au-N three-centre bond. Furthermore, we demonstrate that CuOx tips allow the characterization of the strength and configuration of individual hydrogen bonds within a molecular assembly.

  16. A new tilt on pelvic radiographs: a pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Richards, P.J. [North Staffordshire Royal Infirmary, Department of Radiology, Stoke-on-Trent, Staffordshire (United Kingdom); Pattison, J.M. [University Hospital of North Staffordshire, Department of Radiology, Stoke on Trent (United Kingdom); Belcher, J. [Keele University, Department of Mathematics, Keele, Staffordshire (United Kingdom); DeCann, R.W. [IMECS, Department of Radiology, Market Drayton, Shropshire (United Kingdom); Anderson, Suzanne [University of Melbourne, Department of Radiology, Melbourne (Australia); Wynn-Jones, C. [University Hospital of North Staffordshire, Department of Orthopaedic Surgery, Stoke on Trent (United Kingdom)

    2009-02-15

    The aim of this study was to evaluate pelvic tilt on commonly performed measurements on radiography in primary protrusio acetabuli and developmental dysplasia of the hip. A dry assembled pelvis and spine skeleton was positioned in an isocentric skull unit and films exposed with increasing degrees of angulation of pelvic tilt. The films were then read by two independent readers for seven different measurements used to evaluate the hips and acetabular: acetabular line to ilioischial line, teardrop appearance, intercristal/intertuberous ratio, co-ordinates of femoral head, centre edge angle, acetabular depth/width ratio and acetabular angle. There was so much variation in the protrusio results that no formal recommendation of any standard radiographic test can be given. Only the inter tuberous distance is not effected by pelvic tilt. The acetabular angles for developmental dysplasia of the hip showed the most potential with pelvic tilt below 15 . As pelvic tilt increases, measurements used in protusio become unreliable, and computed tomography/magnetic resonance imaging are probably going to be more accurate as one can directly visualise pelvic intrusion. We recommend a lateral view to assess the degree of pelvic tilt in patients with protrusion to ensure these measurements are valid. (orig.)

  17. Correlation of Spatially Filtered Dynamic Speckles in Distance Measurement Application

    International Nuclear Information System (INIS)

    Semenov, Dmitry V.; Nippolainen, Ervin; Kamshilin, Alexei A.; Miridonov, Serguei V.

    2008-01-01

    In this paper statistical properties of spatially filtered dynamic speckles are considered. This phenomenon was not sufficiently studied yet while spatial filtering is an important instrument for speckles velocity measurements. In case of spatial filtering speckle velocity information is derived from the modulation frequency of filtered light power which is measured by photodetector. Typical photodetector output is represented by a narrow-band random noise signal which includes non-informative intervals. Therefore more or less precious frequency measurement requires averaging. In its turn averaging implies uncorrelated samples. However, conducting research we found that correlation is typical property not only of dynamic speckle patterns but also of spatially filtered speckles. Using spatial filtering the correlation is observed as a response of measurements provided to the same part of the object surface or in case of simultaneously using several adjacent photodetectors. Found correlations can not be explained using just properties of unfiltered dynamic speckles. As we demonstrate the subject of this paper is important not only from pure theoretical point but also from the point of applied speckle metrology. E.g. using single spatial filter and an array of photodetector can greatly improve accuracy of speckle velocity measurements

  18. Clinical utility of speckle-tracking echocardiography in cardiac resynchronisation therapy.

    Science.gov (United States)

    Khan, Sitara G; Klettas, Dimitris; Kapetanakis, Stam; Monaghan, Mark J

    2016-03-01

    Cardiac resynchronisation therapy (CRT) can profoundly improve outcome in selected patients with heart failure; however, response is difficult to predict and can be absent in up to one in three patients. There has been a substantial amount of interest in the echocardiographic assessment of left ventricular dyssynchrony, with the ultimate aim of reliably identifying patients who will respond to CRT. The measurement of myocardial deformation (strain) has conventionally been assessed using tissue Doppler imaging (TDI), which is limited by its angle dependence and ability to measure in a single plane. Two-dimensional speckle-tracking echocardiography is a technique that provides measurements of strain in three planes, by tracking patterns of ultrasound interference ('speckles') in the myocardial wall throughout the cardiac cycle. Since its initial use over 15 years ago, it has emerged as a tool that provides more robust, reproducible and sensitive markers of dyssynchrony than TDI. This article reviews the use of two-dimensional and three-dimensional speckle-tracking echocardiography in the assessment of dyssynchrony, including the identification of echocardiographic parameters that may hold predictive potential for the response to CRT. It also reviews the application of these techniques in guiding optimal LV lead placement pre-implant, with promising results in clinical improvement post-CRT. © 2016 The authors.

  19. The use of Electronic Speckle Pattern Interferometry (ESPI) in the crack propagation analysis of epoxy resins

    Science.gov (United States)

    Herbert, D. P.; Al-Hassani, A. H. M.; Richardson, M. O. W.

    The ESPI (electronic speckle pattern interferometry) technique at high magnification levels is demonstrated to be of considerable value in interpreting the fracture behaviour of epoxy resins. The fracture toughness of powder coating system at different thicknesses has been measured using a TDCB (tapered double cantilever beam) technique and the deformation zone at the tip of the moving crack monitored. Initial indications are that a mechanistic changeover occurs at a critical bond (coating) thickness and that this is synonymous with the occurence of a fracture toughness maximum, which in turn is associated with a deformation zone of specific diameter.

  20. DIPSI: the diffraction image phase sensing instrument for APE

    Science.gov (United States)

    Montoya-Martínez, Luzma; Reyes, Marcos; Schumacher, Achim; Hernández, Elvio

    2006-06-01

    Large segmented mirrors require efficient co-phasing techniques in order to avoid the image degradation due to segments misalignment. For this purpose in the last few years new co-phasing techniques have been developed in collaboration with several European institutes. The Active Phasing Experiment (APE) will be a technical instrument aimed at testing different phasing techniques for an Extremely Large Telescope (ELT). A mirror composed of 61 hexagonal segments will be conjugated to the primary mirror of the VLT (Very Large Telescope). Each segment can be moved in piston, tip and tilt. Three new types of co-phasing sensors dedicated to the measurement of segmentation errors will be tested, evaluated and compared: ZEUS (Zernike Unit for Segment phasing) developed by LAM and IAC, PYPS (PYramid Phase Sensor) developed by INAF/ARCETRI, and DIPSI (Diffraction Image Phase Sensing Instrument) developed by IAC, GRANTECAN and LAM. This experiment will first run in the laboratory with point-like polychromatic sources and a turbulence generator. In a second step, it will be mounted at the Nasmyth platform focus of a VLT unit telescope. This paper describes the scientific concept of DIPSI, its optomechanical design, the signal analysis to retrieve segment piston and tip-tilt, the multiwavelength algorithm to increase the capture range, and the multiple segmentation case, including both simulation and laboratory tests results.

  1. Optical imaging beyond the diffraction limit by SNEM: Effects of AFM tip modifications with thiol monolayers on imaging quality

    NARCIS (Netherlands)

    Cumurcu, Aysegul; Diaz, J.; Lindsay, I.D.; de Beer, Sissi; Duvigneau, Joost; Schön, Peter Manfred; Vancso, Gyula J.

    2015-01-01

    Tip-enhanced nanoscale optical imaging techniques such as apertureless scanning near-field optical microscopy (a-SNOM) and scanning near-field ellipsometric microscopy (SNEM) applications can suffer from a steady degradation in performance due to adhesion of atmospheric contaminants to the metal

  2. Advances in speckle metrology and related techniques

    CERN Document Server

    Kaufmann, Guillermo H

    2010-01-01

    Speckle metrology includes various optical techniques that are based on the speckle fields generated by reflection from a rough surface or by transmission through a rough diffuser. These techniques have proven to be very useful in testing different materials in a non-destructive way. They have changed dramatically during the last years due to the development of modern optical components, with faster and more powerful digital computers, and novel data processing approaches. This most up-to-date overview of the topic describes new techniques developed in the field of speckle metrology over the l

  3. OBSERVATIONS OF BINARY STARS WITH THE DIFFERENTIAL SPECKLE SURVEY INSTRUMENT. III. MEASURES BELOW THE DIFFRACTION LIMIT OF THE WIYN TELESCOPE

    International Nuclear Information System (INIS)

    Horch, Elliott P.; Van Altena, William F.; Howell, Steve B.; Sherry, William H.; Ciardi, David R.

    2011-01-01

    In this paper, we study the ability of CCD- and electron-multiplying-CCD-based speckle imaging to obtain reliable astrometry and photometry of binary stars below the diffraction limit of the WIYN 3.5 m Telescope. We present a total of 120 measures of binary stars, 75 of which are below the diffraction limit. The measures are divided into two groups that have different measurement accuracy and precision. The first group is composed of standard speckle observations, that is, a sequence of speckle images taken in a single filter, while the second group consists of paired observations where the two observations are taken on the same observing run and in different filters. The more recent paired observations were taken simultaneously with the Differential Speckle Survey Instrument, which is a two-channel speckle imaging system. In comparing our results to the ephemeris positions of binaries with known orbits, we find that paired observations provide the opportunity to identify cases of systematic error in separation below the diffraction limit and after removing these from consideration, we obtain a linear measurement uncertainty of 3-4 mas. However, if observations are unpaired or if two observations taken in the same filter are paired, it becomes harder to identify cases of systematic error, presumably because the largest source of this error is residual atmospheric dispersion, which is color dependent. When observations are unpaired, we find that it is unwise to report separations below approximately 20 mas, as these are most susceptible to this effect. Using the final results obtained, we are able to update two older orbits in the literature and present preliminary orbits for three systems that were discovered by Hipparcos.

  4. Skin perfusion evaluation between laser speckle contrast imaging and laser Doppler flowmetry

    Science.gov (United States)

    Humeau-Heurtier, Anne; Mahe, Guillaume; Durand, Sylvain; Abraham, Pierre

    2013-03-01

    In the biomedical field, laser Doppler flowmetry (LDF) and laser speckle contrast imaging (LSCI) are two optical techniques aiming at monitoring - non-invasively - the microvascular blood perfusion. LDF has been used for nearly 40 years whereas LSCI is a recent technique that overcomes some drawbacks of LDF. Both LDF and LSCI give perfusion assessments in arbitrary units. However, the possible relationship existing between perfusions given by LDF and by LSCI over large blood flow values has not been completely studied yet. We therefore herein evaluate the relationship between the LDF and LSCI perfusion values across a broad range of skin blood flows. For this purpose, LDF and LSCI data were acquired simultaneously on the forearm of 12 healthy subjects, at rest, during different durations of vascular occlusion and during reactive hyperemia. For the range of skin blood flows studied, the power function fits the data better than the linear function: powers for individual subjects go from 1.2 to 1.7 and the power is close to 1.3 when all the subjects are studied together. We thus suggest distinguishing perfusion values given by the two optical systems.

  5. Tilt testing results are influenced by tilt protocol.

    Science.gov (United States)

    Zyśko, Dorota; Fedorowski, Artur; Nilsson, David; Rudnicki, Jerzy; Gajek, Jacek; Melander, Olle; Sutton, Richard

    2016-07-01

    It is unknown how the return to supine position influences duration of loss of consciousness (LOC) and cardioinhibition during tilt test. Retrospective analysis of two datasets containing records of patients who underwent tilt testing for unexplained syncope in two centres was performed. Patients, totalling 1232, were included in the study: 262 in a Swedish centre and 970 patients in a Polish centre. In Sweden, tilt table with tilt-down time (TDT) of 18 s was used (Group II). In Poland, two different tilt tables were used, one of them with TDT of 10 s (Group I, n = 325), and the other with TDT of 47 s (Group III, n = 645). Cardioinhibitory reflex occurred most frequently in Group III, whereas number of pauses >3 s, frequency of very long asystole ≥30 s, and the total duration of pauses >3 s demonstrated a trend to increase from Group I to III. Duration of LOC in Groups II and III was significantly longer compared with Group I (32.0 and 33.7 s vs. 16.4 s). In the multivariate-adjusted regression model, cardioinhibitory reflex was predicted by tilt-table model (odds ratio per model with increasing TDT: 1.40; 95% confidence interval, 1.19-1.64; P < 0.0001), whereas LOC duration was longer with increasing TDT (P < 0.0001) and age (P < 0.0001). Longer TDT during induced vasovagal syncope increases the prevalence of cardioinhibitory reflex and prolongs the duration of LOC. Tilt-down time does not affect asystolic pause duration but delay may lead to occurrence of multiple pauses, higher frequency of very long asystole, and longer total asystole duration. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  6. Displacement, distance, and shape measurements of fast-rotating rough objects by two mutually tilted interference fringe systems.

    Science.gov (United States)

    Günther, Philipp; Kuschmierz, Robert; Pfister, Thorsten; Czarske, Jürgen W

    2013-05-01

    The precise distance measurement of fast-moving rough surfaces is important in several applications such as lathe monitoring. A nonincremental interferometer based on two mutually tilted interference fringe systems has been realized for this task. The distance is coded in the phase difference between the generated interference signals corresponding to the fringe systems. Large tilting angles between the interference fringe systems are necessary for a high sensitivity. However, due to the speckle effect at rough surfaces, different envelopes and phase jumps of the interference signals occur. At large tilting angles, these signals become dissimilar, resulting in a small correlation coefficient and a high measurement uncertainty. Based on a matching of illumination and receiving optics, the correlation coefficient and the phase difference estimation have been improved significantly. For axial displacement measurements of recurring rough surfaces, laterally moving with velocities of 5 m/s, an uncertainty of 110 nm has been attained. For nonrecurring surfaces, a distance measurement uncertainty of 830 nm has been achieved. Incorporating the additionally measured lateral velocity and the rotational speed, the two-dimensional shape of rotating objects results. Since the measurement uncertainty of the displacement, distance, and shape is nearly independent of the lateral surface velocity, this technique is predestined for fast-rotating objects, such as crankshafts, camshafts, vacuum pump shafts, or turning parts of lathes.

  7. Real-time acquisition and display of flow contrast using speckle variance optical coherence tomography in a graphics processing unit.

    Science.gov (United States)

    Xu, Jing; Wong, Kevin; Jian, Yifan; Sarunic, Marinko V

    2014-02-01

    In this report, we describe a graphics processing unit (GPU)-accelerated processing platform for real-time acquisition and display of flow contrast images with Fourier domain optical coherence tomography (FDOCT) in mouse and human eyes in vivo. Motion contrast from blood flow is processed using the speckle variance OCT (svOCT) technique, which relies on the acquisition of multiple B-scan frames at the same location and tracking the change of the speckle pattern. Real-time mouse and human retinal imaging using two different custom-built OCT systems with processing and display performed on GPU are presented with an in-depth analysis of performance metrics. The display output included structural OCT data, en face projections of the intensity data, and the svOCT en face projections of retinal microvasculature; these results compare projections with and without speckle variance in the different retinal layers to reveal significant contrast improvements. As a demonstration, videos of real-time svOCT for in vivo human and mouse retinal imaging are included in our results. The capability of performing real-time svOCT imaging of the retinal vasculature may be a useful tool in a clinical environment for monitoring disease-related pathological changes in the microcirculation such as diabetic retinopathy.

  8. Analysis of eroded bovine teeth through laser speckle imaging

    Science.gov (United States)

    Koshoji, Nelson H.; Bussadori, Sandra K.; Bortoletto, Carolina C.; Oliveira, Marcelo T.; Prates, Renato A.; Deana, Alessandro M.

    2015-02-01

    Dental erosion is a non-carious lesion that causes progressive tooth wear of structure through chemical processes that do not involve bacterial action. Its origin is related to eating habits or systemic diseases involving tooth contact with substances that pose a very low pH. This work demonstrates a new methodology to quantify the erosion by coherent light scattering of tooth surface. This technique shows a correlation between acid etch duration and laser speckle contrast map (LASCA). The experimental groups presented a relative contrast between eroded and sound tissue of 17.8(45)%, 23.4 (68)% 39.2 (40)% and 44.3 (30)%, for 10 min, 20 min, 30 min and 40 min of acid etching, respectively.

  9. Laser speckle technique to study the effect of chemical pre-treatment on the quality of minimally processed apples

    International Nuclear Information System (INIS)

    Minz, Preeti D; Nirala, A K

    2016-01-01

    In the present study, the laser speckle technique has been used for the quality evaluation of chemically treated cut apples. Chemical pre-treatment includes 1% (w/v) solution of citric acid (CA), sodium chloride (SC), and a combination of CA and sodium chloride (CS). The variation in weight loss, respiration rate, total soluble solids (TSS), titratable acidity (TA), and absorbance of chemically treated cut apples stored at 5 °C was monitored for 11 d. The speckle grain size was calculated by an autocovariance method from the speckled images of freshly cut chemically treated apples. The effect of chemicals on TSS and the TA content variation of the cut apples were well correlated to the linear speckle grain size. Circular degree of polarization confirms the presence of a small scatterer and hence Rayleigh diffusion region. For all the treated cut apples, a decrease in the concentration of small particles nearly after the mid-period of storage results in the fast decay of circular degree of polarization. For non-invasive and fast analysis of the chemical constituent of fruits during minimal processing, the laser speckle can be practically used in the food industry. (paper)

  10. Laser speckle technique to study the effect of chemical pre-treatment on the quality of minimally processed apples

    Science.gov (United States)

    Minz, Preeti D.; Nirala, A. K.

    2016-04-01

    In the present study, the laser speckle technique has been used for the quality evaluation of chemically treated cut apples. Chemical pre-treatment includes 1% (w/v) solution of citric acid (CA), sodium chloride (SC), and a combination of CA and sodium chloride (CS). The variation in weight loss, respiration rate, total soluble solids (TSS), titratable acidity (TA), and absorbance of chemically treated cut apples stored at 5 °C was monitored for 11 d. The speckle grain size was calculated by an autocovariance method from the speckled images of freshly cut chemically treated apples. The effect of chemicals on TSS and the TA content variation of the cut apples were well correlated to the linear speckle grain size. Circular degree of polarization confirms the presence of a small scatterer and hence Rayleigh diffusion region. For all the treated cut apples, a decrease in the concentration of small particles nearly after the mid-period of storage results in the fast decay of circular degree of polarization. For non-invasive and fast analysis of the chemical constituent of fruits during minimal processing, the laser speckle can be practically used in the food industry.

  11. Intraoperative laser speckle contrast imaging improves the stability of rodent middle cerebral artery occlusion model

    Science.gov (United States)

    Yuan, Lu; Li, Yao; Li, Hangdao; Lu, Hongyang; Tong, Shanbao

    2015-09-01

    Rodent middle cerebral artery occlusion (MCAO) model is commonly used in stroke research. Creating a stable infarct volume has always been challenging for technicians due to the variances of animal anatomy and surgical operations. The depth of filament suture advancement strongly influences the infarct volume as well. We investigated the cerebral blood flow (CBF) changes in the affected cortex using laser speckle contrast imaging when advancing suture during MCAO surgery. The relative CBF drop area (CBF50, i.e., the percentage area with CBF less than 50% of the baseline) showed an increase from 20.9% to 69.1% when the insertion depth increased from 1.6 to 1.8 cm. Using the real-time CBF50 marker to guide suture insertion during the surgery, our animal experiments showed that intraoperative CBF-guided surgery could significantly improve the stability of MCAO with a more consistent infarct volume and less mortality.

  12. The Influence Of Brand Image On Consumer Loyalty In The Restaurant TIP-TOP

    OpenAIRE

    Vikram, Alfis

    2015-01-01

    This study aims to identify and analyze the influence of brand image on consumer loyalty in the restaurant TIP-TOP. The method studied in this research is how the influence of brand image through favorability of brand association, strenght of brand association and uniqueness of brand association either partially or simultaneously. The purpose of this study was to analyze the effect of partial and excellence simulant favorability of brand association, strenght of brand association and the u...

  13. Imaging contrast and tip-sample interaction of non-contact amplitude modulation atomic force microscopy with Q -control

    International Nuclear Information System (INIS)

    Shi, Shuai; Guo, Dan; Luo, Jianbin

    2017-01-01

    Active quality factor ( Q ) exhibits many promising properties in dynamic atomic force microscopy. Energy dissipation and image contrasts are investigated in the non-contact amplitude modulation atomic force microscopy (AM-AFM) with an active Q -control circuit in the ambient air environment. Dissipated power and virial were calculated to compare the highly nonlinear interaction of tip-sample and image contrasts with different Q gain values. Greater free amplitudes and lower effective Q values show better contrasts for the same setpoint ratio. Active quality factor also can be employed to change tip-sample interaction force in non-contact regime. It is meaningful that non-destructive and better contrast images can be realized in non-contact AM-AFM by applying an active Q -control to the dynamic system. (paper)

  14. Position control of ECRH launcher mirrors by laser speckle sensor

    International Nuclear Information System (INIS)

    Michelsen, Poul K.; Bindslev, Henrik; Hansen, Rene Skov; Hanson, Steen G.

    2003-01-01

    The planned ECRH system for JET included several fixed and steerable mirrors some of which should have been fixed to the building structure and some to the JET vessel structure. A similar system may be anticipated for ITER and for other fusion devices in the future. In order to have high reproducibility of the ECRH beam direction, it is necessary to know the exact positions of the mirrors. This is not a trivial problem because of thermal expansion of the vessel structures and of the launcher itself and of its support structure, the mechanical load on mirrors and support structures, and the accessibility to the various mirrors. We suggest to use a combination of infrared diagnostic of beam spot positions and a new technique published recently, which is based on a non-contact laser speckle sensor for measuring one- and two-dimensional angular displacement. The method is based on Fourier transforming the scattered field from a single laser beam that illuminates the target. The angular distribution of the light field at the target is linearly mapped onto an array image sensor placed in the Fourier plane. Measuring the displacement of this so-called speckle pattern facilitates the determination of the mirror orientation. Transverse target movement can be measured by observing the speckle movement in the image plane of the object. No special surface treatment is required for surfaces having irregularities of the order of or larger than the wavelength of the incident light. For the JET ECRH launcher it is mainly for the last mirror pointing towards the plasma where the technique may be useful. This mirror has to be steerable in order to reflect the microwave beam in the correct direction towards the plasma. Maximum performance of the microwave heating requires that the beam hits this mirror at its centre and that the mirror is turned in the correct angle. Inaccuracies in the positioning of the pull rods for controlling the mirror turning and thermal effects makes it

  15. Analysis of Minute Features in Speckled Imagery with Maximum Likelihood Estimation

    Directory of Open Access Journals (Sweden)

    Alejandro C. Frery

    2004-12-01

    Full Text Available This paper deals with numerical problems arising when performing maximum likelihood parameter estimation in speckled imagery using small samples. The noise that appears in images obtained with coherent illumination, as is the case of sonar, laser, ultrasound-B, and synthetic aperture radar, is called speckle, and it can neither be assumed Gaussian nor additive. The properties of speckle noise are well described by the multiplicative model, a statistical framework from which stem several important distributions. Amongst these distributions, one is regarded as the universal model for speckled data, namely, the 𝒢0 law. This paper deals with amplitude data, so the 𝒢A0 distribution will be used. The literature reports that techniques for obtaining estimates (maximum likelihood, based on moments and on order statistics of the parameters of the 𝒢A0 distribution require samples of hundreds, even thousands, of observations in order to obtain sensible values. This is verified for maximum likelihood estimation, and a proposal based on alternate optimization is made to alleviate this situation. The proposal is assessed with real and simulated data, showing that the convergence problems are no longer present. A Monte Carlo experiment is devised to estimate the quality of maximum likelihood estimators in small samples, and real data is successfully analyzed with the proposed alternated procedure. Stylized empirical influence functions are computed and used to choose a strategy for computing maximum likelihood estimates that is resistant to outliers.

  16. [Speckle tracking--a new ultrasound tool for the assessment of fetal myocardial function].

    Science.gov (United States)

    Willruth, A; Geipel, A; Merz, W; Gembruch, U

    2012-06-01

    Speckle tracking is a new ultrasound tool to assess 2D ventricular global and segmental myocardial velocity and deformation (strain, strain rate). Multiple factors such as fetal motion, high heart rates, low blood pressure, small size of the heart, physiological cardiac translation, filling and maturational changes of myocardium, polyhydramnion, maternal obesity and aortic pulsation can degrade the image quality and result in artifacts and measurement errors which may have an impact on the final analysis. Therefore deformation indices such as strain and strain rate offer a quantitative technique for the estimation of global and segmental myocardial function and contractility. At present longitudinal peak systolic strain is the most commonly applied deformation parameter used to analyse segmental and global myocardial contractility in adults. When obtained using Doppler methods, these measurements are angle dependent, whereas speckle tracking techniques overcome the limitations of Doppler echocardiography which is a particular advantage in foetal echocardiography. Nevertheless, the time and training necessary to acquire high-quality video clips limit the implementation of speckle tracking into clinical routine. It is not yet clear whether this new technique will identify subclinical myocardial impairment earlier than with current techniques or allow for better discrimination between healthy fetuses and fetuses with congenital heart disease. The clinical use of speckle tracking will have to be demonstrated in larger groups of complicated pregnancies. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Enhancement of SAR images using fuzzy shrinkage technique

    Indian Academy of Sciences (India)

    This paper presents speckle noise reduction in SAR images using a combination of curvelet and fuzzy logic technique to restore speckle-affected images. This method overcomes the limitation of discontinuity in hard threshold and permanent deviation in soft threshold. First, it decomposes noise image into different ...

  18. Algorithmic processing of intrinsic signals in affixed transmission speckle analysis (ATSA) (Conference Presentation)

    Science.gov (United States)

    Ghijsen, Michael T.; Tromberg, Bruce J.

    2017-03-01

    Affixed Transmission Speckle Analysis (ATSA) is a method recently developed to measure blood flow that is based on laser speckle imaging miniaturized into a clip-on form factor the size of a pulse-oximeter. Measuring at a rate of 250 Hz, ATSA is capable or obtaining the cardiac waveform in blood flow data, referred to as the Speckle-Plethysmogram (SPG). ATSA is also capable of simultaneously measuring the Photoplethysmogram (PPG), a more conventional signal related to light intensity. In this work we present several novel algorithms for extracting physiologically relevant information from the combined SPG-PPG waveform data. First we show that there is a slight time-delay between the SPG and PPG that can be extracted computationally. Second, we present a set of frequency domain algorithms that measure harmonic content on pulse-by-pulse basis for both the SPG and PPG. Finally, we apply these algorithms to data obtained from a set of subjects including healthy controls and individuals with heightened cardiovascular risk. We hypothesize that the time-delay and frequency content are correlated with cardiovascular health; specifically with vascular stiffening.

  19. Ectoparasites and intestinal helminths of speckled pigeon ...

    African Journals Online (AJOL)

    Ectoparasites and intestinal helminths of speckled pigeon ( Columba guinea Hartlaub and Finsch 1870) in Zaria, Nigeria. ... Science World Journal ... A total of 30 (20 males and 10 females) Speckled Pigeons trapped from the wild in Zaria and its environs, Nigeria, were examined for ectoparasites and intestinal helminths, ...

  20. Wind Tunnel Testing of a 120th Scale Large Civil Tilt-Rotor Model in Airplane and Helicopter Modes

    Science.gov (United States)

    Theodore, Colin R.; Willink, Gina C.; Russell, Carl R.; Amy, Alexander R.; Pete, Ashley E.

    2014-01-01

    In April 2012 and October 2013, NASA and the U.S. Army jointly conducted a wind tunnel test program examining two notional large tilt rotor designs: NASA's Large Civil Tilt Rotor and the Army's High Efficiency Tilt Rotor. The approximately 6%-scale airframe models (unpowered) were tested without rotors in the U.S. Army 7- by 10-foot wind tunnel at NASA Ames Research Center. Measurements of all six forces and moments acting on the airframe were taken using the wind tunnel scale system. In addition to force and moment measurements, flow visualization using tufts, infrared thermography and oil flow were used to identify flow trajectories, boundary layer transition and areas of flow separation. The purpose of this test was to collect data for the validation of computational fluid dynamics tools, for the development of flight dynamics simulation models, and to validate performance predictions made during conceptual design. This paper focuses on the results for the Large Civil Tilt Rotor model in an airplane mode configuration up to 200 knots of wind tunnel speed. Results are presented with the full airframe model with various wing tip and nacelle configurations, and for a wing-only case also with various wing tip and nacelle configurations. Key results show that the addition of a wing extension outboard of the nacelles produces a significant increase in the lift-to-drag ratio, and interestingly decreases the drag compared to the case where the wing extension is not present. The drag decrease is likely due to complex aerodynamic interactions between the nacelle and wing extension that results in a significant drag benefit.

  1. Wholefield displacement measurements using speckle image processing techniques for crash tests

    Science.gov (United States)

    Sriram, P.; Hanagud, S.; Ranson, W. F.

    The digital correlation scheme of Peters et al. (1983) was extended to measure out-of-plane deformations, using a white light projection speckle technique. A simple ray optic theory and the digital correlation scheme are outlined. The technique was applied successfully to measure out-of-plane displacements of initially flat rotorcraft structures (an acrylic circular plate and a steel cantilever beam), using a low cost video camera and a desktop computer. The technique can be extended to measurements of three-dimensional deformations and dynamic deformations.

  2. Simultaneous AFM and fluorescence imaging: A method for aligning an AFM-tip with an excitation beam using a 2D galvanometer

    Science.gov (United States)

    Moores, A. N.; Cadby, A. J.

    2018-02-01

    Correlative fluorescence and atomic force microscopy (AFM) imaging is a highly attractive technique for use in biological imaging, enabling force and mechanical measurements of particular structures whose locations are known due to the specificity of fluorescence imaging. The ability to perform these two measurements simultaneously (rather than consecutively with post-processing correlation) is highly valuable because it would allow the mechanical properties of a structure to be tracked over time as changes in the sample occur. We present an instrument which allows simultaneous AFM and fluorescence imaging by aligning an incident fluorescence excitation beam with an AFM-tip. Alignment was performed by calibrating a 2D galvanometer present in the excitation beam path and using it to reposition the incident beam. Two programs were developed (one manual and one automated) which correlate sample features between the AFM and fluorescence images, calculating the distance required to translate the incident beam towards the AFM-tip. Using this method, we were able to obtain beam-tip alignment (and therefore field-of-view alignment) from an offset of >15 μm to within one micron in two iterations of the program. With the program running alongside data acquisition for real-time feedback between AFM and optical images, this offset was maintained over a time period of several hours. Not only does this eliminate the need to image large areas with both techniques to ensure that fields-of-view overlap, but it also raises the possibility of using this instrument for tip-enhanced fluorescence applications, a technique in which super-resolution images have previously been achieved.

  3. The aurora at quite magnetospheric conditions: Repeatability and dipole tilt angle dependence

    International Nuclear Information System (INIS)

    Oznovich, I.; Eastes, R.W.; Huffman, R.E.; Tur, M.; Glaser, I.

    1993-01-01

    Is there a magnetospheric ground state? Do the position and size of the auroral oval depend on the magnetic dipole tilt angle at quiet magnetospheric conditions? In order to address these questions, northern hemisphere images of the aurora at 1356 Angstrom, obtained by Polar BEAR at solar minimum (beginning of 1987), were related to high temporal resolution IPM 8 measurements of the interplanetary magnetic field, to solar wind velocity, and to the ground-based activity index Kp. The first problem was addressed by a two-dimensional correlation study of the repeatability of auroral emissions in corrected geomagnetic space at conditions of minimum energy transfer from the magnetosphere. The correlation measure of auroral images was 0.6-0.85. Error simulations indicate that given the uncertainties in pixel position and intensity, the maximum expected value of the correlation measure is 0.65-0.9. The notion of a ground state magnetosphere is therefore supported by this data. Repeatability was found at the same level regardless of time or reconfigurations of the magnetosphere between images and independent of magnetic time sector. The second problem was addressed by relating latitudinal shifts of the aurora with dipole tilt angle without resorting to auroral boundary specification. This data indicate that the latitude of the continuous aurora is related to the dipole tilt angle at quiet magnetospheric conditions. In the winter hemisphere a 10 degrees increase in the dipole tilt angle causes a 1 degree decrease (increase) in the latitude of auroral emissions at noon (midnight). The magnetic local time distribution of the latitudinal shifts with dipole tilt angle support a simple model in which the dipole tilt angle determines the position of the center of the auroral circle along the magnetic meridian 1320-0120 MLT (for IMF B y positive) and does not affect its radius. 22 refs., 8 figs

  4. Comparison of cerebral microcirculation of alloxan diabetes and healthy mice using laser speckle contrast imaging

    Science.gov (United States)

    Timoshina, Polina A.; Shi, Rui; Zhang, Yang; Zhu, Dan; Semyachkina-Glushkovskaya, Oxana V.; Tuchin, Valery V.; Luo, Qingming

    2015-03-01

    The study of blood microcirculation is one of the most important problems of the medicine. This paper presents results of experimental study of cerebral blood flow microcirculation in mice with alloxan-induced diabetes using Temporal Laser Speckle Imaging (TLSI). Additionally, a direct effect of glucose water solution (concentration 20% and 45%) on blood flow microcirculation was studied. In the research, 20 white laboratory mice weighing 20-30 g were used. The TLSI method allows one to investigate time dependent scattering from the objects with complex dynamics, since it possesses greater temporal resolution. Results show that in brain of animal diabetic group diameter of sagittal vein is increased and the speed of blood flow reduced relative to the control group. Topical application of 20%- or 45%-glucose solutions also causes increase of diameter of blood vessels and slows down blood circulation. The results obtained show that diabetes development causes changes in the cerebral microcirculatory system and TLSI techniques can be effectively used to quantify these alterations.

