WorldWideScience

Sample records for tio2 photocatalyst synthesized

  1. XAFS Study on TiO2 Photocatalyst Loaded on Zeolite Synthesized from Steel Slag

    International Nuclear Information System (INIS)

    Kuwahara, Yasutaka; Ohmichi, Tetsutaro; Mori, Kosuke; Katayama, Iwao; Yamashita, Hiromi

    2007-01-01

    The convenient route for the synthesis of Y-zeolites by utilizing steel slag as a material source was developed. Through hydrothermal treatment, well-crystallized Y-zeolite was obtained. We also synthesized TiO2-loaded Y-zeolites by an impregnation method. The structure of titanium oxide species highly dispersed on the zeolite, which couldn't be detected by XRD patterns, was investigated by XAFS analysis. Photocatalytic activity for decomposition of 2-propanol in liquid phase was found to be enhanced by the hydrophobic surface property of zeolite. It has been demonstrated that the zeolite synthesized from steel slag would be applicable as a promising support of TiO2 photocatalyst

  2. THERMALLY STABLE NANOCRYSTALLINE TIO2 PHOTOCATALYSTS SYNTHESIZED VIA SOL-GEL METHODS MODIFIED WITH IONIC LIQUID AND SURFACTANT MOLECULES

    Science.gov (United States)

    Recently, sol-gel methods employing ionic liquids (ILs) have shown significant implications for the synthesis of well-defined nanostructured inorganic materials. Herein, we synthesized nanocrystalline TiO2 particles via an alkoxide sol-gel method employing a water-immi...

  3. Fabrication and Characteristics of Macroporous TiO2 Photocatalyst

    Directory of Open Access Journals (Sweden)

    Guiyun Yi

    2014-01-01

    Full Text Available Macroporous TiO2 photocatalyst was synthesized by a facile nanocasting method using polystyrene (PS spherical particles as the hard template. The synthesized photocatalyst was characterized by transmission electron microscope (TEM, scanning electron microscopy (SEM, thermogravimetry-differential thermogravimetry (TG-DTG, X-ray diffraction (XRD, and N2-sorption. TEM, SEM, and XRD characterizations confirmed that the macroporous TiO2 photocatalyst is composed of anatase phase. The high specific surface area of 87.85 m2/g can be achieved according to the N2-sorption analysis. Rhodamine B (RhB was chosen as probe molecule to evaluate the photocatalytic activity of the TiO2 catalysts. Compared with the TiO2 materials synthesized in the absence of PS spherical template, the macroporous TiO2 photocatalyst sintered at 500°C exhibits much higher activity on the degradation of RhB under the UV irradiation, which can be assigned to the well-structured macroporosity. The macroporous TiO2 material presents great potential in the fields of environmental remediation and energy conversion and storage.

  4. Optimized nanostructured TiO2 photocatalysts

    Science.gov (United States)

    Topcu, Selda; Jodhani, Gagan; Gouma, Pelagia

    2016-07-01

    Titania is the most widely studied photocatalyst. In it’s mixed-phase configuration (anatase-rutile form) -as manifested in the commercially available P25 Degussa material- titania was previously found to exhibit the best photocatalytic properties reported for the pure system. A great deal of published research by various workers in the field have not fully explained the underlying mechanism for the observed behavior of mixed-phase titania photocatalysts. One of the prevalent hypothesis in the literature that is tested in this work involves the presence of small, active clusters of interwoven anatase and rutile crystallites or “catalytic “hot-spots””. Therefore, non-woven nanofibrous mats of titania were produced and upon calcination the mats consisted of nanostructured fibers with different anatase-rutile ratios. By assessing the photocatalytic and photoelectrochemical properties of these samples the optimized photocatalyst was determined. This consisted of TiO2 nanostructures annealed at 500˚C with an anatase /rutile content of 90/10. Since the performance of this material exceeded that of P25 complete structural characterization was employed to understand the catalytic mechanism involved. It was determined that the dominant factors controlling the photocatalytic behavior of the titania system are the relative particle size of the different phases of titania and the growth of rutile laths on anatase grains which allow for rapid electron transfer between the two phases. This explains how to optimize the response of the pure system.

  5. Studies on the Fe3+ Doping Effect on Structural, Optical and Catalytic Properties of Hydrothermally Synthesized TiO2 Photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Kamble, Ravi [Department of Physics, Jaysingpur College, Jaysingpur-416101, India; Sabale, Sandip [P.G. Department of Chemistry, Jaysingpur College, Jaysingpur-416101, Maharashtra, India; Chikode, Prashant [Department of Physics, Jaysingpur College, Jaysingpur-416101, India; Puri, Vijaya [Department of Physics, Shivaji University, Kolhapur-416004, India; Yu, Xiao-Ying [Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory (PNNL), Richland, WA 99352, United States; Mahajan, Smita [Department of Physics, Jaysingpur College, Jaysingpur-416101, India

    2017-08-01

    Pure TiO2 and Fe3+-TiO2 nanoparticles have been prepared by simple hydrothermal method with different Fe3+ concentrations. The synthesized nanoparticles are analysed to determine its structural, optical, morphological and compositional properties using X-ray diffraction, Raman, UV-DRS, photoluminescence, Mossbauer, XPS, TEM and SEM/EDS. The EDS micrograph confirms the existence of Fe3+ atoms in the TiO2 matrix with 0.85, 1.52 and 1.87 weight percent. The crystallite size and band gap decrease with increase in Fe3+concentration. The average particle size obtained from TEM is 7-11 nm which is in good agreement with XRD results. Raman bands at 640 cm-1, 517 cm-1 and 398 cm-1 further confirm pure phase anatase in all samples. XPS shows the proper substitutions of few sites of Ti4+ ions by Fe3+ ions in the TiO2 host lattice. The intensity of PL spectra for Fe3+-TiO2 shows a gradual decrease in the peak intensity with increasing Fe3+ concentration in TiO2, and it indicates lower recombination rate as Fe3+ ions increases. These nanoparticles are further studied for its photocatalytic activities using malachite green dye under UV light, visible light and sunlight.

  6. Facile synthesis of porous TiO_2 photocatalysts using waste sludge as the template

    International Nuclear Information System (INIS)

    Wang, Xiaopeng; Huang, Shouqiang; Zhu, Nanwen; Lou, Ziyang; Yuan, Haiping

    2015-01-01

    Graphical abstract: Waste sludge is introduced to synthesize the waste sludge templated TiO_2 photocatalyst with porous structure, which possesses better photocatalytic activity compared to pure TiO_2. - Highlights: • Waste sludge is introduced to synthesize the TiO_2 photocatalyst. • Waste sludge templated TiO_2 sample possesses porous structure. • Waste sludge templated TiO_2 sample exhibits high photocatalytic activity. - Abstract: A resource utilization method of waste sludge is present by the synthesis of waste sludge templated TiO_2 photocatalysts. The organic materials in waste sludge are used as the pore-forming agents, and the transition metals included in the remaining waste sludge through calcination (WSC) can serve as the dopants for the WSC-TiO_2 (WSCT) photocatalyst. The visible and UV–visible light driven photocatalytic activities of WSCT are much better compared to those of pure TiO_2 and WSC, and it is originated from the higher light absorption property and the efficient electron–hole pair separation provided by waste sludge.

  7. Photooxidative desulfurization for diesel using Fe / N - TiO2 photocatalyst

    Science.gov (United States)

    Khan, Muhammad Saqib; Kait, Chong Fai; Mutalib, Mohd Ibrahim Abdul

    2014-10-01

    A series of N - TiO2 with different mol% N was synthesized via sol-gel method and characterized using thermal gravimetric analyzer and raman spectroscopy. 0.2 wt% Fe was incorporated onto the calcined (200°C) N - TiO2 followed by calcination at 200°C, 250°C and 300°C. Photooxidative desulfurization was conducted in the presence of 0.2wt% Fe / N - TiO2 with different mol% N with and without oxidant (H2O2). Oxidative desulfurization was only achieved when H2O2 was used while without H2O2 no major effect on the sulfur removal. 0.2Fe -30N - H2O2 photocatalysts showed best performance at all calcination temperatures as compared to other mol% N - H2O2 photocatalysts. 16.45% sulfur removal was achieved using photocatalysts calcined at 300 °C.

  8. Photocatalytic degradation of methyl orange with W-doped TiO2 synthesized by a hydrothermal method

    International Nuclear Information System (INIS)

    Tian Hua; Ma Junfeng; Li Kang; Li Jinjun

    2008-01-01

    Nanosized W-doped TiO 2 photocatalysts were synthesized by a simple hydrothermal method, and characterized by energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), transmission electron microscopy (TEM) and BET surface area analyzer. The photocatalytic activity of undoped TiO 2 and W-doped TiO 2 photocatalysts was evaluated by the photocatalytic oxidation degradation of methyl orange in aqueous solution. The results show that the photocatalytic activity of the W-doped TiO 2 photocatalyst is much higher than that of undoped TiO 2 , and the optimum percentage of W doped is 2.0 mol%. The enhanced photocatalytic activity of the doped photocatalyst may be attributed to the increase in the charge separation efficiency and the presence of surface acidity

  9. TiO2 Based Photocatalyst: From Synthesis and Characterization to Optimization and Design

    DEFF Research Database (Denmark)

    Su, Ren

    2012-01-01

    TiO2 based photocatalyst has attracted gerat attentions from both fundamental and an applied aspects in water/air purifications and energy production. In this thesis, series of well-defined TiO2 photocatalyst with various parameters (i.e., polymorph composition, shape, impurity concentration, sur...

  10. Coexistence of an anatase/TiO2(B) heterojunction and an exposed (001) facet in TiO2 nanoribbon photocatalysts synthesized via a fluorine-free route and topotactic transformation.

    Science.gov (United States)

    Wang, Changhua; Zhang, Xintong; Liu, Yichun

    2014-05-21

    In this work, we report a novel approach to fabricate hierarchical TiO2 microspheres (HTMS) assembled by ultrathin nanoribbons where an anatase/TiO2(B) heterojunction and high energy facet coexist. The as-adopted approach involves (1) nonaqueous solvothermal treatment of a mixture of tetrabutyl titanate and acetic acid and (2) topotactical transformation into HTMS via thermal annealing. By this approach, the TiO2(B) phase usually synthesized from an alkaline treatment route could be initially formed. Subsequently, phase transition from TiO2(B) to anatase TiO2 occurs upon thermal treatment. It is demonstrated that such phase transition is accompanied by crystallographic orientation along the c-axis of anatase and TiO2(B) crystals, resulting in not only a coherent interface between two phases but also oriented attachment of anatase mesocrystals along the [001] direction, and finally high-energy (001) facet exposure. Interestingly, this work provides an alternative fluorine-free route for the synthesis of TiO2 crystals with high-energy (001) facet exposure. The structural analysis reveals that lattice-match induced topotactic transformation from TiO2(B) to anatase is the sole reason for the (001) facet exposure of anatase TiO2. The photocatalytic test for acetaldehyde decomposition shows that HTMS with anatase/TiO2(B) heterojunction and high-energy (001) facet exhibits superior photocatalytic efficiency compared with the relevant commercial product P25, which can be ascribed to the synergistic effect of large surface area, anatase/TiO2(B) heterojunction as well as high-energy facet exposure.

  11. Coexistence of an anatase/TiO2(B) heterojunction and an exposed (001) facet in TiO2 nanoribbon photocatalysts synthesized via a fluorine-free route and topotactic transformation

    Science.gov (United States)

    Wang, Changhua; Zhang, Xintong; Liu, Yichun

    2014-04-01

    In this work, we report a novel approach to fabricate hierarchical TiO2 microspheres (HTMS) assembled by ultrathin nanoribbons where an anatase/TiO2(B) heterojunction and high energy facet coexist. The as-adopted approach involves (1) nonaqueous solvothermal treatment of a mixture of tetrabutyl titanate and acetic acid and (2) topotactical transformation into HTMS via thermal annealing. By this approach, the TiO2(B) phase usually synthesized from an alkaline treatment route could be initially formed. Subsequently, phase transition from TiO2(B) to anatase TiO2 occurs upon thermal treatment. It is demonstrated that such phase transition is accompanied by crystallographic orientation along the c-axis of anatase and TiO2(B) crystals, resulting in not only a coherent interface between two phases but also oriented attachment of anatase mesocrystals along the [001] direction, and finally high-energy (001) facet exposure. Interestingly, this work provides an alternative fluorine-free route for the synthesis of TiO2 crystals with high-energy (001) facet exposure. The structural analysis reveals that lattice-match induced topotactic transformation from TiO2(B) to anatase is the sole reason for the (001) facet exposure of anatase TiO2. The photocatalytic test for acetaldehyde decomposition shows that HTMS with anatase/TiO2(B) heterojunction and high-energy (001) facet exhibits superior photocatalytic efficiency compared with the relevant commercial product P25, which can be ascribed to the synergistic effect of large surface area, anatase/TiO2(B) heterojunction as well as high-energy facet exposure.

  12. A visible-light-driven composite photocatalyst of TiO2 nanotube arrays and graphene quantum dots

    Directory of Open Access Journals (Sweden)

    Donald K. L. Chan

    2014-05-01

    Full Text Available TiO2 nanotube arrays are well-known efficient UV-driven photocatalysts. The incorporation of graphene quantum dots could extend the photo-response of the nanotubes to the visible-light range. Graphene quantum dot-sensitized TiO2 nanotube arrays were synthesized by covalently coupling these two materials. The product was characterized by Fourier-transform infrared spectrometry (FTIR, scanning electron microscopy (SEM, transmission electron microscopy (TEM, X-ray diffraction (XRD, thermogravimetric analysis (TGA and UV–vis absorption spectroscopy. The product exhibited high photocatalytic performance in the photodegradation of methylene blue and enhanced photocurrent under visible light irradiation.

  13. Effect of preparation conditions on the characteristics and photocatalytic activity of TiO2/purified diatomite composite photocatalysts

    International Nuclear Information System (INIS)

    Sun, Zhiming; Hu, Zhibo; Yan, Yang; Zheng, Shuilin

    2014-01-01

    Highlights: • TiO 2 /purified diatomite composites were synthesized under different conditions. • The optimum preparation conditions of composites were obtained. • The obtained photocatalyst showed good photocatalytic activity. • The dispersity and grain size of loaded TiO 2 NPs are the critical factors. - Abstract: TiO 2 /purified diatomite composite materials were prepared through a modified hydrolysis-deposition method under low temperature using titanium tetrachloride as precursor combined with a calcination crystallization process. The microstructure and crystalline phases of the obtained composites prepared under different preparation conditions were characterized by high resolution scanning electron microscope (SEM) and X-ray diffraction (XRD), respectively. The photocatalytic performance of TiO 2 /purified diatomite composites was evaluated by Rhodamine B as the target pollutant under UV irradiation, and the optimum preparation conditions of composites were obtained. The TiO 2 crystal form in composites prepared under optimum conditions was anatase, the grain size of which was 34.12 nm. The relationships between structure and property of composite materials were analyzed and discussed. It is indicated that the TiO 2 nanoparticles uniformly dispersed on the surface of diatoms, and the photocatalytic performance of the composite materials was mainly determined by the dispersity and grain size of loaded TiO 2 nanoparticles

  14. Synthesis of ascorbic acid enhanced TiO2 photocatalyst: its characterization and catalytic activity in CO2 photoreduction

    Directory of Open Access Journals (Sweden)

    Mohd Farid Bin Mohd Na'aim

    2018-04-01

    Full Text Available To date, the development of solar environmental remediation has shifted more emphasis on the green and simple synthesis of catalyst for CO2 photocatalysis process. Herein, TiO2 photocatalyst was successfully synthesized via hydrothermal method. The effects of the different molar ratio of ascorbic acid C6H8O6, (AA added during the preparation of TiO2 nanoparticles were comprehensively studied. The characterization of TiO2 nanocrystals was performed via XRD, XPS, DRUV-vis, and FTIR. The results show the AA loading into TiO2 nanoparticles significantly intensified the XRD spectra of anatase structure. In fact, this feature had signified a reactivity of the photocatalyst in the visible region. In an instance, BET surface area was also enhanced with the highest recorded value of 135.14 m2/g for 0.8AA. Meanwhile, the CO2 photoreduction over synthesized TiO2 had produced the highest amount of HCOOH at 39.3 μmol/g cat for 0.8AA within 6 hours of reaction time. Furthermore, the DRUV-vis analysis had illustrated better light absorption ability of 0.8AA. This profound finding is attributed to the correlation between large surface area, pure anatase phase, and high adsorbed water molecules. Therefore, this study had significantly demonstrated the potential of modified TiO2 with AA in CO2 photocatalysis area while simultaneously presents a green and simple method for TiO2 synthesis.

  15. Preparation And Characterization of Cu-Fe/ TiO2 Photocatalyst for Visible Light Deep Desulfurization

    International Nuclear Information System (INIS)

    Hayyiratul Fatimah Mohd Zaid; Kait, C.F.; Mohamed Ibrahim Abdul Mutalib

    2016-01-01

    A photooxidative system for deep desulfurization of model diesel fuel was explored. Nanoparticles of anatase titania (TiO 2 ) were synthesized via sol-gel hydrothermal method. The TiO 2 was further modified with bimetallic Cu-Fe using wet-impregnation method followed by calcination process in order to extend the activity region of the photocatalyst to visible-light. A series of bimetallic 2.2 wt % Cu-Fe/ TiO 2 photocatalysts with different Cu:Fe mass compositions were characterized for their physical, chemical and optical properties using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), diffuse reflectance UV-visible spectroscopy (DR-UV-Vis), Fourier Transform Infrared Spectroscopy (FTIR) and Brunauer-Emmet-Teller (BET) surface area analysis. The performance of the photocatalysts was evaluated for photooxidation of dibenzothiophene (DBT) as the sulfur species from model oil in the presence of hydrogen peroxide, H 2 O 2 under 500 W visible light illumination. The highest sulfur conversion of 82.36 % was observed for photocatalyst with 10:1Cu:Fe mass composition. (author)

  16. Development of high efficient visible light-driven N, S-codoped TiO2 nanowires photocatalysts

    International Nuclear Information System (INIS)

    Zhang, Yanlin; Liu, Peihong; Wu, Honghai

    2015-01-01

    Highlights: • A facile hydrothermal route to synthesize N, S-codoped TiO 2 nanowires. • The codoped TiO 2 nanowires have TiO 2 (B) and anatase phase. • The significant shift of the optical absorption edge toward the visible region. • The photocatalyst showed high photocatalytic activity for atrazine. - Abstract: One-dimensional (1D) nanowire material (especially nonmetal doped 1D nanowires) synthesized by a facile way is of great significance and greatly desired as it has higher charge carrier mobility and lower carrier recombination rate. N, S-codoped TiO 2 nanowires were synthesized using titanium sulfate as a precursor and isopropanol as a protective capping agent by a hydrothermal route. The obtained doped nanowires were characterized by XRD, SEM, HRTEM, SAED, XPS, BET and UV–vis absorption spectrum. The incorporation of N and S into TiO 2 NWs can lead to the expansion of its lattice and remarkably lower its electron-transfer resistance. Photocatalytic activity measurement showed that the N, S-codoped TiO 2 nanowires with high quantum efficiency revealed the best photocatalytic performance for atrazine degradation under visible light irradiation compared to N, S-codoped TiO 2 nanoparticles and S-doped TiO 2 nanowires, which was attributed to (i) the synergistic effect of N and S doping in narrowing the band gap, separating electron–hole pairs and increasing the photoinduced electrons, and (ii) extending the anatase-to-rutile transformation temperature above 600 °C

  17. Graphene Modified TiO2 Composite Photocatalysts: Mechanism, Progress and Perspective

    Science.gov (United States)

    Tang, Bo; Chen, Haiqun; Peng, Haoping; Wang, Zhengwei; Huang, Weiqiu

    2018-01-01

    Graphene modified TiO2 composite photocatalysts have drawn increasing attention because of their high performance. Some significant advancements have been achieved with the continuous research, such as the corresponding photocatalytic mechanism that has been revealed. Specific influencing factors have been discovered and potential optimizing methods are proposed. The latest developments in graphene assisted TiO2 composite photocatalysts are abstracted and discussed. Based on the primary reasons behind the observed phenomena of these composite photocatalysts, probable development directions and further optimizing strategies are presented. Moreover, several novel detective technologies—beyond the decomposition test—which can be used to judge the photocatalytic performances of the resulting photocatalysts are listed and analyzed. Although some objectives have been achieved, new challenges still exist and hinder the widespread application of graphene-TiO2 composite photocatalysts, which deserves further study. PMID:29439545

  18. TiO2-V2O5 nanocomposites as alternative energy storage substances for photocatalysts.

    Science.gov (United States)

    Ngaotrakanwiwat, Pailin; Meeyoo, Vissanu

    2012-01-01

    TiO2-V2O5 was prepared and evaluated as an energy storage material for photocatalysts with high capacity and initial charging rate. The compound was successfully obtained by sol-gel technique and effects of compound composition and calcination temperature on the energy storage ability were investigated. The synthesized compounds were characterized by means of X-ray powder diffraction (XRD), scanning electron microscopy equipped with energy-dispersive X-ray analysis (SEM-EDX) and transmission electron microscopy (TEM). The results reveals that the compound of Ti:V molar ratio equal to 1:0.11 calcined at 550 degrees C exhibited superior energy storage ability than parent substances and 1.7-times higher capacity and 2.3-times higher initial charging rate compared to WO3, indicating that the compound is a remarkable alternative to conventional energy storage substances.

  19. Favorable recycling photocatalyst TiO2/CFA: Effects of loading percent of TiO2 on the structural property and photocatalytic activity

    International Nuclear Information System (INIS)

    Shi Jianwen; Chen Shaohua; Ye Zhilong; Wang Shumei; Wu Peng

    2010-01-01

    A series of photocatalysts TiO 2 /CFA were prepared using coal fly ash (CFA), waste discharged from coal-fired power plant, as substrate, and then these photocatalysts were characterized by scanning electron microscope, X-ray diffraction analysis, nitrogen adsorption test and ultraviolet-visible absorption analysis. The effects of loading percent of TiO 2 on the photocatalytic activity and re-use property of TiO 2 /CFA were evaluated by the photocatalytic decoloration and mineralization of methyl orange solution. The results show that the pore volume and the specific surface area of the TiO 2 /CFA both increased with the increase in the loading percent of TiO 2 , which improved the photocatalytic activity of TiO 2 /CFA. However, when the loading percent of TiO 2 was too high (up to 54.51%), superfluous TiO 2 was easy to break away from CFA in the course of water treatment, which was disadvantaged to the recycling property of TiO 2 /CFA. In this study, the optimal loading percent of TiO 2 was 49.97%, and the efficiencies of photocatalytic decoloration and mineralization could be maintained above 99% and 90%, respectively, when the photocatalyst was used repeatedly, without any decline, even at the sixth cycle.

  20. A practical pathway for the preparation of Fe_2O_3 decorated TiO_2 photocatalyst with enhanced visible-light photoactivity

    International Nuclear Information System (INIS)

    Cheng, Li; Qiu, Shoufei; Chen, Juanrong; Shao, Jian; Cao, Shunsheng

    2017-01-01

    Shifting the ultra-violet of titania to visible light driven photocatalysis can be realized by coupling with metallic or non-metallic elements. However, time-consuming multi-step process and significant loss of UV photocatalytic activity of such TiO_2-based photocatalysts severely hinder their practical applications. In this work, we explore the idea of creating a practical method for the preparation of Fe_2O_3 decorated TiO_2 (TiO_2/Fe_2O_3) photocatalyst with controlled visible-light photoactivity. This method only involves the calcination of the mixture (commercial P25 powders and magnetic Fe_3O_4 nanoparticles) prepared by a mechanical process. The morphology and properties of TiO_2/Fe_2O_3 composites were characterized by Transmission electron microscope, X-ray diffraction, UV–vis spectroscopy, and X-ray photoelectron spectroscopy. Results confirm the fusion of TiO_2 and Fe_2O_3, which promotes photo-generated electrons/holes migration and separation. Because of the strong synergistic effect, the as-synthesized TiO_2/Fe_2O_3 composites manifest an enhanced visible-light photocatalytic activity. Especially, the TiO_2/Fe_2O_3 photocatalyst is very easy to be constructed via an one-step protocol that efficiently overcomes the time-consuming multi-step processes used in existed strategies for the preparation of Fe_2O_3/TiO_2 photocatalysts, providing a new insight into the practical application of TiO_2/Fe_2O_3 visible light photocatalyst. - Highlights: • We introduced a practical preparation of Fe_2O_3 decorated TiO_2 photocatalyst. • TiO_2/Fe_2O_3 was developed using commercial precursors in a high efficient manner. • Visible-light activity of TiO_2/Fe_2O_3 could be tuned by changing amount of Fe_3O_4 precursor. • TiO_2/Fe_2O_3 exhibited a higher visible-light photocatalytic activity than P25.

  1. NOx photocatalytic degradation on gypsum plates modified by TiO2-N,C photocatalysts

    Directory of Open Access Journals (Sweden)

    Janus Magdalena

    2015-09-01

    Full Text Available In presented studies the photocatalytic decomposition of NOx on gypsum plates modified by TiO2-N,Cphotocatalysts were presented. The gypsum plates were obtained by addition of 10 or 20 wt.% of different types of titanium dioxide, such as: pure TiO2 and carbon and nitrogen co-modified TiO2 (TiO2-N,C to gypsum. TiO2-N,C photocatalysts were obtained by heating up the starting TiO2 (Grupa Azoty Zakłady Chemiczne Police S.A in the atmosphere of ammonia and carbon at the temperature: 100, 300 i 600ºC. Photocatalyst were characterized by FTIR/DRS, UVVis/DR, BET and XRD methods. Moreover the compressive strength tests of modified gypsum were also done. Photocatalytic activity of gypsum plates was done during NOx decomposition. The highest photocatalytic activity has gypsum with 20 wt.% addition of TiO2-N,C obtained at 300ºC.

  2. CeO2-TiO2 Photocatalyst: Ionic Liquid-Mediated Synthesis, Characterization, and Performance for Diisopropanolamine Visible Light Degradation

    Directory of Open Access Journals (Sweden)

    Jagath Retchahan Sivalingam

    2018-01-01

    Full Text Available CeO2-TiO2 photocatalyst with Ce:Ti molar ratio of 1:9 was synthesized via co-precipitation method in the presence of 1-ethyl-3-methyl imidazolium octylsulfate, [EMIM][OctSO4] (CeO2-TiO2-IL. The ionic liquid acts as a templating agent for particle growth. The CeO2-TiO2 and TiO2 photocatalysts were also synthesized without any ionic liquid for comparison. Calcination was conducted on the as-synthesized materials at 400˚C for 2 h. The photocatalysts were characterized using diffuse reflectance UV-Vis spectroscopy (DR-UV-Vis, field emission scanning electron microscopy (FESEM, X-ray powder diffraction (XRD, and surface area and pore size analyzer (SAP. The presence of CeO2 has changed the optical property of TiO2. It has extended the absorption edge of TiO2 from UV to visible region. The calculated band gap energy decreased from 2.82 eV (TiO2 to 2.30 eV (CeO2-TiO2-IL. The FESEM morphology showed that samples forms aggregates and the surface smoothens when ionic liquid was added. The average crystallite size of TiO2, CeO2-TiO2, and CeO2-TiO2-IL were 20.8 nm, 5.5 nm, and 4 nm. In terms of performance, photodegradation of 1000 ppm of diisopropanolamine (DIPA was conducted in the presence of hydrogen peroxide (H2O2 and visible light irradiation which was provided by a 500 W halogen lamp. The best performance was displayed by CeO2-TiO2-IL calcined at 400˚C. It was able to remove 82.0% DIPA and 54.8% COD after 6 h reaction.  Copyright © 2018 BCREC Group. All rights reserved Received: 26th July 2017; Revised: 22nd October 2017; Accepted: 29th October 2017; Available online: 22nd January 2018; Published regularly: 2nd April 2018 How to Cite: Sivalingam, J.R., Kait, C.F., Wilfred, C.D. (2018. CeO2-TiO2 Photocatalyst: Ionic Liquid-Mediated Synthesis, Characterization, and Performance for Diisopropanolamine Visible Light Degradation. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (1: 170-178 (doi:10.9767/bcrec.13.1.1396.170-178

  3. TiO(2)-graphene nanocomposite as high performace photocatalysts

    Czech Academy of Sciences Publication Activity Database

    Štengl, Václav; Popelková, Daniela; Vláčil, P.

    2011-01-01

    Roč. 115, č. 51 (2011), s. 25209-25218 ISSN 1932-7447 R&D Projects: GA MPO(CZ) FI-IM3/061; GA MPO FI-IM5/239 Institutional research plan: CEZ:AV0Z40320502 Keywords : titanium-dioxide * visible-light * doped TiO2 * degradation * graphene * oxide Subject RIV: CA - Inorganic Chemistry Impact factor: 4.805, year: 2011

  4. Testing methods for antimicrobial activity of TiO2 photocatalyst

    Directory of Open Access Journals (Sweden)

    Markov Siniša L.

    2014-01-01

    Full Text Available In recent years, a lot of commercial TiO2 photocatalyst products have been developed and extensively studied for prospective and safe antimicrobial application in daily life, medicine, laboratories, food and pharmaceutical industry, waste water treatments and in development of new self-cleaning and antimicrobial materials, surfaces and paints. This paper reviews the studies published worldwide on killing microorganisms, methods for testing the antimicrobial activity, light sources and intensities, as well as calculation methods usually used when evaluating the antimicrobial properties of the TiO2-based products. Additionally, some strengths and weaknesses of the available methods for testing the antimicrobial activity of TiO2 photocatalyst products have been pointed out.[Projekat Ministarstva nauke Republike Srbije, br. III45008

  5. Phenol degradation by TiO2 photocatalysts combined with different pulsed discharge systems.

    Science.gov (United States)

    Zhang, Yi; Lu, Jiani; Wang, Xiaoping; Xin, Qing; Cong, Yanqing; Wang, Qi; Li, Chunjuan

    2013-11-01

    Films of TiO2 nanotubes distributed over the inner surface of a discharge reactor cylinder (CTD) or adhered to a stainless steel electrode surface (PTD) in a discharge reactor were compared with a single-discharge (SD) system to investigate their efficiencies in phenol degradation. Morphology studies indicated that the TiO2 film was destroyed in the PTD system, but that there was no change in the CTD system after discharge. X-ray diffraction results revealed that the anatase phase of the original sample was preserved in the CTD system, but that an anatase-to-rutile phase transformation occurred in the PTD system after discharge. The highest efficiencies of phenol degradation and total organic carbon (TOC) mineralization were observed in the CTD system, and there was no decrease in phenol degradation efficiency upon reuse of a TiO2 film, indicating high catalysis activity and stability of the TiO2 photocatalysts in the combined treatment. TiO2 photocatalysts favored the formation of hydrogen peroxide and disfavored the formation of ozone. A greater degree of oxidation of intermediates and higher energy efficiency in phenol oxidation were observed with the TiO2-plasma systems, especially in the CTD system, compared to those with the SD system. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Synthesis of hierarchically meso-macroporous TiO2/CdS heterojunction photocatalysts with excellent visible-light photocatalytic activity.

    Science.gov (United States)

    Zhao, Haixin; Cui, Shu; Yang, Lan; Li, Guodong; Li, Nan; Li, Xiaotian

    2018-02-15

    Photocatalysts with a hierarchically porous structure have attracted considerable attention owing to their wide pore size distribution and high surface area, which enhance the efficiency of transporting species to active sites. In this study, hierarchically meso-macroporous TiO 2 photocatalysts decorated with highly dispersed CdS nanoparticles were synthesized via hydrolysis, followed by a hydrothermal treatment. The textural mesopores and interconnected pore framework provided more accessible active sites and efficient mass transport for the photocatalytic process. The light collection efficiency was enhanced because of multiple scattering of incident light in the macropores. Moreover, the formation of a heterojunction between the CdS and TiO 2 nanoparticles extended the photoresponse of TiO 2 to the visible-light range and enhanced the charge separation efficiency. Therefore, the hierarchically meso-macroporous TiO 2 /CdS photocatalysts exhibited excellent photocatalytic activity for the degradation of rhodaming B under visible-light irradiation. Trapping experiments demonstrated that superoxide radicals (O 2 - ) and hydroxyl radicals (OH) were the main active species in photocatalysis. A reasonable photocatalytic mechanism of TiO 2 /CdS heterojunction photocatalysts was also presented. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Study of gamma irradiation effect on commercial TiO2 photocatalyst

    International Nuclear Information System (INIS)

    Bello Lamo, M.P.; Williams, P.; Reece, P.; Lumpkin, G.R.; Sheppard, L.R.

    2014-01-01

    The aim of this work is to understand the effect of gamma irradiation on commercial TiO 2 photocatalyst for water treatment applications. Previous studies concluded that gamma-irradiation is able to modify the electronic properties of TiO 2 based photocatalysts and consequently their photocatalytic performance. However, there are some discrepancies in the literature where on one hand a significant enhancement of the material properties is reported and on the other hand only a weak effect is observed. In this study a surface effect on TiO 2 is confirmed by using low and medium gamma irradiation doses. - Highlights: • Gamma irradiated TiO 2 is investigated for photocatalytic water treatment. • By low gamma doses, no change in surface properties is observed. • However, a surface defect is found for gamma irradiated TiO 2 at higher doses. • XPS measurements showed an increase of hydroxyl groups. • That may cause a variation of its adsorption capacity

  8. Fullerene C70 decorated TiO2 nanowires for visible-light-responsive photocatalyst

    International Nuclear Information System (INIS)

    Cho, Er-Chieh; Ciou, Jing-Hao; Zheng, Jia-Huei; Pan, Job; Hsiao, Yu-Sheng; Lee, Kuen-Chan; Huang, Jen-Hsien

    2015-01-01

    Graphical abstract: - Highlights: • TiO 2 nanowire decorated with C 60 and C 70 derivatives has been synthesized. • The fullerenes impede the charge recombination due to its high electron affinity. • The fullerenes expand the utilization of solar light from UV to visible light. • The modified-TiO 2 has great biocompatibility. - Abstract: In this study, we have synthesized C 60 and C 70 -modified TiO 2 nanowire (NW) through interfacial chemical bonding. The results indicate that the fullerenes (C 60 and C 70 derivatives) can act as sinks for photogenerated electrons in TiO 2 , while the fullerene/TiO 2 is illuminated under ultraviolet (UV) light. Therefore, in comparison to the pure TiO 2 NWs, the modified TiO 2 NWs display a higher photocatalytic activity under UV irradiation. Moreover, the fullerenes also can function as a sensitizer to TiO 2 which expand the utilization of solar light from UV to visible light. The results reveal that the C 70 /TiO 2 NWs show a significant photocatalytic activity for degradation of methylene blue (MB) in visible light region. To better understand the mechanism responsible for the effect of fullerenes on the photocatalytic properties of TiO 2 , the electron only devices and photoelectrochemical cells based on fullerenes/TiO 2 are also fabricated and evaluated.

  9. Enhancement of tributyltin degradation under natural light by N-doped TiO2 photocatalyst

    International Nuclear Information System (INIS)

    Bangkedphol, S.; Keenan, H.E.; Davidson, C.M.; Sakultantimetha, A.; Sirisaksoontorn, W.; Songsasen, A.

    2010-01-01

    Photo-degradation of tributyltin (TBT) has been enhanced by TiO 2 nanoparticles doped with nitrogen (N-doped TiO 2 ). The N-doped catalyst was prepared by a sol-gel reaction of titanium (IV) tetraisopropoxide with 25% ammonia solution and calcined at various temperatures from 300 to 600 deg. C. X-ray diffraction results showed that N-doped TiO 2 remained amorphous at 300 deg. C. At 400 deg. C the anatase phase occurred then transformed to the rutile phase at 600 deg. C. The crystallite size calculated from Scherrer's equation was in the range of 16-51 nm which depended on the calcination temperature. N-doped TiO 2 calcined at 400 deg. C which contained 0.054% nitrogen, demonstrated the highest photocatalytic degradation of TBT at 28% in 3 h under natural light when compared with undoped TiO 2 and commercial photocatalyst, P25-TiO 2 which gave 14.8 and 18% conversion, respectively.

  10. Mesoporous films of TiO2 as efficient photocatalysts for the purification of water

    Czech Academy of Sciences Publication Activity Database

    Rathouský, Jiří; Kalousek, Vít; Kolář, Michal; Jirkovský, Jaromír

    2011-01-01

    Roč. 10, č. 3 (2011), s. 419-424 ISSN 1474-905X R&D Projects: GA ČR GA104/08/0435; GA ČR GD203/08/H032; GA MŠk 1M0577 Institutional research plan: CEZ:AV0Z40400503 Keywords : TiO2 * mesoporous films * photocatalyst Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.584, year: 2011

  11. High Photocatalytic Performance of Two Types of Graphene Modified TiO2 Composite Photocatalysts

    Science.gov (United States)

    Zhang, Jun; Li, Sen; Tang, Bo; Wang, Zhengwei; Ji, Guojian; Huang, Weiqiu; Wang, Jinping

    2017-07-01

    High quality and naturally continuous structure of three-dimensional graphene network (3DGN) endow it a promising candidate to modify TiO2. Although the resulting composite photocatalysts display outstanding performances, the lacking of active sites of the 3DGN not only goes against a close contact between the graphene basal plane and TiO2 nanoparticles (weaken electron transport ability) but also limits the efficient adsorption of pollutant molecules. Similar with surface functional groups of the reduced graphene oxide (RGO) nanosheets, surface defects of the 3DGN can act as the adsorption sites. However, the defect density of the 3DGN is difficult to control (a strict cool rate of substrate and a strict flow of precursor gas are necessary) because of its growth approach (chemical vapor deposition method). In this study, to give full play to the functions of graphene, the RGO nanosheets and 3DGN co-modified TiO2 composite photocatalysts are prepared. After optimizing the mass fraction of the RGO nanosheets in the composite photocatalyst, the resulting chemical adsorption ability and yields of strong oxidizing free radicals increase significantly, indicating the synergy of the RGO nanosheets and 3DGN.

  12. Biomolecule-controlled hydrothermal synthesis of C-N-S-tridoped TiO2 nanocrystalline photocatalysts for NO removal under simulated solar light irradiation.

    Science.gov (United States)

    Wang, Yawen; Huang, Yu; Ho, Wingkei; Zhang, Lizhi; Zou, Zhigang; Lee, Shuncheng

    2009-09-30

    In this study, C-N-S-tridoped titanium dioxide (TiO(2)) nanocrystals were synthesized by using a facile hydrothermal method in the presence of a biomolecule l-cysteine. This biomolecule could not only serve as the common source for the carbon, sulfur and nitrogen tridoping, but also could control the final crystal phases and morphology. The resulting materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption and UV-vis diffuse reflectance spectroscopy. XPS analysis revealed that S was incorporated into the lattice of TiO(2) through substituting oxygen atoms, N might coexist in the forms of N-Ti-O and Ti-O-N in tridoped TiO(2) and most C could form a mixed layer of carbonate species deposited on the surface of TiO(2) nanoparticles. The photocatalytic activities of the samples were tested on the removal of NO at typical indoor air level in a flow system under simulated solar light irradiation. The tridoped TiO(2) samples showed much higher removal efficiency than commercial P25 and the undoped counterpart photocatalyst. The enhanced visible light photocatalytic activity of C-N-S-tridoped TiO(2) nanocrystals was explained on the basis of characterizations. The possible formation process of the monodispersed C-N-S-tridoped anatase TiO(2) nanocrystals was also proposed. This study provides a new method to prepare visible light active TiO(2) photocatalyst.

  13. Biomolecule-controlled hydrothermal synthesis of C-N-S-tridoped TiO2 nanocrystalline photocatalysts for NO removal under simulated solar light irradiation

    International Nuclear Information System (INIS)

    Wang Yawen; Huang Yu; Ho Wingkei; Zhang Lizhi; Zou Zhigang; Lee Shuncheng

    2009-01-01

    In this study, C-N-S-tridoped titanium dioxide (TiO 2 ) nanocrystals were synthesized by using a facile hydrothermal method in the presence of a biomolecule L-cysteine. This biomolecule could not only serve as the common source for the carbon, sulfur and nitrogen tridoping, but also could control the final crystal phases and morphology. The resulting materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption and UV-vis diffuse reflectance spectroscopy. XPS analysis revealed that S was incorporated into the lattice of TiO 2 through substituting oxygen atoms, N might coexist in the forms of N-Ti-O and Ti-O-N in tridoped TiO 2 and most C could form a mixed layer of carbonate species deposited on the surface of TiO 2 nanoparticles. The photocatalytic activities of the samples were tested on the removal of NO at typical indoor air level in a flow system under simulated solar light irradiation. The tridoped TiO 2 samples showed much higher removal efficiency than commercial P25 and the undoped counterpart photocatalyst. The enhanced visible light photocatalytic activity of C-N-S-tridoped TiO 2 nanocrystals was explained on the basis of characterizations. The possible formation process of the monodispersed C-N-S-tridoped anatase TiO 2 nanocrystals was also proposed. This study provides a new method to prepare visible light active TiO 2 photocatalyst.

  14. TiO2-PANI/Cork composite: A new floating photocatalyst for the treatment of organic pollutants under sunlight irradiation.

    Science.gov (United States)

    Sboui, Mouheb; Nsib, Mohamed Faouzi; Rayes, Ali; Swaminathan, Meenakshisundaram; Houas, Ammar

    2017-10-01

    A novel photocatalyst based on TiO 2 -PANI composite supported on small pieces of cork has been reported. It was prepared by simple impregnation method of the polyaniline (PANI)-modified TiO 2 on cork. The TiO 2 -PANI/Cork catalyst shows the unique feature of floating on the water surface. The as-synthesized catalyst was characterized by X-ray diffraction (XRD), scanning electron micrograph (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), UV-vis diffuse reflectance spectra (UV-vis DRS) and the Brunauer-Emmett-Teller (BET) surface area analysis. Characterization suggested the formation of anatase highly dispersed on the cork surface. The prepared floating photocatalyst showed high efficiency for the degradation of methyl orange dye and other organic pollutants under solar irradiation and constrained conditions, i.e., no-stirring and no-oxygenation. The TiO 2 -PANI/Cork floating photocatalyst can be reused for at least four consecutive times without significant decrease of the degradation efficiency. Copyright © 2017. Published by Elsevier B.V.

  15. Design of H3PW12O40/TiO2 nano-photocatalyst for efficient photocatalysis under simulated sunlight irradiation

    International Nuclear Information System (INIS)

    Zhao, Kun; Lu, Ying; Lu, Nan; Zhao, Yahui; Yuan, Xing; Zhang, Hao; Teng, Lianghui; Li, Fu

    2013-01-01

    H 3 PW 12 O 40 /TiO 2 (PW 12 /TiO 2 ) nano-photocatalyst was successfully synthesized through a modified sol–gel-hydrothermal method. The X-ray diffraction (XRD) patterns, Fourier transform infrared (FT-IR) spectra, UV–vis diffuse reflectance spectrum (UV–vis DRS), and N 2 adsorption–desorption isotherms were characterized respectively to investigate the physical and chemical properties of prepared catalysts. Under simulated sunlight (320 nm 12 /TiO 2 . The results showed that the pollutants degradation followed first-order kinetics, and the kinetic constants of photocatalytic degradation of fuchsin acid, malachite green and PNP were 2.82, 4.66, and 3.48 times as great as that using pristine TiO 2 , respectively. The high pollutants degradation efficiency was ascribed to the synergistic effect between H 3 PW 12 O 40 and TiO 2 , which resulted in enhanced quantum efficiency and high light harvesting efficiency. We believe this work could provide new insights into the fabrication of photocatalyst with high photocatalytic performance and facilitate their practical application in environmental issues.

  16. Design and fabrication of a TiO2/nano-silicon composite visible light photocatalyst

    International Nuclear Information System (INIS)

    Lin, C.Y.; Fang, Y.K.; Kuo, C.H.; Chen, S.F.; Lin, C.-S.; Chou, T.H.; Lee, Y.-H.; Lin, J.-C.; Hwang, S.-B.

    2006-01-01

    Nano-silicon (nc-Si) was utilized as the charges generator to promote the photocatalytic and super-hydrophilic reactivity of TiO 2 film under visible light irradiation. The photocatalytic ability of TiO 2 /nc-Si composite photocatalyst was evaluated by a set of experiments to photodecompose 100 ppm methylene blue (MB) in aqueous solution. And the super-hydrophilic property was characterized by measuring the water droplet contacts angle, under visible light irradiation in atmospheric air and at room temperature. Under 100 mW/cm 2 visible light irradiation, the droplet contact angles were reduced to 0 deg. within 4 h with nc-Si charge generator. Additionally, the rate constant of MB photo-degradation was promoted 6.6 times

  17. Visible-light-driven TiO2/Ag3PO4/GO heterostructure photocatalyst with dual-channel for photo-generated charges separation

    International Nuclear Information System (INIS)

    Lu, Bingqing; Ma, Ni; Wang, Yaping; Qiu, Yiwei; Hu, Haihua; Zhao, Jiahuan; Liang, Dayu; Xu, Sheng; Li, Xiaoyun; Zhu, Zhiyan; Cui, Can

    2015-01-01

    Highlights: • TiO 2 /Ag 3 PO 4 /GO was synthesized with a facile two-step method. • TiO 2 /Ag 3 PO 4 /GO exhibit superior photocatalytic activity and stability. • TiO 2 /Ag 3 PO 4 /GO has dual-channel for photo-generated charges separation. • TiO 2 /Ag 3 PO 4 /GO composite reduces the consumption of Ag. - Abstract: A novel triple-component TiO 2 /Ag 3 PO 4 /graphene oxide (TiO 2 /Ag 3 PO 4 /GO) photocatalyst with dual channels for photo-generated charges separation has been synthesized to improve the photocatalytic activity and stability of Ag 3 PO 4 under visible light. The synthesis involved in-situ growth of Ag 3 PO 4 nanoparticles on GO sheets to form Ag 3 PO 4 /GO, and then deposited TiO 2 nanocrystals on the surface of Ag 3 PO 4 by hydrolysis of Ti(SO 4 ) 2 at low-temperature hydrothermal condition. The TiO 2 /Ag 3 PO 4 /GO exhibited superior photocatalytic activity and stability to bare Ag 3 PO 4 , TiO 2 /Ag 3 PO 4 and Ag 3 PO 4 /GO in degradation of Rhodamine B and phenol solutions under visible light. It is suggested that the photo-generated electrons in the conduction band of Ag 3 PO 4 can be quickly transferred to GO, while the holes in the valence band of Ag 3 PO 4 can be transferred to the valence band of TiO 2 . The dual transfer channels at the interfaces of TiO 2 /Ag 3 PO 4 /GO result in effective charges separation, leading to enhanced photocatalytic activity and stability. Furthermore, the content of noble metal Ag significantly reduces from 77 wt% in bare Ag 3 PO 4 to 55 wt% in the nanocomposite. The concept of establishing dual channels for charges separation in a triple-component heterostructure provides a promising way to develop photocatalysts with high efficiency

  18. Novel TiO2/C nanocomposites: synthesis, characterization, and application as a photocatalyst for the degradation of organic pollutants.

    Science.gov (United States)

    da Costa, Elias; Zamora, Patricio P; Zarbin, Aldo J G

    2012-02-15

    Novel TiO(2)/carbon nanocomposites were prepared through the pyrolysis of TiO(2)/poly(furfuryl alcohol) hybrid materials, which were obtained by the sol-gel method, starting from titanium tetraisopropoxide (TTIP) and furfuryl alcohol (FA) precursors. Six different TiO(2)/C samples were prepared based on different TiO(2) nanoparticle sizes and TiO(2)/FA ratios. All of the samples were characterized using X-ray diffraction, infrared, and Raman spectroscopy. The results indicated effective FA polymerization onto the TiO(2) (anatase) nanoparticles, polymer conversion to disordered carbon following the pyrolysis, and a simultaneous TiO(2) anatase-rutile phase transition. The resulting TiO(2)/carbon composites were used as photocatalysts in the advanced oxidative process (AOP) for the degradation of reactive organic dyes in aqueous solution. The results indicate excellent photocatalytic performance (degradation of 99% of the dye after 60 min) with several advantages over traditional TiO(2)-based photocatalysts. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Pilot-plant evaluation of TiO2 and TiO2-based hybrid photocatalysts for solar treatment of polluted water.

    Science.gov (United States)

    Andronic, Luminita; Isac, Luminita; Miralles-Cuevas, Sara; Visa, Maria; Oller, Isabel; Duta, Anca; Malato, Sixto

    2016-12-15

    Materials with photocatalytic and adsorption properties for advanced wastewater treatment targeting reuse were studied. Making use of TiO 2 as a well-known photocatalyst, Cu 2 S as a Vis-active semiconductor, and fly ash as a good adsorbent, dispersed mixtures/composites were prepared to remove pollutants from wastewater. X-ray diffraction, scanning electron microscopy, energy-dispersive X-Ray spectroscopy, atomic force microscopy, band gap energy, point of zero charge (pH pzc ) and BET porosity were used to characterize the substrates. Phenol, imidacloprid and dichloroacetic acid were used as pollutants for photocatalytic activity of the new photocatalysts. Experiments using the new dispersed powders were carried out at laboratory scale in two solar simulators and under natural solar irradiation at the Plataforma Solar de Almería, in a Compound Parabolic Collector (CPC) for a comparative analysis of pollutants removal and mineralization efficiencies, and to identify features that could facilitate photocatalyst separation and reuse. The results show that radiation intensity significantly affects the phenol degradation rate. The composite mixture of TiO 2 and fly ash is 2-3 times less active than sol-gel TiO 2 . Photodegradation kinetic data on the highly active TiO 2 are compared for pollutants elimination. Photodegradation of dichloroacetic acid was fast and complete after 90min in the CPC, while after 150min imidacloprid and phenol removal was 90% and 56% respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Pilot-plant evaluation of TiO_2 and TiO_2-based hybrid photocatalysts for solar treatment of polluted water

    International Nuclear Information System (INIS)

    Andronic, Luminita; Isac, Luminita; Miralles-Cuevas, Sara; Visa, Maria; Oller, Isabel; Duta, Anca; Malato, Sixto

    2016-01-01

    Materials with photocatalytic and adsorption properties for advanced wastewater treatment targeting reuse were studied. Making use of TiO_2 as a well-known photocatalyst, Cu_2S as a Vis-active semiconductor, and fly ash as a good adsorbent, dispersed mixtures/composites were prepared to remove pollutants from wastewater. X-ray diffraction, scanning electron microscopy, energy-dispersive X-Ray spectroscopy, atomic force microscopy, band gap energy, point of zero charge (pH_p_z_c) and BET porosity were used to characterize the substrates. Phenol, imidacloprid and dichloroacetic acid were used as pollutants for photocatalytic activity of the new photocatalysts. Experiments using the new dispersed powders were carried out at laboratory scale in two solar simulators and under natural solar irradiation at the Plataforma Solar de Almería, in a Compound Parabolic Collector (CPC) for a comparative analysis of pollutants removal and mineralization efficiencies, and to identify features that could facilitate photocatalyst separation and reuse. The results show that radiation intensity significantly affects the phenol degradation rate. The composite mixture of TiO_2 and fly ash is 2-3 times less active than sol-gel TiO_2. Photodegradation kinetic data on the highly active TiO_2 are compared for pollutants elimination. Photodegradation of dichloroacetic acid was fast and complete after 90 min in the CPC, while after 150 min imidacloprid and phenol removal was 90% and 56% respectively.

  1. Progress of studies on preparation of TiO2 photocatalysts with sol-gel auto igniting synthesis

    Science.gov (United States)

    Wu, Di; Shi, Zaifeng; Zhang, Xiaopeng; Xinghui, Wu

    2017-11-01

    In this article, influencing factors on the kinetics of the process of Sol-gel Auto igniting Synthesis (SAS) which is an advanced technology for preparing nanometer particles of inorganic materials were reviewed. The studies on preparing of nanometer TiO2 photocatalysts with SAS were focused. It was concluded that SAS will play an important role in practical preparing of high-pure nanometer TiO2 powder, and as a technical support, preparation of titania TiO2 from titanic iron ore with SAS is feasible and practicable.

  2. Sol-gel synthesis of TiO2-SiO2 photocatalyst for β-naphthol photodegradation

    International Nuclear Information System (INIS)

    Qourzal, S.; Barka, N.; Tamimi, M.; Assabbane, A.; Nounah, A.; Ihlal, A.; Ait-Ichou, Y.

    2009-01-01

    Silica gel supported titanium dioxide particles (TiO 2 -SiO 2 ) prepared by sol-gel method was as photocatalyst in the degradation of β-naphthol in water under UV-illumination. The prepared sample has been characterized by powder X-ray diffraction (XRD), infrared spectroscopy (IR) and scanning electron microscopy (SEM). The supported catalyst had large surface area and good sedimentation ability. The photodegradation rate of β-naphthol under UV-irradiation depended strongly on adsorption capacity of the catalyst, and the photoactivity of the supported catalyst was much higher than that of the pure titanium dioxides. The experiments were measured by high performance liquid chromatography (HPLC). The photodegradation rate of β-naphthol using 60% TiO 2 -SiO 2 particles was faster than that using TiO 2 'Degussa P-25', TiO 2 'PC-50' and TiO 2 'Aldrich' as photocatalyst by 2.7, 4 and 7.8 times, respectively. The kinetics of photocatalytic β-naphthol degradation was found to follow a pseudo-first-order rate law. The effect of the TiO 2 loading on the photoactivity of TiO 2 -SiO 2 particles was also discussed. With good photocatalytic activity under UV-irradiation and the ability to be readily separated from the reaction system, this novel kind of catalyst exhibited the potential effective in the treatment of organic pollutants in aqueous systems.

  3. Photocatalytic decomposition of N2O over TiO2/g-C3N4 photocatalysts heterojunction

    Science.gov (United States)

    Kočí, K.; Reli, M.; Troppová, I.; Šihor, M.; Kupková, J.; Kustrowski, P.; Praus, P.

    2017-02-01

    TiO2/g-C3N4 photocatalysts with the various TiO2/g-C3N4 weight ratios from 1:2 to 1:6 were fabricated by mechanical mixing in water suspension followed by calcination. Pure TiO2 was prepared by thermal hydrolysis and pure g-C3N4 was prepared from commercial melamine by thermal annealing at 620 °C. All the nanocomposites were characterized by X-ray powder diffraction, UV-vis diffuse reflectance spectroscopy, Raman spectroscopy, infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, photoelectrochemical measurements and nitrogen physisorption. The prepared mixtures along with pure TiO2 and g-C3N4 were tested for the photocatalytic decomposition of nitrous oxide under UVC (λ = 254 nm), UVA (λ = 365 nm) and Vis (λ > 400 nm) irradiation. The TiO2/g-C3N4 nanocomposites showed moderate improvement compared to pure g-C3N4 but pure TiO2 proved to be a better photocatalyst under UVC irradiation. However, under UVA irradiation conditions, the photocatalytic activity of TiO2/g-C3N4 (1:2) nanocomposite exhibited an increase compared to pure TiO2. Nevertheless, further increase of g-C3N4 amount leads/led to a decrease in reactivity. These results are suggesting the nanocomposite with the optimal weight ratio of TiO2 and g-C3N4 have shifted absorption edge energy towards longer wavelengths and decreased the recombination rate of charge carriers compared to pure g-C3N4. This is probably due to the generation of heterojunction on the TiO2/g-C3N4 interface.

  4. Unconventionally prepared TiO2/g-C3N4 photocatalysts for photocatalytic decomposition of nitrous oxide

    Science.gov (United States)

    Troppová, Ivana; Šihor, Marcel; Reli, Martin; Ritz, Michal; Praus, Petr; Kočí, Kamila

    2018-02-01

    The TiO2/g-C3N4 nanocomposites with the various TiO2:g-C3N4 weight ratios from 1:1 to 1:3 were prepared unconventionally by pressurized hot water processing in a flow regime. The parent TiO2 and g-C3N4 was prepared by thermal hydrolysis and thermal annealing, respectively. The nanocomposites as well as parent TiO2 and g-C3N4 were characterized using several complementary characterization methods and investigated in the photocatalytic decomposition of N2O under UVA (λ = 365 nm) irradiation. All the prepared TiO2/g-C3N4 nanocomposites showed higher photocatalytic activity in comparison with the pure g-C3N4 and chiefly pure TiO2. The photocatalytic activity of TiO2/g-C3N4 nanocomposites was decreasing in the following sequence: TiO2/g-C3N4 (1:3) > TiO2/g-C3N4 (1:2) > TiO2/g-C3N4 (1:1). In comparison with the parent TiO2 or g-C3N4, the TiO2/g-C3N4 nanocomposites' photocatalytic capability was significantly enhanced by coupling TiO2 with g-C3N4. The generation of TiO2/g-C3N4 Z-scheme photocatalyst mainly benefited from the effective separation of photoinduced electron-hole pairs and the extended optical absorption range. The TiO2/g-C3N4 (1:3) nanocomposite showed the best photocatalytic behavior in a consequence of the optimal weight ratio of TiO2:g-C3N4 and the lowest band gap energy from all nanocomposites. The N2O conversion in its presence was 70.6% after 20 h of UVA irradiation.

  5. Alternative photocatalysts to TiO2 for the photocatalytic reduction of CO2

    Science.gov (United States)

    Nikokavoura, Aspasia; Trapalis, Christos

    2017-01-01

    The increased concentration of CO2 in the atmosphere, originating from the burning of fossil fuels in stationary and mobile sources, is referred as the "Anthropogenic Greenhouse Effect" and constitutes a major environmental concern. The scientific community is highly concerned about the resulting enhancement of the mean atmospheric temperature, so a vast diversity of methods has been applied. Thermochemical, electrochemical, photocatalytic, photoelectrochemical processes, as well as combination of solar electricity generation and water splitting processes have been performed in order to lower the CO2 atmospheric levels. Photocatalytic methods are environmental friendly and succeed in reducing the atmospheric CO2 concentration and producing fuels or/and useful organic compounds at the same time. The most common photocatalysts for the CO2 reduction are the inorganic, the carbon based semiconductors and the hybrids based on semiconductors, which combine stability, low cost and appropriate structure in order to accomplish redox reactions. In this review, inorganic semiconductors such as single-metal oxide, mixed-metal oxides, metal oxide composites, layered double hydroxides (LDHs), salt composites, carbon based semiconductors such as graphene based composites, CNT composites, g-C3N4 composites and hybrid organic-inorganic materials (ZIFs) were studied. TiO2 and Ti based photocatalysts are extensively studied and therefore in this review they are not mentioned.

  6. Photocatalytic degradation of sulfamethoxazole in aqueous solution using a floating TiO2-expanded perlite photocatalyst

    International Nuclear Information System (INIS)

    Długosz, Maciej; Żmudzki, Paweł; Kwiecień, Anna; Szczubiałka, Krzysztof; Krzek, Jan; Nowakowska, Maria

    2015-01-01

    Highlights: • Sulfamethoxazole was degraded using a floating photocatalyst under UV irradiation. • The photocatalyst was obtained by supporting TiO 2 onto expanded perlite. • The mechanism of sulfamethoxazole photodegradation in water was proposed. • The photodegradation rate of sulfamethoxazole is greater at higher pH. - Abstract: Photocatalytic degradation of an antibiotic, sulfamethoxazole (SMX), in aqueous solution using a novel floating TiO 2 -expanded perlite photocatalyst (EP-TiO 2 -773) and radiation from the near UV spectral range was studied. The process is important considering that SMX is known to be a widespread and highly persistent pollutant of water resources. SMX degradation was described using a pseudo-first-order kinetic equation according to the Langmuir–Hinshelwood model. The products of the SMX photocatalytic degradation were identified. The effect of pH on the kinetics and mechanism of SMX photocatalytic degradation was explained

  7. TiO2 nanosheets decorated with B4C nanoparticles as photocatalysts for solar fuel production under visible light irradiation

    Science.gov (United States)

    Zhang, Xiaojie; Yang, Jipeng; Cai, Tiancong; Zuo, Guoqiang; Tang, Changqing

    2018-06-01

    Boron carbide (B4C) nanoparticles-decorated anatase titanium dioxide (TiO2) nanosheets photocatalysts were synthesized by a hydrothermal method in the presence of hydrofluoric acid and characterized by field emission scanning electron microscope, high-resolution transmission electron microscope, UV-vis diffuse reflectance spectra, photoluminescence spectra, etc. With metallic Pt nanoparticles as a co-catalyst, the as-synthesized B4C/TiO2 composites were evaluated using photocatalytic CO2 or H2O reduction to solar fuels such as methane and hydrogen. Under either simulated sunlight or visible light irradiation, coupling p-type B4C with n-type anatase TiO2 significantly improved the photocatalytic performance. Both photoluminescence and transient photocurrent measurements indicated that the interfacial coupling effect between B4C and anatase TiO2 could significantly promote photo-excited charges separations. On the basis of measurements and literatures, a possible mechanism of excited charges transfer at the B4C-anatase TiO2 heterojunction interface during irradiation was deduced.

  8. In situ synthesis of g-C3N4/TiO2 heterojunction nanocomposites as a highly active photocatalyst for the degradation of Orange II under visible light irradiation.

    Science.gov (United States)

    Ren, Bin; Wang, Tiecheng; Qu, Guangzhou; Deng, Fang; Liang, Dongli; Yang, Wenli; Liu, Meishan

    2018-05-04

    As a highly active photocatalyst, g-C 3 N 4 /TiO 2 heterojunction nanocomposites were in situ synthesized by simple ultrasonic mixing and calcination by using TiO 2 and melamine as precursors. The morphology and structure of the prepared photocatalysts were characterized by field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, UV-Vis diffuse reflectance spectroscopy, and X-ray photoelectron spectroscopy. The photocatalytic activities of g-C 3 N 4 /TiO 2 nanocomposites to degrade Orange II (AO7) under visible light irradiation were evaluated. Results showed that the photocatalytic rate of the prepared g-C 3 N 4 /TiO 2 photocatalyst to degrade AO7 was about three times than that of pristine TiO 2 and g-C 3 N 4 . The g-C 3 N 4 /TiO 2 composite with a ratio of 1:4 had the highest degradation efficiency for AO7 solution. Its degradation efficiency under acidic conditions was significantly higher than that under alkaline conditions. The enhancement of photocatalytic activity can be attributed to the formation of heterojunctions between g-C 3 N 4 and TiO 2 , which leads to rapid charge transfer and the efficient separation of photogenerated electron-hole pairs. The recycling experiment indicated that the photocatalyst of g-C 3 N 4 /TiO 2 nanocomposites still maintained good photochemical stability and recyclability after five cycles; this finding was important for its practical applications. A series of free radical trapping experiments showed that •O 2 - played a crucial role in the degradation of AO7. Graphical Abstract ᅟ.

  9. Direct Z-scheme TiO2/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity

    Science.gov (United States)

    Meng, Aiyun; Zhu, Bicheng; Zhong, Bo; Zhang, Liuyang; Cheng, Bei

    2017-11-01

    Photocatalytic H2 evolution, which utilizes solar energy via water splitting, is a promising route to deal with concerns about energy and environment. Herein, a direct Z-scheme TiO2/CdS binary hierarchical photocatalyst was fabricated via a successive ionic layer adsorption and reaction (SILAR) technique, and photocatalytic H2 production was measured afterwards. The as-prepared TiO2/CdS hybrid photocatalyst exhibited noticeably promoted photocatalytic H2-production activity of 51.4 μmol h-1. The enhancement of photocatalytic activity was ascribed to the hierarchical structure, as well as the efficient charge separation and migration from TiO2 nanosheets to CdS nanoparticles (NPs) at their tight contact interfaces. Moreover, the direct Z-scheme photocatalytic reaction mechanism was demonstrated to elucidate the improved photocatalytic performance of TiO2/CdS composite photocatalyst. The photoluminescence (PL) analysis of hydroxyl radicals were conducted to provide clues for the direct Z-scheme mechanism. This work provides a facile route for the construction of redox mediator-free Z-scheme photocatalytic system for photocatalytic water splitting.

  10. Photoinduced Glycerol Oxidation over Plasmonic Au and AuM (M = Pt, Pd and Bi) Nanoparticle-Decorated TiO2 Photocatalysts

    Science.gov (United States)

    Jedsukontorn, Trin; Saito, Nagahiro; Hunsom, Mali

    2018-01-01

    In this study, sol-immobilization was used to prepare gold nanoparticle (Au NP)-decorated titanium dioxide (TiO2) photocatalysts at different Au weight % (wt. %) loading (Aux/TiO2, where x is the Au wt. %) and Au–M NP-decorated TiO2 photocatalysts (Au3M3/TiO2), where M is bismuth (Bi), platinum (Pt) or palladium (Pd) at 3 wt. %. The Aux/TiO2 photocatalysts exhibited a stronger visible light absorption than the parent TiO2 due to the localized surface plasmon resonance effect. Increasing the Au content from 1 wt. % to 7 wt. % led to increased visible light absorption due to the increasing presence of defective structures that were capable of enhancing the photocatalytic activity of the as-prepared catalyst. The addition of Pt and Pd coupled with the Au3/TiO2 to form Au3M3/TiO2 improved the photocatalytic activity of the Au3/TiO2 photocatalyst by maximizing their light-absorption property. The Au3/TiO2, Au3Pt3/TiO2 and Au3Pd3/TiO2 photocatalysts promoted the formation of glyceraldehyde from glycerol as the principle product, while Au3Bi3/TiO2 facilitated glycolaldehyde formation as the major product. Among all the prepared photocatalysts, Au3Pd3/TiO2 exhibited the highest photocatalytic activity with a 98.75% glycerol conversion at 24 h of reaction time. PMID:29690645

  11. The direct synthesis of mesoporous structured MnO2/TiO2 nanocomposite: a novel visible-light active photocatalyst with large pore size

    International Nuclear Information System (INIS)

    Xue Min; Huang Li; Wang Jianqiang; Wang Ying; Zou Zhigang; Gao Ling; Zhu Jianhua

    2008-01-01

    A series of visible-light-driven mesoporous structured MnO 2 /TiO 2 nanocrystal photocatalysts have been synthesized through a modified sol-gel method, and the N 2 adsorption-desorption isotherm confirms that the mesoporous materials possess large pore size (up to 9.2 nm) and a narrow pore size distribution. X-ray powder diffraction (XRD) analyses and complementary x-ray photoelectron spectroscopy (XPS) measurements reveal that the doping of the transition metal Mn inhibits the growth of TiO 2 anatase nanocrystals and the Mn species are highly dispersed on the surface of TiO 2 . The ultraviolet (UV)-vis spectrum demonstrates the excellent adsorption properties of MnO 2 /TiO 2 over the whole region of visible light, which enables this novel photocatalysis material to possess remarkable activity in the photocatalytic degradation of methylene blue under visible light radiation. Moreover, a 'coating mechanism' based on the nucleation of titania nanocrystals along with the interaction between the dopant precursors and titania clusters has been suggested

  12. The direct synthesis of mesoporous structured MnO2/TiO2 nanocomposite: a novel visible-light active photocatalyst with large pore size

    Science.gov (United States)

    Xue, Min; Huang, Li; Wang, Jian-Qiang; Wang, Ying; Gao, Ling; Zhu, Jian-hua; Zou, Zhi-Gang

    2008-05-01

    A series of visible-light-driven mesoporous structured MnO2/TiO2 nanocrystal photocatalysts have been synthesized through a modified sol-gel method, and the N2 adsorption-desorption isotherm confirms that the mesoporous materials possess large pore size (up to 9.2 nm) and a narrow pore size distribution. X-ray powder diffraction (XRD) analyses and complementary x-ray photoelectron spectroscopy (XPS) measurements reveal that the doping of the transition metal Mn inhibits the growth of TiO2 anatase nanocrystals and the Mn species are highly dispersed on the surface of TiO2. The ultraviolet (UV)-vis spectrum demonstrates the excellent adsorption properties of MnO2/TiO2 over the whole region of visible light, which enables this novel photocatalysis material to possess remarkable activity in the photocatalytic degradation of methylene blue under visible light radiation. Moreover, a 'coating mechanism' based on the nucleation of titania nanocrystals along with the interaction between the dopant precursors and titania clusters has been suggested.