  5. Applying laser speckle images to skin science: skin lesion differentiation by polarization

    Science.gov (United States)

    Lee, Tim K.; Tchvialeva, Lioudmila; Dhadwal, Gurbir; Sotoodian, Bahman; Kalai, Sunil; Zeng, Haishan; Lui, Harvey; McLean, David I.

    2012-01-01

    Skin cancer is a worldwide health problem. It is the most common cancer in the countries with a large white population; furthermore, the incidence of malignant melanoma, the most dangerous form of skin cancer, has been increasing steadily over the last three decades. There is an urgent need to develop in-vivo, noninvasive diagnostic tools for the disease. This paper attempts to response to the challenge by introducing a simple and fast method based on polarization and laser speckle. The degree of maintaining polarization estimates the fraction of linearly maintaining polarization in the backscattered speckle field. Clinical experiments of 214 skin lesions including malignant melanomas, squamous cell carcinomas, basal cell carcinomas, nevi, and seborrheic keratoses demonstrated that such a parameter can potentially diagnose different skin lesion types. ROC analyses showed that malignant melanoma and seborrheic keratosis could be differentiated by both the blue and red lasers with the area under the curve (AUC) = 0.8 and 0.7, respectively. Also malignant melanoma and squamous cell carcinoma could be separated by the blue laser (AUC = 0.9), while nevus and seborrheic keratosis could be identified using the red laser (AUC = 0.7). These experiments demonstrated that polarization could be a potential in-vivo diagnostic indicator for skin diseases.

  6. Image analysis of speckle patterns as a probe of melting transitions in laser-heated diamond anvil cell experiments.

    Science.gov (United States)

    Salem, Ran; Matityahu, Shlomi; Melchior, Aviva; Nikolaevsky, Mark; Noked, Ori; Sterer, Eran

    2015-09-01

    The precision of melting curve measurements using laser-heated diamond anvil cell (LHDAC) is largely limited by the correct and reliable determination of the onset of melting. We present a novel image analysis of speckle interference patterns in the LHDAC as a way to define quantitative measures which enable an objective determination of the melting transition. Combined with our low-temperature customized IR pyrometer, designed for measurements down to 500 K, our setup allows studying the melting curve of materials with low melting temperatures, with relatively high precision. As an application, the melting curve of Te was measured up to 35 GPa. The results are found to be in good agreement with previous data obtained at pressures up to 10 GPa.

  7. Measurement of eye aberrations in a speckle field

    International Nuclear Information System (INIS)

    Larichev, A V; Ivanov, P V; Iroshnikov, N G; Shmalgauzen, V I

    2001-01-01

    The influence of speckles on the performance of a Shark-Hartmann wavefront sensor is investigated in the eye aberration studies. The dependence of the phase distortion measurement error on the characteristic speckle size is determined experimentally. Scanning of the reference source was used to suppress the speckle structure of the laser beam scattered by the retina. The technique developed by us made it possible to study the time dependence of the human eye aberrations with a resolution of 30 ms. (laser applications and other topics in quantum electronics)

  8. An in vivo analysis of facial muscle change treated with botulinum toxin type A using digital image speckle correlation

    Science.gov (United States)

    Xu, Yan; Palmaccio, Samantha Palmaccio; Bui, Duc; Dagum, Alexander; Rafailovich, Miriam

    Been famous for clinical use from early 1980s, the neuromuscular blocking agent Botulinum toxin type A (BTX-A), has been used to reduce wrinkles for a long time. Only little research has been done to quantify the change of muscle contraction before and after injection and most research paper depend on subjective evaluation from both patients and surgeons. In our research, Digital Image Speckle Correlation (DISC) was employed to study the mechanical properties of skin, contraction mode of muscles (injected) and reaction of neighbor muscle group (un-injected).At the same time, displacement patterns (vector maps)generated by DISC can predict injection locus for surgeons who normally handle it depending only on visual observation.

  9. Speckle reduction for a laser light sectioning sensor

    Directory of Open Access Journals (Sweden)

    Tutsch Rainer

    2015-01-01

    Full Text Available Automated optical inspection is an important test procedure in electronic circuits assembly. Frequently 3d information is required and laser light sectioning sensors are often applied. However, some effects complicate the reliable automatic detection of the shape of such assemblies and their components. The packages of electronic components often are made of black plastics or ceramics so that the intensity available for the optical detection is quite low, especially in comparison to the surface of the PCBs where the components are mounted on. In addition due to rough surfaces of the components and the coherence length of the laser light speckle structures arise. In the work presented here a piezo actuator is used to oscillate the illuminating laser lines along the direction of the lines. The aim is to reduce the visibility of the speckle structures by averaging while maintaining the geometrical shape of the lines. In addition, image processing methods like segmentation and skeletonization are used to allow the detection of the shape of components and assemblies also if materials with distinct differences in the reflectivity are involved. Investigations include the influence of the parameters amplitude and frequency of the piezo actuator.

  10. Statistical spatial properties of speckle patterns generated by multiple laser beams

    International Nuclear Information System (INIS)

    Le Cain, A.; Sajer, J. M.; Riazuelo, G.

    2011-01-01

    This paper investigates hot spot characteristics generated by the superposition of multiple laser beams. First, properties of speckle statistics are studied in the context of only one laser beam by computing the autocorrelation function. The case of multiple laser beams is then considered. In certain conditions, it is shown that speckles have an ellipsoidal shape. Analytical expressions of hot spot radii generated by multiple laser beams are derived and compared to numerical estimates made from the autocorrelation function. They are also compared to numerical simulations performed within the paraxial approximation. Excellent agreement is found for the speckle width as well as for the speckle length. Application to the speckle patterns generated in the Laser MegaJoule configuration in the zone where all the beams overlap is presented. Influence of polarization on the size of the speckles as well as on their abundance is studied.

  11. Texture-based characterization of subskin features by specified laser speckle effects at λ = 650 nm region for more accurate parametric 'skin age' modelling.

    Science.gov (United States)

    Orun, A B; Seker, H; Uslan, V; Goodyer, E; Smith, G

    2017-06-01

    The textural structure of 'skin age'-related subskin components enables us to identify and analyse their unique characteristics, thus making substantial progress towards establishing an accurate skin age model. This is achieved by a two-stage process. First by the application of textural analysis using laser speckle imaging, which is sensitive to textural effects within the λ = 650 nm spectral band region. In the second stage, a Bayesian inference method is used to select attributes from which a predictive model is built. This technique enables us to contrast different skin age models, such as the laser speckle effect against the more widely used normal light (LED) imaging method, whereby it is shown that our laser speckle-based technique yields better results. The method introduced here is non-invasive, low cost and capable of operating in real time; having the potential to compete against high-cost instrumentation such as confocal microscopy or similar imaging devices used for skin age identification purposes. © 2016 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  12. Accurate marker-free alignment with simultaneous geometry determination and reconstruction of tilt series in electron tomography

    International Nuclear Information System (INIS)

    Winkler, Hanspeter; Taylor, Kenneth A.

    2006-01-01

    An image alignment method for electron tomography is presented which is based on cross-correlation techniques and which includes a simultaneous refinement of the tilt geometry. A coarsely aligned tilt series is iteratively refined with a procedure consisting of two steps for each cycle: area matching and subsequent geometry correction. The first step, area matching, brings into register equivalent specimen regions in all images of the tilt series. It determines four parameters of a linear two-dimensional transformation, not just translation and rotation as is done during the preceding coarse alignment with conventional methods. The refinement procedure also differs from earlier methods in that the alignment references are now computed from already aligned images by reprojection of a backprojected volume. The second step, geometry correction, refines the initially inaccurate estimates of the geometrical parameters, including the direction of the tilt axis, a tilt angle offset, and the inclination of the specimen with respect to the support film or specimen holder. The correction values serve as an indicator for the progress of the refinement. For each new iteration, the correction values are used to compute an updated set of geometry parameters by a least squares fit. Model calculations show that it is essential to refine the geometrical parameters as well as the accurate alignment of the images to obtain a faithful map of the original structure

  13. Transjugular Intrahepatic Portosystemic Shunt (TIPS)

    Medline Plus

    Full Text Available ... the TIPS. top of page Additional Information and Resources Society of Interventional Radiology (SIR) - Patient Center This ... here Images × Image Gallery Radiologist and patient consultation. View full size with caption Pediatric Content Some imaging ...

  14. Compound speckles and their statistical and dynamical properties

    DEFF Research Database (Denmark)

    Hanson, Steen Grüner; Jakobsen, Michael Linde; Skov Hansen, Rene

    2008-01-01

    Two issues will be treated in this presentation, both focusing on gaining a deeper understanding of dynamic speckles, aiming at the use for probing dynamical properties of scattering structures. The first issue to be addressed is the dynamics of speckles arising from illuminating a solid surface...

  15. Transjugular Intrahepatic Portosystemic Shunt (TIPS)

    Medline Plus

    Full Text Available ... story about radiology? Share your patient story here Images × Image Gallery Radiologist and patient consultation. View full size ... X-Ray and CT Exams Contrast Materials Venography Images related to Transjugular Intrahepatic Portosystemic Shunt (TIPS) Sponsored ...

  16. Changes in speckle patterns induced by load application onto an optical fiber and its possible application for sensing purpose

    Science.gov (United States)

    Hasegawa, Makoto; Okumura, Jyun-ya; Hyuga, Akio

    2015-08-01

    Speckle patterns to be observed in an output light spot from an optical fiber are known to be changed due to external disturbances applied onto the optical fiber. In order to investigate possibilities of utilizing such changes in speckle patterns for sensing application, a certain load was applied onto a jacket-covered communication-grade multi-mode glass optical fiber through which laser beams emitted from a laser diode were propagating, and observed changes in speckle patterns in the output light spot from the optical fiber were investigated both as image data via a CCD camera and as an output voltage from a photovoltaic panel irradiated with the output light spot. The load was applied via a load application mechanism in which several ridges were provided onto opposite flat plates and a certain number of weights were placed there so that corrugated bending of the optical fiber was intentionally induced via load application due to the ridges. The obtained results showed that the number of speckles in the observed pattern in the output light spot as well as the output voltage from the photovoltaic panel irradiated with the output light spot showed decreases upon load application with relatively satisfactory repeatability. When the load was reduced, i.e., the weights were removed, the number of speckles then showed recovery. These results indicate there is a certain possibility of utilizing changes in speckle patterns for sensing of load application onto the optical fiber.

  17. Polarization-multiplexing ghost imaging

    Science.gov (United States)

    Dongfeng, Shi; Jiamin, Zhang; Jian, Huang; Yingjian, Wang; Kee, Yuan; Kaifa, Cao; Chenbo, Xie; Dong, Liu; Wenyue, Zhu

    2018-03-01

    A novel technique for polarization-multiplexing ghost imaging is proposed to simultaneously obtain multiple polarimetric information by a single detector. Here, polarization-division multiplexing speckles are employed for object illumination. The light reflected from the objects is detected by a single-pixel detector. An iterative reconstruction method is used to restore the fused image containing the different polarimetric information by using the weighted sum of the multiplexed speckles based on the correlation coefficients obtained from the detected intensities. Next, clear images of the different polarimetric information are recovered by demultiplexing the fused image. The results clearly demonstrate that the proposed method is effective.

  18. Digital Image Speckle Correlation for the Quantification of the Cosmetic Treatment with Botulinum Toxin Type A (BTX-A)

    Science.gov (United States)

    Bhatnagar, Divya; Conkling, Nicole; Rafailovich, Miriam; Dagum, Alexander

    2012-02-01

    The skin on the face is directly attached to the underlying muscles. Here, we successfully introduce a non-invasive, non-contact technique, Digital Image Speckle Correlation (DISC), to measure the precise magnitude and duration of facial muscle paralysis inflicted by BTX-A. Subjective evaluation by clinicians and patients fail to objectively quantify the direct effect and duration of BTX-A on the facial musculature. By using DISC, we can (a) Directly measure deformation field of the facial skin and determine the locus of facial muscular tension(b)Quantify and monitor muscular paralysis and subsequent re-innervation following injection; (c) Continuously correlate the appearance of wrinkles and muscular tension. Two sequential photographs of slight facial motion (frowning, raising eyebrows) are taken. DISC processes the images to produce a vector map of muscular displacement from which spatially resolved information is obtained regarding facial tension. DISC can track the ability of different muscle groups to contract and can be used to predict the site of injection, quantify muscle paralysis and the rate of recovery following BOTOX injection.

  19. CFD calculations on the unsteady aerodynamic characteristics of a tilt-rotor in a conversion mode

    Directory of Open Access Journals (Sweden)

    Li Peng

    2015-12-01

    Full Text Available In order to calculate the unsteady aerodynamic characteristics of a tilt-rotor in a conversion mode, a virtual blade model (VBM and an real blade model (RBM are established respectively. A new multi-layer moving-embedded grid technique is proposed to reduce the numerical dissipation of the tilt-rotor wake in a conversion mode. In this method, a grid system generated abound the rotor accounts for rigid blade motions, and a new searching scheme named adaptive inverse map (AIM is established to search corresponding donor elements in the present moving-embedded grid system to translate information among the different computational zones. A dual-time method is employed to fulfill unsteady calculations on the flowfield of the tilt-rotor, and a second-order centered difference scheme considering artificial viscosity is used to calculate the flux. In order to improve the computing efficiency, the single program multiple data (SPMD model parallel acceleration technology is adopted, according to the characteristic of the current grid system. The lift and drag coefficients of an NACA0012 airfoil, the dynamic pressure distributions below a typical rotor plane, and the sectional pressure distributions on a three-bladed Branum–Tung tilt-rotor in hover flight are calculated respectively, and the present VBM and RBM are validated by comparing the calculated results with available experimental data. Then, unsteady aerodynamic forces and flowfields of an XV-15 tilt-rotor in different modes, such as a fixed conversion mode at different tilt angles (15°, 30°, 60° and a whole conversion mode which converses from 0° to 90°, are numerically simulated by the VBM and RBM respectively. By analyses and comparisons on the simulated results of unsteady aerodynamic forces of the tilt-rotor in different modes, some meaningful conclusions about distorted blade-tip vortex distribution and unsteady aerodynamic force variation in a conversion mode are obtained, and these

  20. Applications of polarization speckle in skin cancer detection and monitoring

    Science.gov (United States)

    Lee, Tim K.; Tchvialeva, Lioudmila; Phillips, Jamie; Louie, Daniel C.; Zhao, Jianhua; Wang, Wei; Lui, Harvey; Kalia, Sunil

    2018-01-01

    Polarization speckle is a rapidly developed field. Unlike laser speckle, polarization speckle consists of stochastic interference patterns with spatially random polarizations, amplitudes and phases. We have been working in this exciting research field, developing techniques to generate polarization patterns from skin. We hypothesize that polarization speckle patterns could be used in biomedical applications, especially, for detecting and monitoring skin cancers, the most common neoplasmas for white populations around the world. This paper describes our effort in developing two polarization speckle devices. One of them captures the Stokes parameters So and S1 simultaneously, and another one captures all four Stokes parameters So, S1, S2, and S3 in one-shot, within milliseconds. Hence these two devices could be used in medical clinics and assessed skin conditions in-vivo. In order to validate our hypothesis, we conducted a series of three clinical studies. These are early pilot studies, and the results suggest that the devices have potential to detect and monitor skin cancers.

  1. Statistical model for OCT image denoising

    KAUST Repository

    Li, Muxingzi

    2017-08-01

    Optical coherence tomography (OCT) is a non-invasive technique with a large array of applications in clinical imaging and biological tissue visualization. However, the presence of speckle noise affects the analysis of OCT images and their diagnostic utility. In this article, we introduce a new OCT denoising algorithm. The proposed method is founded on a numerical optimization framework based on maximum-a-posteriori estimate of the noise-free OCT image. It combines a novel speckle noise model, derived from local statistics of empirical spectral domain OCT (SD-OCT) data, with a Huber variant of total variation regularization for edge preservation. The proposed approach exhibits satisfying results in terms of speckle noise reduction as well as edge preservation, at reduced computational cost.

  2. Determining the mechanical properties of rat skin with digital image speckle correlation.

    Science.gov (United States)

    Guan, E; Smilow, Sarah; Rafailovich, Miriam; Sokolov, Jonathan

    2004-01-01

    Accurate measurement of the mechanical properties of skin has numerous implications in surgical repair, dermal disorders and the diagnosis and treatment of trauma to the skin. Investigation of facial wrinkle formation, as well as research in the areas of skin aging and cosmetic product assessment can also benefit from alternative methodologies for the measurement of mechanical properties. A noncontact, noninvasive technique, digital image speckle correlation (DISC), has been successfully introduced to measure the deformation field of a skin sample loaded by a material test machine. With the force information obtained from the loading device, the mechanical properties of the skin, such as Young's modulus, linear limitation and material strength, can be calculated using elastic or viscoelastic theory. The DISC method was used to measure the deformation of neonatal rat skin, with and without a glycerin-fruit-oil-based cream under uniaxial tension. Deformation to failure procedure of newborn rat skin was recorded and analyzed. Single skin layer failures were observed and located by finding the strain concentration. Young's moduli of freshly excised rat skin, cream-processed rat skin and unprocessed rat skin, 24 h after excision, were found with tensile tests to be 1.6, 1.4 and 0.7 MPa, respectively. Our results have shown that DISC provides a novel technique for numerous applications in dermatology and reconstructive surgeries. Copyright 2004 S. Karger AG, Basel

  3. Dynamical speckles in watery surfaces

    International Nuclear Information System (INIS)

    Llovera-Gonzalez, J.J.; Moreno-Yeras, A.; Garcia-Diaz, M.; Alvarez-Salgado, Y.

    2009-01-01

    Recovery of watery surfaces with monolayer of surfactant substances is of interest in diverse technological applications. The format ion and study of molecular monolayer deposited in these surfaces require the application of measurements techniques that allow evaluating the recovery grade locally without modifying practically the studied surface. In this paper the preliminary results obtained by the authors it plows exposed applying the technique of dynamic speckle interferometry in watery surfaces and their consideration like to possible resource to measure the grade of local recovery of these surfaces on the it bases that the speckles pattern dog reveal the dynamics of evaporation that takes place in the same ones. (Author)

  4. A new alignment procedure for the South African Astronomical Observatory's 74-inch telescope

    Science.gov (United States)

    Crause, Lisa A.; Booth, John A.; Doss, David; Loubser, Egan; O'Connor, James E.; Sass, Craig; Sickafoose, Amanda A.; Worters, Hannah L.

    2016-07-01

    Considerable effort has gone into improving the performance and reliability of the SAAO's 74-inch telescope. This included replacing the telescope encoders, refining the pointing model and increasing the telescope throughput. The latter involved re-aluminising the primary and formulating a procedure to ensure optimal alignment of the telescope mirrors. To this end, we developed the necessary hardware and techniques to ensure that such alignment is achieved and maintained, particularly following re-aluminising of the mirrors. In essence, the procedure involves: placing a Taylor Hobson Alignment Telescope on the mechanical rotation axis of the 74-inch (which we define to be the optical axis, since the Cassegrain instruments attach to the associated turntable), then adjusting the tip/tilt of the secondary mirror to get it onto that axis and, lastly, adjusting the tip/tilt of the primary mirror to eliminate coma. An eyepiece (or wavefront camera) is installed at the Cassegrain port for this final step since comatic star images indicate the need to tip/tilt the primary mirror to align it to the secondary. Tuning out any brightness gradients seen in an out-of-focus image of a bright star may also be used for feedback when adjusting the tip/tilt of the primary mirror to null coma.

  5. Quantization analysis of speckle intensity measurements for phase retrieval

    DEFF Research Database (Denmark)

    Maallo, Anne Margarette S.; Almoro, Percival F.; Hanson, Steen Grüner

    2010-01-01

    Speckle intensity measurements utilized for phase retrieval (PR) are sequentially taken with a digital camera, which introduces quantization error that diminishes the signal quality. Influences of quantization on the speckle intensity distribution and PR are investigated numerically...... and experimentally in the static wavefront sensing setup. Resultsshowthat 3 to 4 bits are adequate to represent the speckle intensities and yield acceptable reconstructions at relatively fast convergence rates. Computer memory requirements may be eased down by 2.4 times if a 4 bit instead of an 8 bit camera is used...

  6. The asymmetric facial skin perfusion distribution of Bell's palsy discovered by laser speckle imaging technology.

    Science.gov (United States)

    Cui, Han; Chen, Yi; Zhong, Weizheng; Yu, Haibo; Li, Zhifeng; He, Yuhai; Yu, Wenlong; Jin, Lei

    2016-01-01

    Bell's palsy is a kind of peripheral neural disease that cause abrupt onset of unilateral facial weakness. In the pathologic study, it was evidenced that ischemia of facial nerve at the affected side of face existed in Bell's palsy patients. Since the direction of facial nerve blood flow is primarily proximal to distal, facial skin microcirculation would also be affected after the onset of Bell's palsy. Therefore, monitoring the full area of facial skin microcirculation would help to identify the condition of Bell's palsy patients. In this study, a non-invasive, real time and full field imaging technology - laser speckle imaging (LSI) technology was applied for measuring facial skin blood perfusion distribution of Bell's palsy patients. 85 participants with different stage of Bell's palsy were included. Results showed that Bell's palsy patients' facial skin perfusion of affected side was lower than that of the normal side at the region of eyelid, and that the asymmetric distribution of the facial skin perfusion between two sides of eyelid is positively related to the stage of the disease (P Bell's palsy patients, and we discovered that the facial skin blood perfusion could reflect the stage of Bell's palsy, which suggested that microcirculation should be investigated in patients with this neurological deficit. It was also suggested LSI as potential diagnostic tool for Bell's palsy.

  7. Estimation of individual response in finger blood concentration change under occlusion on human arm using speckle patterns

    Science.gov (United States)

    Yokoi, Naomichi; Shinohara, Tomomi; Okazaki, Syunya; Funamizu, Hideki; Kyoso, Masaki; Shimatani, Yuichi; Yuasa, Tomonori; Aizu, Yoshihisa

    2017-07-01

    We have developed the method for imaging blood flow and blood concentration change by using laser speckle in fiber illumination. We experimentally discuss the relationship of blood occlusion condition and individual response of blood concentration change measured by the method.

  8. Leading tip drives soma translocation via forward F-actin flow during neuronal migration.

    Science.gov (United States)

    He, Min; Zhang, Zheng-hong; Guan, Chen-bing; Xia, Di; Yuan, Xiao-bing

    2010-08-11

    Neuronal migration involves coordinated extension of the leading process and translocation of the soma, but the relative contribution of different subcellular regions, including the leading process and cell rear, in driving soma translocation remains unclear. By local manipulation of cytoskeletal components in restricted regions of cultured neurons, we examined the molecular machinery underlying the generation of traction force for soma translocation during neuronal migration. In actively migrating cerebellar granule cells in culture, a growth cone (GC)-like structure at the leading tip exhibits high dynamics, and severing the tip or disrupting its dynamics suppressed soma translocation within minutes. Soma translocation was also suppressed by local disruption of F-actin along the leading process but not at the soma, whereas disrupting microtubules along the leading process or at the soma accelerated soma translocation. Fluorescent speckle microscopy using GFP-alpha-actinin showed that a forward F-actin flow along the leading process correlated with and was required for soma translocation, and such F-actin flow depended on myosin II activity. In migrating neurons, myosin II activity was high at the leading tip but low at the soma, and increasing or decreasing this front-to-rear difference accelerated or impeded soma advance. Thus, the tip of the leading process actively pulls the soma forward during neuronal migration through a myosin II-dependent forward F-actin flow along the leading process.

  9. Speckle reduction in echocardiography by temporal compounding and anisotropic diffusion filtering

    Science.gov (United States)

    Giraldo-Guzmán, Jader; Porto-Solano, Oscar; Cadena-Bonfanti, Alberto; Contreras-Ortiz, Sonia H.

    2015-01-01

    Echocardiography is a medical imaging technique based on ultrasound signals that is used to evaluate heart anatomy and physiology. Echocardiographic images are affected by speckle, a type of multiplicative noise that obscures details of the structures, and reduces the overall image quality. This paper shows an approach to enhance echocardiography using two processing techniques: temporal compounding and anisotropic diffusion filtering. We used twenty echocardiographic videos that include one or three cardiac cycles to test the algorithms. Two images from each cycle were aligned in space and averaged to obtain the compound images. These images were then processed using anisotropic diffusion filters to further improve their quality. Resultant images were evaluated using quality metrics and visual assessment by two medical doctors. The average total improvement on signal-to-noise ratio was up to 100.29% for videos with three cycles, and up to 32.57% for videos with one cycle.

  10. Non invasive blood flow assessment in diabetic foot ulcer using laser speckle contrast imaging technique

    Science.gov (United States)

    Jayanthy, A. K.; Sujatha, N.; Reddy, M. Ramasubba; Narayanamoorthy, V. B.

    2014-03-01

    Measuring microcirculatory tissue blood perfusion is of interest for both clinicians and researchers in a wide range of applications and can provide essential information of the progress of treatment of certain diseases which causes either an increased or decreased blood flow. Diabetic ulcer associated with alterations in tissue blood flow is the most common cause of non-traumatic lower extremity amputations. A technique which can detect the onset of ulcer and provide essential information on the progress of the treatment of ulcer would be of great help to the clinicians. A noninvasive, noncontact and whole field laser speckle contrast imaging (LSCI) technique has been described in this paper which is used to assess the changes in blood flow in diabetic ulcer affected areas of the foot. The blood flow assessment at the wound site can provide critical information on the efficiency and progress of the treatment given to the diabetic ulcer subjects. The technique may also potentially fulfill a significant need in diabetic foot ulcer screening and management.

  11. Simultaneous acquisition of 3D shape and deformation by combination of interferometric and correlation-based laser speckle metrology.

    Science.gov (United States)

    Dekiff, Markus; Berssenbrügge, Philipp; Kemper, Björn; Denz, Cornelia; Dirksen, Dieter

    2015-12-01

    A metrology system combining three laser speckle measurement techniques for simultaneous determination of 3D shape and micro- and macroscopic deformations is presented. While microscopic deformations are determined by a combination of Digital Holographic Interferometry (DHI) and Digital Speckle Photography (DSP), macroscopic 3D shape, position and deformation are retrieved by photogrammetry based on digital image correlation of a projected laser speckle pattern. The photogrammetrically obtained data extend the measurement range of the DHI-DSP system and also increase the accuracy of the calculation of the sensitivity vector. Furthermore, a precise assignment of microscopic displacements to the object's macroscopic shape for enhanced visualization is achieved. The approach allows for fast measurements with a simple setup. Key parameters of the system are optimized, and its precision and measurement range are demonstrated. As application examples, the deformation of a mandible model and the shrinkage of dental impression material are measured.

  12. z calibration of the atomic force microscope by means of a pyramidal tip

    DEFF Research Database (Denmark)

    Jensen, Flemming

    1993-01-01

    A new method for imaging the probe tip of an atomic force microscope cantilever by the atomic force microscope itself (self-imaging) is presented. The self-imaging is accomplished by scanning the probe tip across a sharper tip on the surface. By using a pyramidal probe tip with a very well......-defined aspect ratio, this technique provides an excellent z-calibration standard for the atomic force microscope....

  13. Multimode waveguide speckle patterns for compressive sensing.

    Science.gov (United States)

    Valley, George C; Sefler, George A; Justin Shaw, T

    2016-06-01

    Compressive sensing (CS) of sparse gigahertz-band RF signals using microwave photonics may achieve better performances with smaller size, weight, and power than electronic CS or conventional Nyquist rate sampling. The critical element in a CS system is the device that produces the CS measurement matrix (MM). We show that passive speckle patterns in multimode waveguides potentially provide excellent MMs for CS. We measure and calculate the MM for a multimode fiber and perform simulations using this MM in a CS system. We show that the speckle MM exhibits the sharp phase transition and coherence properties needed for CS and that these properties are similar to those of a sub-Gaussian MM with the same mean and standard deviation. We calculate the MM for a multimode planar waveguide and find dimensions of the planar guide that give a speckle MM with a performance similar to that of the multimode fiber. The CS simulations show that all measured and calculated speckle MMs exhibit a robust performance with equal amplitude signals that are sparse in time, in frequency, and in wavelets (Haar wavelet transform). The planar waveguide results indicate a path to a microwave photonic integrated circuit for measuring sparse gigahertz-band RF signals using CS.

  14. Influence of the State of the Tungsten Tip on STM Topographic Images of SnSe Surfaces

    Science.gov (United States)

    Ly, Trinh Thi; Kim, Jungdae

    2018-03-01

    Tin selenide (SnSe) has recently attracted significant attention because of its excellent thermoelectric properties with a figure of merit (ZT) of 2.6. Previous scanning tunneling microscopy (STM) studies of SnSe surfaces showed that only Sn atoms are resolved in topographic images due to the dominant contribution of the Sn 5 p z states in tunneling. However, when the state of the tungsten (W) tip changes from a typical four-lobe d state such as d xy or {d_{{x^2} - {y^2}}} to a two-lobe {d_{{z^2}}} state, the atomic features observed on the SnSe surface in STM topography can be dramatically altered. In this report, we present the results of a systematic study on the influence of the W tip's states on the STM images of SnSe surfaces. Sn atoms are observed with much stronger corrugation amplitude and smaller apparent radius when the tip is in a {d_{{z^2}}} state. In addition, the atomic features of the Se atoms become visible because of the sharply focused shape of the W {d_{{z^2}}} state. We expect our results to provide important information for establishing a better understanding of the microscopic nature of SnSe surfaces.

  15. Tilt angles and positive response of head-up tilt test in children with orthostatic intolerance.

    Science.gov (United States)

    Lin, Jing; Wang, Yuli; Ochs, Todd; Tang, Chaoshu; Du, Junbao; Jin, Hongfang

    2015-01-01

    This study aimed at examining three tilt angle-based positive responses and the time to positive response in a head-up tilt test for children with orthostatic intolerance, and the psychological fear experienced at the three angles during head-up tilt test. A total of 174 children, including 76 boys and 98 girls, aged from 4 to 18 years old (mean 11.3±2.8 years old), with unexplained syncope, were randomly divided into three groups, to undergo head-up tilt test at the angles of 60°, 70° and 80°, respectively. The diagnostic rates and times were analysed, and Wong-Baker face pain rating scale was used to access the children's psychological fear. There were no significant differences in diagnostic rates of postural orthostatic tachycardia syndrome and vasovagal syncope at different tilt angles during the head-up tilt test (p>0.05). There was a significant difference, however, in the psychological fear at different tilt angles utilising the Kruskal-Wallis test (χ2=36.398, ptest (ptest for vasovagal syncope or for postural orthostatic tachycardia syndrome. Hence, it is suggested that a tilt angle of 60° and head-up tilt test time of 45 minutes should be suitable for children with vasovagal syncope.

  16. Statistics of polarization speckle: theory versus experiment

    DEFF Research Database (Denmark)

    Wang, Wei; Hanson, Steen Grüner; Takeda, Mitsuo

    2010-01-01

    In this paper, we reviewed our recent work on the statistical properties of polarization speckle, described by stochastic Stokes parameters fluctuating in space. Based on the Gaussian assumption for the random electric field components and polar-interferometer, we investigated theoretically...... and experimentally the statistics of Stokes parameters of polarization speckle, including probability density function of Stokes parameters with the spatial degree of polarization, autocorrelation of Stokes vector and statistics of spatial derivatives for Stokes parameters....

  17. In situ scanning tunneling microscope tip treatment device for spin polarization imaging

    Science.gov (United States)

    Li, An-Ping [Oak Ridge, TN; Jianxing, Ma [Oak Ridge, TN; Shen, Jian [Knoxville, TN

    2008-04-22

    A tip treatment device for use in an ultrahigh vacuum in situ scanning tunneling microscope (STM). The device provides spin polarization functionality to new or existing variable temperature STM systems. The tip treatment device readily converts a conventional STM to a spin-polarized tip, and thereby converts a standard STM system into a spin-polarized STM system. The tip treatment device also has functions of tip cleaning and tip flashing a STM tip to high temperature (>2000.degree. C.) in an extremely localized fashion. Tip coating functions can also be carried out, providing the tip sharp end with monolayers of coating materials including magnetic films. The device is also fully compatible with ultrahigh vacuum sample transfer setups.