  13. Bare TiO2 and graphene oxide TiO2 photocatalysts on the degradation of selected pesticides and influence of the water matrix

    Science.gov (United States)

    Cruz, Marta; Gomez, Cristina; Duran-Valle, Carlos J.; Pastrana-Martínez, Luisa M.; Faria, Joaquim L.; Silva, Adrián M. T.; Faraldos, Marisol; Bahamonde, Ana

    2017-09-01

    The photocatalytic activity of a home-made titanium dioxide (TiO2) and its corresponding composite based on graphene oxide (GO), the GO-TiO2 catalyst, has been investigated under UV-vis in the photodegradation of a mixture of four pesticides classified by the European Union as priority pollutants: diuron, alachlor, isoproturon and atrazine. The influence of two water matrices (ultrapure or natural water) was also studied. Natural water led to a decrease on the degradation of the studied pollutants when the bare TiO2 photocatalyst was employed, since this water contains both inorganic and organic species that are dissolved and commonly restrain the photocatalytic process. On the contrary, the photo-efficiency of the GO-TiO2 composite seems to be less affected by water matrix variation, with very good initial pesticide photodegradation rates under both natural and ultrapure water matrices. A comparative study between GO-TiO2 and the commercial Evonik TiO2 P25 catalyst was also carried out to analyze the photocatalytic degradation of these pesticides under visible light illumination conditions. Once again, a higher photocatalytic activity was found for the GO-TiO2 composite.

  14. Facile one-step hydrothermal synthesis toward strongly coupled TiO2/graphene quantum dots photocatalysts for efficient hydrogen evolution

    International Nuclear Information System (INIS)

    Min, Shixiong; Hou, Jianhua; Lei, Yonggang; Ma, Xiaohua; Lu, Gongxuan

    2017-01-01

    Highlights: • TiO 2 /GQDs composites were prepared by a facile one-step hydrothermal method. • GQDs were strongly coupled onto the surface of TiO 2 nanoparticles by this method. • The TiO 2 /GQDs showed enhanced light absorption and charge separation efficiency. • The TiO 2 /GQDs exhibited higher photocatalytic H 2 evolution activity than pure TiO 2 . • GQDs play synergistic roles by acting as both photosensitizer and electron acceptor. - Abstract: The coupling of semiconductor photocatalysts with graphene quantum dots (GQDs) has been proven to be an effective strategy to enhance the photocatalytic and photoelectrical conversion performances of the resulted composites; however, the preparation of semiconductor/GQDs composites usually involves several time-inefficient and tedious post-treatment steps. Herein, we present a facile one-step hydrothermal route for the preparation of GQDs coupled TiO 2 (TiO 2 /GQDs) photocatalysts using 1,3,6-trinitropyrene (TNP) as the sole precursor of GQDs. During the hydrothermal process, TNP molecules undergo an intramolecular fusion to form GQDs, which simultaneously decorate on the surface of TiO 2 nanoparticles, leading to a strong surface interaction between the two components. The effective coupling of GQDs on TiO 2 can effectively extend the light absorption of the TiO 2 to visible region and enhance the charge separation efficiency of TiO 2 /GQDs composites as a result of GQDs acting as a photosensitizer and an excellent electron acceptor. These key advances make the TiO 2 /GQDs photocatalyst highly active towards the H 2 evolution reaction, resulting in 7 and 3 times higher H 2 evolution rate and photocurrent response at optimal GQDs content than TiO 2 alone, respectively. This study provides a new methodology for the development of high-performance GQDs modified semiconductor photocatalysts for energy conversion applications.

  15. TiO2/beads as a photocatalyst for the degradation of X3B azo dye

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The feasibility of photocatalytic degradation of X3B azo dye by TiO2/beads photocatalyst was studied. The effects of parameters such as the amount of TiO2/beads, airflow, as well as the concentrations of H2O2, Fe3+, Mg2+ and Na+ on the photocatalytic degradation of X3B azo dye were also studied. The results showed that 25 mg/dm3 X3B azo dye can be photocatalytically degraded completely by 30 min illumination with a 375W medium pressure mercury lamp. Adding a small amount of H2O2 or Fe3+, the efficiencies of photocatalytic degradation of X3B azo dye were increased rapidly. The mechanisms of the reaction and the role of the additives were also investigated. After 120 hours TiO2/beads showed no significant loss of the photocatalytic activity.

  16. Effect of sulfate ions on the crystallization and photocatalytic activity of TiO2/diatomite composite photocatalyst

    Science.gov (United States)

    Zhang, Jinjun; Wang, Xiaoyan; Wang, Jimei; Wang, Jing; Ji, Zhijiang

    2016-01-01

    TiO2 nanoparticles were immobilized on diatomite by hydrolysis-deposition method using titanium tetrachloride as precursor. The effect of sulfate ions on the crystallization and photocatalytic activity of TiO2/diatomite composite photocatalyst was characterized by TG-DSC, XRD, BET surface area, SEM, FT-IR spectroscopy, XPS and UV-vis diffuse reflectance spectra. The results indicate that addition of a small amount of sulfate ions promotes the formation of anatase phase and inhibits the transformation from anatase to rutile. On the other hand, sulfate ions immobilized on the surface of TiO2/diatomite have strong affinity for electrons, capturing the photo-generated electrons, which hinders the recombination of electrons and holes.

  17. Fabrication of TiO2/Carbon Photocatalyst using Submerged DC Arc Discharged in Ethanol/Acetic Acid Medium

    Science.gov (United States)

    Saraswati, T. E.; Nandika, A. O.; Andhika, I. F.; Patiha; Purnawan, C.; Wahyuningsih, S.; Rahardjo, S. B.

    2017-05-01

    This study aimed to fabricate a modified photocatalyst of TiO2/C to enhance its performance. The fabrication was achieved using the submerged direct current (DC) arc-discharge method employing two graphite electrodes, one of which was filled with a mixture of carbon powder, TiO2, and binder, in ethanol with acetic acid added in various concentrations. The arc-discharge method was conducted by flowing a current of 10-20 A (~20 V). X-ray diffraction (XRD) patterns showed significant placements of the main peak characteristics of TiO2, C graphite, and titanium carbide. The surface analysis using Fourier transform infrared spectroscopy (FTIR) revealed that fabricated TiO2/C nanoparticles had stretching vibrations of Ti-O, C-H, C═O, C-O, O-H and C═C in the regions of 450-550 cm-1, 2900-2880 cm-1, 1690-1760 cm-1, 1050-1300 cm-1, 3400-3700 cm-1 and ~1600 cm-1, respectively. In addition, the study investigated the photocatalysts of unmodified and modified TiO2/C for photodegradation of methylene blue (MB) dye solution under mercury lamp irradiation. The effectiveness of the degradation was defined by the decrease in 60-minute absorbance under a UV-Vis spectrophotometer. Modified TiO2/C proved to be significantly more efficient in reducing dye concentrations, reaching ~70%. It indicated that the oxygen-containing functional groups have been successfully attached to the surface of the nanoparticles and played a role in enhancing photocatalytic activity.

  18. Continuous-flow photocatalytic treatment of pharmaceutical micropollutants: Activity, inhibition, and deactivation of TiO2 photocatalysts in wastewater effluent

    KAUST Repository

    Carbonaro, Sean; Sugihara, Matthew N.; Strathmann, Timothy J.

    2013-01-01

    for the purpose of studying the activity, inhibition, and deactivation of immobilized TiO2 photocatalysts during water treatment applications. As a demonstration, degradation of four pharmaceutical micropollutants (iopromide, acetaminophen, sulfamethoxazole

  19. Kinetics of the decoloration of reactive dyes over visible light-irradiated TiO2 semiconductor photocatalyst

    International Nuclear Information System (INIS)

    Chatterjee, Debabrata; Patnam, Vidya Rupini; Sikdar, Anindita; Joshi, Priyanka; Misra, Rohit; Rao, Nageswara N.

    2008-01-01

    Photocatalytic decoloration kinetics of triazine (Reactive Red 11, Reactive Red 2, and Reactive Orange 84) and vinylsulfone type (Reactive Orange 16 and Reactive Black 5) of reactive dyes have been studied spectrophotometrically by following the decrease in dye concentration with time. At ambient conditions, over 90-95% decoloration of above dyes have been observed upon prolonged illumination (15 h) of the reacting system with a 150 W xenon lamp. It was found that the decoloration reaction followed first-order kinetics. The values of observed rate constants were found to be dependent of the structure of dyes at low dye concentration, but independent at higher concentration. It also reports for the first time the decoloration of two different dyes together in a binary dye mixture using visible light-irradiated TiO 2 photocatalyst. Rate of decoloration of two different dyes together in a binary dye mixture using visible light-irradiated TiO 2 photocatalyst is governed by the adsorptivity of the particular dye onto the surface of the TiO 2 photocatalyst

  20. Advanced nanoporous TiO2 photocatalysts by hydrogen plasma for efficient solar-light photocatalytic application

    Science.gov (United States)

    An, Ha-Rim; Park, So Young; Kim, Hyeran; Lee, Che Yoon; Choi, Saehae; Lee, Soon Chang; Seo, Soonjoo; Park, Edmond Changkyun; Oh, You-Kwan; Song, Chan-Geun; Won, Jonghan; Kim, Youn Jung; Lee, Jouhahn; Lee, Hyun Uk; Lee, Young-Chul

    2016-01-01

    We report an effect involving hydrogen (H2)-plasma-treated nanoporous TiO2(H-TiO2) photocatalysts that improve photocatalytic performance under solar-light illumination. H-TiO2 photocatalysts were prepared by application of hydrogen plasma of assynthesized TiO2(a-TiO2) without annealing process. Compared with the a-TiO2, the H-TiO2 exhibited high anatase/brookite bicrystallinity and a porous structure. Our study demonstrated that H2 plasma is a simple strategy to fabricate H-TiO2 covering a large surface area that offers many active sites for the extension of the adsorption spectra from ultraviolet (UV) to visible range. Notably, the H-TiO2 showed strong ·OH free-radical generation on the TiO2 surface under both UV- and visible-light irradiation with a large responsive surface area, which enhanced photocatalytic efficiency. Under solar-light irradiation, the optimized H-TiO2 120(H2-plasma treatment time: 120 min) photocatalysts showed unprecedentedly excellent removal capability for phenol (Ph), reactive black 5(RB 5), rhodamine B (Rho B) and methylene blue (MB) — approximately four-times higher than those of the other photocatalysts (a-TiO2 and P25) — resulting in complete purification of the water. Such well-purified water (>90%) can utilize culturing of cervical cancer cells (HeLa), breast cancer cells (MCF-7), and keratinocyte cells (HaCaT) while showing minimal cytotoxicity. Significantly, H-TiO2 photocatalysts can be mass-produced and easily processed at room temperature. We believe this novel method can find important environmental and biomedical applications. PMID:27406992

  1. Synthesis of molecularly imprinted photocatalysts containing low TiO_2 loading: Evaluation for the degradation of pharmaceuticals

    International Nuclear Information System (INIS)

    Coelho de Escobar, Cícero; Lansarin, Marla Azário; Zimnoch dos Santos, João Henrique

    2016-01-01

    Highlights: • Molecularly imprinted photocatalyst (MIP) containing low TiO_2 loading were prepared by acid-catalyzed sol–gel process. • Seven pharmaceutical compounds were evaluated as a template. • Comparing to the P25, MIP has shown an increase of adsorption up to 752%. • Comparing to the P25, MIP has shown an increase of degradation up to 427%. • The presence of specific cavities on the silica domain could explain the better results for MIP. - Abstract: A molecularly imprinted (MI) photocatalyst containing a low TiO_2 loading (7.00–16.60 mg L"−"1 of TiO_2) was prepared via an acid-catalyzed sol–gel route using different classes of pharmaceutical compounds (i.e., Atorvastatin, Diclofenac, Ibuprofen, Tioconazole, Valsartan, Ketoconazole and Gentamicine) as the template. Herein, our main goal was to test the hypothesis that photocatalysts based on molecular imprinting may improve the degradation performance of pharmaceutical compounds compared to that of a commercial sample (Degussa P25) due to presence of specific cavities in the silica domain. To elucidate certain trends between the performance of photocatalysts and their structural and textural properties, as well the effect of the structure of the drugs on molecular imprinting, the data were analyzed in terms of pore diameter, pore volume, surface area, zeta potential and six-membered ring percentage of silica. In comparison to the commercial sample (P25), we have shown that adsorption and degradation were enhanced from 48 to 752% and from 5 to 427%, respectively. A comparison with the control system (non-imprinted) indicates that the increased performance of the MI systems was due to the presence of specific cavities on the silica domain, and the textural and structural aspects also support this conclusion. The MI photocatalyst was reusable for seven cycles of reuse in which approximately 60% of its photocatalytic efficiency was preserved for the system containing Diclofenac as the template.

  2. Microporous TiO2-WO3/TiO2 films with visible-light photocatalytic activity synthesized by micro arc oxidation and DC magnetron sputtering

    International Nuclear Information System (INIS)

    Wu, Kee-Rong; Hung, Chung-Hsuang; Yeh, Chung-Wei; Wu, Jiing-Kae

    2012-01-01

    Highlights: ► A simple MAO is used to prepare porous WO 3 /TiO 2 layer on Ti sheet as a visible-light enabled catalyst. ► The photocatalytic activity of the WO 3 /TiO 2 is enhanced by sputtering over an N,C-TiO 2 layer. ► This is ascribed to the synergetic effect of hybrid sample prepared by two-step method. - Abstract: This study reports the preparation of microporous TiO 2 -WO 3 /TiO 2 films with a high surface area using a two-step approach. A porous WO 3 /TiO 2 template was synthesized by oxidizing a titanium sheet using a micro arc oxidation (MAO) process. This sheet was subsequently overlaid with a visible light (Vis)-enabled TiO 2 (N,C-TiO 2 ) film, which was deposited by codoping nitrogen (N) and carbon (C) ions into a TiO 2 lattice using direct current magnetron sputtering. The resulting microporous TiO 2 -WO 3 /TiO 2 film with a 0.38-μm-thick N,C-TiO 2 top-layer exhibited high photocatalytic activity in methylene blue (MB) degradation among samples under ultraviolet (UV) and Vis irradiation. This is attributable to the synergetic effect of two-step preparation method, which provides a highly porous microstructure and the well-crystallized N,C-TiO 2 top-layer. This is because a higher surface area with high crystallinity favors the adsorption of more MB molecules and more photocatalytic active areas. Thus, the microporous TiO 2 -WO 3 /TiO 2 film has promising applications in the photocatalytic degradation of dye solution under UV and Vis irradiation. These results imply that the microporous WO 3 /TiO 2 can be used as a template of hybrid electrode because it enables rapid fabrication.

  3. Reduced graphene oxide and Ag wrapped TiO2 photocatalyst for enhanced visible light photocatalysis

    International Nuclear Information System (INIS)

    Leong, Kah Hon; Sim, Lan Ching; Jang, Min; Ibrahim, Shaliza; Bahnemann, Detlef; Saravanan, Pichiah

    2015-01-01

    A well-organised reduced graphene oxide (RGO) and silver (Ag) wrapped TiO 2 nano-hybrid was successfully achieved through a facile and easy route. The inherent characteristics of the synthesized RGO-Ag/TiO 2 were revealed through crystalline phase, morphology, chemical composition, Raman scattering, UV-visible absorption, and photoluminescence analyses. The adopted synthesis route significantly controlled the uniform formation of silver nanoparticles and contributed for the absorption of light in the visible spectrum through localized surface plasmon resonance effects. The wrapped RGO nanosheets triggered the electron mobility and promoted visible light shift towards red spectrum. The accomplishment of synergised effect of RGO and Ag well degraded Bisphenol A under visible light irradiation with a removal efficiency of 61.9%

  4. The use of nanoscale visible light-responsive photocatalyst TiO2-Pt for the elimination of soil-borne pathogens.

    Directory of Open Access Journals (Sweden)

    Ya-Lei Chen

    Full Text Available Exposure to the soil-borne pathogens Burkholderia pseudomallei and Burkholderia cenocepacia can lead to severe infections and even mortality. These pathogens exhibit a high resistance to antibiotic treatments. In addition, no licensed vaccine is currently available. A nanoscale platinum-containing titania photocatalyst (TiO(2-Pt has been shown to have a superior visible light-responsive photocatalytic ability to degrade chemical contaminants like nitrogen oxides. The antibacterial activity of the catalyst and its potential use in soil pathogen control were evaluated. Using the plating method, we found that TiO(2-Pt exerts superior antibacterial performance against Escherichia coli compared to other commercially available and laboratory prepared ultraviolet/visible light-responsive titania photocatalysts. TiO(2-Pt-mediated photocatalysis also affectively eliminates the soil-borne bacteria B. pseudomallei and B. cenocepacia. An air pouch infection mouse model further revealed that TiO(2-Pt-mediated photocatalysis could reduce the pathogenicity of both strains of bacteria. Unexpectedly, water containing up to 10% w/v dissolved soil particles did not reduce the antibacterial potency of TiO(2-Pt, suggesting that the TiO(2-Pt photocatalyst is suitable for use in soil-contaminated environments. The TiO(2-Pt photocatalyst exerted superior antibacterial activity against a broad spectrum of human pathogens, including B. pseudomallei and B. cenocepacia. Soil particles (<10% w/v did not significantly reduce the antibacterial activity of TiO(2-Pt in water. These findings suggest that the TiO(2-Pt photocatalyst may have potential applications in the development of bactericides for soil-borne pathogens.

  5. Microwave synthesized nanostructured TiO2-activated carbon composite electrodes for supercapacitor

    International Nuclear Information System (INIS)

    Selvakumar, M.; Bhat, D. Krishna

    2012-01-01

    Highlights: ► Nanostructure TiO 2 has been prepared by a microwave assisted synthesis method. ► Microwave irradiation was varied with time duration on the formation of nanoparticles. ► TiO 2 -activate carbon show very good specific capacitance for supercapacitor. ► Electrochemical properties were studied on electroanalytical techniques. - Abstract: Electrochemical properties of a supercapacitor based on nanocomposite electrodes of activated carbon with TiO 2 nano particles synthesized by a microwave method have been determined. The TiO 2 /activated carbon nanocomposite electrode with a composition of 1:3 showed a specific capacitance 92 Fg −1 . The specific capacitance of the electrode decreased with increase in titanium dioxide content. The p/p symmetrical supercapacitor fabricated with TiO 2 /activated carbon composite electrodes showed a specific capacitance of 122 Fg −1 . The electrochemical behavior of the neat TiO 2 nanoparticles has also been studied for comparison purpose. The galvanostatic charge–discharge test of the fabricated supercapacitor showed that the device has good coulombic efficiency and cycle life. The specific capacitance of the supercapacitor was stable up to 5000 cycles at current densities of 2, 4, 6 and 7 mA cm −2 .

  6. Surface modified TiO2 floating photocatalyst with PDDA for efficient adsorption and photocatalytic inactivation of Microcystis aeruginosa.

    Science.gov (United States)

    Wang, Xin; Wang, Xuejiang; Zhao, Jianfu; Song, Jingke; Su, Chenliang; Wang, Zhongchang

    2017-12-27

    Microcystis aeruginosa, as the most common cyanobacteria, often grows uncontrollably in eutrophic lakes with the accumulation of microcystin-LR (MC-LR) in water, which heavily pollutes water and hence imposes tremendous threat to aquatic animals and human beings. To remediate the harmful algae polluted water, here we synthesize a series of poly dimethyl diallyl ammonium chloride (PDDA) modified TiO 2 floating photocatalysts, PDDA@NPT-EGC, and apply them as a visible light driven multifunctional material. The fabricated PDDA@NPT-EGC composites have a worm-like structure with PDDA particles distributed on their surfaces, and the concentration of PDDA can affect the agglomerative condition and distribution of PDDA particles and the photoelectric properties of catalysts. Among these catalysts, the PDDA@NPT-EGC with 0.2 wt% PDDA (0.2PDDA@NPT-EGC) shows the highest adsorption and photocatalytic activity. Compared with the NPT-EGC, the dark adsorption efficiency for the 0.2PDDA@NPT-EGC after 3 h increases from 70.4% to 88.9%, and the total removal efficiency after visible light irradiation for 2 h increases from 77.8% to 92.6%. In addition, the 0.2PDDA@NPT-EGC exhibits a removal efficiency of 96.55% for photocatalytic degradation of MC-LR after irradiation for 3 h. The Adda side chain of MC-LR molecule is found to degradate gradually in the photocatalytic degradation process, indicative of the elimination of biotoxicity for MC-LR molecule in the reaction. We demonstrate that the 0.2PDDA@NPT-EGC is remarkably competitive in both algae inactivation and MC-LR removal, which shall hold substantial promise in remediation of algae pollution in eutrophic waters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Photocatalytic performance of pure anatase nanocrystallite TiO2 synthesized under low temperature hydrothermal conditions

    International Nuclear Information System (INIS)

    Sayilkan, Funda; Erdemoglu, Sema; Asiltuerk, Meltem; Akarsu, Murat; Sener, Sadiye; Sayilkan, Hikmet; Erdemoglu, Murat; Arpac, Ertugrul

    2006-01-01

    Photocatalytic performance of a hydrothermally synthesized pure anatase TiO 2 with 8 nm average crystallite size for decomposition of Reactive Red 141 was examined by investigating the effects of UV-light irradiation time, irradiation power, amount of TiO 2 and initial dye concentration. Change in the UV absorbance of the dye during irradiation was monitored. One wt.% TiO 2 in 30 mg/l Reactive Red 141 aqueous solution was found adequate for complete decolorization in 70 min at 770 W/m 2 irradiation power. It was realized that, compared to Degussa P-25, the synthesized nano-TiO 2 can be repeatedly used as a new catalyst. The results also proved that Reactive Red 141 is decomposed catalytically due to the pseudo first-order reaction kinetics

  8. Preparation of TiO2 photocatalyst with the matrix of palm wood ( Arenga pinnata ) waste in the photodegradation of batik wastewater

    International Nuclear Information System (INIS)

    Kresnadipayana, Dian; Wahyuni, Endang Tri; Santosa, Sri Juari; Mudasir

    2017-01-01

    The study aimed to the preparation of TiO 2 photocatalyst with the matrix from palm wood waste whose has lignin and cellulose content. TiO 2 photocatalyst with the matrix from the wastewater of palm wood waste (TiO 2 /pww) was used as photocatalyst in photodegradation of batik wastewater. TiO 2 solid was dissolved in ethanol and aquadest, added with the powder of wood palm waste and stirred with a magnetic stirrer for 16 hours. Then separation was carried out using buchner and filtrate and residue were obtained. The filtrate was disposed and the residue was calcined with various temperatures for 3 hours. The temperatures in this research were 100 °C (TiO 2 /pww-100); 200°C (TiO 2 /pww-200); 300°C (TiO 2 /pww-300). Analysis and characterization of TiO 2 /wwp were conducted using X-ray diffraction (XRD) and spectrophotometer Fourier Transform Infra Red (FTIR) methods. Photocalalytic TiO 2 /wwp use the batch system in a reactor with UV light 40 watts, 220 volts and length wave 360 nm the plate magnetic stirrer. Liquid waste batik adds TiO 2 /wwp with time variation. At XRD analysis showed that the preparation of TiO 2 /pww could be done on the heating TiO 2 /pww temperature of 100°C and 200°C. At the temperature of 300°C, it was indicated that the lignocelluloses in palm wood waste were burned, meaning that few lignocelluloses remained. The result of FTIR analysis showed clearly that at the temperature of 300°C, a few spectrum of lignocelluloses remained in palm wood waste, while at a temperature of 100°C and 200°C, spectra of lignocelluloses of palm wood waste remained. The result of photocatalysis test indicated that TiO 2 /pww could reduce 40%, 72%, 81% and 64% COD for TiO 2 (control), TiO 2 /pww-100, TiO 2 /pww-200 and TiO 2 /pww-300, respectively. (paper)

  9. Photodegradation of HCFC-22 Using Microwave Discharge Electrodeless Mercury Lamp with TiO2 Photocatalyst Balls

    Directory of Open Access Journals (Sweden)

    Seong-Gyu Seo

    2014-01-01

    Full Text Available The photodegradation of chlorodifluoromethane (HCFC-22 was investigated using microwave/UV/TiO2 photocatalysts hybrid system. The microwave discharge electrodeless mercury lamp (MDEML used in this study showed mainly atomic Hg emission lines at 253.7 nm. The decomposition efficiency of HCFC-22 increased with decreasing inlet concentration and with increasing reactor residence time. The removal efficiency increased with increasing microwave power on every oxygen concentration. The highest degradation efficiency was obtained when both TiO2 balls and MDEML were used.

  10. Fabrication of TiO2/MoS2@zeolite photocatalyst and its photocatalytic activity for degradation of methyl orange under visible light

    International Nuclear Information System (INIS)

    Zhang, Weiping; Xiao, Xinyan; Zheng, Lili; Wan, Caixia

    2015-01-01

    Graphical abstract: A novel approach was developed for fabrication of TiO 2 /MoS 2 @zeolite photocatalyst using bulk MoS 2 as a photosensitizer and zeolite as carrier. The as-prepared TiO 2 /MoS 2 @zeolite composite exhibited excellent photocatalytic performance for degradation of methyl orange under visible-light irradiation. - Highlights: • Ultrasound-exfoliation and hydrothermal reforming technique were employed for generating nano-MoS 2 from micro-MoS 2 . • The embedded sensitizer composite mode of (TiO 2 /MoS 2 /TiO 2 ) was used in the fabrication of TiO 2 /MoS 2 @zeolite composite photocatalyst. • The photocatalytic mechanism of TiO 2 /MoS 2 @zeolite photocatalyst was presented. - Abstract: TiO 2 /MoS 2 @zeolite composite photocatalysts with visible-light activity were fabricated via a simple ultrasonic-hydrothermal synthesis method, using TiCl 4 as Ti source, MoS 2 as a direct sensitizer, glycerol water solution with certain dispersion agent as hydrolytic agent, and zeolite as carrier. The structure, morphology, composition, optical properties, and specific surface area of the as-prepared photocatalysts were characterized by using XRD, FTIR, SEM–EDS, TEM, XPS, UV–vis, PL and BET analyzer, respectively. And the photocatalytic degradation of methyl orange (MO) in aqueous suspension has been employed to evaluate the photocatalytic activity and degradation kinetics of as-prepared photocatalysts with xenon lamp as irradiation source. The results indicate that: (1) TiO 2 /MoS 2 @zeolite composite photocatalysts exhibit enhanced photocatalytic activities for methyl orange (MO) degradation compared to Degussa P25; (2) photocatalytic degradation of MO obeys Langmuir–Hinshelwood kinetic model (pseudo-first order reaction), and its degradation rate constant (k app ) (2.304 h −1 ) is higher than that of Degussa P25 (0.768 h −1 ); (3) the heterostructure consisted of zeolite, MoS 2 and TiO 2 nanostructure could provide synergistic effect for degradation

  11. Development of high efficient visible light-driven N, S-codoped TiO2 nanowires photocatalysts

    Science.gov (United States)

    Zhang, Yanlin; Liu, Peihong; Wu, Honghai

    2015-02-01

    One-dimensional (1D) nanowire material (especially nonmetal doped 1D nanowires) synthesized by a facile way is of great significance and greatly desired as it has higher charge carrier mobility and lower carrier recombination rate. N, S-codoped TiO2 nanowires were synthesized using titanium sulfate as a precursor and isopropanol as a protective capping agent by a hydrothermal route. The obtained doped nanowires were characterized by XRD, SEM, HRTEM, SAED, XPS, BET and UV-vis absorption spectrum. The incorporation of N and S into TiO2 NWs can lead to the expansion of its lattice and remarkably lower its electron-transfer resistance. Photocatalytic activity measurement showed that the N, S-codoped TiO2 nanowires with high quantum efficiency revealed the best photocatalytic performance for atrazine degradation under visible light irradiation compared to N, S-codoped TiO2 nanoparticles and S-doped TiO2 nanowires, which was attributed to (i) the synergistic effect of N and S doping in narrowing the band gap, separating electron-hole pairs and increasing the photoinduced electrons, and (ii) extending the anatase-to-rutile transformation temperature above 600 °C.

  12. TiO2 nanosheets synthesized by atomic layer deposition for photocatalysis

    Directory of Open Access Journals (Sweden)

    Riyanto Edy

    2016-10-01

    Full Text Available Two-dimensional TiO2 nanosheets were synthesized by atomic layer deposition (ALD on dissolvable sacrificial polymer layer. The photocatalytic performance of free-standing TiO2 nanosheets prepared with different numbers of ALD cycles (100, 300, 500, and 1000 were investigated by evaluating the degradation rates of methyl orange solutions. It is shown that the photocatalytic activity increases due to Ti3+ defect and the locally ordered structures in amorphous TiO2 nanosheets. The difference in the surface areas of nanosheets may also play a crucial role in the photocatalytic activity. The results obtained in this work can have potential applications in fields like water splitting and dye-sensitized solar cells.

  13. A Designed TiO2 /Carbon Nanocomposite as a High-Efficiency Lithium-Ion Battery Anode and Photocatalyst.

    Science.gov (United States)

    Peng, Liang; Zhang, Huijuan; Bai, Yuanjuan; Feng, Yangyang; Wang, Yu

    2015-10-12

    Herein, a peapod-like TiO2 /carbon nanocomposite has successfully been synthesized by a rational method for the first time. The novel nanostructure exhibits a distinct feature of TiO2 nanoparticles encapsulated inside and the carbon fiber coating outside. In the synthetic process, H2 Ti3 O7 nanotubes serve as precursors and templates, and glucose molecules act as the green carbon source. With the alliciency of hydrogen bonding between H2 Ti3 O7 and glucose, a thin polymer layer is hydrothermally assembled and subsequently converted into carbon fibers through calcinations under an inert atmosphere. Meanwhile, the precursors of H2 Ti3 O7 nanotubes are transformed into the TiO2 nanoparticles encapsulated in carbon fibers. The achieved unique nanocomposites can be used as excellent anode materials in lithium-ion batteries (LIBs) and photocatalytic reagents in the degradation of rhodamine B. Due to the synergistic effect derived from TiO2 nanoparticles and carbon fibers, the obtained peapod-like TiO2 /carbon cannot only deliver a high specific capacity of 160 mAh g(-1) over 500 cycles in LIBs, but also perform a much faster photodegradation rate than bare TiO2 and P25. Furthermore, owing to the low cost, environmental friendliness as well as abundant source, this novel TiO2 /carbon nanocomposite will have a great potential to be extended to other application fields, such as specific catalysis, gas sensing, and photovoltaics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Photochemical reductions of benzil and benzoin in the presence of triethylamine and TiO2 photocatalyst

    International Nuclear Information System (INIS)

    Park, Joon Woo; Kim, Eun Kyung; Koh Park, Kwang Hee

    2002-01-01

    This paper reports the photochemical reduction of benzil 1 to benzoin 2 and the reduction of 2 to hydrobenzoin 4 in deoxygenated solvents in the presence of triethylamine (TEA) and/or TiO 2 . Without TEA or TiO 2 , the photolysis of 1 resulted in very low yield of 2. The presence of TEA or TiO 2 increased the rate of disappearance of 1 and the yield of 2, which were further increased considerably by the presence of water. The photoreduction of 1 to 2 proceeds through an electron transfer to 1 from TEA or hole-scavenged excited TiO 2 followed by protonation. In the reaction medium of 88:7:2:3 CH 3 CN/CH 3 OH/H 2 O/TEA with 2.5 mg/mL of TiO 2 , the yield of 2 was as high as 85% at 50% conversion of 1. The photolysis of 2 in homogeneous media resulted in photo-cleavage to benzoyl and hydroxybenzyl radicals, which are mostly converted to benzaldehyde. The reduction product 4 is formed in low yield through the dimerization of hydroxybenzyl radicals. The addition of TEA increased the conversion rate of 2 and the yield of 4 significantly. This was attributed to the scavenging effect of TEA for benzoyl radical to produce N,N-diethylbenzamide and the photoreduction of benzaldehyde in the presence of TEA. The ratio of (±) and meso isomers of 4 obtained from the photochemical reaction is about 1.1. This ratio is the same as that from the photochemical reduction of benzaldehyde in the presence of TEA. In the TiO 2 -sensitized photochemical reduction of 2, meso-4 was obtained in moderate yield. The reduction of 2 to 4 proceeds through two consecutive electron/proton transfer processes on the surface of the photocatalyst without involvement of α-cleavage. The radical 11 initially formed from 2 by one electron/proton process can also combine with hydroxy methyl radical, which is generated after hole trapping of excited TiO 2 by methanol, to product 1,2-diphenylpropenone after dehydration reaction

  15. Highly efficient dual cocatalyst-modified TiO2 photocatalyst: RGO as electron-transfer mediator and MoSx as H2-evolution active site

    Science.gov (United States)

    Xu, Ying; Li, Yongan; Wang, Ping; Wang, Xuefei; Yu, Huogen

    2018-02-01

    The rapid interfacial charge transfer and interfacial catalytic reaction are highly desirable to improve the photocatalytic H2-evolution performance of semiconductor photocatalysts. To achieve the goal, in the paper, MoSx-rGO/TiO2 was synthesized by a facilely two-step photocatalytic reduction approach including reducing GO/TiO2 to rGO/TiO2 and then reducing ammonium tetrathiomolybdate ((NH4)2MoS4) to form amorphous MoSx on the rGO surface. In the case, the rGO nanosheets as an electron mediator caused rapid transportation of photogenerated electrons from the conduction band (CB) of TiO2, while amorphous MoSx served as an effective active site for the following interfacial reduction reaction for H2 evolution. The photocatalytic results indicated that the H2-evolution rate of synthesized MoSx-rGO/TiO2 was 206.6 μmol h-1, which was obviously higher than that of TiO2 (6.9 μmol h-1), rGO/TiO2 (31.8 μmol h-1) and MoSx/TiO2 (150.1 μmol h-1) due to the rapid interfacial charge transfer and interfacial catalytic reaction. Considering the present mild and green approach, the obtained MoSx-rGO/TiO2 could be regarded as a potential photocatalyst for the practical application. In addition, this work also could provide some new insights for the smart design and preparation of inexpensive and high-efficiency photocatalytic materials.

  16. TiO2 based photo-catalysts prepared by chemical vapor infiltration (CVI) on micro-fibrous substrates

    International Nuclear Information System (INIS)

    Sarantopoulos, Ch.

    2007-10-01

    This thesis deals with micro-fibrous glass substrates functionalized with TiO 2 . The oxide is deposited as a thin film onto the micro fibres by chemical vapour infiltration (CVI), yielding a photo-catalytic material usable for cleaning polluted air. We studied the relation between the structure of the material and its photo-catalytic efficiency. TiO 2 thin films were prepared at low pressure, in a hot-wall CVD reactor, using Ti(O-iPr) 4 as a precursor. They were characterized by XRD, SEM, EDX, XPS and BET, and by recording the kinetics of decomposition of varied pollutants in solution (orange G, malic acid, imazapyr) and in air (toluene). The conditions favoring the growth of porous films through a columnar growth mode were established by MOCVD-depositing TiO 2 thin films on flat substrates. The subsequent works with micro fibrous thick substrates showed the uniformity of infiltration to be the main factor governing the photo-catalytic efficiency. Operating parameters that optimize infiltration do not yield columnar growth mode. A compromise is necessary. Our photo-catalysts are showing high efficiency comparable, if not higher, to those actually commercialized. These promising results are opening real perspectives for the proposed process. (author)

  17. Solvothermal fabrication of activated semi-coke supported TiO2-rGO nanocomposite photocatalysts and application for NO removal under visible light

    Science.gov (United States)

    Yang, Weiwei; Li, Chunhu; Wang, Liang; Sun, ShengNan; Yan, Xin

    2015-10-01

    The photocatalysts of activated semi-coke supported TiO2-rGO nanocomposite (TiO2-rGO/ASC) with different contents of reduced graphene oxide were fabricated by one-step solvothermal method for NO removal under visible light irradiation. It was confirmed that 8% content of reduced graphene oxide presented the best NO photooxidation performance under visible light irradiation at 70 °C with 350-400 mg/m3 NO,5% O2 and 5% relative humidity. The reasons for improved activity were discussed, alloyed with the mechanism of producing CO. Detailed structural information of TiO2-rGO/ASC photocatalysts was characterized by scanning electron microscope (SEM), energy dispersive X-ray Spectroscopy (EDX), X-ray diffraction analysis (XRD), UV-Vis diffuse reflectance spectra (UV-Vis DRS) and photoluminescence (PL), which indicated that the introduction of rGO was responsible for well dispersion, smaller crystalline size, red shift of absorption band and suppressing quick photo-induced charges recombination of TiO2-rGO/ASC photocatalysts. Optimization of operational parameters with 70 °C, 8% O2 and 8% relative humidity were also obtained. Deactivation of TiO2-rGO/ASC photocatalysts for NO removal was investigated by Fourier-transform infrared (FTIR) analysis. Regeneration experiments showed that thermal vapor regeneration would be optimal method owing to excellent regenerative capacity and inexpensive procedure.

  18. BiVO4 -TiO2 Composite Photocatalysts for Dye Degradation Formed Using the SILAR Method.

    Science.gov (United States)

    Odling, Gylen; Robertson, Neil

    2016-09-19

    Composite photocatalyst films have been fabricated by depositing BiVO4 upon TiO2 via a sequential ionic layer adsorption reaction (SILAR) method. The photocatalytic materials were investigated by XRD, TEM, UV/Vis diffuse reflectance, inductively coupled plasma optical emission spectrometry (ICP-OES), XPS, photoluminescence and Mott-Schottky analyses. SILAR processing was found to deposit monoclinic-scheelite BiVO4 nanoparticles onto the surface, giving successive improvements in the films' visible light harvesting. Electrochemical and valence band XPS studies revealed that the prepared heterojunctions have a type II band structure, with the BiVO4 conduction band and valence band lying cathodically shifted from those of TiO2 . The photocatalytic activity of the films was measured by the decolourisation of the dye rhodamine 6G using λ>400 nm visible light. It was found that five SILAR cycles was optimal, with a pseudo-first-order rate constant of 0.004 min(-1) . As a reference material, the same SILAR modification has been made to an inactive wide-band-gap ZrO2 film, where the mismatch of conduction and valence band energies disallows charge separation. The photocatalytic activity of the BiVO4 -ZrO2 system was found to be significantly reduced, highlighting the importance of charge separation across the interface. The mechanism of action of the photocatalysts has also been investigated, in particular the effect of self-sensitisation by the model organic dye and the ability of the dye to inject electrons into the photocatalyst's conduction band. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Visible-Light-Active Titania Photocatalysts: The Case of N-Doped TiO2s—Properties and Some Fundamental Issues

    Directory of Open Access Journals (Sweden)

    Alexei V. Emeline

    2008-01-01

    Full Text Available This article briefly reviews some factors that have impacted heterogeneous photocatalysis with next generation TiO2 photocatalysts, along with some issues of current debate in the fundamental understanding of the science that underpins the field. Preparative methods and some characteristics features of N-doped TiO2 are presented and described briefly. At variance are experimental results and interpretations of X-ray photoelectron spectra (XPS with regard to assignments of N 1s binding energies in N-doped TiO2 systems. Relative to pristine nominally clean TiO2 with absorption edges at 3.2 eV (anatase and 3.0 eV (rutile, N-doped TiO2s display red-shifted absorption edges into the visible spectral region. Several workers have surmised that the (intrinsic band gap of TiO2 is narrowed by coupling dopant energy states with valence band (VB states, an inference based on DFT computations. With similar DFT computations, others concluded that red-shifted absorption edges originate from the presence of localized intragap dopant states above the upper level of the VB band. Recent analyses of absorption spectral features in the visible region for a large number of doped TiO2 specimens, however, have suggested a common origin owing to the strong similarities of the absorption features, and this regardless of the preparative methods and the nature of the dopants. The next generation of (doped TiO2 photocatalysts should enhance overall process photoefficiencies (in some cases, since doped TiO2s absorb a greater quantity of solar radiation. The fundamental science that underpins heterogeneous photocatalysis with the next generation of photocatalysts is a rich playing field ripe for further exploration.

  20. Preparation and Photocatalytic Property of Sr(Zr1-xYx)O3/TiO2/CdS heterojunction photocatalysts

    International Nuclear Information System (INIS)

    Chen Yonggang; Liu Suwen; Zhang Haiping; Xiu Zhiliang; Yu Xiaojun; Wang Enhua; Li Tanggang

    2010-01-01

    A novel composite heterojunction photocatalysts Sr(Zr 1-x Y x )O 3 /TiO 2 /CdS was prepared by sol-gel combustion method. Its photoatalytic properties under visible light were investigated through degradation of methyl orange. XRD, SEM, Uv-Vis and PL techniques were used to characterize the structure and optical properties of the sample. The results showed that the photocatalytic activity of prepared composite photocatalysts under visible light is 2.85 times of that of pure TiO 2 .

  1. Hydrothermal synthesis of Fe-doped TiO2 nanostructure photocatalyst

    International Nuclear Information System (INIS)

    Nguyen, Van Nghia; Nguyen, Ngoc Khoa Truong; Nguyen, Phi Hung

    2011-01-01

    Fe-doped TiO 2 catalyst was prepared by the hydrothermal method. The resulting nanopowders were characterized by x-ray diffraction, transmission electron microscopy and Raman and UV-visible spectroscopies. The photocatalytic activity of the Fe-doped TiO 2 was tested by decomposition of methylene orange with a concentration of 10 mg l −1 in aqueous solution. The obtained results showed that methylene orange was significantly degraded after irradiation for 90 min under a halogen lamp and sunlight. The doping effect on the photocatalytic activity of the iron-doped catalyst samples are discussed

  2. Preparation of TiO2-SiO2 composite photocatalysts for environmental applications

    Czech Academy of Sciences Publication Activity Database

    Paušová, Š.; Krýsa, J.; Jirkovský, Jaromír; Prevot, V.; Mailhot, G.

    2014-01-01

    Roč. 89, č. 8 (2014), s. 1129-1135 ISSN 0268-2575 Institutional support: RVO:61388955 Keywords : photocatalysis * TiO2/SiO2 * composite Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.349, year: 2014

  3. Mesoporous layers of TiO2 as highly efficient photocatalysts for the purification of air

    Czech Academy of Sciences Publication Activity Database

    Kalousek, Vít; Tschirch, J.; Bahnemann, D.; Rathouský, Jiří

    2008-01-01

    Roč. 44, 4-5 (2008), s. 506-513 ISSN 0749-6036 R&D Projects: GA MŠk 1M0577 Institutional research plan: CEZ:AV0Z40400503 Keywords : TiO2 * mesoporous film * evaporation induced self-assembly Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.211, year: 2008

  4. Preparation of Fluorine-Doped TiO2 Photocatalysts with Controlled Crystalline Structure

    Directory of Open Access Journals (Sweden)

    N. Todorova

    2008-01-01

    Full Text Available Nanocrystalline F-doped TiO2 powders were prepared by sol-gel route. The thermal behavior of the powders was recorded by DTA/TG technique. The crystalline phase of the fluorinated TiO2 powders was determined by X-ray diffraction technique. It was demonstrated that F-doping using CF3COOH favors the formation of rutile along with anatase phase even at low temperature. Moreover, the rutile's phase content increases with the increase of the quantity of the fluorine precursor in the starting solution. The surface area of the powders and the pore size distribution were studied by N2 adsorption-desorption using BET and BJH methods. X-ray photoelectron spectroscopy (XPS revealed that the fluorine is presented in the TiO2 powders mainly as metal fluoride in quantities ∼16 at %. The F-doped TiO2 showed a red-shift absorption in UV-vis region which was attributed to the increased content of rutile phase in the powders. The powders exhibited enhanced photocatalytic activity in decomposition of acetone.

  5. Structural and electrical properties of TiO2/ZnO core–shell nanoparticles synthesized by hydrothermal method

    International Nuclear Information System (INIS)

    Vlazan, P.; Ursu, D.H.; Irina-Moisescu, C.; Miron, I.; Sfirloaga, P.; Rusu, E.

    2015-01-01

    TiO 2 /ZnO core–shell nanoparticles were successfully synthesized by hydrothermal method in two stages: first stage is the hydrothermal synthesis of ZnO nanoparticles and second stage the obtained ZnO nanoparticles are encapsulated in TiO 2 . The obtained ZnO, TiO 2 and TiO 2 /ZnO core–shell nanoparticles were investigated by means of X-ray diffraction, transmission electron microscopy, Brunauer, Emmett, Teller and resistance measurements. X-ray diffraction analysis revealed the presence of both, TiO 2 and ZnO phases in TiO 2 /ZnO core–shell nanoparticles. According to transmission electron microscopy images, ZnO nanoparticles have hexagonal shapes, TiO 2 nanoparticles have a spherical shape, and TiO 2 /ZnO core–shell nanoparticles present agglomerates and the shape of particles is not well defined. The activation energy of TiO 2 /ZnO core–shell nanoparticles was about 101 meV. - Graphical abstract: Display Omitted - Highlights: • TiO 2 /ZnO core–shell nanoparticles were synthesized by hydrothermal method. • TiO 2 /ZnO core–shell nanoparticles were investigated by means of XRD, TEM and BET. • Electrical properties of TiO 2 /ZnO core–shell nanoparticles were investigated. • The activation energy of TiO 2 /ZnO core–shell nanoparticles was about E a = 101 meV

  6. Black TiO2 synthesized via magnesiothermic reduction for enhanced photocatalytic activity

    Science.gov (United States)

    Wang, Xiangdong; Fu, Rong; Yin, Qianqian; Wu, Han; Guo, Xiaoling; Xu, Ruohan; Zhong, Qianyun

    2018-04-01

    Utilizing solar energy for hydrogen evolution is a great challenge for its insufficient visible-light power conversion. In this paper, we report a facile magnesiothermic reduction of commercial TiO2 nanoparticles under Ar atmosphere and at 550 °C followed by acid treatment to synthesize reduced black TiO2 powders, which possesses a unique crystalline core-amorphous shell structure composed of disordered surface and oxygen vacancies and shows significantly improved optical absorption in the visible region. The unique core-shell structure and high absorption enable the reduced black TiO2 powders to exhibit enhanced photocatalytic activity, including splitting of water in the presence of Pt as a cocatalyst and degradation of methyl blue (MB) under visible light irradiation. Photocatalytic evaluations indicate that the oxygen vacancies play key roles in the catalytic process. The maximum hydrogen production rates are 16.1 and 163 μmol h-1 g-1 under the full solar wavelength range of light and visible light, respectively. This facile and versatile method could be potentially used for large scale production of colored TiO2 with remarkable enhancement in the visible light absorption and solar-driven hydrogen production.

  7. Graphene and TiO_2 co-modified flower-like Bi_2O_2CO_3: A novel multi-heterojunction photocatalyst with enhanced photocatalytic activity

    International Nuclear Information System (INIS)

    Ao, Yanhui; Xu, Liya; Wang, Peifang; Wang, Chao; Hou, Jun; Qian, Jin; Li, Yi

    2015-01-01

    Graphical abstract: A novel multi-heterojunction photocatalyst (graphene and TiO_2 co-modified flower-like Bi_2O_2CO_3) was prepared for the first time. The as-obtained samples showed much higher activity compared to pure Bi_2O_2CO_3, TiO_2 and GR–Bi_2O_2CO_3 for dye degradation, which is almost 14 times higher than that of pure Bi_2O_2CO_3 and also much higher than the sum of graphene–Bi_2O_2CO_3 and TiO_2. - Highlights: • Graphene and TiO_2 co-modified flower-like Bi_2O_2CO_3 was prepared for the first time. • The sample shows enhanced photocatalytic activity due to the formation of multi-heterojunction. • The sample also exhibits a synergetic effect of graphene and TiO_2. • The composite photocatalyst shows a good stability for dye degradation. - Abstract: In this paper, graphene (GR) and titania co-modified flower-like Bi_2O_2CO_3 multi-heterojunction composite photocatalysts were prepared by a simple and feasible two step hydrothermal process. The prepared samples were analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM), transmission electron microscopy (TEM), UV–vis diffuse reflectance spectrometry (DRS), photoluminescence (PL), N_2 adsorption–desorption isotherm, and photo-induced current. The photocatalytic activity was investigated by the degradation of MO under UV light irradiation. The as prepared multi-heterojunction GR/Bi_2O_2CO_3/TiO_2 composites exhibited much higher photocatalytic activity than pure Bi_2O_2CO_3, TiO_2 and GR–Bi_2O_2CO_3. The higher performance of GR/Bi_2O_2CO_3/TiO_2 can be ascribed to the formation of multi-heterojunctions, which promote the effective separation of photo-induced electron–hole pairs. Moreover, the higher photocatalytic activity can also be ascribed to the high surface area of GR and TiO_2, which offers more active sites for the photodegradation reaction. Furthermore, the photocatalytic activity of GR/Bi_2O_2CO_3/TiO_2 remained without striking decrease after five cycles

  8. Obtaining, characterization and fibre use of nanostructured TiO_2 doped with tungsten as photocatalysts

    International Nuclear Information System (INIS)

    Soares, L.G.; Bergmann, C.P.; Alves, A.K.

    2016-01-01

    The use and applicability of nanomaterials are increasingly common in our day to day, due to propitiate more effective end products, lightweight and low cost. The nanomaterials used preferably in various applications is due to properties such as reduced particle size, diversified and high surface area. In this work nanostructured fibers of TiO_2 and TiO_2/WO_3 were obtained by electrospinning, annealed at temperatures between 650 deg C and 800 deg C, and its photocatalytic activity was evaluated. The technique of X-ray diffraction (XRD) was used to determine the crystalline structure and crystallite size. The morphology of nanomaterials was observed by scanning electron microscopy (SEM). Preliminary results indicate that the nano-doped tungsten presented more efficient in bleaching methyl orange dye, indicating a higher catalytic activity of this material compared to a standard catalyst. This phenomenon can be explained through the phases present and morphological characteristics of the fibers. (author)

  9. Well-defined copolymers synthesized by RAFT polymerization as effective modifiers to enhance the photocatalytic performance of TiO_2

    International Nuclear Information System (INIS)

    Vasilaki, E.; Kaliva, M.; Katsarakis, N.; Vamvakaki, M.

    2017-01-01

    Highlights: • Well-defined, random functional copolymers were synthesized by RAFT polymerization. • Novel TiO_2 particles in-situ modified with copolymers were synthesized. • The hybrid catalysts exhibited reduced aggregation and particle size. • The photocatalytic removal of methylene blue was higher for the hybrid catalysts. - Αbstract: The enhancement of the photocatalytic performance of anatase TiO_2 nanoparticles is demonstrated by a facile route, involving their in-situ surface modification with preformed polymer chains. Random copolymers of poly(ethylene glycol) methyl ether acrylate-co-methacrylic acid (PEGA-co-MAA) or poly(ethylene glycol) methyl ether acrylate-co-dopamine methacrylamide (PEGA-co-DMA) were synthesized by reversible addition−fragmentation chain-transfer (RAFT) polymerization and were bound onto the surface of anatase titania nanoparticles via the “grafting to” method. The hybrid nanocatalysts were characterized by fourier transform infrared spectroscopy, zeta-potential measurements, X-ray powder diffraction, thermogravimetric analysis and transmission electron microscopy. Their photocatalytic performance was evaluated by the decoloration of methylene blue (MB) dye in aqueous media under UV–vis light irradiation. The enhanced photoactivity and reusability of the polymer modified photocatalysts compared to that of bare TiO_2 nanoparticles was attributed to their improved dispersability and colloidal stability, the smaller particle size that leads to a larger surface area and the increased adsorption capacity of the dye onto the polymer modified nanoparticles.

  10. Time-resolved infrared absorption study of nine TiO2 photocatalysts

    International Nuclear Information System (INIS)

    Yamakata, Akira; Ishibashi, Taka-aki; Onishi, Hiroshi

    2007-01-01

    Electron kinetics of nine TiO 2 catalysts were compared in a microsecond time domain. Each catalyst was band-gap excited with an UV light pulse, and electron-induced absorption of mid infrared light was observed as a function of time delay. The probability of electron-hole recombination in the bulk, electron attachment to adsorbed oxygen, and hole attachment to adsorbed methoxy species was estimated

  11. Polymer dots grafted TiO2 nanohybrids as high performance visible light photocatalysts.

    Science.gov (United States)

    Li, Gen; Wang, Feng; Liu, Peng; Chen, Zheming; Lei, Ping; Xu, Zhongshan; Li, Zengxi; Ding, Yanfen; Zhang, Shimin; Yang, Mingshu

    2018-04-01

    As a new member of carbon dots (CDs), Polymer dots (PDs) prepared by hydrothermal treatment of polymers, usually consist of the carbon core and the connected partially degraded polymer chains. This type of CDs might possess aqueous solubility, non-toxicity, excellent stability against photo-bleaching and high visible light activity. In this research, PDs were prepared by a moderate hydrothermal treatment of polyvinyl alcohol, and PDs grafted TiO 2 (PDs-TiO 2 ) nanohybrids with TiOC bonds were prepared by a facile in-situ hydrothermal treatment of PDs and Ti (SO 4 ) 2 . Under visible light irradiation, the PDs-TiO 2 demonstrate excellent photocatalytic activity for methyl orange degradation, and the photocatalytic rate constant of PDs-TiO 2 is 3.6 and 9.5 times higher than that of pure TiO 2 and commercial P25, respectively. In addition, the PDs-TiO 2 exhibit good recycle stability under UV-Vis light irradiation. The interfacial TiOC bonds and the π-conjugated structures in PDs-TiO 2 can act as the pathways to quickly transfer the excited electrons between PDs and TiO 2 , therefore contribute to the excellent photocatalytic activity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. TiO2 Photocatalyst Nanoparticle Separation: Flocculation in Different Matrices and Use of Powdered Activated Carbon as a Precoat in Low-Cost Fabric Filtration

    Directory of Open Access Journals (Sweden)

    Carlos F. Liriano-Jorge

    2014-01-01

    Full Text Available Separation of photocatalyst nanoparticles is a problem impeding widespread application of photocatalytic oxidation. As sedimentation of photocatalyst particles is facilitated by their flocculation, the influence of common constituents of biologically pretreated wastewaters (NaCl, NaHCO3, and their combination with humic acid sodium salt on flocculation was tested by the pipet method. Results showed that the impact of these substances on TiO2 nanoparticle flocculation is rather complex and strongly affected by pH. When humic acid was present, TiO2 particles did not show efficient flocculation in the neutral and slightly basic pH range. As an alternative to photocatalyst separation by sedimentation, precoat vacuum filtration with powdered activated carbon (PAC over low-cost spunbond polypropylene fabrics was tested in the presence of two PAC types in aqueous NaCl and NaHCO3 solutions as well as in biologically treated greywater and in secondary municipal effluent. PAC concentrations of ≥2 g/L were required in order to achieve a retention of nearly 95% of the TiO2 nanoparticles on the fabric filter when TiO2 concentration was 1 g/L. Composition of the aqueous matrix and PAC type had a slight impact on precoat filtration. PAC precoat filtration represents a potential pretreatment for photocatalyst removal by micro- or ultrafiltration.

  13. Preparation of thermally stable anatase TiO2 photocatalyst from TiOF2 precursor and its photocatalytic activity

    International Nuclear Information System (INIS)

    Lv Kangle; Yu Jiaguo; Cui Longzhe; Chen Shulin; Li Mei

    2011-01-01

    Graphical abstract: The prepared anatase TiO 2 from TiOF 2 shows very high thermal stability (up to 1000 o C) and the 700 o C-calcined sample showed the highest photocatalytic activity. Display Omitted Research highlights: → TiOF 2 was prepared by a simple microwave assisted hydrothermal rout. → Anatase TiO 2 prepared by calcination of TiOF 2 shows high thermal stability. → F - play an important role in the improvement thermal stability of anatase TiO 2 . → The 700 o C-calcined sample shows the highest photocatalytic activity. - Abstract: Preparation of anatase TiO 2 with high themal stability is of great importance for its environmental application. In this work, TiOF 2 was first synthesized by a simple microwave-assisted hydrothermal route using tetrabutyl titanate and hydrofluoric acid as precursors at 200 o C for 20 min. Then the resulted precipitates were calcined at different temperatures (300-1000 o C) for 2 h. The as-prepared samples were characterized by X-ray diffraction, Raman spectrum, scanning electron microscopy, N 2 adsorption-desorption isotherms and X-ray photoelectron spectroscopy. The photocatalytic activity was evaluated using Brilliant Red X3B, an anionic azo dye, as the target organic molecule under UV light irradiation. The results showed that the prepared TiOF 2 exhibited weak or no photocatalytic activity. The phase transformation of TiOF 2 to anatase TiO 2 occurred at about 300 o C. The prepared anatase TiO 2 from TiOF 2 showed very high thermal stability and the anatase-to-rutile phase transformation temperature was up to 1000 o C. Fluoride ions played an important role in the improvement of thermal stability of anatase TiO 2 by strongly adsorbing on the crystal planes of anatase to stabilize the anatase structure. The 700 o C-calcined sample showed the highest photocatalytic activity due to its relative good crystallization and high specific surface areas.

  14. Enhancement of photocatalytic degradation of polyethylene plastic with CuPc modified TiO2 photocatalyst under solar light irradiation

    International Nuclear Information System (INIS)

    Zhao Xu; Li Zongwei; Chen Yi; Shi Liyi; Zhu Yongfa

    2008-01-01

    Solid-phase photocatalytic degradation of polyethylene (PE) plastic, one of the most common commercial plastic, over copper phthalocyanine (CuPc) modified TiO 2 (TiO 2 /CuPc) photocatalyst was investigated in the ambient air under solar light irradiation. Higher PE weight loss rate, greater texture change; more amount of generated CO 2 , which is the main product of the photocatalytic degradation of the composite PEC plastic can be achieved in the system of PE-(TiO 2 /CuPc) in comparison with PE-TiO 2 system. The CuPc promoted charge separation of TiO 2 and enhanced the photocatalytic degradation of PE based on the analysis of surface photovoltage spectroscopy (SPS). During the photodegradation of PE plastic, the reactive oxygen species generated on TiO 2 or TiO 2 /CuPc particle surfaces play important roles. The present study demonstrates that the combination of polymer plastic with TiO 2 /CuPc composite photocatalyst in the form of thin film is a practical and useful way to photodegrade plastic contaminants under solar light irradiation

  15. Photocatalytic degradation of mixed gaseous carbonyl compounds at low level on adsorptive TiO2/SiO2 photocatalyst using a fluidized bed reactor.

    Science.gov (United States)

    Zhang, Maolin; An, Taicheng; Fu, Jiamo; Sheng, Guoying; Wang, Xinming; Hu, Xiaohong; Ding, Xuejun

    2006-06-01

    An adsorptive silica-supported titania photocatalyst TiO(2)/SiO(2) was prepared by using nanosized titania (anatase) immobilized on silica gel by the sol-gel technique with the titanium tetra isopropoxide as the main raw material and acetic acid as the acid catalyst. Meanwhile the structure and properties of the TiO(2)/SiO(2) photocatalyst were studied by means of many modern analysis techniques such as TEM, XRD, and BET. Gas-solid heterogeneous photocatalytic decomposition of four carbonyl compounds mixture at low concentration levels over ultraviolet irradiated TiO(2)/SiO(2) photocatalyst were carried out with high degradation efficiencies in a coaxial triple-cylinder-type fluidized bed photocatalytic reactor, which provided efficient continuous contact of ultraviolet photons, silica-supported titania photocatalyst, and gaseous reactants. Experimental results showed that the photocatalyst had a high adsorption performance and a good photocatalytic activity for four carbonyl compounds mixture. Some factors influencing the photocatalytic decomposition of the mixed carbonyl compounds, i.e. the gas flowrate, relative humidity, concentration of oxygen, and illumination time, were discussed in detail. It is found that the photocatalytic reaction rate of four carbonyl compounds decreased in this order: propionaldehyde, acetone, acetaldehyde and formaldehyde.

  16. Review on the Photocatalyst Coatings of TiO2: Fabrication by Mechanical Coating Technique and Its Application

    Directory of Open Access Journals (Sweden)

    Yun Lu

    2015-07-01

    Full Text Available This review presents the latest results of studies directed at photocatalyst coatings of titanium dioxide (TiO2 prepared by mechanical coating technique (MCT and its application. Compared with traditional coating techniques, MCT is a simple, low cost and useful coating formation process, which is proposed and developed based on mechanical frictional wear and impacts between substrate materials and metal powder particles in the bowl of planetary ball mill. The formation process of the metal coatings in MCT includes four stages: The nucleation by adhesion, the formation and coalescence of discrete islands, formation and thickening of continuous coatings, exfoliation of continuous coatings. Further, two-step MCT was developed based on the MCT concept for preparing composite coatings on alumina (Al2O3 balls. This review also discusses the influence on the fabrication of photocatalyst coatings after MCT and improvement of its photocatalytic activity: oxidation conditions, coating materials, melt salt treatment. In this review, the oxidation conditions had been studied on the oxidation temperature of 573 K, 673 K, 773 K, 873 K, 973 K, 1173 K and 1273 K, the oxidation time of 0.5 h, 1 h, 3 h, 10 h, 15 h, 20 h, 30 h, 40 h, and 50 h. The photocatalyst coatings showed the highest photocatalytic activity with the oxidation condition of 1073 K for 15 h. The metal powder of Ti, Ni and Cr had been used as the coating materials. The composite metal powder could affect the surface structure and photocatalytic activity. On the other hand, the melt salt treatment with KNO3 is an effective method to form the nano-size structure and enhance photocatalytic activity, especially under visible light.

  17. Synthesis of CdS Sensitized TiO2 Photocatalysts: Methylene Blue Adsorption and Enhanced Photocatalytic Activities

    Directory of Open Access Journals (Sweden)

    A. B. Makama

    2016-01-01

    Full Text Available A series of CdS/TiO2 nanocomposites with different Cd to Ti molar ratio were synthesized from P25-TiO2 nanopowder using microwave-assisted hydrothermal method. The as-produced powders were characterized by XRD, electron microscopy, EDX, and UV-Vis diffuse reflectance spectroscopy. The adsorption capacity and photocatalytic activity of the samples were investigated using methylene blue as a model pollutant. Sorption tests revealed that the adsorption of MB onto the samples obeys the Freundlich-Langmuir isotherm model. The sorption capacity decreased as follows: TiO2>TCd2>TCd1>TCd3>TCd4. The results of the photocatalytic tests under high-intensity discharge (HID lamp revealed that CdS/TiO2 powders with low Cd to Ti molar ratios exhibited much higher activities than P25-TiO2. The CdS/TiO2 sample with 20% CdS/(TCd2 showed the most activity among all these samples. The results also show that the Cd to Ti molar ratio of the nanocomposite has a significant effect on the photodegradation of MB and the enhanced activities exhibited by the nanocomposites are because of the low rate of electron-hole recombination.

  18. Enhanced degradation of persistent pharmaceuticals found in wastewater treatment effluents using TiO2 nanobelt photocatalysts

    International Nuclear Information System (INIS)

    Liang, Robert; Hu, Anming; Li, Wenjuan; Zhou, Y. Norman

    2013-01-01

    Pharmaceuticals in wastewater effluents are a current and emerging global problem and the development of cost-effective methods to facilitate their removal is needed to mitigate this issue. Advanced oxidation processes (AOPs), in particular UV/TiO 2 , have potential for wastewater treatment. In this study, TiO 2 anatase phase nanobelts (30–100 nm in width and 10 μm in length) have been synthesized using a high temperature hydrothermal method as a means to photocatalyze the oxidation of pharmaceutical contaminants. We have investigated a model dye (malachite green), three pharmaceuticals and personal care products—naproxen, carbamazepine, and theophylline—that are difficult to oxidize without AOP processes. TiO 2 nanobelts were exposed to 365 nm UV illumination and the measured photocatalytic degradation rates and adsorption parameters of pharmaceuticals were explored using kinetic models. Furthermore we have determined the degree of pharmaceutical degradation as a function of solution pH, illumination time, temperature, and concentration of contaminant. In addition, the roles of active oxygen species—hydroxyl radial (OH·), positive holes (h + ), and hydrogen peroxide (H 2 O 2 )—involved were also investigated in the degradation process. These studies offer additional applications of hierarchical TiO 2 nanobelt membranes, including those harnessing sunlight for water treatment

  19. Enhanced degradation of persistent pharmaceuticals found in wastewater treatment effluents using TiO2 nanobelt photocatalysts

    Science.gov (United States)

    Liang, Robert; Hu, Anming; Li, Wenjuan; Zhou, Y. Norman

    2013-10-01

    Pharmaceuticals in wastewater effluents are a current and emerging global problem and the development of cost-effective methods to facilitate their removal is needed to mitigate this issue. Advanced oxidation processes (AOPs), in particular UV/TiO2, have potential for wastewater treatment. In this study, TiO2 anatase phase nanobelts (30-100 nm in width and 10 μm in length) have been synthesized using a high temperature hydrothermal method as a means to photocatalyze the oxidation of pharmaceutical contaminants. We have investigated a model dye (malachite green), three pharmaceuticals and personal care products—naproxen, carbamazepine, and theophylline—that are difficult to oxidize without AOP processes. TiO2 nanobelts were exposed to 365 nm UV illumination and the measured photocatalytic degradation rates and adsorption parameters of pharmaceuticals were explored using kinetic models. Furthermore we have determined the degree of pharmaceutical degradation as a function of solution pH, illumination time, temperature, and concentration of contaminant. In addition, the roles of active oxygen species—hydroxyl radial (OH·), positive holes (h+), and hydrogen peroxide (H2O2)—involved were also investigated in the degradation process. These studies offer additional applications of hierarchical TiO2 nanobelt membranes, including those harnessing sunlight for water treatment.