  18. An Online Tilt Estimation and Compensation Algorithm for a Small Satellite Camera

    Science.gov (United States)

    Lee, Da-Hyun; Hwang, Jai-hyuk

    2018-04-01

    In the case of a satellite camera designed to execute an Earth observation mission, even after a pre-launch precision alignment process has been carried out, misalignment will occur due to external factors during the launch and in the operating environment. In particular, for high-resolution satellite cameras, which require submicron accuracy for alignment between optical components, misalignment is a major cause of image quality degradation. To compensate for this, most high-resolution satellite cameras undergo a precise realignment process called refocusing before and during the operation process. However, conventional Earth observation satellites only execute refocusing upon de-space. Thus, in this paper, an online tilt estimation and compensation algorithm that can be utilized after de-space correction is executed. Although the sensitivity of the optical performance degradation due to the misalignment is highest in de-space, the MTF can be additionally increased by correcting tilt after refocusing. The algorithm proposed in this research can be used to estimate the amount of tilt that occurs by taking star images, and it can also be used to carry out automatic tilt corrections by employing a compensation mechanism that gives angular motion to the secondary mirror. Crucially, this algorithm is developed using an online processing system so that it can operate without communication with the ground.

  19. Preparation of scanning tunneling microscopy tips using pulsed alternating current etching

    International Nuclear Information System (INIS)

    Valencia, Victor A.; Thaker, Avesh A.; Derouin, Jonathan; Valencia, Damian N.; Farber, Rachael G.; Gebel, Dana A.; Killelea, Daniel R.

    2015-01-01

    An electrochemical method using pulsed alternating current etching (PACE) to produce atomically sharp scanning tunneling microscopy (STM) tips is presented. An Arduino Uno microcontroller was used to control the number and duration of the alternating current (AC) pulses, allowing for ready optimization of the procedures for both Pt:Ir and W tips using a single apparatus. W tips prepared using constant and pulsed AC power were compared. Tips fashioned using PACE were sharper than those etched with continuous AC power alone. Pt:Ir tips were prepared with an initial coarse etching stage using continuous AC power followed by fine etching using PACE. The number and potential of the finishing AC pulses was varied and scanning electron microscope imaging was used to compare the results. Finally, tip quality using the optimized procedures was verified by UHV-STM imaging. With PACE, at least 70% of the W tips and 80% of the Pt:Ir tips were of sufficiently high quality to obtain atomically resolved images of HOPG or Ni(111)

  20. Preparation of scanning tunneling microscopy tips using pulsed alternating current etching

    Energy Technology Data Exchange (ETDEWEB)

    Valencia, Victor A.; Thaker, Avesh A.; Derouin, Jonathan; Valencia, Damian N.; Farber, Rachael G.; Gebel, Dana A.; Killelea, Daniel R., E-mail: dkillelea@luc.edu [Department of Chemistry and Biochemistry, Loyola University Chicago, 1068 W. Sheridan Rd., Chicago, Illinois 60660 (United States)

    2015-03-15

    An electrochemical method using pulsed alternating current etching (PACE) to produce atomically sharp scanning tunneling microscopy (STM) tips is presented. An Arduino Uno microcontroller was used to control the number and duration of the alternating current (AC) pulses, allowing for ready optimization of the procedures for both Pt:Ir and W tips using a single apparatus. W tips prepared using constant and pulsed AC power were compared. Tips fashioned using PACE were sharper than those etched with continuous AC power alone. Pt:Ir tips were prepared with an initial coarse etching stage using continuous AC power followed by fine etching using PACE. The number and potential of the finishing AC pulses was varied and scanning electron microscope imaging was used to compare the results. Finally, tip quality using the optimized procedures was verified by UHV-STM imaging. With PACE, at least 70% of the W tips and 80% of the Pt:Ir tips were of sufficiently high quality to obtain atomically resolved images of HOPG or Ni(111)

  1. A transversely isotropic medium with a tilted symmetry axis normal to the reflector

    KAUST Repository

    Alkhalifah, Tariq Ali

    2010-05-01

    The computational tools for imaging in transversely isotropic media with tilted axes of symmetry (TTI) are complex and in most cases do not have an explicit closed-form representation. Developing such tools for a TTI medium with tilt constrained to be normal to the reflector dip (DTI) reduces their complexity and allows for closed-form representations. The homogeneous-case zero-offset migration in such a medium can be performed using an isotropic operator scaled by the velocity of the medium in the tilt direction. For the nonzero-offset case, the reflection angle is always equal to the incidence angle, and thus, the velocities for the source and receiver waves at the reflection point are equal and explicitly dependent on the reflection angle. This fact allows for the development of explicit representations for angle decomposition as well as moveout formulas for analysis of extended images obtained by wave-equation migration. Although setting the tilt normal to the reflector dip may not be valid everywhere (i.e., on salt flanks), it can be used in the process of velocity model building, in which such constrains are useful and typically are used. © 2010 Society of Exploration Geophysicists.

  2. A transversely isotropic medium with a tilted symmetry axis normal to the reflector

    KAUST Repository

    Alkhalifah, Tariq Ali; Sava, Paul C.

    2010-01-01

    The computational tools for imaging in transversely isotropic media with tilted axes of symmetry (TTI) are complex and in most cases do not have an explicit closed-form representation. Developing such tools for a TTI medium with tilt constrained to be normal to the reflector dip (DTI) reduces their complexity and allows for closed-form representations. The homogeneous-case zero-offset migration in such a medium can be performed using an isotropic operator scaled by the velocity of the medium in the tilt direction. For the nonzero-offset case, the reflection angle is always equal to the incidence angle, and thus, the velocities for the source and receiver waves at the reflection point are equal and explicitly dependent on the reflection angle. This fact allows for the development of explicit representations for angle decomposition as well as moveout formulas for analysis of extended images obtained by wave-equation migration. Although setting the tilt normal to the reflector dip may not be valid everywhere (i.e., on salt flanks), it can be used in the process of velocity model building, in which such constrains are useful and typically are used. © 2010 Society of Exploration Geophysicists.

  3. Tip-Loading, Force-Dependent Tunneling Behavior in Alkanethiol Self-Assembled Monolayers Studied Through Conducting Atomic Force Microscopy

    International Nuclear Information System (INIS)

    Lee, Min Hyung; Song, Hyun Wook

    2013-01-01

    The force-dependent tunneling transport in metal/alkanethiol/metal junctions was examined using CAFM. Tunneling current and current density through alkanethiol SAMs increased with increasing tip-loading force in CAFM, which suggests that a potential change in geometry of the molecules under the tip loads influences the transport properties of alkanethiol SAMs. Enhanced intermolecular tunneling transport in the tilted molecular configuration under tip-loading effect is likely responsible for such an increase in tunneling current density. We also demonstrated that through-bond tunneling is a more efficient pathway in alkanethiol SAMs than are intermolecular chain-to-chain pathways, by demonstrating a dependence of current density on the associated tunneling distances. We report a tip-loading, force-dependent tunneling behavior in alkanethiol SAMs using CAFM. A variable tip-loading force applies to alkanethiol SAMs with a standard AFM feedback, and current(I)-voltage(V) characteristics are simultaneously measured while varying the loading forces. In particular, we observe how a tip-loading force in CAFM influences the transport properties of alkanethiol SAMs

  4. Spatial filtering velocimetry of objective speckles for measuring out-of-plane motion

    DEFF Research Database (Denmark)

    Jakobsen, Michael Linde; Yura, H. T.; Hanson, Steen Grüner

    2012-01-01

    This paper analyzes the dynamics of objective laser speckles as the distance between the object and the observation plane continuously changes. With the purpose of applying optical spatial filtering velocimetry to the speckle dynamics, in order to measure out-of-plane motion in real time......, a rotational symmetric spatial filter is designed. The spatial filter converts the speckle dynamics into a photocurrent with a quasi-sinusoidal response to the out-of-plane motion. The spatial filter is here emulated with a CCD camera, and is tested on speckles arising from a real application. The analysis...

  5. Maintaining Low Voiding Solder Die Attach for Power Die While Minimizing Die Tilt

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, Randy; Peterson, Kenneth A.

    2015-10-01

    This paper addresses work to minimize voiding and die tilt in solder attachment of a large power die, measuring 9.0 mm X 6.5 mm X 0.1 mm (0.354” x 0.256” x 0.004”), to a heat spreader. As demands for larger high power die continue, minimizing voiding and die tilt is of interest for improved die functionality, yield, manufacturability, and reliability. High-power die generate considerable heat, which is important to dissipate effectively through control of voiding under high thermal load areas of the die while maintaining a consistent bondline (minimizing die tilt). Voiding was measured using acoustic imaging and die tilt was measured using two different optical measurement systems. 80Au-20Sn solder reflow was achieved using a batch vacuum solder system with optimized fixturing. Minimizing die tilt proved to be the more difficult of the two product requirements to meet. Process development variables included tooling, weight and solder preform thickness.

  6. Retinal Nerve Fiber Layer Protrusion Associated with Tilted Optic Discs.

    Science.gov (United States)

    Chiang, Jaclyn; Yapp, Michael; Ly, Angelica; Hennessy, Michael P; Kalloniatis, Michael; Zangerl, Barbara

    2018-03-01

    This study resulted in the identification of an optic nerve head (ONH) feature associated with tilted optic discs, which might potentially contribute to ONH pathologies. Knowledge of such findings will enhance clinical insights and drive future opportunities to understand disease processes related to tilted optic discs. The aim of this study was to identify novel retinal nerve fiber layer (RNFL) anomalies by evaluating tilted optic discs using optical coherence tomography. An observed retinal nerve fiber protrusion was further investigated for association with other morphological or functional parameters. A retrospective review of 400 randomly selected adult patients with ONH examinations was conducted in a referral-only, diagnostic imaging center. After excluding other ONH pathologies, 215 patients were enrolled and evaluated for optic disc tilt and/or torsion. Gross anatomical ONH features, including size and rim or parapapillary region elevation, were assessed with stereoscopic fundus photography. Optical coherence tomography provided detailed morphological information of individual retinal layers. Statistical analysis was applied to identify significant changes between individual patient cohorts. A dome-shaped hyperreflective RNFL bulge, protruding into the neurosensory retina at the optic disc margins, was identified in 17 eyes with tilted optic discs. Available follow-up data were inconclusive regarding natural changes with this ONH feature. This RNFL herniation was significantly correlated with smaller than average optic disc size (P = .005), congenital disc tilt (P optic discs, which has not previously been assessed as an independent ONH structure. The feature is predominantly related to congenital crowded, small optic discs and variable between patients. This study is an important first step to elucidate diagnostic capabilities of tilted disc morphological changes and understanding associated functional deficits.

  7. 3D pressure imaging of an aircraft propeller blade-tip flow by phase-locked stereoscopic PIV

    NARCIS (Netherlands)

    Ragni, D.; Van Oudheusden, B.W.; Scarano, F.

    2011-01-01

    The flow field at the tip region of a scaled DHC Beaver aircraft propeller, running at transonic speed, has been investigated by means of a multi-plane stereoscopic particle image velocimetry setup. Velocity fields, phase-locked with the blade rotational motion, are acquired across several planes

  8. CO tip functionalization in subatomic resolution atomic force microscopy

    International Nuclear Information System (INIS)

    Kim, Minjung; Chelikowsky, James R.

    2015-01-01

    Noncontact atomic force microscopy (nc-AFM) employing a CO-functionalized tip displays dramatically enhanced resolution wherein covalent bonds of polycyclic aromatic hydrocarbon can be imaged. Employing real-space pseudopotential first-principles calculations, we examine the role of CO in functionalizing the nc-AFM tip. Our calculations allow us to simulate full AFM images and ascertain the enhancement mechanism of the CO molecule. We consider two approaches: one with an explicit inclusion of the CO molecule and one without. By comparing our simulations to existing experimental images, we ascribe the enhanced resolution of the CO functionalized tip to the special orbital characteristics of the CO molecule

  9. Bas-relief map using texture analysis with application to live enhancement of ultrasound images.

    Science.gov (United States)

    Du, Huarui; Ma, Rui; Wang, Xiaoying; Zhang, Jue; Fang, Jing

    2015-05-01

    For ultrasound imaging, speckle is one of the most important factors in the degradation of contrast resolution because it masks meaningful texture and has the potential to interfere with diagnosis. It is expected that researchers would explore appropriate ways to reduce the speckle noise, to find the edges of structures and enhance weak borders between different organs in ultrasound imaging. Inspired by the principle of differential interference contrast microscopy, a "bas-relief map" is proposed that depicts the texture structure of ultrasound images. Based on a bas-relief map, an adaptive bas-relief filter was developed for ultrafast despeckling. Subsequently, an edge map was introduced to enhance the edges of images in real time. The holistic bas-relief map approach has been used experimentally with synthetic phantoms and digital ultrasound B-scan images of liver, kidney and gallbladder. Based on the visual inspection and the performance metrics of the despeckled images, it was found that the bas-relief map approach is capable of effectively reducing the speckle while significantly enhancing contrast and tissue boundaries for ultrasonic images, and its speckle reduction ability is comparable to that of Kuan, Lee and Frost filters. Meanwhile, the proposed technique could preserve more intra-region details compared with the popular speckle reducing anisotropic diffusion technique and more effectively enhance edges. In addition, the adaptive bas-relief filter was much less time consuming than the Kuan, Lee and Frost filter and speckle reducing anisotropic diffusion techniques. The bas-relief map strategy is effective for speckle reduction and live enhancement of ultrasound images, and can provide a valuable tool for clinical diagnosis. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  10. Variable-temperature independently driven four-tip scanning tunneling microscope

    International Nuclear Information System (INIS)

    Hobara, Rei; Nagamura, Naoka; Hasegawa, Shuji; Matsuda, Iwao; Yamamoto, Yuko; Miyatake, Yutaka; Nagamura, Toshihiko

    2007-01-01

    The authors have developed an ultrahigh vacuum (UHV) variable-temperature four-tip scanning tunneling microscope (STM), operating from room temperature down to 7 K, combined with a scanning electron microscope (SEM). Four STM tips are mechanically and electrically independent and capable of positioning in arbitrary configurations in nanometer precision. An integrated controller system for both of the multitip STM and SEM with a single computer has also been developed, which enables the four tips to operate either for STM imaging independently and for four-point probe (4PP) conductivity measurements cooperatively. Atomic-resolution STM images of graphite were obtained simultaneously by the four tips. Conductivity measurements by 4PP method were also performed at various temperatures with the four tips in square arrangement with direct contact to the sample surface

  11. Speckle reduction process based on digital filtering and wavelet compounding in optical coherence tomography for dermatology

    Science.gov (United States)

    Gómez Valverde, Juan J.; Ortuño, Juan E.; Guerra, Pedro; Hermann, Boris; Zabihian, Behrooz; Rubio-Guivernau, José L.; Santos, Andrés.; Drexler, Wolfgang; Ledesma-Carbayo, Maria J.

    2015-07-01

    Optical Coherence Tomography (OCT) has shown a great potential as a complementary imaging tool in the diagnosis of skin diseases. Speckle noise is the most prominent artifact present in OCT images and could limit the interpretation and detection capabilities. In this work we propose a new speckle reduction process and compare it with various denoising filters with high edge-preserving potential, using several sets of dermatological OCT B-scans. To validate the performance we used a custom-designed spectral domain OCT and two different data set groups. The first group consisted in five datasets of a single B-scan captured N times (with N<20), the second were five 3D volumes of 25 Bscans. As quality metrics we used signal to noise (SNR), contrast to noise (CNR) and equivalent number of looks (ENL) ratios. Our results show that a process based on a combination of a 2D enhanced sigma digital filter and a wavelet compounding method achieves the best results in terms of the improvement of the quality metrics. In the first group of individual B-scans we achieved improvements in SNR, CNR and ENL of 16.87 dB, 2.19 and 328 respectively; for the 3D volume datasets the improvements were 15.65 dB, 3.44 and 1148. Our results suggest that the proposed enhancement process may significantly reduce speckle, increasing SNR, CNR and ENL and reducing the number of extra acquisitions of the same frame.

  12. Enhanced deterministic phase retrieval using a partially developed speckle field

    DEFF Research Database (Denmark)

    Almoro, Percival F.; Waller, Laura; Agour, Mostafa

    2012-01-01

    A technique for enhanced deterministic phase retrieval using a partially developed speckle field (PDSF) and a spatial light modulator (SLM) is demonstrated experimentally. A smooth test wavefront impinges on a phase diffuser, forming a PDSF that is directed to a 4f setup. Two defocused speckle...... intensity measurements are recorded at the output plane corresponding to axially-propagated representations of the PDSF in the input plane. The speckle intensity measurements are then used in a conventional transport of intensity equation (TIE) to reconstruct directly the test wavefront. The PDSF in our...

  13. Speckle Noise Reduction via Nonconvex High Total Variation Approach

    Directory of Open Access Journals (Sweden)

    Yulian Wu

    2015-01-01

    Full Text Available We address the problem of speckle noise removal. The classical total variation is extensively used in this field to solve such problem, but this method suffers from the staircase-like artifacts and the loss of image details. In order to resolve these problems, a nonconvex total generalized variation (TGV regularization is used to preserve both edges and details of the images. The TGV regularization which is able to remove the staircase effect has strong theoretical guarantee by means of its high order smooth feature. Our method combines the merits of both the TGV method and the nonconvex variational method and avoids their main drawbacks. Furthermore, we develop an efficient algorithm for solving the nonconvex TGV-based optimization problem. We experimentally demonstrate the excellent performance of the technique, both visually and quantitatively.

  14. An intelligent despeckling method for swept source optical coherence tomography images of skin

    Science.gov (United States)

    Adabi, Saba; Mohebbikarkhoran, Hamed; Mehregan, Darius; Conforto, Silvia; Nasiriavanaki, Mohammadreza

    2017-03-01

    Optical Coherence Optical coherence tomography is a powerful high-resolution imaging method with a broad biomedical application. Nonetheless, OCT images suffer from a multiplicative artefacts so-called speckle, a result of coherent imaging of system. Digital filters become ubiquitous means for speckle reduction. Addressing the fact that there still a room for despeckling in OCT, we proposed an intelligent speckle reduction framework based on OCT tissue morphological, textural and optical features that through a trained network selects the winner filter in which adaptively suppress the speckle noise while preserve structural information of OCT signal. These parameters are calculated for different steps of the procedure to be used in designed Artificial Neural Network decider that select the best denoising technique for each segment of the image. Results of training shows the dominant filter is BM3D from the last category.

  15. The Magnetic Nanoparticle Movement in Magnetic Fluid Characterized by the Laser Dynamic Speckle Interferometry

    Directory of Open Access Journals (Sweden)

    Xijun Wang

    2014-01-01

    Full Text Available A dual scanning laser speckle interferometry experiment was designed to observe the dynamic behavior of the magnetic fluid actuated by a magnetic field. In order to improve the spatial resolution of the dynamic speckle measurement, the phase delay scanning was used to compensate the additional phase variation which was caused by the transverse scanning. The correlation coefficients corresponding to the temporal dynamic speckle patterns within the same time interval scattering from the nanoparticles were calculated in the experiment on nanoscale magnetic clusters. In the experiment, the speckle of the magnetic nanoparticle fluid movement has been recorded by the lens unmounted CCD within the interferometry strips, although the speckle led to the distinguished annihilation of the light coherence. The results have showed that the nanoparticle fluid dynamic properties appeared synergistically in the fringe speckles. The analyses of the nanoparticle's relative speed and the speckle pattern moving amount in the fringes have proved the nanoparticle’s movement in a laminar flow in the experiment.

  16. [Assessment of left ventricular twist in type 2 diabetes mellitus by using two-dimensional ultrasound speckle tracking imaging].

    Science.gov (United States)

    Zhu, Pei-hua; Huang, Jing-yuan; Ye, Meng; Zheng, Zhe-lan

    2014-09-01

    To evaluate the left ventricular twist characteristics in patients with type 2 diabetes by using two-dimensional speckle tracking imaging (STI). Ninety-three patients with type 2 diabetes admitted in Zhejiang Hospital from May 2012 to September 2013 were enrolled. According to left ventricular ejection fraction (LVEF), patients were divided into two groups: normal left ventricular systolic function group (group A, LVEF≥0.50, n=46) and abnormal left ventricular systolic function group (group B, LVEF Consistency check for STI was conducted to assess its stability and reliability. The Peaktw, AVCtw, and MVOtw in group A were significantly elevated than those in normal controls (Pconsistency limit=-2.8-2.7; within measurer: R=0.964, bias=-0.2, 95% consistency limits=-2.7-2.2). STI can be used for early recognition of abnormal changes of cardiac function in type 2 diabetic mellitus patients, with high stability and reliability.

  17. Speckle Tracking and Transthyretin Amyloid Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Alexandre Marins Rocha

    Full Text Available Abstract Background: Amyloidosis is a disease caused by deposits of insoluble fibrils in extracellular spaces. The most common type of familial amyloidosis is mediated by mutation of transthyretin, especially Val30Met. Symptoms and ejection fraction decrease may occur in cardiac amyloidosis only in case of poor prognosis. Myocardial strain detected by two-dimensional speckle tracking echocardiography can indicate changes in myocardial function at early stages of the disease. Objective: To determine the accuracy of left ventricular longitudinal strain by two-dimensional speckle tracking echocardiography in patients with familial amyloidosis caused by Val30Met transthyretin mutation. Methods: Eighteen consecutive patients, carriers of transthyretin mutation, were evaluated by two-dimensional speckle tracking echocardiography, by which myocardial strain curves were obtained, following the American Society of Echocardiography recommendations. Results: Patients were divided into three groups: 1- Val30Met with cardiac amyloidosis; 2-Val30Met with extracardiac amyloidosis; 3 - Val30Met without evidence of disease. As the three groups were compared by the Mann-Whitney test, we found a statistically significant difference between groups 1 and 2 in the mean longitudinal tension (p=0.01, mean basal longitudinal strain (p=0.014; in mean longitudinal tension and mean longitudinal strain between groups 1 and 3 (p=0.005; and in the ratio of longitudinal strain of apical septum segment to longitudinal strain of basal septum (p=0.041 between groups 2 and 3. Conclusion: Left ventricular longitudinal strain detected by two-dimensional speckle tracking echocardiography is able to diagnose left ventricular dysfunction in early stages of familial amyloidosis caused by transthyretin Val30Met mutation.

  18. Notch root strain measurement of WE43-T6 magnesium alloy using electronic speckle pattern interferometry

    International Nuclear Information System (INIS)

    Liew, H.L.; Ahmad, A.; Ramesh, S.; Purbolaksono, J.

    2013-01-01

    Highlights: • The use of ESPI for measuring total strains at the notch root of specimens. • Fine meshing in micron scale at the notch root regions. • The maximum elastic strain is shifted to be further away from the notch root tip. - Abstract: The notch root elasto-plastic strains of circumferentially grooved round specimen of cast magnesium WE43-T6 were experimentally measured using the electronic speckle pattern interferometry (ESPI) and numerically evaluated using the finite element analysis (FEA). The specimens have notch radii of 1.6 mm and 0.8 mm and an opening angle of 60°. The technique of ESPI showed its accuracy in measuring three-dimensional surface deformations on large negatively curved manifolds. The measured nominal stress for rupture is well beyond the ultimate strength, suggesting the existence of significant biaxial stress at the notch root region. The ESPI-based strains on the notch tips were shown to be in agreement with those evaluated by the FEA. The FEA also showed that the maximum elastic strain is shifted away from the notch root surface as the plastic strain is predominant

  19. Speckle Interferometry with the McMath-Pierce East Auxiliary Telescope

    Science.gov (United States)

    Harshaw, Richard; Ray, Jimmy; Douglass, David; Prause, Lori; Genet, Russell

    2015-09-01

    Engineering runs and tests on the McMath-Pierce 0.8 meter East Auxiliary telescope successfully configured the telescope for speckle interferometry observations of close visual double stars. This paper reports the procedure and results of the speckle analysis of four double stars.

  20. Three-dimensional speckle tracking imaging assessment of left ventricular change in patient with coronary heart disease and its correlation with serum indexes

    Directory of Open Access Journals (Sweden)

    Jian-Li Fu

    2016-10-01

    Full Text Available Objective: To analyze the three-dimensional speckle tracking imaging assessment of left ventricular change in patient with coronary heart disease and its correlation with serum indexes. Methods: A total of 152 patients first diagnosed with coronary heart disease were the observation group of the study and 117 healthy subjects were the control group. Threedimensional speckle tracking imaging (3D-STI was used to evaluate the left ventricular function parameters of two groups, the serum content of endothelial function indexes and platelet function indexes were detected, and the correlation between left ventricular function parameters under 3D-STI and serum indexes was further analyzed. Results: Absolute values of left ventricular function parameters LVGLS, LVGRS, LVGCS and LVGAS from 3D-STI of observation group were significantly less than those of control group while Ptw and Torsion levels were greater than those of control group; endothelial function indexes vWF, sICAM-1, sVCAM-1 and ET-1 content in serum were significantly higher than those of control group while vWF-cp and NO content were significantly lower than those of control group; platelet function indexes CD62P, GMP-140, CD63, sP-selectin, sCD40L and PAC-1 content in serum were significantly higher than those of control group. The levels of left ventricular function parameters from 3D-STI in patients with coronary heart disease were directly correlated with serum indexes. Conclusion: 3D-STI can accurately assess the left ventricular function and the overall disease severity in patients with coronary heart disease, and it is expected to become an effective method for early diagnosis of diseases and guidance of clinical treatment.

  1. Atomic force microscopy deep trench and sidewall imaging with an optical fiber probe

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Hui, E-mail: xiehui@hit.edu.cn; Hussain, Danish; Yang, Feng [The State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, 2 Yikuang, 150080 Harbin (China); Sun, Lining [The State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, 2 Yikuang, 150080 Harbin (China); Robotics and Microsystems Center, Soochow University, 215021 Suzhou (China)

    2014-12-15

    We report a method to measure critical dimensions of micro- and nanostructures using the atomic force microscope (AFM) with an optical fiber probe (OFP). This method is capable of scanning narrow and deep trenches due to the long and thin OFP tip, as well as imaging of steep sidewalls with unique profiling possibilities by laterally tilting the OFP without any modifications of the optical lever. A switch control scheme is developed to measure the sidewall angle by flexibly transferring feedback control between the Z- and Y-axis, for a serial scan of the horizontal surface (raster scan on XY-plane) and sidewall (raster scan on the YZ-plane), respectively. In experiments, a deep trench with tapered walls (243.5 μm deep) and a microhole (about 14.9 μm deep) have been imaged with the orthogonally aligned OFP, as well as a silicon sidewall (fabricated by deep reactive ion etching) has been characterized with the tilted OFP. Moreover, the sidewall angle of TGZ3 (AFM calibration grating) was accurately measured using the switchable scan method.

  2. Strain dyssynchrony index determined by three-dimensional speckle area tracking can predict response to cardiac resynchronization therapy

    Directory of Open Access Journals (Sweden)

    Onishi Tetsuari

    2011-04-01

    Full Text Available Abstract Background We have previously reported strain dyssynchrony index assessed by two-dimensional speckle tracking strain, and a marker of both dyssynchrony and residual myocardial contractility, can predict response to cardiac resynchronization therapy (CRT. A newly developed three-dimensional (3-D speckle tracking system can quantify endocardial area change ratio (area strain, which coupled with the factors of both longitudinal and circumferential strain, from all 16 standard left ventricular (LV segments using complete 3-D pyramidal datasets. Our objective was to test the hypothesis that strain dyssynchrony index using area tracking (ASDI can quantify dyssynchrony and predict response to CRT. Methods We studied 14 heart failure patients with ejection fraction of 27 ± 7% (all≤35% and QRS duration of 172 ± 30 ms (all≥120 ms who underwent CRT. Echocardiography was performed before and 6-month after CRT. ASDI was calculated as the average difference between peak and end-systolic area strain of LV endocardium obtained from 3-D speckle tracking imaging using 16 segments. Conventional dyssynchrony measures were assessed by interventricular mechanical delay, Yu Index, and two-dimensional radial dyssynchrony by speckle-tracking strain. Response was defined as a ≥15% decrease in LV end-systolic volume 6-month after CRT. Results ASDI ≥ 3.8% was the best predictor of response to CRT with a sensitivity of 78%, specificity of 100% and area under the curve (AUC of 0.93 (p Conclusions ASDI can predict responders and LV reverse remodeling following CRT. This novel index using the 3-D speckle tracking system, which shows circumferential and longitudinal LV dyssynchrony and residual endocardial contractility, may thus have clinical significance for CRT patients.

  3. In vivo visualization method by absolute blood flow velocity based on speckle and fringe pattern using two-beam multipoint laser Doppler velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Kyoden, Tomoaki, E-mail: kyouden@nc-toyama.ac.jp; Naruki, Shoji; Akiguchi, Shunsuke; Momose, Noboru; Homae, Tomotaka; Hachiga, Tadashi [National Institute of Technology, Toyama College, 1-2 Ebie-Neriya, Imizu, Toyama 933-0293 (Japan); Ishida, Hiroki [Department of Applied Physics, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Okayama 700-0005 (Japan); Andoh, Tsugunobu [Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan); Takada, Yogo [Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585 (Japan)

    2016-08-28

    Two-beam multipoint laser Doppler velocimetry (two-beam MLDV) is a non-invasive imaging technique able to provide an image of two-dimensional blood flow and has potential for observing cancer as previously demonstrated in a mouse model. In two-beam MLDV, the blood flow velocity can be estimated from red blood cells passing through a fringe pattern generated in the skin. The fringe pattern is created at the intersection of two beams in conventional LDV and two-beam MLDV. Being able to choose the depth position is an advantage of two-beam MLDV, and the position of a blood vessel can be identified in a three-dimensional space using this technique. Initially, we observed the fringe pattern in the skin, and the undeveloped or developed speckle pattern generated in a deeper position of the skin. The validity of the absolute velocity value detected by two-beam MLDV was verified while changing the number of layers of skin around a transparent flow channel. The absolute velocity value independent of direction was detected using the developed speckle pattern, which is created by the skin construct and two beams in the flow channel. Finally, we showed the relationship between the signal intensity and the fringe pattern, undeveloped speckle, or developed speckle pattern based on the skin depth. The Doppler signals were not detected at deeper positions in the skin, which qualitatively indicates the depth limit for two-beam MLDV.

  4. Scanning electrochemical microscopy. 47. Imaging electrocatalytic activity for oxygen reduction in an acidic medium by the tip generation-substrate collection mode.

    Science.gov (United States)

    Fernández, José L; Bard, Allen J

    2003-07-01

    The oxygen reduction reaction (ORR) in acidic medium was studied on different electrode materials by scanning electrochemical microscopy (SECM) operating in a new variation of the tip generation-substrate collection mode. An ultramicroelectrode tip placed close to the substrate electrode oxidizes water to oxygen at a constant current. The substrate is held at a potential where the tip-generated oxygen is reduced and the resulting substrate current is measured. By changing the substrate potential, it is possible to obtain a polarization (current-potential) curve, which depends on the electrocatalytic activity of the substrate material. The main difference between this mode and the classical feedback SECM mode of operation is that the feedback diffusion process is not required for the measurement, allowing its application for studying the ORR in acidic solutions. Activity-sensitive images of heterogeneous surfaces, e.g., with Pt and Au electrodes, were obtained from the substrate current when the x-y plane was scanned with the tip. The usefulness of this technique for imaging electrocatalytic activity of smooth metallic electrodes and of highly dispersed fuel cell-type electrocatalysts was demonstrated. The application of this method to the combinatorial chemical analysis of electrode materials and electrocatalysts is discussed.

  5. Quantification of metallic nanoparticle morphology with tilt series imaging by transmission electron microscopy

    Science.gov (United States)

    Dutta, Aniruddha; Yuan, Biao; Clukay, Christopher J.; Grabill, Christopher N.; Heinrich, Helge; Bhattacharya, Aniket; Kuebler, Stephen M.

    2012-02-01

    We report on the quantitative analysis of electrolessly deposited Au and Ag nanoparticles (NPs) on SU8 polymer with the help of High-Angle Annular Dark-Field Scanning Transmission Electron Microscopy (HAADF-STEM) in tilt series. Au NPs act as nucleating agents for the electroless deposition of silver. Au NPs were prepared by attachingAu^3+cations to amine functionalized SU8 polymeric surfaces and then reducing it with aqueous NaBH4. The nanoscale morphology of the deposited NPs on the surface of polymer has been studied from the dark field TEM cross sectional images. Ag NPs were deposited on the cross-linked polymeric surface from a silver citrate solution reduced by hydroquinone. HAADF-STEM enables us to determine the distances between the NPs and their exact locations at and near the surface. The particle distribution, sizes and densities provide us with the data necessary to control the parameters for the development of the electroless deposition technique for emerging nanoscale technologies.