  20. An ingenious strategy of preparing TiO2/g-C3N4 heterojunction photocatalyst: In situ growth of TiO2 nanocrystals on g-C3N4 nanosheets via impregnation-calcination method

    Science.gov (United States)

    Zhang, Guanghui; Zhang, Tianyong; Li, Bin; Jiang, Shuang; Zhang, Xia; Hai, Li; Chen, Xingwei; Wu, Wubin

    2018-03-01

    An ingenious method was employed to design and fabricate the TiO2/g-C3N4 heterojunction photocatalysts in this study. The thermal oxidation etching of g-C3N4 nanosheets and the in situ growth of TiO2 nanocrystal on the surface of g-C3N4 nanosheets were completed simultaneously by the calcination process. The g-C3N4 nanosheets played a crucial role in regulating and assembling the structures and morphologies of TiO2. Furthermore, the thickness and content of g-C3N4, and the crystallinity of TiO2 in TiO2/g-C3N4 composites could be regulated and controlled by the calcination temperature. Among the resultant TiO2/g-C3N4 samples, the TiO2/g-C3N4 sample with 41.6 wt% g-C3N4 exhibited the highest photocatalytic activity. It could degrade almost all MO molecules under visible light irradiation within 3 h. Moreover, it displayed higher visible light photocatalytic performance for degrading MO solution than pure g-C3N4 and D-TiO2. The synergistic effect between TiO2 and g-C3N4 makes significant contributions to the enhancement of the visible light photocatalytic activity. In addition, the favorable photocatalytic performance of TiO2/g-C3N4 nanocomposites is also attributed to the porous structures and uniform morphologies, and large surface area. Furthermore, the resultant TiO2/g-C3N4 exhibits excellent photocatalytic stability. Radical trapping experiments indicated that rad O2- and h+ were the main reactive species during the photodegradation process under visible light irradiation. Hopefully, the results can offer new design and strategy for preparing other g-C3N4-based nanocomposites for environmental and energy applications.

  1. A study of parameter setting and characterization of visible-light driven nitrogen-modified commercial TiO2 photocatalysts

    International Nuclear Information System (INIS)

    Kuo, Yu-Lin; Su, Te-Li; Kung, Fu-Chen; Wu, Tsai-Jung

    2011-01-01

    Highlights: → A cost-effective and highly-efficient visible-light driven nitrogen-modified TiO 2 photocatalyst was prepared by a simple hydrolysis method. → The obtained optimum conditions applied to Taguchi method for preparing visible-light driven photocatalyst were undergone by the process of stirring for 1 day using 4M ammonium as the nitrogen source, and then calcining at 400 ° C for 2 h. → Several materials technologies of characterizing N-TiO2 photocatalyst have been used to realize the modification of TiO2 by ammonia water as the nitrogen source. - Abstract: An optimal condition applied to the Taguchi method with an L 9 orthogonal array for preparing a visible-light driven nitrogen-modified TiO 2 (N-TiO 2 ) photocatalyst by a simple hydrolysis method has been examined for material characteristics and a photodecolorization test of methyl blue (MB) under various visible light source (fluorescent and blue LED lamps) irradiations. Results of the material characterization showed that the absorption of prepared N-TiO 2 powder exhibited a significant extension into visible light regimes with an optical bandgap (Eg) of around 2.96 eV, which subsequently improved the visible-light photocatalytic activity of N-TiO 2 samples. The superior photocatalytic properties, the pseudo first-order reaction rate constants (k) and photodecolorization efficiency (η%) of a N-TiO 2 photocatalyst during the photodecolorization test of methyl blue (MB) under two different visible light irradiations were very evident compared to those for pure TiO 2 . For photodecolorization of practical dyeing from the waste water from the dyeing and finishing industry, a higher photodecolorization efficiency of N-TiO 2 powder toward Direct blue-86 (DB-86) (Direct Fast Turquoise Blue GL) dye was also achieved.

  2. Preparation of environment-friendly 3D eggshell membrane-supported anatase TiO2 as a reusable photocatalyst for degradation of organic dyes

    Science.gov (United States)

    Li, Yaling; Zhou, Ji; Fan, Yunde; Ye, Yong; Tang, Bin

    2017-12-01

    We fabricated a low-cost and efficient composite photocatalyst material, combining eggshell membrane (ESM) and titanium dioxide (TiO2) nanoparticles, through self-assembly method. ESM with 3D porous structures provide scaffolds for TiO2 nanoparticles. Polyethyleneimine (PEI) was used to modify ESM by grafting amine groups. The microstructure and property of the fabricated composites were studied by various characterization methods. The composite was used for the photodegradation of Rhodamine B (RhB). The results demonstrate that the composite catalyst possesses good photocatalytic performance for dye degradation under sunlight irradiation simulated by a xenon lamp. Functionalization based on nanomaterials may promote the applications of ESM.

  3. Chemically synthesized TiO2 and PANI/TiO2 thin films for ethanol sensing applications

    Science.gov (United States)

    Gawri, Isha; Ridhi, R.; Singh, K. P.; Tripathi, S. K.

    2018-02-01

    Ethanol sensing properties of chemically synthesized titanium dioxide (TiO2) and polyaniline/titanium dioxide nanocomposites (PANI/TiO2) had been performed at room temperature. In-situ oxidative polymerization process had been employed with aniline as a monomer in presence of anatase titanium dioxide nanoparticles. The prepared samples were structurally and morphologically characterized by x-ray diffraction, fourier transform infrared spectra, high resolution-transmission electron microscopy and field emission-scanning electron microscopy. The crystallinity of PANI/TiO2 nanocomposite was revealed by XRD and FTIR spectra confirmed the presence of chemical bonding between the polymer chains and metal oxide nanoparticles. HR-TEM micrographs depicted that TiO2 particles were embedded in polymer matrix, which provides an advantage over pure TiO2 nanoparticles in efficient adsorption of vapours. These images also revealed that the TiO2 nanoparticles were irregular in shape with size around 17 nm. FE-SEM studies revealed that in the porous structure of PANI/TiO2 film, the intercalation of TiO2 in PANI chains provides an advantage over pure TiO2 film for uniform interaction with ethanol vapors. The sensitivity values of prepared samples were examined towards ethanol vapours at room temperature. The PANI/TiO2 nanocomposite exhibited better sensing response and faster response-recovery examined at different ethanol concentrations ranging from 5 ppm to 20 ppm in comparison to pure TiO2 nanoparticles. The increase in vapour sensing of PANI/TiO2 sensing film as compared to pure TiO2 film had been explained in detail with the help of gas sensing mechanism of TiO2 and PANI/TiO2. This provides strong evidence that gas sensing properties of TiO2 had been considerably improved and enhanced with the addition of polymer matrix.

  4. Neighboring Hetero-Atom Assistance of Sacrificial Amines to Hydrogen Evolution Using Pt-Loaded TiO2-Photocatalyst

    Directory of Open Access Journals (Sweden)

    Masahide Yasuda

    2014-05-01

    Full Text Available Photocatalytic H2 evolution was examined using Pt-loaded TiO2-photocatalyst in the presence of amines as sacrificial agents. In the case of amines with all of the carbon attached to the hetero-atom such as 2-aminoethanol, 1,2-diamonoethane, 2-amino-1,3-propanediol, and 3-amino-1,2-propanediol, they were completely decomposed into CO2 and water to quantitatively evolve H2. On the other hand, the amines with both hetero-atoms and one methyl group at the β-positions (neighboring carbons of amino group such as 2-amino-1-propanol and 1,2-diaminopropane were partially decomposed. Also, the photocatalytic H2 evolution using amines without the hetero-atoms at the β-positions such as ethylamine, propylamine, 1-butylamine, 1,3-diaminopropane, 2-propylamine, and 2-butylamine was inefficient. Thus, it was found that the neighboring hetero-atom strongly assisted the degradation of sacrificial amines. Moreover, rate constants for H2 evolution were compared among amines. In conclusion, the neighboring hetero-atom did not affect the rate constants but enhanced the yield of hydrogen evolution.

  5. Synthesis and characterization of TiO2 photocatalyst doped by transition metal ions (Fe3+, Cr3+ and V5+)

    International Nuclear Information System (INIS)

    Tuan Vu, Anh; Linh Bui, Thi Hai; Cuong Tran, Manh; Phuong Dang, Tuyet; Hoa Tran, Thi Kim; Tuan Nguyen, Quoc

    2010-01-01

    Nano TiO 2 was synthesized by the hydrothermal method. The sample was doped with transition metal ions (V, Cr and Fe) and non-metal (N). Doped TiO 2 samples were characterized by x-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and UV-Vis diffuse reflectance spectroscopy (UV-Vis). Photocatalytic activity in the mineralization of xylene (vapor phase), methylene blue and active dyer PR (liquid phase) was tested. In comparison with non-doped TiO 2 , V-, Cr-, Fe-doped TiO 2 and N-doped TiO 2 samples exhibited much higher photocatalytic activity using visible light instead of UV

  6. N-doped TiO2 photo-catalyst for the degradation of 1,2-dichloroethane under fluorescent light

    International Nuclear Information System (INIS)

    Lin, Yi-Hsing; Chiu, Tang-Chun; Hsueh, Hsin-Ta; Chu, Hsin

    2011-01-01

    The photo-catalytic degradation of 1,2-dichloroethane (1, 2-DCE) using nitrogen-doped TiO 2 photo-catalysts under fluorescent light irradiation was investigated. Highly pure TiO 2 and nitrogen-doped TiO 2 were prepared by a sol-gel method and characterized by thermo-gravimetric/differential-thermal analysis (TG/DTA), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FTIR) spectroscopy. The results indicate that the photo-catalysts were mainly nano-size with an anatase-phase structure. The degradation reaction of 1,2-DCE was operated under visible-light irradiation, and the photo-catalytic oxidation was conducted in a batch photo-reactor with various nitrogen doping ratios (N/Ti = 0-25 mol%). The relative humidity (RH) was controlled at 0-20% and the oxygen concentration was controlled at 0-21%. The photo-degradation with nitrogen-doped TiO 2 showed superior photo-catalytic activity compared to that for pure TiO 2 . TiO 2 doped with 15 mol% nitrogen exhibited the best photo-catalytic efficiency under the tested conditions. The products from the 1,2-DCE photo-catalytic oxidation were CO 2 and water; the by-products included dichloromethane, methyl chloride, ethyl chloride, carbon monoxide, and hydrogen chloride. The reaction pathway of 1,2-DCE indicates that oxygen molecules are the major factor that causes the degradation of 1,2-DCE in the gas phase.

  7. Adsorption of methyl orange by synthesized and functionalized-CNTs with 3-aminopropyltriethoxysilane loaded TiO2 nanocomposites.

    Science.gov (United States)

    Ahmad, Amirah; Razali, Mohd Hasmizam; Mamat, Mazidah; Mehamod, Faizatul Shimal Binti; Anuar Mat Amin, Khairul

    2017-02-01

    This study aims to develop a highly efficient adsorbent material. CNTs are prepared using a chemical vapor deposition method with acetylene and synthesized mesoporous Ni-MCM41 as the carbon source and catalyst, respectively, and are then functionalized using 3-aminopropyltriethoxysilane (APTES) through the co-condensation method and loaded with commercial TiO 2 . Results of X-ray powder diffraction (XRD), Raman spectra, and Fourier transform infrared spectroscopy (FTIR) confirm that the synthesized CNTs grown are multi-walled carbon nanotubes (MWNTs). Transmission electron microscopy shows good dispersion of TiO 2 nanoparticles onto functionalized-CNTs loaded TiO 2 , with the diameter of a hair-like structure measuring between 3 and 8 nm. The functionalized-CNTs loaded TiO 2 are tested as an adsorbent for removal of methyl orange (MO) in aqueous solution, and results show that 94% of MO is removed after 10 min of reaction, and 100% after 30 min. The adsorption kinetic model of functionalized-CNTs loaded TiO 2 follows a pseudo-second order with a maximum adsorption capacity of 42.85 mg/g. This study shows that functionalized-CNTs loaded TiO 2 has considerable potential as an adsorbent material due to the short adsorption time required to achieve equilibrium. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Characterization and Comparison of Photocatalytic Activity Silver Ion doped on TiO2(TiO2/Ag+) and Silver Ion doped on Black TiO2(Black TiO2/Ag+)

    Science.gov (United States)

    Kim, Jin Yi; Sim, Ho Hyung; Song, Sinae; Noh, Yeoung Ah; Lee, Hong Woon; Taik Kim, Hee

    2018-03-01

    Titanium dioxide (TiO2) is one of the representative ceramic materials containing photocatalyst, optic and antibacterial activity. The hydroxyl radical in TiO2 applies to the intensive oxidizing agent, hence TiO2 is suitable to use photocatalytic materials. Black TiO2was prepared through reduction of amorphous TiO2 conducting under H2 which leads to color changes. Its black color is proven that absorbs 100% light across the whole-visible light, drawing enhancement of photocatalytic property. In this study, we aimed to compare the photocatalytic activity of silver ion doped on TiO2(TiO2/Ag+) and silver ion doped on black TiO2(black TiO2/Ag+) under visible light range. TiO2/Ag+ was fabricated following steps. 1) TiO2 was synthesized by a sol-gel method from Titanium tetraisopropoxide (TTIP). 2) Then AgNO3 was added during an aging process step for silver ion doping on the surface of TiO2. Moreover, Black TiO2/Ag+ was obtained same as TiO2/Ag+ except for calcination under H2. The samples were characterized X-ray diffraction (XRD), UV-visible reflectance (UV-vis DRS), and Methylene Blue degradation test. XRD analysis confirmed morphology of TiO2. The band gap of black TiO2/Ag+ was confirmed (2.6 eV) through UV-vis DRS, which was lower than TiO2/Ag+ (2.9 eV). The photocatalytic effect was conducted by methylene blue degradation test. It demonstrated that black TiO2/Ag+ had a photocatalytic effect under UV light also visible light.

  9. Structural, optical, and magnetic properties of polycrystalline Co-doped TiO2 synthesized by solid-state method

    International Nuclear Information System (INIS)

    Bouaine, Abdelhamid; Schmerber, G.; Ihiawakrim, D.; Derory, A.

    2012-01-01

    Highlights: ► Influence of Co doping on the TiO 2 tetragonal structure. ► Decrease of the energy band gap after doping with Co atoms. ► Appearance of ferromagnetism in Co-doped TiO 2 diluted magnetic semiconductors. - Abstract: We have used a solid-state method to synthesize polycrystalline Co-doped TiO 2 diluted magnetic semiconductors (DMSs) with Co concentrations of 0, and 0.5 at.%. X-ray diffraction patterns reveal that Co doped TiO 2 crystallizes in the rutile tetragonal structure with no additional peaks. Transmission electron microscopy (TEM) did not indicate the presence of magnetic parasitic phases and confirmed that Co ions are uniformly distributed inside the samples. Optical absorbance measurements showed an energy band gap which decreases after doping with the Co atoms into the TiO 2 matrix. Magnetization measurements revealed a paramagnetic behavior for the as-prepared Co-doped TiO 2 and a ferromagnetic behavior for the same samples after annealed under a mixture of H 2 /N 2 atmosphere.

  10. An innovative approach to synthesize highly-ordered TiO2 nanotubes.

    Science.gov (United States)

    Isimjan, Tayirjan T; Yang, D Q; Rohani, Sohrab; Ray, Ajay K

    2011-02-01

    An innovative route to prepare highly-ordered and dimensionally controlled TiO2 nanotubes has been proposed using a mild sonication method. The nanotube arrays were prepared by the anodization of titanium in an electrolyte containing 3% NH4F and 5% H2O in glycerol. It is demonstrated that the TiO2 nanostructures has two layers: the top layer is TiO2 nanowire and underneath is well-ordered TiO2 nanotubes. The top layer can easily fall off and form nanowires bundles by implementing a mild sonication after a short annealing time. We found that the dimensions of the TiO2 nanotubes were only dependent on the anodizing condition. The proposed technique may be extended to fabricate reproducible well-ordered TiO2 nanotubes with large area on other metals.

  11. Use of TiO2 photocatalyst supported on residues of polystyrene packaging and its applicability on the removal of food dyes.

    Science.gov (United States)

    Santos, Maressa Maria de Melo; Duarte, Marta Maria Menezes Bezerra; Nascimento, Graziele Elisandra do; Souza, Natalya Barbosa Guedes de; Rocha, Otidene Rossiter Sá da

    2018-01-12

    This work proposes the use of plastic residues, more specifically polystyrene packaging, to support TiO 2 , used as a photocatalyst in the degradation of erythrosine and Brilliant Blue food dyes. The scanning electron microscopy and Fourier transform infrared spectroscopy analyses exhibited the surface coating and the presence of TiO 2 in the material, respectively. The UV/H 2 O 2 /TiO 2 ((SP)supported) process was used in the preliminary study, given the high percentage of degradation, operational advantages and greater reductions in peaks related to the aromatic rings when compared to the other processes studied. For the factorial design, the highest efficiency was reached for 150 mg of TiO 2 , a H 2 O 2 concentration of 11.2 mmol L -1 and pH of 5.0. These conditions were used in the degradation kinetics, which was rapid during the first 30 min, with the concentration of dyes in the solution reaching values close to zero after 180 min. Based on the mechanism proposed, the pseudo-first order kinetic model presented the best adjustment to the experimental data. After treatment, the solution presented greater biodegradability and lower toxicity, verified by the lettuce seed germination test (Lactuca sativa). Thus, the UV/H 2 O 2 /TiO 2((SP)supported) process showed great potential in the treatment of industrial effluents contaminated by these food dyes, as well as in reusing discarded polystyrene packaging to support the photocatalyst.

  12. Continuous-flow photocatalytic treatment of pharmaceutical micropollutants: Activity, inhibition, and deactivation of TiO2 photocatalysts in wastewater effluent

    KAUST Repository

    Carbonaro, Sean

    2013-01-01

    Titanium dioxide (TiO2) photocatalysts have been shown to be effective at degrading a wide range of organic micropollutants during short-term batch experiments conducted under ideal laboratory solution conditions (e.g., deionized water). However, little research has been performed regarding longer-term photocatalyst performance in more complex matrices representative of contaminated water sources (e.g., wastewater effluent, groundwater). Here, a benchtop continuous-flow reactor was developed for the purpose of studying the activity, inhibition, and deactivation of immobilized TiO2 photocatalysts during water treatment applications. As a demonstration, degradation of four pharmaceutical micropollutants (iopromide, acetaminophen, sulfamethoxazole, and carbamazepine) was monitored in both a pH-buffered electrolyte solution and a biologically treated wastewater effluent (WWE) to study the effects of non-target constituents enriched in the latter matrix. Reactor performance was shown to be stable over 7d when treating micropollutants in buffered electrolyte, with 7-d averaged kobs values (acetaminophen=0.97±0.10h-1; carbamazepine=0.50±0.04h-1; iopromide=0.49±0.03h-1; sulfamethoxazole=0.79±0.06h-1) agreeing closely with measurements from short-term circulating batch reactions. When reactor influent was switched to WWE, treatment efficiencies decreased to varying degrees (acetaminophen=40% decrease; carbamazepine=60%; iopromide=78%; sulfamethoxazole=54%). A large fraction of the catalyst activity was recovered upon switching back to the buffered electrolyte influent after 4d, suggesting that much of the observed decrease resulted from reversible inhibition by non-target constituents (e.g., scavenging of photocatalyst-generated OH). However, there was also a portion of the decrease in activity that was not recovered, indicating WWE constituents also contributed to photocatalyst deactivation (acetaminophen=6% deactivation; carbamazepine=24%; iopromide=16

  13. An Experimental Study on the Shape Changes of TiO2 Nanocrystals Synthesized by Microemulsion-Solvothermal Method

    Directory of Open Access Journals (Sweden)

    Wei Kong

    2011-01-01

    Full Text Available Titanium dioxide (TiO2 nanocrystals of different shape were successfully synthesized in a new microemulsion system through a solvothermal process. The TiO2 nanocrystals were prepared from the reaction of tetrabutyl titanate (TBT, H2O, and oleic acid (OA, which were used as solvent and surfactant at 300∘C and 240∘C in a stainless steel autoclave. The sphere, polygon, and rhombus-shaped nanocrystals have been prepared at 300∘C and the dot- and- rod shaped nanocrystals have been synthesized at 240∘C. The effect of the reaction time on the shape and size of TiO2 nanocrystals in this method was studied in the present paper. The size distribution of TiO2 nanocrystals prepared at 300∘C for different hours is also studied. In addition, an attempt to describe the mechanism of shape change of TiO2 nanocrystals was presented in this paper.

  14. An Unusual Strong Visible-Light Absorption Band in Red Anatase TiO2 Photocatalyst Induced by Atomic Hydrogen-Occupied Oxygen Vacancies.

    Science.gov (United States)

    Yang, Yongqiang; Yin, Li-Chang; Gong, Yue; Niu, Ping; Wang, Jian-Qiang; Gu, Lin; Chen, Xingqiu; Liu, Gang; Wang, Lianzhou; Cheng, Hui-Ming

    2018-02-01

    Increasing visible light absorption of classic wide-bandgap photocatalysts like TiO 2 has long been pursued in order to promote solar energy conversion. Modulating the composition and/or stoichiometry of these photocatalysts is essential to narrow their bandgap for a strong visible-light absorption band. However, the bands obtained so far normally suffer from a low absorbance and/or narrow range. Herein, in contrast to the common tail-like absorption band in hydrogen-free oxygen-deficient TiO 2 , an unusual strong absorption band spanning the full spectrum of visible light is achieved in anatase TiO 2 by intentionally introducing atomic hydrogen-mediated oxygen vacancies. Combining experimental characterizations with theoretical calculations reveals the excitation of a new subvalence band associated with atomic hydrogen filled oxygen vacancies as the origin of such band, which subsequently leads to active photo-electrochemical water oxidation under visible light. These findings could provide a powerful way of tailoring wide-bandgap semiconductors to fully capture solar light. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Synthesis of Nb doped TiO2 nanotube/reduced graphene oxide heterostructure photocatalyst with high visible light photocatalytic activity

    Science.gov (United States)

    Niu, Xiaoyou; Yan, Weijing; Zhao, Hongli; Yang, Jingkai

    2018-05-01

    Limited by the narrowed photoresponse range and unsatisfactory recombination of photoinduced electron-hole pairs, the photocatalytic efficiency of TiO2 is still far below what is expected. Here, we initially doped TiO2 nanotubes (TNTS) by transition metal ion Nb, then it is coupled with reduced graphene oxide (rGO) to construct a heterostructure photocatalyst. The defect state presented in TiO2 leading to the formation of localized midgap states (MS) in the bandgap, which regulating the band structure of TiO2 and extending the optical absorption to visible light region. The internal charge transport and transfer behavior analyzed by electrochemical impedance spectroscopy (EIS) reveal that the coupling of rGO with TNTS results in the formation of electron transport channel in the heterostructure, which makes a great contribution to the photoinduced charge separation. As expected, the Nb-TNTS/rGO exhibits a stable and remarkably enhanced photocatalytic activity in the visible-light irradiation degradation of methylene blue (MB), up to ∼5 times with respect to TNTS, which is attributed to the effective inhibition of charge recombination, the reduction of bandgap and higher redox potential, as well as the great adsorptivity.

  16. Visible-light sensitization of TiO2 photocatalysts via wet chemical N-doping for the degradation of dissolved organic compounds in wastewater treatment: a review

    Science.gov (United States)

    Zhang, Wei; Jia, Baoping; Wang, Qiuze; Dionysiou, Dionysois

    2015-05-01

    Increased pollution of ground and surface water and emerging new micropollutants from a wide variety of industrial, municipal, and agricultural sources has increased demand on the development of innovative new technologies and materials whereby challenges associated with the provision of safe potable water can be addressed. Heterogeneous photocatalysis using visible-light sensitized TiO2 photocatalysts has attracted a lot of attention as it can effectively remove dissolved organic compound in water without generating harmful by-products. On this note, recent progress on visible-light sensitive TiO2 synthesis via wet chemical N-doping method is reviewed. In a typical visible-light sensitive TiO2 preparation via wet chemical methods, the chemical (e.g., N-doping content and states) and morphological properties (e.g., particle size, surface area, and crystal phase) of TiO2 in as-prepared resultants are sensitively dependent on many experimental variables during the synthesis. This has also made it very difficult to provide a universal guidance at this stage with a certainty for each variable of N-doping preparation. Instead of one-factor-at-a-time style investigation, a statistically valid parameter optimization investigation for general optima of photocatalytic activity will be certainly useful. Optimization of the preparation technique is envisaged to be beneficial to many environmental applications, i.e., dissolved organic compounds removal in wastewater treatment.

  17. Visible-light sensitization of TiO2 photocatalysts via wet chemical N-doping for the degradation of dissolved organic compounds in wastewater treatment: a review

    International Nuclear Information System (INIS)

    Zhang, Wei; Jia, Baoping; Wang, Qiuze; Dionysiou, Dionysois

    2015-01-01

    Increased pollution of ground and surface water and emerging new micropollutants from a wide variety of industrial, municipal, and agricultural sources has increased demand on the development of innovative new technologies and materials whereby challenges associated with the provision of safe potable water can be addressed. Heterogeneous photocatalysis using visible-light sensitized TiO 2 photocatalysts has attracted a lot of attention as it can effectively remove dissolved organic compound in water without generating harmful by-products. On this note, recent progress on visible-light sensitive TiO 2 synthesis via wet chemical N-doping method is reviewed. In a typical visible-light sensitive TiO 2 preparation via wet chemical methods, the chemical (e.g., N-doping content and states) and morphological properties (e.g., particle size, surface area, and crystal phase) of TiO 2 in as-prepared resultants are sensitively dependent on many experimental variables during the synthesis. This has also made it very difficult to provide a universal guidance at this stage with a certainty for each variable of N-doping preparation. Instead of one-factor-at-a-time style investigation, a statistically valid parameter optimization investigation for general optima of photocatalytic activity will be certainly useful. Optimization of the preparation technique is envisaged to be beneficial to many environmental applications, i.e., dissolved organic compounds removal in wastewater treatment

  18. TiO2/PCL hybrid materials synthesized via sol–gel technique for biomedical applications

    International Nuclear Information System (INIS)

    Catauro, M.; Bollino, F.; Papale, F.; Marciano, S.; Pacifico, S.

    2015-01-01

    The aim of the present work has been the synthesis of organic/inorganic hybrid materials based on titanium dioxide and poly(ε-caprolactone) (PCL) to be used in the biomedical field. Several materials have been synthesized using sol–gel methods by adding different amounts of polymer to the inorganic sol. The obtained gels have been characterized using Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and atomic force microscopy (AFM). The FT-IR data allowed us to hypothesize that the structure formed was that of an interpenetrating network, realized by hydrogen bonds between Ti-OH groups in the sol–gel intermediate species and carbonyl groups in the polymer repeating units. SEM and AFM analyses highlighted that the obtained materials were nanostructurated hybrids. To evaluate the biological properties of the hybrids, their bioactivity and cytotoxicity were investigated as a function of the PCL amount. The bioactivity of the synthesized systems was proven by the formation of a hydroxyapatite layer on the surface of samples soaked in a fluid simulating human blood plasma (SBF). MTT cytotoxicity tests and Trypan Blue dye exclusion tests were carried out exposing NIH-3T3 mouse embryonic fibroblasts for 24 and 48 h to extracts from the investigated hybrid materials. The results showed that all the hybrids had a non-cytotoxic effect on target cells. - Highlights: • TiO 2 /PCL hybrids were obtained by the sol–gel process for biomedical applications. • Synthesized materials were found to be first-class hybrid nanocomposites. • Hybrids appear to be bioactive, a fundamental characteristic for osseointegration. • MTT and Trypan Blue viability test show that the materials are biocompatible. • The organic phase is able to modulate the biocompatibility of the materials

  19. Photocatalytical Properties and Theoretical Analysis of N, Cd-Codoped TiO2 Synthesized by Thermal Decomposition Method

    Directory of Open Access Journals (Sweden)

    Hongtao Gao

    2012-01-01

    Full Text Available N, Cd-codoped TiO2 have been synthesized by thermal decomposition method. The products were characterized by X-ray diffraction (XRD, scanning electron microscope (SEM, UV-visible diffuse reflectance spectra (DRS, X-ray photoelectron spectroscopy (XPS, and Brunauer-Emmett-Teller (BET specific surface area analysis, respectively. The products represented good performance in photocatalytic degradation of methyl orange. The effect of the incorporation of N and Cd on electronic structure and optical properties of TiO2 was studied by first-principle calculations on the basis of density functional theory (DFT. The impurity states, introduced by N 2p or Cd 5d, lied between the valence band and the conduction band. Due to dopants, the band gap of N, Cd-codoped TiO2 became narrow. The electronic transition from the valence band to conduction band became easy, which could account for the observed photocatalytic performance of N, Cd-codoped TiO2. The theoretical analysis might provide a probable reference for the experimentally element-doped TiO2 synthesis.

  20. TiO2 synthesized by microwave assisted solvothermal method: Experimental and theoretical evaluation

    International Nuclear Information System (INIS)

    Moura, K.F.; Maul, J.; Albuquerque, A.R.; Casali, G.P.; Longo, E.; Keyson, D.; Souza, A.G.; Sambrano, J.R.; Santos, I.M.G.

    2014-01-01

    In this study, a microwave assisted solvothermal method was used to synthesize TiO 2 with anatase structure. The synthesis was done using Ti (IV) isopropoxide and ethanol without templates or alkalinizing agents. Changes in structural features were observed with increasing time of synthesis and evaluated using periodic quantum chemical calculations. The anatase phase was obtained after only 1 min of reaction besides a small amount of brookite phase. Experimental Raman spectra are in accordance with the theoretical one. Micrometric spheres constituted by nanometric particles were obtained for synthesis from 1 to 30 min, while spheres and sticks were observed after 60 min. - Graphical abstract: FE-SEM images of anatase obtained with different periods of synthesis associated with the order–disorder degree. Display Omitted - Highlights: • Anatase microspheres were obtained by the microwave assisted hydrothermal method. • Only ethanol and titanium isopropoxide were used as precursors during the synthesis. • Raman spectra and XRD patterns were compared with quantum chemical calculations. • Time of synthesis increased the short-range disorder in one direction and decreased in another

  1. Synthesis and characterization of Fe-doped TiO2 photocatalyst by the sol–gel method

    International Nuclear Information System (INIS)

    Luu, Cam Loc; Ho, Si Thoang; Nguyen, Quoc Tuan

    2010-01-01

    Thin layers of pure TiO 2 and TiO 2 doped by different amounts of Fe 2 O 3 have been prepared by the sol–gel method with tetraisopropyl orthotitanate and Fe(NO 3 ) 3 . Physico-chemical properties of catalysts were characterized by BET Adsorption, x-ray Diffraction (XRD), FE-SEM, as well as Raman and UV-Vis spectroscopy. The photocatalytic activity of the obtained materials was investigated in the reaction of complete oxidation of p-xylene in gas phase under the radiation of UV (λ=365 nm) and LED (λ=470 nm) lamps. It has been found that the particle size of all samples was distributed in the range 20–30 nm. The content of the rutile phase in Fe-doped TiO 2 samples varied in the range 6.8 to 41.8% depending on the Fe content. Iron oxide doped into TiO 2 enables the photon absorbing zone of TiO 2 to extend from UV towards visible waves as well as to reduce its band gap energy from 3.2 to 2.67 eV. Photocatalytic activities of the TiO 2 samples modified by Fe 3+ have been found to be higher than those of pure TiO 2 by about 2.5 times

  2. Investigation of TiO2 photocatalyst performance for decolorization in the presence of hydrodynamic cavitation as hybrid AOP.

    Science.gov (United States)

    Bethi, Bhaskar; Sonawane, S H; Rohit, G S; Holkar, C R; Pinjari, D V; Bhanvase, B A; Pandit, A B

    2016-01-01

    In this article, an acoustic cavitation engineered novel approach for the synthesis of TiO2, cerium and Fe doped TiO2 nanophotocatalysts is reported. The prepared TiO2, cerium and Fe doped TiO2 nanophotocatalysts were characterized by XRD and TEM analysis to evaluate its structure and morphology. Photo catalytic performance of undoped TiO2 catalyst was investigated for the decolorization of crystal violet dye in aqueous solution at pH of 6.5 in the presence of hydro dynamic cavitation. Effect of catalyst doping with Fe and Ce was also studied for the decolorization of crystal violet dye. The results shows that, 0.8% of Fe-doped TiO2 exhibits maximum photocatalytic activity in the decolorization study of crystal violet dye due to the presence of Fe in the TiO2 and it may acts as a fenton reagent. Kinetic studies have also been reported for the hybrid AOP (HAOP) that followed the pseudo first-order reaction kinetics. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Sol–gel synthesis of highly TiO2 aerogel photocatalyst via high temperature supercritical drying

    Directory of Open Access Journals (Sweden)

    Rebah Moussaoui

    2017-09-01

    Full Text Available Nanocrystalline powders of TiO2 xerogel and aerogel were prepared by using acid-modified sol–gel approach. For TiO2 aerogel material (TA, the solvent was high temperature supercritically extracted at 300 °C and 100 bars. However, the TiO2 xerogel material (TX was dried at 200 °C and ambient pressure. The effects of the drying processes on the crystalline structure, phase transformation and grain growth were determined by Raman spectroscopy, SAED and X-ray diffraction (XRD analyses using Rietveld refinement method. The TiO2 aerogel was composed of anatase crystalline structure. The TiO2 xerogel material was composed of anatase, brookite and small amount of amorphous phase with anatase as dominant phase. The TX sample still contains a relatively high concentration of carbon than that of TA, indicating the amorphous character of TiO2 xerogel. These materials were applied as catalyst for the degradation of indigo carmine in aqueous medium. Photo-degradation ability of TA and TX was compared to the TiO2 commercial Degussa P25. The photo-catalytic results showed that the degradation efficiency was in the order TA > P25 > TX. The photo-degradation of indigo carmine followed pseudo first order reaction kinetics.

  4. Performance of NiFe2O4-SiO2-TiO2 Magnetic Photocatalyst for the Effective Photocatalytic Reduction of Cr(VI in Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Mike O. Ojemaye

    2017-01-01

    Full Text Available Investigation into the reduction of Cr(VI in aqueous solution was carried out through some batch photocatalytic studies. The photocatalysts used were silica coated nickel ferrite nanoparticles (NiFe2O4-SiO2, nickel ferrite titanium dioxide (NiFe2O4-TiO2, nickel ferrite silica titanium dioxide (NiFe2O4-SiO2-TiO2, and titanium dioxide (TiO2. The characterization of the materials prepared via stepwise synthesis using coprecipitation and sol-gel methods were carried out with the aid of X-ray diffraction (XRD, transmission electron microscopy (TEM, scanning electron microscopy (SEM, Fourier transform infrared (FTIR spectroscopy, thermal gravimetric analysis (TGA, and vibrating sample magnetometry (VSM. The reduction efficiency was studied as a function of pH, photocatalyst dose, and contact time. The effects of silica interlayer between the magnetic photocatalyst materials reveal that reduction efficiency of NiFe2O4-SiO2-TiO2 towards Cr(VI was higher than that of NiFe2O4-TiO2. However, TiO2 was observed to have the highest reduction efficiency at all batch photocatalytic experiments. Kinetics study shows that photocatalytic reduction of Cr(VI obeyed Langmuir-Hinshelwood model and first-order rate kinetics. Regenerability study also suggested that the photocatalyst materials can be reused.

  5. Genotoxic and cytotoxic activity of green synthesized TiO2 nanoparticles

    Science.gov (United States)

    Koca, Fatih Doğan; Duman, Fatih

    2018-03-01

    Nowadays, nanomaterials that are smaller than 100 nm in size are very attractive owing to their enhanced physicochemical properties. Although they have been used widely for industrial applications, their toxicity still remains a problem. This article is a new record of the synthesis of titanium dioxide nanoparticles (TiO2 NPs) by a Mentha aquatica leaf extract and determination of its toxicity to rat marrow mesenchymal stem cells. In this study, we aimed to determine the genotoxic and cytotoxic effects of biologically synthetized TiO2 NPs. The characteristic peak of the nanomaterial was observed at 354 nm. The mean size of the nanomaterial was measured to be 69 nm from SEM images. According to zeta analysis, the surface charge of the nanomaterial was - 37.6 mV. The crystalline structure of the nanomaterial was determined using XRD analysis. It was concluded that the obtained nanomaterial was TiO2 The results of the FT-IR analysis showed that the functional groups that were found in the plant extract could play an important role in the formation and stabilization of TiO2 NPs. The effective size of the TiO2 NPs was found to be 304 nm using DLS analysis. The TGA analysis results showed that the total mass loss was 4% at 900 °C. According to DNA cleavage analysis results, TiO2 NPs cause damage to the plasmid pBR322 DNA in a concentration-dependant matter. It has been noted that TiO2 NPs lead to decreased cell viability during increased time and concentration of applications on rat marrow mesenchymal stem cells. It has also been determined that bulk TiO2 causes a greater reduction in the stem cell viability compared to the biosynthesized NPs. The obtained results could be useful for further application and toxicity studies.

  6. Eu"2"+ doped TiO_2 nano structures synthesized by HYSYCVD for thermoluminescence dosimetry

    International Nuclear Information System (INIS)

    Perez A, J. A.; Leal C, A. L.; Melendrez A, R.; Barboza F, M.

    2016-10-01

    Titania (TiO_2) has attracted interest owing his potential applications as dosimetry material given his excellent optical, electrical and thermal properties and the ability to shape his structure make TiO_2 suitable for research and dosimetry applications. In this work, a systematic study to know the magnitude of processing parameters influence on thermoluminescent properties of undoped (TiO_2) and doped (TiO_2:Eu"2"+) nano materials obtained by hybrid precursor systems chemical vapor deposition (HYSYCVD) technique is presented. Synthesis of one dimension nano structures of TiO_2:Eu"2"+ was carried out using K_2TiF_6 and EuCl_2 as dopant at 0.5, 1, 2.5 and 5 wt %. The nano structures samples were irradiated with β-ray in a doses range of 0.083-3000 Gy. All thermoluminescence (Tl) glow curves showed 3 broad Tl peaks around 373, 473 and 573 K, and a dosimetric linear behavior from 0.083 to 300 Gy. The Tl has a good reproducibility, with deviations of around 5%, making these TiO_2:Eu"2"+ nano materials suitable for dosimetric applications. (Author)

  7. PHOTO-CATALYST DEGRADATION OF TARTRAZINE COMPOUND IN WASTEWATER USING TiO2 AND UV LIGHT

    Directory of Open Access Journals (Sweden)

    SALAM K. AL-DAWERY

    2013-12-01

    Full Text Available Organic contaminants present in industrial wastewater are of major concern with respect to the health of the general public. Photo-catalytic process, one of the Advanced Oxidation Processes, is a promising technology for remediation of organic pollutants at ambient conditions. Photo-catalytic processes in the presence of TiO2 provide an interesting method to destroy hazardous organic contaminants. The experimental results showed that considerable degradation of Tartrazine organic compound has been achieved by combination of TiO2 and UV light, the process followed first order kinetics. The results showed that the increased level of TiO2 concentration does not necessarily increase the rate of degradation of organic compounds. Also, it was found that the higher the TiO2 concentrations the higher the pH values and more oscillatory behaviors were observed. Not much effect has been noted on the process due to temperature variation.

  8. Visible-Light-Driven, Dye-Sensitized TiO2 Photo-Catalyst for Self-Cleaning Cotton Fabrics

    Directory of Open Access Journals (Sweden)

    Ishaq Ahmad

    2017-11-01

    Full Text Available We report here the photo-catalytic properties of dye-sensitized TiO2-coated cotton fabrics. In this study, visible-light-driven, self-cleaning cotton fabrics were developed by coating the cotton fabrics with dye-sensitized TiO2. TiO2 nano-sol was prepared via the sol-gel method and the cotton fabric was coated with this nano-sol by the dip-pad–dry-cure method. In order to enhance the photo-catalytic properties of this TiO2-coated cotton fabric under visible light irradiation, the TiO2-coated cotton fabric was dyed with a phthalocyanine-based reactive dye, C.I. Reactive Blue 25 (RB-25, as a dye sensitizer for TiO2. The photo-catalytic self-cleaning efficiency of the resulting dye/TiO2-coated cotton fabrics was evaluated by degradation of Rhodamine B (RhB and color co-ordinate measurements. Dye/TiO2-coated cotton fabrics show very good photo-catalytic properties under visible light.

  9. Evaluating photo-degradation of COD and TOC in petroleum refinery wastewater by using TiO2/ZnO photo-catalyst.

    Science.gov (United States)

    Aljuboury, Dheeaa Al Deen Atallah; Palaniandy, Puganeshwary; Abdul Aziz, Hamidi Bin; Feroz, Shaik; Abu Amr, Salem S

    2016-09-01

    The aim of this study is to investigate the performance of combined solar photo-catalyst of titanium oxide/zinc oxide (TiO 2 /ZnO) with aeration processes to treat petroleum wastewater. Central composite design with response surface methodology was used to evaluate the relationships between operating variables for TiO 2 dosage, ZnO dosage, air flow, pH, and reaction time to identify the optimum operating conditions. Quadratic models for chemical oxygen demand (COD) and total organic carbon (TOC) removals prove to be significant with low probabilities (TOC removal rates of 99% and 74%, respectively. The TOC and COD removal rates correspond well with the predicted models. The maximum removal rate for TOC and COD was 99.3% and 76%, respectively at optimum operational conditions of TiO 2 dosage (0.5 g/L), ZnO dosage (0.54 g/L), air flow (4.3 L/min), reaction time (170 min) and pH (6.8). The new treatment process achieved higher degradation efficiencies for TOC and COD and reduced the treatment time comparing with other related processes.

  10. The comparison of photocatalytic activity of synthesized TiO2 and ZrO2 nanosize onto wool fibers

    International Nuclear Information System (INIS)

    Moafi, Hadi Fallah; Shojaie, Abdollah Fallah; Zanjanchi, Mohammad Ali

    2010-01-01

    TiO 2 and ZrO 2 nanocrystals were successfully synthesized and deposited onto wool fibers using the sol-gel technique at low temperature. The photocatalytic activities of TiO 2 -coated and ZrO 2 -coated wool fibers were measured by studying photodegradation of methylene blue and eosin yellowish dyes. The initial and the treated samples were characterized by several techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance spectroscopy (DRS) and X-ray diffraction. The TEM study shows dispersed particles with 10-30 nm in size for TiO 2 -coated and 20-40 nm in size for ZrO 2 -coated samples on the fiber surface. Comparison of the photocatalytic activity of the coated samples reveals superiority of TiO 2 modified sample with respect to that of ZrO 2 for degradation of both dyes. Our observations indicate that by applying this technique to the fabrics, self-cleaning materials could be designed for practical application.

  11. Effect of preparation conditions on the characteristics and photocatalytic activity of TiO2/purified diatomite composite photocatalysts

    Science.gov (United States)

    Sun, Zhiming; Hu, Zhibo; Yan, Yang; Zheng, Shuilin

    2014-09-01

    TiO2/purified diatomite composite materials were prepared through a modified hydrolysis-deposition method under low temperature using titanium tetrachloride as precursor combined with a calcination crystallization process. The microstructure and crystalline phases of the obtained composites prepared under different preparation conditions were characterized by high resolution scanning electron microscope (SEM) and X-ray diffraction (XRD), respectively. The photocatalytic performance of TiO2/purified diatomite composites was evaluated by Rhodamine B as the target pollutant under UV irradiation, and the optimum preparation conditions of composites were obtained. The TiO2 crystal form in composites prepared under optimum conditions was anatase, the grain size of which was 34.12 nm. The relationships between structure and property of composite materials were analyzed and discussed. It is indicated that the TiO2 nanoparticles uniformly dispersed on the surface of diatoms, and the photocatalytic performance of the composite materials was mainly determined by the dispersity and grain size of loaded TiO2 nanoparticles.

  12. Optical and Morphological Properties of ZnO- and TiO2-Derived Nanostructures Synthesized via a Microwave-Assisted Hydrothermal Method

    Directory of Open Access Journals (Sweden)

    Nosipho Moloto

    2012-01-01

    Full Text Available A microwave-assisted hydrothermal method was used to synthesize ZnO and TiO2 nanostructures. The experimental results show that the method resulted in crystalline monodispersed ZnO nanorods that have pointed tips with hexagonal crystal phase. TiO2 nanotubes were also formed with minimum bundles. The mechanism for the formation of the tubes was validated by HRTEM results. The optical properties of both ZnO and TiO2 nanostructures showed characteristics of strong quantum confinement regime. The photoluminescence spectrum of TiO2 nanotubes shows good improvement from previously reported data.

  13. Solvothermal synthesis of stable nanoporous polymeric bases-crystalline TiO2 nanocomposites: visible light active and efficient photocatalysts for water treatment.

    Science.gov (United States)

    Liu, Fujian; Kong, Weiping; Wang, Liang; Noshadi, Iman; Zhang, Zhonghua; Qi, Chenze

    2015-02-27

    Visible light active and stable nanoporous polymeric base-crystalline TiO2 nanocomposites were solvothermally synthesized from in situ copolymerization of divinylbenzene (DVB) with 1-vinylimidazolate (VI) or 4-vinylpyridine (Py) in the presence of tetrabutyl titanate without the use of any other additives (PDVB-VI-TiO2-x, PDVB-Py-TiO2-x, where x stands for the molar ratio of TiO2 to VI or Py), which showed excellent activity with respect to catalyzing the degradation of organic pollutants of p-nitrophenol (PNP) and rhodamine-B (RhB). TEM and SEM images show that PDVB-VI-TiO2-x and PDVB-Py-TiO2-x have abundant nanopores, and TiO2 nanocrystals with a high degree of crystallinity were homogeneously embedded in the PDVB-VI-TiO2-x and PDVB-Py-TiO2-x, forming a stable 'brick-and-mortar' nanostructure. PDVB-VI and PDVB-Py supports act as the glue linking TiO2 nanocrystals to form nanopores and constraining the agglomeration of TiO2 nanocrystals. XPS spectra show evidence of unique interactions between TiO2 and basic sites in these samples. UV diffuse reflectance shows that PDVB-VI-TiO2-x and PDVB-Py-TiO2-x exhibit a unique response to visible light. Catalytic tests show that the PDVB-VI-TiO2-x and PDVB-Py-TiO2-x were active in catalyzing the degradation of PNP and RhB organic pollutants under visible light irradiation. The enhanced activities of the PDVB-VI-TiO2-x and PDVB-Py-TiO2-x were ascribed to synergistic effects between abundant nanopores and the unique optical adsorption of visible light in the samples.

  14. Solvothermal synthesis of stable nanoporous polymeric bases-crystalline TiO2 nanocomposites: visible light active and efficient photocatalysts for water treatment

    Science.gov (United States)

    Liu, Fujian; Kong, Weiping; Wang, Liang; Noshadi, Iman; Zhang, Zhonghua; Qi, Chenze

    2015-02-01

    Visible light active and stable nanoporous polymeric base-crystalline TiO2 nanocomposites were solvothermally synthesized from in situ copolymerization of divinylbenzene (DVB) with 1-vinylimidazolate (VI) or 4-vinylpyridine (Py) in the presence of tetrabutyl titanate without the use of any other additives (PDVB-VI-TiO2-x, PDVB-Py-TiO2-x, where x stands for the molar ratio of TiO2 to VI or Py), which showed excellent activity with respect to catalyzing the degradation of organic pollutants of p-nitrophenol (PNP) and rhodamine-B (RhB). TEM and SEM images show that PDVB-VI-TiO2-x and PDVB-Py-TiO2-x have abundant nanopores, and TiO2 nanocrystals with a high degree of crystallinity were homogeneously embedded in the PDVB-VI-TiO2-x and PDVB-Py-TiO2-x, forming a stable ‘brick-and-mortar’ nanostructure. PDVB-VI and PDVB-Py supports act as the glue linking TiO2 nanocrystals to form nanopores and constraining the agglomeration of TiO2 nanocrystals. XPS spectra show evidence of unique interactions between TiO2 and basic sites in these samples. UV diffuse reflectance shows that PDVB-VI-TiO2-x and PDVB-Py-TiO2-x exhibit a unique response to visible light. Catalytic tests show that the PDVB-VI-TiO2-x and PDVB-Py-TiO2-x were active in catalyzing the degradation of PNP and RhB organic pollutants under visible light irradiation. The enhanced activities of the PDVB-VI-TiO2-x and PDVB-Py-TiO2-x were ascribed to synergistic effects between abundant nanopores and the unique optical adsorption of visible light in the samples.

  15. TiO2 as a photocatalyst for control of the aquatic invasive alga, Cladophora, under natural and artificial light

    Science.gov (United States)

    Peller, J.R.; Whitman, R.L.; Griffith, S.; Harris, P.; Peller, C.; Scalzitti, J.

    2007-01-01

    Cladophora, a nuisance and invasive, filamentous algae (Chlorophyta), massively accumulates along the shores of the lower Great Lakes each summer causing great economic damage and compromising recreational opportunity and perhaps public health. In vitro experiments showed that Cladophora samples were physically and biologically degraded when subjected to TiO2-mediated photocatalysis. For the most successful photocatalytic process, TiO2 was immobilized on a glass surface and used in combination with either sunlight or artificial UV light. The loss of vital algal pigments was monitored using UV–vis spectrophotometry, and cell structural changes were determined by microscopic observation. Cladophora, in the presence of TiO2-covered glass beads, experienced a loss of chloroplast pigments after 2 h of UV lamp light irradiation. In a separate experiment, sunlight exposure over 4 days (∼24 h) resulted in the complete oxidative degradation of the green chloroplast pigments, verified by the UV spectra of the algal extracts. These results suggest that TiO2, mobilized on sunlit silicates may be useful in controlling growth and survival of this alga in the Great Lakes, thus mitigating many of the economic, aesthetic ecological impacts of this invasive alga.

  16. Photocatalytic behaviors and structural characterization of nanocrystalline Fe-doped TiO2 synthesized by mechanical alloying

    International Nuclear Information System (INIS)

    Kim, Dong Hyun; Hong, Hyun Seon; Kim, Sun Jae; Song, Jae Sung; Lee, Kyung Sub

    2004-01-01

    Nanocrystalline Fe-doped TiO 2 powders were synthesized by mechanical alloying (MA) with varying Fe contents from 0 up to 4.8 wt.% to shift the absorption threshold into the visible light region. The photocatalytic feasibility of the Fe-doped TiO 2 powder was evaluated by quantifying the visible light absorption capacity using ultraviolet and visible (UV-Vis) spectroscopy and photoluminescence spectroscopy. Effects of Fe additions on the crystal structures and the morphologies of the Fe-doped powders were also investigated as a function of the doping content using transmission electron microscopy-electron diffraction pattern (TEM-EDP), X-ray diffraction (XRD) and energy dispersive X-ray (EDAX) and X-ray photoelectron spectroscopy (XPS). The UV-Vis study showed that the UV absorption for the Fe-doped powder moved to a longer wavelength (red shift) and the photoefficiency was enhanced. Based on the analysis of the photoluminescence spectra, the red shift was believed to be induced by localizing the dopant level near the valence band of TiO 2 . The UV-Vis absorption depended on the Fe concentration. TEM-EDP and XRD investigations showed that the Fe-doped powder had a rutile phase in which the added Fe atoms were dissolved. The rutile phase was composed of spherical particles and chestnut bur shaped particles, resulting in a larger surface area than the spherical P-25 powder

  17. Titanium dioxide use (TiO2) in cement matrix as a photocatalyst of nitrogen oxides (NOx)

    International Nuclear Information System (INIS)

    Casagrande, C.A.; Hotza, D.; Repette, W.L.; Jochem, L.F.

    2012-01-01

    The use of titanium dioxide (TiO 2 ) in the photodegradation of nitrogen oxides (NO x ) is a technology that can contribute against to environmental pollution. This work shows the feasibility of using TiO 2 in mortars for photocatalysis. The Degussa P25 titania were characterized chemically and physically, revealing that the sample consists of nanoparticles, but has become crowded. Tests Samples (TS) were manufactured with added titania and the NO x tests at 28, 60 and 120 days of age of TSs, showing that it was 3% capable of degrading 100% of the NO x gas flow. Proved that conditions like relative humidity, flow and radiation intensity are relevant when it comes to efficiency in photocatalysis, altering the efficiency by varying these conditions. The photocatalysis with titania in cement matrix was efficient in NO x degradation, presenting itself as a promising technique to control environmental pollution

  18. Polyaniline nanotubes coated with TiO2&γ-Fe2O3@graphene oxide as a novel and effective visible light photocatalyst for removal of rhodamine B from water

    Science.gov (United States)

    Ghavami, Monireh; Kassaee, Mohammad Zaman; Mohammadi, Reza; Koohi, Maryam; Haerizadeh, Bibi Narjes

    2014-12-01

    Synthesis of polyaniline-nanotubes (PANI-NT), in the presence of TiO2 and γ-Fe2O3 functionalized graphene oxide (GO), gives a green and magnetically recyclable photocatalyst, TiO2&γ-Fe2O3@GO/PANI-NT. The later orchestrates 94% photocatalytic efficiency in removal of rhodamine B (RB) from water, under simulated solar light irradiation. This is far higher than the 36% observed in the presence of TiO2&γ-Fe2O3@GO alone, where PANI-NT is excluded from the structure. Morphology, composition, and structural properties of our economically sound photocatalyst are characterized by X-ray diffraction, energy-dispersive X-ray spectroscopy, thermo-gravimetric, transmission electron microscopy, inductively coupled plasma, RAMAN and Fourier-transform infrared spectroscopy.

  19. Facile Synthesis and Characterization of N-Doped TiO2 Photocatalyst and Its Visible-Light Activity for Photo-Oxidation of Ethylene

    Directory of Open Access Journals (Sweden)

    Yu-Hao Lin

    2015-01-01

    Full Text Available A facile wet chemical method was adopted for preparing highly photoactive nitrogen doped TiO2 (N-TiO2 powders with visible responsive capability, which could be achieved by the hydrolysis of titanium isopropoxide (TTIP in the ammonium hydroxide precursor solution in various concentrations and then calcined at different temperatures. The N-TiO2 powders were characterized, and the photocatalytic activity was evaluated for the photocatalytic oxidation of ethylene gas under visible light irradiation to optimize the synthesizing conditions of N-TiO2 catalyst. The N-TiO2 photocatalytic powders were calcined in a range of temperatures from 300 to 600°C and obviously found to have greater photocatalytic activities than commercial TiO2 P25. The strong absorption in the visible light region could be ascribed to good crystallization and adapted sinter temperature of as prepared sample. XPS test demonstrated that the N was doped into TiO2 lattice and made an interstitial formation (Ti-O-N, and N doping also retarded the phase transformation from anatase to rutile as well. The N-TiO2 catalyst prepared with 150 mL ammonium hydroxide added and calcined at 500°C showed the best photocatalytic activity. The experimental results also proved the enhanced photoactivity of N-TiO2 material depends on the synthesizing conditions.

  20. Electrical characterization of TiO2 nanotubes synthesized through electrochemical anodizing method

    Science.gov (United States)

    Manescu Paltanea, Veronica; Paltanea, Gheorghe; Popovici, Dorina; Jiga, Gabriel

    2016-05-01

    In the present paper, the electrochemical anodizing method was used for the obtaining of TiO2 nanotube layers, developed on titanium surface. Self-organized titanium nanotubes were obtained when an aqueous solution of 49.5 wt % H2O - 49.5 wt % glycerol - 1 wt % HF was used as electrolyte, the anodizing time being equal to 8 hours and the applied voltage to 25 V. Scanning electron microscopy shows that the one-dimensional nanostructure has a tubular configuration with an inner diameter of approximately 60 nm and an outer diameter of approximately 100 nm. The electrical properties of these materials were analyzed through dielectric spectroscopy method.

  1. Synthesis and photocatalytic activity of TiO2/conjugated polymer complex nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Shi Xiong Min; Fang Wang; Lei Feng; Yong Chun Tong; Zi Rong Yang

    2008-01-01

    A photocatalyst of nanometer TiO2/conjugated polymer complex was successfully synthesized and characterized by spectroscopic methods and photocatalytic experiments. The complex photocatalyst could be activated by absorbing both ultraviolet and visible light (λ=190-800nm). Methylene blue (MB) could be degraded more efficiently on the complex photocatalyst than on the TiO2 under natural light. The conjugated polymer played a promoting role in the photocatalytic degradation of MB. The calcination temperature had an important effect in degradation of dye and could be summarized as 260℃>300℃>340℃>220℃>180℃.

  2. One-Pot Route towards Active TiO2 Doped Hierarchically Porous Cellulose: Highly Efficient Photocatalysts for Methylene Blue Degradation

    Directory of Open Access Journals (Sweden)

    Xiaoxia Sun

    2017-03-01

    Full Text Available In this study, novel photocatalyst monolith materials were successfully fabricated by a non-solvent induced phase separation (NIPS technique. By adding a certain amount of ethyl acetate (as non-solvent into a cellulose/LiCl/N,N-dimethylacetamide (DMAc solution, and successively adding titanium dioxide (TiO2 nanoparticles (NPs, cellulose/TiO2 composite monoliths with hierarchically porous structures were easily formed. The obtained composite monoliths possessed mesopores, and two kinds of macropores. Scanning Electron Microscope (SEM, Energy Dispersive Spectroscopy (EDS, Fourier Transform Infrared Spectroscopy (FT-IR, X-ray Diffraction (XRD, Brunauer-Emmett-Teller (BET, and Ultraviolet-visible Spectroscopy (UV-Vis measurements were adopted to characterize the cellulose/TiO2 composite monolith. The cellulose/TiO2 composite monoliths showed high efficiency of photocatalytic activity in the decomposition of methylene blue dye, which was decomposed up to 99% within 60 min under UV light. Moreover, the composite monoliths could retain 90% of the photodegradation efficiency after 10 cycles. The novel NIPS technique has great potential for fabricating recyclable photocatalysts with highly efficiency.

  3. Degradation of gas-phase trichloroethylene over thin-film TiO2 photocatalyst in multi-modules reactor

    International Nuclear Information System (INIS)

    Kim, Sang Bum; Lee, Jun Yub; Kim, Gyung Soo; Hong, Sung Chang

    2009-01-01

    The present paper examined the photocatalytic degradation (PCD) of gas-phase trichloroethylene (TCE) over thin-film TiO 2 . A large-scale treatment of TCE was carried out using scale-up continuous flow photo-reactor in which nine reactors were arranged in parallel and series. The parallel or serial arrangement is a significant factor to determine the special arrangement of whole reactor module as well as to compact the multi-modules in a continuous flow reactor. The conversion of TCE according to the space time was nearly same for parallel and serial connection of the reactors.

  4. TiO(2) doping by hydroxyurea at the nucleation stage: towards a new photocatalyst in the visible spectral range.

    Science.gov (United States)

    Azouani, R; Tieng, S; Chhor, K; Bocquet, J-F; Eloy, P; Gaigneaux, E M; Klementiev, K; Kanaev, A V

    2010-10-07

    We report an original method of preparation of OCN-doped TiO(2) for photocatalysis in the visible spectral range. The preparation is achieved by a sol-gel route using titanium tetraisopropoxide precursor. Special attention was paid to fluid micromixing, which enables homogeneous reaction conditions in the reactor bulk and monodispersity of the produced clusters/nanoparticles. The dopant hydroxyurea (HyU, CH(4)N(2)O(2)) is injected into the reactive fluid at the nucleation stage, which lasts tens of milliseconds. The doping results in a strong yellow coloration of the nanocolloids due to the absorption band in the spectral range 380-550 nm and accelerates the aggregation kinetics of both nuclei at the induction stage and sub-nuclei units (clusters) at the nucleation stage. FTIR, Raman and UV-visible absorption analyses show the formation of a stable HyU-TiO(2) complex. EXAFS spectra indicate no appreciable changes of the first-shell Ti atom environment. The doping agent takes available surface sites of TiO(2) clusters/nanoparticles attaining ∼10% molar loading. The reaction kinetics then accelerates due to a longer collisional lifetime between nanoparticles induced by the formation of a weak [double bond, length as m-dash]OTi bond. The OCN-group bonding to titanium atoms produces a weakening of the C[double bond, length as m-dash]O double bond and a strengthening of the C-N and N-O bonds.

  5. Studies on Nano-Engineered TiO2 Photo Catalyst for Effective Degradation of Dye

    Science.gov (United States)

    Sowmya, S. R.; Madhu, G. M.; Hashir, Mohammed

    2018-02-01

    All Heterogeneous photo catalysis employing efficient photo-catalyst is the advanced dye degradation technology for the purification of textile effluent. The present work focuses on Congo red dye degradation employing synthesized Ag doped TiO2 nanoparticles as photocatalyst which is characterized using SEM, XRD and FTIR. Studies are conducted to study the effect of various parameters such as initial dye concentration, catalyst loading and pH of solution. Ag Doped TiO2 photocatalyst improve the efficacy of TiO2 by reducing high band gap and electron hole recombination of TiO2. The reaction kinetics is analyzed and the process is found to follow pseudo first order kinetics.

  6. Recent advances in visible-light-responsive photocatalysts for hydrogen production and solar energy conversion--from semiconducting TiO2 to MOF/PCP photocatalysts.

    Science.gov (United States)

    Horiuchi, Yu; Toyao, Takashi; Takeuchi, Masato; Matsuoka, Masaya; Anpo, Masakazu

    2013-08-28

    The present perspective describes recent advances in visible-light-responsive photocatalysts intended to develop novel and efficient solar energy conversion technologies, including water splitting and photofuel cells. Water splitting is recognized as one of the most promising techniques to convert solar energy as a clean and abundant energy resource into chemical energy in the form of hydrogen. In recent years, increasing concern is directed to not only the development of new photocatalytic materials but also the importance of technologies to produce hydrogen and oxygen separately. Photofuel cells can convert solar energy into electrical energy by decomposing bio-related compounds and livestock waste as fuels. The advances of photocatalysts enabling these solar energy conversion technologies have been going on since the discovery of semiconducting titanium dioxide materials and have extended to organic-inorganic hybrid materials, such as metal-organic frameworks and porous coordination polymers (MOF/PCP).

  7. Characterization and improved solar light activity of vanadium doped TiO2/diatomite hybrid catalysts

    International Nuclear Information System (INIS)

    Wang, Bin; Zhang, Guangxin; Leng, Xue; Sun, Zhiming; Zheng, Shuilin

    2015-01-01

    Highlights: • V-doped TiO 2 /diatomite composite photocatalyst was synthesized. • The physiochemical property and solar light photoactivity were characterized. • The presence and influence of V ions in TiO 2 matrix was systematically analyzed. • The photocatalysis for Rhodamine B were studied under solar light illumination. - Abstract: V-doped TiO 2 /diatomite composite photocatalysts with different vanadium concentrations were synthesized by a modified sol–gel method. The diatomite was responsible for the well dispersion of TiO 2 nanoparticles on the matrix and consequently inhibited the agglomeration. V-TiO 2 /diatomite hybrids showed red shift in TiO 2 absorption edge with enhanced absorption intensity. Most importantly, the dopant energy levels were formed in the TiO 2 bandgap due to V 4+ ions substituted to Ti 4+ sites. The 0.5% V-TiO 2 /diatomite photocatalyst displayed narrower bandgap (2.95 eV) compared to undoped sample (3.13 eV) and other doped samples (3.05 eV) with higher doping concentration. The photocatalytic activities of V doped TiO 2 /diatomite samples for the degradation of Rhodamine B under stimulated solar light illumination were significantly improved compared with the undoped sample. In our case, V 4+ ions incorporated in TiO 2 lattice were responsible for increased visible-light absorption and electron transfer to oxygen molecules adsorbed on the surface of TiO 2 to produce superoxide radicals ·O 2 – , while V 5+ species presented on the surface of TiO 2 particles in the form of V 2 O 5 contributed to e – –h + separation. In addition, due to the combination of diatomite as support, this hybrid photocatalyst could be separated from solution quickly by natural settlement and exhibited good reusability

  8. High performance sulfur, nitrogen and carbon doped mesoporous anatase–brookite TiO2 photocatalyst for the removal of microcystin-LR under visible light irradiation

    International Nuclear Information System (INIS)

    El-Sheikh, Said M.; Zhang, Geshan; El-Hosainy, Hamza M.; Ismail, Adel A.; O'Shea, Kevin E.; Falaras, Polycarpos; Kontos, Athanassios G.; Dionysiou, Dionysios D.

    2014-01-01

    Graphical abstract: - Highlights: • Synthesis of tailor-designed C, N and S doped titania anatase–brookite nano-heterojunction photocatalyst. • Microcystin-LR was completely removed in the presence of doped sample under visible light. • The MC-LR degradation rate achieved by the doped sample was much better than that of un-doped sample under visible light. - Abstract: Carbon, nitrogen and sulfur (C, N and S) doped mesoporous anatase–brookite nano-heterojunction titania photocatalysts have been synthesized through a simple sol–gel method in the presence of triblock copolymer Pluronic P123. XRD and Raman spectra revealed the formation of anatase and brookite mixed phases. XPS spectra indicated the presence of C, N and S dopants. The TEM images demonstrated the formation of almost monodisperse titania nanoparticles with particle sizes of approximately 10 nm. N 2 isotherm measurements confirmed that both doped and undoped titania anatase–brookite materials have mesoporous structure. The photocatalytic degradation of the cyanotoxin microcystin-LR (MC-LR) has been investigated using these novel nanomaterials under visible light illumination. The photocatalytic efficiency of the mesoporous titania anatase–brookite photocatalyst dramatically increased with the addition of the C, N and S non-metal, achieving complete degradation (∼100%) of MC-LR. The results demonstrate the advantages of the synthetic approach and the great potential of the visible light activated C, N, and S doped titania photocatalysts for the treatment of organic micropollutants in contaminated waters under visible light

  9. Fe doped TiO2 photocatalyst for the removal of As(III) under visible radiation and its potential application on the treatment of As-contaminated groundwater

    International Nuclear Information System (INIS)

    Garza-Arévalo, J.I.; García-Montes, I.; Reyes, M.Hinojosa; Guzmán-Mar, J.L.; Rodríguez-González, V.

    2016-01-01

    Highlights: • Incorporation of Fe in TiO 2 lattice extended absorption to visible light region. • TiO 2 –Fe 1.0 in anatase crystalline form was synthesized by sol–gel method. • TiO 2 –Fe 1.0 showed the highest photocatalytic activity for As(III) oxidation. • TiO 2 –Fe 1.0 had the highest adsorption capacity for the removal of generated As(V). • TiO 2 –Fe is a promising material on the treatment of As contaminated groundwater. - Abstract: The Fe doped TiO 2 catalyst was evaluated under visible radiation for As(III) removal. The TiO 2 –Fe was synthesized by sol–gel technique at 0.0, 1.0, 2.5, 5.0 and 10.0 wt% iron doping concentrations. The semiconductors were characterized by X-ray diffraction, diffuse reflectance UV–vis, Raman spectroscopy, nitrogen physisorption, SEM–EDS and potentiometric titration for point of zero charge determination. The photocatalytic oxidation of As(III) was assessed in aqueous suspension contained 5 mg L −1 As(III) at pH 7 with 0.25 g L −1 catalyst loading. The incorporation of iron ions in TiO 2 lattice extended the absorption to visible light region and create surface oxygen vacancies which favor photocatalytic oxidation reaction of As(III) using a small doping amount of Fe (1.0 wt%) in TiO 2 powder. Additionally, TiO 2 –Fe 1.0 showed the highest adsorption capacity for As(V) removal compared to sol–gel TiO 2 and P25 indicating that this catalyst is a promising material for As contaminated groundwater treatment.