  6. GPU-Based Block-Wise Nonlocal Means Denoising for 3D Ultrasound Images

    Directory of Open Access Journals (Sweden)

    Liu Li

    2013-01-01

    Full Text Available Speckle suppression plays an important role in improving ultrasound (US image quality. While lots of algorithms have been proposed for 2D US image denoising with remarkable filtering quality, there is relatively less work done on 3D ultrasound speckle suppression, where the whole volume data rather than just one frame needs to be considered. Then, the most crucial problem with 3D US denoising is that the computational complexity increases tremendously. The nonlocal means (NLM provides an effective method for speckle suppression in US images. In this paper, a programmable graphic-processor-unit- (GPU- based fast NLM filter is proposed for 3D ultrasound speckle reduction. A Gamma distribution noise model, which is able to reliably capture image statistics for Log-compressed ultrasound images, was used for the 3D block-wise NLM filter on basis of Bayesian framework. The most significant aspect of our method was the adopting of powerful data-parallel computing capability of GPU to improve the overall efficiency. Experimental results demonstrate that the proposed method can enormously accelerate the algorithm.

  7. Static speckle experiments using white synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Sant, Tushar; Panzner, Tobias; Pietsch, Ullrich [Solid State Physics Group, University of Siegen (Germany)

    2008-07-01

    Static speckle experiments were performed using coherent white X-ray radiation from a bending magnet at BESSYII. Semiconductor and polymer surfaces were investigated under incidence condition smaller than the critical angle of total external reflection. The scattering pattern of the sample results from the illumination function modified by the surface undulations. The periodic oscillations are caused by the illumination function whereas other irregular features are associated with sample surface. The speckle map of reflection from a laterally periodic structure like GaAs grating is studied. Under coherent illumination the grating peaks split into speckles because of fluctuations on the sample surface. It is important to understand which length scales on the sample surface are responsible for the oscillations in reflectivity map. To investigate this experiments are done with a triangular shaped sample. Different parts of the sample are illuminated with the footprint on the sample larger or smaller than the actual sample length. This gives prior information about total illuminated area on the sample. Using this additional information a detailed surface profile of the sample is reconstructed.

  8. Speckles generated by skewed, short-coherence light beams

    International Nuclear Information System (INIS)

    Brogioli, D; Salerno, D; Ziano, R; Mantegazza, F; Croccolo, F

    2011-01-01

    When a coherent laser beam impinges on a random sample (e.g. a colloidal suspension), the scattered light exhibits characteristic speckles. If the temporal coherence of the light source is too short, then the speckles disappear, along with the possibility of performing homodyne or heterodyne scattering detection or photon correlation spectroscopy. Here we investigate the scattering of a so-called ‘skewed coherence beam’, i.e. a short-coherence beam modified such that the field is coherent within slabs that are skewed with respect to the wave fronts. We show that such a beam generates speckles and can be used for heterodyne scattering detection, despite its short temporal coherence. Moreover, we show that the heterodyne signal is not affected by multiple scattering. We suggest that the phenomenon presented here can be used as a means of carrying out heterodyne scattering measurement with any short-coherence radiation, including x-rays. (paper)

  9. Three-dimensional displacement measurement by fringe projection and speckle photography

    International Nuclear Information System (INIS)

    Barrientos, B.; Garcia-Marquez, J.; Cerca, M.; Hernandez-Bernal, C.

    2008-01-01

    3D displacement fields are measured by the combination of two optical methods, fringe projection and speckle photography. The use of only one camera recording the necessary information implies that no calibration procedures are necessary as is the case in techniques based on stereoscopy. The out-of-plane displacement is measured by fringe projection whereas speckle photography yields the 2-D in-plane component. To show the feasibility of the technique, we analyze a detailed morphological spatio-temporal evolution of a model of the Earth's crust while subjected to compression forces. The results show that the combination of fringe projection and speckle photography is well suited for this type of studies

  10. Dynamics of laser speckle imaging of blood flow and morphological changes in tissues with a full time local ischemia of pancreas

    Directory of Open Access Journals (Sweden)

    Alexandrov D.A.

    2014-12-01

    Full Text Available The purpose: to establish influence of a full ischemia of different duration and the subsequent reperfusionon pathology development in pancreas of rats by means of laser speckle-visualization and lifetime digital microscopy. Materials and Methods. The work has been performed on 42 white rats of line Wistar in weight of 200-250 Research of properties of a blood-groove was made by means of methods laser Doppler flowmetry, digital biomicroscopy and a method of laser speckle-contrast visualization. Results. After the termination of a 5-minute full ischemia the speed of bloodflow has been increased in 2-3 times, clinic pancreatic necrosis is marked does not develop. After the termination of 20-minute full ischemia the increase in speed of a bloodflow did not occur, there were morphological and clinical signs of pancreatic necrosis. Conclusion, the efficiency of monitoring of microhemodynamics of pancreas in rats by the method of speckle-capillary of full field has been shown. Multidirectional phase of perfusion changes in pancreas have been revealed after reversible infringement of blood supply of different duration.

  11. Correction of the tip convolution effects in the imaging of nanostructures studied through scanning force microscopy

    International Nuclear Information System (INIS)

    Canet-Ferrer, Josep; Coronado, Eugenio; Forment-Aliaga, Alicia; Pinilla-Cienfuegos, Elena

    2014-01-01

    AFM images are always affected by artifacts arising from tip convolution effects, resulting in a decrease in the lateral resolution of this technique. The magnitude of such effects is described by means of geometrical considerations, thereby providing better understanding of the convolution phenomenon. We demonstrate that for a constant tip radius, the convolution error is increased with the object height, mainly for the narrowest motifs. Certain influence of the object shape is observed between rectangular and elliptical objects with the same height. Such moderate differences are essentially expected among elongated objects; in contrast they are reduced as the object aspect ratio is increased. Finally, we propose an algorithm to study the influence of the size, shape and aspect ratio of different nanometric motifs on a flat substrate. Indeed, with this algorithm, convolution artifacts can be extended to any kind of motif including real surface roughness. From the simulation results we demonstrate that in most cases the real motif’s width can be estimated from AFM images without knowing its shape in detail. (paper)

  12. Review of speckle observations of Supernova 1987A

    International Nuclear Information System (INIS)

    Meikle, W.P.S.

    1988-01-01

    SN 1987A is sufficiently close to allow a unique examination of the morphology of a supernova, using speckle interferometry. Several groups [Center for Astrophysics (CfA); Imperial College (IC); Mount Stromlo and Siding Spring Observatories/Anglo-Australian Observatory (M/A)] have reported optical speckle observations. At Hα, both CfA and M/A have determined the angular extent of the emission, and reasonable agreement is obtained. The speckle-derived values are consistent with those obtained from line profiles. IC has also succeeded in resolving the supernova at Hα. At wavelengths other than Hα, at early epochs, angular diameters obtained by CfA are larger than those derived from photometric and spectroscopic measurements, possibly due to scattering effects. At later epochs, the diameters exhibit little variation between the wavelengths examined. CfA reports significant asymmetry in the late epoch data. Several attempts have been made to re-observe (at optical wavelengths) the companion object, but none have succeeded. The nature of this phenomenon is still controversial, but the evidence indicates that the companion was real, with emission from dust apparently being the least problematic explanation. Support for this may lie in IR speckle observations (Haute Provence/Lyon) which, on about day 115, indicated the presence of one or more resolved components at an angular displacement comparable to that of the optical companion. 39 refs., 1 fig., 1 tab

  13. Hypoperfusion Induced by Preconditioning Treadmill Training in Hyper-Early Reperfusion After Cerebral Ischemia: A Laser Speckle Imaging Study.

    Science.gov (United States)

    He, Zhijie; Lu, Hongyang; Yang, Xiaojiao; Zhang, Li; Wu, Yi; Niu, Wenxiu; Ding, Li; Wang, Guili; Tong, Shanbao; Jia, Jie

    2018-01-01

    Exercise preconditioning induces neuroprotective effects during cerebral ischemia and reperfusion, which involves the recovery of cerebral blood flow (CBF). Mechanisms underlying the neuroprotective effects of re-established CBF following ischemia and reperfusion are unclear. The present study investigated CBF in hyper-early stage of reperfusion by laser speckle contrast imaging, a full-field high-resolution optical imaging technique. Rats with or without treadmill training were subjected to middle cerebral artery occlusion followed by reperfusion. CBF in arteries, veins, and capillaries in hyper-early stage of reperfusion (1, 2, and 3 h after reperfusion) and in subacute stage (24 h after reperfusion) were measured. Neurological scoring and 2,3,5-triphenyltetrazolium chloride staining were further applied to determine the neuroprotective effects of exercise preconditioning. In hyper-early stage of reperfusion, CBF in the rats with exercise preconditioning was reduced significantly in arteries and veins, respectively, compared to rats with no exercise preconditioning. Capillary CBF remained stable in the hyper-early stage of reperfusion, though it increased significantly 24 h after reperfusion in the rats with exercise preconditioning. As a neuroprotective strategy, exercise preconditioning reduced the blood perfusion of arteries and veins in the hyper-early stage of reperfusion, which indicated intervention-induced neuroprotective hypoperfusion after reperfusion onset.

  14. Optimum Tilt Angle at Tropical Region

    Directory of Open Access Journals (Sweden)

    S Soulayman

    2015-02-01

    Full Text Available : One of the important parameters that affect the performance of a solar collector is its tilt angle with the horizon. This is because of the variation of tilt angle changes the amount of solar radiation reaching the collector surface. Meanwhile, is the rule of thumb, which says that solar collector Equator facing position is the best, is valid for tropical region? Thus, it is required to determine the optimum tilt as for Equator facing and for Pole oriented collectors. In addition, the question that may arise: how many times is reasonable for adjusting collector tilt angle for a definite value of surface azimuth angle? A mathematical model was used for estimating the solar radiation on a tilted surface, and to determine the optimum tilt angle and orientation (surface azimuth angle for the solar collector at any latitude. This model was applied for determining optimum tilt angle and orientation in the tropical zones, on a daily basis, as well as for a specific period. The optimum angle was computed by searching for the values for which the radiation on the collector surface is a maximum for a particular day or a specific period. The results reveal that changing the tilt angle 12 times in a year (i.e. using the monthly optimum tilt angle maintains approximately the total amount of solar radiation near the maximum value that is found by changing the tilt angle daily to its optimum value. This achieves a yearly gain in solar radiation of 11% to 18% more than the case of a solar collector fixed on a horizontal surface.

  15. Strain measurement of abdominal aortic aneurysm with real-time 3D ultrasound speckle tracking.

    Science.gov (United States)

    Bihari, P; Shelke, A; Nwe, T H; Mularczyk, M; Nelson, K; Schmandra, T; Knez, P; Schmitz-Rixen, T

    2013-04-01

    Abdominal aortic aneurysm rupture is caused by mechanical vascular tissue failure. Although mechanical properties within the aneurysm vary, currently available ultrasound methods assess only one cross-sectional segment of the aorta. This study aims to establish real-time 3-dimensional (3D) speckle tracking ultrasound to explore local displacement and strain parameters of the whole abdominal aortic aneurysm. Validation was performed on a silicone aneurysm model, perfused in a pulsatile artificial circulatory system. Wall motion of the silicone model was measured simultaneously with a commercial real-time 3D speckle tracking ultrasound system and either with laser-scan micrometry or with video photogrammetry. After validation, 3D ultrasound data were collected from abdominal aortic aneurysms of five patients and displacement and strain parameters were analysed. Displacement parameters measured in vitro by 3D ultrasound and laser scan micrometer or video analysis were significantly correlated at pulse pressures between 40 and 80 mmHg. Strong local differences in displacement and strain were identified within the aortic aneurysms of patients. Local wall strain of the whole abdominal aortic aneurysm can be analysed in vivo with real-time 3D ultrasound speckle tracking imaging, offering the prospect of individual non-invasive rupture risk analysis of abdominal aortic aneurysms. Copyright © 2013 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  16. Tilting Saturn without Tilting Jupiter: Constraints on Giant Planet Migration

    Science.gov (United States)

    Brasser, R.; Lee, Man Hoi

    2015-11-01

    The migration and encounter histories of the giant planets in our solar system can be constrained by the obliquities of Jupiter and Saturn. We have performed secular simulations with imposed migration and N-body simulations with planetesimals to study the expected obliquity distribution of migrating planets with initial conditions resembling those of the smooth migration model, the resonant Nice model and two models with five giant planets initially in resonance (one compact and one loose configuration). For smooth migration, the secular spin-orbit resonance mechanism can tilt Saturn’s spin axis to the current obliquity if the product of the migration timescale and the orbital inclinations is sufficiently large (exceeding 30 Myr deg). For the resonant Nice model with imposed migration, it is difficult to reproduce today’s obliquity values, because the compactness of the initial system raises the frequency that tilts Saturn above the spin precession frequency of Jupiter, causing a Jupiter spin-orbit resonance crossing. Migration timescales sufficiently long to tilt Saturn generally suffice to tilt Jupiter more than is observed. The full N-body simulations tell a somewhat different story, with Jupiter generally being tilted as often as Saturn, but on average having a higher obliquity. The main obstacle is the final orbital spacing of the giant planets, coupled with the tail of Neptune’s migration. The resonant Nice case is barely able to simultaneously reproduce the orbital and spin properties of the giant planets, with a probability ˜ 0.15%. The loose five planet model is unable to match all our constraints (probability <0.08%). The compact five planet model has the highest chance of matching the orbital and obliquity constraints simultaneously (probability ˜0.3%).

  17. Analysis of statistical properties of laser speckles, forming in skin and mucous of colon: potential application in laser surgery

    Science.gov (United States)

    Rubtsov, Vladimir; Kapralov, Sergey; Chalyk, Iuri; Ulianova, Onega; Ulyanov, Sergey

    2013-02-01

    Statistical properties of laser speckles, formed in skin and mucous of colon have been analyzed and compared. It has been demonstrated that first and second order statistics of "skin" speckles and "mucous" speckles are quite different. It is shown that speckles, formed in mucous, are not Gaussian one. Layered structure of colon mucous causes formation of speckled biospeckles. First- and second- order statistics of speckled speckles have been reviewed in this paper. Statistical properties of Fresnel and Fraunhofer doubly scattered and cascade speckles are described. Non-gaussian statistics of biospeckles may lead to high localization of intensity of coherent light in human tissue during the laser surgery. Way of suppression of highly localized non-gaussian speckles is suggested.

  18. Fracture mechanics by three-dimensional crack-tip synchrotron X-ray microscopy.

    Science.gov (United States)

    Withers, P J

    2015-03-06

    To better understand the relationship between the nucleation and growth of defects and the local stresses and phase changes that cause them, we need both imaging and stress mapping. Here, we explore how this can be achieved by bringing together synchrotron X-ray diffraction and tomographic imaging. Conventionally, these are undertaken on separate synchrotron beamlines; however, instruments capable of both imaging and diffraction are beginning to emerge, such as ID15 at the European Synchrotron Radiation Facility and JEEP at the Diamond Light Source. This review explores the concept of three-dimensional crack-tip X-ray microscopy, bringing them together to probe the crack-tip behaviour under realistic environmental and loading conditions and to extract quantitative fracture mechanics information about the local crack-tip environment. X-ray diffraction provides information about the crack-tip stress field, phase transformations, plastic zone and crack-face tractions and forces. Time-lapse CT, besides providing information about the three-dimensional nature of the crack and its local growth rate, can also provide information as to the activation of extrinsic toughening mechanisms such as crack deflection, crack-tip zone shielding, crack bridging and crack closure. It is shown how crack-tip microscopy allows a quantitative measure of the crack-tip driving force via the stress intensity factor or the crack-tip opening displacement. Finally, further opportunities for synchrotron X-ray microscopy are explored.

  19. Molecular tilt on monolayer-protected nanoparticles

    KAUST Repository

    Giomi, L.

    2012-02-01

    The structure of the tilted phase of monolayer-protected nanoparticles is investigated by means of a simple Ginzburg-Landau model. The theory contains two dimensionless parameters representing the preferential tilt angle and the ratio ε between the energy cost due to spatial variations in the tilt of the coating molecules and that of the van der Waals interactions which favors the preferential tilt. We analyze the model for both spherical and octahedral particles. On spherical particles, we find a transition from a tilted phase, at small ε, to a phase where the molecules spontaneously align along the surface normal and tilt disappears. Octahedral particles have an additional phase at small ε characterized by the presence of six topological defects. These defective configurations provide preferred sites for the chemical functionalization of monolayer-protected nanoparticles via place-exchange reactions and their consequent linking to form molecules and bulk materials. Copyright © EPLA, 2012.

  20. Molecular tilt on monolayer-protected nanoparticles

    KAUST Repository

    Giomi, L.; Bowick, M. J.; Ma, X.; Majumdar, A.

    2012-01-01

    The structure of the tilted phase of monolayer-protected nanoparticles is investigated by means of a simple Ginzburg-Landau model. The theory contains two dimensionless parameters representing the preferential tilt angle and the ratio ε between the energy cost due to spatial variations in the tilt of the coating molecules and that of the van der Waals interactions which favors the preferential tilt. We analyze the model for both spherical and octahedral particles. On spherical particles, we find a transition from a tilted phase, at small ε, to a phase where the molecules spontaneously align along the surface normal and tilt disappears. Octahedral particles have an additional phase at small ε characterized by the presence of six topological defects. These defective configurations provide preferred sites for the chemical functionalization of monolayer-protected nanoparticles via place-exchange reactions and their consequent linking to form molecules and bulk materials. Copyright © EPLA, 2012.

  1. Overcoming turbulence-induced space-variant blur by using phase-diverse speckle.

    Science.gov (United States)

    Thelen, Brian J; Paxman, Richard G; Carrara, David A; Seldin, John H

    2009-01-01

    Space-variant blur occurs when imaging through volume turbulence over sufficiently large fields of view. Space-variant effects are particularly severe in horizontal-path imaging, slant-path (air-to-ground or ground-to-air) geometries, and ground-based imaging of low-elevation satellites or astronomical objects. In these geometries, the isoplanatic angle can be comparable to or even smaller than the diffraction-limited resolution angle. We report on a postdetection correction method that seeks to correct for the effects of space-variant aberrations, with the goal of reconstructing near-diffraction-limited imagery. Our approach has been to generalize the method of phase-diverse speckle (PDS) by using a physically motivated distributed-phase-screen model. Simulation results are presented that demonstrate the reconstruction of near-diffraction-limited imagery under both matched and mismatched model assumptions. In addition, we present evidence that PDS could be used as a beaconless wavefront sensor in a multiconjugate adaptive optics system when imaging extended scenes.

  2. An efficient eikonal solver for tilted transversely isotropic and tilted orthorhombic media

    KAUST Repository

    Waheed, Umair bin

    2014-01-01

    Computing first-arrival traveltimes in the presence of anisotropy is important for high-end near surface modeling, microseismic source localization, and fractured reservoir characterization. Anisotropy deviating from elliptical anisotropy introduces higher-order nonlinearity into the eikonal equation, which makes solving the equation a challenging task. We address this challenge by iteratively solving a sequence of simpler tilted elliptically anisotropic eikonal equations. At each iteration, the source function is updated to capture the effects due to the higher order nonlinear terms in the anisotropy. We use Aitken extrapolation to speed up the convergence rate of the iterative algorithm. The result is an efficient algorithm for firstarrival traveltime computations in tilted anisotropic media. We demonstrate the proposed method for the tilted transversely isotropic media and the tilted orthorhombic media. Numerical tests show that the proposed method is feasible and produces results that are comparable to wavefield extrapolation, even for strongly anisotropic and complex structures. Therefore, for the cases where one or two-point ray tracing fails, our method may be a potential substitute for computing traveltimes.

  3. Speckle Interferometry with the OCA Kuhn 22" Telescope

    Science.gov (United States)

    Wasson, Rick

    2018-04-01

    Speckle interferometry measurements of double stars were made in 2015 and 2016, using the Kuhn 22-inch classical Cassegrain telescope of the Orange County Astronomers, a Point Grey Blackfly CMOS camera, and three interference filters. 272 observations are reported for 177 systems, with separations ranging from 0.29" to 2.9". Data reduction was by means of the REDUC and Speckle Tool Box programs. Equipment, observing procedures, calibration, data reduction, and analysis are described, and unusual results for 11 stars are discussed in detail.

  4. Holographic interferometric and correlation-based laser speckle metrology for 3D deformations in dentistry

    Science.gov (United States)

    Dekiff, Markus; Kemper, Björn; Kröger, Elke; Denz, Cornelia; Dirksen, Dieter

    2017-03-01

    The mechanical loading of dental restorations and hard tissue is often investigated numerically. For validation and optimization of such simulations, comparisons with measured deformations are essential. We combine digital holographic interferometry and digital speckle photography for the determination of microscopic deformations with a photogrammetric method that is based on digital image correlation of a projected laser speckle pattern. This multimodal workstation allows the simultaneous acquisition of the specimen's macroscopic 3D shape and thus a quantitative comparison of measured deformations with simulation data. In order to demonstrate the feasibility of our system, two applications are presented: the quantitative determination of (1) the deformation of a mandible model due to mechanical loading of an inserted dental implant and of (2) the deformation of a (dental) bridge model under mechanical loading. The results were compared with data from finite element analyses of the investigated applications. The experimental results showed close agreement with those of the simulations.

  5. Clinical utility of speckle-tracking echocardiography in cardiac resynchronisation therapy

    Directory of Open Access Journals (Sweden)

    Sitara G Khan

    2016-05-01

    Full Text Available Cardiac resynchronisation therapy (CRT can profoundly improve outcome in selected patients with heart failure; however, response is difficult to predict and can be absent in up to one in three patients. There has been a substantial amount of interest in the echocardiographic assessment of left ventricular dyssynchrony, with the ultimate aim of reliably identifying patients who will respond to CRT. The measurement of myocardial deformation (strain has conventionally been assessed using tissue Doppler imaging (TDI, which is limited by its angle dependence and ability to measure in a single plane. Two-dimensional speckle-tracking echocardiography is a technique that provides measurements of strain in three planes, by tracking patterns of ultrasound interference (‘speckles’ in the myocardial wall throughout the cardiac cycle. Since its initial use over 15 years ago, it has emerged as a tool that provides more robust, reproducible and sensitive markers of dyssynchrony than TDI. This article reviews the use of two-dimensional and three-dimensional speckle-tracking echocardiography in the assessment of dyssynchrony, including the identification of echocardiographic parameters that may hold predictive potential for the response to CRT. It also reviews the application of these techniques in guiding optimal LV lead placement pre-implant, with promising results in clinical improvement post-CRT.

  6. Fluid observers and tilting cosmology

    International Nuclear Information System (INIS)

    Coley, A A; Hervik, S; Lim, W C

    2006-01-01

    We study perfect fluid cosmological models with a constant equation of state parameter γ in which there are two naturally defined timelike congruences, a geometrically defined geodesic congruence and a non-geodesic fluid congruence. We establish an appropriate set of boost formulae relating the physical variables, and consequently the observed quantities, in the two frames. We study expanding spatially homogeneous tilted perfect fluid models, with an emphasis on future evolution with extreme tilt. We show that for ultra-radiative equations of state (i.e. γ > 4/3), generically the tilt becomes extreme at late times and the fluid observers will reach infinite expansion within a finite proper time and experience a singularity similar to that of the big rip. In addition, we show that for sub-radiative equations of state (i.e. γ < 4/3), the tilt can become extreme at late times and give rise to an effective quintessential equation of state. To establish the connection with phantom cosmology and quintessence, we calculate the effective equation of state in the models under consideration and we determine the future asymptotic behaviour of the tilting models in the fluid frame variables using the boost formulae. We also discuss spatially inhomogeneous models and tilting spatially homogeneous models with a cosmological constant

  7. Evaluating Tilt for Wind Farms: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Annoni, Jennifer; Scholbrock, Andrew; Churchfield, Matthew; Fleming, Paul

    2017-06-29

    The objective of this work is to demonstrate the feasibility of tilt in a wind plant. Tilt control, much like other wind plant control strategies, has the potential to improve the performance of a wind plant. Tilt control uses the tilt angle of the turbine to direct the wake above or below the downstream turbines. This paper presents a study of tilt in two- and threeturbine arrays. Specifically, the authors show that the power production of a two-turbine array can be increased by tilting turbines in a specific orientation. When adding more turbines, as is shown with the three-turbine array, the overall percentage of power gain increases. This outcome deviates from some of the results seen in typical wind plant control strategies. Finally, we discuss the impact this type of control strategy has on the aerodynamics in a wind plant. This analysis demonstrates that a good understanding of wake characteristics is necessary to improve the plant's performance. A tilt strategy such as the one presented in this paper may have implications for future control/optimization studies including optimization of hub heights in a wind plant and analysis of deep array effects.

  8. Nonintrusive iris image acquisition system based on a pan-tilt-zoom camera and light stripe projection

    Science.gov (United States)

    Yoon, Soweon; Jung, Ho Gi; Park, Kang Ryoung; Kim, Jaihie

    2009-03-01

    Although iris recognition is one of the most accurate biometric technologies, it has not yet been widely used in practical applications. This is mainly due to user inconvenience during the image acquisition phase. Specifically, users try to adjust their eye position within small capture volume at a close distance from the system. To overcome these problems, we propose a novel iris image acquisition system that provides users with unconstrained environments: a large operating range, enabling movement from standing posture, and capturing good-quality iris images in an acceptable time. The proposed system has the following three contributions compared with previous works: (1) the capture volume is significantly increased by using a pan-tilt-zoom (PTZ) camera guided by a light stripe projection, (2) the iris location in the large capture volume is found fast due to 1-D vertical face searching from the user's horizontal position obtained by the light stripe projection, and (3) zooming and focusing on the user's irises at a distance are accurate and fast using the estimated 3-D position of a face by the light stripe projection and the PTZ camera. Experimental results show that the proposed system can capture good-quality iris images in 2.479 s on average at a distance of 1.5 to 3 m, while allowing a limited amount of movement by the user.

  9. Reducing tilt-to-length coupling for the LISA test mass interferometer

    Science.gov (United States)

    Tröbs, M.; Schuster, S.; Lieser, M.; Zwetz, M.; Chwalla, M.; Danzmann, K.; Fernández Barránco, G.; Fitzsimons, E. D.; Gerberding, O.; Heinzel, G.; Killow, C. J.; Perreur-Lloyd, M.; Robertson, D. I.; Schwarze, T. S.; Wanner, G.; Ward, H.

    2018-05-01

    Objects sensed by laser interferometers are usually not stable in position or orientation. This angular instability can lead to a coupling of angular tilt to apparent longitudinal displacement—tilt-to-length coupling (TTL). In LISA this is a potential noise source for both the test mass interferometer and the long-arm interferometer. We have experimentally investigated TTL coupling in a setup representative for the LISA test mass interferometer and used this system to characterise two different imaging systems (a two-lens design and a four-lens design) both designed to minimise TTL coupling. We show that both imaging systems meet the LISA requirement of  ±25 μm rad‑1 for interfering beams with relative angles of up to  ±300 μrad. Furthermore, we found a dependency of the TTL coupling on beam properties such as the waist size and location, which we characterised both theoretically and experimentally.

  10. Transjugular Intrahepatic Portosystemic Shunt (TIPS)

    Medline Plus

    Full Text Available ... bear denotes child-specific content. Related Articles and Media Radiation Dose in X-Ray and CT Exams Contrast Materials Venography Images related to Transjugular Intrahepatic Portosystemic Shunt (TIPS) Sponsored ...

  11. Tip-enhanced Raman mapping with top-illumination AFM.

    Science.gov (United States)

    Chan, K L Andrew; Kazarian, Sergei G

    2011-04-29

    Tip-enhanced Raman mapping is a powerful, emerging technique that offers rich chemical information and high spatial resolution. Currently, most of the successes in tip-enhanced Raman scattering (TERS) measurements are based on the inverted configuration where tips and laser are approaching the sample from opposite sides. This results in the limitation of measurement for transparent samples only. Several approaches have been developed to obtain tip-enhanced Raman mapping in reflection mode, many of which involve certain customisations of the system. We have demonstrated in this work that it is also possible to obtain TERS nano-images using an upright microscope (top-illumination) with a gold-coated Si atomic force microscope (AFM) cantilever without significant modification to the existing integrated AFM/Raman system. A TERS image of a single-walled carbon nanotube has been achieved with a spatial resolution of ∼ 20-50 nm, demonstrating the potential of this technique for studying non-transparent nanoscale materials.

  12. Tip-enhanced Raman mapping with top-illumination AFM

    Energy Technology Data Exchange (ETDEWEB)

    Chan, K L Andrew; Kazarian, Sergei G, E-mail: s.kazarian@imperial.ac.uk [Department of Chemical Engineering, Imperial College London, SW7 2AZ (United Kingdom)

    2011-04-29

    Tip-enhanced Raman mapping is a powerful, emerging technique that offers rich chemical information and high spatial resolution. Currently, most of the successes in tip-enhanced Raman scattering (TERS) measurements are based on the inverted configuration where tips and laser are approaching the sample from opposite sides. This results in the limitation of measurement for transparent samples only. Several approaches have been developed to obtain tip-enhanced Raman mapping in reflection mode, many of which involve certain customisations of the system. We have demonstrated in this work that it is also possible to obtain TERS nano-images using an upright microscope (top-illumination) with a gold-coated Si atomic force microscope (AFM) cantilever without significant modification to the existing integrated AFM/Raman system. A TERS image of a single-walled carbon nanotube has been achieved with a spatial resolution of {approx} 20-50 nm, demonstrating the potential of this technique for studying non-transparent nanoscale materials.

  13. Tip-enhanced Raman mapping with top-illumination AFM

    International Nuclear Information System (INIS)

    Chan, K L Andrew; Kazarian, Sergei G

    2011-01-01

    Tip-enhanced Raman mapping is a powerful, emerging technique that offers rich chemical information and high spatial resolution. Currently, most of the successes in tip-enhanced Raman scattering (TERS) measurements are based on the inverted configuration where tips and laser are approaching the sample from opposite sides. This results in the limitation of measurement for transparent samples only. Several approaches have been developed to obtain tip-enhanced Raman mapping in reflection mode, many of which involve certain customisations of the system. We have demonstrated in this work that it is also possible to obtain TERS nano-images using an upright microscope (top-illumination) with a gold-coated Si atomic force microscope (AFM) cantilever without significant modification to the existing integrated AFM/Raman system. A TERS image of a single-walled carbon nanotube has been achieved with a spatial resolution of ∼ 20-50 nm, demonstrating the potential of this technique for studying non-transparent nanoscale materials.

  14. Texture Based Quality Analysis of Simulated Synthetic Ultrasound Images Using Local Binary Patterns †

    Directory of Open Access Journals (Sweden)

    Prerna Singh

    2017-12-01

    Full Text Available Speckle noise reduction is an important area of research in the field of ultrasound image processing. Several algorithms for speckle noise characterization and analysis have been recently proposed in the area. Synthetic ultrasound images can play a key role in noise evaluation methods as they can be used to generate a variety of speckle noise models under different interpolation and sampling schemes, and can also provide valuable ground truth data for estimating the accuracy of the chosen methods. However, not much work has been done in the area of modeling synthetic ultrasound images, and in simulating speckle noise generation to get images that are as close as possible to real ultrasound images. An important aspect of simulated synthetic ultrasound images is the requirement for extensive quality assessment for ensuring that they have the texture characteristics and gray-tone features of real images. This paper presents texture feature analysis of synthetic ultrasound images using local binary patterns (LBP and demonstrates the usefulness of a set of LBP features for image quality assessment. Experimental results presented in the paper clearly show how these features could provide an accurate quality metric that correlates very well with subjective evaluations performed by clinical experts.

  15. Imaging the Obscuring Torus in Nearby Active Galaxies

    Science.gov (United States)

    Wilson, Andrew S.; Storchi Bergmann, Thaisa; Morris, Simon

    2000-02-01

    We propose to study a sample of Seyfert galaxies with the aim of resolving spatially the torus of dense molecular gas and dust which is believed to surround the nuclei of these objects. The galaxies, selected to have strong molecular hydrogen emission and jet-like radio continuum sources, will be imaged in various molecular hydrogen lines and in [Fe II] or Br (gamma). The goals are to a) confirm the existence of such tori, b) determine whether the extended molecular gas is excited thermally or through fluorescence, and c) compare with the distribution of ionized gas, which may show an ionization cone structure from polar escape of ionizing photons. The availability of IR imaging capabilities with tip-tilt and narrow-band filters, which allow imaging in the H_2(lambda) 2.122(micron) line up to a recession velocity of 6,000 km s^-1, makes the Blanco 4m telescope very well suited to this project.