  10. A Facile Method for Synthesizing TiO2 Sea-Urchin-Like Structures and Their Applications in Solar Energy Harvesting

    International Nuclear Information System (INIS)

    Wang Wen-Hui; Xu Hong-Xing; Wang Wen-Zhong

    2011-01-01

    We present a new method to prepare TiO 2 sea-urchin-like structures, which involves the initial formation of tubular nanostructures and subsequent self-assembly of the nanotubes into micrometer-scale sea-urchin-like structures. We also investigate the important role of alkali aqueous conditions in the preparation of TiO 2 sea-urchin-like structures. This facile and cost-effective approach provides a new route for the preparation of self-assembled TiO 2 structures. In addition, the performance of the as-synthesized TiO 2 sea-urchin-like structures as the active layer of an efficient solar energy harvester is also studied and discussed. (cross-disciplinary physics and related areas of science and technology)

  11. Simply synthesized TiO2 nanorods as an effective scattering layer for quantum dot sensitized solar cells

    International Nuclear Information System (INIS)

    Samadpour, Mahmoud; Zad, Azam Iraji; Molaei, Mehdi

    2014-01-01

    TiO 2 nanorod layers are synthesized by simple chemical oxidation of Ti substrates. Diffuse reflectance spectroscopy measurements show effective light scattering properties originating from nanorods with length scales on the order of one micron. The films are sensitized with CdSe quantum dots (QDs) by successive ionic layer adsorption and reaction (SILAR) and integrated as a photoanode in quantum dot sensitized solar cells (QDSCs). Incorporating nanorods in photoanode structures provided 4- to 8-fold enhancement in light scattering, which leads to a high power conversion efficiency, 3.03% (V oc = 497 mV, J sc = 11.32 mA/cm 2 , FF = 0.54), in optimized structures. High efficiency can be obtained just by tuning the photoanode structure without further treatments, which will make this system a promising nanostructure for efficient quantum dot sensitized solar cells. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  12. Crystal growth and design of a facile synthesized uniform single crystalline football-like anatase TiO2 microspheres with exposed {0 0 1} facets

    International Nuclear Information System (INIS)

    Liu, Bitao; Jin, Chunhua; Ju, Yue; Peng, Lingling; Tian, Liangliang; Wang, Jinbiao; Zhang, Tiejun

    2014-01-01

    Graphical abstract: - Highlights: • Football-like TiO 2 synthesized by a facile hydrothermal method. • The formation mechanism of football-like TiO 2 was investigated. • The DSSC efficiency assembled by football-like TiO 2 is 23.3% higher than P25. - Abstract: Uniform football-like anatase TiO 2 particles exposed by {0 0 1} facets were successfully synthesized by an environment-friendly, facile and low-temperature hydrothermal method in water solution without any additional capping agent. The crystallographic structure and the growth mechanism of anatase TiO 2 particles were investigated systematically by X-ray diffraction pattern (XRD), field emission scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectra (XPS), respectively. The formation mechanism of football-like anatase TiO 2 particles exposed by {0 0 1} facets is investigated. It was found that there existed a selective adsorption of F − ions on different facets by analyzed with the density functional theory (DFT) computer simulation results, and it would lead to a selective nucleation and crystal growth of anatase football-like TiO 2 particles. Additionally, this type of exposed {0 0 1} facets football-like TiO 2 microspheres were used as a scattering overlayer on a transparent P25 film for fabrication of photoanodes for dye-sensitized solar cells (DSSCs). The results showed that an overall light conversion efficiency of this film was 6.31%, which is higher than that of the overall efficiency (5.13%) obtained from the P25 photoanode owing to the superior light scattering effect of microspheres and excellent light reflecting ability of the mirror-like plane {0 0 1} facets

  13. Risk assessment of TiO2 photocatalyst by individual micrometer-size particle analysis with on-site combination of SEM-EDX and SR-XANES microscope

    International Nuclear Information System (INIS)

    Kawai, Jun; Ishii, Hideshi; Matsui, Yasuto; Terada, Yasuko; Tanabe, Teruo; Uchiyama, Iwao

    2007-01-01

    Applications of synchrotron radiation X-ray fluorescence (SR-XRF) microscopy combined with scanning electron microscopy (SEM) are reported. Electron beam excited and synchrotron radiation induced X-ray emission spectra of the same yellow sand single particles are reported and compared. The Ti-K edge absorption fine structure of single microparticles of TiO 2 (rutile, anatase, and a photocatalyst aerosol) are recorded by using monochromatic synchrotron radiation of tunable energy. It is shown that the discrimination between rutile and anatase is possible. Based on the single particle speciation, the toxicity of photocatalyst aerosol powder is discussed

  14. Development of solar-driven electrochemical and photocatalytic water treatment system using a boron-doped diamond electrode and TiO2 photocatalyst.

    Science.gov (United States)

    Ochiai, Tsuyoshi; Nakata, Kazuya; Murakami, Taketoshi; Fujishima, Akira; Yao, Yanyan; Tryk, Donald A; Kubota, Yoshinobu

    2010-02-01

    A high-performance, environmentally friendly water treatment system was developed. The system consists mainly of an electrochemical and a photocatalytic oxidation unit, with a boron-doped diamond (BDD) electrode and TiO(2) photocatalyst, respectively. All electric power for the mechanical systems and the electrolysis was able to be provided by photovoltaic cells. Thus, this system is totally driven by solar energy. The treatment ability of the electrolysis and photocatalysis units was investigated by phenol degradation kinetics. An observed rate constant of 5.1 x 10(-3)dm(3)cm(-2)h(-1) was calculated by pseudo-first-order kinetic analysis for the electrolysis, and a Langmuir-Hinshelwood rate constant of 5.6 microM(-1)min(-1) was calculated by kinetic analysis of the photocatalysis. According to previous reports, these values are sufficient for the mineralization of phenol. In a treatment test of river water samples, large amounts of chemical and biological contaminants were totally wet-incinerated by the system. This system could provide 12L/day of drinking water from the Tama River using only solar energy. Therefore, this system may be useful for supplying drinking water during a disaster. (c) 2009 Elsevier Ltd. All rights reserved.

  15. Inverted organic solar cells with solvothermal synthesized vanadium-doped TiO2 thin films as efficient electron transport layer

    Institute of Scientific and Technical Information of China (English)

    Mehdi Ahmadi; Sajjad Rashidi Dafeh; Samaneh Ghazanfarpour; Mohammad Khanzadeh

    2017-01-01

    We investigated the effects of using different thicknesses of pure and vanadium-doped thin films of TiO2 as the electron transport layer in the inverted configuration of organic photovoltaic cells based on poly (3-hexylthiophene) P3HT:[6-6] phenyl-(6) butyric acid methyl ester (PCBM).1% vanadium-doped TiO2 nanoparticles were synthesized via the solvothermal method.Crystalline structure,morphology,and optical properties of pure and vanadium-doped TiO2 thin films were studied by different techniques such as x-ray diffraction,scanning electron microscopy,transmittance electron microscopy,and UV-visible transmission spectrum.The doctor blade method which is compatible with roll-2-roll printing was used for deposition of pure and vanadium-doped TiO2 thin films with thicknesses of 30 nm and 60 nm.The final results revealed that the best thickness of TiO2 thin films for our fabricated cells was 30 nm.The cell with vanadium-doped TiO2 thin film showed slightly higher power conversion efficiency and great Jsc of 10.7 mA/cm2 compared with its pure counterpart.In the cells using 60 nm pure and vanadium-doped TiO2 layers,the cell using the doped layer showed much higher efficiency.It is remarkable that the extemal quantum efficiency of vanadium-doped TiO2 thin film was better in all wavelengths.

  16. Characterization of TiO2–MnO2 composite electrodes synthesized using spark plasma sintering technique

    CSIR Research Space (South Africa)

    Tshephe, TS

    2015-03-01

    Full Text Available and electrochemical stability of the resulting materials were investigated. Relative densities of 99.33% and 98.49% were obtained for 90TiO2–10MnO2 and 80TiO2–10MnO2 when ball was incorporated. The 90TiO2–10MnO2 powder mixed with balls had its Vickers hardness value...

  17. Optical and morphological properties of ZnO- and TiO2-derived nanostructures synthesized via a microwave-assisted hydrothermal method

    CSIR Research Space (South Africa)

    Moloto, N

    2012-01-01

    Full Text Available Corporation International Journal of Photoenergy Volume 2012, Article ID 189069, 6 pages doi:10.1155/2012/189069 Research Article Optical and Morphological Properties of ZnO- and TiO2-Derived Nanostructures Synthesized via a Microwave... International Journal of Photoenergy the sol-gel, hydrothermal process, and pulse laser deposition [22?24]. Although the sol-gel method is widely accepted for the preparation of both ZnO and TiO2 nanostructures, the calcinations process is essential and can...

  18. Study of phase development and thermal stability in as synthesized TiO2 nanoparticles by laser pyrolysis: ethylene uptake and oxygen enrichment

    Science.gov (United States)

    Ilie, Alina Georgiana; Scarisoreanu, Monica; Dutu, Elena; Dumitrache, Florian; Banici, Ana-Maria; Fleaca, Claudiu Teodor; Vasile, Eugenia; Mihailescu, Ion

    2018-01-01

    Laser pyrolysis has proven a viable and trustworthy method of TiO2 nanoparticles fabrication, ensuring good quality and wide variety of nanoparticle morphologies and sizes. This work is aimed to phase control, experimentally studied, by parameter modulation, during one step laser pyrolysis synthesis or in combination with thermal annealing. High phase purity anatase and rutile TiO2 nanoparticles, oxygen abundant, are synthesized from TiCl4 and C2H4 gas mixtures, in the presence of air as oxygen donor, under CO2 laser radiation. The nano-titania samples are analyzed by X-ray Diffraction, EDAX, TEM and Raman spectroscopy and reveal good phase stability and distinct morphology. This study extends the method applicability onto rutile majoritarian TiO2 synthesis and generation of thermally stable anatase titania, a well-known catalyst.

  19. TiO2 film decorated with highly dispersed polyoxometalate nanoparticles synthesized by micelle directed method for the efficiency enhancement of dye-sensitized solar cells

    Science.gov (United States)

    He, Lifei; Chen, Li; Zhao, Yue; Chen, Weilin; Shan, Chunhui; Su, Zhongmin; Wang, Enbo

    2016-10-01

    In this work, two kinds of polyoxometalate (POM) nanoparticles with controlled shapes and structures were synthesized by micelle directed method and then composited with TiO2 via calcination to remove the surfactants owing to the excellent electronic storage and transmission ability of POM, finally obtaining two kinds of TiO2 composites with highly dispersed and small-sized POM nanoparticles (∼1 nm). The TiO2 composites were then induced into the photoanodes of dye-sensitized (N719) solar cells (DSSCs). The separation of electron-holes becomes more favorable due to the nanostructure and high dispersion of POM which provide more active sites than pure POM tending to agglomeration. The TiO2 composite photoanodes finally yielded the power conversion efficiency (PCE) of 8.4% and 8.2%, respectively, which were 42% and 39% higher than the pristine TiO2 based anodes. In addition, the mechanisms of POM in DSSC are proposed.

  20. Photocatalytic Decolorization Study of Methyl Orange by TiO2–Chitosan Nanocomposites

    Directory of Open Access Journals (Sweden)

    Imelda Fajriati

    2014-10-01

    Full Text Available The photocatalytic decolorization of methyl orange (MO by TiO2-chitosan nanocomposite has been studied. This study was started by synthesizing TiO2-chitosan nanocomposites using sol-gel method with various concentrations of Titanium(IV isopropoxide (TTIP as the TiO2 precursor. The structure, surface morphology, thermal and optical property of TiO2-chitosan nanocomposite were characterized by X-ray diffraction (XRD, fourier transform infra red (FTIR spectroscopy, scanning electron microscopy (SEM, thermogravimetric analysis (TGA, and diffuse reflectance ultra violet (DRUV spectroscopy. The photocatalytic activity of TiO2-chitosan nanocomposite was evaluated by photocatalytic decolorization of methyl orange as a model pollutant. The results indicate that the particle size of TiO2 increases with increasing ofthe concentration of TTIP, in which TiO2 with smallest particle size exhibit the highest photocatalytic activity. The highest photocatalytic decolorization was obtained at 5 h of contact time, initial concentration of MO at 20 ppm and at solution pH of 4. Using these conditions, over 90% of MO was able to be decolorized using 0.02 g of TiO2-chitosan nanocomposite under UV light irradiation. The TiO2-chitosan nanocomposite could be reused, which meant that the TiO2-chitosan nanocomposites can be developed as an effective and economical photocatalyst to decolorize or treat dye in wastewater.

  1. Electrochemically synthesized visible light absorbing vertically aligned N-doped TiO2 nanotube array films

    International Nuclear Information System (INIS)

    Antony, Rajini P.; Mathews, Tom; Ajikumar, P.K.; Krishna, D. Nandagopala; Dash, S.; Tyagi, A.K.

    2012-01-01

    Graphical abstract: Display Omitted Highlights: ► Single step electrochemical synthesis of N-doped TiO 2 nanotube array films. ► Effective substitutional N-doping achieved. ► Different N-concentrations were achieved by varying the N-precursor concentration in the electrolyte. ► Visible light absorption observed at high N-doping. -- Abstract: Visible light absorbing vertically aligned N-doped anatase nanotube array thin films were synthesized by anodizing Ti foils in ethylene glycol + NH 4 F + water mixture containing urea as nitrogen source. Different nitrogen concentrations were achieved by varying the urea content in the electrolyte. The structure, morphology, composition and optical band gap of the nanotube arrays were determined by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy (XPS) and diffuse reflectance spectroscopy, respectively. The substitution of O 2− ions by N 3− ions in the anion sublattice as well as the formulae of the doped samples was confirmed from the results of XPS. The optical band gap of the nanotube arrays was found to decrease with N-concentration. The sample with the highest concentration corresponding to the formula TiO 1.83 N 0.14 showed two regions in the Tauc's plot indicating the presence of interband states.

  2. TiO2/PbS/ZnS heterostructure for panchromatic quantum dot sensitized solar cells synthesized by wet chemical route

    Science.gov (United States)

    Bhat, T. S.; Mali, S. S.; Sheikh, A. D.; Korade, S. D.; Pawar, K. K.; Hong, C. K.; Kim, J. H.; Patil, P. S.

    2017-11-01

    So far we developed the efficient photoelectrodes which can harness the UV as well as the visible regime of the solar spectrum effectively. In order to exploit a maximum portion of solar spectrum, it is necessary to study the synergistic effect of a photoelectrode comprising UV and visible radiations absorbing materials. Present research work highlights the efforts to study the synchronized effect of TiO2 and PbS on the power conversion efficiency of quantum dot sensitized solar cell (QDSSC). A cascade structure of TiO2/PbS/ZnS QDSSC is achieved to enhance the photoconversion efficiency of TiO2/PbS system by incorporating a surface passivation layer of ZnS which avoids the recombination of charge carriers. A QDSSC is fabricated using a simple and cost-effective technique such as hydrothermally grown TiO2 nanorod arrays decorated with PbS and ZnS using successive ionic layer adsorption and reaction (SILAR) method. Synthesized electrode materials are characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM), High resolution-transmission electron microscopy (TEM), STEM-EDS mapping, optical and solar cell performances. Phase formation of TiO2, PbS and ZnS get confirmed from the XPS study. FE-SEM images of the photoelectrode show uniform coverage of PbS QDs onto the TiO2 nanorods which increases with increasing number of SILAR cycles. The ZnS layer not only improves the charge transport but also reduces the photocorrosion of lead chalcogenides in the presence of a liquid electrolyte. Finally, the photoelectrochemical (PEC) study is carried out using an optimized photoanode comprising TiO2/PbS/ZnS assembly. Under AM 1.5G illumination the TiO2/PbS/ZnS QDSSC photoelectrode shows 4.08 mA/cm2 short circuit current density in a polysulfide electrolyte which is higher than that of a bare TiO2 nanorod array.

  3. Effect of ambient pressure on the crystalline phase of nano TiO2 particles synthesized by a dc thermal plasma reactor

    International Nuclear Information System (INIS)

    Banerjee, I.; Karmakar, Soumen; Kulkarni, Naveen V.; Nawale, Ashok B.; Mathe, V. L.; Das, A. K.; Bhoraskar, S. V.

    2010-01-01

    The synthesis of nanoparticles of titanium dioxide (TiO 2 ) with varying percentages of anatase and rutile phases is reported. This was achieved by controlling the operating pressure in a transferred-arc, direct current thermal plasma reactor in which titanium vapors are evaporated, and then exposed to ambient oxygen. The average particle size remained around 15 nm in each case. The crystalline structure of the as-synthesized nanoparticles of TiO 2 was studied with X-ray diffraction analysis; whereas the particle morphology was investigated with the help of transmission electron microscopy. The precursor species responsible for the growth of these nanoparticles was studied with the help of optical emission spectroscopy. As inferred from the X-ray diffraction analysis, the relative abundance of anatase TiO 2 was found to be dominant when synthesized at 760 Torr, and the same showed a decreasing trend with decreasing chamber pressure. The study also reveals that anatase TiO 2 is a more effective photocatalytic agent in degrading methylene blue by comparison to its rutile phase.

  4. Azo dyes degradation using TiO2-Pt/graphene oxide and TiO2-Pt/reduced graphene oxide photocatalysts under UV and natural sunlight irradiation

    Science.gov (United States)

    Rosu, Marcela-Corina; Coros, Maria; Pogacean, Florina; Magerusan, Lidia; Socaci, Crina; Turza, Alexandru; Pruneanu, Stela

    2017-08-01

    The photocatalytic degradation of azo dyes with different structures (amaranth, sunset yellow and tartrazine) using TiO2-Pt nanoparticles (TPt), TiO2-Pt/graphene oxide (TPt-GO) and TiO2-Pt/reduced graphene oxide (TPt-rGO) composites were investigated in the presence of UV and natural sunlight irradiation. The composites were prepared by a combined chemical-thermal method and characterized by Transmission Electron Microscopy (TEM), X-ray powder diffraction (XRD), Infrared (FTIR) and UV-Vis spectroscopy. The modification of TiO2-Pt with graphene oxide shifted its optical absorption edge towards the visible region and increased its photocatalytic activity under UV and natural sunlight irradiation. The efficiency of catalysts on azo dyes degradation (in similar conditions) reached high values (above 99%) under sunlight conditions, proving the remarkable photocatalytic activities of obtained composites. TPt-GO nanocomposite exhibited higher photoactivity than TPt or TPt-rGO, demonstrating degradation efficiencies of 99.56% for amaranth, 99.15% for sunset yellow and 96.23% for tartrazine. The dye photodegradation process follows a pseudo-first-order kinetic with respect to the Langmuir-Hinshelwood reaction mechanism. A direct dependence between azo dyes degradation rate and chemical structure of dyes has been observed.

  5. Characteristics and properties of a novel in situ method of synthesizing mesoporous TiO2 nanopowders by a simple coprecipitation process without adding surfactant

    International Nuclear Information System (INIS)

    Yeh, Shang-Wei; Ko, Horng-Huey; Chiang, Hsiu-Mei; Chen, Yen-Ling; Lee, Jian-Hong; Wen, Chiu-Ming; Wang, Moo-Chin

    2014-01-01

    Highlights: • The TiO 2 precursor powder contained anatase and 19.5% NH 4 Cl. • Mesoporous anatase TiO 2 nanopowders were successfully synthesized. • Uncalcined precursor powder contained the phases of type I NH 4 Cl and anatase TiO 2 . • Anatase size increases from 3.3 to 14.3 nm when calcined at 473–773 K for 2 h. • The average pore size between 3.80 and 14.0 nm when calcined between 473 and 773 K. - Abstract: In situ synthesis of mesoporous TiO 2 nanopowders using titanium tetrachloride (TiCl 4 ) and NH 4 OH as initial materials has been successfully fabricated by a coprecipitation process without the addition of surfactant. Characteristics and properties of the mesoporous TiO 2 nanopowders were investigated using differential scanning calorimetry/thermogravimetry (DSC/TG), X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) and Barrent–Joyner–Halenda (BJH) analyses, transmission electron microscopy (TEM), selected area electron diffraction (SAED) and high resolution TEM (HRTEM). The results of TG and XRD showed that the NH 4 Cl decomposed between 513 and 673 K. XRD results showed that the anatase TiO 2 only contained a single phase when the calcination temperature of the precursor powder was less than 673 K. Whereas phases of anatase and rutile TiO 2 coexist after calcining at 773 K for 2 h. The crystalline size of the anatase and rutile TiO 2 was 14.3 and 26.6 nm, respectively, when the precursor powder was calcined at 773 K for 2 h. The BET and BJH results showed a significant increase in surface area and pore volumes when the NH 4 Cl was completely decomposed. The maximum values of BET specific surface area and volume were 172.8 m 2 /g and 0.392 cm 3 /g, respectively. The average pore sizes when calcination was at 473 and 773 K for 2 h were 3.8 and 14.0 nm, respectively

  6. Efficient photodecomposition of herbicide imazapyr over mesoporous Ga2O3-TiO2 nanocomposites.

    Science.gov (United States)

    Ismail, Adel A; Abdelfattah, Ibrahim; Faisal, M; Helal, Ahmed

    2018-01-15

    The unabated release of herbicide imazapyr into the soil and groundwater led to crop destruction and several pollution-related concerns. In this contribution, heterogeneous photocatalytic technique was employed utilizing mesoporous Ga 2 O 3 -TiO 2 nanocomposites for degrading imazapyr herbicide as a model pollutant molecule. Mesoporous Ga 2 O 3 -TiO 2 nanocomposites with varied Ga 2 O 3 contents (0-5wt%) were synthesized through sol-gel process. XRD and Raman spectra exhibited extremely crystalline anatase TiO 2 phase at low Ga 2 O 3 content which gradually reduced with the increase of Ga 2 O 3 content. TEM images display uniform TiO 2 particles (10±2nm) with mesoporous structure. The mesoporous TiO 2 exhibits large surface areas of 167m 2 g -1 , diminished to 108m 2 g -1 upon 5% Ga 2 O 3 incorporation, with tunable mesopore diameter in the range of 3-9nm. The photocatalytic efficiency of synthesized Ga 2 O 3 -TiO 2 nanocomposites was assessed by degrading imazapyr herbicide and comparing with commercial photocatalyst UV-100 and mesoporous Ga 2 O 3 under UV illumination. 0.1% Ga 2 O 3 -TiO 2 nanocomposite is considered the optimum photocatalyst, which degrades 98% of imazapyr herbicide within 180min. Also, the photodegradation rate of imazapyr using 0.1% Ga 2 O 3 -TiO 2 nanocomposite is nearly 10 and 3-fold higher than that of mesoporous Ga 2 O 3 and UV-100, respectively. The high photonic efficiency and long-term stability of the mesoporous Ga 2 O 3 -TiO 2 nanocomposites are ascribed to its stronger oxidative capability in comparison with either mesoporous TiO 2 , Ga 2 O 3 or commercial UV-100. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Fabrication of TiO_2 nanorod assembly grafted rGO (rGO@TiO_2-NR) hybridized flake-like photocatalyst

    International Nuclear Information System (INIS)

    Lv, Kangle; Fang, Shun; Si, Lingling; Xia, Yang; Ho, Wingkei; Li, Mei

    2017-01-01

    Highlights: • TiO_2 nanorod assembly grafted with GO hybrid was successfully fabricated. • TiO_2 nanorods can reduce the aggregation of TiO_2 nanoparticles on graphene. • This unique structure facilitates the injection of electron from TiO_2 to graphene. - Abstract: To efficiently separate the photo-generated electron–hole pairs of TiO_2 hybrid, anatase TiO_2 nanorod assembly grafted reduced graphene oxides (rGO@TiO_2-NR) hybrid was successfully fabricated using potassium titanium oxalate (PTO) and graphene oxides (GO) as starting materials and diethylene glycol (DEG) as reductant. The effect of GO content on the structure and photocatalytic activity of rGO@TiO_2-NR composite was systematically studied. Results show that, in the absence of GO, only TiO_2 microsphere assembly is obtained from TiO_2 nanorods. The presence of GO results in the formation of a flake-like TiO_2-nanorod-assembled grafted rGO hybrid. The photocatalytic activity of rGO@TiO_2-NR composite increases first and then decreases with increase in the amount of GO from 0 wt.% to 10 wt.%. The hybridized S4 sample prepared with 4 wt.% GO possesses the highest photocatalytic activity with a constant rate of 0.039 min"−"1 in the photocataytic degradation of Brilliant X-3B dye (X3B); this sample was enhanced more than three times when compared with pure TiO_2 sample (0.012 min"−"1). The enhanced photocatalytic activity of the rGO@TiO_2-NR hybrid was attributed to the strong interaction between TiO_2 nanorods and rGO. The unique hierarchical structure of 1D nanorod assembly TiO_2–rGO flakes facilitates the injection and transfer of photo-generated electrons from TiO_2 to graphene, thus retarding the recombination of electron–hole pairs and enhancing the photocatalytic activity. The enlarged BET surface areas, not only increasing the number of active sites, but also facilitating the adsorption of the dye, and improved light-harvesting ability also contribute to the enhanced photoreactivity of rGO@TiO_2-NR hybrid.

  8. High photocatalytic activity of hierarchical SiO2@C-doped TiO2 hollow spheres in UV and visible light towards degradation of rhodamine B.

    Science.gov (United States)

    Zhang, Ying; Chen, Juanrong; Hua, Li; Li, Songjun; Zhang, Xuanxuan; Sheng, Weichen; Cao, Shunsheng

    2017-10-15

    Ongoing research activities are targeted to explore high photocatalytic activity of TiO 2 -based photocatalysts for the degradation of environmental contaminants under UV and visible light irradiation. In this work, we devise a facile, cost-effective technique to in situ synthesize hierarchical SiO 2 @C-doped TiO 2 (SCT) hollow spheres for the first time. This strategy mainly contains the preparation of monodisperse cationic polystyrene spheres (CPS), sequential deposition of inner SiO 2 , the preparation of the sandwich-like CPS@SiO 2 @CPS particles, and formation of outer TiO 2 . After the one-step removal of CPS templates by calcination at 450°C, hierarchical SiO 2 @C-doped TiO 2 hollow spheres are in situ prepared. The morphology, hierarchical structure, and properties of SCT photocatalyst were characterized by TEM. SEM, STEM Mapping, BET, XRD, UV-vis spectroscopy, and XPS. Results strongly confirm the carbon doping in the outer TiO 2 lattice of SCT hollow spheres. When the as-synthesized SCT hollow spheres were employed as a photocatalyst for the degradation of Rhodamine B under visible-light and ultraviolet irradiation, the SCT photocatalyst exhibits a higher photocatalytic activity than commercial P25, effectively overcoming the limitations of poorer UV activity for many previous reported TiO 2 -based photocatalysts due to doping. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Analysis of X-ray diffraction of the titanium dioxide (TiO_2) synthesized by the Pechini Method for application in heterogeneous photocatalysis processes

    International Nuclear Information System (INIS)

    Oliveira, P.L.; Araujo, D.S.; Costa, A.C.F.M.; Oliveira, L.S.C.

    2016-01-01

    Titanium dioxide (TiO_2) is a polymorph commonly applied to heterogeneous photocatalysis processes for being relatively inexpensive and photo - stable. It is usually found in three different crystalline phases (anatase, rutile and brookite), which directly interfere in their photocatalytic efficiency. Therefore, this study aimed to investigate the obtainment of TiO_2 by Pechini method in different conditions for application in the heterogeneous photocatalysis process. For this purpose, it was evaluated by analysis of X-ray diffraction (XRD ) the behavior of TiO_2 materials synthesized in proportions of 2:1 and 3:1 (titanium isopropoxide/citric acid), pyrolyzed at 300°C/3h and 400°C /h and calcined at 400°C and 500°C/1h. The results revealed that the TiO_2 samples produced in the ratio of 2:1 and 3:1 isopropoxide/citric acid and calcined at 500°C/h presented the best results. (author)

  10. Visible light photocatalytic disinfection of E. coli with TiO2-graphene nanocomposite sensitized with tetrakis(4-carboxyphenyl)porphyrin

    Science.gov (United States)

    Rahimi, Rahmatollah; Zargari, Solmaz; Yousefi, Azam; Yaghoubi Berijani, Marzieh; Ghaffarinejad, Ali; Morsali, Ali

    2015-11-01

    The present research deals with the development of a new heterogeneous photocatalysis system for disinfection of bacteria from wastewater by using TiO2-graphene (TG) nanocomposite sensitized with tetrakis(4-carboxyphenyl)porphyrin (TCPP). The disinfection of wastewater using this photocatalyst is not reported in the literature yet. All the synthesized materials were thoroughly characterized by Raman, XRD, DRS, BET, and SEM analysis. The optimum content of graphene in the TiO2-graphene nanocomposite was determined by photocurrent responses of prepared photocatalysts. Subsequently, the photocurrent measurements demonstrate that the TiO2-graphene nanocomposite with 3% graphene content has higher photoactivity. Furthermore, sensitization of the TiO2-graphene nanocomposite with porphyrin (TGP) is successfully capable to develop a new type of photocatalyst system for disinfection of bacteria with moderate to high yields in visible light irradiation.

  11. Photoelectrolysis of water using heterostructural composite of TiO2 nanotubes and nanoparticles

    International Nuclear Information System (INIS)

    Das, Prajna P; Mohapatra, Susanta K; Misra, Mano

    2008-01-01

    Efficient photoelectrolysis of water to generate hydrogen (H 2 ) can be carried out by designing photocatalysts with good absorption as well as charge transport properties. One dimensional (1D), self-organized titania (TiO 2 ) nanotubes are known to have excellent charge transport properties and TiO 2 nanoparticles (NPs) are good for better photon absorption. This paper describes the synthesis of a composite photocatalyst combining the above two properties of TiO 2 nanocomposites with different morphologies. TiO 2 NPs (5-9 nm nanocrystals form 500-700 nm clusters) have been synthesized from TiCl 4 precursor on TiO 2 nanotubular arrays (∼80 nm diameter and ∼550 nm length) synthesized by the sonoelectrochemical anodization method. This TiO 2 nanotube-nanoparticle composite photoanode has enabled obtaining of enhanced photocurrent density (2.2 mA cm -2 ) as compared with NTs (0.9 mA cm -2 ) and NPs (0.65 mA cm -2 ) alone.

  12. Fabrication of TiO2 nanorod assembly grafted rGO (rGO@TiO2-NR) hybridized flake-like photocatalyst

    Science.gov (United States)

    Lv, Kangle; Fang, Shun; Si, Lingling; Xia, Yang; Ho, Wingkei; Li, Mei

    2017-01-01

    To efficiently separate the photo-generated electron-hole pairs of TiO2 hybrid, anatase TiO2 nanorod assembly grafted reduced graphene oxides (rGO@TiO2-NR) hybrid was successfully fabricated using potassium titanium oxalate (PTO) and graphene oxides (GO) as starting materials and diethylene glycol (DEG) as reductant. The effect of GO content on the structure and photocatalytic activity of rGO@TiO2-NR composite was systematically studied. Results show that, in the absence of GO, only TiO2 microsphere assembly is obtained from TiO2 nanorods. The presence of GO results in the formation of a flake-like TiO2-nanorod-assembled grafted rGO hybrid. The photocatalytic activity of rGO@TiO2-NR composite increases first and then decreases with increase in the amount of GO from 0 wt.% to 10 wt.%. The hybridized S4 sample prepared with 4 wt.% GO possesses the highest photocatalytic activity with a constant rate of 0.039 min-1 in the photocataytic degradation of Brilliant X-3B dye (X3B); this sample was enhanced more than three times when compared with pure TiO2 sample (0.012 min-1). The enhanced photocatalytic activity of the rGO@TiO2-NR hybrid was attributed to the strong interaction between TiO2 nanorods and rGO. The unique hierarchical structure of 1D nanorod assembly TiO2-rGO flakes facilitates the injection and transfer of photo-generated electrons from TiO2 to graphene, thus retarding the recombination of electron-hole pairs and enhancing the photocatalytic activity. The enlarged BET surface areas, not only increasing the number of active sites, but also facilitating the adsorption of the dye, and improved light-harvesting ability also contribute to the enhanced photoreactivity of rGO@TiO2-NR hybrid.

  13. Recyclable magnetic photocatalysts of Fe2+/TiO2 hierarchical architecture with effective removal of Cr(VI) under UV light from water

    International Nuclear Information System (INIS)

    Xu, S.C.; Zhang, Y.X.; Pan, S.S.; Ding, H.L.; Li, G.H.

    2011-01-01

    Highlights: ► Fe 2+ /TiO 2 catalyst has a three-level hierarchical architecture. ► With a removal effectiveness of 99.3% at Cr(VI) concentration of 10 mg L −1 . ► Two-step reduction: TiO 2 photoreduces Fe 2+ to Fe and Fe reduces Cr(VI) to Cr(III). ► Hierarchical architecture serves as both photocatalytic reactor and absorbent. ► Fe 2+ /TiO 2 catalyst can be magnetically separated from wastewater and recycled. - Abstract: We report the synthesis and photocatalytic removal of Cr(VI) from water of hierarchical micro/nanostructured Fe 2+ /TiO 2 tubes. The TiO 2 tubes fabricated by a facile solvothermal approach show a three-level hierarchical architecture assembled from dense nanosheets nearly vertically standing on the surface of TiO 2 microtube. The nanosheets with a thickness of about 20 nm are composed of numerous TiO 2 nanocrystals with size in the range of 15–20 nm. Ferrous ions are doped into the hierarchical architecture by a reduction route. The Fe 2+ /TiO 2 catalyst demonstrates an effective removal of Cr(VI) from water under UV light and the removal effectiveness reaches 99.3% at the initial Cr(VI) concentration of 10 mg L −1 . The ferrous ion in the catalyst serves not as the photo-electron trap but as an intermedium of a two-step reduction. The TiO 2 photoreduces the Fe 2+ ions to Fe atoms firstly, then the Fe atoms reduce the Cr(VI) to Cr(III), and the later is removed by adsorption. The hierarchical architecture of the catalyst serves as a reactor for the photocatalytic reaction of Cr(VI) ions and an effective absorbent for the removal of Cr(III) ions. The catalyst can be easily magnetically separated from the wastewater after photocatalytic reaction and recycled after acid treatment.

  14. Characterization and improved solar light activity of vanadium doped TiO2/diatomite hybrid catalysts.

    Science.gov (United States)

    Wang, Bin; Zhang, Guangxin; Leng, Xue; Sun, Zhiming; Zheng, Shuilin

    2015-03-21

    V-doped TiO2/diatomite composite photocatalysts with different vanadium concentrations were synthesized by a modified sol-gel method. The diatomite was responsible for the well dispersion of TiO2 nanoparticles on the matrix and consequently inhibited the agglomeration. V-TiO2/diatomite hybrids showed red shift in TiO2 absorption edge with enhanced absorption intensity. Most importantly, the dopant energy levels were formed in the TiO2 bandgap due to V(4+) ions substituted to Ti(4+) sites. The 0.5% V-TiO2/diatomite photocatalyst displayed narrower bandgap (2.95 eV) compared to undoped sample (3.13 eV) and other doped samples (3.05 eV) with higher doping concentration. The photocatalytic activities of V doped TiO2/diatomite samples for the degradation of Rhodamine B under stimulated solar light illumination were significantly improved compared with the undoped sample. In our case, V(4+) ions incorporated in TiO2 lattice were responsible for increased visible-light absorption and electron transfer to oxygen molecules adsorbed on the surface of TiO2 to produce superoxide radicals ˙O2(-), while V(5+) species presented on the surface of TiO2 particles in the form of V2O5 contributed to e(-)-h(+) separation. In addition, due to the combination of diatomite as support, this hybrid photocatalyst could be separated from solution quickly by natural settlement and exhibited good reusability. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Enhanced bonding between TiO2-Graphene oxide

    DEFF Research Database (Denmark)

    Naknikham, Usuma; Buffa, Vittorio; Yue, Yuanzheng

    analysis. Besides, the study of Ti-O-C and Ti-C interface bonding was carried out using XPS. The band-gap energy was determined using a UV-VIS spectrophotometer equipped with an integrating sphere. Thus, it was possible for us to determine the reactivity of the new photocatalysts under the visible light...... as photocatalysts, which can efficiently react with organic species under solar light and can enhance the adsorption of water pollutants [3]. Many studies have shown that TiO2-GO heterostructures can quickly mineralize organic dyes in solution under UV-light. However, it is not clear if these materials can provide...... the same performances under sunlight and with complex real water systems. Hence, this research aims to study the photocatalystic property on GO-TiO2 composites with aqueous solutions of selected emerging pollutants under visible light. The samples were synthesized via the in-situ sol-gel nucleation...

  16. Photocatalytic degradation of metoprolol tartrate in suspensions of two TiO2-based photocatalysts with different surface area. Identification of intermediates and proposal of degradation pathways

    International Nuclear Information System (INIS)

    Abramović, Biljana; Kler, Sanja; Šojić, Daniela; Laušević, Mila; Radović, Tanja; Vione, Davide

    2011-01-01

    Highlights: ► Kinetics and efficiency of photocatalytic degradation of the β 1 -blocker metoprolol tartrate (MET). ► Two TiO 2 specimens employed. ► Faster degradation of MET, but slower mineralization, obtained with the TiO 2 specimen having lower surface area. ► Photocatalytic transformation pathways of MET including mineralization. - Abstract: This study investigates the efficiency of the photocatalytic degradation of metoprolol tartrate (MET), a widely used β 1 -blocker, in TiO 2 suspensions of Wackherr's “Oxyde de titane standard” and Degussa P25. The study encompasses transformation kinetics and efficiency, identification of intermediates and reaction pathways. In the investigated range of initial concentrations (0.01–0.1 mM), the photocatalytic degradation of MET in the first stage of the reaction followed approximately a pseudo-first order kinetics. The TiO 2 Wackherr induced a significantly faster MET degradation compared to TiO 2 Degussa P25 when relatively high substrate concentrations were used. By examining the effect of ethanol as a scavenger of hydroxyl radicals (·OH), it was shown that the reaction with ·OH played the main role in the photocatalytic degradation of MET. After 240 min of irradiation the reaction intermediates were almost completely mineralized to CO 2 and H 2 O, while the nitrogen was predominantly present as NH 4 + . Reaction intermediates were studied in detail and a number of them were identified using LC–MS/MS (ESI+), which allowed the proposal of a tentative pathway for the photocatalytic transformation of MET as a function of the TiO 2 specimen.

  17. Visible light photocatalytic disinfection of E. coli with TiO_2–graphene nanocomposite sensitized with tetrakis(4-carboxyphenyl)porphyrin

    International Nuclear Information System (INIS)

    Rahimi, Rahmatollah; Zargari, Solmaz; Yousefi, Azam; Yaghoubi Berijani, Marzieh; Ghaffarinejad, Ali; Morsali, Ali

    2015-01-01

    Graphical abstract: TiO_2–graphene nanocomposites with different content of graphene were synthesized via a facile one-step solvothermal method. Photoelectrochemical responses of prepared photocatalysts were measured to determine the optimum content of graphene in TG nanocomposites. The results show that the TG nanocomposite with 3% of graphene has the highest photoactivity. This compound was sensitized with tetrakis(4-carboxyphenyl)porphyrin (TGP). The prepared photocatalysts were used for photocatalytic disinfection of E. coli. The results showed that the photocatalytic disinfection of the TG nanocomposite was increased after sensitization with porphyrin. The enhanced photocatalytic performance could be attributed to the synergistic effect between TiO_2, graphene and porphyrin sensitizer in the TGP photocatalyst. - Highlights: • TiO_2–graphene nanocomposites (TG) were synthesized with different content of graphene. • The TG nanocomposite with different content of graphene was sensitized with porphyrin (TGP). • The disinfection of E. coli using TGP was investigated in the visible light. • Porphyrin sensitizer increases effectively the photocatalytic disinfection efficiency of TGP. - Abstract: The present research deals with the development of a new heterogeneous photocatalysis system for disinfection of bacteria from wastewater by using TiO_2–graphene (TG) nanocomposite sensitized with tetrakis(4-carboxyphenyl)porphyrin (TCPP). The disinfection of wastewater using this photocatalyst is not reported in the literature yet. All the synthesized materials were thoroughly characterized by Raman, XRD, DRS, BET, and SEM analysis. The optimum content of graphene in the TiO_2–graphene nanocomposite was determined by photocurrent responses of prepared photocatalysts. Subsequently, the photocurrent measurements demonstrate that the TiO_2–graphene nanocomposite with 3% graphene content has higher photoactivity. Furthermore, sensitization of the TiO_2

  18. TiO2 supported over porous silica photocatalysts for pesticide degradation using solar light: Part 2. Silica prepared using acrylic acid emulsion

    International Nuclear Information System (INIS)

    Phanikrishna Sharma, Mangalampalli V.; Durga Kumari, Valluri; Subrahmanyam, Machiraju

    2010-01-01

    An acrylic acid emulsion mixture is used for synthesis of novel porous silica (E-Si) material. The photocatalytic activity of TiO 2 under solar light irradiation for isoproturon (herbicide) degradation is drastically increased when dispersed over E-Si support using solid state dispersion (SSD) technique. The composite material is characterized by XRD, nitrogen adsorption-desorption isotherms, UV-vis DRS, SEM and TEM measurements. The photocatalytic activities of the composite catalysts are evaluated for different parameters. The 5 wt% TiO 2 /E-Si is found to be highly active for isoproturon degradation.

  19. An electrochemical aptasensor based on TiO2/MWCNT and a novel synthesized Schiff base nanocomposite for the ultrasensitive detection of thrombin.

    Science.gov (United States)

    Heydari-Bafrooei, Esmaeil; Amini, Maryam; Ardakani, Mehdi Hatefi

    2016-11-15

    A sensitive aptasensor based on a robust nanocomposite of titanium dioxide nanoparticles, multiwalled carbon nanotubes (MWCNT), chitosan and a novel synthesized Schiff base (SB) (TiO2/MWCNT/CHIT/SB) on the surface of a glassy carbon electrode (GCE) was developed for thrombin detection. The resultant nanocomposite can provide a large surface area, excellent electrocatalytic activity, and high stability, which would improve immobilization sites for biological molecules, allow remarkable amplification of the electrochemical signal and contribute to improved sensitivity. Thrombin aptamers were simply immobilized onto the TiO2-MWCNT/CHIT-SB nanocomposite matrix through simple π - π stacking and electrostatic interactions between CHIT/SB and aptamer strands. The electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to analyze the surface characterization of unmodified GCE and TiO2-MWCNT/CHIT-SB modified GCE, and also the interaction between aptamer and thrombin. In the presence of thrombin, the aptamer on the adsorbent layer captures the target on the electrode interface, which makes a barrier for electrons and inhibits electron transfer, thereby resulting in decreased DPV and increased impedance signals of the TiO2-MWCNT/CHIT-SB modified GCE. Furthermore, the proposed aptasensor has a very low LOD of 1.0fmolL(-1) thrombin within the detection range of 0.00005-10nmolL(-1). The aptasensor also presents high specificity and reproducibility for thrombin, which is unaffected by the coexistence of other proteins. Clinical application was performed with analysis of the thrombin levels in blood and CSF samples obtained from patients with MS, Parkinson, Epilepsy and Polyneuropathy using both the aptasensor and commercial ELISA kit. The results revealed the proposed system to be a promising candidate for clinical analysis of thrombin. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. High efficient photocatalytic activity from nanostructuralized photonic crystal-like p-n coaxial hetero-junction film photocatalyst of Cu3SnS4/TiO2 nanotube arrays

    Science.gov (United States)

    Li, Yan; Liu, Fang-Ting; Chang, Yin; Wang, Jian; Wang, Cheng-Wei

    2017-12-01

    Structuring the materials in the form of photonic crystals is a new strategy for photocatalytic applications. Herein, a new concept of photonic crystal-induced p-n coaxial heterojunction film photocatalyst of Cu3SnS4/TiO2 (CTS/PhC-TNAs) was well-designed and successfully fabricated by combining periodic pulse anodic oxidation and in-situ self-assembling methods Such nanostructured CTS/PhC-TNAs exhibited significantly improved photocatalytic degradation activity under simulated sunlight irradiation with methyl orange (MO) as the target pollutants. Within 120 min, 82% of the MO (10 mg/L) was photodegraded and its kinetic constant per specific surface area reached 0.05332 μmol/m2h, which is 1.6 and 12.8 times more quickly than that of PhC-TNAs and CTS, respectively. Its significantly enhanced photocatalytic activity could be mainly attributed to a joint effect of the unique photonic crystal property of PhC-TNAs and the nanostructured hollow p-n coaxial hetero-junction, which result in an increased efficiency of charge separation and transfer and also an improved spectral response capability. This photonic crystal film photocatalyst has the potential for enhancing the photocatalytic activity via further optimizing the photonic stop band of PhC-TNAs. The study presents a new means to design the kind of photonic crystal structural-induced novel photocatalysts with high photocatalytic activities in pollution treatment.

  1. Decolorization of dyeing wastewater in continuous photoreactors using tio2 coated glass tube media

    Directory of Open Access Journals (Sweden)

    Jutaporn Chanathaworn

    2014-02-01

    Full Text Available The present study deals with a decolorization development of malachite green (MG dyeing wastewater using TiO2 thin films coated glass tube media in photoreactor. The TiO2 photocatalyst was synthesized by three methods: TTIP sol-gel, TiO2 powder-modified sol, and TiO2 powder suspension coating on raschig ring glass tube media and was investigated crystallinity phase by SEM, XRD, and AFM. Degradation kinetics of the dyeing wastewater by photocatalytic was carried out under UV light irradiation. The Langmuir first-order model provided the best fit to the experimental data. The catalyst prepared by powder suspension technique and coated on glass tube had given the highest of decolorization kinetics and efficiency. Continuous photoreactor packed with the TiO2 coating media was designed and proven to be the high effectiveness for MG dyeing degradation and stable throughout the recyclability test. The light intensity, dye solution flow rate, and TiO2 loading were the most important parameters that response to decolorization efficiency. The optimum condition of photo decolorization of MG dye solution can be obtained from RSM model. Effectiveness of the synthesized TiO2 thin films using suspension technique and the continuous photoreactor design were obtained with a great potential to be proven for wastewater treatment at industrial scale.

  2. The Influence of Cr3+ on TiO2 Crystal Growth and Photoactivity Properties

    Science.gov (United States)

    Wahyuningsih, S.; Hidayatika, W. N.; Sari, P. L.; Sari, P. P.; Hidayat, R.; Munawaroh, H.; Ramelan, A. H.

    2018-03-01

    The photocatalyst technology is an integrated combination of photochemical processes and catalysis in order to carry out a chemical transformation reaction. One of the semiconductor materials that have good photocatalytic activity is TiO2 anatase. This study aim to determine the effect of the Cr3+ addition on the growth of TiO2 rutile crystal and the increasing of TiO2 photoactivity. Diffractogram X-Ray of the samples showed that the synthesized TiO2 at 400 °C has been produced 100% TiO2 anatase. Synthesis of TiO2 doped Cr3+ composite was using wet impregnation method. The TiO2 doped Cr3+ composites have beed grown by annealed at a temperature of 300, 400, 500, 600 and 700 °C, respectively Annealing process have capabled to gain to the TiO2 doped Cr3+ nanocomposite. The result product annealed at 500 °C only appear anatase phase due to the Cr3+ addition influence that was able to suppress the growth of rutile. Identification of TiO2 doped Cr3+ composite using Fourier Transform Infra-Red (FT-IR) showed O-Cr vibration at 2283.72 cm-1. The TiO2 doped Cr3+ photoactivity was studied to degrade Rhodamin B. The best result on photodegradation of Rhodamin B was performed by using TiO2 doped Cr3+ composite which was annealed at 700 °C i.e. 74.71%.

  3. Optimizing Thermoelectric Properties of In Situ Plasma-Spray-Synthesized Sub-stoichiometric TiO2-x Deposits

    Science.gov (United States)

    Lee, Hwasoo; Seshadri, Ramachandran Chidambaram; Pala, Zdenek; Sampath, Sanjay

    2018-06-01

    In this article, an attempt has been made to relate the thermoelectric properties of thermal spray deposits of sub-stoichiometric titania to process-induced phase and microstructural variances. The TiO2-x deposits were formed through the in situ reaction of the TiO1.9 or TiO1.7 feedstock within the high-temperature plasma flame and manipulated via varying the amounts of hydrogen fed into in the thermal plasma. Changes in the flow rates of H2 in the plasma plume greatly affected the in-flight particle behavior and composition of the deposits. For reference, a high-velocity oxy-fuel spray torch was also used to deposit the two varieties of feedstocks. Refinements to the representation of the in-flight particle characteristics derived via single particle and ensemble diagnostic methods are proposed using the group parameters (melting index and kinetic energy). The results show that depending on the value of the melting index, there is an inverse proportional relationship between electrical conductivity and Seebeck coefficient, whereas thermal conductivity has a directly proportional relationship with the electrical conductivity. Retention of the original phase and reduced decomposition is beneficial to retain the high Seebeck coefficient or the high electrical conductivity in the TiO2 system.

  4. TiO2-coated Hollow Glass Microspheres with Superhydrophobic and High IR-reflective Properties Synthesized by a Soft-chemistry Method.

    Science.gov (United States)

    Wong, Yinting; Zhong, Dan; Song, Aotian; Hu, Yan

    2017-04-26

    This manuscript proposes a soft-chemistry method to develop superhydrophobic and highly IR-reflective hollow glass microspheres (HGM). The anatase TiO2 and a superhydrophobic agent were coated on the HGM surface in one step. TBT and PFOTES were selected as the Ti source and the superhydrophobic agent, respectively. They were both coated on the HGM, and after the hydrothermal process, the TBT turned to anatase TiO2. In this way, a PFOTES/TiO2-coated HGM (MCHGM) was prepared. For comparison, PFOTES single-coated HGM (F-SCHGM) and TiO2 single-coated HGM (Ti-SCHGM) were synthesized as well. The PFOTES and TiO2 coatings on the HGM surface were demonstrated through X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive detector (EDS) characterizations. The MCHGM showed a higher contact angle (153°) but a lower sliding angle (16°) than F-SCHGM, with a contact angle of 141.2° and a sliding angle of 67°. In addition, both Ti-SCHGM and MCHGM displayed similar IR reflectivity values, which were about 5.8% higher than the original HGM and F-SCHGM. Also, the PFOTES coating barely changed the thermal conductivity. Therefore, F-SCHGM, with a thermal conductivity of 0.0479 W/(m·K), was quite like the original HGM, which was 0.0475 W/(m·K). MCHGM and Ti-SCHGM were also similar. Their thermal conductivity values were 0.0543 W/(m·K) and 0.0543 W/(m·K), respectively. The TiO2 coating slightly increased the thermal conductivity, but with the increase in reflectivity, the overall heat-insulation property was enhanced. Finally, since the IR-reflecting property is provided by the HGM coating, if the coating is fouled, the reflectivity decreases. Therefore, with the superhydrophobic coating, the surface is protected from fouling, and its lifetime is also prolonged.

  5. Computational Fluid Dynamics (CFD Analysis of Phthalic Anhydride’s Yield Using Lab Synthesized and Commercially Available (V2O5/TiO2 Catalyst

    Directory of Open Access Journals (Sweden)

    A. Sarosh

    2018-04-01

    Full Text Available V2O5/TiO2 is an important catalyst used in many industrial reactions like selective oxidation of o-xylene to phthalic anhydride, selective catalytic reduction of NOx, selective oxidation of alkanes, etc. The partial oxidation of o-xylene to synthesize phthalic anhydride is an exothermic reaction and leaves hot spots on the catalyst’s surface. The yield of phthalic anhydride strongly depends on the activity and stability of the catalyst. In this work, a computational fluid dynamics (CFD analysis has been conducted to compare the yield of lab prepared catalyst with the commercially used catalyst. This work is first attempt to simulate V2O5/TiO2 catalyst for cracking heavy hydrocarbons in the petrochemical industry using k- ε turbulence and species transport models in CFD. The results obtained are in the form of scaled residuals, area-weighted average, and contours of pressure and temperature. Simulation results of lab synthesized and commercially used catalysts, applying finite volume method (FVM are compared, which emphasize the scope of CFD modeling in the catalytic cracking process of petrochemical industry.

  6. Solar photocatalytic activity of TiO2 modified with WO3 on the degradation of an organophosphorus pesticide

    International Nuclear Information System (INIS)

    Ramos-Delgado, N.A.; Gracia-Pinilla, M.A.; Maya-Treviño, L.; Hinojosa-Reyes, L.; Guzman-Mar, J.L.; Hernández-Ramírez, A.

    2013-01-01

    Highlights: • TiO 2 and WO 3 /TiO 2 (2 and 5%) were tested in the photocatalytic malathion degradation. • The use of solar radiation in the photocatalytic degradation process was evaluated. • Modified catalyst showed greater photocatalytic activity than pure TiO 2 . • The mineralization rate was improved when WO 3 content on TiO 2 was 2%. -- Abstract: In this study, the solar photocatalytic activity (SPA) of WO 3 /TiO 2 photocatalysts synthesized by the sol–gel method with two different percentages of WO 3 (2 and 5%wt) was evaluated using malathion as a model contaminant. For comparative purpose bare TiO 2 was also prepared by sol–gel process. The powders were characterized by X-ray diffraction (XRD), Raman spectroscopy, diffuse reflectance UV–vis spectroscopy (DRUV–vis), specific surface area by the BET method (SSA BET ), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and scanning transmission electron microscopy with a high annular angle dark field detector (STEM-HAADF). The XRD, Raman, HRTEM and STEM-HAADF analyses indicated that WO 3 was present as a monoclinic crystalline phase with nanometric cluster sizes (1.1 ± 0.1 nm for 2% WO 3 /TiO 2 and 1.35 ± 0.3 nm for 5% WO 3 /TiO 2 ) and uniformly dispersed on the surface of TiO 2 . The particle size of the materials was 19.4 ± 3.3 nm and 25.6 ± 3 nm for 2% and 5% WO 3 /TiO 2 , respectively. The SPA was evaluated on the degradation of commercial malathion pesticide using natural solar light. The 2% WO 3 /TiO 2 photocatalyst exhibited the best photocatalytic activity achieving 76% of total organic carbon (TOC) abatement after 300 min compared to the 5% WO 3 /TiO 2 and bare TiO 2 photocatalysts, which achieved 28 and 47% mineralization, respectively. Finally, experiments were performed to assess 2% WO 3 /TiO 2 catalyst activity on repeated uses; after several successive cycles its photocatalytic activity was retained showing long-term stability

  7. Photocatalytic degradation of Rhodamine B dye using Fe doped TiO2 nanocomposites

    Science.gov (United States)

    Barkhade, Tejal; Banerjee, Indrani

    2018-05-01

    The unique properties of titanium dioxide (TiO2) such as high photo catalytic activity, high chemical stability and low toxicity have made it a suitable photocatalyst in recent decades. The effect of modification of TiO2 with doping of iron on its characteristics and photo catalytic efficiency was studied. The change in band gap energy of TiO2 nanoparticles after doping with Fe has been studied. Significant enhancement in photo catalytic property of TiO2 after Fe doping under light exposure conditions has been investigated. Acute exposure to non-biodegradable Rhodamine B resulted in many health problems like burning of eyes, skin irritation, nasal burning, and chest pain etc. Therefore, degradation of this dye is needed to save environment and animals. Considering the similar radius of Fe3+ and Ti4+ ions (respectively 0.64 Å and 0.68 Å), titanium position in the lattice of TiO2 can be replaced by iron cations easily. The undoped and Fe doped TiO2 nano composites were synthesized by sol-gel method, in which 1.0M% of Fe was doped with TiO2 and then the samples were characterized by using FE-SEM, UV-Visible diffuse spectroscopy, Raman Spectroscopy, and FTIR. Photo catalytic degradation of Rhodamine B dye experiment was carried out in visible light range. After 90 min time duration pink colour of dye turned colourless, indicating significant degradation rate with time.

  8. Bactericidal performance of visible-light responsive titania photocatalyst with silver nanostructures.

    Directory of Open Access Journals (Sweden)

    Ming-Show Wong

    Full Text Available BACKGROUND: Titania dioxide (TiO(2 photocatalyst is primarily induced by ultraviolet light irradiation. Visible-light responsive anion-doped TiO(2 photocatalysts contain higher quantum efficiency under sunlight and can be used safely in indoor settings without exposing to biohazardous ultraviolet light. The antibacterial efficiency, however, remains to be further improved. METHODOLOGY/PRINCIPAL FINDINGS: Using thermal reduction method, here we synthesized silver-nanostructures coated TiO(2 thin films that contain a high visible-light responsive antibacterial property. Among our tested titania substrates including TiO(2, carbon-doped TiO(2 [TiO(2 (C] and nitrogen-doped TiO(2 [TiO(2 (N], TiO(2 (N showed the best performance after silver coating. The synergistic antibacterial effect results approximately 5 log reductions of surviving bacteria of Escherichia coli, Streptococcus pyogenes, Staphylococcus aureus and Acinetobacter baumannii. Scanning electron microscope analysis indicated that crystalline silver formed unique wire-like nanostructures on TiO(2 (N substrates, while formed relatively straight and thicker rod-shaped precipitates on the other two titania materials. CONCLUSION/SIGNIFICANCE: Our results suggested that proper forms of silver on various titania materials could further influence the bactericidal property.

  9. Effect of sonochemical synthesized TiO2 nanoparticles and coagulation bath temperature on morphology, thermal stability and pure water flux of asymmetric cellulose acetate membranes prepared via phase inversion method

    Directory of Open Access Journals (Sweden)

    Abedini Reza

    2012-01-01

    Full Text Available In this study, asymmetric pure CA and CA/ TiO2 composite membranes were prepared via phase inversion by dispersing TiO2 nanopaticles in the CA casting solutions induced by immersion precipitation in water coagulation bath. TiO2 nanoparticles, which were synthesized by the sonochemical method, were added into the casting solution with different concentrations. Effects of TiO2 nanoparticles concentration (0 wt. %, 5wt.%, 10wt.%, 15wt.%, 20wt.% and 25wt.% and coagulation bath temperature (CBT= 25°C, 50°C and 75°C on morphology, thermal stability and pure water flux (PWF of the prepared membranes were studied and discussed. Increasing TiO2 concentration in the casting solution film along with higher CBT resulted in increasing the membrane thickness, water content (WC, membrane porosity and pure water flux (PWF, also these changes facilitate macrovoids formation. Thermal gravimetric analysis (TGA shows that thermal stability of the composite membranes were improved by the addition of TiO2 nanopaticles. Also TGA results indicated that increasing CBT in each TiO2 concentration leads to the decreasing of decomposition temperature (Td of hybrid membranes.

  10. New insight into the disinfection mechanism of Fusarium monoliforme and Aspergillus niger by TiO2 photocatalyst under low intensity UVA light.

    Science.gov (United States)

    Pokhum, Chonlada; Viboonratanasri, Duangamon; Chawengkijwanich, Chamorn

    2017-11-01

    Titanium dioxide (TiO 2) photocatalytic reaction has great potential for the disinfection of harmful pathogens. However, the disinfection mechanisms of TiO 2 photocatalysis are not yet well-known for fungi and protozoa. In this work, the photocatalytic disinfection mechanism of Fusarium monoliforme and Aspergillus niger under low intensity UVA light (365nm, niger was more sensitive to UVA-light. Serious destructions of cell membrane and cellular organelles were shown in A. niger exposed to UVA-light only and photocatalytic treatments. However, morphological change in A. niger cell wall was only observed in photocatalytic treatment. Changes to the outermost melanin like layer and cell wall of A. niger spore due to photocatalytic treatment were greatly apparent while the intracellular organelles of A. niger spore were not affected. Therefore, regrowth of A. niger on agar plate was expected from the germination of A. niger spore in the subsequent dark. These observations give a better understanding of the photocatalytic disinfection mechanism toward fungi. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Effect of W doping level on TiO2 on the photocatalytic degradation of Diuron.

    Science.gov (United States)

    Foura, Ghania; Soualah, Ahcène; Robert, Didier

    2017-01-01

    In the present study, three compositions of W-doped titania nano-photocatalyst are synthesized via the sol-gel method. The powders obtained were characterized by X-ray diffraction, Raman spectroscopy and UV-visible diffuse reflectance spectroscopy. The photocatalytic performances of the different photocatalysts are tested with respect to the degradation of Diuron in water solutions under simulated solar light and visible light irradiation. The W 0.03 Ti 0.97 O 2 catalyst exhibits better photoactivity than the pure TiO 2 even under simulated solar light and visible light. This improvement in activity was attributed to photoelectron/hole separation efficiency.

  12. Enhanced Photocatalytic Activity of TiO2 Nanoparticles Supported on Electrically Polarized Hydroxyapatite.

    Science.gov (United States)

    Zhang, Xuefei; Yates, Matthew Z

    2018-05-23

    Fast recombination of photogenerated charge carriers in titanium dioxide (TiO 2 ) remains a challenging issue, limiting the photocatalytic activity. This study demonstrates increased photocatalytic performance of TiO 2 nanoparticles supported on electrically polarized hydroxyapatite (HA) films. Dense and thermally stable yttrium and fluorine co-doped HA films with giant internal polarization were synthesized as photocatalyst supports. TiO 2 nanoparticles deposited on the support were then used to catalyze the photochemical reduction of aqueous silver ions to produce silver nanoparticles. It was found that significantly more silver nanoparticles were produced on polarized HA supports than on depolarized HA supports. In addition, the photodegradation of methyl orange with TiO 2 nanoparticles on polarized HA supports was found to be much faster than with TiO 2 nanoparticles on depolarized HA supports. It is proposed that separation of photogenerated electrons and holes in TiO nanoparticles is promoted by the internal polarization of the HA support, and consequently, the recombination of charge carriers is mitigated. The results imply that materials with large internal polarization can be used in strategies for enhancing quantum efficiency of photocatalysts.

  13. Evaluation of micro-abrasion-corrosion on SiO2-TiO2-ZrO2 coatings synthesized by the sol-gel method

    Science.gov (United States)

    Bautista Ruiz, J.; Aperador, W.; Caballero Gómez, J.

    2016-02-01

    The medical science and the engineering, work to improve the materials used in the manufacture of joint implants, since they have a direct impact on the quality of people life. The surgical interventions are increasing worldwide with a high probability of a second or even a third intervention. Around these circumstances, it was evaluated the behaviour against microabrasion-corrosion phenomena on SiO2 TiO2 ZrO2 coatings, synthesized by the sol-gel method with concentration of the Si/Ti/Zr precursors: 10/70/20 and 10/20/70. The coatings were deposited on AISI 316 LVM stainless steel substrates. The morphological characterization of the wear was made by AFM techniques. It was observed that the coatings with higher levels of titanium have a good response to the phenomena of microabrasion-corrosion.

  14. TiO2-SnS2 nanocomposites: solar-active photocatalytic materials for water treatment.

    Science.gov (United States)

    Kovacic, Marin; Kusic, Hrvoje; Fanetti, Mattia; Stangar, Urska Lavrencic; Valant, Matjaz; Dionysiou, Dionysios D; Bozic, Ana Loncaric

    2017-08-01

    The study is aimed at evaluating TiO 2 -SnS 2 composites as effective solar-active photocatalysts for water treatment. Two strategies for the preparation of TiO 2 -SnS 2 composites were examined: (i) in-situ chemical synthesis followed by immobilization on glass plates and (ii) binding of two components (TiO 2 and SnS 2 ) within the immobilization step. The as-prepared TiO 2 -SnS 2 composites and their sole components (TiO 2 or SnS 2 ) were inspected for composition, crystallinity, and morphology using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDX) analyses. Diffuse reflectance spectroscopy (DRS) was used to determine band gaps of immobilized TiO 2 -SnS 2 and to establish the changes in comparison to respective sole components. The activity of immobilized TiO 2 -SnS 2 composites was tested for the removal of diclofenac (DCF) in aqueous solution under simulated solar irradiation and compared with that of single component photocatalysts. In situ chemical synthesis yielded materials of high crystallinity, while their morphology and composition strongly depended on synthesis conditions applied. TiO 2 -SnS 2 composites exhibited higher activity toward DCF removal and conversion in comparison to their sole components at acidic pH, while only in situ synthesized TiO 2 -SnS 2 composites showed higher activity at neutral pH.

  15. Rapid photo-degradation of 2-chlorophenol under visible light irradiation using cobalt oxide-loaded TiO2/reduced graphene oxide nanocomposite from aqueous media.

    Science.gov (United States)

    Sharma, Ajit; Lee, Byeong-Kyu

    2016-01-01

    The photocatalytic removal of 2-chlorophenol (2-CP) from water environment was investigated by TiO2-RGO-CoO. Cobalt oxide-loaded TiO2 (TiO2-CoO) supported with reduced graphene oxide (RGO) was synthesized using a sol-gel method and then annealed at 500 °C for 5 min. The material characteristics were analyzed by UV-Vis analysis, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy. Incorporation of cobalt oxide and RGO into the TiO2 system (TiO2-RGO-CoO) lowered the band gap energy to 2.83 eV, which greatly enhanced the visible light absorption. The TiO2-RGO-CoO photocatalyst showed complete removal of 20 mg/L 2-CP within 8 h with the addition of 0.01% H2O2 under 100 W visible light irradiation. The photo-degradation efficiency of 2-CP (10 mg/L) was 35.2, 48.9, 58.9 and 98.2% for TiO2, TiO2-RGO, TiO2-CoO and TiO2-RGO-CoO, respectively, in the presence of visible light irradiation at solution pH of 6.0. The TiO2-RGO-CoO photocatalyst retained its high removal efficiency even after five photocatalytic cycles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. A Cost-Effective Solid-State Approach to Synthesize g-C3N4 Coated TiO2 Nanocomposites with Enhanced Visible Light Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Min Fu

    2013-01-01

    Full Text Available Novel graphitic carbon nitride (g-C3N4 coated TiO2 nanocomposites were prepared by a facile and cost-effective solid-state method by thermal treatment of the mixture of urea and commercial TiO2. Because the C3N4 was dispersed and coated on the TiO2 nanoparticles, the as-prepared g-C3N4/TiO2 nanocomposites showed enhanced absorption and photocatalytic properties in visible light region. The as-prepared g-C3N4 coated TiO2 nanocomposites under 450°C exhibited efficient visible light photocatalytic activity for degradation of aqueous MB due to the increased visible light absorption and enhanced MB adsorption. The g-C3N4 coated TiO2 nanocomposites would have wide applications in both environmental remediation and solar energy conversion.

  17. Enhancement of Ce/Cr Codopant Solubility and Chemical Homogeneity in TiO2 Nanoparticles through Sol-Gel versus Pechini Syntheses.

    Science.gov (United States)

    Chen, Wen-Fan; Mofarah, Sajjad S; Hanaor, Dorian Amir Henry; Koshy, Pramod; Chen, Hsin-Kai; Jiang, Yue; Sorrell, Charles Christopher

    2018-06-18

    Ce/Cr codoped TiO 2 nanoparticles were synthesized using sol-gel and Pechini methods with heat treatment at 400 °C for 4 h. A conventional sol-gel process produced well-crystallized anatase, while Pechini synthesis yielded less-ordered mixed-phase anatase + rutile; this suggests that the latter method enhances Ce solubility and increases chemical homogeneity but destabilizes the TiO 2 lattice. Greater structural disruption from the decomposition of the Pechini precursor formed more open agglomerated morphologies, while the lower levels of structural disruption from pyrolysis of the dried sol-gel precursor resulted in denser agglomerates of lower surface areas. Codoping and associated destabilization of the lattice reduced the binding energies in both powders. Cr 4+ formation in sol-gel powders and Cr 6+ formation in Pechini powders suggest that these valence changes derive from synergistic electron exchange from intervalence and/or multivalence charge transfer. Since Ce is too large to allow either substitutional or interstitial solid solubility, the concept of integrated solubility is introduced, in which the Ti site and an adjacent interstice are occupied by the large Ce ion. The photocatalytic performance data show that codoping was detrimental owing to the effects of reduced crystallinity from lattice destabilization and surface area. Two regimes of mechanistic behavior are seen, which are attributed to the unsaturated solid solutions at lower codopant levels and supersaturated solid solutions at higher levels. The present work demonstrates that the Pechini method offers a processing technique that is superior to sol-gel because the former facilitates solid solubility and consequent chemical homogeneity.

  18. Synthesis and photocatalytic activity of anatase TiO2 nanoparticles for degradation of methyl orange

    Science.gov (United States)

    Singh, Manmeet; Duklan, Neha; Singh, Pritpal; Sharma, Jeewan

    2018-05-01

    In present study, TiO2 nanoparticles, in anatase form, were successfully synthesized using TiCl4 as precursor. These nanoparticles were synthesized by sol-gel method at room temperature (298 K). As prepared samples were characterized for phase structure, optical absorption and surface properties using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Raman spectroscopy and UV-Visible spectroscopy. The synthesized TiO2 nanoparticles sample was compared with one of the most efficient commercial photocatalyst Degussa TiO2 also known as P(25). The effect of phase composition of anatase TiO2 nanoparticles, as compared to P(25), on photocatalytic decomposition of organic dye, methyl orange (MO) was studies under UV light illumination. An enhanced degradation of hazardous dye was observed in the presence of anatase TiO2 nanoparticles as compared to P(25) due to slow recombination rate. Other possible reasons for this enhancement have also been discussed.

  19. Enhanced photocatalytic degradation of dyes under sunlight using biocompatible TiO2 nanoparticles

    Science.gov (United States)

    Bharati, B.; Sonkar, A. K.; Singh, N.; Dash, D.; Rath, Chandana

    2017-08-01

    As TiO2 is one of the most popular photocatalysts, we have studied here the photocatalytic degradation of the most common dyestuffs like rhodamine B (RhB), congo red (CR) and methylene blue (MB), which mainly come from the textile and photographic industries using nanoparticles of TiO2. Nanoparticles of TiO2 synthesized through a simple and cost effective sol-gel technique crystallizes in the anatase phase, showing a band gap less than that of bulk value. Particles consisting of coherently scattered domains of size 33 nm are found to be agglomerated and polycrystalline in nature. While the degradation rates of MB, CR and RhB after irradiating with a renewable source of energy, i.e. sunlight, show 100% degradation, TiO2 irradiated with UV light of 4.8 eV shows a much slower degradation rate. To use the waste water after photocatalysis, we examine further the biocompatibile nature of the TiO2 nanoparticles by platelet interaction activity, hemolysis effect and MTT assay. It is worth mentioning here that TiO2 nanoparticles are found to be highly hemocompatible, show no platelet aggregation, and the level of intracellular ROS in human platelets does not show significant change in ROS level. We conclude that TiO2 nanoparticles constitute an excellent photocatalyst and biocompatible material, and that after photocatalytic degradation of dye effluents obtained from textile industries, purified water can be used in agriculture and domestic sectors.

  20. Photocatalyst based on TiO2 nanotube arrays co-decorated with CdS quantum dots and reduced graphene oxide irradiated by γ rays for effective degradation of ethylene

    Science.gov (United States)

    Zhang, Quan; Ye, Shengying; Song, Xianliang; Luo, Shucan

    2018-06-01

    We report herein a means of transforming TiO2 nanotube arrays (TNAs) from an amorphous state to an anatase crystal state (denoted as ∗TNAs), and present a single-step synthetic route for preparing CdS quantum dots (CdS QDs) as well as reduced graphene oxide (rGO) through gamma-ray irradiation. The as-prepared ∗TNAs, CdS QDs, and rGO, which had all been subjected to gamma-ray irradiation, were then assembled together to produce the desired heterojunction (denoted as CdS QDs/rGO-∗TNAs). X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), ultraviolet/visible diffuse-reflectance spectroscopy (UV/Vis DRS), Fourier-transform infrared spectroscopy (FTIR), micro-Raman spectrometry (RS), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS) have been applied to characterize the appearance and performance of this photocatalyst. The photocatalytic activity of CdS QDs/rGO-∗TNAs towards ethylene degradation has been measured by placing it in a simulated cold-storage environment, the temperature and humidity of which were set at about 3 ± 1 °C and 75-90%, respectively. The results showed that the rate constant (K) of ethylene degradation could reach up to 1.07 × 10-3 min-1 with CdS QDs/rGO-∗TNAs, as compared to 2.30 × 10-4 min-1 with ∗TNAs and 6.25 × 10-4 min-1 with CdS QDs-∗TNAs, indicating that the constructed CdS QDs/rGO-∗TNAs constitutes a promising photocatalyst for ethylene removal in a cold storage environment.

  1. Photocatalytic activity of TiO2 doped with boron and vanadium

    International Nuclear Information System (INIS)

    Bettinelli, M.; Dallacasa, V.; Falcomer, D.; Fornasiero, P.; Gombac, V.; Montini, T.; Romano, L.; Speghini, A.

    2007-01-01

    Boron (B)- and vanadium (V)-doped TiO 2 photocatalysts were synthesized using modified sol-gel reaction processes and characterized by X-ray diffraction (XRD), Raman spectroscopy and N 2 physisorption (BET). The photocatalytic activities were evaluated by monitoring the degradation of methylene blue (MB). The results showed that the materials possess high surface area. The addition of B favored the transformation of anatase to rutile, while in the presence of V, anatase was the only phase detected. The MB degradation on V-doped TiO 2 was significantly affected by the preparation method. In fact while the presence of V in the bulk did not influence strongly the photoreactivity under visible irradiation, an increase of surface V doping lead to improved photodegradation of MB. The degradation of MB dye indicated that the photocatalytic activities of TiO 2 increased as the boron doping increased, with high conversion efficiency for 9 mol% B doping

  2. MoS2 embedded TiO2 nanoparticles for concurrent role of adsorption and photocatalysis

    Science.gov (United States)

    Pal, Arnab; Jana, Tushar K.; Chatterjee, Kuntal

    2018-04-01

    In this work, MoS2 embedded TiO2 nanoparticles, synthesized through hydrothermal process, was successfully employed to remove organic pollutant dye like methylene blue(MB) through adsorption and as well as through photocatalysis under visible light irradiation. The system was characterized by structural and morphological study. The adsorption and photocatalytic study of MB were evaluated with different concentrations of dye in aqueous solution. This work brings the MoS2-TiO2 nanostructure as excellent adsorbent as well as efficient photocatalyst materials which can be used for organic dye removal towards waste-water treatment.

  3. Preparation, characterization and photocatalytic activity of TiO2 ...

    Indian Academy of Sciences (India)

    Photocatalyst; TiO2 nanoparticle; polyaniline; conducting polymer; core-shell nanocomposite. 1. Introduction ..... tine TiO2 nanoparticles, HCl-doped PANI and PANI/TiO2 ..... Karim M R, Lim K T, Lee M S, Kim K and Yeum J H 2009 Synth. Met.

  4. Photocatalytic properties of P25-doped TiO2 composite film synthesized via sol-gel method on cement substrate.

    Science.gov (United States)

    Guo, Xiang; Rao, Lei; Wang, Peifang; Wang, Chao; Ao, Yanhui; Jiang, Tao; Wang, Wanzhong

    2018-04-01

    TiO 2 films have received increasing attention for the removal of organic pollutants via photocatalysis. To develop a simple and effective method for improving the photodegradation efficiency of pollutants in surface water, we herein examined the preparation of a P25-TiO 2 composite film on a cement substrate via a sol-gel method. In this case, Rhodamine B (RhB) was employed as the target organic pollutant. The self-generated TiO 2 film and the P25-TiO 2 composite film were characterized by X-ray diffraction (XRD), N 2 adsorption/desorption measurements, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and diffuse reflectance spectroscopy (DRS). The photodegradation efficiencies of the two films were studied by RhB removal in water under UV (ultraviolet) irradiation. Over 4day exposure, the P25-TiO 2 composite film exhibited higher photocatalytic performance than the self-generated TiO 2 film. The photodegradation rate indicated that the efficiency of the P25-TiO 2 composite film was enhanced by the addition of the rutile phase Degussa P25 powder. As such, cooperation between the anatase TiO 2 and rutile P25 nanoparticles was beneficial for separation of the photo-induced electrons and holes. In addition, the influence of P25 doping on the P25-TiO 2 composite films was evaluated. We found that up to a certain saturation point, increased doping enhanced the photodegradation ability of the composite film. Thus, we herein demonstrated that the doping of P25 powders is a simple but effective strategy to prepare a P25-TiO 2 composite film on a cement substrate, and the resulting film exhibits excellent removal efficiency in the degradation of organic pollutants. Copyright © 2017. Published by Elsevier B.V.

  5. Modeling Geometric Arrangements of TiO2-Based Catalyst Substrates and Isotropic Light Sources to Enhance the Efficiency of a Photocatalystic Oxidation (PCO) Reactor

    Science.gov (United States)

    Richards, Jeffrey T.; Levine, Lanfang H.; Husk, Geoffrey K.

    2011-01-01

    The closed confined environments of the ISS, as well as in future spacecraft for exploration beyond LEO, provide many challenges to crew health. One such challenge is the availability of a robust, energy efficient, and re-generable air revitalization system that controls trace volatile organic contaminants (VOCs) to levels below a specified spacecraft maximum allowable concentration (SMAC). Photocatalytic oxidation (PCO), which is capable of mineralizing VOCs at room temperature and of accommodating a high volumetric flow, is being evaluated as an alternative trace contaminant control technology. In an architecture of a combined air and water management system, placing a PCO unit before a condensing heat exchanger for humidity control will greatly reduce the organic load into the humidity condensate loop ofthe water processing assembly (WPA) thereby enhancing the life cycle economics ofthe WPA. This targeted application dictates a single pass efficiency of greater than 90% for polar VOCs. Although this target was met in laboratory bench-scaled reactors, no commercial or SBIR-developed prototype PCO units examined to date have achieved this goal. Furthermore, the formation of partial oxidation products (e.g., acetaldehyde) was not eliminated. It is known that single pass efficiency and partial oxidation are strongly dependent upon the contact time and catalyst illumination, hence the requirement for an efficient reactor design. The objective of this study is to maximize the apparent contact time and illuminated catalyst surface area at a given reactor volume and volumetric flow. In this study, a Ti02-based photocatalyst is assumed to be immobilized on porous substrate panels and illumination derived from linear isotropic light sources. Mathematical modeling using computational fluid dynamics (CFD) analyses were performed to investigate the effect of: 1) the geometry and configuration of catalyst-coated substrate panels, 2) porosity of the supporting substrate, and 3

  6. Synergistic operation of photocatalytic degradation and Fenton process by magnetic Fe3O4 loaded TiO2

    Science.gov (United States)

    Sun, Qiong; Hong, Yong; Liu, Qiuhong; Dong, Lifeng

    2018-02-01

    The magnetic Fe3O4 loaded anatase TiO2 photocatalysts with different mass ratios were successfully synthesized by a one-step convenient calcining method. The morphology and structure analysis revealed that Fe3O4 was formed in TiO2 with very fine-grained particles. After a small amount of Fe3O4 loaded onto TiO2, the photocatalytic property enhanced obviously for the degradation of organic dye. Furthermore, the photo-Fenton-like catalysis of the iron-containing samples could also be induced after the addition of hydrogen peroxide. The apparent kinetic constant of the reaction that catalyzed by Fe-TiO2 was about 5.3 and 8.3 times of that catalyzed by TiO2 or Fe3O4 only, respectively, proving an effective synergistic contribution of the photocatalysis and Fenton reaction in the composite. Compared with Fe3O4 or free Fe3+ ions, only 13% of iron in TiO2 dissolved into acidic solution (25% for Fe3O4 and 100% for Fe3+) after the reaction, which confirmed the iron had been well immobilized onto TiO2. In addition, the extremely stable photocatalytic activity in cycling experiments proved the immobilized iron had been tightly attached onto TiO2, indicating the great potential of the catalyst for practical applications.

  7. Supramolecular photocatalyst of RGO-cyclodextrin-TiO2

    International Nuclear Information System (INIS)

    Shen, Jianfeng; Li, Na; Ye, Mingxin

    2013-01-01

    Graphical abstract: Supramolecular photocatalyst of RGO-cyclodextrin-TiO 2 was achieved, which showed high photocatalytic activity and adsorption capacity. Highlights: •Supramolecular photocatalyst of RGO-cyclodextrin-TiO 2 was achieved. •β-CD molecules acted as linkers between RGO and monodisperse TiO 2 nanoparticles. •Reduction of GO and preparation of RGO-cyclodextrin-TiO 2 was simultaneous. •The prepared RGO-cyclodextrin-TiO 2 shows high photocatalytic activity and adsorption capacity. -- Abstract: Reduced graphene oxide (RGO)/β-cyclodextrin (β-CD)/titanium oxide (TiO 2 ) supramolecular photocatalyst was synthesized with a one-pot hydrothermal method. The reducing process was accomplished with the attaching of β-CD and generation of TiO 2 . β-CD acted as a linker between RGO and monodisperse TiO 2 nanoparticles. The structure and composition of the hybrid had been characterized by Fourier transform infrared spectroscopy, Raman spectroscopy, thermal gravimetric analysis, X-ray diffraction and Transmission electron microscopy. The as-prepared RGO-CD-TiO 2 showed significant enhanced performance for phenol and Cr (VI) removal, due to the effective transfer of photo-generated electron from TiO2 to RGO and improved absorbance performance of the hybrid

  8. Synthesis of TiO2 nanorod-decorated graphene sheets and their highly efficient photocatalytic activities under visible-light irradiation

    International Nuclear Information System (INIS)

    Lee, Eunwoo; Hong, Jin-Yong; Kang, Haeyoung; Jang, Jyongsik

    2012-01-01

    Highlights: ► TiO 2 nanorods were successfully decorated on the surface of graphene sheets. ► Population of TiO 2 nanorods can be controlled by changing experimental conditions. ► TiO 2 nanorod-decorated graphene sheets have an expanded light absorption range. ► TiO 2 nanorod-decorated graphene sheets showed unprecedented photocatalytic activity. - Abstract: The titanium dioxide (TiO 2 ) nanorod-decorated graphene sheets photocatalysts with different TiO 2 nanorods population have been synthesized by a simple non-hydrolytic sol–gel approach. Electron microscopy and X-ray diffraction analysis indicated that the TiO 2 nanorods are well-dispersed and successfully anchored on the graphene sheet surface through the formation of covalent bonds between Ti and C atoms. The photocatalytic activities are evaluated in terms of the efficiencies of photodecomposition and adsorption of methylene blue (MB) in aqueous solution under visible-light irradiation. The as-synthesized TiO 2 nanorod-decorated graphene sheets showed unprecedented photodecomposition efficiency compared to the pristine TiO 2 nanorods and the commercial TiO 2 (P-25, Degussa) under visible-light. It is believed that this predominant photocatalytic activity is due to the synergistic contribution of both a retarded charge recombination rate caused by a high electronic mobility of graphene and an increased surface area originated from nanometer-sized TiO 2 nanorods. Furthermore, photoelectrochemical study is performed to give deep insights into the primary roles of graphene that determines the photocatalytic activity.

  9. Photocatalytic H 2 production from water splitting under visible light irradiation using Eosin Y-sensitized mesoporous-assembled Pt/TiO 2 nanocrystal photocatalyst

    Science.gov (United States)

    Sreethawong, Thammanoon; Junbua, Chompoonuch; Chavadej, Sumaeth

    Sensitized photocatalytic production of hydrogen from water splitting is investigated under visible light irradiation over mesoporous-assembled titanium dioxide (TiO 2) nanocrystal photocatalysts, without and with Pt loading. The photocatalysts are synthesized by a sol-gel process with the aid of a structure-directing surfactant and are characterized by N 2 adsorption-desorption analysis, X-ray diffraction, UV-vis spectroscopy, scanning electron microscopy, transmission electron microscopy and energy-dispersive X-ray analysis. The dependence of hydrogen production on the type of TiO 2 photocatalyst (synthesized mesoporous-assembled and commercial non-mesoporous-assembled TiO 2 without and with Pt loading), the calcination temperature of the synthesized photocatalyst, the sensitizer (Eosin Y) concentration, the electron donor (diethanolamine) concentration, the photocatalyst dosage and the initial solution pH is systematically studied. The results show that in the presence of the Eosin Y sensitizer, the Pt-loaded mesoporous-assembled TiO 2 synthesized by a single-step sol-gel process and calcined at 500 °C exhibits the highest photocatalytic activity for hydrogen production from a 30 vol.% diethanolamine aqueous solution with dissolved 2 mM Eosin Y. Moreover, the optimum photocatalyst dosage and initial solution pH for the maximum photocatalytic activity for hydrogen production are 3.33 g dm -3 and 11.5, respectively.

  10. Photocatalytic growth of Ag nanocrystals on hydrothermally synthesized multiphasic TiO2/reduced graphene oxide (rGO) nanocomposites and their SERS performance

    Science.gov (United States)

    Guo, Tian-Long; Li, Ji-Guang; Sun, Xudong; Sakka, Yoshio

    2017-11-01

    TiO2/reduced graphene oxide (rGO) nanocomposites were prepared via a facile one-step hydrothermal method using TiCl3 as the TiO2 precursor. Cetyltrimethyl ammonium bromide (CTAB) was introduced as a stabilizer for GO in solution. The effects of GO content, Ti3+ concentration and urea additive on phase constituent and morphology of the TiO2 crystallites in the nanocomposites were systematically investigated. UV-vis absorption ability of the as-made composites was further tested and discussed. Ag nanocrystals (NCs) were photocatalytically grown on the surfaces of biphasic (anatase + brookite) and triphasic (anatase + brookite + rutile) TiO2/rGO nanocomposites to evaluate their surface-enhanced Raman scattering (SERS) performances. Morphology evolution of the Ag NCs in response to different photocatalytic ability of the TiO2/rGO nanocomposite was also investigated in detail. The nanocomposite with triphasic TiO2 of proper phase constituents was confirmed to favor the growth of Ag particles of two distinctly different sizes and to produce SERS substrates of substantially better performance.

  11. Photocatalytic Degradation of DIPA Using Bimetallic Cu-Ni/TiO2 Photocatalyst under Visible Light Irradiation

    Science.gov (United States)

    Bustam, Mohamad Azmi; Chong, Fai Kait; Man, Zakaria B.; Khan, Muhammad Saqib; Shariff, Azmi M.

    2014-01-01

    Bimetallic Cu-Ni/TiO2 photocatalysts were synthesized using wet impregnation (WI) method with TiO2 (Degussa-P25) as support and calcined at different temperatures (180, 200, and 300°C) for the photodegradation of DIPA under visible light. The photocatalysts were characterized using TGA, FESEM, UV-Vis diffuse reflectance spectroscopy, fourier transform infrared spectroscopy (FTIR) and temperature programmed reduction (TPR). The results from the photodegradation experiments revealed that the Cu-Ni/TiO2 photocatalysts exhibited much higher photocatalytic activities compared to bare TiO2. It was found that photocatalyst calcined at 200°C had the highest photocatalyst activities with highest chemical oxygen demand (COD) removal (86.82%). According to the structural and surface analysis, the enhanced photocatalytic activity could be attributed to its strong absorption into the visible region and high metal dispersion. PMID:25105158

  12. Photocatalytic Degradation of DIPA Using Bimetallic Cu-Ni/TiO2 Photocatalyst under Visible Light Irradiation

    Directory of Open Access Journals (Sweden)

    Nadia Riaz

    2014-01-01

    Full Text Available Bimetallic Cu-Ni/TiO2 photocatalysts were synthesized using wet impregnation (WI method with TiO2 (Degussa-P25 as support and calcined at different temperatures (180, 200, and 300°C for the photodegradation of DIPA under visible light. The photocatalysts were characterized using TGA, FESEM, UV-Vis diffuse reflectance spectroscopy, fourier transform infrared spectroscopy (FTIR and temperature programmed reduction (TPR. The results from the photodegradation experiments revealed that the Cu-Ni/TiO2 photocatalysts exhibited much higher photocatalytic activities compared to bare TiO2. It was found that photocatalyst calcined at 200°C had the highest photocatalyst activities with highest chemical oxygen demand (COD removal (86.82%. According to the structural and surface analysis, the enhanced photocatalytic activity could be attributed to its strong absorption into the visible region and high metal dispersion.

  13. Enhanced photoelectrochemical and photocatalytic behaviors of MFe2O4 (M = Ni, Co, Zn and Sr) modified TiO2 nanorod arrays

    Science.gov (United States)

    Gao, Xin; Liu, Xiangxuan; Zhu, Zuoming; Wang, Xuanjun; Xie, Zheng

    2016-07-01

    Modified TiO2 nanomaterials are considered to be promising in energy conversion and ferrites modification may be one of the most efficient modifications. In this research, various ferrites, incorporated with various cations (MFe2O4, M = Ni, Co, Zn, and Sr), are utilized to modify the well aligned TiO2 nanorod arrays (NRAs), which is synthesized by hydrothermal method. It is found that all MFe2O4/TiO2 NRAs show obvious red shift into the visible light region compared with the TiO2 NRAs. In particular, NiFe2O4 modification is demonstrated to be the best way to enhance the photoelectrochemical and photocatalytic activity of TiO2 NRAs. Furthermore, the separation and transfer of charge carriers after MFe2O4 modification are clarified by electrochemical impedance spectroscopy measurements. Finally, the underlying mechanism accounting for the enhanced photocatalytic activity of MFe2O4/TiO2 NRAs is proposed. Through comparison among different transition metals modified TiO2 with the same synthesis process and under the same evaluating condition, this work may provide new insight in designing modified TiO2 nanomaterials as visible light active photocatalysts.

  14. TiO2 and SiC nanostructured films, organized CNT structures

    Indian Academy of Sciences (India)

    sized nanostructured TiO2 films through hydrolysis of titanium tetra-isopropoxide. (TTIP) [9 ... structured TiO2 as a photocatalyst is as follows [15]:. TiO2(ns) ... The deposited films were easily detached from the silica tube and subjected to. SEM.

  15. Hydrothermal synthesis of TiO2-ZnO-graphene nanocomposite towards photocatalytic and photovoltaic applications

    International Nuclear Information System (INIS)

    Gayathri, S.; Jayabal, P.; Ramakrishnan, V.

    2015-01-01

    Titanium dioxide (TiO 2 ) - Zinc oxide (ZnO) - Graphene (G) nanocomposite was successfully synthesized through facile hydrothermal method. The X-ray diffraction (XRD) pattern and the micro-Raman spectroscopic technique revealed the formation of TiO 2 -ZnO-Graphene (TZG) nanocomposite. The ZnO and TiO 2 nanoparticles decorated graphene sheets were clearly noticeable in the Field Emission Scanning Electron Micrograph (FE-SEM). The UV-Visible absorption spectra clearly indicated that the formation of TZG nanocomposite enriched the absorption in the visible region. Hence, the prepared nanocomposite can be used as photocatalyst to remove organic dyes from water and as photoanode in the fabrication of dye sensitized solar cells (DSSCs)

  16. Hydrothermal synthesis of TiO2-ZnO-graphene nanocomposite towards photocatalytic and photovoltaic applications

    Science.gov (United States)

    Gayathri, S.; Jayabal, P.; Ramakrishnan, V.

    2015-06-01

    Titanium dioxide (TiO2) - Zinc oxide (ZnO) - Graphene (G) nanocomposite was successfully synthesized through facile hydrothermal method. The X-ray diffraction (XRD) pattern and the micro-Raman spectroscopic technique revealed the formation of TiO2-ZnO-Graphene (TZG) nanocomposite. The ZnO and TiO2 nanoparticles decorated graphene sheets were clearly noticeable in the Field Emission Scanning Electron Micrograph (FE-SEM). The UV-Visible absorption spectra clearly indicated that the formation of TZG nanocomposite enriched the absorption in the visible region. Hence, the prepared nanocomposite can be used as photocatalyst to remove organic dyes from water and as photoanode in the fabrication of dye sensitized solar cells (DSSCs).

  17. A facile method to synthesize nitrogen and fluorine co-doped TiO2 nanoparticles by pyrolysis of (NH4)2TiF6

    International Nuclear Information System (INIS)

    Chen Daimei; Jiang Zhongyi; Geng Jiaqing; Zhu Juhong; Yang Dong

    2009-01-01

    The nitrogen and fluorine co-doped TiO 2 (N-F-TiO 2 ) nanoparticles of anatase crystalline structure were prepared by a facile method of (NH 4 ) 2 TiF 6 pyrolysis, and characterized by thermogravimetry-differential thermal analysis (TG-DTA), X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and ultraviolet visible (UV-Vis) spectroscopy etc. With the increase of calcination temperature, (NH 4 ) 2 TiF 6 decomposed into TiOF 2 and NH 4 TiOF 3 at first, and then formed anatase-type TiO 2 with thin sheet morphology. H 3 BO 3 as oxygen source can promote the formation of anatase TiO 2 , but decrease the F content in the N-F-TiO 2 materials due to the formation of volatile BF 3 during the precursor decomposition. The photocatalytic activity of the obtained N-F-TiO 2 samples was evaluated by the methylene blue degradation under visible light, and all the samples exhibited much higher photocatalytic activity than P25. Moreover, the merits and disadvantages of this proposed method to prepare doped TiO 2 are discussed.

  18. A novel single-step synthesis of N-doped TiO2 via a sonochemical method

    International Nuclear Information System (INIS)

    Wang, Xi-Kui; Wang, Chen; Guo, Wei-Lin; Wang, Jin-Gang

    2011-01-01

    Graphical abstract: The N-doped anatase TiO 2 nanoparticles were synthesized by sonochemical method. The as-prepared sample is characterized by XRD, TEM, XPS and UV-Vis DRS. The photocatalytic activity of the photocatalyst was evaluated by the photodegradation of an azo dye direct sky blue 5B. Highlights: → A novel singal-step sonochemical synthesis method for the preparation of anatase N-doped TiO 2 nanocrystalline at low temperature has been devoleped. → The as-prepared sample is characterized by XRD, TEM, XPS and UV-Vis DRS. → The photodegradation of azo dye direct sky blue 5 showed that the N-doped TiO 2 catalyst is of high visible-light photocatalytic activity. -- Abstract: A novel single-step synthetic method for the preparation of anatase N-doped TiO 2 nanocrystalline at low temperature has been devoleped. The N-doped anatase TiO 2 nanoparticles were synthesized by sonication of the solution of tetraisopropyl titanium and urea in water and isopropyl alcohol at 80 o C for 150 min. The as-prepared sample was characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy and UV-vis absorption spectrum. The product structure depends on the reaction temperature and reaction time. The photocatalytic activity of the as-prepared photocatalyst was evaluated via the photodegradation of an azo dye direct sky blue 5B. The results show that the N-doped TiO 2 nanocrystalline prepared via sonication exhibit an excellent photocatalytic activity under UV light and simulated sunlight.

  19. Preparation of micro/nanostructure TiO2 spheres by controlling pollen as hard template and soft template.

    Science.gov (United States)

    Yang, Xiaohui; Xu, Bin; Zhang, Xuehong; Song, Xiuqin; Chen, Rufen

    2014-09-01

    In this paper, micro/nanostructure TiO2 spheres were synthesized by a sunflower pollen induced and self-assembly mineralization process, in which a titania precursor and pollen reacted in one-pot at normal pressure. In this paper, the bio-template advantage, as hard and soft template is fully demonstrated. The superiority of our synthesis is that we not only can control pollen as hard template, but also can control it as soft template only by changing reactions temperature. Under 80 degrees C of water bath, TiO2 microspheres which replicated the morphology of pollen were prepared by controlling pollen as hard template. Under 100 degrees C, hierarchical TiO2 spheres with complicated morphology, different from pollen template, were synthesized by using pollen as soft template. At the same time, judicious choice of the amount of pollen affords the synthesis of hierarchical structures spheres with adjustable morphology and crystal structure. The morphology can be tuned from microspheres constructed from TiO2 nanorods to nanospheres constructed from TiO2 nanoparticles, and the crystal structure can be tuned from rutile to anatase. More over this anatase phase can be keep better even at high temperature of 1000 degrees C. The as-prepared micro/nano structure photocatalysts not only have high photocatalytic activities, but also have good separability and reuse performance.

  20. Synthesis, characterization and photocatalytic activity of WO3/TiO2 for NO removal under UV and visible light irradiation

    International Nuclear Information System (INIS)

    Luévano-Hipólito, E.; Martínez-de la Cruz, A.; López-Cuellar, E.; Yu, Q.L.; Brouwers, H.J.H.

    2014-01-01

    Samples with different proportions WO 3 /TiO 2 were prepared by co-precipitation method followed by a heat treatment. The samples were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance spectroscopy (DRS), and adsorption–desorption N 2 isotherms (BET). The photocatalytic properties of WO 3 /TiO 2 samples were evaluated in the photo-oxidation reaction of nitric oxide (NO) under UV and visible light irradiation. The highest photocatalytic activity was observed in the WO 3 /TiO 2 sample with a composition of 80% mole of TiO 2 . Among the different substrates used for supporting the photocatalyst, the best results were reached over concrete and glass when it was exposed to UV and visible light irradiation, respectively. In overall, the photocatalytic efficiency of the synthesized materials was higher under UV than visible light irradiation. - Highlights: • WO 3 /TiO 2 prepared in simple way show high photocatalytic activity for NO removal. • The concrete was the best substrate to the performance of WO 3 /TiO 2 with UV radiation. • The glass was the best substrate to the performance of WO 3 /TiO 2 with visible radiation

  1. Few-Layer MoS2 Nanodomains Decorating TiO2 Nanoparticles: A Case Study for the Photodegradation of Carbamazepine

    Directory of Open Access Journals (Sweden)

    Sara Cravanzola

    2018-03-01

    Full Text Available S-doped TiO2 and hybrid MoS2/TiO2 systems have been synthesized, via the sulfidation with H2S of the bare TiO2 and of MoOx supported on TiO2 systems, with the aim of enhancing the photocatalytic properties of TiO2 for the degradation of carbamazepine, an anticonvulsant drug, whose residues and metabolites are usually inefficiently removed in wastewater treatment plants. The focus of this study is to find a relationship between the morphology/structure/surface properties and photoactivity. The full characterization of samples reveals the strong effects of the H2S action on the properties of TiO2, with the formation of defects at the surface, as shown by transmission electron microscopy (TEM and infrared spectroscopy (IR, while also the optical properties are strongly affected by the sulfidation treatment, with changes in the electronic states of TiO2. Meanwhile, the formation of small and thin few-layer MoS2 domains, decorating the TiO2 surface, is evidenced by both high-resolution transmission electron microscopy (HRTEM and UV-Vis/Raman spectroscopies, while Fourier-transform infrared (FTIR spectra give insights into the nature of Ti and Mo surface sites. The most interesting findings of our research are the enhanced photoactivity of the MoS2/TiO2 hybrid photocatalyst toward the carbamazepine mineralization. Surprisingly, the formation of hazardous compounds (i.e., acridine derivatives, usually obtained from carbamazepine, is precluded when treated with MoS2/TiO2 systems.

  2. Structural Modification of Sol-Gel Synthesized V2O5 and TiO2 Thin Films with/without Erbium Doping

    Directory of Open Access Journals (Sweden)

    Fatma Pınar Gökdemir

    2014-01-01

    Full Text Available Comparative work of with/without erbium- (Er- doped vanadium pentoxide (V2O5 and titanium dioxide (TiO2 thin films were carried out via sol-gel technique by dissolving erbium (III nitrate pentahydrate (Er(NO33·5H2O in vanadium (V oxoisopropoxide (OV[OCH(CH32]3 and titanium (IV isopropoxide (Ti[OCH(CH32]4. Effect of Er doping was traced by Fourier transform IR (FTIR, thermogravimetric/differential thermal (TG/DTA, and photoluminescence measurements. UV-Vis transmission/absorption measurement indicated a blue shift upon Er doping in V2O5 film due to the softening of V=O bond while appearance of typical absorption peaks in Er-doped TiO2 film. Granule size of the films increased (reduced upon Er substitution on host material compared to undoped V2O5 and TiO2 films, respectively.

  3. TiO2-ITO and TiO2-ZnO nanocomposites: application on water treatment

    Directory of Open Access Journals (Sweden)

    Bessais B.

    2012-06-01

    Full Text Available One of the most promising ideas to enhance the photocatalytic efficiency of the TiO2 is to couple this photocatalyst with other semiconductors. In this work, we report on the development of photo-catalytic properties of two types of composites based on TiO2 – ITO (Indium Tin Oxide and TiO2 – ZnO deposited on conventional ceramic substrates. The samples were characterized by X-ray diffraction (XRD and transmission Electron Microscopy (TEM. The photo-catalytic test was carried out under UV light in order to reduce/oxidize a typical textile dye (Cibacron Yellow. The experiment was carried out in a bench scale reactor using a solution having a known initial dye concentration. After optimization, we found that both nanocomposites exhibit better photocatalytic activity compared to the standard photocatalyst P25 TiO2.

  4. Significant enhancement in the photocatalytic activity of N, W co-doped TiO2 nanomaterials for promising environmental applications

    International Nuclear Information System (INIS)

    Thind, Sapanbir S; Wu Guosheng; Tian Min; Chen Aicheng

    2012-01-01

    In this work, a mesoporous N, W co-doped TiO 2 photocatalyst was synthesized via a one-step solution combustion method, which utilized urea as the nitrogen source and sodium tungstate as the tungsten source. The photocatalytic activity of the N, W co-doped TiO 2 photocatalyst was significantly enhanced by a facile UV pretreatment approach and was evaluated by measuring the rate of photodegradation of Rhodamine B under both UV and visible (λ > 420) light. Following the UV pretreatment, the UV photocatalytic activity of the N, W co-doped TiO 2 was doubled. In terms of visible light activity, the UV pretreatment resulted in an extraordinary >12 fold improvement. In order to gain insight into this substantial enhancement, the N, W co-doped TiO 2 photocatalysts were studied using x-ray diffraction, transmission electron microscopy, N 2 physisorption, UV–vis absorbance spectroscopy and x-ray photoelectron spectroscopy prior to and following the UV pretreatment. Our experimental results have revealed that this significant augmentation of photocatalytic activity may be attributed to several synergetic factors, including increase of the specific surface area, reduction of the band gap energy and the removal of carbon impurities. (paper)

  5. Immobilization of TiO2 nanoparticles on Fe-filled carbon nanocapsules for photocatalytic applications

    International Nuclear Information System (INIS)

    Huang, H.-C.; Huang, G.-L.; Chen, H.-L.; Lee, Y.-D.

    2006-01-01

    Using a simple sol-gel method, a novel magnetic photocatalyst was produced by immobilization of TiO 2 nano-crystal on Fe-filled carbon nanocapsules (Fe-CNC). High resolution TEM images indicated that the immobilization of TiO 2 on Fe-CNC was driven primarily by heterogeneous coagulation, whereas surface nucleation and growth was the dominant mechanism for immobilizing TiO 2 on acid-functionalized hollow CNC. The TiO 2 immobilized on Fe-CNC exhibited the anatase phase as revealed by the X-ray diffraction (XRD) patterns. In comparison with free TiO 2 and TiO 2 -coated CNC, TiO 2 -coated Fe-CNC displayed good performance in the removal of NO gas under UV exposure. Due to the advantages of easy recycling and good photocatalytic efficiency, the novel magnetic photocatalyst developed here has potential use in photocatalytic applications for pollution prevention

  6. Low temperature synthesis of polyaniline-crystalline TiO2-halloysite composite nanotubes with enhanced visible light photocatalytic activity.

    Science.gov (United States)

    Li, Cuiping; Wang, Jie; Guo, Hong; Ding, Shujiang

    2015-11-15

    A series of one-dimensional polyaniline-crystalline TiO2-halloysite composite nanotubes with different mass ratio of polyaniline to TiO2 are facilely prepared by employing the low-temperature synthesis of crystalline TiO2 on halloysite nanotubes. The halloysite nanotubes can adsorb TiO2/polyaniline precursors and induce TiO2 nanocrystals/polyaniline to grow on the support in situ simultaneously. By simply adjusting the acidity of reaction system, PANI-crystalline TiO2-HA composite nanotubes composed of anatase, a mixed phase TiO2 and different PANI redox state are obtained. The XRD and UV-vis results show that the surface polyaniline sensitization has no effect on the crystalline structure of halloysite and TiO2 and the light response of TiO2 is extended to visible-light regions. Photocatalysis test results reveal the photocatalytic activity will be affected by the pH value and the volume ratio of ANI to TTIP. The highest photocatalytic activity is achieved with the composite photocatalysts prepared at pH 0.5 and 1% volume ratio of ANI and TTIP owing to the sensitizing effect of polyaniline and the charge transfer from the photoexcited PANI sensitizer to TiO2. Moreover, the PANI-TiO2-HA composite nanotubes synthesized by one-step at pH 0.5 with 1% volume ratio of ANI to TTIP exhibit higher visible light photocatalytic activity than those synthesized by the two-step. Heterogeneous PANI-TiO2-HA composite nanotubes prepared at pH 0.5 exhibit a higher degradation activity than that prepared at pH 1.5. The redoped experiment proves that the PANI redox state plays the main contribution to the enhanced visible light catalytic degradation efficiency of PANI-TiO2-HA prepared at pH 0.5. Furthermore, the heterogeneous PANI-crystalline TiO2-HA nanotubes have good photocatalytic stability and can be reused four times with only gradual loss of activity under visible light irradiation. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Ecotoxicity of TiO2 to Daphnia similis under irradiation

    International Nuclear Information System (INIS)

    Marcone, Glauciene P.S.; Oliveira, Ádria C.; Almeida, Gilberto; Umbuzeiro, Gisela A.; Jardim, Wilson F.

    2012-01-01

    Graphical abstract: EC50 (mg L −1 ) values to TiO 2 samples obtained in toxicity tests with Daphnia similis under different conditions of illumination (UV A and visible radiation) and in the dark (as standard protocols). P25: commercial sample containing 30% rutile and 70% anatase; M-S: synthesized sample containing 30% rutile and 70% anatase; Anatase-S: synthesized sample containing 100% anatase; Rutile-S: synthesized sample containing 100% rutile and P25*: commercial sample containing 100% rutile. Highlights: ► Some key physicochemical parameters of nano TiO 2 explain the toxicity observed. ► Under UV A radiation, TiO 2 becomes more toxic to D. similis. ► Toxicity tests of photoactive nano materials require photons as control parameter. - Abstract: Currently, there are a large number of products (sunscreen, pigments, cosmetics, plastics, toothpastes and photocatalysts) that use TiO 2 nanoparticles. Due to this large production, these nanoparticles can be released into the aquatic, terrestrial and aerial environments at relative high concentration. TiO 2 in natural water has the capacity to harm aquatic organisms such as the Daphnia (Cladocera) species, mainly because the photocatalytic properties of this semiconductor. However, very few toxicity tests of TiO 2 nanoparticles have been conducted under irradiation. The aim of this study was to evaluate anatase and rutile TiO 2 toxicity to Daphnia similis exploring their photocatalytic properties by incorporating UV A and visible radiation as a parameter in the assays. Anatase and rutile TiO 2 samples at the highest concentration tested (100 mg L −1 ) were not toxic to D. similis, neither in the dark nor under visible light conditions. The anatase form and a mixture of anatase and rutile, when illuminated by a UV A black light with a peak emission wavelength of 360 nm, presented photo-dependent EC50 values of 56.9–7.8 mg L −1 , which indicates a toxicity mechanism caused by ROS (reactive oxygen species

  8. Nanoplasmonically Engineered Interfaces on Amorphous TiO2 for Highly Efficient Photocatalysis in Hydrogen Evolution.

    Science.gov (United States)

    Liang, Huijun; Meng, Qiuxia; Wang, Xiaobing; Zhang, Hucheng; Wang, Jianji

    2018-04-25

    The nanoplasmonic metal-driven photocatalytic activity depends heavily on the spacing between metal nanoparticles (NPs) and semiconductors, and this work shows that ethylene glycol (EG) is an ideal candidate for interface spacer. Controlling the synthetic systems at pH 3, the composite of Ag NPs with EG-stabilized amorphous TiO 2 (Ag/TiO 2 -3) was synthesized by the facile light-induced reduction. It is verified that EG spacers can set up suitable geometric arrangement in the composite: the twin hydroxyls act as stabilizers to bind Ag NPs and TiO 2 together and the nonconductive alkyl chains consisting only of two CH 2 are able to separate the two building blocks completely and also provide the shortest channels for an efficient transfer of radiation energies to reach TiO 2 . Employed as photocatalysts in hydrogen evolution under visible light, amorphous TiO 2 hardly exhibits the catalytic activity due to high defect density, whereas Ag/TiO 2 -3 represents a remarkably high catalytic efficiency. The enhancement mechanism of the reaction rate is proposed by the analysis of the compositional, structural, and optical properties from a series of Ag/TiO 2 composites.

  9. Antibacterial effect of novel synthesized sulfated β-cyclodextrin crosslinked cotton fabric and its improved antibacterial activities with ZnO, TiO2 and Ag nanoparticles coating.

    Science.gov (United States)

    Selvam, S; Rajiv Gandhi, R; Suresh, J; Gowri, S; Ravikumar, S; Sundrarajan, M

    2012-09-15

    Sulfated β-cyclodextrin was synthesized from sulfonation of β-cyclodextrin and sulfated polymer was crosslinked with cotton fabric using ethylenediaminetetraacetic acid as crosslinker. ZnO, TiO(2) and Ag nanoparticles were prepared and characterized by XRD, UV, DLS, SEM and PSA. The prepared nanoparticles were coated on crosslinked cotton fabric. The crosslinking and nanoparticles coating effects of cotton fabrics were studied by FTIR and SEM analysis. The antibacterial test was done against gram positive Staphylococcus aureus and gram negative Escherichia coli bacterium. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Photo-oxidation of gaseous ethanol on photocatalyst prepared by acid leaching of titanium oxide/hydroxyapatite composite

    International Nuclear Information System (INIS)

    Ono, Y.; Rachi, T.; Yokouchi, M.; Kamimoto, Y.; Nakajima, A.; Okada, K.

    2013-01-01

    Highlights: ► Photocatalyst powder was prepared by acid leaching of TiO 2 /apatite composite. ► The photocatalytic activity was evaluated from in situ FT-IR study using ethanol. ► Apatite in the composite had positive effect for the photo-oxidation of ethanol. ► The enhanced oxidation rate was explained by the difference in deactivation rate. - Abstract: Highly active photocatalysts were synthesized by leaching of heat-treated titanium dioxide (TiO 2 )/hydroxyapatite (HAp) powder with hydrochloric acid at 0.25, 0.50, 0.75 mol/l, and their photocatalytic activities were evaluated from in situ Fourier transform infrared (FT-IR) study of photo-oxidation of gaseous ethanol. By changing the acid concentration, the TiO 2 /HAp composite had different atomic ratios of Ca/Ti (0.0–2.8) and P/Ti (0.3–2.1). It was found that phosphate group remained on the surface of TiO 2 particle even in the sample treated with concentrated acid (0.75 mol/l). These acid-treated samples showed higher rates for ethanol photo-oxidation than the commercial TiO 2 powder, Degussa P25. The highest rate was obtained in the TiO 2 /HAp composite treated with the dilute (0.25 mol/l) acid in spite of its low content of TiO 2 photocatalyst. This enhanced photocatalytic activity was attributed to the result that the deactivation with repeated injections of ethanol gas was suppressed in the TiO 2 /HAp composites compared with the TiO 2 powders

  11. Effect of growth time on the structure, morphology and optical properties of hydrothermally synthesized TiO2 nanorod thin films

    Science.gov (United States)

    Mohapatra, A. K.; Nayak, J.

    2018-05-01

    Titanium dioxide (TiO2) nanorod thin films were deposited on fluorine doped tin oxide coated glass substrates by a single step rapid hydrothermal process. The concentration of the precursor, the temperature of the reaction mixture were optimized in order to enhance the rate of deposition. Unlike the previously reported hydrothermal treatment for 24 - 48 h, the deposition of well aligned titanium dioxide nanorods was achieved in a short time such as 3 - 8 h. The crystal structure of the films were investigated by X-rays diffraction. The morphology of the nanorod films were studied with scanning electron microscopy. The optical properties were studied by photoluminescence spectroscopy.

  12. Influence of Nd-Doping on Photocatalytic Properties of TiO2 Nanoparticles and Thin Film Coatings

    Directory of Open Access Journals (Sweden)

    Damian Wojcieszak

    2014-01-01

    Full Text Available Structural, optical, and photocatalytic properties of TiO2 and TiO2:Nd nanopowders and thin films composed of those materials have been compared. Titania nanoparticles with 1, 3, and 6 at. % of Nd-dopant were synthesized by sol-gel method. Additionally, thin films with the same material composition were prepared with the aid of spin-coating method. The analysis of structural investigations revealed that all as-prepared nanopowders were nanocrystalline and had TiO2-anatase structure. The average size of crystallites was ca. 4-5 nm and the correlation between the amount of neodymium and the size of TiO2 crystallites was observed. It was shown that the dopant content influenced the agglomeration of the nanoparticles. The results of photocatalytic decomposition of MO showed that doping with Nd (especially in the amount of 3 at. % increased self-cleaning activity of the prepared titania nanopowder. Similar effect was received in case of the thin films, but the decomposition rate was lower due to their smaller active surface area. However, the as-prepared TiO2:Nd photocatalyst in the form of thin films or nanopowders seems to be a very attractive material for various applications.

  13. Structural, morphological and local electric properties of TiO2 thin films grown by pulsed laser deposition

    International Nuclear Information System (INIS)

    Gyoergy, E; Pino, A Perez del; Sauthier, G; Figueras, A; Alsina, F; Pascual, J

    2007-01-01

    Titanium dioxide (TiO 2 ) thin films were synthesized on (1 0 0) Si substrates by reactive pulsed laser deposition (PLD) technique. A frequency quadrupled Nd : YAG (λ = 266 nm, τ FWHM ≅ 5 ns, ν = 10 Hz) laser source was used for the irradiations of metallic Ti targets. The experiments were performed in controlled oxygen atmosphere. Crystallinity, surface morphology and local electric properties of the obtained oxide thin films were investigated by x-ray diffractometry, micro-Raman spectroscopy and current sensing atomic force microscopy. An inter-relation was found between the surface morphology, the crystalline structure and the nano-scale electric properties which open the possibility of synthesizing by the PLD technique TiO 2 thin films with tunable functional properties for future applications such as photocatalysts, gas sensors or solar energy converters

  14. Photocatalytic degradation of malathion using Zn2+-doped TiO2 nanoparticles: statistical analysis and optimization of operating parameters

    Science.gov (United States)

    Nasseri, Simin; Omidvar Borna, Mohammad; Esrafili, Ali; Rezaei Kalantary, Roshanak; Kakavandi, Babak; Sillanpää, Mika; Asadi, Anvar

    2018-02-01

    A Zn2+-doped TiO2 is successfully synthesized by a facile photodeposition method and used in the catalytic photo-degradation of organophosphorus pesticide, malathion. The obtained photocatalysts are characterized in detail by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). XRD results confirm the formation of the anatase and rutile phases for the Zn2+-doped TiO2 nanoparticles, with crystallite sizes of 12.9 nm. Zn2+-doped TiO2 that was synthesized by 3.0%wt Zn doping at 200 °C exhibited the best photocatalytic activity. 60 sets of experiments were conducted using response surface methodology (RSM) by adjusting five operating parameters, i.e. initial malathion concentration, catalyst dose, pH, reaction time at five levels and presence or absence of UV light. The analysis revealed that all considered parameters are significant in the degradation process in their linear terms. The optimum values of the variables were found to be 177.59 mg/L, 0.99 g/L, 10.99 and 81.04 min for initial malathion concentration, catalyst dose, pH and reaction time, respectively, under UV irradiation (UV ON). Under the optimized conditions, the experimental values of degradation and mineralization were 98 and 74%, respectively. Moreover, the effects of competing anions and H2O2 on photocatalyst process were also investigated.

  15. Preparation of surface modified TiO2/rGO microspheres and application in the photocatalytic decomposition of oleic acid

    Science.gov (United States)

    Wu, Xin; Zeng, Min; Tong, Xiaoling; Li, Fuyun; Xu, Youyou

    2018-05-01

    The comprehensive utilization of waste cooking oil is an important research topic in food science. In this study, the surface modified mesoporous anatase TiO2/reduced graphene oxide (rGO) microspheres with a high specific surface area have been successfully synthesized, through hydrothermal routes and hydrazine reduced graphene oxide. The photocatalytic decomposition of waste rapeseed oil has also been studied using TiO2/rGO microspheres as photocatalyst. The result shows that the reduced graphene oxide in these nanocomposites can act as adsorbent and photocatalyst, and the temperature and the oxygen amount also are the most important factors affecting the oleic acid decomposition products. There interesting results not only helpful for the study of the mechanism of photocatalytic, but also useful for the rational use of waste cooking oil.

  16. Preparation and performance of photocatalytic TiO2 immobilized on palladium-doped carbon fibers

    International Nuclear Information System (INIS)

    Zhu Yaofeng; Fu Yaqin; Ni Qingqing

    2011-01-01

    Pd-modified carbon fibers (CFs) are obtained by a facile oxidation-reduction method and then dip-coated in a sol-gel of titanium dioxide (TiO 2 ) to form supported TiO 2 /Pd-CF photocatalysts. The morphology of the Pd-modified CFs and the amount Pd deposited are characterized by field emission scanning electron microscopy and atomic absorption spectrometry, respectively. X-ray diffraction is used to investigate the crystal structures of the TiO 2 photocatalyst. Acid orange II is used as a model contaminant to evaluate the photocatalytic properties of the photocatalyst under UV irradiation. TiO 2 /Pd-CF exhibits higher catalytic activity than TiO 2 /CF towards the degradation of acid orange II. Optimum photocatalytic performance and support properties are achieved when the Pd particle loading is about 10.8 mg/g.

  17. TiO2/Bi2(BDC)3/BiOCl nanoparticles decorated ultrathin nanosheets with excellent photocatalytic reaction activity and selectivity

    International Nuclear Information System (INIS)

    Zhou, Shu-Mei; Ma, De-Kun; Cai, Ping; Chen, Wei; Huang, Shao-Ming

    2014-01-01

    Graphical abstract: TiO 2 /Bi 2 (BDC) 3 /BiOCl nanoparticles decorated ultrathin nanosheets showed excellent photocatalytic reaction activity and selectivity. - Highlights: • TiO 2 /Bi 2 (BDC) 3 /BiOCl nanoparticles decorated ultrathin nanosheets were synthesized through a facile hydrothermal process. • The products showed excellent photocatalytic activities for the degradation of various dyes. • The photocatalytic activities of the composite materials could be easily adjusted through tuning the content of TiO 2 . • TiO 2 /Bi 2 (BDC) 3 /BiOCl displayed obvious photocatalytic selectivity in mixed dyes systems of rhodamine B and eosin Y. - Abstract: Photocatalysts with excellent photocatalytic reaction activity and ideal selectivity are highly desirable for pollutants clearance and purification of targeted organics from a mixture. Continued efforts toward the goal, we here present a facile hydrothermal route to synthesize TiO 2 /Bi-benzenedicarboxylate/BiOCl nanoparticles decorated ultrathin nanosheets with a thickness less than 5 nm on a large scale. The as-synthesized products showed excellent photocatalytic activities for the degradation of various dyes such as rhodamine B, eosin Y and methylene blue in aqueous solution under visible light irradiation. The photocatalytic activities of TiO 2 /Bi-benzenedicarboxylate/BiOCl nanocomposites for the degradation of rhodamine B and eosin Y could be adjusted through tuning the content of TiO 2 . With increasing the amount of TiO 2 , the composites showed declining photocatalytic activities in decomposing of rhodamine B while on the contrary they displayed enhanced photocatalytic activities in decomposing of eosin Y. Interestingly, TiO 2 /Bi-benzenedicarboxylate/BiOCl composite nanosheets showed obvious photocatalytic selectivity in a mixed dyes system. The photocatalytic reaction and selectivity mechanisms of the nanocomposites for the degradation of the dyes were discussed on the basis of experimental results. The

  18. Hydrothermal synthesis of BiVO4/TiO2 composites and their application for degradation of gaseous benzene under visible light irradiation

    Science.gov (United States)

    Hu, Yin; Chen, Wei; Fu, Jianping; Ba, Mingwei; Sun, Fuqian; Zhang, Peng; Zou, Jiyong

    2018-04-01

    Benzene is currently recognized as one of the most toxic contaminants. Our previously published study revealed that BiVO4/TiO2 is an excellent photocatalyst toward the degradation of benzene. Herein, BiVO4/TiO2 has been synthesized via a sol-gel method and a facile hydrothermal route by adjusting the precursor hydrolysis rate with the use of different acids (CH3COOH, HNO3 and H2SO4). The influence of these acids on the physicochemical characteristics and photocatalytic performance is discussed in detail. X-ray diffraction and N2 sorption analyses confirm that acid has an important effect on the crystalline composition and BET specific surface area. BiVO4/TiO2 synthesized in CH3COOH has better photocatalytic activity for the degradation of gaseous benzene than that in HNO3 and H2SO4 under visible light irradiation. Results of XPS measurement demonstrate that the hydroxyl group in BiVO4/TiO2-CH3COOH is more abundant than that in BiVO4/TiO2-HNO3 and BiVO4/TiO2-H2SO4. The photocurrent signal is investigated by electrochemical measurement, which indicates that more effective separation of photogenerated carriers occurs in the BiVO4/TiO2/CH3COOH system. It is hoped that our work can offer valuable information on the design of TiO2 composites with enhanced properties.

  19. Novel-structured electrospun TiO2/CuO composite nanofibers for high efficient photocatalytic cogeneration of clean water and energy from dye wastewater.

    Science.gov (United States)

    Lee, Siew Siang; Bai, Hongwei; Liu, Zhaoyang; Sun, Darren Delai

    2013-08-01

    It is still a challenge to photocatalytically cogenerate clean water and energy from dye wastewater owing to the relatively low photocatalytic efficiency of photocatalysts. In this study, novel-structured TiO2/CuO composite nanofibers were successfully fabricated via facile electrospinning. For the first time, the TiO2/CuO composite nanofibers demonstrated multifunctional ability for concurrent photocatalytic organic degradation and H2 generation from dye wastewater. The enhanced photocatalytic activity of TiO2/CuO composite nanofibers was ascribed to its excellent synergy of physicochemical properties: 1) mesoporosity and large specific surface area for efficient substrate adsorption, mass transfer and light harvesting; 2) red-shift of the absorbance spectra for enhanced light utilization; 3) long nanofibrous structure for efficient charge transfer and ease of recovery, 4) TiO2/CuO heterojunctions which enhance the separation of electrons and holes and 5) presence of CuO which serve as co-catalyst for the H2 production. The TiO2/CuO composite nanofibers also exhibited rapid settleability by gravity and uncompromised reusability. Thus, the as-synthesized TiO2/CuO composite nanofibers represent a promising candidate for highly efficient concurrent photocatalytic organic degradation and clean energy production from dye wastewater. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Sulphur doped nanoparticles of TiO2

    Czech Academy of Sciences Publication Activity Database

    Szatmáry, Lórant; Bakardjieva, Snejana; Šubrt, Jan; Bezdička, Petr; Jirkovský, Jaromír; Bastl, Zdeněk; Brezová, V.; Korenko, M.

    2011-01-01

    Roč. 161, č. 1 (2011), s. 23-28 ISSN 0920-5861 R&D Projects: GA MŠk 1M0577 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z40320502 Keywords : photocatalyst * S-doped TiO2 * Thiourea Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.407, year: 2011

  1. A metallic metal oxide (Ti5O9)-metal oxide (TiO2) nanocomposite as the heterojunction to enhance visible-light photocatalytic activity.

    Science.gov (United States)

    Li, L H; Deng, Z X; Xiao, J X; Yang, G W

    2015-01-26

    Coupling titanium dioxide (TiO2) with other semiconductors is a popular method to extend the optical response range of TiO2 and improve its photon quantum efficiency, as coupled semiconductors can increase the separation rate of photoinduced charge carriers in photocatalysts. Differing from normal semiconductors, metallic oxides have no energy gap separating occupied and unoccupied levels, but they can excite electrons between bands to create a high carrier mobility to facilitate kinetic charge separation. Here, we propose the first metallic metal oxide-metal oxide (Ti5O9-TiO2) nanocomposite as a heterojunction for enhancing the visible-light photocatalytic activity of TiO2 nanoparticles and we demonstrate that this hybridized TiO2-Ti5O9 nanostructure possesses an excellent visible-light photocatalytic performance in the process of photodegrading dyes. The TiO2-Ti5O9 nanocomposites are synthesized in one step using laser ablation in liquid under ambient conditions. The as-synthesized nanocomposites show strong visible-light absorption in the range of 300-800 nm and high visible-light photocatalytic activity in the oxidation of rhodamine B. They also exhibit excellent cycling stability in the photodegrading process. A working mechanism for the metallic metal oxide-metal oxide nanocomposite in the visible-light photocatalytic process is proposed based on first-principle calculations of Ti5O9. This study suggests that metallic metal oxides can be regarded as partners for metal oxide photocatalysts in the construction of heterojunctions to improve photocatalytic activity.

  2. Instability of Hydrogenated TiO2

    Energy Technology Data Exchange (ETDEWEB)

    Nandasiri, Manjula I.; Shutthanandan, V.; Manandhar, Sandeep; Schwarz, Ashleigh M.; Oxenford, Lucas S.; Kennedy, John V.; Thevuthasan, Suntharampillai; Henderson, Michael A.

    2015-11-06

    Hydrogenated TiO2 (H-TiO2) is toted as a viable visible light photocatalyst. We report a systematic study on the thermal stability of H-implanted TiO2 using X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), Rutherford backscattering spectrometry (RBS) and nuclear reaction analysis (NRA). Protons (40 keV) implanted at a ~2 atom % level within a ~120 nm wide profile of rutile TiO2(110) were situated ~300 nm below the surface. NRA revealed that this H-profile broadened preferentially toward the surface after annealing at 373 K, dissipated out of the crystal into vacuum at 473 K, and was absent within the beam sampling depth (~800 nm) at 523 K. Photoemission showed that the surface was reduced in concert with these changes. Similar anneals had no effect on pristine TiO2(110). The facile bulk diffusivity of H in rutile, as well as its activity toward interfacial reduction, significantly limits the utilization of H-TiO2 as a photocatalyst. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. The research was performed using the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.

  3. Azo dyes decomposition on new nitrogen-modified anatase TiO2 with high adsorptivity

    International Nuclear Information System (INIS)

    Janus, M.; Choina, J.; Morawski, A.W.

    2009-01-01

    New vis active photocatalyst was obtained by the modification of commercial anatase TiO 2 (Police, Poland) in pressure reactor in an ammonia water atmosphere at 100 o C for 4 h. The photocatalytic activity of new material was tested during three azo dyes decomposition: monoazo (Reactive Read), diazo (Reactive Black) and poliazodye (Direct Green). Obtained photocatalyst had new bands at 1430-1440 cm -1 attributed to the bending vibrations of NH 4 + and at 1535 cm -1 associated with NH 2 groups or NO 2 and NO. UV-vis/DR spectra of photocatalyst had also insignificant decrease in visible region. Fluorescence technique was used for studying the amount of hydroxyl radicals produced on TiO 2 surface during visible light irradiation. The hydroxyl radicals produced react with coumarin present in the solution to form 7-hydroxycoumarin which has fluorescent capacity. Photocatalytic activity of modified TiO 2 was compared with commercial titanium dioxide P25 (Degussa, Germany). The photocatalytic activity of TiO 2 /N was higher than that of unmodified material and P25 under visible light irradiation. The ability for dye adsorption (Reactive Red) on photocatalyst surface was also tested. Unmodified TiO 2 and P25 has isotherm of adsorption by Freundlich model, and nitrogen-modified TiO 2 by Langmuir model. The presence of nitrogen at the surface of TiO 2 significantly increased adsorption capacity of TiO 2 as well as OH· radicals formation under visible radiation.

  4. Uniformly distributed anatase TiO2 nanoparticles on graphene: Synthesis, characterization, and photocatalytic application

    International Nuclear Information System (INIS)

    Bai, Xue; Zhang, Xiaoyuan; Hua, Zulin; Ma, Wenqiang; Dai, Zhangyan; Huang, Xin; Gu, Haixin

    2014-01-01

    Highlights: • Uniform distributed TiO 2 nanoparticles on graphene by a modified method. • Reduced recombination rate of photogenerated electron–hole pairs. • Effective charge transfer from TiO 2 to graphene. • Better photocatalytic activity upon UV and visible irradiation. • A mechanism of bisphenol A degradation process is proposed. - Abstract: Graphene (GR)/TiO 2 nanocomposites are successfully synthesized using a simple and efficient hydrothermal method. Even-sized anatase TiO 2 nanoparticles are uniformly distributed on GR. The GR/TiO 2 nanocomposites exhibit an extended light absorption range and decreased electron–hole recombination rates. The photocatalytic activity of the as-prepared GR/TiO 2 nanocomposites for bisphenol A (BPA) degradation is investigated under UV (λ = 365 nm) and visible (λ ⩾ 400 nm) light irradiation. The results show that GR/TiO 2 nanocomposites have significantly higher photocatalytic activity than P25 (pure TiO 2 ). The large increase in photocatalytic activity is mostly attributed to effective charge transfer from TiO 2 nanoparticles to GR, which suppresses charge recombination during the photocatalytic process. After five successive cycles, the photodegradation activity of the GR/TiO 2 nanocomposites shows no significant decrease, which indicates that the nanocomposites are stable under UV and visible light. X-ray photoelectron spectroscopy (XPS) is used to investigate the chemical bonds of GR/TiO 2 nanocomposites before and after degradation to determine the degradation intermediate products of BPA under irradiation. A proposed degradation reaction pathway of BPA is also established. This study provides new insights into the fabrication and practical application of high-performance photocatalysts in wastewater treatment

  5. High Efficiency Dye-sensitized Solar Cells Constructed with Composites of TiO2 and the Hot-bubbling Synthesized Ultra-Small SnO2 Nanocrystals.

    Science.gov (United States)

    Mao, Xiaoli; Zhou, Ru; Zhang, Shouwei; Ding, Liping; Wan, Lei; Qin, Shengxian; Chen, Zhesheng; Xu, Jinzhang; Miao, Shiding

    2016-01-13

    An efficient photo-anode for the dye-sensitized solar cells (DSSCs) should have features of high loading of dye molecules, favorable band alignments and good efficiency in electron transport. Herein, the 3.4 nm-sized SnO2 nanocrystals (NCs) of high crystallinity, synthesized via the hot-bubbling method, were incorporated with the commercial TiO2 (P25) particles to fabricate the photo-anodes. The optimal percentage of the doped SnO2 NCs was found at ~7.5% (SnO2/TiO2, w/w), and the fabricated DSSC delivers a power conversion efficiency up to 6.7%, which is 1.52 times of the P25 based DSSCs. The ultra-small SnO2 NCs offer three benefits, (1) the incorporation of SnO2 NCs enlarges surface areas of the photo-anode films, and higher dye-loading amounts were achieved; (2) the high charge mobility provided by SnO2 was confirmed to accelerate the electron transport, and the photo-electron recombination was suppressed by the highly-crystallized NCs; (3) the conduction band minimum (CBM) of the SnO2 NCs was uplifted due to the quantum size effects, and this was found to alleviate the decrement in the open-circuit voltage. This work highlights great contributions of the SnO2 NCs to the improvement of the photovoltaic performances in the DSSCs.

  6. Highly-efficient photocatalytic degradation of methylene blue by PoPD-modified TiO 2 nanocomposites due to photosensitization-synergetic effect of TiO2 with PoPD.

    Science.gov (United States)

    Yang, Chuanxi; Dong, Wenping; Cui, Guanwei; Zhao, Yingqiang; Shi, Xifeng; Xia, Xinyuan; Tang, Bo; Wang, Weiliang

    2017-06-21

    Poly-o-phenylenediamine modified TiO 2 nanocomposites were successfully synthesized via an 'in situ' oxidative polymerization method. The modified nanocomposites were characterized by BET, XRD, TEM, FT-IR, TGA, XPS, EA and UV-Vis DRS. The photocatalytic degradation of methylene blue was chosen as a model reaction to evaluate the photocatalytic activities of TiO 2 and PoPD/TiO 2 . The results indicated that PoPD/TiO 2 nanocomposites exhibited good photocatalytic activity and stability. The photocatalytic activity of PoPD/TiO 2 increased as the initial pH increased because of electrostatic adsorption between the photocatalyst and MB as well as the generation of ·OH, whereas it exhibited an earlier increasing and later decreasing trend as the concentration of the photocatalyst increased owing to the absorption of visible light. The photocatalytic stability of the PoPD/TiO 2 nanocomposite was dependent on the stability of its structure. Based on radical trapping experiments and ESR measurements, the origin of oxidizing ability of PoPD/TiO 2 nanocomposites on photocatalytic degradation of MB was proposed, which taking into account of ·OH and ·O 2 - were the first and second important ROS, respectively. The possible photocatalytic mechanism and photocatalytic activity enhanced mechanism has been proposed, taking into account the photosensitization effect and synergetic effect of TiO 2 with PoPD.

  7. In-situ investigations of the photoluminescence properties of SiO2/TiO2 binary and Boron-SiO2/TiO2 ternary oxides prepared by the sol-gel method and their photocatalytic reactivity for the oxidative decomposition of trichloroethylene

    Directory of Open Access Journals (Sweden)

    Kyeong Youl Jung

    2003-01-01

    oxygen. It was found that the photocatalytic reactivity of TiO2-based photocatalysts for the decomposition of trichloroethylene was clearly associated with their relative quenching efficiencies of photoluminescence; photocatalyst showing high quenching efficiency exhibited a high photocatalytic reactivity.

  8. Development and Application of TiO2 Nanoparticles Coupled with Silver Halide

    Directory of Open Access Journals (Sweden)

    Xiaojia Wan

    2014-01-01

    Full Text Available Titanium dioxide (TiO2 is proposed to be effective photocatalyst for wastewater treatment, air purification, and self-cleaning ability, because of its strong oxidation and superhydrophilicity. In order to conquer the limits of TiO2, a variety of methods have been used. This paper presents a critical review of novel research and achievements in the modification of TiO2 nanoparticles with silver halide (AgX, X=Cl, Br, I, which aims at enhancing the visible light absorption and photosensitivity. Herein we study the synthesis, physical and chemical properties, and the mechanism of this composite photocatalyst.

  9. Application of Photocatalysts and LED Light Sources in Drinking Water Treatment

    Directory of Open Access Journals (Sweden)

    Gopal Achari

    2013-09-01

    Full Text Available This study investigates a cross-section of TiO2 compositions for which existing evidence suggests the prospect of improved performance compared to standard Degussa P25. In the context of a program aimed toward a 365 nm LED based photo-reactor, the question is whether a distinctly superior photocatalyst composition for drinking water treatment is now available that would shape design choices. An answer was sought by synthesizing several photocatalysts with reported high reactivity in some context in the literature, and by performing photocatalysts reactivity tests using common pollutants of water system including Natural Organic Matter (NOM and Emerging Contaminants (ECs from the pesticide and pharmaceutical classes. 365 nm Light Emitting Diodes (LEDs were used as the irradiation source. Since LEDs are now available in the UV, we did not examine the TiO2 modifications that bring band gap excitation into the region beyond 400 nm. The results suggest that the choice of the photocatalyst should be best made to fit the reactor design and photocatalyst mounting constraints such as mass transport, reactive surface, and light field. No photocatalyst composition overall, superior for all classes emerged.