  16. Despeckle filtering for ultrasound imaging and video II selected applications

    CERN Document Server

    Loizou, Christos P

    2015-01-01

    In ultrasound imaging and video visual perception is hindered by speckle multiplicative noise that degrades the quality. Noise reduction is therefore essential for improving the visual observation quality or as a pre-processing step for further automated analysis, such as image/video segmentation, texture analysis and encoding in ultrasound imaging and video. The goal of the first book (book 1 of 2 books) was to introduce the problem of speckle in ultrasound image and video as well as the theoretical background, algorithmic steps, and the MatlabTM for the following group of despeckle filters:

  17. Spatially resolved speckle-correlometry of sol-gel transition

    Science.gov (United States)

    Isaeva, A. A.; Isaeva, E. A.; Pantyukov, A. V.; Zimnyakov, D. A.

    2018-04-01

    Sol-gel transition was studied using the speckle correlometry method with a localized light source and spatial filtering of backscattered radiation. Water solutions of technical or food gelatin with added TiO2 nanoparticles were used as studied objects. Structural transformation of "sol-gel" system was studied at various temperatures from 25°C to 50°C using analysis of the correlation and structure functions of speckle intensity fluctuations. The characteristic temperatures of "sol - gel" transition were evaluated for studied systems. Obtained results can be used for various applications in biomedicine and food industry.

  18. Realization of a tilted reference wave for electron holography by means of a condenser biprism

    Energy Technology Data Exchange (ETDEWEB)

    Röder, Falk, E-mail: Falk.Roeder@tu-dresden.de [Triebenberg Labor, Institut für Strukturphysik, Technische Universität Dresden, D-01062 Dresden (Germany); CEMES-CNRS and Université de Toulouse, 29 rue Jeanne Marvig, F-31055 Toulouse (France); Houdellier, Florent; Denneulin, Thibaud; Snoeck, Etienne; Hÿtch, Martin [CEMES-CNRS and Université de Toulouse, 29 rue Jeanne Marvig, F-31055 Toulouse (France)

    2016-02-15

    As proposed recently, a tilted reference wave in off-axis electron holography is expected to be useful for aberration measurement and correction. Furthermore, in dark-field electron holography, it is considered to replace the reference wave, which is conventionally diffracted in an unstrained object area, by a well-defined object-independent reference wave. Here, we first realize a tilted reference wave by employing a biprism placed in the condenser system above three condenser lenses producing a relative tilt magnitude up to 20/nm at the object plane (300 kV). Paraxial ray-tracing predicts condenser settings for a parallel illumination at the object plane, where only one half of the round illumination disc is tilted relative to the optical axis without displacement. Holographic measurements verify the kink-like phase modulation of the incident beam and return the interference fringe contrast as a function of the relative tilt between both parts of the illumination. Contrast transfer theory including condenser aberrations and biprism instabilities was applied to explain the fringe contrast measurement. A first dark-field hologram with a tilted – object-free – reference wave was acquired and reconstructed. A new application for bright/dark-field imaging is presented.

  19. Multi-scale simulations of field ion microscopy images—Image compression with and without the tip shank

    International Nuclear Information System (INIS)

    NiewieczerzaŁ, Daniel; Oleksy, CzesŁaw; Szczepkowicz, Andrzej

    2012-01-01

    Multi-scale simulations of field ion microscopy images of faceted and hemispherical samples are performed using a 3D model. It is shown that faceted crystals have compressed images even in cases with no shank. The presence of the shank increases the compression of images of faceted crystals quantitatively in the same way as for hemispherical samples. It is hereby proven that the shank does not influence significantly the local, relative variations of the magnification caused by the atomic-scale structure of the sample. -- Highlights: ► Multi-scale simulations of field ion microscopy images. ► Faceted and hemispherical samples with and without shank. ► Shank causes overall compression, but does not influence local magnification effects. ► Image compression linearly increases with the shank angle. ► Shank changes compression of image of faceted tip in the same way as for smooth sample.

  20. Guided SAR image despeckling with probabilistic non local weights

    Science.gov (United States)

    Gokul, Jithin; Nair, Madhu S.; Rajan, Jeny

    2017-12-01

    SAR images are generally corrupted by granular disturbances called speckle, which makes visual analysis and detail extraction a difficult task. Non Local despeckling techniques with probabilistic similarity has been a recent trend in SAR despeckling. To achieve effective speckle suppression without compromising detail preservation, we propose an improvement for the existing Generalized Guided Filter with Bayesian Non-Local Means (GGF-BNLM) method. The proposed method (Guided SAR Image Despeckling with Probabilistic Non Local Weights) replaces parametric constants based on heuristics in GGF-BNLM method with dynamically derived values based on the image statistics for weight computation. Proposed changes make GGF-BNLM method adaptive and as a result, significant improvement is achieved in terms of performance. Experimental analysis on SAR images shows excellent speckle reduction without compromising feature preservation when compared to GGF-BNLM method. Results are also compared with other state-of-the-art and classic SAR depseckling techniques to demonstrate the effectiveness of the proposed method.

  1. Unilateral otolith centrifugation by head tilt.

    Science.gov (United States)

    Winters, Stephanie M; Bos, Jelte E; Klis, Sjaak F L

    2014-01-01

    To test for otolith asymmetries, several studies described horizontal translation of the body and head en bloc during fast vertical axis rotation. This stimulus causes one otolithic organ to rotate on-axis, and the other to experience centripetal acceleration. To test a new, more simple method of unilateral stimulation with head tilt and the body remaining on axis. During stationary and during 360 deg/s rotation, 12 healthy blindfolded subjects had their heads tilted 30 degrees sideways, positioning one otolithic organ on the axis of rotation after the other. The haptic subjective vertical (SV) was recorded several times by means of a manually adjustable rod. It was found that during stationary the SV tilted about 4 degrees on average in the direction of the head. During rotation, the SV tilted about 9 degrees on average. We therefore estimate the effect of eccentric otolith rotation to be 5 degrees on average. Tilt of the subjective vertical induced by head tilt during on-axis body rotation can provide a relatively uncomplicated alternative to test unilateral otolithic function as compared to body and head translation during rotation. Moreover, unlike eccentric rotation of the entire body, somatosensory cues are minimized by keeping the body fixed on axis and by subtracting the effect of head tilt per se.

  2. The transjugular intrahepatic portosystemic shunt (TIPS)

    International Nuclear Information System (INIS)

    Owen, A.R.; Stanley, A.J.; Vijayananthan, A.; Moss, J.G.

    2009-01-01

    The creation of an intrahepatic portosystemic shunt via a transjugular approach (TIPS) is an interventional radiological procedure used to treat the complications of portal hypertension. TIPS insertion is principally indicated to prevent or arrest variceal bleeding when medical or endoscopic treatments fail, and in the management refractory ascites. This review discusses the development and execution of the technique, with focus on its clinical efficacy. Patient selection, imaging surveillance, revision techniques, and complications are also discussed.

  3. The transjugular intrahepatic portosystemic shunt (TIPS)

    Energy Technology Data Exchange (ETDEWEB)

    Owen, A.R. [Department of Radiology, Austin Health, Heidelberg, Melbourne (Australia)], E-mail: andrewowen@doctors.org.uk; Stanley, A.J. [Department of Gastroenterology, Glasgow Royal Infirmary, Glasgow (United Kingdom); Vijayananthan, A. [Department of Biomedical Imaging, University of Malaya, Kuala Lumpur (Malaysia); Moss, J.G. [Department of Radiology, Gartnavel General Hospital, Glasgow (United Kingdom)

    2009-07-15

    The creation of an intrahepatic portosystemic shunt via a transjugular approach (TIPS) is an interventional radiological procedure used to treat the complications of portal hypertension. TIPS insertion is principally indicated to prevent or arrest variceal bleeding when medical or endoscopic treatments fail, and in the management refractory ascites. This review discusses the development and execution of the technique, with focus on its clinical efficacy. Patient selection, imaging surveillance, revision techniques, and complications are also discussed.

  4. Dual-tip magnetic force microscopy with suppressed influence on magnetically soft samples

    International Nuclear Information System (INIS)

    Precner, Marián; Fedor, Ján; Šoltýs, Ján; Cambel, Vladimír

    2015-01-01

    Standard magnetic force microscopy (MFM) is considered as a powerful tool used for magnetic field imaging at nanoscale. The method consists of two passes realized by the magnetic tip. Within the first one, the topography pass, the magnetic tip directly touches the magnetic sample. Such contact perturbs the magnetization of the sample explored. To avoid the sample touching the magnetic tip, we present a new approach to magnetic field scanning by segregating the topological and magnetic scans with two different tips located on a cut cantilever. The approach minimizes the disturbance of sample magnetization, which could be a major problem in conventional MFM images of soft magnetic samples. By cutting the cantilever in half using the focused ion beam technique, we create one sensor with two different tips—one tip is magnetized, and the other one is left non-magnetized. The non-magnetized tip is used for topography and the magnetized one for the magnetic field imaging. The method developed we call dual-tip magnetic force microscopy (DT-MFM). We describe in detail the dual-tip fabrication process. In the experiments, we show that the DT-MFM method reduces significantly the perturbations of the magnetic tip as compared to the standard MFM method. The present technique can be used to investigate microscopic magnetic domain structures in a variety of magnetic samples and is relevant in a wide range of applications, e.g., data storage and biomedicine. (paper)

  5. Evaluation of microvascular endothelial function in patients with infective endocarditis using laser speckle contrast imaging and skin video-capillaroscopy: research proposal of a case control prospective study.

    Science.gov (United States)

    Barcelos, Amanda; Lamas, Cristiane; Tibiriça, Eduardo

    2017-07-28

    Infective endocarditis is a severe condition with high in-hospital and 5-year mortality. There is increasing incidence of infective endocarditis, which may be related to healthcare and changes in prophylaxis recommendations regarding oral procedures. Few studies have evaluated the microcirculation in patients with infective endocarditis, and so far, none have utilized laser-based technology or evaluated functional capillary density. The aim of the study is to evaluate the changes in the systemic microvascular bed of patients with both acute and subacute endocarditis. This is a cohort study that will include adult patients with confirmed active infective endocarditis according to the modified Duke criteria who were admitted to our center for treatment. A control group of sex- and age-matched healthy volunteers will be included. Functional capillary density, which is defined as the number of spontaneously perfused capillaries per square millimeter of skin, will be assessed by video-microscopy with an epi-illuminated fiber optic microscope. Capillary recruitment will be evaluated using post-occlusive reactive hyperemia. Microvascular flow will be evaluated in the forearm using a laser speckle contrast imaging system for the noninvasive and continuous measurement of cutaneous microvascular perfusion changes. Laser speckle contrast imaging will be used in combination with skin iontophoresis of acetylcholine, an endothelium-dependent vasodilator, or sodium nitroprusside (endothelium independent) to test microvascular reactivity. The present study will contribute to the investigation of microcirculatory changes in infective endocarditis and possibly lead to an earlier diagnosis of the condition and/or determination of its severity and complications. Trial registration ClinicalTrials.gov ID: NCT02940340.

  6. Electronic speckle pattern interferometry observation of brick–mortar interface behaviour under compression

    NARCIS (Netherlands)

    Vermeltfoort, A.T.; Martens, D.R.W; Zijl, van G.P.A.G.

    2007-01-01

    The brick–mortar interaction is important in the mechanical behaviour of masonry. It affects the load transfer considerably, as shown by detailed deformation measurements taken using electronic speckle pattern interferometry (ESPI), a laser speckle interference technique. A companion paper [Canadian

  7. 3D pressure imaging of an aircraft propeller blade-tip flow by phase-locked stereoscopic PIV

    Energy Technology Data Exchange (ETDEWEB)

    Ragni, D.; Oudheusden, B.W. van; Scarano, F. [Delft University of Technology, Faculty of Aerospace Engineering, Delft (Netherlands)

    2012-02-15

    The flow field at the tip region of a scaled DHC Beaver aircraft propeller, running at transonic speed, has been investigated by means of a multi-plane stereoscopic particle image velocimetry setup. Velocity fields, phase-locked with the blade rotational motion, are acquired across several planes perpendicular to the blade axis and merged to form a 3D measurement volume. Transonic conditions have been reached at the tip region, with a revolution frequency of 19,800 rpm and a relative free-stream Mach number of 0.73 at the tip. The pressure field and the surface pressure distribution are inferred from the 3D velocity data through integration of the momentum Navier-Stokes equation in differential form, allowing for the simultaneous flow visualization and the aerodynamic loads computation, with respect to a reference frame moving with the blade. The momentum and pressure data are further integrated by means of a contour-approach to yield the aerodynamic sectional force components as well as the blade torsional moment. A steady Reynolds averaged Navier-Stokes numerical simulation of the entire propeller model has been used for comparison to the measurement data. (orig.)

  8. 3D pressure imaging of an aircraft propeller blade-tip flow by phase-locked stereoscopic PIV

    Science.gov (United States)

    Ragni, D.; van Oudheusden, B. W.; Scarano, F.

    2012-02-01

    The flow field at the tip region of a scaled DHC Beaver aircraft propeller, running at transonic speed, has been investigated by means of a multi-plane stereoscopic particle image velocimetry setup. Velocity fields, phase-locked with the blade rotational motion, are acquired across several planes perpendicular to the blade axis and merged to form a 3D measurement volume. Transonic conditions have been reached at the tip region, with a revolution frequency of 19,800 rpm and a relative free-stream Mach number of 0.73 at the tip. The pressure field and the surface pressure distribution are inferred from the 3D velocity data through integration of the momentum Navier-Stokes equation in differential form, allowing for the simultaneous flow visualization and the aerodynamic loads computation, with respect to a reference frame moving with the blade. The momentum and pressure data are further integrated by means of a contour-approach to yield the aerodynamic sectional force components as well as the blade torsional moment. A steady Reynolds averaged Navier-Stokes numerical simulation of the entire propeller model has been used for comparison to the measurement data.

  9. Investigation of tilted dose kernels for portal dose prediction in a-Si electronic portal imagers

    International Nuclear Information System (INIS)

    Chytyk, K.; McCurdy, B. M. C.

    2006-01-01

    The effect of beam divergence on dose calculation via Monte Carlo generated dose kernels was investigated in an amorphous silicon electronic portal imaging device (EPID). The flat-panel detector was simulated in EGSnrc with an additional 3.0 cm water buildup. The model included details of the detector's imaging cassette and the front cover upstream of it. To approximate the effect of the EPID's rear housing, a 2.1 cm air gap and 1.0 cm water slab were introduced into the simulation as equivalent backscatter material. Dose kernels were generated with an incident pencil beam of monoenergetic photons of energy 0.1, 2, 6, and 18 MeV. The orientation of the incident pencil beam was varied from 0 deg. to 14 deg. in 2 deg. increments. Dose was scored in the phosphor layer of the detector in both cylindrical (at 0 deg. ) and Cartesian (at 0 deg. -14 deg.) geometries. To reduce statistical fluctuations in the Cartesian geometry simulations at large radial distances from the incident pencil beam, the voxels were first averaged bilaterally about the pencil beam and then combined into concentric square rings of voxels. Profiles of the EPID dose kernels displayed increasing asymmetry with increasing angle and energy. A comparison of the superposition (tilted kernels) and convolution (parallel kernels) dose calculation methods via the χ-comparison test (a derivative of the γ-evaluation) in worst-case-scenario geometries demonstrated an agreement between the two methods within 0.0784 cm (one pixel width) distance-to-agreement and up to a 1.8% dose difference. More clinically typical field sizes and source-to-detector distances were also tested, yielding at most a 1.0% dose difference and the same distance-to-agreement. Therefore, the assumption of parallel dose kernels has less than a 1.8% dosimetric effect in extreme cases and less than a 1.0% dosimetric effect in most clinically relevant situations and should be suitable for most clinical dosimetric applications. The

  10. Transjugular Intrahepatic Portosystemic Shunt (TIPS)

    Medline Plus

    Full Text Available ... the liver. A small metal device called a stent is placed to keep the connection open and ... a small, tubular metal device commonly called a stent . During a TIPS procedure, interventional radiologists use image ...

  11. Transjugular Intrahepatic Portosystemic Shunt (TIPS)

    Medline Plus

    Full Text Available ... the TIPS. top of page Additional Information and Resources Society of Interventional Radiology (SIR) - Patient Center This ... To locate a medical imaging or radiation oncology provider in your community, you can search the ACR- ...

  12. Influence of forming conditions on fiber tilt

    Science.gov (United States)

    David W. Vahey; John M. Considine; Michael A. and MacGregor

    2013-01-01

    Fiber tilt describes the projection of fiber length in the thickness direction of paper. The projection is described by the tilt angle of fibers with respect to the plane of the sheet. A simple model for fiber tilt is based on jet-to-wire velocity differential in combination with cross-flows on the wire. The tilt angle of a fiber is found to vary as the sine of its in-...

  13. Density of states in an optical speckle potential

    International Nuclear Information System (INIS)

    Falco, G. M.; Fedorenko, A. A.; Giacomelli, J.; Modugno, M.

    2010-01-01

    We study the single-particle density of states of a one-dimensional speckle potential, which is correlated and non-Gaussian. We consider both the repulsive and the attractive cases. The system is controlled by a single dimensionless parameter determined by the mass of the particle, the correlation length, and the average intensity of the field. Depending on the value of this parameter, the system exhibits different regimes, characterized by the localization properties of the eigenfunctions. We calculate the corresponding density of states using the statistical properties of the speckle potential. We find good agreement with the results of numerical simulations.

  14. Magnetic elements for switching magnetization magnetic force microscopy tips

    International Nuclear Information System (INIS)

    Cambel, V.; Elias, P.; Gregusova, D.; Martaus, J.; Fedor, J.; Karapetrov, G.; Novosad, V.

    2010-01-01

    Using combination of micromagnetic calculations and magnetic force microscopy (MFM) imaging we find optimal parameters for novel magnetic tips suitable for switching magnetization MFM. Switching magnetization MFM is based on two-pass scanning atomic force microscopy with reversed tip magnetization between the scans. Within the technique the sum of the scanned data with reversed tip magnetization depicts local atomic forces, while their difference maps the local magnetic forces. Here we propose the design and calculate the magnetic properties of tips suitable for this scanning probe technique. We find that for best performance the spin-polarized tips must exhibit low magnetic moment, low switching fields, and single-domain state at remanence. The switching field of such tips is calculated and optimum shape of the Permalloy elements for the tips is found. We show excellent correspondence between calculated and experimental results for Py elements.

  15. Characterization of metal-coated fiber tip for NSOM lithography by tip-to-tip scan

    International Nuclear Information System (INIS)

    Kubicova, I.; Pudis, D.; Suslik, L.; Skriniarova, J.

    2011-01-01

    For the optical field characterization, a tip-to-tip scan of two metal-coated fiber tips with circular aperture at the apex was performed. The optical field irradiated from the fiber probe in illumination mode was analyzed by NSOM represented by fiber probe in collection mode. The near-field intensity profile of the source fiber tip in the plane perpendicular to the axis of the tip was taken. Experimental stage requires high resolution 3D motion system controlled by computer (Fig. 1). The source and the detector fiber tip were placed on the moving and static part of the 3D nanoposition system, respectively. As a light source, a modulated 473 nm DPSS laser was used. After the source fiber tip characterization, the NSOM lithography was performed. In the experimental setup from Fig. 1, the detector fiber tip was replaced by a sample fixed in a vacuum holder. As a sample, a 600 nm positive photoresist AZ 5214E was spin-coated on a GaAs substrate. Exposure was carried out by irradiation of the sample at desired positions through the fiber tip aperture. The sample was developed in AZ 400K developer for 30 s and rinsed in DI water. A promising tip-to-tip scanning technique for characterization of metal-coated fiber tips with aperture at the apex was presented. Nearly-circular aperture shapes were documented from NSOM measurements with diameter estimated to be less than 460 nm. By knowing the source-detector distance and the FWHM of the near-field intensity profile, the tip-to-tip scan proves an easy and fast method to analyze the fiber tip aperture properties. The fiber tip resolution was confirmed by preparation of 2D planar structures in thin photoresist layer, where the NSOM lithography uses the metal-coated fiber tip characterized in previous section. (authors)

  16. Light extinction method on high-pressure diesel injection

    Science.gov (United States)

    Su, Tzay-Fa; El-Beshbeeshy, Mahmound S.; Corradini, Michael L.; Farrell, Patrick V.

    1995-09-01

    A two dimensional optical diagnostic technique based on light extinction was improved and demonstrated in an investigation of diesel spray characteristics at high injection pressures. Traditional light extinction methods require the spray image to be perpendicular to the light path. In the improved light extinction scheme, a tilted spray image which has an angle with the light path is still capable of being processed. This technique utilizes high speed photography and digital image analysis to obtain qualitative and quantitative information of the spray characteristics. The injection system used was an electronically controlled common rail unit injector system with injection pressures up to 100 MPa. The nozzle of the injector was a mini-sac type with six holes on the nozzle tip. Two different injection angle nozzles, 125 degree(s) and 140 degree(s), producing an in-plane tilted spray and an out of plane tilted spray were investigated. The experiments were conducted on a constant volume spray chamber with the injector mounted tilted at an angle of 62.5 degree(s)$. Only one spray plume was viewed, and other sprays were free to inject to the chamber. The spray chamber was pressurized with argon and air under room temperature to match the combustion chamber density at the start of the injection. The experimental results show that the difference in the spray tip penetration length, spray angle, and overall average Sauter mean diameter is small between the in- plane tilted spray and the out of plane tilted spray. The results also show that in-plane tilted spray has a slightly larger axial cross- section Sauter mean diameter than the out of plane tilted spray.

  17. Investigation of Portevin-Le Chatelier band with temporal phase analysis of speckle interferometry

    Science.gov (United States)

    Jiang, Zhenyu; Zhang, Qingchuan; Wu, Xiaoping

    2003-04-01

    A new method combining temporal phase analysis with dynamic digital speckle pattern interferometry is proposed to study Portevin-Le Chatelier effect quantitatively. The principle bases on that the phase difference of interference speckle patterns is a time-dependent function related to the object deformation. The interference speckle patterns of specimen are recorded with high sampling rate while PLC effect occurs, and the 2D displacement map of PLC band and its width are obtained by analyzing the displacement of specimen with proposed method.

  18. Analysis of strain in reinforced concrete components by laser speckle photography

    International Nuclear Information System (INIS)

    Gross, K.P.

    1982-01-01

    Laser speckle photography is an optical process for non-contact measurement of strain in a plane at right angles to the axis of the optical system. The material composition and relief of the surface of a test sample have a great effect on the applicability of the process. Bodies with too smooth or too rough surfaces, and bodies of a transparent structure (salt bearing rocks) cannot be examined by speckle photography without previous surface treatment. The principle of the process and its application to the examination of reinforced concrete components is described. The capability of speckle photography, the accuracy of measurement which can be achieved and possible sources of error are discussed. (orig./RW) [de

  19. Tilting mode in field-reversed configurations

    International Nuclear Information System (INIS)

    Schwarzmeier, J.L.; Barnes, D.C.; Lewis, H.R.; Seyler, C.E.; Shestakov, A.I.

    1982-01-01

    Field Reversed Configurations (FRCs) experimentally have exhibited remarkable stability on the magnetohydrodynamic (MHD) timescale, despite numerous MHD calculations showing FRCs to be unstable. It is easy to believe that local modes are stabilized by finite Larmor radius (FLR) effects, but more puzzling is the apparent stability of FRCs against global modes, where one would expect FLR effects to be less important. In this paper we study the tilting mode, which MHD has shown to be a rapidly growing global mode. The tilting mode in FRCs is driven by the pressure gradient, and magnetic compression and field line bending are the stabilizing forces. A schematic of the evolution of the tilting mode is shown. The tilting mode is considered dangerous, because it would lead to rapid tearing across the separatrix. Unlike spheromaks, the tilting mode in FRCs has a separatrix that is fixed in space, so that the mode is strictly internal

  20. A mobile communication device adapted to provide a dynamic display arrangement

    DEFF Research Database (Denmark)

    2011-01-01

    The invention relates to a mobile communication device comprising a light projector adapted to project a multi-coloured image onto a surface; a hinged mirror comprising a first mirror part adapted to be tilted around the hinge into the light path of the light projector; wherein the first mirror...... part comprises means for correcting a skew angle in the multi-coloured image projected onto a surface. Thereby is achieved that the mobile communication device is able to provide RGB full colour dynamic image projection which is preferred over monochromatic laser projection because it is a speckle free...... and eye-friendly projection....

  1. Edge detection of magnetic anomalies using analytic signal of tilt angle (ASTA)

    Science.gov (United States)

    Alamdar, K.; Ansari, A. H.; Ghorbani, A.

    2009-04-01

    Magnetic is a commonly used geophysical technique to identify and image potential subsurface targets. Interpretation of magnetic anomalies is a complex process due to the superposition of multiple magnetic sources, presence of geologic and cultural noise and acquisition and positioning error. Both the vertical and horizontal derivatives of potential field data are useful; horizontal derivative, enhance edges whereas vertical derivative narrow the width of anomaly and so locate source bodies more accurately. We can combine vertical and horizontal derivative of magnetic field to achieve analytic signal which is independent to body magnetization direction and maximum value of this lies over edges of body directly. Tilt angle filter is phased-base filter and is defined as angle between vertical derivative and total horizontal derivative. Tilt angle value differ from +90 degree to -90 degree and its zero value lies over body edge. One of disadvantage of this filter is when encountering with deep sources the detected edge is blurred. For overcome this problem many authors introduced new filters such as total horizontal derivative of tilt angle or vertical derivative of tilt angle which Because of using high-order derivative in these filters results may be too noisy. If we combine analytic signal and tilt angle, a new filter termed (ASTA) is produced which its maximum value lies directly over body edge and is easer than tilt angle to delineate body edge and no complicity of tilt angle. In this work new filter has been demonstrated on magnetic data from an area in Sar- Cheshme region in Iran. This area is located in 55 degree longitude and 32 degree latitude and is a copper potential region. The main formation in this area is Andesith and Trachyandezite. Magnetic surveying was employed to separate the boundaries of Andezite and Trachyandezite from adjacent area. In this regard a variety of filters such as analytic signal, tilt angle and ASTA filter have been applied which

  2. Multi-angle compound imaging

    DEFF Research Database (Denmark)

    Jespersen, Søren Kragh; Wilhjelm, Jens Erik; Sillesen, Henrik

    1998-01-01

    This paper reports on a scanning technique, denoted multi-angle compound imaging (MACI), using spatial compounding. The MACI method also contains elements of frequency compounding, as the transmit frequency is lowered for the highest beam angles in order to reduce grating lobes. Compared to conve......This paper reports on a scanning technique, denoted multi-angle compound imaging (MACI), using spatial compounding. The MACI method also contains elements of frequency compounding, as the transmit frequency is lowered for the highest beam angles in order to reduce grating lobes. Compared...... to conventional B-mode imaging MACI offers better defined tissue boundaries and lower variance of the speckle pattern, resulting in an image with reduced random variations. Design and implementation of a compound imaging system is described, images of rubber tubes and porcine aorta are shown and effects...... on visualization are discussed. The speckle reduction is analyzed numerically and the results are found to be in excellent agreement with existing theory. An investigation of detectability of low-contrast lesions shows significant improvements compared to conventional imaging. Finally, possibilities for improving...

  3. SAR image regularization with fast approximate discrete minimization.

    Science.gov (United States)

    Denis, Loïc; Tupin, Florence; Darbon, Jérôme; Sigelle, Marc

    2009-07-01

    Synthetic aperture radar (SAR) images, like other coherent imaging modalities, suffer from speckle noise. The presence of this noise makes the automatic interpretation of images a challenging task and noise reduction is often a prerequisite for successful use of classical image processing algorithms. Numerous approaches have been proposed to filter speckle noise. Markov random field (MRF) modelization provides a convenient way to express both data fidelity constraints and desirable properties of the filtered image. In this context, total variation minimization has been extensively used to constrain the oscillations in the regularized image while preserving its edges. Speckle noise follows heavy-tailed distributions, and the MRF formulation leads to a minimization problem involving nonconvex log-likelihood terms. Such a minimization can be performed efficiently by computing minimum cuts on weighted graphs. Due to memory constraints, exact minimization, although theoretically possible, is not achievable on large images required by remote sensing applications. The computational burden of the state-of-the-art algorithm for approximate minimization (namely the alpha -expansion) is too heavy specially when considering joint regularization of several images. We show that a satisfying solution can be reached, in few iterations, by performing a graph-cut-based combinatorial exploration of large trial moves. This algorithm is applied to joint regularization of the amplitude and interferometric phase in urban area SAR images.

  4. Alteration of Blood Flow in a Venular Network by Infusion of Dextran 500: Evaluation with a Laser Speckle Contrast Imaging System.

    Science.gov (United States)

    Namgung, Bumseok; Ng, Yan Cheng; Nam, Jeonghun; Leo, Hwa Liang; Kim, Sangho

    2015-01-01

    This study examined the effect of dextran-induced RBC aggregation on the venular flow in microvasculature. We utilized the laser speckle contrast imaging (LSCI) as a wide-field imaging technique to visualize the flow distribution in venules influenced by abnormally elevated levels of RBC aggregation at a network-scale level, which was unprecedented in previous studies. RBC aggregation in rats was induced by infusing Dextran 500. To elucidate the impact of RBC aggregation on microvascular perfusion, blood flow in the venular network of a rat cremaster muscle was analyzed with a stepwise reduction of the arterial pressure (100 → 30 mmHg). The LSCI analysis revealed a substantial decrease in the functional vascular density after the infusion of dextran. The relative decrease in flow velocity after dextran infusion was notably pronounced at low arterial pressures. Whole blood viscosity measurements implied that the reduction in venular flow with dextran infusion could be due to the elevation of medium viscosity in high shear conditions (> 45 s-1). In contrast, further augmentation to the flow reduction at low arterial pressures could be attributed to the formation of RBC aggregates (networks.

  5. Developing and setting up optical methods to study the speckle patterns created by optical beam smoothing

    International Nuclear Information System (INIS)

    Surville, J.

    2005-12-01

    We have developed three main optical methods to study the speckles generated by a smoothed laser source. The first method addresses the measurement of the temporal and spatial correlation functions of the source, with a modified Michelson interferometer. The second one is a pump-probe technique created to shoot a picture of a speckle pattern generated at a set time. And the third one is an evolution of the second method dedicated to time-frequency coding, thanks to a frequency chirped probe pulse. Thus, the speckles can be followed in time and their motion can be described. According to these three methods, the average size and duration of the speckles can be measured. It is also possible to measure the size and the duration of each of them and mostly their velocity in a given direction. All the results obtained have been confronted to the different existing theories. We show that the statistical distributions of the measured speckles'size and speckles'intensity agree satisfactorily with theoretical values

  6. Speckle tracking analysis: a new tool for left atrial function analysis in systemic hypertension: an overview.

    Science.gov (United States)

    Cameli, Matteo; Ciccone, Marco M; Maiello, Maria; Modesti, Pietro A; Muiesan, Maria L; Scicchitano, Pietro; Novo, Salvatore; Palmiero, Pasquale; Saba, Pier S; Pedrinelli, Roberto

    2016-05-01

    Speckle tracking echocardiography (STE) is an imaging technique applied to the analysis of left atrial function. STE provides a non-Doppler, angle-independent and objective quantification of left atrial myocardial deformation. Data regarding feasibility, accuracy and clinical applications of left atrial strain are rapidly gathering. This review describes the fundamental concepts of left atrial STE, illustrates its pathophysiological background and discusses its emerging role in systemic arterial hypertension.

  7. HIGH-SPEED IMAGING AND WAVEFRONT SENSING WITH AN INFRARED AVALANCHE PHOTODIODE ARRAY

    Energy Technology Data Exchange (ETDEWEB)

    Baranec, Christoph; Atkinson, Dani; Hall, Donald; Jacobson, Shane; Chun, Mark [Institute for Astronomy, University of Hawai‘i at Mānoa, Hilo, HI 96720-2700 (United States); Riddle, Reed [Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Law, Nicholas M., E-mail: baranec@hawaii.edu [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255 (United States)

    2015-08-10

    Infrared avalanche photodiode (APD) arrays represent a panacea for many branches of astronomy by enabling extremely low-noise, high-speed, and even photon-counting measurements at near-infrared wavelengths. We recently demonstrated the use of an early engineering-grade infrared APD array that achieves a correlated double sampling read noise of 0.73 e{sup −} in the lab, and a total noise of 2.52 e{sup −} on sky, and supports simultaneous high-speed imaging and tip-tilt wavefront sensing with the Robo-AO visible-light laser adaptive optics (AO) system at the Palomar Observatory 1.5 m telescope. Here we report on the improved image quality simultaneously achieved at visible and infrared wavelengths by using the array as part of an image stabilization control loop with AO-sharpened guide stars. We also discuss a newly enabled survey of nearby late M-dwarf multiplicity, as well as future uses of this technology in other AO and high-contrast imaging applications.

  8. Holographic interferometry and laser speckle photography as aids to assessment of pressurised components

    International Nuclear Information System (INIS)

    Martin, D.J.V.