  10. Ag doped TiO2 nanoparticles prepared by hydrothermal method and coating of the nanoparticles on the ceramic pellets for photocatalytic study: Surface properties and photoactivity

    Directory of Open Access Journals (Sweden)

    Oguzhan Avciata

    2018-02-01

    Full Text Available In this work, Ag doped nano TiO2 photocatalysts were synthesized in powder form by hydrothermal method at 180 ºC in 120 min using different reduction agents. The synthesized powders were characterized by powder X-ray diffraction (XRD, Energydispersive X-ray spectroscopy (EDS, Surface area measurements (BET, Transmission electron microscopy (TEM and scanning electron microscopy (SEM analyses. The effect of reduction agents on the morphological properties of Ag doped nano TiO2 has been studied. We have been observed that the use of different reduction agents affects the particle size and surface area. Ag doped nano TiO2 photocatalysts were coated to the ceramic pellets by dip coating technique for photocatalytic study. Photocatalytic properties of the synthesized powder were examined in a circulating aquarium filled with indigo blue (IB solution under UV irradiation. Periodical UV spectrophotometric analysis showed that indigo blue (IB has been degraded and its concentration has decreased under UV irradiation by time.

  11. Low temperature synthesis of N-doped TiO_2 with rice-like morphology through peroxo assisted hydrothermal route: Materials characterization and photocatalytic properties

    International Nuclear Information System (INIS)

    Bakar, Shahzad Abu; Ribeiro, Caue

    2016-01-01

    photocatalytic activity among all synthesized photocatalysts.

  12. Photocatalytic application of TiO2/SiO2-based magnetic nanocomposite (Fe3O4@SiO2/TiO2 for reusing of textile wastewater

    Directory of Open Access Journals (Sweden)

    Laleh Enayati Ahangar

    2016-01-01

    Full Text Available In this research we have developed a treatment method for textile wastewater by TiO2/SiO2-based magnetic nanocomposite. Textile wastewater includes a large variety of dyes and chemicals and needs treatments. This manuscript presents a facile method for removing dyes from the textile wastewater by using TiO2/SiO2-based nanocomposite (Fe3O4@SiO2/TiO2 under UV irradiation. This magnetic nanocomposite, as photocatalytically active composite, is synthesized via solution method in mild conditions. A large range of cationic, anionic and neutral dyes including: methyl orange, methylene blue, neutral red, bromocresol green and methyl red are used for treatment investigations. Neutral red and bromocresol green have good results in reusing treatment. The high surface area of nanocomposites improve the kinetic of wastewater treatment. In this method, by using the magnetic properties of Fe3O4 nanoparticles, TiO2-based photocatalyst could be separated and reused for 3 times. The efficiency of this method is respectively 100% and 65% for low concentration (10 ppm and high concentration (50 ppm of neutral red and bromocrosol green after 3 h treatment. The efficiency of treatment using the second used nanocomposite was 90% for 10 ppm of the same dyes.

  13. Removal of Crotamiton from Reverse Osmosis Concentrate by a TiO2/Zeolite Composite Sheet

    Directory of Open Access Journals (Sweden)

    Qun Xiang

    2017-07-01

    Full Text Available Reverse osmosis (RO concentrate from wastewater reuse facilities contains concentrated emerging pollutants, such as pharmaceuticals. In this research, a paper-like composite sheet consisting of titanium dioxide (TiO2 and zeolite was synthesized, and removal of the antipruritic agent crotamiton from RO concentrate was studied using the TiO2/zeolite composite sheet. The RO concentrate was obtained from a pilot-scale municipal secondary effluent reclamation plant. Effective immobilization of the two powders in the sheet made it easy to handle and to separate the photocatalyst and adsorbent from purified water. The TiO2/zeolite composite sheet showed excellent performance for crotamiton adsorption without obvious inhibition by other components in the RO concentrate. With ultraviolet irradiation, crotamiton was simultaneously removed through adsorption and photocatalysis. The photocatalytic decomposition of crotamiton in the RO concentrate was significantly inhibited by the water matrix at high initial crotamiton concentrations, whereas rapid decomposition was achieved at low initial crotamiton concentrations. The major degradation intermediates were also adsorbed by the composite sheet. This result provides a promising method of mitigating secondary pollution caused by the harmful intermediates produced during advanced oxidation processes. The cyclic use of the HSZ-385/P25 composite sheet indicated the feasibility of continuously removing crotamiton from RO concentrate.

  14. N, Fe and WO3 modified TiO2 for degradation of formaldehyde

    International Nuclear Information System (INIS)

    Tong Haixia; Zhao Li; Li Dan; Zhang Xiongfei

    2011-01-01

    Graphical abstract: The undoped TiO 2 powder (T(0)) shows strong photoabsorption only at wavelengths shorter than 400 nm, and while Fe 3+ and N-doped TiO 2 nanoparticles show photoabsorption in visible region and the absorption edge shifts to a longer wavelength. WO 3 compounding also benefits the photoabsorption in visible region. Display Omitted Highlights: → The preparation of the catalysts co-doped by Fe, N and compounded by WO 3 . → The obvious sculptured 'pattern' of the catalysts doped by Fe in the SEM images. → Strengthened photoabsorption to visible light of the modified catalysts from UV-DRS analysis. - Abstract: Butyltitanate, ethanol and glacial acetic acid were chosen as titanium source, solvent and chelating agent, respectively, via a sol-gel method combined impregnation method to prepare N, Fe co-doped and WO 3 compounded photocatalyst TiO 2 powder. The synthesized products were characterized by X-ray diffraction (XRD), diffuse reflectance UV-Vis spectra (UV-DRS), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Photocatalytic degradation of formaldehyde was employed to investigate the catalytic activity. The results show that the degradation rate is 77.61% in 180 min under UV light irradiation when the concentration of N is fixed on, and the optimum proportioning ratio of n(Fe):n(W):n(Ti) is 0.5:2:100.

  15. Photocatalytic efficiency of titania photocatalysts in saline waters

    Directory of Open Access Journals (Sweden)

    Albrbar Asma Juma

    2014-01-01

    Full Text Available The photocatalytic efficiency of the recently synthesized TiO2 powder, named P160, of the degradation of dye Dye C.I. Reactive orange 16 in natural and artificial seawater was investigated in comparison to its efficiency in deionized water and the efficiency of a standard TiO2 powder Degusa P25. It was shown that the photocatalytic efficiency of P160 was slightly higher than that of P25, probably due to slightly higher specific surface area, higher pore volume and larger pores of the powder P160. The efficiency of both photocatalysts in natural and artificial seawater was significantly lower than that in deionized water. The overall rate of dye degradation for both types of photocatalysts is litle higher in artificial seawater than in natural seawater, which shows the influence of organic compounds naturally present in seawater on the photocatalysts activity. A saturation Langmuir-type relationship between the initial degradation rate and the initial dye concentration indicates that the adsorption plays a role in the photocatalytic reaction. The photodegradation rate constant k, which represents the maximum reaction rate, has similar values for P25 and P160 in all types of water due to the similar properties of the photocatalysts. [Projekat Ministarstva nauke Republike Srbije, br III 45019

  16. Effect of dissolved ozone or ferric ions on photodegradation of thiacloprid in presence of different TiO2 catalysts

    International Nuclear Information System (INIS)

    Cernigoj, Urh; Stangar, Urska Lavrencic; Jirkovsky, Jaromir

    2010-01-01

    Combining TiO 2 photocatalysis with inorganic oxidants (such as O 3 and H 2 O 2 ) or transition metal ions (Fe 3+ , Cu 2+ and Ag + ) often leads to a synergic effect. Electron transfer between TiO 2 and the oxidant is usually involved. Accordingly, the degree of synergy could be influenced by TiO 2 surface area. With this in mind, the disappearance of thiacloprid, a neonicotinoid insecticide, was studied applying various photochemical AOPs and different TiO 2 photocatalysts. In photocatalytic ozonation experiments, synergic effect of three different TiO 2 photocatalysts was quantified. Higher surface area resulted in a more pronounced synergic effect but an increasing amount of TiO 2 did not influence the degree of the synergy. This supports the theory that the synergy is a consequence of adsorption of ozone on the TiO 2 surface. No synergy was observed in photocatalytic degradation of thiacloprid in the presence of dissolved iron(III) species performed under varied experimental conditions (concentration, age of iron(III) solution, different TiO 2 films, usage of TiO 2 slurries). This goes against the literature for different organic compounds (i.e., monuron). It indicates different roles of iron(III) in the photodegradation of different organic molecules. Moreover, TiO 2 surface area did not affect photodegradation efficiency in iron(III)-based experiments which could confirm absence of electron transfer between TiO 2 photocatalyst and iron(III).

  17. UV-visible light-activated Ag-decorated, monodisperse TiO2 aggregates for treatment of the pharmaceutical oxytetracycline.

    Science.gov (United States)

    Han, Changseok; Likodimos, Vlassis; Khan, Javed Ali; Nadagouda, Mallikarjuna N; Andersen, Joel; Falaras, Polycarpos; Rosales-Lombardi, Pablo; Dionysiou, Dionysios D

    2014-10-01

    Noble metal Ag-decorated, monodisperse TiO2 aggregates were successfully synthesized by an ionic strength-assisted, simple sol-gel method and were used for the photocatalytic degradation of the antibiotic oxytetracycline (OTC) under both UV and visible light (UV-visible light) irradiation. The synthesized samples were characterized by X-ray diffraction analysis (XRD); UV-vis diffuse reflectance spectroscopy; environmental scanning electron microscopy (ESEM); transmission electron microscopy (TEM); high-resolution TEM (HR-TEM); micro-Raman, energy-dispersive X-ray spectroscopy (EDS); and inductively coupled plasma optical emission spectrometry (ICP-OES). The results showed that the uniformity of TiO2 aggregates was finely tuned by the sol-gel method, and Ag was well decorated on the monodisperse TiO2 aggregates. The absorption of the samples in the visible light region increased with increasing Ag loading that was proportional to the amount of Ag precursor added in the solution over the tested concentration range. The Brunauer, Emmett, and Teller (The BET) surface area slightly decreased with increasing Ag loading on the TiO2 aggregates. Ag-decorated TiO2 samples demonstrated enhanced photocatalytic activity for the degradation of OTC under UV-visible light illumination compared to that of pure TiO2. The sample containing 1.9 wt% Ag showed the highest photocatalytic activity for the degradation of OTC under both UV-visible light and visible light illumination. During the experiments, the detected Ag leaching for the best TiO2-Ag photocatalyst was much lower than the National Secondary Drinking Water Regulation for Ag limit (0.1 mg L(-1)) issued by the US Environmental Protection Agency.

  18. Mesoporous titanium dioxide (TiO2) with hierarchically 3D dendrimeric architectures: formation mechanism and highly enhanced photocatalytic activity.

    Science.gov (United States)

    Li, Xiao-Yun; Chen, Li-Hua; Rooke, Joanna Claire; Deng, Zhao; Hu, Zhi-Yi; Wang, Shao-Zhuan; Wang, Li; Li, Yu; Krief, Alain; Su, Bao-Lian

    2013-03-15

    Mesoporous TiO(2) with a hierarchically 3D dendrimeric nanostructure comprised of nanoribbon building units has been synthesized via a spontaneous self-formation process from various titanium alkoxides. These hierarchically 3D dendrimeric architectures can be obtained by a very facile, template-free method, by simply dropping a titanium butoxide precursor into methanol solution. The novel configuration of the mesoporous TiO(2) nanostructure in nanoribbon building units yields a high surface area. The calcined samples show significantly enhanced photocatalytic activity and degradation rates owing to the mesoporosity and their improved crystallinity after calcination. Furthermore, the 3D dendrimeric architectures can be preserved after phase transformation from amorphous TiO(2) to anatase or rutile, which occurs during calcination. In addition, the spontaneous self-formation process of mesoporous TiO(2) with hierarchically 3D dendrimeric architectures from the hydrolysis and condensation reaction of titanium butoxide in methanol has been followed by in situ optical microscopy (OM), revealing the secret on the formation of hierarchically 3D dendrimeric nanostructures. Moreover, mesoporous TiO(2) nanostructures with similar hierarchically 3D dendrimeric architectures can also be obtained using other titanium alkoxides. The porosities and nanostructures of the resultant products were characterized by SEM, TEM, XRD, and N(2) adsorption-desorption measurements. The present work provides a facile and reproducible method for the synthesis of novel mesoporous TiO(2) nanoarchitectures, which in turn could herald the fabrication of more efficient photocatalysts. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Integrated photooxidative extractive deep desulfurization using metal doped TiO2 and eutectic based ionic liquid

    Science.gov (United States)

    Zaid, Hayyiratul Fatimah Mohd; Kait, Chong Fai; Mutalib, Mohamed Ibrahim Abdul

    2016-11-01

    A series of metal doped TiO2 namely Fe/TiO2, Cu/TiO2 and Cu-Fe/TiO2 were synthesized and characterized, to be used as a photocatalyst in the integrated photooxidative extractive deep desulfurization for model oil (dodecane) and diesel fuel. The order of the photocatalytic activity was Cu-Fe/TiO2 followed by Cu/TiO2 and then Fe/TiO2. Cu-Fe/TiO2 was an effective photocatalyst for sulfur conversion at ambient atmospheric pressure. Hydrogen peroxide was used as the source of oxidant and eutectic-based ionic liquid as the extractant. Sulfur conversion in model oil reached 100%. Removal of sulfur from model oil was done by two times extraction with a removal of 97.06% in the first run and 2.94% in the second run.

  20. PAMAM templated N,Pt co-doped TiO2 for visible light photodegradation of brilliant black.

    Science.gov (United States)

    Nzaba, Sarre Kadia Myra; Ntsendwana, Bulelwa; Mamba, Bhekie Brilliance; Kuvarega, Alex Tawanda

    2018-05-01

    This study examined the photocatalytic degradation of an azo dye brilliant black (BB) using non-metal/metal co-doped TiO 2 . N,Pt co-doped TiO 2 photocatalysts were prepared by a modified sol-gel method using amine-terminated polyamidoamine dendrimer generation 0 (PG0) as a template and source of nitrogen. Structural, morphological, and textural properties were evaluated using scanning electron microscopy coupled to energy-dispersive X-ray spectroscopy (SEM/EDX), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction spectroscopy (XRD), X-ray photoelectron spectroscopy (XPS), thermal gravimetric analysis (TGA), Fourier transform infrared (FTIR), Raman spectroscopy (RS), photoluminescence (PL) and ultra-violet/visible spectroscopy (UV-Vis). The synthesized photocatalysts exhibited lower band gap energies as compared to the Degussa P-25, revealing a red shift in band gap towards the visible light absorption region. Photocatalytic activity of N,Pt co-doped TiO 2 was measured by the reaction of photocatalytic degradation of BB dye. Enhanced photodegradation efficiency of BB was achieved after 180-min reaction time with an initial concentration of 50 ppm. This was attributed to the rod-like shape of the materials, larger surface area, and enhanced absorption of visible light induced by N,Pt co-doping. The N,Pt co-doped TiO 2 also exhibited pseudo-first-order kinetic behavior with half-life and rate constant of 0.37 and 0.01984 min -1 , respectively. The mechanism of the photodegradation of BB under the visible light irradiation was proposed. The obtained results prove that co-doping of TiO 2 with N and Pt contributed to the enhanced photocatalytic performances of TiO 2 for visible light-induced photodegradation of organic contaminants for environmental remediation. Therefore, this work provides a new approach to the synthesis of PAMAM templated N,Pt co-doped TiO 2 for visible light photodegradation of brilliant black.

  1. Selective Oxidation Using Flame Aerosol Synthesized Iron and Vanadium-Doped Nano-TiO2

    Directory of Open Access Journals (Sweden)

    Zhong-Min Wang

    2011-01-01

    Full Text Available Selective photocatalytic oxidation of 1-phenyl ethanol to acetophenone using titanium dioxide (TiO2 raw and doped with Fe or V, prepared by flame aerosol deposition method, was investigated. The effects of metal doping on crystal phase and morphology of the synthesized nanostructured TiO2 were analyzed using XRD, TEM, Raman spectroscopy, and BET nitrogen adsorbed surface area measurement. The increase in the concentration of V and Fe reduced the crystalline structure and the anatase-to-rutile ratios of the synthesized TiO2. Synthesized TiO2 became fine amorphous powder as the Fe and V concentrations were increased to 3 and 5%, respectively. Doping V and Fe to TiO2 synthesized by the flame aerosol increased photocatalytic activity by 6 folds and 2.5 folds, respectively, compared to that of pure TiO2. It was found that an optimal doping concentration for Fe and V were 0.5% and 3%, respectively. The type and concentration of the metal dopants and the method used to add the dopant to the TiO2 are critical parameters for enhancing the activity of the resulting photocatalyst. The effects of solvents on the photocatalytic reaction were also investigated by using both water and acetonitrile as the reaction medium.

  2. Cotton fabric coated with nano TiO2-acrylate copolymer for photocatalytic self-cleaning by in-situ suspension polymerization

    International Nuclear Information System (INIS)

    Jiang Xue; Tian Xiuzhi; Gu Jian; Huang Dan; Yang Yiqi

    2011-01-01

    Two kinds of nano TiO 2 -polyacrylate hybrid dispersions, TBM-w and TBM-e were synthesized by in-situ suspension polymerization and solution polymerization respectively, in order to fix the nano TiO 2 on fabrics. The photocatalytic self-cleaning fabrics have received much attention in recent years for its water-saving and environment-protection advantages. However, the fixation of the photocatalyst on fabrics is still a key problem that inhibits industrialization of these eco-friendly fabrics. The cotton fabric was treated by the two hybrid dispersions. The photocatalytic self-cleaning property was characterized. Infrared spectroscopy, burning loss test and thermogravimetry showed that some copolymer chains entangled with the nano TiO 2 . Transmission electron microscope illustrated that there was a polymeric layer on the surface of nano TiO 2 . The average diameter of TBM-w was smaller than that of TBM-e based on size analysis. The photocatalytic decoloration of the grape syrup indicated that the fabric with TiO 2 -polymer hybrid had excellent self-cleaning property.

  3. Enhanced photocatalytic activity for H2 evolution under irradiation of UV-vis light by Au-modified nitrogen-doped TiO2.

    Science.gov (United States)

    Zhao, Weirong; Ai, Zhuyu; Dai, Jiusong; Zhang, Meng

    2014-01-01

    Photocatalytic water splitting for hydrogen evolution is a potential way to solve many energy and environmental issues. Developing visible-light-active photocatalysts to efficiently utilize sunlight and finding proper ways to improve photocatalytic activity for H2 evolution have always been hot topics for research. This study attempts to expand the use of sunlight and to enhance the photocatalytic activity of TiO2 by N doping and Au loading. Au/N-doped TiO2 photocatalysts were synthesized and successfully used for photocatalytic water splitting for H2 evolution under irradiation of UV and UV-vis light, respectively. The samples were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS), photoluminescence spectroscopy (PL), and photoelectrochemical characterizations. DRS displayed an extension of light absorption into the visible region by doping of N and depositing with Au, respectively. PL analysis indicated electron-hole recombination due to N doping and an efficient inhibition of electron-hole recombination due to the loaded Au particles. Under the irradiation of UV light, the photocatalytic hydrogen production rate of the as-synthesized samples followed the order Au/TiO2 > Au/N-doped TiO2 > TiO2 > N-doped TiO2. While under irradiation of UV-vis light, the N-TiO2 and Au/N-TiO2 samples show higher H2 evolution than their corresponding nitrogen-free samples (TiO2 and Au/TiO2). This inconsistent result could be attributed to the doping of N and the surface plasmonic resonance (SPR) effect of Au particles extending the visible light absorption. The photoelectrochemical characterizations further indicated the enhancement of the visible light response of Au/N-doped TiO2. Comparative studies have shown that a combination of nitrogen doping and Au loading enhanced the visible light response of TiO2 and increased the utilization of solar energy, greatly

  4. Enhanced photocatalytic activity for H2 evolution under irradiation of UV-vis light by Au-modified nitrogen-doped TiO2.

    Directory of Open Access Journals (Sweden)

    Weirong Zhao

    Full Text Available BACKGROUND PURPOSE: Photocatalytic water splitting for hydrogen evolution is a potential way to solve many energy and environmental issues. Developing visible-light-active photocatalysts to efficiently utilize sunlight and finding proper ways to improve photocatalytic activity for H2 evolution have always been hot topics for research. This study attempts to expand the use of sunlight and to enhance the photocatalytic activity of TiO2 by N doping and Au loading. METHODS: Au/N-doped TiO2 photocatalysts were synthesized and successfully used for photocatalytic water splitting for H2 evolution under irradiation of UV and UV-vis light, respectively. The samples were characterized using X-ray diffraction (XRD, transmission electron microscopy (TEM, X-ray photoelectron spectroscopy (XPS, UV-vis diffuse reflectance spectroscopy (DRS, photoluminescence spectroscopy (PL, and photoelectrochemical characterizations. RESULTS: DRS displayed an extension of light absorption into the visible region by doping of N and depositing with Au, respectively. PL analysis indicated electron-hole recombination due to N doping and an efficient inhibition of electron-hole recombination due to the loaded Au particles. Under the irradiation of UV light, the photocatalytic hydrogen production rate of the as-synthesized samples followed the order Au/TiO2 > Au/N-doped TiO2 > TiO2 > N-doped TiO2. While under irradiation of UV-vis light, the N-TiO2 and Au/N-TiO2 samples show higher H2 evolution than their corresponding nitrogen-free samples (TiO2 and Au/TiO2. This inconsistent result could be attributed to the doping of N and the surface plasmonic resonance (SPR effect of Au particles extending the visible light absorption. The photoelectrochemical characterizations further indicated the enhancement of the visible light response of Au/N-doped TiO2. CONCLUSION: Comparative studies have shown that a combination of nitrogen doping and Au loading enhanced the visible light response of

  5. Synthesis and photocatalytic activity of ytterbium-doped titania/diatomite composite photocatalysts

    International Nuclear Information System (INIS)

    Tang, Wenjian; Qiu, Kehui; Zhang, Peicong; Yuan, Xiqiang

    2016-01-01

    Graphical abstract: - Highlights: • Yb-doped TiO_2/diatomite composite photocatalysts were prepared by a sol-gel method. • Yb-doped TiO_2/diatomite photocatalysts show much higher photocatalytic activity. • The higher photodegradation rate is due to the effect of diatomite and Yb doping. - Abstract: Ytterbium-doped titanium dioxide (Yb-TiO_2)/diatomite composite materials with different Yb concentrations were prepared by sol–gel method. The phase structure, morphology, and chemical composition of the as-prepared composites were well characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), and ultraviolet–visible (UV–vis) diffuse reflection spectroscopy. The XRD and Raman spectroscopy analysis indicated that the TiO_2 existed in the form of pure anatase in the composites. The SEM images exhibited the well deposition and dispersion of TiO_2 nanoparticles with little agglomeration on the surfaces of diatoms. The UV–vis diffuse reflection spectra showed that the band gap of TiO_2 could be narrowed by the introduction of Yb species, which was further affected by doping concentration of Yb. The photocatalytic activity of synthesized samples was investigated by the degradation of methylene blue (MB) under UV light irradiation. It was observed that the photocatalytic degradation followed a pseudo-first-order kinetics according to the Langmuir–Hinshelwood model. Compared to TiO_2 and TiO_2/diatomite, the Yb-TiO_2/diatomite composites exhibited higher photocatalytic activity toward degradation of MB using UV light irradiation.

  6. Adsorption and degradation of model volatile organic compounds by a combined titania-montmorillonite-silica photocatalyst

    International Nuclear Information System (INIS)

    Chen Jiangyao; Li Guiying; He Zhigui; An Taicheng

    2011-01-01

    Highlights: → Adsorptive combined titania-montmorillonite-silica photocatalysts synthesized. → All catalysts had relatively high adsorption capacities of multinary VOCs. → All catalysts preferred to adsorb the VOCs with higher polarity. → CTMS80 can effectively photocatalytically remove VOCs of various components. - Abstract: A series of adsorptive photocatalysts, combined titania-montmorillonite-silica were synthesized. The resultant photocatalysts consisted of more and more spherically agglomerated TiO 2 particles with increasing of TiO 2 content, and anatase was the only crystalline phase with nano-scale TiO 2 particles. With increasing of the cation exchange capacity to TiO 2 molar ratio, specific surface area and pore volume increased very slightly. In a fluidized bed photocatalytic reactor by choosing toluene, ethyl acetate and ethanethiol as model pollutants, all catalysts had relatively high adsorption capacities and preferred to adsorb higher polarity pollutants. Langmuir isotherm model better described equilibrium data compared to Freundlich model. Competitive adsorptions were observed for the mixed pollutants on the catalysts, leading to decrease adsorption capacity for each pollutant. The combined titania-montmorillonite-silica photocatalyst exhibited excellent photocatalytic removal ability to model pollutants of various components. Almost 100% of degradation efficiency was achieved within 120 min for each pollutant with about 500 ppb initial concentration, though the efficiencies of multi-component compounds slightly decreased. All photocatalytic reactions followed the Langmuir-Hinshelwood model. Degradation rate constants of multi-component systems were lower than those for single systems, following the order of toluene < ethyl acetate < ethanethiol, and increased with the increase of adsorption capacities for different pollutants of various components.

  7. Enhanced photoelectrochemical and photocatalytic activity of WO3-surface modified TiO2 thin film

    Science.gov (United States)

    Qamar, Mohammad; Drmosh, Qasem; Ahmed, Muhammad I.; Qamaruddin, Muhammad; Yamani, Zain H.

    2015-02-01

    Development of nanostructured photocatalysts for harnessing solar energy in energy-efficient and environmentally benign way remains an important area of research. Pure and WO3-surface modified thin films of TiO2 were prepared by magnetron sputtering on indium tin oxide glass, and photoelectrochemical and photocatalytic activities of these films were studied. TiO2 particles were <50 nm, while deposited WO3 particles were <20 nm in size. An enhancement in the photocurrent was observed when the TiO2 surface was modified WO3 nanoparticles. Effect of potential, WO3 amount, and radiations of different wavelengths on the photoelectrochemical activity of TiO2 electrodes was investigated. Photocatalytic activity of TiO2 and WO3-modified TiO2 for the decolorization of methyl orange was tested.

  8. Photocatalytic Study of New Immobilized TiO2 Technique Towards Degradation of Reactive Red 4 Dye

    Directory of Open Access Journals (Sweden)

    Ain S. K.

    2016-01-01

    Full Text Available The study on TiO2 for wastewater remediation has gained interest among researchers. However, the application of this photocatalyst is limited due to non-recyclability of conventional TiO2. Thus, immobilization technique has been developed to solve this issue. Hence, a comparison study between two types of immobilized photocatalysts namely titanium dioxide (TiO2 and TiO2 mixed with polyvinyl alcohol (PVA has been conducted in this work to observe the significant effect of PVA polymer in photocatalysis reaction of reactive red 4 (RR4 dye. Double sided adhesive tape (DSAT was used as thin layer binder in this immobilization system. The result shows that the photocatalytic performance of TiO2-PVA/DSAT was higher than that of TiO2/DSAT under both normal UV and visible light irradiations due to the conjugated unsaturated polymer from PVA serve as electron donor for TiO2 thus increase the photocatalysis process. Besides, TiO2-PVA/DSAT was also found to possess much better adhesion strength to the support material compared to TiO2/DSAT. Based on the findings, this TiO2 immobilization system is expected to be beneficial in the industrial wastewater treatment. Thus, further study to improve the photocatalytic activity of this immobilized TiO2 will be in our future work.

  9. Effect of photocatalytic reduction of carbon dioxide by N-Zr co-doped nano TiO2.

    Science.gov (United States)

    Zhang, Ru; Wang, Li; Kang, Zhuo; Li, Qiang; Pan, Huixian

    2017-11-01

    Modified sol-gel method was adopted to prepare TiO 2 , Zr-TiO 2 and N/Zr-TiO 2 composite catalyst. The as-synthesized photocatalysts were characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, Brunner- Emmet- Teller measurement and UV-Vis diffuse reflectance spectroscopy. And the photocatalytic performance toward CO 2 reduction was evaluated under ultraviolet light. The catalyst particles were demonstrated in the nanometer level size. When N and Zr are co-doped, on the one hand, Ti 4+ can be replaced by Zr 4  +, which leads to lattice distortion and inhibits electron-hole recombination. On the other hand, N enters into TiO 2 lattice gap to form O-Ti-N bond structure, and partial Ti 4+ are reduced to Ti 3+ . Compared with pristine TiO 2 , the specific surface area and the band gap of N/Zr-TiO 2 were improved and reduced, respectively. The N and Zr synergistically contribute to the obviously strengthened absorption intensity in visible region, as well as significantly improved photocatalytic activity. In the gas phase reactor, when the calcination temperature was 550°C, 0.125N/0.25Zr-TiO 2 composite performed the highest photocatalytic activity UV irradiation for 8 h, and the corresponding CH 4 yield was 11.837 µmol/g, which was 87.8% higher than that of pristine TiO 2 . For the visible light, the CH 4 yield was 9.003 µmol/g after 8 h irradiation, which was 83.9% higher than that of pristine TiO 2 .

  10. Investigation of the photocatalytic transformation of acesulfame K in the presence of different TiO2-based materials.

    Science.gov (United States)

    López-Muňoz, M J; Daniele, A; Zorzi, M; Medana, C; Calza, P

    2018-02-01

    The photocatalytic transformation of acesulfame K - an artificial sweetener that has gained popularity over the last decades for being a calorie-free additive in food, beverages and several pharmaceutical products - was studied using three different photocatalysts, the benchmark TiO 2 -P25 and two other forms of synthetized titanium oxides named TiO 2 -SG1 and TiO 2 -SG2. The two latter materials were synthesized by a sol gel process in which the hydrolysis rate of titanium n-butoxide was controlled by the water formed in situ through an esterification reaction between ethanol and acetic acid. The investigation included monitoring the sweetener disappearance, identifying its intermediate compounds, assessing mineralization and evaluating toxicity. The analyses were carried out using high-performance liquid chromatography (HPLC) coupled with a LTQ-Orbitrap analyzer via an electrospray ionization (ESI) in the negative ion mode. This is a powerful tool for the identification, characterization and measurement of the transformation products (TPs); overall 13 species were identified. The use of several semiconductors has pointed out differences in terms of both photocatalytic efficiency and mechanism: the assessment of the evolution kinetics of each species (TPs, total organic carbon and inorganic ions) has brought to the elaboration of a general transformation pathway of acesulfame K. TiO 2 -SG2 proved to be the most efficient material in degrading the artificial sweetener and leads to the complete mineralization within 6 h of irradiation, while up to 16 h are required for TiO 2 -P25. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Photodegradation of phenol by N-Doped TiO2 anatase/rutile nanorods assembled microsphere under UV and visible light irradiation

    International Nuclear Information System (INIS)

    Mohamed, Mohamad Azuwa; Salleh, W.N.W.; Jaafar, Juhana; Ismail, A.F.; Nor, Nor Azureen Mohamad

    2015-01-01

    N-doped TiO 2 anatase/rutile nanorods assembled microspheres were successfully synthesized via a simple and direct sol–gel method containing titanium-n-butoxide Ti(OBu) 4 as a precursor material, nitric acid as a catalyst, and isopropanol as a solvent. By manipulating calcination temperature, the photocatalyst consisting of different phase compositions of anatase and rutile was obtained. The prepared TiO 2 nanoparticles were characterized by means of x-ray diffraction (XRD), field emission scanning microscope (FESEM), atomic force microscopy (AFM), Brunauer–Emmett–Teller (BET) analysis, UV–Vis–NIR spectroscopy, and fourier transform infrared (FTIR). The results from UV–Vis–NIR spectroscopy and FTIR revealed the direct incorporation of nitrogen in TiO 2 lattice since visible absorption capability was observed at 400–600 nm. XPS study indicated the incorporation of nitrogen as dopant in TiO 2 at binding energies of 396.8, 397.5, 398.7, 399.8, and 401 eV. Calcination temperature was observed to have a great influence on the photocatalytic activity of the TiO 2 nanorods. The photocatalytic activity of the prepared mixed phase of anatase/rutile TiO 2 nanoparticles was measured by photodegradation phenol in an aqueous solution under UV and visible irradiations. N-doped TiO 2 anatase/rutile nanorods assembled microsphere (consists of 38.3% anatase and 61.7% rutile) that was prepared at 400 °C exhibited the highest photocatalytic activity after irradiated under visible and UV light for 540 min. The high performance of photocatalyst materials could be obtained by adopting a judicious combination of anatase/rutile prepared at optimum calcination conditions. - Highlights: • Synthesis of N-Doped TiO 2 Anatase/Rutile Nanorods via simple preparation method. • Direct incorporation of HNO 3 as the nitrogen dopant source. • The photocatalytic properties were studied upon UV and visible light irradiation. • The optimum calcination temperature is 400 °C for

  12. TiO2@C Core-Shell Nanoparticles Formed by Polymeric Nano-Encapsulation

    Directory of Open Access Journals (Sweden)

    Mitra eVasei

    2014-07-01

    Full Text Available TiO2 semiconducting nanoparticles are known to be photocatalysts of moderate activity due to their high band-gap and high rate of electron-hole recombination. The formation of a shell of carbon around the core of TiO2, i.e. the formation of TiO2@C nanoparticles, is believed to partly alleviate these problems. It is usually achieved by a hydrothermal treatment in a presence of a sugar derivative. We present here a novel method for the formation of highly uniform C shell around TiO2 nanoparticles. For this purpose, TiO2 nanoparticles were dispersed in water using an oligomeric dispersant prepared by Reversible Addition-Fragmentation chain Transfer (RAFT polymerization. Then the nanoparticles were engaged into an emulsion polymerization of acrylonitrile, resulting in the formation of a shell of polyacrylonitrile (PAN around each TiO2 nanoparticles. Upon pyrolisis, the PAN was transformed into carbon, resulting in the formation of TiO2@C nanoparticles. The structure of the resulting particles was elucidated by X-Ray diffraction, FTIR, UV-VIS and Raman spectroscopy as well as TEM microscopy. Preliminary results about the use of the TiO2@C particles as photocatalysts for the splitting of water are presented. They indicate that the presence of the C shell is responsible for a significant enhancement of the photocurrent.

  13. Study on activities of vanadium (IV/V) doped TiO2(R) nanorods induced by UV and visible light

    International Nuclear Information System (INIS)

    Li, Li; Liu Chunyan; Liu Yun

    2009-01-01

    Vanadium (IV/V) doped rutile TiO 2 naonorods had been successfully synthesized through a single step hydrothermal method. The photocatalyst was characterized by transmission electron microscopy (TEM), selected area electron diffraction (SAED), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), UV-vis diffusive reflectance spectroscopy (DRS) and X-ray photoelectron spectroscopy (XPS). The results showed that the doping of V ions had significant influence on the band gap energy and the surface state of TiO 2 . The photo-activities of the new catalysts were investigated under ultraviolet (UV) and visible light. The UV-photocatalytic activity of the as-prepared catalysts was hardly influenced by doping V ions; while under visible light, the samples with 1 wt% and 0.1 wt% V exhibited enhanced activity to the oxidation of methylene blue (MB) and the reduction of Cr (VI), respectively

  14. Coupling of Nanocrystalline Anatase TiO2 to Porous Nanosized LaFeO3 for Efficient Visible-Light Photocatalytic Degradation of Pollutants

    Directory of Open Access Journals (Sweden)

    Muhammad Humayun

    2016-01-01

    Full Text Available In this work we have successfully fabricated nanocrystalline anatase TiO2/perovskite-type porous nanosized LaFeO3 (T/P-LFO nanocomposites using a simple wet chemical method. It is clearly demonstrated by means of atmosphere-controlled steady-state surface photovoltage spectroscopy (SPS responses, photoluminescence spectra, and fluorescence spectra related to the formed OH− radical amount that the photogenerated charge carriers in the resultant T/P-LFO nanocomposites with a proper mole ratio percentage of TiO2 display much higher separation in comparison to the P-LFO alone. This is highly responsible for the improved visible-light activities of T/P-LFO nanocomposites for photocatalytic degradation of gas-phase acetaldehyde and liquid-phase phenol. This work will provide a feasible route to synthesize visible-light responsive nano-photocatalysts for efficient solar energy utilization.

  15. Solvothermal syntheses of Bi and Zn co-doped TiO_2 with enhanced electron-hole separation and efficient photodegradation of gaseous toluene under visible-light

    International Nuclear Information System (INIS)

    Li, Juan-Juan; Cai, Song-Cai; Xu, Zhen; Chen, Xi; Chen, Jin; Jia, Hong-Peng; Chen, Jing

    2017-01-01

    Highlights: • Bi-Zn co-doped TiO_2 catalysts were prepared by solvothermal route. • The incorporation of Bi doping into the TiO_2 generates intermediate energy levels. • Bi and Zn doping showed the enhanced absorption in visible-light region. • Zn dopant acts as a mediator of interfacial charge transfer. • TiBi_1_._9_%Zn_1_%O_2 exhibited high photocatalytic degradation for toluene. - Abstract: This study investigated the effects of Bi doped and Bi-Zn co-doped TiO_2 on photodegradation of gaseous toluene. The doped TiO_2 with various concentration of metal was prepared using the solvothermal route and characterized by SEM, XRD, Raman, BET, DRS, XPS, PL and EPR. Their photocatalytic activities under visible-light irradiation were drastically influenced by the dopant content. The results showed that moderate metal doping levels were obviously beneficial for the toluene degradation, while high doping levels suppressed the photocatalytic activity. The photocatalytic degradation of toluene over TiBi_1_._9_%O_2 and TiBi_1_._9_%Zn_1_%O_2 can reach to 51% and 93%, respectively, which are much higher than 25% of TiO_2. Bi doping into TiO_2 lattice generates new intermediate energy level of Bi below the CB edge of TiO_2. The electron excitation from the VB to Bi orbitals results in the decreased band gap, extended absorption of visible-light and thus enhances its photocatalytic efficiency. Zn doping not only further enhances the absorption in this visible-light region, but also Zn dopant exists as the form of ZnO crystallites located on the interfaces of TiO_2 agglomerates and acts as a mediator of interfacial charge transfer to suppress the electron-hole recombination. These synergistic effects are responsible for the enhanced photocatalytic performance.

  16. Fast and simple microwave synthesis of TiO2/Au nanoparticles for gas-phase photocatalytic hydrogen generation

    Science.gov (United States)

    May-Masnou, Anna; Soler, Lluís; Torras, Miquel; Salles, Pol; Llorca, Jordi; Roig, Anna

    2018-04-01

    The fabrication of small anatase titanium dioxide (TiO2) nanoparticles (NPs) attached to larger anisotropic gold (Au) morphologies by a very fast and simple two-step microwave-assisted synthesis is presented. The TiO2/Au NPs are synthesized using polyvinylpyrrolidone (PVP) as reducing, capping and stabilizing agent through a polyol approach. To optimize the contact between the titania and the gold and facilitate electron transfer, the PVP is removed by calcination at mild temperatures. The nanocatalysts activity is then evaluated in the photocatalytic production of hydrogen from water/ethanol mixtures in gas-phase at ambient temperature. A maximum value of 5.3 mmol·gcat-1·h-1 (7.4 mmol·gTiO2-1·h-1) of hydrogen is recorded for the system with larger gold particles at an optimum calcination temperature of 450 °C. Herein we demonstrate that TiO2-based photocatalysts with high Au loading and large Au particle size (≈ 50 nm) NPs have photocatalytic activity.

  17. UV-vis light activated Ag decorated monodisperse TiO2 for treatment of pharmaceuticals in water

    Science.gov (United States)

    Recently, many researchers have made a lot of effort to utilize the visible light portion of the solar spectrum to activate TiO2 photocatalyst for environmental applications, such as water, air, and soil remediation. The deposition of noble metals on photocatalysts is of great in...

  18. Dynamic Hydrogen Production from Methanol/Water Photo-Splitting Using Core@Shell-Structured CuS@TiO2 Catalyst Wrapped by High Concentrated TiO2 Particles

    Directory of Open Access Journals (Sweden)

    Younghwan Im

    2013-01-01

    Full Text Available This study focused on the dynamic hydrogen production ability of a core@shell-structured CuS@TiO2 photocatalyst coated with a high concentration of TiO2 particles. The rectangular-shaped CuS particles, 100 nm in length and 60 nm in width, were surrounded by a high concentration of anatase TiO2 particles (>4~5 mol. The synthesized core@shell-structured CuS@TiO2 particles absorbed a long wavelength (a short band gap above 700 nm compared to that pure TiO2, which at approximately 300 nm, leading to easier electronic transitions, even at low energy. Hydrogen evolution from methanol/water photo-splitting over the core@shell-structured CuS@TiO2 photocatalyst increased approximately 10-fold compared to that over pure CuS. In particular, 1.9 mmol of hydrogen gas was produced after 10 hours when 0.5 g of 1CuS@4TiO2 was used at pH = 7. This level of production was increased to more than 4-fold at higher pH. Cyclic voltammetry and UV-visible absorption spectroscopy confirmed that the CuS in CuS@TiO2 strongly withdraws the excited electrons from the valence band in TiO2 because of the higher reduction potential than TiO2, resulting in a slower recombination rate between the electrons and holes and higher photoactivity.

  19. Synthesis of CdSe-TiO_2 Photocatalyst and Their Enhanced Photocatalytic Activities under UV and Visible Light

    International Nuclear Information System (INIS)

    Lim, Chang Sung; Chen, Ming Liang; Oh, Won Chun

    2011-01-01

    In this study, CdSe-TiO_2 photocatalyst were synthesized by a facile solvothermal method and characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis and UV-vis diffuse reflectance spectrophotometer. The photocatalytic activity was investigated by degrading methylene blue (MB) in aqueous solution under irradiation of UV light as well as visible light. The absorbance of degraded MB solution was determined by UV-vis spectrophotometer. The results revealed that the CdSe- TiO_2 photocatalyst exhibited much higher photocatalytic activity than TiO_2 both under irradiation of UV light as well as visible light

  20. Ternary composite of TiO2 nanotubes/Ti plates modified by g-C3N4 and SnO2 with enhanced photocatalytic activity for enhancing antibacterial and photocatalytic activity.

    Science.gov (United States)

    Faraji, Masoud; Mohaghegh, Neda; Abedini, Amir

    2018-01-01

    A series of g-C 3 N 4 -SnO 2 /TiO 2 nanotubes/Ti plates were fabricated via simple dipping of TiO 2 nanotubes/Ti in a solution containing SnCl 2 and g-C 3 N 4 nanosheets and finally annealing of the plates. Synthesized plates were characterized by various techniques. The SEM analysis revealed that the g-C 3 N 4 -SnO 2 nanosheets with high physical stability have been successfully deposited onto the surface of TiO 2 nanotubes/Ti plate. Photocatalytic activity was investigated using two probe chemical reactions: oxidative decomposition of acetic acid and oxidation of 2-propanol under irradiation. Antibacterial activities for Escherichia coli (E. coli) bacteria were also investigated in dark and under UV/Vis illuminations. Detailed characterization and results of photocatalytic and antibacterial activity tests revealed that semiconductor coupling significantly affected the photocatalyst properties synthesized and hence their photocatalytic and antibacterial activities. Modification of TiO 2 nanotubes/Ti plates with g-C 3 N 4 -SnO 2 deposits resulted in enhanced photocatalytic activities in both chemical and microbial systems. The g-C 3 N 4 -SnO 2 /TiO 2 nanotubes/Ti plate exhibited the highest photocatalytic and antibacterial activity, probably due to the heterojunction between g-C 3 N 4 -SnO 2 and TiO 2 nanotubes/Ti in the ternary composite plate and thus lower electron/hole recombination rate. Based on the obtained results, a photocatalytic and an antibacterial mechanism for the degradation of E. coli bacteria and chemical pollutants over g-C 3 N 4 -SnO 2 /TiO 2 nanotubes/Ti plate were proposed and discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Physicochemical impact of zeolites as the support for photocatalytic hydrogen production using solar-activated TiO2-based nanoparticles

    International Nuclear Information System (INIS)

    Taheri Najafabadi, Amin; Taghipour, Fariborz

    2014-01-01

    Highlights: • Zeolite chemical properties are crucial to photocatalytic hydrogen production. • Basic zeolite, TiO 2 , heteropolyacid and cobalt together are active under visible light. • TiO 2 impregnation on zeolite causes band gap widening and band edges’ anodic shift. • Heteropolyacid enhances the visible light activity of the photocatalyst. • Zeolite’s basicity can overshadow the anodic shift, advancing hydrogen evolution. - Abstract: Silico-aluminates (zeolites) have been recently utilized promisingly as the support for photocatalytic hydrogen production using solar-activated TiO 2 -based nanoparticles. Aside from conventional advantages offered by the supports in photocatalysis, we demonstrate the unique physicochemical impact of zeolites on photocatalytic hydrogen production. Beside zeolites, our synthesized materials comprise titanium dioxide (TiO 2 ) as the semiconductor, cobalt ions as the hydrogen evolution sites, and heteropolyacids (HPAs) as the multifunctional solid acids with significant excitability under visible light. Four classes of zeolites (Na-Y, Na-mordenite, H-Y, and H-beta) with different Si/Al ratios and sodium contents were evaluated. Among the studied photocatalysts, Na-Y and Na-mordenite containing 10 wt% titania emerged as the potential candidates for the hydrogen evolution reaction, with corresponding rates of 250.8 and 187.2 μmol/g h, in comparison to 84.2 μmol/g h for Degussa P25; while these values for H-Y and H-beta were 96.8 and 100.1 μmol/g h, respectively. The higher photocatalytic activity of the first two classes is attributed to the basicity of the zeolite matrix, which is possibly due to the pH dependency of the TiO 2 band edges. The results indicate the importance of controlling the chemical properties of the zeolite as a photocatalyst support through the selection of suitable types. Furthermore, our analyses show that the precise pore size distribution of the zeolite framework rules over accommodating the

  2. Fabrication of Eu-TiO2 NCs functionalized cotton textile as a multifunctional photocatalyst for dye pollutants degradation

    Science.gov (United States)

    Caschera, Daniela; Federici, Fulvio; de Caro, Tilde; Cortese, Barbara; Calandra, Pietro; Mezzi, Alessio; Lo Nigro, Raffaella; Toro, Roberta G.

    2018-01-01

    A modified one step and cost-effective chemical green route has been used to synthesize oleate-capped TiO2 anatase nanocrystals (NCs) doped with different amounts of europium, with high yields and without high-temperature post-calcination processes. Europium doping endowed TiO2 NCs with an intense red luminescence associated with the 5D0 → 7F2 transition of the electronic structure of Eu3+ and was responsible for both the morphological change of the NCs structure (from nanorods to spherical nanoparticles) and the blue shift in the absorption edge respect to the undoped TiO2 NCs. Furthermore, photocatalytic experiments revealed that a low-content (0.5 mol%) Eu3+ doped TiO2 NCs showed the best ability as photocatalyst for the degradation of methylene blue (MB) under both UV and visible light irradiation, even if all the Eu3+ doped oleate-capped TiO2 NCs were more effective under visible light. Moreover, taking advantage of their photocatalytic activity, the 0.5% Eu3+ doped oleate-capped TiO2 photocatalysts has been employed on cotton fabrics. Our results highlighted that functionalization of cotton textile with Eu3+ doped oleate-capped TiO2 NCs imparted new functionalities, such as a high photocatalytic activity toward MB degradation under visible light. In addition, it determined also the change in the wetting behaviour of cotton that switches to a superhydrophobic nature. The obtained fabric also showed stable and robust superhydrophobicity against strong acid and alkaline environments. Multifunctional materials having simultaneously luminescence, superhydrophobicity and visible light photocatalysis are expected to be very useful in many technological applications.

  3. Photoinactivation of Escherichia coli by sulfur-doped and nitrogen-fluorine-codoped TiO2 nanoparticles under solar simulated light and visible light irradiation.

    Science.gov (United States)

    Pathakoti, Kavitha; Morrow, Shavonda; Han, Changseok; Pelaez, Miguel; He, Xiaojia; Dionysiou, Dionysios D; Hwang, Huey-Min

    2013-09-03

    Titanium dioxide (TiO2) is one of the most widely used photocatalysts for the degradation of organic contaminants in water and air. Visible light (VL) activated sulfur-doped TiO2 (S-TiO2) and nitrogen-fluorine-codoped TiO2 (N-F-TiO2) were synthesized by sol-gel methods and characterized. Their photoinactivation performance was tested against Escherichia coli under solar simulated light (SSL) and VL irradiation with comparison to commercially available TiO2. Undoped Degussa-Evonik P-25 (P-25) and Sigma-TiO2 showed the highest photocatalytic activity toward E. coli inactivation under SSL irradiation, while S-TiO2 showed a moderate toxicity. After VL irradiation, Sigma-TiO2 showed higher photoinactivation, whereas S-TiO2 and P-25 showed moderate toxicity. Oxidative stress to E. coli occurred via formation of hydroxyl radicals leading to lipid peroxidation as the primary mechanism of bacterial inactivation. Various other biological models, including human keratinocytes (HaCaT), zebrafish liver cells (ZFL), and zebrafish embryos were also used to study the toxicity of TiO2 NPs. In conclusion, N-F-TiO2 did not show any toxicity based on the assay results from all the biological models used in this study, whereas S-TiO2 was toxic to zebrafish embryos under all the test conditions. These findings also demonstrate that the tested TiO2 nanoparticles do not show any adverse effects in HaCaT and ZFL cells.

  4. Solvothermal fabrication of TiO2/sepiolite composite gel with exposed {0 0 1} and {1 0 1} facets and its enhanced photocatalytic activity

    Science.gov (United States)

    Liu, Ruirui; Ji, Zhijiang; Wang, Jing; Zhang, Jinjun

    2018-05-01

    A novel TiO2/sepiolite composite gel (TiSG) was fabricated in the presence of cetyltrimethylammonium bromide (CTAB) through a simple solvothermal reaction in an acetic acid-water solvent. A homogeneous anchoring of TiO2 nanoparticles with exposed {0 0 1} and {1 0 1} facets on sepiolite nanofibers was achieved. CTAB content, solvothermal temperature/time, and HAc content play crucial roles in the morphological and facet formation of TiSG. A possible mechanism for the formation of TiSG was further proposed. CTAB as capping/shape-controlling agent can strongly bind to the more reactive (0 0 1) facet of TiO2 and then mitigate the thermodynamically favored (0 0 1) plane growth. Eventually, the truncated octahedral TiO2 was obtained by controlling the growth rates in 〈0 0 1〉 and 〈1 0 1〉 directions. Sepiolite as a cross-linking agent provides sufficient crosslinking sites for TiO2 to induce three-dimensional (3D) network formation, thereby generating the composite gel. The synthesized TiSG samples were then used as photocatalysts, which exhibited increased methyl orange removal under UV-vis light (350-780 nm) by the synergistic effect of adsorption and in-situ photocatalytic degradation as compared to P25 and bare TiO2. The excellent photocatalytic performance of TiSG was mainly ascribed to the formations of 3D gel structure and surface heterojunctions between (0 0 1) and (1 0 1) facets.

  5. Synthesis of S/Cr doped mesoporous TiO2 with high-active visible light degradation property via solid state reaction route

    International Nuclear Information System (INIS)

    Liu Shaoyou; Tang Qunli; Feng Qingge

    2011-01-01

    S/Cr doped mesoporous TiO 2 (S-TiO 2 , Cr-TiO 2 , S-Cr-TiO 2 ) were successfully synthesized via a simple, effective and environmental benign solid state reaction route. The low angle XRD patterns demonstrated that the resulting samples possess mesostructures. The further characterizations via N 2 adsorption-desorption and XPS showed that the typical S/Cr co-doped mesoporous TiO 2 (S-Cr-TiO 2 (5S-5Cr)) possesses mesopore with the high specific surface area of 118.4 m 2 /g and narrow pore size distribution, and both S and Cr have been incorporated into the lattice of TiO 2 with the amounts of 4.16% sulfur and 7.88% chromium, respectively. And Raman spectroscopy shows that the surface of S-Cr-TiO 2 (5S-5Cr) material possesses stretching vibrational peaks at ∼709, ∼793 cm -1 are assignable to the Ti-O-Cr, O-Cr (Ti)-OH bonds, respectively. Interestingly, the UV-vis displayed that the absorption regions of S/Cr doped mesoporous TiO 2 cover the visible light region. As for the series of S-Cr-TiO 2 samples, the absorption region even extends to near infrared region with strong adsorption. Moreover, compared with the pure titanium dioxide (P25-TiO 2 ), the photodegradation properties of bromocresol green (BCG) on the S/Cr doped mesoporous TiO 2 showed excellent photocatalytic properties under visible light irradiation. Within 50 min visible light irradiation, 82.6% of the initial BCG was degraded for the S-Cr-TiO 2 (6S-4Cr) photocatalyst.

  6. Photooxidation of different organic dyes (RB, MO, TB, and BG) using Fe(III)-doped TiO2 nanophotocatalyst prepared by novel chemical method

    International Nuclear Information System (INIS)

    Ghorai, Tanmay K.; Biswas, Soumya K.; Pramanik, Panchanan

    2008-01-01

    The nano-structured Fe(III)-doped TiO 2 photocatalysts with anatase phase have been developed for the oxidation of non-biodegradable different organic dyes like methyl orange (MO), rhodamine B (RB), thymol blue (TB) and bromocresol green (BG) using UV-Hg-lamp. The different compositions of Fe x Ti 1-x O 2 (x = 0.005, 0.01, 0.05, and 0.1) nanocatalysts synthesized by chemical method (CM), have been characterized by X-ray diffraction (XRD), UV-vis diffuse reflectance spectra, specific surface area (BET), transmission electronic microscopy (TEM) analysis, XPS, ESR and zeta potential. From XRD analysis, the results indicate that all the compositions of Fe(III) doped in TiO 2 catalysts gives only anatase phase not rutile phase. For complete degradation of all the solutions of the dyes (MO, RB, TB, and BG), the composition with x = 0.005 is more photoactive compared all other compositions of Fe x Ti 1-x O 2 , and degussa P25. The decolorization rate of different dyes decreases as Fe(III) concentration in TiO 2 increases. The energy band gap of Fe(III)-doped TiO 2 is found to be 2.38 eV. The oxidation state of iron has been found to be 3+ from XPS and ESR show that Fe 3+ is in low spin state

  7. Highly Enhanced Photoreductive Degradation of Polybromodiphenyl Ethers with g-C3N4/TiO2 under Visible Light Irradiation

    Directory of Open Access Journals (Sweden)

    Weidong Ye

    2017-04-01

    Full Text Available A series of high activity photocatalysts g-C3N4-TiO2 were synthesized by simple one-pot thermal transformation method and characterized by transmission electron microscopy (TEM, scanning electron microscopy (SEM, X-ray diffraction (XRD, X-ray photoelectron spectroscopy, Brunauer–Emmett–Teller (BET surface area, and ultraviolet–visible diffuse reflectance spectroscopy (UV-Vis-DRS. The g-C3N4-TiO2 samples show highly improved photoreductive capability for the degradation of polybromodiphenyl ethers compared with g-C3N4 under visible light irradiation. Among all the hybrids, 0.02-C3N4-TiO2 with 2 wt % g-C3N4 loaded shows the highest reaction rate, which is 15 times as high as that in bare g-C3N4. The well-matched band gaps in heterojunction g-C3N4-TiO2 not only strengthen the absorption intensity, but also show more effective charge carrier separation, which results in the highly enhanced photoreductive performance under visible light irradiation. The trapping experiments show that holetrapping agents largely affect the reaction rate. The rate of electron accumulation in the conductive band is the rate-determining step in the degradation reaction. A possible photoreductive mechanism has been proposed.

  8. In-situ functionalization of mesoporous hexagonal ZnO synthesized in task specific ionic liquid as a photocatalyst for elimination of SO2, NOx, and CO

    Science.gov (United States)

    Kowsari, Elaheh; Abdpour, Soheil

    2017-12-01

    A novel mesoporous structure of zinc oxide was synthesized in hydrothermal autocalve in the presence of a functional ionic liquid (FIL) {[CH2CH2] O2 (mm)2}. This FIL with ether groups was used simultaneously as a designer templating agent and a source of the hydroxyl radical. The presence of this ionic liquid led to producing ethylene glycol in the reaction media, which adsorb on the surface of mesoporous hexagonal ZnO plates. These mesoporous structures can adsorb pollutant gases and increase photocatalytic oxidation of pollutant gases in compare with commercial ZnO nanoparticles and agglomerated nanoparticles synthesized in this work. XPS data confirmed ethylene glycol production by the ionic liquid, which could prove a role for ionic liquids as designers. The estimated BET surface area values of ZnO hexagonal mesoporous plates and agglomerated particles were 84 m2/g and 12 m2/g respectively. Optical properties of the mesoporous structures were analyzed by photoluminescence spectroscopy and diffuse reflectance UV-visible spectroscopy. The performance of these structures as efficient photocatalysts was further demonstrated by their removal of NOx, SO2, and CO under UV irradiation. The removal of NOx, SO2, and CO under UV irradiation was 56%, 81%, and 35% respectively, after 40 min of irradiation time. Reusability of the photocatalyst was determined; the results show no significant decrease of activity of photocatalyst. after five cycles.

  9. Synthesis of nano-TiO2 photocatalysts with tunable Fe doping concentration from Ti-bearing tailings

    Science.gov (United States)

    Sui, Yulei; Liu, Qingxia; Jiang, Tao; Guo, Yufeng

    2018-01-01

    In this work, highly pure nano-TiO2 photocatalysts with varying Fe doping concentration were successfully synthesized from low-cost Ti-bearing tailings by an acidolysis-hydrothermal route. The effects of H2SO4 concentration, leaching temperature, acid/tailings ratio and leaching time on the recovery of TiO2 from the tailings were investigated. Synthesized samples were characterized by XRD, TEM, EDS, XPS, and UV-vis spectroscopy. The results showed that the material prepared is characteristic anatase with the average size of 20 nm and the Fe doping concentration in the synthesized nano-TiO2 is tunable. The photocatalytic activity of synthesized nano-TiO2 photocatalyst was also evaluated by the photodegradation of Rhodamine B under visible light and UV light irradiation. Our study demonstrates a low-cost approach to synthesize highly efficient and visible light responsive catalysts.

  10. Photocatalytic Degradation of Methylene Blue Using TiO2 Impregnated Diatomite

    OpenAIRE

    Zuo, Ranfang; Du, Gaoxiang; Zhang, Weiwei; Liu, Lianhua; Liu, Yanming; Mei, Lefu; Li, Zhaohui

    2014-01-01

    Nano-TiO2 showed a good catalytic activity, but it is easy to agglomerate, resulting in the reduction or even complete loss of photocatalytic activity. The dispersion of TiO2 particles on porous materials was a potential solution to this problem. Diatomite has high specific surface and absorbability because of its particular shell structure. Thus, TiO2/diatomite composite, prepared by loading TiO2 on the surface of diatomite, was a good photocatalyst, through absorbing organic compounds with ...

  11. Enhancing lipid productivity of Chlorella vulgaris using oxidative stress by TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Kang, Nam Kyu; Lee, Bongsoo; Choi, Gang-Guk; Moon, Myounghoon; Park, Min S.; Yang, Ji-Won; Lim, JitKang

    2014-01-01

    Ability to increase the lipid production in microalgae is one of the heavily sought-after ideas to improve the economic feasibility of microalgae-derived transportation fuels for commercial applications. We used the oxidative stress by TiO 2 nanoparticles, a well-known photocatalyst, to induce lipid production in microalgae. Chlorella vulgaris UTEX 265 was cultivated under various concentrations of TiO 2 ranging from 0.1 to 5 g/L under UV-A illumination. Maximum specific growth rate was affected in responding to TiO 2 concentrations. In the presence of UV-A, chlorophyll concentration was decreased at the highest concentration of TiO 2 (5 g/L TiO 2 ) by oxidative stress. The fatty acid methyl ester (FAME) composition analysis suggested that oxidative stress causes the accumulation and decomposition of lipids. The highest FAME productivity was 18.2 g/L/d under low concentrations of TiO 2 (0.1 g/L) and a short induction time (two days). The controlled condition of TiO 2 /UV-A inducing oxidative stress (0.1 g/L TiO 2 and two days induction) could be used to increase the lipid productivity of C. vulgaris UTEX 265. Our results show the possibility of modulating the lipid induction process through oxidative stress with TiO 2 /UV-A

  12. Synthesis and Photocatalytic Activity of Anatase TiO2 Nanoparticles-coated Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Xie Yi

    2009-01-01

    Full Text Available Abstract A simple and straightforward approach to prepare TiO2-coated carbon nanotubes (CNTs is presented. Anatase TiO2 nanoparticles (NPs with the average size ~8 nm were coated on CNTs from peroxo titanic acid (PTA precursor even at low temperature of 100 °C. We demonstrate the effects of CNTs/TiO2 molar ratio on the adsorption capability and photocatalytic efficiency under UV–visible irradiation. The samples showed not only good optical absorption in visible range, but also great adsorption capacity for methyl orange (MO dye molecules. These properties facilitated the great enhancement of photocatalytic activity of TiO2 NPs-coated CNTs photocatalysts. The TiO2 NPs-coated CNTs exhibited 2.45 times higher photocatalytic activity for MO degradation than that of pure TiO2.

  13. Excess electrons in reduced rutile and anatase TiO2

    Science.gov (United States)

    Yin, Wen-Jin; Wen, Bo; Zhou, Chuanyao; Selloni, Annabella; Liu, Li-Min

    2018-05-01

    As a prototypical photocatalyst, TiO2 is a material of scientific and technological interest. In photocatalysis and other applications, TiO2 is often reduced, behaving as an n-type semiconductor with unique physico-chemical properties. In this review, we summarize recent advances in the understanding of the fundamental properties and applications of excess electrons in reduced, undoped TiO2. We discuss the characteristics of excess electrons in the bulk and at the surface of rutile and anatase TiO2 focusing on their localization, spatial distribution, energy levels, and dynamical properties. We examine specific features of the electronic states for photoexcited TiO2, for intrinsic oxygen vacancy and Ti interstitial defects, and for surface hydroxyls. We discuss similarities and differences in the behaviors of excess electrons in the rutile and anatase phases. Finally, we consider the effect of excess electrons on the reactivity, focusing on the interaction between excess electrons and adsorbates.

  14. Photocatalytic degradation of paracetamol on TiO2 nanoparticles and TiO2/cellulosic fiber under UV and sunlight irradiation

    Directory of Open Access Journals (Sweden)

    Nabil Jallouli

    2017-05-01

    Full Text Available In the present study, photocatalytic degradation of acetaminophen ((N-(4-hydroxyphe-nylacetamide, an analgesic drug has been investigated in a batch reactor using TiO2 P25 as a photocatalyst in slurry and under UV light. Using TiO2 P25 nanoparticles, much faster photodegradation of paracetamol and effective mineralization occurred, more than 90% of 2.65 × 10−4 M paracetamol was degraded under UV irradiation. Changes in pH values affected the adsorption and the photodegradation of paracetamol. pH 9.0 is found to be the optimum for the photodegradation of paracetamol. HPLC detected hydroquinone, benzoquinone, p-nitrophenol, and 1,2,4-trihydroxybenzene during the TiO2-assisted photodegradation of paracetamol among which some pathway products are disclosed for the first time. The results showed that TiO2 suspension/UV system is more efficient than the TiO2/cellulosic fiber mode combined to solar light for the photocatalytic degradation of paracetamol. Nerveless the immobilization of TiO2 showed many advantages over slurry system because it can enhance adsorption properties while allowing easy separation of the photocatalyst from the treated solution with improved reusable performance.

  15. Enhanced magnetic separation and photocatalytic activity of nitrogen doped titania photocatalyst supported on strontium ferrite.

    Science.gov (United States)

    Abd Aziz, Azrina; Yong, Kok Soon; Ibrahim, Shaliza; Pichiah, Saravanan

    2012-01-15

    An enhanced ferromagnetic property, visible light active TiO(2) photocatalyst was successfully synthesized by supporting strontium ferrite (SrFe(12)O(19)) onto TiO(2) doped with nitrogen (N) and compared with N-doped TiO(2). The synthesized catalysts were further characterized with X-ray diffraction (XRD), transmission electron microscope (TEM), energy dispersive X-ray spectroscopy (EDS), BET surface area analysis, vibrating sample magnetometer (VSM), X-ray photon spectroscopy (XPS) and visible light spectroscopy analysis for their respective properties. The XRD and EDS revealed the structural and inorganic composition of N-TiO(2) supported on SrFe(12)O(19). The supported N-TiO(2) exhibited a strong ferromagnetic property with tremendous stability against magnetic property losses. It also resulted in reduced band gap (2.8 eV) and better visible light absorption between 400 and 800 nm compared to N-doped TiO(2). The photocatalytic activity was investigated with a recalcitrant phenolic compound namely 2,4-dichlorophenol (2,4-DCP) as a model pollutant under direct bright and diffuse sunlight exposure. A complete degradation of 2,4-DCP was achieved with an initial concentration of 50mg/L for both photocatalysts in 180 min and 270 min respectively under bright sunlight. Similarly the diffuse sunlight study resulted in complete degradation for supported N-TiO(2) and >85% degradation N-TiO(2), respectively. Finally the supported photocatalyst was separated under permanent magnetic field with a mass recovery ≈ 98% for further reuse. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Eosin Y-sensitized nanosheet-stacked hollow-sphere TiO2 for efficient photocatalytic H2 production under visible-light irradiation

    Science.gov (United States)

    Shi, Jinwen; Guan, Xiangjiu; Zhou, Zhaohui; Liu, Haipei; Guo, Liejin

    2015-06-01

    Nanosheet (with around 20 nm in thickness)-stacked hollow-sphere TiO2 was synthesized via a modified solvothermal reaction for different times followed by calcination treatment at different temperatures. After surface modification by different cations (H+ or Fe3+) and further sensitization by Eosin Y, the obtained photocatalysts achieved remarkably enhanced H2-production activity (about 4.2 times of that for Eosin Y-sensitized P25) and stability under visible-light irradiation. The improved photocatalytic performance was synergistically caused by the enhanced Eosin Y sensitization (due to the enlarged surface area and electropositively modified surface), the optimized crystal structure (well-crystallized anatase phase), and the unique micro/nanostructure (nanosheet-stacked hollow spheres). This work presented an effective route to explore new visible-light-driven H2-production photocatalysts by coupling nanomaterials with special morphologies and metal-free dyes with visible-light absorption.