    1975-01-01

    This summary gives defect detection holographic technique and describes laser speckle photography to evaluate in-plane movement and strain in pressurized components and conclusions. In holography no lens is used, coherent light is reflected from all points of an object to all parts of a photosensitive surface, such as a photographic plate, simultaneously light of the same wave length and coherence is made to illuminate at a different angle the same plate. These two beams, the object and the reference, cause primary fringes. The developed plate when illuminated with the reference reconstructs the original object in three dimensions. If a double exposure is made on the same plate and if parts of the object have moved between exposure the reconstructed object will be lined with secondary fringes, each fringe representing displacement down the line of sight of one wavelength of the light used. Speckle photography is the same as conventional photography excepting, that instead of using daylight or a flash lamp a coherent light beam is used. Minute points on the object illuminated by divergent laser beam act as point sources of light giving the surface a speckled appearance. In speckle photography a camera records on the plate the object and speckles. A double exposure taken on the same plate when the object has moved between exposures will, after development, when illuminated with the laser beam from Youngs fringes. Speckles and fringes are related to points on the object therefore it is possible to obtain movement and strain. The holographic tests show that it is possible to detect on the outside of tube defects in the bore approximately 10% of thickness deep. Speckle photography gives object lateral movement, direction and strain

  9. Noncontact 3-D Speckle Contrast Diffuse Correlation Tomography of Tissue Blood Flow Distribution.

    Science.gov (United States)

    Huang, Chong; Irwin, Daniel; Zhao, Mingjun; Shang, Yu; Agochukwu, Nneamaka; Wong, Lesley; Yu, Guoqiang

    2017-10-01

    Recent advancements in near-infrared diffuse correlation techniques and instrumentation have opened the path for versatile deep tissue microvasculature blood flow imaging systems. Despite this progress there remains a need for a completely noncontact, noninvasive device with high translatability from small/testing (animal) to large/target (human) subjects with trivial application on both. Accordingly, we discuss our newly developed setup which meets this demand, termed noncontact speckle contrast diffuse correlation tomography (nc_scDCT). The nc_scDCT provides fast, continuous, portable, noninvasive, and inexpensive acquisition of 3-D tomographic deep (up to 10 mm) tissue blood flow distributions with straightforward design and customization. The features presented include a finite-element-method implementation for incorporating complex tissue boundaries, fully noncontact hardware for avoiding tissue compression and interactions, rapid data collection with a diffuse speckle contrast method, reflectance-based design promoting experimental translation, extensibility to related techniques, and robust adjustable source and detector patterns and density for high resolution measurement with flexible regions of interest enabling unique application-specific setups. Validation is shown in the detection and characterization of both high and low contrasts in flow relative to the background using tissue phantoms with a pump-connected tube (high) and phantom spheres (low). Furthermore, in vivo validation of extracting spatiotemporal 3-D blood flow distributions and hyperemic response during forearm cuff occlusion is demonstrated. Finally, the success of instrument feasibility in clinical use is examined through the intraoperative imaging of mastectomy skin flap.

  10. Micro-raman and tip-enhanced raman spectroscopy of carbon allotropes

    NARCIS (Netherlands)

    Hoffmann, G.G.; With, de G.; Loos, J.

    2008-01-01

    Raman spectroscopic data are obtained on various carbon allotropes like diamond, amorphous carbon, graphite, graphene and single wall carbon nanotubes by micro-Raman spectroscopy, tip-enhanced Raman spectroscopy and tip-enhanced Raman spectroscopy imaging, and the potentials of these techniques for

  11. Quantitative analysis of tip-sample interaction in non-contact scanning force spectroscopy

    International Nuclear Information System (INIS)

    Palacios-Lidon, Elisa; Colchero, Jaime

    2006-01-01

    Quantitative characterization of tip-sample interaction in scanning force microscopy is fundamental for optimum image acquisition as well as data interpretation. In this work we discuss how to characterize the electrostatic and van der Waals contribution to tip-sample interaction in non-contact scanning force microscopy precisely. The spectroscopic technique presented is based on the simultaneous measurement of cantilever deflection, oscillation amplitude and frequency shift as a function of tip-sample voltage and tip-sample distance as well as on advanced data processing. Data are acquired at a fixed lateral position as interaction images, with the bias voltage as fast scan, and tip-sample distance as slow scan. Due to the quadratic dependence of the electrostatic interaction with tip-sample voltage the van der Waals force can be separated from the electrostatic force. Using appropriate data processing, the van der Waals interaction, the capacitance and the contact potential can be determined as a function of tip-sample distance. The measurement of resonance frequency shift yields very high signal to noise ratio and the absolute calibration of the measured quantities, while the acquisition of cantilever deflection allows the determination of the tip-sample distance

  12. Detection of radiation deformation in crystalline polymers using the speckle photography technique

    International Nuclear Information System (INIS)

    El-Ghandoor, H.; Hashem, A.A.; Sharaf, F.

    1995-01-01

    In order to measure the resulting deformation due to gamma irradiation of polymers, a new optical technique, namely speckle-photography, was established and used. Thin films of tetrafluoroethene, with constant thickness were irradiated by different doses of gamma rays and the diffraction patterns of a laser beam passing through these films were recorded using the speckle photography technique. This technique has been applied to detect the radiation deformation in (Teflon) TFE, which is a crystalline polymer. A diffraction pattern due to the TFE thin layer is obtained and superimposed on the interference pattern displaying the speckle pattern pairs recorded on the same emulsion. (author)

  13. An improved triangulation laser rangefinder using a custom CMOS HDR linear image sensor

    Science.gov (United States)

    Liscombe, Michael

    3-D triangulation laser rangefinders are used in many modern applications, from terrain mapping to biometric identification. Although a wide variety of designs have been proposed, laser speckle noise still provides a fundamental limitation on range accuracy. These works propose a new triangulation laser rangefinder designed specifically to mitigate the effects of laser speckle noise. The proposed rangefinder uses a precision linear translator to laterally reposition the imaging system (e.g., image sensor and imaging lens). For a given spatial location of the laser spot, capturing N spatially uncorrelated laser spot profiles is shown to improve range accuracy by a factor of N . This technique has many advantages over past speckle-reduction technologies, such as a fixed system cost and form factor, and the ability to virtually eliminate laser speckle noise. These advantages are made possible through spatial diversity and come at the cost of increased acquisition time. The rangefinder makes use of the ICFYKWG1 linear image sensor, a custom CMOS sensor developed at the Vision Sensor Laboratory (York University). Tests are performed on the image sensor's innovative high dynamic range technology to determine its effects on range accuracy. As expected, experimental results have shown that the sensor provides a trade-off between dynamic range and range accuracy.

  14. Study and Sub-System Optimization of Propulsion and Drive Systems for the Large Civil TiltRotor (LCTR2) Rotorcraft

    Science.gov (United States)

    Robuck, Mark; Wilkerson, Joseph; Snyder, Christopher A.; Zhang, Yiyi; Maciolek, Bob

    2013-01-01

    In a series of study tasks conducted as a part of NASA's Fundamental Aeronautics Program, Rotary Wing Project, Boeing and Rolls-Royce explored propulsion, drive, and rotor system options for the NASA Large Civil Tilt Rotor (LCTR2) concept vehicle. The original objective of this study was to identify engine and drive system configurations to reduce rotor tip speed during cruise conditions and quantify the associated benefits. Previous NASA studies concluded that reducing rotor speed (from 650 fps hover tip speed) during cruise would reduce vehicle gross weight and fuel burn. Initially, rotor cruise speed ratios of 54% of the hover tip speed were of most interest during operation at cruise air speed of 310 ktas. Interim results were previously reported1 for cruise tip speed ratios of 100%, 77%, and 54% of the hover tip speed using engine and/or gearbox features to achieve the reduction. Technology levels from commercial off-the-shelf (COTS), through entry-in-service (EIS) dates of 2025 and 2035 were considered to assess the benefits of advanced technology on vehicle gross weight and fuel burn. This technical paper presents the final study results in terms of vehicle sizing and fuel burn as well as Operational and Support (O&S) costs. New vehicle sizing at rotor tip speed reduced to 65% of hover is presented for engine performance with an EIS 2035 fixed geometry variable speed power turbine. LCTR2 is also evaluated for missions range cases of 400, 600, 800, 1000, and 1200 nautical miles and cruise air speeds of 310, 350 and 375 ktas.

  15. Early detection and treatment of Speckled leukoplakia

    Directory of Open Access Journals (Sweden)

    Selviana Tampoma

    2016-12-01

    Full Text Available Background: Leukoplakia is one of potentially malignant disorders that can be found on oral mucosa. Speckled leukoplakia is a rare type of leukoplakia with a very high risk of premalignant growth. Approximately 3 % of worldwide population has suffered from leukoplakia, 5-25% of which tend to be malignant leukoplakia. Purpose: This case report was aimed to discuss about early detection of speckled leukoplakia as one of potentially malignant disorders. Case: A 62 year old male patient came with chief complaint of bald and painful tongue since one month ago. The patient has a history of allergic reaction, hypertension, uric acid, and hepatitis B. He had been a heavy smoker since young until 10 years ago. Intra oral examination showed a firm, rough, non scrapable white plaque lesion with a size of 1 x 1.5 cm, surrounded by painful erosion with diffuse boundary. Case Management: Based on cytology examination, the patient was reffered to oncologist to get an excisional biopsy. Next, the patient succesfully underwent the excisional biopsy and came for control. The results showed the healing process of the lesion with a minimal complaint of bald tongue, especially when eating spicy or hot meal. To improve healing process, the patient then was given an antibacterial mouth rinse containing zinc and mulvitamin. Conclusion: Speckled leukoplakia could show high malignant transformation rate, therefore, early detection and treatment are necessary.

  16. Speckle-based off-axis holographic detection for non-contact photoacoustic tomography

    Directory of Open Access Journals (Sweden)

    Buj C.

    2015-09-01

    Full Text Available A very fast innovative holographic off-axis non-contact detection method for Photoacoustic Tomography (PAT is introduced. It overcomes the main problems of most state-of-the-art photoacoustic imaging approaches that are long acquisition times and the requirement of acoustic contact. In order to increase the acquisition speed significantly, the surface displacements of the object, caused by the photoacoustic pressure waves, are measured interferometrically in two dimensions. Phase alterations in the observed speckle field are used to identify changes in the object’s topography. A sampling rate of up to 80 MHz is feasible, which reduces the occurrence of motion artefacts.

  17. Tip opening of premixed bunsen flames: Extinction with negative stretch and local Karlovitz number

    KAUST Repository

    Vu, Tranmanh; Cha, Min; Lee, Byeongjun; Chung, Suk-Ho

    2015-01-01

    The characteristics of tip openings in premixed bunsen flames have been studied experimentally by measuring OH radicals from laser-induced fluorescence and tip curvatures from chemiluminescent images. Results showed that the tip opening occurred

  18. Wavefront Control and Image Restoration with Less Computing

    Science.gov (United States)

    Lyon, Richard G.

    2010-01-01

    PseudoDiversity is a method of recovering the wavefront in a sparse- or segmented- aperture optical system typified by an interferometer or a telescope equipped with an adaptive primary mirror consisting of controllably slightly moveable segments. (PseudoDiversity should not be confused with a radio-antenna-arraying method called pseudodiversity.) As in the cases of other wavefront- recovery methods, the streams of wavefront data generated by means of PseudoDiversity are used as feedback signals for controlling electromechanical actuators of the various segments so as to correct wavefront errors and thereby, for example, obtain a clearer, steadier image of a distant object in the presence of atmospheric turbulence. There are numerous potential applications in astronomy, remote sensing from aircraft and spacecraft, targeting missiles, sighting military targets, and medical imaging (including microscopy) through such intervening media as cells or water. In comparison with prior wavefront-recovery methods used in adaptive optics, PseudoDiversity involves considerably simpler equipment and procedures and less computation. For PseudoDiversity, there is no need to install separate metrological equipment or to use any optomechanical components beyond those that are already parts of the optical system to which the method is applied. In Pseudo- Diversity, the actuators of a subset of the segments or subapertures are driven to make the segments dither in the piston, tilt, and tip degrees of freedom. Each aperture is dithered at a unique frequency at an amplitude of a half wavelength of light. During the dithering, images on the focal plane are detected and digitized at a rate of at least four samples per dither period. In the processing of the image samples, the use of different dither frequencies makes it possible to determine the separate effects of the various dithered segments or apertures. The digitized image-detector outputs are processed in the spatial

  19. Theoretical investigations on dual-beam illumination electronic speckle pattern interferometry

    International Nuclear Information System (INIS)

    Goudemand, Nicolas

    2006-01-01

    Contrary to what is found in most of the existing scientific literature,where a specific frame is developed, the theory of speckle interferometry is (conveniently) presented here as a particular case of the more general theory of holographic interferometry. In addition to the intellectual benefit of dealing with a single unified theory, this brings about many advantages when it comes to discuss fundamental topics such as the three-dimensional evolution of the complex amplitude of the diffuse optical wave fronts, the degree of approximation of the leading formulas, the loss of fringe contrast,the decorrelation effects, the real influence of the terms generally neglected in out-of-focus regions. In the same way, the statistical properties of the speckle fields, usually treated as a separate subject matter, are also integrated in the theory, thus providing a comprehensive knowledge of the qualitative features of speckle interferometry methods, otherwise difficult to understand

  20. Theoretical investigations on dual-beam illumination electronic speckle pattern interferometry

    Science.gov (United States)

    Goudemand, Nicolas

    2006-07-01

    Contrary to what is found in most of the existing scientific literature, where a specific frame is developed, the theory of speckle interferometry is (conveniently) presented here as a particular case of the more general theory of holographic interferometry. In addition to the intellectual benefit of dealing with a single unified theory, this brings about many advantages when it comes to discuss fundamental topics such as the three-dimensional evolution of the complex amplitude of the diffuse optical wavefronts, the degree of approximation of the leading formulas, the loss of fringe contrast, the decorrelation effects, the real influence of the terms generally neglected in out-of-focus regions. In the same way, the statistical properties of the speckle fields, usually treated as a separate subject matter, are also integrated in the theory, thus providing a comprehensive knowledge of the qualitative features of speckle interferometry methods, otherwise difficult to understand.

  1. Design Study of Propulsion and Drive Systems for the Large Civil TiltRotor (LCTR2) Rotorcraft

    Science.gov (United States)

    Robuck, Mark; Wilkerson, Joseph; Zhang, Yiyi; Snyder, Christopher A.; Vonderwell, Daniel

    2013-01-01

    Boeing, Rolls Royce, and NASA have worked together to complete a parametric sizing study for NASA's Large Civil Tilt Rotor (LCTR2) concept 2nd iteration. Vehicle gross weight and fuel usage were evaluated as propulsion and drive system characteristics were varied to maximize the benefit of reduced rotor tip speed during cruise conditions. The study examined different combinations of engine and gearbox variability to achieve rotor cruise tip speed reductions down to 54% of the hover tip speed. Previous NASA studies identified that a 54% rotor speed reduction in cruise minimizes vehicle gross weight and fuel burn. The LCTR2 was the study baseline for initial sizing. This study included rotor tip speed ratios (cruise to hover) of 100%, 77% and 54% at different combinations of engine RPM and gearbox speed reductions, which were analyzed to achieve the lightest overall vehicle gross weight (GW) at the chosen rotor tip speed ratio. Different engine and gearbox technology levels are applied ranging from commercial off-the-shelf (COTS) engines and gearbox technology to entry-in-service (EIS) dates of 2025 and 2035 to assess the benefits of advanced technology on vehicle gross weight and fuel burn. Interim results were previously reported1. This technical paper extends that work and summarizes the final study results including additional engine and drive system study accomplishments. New vehicle sizing data is presented for engine performance at a single operating speed with a multispeed drive system. Modeling details for LCTR2 vehicle sizing and subject engine and drive sub-systems are presented as well. This study was conducted in support of NASA's Fundamental Aeronautics Program, Subsonic Rotary Wing Project.

  2. Single particle and molecular assembly analysis of polyribosomes by single- and double-tilt cryo electron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Myasnikov, Alexander G. [IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Department of Integrative Structural Biology, Centre National de la Recherche Scientifique (CNRS) UMR 7104/ Institut National de la Santé de la Recherche Médicale INSERM U964/ Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch (France); Afonina, Zhanna A. [Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region (Russian Federation); Klaholz, Bruno P., E-mail: klaholz@igbmc.fr [IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Department of Integrative Structural Biology, Centre National de la Recherche Scientifique (CNRS) UMR 7104/ Institut National de la Santé de la Recherche Médicale INSERM U964/ Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch (France)

    2013-03-15

    Cryo electron tomography (cryo-ET) can provide cellular and molecular structural information on various biological samples. However, the detailed interpretation of tomograms reconstructed from single-tilt data tends to suffer from low signal-to-noise ratio and artefacts caused by some systematically missing angular views. While these can be overcome by sub-tomogram averaging, they remain limiting for the analysis of unique structures. Double-tilt ET can improve the tomogram quality by acquiring a second tilt series after an in-plane rotation, but its usage is not widespread yet because it is considered technically demanding and it is rarely used under cryo conditions. Here we show that double-tilt cryo-ET improves the quality of 3D reconstructions so significantly that even single particle analysis can be envisaged despite of the intrinsically low image contrast obtained from frozen-hydrated specimens. This is illustrated by the analysis of eukaryotic polyribosomes in which individual ribosomes were reconstructed using single-tilt, partial and full double-tilt geometries. The improved tomograms favour the faster convergence of iterative sub-tomogram averaging and allow a better 3D classification using multivariate statistical analysis. Our study of single particles and molecular assemblies within polysomes illustrates that the dual-axis approach is particularly useful for cryo applications of ET, both for unique objects and for structures that can be classified and averaged. - Highlights: ► Double-tilt cryo-ET improves 3D reconstructions thus making single particle analysis possible. ► Dual-axis cryo-ET data favour a faster convergence of iterative sub-tomogram averaging. ► Individual ribosomes were reconstructed from single-tilt, partial/ full double-tilt geometries. ► Double-tilt cryo-ET facilitates analysis of larger molecular assemblies such as in cell sections. ► Dual-axis cryo-ET is applicable to unique objects and to structures that can be

  3. Tandem-pulsed acousto-optics: an analytical framework of modulated high-contrast speckle patterns

    NARCIS (Netherlands)

    Resink, Steffen; Steenbergen, Wiendelt

    2015-01-01

    Recently we presented acousto-optic (AO) probing of scattering media using addition or subtraction of speckle patterns due to tandem nanosecond pulses. Here we present a theoretical framework for ideal (polarized, noise-free) speckle patterns with unity contrast that links ultrasound-induced optical

  4. Statistical model for OCT image denoising

    KAUST Repository

    Li, Muxingzi; Idoughi, Ramzi; Choudhury, Biswarup; Heidrich, Wolfgang

    2017-01-01

    Optical coherence tomography (OCT) is a non-invasive technique with a large array of applications in clinical imaging and biological tissue visualization. However, the presence of speckle noise affects the analysis of OCT images and their diagnostic

  5. Image pre-filtering for measurement error reduction in digital image correlation

    Science.gov (United States)

    Zhou, Yihao; Sun, Chen; Song, Yuntao; Chen, Jubing

    2015-02-01

    In digital image correlation, the sub-pixel intensity interpolation causes a systematic error in the measured displacements. The error increases toward high-frequency component of the speckle pattern. In practice, a captured image is usually corrupted by additive white noise. The noise introduces additional energy in the high frequencies and therefore raises the systematic error. Meanwhile, the noise also elevates the random error which increases with the noise power. In order to reduce the systematic error and the random error of the measurements, we apply a pre-filtering to the images prior to the correlation so that the high-frequency contents are suppressed. Two spatial-domain filters (binomial and Gaussian) and two frequency-domain filters (Butterworth and Wiener) are tested on speckle images undergoing both simulated and real-world translations. By evaluating the errors of the various combinations of speckle patterns, interpolators, noise levels, and filter configurations, we come to the following conclusions. All the four filters are able to reduce the systematic error. Meanwhile, the random error can also be reduced if the signal power is mainly distributed around DC. For high-frequency speckle patterns, the low-pass filters (binomial, Gaussian and Butterworth) slightly increase the random error and Butterworth filter produces the lowest random error among them. By using Wiener filter with over-estimated noise power, the random error can be reduced but the resultant systematic error is higher than that of low-pass filters. In general, Butterworth filter is recommended for error reduction due to its flexibility of passband selection and maximal preservation of the allowed frequencies. Binomial filter enables efficient implementation and thus becomes a good option if computational cost is a critical issue. While used together with pre-filtering, B-spline interpolator produces lower systematic error than bicubic interpolator and similar level of the random

  6. Three-Dimensional Dynamic Deformation Measurements Using Stereoscopic Imaging and Digital Speckle Photography

    International Nuclear Information System (INIS)

    Prentice, H. J.; Proud, W. G.

    2006-01-01

    A technique has been developed to determine experimentally the three-dimensional displacement field on the rear surface of a dynamically deforming plate. The technique combines speckle analysis with stereoscopy, using a modified angular-lens method: this incorporates split-frame photography and a simple method by which the effective lens separation can be adjusted and calibrated in situ. Whilst several analytical models exist to predict deformation in extended or semi-infinite targets, the non-trivial nature of the wave interactions complicates the generation and development of analytical models for targets of finite depth. By interrogating specimens experimentally to acquire three-dimensional strain data points, both analytical and numerical model predictions can be verified more rigorously. The technique is applied to the quasi-static deformation of a rubber sheet and dynamically to Mild Steel sheets of various thicknesses

  7. Accelerated numerical processing of electronically recorded holograms with reduced speckle noise.

    Science.gov (United States)

    Trujillo, Carlos; Garcia-Sucerquia, Jorge

    2013-09-01

    The numerical reconstruction of digitally recorded holograms suffers from speckle noise. An accelerated method that uses general-purpose computing in graphics processing units to reduce that noise is shown. The proposed methodology utilizes parallelized algorithms to record, reconstruct, and superimpose multiple uncorrelated holograms of a static scene. For the best tradeoff between reduction of the speckle noise and processing time, the method records, reconstructs, and superimposes six holograms of 1024 × 1024 pixels in 68 ms; for this case, the methodology reduces the speckle noise by 58% compared with that exhibited by a single hologram. The fully parallelized method running on a commodity graphics processing unit is one order of magnitude faster than the same technique implemented on a regular CPU using its multithreading capabilities. Experimental results are shown to validate the proposal.

  8. X-ray speckle contrast variation at a sample-specific absorption edges

    International Nuclear Information System (INIS)

    Retsch, C. C.; Wang, Y.; Frigo, S. P.; Stephenson, G. B.; McNulty, I.

    2000-01-01

    The authors measured static x-ray speckle contrast variation with the incident photon energy across sample-specific absorption edges. They propose that the variation depends strongly on the spectral response function of the monochromator. Speckle techniques have been introduced to the x-ray regime during recent years. Most of these experiments, however, were done at photon energies above 5 keV. They are working on this technique in the 1 to 4 keV range, an energy range that includes many important x-ray absorption edges, e.g., in Al, Si, P, S, the rare-earths, and others. To their knowledge, the effect of absorption edges on speckle contrast has not yet been studied. In this paper, they present their initial measurements and understanding of the observed phenomena

  9. Fabrication of silver tips for scanning tunneling microscope induced luminescence.

    Science.gov (United States)

    Zhang, C; Gao, B; Chen, L G; Meng, Q S; Yang, H; Zhang, R; Tao, X; Gao, H Y; Liao, Y; Dong, Z C

    2011-08-01

    We describe a reliable fabrication procedure of silver tips for scanning tunneling microscope (STM) induced luminescence experiments. The tip was first etched electrochemically to yield a sharp cone shape using selected electrolyte solutions and then sputter cleaned in ultrahigh vacuum to remove surface oxidation. The tip status, in particular the tip induced plasmon mode and its emission intensity, can be further tuned through field emission and voltage pulse. The quality of silver tips thus fabricated not only offers atomically resolved STM imaging, but more importantly, also allows us to perform challenging "color" photon mapping with emission spectra taken at each pixel simultaneously during the STM scan under relatively small tunnel currents and relatively short exposure time.

  10. Optical Coherence Tomography Technology and Quality Improvement Methods for Optical Coherence Tomography Images of Skin: A Short Review

    OpenAIRE

    Adabi, Saba; Turani, Zahra; Fatemizadeh, Emad; Clayton, Anne; Nasiriavanaki, Mohammadreza

    2017-01-01

    Optical coherence tomography (OCT) delivers 3-dimensional images of tissue microstructures. Although OCT imaging offers a promising high-resolution method, OCT images experience some artifacts that lead to misapprehension of tissue structures. Speckle, intensity decay, and blurring are 3 major artifacts in OCT images. Speckle is due to the low coherent light source used in the configuration of OCT. Intensity decay is a deterioration of light with respect to depth, and blurring is the conseque...

  11. Fast Blood Vector Velocity Imaging: Simulations and Preliminary In Vivo Results

    DEFF Research Database (Denmark)

    Udesen, Jesper; Gran, Fredrik; Hansen, Kristoffer Lindskov

    2007-01-01

    for each pulse emission. 2) The transmitted pulse consists of a 13 bit Barker code which is transmitted simultaneously from each transducer element. 3) The 2-D vector velocity of the blood is found using 2-D speckle tracking between segments in consecutive speckle images. III Results: The method was tested...

  12. Experimental study on deformation field evolution in rock sample with en echelon faults using digital speckle correlation method

    Science.gov (United States)

    Ma, S.; Ma, J.; Liu, L.; Liu, P.

    2007-12-01

    Digital speckle correlation method (DSCM) is one kind of photomechanical deformation measurement method. DSCM could obtain continuous deformation field contactlessly by just capturing speckle images from specimen surface. Therefore, it is suitable to observe high spatial resolution deformation field in tectonophysical experiment. However, in the general DSCM experiment, the inspected surface of specimen needs to be painted to bear speckle grains in order to obtain the high quality speckle image. This also affects the realization of other measurement techniques. In this study, an improved DSCM system is developed and utilized to measure deformation field of rock specimen without surface painting. The granodiorite with high contrast nature grains is chosen to manufacture the specimen, and a specially designed DSCM algorithm is developed to analyze this kind of nature speckle images. Verification and calibration experiments show that the system could inspect a continuous (about 15Hz) high resolution displacement field (with resolution of 5μm) and strain field (with resolution of 50μɛ), dispensing with any preparation on rock specimen. Therefore, it could be conveniently utilized to study the failure of rock structure. Samples with compressive en echelon faults and extensional en echelon faults are studied on a two-direction servo-control test machine. The failure process of the samples is discussed based on the DSCM results. Experiment results show that: 1) The contours of displacement field could clearly indicate the activities of faults and new cracks. The displacement gradient adjacent to active faults and cracks is much greater than other areas. 2) Before failure of the samples, the mean strain of the jog area is largest for the compressive en echelon fault, while that is smallest for the extensional en echelon fault. This consists with the understanding that the jog area of compressive fault subjects to compression and that of extensional fault subjects to

  13. Laser speckle decorrelation for fingerprint acquisition

    International Nuclear Information System (INIS)

    Schirripa Spagnolo, Giuseppe; Cozzella, Lorenzo

    2012-01-01

    Biometry is gaining popularity as a physical security approach in situations where a high level of security is necessary. Currently, biometric solutions are embedded in a very large and heterogeneous group of applications. One of the most sensible is for airport security access to boarding gates. More airports are introducing biometric solutions based on face, fingerprint or iris recognition for passenger identification. In particular, fingerprints are the most widely used biometric, and they are mandatorily included in electronic identification documents. One important issue, which is difficult to address in traditional fingerprint acquisition systems, is preventing contact between subsequent users; sebum, which can be a potential vector for contagious diseases. Currently, non-contact devices are used to overcome this problem. In this paper, a new contact device based on laser speckle decorrelation is presented. Our system has the advantage of being compact and low-cost compared with an actual contactless system, allowing enhancement of the sebum pattern imaging contrast in a simple and low-cost way. Furthermore, it avoids the spreading of contagious diseases. (paper)

  14. Real-time speckle variance swept-source optical coherence tomography using a graphics processing unit.

    Science.gov (United States)

    Lee, Kenneth K C; Mariampillai, Adrian; Yu, Joe X Z; Cadotte, David W; Wilson, Brian C; Standish, Beau A; Yang, Victor X D

    2012-07-01

    Advances in swept source laser technology continues to increase the imaging speed of swept-source optical coherence tomography (SS-OCT) systems. These fast imaging speeds are ideal for microvascular detection schemes, such as speckle variance (SV), where interframe motion can cause severe imaging artifacts and loss of vascular contrast. However, full utilization of the laser scan speed has been hindered by the computationally intensive signal processing required by SS-OCT and SV calculations. Using a commercial graphics processing unit that has been optimized for parallel data processing, we report a complete high-speed SS-OCT platform capable of real-time data acquisition, processing, display, and saving at 108,000 lines per second. Subpixel image registration of structural images was performed in real-time prior to SV calculations in order to reduce decorrelation from stationary structures induced by the bulk tissue motion. The viability of the system was successfully demonstrated in a high bulk tissue motion scenario of human fingernail root imaging where SV images (512 × 512 pixels, n = 4) were displayed at 54 frames per second.

  15. Lifting to cluster-tilting objects in higher cluster categories

    OpenAIRE

    Liu, Pin

    2008-01-01

    In this note, we consider the $d$-cluster-tilted algebras, the endomorphism algebras of $d$-cluster-tilting objects in $d$-cluster categories. We show that a tilting module over such an algebra lifts to a $d$-cluster-tilting object in this $d$-cluster category.

  16. Assessment value of 3-dimensional speckle tracking imaging for changes of early left ventricular longitudinal systolic function in patients with primary hypertension

    Directory of Open Access Journals (Sweden)

    Jing Yu

    2016-08-01

    Full Text Available Objective: To study the assessment value of 3-dimensional speckle tracking imaging for changes of early left ventricular longitudinal systolic function in patients with primary hypertension. Methods: Patients with primary hypertension who were treated in our hospital from May 2012 to October 2015 were selected, and 40 patients with left ventricular normal (LVN primary hypertension and 40 patients with left ventricular remodeling (LVR primary hypertension were screened according to Ganau typing and enrolled in the LVN group and LVR group of the study respectively; 40 cases of healthy volunteers who received physical examination in our hospital during the same period were selected as control group. Ultrasonic testing was conducted to determine conventional ultrasonic indicators and 3D-STI parameters, and serum was collected to determine AngII, ALD, TGF-β1 and Ang1-7 levels. Results: LVEDd, LVPWT and LVEF of LVN group were not significantly different from those of control group, LVEF of LVR group was not significantly different from those of LVN group and control group, and LVEDd and LVPWT of LVR group were significantly higher than those of LVN group and control group; absolute values of GLS, GCS, GRS and GAS as well as serum Ang1-7 level of LVN group was significantly lower than those of control group, serum AngII, ALD and TGF-β1 levels were higher than those of control group, absolute values of GLS, GCS, GRS and GAS as well as serum Ang1-7 level of LVR group was significantly lower than those of LVN group and control group, and serum AngII, ALD and TGF-β1 levels were higher than those of LVN group and control group; absolute values of GLS, GCS, GRS and GAS were negatively correlated with serum AngII, ALD and TGF-β1 levels, and positively correlated with serum Ang1-7 level. Conclusion: 3-dimensional speckle tracking imaging can be used for early evaluation of left ventricular longitudinal systolic function in patients with primary

  17. Intraocular lens alignment from purkinje and Scheimpflug imaging.

    Science.gov (United States)

    Rosales, Patricia; De Castro, Alberto; Jiménez-Alfaro, Ignacio; Marcos, Susana

    2010-11-01

    The improved designs of intraocular lenses (IOLs) implanted during cataract surgery demand understanding of the possible effects of lens misalignment on optical performance. In this review, we describe the implementation, set-up and validation of two methods to measure in vivo tilt and decentration of IOLs, one based on Purkinje imaging and the other on Scheimpflug imaging. The Purkinje system images the reflections of an oblique collimated light source on the anterior cornea and anterior and posterior IOL surfaces and relies on the well supported assumption of the linearity of the Purkinje images with respect to IOL tilt and decentration. Scheimpflug imaging requires geometrical distortion correction and image processing techniques to retrieve the pupillary axis, IOL axis and pupil centre from the three-dimensional anterior segment image of the eye. Validation of the techniques using a physical eye model indicates that IOL tilt is estimated within an accuracy of 0.261 degree and decentration within 0.161 mm. Measurements on patients implanted with aspheric IOLs indicate that IOL tilt and decentration tend to be mirror symmetric between left and right eyes. The average tilt was 1.54 degrees and the average decentration was 0.21 mm. Simulated aberration patterns using custom models of the patients eyes, built using anatomical data of the anterior cornea and foveal position, the IOL geometry and the measured IOL tilt and decentration predict the experimental wave aberrations measured using laser ray tracing aberrometry on the same eyes. This reveals a relatively minor contribution of IOL tilt and decentration on the higher-order aberrations of the normal pseudophakic eye.

  18. Tip studies using CFD and comparison with tip loss models

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver; Johansen, J.