  17. Eosin Y-sensitized nanosheet-stacked hollow-sphere TiO2 for efficient photocatalytic H2 production under visible-light irradiation

    International Nuclear Information System (INIS)

    Shi, Jinwen; Guan, Xiangjiu; Zhou, Zhaohui; Liu, Haipei; Guo, Liejin

    2015-01-01

    Nanosheet (with around 20 nm in thickness)-stacked hollow-sphere TiO 2 was synthesized via a modified solvothermal reaction for different times followed by calcination treatment at different temperatures. After surface modification by different cations (H + or Fe 3+ ) and further sensitization by Eosin Y, the obtained photocatalysts achieved remarkably enhanced H 2 -production activity (about 4.2 times of that for Eosin Y-sensitized P25) and stability under visible-light irradiation. The improved photocatalytic performance was synergistically caused by the enhanced Eosin Y sensitization (due to the enlarged surface area and electropositively modified surface), the optimized crystal structure (well-crystallized anatase phase), and the unique micro/nanostructure (nanosheet-stacked hollow spheres). This work presented an effective route to explore new visible-light-driven H 2 -production photocatalysts by coupling nanomaterials with special morphologies and metal-free dyes with visible-light absorption

  18. Dye-Sensitized Solar Cells with Anatase TiO2 Nanorods Prepared by Hydrothermal Method

    Directory of Open Access Journals (Sweden)

    Ming-Jer Jeng

    2013-01-01

    Full Text Available The hydrothermal method provides an effective reaction environment for the synthesis of nanocrystalline materials with high purity and well-controlled crystallinity. In this work, we started with various sizes of commercial TiO2 powders and used the hydrothermal method to prepare TiO2 thin films. We found that the synthesized TiO2 nanorods were thin and long when smaller TiO2 particles were used, while larger TiO2 particles produced thicker and shorter nanorods. We also found that TiO2 films prepared by TiO2 nanorods exhibited larger surface roughness than those prepared by the commercial TiO2 particles. It was found that a pure anatase phase of TiO2 nanorods can be obtained from the hydrothermal method. The dye-sensitized solar cells fabricated with TiO2 nanorods exhibited a higher solar efficiency than those fabricated with commercial TiO2 nanoparticles directly. Further, triple-layer structures of TiO2 thin films with different particle sizes were investigated to improve the solar efficiency.

  19. Interface actions between TiO2 and porous diatomite on the structure and photocatalytic activity of TiO2-diatomite

    International Nuclear Information System (INIS)

    Xia, Yue; Li, Fangfei; Jiang, Yinshan; Xia, Maosheng; Xue, Bing; Li, Yanjuan

    2014-01-01

    TiO 2 -diatomite photocatalysts were prepared by sol–gel process with various pre-modified diatomite. In order to obtain diatomite with different surface characteristics, two modification approaches including calcination and phosphoric acid treatment on the micro-structure of diatomite are introduced. The photocatalysts were characterized by XRD, XPS, nitrogen adsorption–desorption isotherms and micromorphology analysis. The results indicate that, compared with pure TiO 2 , the anatase-to-rutile phase transition temperature of TiO 2 loaded on diatomite carrier is significantly increased to nearly 900 °C, depending on the different pretreatment method of diatomite. The photocatalytic activities of different samples were evaluated by their degradation rate of methyl orange (MO) dye under UV and visible-light irradiation. The samples prepared by phosphoric acid pretreatment method exhibit the highest photocatalytic activity. After 90 min of UV irradiation, about 90% of MO is decomposed by the best effective photocatalyst. And after 8 h visible-light irradiation, nearly 60% of MO is decomposed by the same sample. Further mechanism investigation reveals that the H 3 PO 4 pretreatment process can obviously change the surface features of diatomite carrier, cause the formation of Si–O–Ti bond, increase the binding strength between TiO 2 and diatomite, restrain crystal growth of loaded TiO 2 , and thus form thermal-stable mesoporous structure at the granular spaces. It helps to build micro-, meso- and macro-porous hierarchical porous structure in TiO 2 -diatomite, and improves the charge and mass transfer efficiency during catalyzing process, resulting in the significantly increased photocatalytic activity of TiO 2 -diatomite pretreated by phosphoric acid.

  20. Interface actions between TiO2 and porous diatomite on the structure and photocatalytic activity of TiO2-diatomite

    Science.gov (United States)

    Xia, Yue; Li, Fangfei; Jiang, Yinshan; Xia, Maosheng; Xue, Bing; Li, Yanjuan

    2014-06-01

    TiO2-diatomite photocatalysts were prepared by sol-gel process with various pre-modified diatomite. In order to obtain diatomite with different surface characteristics, two modification approaches including calcination and phosphoric acid treatment on the micro-structure of diatomite are introduced. The photocatalysts were characterized by XRD, XPS, nitrogen adsorption-desorption isotherms and micromorphology analysis. The results indicate that, compared with pure TiO2, the anatase-to-rutile phase transition temperature of TiO2 loaded on diatomite carrier is significantly increased to nearly 900 °C, depending on the different pretreatment method of diatomite. The photocatalytic activities of different samples were evaluated by their degradation rate of methyl orange (MO) dye under UV and visible-light irradiation. The samples prepared by phosphoric acid pretreatment method exhibit the highest photocatalytic activity. After 90 min of UV irradiation, about 90% of MO is decomposed by the best effective photocatalyst. And after 8 h visible-light irradiation, nearly 60% of MO is decomposed by the same sample. Further mechanism investigation reveals that the H3PO4 pretreatment process can obviously change the surface features of diatomite carrier, cause the formation of Si-O-Ti bond, increase the binding strength between TiO2 and diatomite, restrain crystal growth of loaded TiO2, and thus form thermal-stable mesoporous structure at the granular spaces. It helps to build micro-, meso- and macro-porous hierarchical porous structure in TiO2-diatomite, and improves the charge and mass transfer efficiency during catalyzing process, resulting in the significantly increased photocatalytic activity of TiO2-diatomite pretreated by phosphoric acid.

  1. Synthesis, structure and photocatalytic activity of nano TiO2 and ...

    Indian Academy of Sciences (India)

    salicylic acid over combustion-synthesized nano TiO2 under UV and solar exposure has been carried out. Under identical conditions of UV exposure, the initial degra- dation rate of phenol with combustion-synthesized TiO2 is two times higher than the initial degradation rate of phenol with Degussa P25, the commercial ...

  2. The design, fabrication, and photocatalytic utility of nanostructured semiconductors: focus on TiO2-based nanostructures

    Science.gov (United States)

    Banerjee, Arghya Narayan

    2011-01-01

    Recent advances in basic fabrication techniques of TiO2-based nanomaterials such as nanoparticles, nanowires, nanoplatelets, and both physical- and solution-based techniques have been adopted by various research groups around the world. Our research focus has been mainly on various deposition parameters used for fabricating nanostructured materials, including TiO2-organic/inorganic nanocomposite materials. Technically, TiO2 shows relatively high reactivity under ultraviolet light, the energy of which exceeds the band gap of TiO2. The development of photocatalysts exhibiting high reactivity under visible light allows the main part of the solar spectrum to be used. Visible light-activated TiO2 could be prepared by doping or sensitizing. As far as doping of TiO2 is concerned, in obtaining tailored material with improved properties, metal and nonmetal doping has been performed in the context of improved photoactivity. Nonmetal doping seems to be more promising than metal doping. TiO2 represents an effective photocatalyst for water and air purification and for self-cleaning surfaces. Additionally, it can be used as an antibacterial agent because of its strong oxidation activity and superhydrophilicity. Therefore, applications of TiO2 in terms of photocatalytic activities are discussed here. The basic mechanisms of the photoactivities of TiO2 and nanostructures are considered alongside band structure engineering and surface modification in nanostructured TiO2 in the context of doping. The article reviews the basic structural, optical, and electrical properties of TiO2, followed by detailed fabrication techniques of 0-, 1-, and quasi-2-dimensional TiO2 nanomaterials. Applications and future directions of nanostructured TiO2 are considered in the context of various photoinduced phenomena such as hydrogen production, electricity generation via dye-sensitized solar cells, photokilling and self-cleaning effect, photo-oxidation of organic pollutant, wastewater management, and

  3. Exchange of TiO2 nanoparticles between streams and streambeds.

    Science.gov (United States)

    Boncagni, Natalia Ticiana; Otaegui, Justo Manuel; Warner, Evelyn; Curran, Trisha; Ren, Jianhong; de Cortalezzi, Maria Marta Fidalgo

    2009-10-15

    The expanding use of manufactured nanoparticles has increased the potential for their release into the natural environment. Particularly, TiO2 nanoparticles pose significant exposure risk to humans and other living species due to their extensive use in a wide range of fields. To better understand the environmental and health risks associated with the release of TiO2 nanoparticles, knowledge on their fate and transport is needed. This study evaluates the transport of two different TiO2 nanoparticles: one commercially available (P25 TiO2 and the other synthesized at a lab scale (synthesized TiO2). Laboratory flume, column, and batch experiments were conducted to investigate the processes dominating the transport of TiO2 nanoparticles between streams and streambeds and to characterize the properties of these nanoparticles under different physicochemical conditions. Results show that the synthesized TiO2 was more stable compared to the P25 TiO2, which underwent significant aggregation under the same experimental conditions. As a result, P25 TiO2 deposited at a faster rate than the synthesized TiO2 in the streambed. Both types of TiO2 nanoparticles deposited in the streambed were easily released when the stream velocity was increased. The aggregation and deposition of P25 TiO2 were highly dependent on pH. A process-based colloid exchange model was applied to interpret the observed transport behavior of the TiO2 nanoparticles.

  4. Photocatalytic decouloration of malachite green dye by application of TiO2 nanotubes

    International Nuclear Information System (INIS)

    Prado, Alexandre G.S.; Costa, Leonardo L.

    2009-01-01

    The nanotubes of titania were synthesized in a hydrothermal system and characterized by scanning electronic microscopy (SEM), FT-IR, FT-Raman, and surface charge density by surface area analyzer. These nanomaterials were applied to photocatalyse malachite green dye degradation. Photodegradation capacity of TiO 2 nanotubes was compared to TiO 2 anatase photoactivity. Malachite dye was completely degraded in 75 and 105 min of reaction photocatalysed by TiO 2 nanotubes and TiO 2 anatase, respectively. Catalysts displayed high photodegradation activity at pH 4. TiO 2 nanotubes were easily recycled whereas the reuse of TiO 2 anatase was not effective. Nanotubes maintained 80% of their activity after 10 catalytic cycles and TiO 2 anatase presented only 8% of its activity after 10 cycles.

  5. Physicochemical Study of Photocatalytic Activity of TiO2 Supported Palygorskite Clay Mineral

    Directory of Open Access Journals (Sweden)

    Lahcen Bouna

    2013-01-01

    Full Text Available This study deals with the influence of physicochemical parameters, namely, the photocatalyst loading, dye concentration, and pH of polluted solutions, on the degradation efficiency of Orange G (OG solutions containing TiO2 nanoparticles supported on palygorskite clay mineral (TiO2-Pal. The TiO2 photocatalyst attached to natural palygorskite fibers was elaborated by colloidal sol-gel route. It exhibits the anatase structure that is the most photoactive crystallographic form. The highest performances of supported photocatalyst on OG degradation were found using an optimum amount of TiO2-Pal around 0.8 g·L−1, which corresponds properly to ca. 0.4 g·L−1 of TiO2. This amount is interestingly lower than the 2.5 g·L−1 generally reported when using pure unsupported TiO2 powder. The photodegradation rate increases by decreasing OG initial concentration, and it was found significantly higher when the OG solution is either acidic (pH<4 or basic (pH≈11. For OG concentrations in the range 5×10-6– 5×10-4 M, the kinetic law of the OG degradation in presence of TiO2-Pal is similar to that reported for unsupported TiO2 nanopowder. It follows a Langmuir-Hinshelwood model with a first-order reaction and an apparent rate constant of about 2.9×10-2 min−1.

  6. Synthesis of Nd3+doped TiO2 nanoparticles and Its Optical Behaviour

    Directory of Open Access Journals (Sweden)

    Ezhil Arasi S.

    2017-04-01

    Full Text Available Pure and Rare earth ion doped TiO2 nanoparticles were synthesized by Sol-gel method. The synthesized TiO2 nanoparticles were characterized by X-ray diffraction, Raman spectroscopy, UV–Vis spectroscopy and photoluminescence emission spectra. From the UV-visible measurement, the absorption edge of Nd3+-TiO2 was shifted to a higher wavelength side with decreasing band gap. Photoluminescence emission studies reveal the energy transfer mechanism of Nd3+ doped TiO2 nanoparticles explain.

  7. Application of nitrogen-doped TiO2 nano-tubes in dye-sensitized solar cells

    DEFF Research Database (Denmark)

    Tran, Vy Anh; Thinh Troung, Trieu; Pham Phan, Thu Anh

    2017-01-01

    Our research aimed to improve the overall energy conversion efficiency of DSCs by applying nitrogen-doped TiO2 nano-tubes (N-TNT) for the preparation of DSCs photo-anodes. The none-doped TiO2 nano-tubes (TNTs) were synthesized by alkaline hydrothermal treatment of Degussa P25 TiO2 particles in 10...

  8. Sol-gel synthesis of TiO2 nanoparticles and photocatalytic degradation of methyl orange in aqueous TiO2 suspensions

    International Nuclear Information System (INIS)

    Yang Huaming; Zhang Ke; Shi Rongrong; Li Xianwei; Dong Xiaodan; Yu Yongmei

    2006-01-01

    Anatase TiO 2 nanoparticles of about 16 nm in crystal size have been successfully synthesized via a sol-gel method. Thermal treatment of the precursor at 500-600 deg. C results in the formation of different TiO 2 phase compositions. The samples were characterized by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Effects of the pH value of the solution, H 2 O 2 addition, TiO 2 phase composition and recycled TiO 2 on the photocatalytic degradation of methyl orange (MeO) in TiO 2 suspensions under ultraviolet (UV) illumination were primarily investigated. The results indicate that a low pH value, proper amount of H 2 O 2 and pure anatase TiO 2 will facilitate the photocatalytic oxidation of the MeO solution. The photodegradation degree decreases with increasing the pH value of the solution and varies with different amounts of H 2 O 2 . Pure anatase TiO 2 shows better photocatalytic activity for MeO decolorization than biphase TiO 2 . The photocatalytic mechanism of the as-synthesized TiO 2 nanoparticles was discussed

  9. High surface area TiO2/SBA-15 nanocomposites: Synthesis, microstructure and adsorption-enhanced photocatalysis

    Science.gov (United States)

    Wei, J. Q.; Chen, X. J.; Wang, P. F.; Han, Y. B.; Xu, J. C.; Hong, B.; Jin, H. X.; Jin, D. F.; Peng, X. L.; Li, J.; Yang, Y. T.; Ge, H. L.; Wang, X. Q.

    2018-06-01

    Mesoporous SBA-15 was used to anchor TiO2 nanoparticles into the mesopores to form high surface area TiO2/SBA-15 nanocomposites, and then the influence of mesoporous-structure on the photocatalytic performance was investigated. TiO2/SBA-15 nanocomposites possessed the high specific surface area and appropriate pore size, indicating the excellent adsorption performance. TiO2/SBA-15 nanocomposites exhibited the higher photocatalytic activity to degrade dyes (methylene blue: MB) than TiO2 (removing SBA-15), which should attributed to the excellent adsorption performance of the nanocomposites. MB was absorbed to form the higher concentration near TiO2/SBA-15 photocatalysts, and the photocatalytic degradation for MB was improved.

  10. XRD analysis of undoped and Fe doped TiO2 nanoparticles by Williamson Hall method

    International Nuclear Information System (INIS)

    Bharti, Bandna; Barman, P. B.; Kumar, Rajesh

    2015-01-01

    Undoped and Fe doped titanium dioxide (TiO 2 ) nanoparticles were synthesized by sol-gel method at room temperature. The synthesized samples were annealed at 500°C. For structural analysis, the prepared samples were characterized by X-ray diffraction (XRD). The crystallite size of TiO 2 and Fe doped TiO 2 nanoparticles were calculated by Scherer’s formula, and was found to be 15 nm and 11 nm, respectively. Reduction in crystallite size of TiO 2 with Fe doping was observed. The anatase phase of Fe-doped TiO 2 nanoparticles was also confirmed by X-ray diffraction. By using Williamson-Hall method, lattice strain and crystallite size were also calculated. Williamson–Hall plot indicates the presence of compressive strain for TiO 2 and tensile strain for Fe-TiO 2 nanoparticles annealed at 500°C

  11. High pressure synthesis of amorphous TiO2 nanotubes

    Directory of Open Access Journals (Sweden)

    Quanjun Li

    2015-09-01

    Full Text Available Amorphous TiO2 nanotubes with diameters of 8-10 nm and length of several nanometers were synthesized by high pressure treatment of anatase TiO2 nanotubes. The structural phase transitions of anatase TiO2 nanotubes were investigated by using in-situ high-pressure synchrotron X-ray diffraction (XRD method. The starting anatase structure is stable up to ∼20GPa, and transforms into a high-density amorphous (HDA form at higher pressure. Pressure-modified high- to low-density transition was observed in the amorphous form upon decompression. The pressure-induced amorphization and polyamorphism are in good agreement with the previous results in ultrafine TiO2 nanoparticles and nanoribbons. The relationship between the LDA form and α-PbO2 phase was revealed by high-resolution transmission electron microscopy (HRTEM study. In addition, the bulk modulus (B0 = 158 GPa of the anatase TiO2 nanotubes is smaller than those of the corresponding bulks and nanoparticles (180-240 GPa. We suggest that the unique open-ended nanotube morphology and nanosize play important roles in the high pressure phase transition of TiO2 nanotubes.

  12. Photodegradation of oxytetracycline in aqueous by 5A and 13X loaded with TiO2 under UV irradiation

    International Nuclear Information System (INIS)

    Zhao Chun; Deng Huiping; Li Yuan; Liu Zhenzhong

    2010-01-01

    The photocatalysis degradation, mineralization and detoxification of oxytetracycline (OTC) in aqueous were investigated by 5A and 13X zeolite with nano-TiO 2 loaded under UV light. The composite photocatalysts are characterized by X-ray diffraction (XRD) and field emission scanning (FESEM) technologies. The adsorption isotherms of OTC by 5A and 13X with different pH are evaluated. The results show that 654 and 1497 mg/g OTC of saturation adsorption capacity is reached by 5A and 13X at pH 7, respectively. Then the effect of TiO 2 with 5A and 13X support and different wt% of TiO 2 over the support on the resultant OTC removal, net photocatalytic degradation and influence factors such as TiO 2 loading, initial pH, concentration of OTC and adding anion on degradation are investigated. The 15 wt% TiO 2 /5A and 10 wt% TiO 2 /13X photocatalysts are found optimum for OTC removal and degradation in aqueous. The mineralization was measured by total organic carbon (TOC) while combined toxicity change during OTC degradation was tested with standardized bioluminescence assay of inhibition rate on Vibrio qinghaiensis sp.-Q67 (Q67). The results suggest that TiO 2 /5A and TiO 2 /13X composite systems are effective photocatalysts for treatment of OTC in aqueous.

  13. A thick hierarchical rutile TiO2 nanomaterial with multilayered structure

    International Nuclear Information System (INIS)

    Zhu, Shengli; Xie, Guoqiang; Yang, Xianjin; Cui, Zhenduo

    2013-01-01

    Highlights: ► We synthesized a new rutile TiO 2 nanomaterial with a hierarchical nanostructure. ► The nano architecture structure consist of nanorods and nanoflower arrays. ► The rutile TiO 2 nanomaterial is thick in size (several 10 μm). ► The TiO 2 nanomaterials present a multilayer structure. - Abstract: In the present paper, we synthesized a new type of rutile TiO 2 nanomaterial with a hierarchical nanostructure using a novel method, which combined dealloying process with chemical synthesis. The structure characters were examined using X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The rutile TiO 2 nanomaterial is thick in size (several 10 μm). The hierarchical structure of the rutile TiO 2 nanomaterial consists of large quantities nanorods and nanoflower arrays. The nanoflowers consist of serveral nanopetals with diameter of 100–200 nm. The cross section of TiO 2 nanomaterials presents a multilayer structure with the layer thickness of about 3–5 μm. The rutile TiO 2 nanomaterial has high specific surface area. The formation mechanism of the rutile TiO 2 nanomaterial was discussed according to the experimental results. The rutile TiO 2 nanomaterial has potential applications in catalysis, photocatalysis and solar cells

  14. The design, fabrication, and photocatalytic utility of nanostructured semiconductors: focus on TiO2-based nanostructures

    Directory of Open Access Journals (Sweden)

    Arghya Narayan Banerjee

    2011-02-01

    Full Text Available Arghya Narayan BanerjeeSchool of Mechanical Engineering, Yeungnam University, Gyeongsan, South KoreaAbstract: Recent advances in basic fabrication techniques of TiO2-based nanomaterials such as nanoparticles, nanowires, nanoplatelets, and both physical- and solution-based techniques have been adopted by various research groups around the world. Our research focus has been mainly on various deposition parameters used for fabricating nanostructured materials, including TiO2-organic/inorganic nanocomposite materials. Technically, TiO2 shows relatively high reactivity under ultraviolet light, the energy of which exceeds the band gap of TiO2. The development of photocatalysts exhibiting high reactivity under visible light allows the main part of the solar spectrum to be used. Visible light-activated TiO2 could be prepared by doping or sensitizing. As far as doping of TiO2 is concerned, in obtaining tailored material with improved properties, metal and nonmetal doping has been performed in the context of improved photoactivity. Nonmetal doping seems to be more promising than metal doping. TiO2 represents an effective photocatalyst for water and air purification and for self-cleaning surfaces. Additionally, it can be used as an antibacterial agent because of its strong oxidation activity and superhydrophilicity. Therefore, applications of TiO2 in terms of photocatalytic activities are discussed here. The basic mechanisms of the photoactivities of TiO2 and nanostructures are considered alongside band structure engineering and surface modification in nanostructured TiO2 in the context of doping. The article reviews the basic structural, optical, and electrical properties of TiO2, followed by detailed fabrication techniques of 0-, 1-, and quasi-2-dimensional TiO2 nanomaterials. Applications and future directions of nanostructured TiO2 are considered in the context of various photoinduced phenomena such as hydrogen production, electricity generation via

  15. A photocatalytic approach in micro arc oxidation of WO3-TiO2 nano porous semiconductors under pulse current

    International Nuclear Information System (INIS)

    Bayati, M.R.; Golestani-Fard, F.; Moshfegh, A.Z.; Molaei, R.

    2011-01-01

    Graphical abstract: WO3-TiO2 layers were fabricated via microarc oxidation process and effect of the electrical current type on their photocatalytic performance under UV and visible illuminations was investigated. Highlights: → WO3-TiO2 layers were grown by MAO under pulse current for the first time. → Effect of the frequency and duty cycle on properties of the layers was studied. → A correlation between catalytic performance and growth conditions was proposed. - Abstract: Since ultraviolet (UV) irradiation cannot be applied for a long time in practical applications, it is necessary to develop a narrow band gap photocatalyst to decompose environmental pollutants under visible irradiation. In this research, (WO 3 ) x -(TiO 2 ) 1-x nano-porous layers were fabricated by micro arc oxidation (MAO) and influence of the electrical current type on their physical and chemical properties was investigated. Morphological studies, performed by SEM technique, revealed that pore size and roughness decreased with the frequency and increased with the duty cycle. The pulse-grown layers had a finer structure when compared to those fabricated under direct current. XRD and XPS results showed that the layers consisted of anatase, rutile, and tungsten oxide phases. Applying pulse current resulted in higher anatase relative contents. Band gap energies of the MAO-grown TiO 2 and WO 3 -TiO 2 layers were respectively measured as 3.14 and 2.96 eV. The layers fabricated under pulse current exhibited higher photoactivity under ultraviolet and visible illuminations as compared to the layers grown under direct current. Methylene blue (MB) was used as a model material to examine photocatalytic performance of the layers. Maximum MB-photodegradation reaction rate constants over the pulse-synthesized WO 3 -TiO 2 layers were measured as 0.0269 and 0.0129 min -1 for ultraviolet and visible irradiations. For layers grown under direct current, the rate constants were lower, i.e. 0.0228 and 0

  16. Photocatalytic degradation of RhB over MgFe2O4/TiO2 composite materials

    International Nuclear Information System (INIS)

    Zhang Lei; He, Yiming; Wu Ying; Wu Tinghua

    2011-01-01

    Highlights: → Novel composite MgFe 2 O 4 /TiO 2 as catalyst. → Higher activity for the photodegradation of RhB under visible light irradiation. → Calcination temperature of catalyst has effect on photocatalytic activity. → Different photocatalysis mechanism under UV and visible light irradiation. - Abstract: MgFe 2 O 4 /TiO 2 (MFO/TiO 2 ) composite photocatalysts were successfully synthesized using a mixing-annealing method. The synthesized composites exhibited significantly higher photocatalytic activity than a naked semiconductor in the photodegradation of Rhodamine B. Under UV and visible light irradiation, the optimal percentages of doped MgFe 2 O 4 (MFO) were 2 wt.% and 3 wt.%, respectively. The effects of calcination temperature on photocatalytic activity were also investigated. The origin of the high level of activity was discussed based on the results of X-ray diffraction, UV-vis diffuse reflection spectroscopy, scanning electron microscopy, transmission electron microscopy, and nitrogen physical adsorption. The enhanced activity of the catalysts was mainly attributed to the synergetic effect between the two semiconductors, the band potential of which matched suitably.

  17. Photoetching of Immobilized TiO2-ENR50-PVC Composite for Improved Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    M. A. Nawi

    2012-01-01

    Full Text Available Commercially acquired TiO2 photocatalyst (99% anatase powder was mixed with epoxidized natural rubber-50 (ENR50/polyvinyl chloride (PVC blend by ultrasonication and immobilized onto glass plates as TiO2-ENR50-PVC composite via a dip-coating method. Photoetching of the immobilized TiO2-ENR50-PVC composite was investigated under the irradiation of a 45 W compact fluorescent lamp and characterized by chemical oxygen demand (COD analysis, scanning electron microscopy-energy dispersive X-ray (SEM-EDX spectrometry, thermogravimetry analysis (TGA, and fourier transform infrared (FTIR spectroscopy. The BET surface area of the photoetched TiO2 composite was observed to be larger than the original TiO2 powder due to the systematic removal of ENR50 while PVC was retained within the composite. It also exhibited better photocatalytic efficiency than the TiO2 powder in a slurry mode and was highly reproducible and reusable. More than 98% of MB removal was consistently achieved for 10 repeated runs of the photo-etched photocatalyst system. About 93% of the 20 mg L−1 MB was mineralized over a period of 480 min. The presence of SO42−, NO3−, and Cl− anions was detected in the mineralized solution where the solution pH was reduced from 7 to 4.

  18. Influence of surface treatment on preparing nanosized TiO2 supported on carbon nanotubes

    International Nuclear Information System (INIS)

    Wang Shuo; Ji Lijun; Wu Bin; Gong Qianming; Zhu Yuefeng; Liang Ji

    2008-01-01

    In this paper, nanosize titanium dioxide (TiO 2 ) deposited on pristine and acid treated carbon nanotubes (CNTs) were prepared by a modified sol-gel method. The nanoscale materials were extensively characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR) and Raman spectra. The results indicated that about 6.8 nm TiO 2 nanoparticles were successfully deposited on acid-treated CNTs surface homogeneously and densely, which was smaller than TiO 2 coated on pristine CNTs. The surface state of CNTs was a critical factor in obtaining a homogeneous distribution of nanoscale TiO 2 particles. Acid oxidization could etch the surface of CNTs and introduce functional groups, which were beneficial to controllable homogeneous deposition. The TiO 2 coated on acid-treated CNTs was used as photocatalyst for Reactive Brilliant Red X-3B dye degradation under UV irradiation, which showed higher efficiency than that of TiO 2 coated on pristine CNTs and commercial photocatalyst P25.

  19. TiO2-based photocatalytic disinfection of microbes in aqueous media: A review.

    Science.gov (United States)

    Laxma Reddy, P Venkata; Kavitha, Beluri; Kumar Reddy, Police Anil; Kim, Ki-Hyun

    2017-04-01

    The TiO 2 based photocatalyst has great potential for the disinfection/inactivation of harmful pathogens (such as E.coli in aqueous media) along with its well-known usefulness on various chemical pollutants. The disinfection property of TiO 2 is primarily attributed to surface generation of reactive oxygen species (ROS) as well as free metal ions formation. Furthermore, its disinfection capacity and overall performance can be significantly improved through modifications of the TiO 2 material. In this review, we provide a brief survey on the effect of various TiO 2 materials in the disinfection of a wide range of environmentally harmful microbial pathogens (e.g., bacteria, fungi, algae, and viruses) in aqueous media. The influencing factors (such as reactor design, water chemistry, and TiO 2 modifications) of such processes are discussed along with the mechanisms of such disinfection. It is believed that the combined application of disinfection and decontamination will greatly enhance the utilization of TiO 2 photocatalyst as a potential alternative to conventional methods of water purification. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Persistent deNOx Ability of CaAl2O4:(Eu, Nd/TiO2-xNy Luminescent Photocatalyst

    Directory of Open Access Journals (Sweden)

    Li Huihui

    2011-01-01

    Full Text Available Abstract CaAl2O4:(Eu, Nd/TiO2-xNy composite luminescent photocatalyst was successfully synthesized by a simple planetary ball milling process. Improvement of photocatalytic deNOx ability of TiO2-xNy, together with the persistent photocatalytic activity for the decomposition of NO after turning off the light were realized, by coupling TiO2-xNy with long afterglow phosphor, CaAl2O4:(Eu, Nd. The novel persistent photocatalytic behavior was related to the overlap between the absorption wavelength of TiO2-xNy and the emission wavelength of the CaAl2O4:(Eu, Nd. It was found that CaAl2O4:(Eu, Nd/TiO2-xNy composites provided the luminescence to persist photocatalytic reaction for more than 3 h after turning off the light. Graphical Abstract CaAl2O4:(Eu, Nd/TiO2-xNy composite luminescent photocatalyst with persistent deNOx activity after turning off the light was successfully synthesized by a simple planetary ball milling process. The novel persistent photocatalytic behavior was related to the overlap between the absorption wavelength of TiO2-xNy and the emission wavelength of the CaAl2O4:(Eu, Nd. Additional file 1 Click here for file

  1. A high-performance doped photocatalysts for inactivation of total coliforms in superficial waters using different sources of radiation.

    Science.gov (United States)

    Claro, Elis Marina Turini; Bidoia, Ederio Dino; de Moraes, Peterson Bueno

    2016-07-15

    Photocatalytic water treatment has a currently elevated electricity demand and maintenance costs, but the photocatalytic water treatment may also assist in overcoming the limitations and drawbacks of conventional water treatment processes. Among the Advanced Oxidation Processes, heterogeneous photocatalysis is one of the most widely and efficiently used processes to degrade and/or remove a wide range of polluting compounds. The goal of this work was to find out a highly efficient photocatalytic disinfection process in superficial water with different doped photocatalysts and using three sources of radiation: mercury vapor lamp, solar simulator and UV-A LED. Three doped photocatalysts were prepared, SiZnO, NSiZnO and FNSiZnO. The inactivation efficiency of each synthesized photocatalysts was compared to a TiO2 P25 (Degussa(®)) 0.5 g L(-1) control. Photolysis inactivation efficiency was 85% with UV-A LED, which is considered very high, demanding low electricity consumption in the process, whereas mercury vapor lamp and solar simulator yielded 19% and 13% inactivation efficiency, respectively. The best conditions were found with photocatalysts SiZnO, FNSiZnO and NSiZnO irradiated with UV-A LED, where efficiency exceeded 95% that matched inactivation of coliforms using the same irradiation and photocatalyst TiO2. All photocatalysts showed photocatalytic activity with all three radiation sources able to inactivate total coliforms from river water. The use of UV-A LED as the light source without photocatalyst is very promising, allowing the creation of cost-effective and highly efficient water treatment plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Purification of water by bipolar pulsed discharge plasma combined with TiO2 catalysis

    International Nuclear Information System (INIS)

    Zhang, Yongrui; Ma, Wenchang; Zhang, Xian; Wang, Liming; Zhang, Ruobing; Guan, Zhicheng

    2013-01-01

    In the process of water treatment by bipolar pulsed discharge plasma, there are not only the chemical effects such as the cold plasma, but also the physical effects such as the optical radiation. The energy of the optical radiation can be used by photocatalyst. Therefore, the effect of the photocatalyst to the degradation of the organic pollutant was investigated using a packed bed reactor by bipolar pulsed discharge in the air-liquid-solid mixture. The nanoparticle TiO 2 photocatalyst was obtained using the sol-gel method and the typical dye solution Indigo Carmine was chosen as the degradation target to test the catalytic effect of the nanoparticle TiO 2 photocatalyst. Experiment results proved that the degradation efficiency of the Indigo Carmine solution was increased by a certain extent with the TiO 2 photocatalyst. It was totally decolorized within 3 minutes by bipolar pulsed discharge in the condition that the peak voltage was 30 kV and the air flow was 1.0 m 3 h −1 .

  3. Photocatalytic degradation of paracetamol on TiO2 nanoparticles and TiO2/cellulosic fiber under UV and sunlight irradiation

    OpenAIRE

    Jallouli, Nabil; Elghniji, Kais; Trabelsi, Hassen; Ksibi, Mohamed

    2014-01-01

    In the present study, photocatalytic degradation of acetaminophen ((N-(4-hydroxyphe-nyl)acetamide)), an analgesic drug has been investigated in a batch reactor using TiO2 P25 as a photocatalyst in slurry and under UV light. Using TiO2 P25 nanoparticles, much faster photodegradation of paracetamol and effective mineralization occurred, more than 90% of 2.65 × 10−4 M paracetamol was degraded under UV irradiation. Changes in pH values affected the adsorption and the photodegradation of paracetam...

  4. Synthesis of titanate, TiO2 (B), and anatase TiO2 nanofibers from natural rutile sand

    International Nuclear Information System (INIS)

    Pavasupree, Sorapong; Suzuki, Yoshikazu; Yoshikawa, Susumu; Kawahata, Ryoji

    2005-01-01

    Titanate nanofibers were synthesized by hydrothermal method (150 deg. C for 72 h) using natural rutile sand as the starting materials. TiO 2 (B) and anatase TiO 2 (high crystallinity) nanofibers with the diameters of 20-100 nm and the lengths of 10-100 μm were obtained by calcined titanate nanofibers for 4 h at 400 and 700 deg. C (in air), respectively. The samples characterized by XRD, SEM, TEM, SAED, HRTEM, and BET surface area. This synthesis method provides a simple route to fabricate one-dimensional nanostructured TiO 2 from low cost material. -- Graphical abstract: Titanate nanofibers (b) were synthesized by hydrothermal method (150 deg. C for 72 h) using natural rutile sand (a) as the starting materials. TiO 2 (B) (c) and anatase TiO 2 (d) nanofibers with the diameters of 20-50 nm and the lengths of 10-100 μm were obtained by calcined titanate nanofibers for 4 h at 400 deg. C and 700 deg. C (in air), respectively

  5. Eco-friendly synthesis of TiO2, Au and Pt doped TiO2 nanoparticles for dye sensitized solar cell applications and evaluation of toxicity

    Science.gov (United States)

    Gopinath, K.; Kumaraguru, S.; Bhakyaraj, K.; Thirumal, S.; Arumugam, A.

    2016-04-01

    Driven by the demand of pure TiO2, Au and Pt doped TiO2 NPs were successfully synthesized using Terminalia arjuna bark extract. The eco-friendly synthesized NPs were characterized by UV-Vis-DRS, ATR-FT-IR, PL, XRD, Raman, SEM with EDX and TEM analysis. The synthesized NPs were investigation for dye sensitized solar cell applications. UV-Vis-Diffused Reflectance Spectra clearly showed that the expected TiO2 inter band absorption below 306 nm, incorporation of gold shows surface plasma resonant (SPR) near 555 nm and platinum incorporated TiO2 NPs shows absorbance at 460 nm. The energy conversion efficiency for Au doped TiO2 NPs when compared to pure and Pt doped TiO2 NPs. In addition to that, Au noble metal present TiO2 matrix and an improve open-circuit voltage (Voc) of DSSC. Synthesized NPs was evaluated into antibacterial and antifungal activities by disk diffusion method. It is observed that NPs have not shown any activities in all tested bacterial and fungal strains. In this eco-friendly synthesis method to provide non toxic and environmental friendly nanomaterials can be used for solar energy device application.

  6. TiO2 beads and TiO2-chitosan beads for urease immobilization

    International Nuclear Information System (INIS)

    Ispirli Doğaç, Yasemin; Deveci, İlyas; Teke, Mustafa; Mercimek, Bedrettin

    2014-01-01

    The aim of the present study is to synthesize TiO 2 beads for urease immobilization. Two different strategies were used to immobilize the urease on TiO 2 beads. In the first method (A), urease enzyme was immobilized onto TiO 2 beads by adsorption and then crosslinking. In the second method (B), TiO 2 beads were coated with chitosan-urease mixture. To determine optimum conditions of immobilization, different parameters were investigated. The parameters of optimization were initial enzyme concentration (0.5; 1; 1.5; 2 mg/ml), alginate concentration (1; 2; 3%), glutaraldehyde concentration (1; 2; 3% v/v) and chitosan concentration (2; 3; 4 mg/ml). The optimum enzyme concentrations were determined as 1.5 mg/ml for A and 1.0 mg/ml for B. The other optimum conditions were found 2.0% (w/v) for alginate concentration (both A and B); 3.0 mg/ml for chitosan concentration (B) and 2.0% (v/v) for glutaraldehyde concentration (A). The optimum temperature (20-60 °C), optimum pH (3.0-10.0), kinetic parameters, thermal stability (4–70 °C), pH stability (4.0-9.0), operational stability (0-230 min) and reusability (20 times) were investigated for characterization. The optimum temperatures were 30 °C (A), 40 °C (B) and 35 °C (soluble). The temperature profiles of the immobilized ureases were spread over a large area. The optimum pH values for the soluble urease and immobilized urease prepared by using methods (A) and (B) were found to be 7.5, 7.0, 7.0, respectively. The thermal stabilities of immobilized enzyme sets were studied and they maintained 50% activity at 65 °C. However, at this temperature free urease protected only 15% activity. - Highlights: • TiO 2 and TiO 2 -chitosan beads for urease immobilization have been prepared and characterized. • The beads used in this work are good matrices for the immobilization of urease. • The immobilized urease was shown to have good properties and stabilities (pH and thermal stability, operational stability). • The 50

  7. Improvement of light harvesting and device performance of dye-sensitized solar cells using rod-like nanocrystal TiO2 overlay coating on TiO2 nanoparticle working electrode

    International Nuclear Information System (INIS)

    Liu, Xueyang; Fang, Jian; Gao, Mei; Wang, Hongxia; Yang, Weidong; Lin, Tong

    2015-01-01

    Novel TiO 2 single crystalline nanorods were synthesized by electrospinning and hydrothermal treatment. The role of the TiO 2 nanorods on TiO 2 nanoparticle electrode in improvement of light harvesting and photovoltaic properties of dye-sensitized solar cells (DSSCs) was examined. Although the TiO 2 nanorods had lower dye loading than TiO 2 nanoparticle, they showed higher light utilization behaviour. Electron transfer in TiO 2 nanorods received less resistance than that in TiO 2 nanoparticle aggregation. By just applying a thin layer of TiO 2 nanorods on TiO 2 nanoparticle working electrode, the DSSC device light harvesting ability and energy conversion efficiency were improved significantly. The thickness of the nanorod layer in the working electrode played an important role in determining the photovoltaic property of DSSCs. An energy conversion efficiency as high as 6.6% was found on a DSSC device with the working electrode consisting of a 12 μm think TiO 2 nanoparticle layer covered with 3 μm thick TiO 2 nanorods. The results obtained from this study may benefit further design of highly efficient DSSCs. - Highlights: • Single crystalline TiO 2 nanorods were prepared for DSSC application. • TiO 2 nanorods show effective light scattering performance. • TiO 2 nanorods have higher electron transfer efficiency than TiO 2 nanoparticles. • TiO 2 nanorods on TiO 2 nanoparticle electrode improve DSSC efficiency

  8. The Influence of NiO Addition in TiO2 Structure and Its Photoactivity

    Science.gov (United States)

    Wahyuningsih, S.; Ramelan, A. H.; Purwanti, P. D.; Munawaroh, H.; Ichsan, S.; Kristiawan, Y. R.

    2018-03-01

    The synthesis of TiO2 together with the TiO2-NiO composite using various annealing temperatures has been studied. The synthesis of TiO2 was performed by sol gel method using Titanium Tetra Isopropoxide (TTIP) precursor, whereas the synthesis of TiO2-NiO composite was done by wet impregnation method using NiNO3.6H2O precursor. This study aims to determine the influence of NiO addition in its structure and photoactivity. The diffraction of synthesized TiO2 at 400 °C temperature shows anatase TiO2 peak at 2θ = 25.35 °. The addition of NiO dopant to the synthesis of TiO2 process is carried out by annealing at 300 °C, 400 °C, 500 °C, 600 °C, and 700 °C, respectively. The TiO2-NiO composite has been prepared and shows the diffraction peak of NiO at 2θ=43° about 33.08 to 36.68%. The optimum result of Rhodamine B photodegradation with TiO2 was 43.15%, while the optimum result of Rhodamine B degradation with TiO2-NiO composite was 92.85%.

  9. Efficient H2 production over Au/graphene/TiO2 induced by surface plasmon resonance of Au and band-gap excitation of TiO2

    International Nuclear Information System (INIS)

    Liu, Yang; Yu, Hongtao; Wang, Hua; Chen, Shuo; Quan, Xie

    2014-01-01

    Highlights: • Both surface plasmon resonance and band-gap excitation were used for H 2 production. • Au/Gr/TiO 2 composite photocatalyst was synthesized. • Au/Gr/TiO 2 exhibited enhancement of light absorption and charge separation. • H 2 production rate of Au/Gr/TiO 2 was about 2 times as high as that of Au/TiO 2 . - Abstract: H 2 production over Au/Gr/TiO 2 composite photocatalyst induced by surface plasmon resonance of Au and band-gap excitation of TiO 2 using graphene (Gr) as an electron acceptor has been investigated. Electron paramagnetic resonance study indicated that, in this composite, Gr collected electrons not only from Au with surface plasmon resonance but also from TiO 2 with band-gap excitation. Surface photovoltage and UV–vis absorption measurements revealed that compared with Au/TiO 2 , Au/Gr/TiO 2 displayed more effective photogenerated charge separation and higher optical absorption. Benefiting from these advantages, the H 2 production rate of Au/Gr/TiO 2 composite with Gr content of 1.0 wt% and Au content of 2.0 wt% was about 2 times as high as that of Au/TiO 2 . This work represents an important step toward the efficient application of both surface plasmon resonance and band-gap excitation on the way to converting solar light into chemical energy

  10. Electrical conductivity characteristic of TiO2 nanowires from hydrothermal method

    International Nuclear Information System (INIS)

    Othman, Mohd Azlishah; Amat, Noor Faridah; Ahmad, Badrul Hisham; Rajan, Jose

    2014-01-01

    One dimensional nanostructures of titanium dioxide (TiO 2 ) were synthesized via hydrothermal method by mixing TiO 2 as precursor in aqueous solution of NaOH as solvent. Then, heat and washing treatment was applied. Thus obtained wires had diameter ∼15 nm. TiO 2 nanowires will be used as a network in solar cell such dye-sensitized solar cell in order to improve the performance of electron movement in the device. To improve the performance of electron movement, the characteristics of TiO 2 nanowires have been analyses using field emission scanning electron microscopy (FESEM) analysis, x-ray diffractometer (XRD) analysis and brunauer emmett teller (BET) analysis. Finally, electrical conductivity of TiO 2 nanowires was determined by measuring the resistance of the TiO 2 nanowires paste on microscope glass.

  11. Photodegradation of Reactive Golden Yellow R Dye Catalyzed by Effective Titania (TiO2)

    International Nuclear Information System (INIS)

    Bedurus, E.A.; Marinah Mohd Ariffin; Mohd Hasmizam Razali

    2015-01-01

    In the present research, Microwave Assisted Synthesis (MAS) method was applied to synthesize titania (TiO 2 ) at 150 degree Celsius in a range of 2-6 hours heating time. Each prepared TiO 2 were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and nitrogen gas (N 2 ) sorption analysis (Brunaeur-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) calculation) techniques. The TiO 2 prepared by MAS 150 degree Celsius (4 hours) has emerged with the highest photo catalytic activity. Within 4 hours, the TiO 2 managed to catalyze the degradation of Reactive Golden Yellow R dye up to 98.51 %. This is because of the TiO 2 possessed high crystallinity of anatase phase, small crystallite size and high pore volume compared to other prepared TiO 2 . (author)

  12. Thiourea-Modified TiO2 Nanorods with Enhanced Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Xiaofeng Wu

    2016-02-01

    Full Text Available Semiconductor TiO2 photocatalysis has attracted much attention due to its potential application in solving the problems of environmental pollution. In this paper, thiourea (CH4N2S modified anatase TiO2 nanorods were fabricated by calcination of the mixture of TiO2 nanorods and thiourea at 600 °C for 2 h. It was found that only N element was doped into the lattice of TiO2 nanorods. With increasing the weight ratio of thiourea to TiO2 (R from 0 to 8, the light-harvesting ability of the photocatalyst steady increases. Both the crystallization and photocatalytic activity of TiO2 nanorods increase first and then decrease with increase in R value, and R2 sample showed the highest crystallization and photocatalytic activity in degradation of Brilliant Red X3B (X3B and Rhodamine B (RhB dyes under visible light irradiation (λ > 420 nm. The increased visible-light photocatalytic activity of the prepared N-doped TiO2 nanorods is due to the synergistic effects of the enhanced crystallization, improved light-harvesting ability and reduced recombination rate of photo-generated electron-hole pairs. Note that the enhanced visible photocatalytic activity of N-doped nanorods is not based on the scarification of their UV photocatalytic activity.

  13. A Brown Mesoporous TiO2-x /MCF Composite with an Extremely High Quantum Yield of Solar Energy Photocatalysis for H2 Evolution.

    Science.gov (United States)

    Xing, Mingyang; Zhang, Jinlong; Qiu, Bocheng; Tian, Baozhu; Anpo, Masakazu; Che, Michel

    2015-04-24

    A brown mesoporous TiO2-x /MCF composite with a high fluorine dopant concentration (8.01 at%) is synthesized by a vacuum activation method. It exhibits an excellent solar absorption and a record-breaking quantum yield (Φ = 46%) and a high photon-hydrogen energy conversion efficiency (η = 34%,) for solar photocatalytic H2 production, which are all higher than that of the black hydrogen-doped TiO2 (Φ = 35%, η = 24%). The MCFs serve to improve the adsorption of F atoms onto the TiO2 /MCF composite surface, which after the formation of oxygen vacancies by vacuum activation, facilitate the abundant substitution of these vacancies with F atoms. The decrease of recombination sites induced by high-concentration F doping and the synergistic effect between lattice Ti(3+)-F and surface Ti(3+)-F are responsible for the enhanced lifetime of electrons, the observed excellent absorption of solar light, and the photocatalytic production of H2 for these catalysts. The as-prepared F-doped composite is an ideal solar light-driven photocatalyst with great potential for applications ranging from the remediation of environmental pollution to the harnessing of solar energy for H2 production. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Facile synthesis of bird's nest-like TiO2 microstructure with exposed (001) facets for photocatalytic degradation of methylene blue

    Science.gov (United States)

    Zhang, Guozhong; Zhang, Shuqu; Wang, Longlu; Liu, Ran; Zeng, Yunxiong; Xia, Xinnian; Liu, Yutang; Luo, Shenglian

    2017-01-01

    The scrupulous design of hierarchical structure and highly active crystal facets exposure is essential for the creation of photocatalytic system. However, it is still a big challenge for scrupulous design of TiO2 architectures. In this paper, bird's nest-like anatase TiO2 microstructure with exposed highly active (001) surface has been successfully synthesized by a facile one-step solvothermal method. Methylene blue (MB) is chosen as a model pollutant to evaluate photocatalytic activity of as-obtained TiO2 samples. The results show that the photocatalytic activity of the bird's nest-like sample is more excellent than P25 in the degradation of MB due to high specific surface area and highly active (001) crystal facets exposure when tested under simulated solar light. Besides, it can be readily separated from the photocatalytic system by sedimentation after photocatalytic reaction, which is a significant advantage against conventional powder photocatalyst. The bird's nest-like microspheres with novel structure may have potential application in photocatalysis and other fields.

  15. In situ photodeposition of amorphous CoSx on the TiO2 towards hydrogen evolution

    Science.gov (United States)

    Chen, Feng; Luo, Wei; Mo, Yanping; Yu, Huogen; Cheng, Bei

    2018-02-01

    Cocatalyst modification of photocatalysts is an important strategy to enhance the photocatalytic performance by promoting effective separation of photoinduced electron-hole pairs and providing abundant active sites. In this study, a facile in situ photodeposition method was developed to prepare amorphous CoSx-modified TiO2 photocatalysts. It was found that amorphous CoSx nanoparticles were solidly loaded on the TiO2 surface, resulting in a greatly improved photocatalytic H2-evolution performance. When the amount of amorphous CoSx was 10 wt%, the hydrogen evolution rate of the CoSx/TiO2 reached 119.7 μmol h-1, which was almost 16.7 times that of the pure TiO2. According to the above experimental results, a reasonable mechanism of improved photocatalytic performance is proposed for the CoSx/TiO2 photocatalysts, namely, the photogenerated electrons of TiO2 can rapidly transfer to amorphous CoSx nanoparticles due to the solid contact between them, and then amorphous CoSx can provide plenty of sulfur active sites to rapidly adsorb protons from solution to produce hydrogen by the photogenerated electrons. Considering the facile synthesis method, the present cheap and highly efficient amorphous CoSx-modified TiO2 photocatalysts would have great potential for practical use in photocatalytic H2 production.

  16. Effect of TiO2 on the Gas Sensing Features of TiO2/PANi Nanocomposites

    Directory of Open Access Journals (Sweden)

    Duong Ngoc Huyen

    2011-02-01

    Full Text Available A nanocomposite of titanium dioxide (TiO2 and polyaniline (PANi was synthesized by in-situ chemical polymerization using aniline (ANi monomer and TiCl4 as precursors. SEM pictures show that the nanocomposite was created in the form of long PANi chains decorated with TiO2 nanoparticles. FTIR, Raman and UV-Vis spectra reveal that the PANi component undergoes an electronic structure modification as a result of the TiO2 and PANi interaction. The electrical resistor of the nanocomposite is highly sensitive to oxygen and NH3 gas, accounting for the physical adsorption of these gases. A nanocomposite with around 55% TiO2 shows an oxygen sensitivity of 600–700%, 20–25 times higher than that of neat PANi. The n-p contacts between TiO2 nanoparticles and PANi matrix give rise to variety of shallow donors and acceptor levels in the PANi band gap which enhance the physical adsorption of gas molecules.

  17. Rapid and efficient photocatalytic reduction of hexavalent chromium by using “water dispersible” TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Wang, Lei; Kang, Shi-Zhao; Li, Xiangqing; Qin, Lixia; Yan, Hao; Mu, Jin

    2016-01-01

    In the present work, “water dispersible” TiO 2 nanoparticles were prepared, and meanwhile, their photocatalytic activity was systematically tested for the reduction of aqueous Cr(VI) ions. It is found that the as-prepared “water dispersible” TiO 2 nanoparticles are a highly efficient photocatalyst for the reduction of Cr(VI) ions in water under UV irradiation, and suitable for the remediation of Cr(VI) ions wastewater with low concentration. Compared with commercial TiO 2 nanoparticles (P25), the “water dispersible” TiO 2 nanoparticles exhibit 3.8-fold higher photocatalytic activity. 100% Cr (VI) ions can be reduced into Cr(III) ions within 10 min when the Cr (VI) ions initial concentration is 10 mg L −1 . Moreover, the electrical energy consumption can be obviously decreased using the “water dispersible” TiO 2 nanoparticles. These results suggest that the “water dispersible” TiO 2 nanoparticles are a promising photocatalyst for rapid removal of Cr (VI) in environmental therapy. - Highlights: • “Water dispersible” TiO 2 nanoparticles with high photocatalytic activity. • 100% Cr (VI) (10 mg L −1 ) can be reduced within 10 min. • Obvious decrease of electrical energy consumption.

  18. Porous TiO_2 nanofibers decorated CdS nanoparticles by SILAR method for enhanced visible-light-driven photocatalytic activity

    International Nuclear Information System (INIS)

    Tian, Fengyu; Hou, Dongfang; Hu, Fuchao; Xie, Kui; Qiao, Xiuqing; Li, Dongsheng

    2017-01-01

    Graphical abstract: A heterojunction photocatalyst with CdS Nanoparticles self-assembled via SILAR Method at surfaces of electrospun TiO2 nanofibers shows enhanced visible-light photocatalytic activities. - Highlights: • Combined electrospinning and successive ionic layer adsorption and reaction process. • Pouous TiO_2 nanofibers decorated CdS nanoparticles. • Synergetic effect of photosensitization and heterojunction. - Abstract: 1D porous CdS nanoparticles/TiO_2 nanofibers heterostructure has been fabricated via simple electrospinning and a successive ionic layer adsorption and reaction (SILAR) process. The morphology, composition, and optical properties of the resulting CdS/TiO_2 heterostructures can be rationally tailored through changing the SILAR cycles. The photocatalytic hydrogen evolution and decomposition of rhodamine B (RhB) of the as-synthesized heterostructured photocatalysts were investigated under visible light irradiation. Compared to TiO_2 nanofibers,the as-obtained CdS/TiO_2 heterostructures exhibit enhanced photocatalytic activity for hydrogen production and decomposition of RhB under visible-light irradiation. The heterojunction system performs best with H_2 generation rates of 678.61 μmol h"−"1 g"−"1 under visible light irradiation which benefits from the two effects: (a) the 1D porous nanofibrous morphology contributes to not only more active sites but also more efficient transfer of the photogenerated charges (b) the synergetic effect of heterojunction and photosensitization reducing the recombination of photogenerated electrons and holes.

  19. Enhanced photocatalytic activity of wool-ball-like TiO2 microspheres on carbon fabric and FTO substrates

    Science.gov (United States)

    Zhang, Yu; Gu, Jian; Zhang, Mengqi

    2018-06-01

    The wool-ball-like TiO2 microspheres on carbon fabric (TiO2-CF) and FTO substrates (TiO2-FTO) have been synthesized by a facile hydrothermal method in alkali environment, using commercial TiO2 (P25) as precursors. The XRD results indicate that the as-prepared TiO2 have good crystallinity. And the SEM images show that the wool-ball-like TiO2 microspheres with a diameter of 2-3 μm are composed of TiO2 nanowires, which have a diameter of 50 nm. The photocatalytic behavior of the wool-ball-like TiO2 microspheres, TiO2-CF and TiO2-FTO under ultraviolet light was investigated by a pseudo first-order kinetic model, using methyl orange (MO) as pollutant. The wool-ball-like TiO2 microspheres obtained a degradation rate constant (Kap) of 6.91×10-3 min-1 . The Kap values of TiO2-FTO and TiO2-CF reach 13.97×10-3 min-1 and 11.80×10-3 min-1, which are 2.0 and 1.7 times higher than that of pristine wool-ball-like TiO2 microspheres due to the "sum effect" between TiO2 and substrates. This study offers a facile hydrothermal method to prepare wool-ball-like TiO2 microspheres on CF and FTO substrates, which will improve the recyclability of phtocatalysts and can be extended to other fields.

  20. Synergistic effects between TiO2 and carbon nanotubes (CNTs) in a TiO2/CNTs system under visible light irradiation.

    Science.gov (United States)

    Wu, Chung-Hsin; Kuo, Chao-Yin; Chen, Shih-Ting

    2013-01-01

    This study synthesized a TiO2/carbon nanotubes (CNTs) composite via the sol-gel method. The surface characteristics of the TiO2/CNTs composite were determined by X-ray diffraction, transmission electron microscopy, specific surface area analyser, ultraviolent (UV)-vis spectroscopy, X-ray photoelectron spectroscopy and Raman spectrometer. The photocatalytic activity ofthe TiO2/CNTs composite was evaluated by decolourizing C.I. Reactive Red 2 (RR2) under visible light irradiation. Furthermore, the effects of calcination temperature, pH, RR2 concentration, and the TiO2/CNTs composite dosage on RR2 decolourization were determined simultaneously. The optimal calcination temperature to generate TiO2 and the TiO2/CNTs composite was 673 K, as the percentage of anatase crystallization at this temperature was highest. The specific surface area of the TiO2/CNTs composite and TiO2 were 45 and 42 m2/g, respectively. The band gap of TiO2 and the TiO2/CNTs composite was 2.97 and 2.71 eV by UV-vis measurements, respectively. Experimental data indicate that the Ti-O-C bond formed in the TiO2/CNTs composite. The RR2 decolourization rates can be approximated by pseudo-first-order kinetics; moreover, only the TiO2/CNTs composite had photocatalytic activity under visible light irradiation. At pH 7, the RR2 decolourization rate constant of 0.5, 1 and 2 g/L TiO2/CNTs addition was 0.005, 0.0015, and 0.0047 min(-1), respectively. Decolourization rate increased as pH and the RR2 concentration decreased. The CNTs functioned as electron acceptors, promoting separation of photoinduced electron-hole pairs to retard their recombination; thus, photocatalytic activity of the TiO2/CNTs composite exceeded that of TiO2.

  1. Photocatalytic enhancement of cesium removal by Prussian blue-deposited TiO2.

    Science.gov (United States)

    Kim, Hyuncheol; Kim, Minsun; Kim, Wooyul; Lee, Wanno; Kim, Soonhyun

    2018-06-19

    After the Fukushima nuclear accident, tremendous efforts were made to treat radiocesium, radiostrontium, and other radioactive materials. For the first time, we demonstrate that a TiO 2 photocatalyst can significantly enhance Cs adsorption by Prussian blue-deposited TiO 2 (PB/TiO 2 ) under UV irradiation. In this study, we synthesized PB/TiO 2 using the photodeposition method. After the Cs ions were adsorbed on the PB/TiO 2 in darkness, we then exposed the PB/TiO 2 to UV light irradiation. This resulted in a further increase in Cs ion adsorption of more than 10 times the amount adsorbed in darkness. This photocatalytic-enhanced adsorption of Cs ions was not observed on PB mixed with SiO 2 , nor under visible light irradiation. We investigated the effects of PB concentration, PB/TiO 2 concentration, and gas purging on both dark and photocatalytic-enhanced adsorption of Cs ions by PB/TiO 2 . Based on the results, we suggest that the photocatalytic-enhanced adsorption of Cs ions on PB/TiO 2 is due to photocatalytic reduction of PB, which leads to additional adsorption of Cs ions. The change in solution color before and after the reaction, and the change in solution pH in the dark and during UV irradiation strongly support this suggestion. The photocatalytic-enhanced adsorption of Cs ions was equivalent during radioactive 137 Cs removal, indicating important applications for pollutant removal from contaminated water. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Anti-fish bacterial pathogen effect of visible light responsive Fe3O4@TiO2 nanoparticles immobilized on glass using TiO2 sol–gel

    International Nuclear Information System (INIS)

    Yeh, N.; Lee, Y.C.; Chang, C.Y.; Cheng, T.C.

    2013-01-01

    This paper demonstrates a fish pathogen reduction procedure that uses TiO 2 sol–gel coating Fe 3 O 4 @TiO 2 powder on glass substrate. Such procedure can effectively relieve two constraints that haunt TiO 2 sterilization applications: 1) the need for UV for overcoming the wide band gap of pure TiO 2 and 2) the difficulty of its recovering from water for reuse. In the process, visible light responsive Fe 3 O 4 /TiO 2 nanoparticles are synthesized and immobilized on glass using TiO 2 sol–gel as the binder for fish bacterial pathogen disinfection test. After 3 h of visible light irradiation, the immobilized Fe 3 O 4 @TiO 2 's inhibition efficiencies for fish bacterial pathogen are, respectively, 50% for Edwardsiella tarda (BCRC 10670) and 23% for Aeromonas hydrophila (BCRC 13018)

  3. Engineering the TiO2 -graphene interface to enhance photocatalytic H2 production.

    Science.gov (United States)

    Liu, Lichen; Liu, Zhe; Liu, Annai; Gu, Xianrui; Ge, Chengyan; Gao, Fei; Dong, Lin

    2014-02-01

    In this work, TiO2 -graphene nanocomposites are synthesized with tunable TiO2 crystal facets ({100}, {101}, and {001} facets) through an anion-assisted method. These three TiO2 -graphene nanocomposites have similar particle sizes and surface areas; the only difference between them is the crystal facet exposed in TiO2 nanocrystals. UV/Vis spectra show that band structures of TiO2 nanocrystals and TiO2 -graphene nanocomposites are dependent on the crystal facets. Time-resolved photoluminescence spectra suggest that the charge-transfer rate between {100} facets and graphene is approximately 1.4 times of that between {001} facets and graphene. Photoelectrochemical measurements also confirm that the charge-separation efficiency between TiO2 and graphene is greatly dependent on the crystal facets. X-ray photoelectron spectroscopy reveals that Ti-C bonds are formed between {100} facets and graphene, while {101} facets and {001} facets are connected with graphene mainly through Ti-O-C bonds. With Ti-C bonds between TiO2 and graphene, TiO2 -100-G shows the fastest charge-transfer rate, leading to higher activity in photocatalytic H2 production from methanol solution. TiO2 -101-G with more reductive electrons and medium interfacial charge-transfer rate also shows good H2 evolution rate. As a result of its disadvantageous electronic structure and interfacial connections, TiO2 -001-G shows the lowest H2 evolution rate. These results suggest that engineering the structures of the TiO2 -graphene interface can be an effective strategy to achieve excellent photocatalytic performances. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. ZnO doped SnO2 nanoparticles heterojunction photo-catalyst for environmental remediation

    International Nuclear Information System (INIS)

    Lamba, Randeep; Umar, Ahmad; Mehta, S.K.; Kansal, Sushil Kumar

    2015-01-01

    ZnO doped SnO 2 nanoparticles were synthesized by facile and simple hydrothermal technique and used as an effective photocatalyst for the photocatalytic degradation of harmful and toxic organic dye. The prepared nanoparticles were characterized in detail using different techniques for morphological, structural and optical properties. The characterization results revealed that the synthesized nanoparticles possess both crystal phases of tetragonal rutile phase of pure SnO 2 and wurtzite hexagonal phase of ZnO. In addition, the nanoparticles were synthesized in very high quantity with good crystallinity. The photocatalytic activity of prepared nanoparticles was evaluated by the photocatalytic degradation of methylene blue (MB) dye. Detailed photocatalytic experiments based on the effects of irradiation time, catalyst dose and pH were performed and presented in this paper. The detailed photocatalytic experiments revealed that the synthesized ZnO doped SnO 2 nanoparticles heterojunction photocatalyst exhibit best photocatalytic performance when the catalyst dose was 0.25 g/L and pH = 10. ZnO doped SnO 2 nanoparticles heterojunction photocatalyst was also compared with commercially available TiO 2 (PC-50), TiO 2 (PC-500) and SnO 2 and interestingly ZnO doped SnO 2 nanoparticles exhibited superior photocatalytic performance. The presented work demonstrates that the prepared ZnO doped SnO 2 nanoparticles are promising material for the photocatalytic degradation of organic dyes and toxic chemicals. - Highlights: • Synthesis of well-crystalline ZnO-doped SnO 2 nanoparticles. • Excellent morphological, crystalline and photoluminescent properties. • Efficient environmental remediation using ZnO-doped SnO 2 nanoparticles.

  5. Enhanced oxidation of naphthalene using plasma activation of TiO2/diatomite catalyst.

    Science.gov (United States)

    Wu, Zuliang; Zhu, Zhoubin; Hao, Xiaodong; Zhou, Weili; Han, Jingyi; Tang, Xiujuan; Yao, Shuiliang; Zhang, Xuming

    2018-04-05

    Non-thermal plasma technology has great potential in reducing polycyclic aromatic hydrocarbons (PAHs) emission. But in plasma-alone process, various undesired by-products are produced, which causes secondary pollutions. Here, a dielectric barrier discharge (DBD) reactor has been developed for the oxidation of naphthalene over a TiO 2 /diatomite catalyst at low temperature. In comparison to plasma-alone process, the combination of plasma and TiO 2 /diatomite catalyst significantly enhanced naphthalene conversion (up to 40%) and CO x selectivity (up to 92%), and substantially reduced the formation of aerosol (up to 90%) and secondary volatile organic compounds (up to near 100%). The mechanistic study suggested that the presence of the TiO 2 /diatomite catalyst intensified the electron energy in the DBD. Meantime, the energized electrons generated in the discharge activated TiO 2 , while the presence of ozone enhanced the activity of the TiO 2 /diatomite catalyst. This plasma-catalyst interaction led to the synergetic effect resulting from the combination of plasma and TiO 2 /diatomite catalyst, consequently enhanced the oxidation of naphthalene. Importantly, we have demonstrated the effectiveness of plasma to activate the photocatalyst for the deep oxidation of PAH without external heating, which is potentially valuable in the development of cost-effective gas cleaning process for the removal of PAHs in vehicle applications during cold start conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Photocatalytic Degradation of Methylene Blue Using TiO2 Impregnated Diatomite

    Directory of Open Access Journals (Sweden)

    Ranfang Zuo

    2014-01-01

    Full Text Available Nano-TiO2 showed a good catalytic activity, but it is easy to agglomerate, resulting in the reduction or even complete loss of photocatalytic activity. The dispersion of TiO2 particles on porous materials was a potential solution to this problem. Diatomite has high specific surface and absorbability because of its particular shell structure. Thus, TiO2/diatomite composite, prepared by loading TiO2 on the surface of diatomite, was a good photocatalyst, through absorbing organic compounds with diatomite and degrading them with TiO2. Scanning electron microscopy (SEM, energy dispersive spectrum (EDS, X-ray diffraction (XRD, chemical analysis, and Fourier transform infrared spectrometry (FTIR indicated that TiO2 was impregnated well on the surface of diatomite. Furthermore, TiO2/diatomite was more active than nano-TiO2 for the degradation of methylene blue (MB in solution. MB at concentrations of 15 and 35 ppm can be completely degraded in 20 and 40 min, respectively.

  7. Photocatalytic decolorization of basic dye by TiO2 nanoparticle in photoreactor

    Directory of Open Access Journals (Sweden)

    Jutaporn Chanathaworn1

    2012-04-01

    Full Text Available Photocatalytic decolorization of rhodamine B (RB and malachite green (MG basic dyes in aqueous solution wasevaluated using TiO2 powder as a semiconductor photocatalyst under UV black light irradiation. A 0.5 L batch photoreactorcontaining dyeing solution was installed in a stainless steel chamber with air cooling under irradiation. The TiO2 powder wascharacterized by XRD observation and it was shown that the nanoparticles could be identified as 73 nm anatase crystals. Theeffects of operational parameters such as light intensity (0-114 W/m2, initial dye concentration (10-30 mg/L, and TiO2 powderloading (0.5-1.5 g/L on the decolorization of dye samples were examined. The photocatalytic decolorization rate depended onthe pollutant’s structure, such that the MG dye could be removed faster than the RB dye. Decolorization efficiency (% of thephotocatalytic system increased with increasing TiO2 loading and light intensity; however, it decreased with increasing initialdye concentration. A loading of 1.5 g TiO2/L, initial dye concentration of 20 mg/L, and light intensity of 114 W/m2 were foundto yield the highest removal efficiency of dye solution based on time requirement. The kinetics are of first order and dependon the TiO2 powder loading and dye structure. The research had a perfect application foreground.