    2004-01-01

    The flow past a rotating LM8.2 blade equipped with two different tips are computed using CFD. The different tip flows are analysed and a comparison with two different tip loss models is made. Keywords: tip flow, aerodynamics, CFD......The flow past a rotating LM8.2 blade equipped with two different tips are computed using CFD. The different tip flows are analysed and a comparison with two different tip loss models is made. Keywords: tip flow, aerodynamics, CFD...

  19. Fabrication of tungsten tip for scanning tunneling microscope by the lever principle

    International Nuclear Information System (INIS)

    Wang Yang; Wang Huabin; Chinese Academy of Sciences, Beijing; Gong Jinlong; Zhu Dezhang

    2007-01-01

    A novel experimental setup was designed to fabricate tungsten tips for scanning tunneling microscope (STM), based on simple mechanical lever principle. The equipment can quickly separate the tip from electrolyte to avoid the further etching of the fine-shaped tungsten tip. The setup is advantageous for its simplicity over complex electronic control systems. The use result in scanning electron microscope demonstrates that the radius of the tip can reach 50 nm. The tip was applied to scan the surface of highly-oriented pyrolytic graphite, and the results were satisfactory. It is shown that the tip can be used for the scanning of atomically resolved images. (authors)

  20. Thermoregulation under semi-natural conditions in speckled ...

    African Journals Online (AJOL)

    We recorded body temperature (Tb) in speckled mousebirds (Colius striatus) under semi-natural conditions in outdoor aviaries, and examined interactions between behavioural and metabolic thermoregulation by experimentally manipulating food availability and communal roosting behaviour. When food was available ad ...

  1. Actual light deflections in regions of crack tips and their influence on measurements in photomechanics

    Science.gov (United States)

    Hecker, Friedrich W.; Pindera, Jerzy T.; Wen, Baicheng

    Crack-tip photomechanics procedures are based on certain simplifying assumptions that are seldom discussed. In a recent paper the theoretical bases of the shadow optical methods of caustics have been analysed and tested using the results obtained by three analytical-experimental procedures, namely classical strain gage techniques, isodynes, and strain-gradient index method. It has been concluded that the straing-radient index method appears to be a suitable tool for analysis of stress states near crack tips and notches and, in particular, for testing the predictive power of the pertinent singular solutions of the linear elastic fracture mechanics and the ranges of their applicability. In the present paper, a more detailed analysis of all results obtained in light deflection experiments allows to quantify the contribution of both involved effects and to determine the distortion of the faces of the investigated plates along their crack planes. The ability of the strain-gradient light bending method to analyse some features of the three-dimensional stress-state is reported. Finally, the presented experimental evidence allows to draw conclusions related to limits of applicability of certain photomechanical measurements near crack tips. An extensive summary of this paper is published in the Proceedings of the Second International Conference on Photomechanics and Speckle Metrology, Vol. 1554A, part of SPIE's 1991 International Symposium on Optical Applied Science and Engineering, 22-26 July 1991, San Diego, CA, USA. 1

  2. CDKL5 influences RNA splicing activity by its association to the nuclear speckle molecular machinery.

    Science.gov (United States)

    Ricciardi, Sara; Kilstrup-Nielsen, Charlotte; Bienvenu, Thierry; Jacquette, Aurélia; Landsberger, Nicoletta; Broccoli, Vania

    2009-12-01

    Mutations in the human X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have been shown to cause severe neurodevelopmental disorders including infantile spasms, encephalopathy, West-syndrome and an early-onset variant of Rett syndrome. CDKL5 is a serine/threonine kinase whose involvement in Rett syndrome can be inferred by its ability to directly bind and mediate phosphorylation of MeCP2. However, it remains to be elucidated how CDKL5 exerts its function. Here, we report that CDKL5 localizes to specific nuclear foci referred to as nuclear speckles in both cell lines and tissues. These sub-nuclear structures are traditionally considered as storage/modification sites of pre-mRNA splicing factors. Interestingly, we provide evidence that CDKL5 regulates the dynamic behaviour of nuclear speckles. Indeed, CDKL5 overexpression leads to nuclear speckle disassembly, and this event is strictly dependent on its kinase activity. Conversely, its down-regulation affects nuclear speckle morphology leading to abnormally large and uneven speckles. Similar results were obtained for primary adult fibroblasts isolated from CDKL5-mutated patients. Altogether, these findings indicate that CDKL5 controls nuclear speckle morphology probably by regulating the phosphorylation state of splicing regulatory proteins. Nuclear speckles are dynamic sites that can continuously supply splicing factors to active transcription sites, where splicing occurs. Notably, we proved that CDKL5 influences alternative splicing, at least as proved in heterologous minigene assays. In conclusion, we provide evidence that CDKL5 is involved indirectly in pre-mRNA processing, by controlling splicing factor dynamics. These findings identify a biological process whose disregulation might affect neuronal maturation and activity in CDKL5-related disorders.

  3. Speckle reduction techniques in digital holography

    Energy Technology Data Exchange (ETDEWEB)

    Monaghan, David; Kelly, Damien; Hennelly, Bryan [Department of Computer Science, National University of Ireland, Maynooth, Co. Kildare (Ireland); Javidi, Bahram, E-mail: bryanh@cs.nuim.i [University of Connecticut Electrical and Computer Engineering Department 371 Fairfield Road, Unit 2157 Storrs, CT 06269-2157 (United States)

    2010-02-01

    We have studied several speckle reduction techniques, applicable to digital holography. These include the use of optical diffusers, wavelet filtering, simulating temporal incoherence and filtering in the Fourier domain. The Digital Holograms (DHs) used in this study are captured using a Phase Shift Interferometric (PSI) in-line setup and subsequently reconstructed numerically.

  4. SPECKLE OBSERVATIONS OF BINARY STARS WITH THE WIYN TELESCOPE. VII. MEASURES DURING 2008-2009

    International Nuclear Information System (INIS)

    Horch, Elliott P.; Bahi, Lizzie Anne P.; Gaulin, Joseph R.; Howell, Steve B.; Sherry, William H.; Baena Gallé, Roberto; Van Altena, William F.

    2012-01-01

    Five hundred thirty-one speckle measures of binary stars are reported. These data were taken mainly during the period 2008 June through 2009 October at the WIYN 3.5 m Telescope at Kitt Peak and represent the last data set of single-filter speckle observations taken in the WIYN speckle program prior to the use of the current two-channel speckle camera. The astrometric and photometric precision of these observations is consistent with previous papers in this series: we obtain a typical linear measurement uncertainty of approximately 2.5 mas, and the magnitude differences reported have typical uncertainties in the range of 0.1-0.14 mag. In combination with measures already in the literature, the data presented here permit the revision of the orbit of A 1634AB (= HIP 76041) and the first determination of visual orbital elements for HDS 1895 (= HIP 65982).

  5. APES Beamforming Applied to Medical Ultrasound Imaging

    DEFF Research Database (Denmark)

    Blomberg, Ann E. A.; Holfort, Iben Kraglund; Austeng, Andreas

    2009-01-01

    Recently, adaptive beamformers have been introduced to medical ultrasound imaging. The primary focus has been on the minimum variance (MV) (or Capon) beamformer. This work investigates an alternative but closely related beamformer, the Amplitude and Phase Estimation (APES) beamformer. APES offers...... added robustness at the expense of a slightly lower resolution. The purpose of this study was to evaluate the performance of the APES beamformer on medical imaging data, since correct amplitude estimation often is just as important as spatial resolution. In our simulations we have used a 3.5 MHz, 96...... element linear transducer array. When imaging two closely spaced point targets, APES displays nearly the same resolution as the MV, and at the same time improved amplitude control. When imaging cysts in speckle, APES offers speckle statistics similar to that of the DAS, without the need for temporal...

  6. Quantitative assessment of graded burn wounds using a commercial and research grade laser speckle imaging (LSI) system

    Science.gov (United States)

    Ponticorvo, A.; Rowland, R.; Yang, B.; Lertsakdadet, B.; Crouzet, C.; Bernal, N.; Choi, B.; Durkin, A. J.

    2017-02-01

    Burn wounds are often characterized by injury depth, which then dictates wound management strategy. While most superficial burns and full thickness burns can be diagnosed through visual inspection, clinicians experience difficulty with accurate diagnosis of burns that fall between these extremes. Accurately diagnosing burn severity in a timely manner is critical for starting the appropriate treatment plan at the earliest time points to improve patient outcomes. To address this challenge, research groups have studied the use of commercial laser Doppler imaging (LDI) systems to provide objective characterization of burn-wound severity. Despite initial promising findings, LDI systems are not commonplace in part due to long acquisition times that can suffer from artifacts in moving patients. Commercial LDI systems are being phased out in favor of laser speckle imaging (LSI) systems that can provide similar information with faster acquisition speeds. To better understand the accuracy and usefulness of commercial LSI systems in burn-oriented research, we studied the performance of a commercial LSI system in three different sample systems and compared its results to a research-grade LSI system in the same environments. The first sample system involved laboratory measurements of intralipid (1%) flowing through a tissue simulating phantom, the second preclinical measurements in a controlled burn study in which wounds of graded severity were created on a Yorkshire pig, and the third clinical measurements involving a small sample of clinical patients. In addition to the commercial LSI system, a research grade LSI system that was designed and fabricated in our labs was used to quantitatively compare the performance of both systems and also to better understand the "Perfusion Unit" output of commercial systems.

  7. The Study Of Optometry Apparatus Of Laser Speckles

    Science.gov (United States)

    Bao-cheng, Wang; Kun, Yao; Xiu-qing, Wu; Chang-ying, Long; Jia-qi, Shi; Shi-zhong, Shi

    1988-01-01

    Based on the regularity of laser speckles movement the method of exam the uncorrected eyes is determined. The apparatus with micro-computer and optical transformation is made. Its practical function is excellent.

  8. Recruitment of phosphorylated small heat shock protein Hsp27 to nuclear speckles without stress

    International Nuclear Information System (INIS)

    Bryantsev, A.L.; Chechenova, M.B.; Shelden, E.A.

    2007-01-01

    During stress, the mammalian small heat shock protein Hsp27 enters cell nuclei. The present study examines the requirements for entry of Hsp27 into nuclei of normal rat kidney (NRK) renal epithelial cells, and for its interactions with specific nuclear structures. We find that phosphorylation of Hsp27 is necessary for the efficient entry into nuclei during heat shock but not sufficient for efficient nuclear entry under control conditions. We further report that Hsp27 is recruited to an RNAse sensitive fraction of SC35 positive nuclear speckles, but not other intranuclear structures, in response to heat shock. Intriguingly, Hsp27 phosphorylation, in the absence of stress, is sufficient for recruitment to speckles found in post-anaphase stage mitotic cells. Additionally, pseudophosphorylated Hsp27 fused to a nuclear localization peptide (NLS) is recruited to nuclear speckles in unstressed interphase cells, but wildtype and nonphosphorylatable Hsp27 NLS fusion proteins are not. The expression of NLS-Hsp27 mutants does not enhance colony forming abilities of cells subjected to severe heat shock, but does regulate nuclear speckle morphology. These data demonstrate that phosphorylation, but not stress, mediates Hsp27 recruitment to an RNAse soluble fraction of nuclear speckles and support a site-specific role for Hsp27 within the nucleus

  9. Laser Speckle Imaging of Rat Pial Microvasculature during Hypoperfusion-Reperfusion Damage

    Directory of Open Access Journals (Sweden)

    Teresa Mastantuono

    2017-09-01

    Full Text Available The present study was aimed to in vivo assess the blood flow oscillatory patterns in rat pial microvessels during 30 min bilateral common carotid artery occlusion (BCCAO and 60 min reperfusion by laser speckle imaging (LSI. Pial microcirculation was visualized by fluorescence microscopy. The blood flow oscillations of single microvessels were recorded by LSI; spectral analysis was performed by Wavelet transform. Under baseline conditions, arterioles and venules were characterized by blood flow oscillations in the frequency ranges 0.005–0.0095 Hz, 0.0095–0.021 Hz, 0.021–0.052 Hz, 0.052–0.150 Hz and 0.150–0.500 Hz. Arterioles showed oscillations with the highest spectral density when compared with venules. Moreover, the frequency components in the ranges 0.052–0.150 Hz and 0.150–0.500 were predominant in the arteriolar total power spectrum; while, the frequency component in the range 0.150–0.500 Hz showed the highest spectral density in venules. After 30 min BCCAO, the arteriolar spectral density decreased compared to baseline; moreover, the arteriolar frequency component in the range 0.052–0.150 Hz significantly decreased in percent spectral density, while the frequency component in the range 0.150–0.500 Hz significantly increased in percent spectral density. However, an increase in arteriolar spectral density was detected at 60 min reperfusion compared to BCCAO values; consequently, an increase in percent spectral density of the frequency component in the range 0.052–0.150 Hz was observed, while the percent spectral density of the frequency component in the range 0.150–0.500 Hz significantly decreased. The remaining frequency components did not significantly change during hypoperfusion and reperfusion. The changes in blood flow during hypoperfusion/reperfusion caused tissue damage in the cortex and striatum of all animals. In conclusion, our data demonstrate that the frequency component in the range 0.052–0.150 Hz

  10. Complementary Speckle Patterns: Deterministic Interchange of Intrinsic Vortices and Maxima through Scattering Media.

    Science.gov (United States)

    Gateau, Jérôme; Rigneault, Hervé; Guillon, Marc

    2017-01-27

    Intensity maxima and zeros of speckle patterns obtained behind a diffuser are experimentally interchanged by applying a spiral phase delay of charge ±1 to the impinging coherent beam. This transform arises from the expectation that tightly focused beams, which have a planar wave front around the focus, are so changed into vortex beams and vice versa. The statistics of extrema locations and the intensity distribution of the so-generated "complementary" patterns are characterized by numerical simulations. It is demonstrated experimentally that the incoherent superposition of the three "complementary speckle patterns" yield a synthetic speckle grain size enlarged by a factor of sqrt[3]. A cyclic permutation of optical vortices and intensity maxima is unexpectedly observed and discussed.

  11. Optic flow induced self-tilt perception

    NARCIS (Netherlands)

    Bos, J.E.

    2008-01-01

    Roll optic flow induces illusory self-tilt in humans. As far as the mechanism underlying this visual-vestibular interaction is understood, larger angles of self-tilt are predicted than observed. It is hypothesized that the discrepancy can be explained by idiotropic (i.e., referring to a personal

  12. Spheromak tilting and its stability control

    International Nuclear Information System (INIS)

    Hayashi, T.; Sato, T.

    1983-01-01

    Spheromak tilting instability was studied. A numerical technique to create a rather arbitrarily-shaped spheromak like the one with a flux hole was investigated. The dynamics governing the tilting instability, namely, the influence of the magnetic index, the toroidal current (q-profile) and the resistivity upon the tilting growth rate, and the roles of magnetc reconnection upon the nonlinear development were studied. The best way to control the tilting instability was invented. The stabilizing effects of the vertical wall, the isolated conducting cylindrical belt, and the horizontal wall were studied. Central pole stabilization was also investigated. The influence of the wall condition, namely, whether the wall acted as a flux conserver in the spheromak creation stage or not is discussed. The present study has shown that the three- dimensional simulation is indeed useful and practical in not only studying the underlying physics but also finding a stabilization technique of spheromaks. (Kato, T.)

  13. Mapping of moveout in tilted transversely isotropic media

    KAUST Repository

    Stovas, A.; Alkhalifah, Tariq Ali

    2013-01-01

    The computation of traveltimes in a transverse isotropic medium with a tilted symmetry axis tilted transversely isotropic is very important both for modelling and inversion. We develop a simple analytical procedure to map the traveltime function from a transverse isotropic medium with a vertical symmetry axis (vertical transversely isotropic) to a tilted transversely isotropic medium by applying point-by-point mapping of the traveltime function. This approach can be used for kinematic modelling and inversion in layered tilted transversely isotropic media. © 2013 European Association of Geoscientists & Engineers.

  14. Mapping of moveout in tilted transversely isotropic media

    KAUST Repository

    Stovas, A.

    2013-09-09

    The computation of traveltimes in a transverse isotropic medium with a tilted symmetry axis tilted transversely isotropic is very important both for modelling and inversion. We develop a simple analytical procedure to map the traveltime function from a transverse isotropic medium with a vertical symmetry axis (vertical transversely isotropic) to a tilted transversely isotropic medium by applying point-by-point mapping of the traveltime function. This approach can be used for kinematic modelling and inversion in layered tilted transversely isotropic media. © 2013 European Association of Geoscientists & Engineers.

  15. 3D shape measurement using deterministic phase retrieval and a partially developed speckle field

    DEFF Research Database (Denmark)

    Almoro, Percival F.; Waller, Laura; Agour, Mostafa

    2012-01-01

    Fourier domain. The local variations of the recorded speckle patterns and the defocus distance approximate the axial intensity derivative which, in turn, is required to recover the wavefront phase via the transport of intensity equation (TIE). The SLM setup reduces the speckle recording time and the TIE...

  16. Assessment of atrial fibrillation and vulnerability in patients with Wolff-Parkinson-White syndrome using two-dimensional speckle tracking echocardiography.

    Science.gov (United States)

    Li, Jing-Jie; Wei, Fang; Chen, Ju-Gang; Yu, Yan-Wei; Gu, Hong-Yue; Jiang, Rui; Wu, Xiu-Li; Sun, Qian

    2014-01-01

    The aim was to assess atrial fibrillation (AF) and vulnerability in Wolff-Parkinson-White (WPW) syndrome patients using two-dimensional speckle tracking echocardiography (2D-STE). All patients were examined via transthoracic echocardiography and 2D-STE in order to assess atrial function 7 days before and 10 days after RF catheter ablation. A postoperative 3-month follow-up was performed via outpatient visit or telephone calls. Results showed significant differences in both body mass index (BMI) and supraventricular tachycardia (SVT) duration between WPW patients and DAVNP patients (both Psyndrome may result in increased atrial vulnerability and contribute to the development of AF. Further, RF catheter ablation of AAV pathway can potentially improve atrial function in WPW syndrome patients. Two-dimensional speckle tracking echocardiography imaging in WPW patients would be necessary in the evaluation and improvement of the overall function of RF catheter ablation in a long-term follow-up period.

  17. Advanced single-slice rebinning for tilted spiral cone-beam CT

    International Nuclear Information System (INIS)

    Kachelriess, Marc; Fuchs, Theo; Schaller, Stefan; Kalender, Willi A.

    2001-01-01

    Future medical CT scanners and today's micro CT scanners demand cone-beam reconstruction algorithms that are capable of reconstructing data acquired from a tilted spiral trajectory where the vector of rotation is not necessarily parallel to the vector of table increment. For the medical CT scanner this case of nonparallel object motion is met for nonzero gantry tilt: the table moves into a direction that is not perpendicular to the plane of rotation. Since this is not a special application of medical CT but rather a daily routine in head exams, there is a strong need for corresponding reconstruction algorithms. In contrast to medical CT, where the special case of nonperpendicular motion is used on purpose, micro CT scanners cannot avoid aberrations of the rotational axis and the table increment vector due to alignment problems. Especially for those micro CT scanners that have the lifting stage mounted on the rotation table (in contrast to setups where the lifting stage holds the rotation table), this kind of misalignment is equivalent to a gantry tilt. We therefore generalize the advanced single-slice rebinning algorithm (ASSR), which is considered a very promising approach for medical cone-beam reconstruction due to its high image quality and its high reconstruction speed [Med. Phys. 27, 754-772 (2000)], to the case of tilted gantries. We evaluate this extended ASSR approach (which we will denote as ASSR + , for convenience) in comparison to the original ASSR algorithm using simulated phantom data for reconstruction. For the case of nonparallel object motion ASSR + shows significant improvements over ASSR, however, its computational complexity is slightly increased due to the broken symmetry of the spiral trajectory

  18. Study of nanometer-level precise phase-shift system used in electronic speckle shearography and phase-shift pattern interferometry

    Science.gov (United States)

    Jing, Chao; Liu, Zhongling; Zhou, Ge; Zhang, Yimo

    2011-11-01

    The nanometer-level precise phase-shift system is designed to realize the phase-shift interferometry in electronic speckle shearography pattern interferometry. The PZT is used as driving component of phase-shift system and translation component of flexure hinge is developed to realize micro displacement of non-friction and non-clearance. Closed-loop control system is designed for high-precision micro displacement, in which embedded digital control system is developed for completing control algorithm and capacitive sensor is used as feedback part for measuring micro displacement in real time. Dynamic model and control model of the nanometer-level precise phase-shift system is analyzed, and high-precision micro displacement is realized with digital PID control algorithm on this basis. It is proved with experiments that the location precision of the precise phase-shift system to step signal of displacement is less than 2nm and the location precision to continuous signal of displacement is less than 5nm, which is satisfied with the request of the electronic speckle shearography and phase-shift pattern interferometry. The stripe images of four-step phase-shift interferometry and the final phase distributed image correlated with distortion of objects are listed in this paper to prove the validity of nanometer-level precise phase-shift system.

  19. Phase conjugation of speckle-inhomogeneous radiation in a holographic Nd:YAG laser with a short thermal hologram

    International Nuclear Information System (INIS)

    Yarovoi, V V; Kirsanov, A V

    2002-01-01

    A model of the so-called short hologram, which does not exhibit in-depth diffraction deformation of the fine speckle pattern of the recording fields, is studied. The investigation is performed by the example of a thermal hologram recorded by two speckle waves, which is the output mirror of a ring laser produced as a result of this recording. It is shown that the ability of this short hologram to select a wave conjugated to a speckle signal in the mode of the holographic laser depends both on the degree of mutual mixing of the speckles of recording beams in the hologram volume and on the effects of its saturation by the beams. The maximum accuracy of phase conjugation of speckle radiation in the holographic Nd:YAG laser achieved upon the best selection of the conjugate wave by the short thermal hologram was 93%. (nonlinear optical phenomena)

  20. Image Structure-Preserving Denoising Based on Difference Curvature Driven Fractional Nonlinear Diffusion

    Directory of Open Access Journals (Sweden)

    Xuehui Yin

    2015-01-01

    Full Text Available The traditional integer-order partial differential equations and gradient regularization based image denoising techniques often suffer from staircase effect, speckle artifacts, and the loss of image contrast and texture details. To address these issues, in this paper, a difference curvature driven fractional anisotropic diffusion for image noise removal is presented, which uses two new techniques, fractional calculus and difference curvature, to describe the intensity variations in images. The fractional-order derivatives information of an image can deal well with the textures of the image and achieve a good tradeoff between eliminating speckle artifacts and restraining staircase effect. The difference curvature constructed by the second order derivatives along the direction of gradient of an image and perpendicular to the gradient can effectively distinguish between ramps and edges. Fourier transform technique is also proposed to compute the fractional-order derivative. Experimental results demonstrate that the proposed denoising model can avoid speckle artifacts and staircase effect and preserve important features such as curvy edges, straight edges, ramps, corners, and textures. They are obviously superior to those of traditional integral based methods. The experimental results also reveal that our proposed model yields a good visual effect and better values of MSSIM and PSNR.

  1. Investigation of Hepatic Blood Perfusion by Laser Speckle Imaging and Changes of Hepatic Vasoactive Substances in Mice after Electroacupuncture

    Directory of Open Access Journals (Sweden)

    Xiao-jing Song

    2014-01-01

    Full Text Available The study was conducted to observe the effect of electroacupuncture (EA on hepatic blood perfusion (HBP and vascular regulation. We investigated 60 male anesthetized mice under the following 3 conditions: without EA stimulation (control group; EA stimulation at Zusanli (ST36 group; EA stimulation at nonacupoint (NA group during 30 min. The HBP was measured using the laser speckle perfusion imaging (LSPI. The level of nitric oxide (NO, endothelin-1 (ET-1, and noradrenaline (NE in liver tissue was detected by biochemical methods. Results were as follows. At each time point, HBP increase in ST36 group was higher than that in the NA group in anesthetized mice. HBP gradually decreased during 30 min in control group. The level of NO in ST36 group was higher than that in NA group. The level of both ET-1 and NE was the highest in control group, followed by NA group and ST36 group. It is concluded that EA at ST36 could increase HBP possibly by increasing the blood flow velocity (BFV, changing vascular activity, increasing the level of NO, and inhibiting the level of ET-1 in liver tissue.

  2. Speckle noise reduction for computer generated holograms of objects with diffuse surfaces

    Science.gov (United States)

    Symeonidou, Athanasia; Blinder, David; Ahar, Ayyoub; Schretter, Colas; Munteanu, Adrian; Schelkens, Peter

    2016-04-01

    Digital holography is mainly used today for metrology and microscopic imaging and is emerging as an important potential technology for future holographic television. To generate the holographic content, computer-generated holography (CGH) techniques convert geometric descriptions of a 3D scene content. To model different surface types, an accurate model of light propagation has to be considered, including for example, specular and diffuse reflection. In previous work, we proposed a fast CGH method for point cloud data using multiple wavefront recording planes, look-up tables (LUTs) and occlusion processing. This work extends our method to account for diffuse reflections, enabling rendering of deep 3D scenes in high resolution with wide viewing angle support. This is achieved by modifying the spectral response of the light propagation kernels contained by the look-up tables. However, holograms encoding diffuse reflective surfaces depict significant amounts of speckle noise, a problem inherent to holography. Hence, techniques to improve the reduce speckle noise are evaluated in this paper. Moreover, we propose as well a technique to suppress the aperture diffraction during numerical, viewdependent rendering by apodizing the hologram. Results are compared visually and in terms of their respective computational efficiency. The experiments show that by modelling diffuse reflection in the LUTs, a more realistic yet computationally efficient framework for generating high-resolution CGH is achieved.

  3. Laser speckle technology in stomatology. diagnostics of stresses and strains of hard biotissues and orthodontic and orthopedic structures

    Science.gov (United States)

    Denisova, Yu. L.; Bazylev, N. B.; Rubnikovich, S. P.; Fomin, N. A.

    2013-07-01

    We have investigated the formation and dynamics of speckle biofi elds formed by hard biotissues of the oral cavity irradiated with low-intensity radiation. We present experimental methods for diagnosing the stressed-strained state of the maxillodental system and orthodontic and orthopedic structures based on speckle technologies and crosscorrelation analysis of speckle biofi elds.

  4. Improving image-quality of interference fringes of out-of-plane vibration using temporal speckle pattern interferometry and standard deviation for piezoelectric plates.

    Science.gov (United States)

    Chien-Ching Ma; Ching-Yuan Chang

    2013-07-01

    Interferometry provides a high degree of accuracy in the measurement of sub-micrometer deformations; however, the noise associated with experimental measurement undermines the integrity of interference fringes. This study proposes the use of standard deviation in the temporal domain to improve the image quality of patterns obtained from temporal speckle pattern interferometry. The proposed method combines the advantages of both mean and subtractive methods to remove background noise and ambient disturbance simultaneously, resulting in high-resolution images of excellent quality. The out-of-plane vibration of a thin piezoelectric plate is the main focus of this study, providing information useful to the development of energy harvesters. First, ten resonant states were measured using the proposed method, and both mode shape and resonant frequency were investigated. We then rebuilt the phase distribution of the first resonant mode based on the clear interference patterns obtained using the proposed method. This revealed instantaneous deformations in the dynamic characteristics of the resonant state. The proposed method also provides a frequency-sweeping function, facilitating its practical application in the precise measurement of resonant frequency. In addition, the mode shapes and resonant frequencies obtained using the proposed method were recorded and compared with results obtained using finite element method and laser Doppler vibrometery, which demonstrated close agreement.

  5. OBSERVATIONS OF BINARY STARS WITH THE DIFFERENTIAL SPECKLE SURVEY INSTRUMENT. IV. OBSERVATIONS OF KEPLER, CoRoT, AND HIPPARCOS STARS FROM THE GEMINI NORTH TELESCOPE

    International Nuclear Information System (INIS)

    Horch, Elliott P.; Howell, Steve B.; Everett, Mark E.; Ciardi, David R.

    2012-01-01

    We present the results of 71 speckle observations of binary and unresolved stars, most of which were observed with the DSSI speckle camera at the Gemini North Telescope in 2012 July. The main purpose of the run was to obtain diffraction-limited images of high-priority targets for the Kepler and CoRoT missions, but in addition, we observed a number of close binary stars where the resolution limit of Gemini was used to better determine orbital parameters and/or confirm results obtained at or below the diffraction limit of smaller telescopes. Five new binaries and one triple system were discovered, and first orbits are calculated for other two systems. Several systems are discussed in detail.

  6. Automated Reduction of Data from Images and Holograms

    Science.gov (United States)

    Lee, G. (Editor); Trolinger, James D. (Editor); Yu, Y. H. (Editor)

    1987-01-01

    Laser techniques are widely used for the diagnostics of aerodynamic flow and particle fields. The storage capability of holograms has made this technique an even more powerful. Over 60 researchers in the field of holography, particle sizing and image processing convened to discuss these topics. The research program of ten government laboratories, several universities, industry and foreign countries were presented. A number of papers on holographic interferometry with applications to fluid mechanics were given. Several papers on combustion and particle sizing, speckle velocimetry and speckle interferometry were given. A session on image processing and automated fringe data reduction techniques and the type of facilities for fringe reduction was held.

  7. Genetic Algorithm Phase Retrieval for the Systematic Image-Based Optical Alignment Testbed

    Science.gov (United States)

    Taylor, Jaime; Rakoczy, John; Steincamp, James

    2003-01-01

    Phase retrieval requires calculation of the real-valued phase of the pupil fimction from the image intensity distribution and characteristics of an optical system. Genetic 'algorithms were used to solve two one-dimensional phase retrieval problem. A GA successfully estimated the coefficients of a polynomial expansion of the phase when the number of coefficients was correctly specified. A GA also successfully estimated the multiple p h e s of a segmented optical system analogous to the seven-mirror Systematic Image-Based Optical Alignment (SIBOA) testbed located at NASA s Marshall Space Flight Center. The SIBOA testbed was developed to investigate phase retrieval techniques. Tiphilt and piston motions of the mirrors accomplish phase corrections. A constant phase over each mirror can be achieved by an independent tip/tilt correction: the phase Conection term can then be factored out of the Discrete Fourier Tranform (DFT), greatly reducing computations.

  8. Optimization of shearography image quality analysis

    International Nuclear Information System (INIS)

    Rafhayudi Jamro

    2005-01-01

    Shearography is an optical technique based on speckle pattern to measure the deformation of the object surface in which the fringe pattern is obtained through the correlation analysis from the speckle pattern. Analysis of fringe pattern for engineering application is limited for qualitative measurement. Therefore, for further analysis that lead to qualitative data, series of image processing mechanism are involved. In this paper, the fringe pattern for qualitative analysis is discussed. In principal field of applications is qualitative non-destructive testing such as detecting discontinuity, defect in the material structure, locating fatigue zones and etc and all these required image processing application. In order to performed image optimisation successfully, the noise in the fringe pattern must be minimised and the fringe pattern itself must be maximise. This can be achieved by applying a filtering method with a kernel size ranging from 2 X 2 to 7 X 7 pixels size and also applying equalizer in the image processing. (Author)

  9. Differential expression of speckled POZ protein, SPOP: Putative ...

    Indian Academy of Sciences (India)

    2014-05-01

    May 1, 2014 ... In other mouse tissues and human cancer cell lines analysed, only low SPOP ... speckled POZ protein; SRC-3, steroid receptor co-activator-3; TNF, tumour necrosis factor; ...... complexity of primary human prostate cancer.

  10. The Phase-Induced Amplitude Apodization Coronagraph (PIAAC): A High Performance Coronagraph for Exoplanet Imaging

    Science.gov (United States)

    Guyon, O.; Pluzhnik, E.; Martinache, F.; Ridgway, S.; Galicher, R.

    2004-12-01

    Using 2 aspheric mirrors, it is possible to achromatically apodize a telescope beam without losing light (Phase-Induced Amplitude Apodization, PIAA). We propose a coronagraph concept using this technique: the telescope pupil is first apodized to yield a high contrast focal plane image, on which an occulting mask is placed. The exit pupil is then de-apodized to regain a large field of view. We show that the PIAAC combines all the qualities needed for efficient exoplanet imaging: full throughput, small inner working angle (1.2 l/d), high angular resolution (l/d), low sensitivity to tip-tilt, and large field of view (more than 200 l/d in diameter). We conclude that PIAAC is well adapted for exoplanet imaging with a 4m to 6m space telescope (TPF mission). This work was carried out under JPL contract numbers 1254445 and 1257767 for Development of Technologies for the Terrestrial Planet Finder Mission, with the support and hospitality of the National Astronomical Observatory of Japan.

  11. Phase Retrieval Using a Genetic Algorithm on the Systematic Image-Based Optical Alignment Testbed

    Science.gov (United States)

    Taylor, Jaime R.

    2003-01-01

    NASA s Marshall Space Flight Center s Systematic Image-Based Optical Alignment (SIBOA) Testbed was developed to test phase retrieval algorithms and hardware techniques. Individuals working with the facility developed the idea of implementing phase retrieval by breaking the determination of the tip/tilt of each mirror apart from the piston motion (or translation) of each mirror. Presented in this report is an algorithm that determines the optimal phase correction associated only with the piston motion of the mirrors. A description of the Phase Retrieval problem is first presented. The Systematic Image-Based Optical Alignment (SIBOA) Testbeb is then described. A Discrete Fourier Transform (DFT) is necessary to transfer the incoming wavefront (or estimate of phase error) into the spatial frequency domain to compare it with the image. A method for reducing the DFT to seven scalar/matrix multiplications is presented. A genetic algorithm is then used to search for the phase error. The results of this new algorithm on a test problem are presented.

  12. Observations of binary stars by speckle interferometry

    International Nuclear Information System (INIS)

    Morgan, B.L.; Beckmann, G.K.; Scaddan, R.J.

    1980-01-01

    This is the second paper in a series describing observations of binary stars using the technique of speckle interferometry. Observations were made using the 2.5-m Isaac Newton Telescope and the 1-m telescope of the Royal Greenwich Observatory and the 1.9-m telescope of the South African Astronomical Observatory. The classical Rayleigh diffraction limits are 0.050 arcsec for the 2.5-m telescope, 0.065 arcsec for the 1.9-m telescope and 0.125 arcsec for the 1-m telescope, at a wavelength of 500 nm. The results of 29 measurements of 26 objects are presented. The objects include long period spectroscopic binaries from the 6th Catalogue of Batten, close visual binary systems from the 3rd Catalogue of Finsen and Worley and variable stars. Nine of the objects have not been previously resolved by speckle interferometry. New members are detected in the systems β Cep, p Vel and iota UMa. (author)

  13. Transient cardio-respiratory responses to visually induced tilt illusions

    Science.gov (United States)

    Wood, S. J.; Ramsdell, C. D.; Mullen, T. J.; Oman, C. M.; Harm, D. L.; Paloski, W. H.

    2000-01-01

    Although the orthostatic cardio-respiratory response is primarily mediated by the baroreflex, studies have shown that vestibular cues also contribute in both humans and animals. We have demonstrated a visually mediated response to illusory tilt in some human subjects. Blood pressure, heart and respiration rate, and lung volume were monitored in 16 supine human subjects during two types of visual stimulation, and compared with responses to real passive whole body tilt from supine to head 80 degrees upright. Visual tilt stimuli consisted of either a static scene from an overhead mirror or constant velocity scene motion along different body axes generated by an ultra-wide dome projection system. Visual vertical cues were initially aligned with the longitudinal body axis. Subjective tilt and self-motion were reported verbally. Although significant changes in cardio-respiratory parameters to illusory tilts could not be demonstrated for the entire group, several subjects showed significant transient decreases in mean blood pressure resembling their initial response to passive head-up tilt. Changes in pulse pressure and a slight elevation in heart rate were noted. These transient responses are consistent with the hypothesis that visual-vestibular input contributes to the initial cardiovascular adjustment to a change in posture in humans. On average the static scene elicited perceived tilt without rotation. Dome scene pitch and yaw elicited perceived tilt and rotation, and dome roll motion elicited perceived rotation without tilt. A significant correlation between the magnitude of physiological and subjective reports could not be demonstrated.

  14. TILT ANGLE AND FOOTPOINT SEPARATION OF SMALL AND LARGE BIPOLAR SUNSPOT REGIONS OBSERVED WITH HMI

    International Nuclear Information System (INIS)

    McClintock, B. H.; Norton, A. A.

    2016-01-01

    We investigate bipolar sunspot regions and how tilt angle and footpoint separation vary during emergence and decay. The Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory collects data at a higher cadence than historical records and allows for a detailed analysis of regions over their lifetimes. We sample the umbral tilt angle, footpoint separation, and umbral area of 235 bipolar sunspot regions in Helioseismic and Magnetic Imager—Debrecen Data with an hourly cadence. We use the time when the umbral area peaks as time zero to distinguish between the emergence and decay periods of each region and we limit our analysis of tilt and separation behavior over time to within ±96 hr of time zero. Tilt angle evolution is distinctly different for regions with small (≈30 MSH), midsize (≈50 MSH), and large (≈110 MSH) maximum umbral areas, with 45 and 90 MSH being useful divisions for separating the groups. At the peak umbral area, we determine median tilt angles for small (7.°6), midsize (5.°9), and large (9.°3) regions. Within ±48 hr of the time of peak umbral area, large regions steadily increase in tilt angle, midsize regions are nearly constant, and small regions show evidence of negative tilt during emergence. A period of growth in footpoint separation occurs over a 72-hr period for all of the regions from roughly 40 to 70 Mm. The smallest bipoles (<9 MSH) are outliers in that they do not obey Joy's law and have a much smaller footpoint separation. We confirm the Muñoz-Jaramillo et al. results that the sunspots appear to be two distinct populations

  15. Motion perception during tilt and translation after space flight

    Science.gov (United States)

    Clément, Gilles; Wood, Scott J.

    2013-11-01

    Preliminary results of an ongoing study examining the effects of space flight on astronauts' motion perception induced by independent tilt and translation motions are presented. This experiment used a sled and a variable radius centrifuge that translated the subjects forward-backward or laterally, and simultaneously tilted them in pitch or roll, respectively. Tests were performed on the ground prior to and immediately after landing. The astronauts were asked to report about their perceived motion in response to different combinations of body tilt and translation in darkness. Their ability to manually control their own orientation was also evaluated using a joystick with which they nulled out the perceived tilt while the sled and centrifuge were in motion. Preliminary results confirm that the magnitude of perceived tilt increased during static tilt in roll after space flight. A deterioration in the crewmember to control tilt using non-visual inertial cues was also observed post-flight. However, the use of a tactile prosthesis indicating the direction of down on the subject's trunk improved manual control performance both before and after space flight.

  16. Optical Coherence Tomography Technology and Quality Improvement Methods for Optical Coherence Tomography Images of Skin: A Short Review

    Science.gov (United States)

    Adabi, Saba; Turani, Zahra; Fatemizadeh, Emad; Clayton, Anne; Nasiriavanaki, Mohammadreza

    2017-01-01

    Optical coherence tomography (OCT) delivers 3-dimensional images of tissue microstructures. Although OCT imaging offers a promising high-resolution method, OCT images experience some artifacts that lead to misapprehension of tissue structures. Speckle, intensity decay, and blurring are 3 major artifacts in OCT images. Speckle is due to the low coherent light source used in the configuration of OCT. Intensity decay is a deterioration of light with respect to depth, and blurring is the consequence of deficiencies of optical components. In this short review, we summarize some of the image enhancement algorithms for OCT images which address the abovementioned artifacts. PMID:28638245

  17. Optical Coherence Tomography Technology and Quality Improvement Methods for Optical Coherence Tomography Images of Skin: A Short Review

    Directory of Open Access Journals (Sweden)

    Saba Adabi

    2017-06-01

    Full Text Available Optical coherence tomography (OCT delivers 3-dimensional images of tissue microstructures. Although OCT imaging offers a promising high-resolution method, OCT images experience some artifacts that lead to misapprehension of tissue structures. Speckle, intensity decay, and blurring are 3 major artifacts in OCT images. Speckle is due to the low coherent light source used in the configuration of OCT. Intensity decay is a deterioration of light with respect to depth, and blurring is the consequence of deficiencies of optical components. In this short review, we summarize some of the image enhancement algorithms for OCT images which address the abovementioned artifacts.

  18. A novel tracking tool for the analysis of plant-root tip movements

    International Nuclear Information System (INIS)

    Russino, A; Ascrizzi, A; Popova, L; Tonazzini, A; Mancuso, S; Mazzolai, B

    2013-01-01

    The growth process of roots consists of many activities, such as exploring the soil volume, mining minerals, avoiding obstacles and taking up water to fulfil the plant's primary functions, that are performed differently, depending on environmental conditions. Root movements are strictly related to a root decision strategy, which helps plants to survive under stressful conditions by optimizing energy consumption. In this work, we present a novel image-analysis tool to study the kinematics of the root tip (apex), named analyser for root tip tracks (ARTT). The software implementation combines a segmentation algorithm with additional software imaging filters in order to realize a 2D tip detection. The resulting paths, or tracks, arise from the sampled tip positions through the acquired images during the growth. ARTT allows work with no markers and deals autonomously with new emerging root tips, as well as handling a massive number of data relying on minimum user interaction. Consequently, ARTT can be used for a wide range of applications and for the study of kinematics in different plant species. In particular, the study of the root growth and behaviour could lead to the definition of novel principles for the penetration and/or control paradigms for soil exploration and monitoring tasks. The software capabilities were demonstrated by experimental trials performed with Zea mays and Oryza sativa. (paper)

  19. Learnable despeckling framework for optical coherence tomography images

    Science.gov (United States)

    Adabi, Saba; Rashedi, Elaheh; Clayton, Anne; Mohebbi-Kalkhoran, Hamed; Chen, Xue-wen; Conforto, Silvia; Nasiriavanaki, Mohammadreza

    2018-01-01

    Optical coherence tomography (OCT) is a prevalent, interferometric, high-resolution imaging method with broad biomedical applications. Nonetheless, OCT images suffer from an artifact called speckle, which degrades the image quality. Digital filters offer an opportunity for image improvement in clinical OCT devices, where hardware modification to enhance images is expensive. To reduce speckle, a wide variety of digital filters have been proposed; selecting the most appropriate filter for an OCT image/image set is a challenging decision, especially in dermatology applications of OCT where a different variety of tissues are imaged. To tackle this challenge, we propose an expandable learnable despeckling framework, we call LDF. LDF decides which speckle reduction algorithm is most effective on a given image by learning a figure of merit (FOM) as a single quantitative image assessment measure. LDF is learnable, which means when implemented on an OCT machine, each given image/image set is retrained and its performance is improved. Also, LDF is expandable, meaning that any despeckling algorithm can easily be added to it. The architecture of LDF includes two main parts: (i) an autoencoder neural network and (ii) filter classifier. The autoencoder learns the FOM based on several quality assessment measures obtained from the OCT image including signal-to-noise ratio, contrast-to-noise ratio, equivalent number of looks, edge preservation index, and mean structural similarity index. Subsequently, the filter classifier identifies the most efficient filter from the following categories: (a) sliding window filters including median, mean, and symmetric nearest neighborhood, (b) adaptive statistical-based filters including Wiener, homomorphic Lee, and Kuwahara, and (c) edge preserved patch or pixel correlation-based filters including nonlocal mean, total variation, and block matching three-dimensional filtering.

  20. Perception of self-tilt in a true and illusory vertical plane

    Science.gov (United States)

    Groen, Eric L.; Jenkin, Heather L.; Howard, Ian P.; Oman, C. M. (Principal Investigator)

    2002-01-01

    A tilted furnished room can induce strong visual reorientation illusions in stationary subjects. Supine subjects may perceive themselves upright when the room is tilted 90 degrees so that the visual polarity axis is kept aligned with the subject. This 'upright illusion' was used to induce roll tilt in a truly horizontal, but perceptually vertical, plane. A semistatic tilt profile was applied, in which the tilt angle gradually changed from 0 degrees to 90 degrees, and vice versa. This method produced larger illusory self-tilt than usually found with static tilt of a visual scene. Ten subjects indicated self-tilt by setting a tactile rod to perceived vertical. Six of them experienced the upright illusion and indicated illusory self-tilt with an average gain of about 0.5. This value is smaller than with true self-tilt (0.8), but comparable to the gain of visually induced self-tilt in erect subjects. Apparently, the contribution of nonvisual cues to gravity was independent of the subject's orientation to gravity itself. It therefore seems that the gain of visually induced self-tilt is smaller because of lacking, rather than conflicting, nonvisual cues. A vector analysis is used to discuss the results in terms of relative sensory weightings.

  1. Vortex trapping by tilted columnar defects

    International Nuclear Information System (INIS)

    Baladie, I.; Buzdin, A.

    2000-01-01

    The irradiation of high-T c superconductors by inclined heavy-ion beam can create columnar defects (CD's) practically at any angle towards the crystal c axis. We calculate the energy of a tilted vortex trapped on an inclined columnar defect within the framework of an electromagnetic model. Under a weak perpendicular magnetic field, and if the CD radius is larger than the superconducting coherence length, vortices always prefer to be on a tilted CD than to be aligned along the external field. We calculate also the interaction energy between two tilted vortices and find that large attractive regions appear. In particular, in the plane defined by c axis and the CD axis, tilted vortices attract each other at long distances, leading to the formation of vortex chains. The equilibrium distance between vortices in a chain is of the order of the magnitude of the in-plane London penetration depth. The existence of the inclined trapped vortices could be revealed by torque measurements, and could also lead to the anisotropy of the in-plane resistivity and the critical current

  2. Behavior of Tilted Angle Shear Connectors

    Science.gov (United States)

    Khorramian, Koosha; Maleki, Shervin; Shariati, Mahdi; Ramli Sulong, N. H.

    2015-01-01

    According to recent researches, angle shear connectors are appropriate to transfer longitudinal shear forces across the steel-concrete interface. Angle steel profile has been used in different positions as L-shaped or C-shaped shear connectors. The application of angle shear connectors in tilted positions is of interest in this study. This study investigates the behaviour of tilted-shaped angle shear connectors under monotonic loading using experimental push out tests. Eight push-out specimens are tested to investigate the effects of different angle parameters on the ultimate load capacity of connectors. Two different tilted angles of 112.5 and 135 degrees between the angle leg and steel beam are considered. In addition, angle sizes and lengths are varied. Two different failure modes were observed consisting of concrete crushing-splitting and connector fracture. By increasing the size of connector, the maximum load increased for most cases. In general, the 135 degrees tilted angle shear connectors have a higher strength and stiffness than the 112.5 degrees type. PMID:26642193

  3. Behavior of Tilted Angle Shear Connectors.

    Directory of Open Access Journals (Sweden)

    Koosha Khorramian

    Full Text Available According to recent researches, angle shear connectors are appropriate to transfer longitudinal shear forces across the steel-concrete interface. Angle steel profile has been used in different positions as L-shaped or C-shaped shear connectors. The application of angle shear connectors in tilted positions is of interest in this study. This study investigates the behaviour of tilted-shaped angle shear connectors under monotonic loading using experimental push out tests. Eight push-out specimens are tested to investigate the effects of different angle parameters on the ultimate load capacity of connectors. Two different tilted angles of 112.5 and 135 degrees between the angle leg and steel beam are considered. In addition, angle sizes and lengths are varied. Two different failure modes were observed consisting of concrete crushing-splitting and connector fracture. By increasing the size of connector, the maximum load increased for most cases. In general, the 135 degrees tilted angle shear connectors have a higher strength and stiffness than the 112.5 degrees type.

  4. Lake-tilting investigations in southern Sweden

    International Nuclear Information System (INIS)

    Paasse, T.

    1996-04-01

    The main aim of lake-tilting investigations is to determine the course of the glacio-isostatic uplift, i.e. to find a formula for the uplift. Besides the lake-tilting graphs, knowledge of the recent relative uplift and the gradient of some marine shorelines are used for solving this problem. This paper summarizes four investigations. 23 refs, 10 figs

  5. Speckle photography applied to measure deformations of very large structures

    Science.gov (United States)

    Conley, Edgar; Morgan, Chris K.

    1995-04-01

    Fundamental principles of mechanics have recently been brought to bear on problems concerning very large structures. Fields of study include tectonic plate motion, nuclear waste repository vault closure mechanisms, the flow of glacier and sea ice, and highway bridge damage assessment and residual life prediction. Quantitative observations, appropriate for formulating and verifying models, are still scarce however, so the need to adapt new methods of experimental mechanics is clear. Large dynamic systems often exist in environments subject to rapid change. Therefore, a simple field technique that incorporates short time scales and short gage lengths is required. Further, the measuring methods must yield displacements reliably, and under oft-times adverse field conditions. Fortunately, the advantages conferred by an experimental mechanics technique known as speckle photography nicely fulfill this rather stringent set of performance requirements. Speckle seemed to lend itself nicely to the application since it is robust and relatively inexpensive. Experiment requirements are minimal -- a camera, high resolution film, illumination, and an optically rough surface. Perhaps most important is speckle's distinct advantage over point-by-point methods: It maps the two dimensional displacement vectors of the whole field of interest. And finally, given the method's high spatial resolution, relatively short observation times are necessary. In this paper we discuss speckle, two variations of which were used to gage the deformation of a reinforced concrete bridge structure subjected to bending loads. The measurement technique proved to be easily applied, and yielded the location of the neutral axis self consistently. The research demonstrates the feasibility of using whole field techniques to detect and quantify surface strains of large structures under load.

  6. Experimental evaluation of neural probe’s insertion induced injury based on digital image correlation method

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenguang, E-mail: zhwg@sjtu.edu.cn; Ma, Yakun; Li, Zhengwei [State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2016-01-15

    Purpose: The application of neural probes in clinic has been challenged by probes’ short lifetime when implanted into brain tissue. The primary goal is to develop an evaluation system for testing brain tissue injury induced by neural probe’s insertion using microscope based digital image correlation method. Methods: A brain tissue phantom made of silicone rubber with speckle pattern on its surface was fabricated. To obtain the optimal speckle pattern, mean intensity gradient parameter was used for quality assessment. The designed testing system consists of three modules: (a) load module for simulating neural electrode implantation process; (b) data acquisition module to capture micrographs of speckle pattern and to obtain reactive forces during the insertion of the probe; (c) postprocessing module for extracting tissue deformation information from the captured speckle patterns. On the basis of the evaluation system, the effects of probe wedge angle, insertion speed, and probe streamline on insertion induced tissue injury were investigated. Results: The optimal quality speckle pattern can be attained by the following fabrication parameters: spin coating rate—1000 r/min, silicone rubber component A: silicone rubber component B: softener: graphite = 5 ml: 5 ml: 2 ml: 0.6 g. The probe wedge angle has a significant effect on tissue injury. Compared to wedge angle 40° and 20°, maximum principal strain of 60° wedge angle was increased by 40.3% and 87.5%, respectively; compared with a relatively higher speed (500 μm/s), the maximum principle strain within the tissue induced by slow insertion speed (100 μm/s) was increased by 14.3%; insertion force required by probe with convex streamline was smaller than the force of traditional probe. Based on the experimental results, a novel neural probe that has a rounded tip covered by a biodegradable silk protein coating with convex streamline was proposed, which has both lower insertion and micromotion induced tissue

  7. Detection of fungi colony growth on bones by dynamic speckle

    Science.gov (United States)

    Vincitorio, F. M.; Budini, N.; Mulone, C.; Spector, M.; Freyre, C.; López Díaz, A. J.; Ramil, A.

    2013-11-01

    In this work we have studied the dynamic speckle patterns of mucor fungi colonies, which were inoculated on different samples. We were interested in analyzing the development of fungi colonies in bones, since during the last two years, a series of infections by mucor fungi have been reported on patients from different hospitals in Argentina. Coincidentally, all of these infections appeared on patients that were subjected to a surgical intervention for implantation of a titanium prosthesis. Apparently, the reason of the infection was a deficient sterilization process in conjunction with an accidental contamination. We observed that fungi growth, activity and death can be distinguished by means of the dynamic speckle technique.

  8. Study of a Car Body Tilting System Using a Variable Link Mechanism: Fundamental Characteristics of Pendulum Motion and Strategy for Perfect Tilting

    Science.gov (United States)

    Yoshida, Hidehisa; Nagai, Masao

    This paper analyzes the fundamental dynamic characteristics of a tilting railway vehicle using a variable link mechanism for compensating both the lateral acceleration experienced by passengers and the wheel load imbalance between the inner and outer rails. The geometric relations between the center of rotation, the center of gravity, and the positions of all four links of the tilting system are analyzed. Then, equations of the pendulum motions of the railway vehicle body with a four-link mechanism are derived. A theoretically discussion is given on the geometrical shapes employed in the link mechanism that can simultaneously provide zero lateral acceleration and zero wheel load fluctuation. Then, the perfect tilting condition, which is the control target of the feedforward tilting control, is derived from the linear equation of tilting motion.

  9. Speckle-free and halo-free low coherent Mach-Zehnder quantitative-phase-imaging module as a replacement of objective lens in conventional inverted microscopes

    Science.gov (United States)

    Yamauchi, Toyohiko; Yamada, Hidenao; Matsui, Hisayuki; Yasuhiko, Osamu; Ueda, Yukio

    2018-02-01

    We developed a compact Mach-Zehnder interferometer module to be used as a replacement of the objective lens in a conventional inverted microscope (Nikon, TS100-F) in order to make them quantitative phase microscopes. The module has a 90-degree-flipped U-shape; the dimensions of the module are 160 mm by 120 mm by 40 mm and the weight is 380 grams. The Mach-Zehnder interferometer equipped with the separate reference and sample arms was implemented in this U-shaped housing and the path-length difference between the two arms was manually adjustable. The sample under test was put on the stage of the microscope and a sample light went through it. Both arms had identical achromatic lenses for image formation and the lateral positions of them were also manually adjustable. Therefore, temporally and spatially low coherent illumination was applicable because the users were able to balance precisely the path length of the two arms and to overlap the two wavefronts. In the experiment, spectrally filtered LED light for illumination (wavelength = 633 nm and bandwidth = 3 nm) was input to the interferometer module via a 50 micrometer core optical fiber. We have successfully captured full-field interference images by a camera put on the trinocular tube of the microscope and constructed quantitative phase images of the cultured cells by means of the quarter-wavelength phase shifting algorithm. The resultant quantitative phase images were speckle-free and halo-free due to spectrally and spatially low coherent illumination.

  10. Source to Accretion Disk Tilt

    OpenAIRE

    Montgomery, M. M.; Martin, E. L.

    2010-01-01

    Many different system types retrogradely precess, and retrograde precession could be from a tidal torque by the secondary on a misaligned accretion disk. However, a source to cause and maintain disk tilt is unknown. In this work, we show that accretion disks can tilt due to a force called lift. Lift results from differing gas stream supersonic speeds over and under an accretion disk. Because lift acts at the disk's center of pressure, a torque is applied around a rotation axis passing through...

  11. Nanobits - exchangable and customisable scanning probe tips

    DEFF Research Database (Denmark)

    Yildiz, Izzet

    dimensions: tips suitable for imaging high-aspect ratio structures and sidewall profiles were designed. Tip diameters in the order of 30 nm were reproducibly obtained with the FIB milling and the smallest tip diameter achieved was ... process by providing direct picking up of the NanoBits by the AFM probe was investigated. Two different bending mechanisms were studied for out-of-plane bending studies: FIB irradiation- and the residual stress-driven bending in bimorph structures. With FIB irradiation studies, NanoBits were demonstrated...... of the structure which may be starting at 170°C. The fabricated NanoBits were assembled and their performance as AFM probes were tested at OFFIS. The NanoBits were successfully picked up by a microgripper, collected in a cartridge and mounted to an AFM probe. Performances of the assembled high-aspect-ratio Nano...

  12. Optimal tilt-angles for solar collectors used in China

    International Nuclear Information System (INIS)

    Tang Runsheng; Wu Tong

    2004-01-01

    A reasonable estimation of the optimal tilt angle of a fixed collector for maximizing its energy collection must be done based on the monthly global and diffuse radiation on a horizontal surface. However, the monthly diffuse radiation is not always available in many places. In this paper, a simple mathematical procedure for the estimation of the optimal tilt angle of a collector is presented based on the monthly horizontal radiation. A comparison of the optimal tilt angles of collectors obtained from expected monthly diffuse radiation and that from the actual monthly diffuse radiation showed that this method gives a good estimation of the optimal tilt angle, except for places with a considerably lower clearness index. A contour map of the optimal tilt angle of the south-facing collectors used for the entire year in China is also outlined, based on monthly horizontal radiation of 152 places around the country, combing the optimal tilt angle of another 30 cities based on the actual monthly diffuse radiation

  13. Structure and stability of semiconductor tip apexes for atomic force microscopy

    International Nuclear Information System (INIS)

    Pou, P; Perez, R; Ghasemi, S A; Goedecker, S; Jelinek, P; Lenosky, T

    2009-01-01

    The short range force between the tip and the surface atoms, that is responsible for atomic-scale contrast in atomic force microscopy (AFM), is mainly controlled by the tip apex. Thus, the ability to image, manipulate and chemically identify single atoms in semiconductor surfaces is ultimately determined by the apex structure and its composition. Here we present a detailed and systematic study of the most common structures that can be expected at the apex of the Si tips used in experiments. We tackle the determination of the structure and stability of Si tips with three different approaches: (i) first principles simulations of small tip apexes; (ii) simulated annealing of a Si cluster; and (iii) a minima hopping study of large Si tips. We have probed the tip apexes by making atomic contacts between the tips and then compared force-distance curves with the experimental short range forces obtained with dynamic force spectroscopy. The main conclusion is that although there are multiple stable solutions for the atomically sharp tip apexes, they can be grouped into a few types with characteristic atomic structures and properties. We also show that the structure of the last atomic layers in a tip apex can be both crystalline and amorphous. We corroborate that the atomically sharp tips are thermodynamically stable and that the tip-surface interaction helps to produce the atomic protrusion needed to get atomic resolution.

  14. LONG-TERM MEASUREMENTS OF SUNSPOT MAGNETIC TILT ANGLES

    Energy Technology Data Exchange (ETDEWEB)

    Li Jing [Department of Earth and Space Sciences, University of California at Los Angeles, Los Angeles, CA 90095-1567 (United States); Ulrich, Roger K., E-mail: jli@igpp.ucla.edu [Department of Physics and Astronomy, University of California at Los Angeles, Los Angeles, CA 90095-1567 (United States)

    2012-10-20

    Tilt angles of close to 30,600 sunspots are determined using Mount Wilson daily averaged magnetograms taken from 1974 to 2012, and SOHO/MDI magnetograms taken from 1996 to 2010. Within a cycle, more than 90% of sunspots have a normal polarity alignment along the east-west direction following Hale's law. The median tilts increase with increasing latitude (Joy's law) at a rate of {approx}0.{sup 0}5 per degree of latitude. Tilt angles of spots appear largely invariant with respect to time at a given latitude, but they decrease by {approx}0.{sup 0}9 per year on average, a trend that largely reflects Joy's law following the butterfly diagram. We find an asymmetry between the hemispheres in the mean tilt angles. On average, the tilts are greater in the Southern than in the Northern Hemisphere for all latitude zones, and the differences increase with increasing latitude.

  15. Infrared speckle observations of the binary Ross 614 AB - combined shift-and-add and zero-and-add analysis

    International Nuclear Information System (INIS)

    Davey, B.L.K.; Bates, R.H.T.; Cocke, W.J.; Mccarthy, D.W. Jr.; Christou, J.C.

    1989-01-01

    One-dimensional infrared speckle scans of Ross 614 AB were recorded at a wavelength of 2.2 microns, and the three bins corresponding to the three best seeing conditions were further processed by applying a shift-and-add algorithm to the set of images contained within each bin, generating three shift-and-add images with differing shift-and-add point-spread functions. A zero-and-add technique was used to deconvolve the three shift-and-add images in order to obtain parameters corresponding to the separation and the brightness ratio of a two-component model of Ross 614 Ab. Least-squares analysis results reveal a separation of 1.04 arcsec and a brightness ratio of 4.3 for the binary system at this wavelength. 31 refs

  16. Efficacy of tilt training in patients with vasovagal syncope.

    Science.gov (United States)

    Gajek, Jacek; Zyśko, Dorota; Mazurek, Walentyna

    2006-06-01

    Besides pharmacological therapy and pacemaker implantation, tilt training is a promising method of treatment in patients with vasovagal syncope (VVS). Tilt training is usually offered to patients with malignant or recurrent VVS which impairs their quality of life and carries a risk of injury. To assess the efficacy of tilt training in patients with VVS. The study group consisted of 40 patients (29 females, 11 males, aged 36.6+/-14 years, range 18-57 years) who underwent tilt training using tilt table testing according to the Westminster protocol. The mean number of syncopal episodes prior to the initiation of tilt training was 6.5+/-4.9 (range 0-20); 3 patients had a history of very frequent faints. According to the VASIS classification, type I VVS (mixed) was diagnosed in 17 patients, type II (cardioinhibitory) in 22 subjects, and type III (vasodepressive) in one patient. Mean follow-up duration was 35.1+/-13.5 months. The control group, which did not undergo the tilt testing programme, consisted of 29 patients with VVS (25 females, 4 males, mean age 44.2+/-15.0 years) who had a mean of 3.3+/-3.2 (range 0-12) syncopal episodes in the past (p <0.05 vs study group); 6 of these patients had only pre-syncopal episodes. Type I VVS was diagnosed in 23 controls and type II VVS in 6 control subjects (syncope occurred during the passive phase of tilt testing in 7 subjects, whereas the remaining 22 fainted during NTG infusion). Of the patients from the study group, 3 underwent pacemaker implantation at the time of the initiation of tilt training. At the end of follow-up, 31 (77.5%) patients remained free from syncope recurrences, 5 had syncopal episodes during the initial phase of tilt training, whereas the remaining 4 continued to suffer from syncopal episodes. Out of 3 patients with presyncope, 2 had no syncope recurrences whereas 1 patient continued to have presyncopal attacks. Out of 3 patients with pacemakers, 1 reported activation of pacing in the interventional mode

  17. Strong reflector-based beamforming in ultrasound medical imaging.

    Science.gov (United States)

    Szasz, Teodora; Basarab, Adrian; Kouamé, Denis

    2016-03-01

    This paper investigates the use of sparse priors in creating original two-dimensional beamforming methods for ultrasound imaging. The proposed approaches detect the strong reflectors from the scanned medium based on the well known Bayesian Information Criteria used in statistical modeling. Moreover, they allow a parametric selection of the level of speckle in the final beamformed image. These methods are applied on simulated data and on recorded experimental data. Their performance is evaluated considering the standard image quality metrics: contrast ratio (CR), contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR). A comparison is made with the classical delay-and-sum and minimum variance beamforming methods to confirm the ability of the proposed methods to precisely detect the number and the position of the strong reflectors in a sparse medium and to accurately reduce the speckle and highly enhance the contrast in a non-sparse medium. We confirm that our methods improve the contrast of the final image for both simulated and experimental data. In all experiments, the proposed approaches tend to preserve the speckle, which can be of major interest in clinical examinations, as it can contain useful information. In sparse mediums we achieve a highly improvement in contrast compared with the classical methods. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Hypertonic-induced lamin A/C synthesis and distribution to nucleoplasmic speckles is mediated by TonEBP/NFAT5 transcriptional activator

    International Nuclear Information System (INIS)

    Favale, Nicolas O.; Sterin Speziale, Norma B.; Fernandez Tome, Maria C.

    2007-01-01

    Lamin A/C is the most studied nucleoskeletal constituent. Lamin A/C expression indicates cell differentiation and is also a structural component of nuclear speckles, which are involved in gene expression regulation. Hypertonicity has been reported to induce renal epithelial cell differentiation and expression of TonEBP (NFAT5), a transcriptional activator of hypertonicity-induced gene transcription. In this paper, we investigate the effect of hypertonicity on lamin A/C expression in MDCK cells and the involvement of TonEBP. Hypertonicity increased lamin A/C expression and its distribution to nucleoplasm with speckled pattern. Microscopy showed codistribution of TonEBP and lamin A/C in nucleoplasmic speckles, and immunoprecipitation demonstrated their interaction. TonEBP silencing caused lamin A/C redistribution from nucleoplasmic speckles to the nuclear rim, followed by lamin decrease, thus showing that hypertonicity induces lamin A/C speckles through a TonEBP-dependent mechanism. We suggest that lamin A/C speckles could serve TonEBP as scaffold thus favoring its role in hypertonicity

  19. Design and performance of a beetle-type double-tip scanning tunneling microscope

    International Nuclear Information System (INIS)

    Jaschinsky, Philipp; Coenen, Peter; Pirug, Gerhard; Voigtlaender, Bert

    2006-01-01

    A combination of a double-tip scanning tunneling microscope with a scanning electron microscope in ultrahigh vacuum environment is presented. The compact beetle-type design made it possible to integrate two independently driven scanning tunneling microscopes in a small space. Moreover, an additional level for coarse movement allows the decoupling of the translation and approach of the tunneling tip. The position of the two tips can be controlled from the millimeter scale down to 50 nm with the help of an add-on electron microscope. The instrument is capable of atomic resolution imaging with each tip

  20. Holographic interferometry and laser speckle photography as aids to assessment of pressurized components

    International Nuclear Information System (INIS)

    Martin, D.J.V.

    1975-01-01

    This paper gives details of the defect detection holographic technique and describes laser speckle photography to evaluate in phase movement and strain in pressurized components. The new fibre optic technique and system appraisal is included. The holographic tests show that it is possible to detect on the outside of tubes defects in the bore approximately 10% of thickness deep. Speckle photography gives object lateral movement, direction and strain. (Auth.)