  8. Adsorption performance of titanium dioxide (TiO2) coated air filters for volatile organic compounds.

    Science.gov (United States)

    Zhong, Lexuan; Lee, Chang-Seo; Haghighat, Fariborz

    2012-12-01

    The photocatalytic oxidation (PCO) technology as an alternative method for air purification has been studied for decades and a variety of PCO models indicate that the adsorption of reactants on the catalyst surface is one of the major physical and chemical processes occurring at a heterogeneous photocatalytic reaction. However, limited study explored the adsorption effect of a photocatalyst. This study carried out a systematic evaluation of adsorption performance of titanium dioxide (TiO(2)) coated fiberglass fibers (FGFs), TiO(2) coated carbon cloth fibers (CCFs), and original CCFs air filters at various relative humidity conditions for nine volatile organic compounds. TiO(2)/FGFs, TiO(2)/CCFs, and CCFs were characterized by SEM for morphology and N(2) adsorption isotherm for BET surface area and pore structure. A bench-scale adsorption test setup was constructed and adsorption tests were performed at various relative humidity conditions and four different injected concentrations for each compound. The isothermal adsorption curves at low concentration levels were obtained and they were well described by Langmuir isotherm model. It was noticed that there were significant differences between the adsorption behaviors and photocatalytic activities of TiO(2)/FGFs and TiO(2)/CCFs. It was concluded that adsorption performance is closely related to the characteristics of substrates and therefore, the development of a substrate with high adsorption ability is a promising trend for improving the performance of the UV-PCO technology. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Production and Characterization of (004) Oriented Single Anatase TiO2 Films

    Science.gov (United States)

    Atay, Ferhunde; Akyuz, Idris; Cergel, Muge Soyleyici; Erdogan, Banu

    2018-02-01

    Highly (004) oriented anatase TiO2 films have been successfully obtained by an inexpensive ultrasonic spray pyrolysis technique at low substrate temperatures and without additional annealing. X-ray diffraction analysis, ultraviolet-visible spectroscopy and field emission scanning electron microscopy were used to analyze the structural, optical and surface properties of the films. By using the less reported TiCl4 solution, the optical band gap values falling into the visible region (between 2.70 eV and 2.92 eV) have been obtained for all films. Spectroscopic ellipsometry technique has been used to determine the dispersive refractive index and extinction coefficient of TiO2 films. Possible electrical conduction mechanisms in TiO2 films have been examined using temperature dependent conductivity measurements in the temperature range of 78-300 K. At room temperature, electrical resistivity values of TiO2 films change between 1.68 × 104 Ω cm and 5.88 × 104 Ω cm. Considering the analyzed parameters with respect to substrate temperature, this work refers to the properties of anatase TiO2 films that are strongly correlated to the growth direction, namely (004). As a result, (004) oriented anatase TiO2 films with appropriate optical band gap values are promising materials for technological applications, especially for photocatalysts.

  10. Enhancing the photocatalytic properties of TiO2 by coupling with carbon nanotubes and supporting gold

    International Nuclear Information System (INIS)

    Wang, Huihu; Dong, Shijie; Chang, Ying; Faria, Joaquim L.

    2012-01-01

    Highlights: ► Au–CNT–TiO 2 composites were synthesized by coupling CNT and Au to TiO 2 . ► The activity of Au–CNT–TiO 2 materials is higher than that of CNT–TiO 2 and Au–TiO 2 . ► The Au–CNT–TiO 2 composites possess both advantages of CNTs and Au. ► The Au–CNT–TiO 2 composites also overcome the disadvantages of surplus CNTs addition. - Abstract: The photodegradation of methylene blue in aqueous solutions is studied using various photocatalysts, including neat TiO 2 , CNT–TiO 2 , Au–TiO 2 , and Au–CNT–TiO 2 composites MB. Materials were synthesized and extensively characterized by XRD, TEM, DRFIT spectroscopy, N 2 adsorption–desorption isotherms, as well as diffuse reflectance UV–vis spectroscopy. By using CNT–TiO 2 composite as catalysts, it was found that CNT act as adsorbent and photosensitizer to improve the photoactivity of neat TiO 2 . Among the CNT–TiO 2 composites with different CNT weight ratio (0.2–20%), the 2%CNT–TiO 2 shows the best photoactivity. When CNT content is larger than 2%, the surplus CNT may absorb and scatter light photons. Combined with the decrease of TiO 2 amount in composite, the photoactivity is reduced. To further improve the photoactivity of 2%CNT–TiO 2 , different Au loads varying from 0.25% to 1% were introduced by the deposition–precipitation method. The 0.25%Au–2%CNT–TiO 2 composite had the highest photoactivity. The increase in activity was explained by the surface plasmon resonance of Au that makes the composite to absorb more photons than the 2%CNT–TiO 2 , thus overcoming the disadvantages of surplus CNT addition. On the other hand, 0.25%Au–2%CNT–TiO 2 composite also presents higher activity than 0.25%Au–TiO 2 due to higher adsorption capacity provided by CNT introduction. The addition of CNT and Au simultaneously has a much stronger synergic role than when each of them is introduced individually.

  11. Glycine assisted synthesis of flower-like TiO2 hierarchical spheres and its application in photocatalysis

    International Nuclear Information System (INIS)

    Tao, Yu-gui; Xu, Yan-qiu; Pan, Jun; Gu, Hao; Qin, Chang-yun; Zhou, Peng

    2012-01-01

    Graphical abstract: Flower-like anatase TiO 2 hierarchical spheres assembled by nanosheets were synthesized by glycine assistant via a simple hydrothermal approach and after-annealing process. The obtained TiO 2 sample showed good photocatalytic activity of decomposition of methyl orange under sunlight. Highlights: ► Flower-like TiO 2 hierarchical spheres were synthesized by glycine assistant. ► Reaction time, temperature, solution pH and glycine dosage were studied. ► The formation of the flower-like TiO 2 spheres is an Ostwald ripening process. ► Flower-like TiO 2 showed high photocatalytic activity under sunlight. - Abstract: Flower-like anatase TiO 2 hierarchical spheres assembled by nanosheets were synthesized by glycine assistant via a simple hydrothermal approach and after-annealing process. These flower-like spheres are about 2 μm in diameter with sheet thickness about 20 nm. Results showed reaction time, temperature, solution pH and glycine dosage all played an important role in control of shape and size of the as-synthesized TiO 2 nanocrystals. The photocatalytic activity of this nano-TiO 2 was evaluated by the photocatalytic oxidation decomposition of methyl orange under sunlight illumination in the presence of hydrogen peroxide (H 2 O 2 ). The photocatalytic activity of the obtained TiO 2 was higher than that of commercial TiO 2 .

  12. Enhanced visible light photocatalytic properties of Fe-doped TiO2 nanorod clusters and monodispersed nanoparticles

    International Nuclear Information System (INIS)

    Liu, Y.; Wei, J.H.; Xiong, R.; Pan, C.X.; Shi, J.

    2011-01-01

    In order to get photocatalysts with desired morphologies and enhanced visible light responses, the Fe-doped TiO 2 nanorod clusters and monodispersed nanoparticles were prepared by modified hydrothermal and solvothermal method, respectively. The microstructures and morphologies of TiO 2 crystals can be controlled by restraining the hydrolytic reaction rates. The Fe-doped photocatalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis absorption spectroscopy (UV-vis), N 2 adsorption-desorption measurement (BET), and photoluminescence spectroscopy (PL). The refinements of the microstructures and morphologies result in the enhancement of the specific surface areas. The Fe 3+ -dopants in TiO 2 lattices not only lead to the significantly extending of the optical responses from UV to visible region but also diminish the recombination rates of the electrons and holes. The photocatalytic activities were evaluated by photocatalytic decomposition of formaldehyde in air under visible light illumination. Compared with P25 (TiO 2 ) and N-doped TiO 2 nanoparticles, the Fe-doped photocatalysts show high photocatalytic activities under visible light.

  13. Photocatalytic Hydrogen or Oxygen Evolution from Water over S- or N-Doped TiO2 under Visible Light

    Directory of Open Access Journals (Sweden)

    Kazumoto Nishijima

    2008-01-01

    Full Text Available S- or N-doping of TiO2 powder having an anatase or rutile phase extended the photocatalytic activity for water oxidation and reduction under UV light and visible light irradiation. For the reduction of water, anatase-doped TiO2 showed higher level of activity than that of doped TiO2 having a rutile phase using ethanol as an electron donor. Furthermore, the activity level of S-doped TiO2 for hydrogen evolution was higher than that of N-doped TiO2 photocatalysts under visible light. Photocatalytic oxidation of water on doped TiO2 having a rutile phase proceeded with fairly high efficiency when Fe3+ ions were used as electron acceptors compared to that on doped TiO2 having an anatase phase. In addition, water splitting under visible light irradiation was achieved by construction of a Z-scheme photocatalysis system employing the doped TiO2 having anatase and rutile phases for H2 and O2 evolution and the I−/IO3− redox couple as an electron relay.

  14. Photocatalytic degradation of p-phenylenediamine with TiO2-coated magnetic PMMA microspheres in an aqueous solution

    International Nuclear Information System (INIS)

    Chen, Y.-H.; Liu, Y.-Y.; Lin, R.-H.; Yen, F.-S.

    2009-01-01

    This study investigates the photocatalytic degradation of p-phenylenediamine (PPD) with titanium dioxide-coated magnetic poly(methyl methacrylate) (TiO 2 /mPMMA) microspheres. The TiO 2 /mPMMA microspheres are employed as novel photocatalysts with the advantages of high photocatalytic activity, magnetic separability, and good durability. The scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), and transmission electron microscopy (TEM) images of the TiO 2 /mPMMA microspheres are used to characterize the morphology, element content, and distribution patterns of magnetite and TiO 2 nanoparticles. The BET-specific surface area and saturation magnetization of the TiO 2 /mPMMA microspheres are observed as 2.21 m 2 /g and 4.81 emu/g, respectively. The photocatalytic degradation of PPD are performed under various experimental conditions to examine the effects of initial PPD concentration, TiO 2 /mPMMA microsphere dosage, and illumination condition on the eliminations of PPD and chemical oxygen demand (COD) concentrations. Good repeatability of photocatalytic performance with the use of the TiO 2 /mPMMA microspheres has been demonstrated in the multi-run experiments. The photocatalytic kinetics for the reductions of PPD and COD associated with the initial PPD concentration, UV radiation intensity, and TiO 2 /mPMMA microsphere dosage are proposed. The relationships between the reduction percentages of COD and PPD are clearly presented

  15. Effects of Homogenization Scheme of TiO2 Screen-Printing Paste for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Seigo Ito

    2012-01-01

    Full Text Available TiO2 porous electrodes have been fabricated for photoelectrodes in dye-sensitized solar cells (DSCs using TiO2 screen-printing paste from nanocrystalline TiO2 powder dried from the synthesized sol. We prepared the TiO2 screen-printing paste by two different methods to disperse the nanocrystalline TiO2 powder: a “ball-milling route” and a “mortal-grinding route.” The TiO2 ball-milling (TiO2-BM route gave monodisperse TiO2 nanoparticles, resulting in high photocurrent density (14.2 mA cm−2 and high photoconversion efficiency (8.27%. On the other hand, the TiO2 mortal-grinding (TiO2-MG route gave large aggregate of TiO2 nanoparticles, resulting in low photocurrent density (11.5 mA cm−2 and low photoconversion efficiency (6.43%. To analyze the photovoltaic characteristics, we measured the incident photon-to-current efficiency, light absorption spectroscopy, and electrical impedance spectroscopy of DSCs.

  16. TiO2-B Nanoribbons Anchored with NiO Nanosheets as Hybrid Anode Materials for Rechargeable Lithium ion Batteries

    DEFF Research Database (Denmark)

    Zhang, J. Y.; Shen, J.X.; Wang, T.L.

    2015-01-01

    A new type of TiO2-B nanoribbon anchored with NiO nanosheets (TiO2@NiO) is synthesized via a hydrothermal process and a subsequent homogeneous precipitation method. XRD analysis indicates that TiO2-B and cubic NiO phases exist in the composites. According to SEM images, the morphology of the TiO2...

  17. NANOSTRUCTURED TiO2 SENSITIZED WITH PORPHYRINS FOR SOLAR WATER-SPLITTING

    Directory of Open Access Journals (Sweden)

    MARCELA-CORINA ROŞU

    2011-03-01

    Full Text Available Nanostructured TiO2 sensitized with porphyrins for Solar water-splitting.The production of hydrogen from water using solar light is very promising for generations of an ecologically pure carrier contributing to a clean, sustainable and renewable energy system. The selection of specific photocatalyst material for hydrogen production in photoelectrochemical cells (PECs is based on some important characteristics of semiconductor, such as photo-corrosion and chemical corrosion stability, photocatalytic potential, high sensitivity for UV-visible light. In the present paper, different nanocrystalline TiO2 photoanodes have been prepared via wet-chemical techniques followed by annealing treatment and sensitized with porphyrins and supramolecular complexes of porphyrins. The so obtained photocatalysts were characterized with UV-VIS absorption spectroscopy and spectrofluorimetry. The purpose of these experiments is to show if the prepared materials possess the necessary photocatalytic characteristics and if they can be used with success in H2 production from water decomposition in PECs.

  18. Photocatalytic Degradation of Methyl Orange over Metalloporphyrins Supported on TiO2 Degussa P25

    Directory of Open Access Journals (Sweden)

    Xing-Jiao Huang

    2012-01-01

    Full Text Available The photocatalytic activity of meso-tetraphenylporphyrins with different metal centers (Fe, Co, Mn and Cu adsorbed on TiO2 (Degussa P25 surface has been investigated by carrying out the photodegradation of methyl orange (MO under visible and ultraviolet light irradiation. The photocatalysts were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, diffuse reflectance UV (DRS-UV-vis and infrared spectra. Copper porphyrin-sensitized TiO2 photocatalyst (CuP-TiO2 showed excellent activity for the photodegradation of MO whether under visible or ultraviolet light irradiation. Natural Bond Orbital (NBO charges analysis showed that methyl orange ion is adsorbed easier by CuP-TiO2 catalyst due to the increase of induced interactions.

  19. Structure and photocatalytic activity studies of TiO2-supported over Ce-modified Al-MCM-41

    International Nuclear Information System (INIS)

    Krishna Reddy, Jakkidi; Durgakumari, Valluri; Subrahmanyam, Machiraju; Sreedhar, Bojja

    2009-01-01

    Ce-Al-MCM-41, TiO 2 /Al-MCM-41 and TiO 2 /Ce-Al-MCM-41 materials with varying contents of Ce (by impregnation) and TiO 2 loaded (by solid-state dispersion) on Al-MCM-41 support are prepared. The Ce modified and TiO 2 loaded composite systems are characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-vis diffuse reflectance spectra (DRS) and X-ray photoelectron spectroscopy (XPS) techniques. The DRS and XPS of low Ce content (0.2-0.5 wt.%) modified Al-MCM-41 samples are showing more characteristic of Ce 3+ species wherein cerium in interaction with Al-MCM-41 and that of high Ce (0.8, 3.0 wt.%) content modified samples are showing the characteristic of both Ce 4+ and Ce 3+ species. A series of Ce-modified Al-MCM-41 and TiO 2 loaded composite catalysts are evaluated for photocatalytic degradation of phenol under UV irradiation. Low Ce content in Ce 3+ state on Al-MCM-41 is showing good photoactivity in comparison with high Ce content samples and pure ceria. The composite TiO 2 /Ce-Al-MCM-41 is showing enhanced degradation activity due decreased rate of electron-hole recombination on TiO 2 surface by the redox properties of cerium. The photocatalyst TiO 2 /Ce-Al-MCM-41 with an optimum of 10 wt.% TiO 2 and 0.3 wt.% Ce is showing maximum phenol degradation activity. The possible mechanism of phenol degradation on the composite photocatalyst is proposed.

  20. CORONA DISCHARGE REACTOR FOR SELECTIVE OXIDATION OF ALCOHOLS AND HYDROCARBONS USING OZONATION AND PHOTOXIDATION OF OVER TIO2

    Science.gov (United States)

    We have developed a process that combines the use of surface corona for the production of ozone by passing air or oxygen through a high voltage electrical discharge and the emitted UV is being used to activate a photocatalyst. A thin film of nanostructured TiO2 with primary part...

  1. The effect of water on the performance of TiO2 in photocatalytic selective alkane oxidation

    NARCIS (Netherlands)

    Carneiro, J.T.; Carneiro, Joana T.; Yang, Chieh-Chao; Moulijn, Jacob A.; Mul, Guido

    2011-01-01

    Deactivation of TiO2 is hampering practical implementation of photocatalytic alternatives for energetically intensive selective oxidation processes. In the present study, humidification of the air stream is demonstrated to be a solution to this problem for well-defined photocatalysts, such as

  2. Structural and photocatalytic properties of iron- and europium-doped TiO2 nanoparticles obtained under hydrothermal conditions

    International Nuclear Information System (INIS)

    Diamandescu, L.; Vasiliu, F.; Tarabasanu-Mihaila, D.; Feder, M.; Vlaicu, A.M.; Teodorescu, C.M.; Macovei, D.; Enculescu, I.; Parvulescu, V.; Vasile, E.

    2008-01-01

    Iron- and europium-doped (≤1 at.%) TiO 2 nanoparticles powders have been synthesized by a hydrothermal route at 200 deg. C, starting with TiCl 4 , FeCl 3 .6H 2 O and EuCl 3 .6H 2 O. The structure, morphology and optical peculiarities were investigated by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), extended X-ray absorption fine structure (EXAFS), Moessbauer spectroscopy and UV-vis measurements. The photocatalytic performance was analysed in the photodegradation reaction of phenol. Rietveld refinements of XRD patterns reveal that the as-prepared samples consist in iron- and europium-doped TiO 2 in the tetragonal anatase structural shape, with particle size as low as 15 nm. By means of Moessbauer spectroscopy on both 57 Fe and 151 Eu isotopes as well as by EXAFS analyses, the presence of Fe 3+ and/or Eu 3+ ions in the nanosized powders has been evidenced. It was found that iron and europium ions can substitute for titanium in the anatase structure. From the UV-vis reflection spectra, by using the transformed Kubelka-Munk functions, the band gap energy (E g ) of the hydrothermal samples has been determined in comparison with that of Degussa P-25 photocatalyst. A decrease of E g from 2.9 eV found for Degussa photocatalyst to 2.8 eV for the titania doped with 1 at.% Fe has been evidenced, indicating a valuable absorption shift (∼20 nm) towards visible light region. However, the best photocatalytic activity in the photodegradation reaction of phenol was evidenced for the hydrothermal sample, TiO 2 : 1 at.% Fe, 0.5 at.% Eu, in both UV and visible light regions. The photocatalytic activities of iron-doped and iron-europium-codoped samples are high and practically the same only in visible light. The photocatalytic properties in correlation with the structural and optical peculiarities of the hydrothermal samples are discussed

  3. Physics properties of TiO_2 films produced by dip-coating technique

    International Nuclear Information System (INIS)

    Teloeken, A.C.; Alves, A.K.; Berutti, F.A.; Tabarelli, A.; Bergmann, C.P.

    2014-01-01

    The use of titanium dioxide (TiO_2) as a photocatalyst to produce hydrogen has been of great interest because of their chemical stability, low cost and non-toxicity. TiO_2 occurs in three different crystal forms: rutile, anatase and brokita. Among these, the anatase phase generally exhibits the best photocatalytic behavior, while the rutile phase is the most stable. Among the various techniques of deposition, dip-coating technique produces films with good photocatalytic properties, using simple and inexpensive equipment. In this work TiO_2 films were obtained by dip-coating. The films were characterized using X-ray diffraction, scanning electron microscopy, profilometry, contact angle measurements and photocurrent. The microstructure and physical properties were evaluated in relation of the temperature and the addition of an additive. (author)

  4. Ag-loaded TiO2/reduced graphene oxide nanocomposites for enhanced visible-light photocatalytic activity

    International Nuclear Information System (INIS)

    Vasilaki, E.; Georgaki, I.; Vernardou, D.; Vamvakaki, M.; Katsarakis, N.

    2015-01-01

    Highlights: • Ag nanoparticles were loaded on TiO 2 by chemical reduction. • TiO 2 /Ag and TiO 2 samples were deposited on reduced graphene oxide (rGO). • Their performance was evaluated via methylene blue removal under visible-light. • TiO 2 /Ag/rGO presented superior activity compared to TiO 2 , TiO 2 /Ag and TiO 2 /rGO. - Abstract: In this work, Ag nanoparticles were loaded by chemical reduction onto TiO 2 P25 under different loadings ranging from 1 up to 4 wt% and hydrothermally deposited on reduced graphene oxide sheets. Chemical reduction was determined to be an effective preparation approach for Ag attachment to titania, leading to the formation of small silver nanoparticles with an average diameter of 4.2 nm. The photocatalytic performance of the hybrid nanocomposite materials was evaluated via methylene blue (MB) dye removal under visible-light irradiation. The rate of dye decolorization was found to depend on the metal loading, showing an increase till a threshold value of 3 wt%, above which the rate drops. Next, the as prepared sample of TiO 2 /Ag of better photocatalytic response, i.e., at a 3 wt% loading value, was hydrothermally deposited on a platform of reduced graphene oxide (rGO) of tunable content (mass ratio). TiO 2 /Ag/rGO coupled nanocomposite presented significantly enhanced photocatalytic activity compared to the TiO 2 /Ag, TiO 2 /rGO composites and bare P25 titania semiconductor photocatalysts. In particular, after 45 min of irradiation almost complete decolorization of the dye was observed for the TiO 2 /Ag/rGO nanocatalyst, while the respective removal efficiency was 92% for TiO 2 /Ag, 93% for TiO 2 /rGO and only 80% for the bare TiO 2 nanoparticles. This simple step by step preparation strategy allows for optimum exploitation of the advanced properties of metal plasmonic effect and reduced graphene oxide as the critical host for boosting the overall photocatalytic activity towards visible-light.

  5. H_2O_2-assisted photocatalysis on flower-like rutile TiO_2 nanostructures: Rapid dye degradation and inactivation of bacteria

    International Nuclear Information System (INIS)

    Kőrösi, László; Prato, Mirko; Scarpellini, Alice; Kovács, János; Dömötör, Dóra; Kovács, Tamás; Papp, Szilvia

    2016-01-01

    Graphical abstract: - Highlights: • Hierarchically assembled rutile TiO_2 was synthesized at room temperature. • Hydrothermal treatment enhanced the crystallinity, while morphology was maintained. • Hydrothermal treatment also led to larger crystallites and a lower surface area. • Effective K. pneumoniae killing and MO degradation were achieved with the use of H_2O_2. • Higher crystallinity enhanced the reaction rate in the presence of H_2O_2. - Abstract: Hierarchically assembled flower-like rutile TiO_2 (FLH-R-TiO_2) nanostructures were successfully synthesized from TiCl_4 at room temperature without the use of surfactants or templates. An initial sol–gel synthesis at room temperature allowed long-term hydrolysis and condensation of the precursors. The resulting FLH-R-TiO_2 possessed relatively high crystallinity (85 wt%) and consisted of rod-shaped subunits assembling into cauliflower-like nanostructures. Hydrothermal evolution of FLH-R-TiO_2 at different temperatures (150, 200 and 250 °C) was followed by means of X-ray diffraction, transmission and scanning electron microscopy. These FLH-R-TiO_2 nanostructures were tested as photocatalysts under simulated daylight (full-spectrum lighting) in the degradation of methyl orange and in the inactivation of a multiresistant bacterium, Klebsiella pneumoniae. The effects of hydrothermal treatment on the structure, photocatalytic behavior and antibacterial activity of FLH-R-TiO_2 are discussed.

  6. TiO2 film/Cu2O microgrid heterojunction with photocatalytic activity under solar light irradiation.

    Science.gov (United States)

    Zhang, Junying; Zhu, Hailing; Zheng, Shukai; Pan, Feng; Wang, Tianmin

    2009-10-01

    Coupling a narrow-band-gap semiconductor with TiO(2) is an effective method to produce photocatalysts that work under UV-vis light irradiation. Usually photocatalytic coupled-semiconductors exist mainly as powders, and photocatalytic activity is only favored when a small loading amount of narrow-band-gap semiconductor is used. Here we propose a heavy-loading photocatalyst configuration in which 51% of the surface of the TiO(2) film is covered by a Cu(2)O microgrid. The coupled system shows higher photocatalytic activity under solar light irradiation than TiO(2) and Cu(2)O films. This improved performance is due to the efficient charge transfer between the two phases and the similar opportunity each has to be exposed to irradiation and adsorbates.

  7. A comparative study of two techniques for determining photocatalytic activity of nitrogen doped TiO2 nanotubes under visible light irradiation: Photocatalytic reduction of dye and photocatalytic oxidation of organic molecules

    DEFF Research Database (Denmark)

    In, Su-Il; Vesborg, Peter Christian Kjærgaard; Abrams, Billie

    2011-01-01

    Nitrogen-doping (N-doping) is a popular strategy for promoting the absorption of visible light in TiO2 and other photocatalysts. We have grown TiO2 nanotubes onto non-conducting Pyrex in a one step process via single layer titanium films. In an attempt to improve the self-cleaning ability of vert...

  8. Effects of photocatalytic activity of metal and non-metal doped Tio2 for Hydrogen production enhancement - A Review

    Science.gov (United States)

    Nur Aqilah Sulaiman, Siti; Zaky Noh, Mohamad; Nadia Adnan, Nurul; Bidin, Noriah; Razak, Siti Noraiza Ab

    2018-05-01

    Titanium dioxide TiO2 is well-known materials that has become an efficient photocatalyst for environmental sustainability. Known as solar driven catalysis, TiO2 is considered as the most promising way to alleviate environmental issues caused by the combustion of fossil fuels and to meet worldwide demands for energy. Much effort has been concerned on TiO2 band gap modification to become a visible-light-activated photocatalysts of TiO2 because it can only be excited by UV light irradiation due to its large band gap. Modifications like metals and nonmetals doping has been proposed in the past decades. This reviews survey recent advanced preparation methods of doped-TiO2 including various types of doping methods for various types of dopants and provides general review on further modifications. The characterizations techniques used in order to determine the structural, morphological and optical properties of modified TiO2 is also discussed. Further, a new method of TiO2 modification is proposed in this mini review paper.

  9. TiO2 promoted by two different non-noble metal cocatalysts for enhanced photocatalytic H2 evolution

    International Nuclear Information System (INIS)

    Lin, Jing-Dong; Yan, Shi; Huang, Qin-Dong; Fan, Mei-Ting; Yuan, You-Zhu; Tan, Timothy Thatt-Yang; Liao, Dai-Wei

    2014-01-01

    TiO 2 photocatalysts modified by cobalt and nickel cocatalysts were prepared via polymerized complex method (PCM) and evaluated by photocatalytic hydrogen evolution. Hydrogen generation in 6 h for the TiO 2 promoted by cobalt and nickel (0.1%Co + 0.2%Ni/TiO 2 ) is about two times (2456 μmol H 2 ) compared to that of TiO 2 promoted only by cobalt (1180 μmol H 2 for 0.1%Co/TiO 2 ) or nickel (1127 μmol H 2 for 0.2%Ni/TiO 2 ), and mechanically mixed TiO 2 promoted by cobalt and TiO 2 promoted by nickel (0.1%Co/TiO 2 :0.2%Ni/TiO 2 = 1:1 (m/m), 1282 μmol H 2 ). The high photocatalytic H 2 evolution activity over TiO 2 promoted by cobalt and nickel is ascribed to enhanced photo response due to the presence of cobalt and nickel impurity level, and effective separation of photogenerated electrons and holes due to the synergistic effect of cobalt and nickel, which serve as active sites for H 2 evolution reaction (HER) and oxidation reaction (OR) respectively. This study demonstrates a viable strategy to design more active photocatalysts for photocatalytic H 2 evolution by substituting noble metals with more abundant elements using as HER and OR cocatalysts, respectively.

  10. SiO2@TiO2 Coating: Synthesis, Physical Characterization and Photocatalytic Evaluation

    Directory of Open Access Journals (Sweden)

    A. Rosales

    2018-03-01

    Full Text Available Use of silicon dioxide (SiO2 and titanium dioxide (TiO2 have been widely investigated individually in coatings technology, but their combined properties promote compatibility for different innovative applications. For example, the photocatalytic properties of TiO2 coatings, when exposed to UV light, have interesting environmental applications, such as air purification, self-cleaning and antibacterial properties. However, as reported in different pilot projects, serious durability problems, associated with the adhesion between the substrate and TiO2, have been evidenced. Thus, the aim of this work is to synthesize SiO2 together with TiO2 to increase the durability of the photocatalytic coating without affecting its photocatalytic potential. Therefore, synthesis using sonochemistry, synthesis without sonochemistry, physical characterization, photocatalytic evaluation, and durability of the SiO2, SiO2@TiO2 and TiO2 coatings are presented. Results indicate that using SiO2 improved the durability of the TiO2 coating without affecting its photocatalytic properties. Thus, this novel SiO2@TiO2 coating shows potential for developing long-lasting, self-cleaning and air-purifying construction materials.

  11. The Effects of Leaching Process to the TiO2 Synthesis from Bangka Ilmenite

    Science.gov (United States)

    Wahyuningsih, S.; Ramelan, A. H.; Pramono, E.; Argawan, P.; Djatisulistya, A.; Firdiyono, F.; Sulistiyono, E.; Sari, P. P.

    2018-03-01

    Ilmenite mineral is a naturally occurring iron titanate (FeTiO3) and is abundant in nature. The separation of components into TiO2 and Fe2O3 must be expand. The purpose of this research is to synthesis TiO2 nanoparticles from the filtrate of Bangka ilmenite leaching process. Leaching of ilmenite was done with H2SO4 and HCl at various concentrations. The formation of TiO2 crystal determined by hydrolysis conditions and condensation reaction. TiO2 synthesized from the filtrate of sulfuric acid leaching that produced from TiO2 anatase phase when hydrolyzed in an aquaregia solvent and low concentrations of HCl (0.1M). Hydrolysis conditions at higher concentrations of HCl (1M) was produced TiO2 anatase-rutile phase. The synthesis of TiO2 from the filtrate of hydrochloric acid leaching was produced anatase phase. While the condition under the alcoholic solvent (2-propanol: H2O (v/v) = 9: 1) anatase phase crystallites grow in the temperature range up to 550 °C, above this temperature, TiO2 transform into rutile phase.

  12. Microstructure and antibacterial property of in situ TiO(2) nanotube layers/titanium biocomposites.

    Science.gov (United States)

    Cui, C X; Gao, X; Qi, Y M; Liu, S J; Sun, J B

    2012-04-01

    The TiO(2) nanotube layer was in situ synthesized on the surface of pure titanium by the electrochemical anodic oxidation. The diameter of nano- TiO(2) nanotubes was about 70~100 nm. The surface morphology and phase compositions of TiO(2) nanotube layers were observed and analyzed using the scanning electron microscope (SEM). The important processing parameters, including anodizing voltage, reaction time, concentration of electrolyte, were optimized in more detail. The photocatalytic activity of the nano- TiO(2) nanotube layers prepared with optimal conditions was evaluated via the photodegradation of methylthionine in aqueous solution. The antibacterial property of TiO(2) nanotube layers prepared with optimal conditions was evaluated by inoculating Streptococcus mutans on the TiO(2) nanotube layers in vitro. The results showed that TiO(2) nanotube layers/Ti biocomposites had very good antibacterial activity to resist Streptococcus mutans. As a dental implant biomaterial, in situ TiO(2) nanotube layer/Ti biocomposite has better and wider application prospects. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Complex impedance study on nano-CeO2 coating TiO2

    International Nuclear Information System (INIS)

    Zhang Mei; Wang Honglian; Wang Xidong; Li Wenchao

    2006-01-01

    Titanium dioxide (TiO 2 ) nanoparticles and cerium dioxide (CeO 2 ) nanoparticles coated titanium dioxide (TiO 2 ) nanoparticles (CeO 2 -TiO 2 nanoparticles) have been successfully synthesized by sol-gel method. The complex impedance of the materials was investigated. The grain resistance, boundary resistance and activation energy of the nanoparticles were calculated according to Arrhenius equation. According to calculating results, the active capacity of pure TiO 2 nanoparticles has been improved because of nano-CeO 2 coating. An optimal CeO 2 content of 4.9 mol% was achieved. The high resolution electron microscopy images of CeO 2 -TiO 2 nanoparticles showed that TiO 2 nanoparticles, as a core, were covered by CeO 2 nanoparticles. The average size of CeO 2 coating TiO 2 nanoparticles was about 70 nm. Scanning electron microscopy observation indicted that CeO 2 nanoparticle coating improved the separation, insulation, and stability the CeO 2 -TiO 2 nanoparticles, which was benefit to the activity of materials

  14. MoSe2 modified TiO2 nanotube arrays with superior photoelectrochemical performance

    Science.gov (United States)

    Zhang, Yaping; Zhu, Haifeng; Yu, Lianqing; He, Jiandong; Huang, Chengxing

    2018-04-01

    TiO2 nanotube arrays (TNTs) are first prepared by anodization Ti foils in ethylene glycol electrolyte. Then, MoSe2 deposites electrochemically on TNTs. The as-synthesized MoSe2/TiO2 composite has a much higher photocurrent density of 1.07 mA cm‑2 at 0 V than pure TNTs of 0.38 mA cm‑2, which suggests that the MoSe2/TiO2 composite film has optimum photoelectrocatalysis properties. The electron transport resistances of the MoSe2/TiO2 decreases to half of pure TiO2, at 295.6 ohm/cm2. Both photocurrent-time and Mott-Schottky plots indicate MoSe2 a p-type semiconductor characteristics. MoSe2/TiO2 composite can achieve a maximum 5 orders of magnitude enhancement in carrier density (4.650 × 1027 cm‑3) than that of pure TiO2 arrays. It can be attributed to p-n heterojunction formed between MoSe2 and TiO2, and the composite can be potentially applied in photoelectrochemical, photocatalysis fields.

  15. Sensing and electrical properties of TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Usman, M.

    2011-01-01

    The purpose of this work was to synthesize TiO 2 nanoparticles using Coprecipitation method. 2 different samples were synthesized, one with a modifier and other without using a modifier. After synthesis, newly formed nanoparticles were characterized b different techniques to find various properties of these nanoparticles. Scanning electron Microscopy (SEM) was used to study structure and morphology of Cu nanoparticles and for compositional analysis Energy dispersive spectroscopy (EDS) was used. X-Ray Diffraction (XRD) Studies were also carried out to find phase an average particle Size. To find the band gap of our nanoparticles, UV-Visible Spectroscopy was also done. Non-Modified nanoparticles were as small as 12nm reported by SEM images which were synthesized using a modifier were as small as 10nm. Modified TiO 2 nanoparticles were used in humidity sensing devices and it properties as a humidity sensor were examined by doing Impedance spectroscopy, D measurements and Dielectric measurements. Our TiO 2 humidity sensor showed sensitivity for humidity at low and mid-range frequencies while its response time was 4 seconds when we changed RH% to 90 from 40% and measured the impedance. (author)

  16. Fabrication, characterization and photocatalytic properties of Ag nanoparticles modified TiO2 NTs

    International Nuclear Information System (INIS)

    Wang Qingyao; Yang Xiuchun; Liu Dan; Zhao Jianfu

    2012-01-01

    Graphical abstract: The TiO 2 NTs were first treated with bi-functional mercaptoacetic acid linkers (HOOC–R–S). The –OH group on the surface of TiO 2 NT provides a strong affinity with the carboxylate group in the linker molecules. The thiol functional group in the linker molecules facilitates the binding with Ag from AgNO 3 solution. After Ag + ions were reduced by NaBH 4 , Ag nanoparticles formed by nucleation and growth. Highlights: ► Ag nanoparticles with an average diameter of 9.2 nm were filled in the TiO 2 nanotubes by a successive ionic layer adsorption and reaction (SILAR) technique. ► Bi-functional mercaptoacetic acid linkers were used to bind TiO 2 nanotubes with Ag nanoparticles. ► Ag nanoparticles modification of TiO 2 NTs largely enhanced the photocatalytic degradation of methyl orange under ultraviolet light irradiation. - Abstract: Ordered anatase TiO 2 nanotubes (TiO 2 NTs) on Ti substrate were synthesized by electrochemical anodization and subsequently vapor-thermal treatment. Ag nanoparticles were decorated on TiO 2 NTs by successive ionic layer adsorption and reaction (SILAR) technique. Raman spectroscopy, X-ray absorption near edge spectroscopy (XANES), X-ray diffraction (XRD), UV–vis diffuse reflectance spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used for the characterization of surface morphology, phase composition, and microstructure of the original TiO 2 NTs, the vapor-thermally treated TiO 2 NTs and the Ag nanoparticles decorated TiO 2 NTs. The results indicate that vapor-thermal treatment favors to the transformation of amorphous TiO 2 into anatase phase. Increasing the SILAR cycle times favors to increase the loaded amounts of Ag nanoparticles in TiO 2 NTs. Ag nanoparticles are uniformly distributed in the TiO 2 NTs, and the SILAR process does not damage the ordered tubular structure. A possible formation mechanism of Ag/TiO 2 NTs has also been proposed. The

  17. Immobilized TiO2 on glass spheres applied to heterogeneous photocatalysis: photoactivity, leaching and regeneration process.

    Science.gov (United States)

    Cunha, Deivisson Lopes; Kuznetsov, Alexei; Achete, Carlos Alberto; Machado, Antonio Eduardo da Hora; Marques, Marcia

    2018-01-01

    Heterogeneous photocatalysis using titanium dioxide as catalyst is an attractive advanced oxidation process due to its high chemical stability, good performance and low cost. When immobilized in a supporting material, additional benefits are achieved in the treatment. The purpose of this study was to develop a simple protocol for impregnation of TiO 2 -P25 on borosilicate glass spheres and evaluate its efficiency in the photocatalytic degradation using an oxidizable substrate (methylene blue), in a Compound Parabolic Concentrator (CPC) reactor. The assays were conducted at lab-scale using radiation, which simulated the solar spectrum. TiO 2 leaching from the glass and the catalyst regeneration were both demonstrated. A very low leaching ratio (0.03%) was observed after 24 h of treatment, suggesting that deposition of TiO 2 resulted in good adhesion and stability of the photocatalyst on the surface of borosilicate. This deposition was successfully achieved after calcination of the photocatalyst at 400 °C (TiO 2 -400 °C). The TiO 2 film was immobilized on glass spheres and the powder was characterized by scanning electron microscopy (SEM), X-ray diffraction and BET. This characterization suggested that thermal treatment did not introduce substantial changes in the measured microstructural characteristics of the photocatalyst. The immobilized photocatalyst degraded more than 96% of the MB in up to 90 min of reaction. The photocatalytic activity decreased after four photocatalytic cycles, but it was recovered by the removal of contaminants adsorbed on the active sites after washing in water under UV-Vis irradiation. Based on these results, the TiO 2 -400 °C coated on glass spheres is potentially a very attractive option for removal of persistent contaminants present in the environment.

  18. Synthesis and photocatalytic activity of mesoporous – (001) facets TiO_2 single crystals

    International Nuclear Information System (INIS)

    Dong, Yeshuo; Fei, Xuening; Zhou, Yongzhu

    2017-01-01

    Highlights: • The (001) facets of TiO_2 single crystals with mesoporous structure. • The (010) and (100) facets of TiO_2 single crystals were covered by the flower – shaped TiO_2 crystals. • This special structure could promote charge separation and provide more active sites, which will lead to a substantial increase in photocatalytic activity. - Abstract: In this work, the mesoporous – (001) facets TiO_2 single crystals have been successfully synthesized through a two-step solvothermal route without any template. Their structure and morphology were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible (UV–vis) diffuse reflectance spectroscopy and energy dispersive X-ray spectrometer (EDX). Based on the different characteristics and atomic arrangements on each facet of anatase TiO_2 single crystals, we synthesized these mesoporous – (001) facets TiO_2 single crystals by controlling the interaction characteristics of hydrofluoric acid (HF) and isopropanol (i-PrOH) on the crystal facets. It can been seen that the (001) facets of these as-synthesized TiO_2 single crystals have a clear mesoporous structure through the SEM images and BET methods. Moreover, the other four facets were covered by the flower – shaped TiO_2 crystals with the generation of the mesoporous – (001) facets. This special and interesting morphology could promote charge separation and provide more active sites, which will lead to a substantial increase in photocatalytic activity. Moreover, it is more intuitive to reflect that the different crystal facets possess the different properties due to their atomic arrangement. Besides, according to the different synthetic routes, we proposed and discussed a plausible synthesis mechanism of these mesoporous – (001) facets TiO_2 single crystals.

  19. Nitrogen complex species and its chemical nature in TiO2 for visible-light sensitized photocatalysis

    International Nuclear Information System (INIS)

    Asahi, Ryoji; Morikawa, Takeshi

    2007-01-01

    A photocatalyst with high reactivity under visible-light has been desired to utilize solar irradiation or interior lighting efficiently. Nitrogen-doped TiO 2 revealed significant improvement in optical absorption and photocatalytic activity over TiO 2 under visible light. We have performed the first-principles calculations to study the detailed N complex species introduced in TiO 2 . The results include stable geometries, densities of states, formation energies, and core levels. The present systematic studies account for the long-term controversial issue on N-doped TiO 2 , in particular, regarding the detailed assignment of N 1s binding energies observed in the XPS measurement. The detailed analyses of the formation energies show that introducing the N species more in a controlled way via process conditions is crucial to achieve the optimized photocatalytic performance

  20. Effective Removal of Congo Red by Triarrhena Biochar Loading with TiO2 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Peng Yu

    2018-01-01

    Full Text Available A composite of pyrolytic Triarrhena biochar loading with TiO2 nanoparticles has been synthesized by the sol-gel method. The composite shows a well-developed hollow mesoporous and macropore structure as characterized by XRD, BET, and SEM. When used as an absorbent to remove Congo red from aqueous solution, it was found that as-prepared composite performed better absorption capacity than single biochar or TiO2. The results suggest that biochar loading with TiO2 could be promisingly implemented as an environmentally friendly and inexpensive adsorbent for Congo red removal from wastewater.

  1. Fabrication and characterization of mesoporous TiO2/polypyrrole-based nanocomposite for electrorheological fluid

    International Nuclear Information System (INIS)

    Wei Chuan; Zhu Yihua; Jin Yi; Yang Xiaoling; Li Chunzhong

    2008-01-01

    Mesoporous TiO 2 /polypyrrole (PPy)-based nanocomposite for electrorheological fluid was synthesized through one-pot method. By exploiting the combination conductivity of PPy and high dielectric constant of TiO 2 , the ER fluid exhibited an enhanced effect. The shear stress was 3.3 times as high as that of mesoporous TiO 2 . Powder X-ray diffraction (XRD), TEM and Fourier transform infrared (FT-IR) spectroscopy were employed to characterize the as-made samples. Using a modified rotational viscometer, the electrorheological effect was measured. Dielectric spectra were also given to explain the mechanism

  2. Highly efficient indoor air purification using adsorption-enhanced-photocatalysis-based microporous TiO2 at short residence time.

    Science.gov (United States)

    Lv, Jinze; Zhu, Lizhong

    2013-01-01

    A short residence time is a key design parameter for the removal of organic pollutants in catalyst-based indoor air purification systems. In this study, we synthesized a series of TiO2 with different micropore volumes and studied their removal efficiency of indoor carbonyl pollutants at a short residence time. Our results indicated that the superior adsorption capability of TiO2 with micropores improved its performance in the photocatalytic degradation of cyclohexanone, while the photocatalytic removal of the pollutant successfully kept porous TiO2 from becoming saturated. When treated with 1 mg m(-3) cyclohexanone at a relatively humidity of 18%, the adsorption amount on microporous TiO2 was 5.4-7.9 times higher than that on P25. Removal efficiency via photocatalysis followed'the same order as the adsorption amount: TiO2-5 > TiO2-20 > TiO2-60 > TiO2-180 > P25. The advantage of microporous TiO2 over P25 became more pronounced when the residence time declined from 0.072 to 0.036 s. Moreover, as the concentration of cyclohexanone deceased from 1000 ppb to 500 ppb, removal efficiency by microporous TiO2 increased more rapidly than P25.

  3. Synthesis and characterization of TiO2/CdS core–shell nanorod arrays and their photoelectrochemical property

    International Nuclear Information System (INIS)

    Cao Chunlan; Hu Chenguo; Shen Weidong; Wang, Shuxia; Tian Yongshu; Wang Xue

    2012-01-01

    Highlights: ► TiO 2 /CdS core–shell nanorod arrays were fabricated by spin-SILAR method. ► The enhanced photocurrent was found in the TiO 2 /CdS core–shell nanorod arrays. ► The CdS coated on TiO 2 increases the e-h separation and enlarges light absorption range. - Abstract: TiO 2 /CdS core–shell nanorod arrays have been fabricated via a two-step method. Vertically aligned TiO 2 nanorod arrays (NRs) were synthesized by a facile hydrothermal method, and followed by depositing CdS nanoparticles on TiO 2 NRs by spin-coating successive ion layer adsorption and reaction (spin-SILAR) method. The surface morphology, structure, optical and photoelectrochemical behaviors of the core–shell NRs films are considered. The UV–vis absorption spectrum results suggested that the absorption peak of the TiO 2 /CdS core–shell NRs shifts from the ultraviolet region to the visible region in comparison to that of the pure TiO 2 NRs. The obviously enhanced photoelectrochemical (PEC) performances of the heterojunction NRs were found under illumination of the simulated sunlight in comparison with that of the TiO 2 NRs. The enhanced PEC performance and formation mechanism of TiO 2 /CdS core–shell NRs were discussed in detail.

  4. Self-assembled supramolecular system PDINH on TiO2 surface enhances hydrogen production.

    Science.gov (United States)

    Li, Xin; Lv, Xingshuai; Zhang, Qianqian; Huang, Baibiao; Wang, Peng; Qin, Xiaoyan; Zhang, Xiaoyang; Dai, Ying

    2018-09-01

    Constructing organic-inorganic hybrids is one of the hopeful strategies to improve photocatalyst performance. In this study, perylene-3,4,9,10-tetracarboxylic diimide (PDINH) and commercial TiO 2 P25 are chosen as raw materials to construct a PDINH/TiO 2 organic-inorganic hybrid, which has higher photocatalytic H 2 production activity and photocurrent intensity than pure PDINH and TiO 2 , respectively. The apparent quantum efficiency for H 2 production over 0.5%PDINH/TiO 2 reaches as high as 70.69% using irradiation at 365 nm. Moreover, XRD, DRS, HRTEM, FT-IR, and XPS are used to characterize the crystal structure, optical absorption, morphology, molecular structure, and chemical bonds, as well as the elemental and chemical states of PDINH/TiO 2 organic-inorganic hybrid. The interfaces between PDINH and TiO 2 , which largely determine photocatalytic performance, is also analyzed systematically. Furthermore, charge density difference (Δρ) is used to analyze the electron-ion interactions of PDINH and TiO 2 , and reveals that substantial charge transfer occurs from PDINH to TiO 2 . Copyright © 2018. Published by Elsevier Inc.

  5. First-principles study of Mn-S codoped anatase TiO2

    Science.gov (United States)

    Li, Senlin; Huang, Jinliang; Ning, Xiangmei; Chen, Yongcha; Shi, Qingkui

    2018-04-01

    In this work, the CASTEP program in Materials Studio 2017 software package was applied to calculate the electronic structures and optical properties of pure anatase TiO2, S-doped, Mn-doped and Mn-S co-doped anatase TiO2 by GGA + U methods based on the density function theory (DFT). The results indicate that the lattice is distorted and the lattice constant is reduce due to doping. The doping also introduces impurity energy levels into the forbidden band. After substitution of Mn for Ti atom, band gap narrowing of anatase TiO2 is caused by the impurity energy levels appearance in the near Fermi surface, which are contributed by Mn-3d orbital, Ti-3d orbital and O-2p orbital hybridization. After substitution of S for O atom, band gap narrowing is creited with the shallow accepter level under the conduction hand of S-3p orbital. The Mn-S co-doped anatase TiO2 could be a potential candidate for a photocatalyst because of tis enhanced absorption ability of visible light. The results can well explain the immanent cause of a band gap narrowing as well as a red shift in the spectrum for doped anatase TiO2.

  6. Density functional theory studies of TiO2 for photocatalysis and Li storage applications

    Science.gov (United States)

    Kim, Yong-Hoon; Lee, Ji Il; Lee, Dong Ki; Lee, Gyu Heon; Kang, Jeung Ku

    We present two theory-experiment collaboration studies of anatase TiO2 for energy applications. First, we discuss a hydrogen-nitrogen co-doped TiO2 (HN-TiO2) as a photocatalyst, and show that the interstitially introduced HN contributes to the increase of solar-to-fuel conversion efficiency. We find that the variation of valence band maximum (VBM) of NH-TiO2 extends the photoactive spectrum to the visible light, and argue that created mid-gap states produce efficient electron and hole conduction channels. Next, we consider experimentally fabricated hierarchical TiO2 nanocrystals integrated with binder-free porous graphene (PG) network foam for a Li storage application. It was found that the TiO2-PG facilitated rapid ionic transfer during the Li-ion insertion/extraction process. We clarify the mechanisms by showing that Li ion migration into the TiO2-PG interface stabilize the binder-free oxide-graphene interface. Atomistic mechanism of Li ion insertion and migration is discussed by comparing cases between an isolated Li ion, when the crowding effect is included, and when the surface Li ions are present. We found that the supply of additional surface Li ions significantly reduce the Li insertion barrier, driving a spontaneous domino-like concerted Li insertion at the oxide surface region.

  7. Preparation of Silver Immobilised TiO2-Hectorite for Phenol Removal and Eschericia coli Desinfection

    Directory of Open Access Journals (Sweden)

    Is Fatimah

    2013-03-01

    Full Text Available Preparation of silver immobilized TiO2-Hectorite and its application in phenol photooxidation and Eschericia coli bacteria desinfection has been conducted. Material was obtained by two steps of synthesis: preparation of TiO2-Hectorite and silver immobilization into TiO2-Hectorite. Physico-chemical characterization to the prepared material compared to raw hectorite was conducted by X-ray Diffraction, gas sorption analyzer, scanning electron microscope and DRUV-Visible spectrophotometry and for photoactivity study, phenol photooxidation and Eschericia coli desinfection were investigated. The results indicated that the modification to hectorite material improve the physico-chemical character related to its role as photo-catalyst. Kinetic study of phenol photooxidation revealed the role of TiO2 pillarization and silver immobilization in enhancing rate of reaction as well as increased photoactivity of the materials in E. coli desinfection. © 2013 BCREC UNDIP. All rights reservedReceived: 28th September 2012; Revised: 7th December 2012; Accepted: 20th Decemberber 2012[How to Cite: I. Fatimah (2013. Preparation of Silver Immobilised TiO2-Hectorite for Phenol Removal and Eschericia coli Desinfection. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (3: 191-197. (doi:10.9767/bcrec.7.3.4047.191-197][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.7.3.4047.191-197 ] View in  |

  8. Surface effect of natural zeolite (clinoptilolite) on the photocatalytic activity of TiO2

    International Nuclear Information System (INIS)

    Li Fangfei; Jiang Yinshan; Yu Lixin; Yang Zhengwen; Hou Tianyi; Sun Shenmei

    2005-01-01

    The surface interaction between TiO 2 and natural zeolite, clinoptilolite, has been investigated by means of transmission electron microscope (TEM), atom force microscope (AFM), X-ray diffractometer (XRD), diffuse reflectance infrared Fourier transform (DRIFT) and far Fourier transform infrared ray (FTIR) spectroscopy. And the photocatalytic degradation (PCD) rate of methyl orange (MO), a model of recalcitrant azo dye, in aqueous system has been measured to compare the photocatalytic activities of different photocatalysts. A model has been carried out to explain the incorporation between TiO 2 particles and natural zeolite. The results show that the TiO 2 particles loaded on zeolite are 50 nm or so, smaller than the pure one, and combine with zeolite via chemical force. Since the reserved adsorption ability and the existence of electron trapper, the TiO 2 -zeolite performed more efficient at low initial concentration and in the later period of PCD process, as compared with pure TiO 2 nanopowders

  9. Solar photocatalytic degradation of isoproturon over TiO2/H-MOR composite systems

    International Nuclear Information System (INIS)

    Sharma, Mangalampalli V. Phanikrishna; Durgakumari, Valluri; Subrahmanyam, Machiraju

    2008-01-01

    The photocatalytic degradation and mineralization of isoproturon herbicide was investigated in aqueous solution containing TiO 2 over H-mordenite (H-MOR) photocatalysts under solar light. The catalysts are characterized by X-ray diffraction (XRD), UV-Vis diffused reflectance spectra (UV-Vis DRS), Fourier transform-infra red spectra (FT-IR) and scanning electron microscopy (SEM) techniques. The effect of TiO 2 , H-MOR support and different wt% of TiO 2 over the support on the photocatalytic degradation and influence of parameters such as TiO 2 loading, catalyst amount, pH and initial concentration of isoproturon on degradation are evaluated. 15 wt% TiO 2 /H-MOR composite is found to be optimum. The degradation reaction follows pseudo-first order kinetics and is discussed in terms of Langmuir-Hinshelwood (L-H) kinetic model. The extent of isoproturon mineralization studied with chemical oxygen demand (COD) and total organic carbon (TOC) measurements and ∼80% mineralization occurred in 5 h. A plausible mechanism is proposed based on the intermediates identified by liquid chromatography-mass spectroscopy (LC-MS)

  10. Solar photocatalytic degradation of isoproturon over TiO2/H-MOR composite systems.

    Science.gov (United States)

    Sharma, Mangalampalli V Phanikrishna; Durgakumari, Valluri; Subrahmanyam, Machiraju

    2008-12-30

    The photocatalytic degradation and mineralization of isoproturon herbicide was investigated in aqueous solution containing TiO2 over H-mordenite (H-MOR) photocatalysts under solar light. The catalysts are characterized by X-ray diffraction (XRD), UV-Vis diffused reflectance spectra (UV-Vis DRS), Fourier transform-infra red spectra (FT-IR) and scanning electron microscopy (SEM) techniques. The effect of TiO2, H-MOR support and different wt% of TiO2 over the support on the photocatalytic degradation and influence of parameters such as TiO2 loading, catalyst amount, pH and initial concentration of isoproturon on degradation are evaluated. 15wt% TiO2/H-MOR composite is found to be optimum. The degradation reaction follows pseudo-first order kinetics and is discussed in terms of Langmuir-Hinshelwood (L-H) kinetic model. The extent of isoproturon mineralization studied with chemical oxygen demand (COD) and total organic carbon (TOC) measurements and approximately 80% mineralization occurred in 5h. A plausible mechanism is proposed based on the intermediates identified by liquid chromatography-mass spectroscopy (LC-MS).

  11. Nanostructured TiO2 microspheres for dye-sensitized solar cells employing a solid state polymer electrolyte

    International Nuclear Information System (INIS)

    Jung, Hun-Gi; Nagarajan, Srinivasan; Kang, Yong Soo; Sun, Yang-Kook

    2013-01-01

    Bimodal mesoporous, anatase TiO 2 microspheres with particle sizes ranging from 0.3 to 2 μm were synthesized using a facile solvothermal method. The photovoltaic performance of TiO 2 microspheres in dye-sensitized solar cells (DSSCs) using a solid state electrolyte was investigated. The solid state electrolyte DSSC device based on the TiO 2 microspheres exhibits an energy conversion efficiency of 4.2%, which is greater than that of commercial P25 TiO 2 (3.6%). The higher photocurrent density was primarily achieved as a result of the greater specific surface area and pore size, which resulted in an increase in the dye uptake of the TiO 2 microspheres and easy transport of solid electrolyte through mesopores. In addition, the greater electron lifetime and superior light scattering ability also enhanced the photovoltaic performance of the TiO 2 microsphere-based, solid state DSSCs

  12. Photodegradation of diethyl phthalate with PANi/CNT/TiO_2 immobilized on glass plate irradiated with visible light and simulated sunlight—effect of synthesized method and pH

    International Nuclear Information System (INIS)

    Hung, Chung-Hsuang; Yuan, Ching; Li, Huei-Wen

    2017-01-01

    Highlights: • Photocatalysts doped with polyaniline and functionalized CNTs onto TiO_2 were developed. • The PANi/CNT/TiO_2 photocatalysts possessed both advantages of PANi and CNTs. • The fabricated PANi/CNT/TiO_2 photocatalysts exhibited high photocatalytic activity under sunlight. • The hydrothermal synthesized PANi/CNT/TiO_2 presented a good photocatalytic activity and the sol–gel ones presented a good photocatalytic stability. - Abstract: Diethyl phthalate (DEP) is one of the most common phthalates for industrial use and has widely spread in environment. A series of PANi/CNT/TiO_2 potocatalysts immobilized on glass plate irradiated with visible light were presented to degrade DEP in this study. The PANi/CNT/TiO_2 potocatalysts were fabricated by co-doping with polyaniline (PANi) and two functionalized CNT (CNT-COCl and CNT-COOH) onto TiO_2 followed by a hydrothermal synthesis and a sol–gel hydrolysis. Doping of PANi resulted in the absorption edge of the fabricated potocatalysts shifting to 421–437 nm and the most distinguished red-shift effect was found in hydrothermal synthesized photocatalysts. The best DEP degradation of 41.5–59.0% and 44.5–67.4% was found in the simulated sunlight system irradiated for 120 min for sol–gel hydrolysis PANi/CNT/TiO_2 photocatalysts and hydrothermal synthesized ones, respectively. The optimum pH was determined at 5.0 and 7.0 for the two PANi/CNT/TiO_2 photocatalysts mentioned above, respectively. The reusability of the sol–gel hydrolyzed photocatalysts up to 5 times was observed no decline in the photodegradation efficiency but less photocatalytic stability of the hydrothermal synthesized ones was found. Meanwhile, the active species of OH radicals generated in the DEP degradation system was identified by free radical scavenging experiments.

  13. Photocatalytic Removal of Phenol under Natural Sunlight over N-TiO2-SiO2 Catalyst: The Effect of Nitrogen Composition in TiO2-SiO2

    Directory of Open Access Journals (Sweden)

    Viet-Cuong Nguyen

    2009-01-01

    Full Text Available In this present work, high specific surface area and strong visible light absorption nitrogen doped TiO2-SiO2 photocatalyst was synthesized by using sol-gel coupled with hydrothermal treatment method. Nitrogen was found to improve the specific surface area while it also distorted the crystal phase of the resulting N-TiO2-SiO2 catalyst. As the N/ (TiO2-SiO2 molar ratio was more than 10%, the derived catalyst presented the superior specific surface area up to 260 m2/g. Nevertheless, its photoactivity towards phenol removal was observed to significantly decrease, which could results from the too low crystallinity. The nitrogen content in N-TiO2-SiO2 catalyst was therefore necessary to be optimized in terms of phenol removal efficiency and found at ca. 5%. Under UVA light and natural sunlight irradiation of 80 min, N(5%-TiO2-SiO2 catalyst presented the phenol decomposition efficiencies of 68 and 100%, respectively. It was also interestingly found in this study that the reaction rate was successfully expressed using a Langmuir-Hinshelwood (L-H model, indicating the L-H nature of photocatalytic phenol decomposition reaction on the N-TiO2-SiO2 catalyst.

  14. Preparation, Characterization, and Photocatalytic Activity of TiO2/ZnO Nanocomposites

    Directory of Open Access Journals (Sweden)

    Liqin Wang

    2013-01-01

    Full Text Available Nanoparticles of the TiO2/ZnO composite photocatalysts were prepared via sol-gel process. The crystalline structure, morphology, thermal stability, and pore structure properties of the composite photocatalysts were characterized by XRD, FE-SEM, TG-DTA, and N2 physical adsorption measurements. The photocatalytic activity of the composite catalysts was evaluated by photocatalytic degradation reaction of methyl orange (MO in aqueous solution. The best preparation parameters for the composite photocatalysts were obtained through systematical experiments. Furthermore, the photocatalytic degradation reaction of aqueous MO solution followed the first-order reaction kinetics; the relative equation can be described as ln(C0/C=0.5689t, and the calculated correlation constant (R2 is 0.9937 for the calibration curve.

  15. Ease synthesis of mesoporous WO3-TiO2 nanocomposites with enhanced photocatalytic performance for photodegradation of herbicide imazapyr under visible light and UV illumination.

    Science.gov (United States)

    Ismail, Adel A; Abdelfattah, Ibrahim; Helal, Ahmed; Al-Sayari, S A; Robben, L; Bahnemann, D W

    2016-04-15

    Herein, we report the ease synthesis of mesoporous WO3-TiO2 nanocomposites at different WO3 contents (0-5wt%) together with their photocatalytic performance for the degradation of the imazapyr herbicide under visible light and UV illumination. XRD and Raman spectra indicated that the highly crystalline anatase TiO2 phase and monoclinic and triclinic of WO3 were formed. The mesoporous TiO2 exhibits large pore volumes of 0.267cm(3)g-1 and high surface areas of 180m(2)g(-1) but they become reduced to 0.221cm(3)g(-1) and 113m(2)g(-1), respectively upon WO3 incorporation, with tunable mesopore diameter in the range of 5-6.5nm. TEM images show WO3-TiO2 nanocomposites are quite uniform with 10-15nm of TiO2 and 5-10nm of WO3 sizes. Under UV illumination, the overall photocatalytic efficiency of the 3% WO3-TiO2 nanocomposite is 3.5 and 6.6 times higher than that of mesoporous TiO2 and commercial UV-100 photocatalyst, respectively. The 3% WO3-TiO2 nanocomposite is considered to be the optimum photocatalyst which is able to degrade completely (100% conversion) of imazapyr herbicide along 120min with high photonic efficiency ∼8%. While under visible light illumination, the 0.5% WO3-TiO2 nanocomposite is the optimum photocatalyst which achieves 46% photocatalytic efficiency. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Completely oriented anatase TiO2 nanoarrays: topotactic growth and orientation-related efficient photocatalysis

    Science.gov (United States)

    Yang, Jingling; Wu, Qili; He, Shiman; Yan, Jing; Shi, Jianying; Chen, Jian; Wu, Mingmei; Yang, Xianfeng

    2015-08-01

    A TiO2 film has been facilely grown on a Ti foil via a general and simple acid vapor oxidation (AVO) strategy. Based on detailed characterization by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), we found that the TiO2 film was composed of anatase nanoarrays highly oriented along their direction, resulting in a large exposed {001} top surface on the film. The growth mechanism based on a topotactic transformation was proposed according to a careful study of time-dependent experimental results. Resulting from the evaluation of photocatalytic performance compared with a commercial TiO2 photocatalyst (Degussa P25), the as-prepared oriented anatase TiO2 film showed higher efficiency for degradation of atrazine and acid orange II (AOII). The performance of photocatalysis is highly relevant to the preferential orientation. The efficient photocatalysis could be attributed to the highly reactive {001} facets on the anatase nanoarrays with super-hydrophilicity.A TiO2 film has been facilely grown on a Ti foil via a general and simple acid vapor oxidation (AVO) strategy. Based on detailed characterization by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), we found that the TiO2 film was composed of anatase nanoarrays highly oriented along their direction, resulting in a large exposed {001} top surface on the film. The growth mechanism based on a topotactic transformation was proposed according to a careful study of time-dependent experimental results. Resulting from the evaluation of photocatalytic performance compared with a commercial TiO2 photocatalyst (Degussa P25), the as-prepared oriented anatase TiO2 film showed higher efficiency for degradation of atrazine and acid orange II (AOII). The performance of photocatalysis is highly relevant to the preferential orientation. The efficient photocatalysis could be attributed to the highly reactive {001

  17. Composite TiO2/clays materials for photocatalytic NOx oxidation

    Science.gov (United States)

    Todorova, N.; Giannakopoulou, T.; Karapati, S.; Petridis, D.; Vaimakis, T.; Trapalis, C.

    2014-11-01

    TiO2 photocatalyst received much attention for air purification applications especially for removal of air pollutants like NOx, VOCs etc. It has been established that the activity of the photocatalyst can be significantly enhanced by its immobilization onto suitable substrates like inorganic minerals, porous silica, hydroxyapatite, adsorbent materials like activated carbon, various co-catalysts such as semiconductors, graphene, reduced graphite oxide, etc. In the present work, photocatalytic composite materials consisted of mineral substrate and TiO2 in weight ratio 1:1 were manufactured and examined for oxidation and removal of nitric oxides NOx (NO and NO2). Commercial titania P25 (Evonik-Degussa) and urea-modified P25 were used as photocatalytically active components. Inorganic minerals, namely kunipia, talk and hydrotalcite were selected as supporting materials due to their layered structure and expected high NOx adsorption capability. Al3+ and Ca2+ intercalation was applied in order to improve the dispersion of TiO2 and its loading into the supporting matrix. The X-ray diffraction analysis and Scanning Electron Microscopy revealed the binary structure of the composites and homogeneous dispersion of the photocatalyst into the substrates. The photocatalytic behavior of the materials in NOx oxidation and removal was investigated under UV and visible light irradiation. The composite materials exhibited superior photocatalytic activity than the bare titania under both types of irradiation. Significant visible light activity was recorded for the composites containing urea-modified titania that was accredited to the N-doping of the semiconductor. Among the different substrates, the hydrotalcite caused highest increase in the NOx removal, while among the intercalation ions the Ca2+ was more efficient. The results were related to the improved dispersion of the TiO2 and the synergetic activity of the substrates as NOx adsorbers.

  18. Tuning the band gap of TiO2 by tungsten doping for efficient UV and visible photodegradation of Congo red dye.

    Science.gov (United States)

    Ullah, Irfan; Haider, Ali; Khalid, Nasir; Ali, Saqib; Ahmed, Sajjad; Khan, Yaqoob; Ahmed, Nisar; Zubair, Muhammad

    2018-06-13

    Tungsten-doped TiO 2 (W@TiO 2 ) nanoparticles, with different percentages of atomic tungsten dopant levels (range of 0 to 6 mol%) have been synthesized by the sol-gel method and characterized by UV-Visible spectroscopy, XRD, SEM, EDX, ICP-OES and XPS analysis. By means of UV-Vis spectroscopy, it has been observed that with 6 mol% tungsten doping the wavelength range of excitation of TiO 2 has extended to the visible portion of spectrum. Therefore, we evaluated the photocatalytic activity of W@TiO 2 catalysts for the degradation of Congo red dye under varying experimental parameters such as dopant concentration, catalyst dosage, dye concentrations and pH. Moreover, 6 mol% W@TiO 2 catalyst was deposited on a glass substrate to form thin film using spin coating technique in order to make the photocatalyst effortlessly reusable with approximately same efficiency. The results compared with standard titania, Degussa P25 both in UV- and visible light, suggest that 6 mol% W@TiO 2 can be a cost-effective choice for visible light induced photocatalytic degradation of Congo red dye. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Synthesis and photocatalytic activity of Ce-doped TiO2 and TiO2 nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Arruda, L.B.; Pereira, E.A.; Paula, F.R.; Lisboa Filho, P.N. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), SP (Brazil)

    2016-07-01

    Full text: One-dimensional nanostructures have been intensively studied, from the point of view of their synthesis and mechanisms of formation, as well as their applications in photonics, solar energy conversion, environmental and photocatalysis, since their properties due high surface area, electrical conductivity and light dispersion effects. Titanium dioxide (TiO2) nanoparticles have been demonstrated to be an effective multifunctional material especially when the particle size is less than 50 nm exhibit photoinduced activities that originate from the semiconductor band gap. TiO2 is semiconductor more used in photocatalysis, for this reason various properties have been thoroughly investigated in order to show that the photocatalytic activity and TiO2 reaction mechanism are influenced by structure, defects and impurities, surface morphology. and interfaces in addition to the concentration of dopants, such as rare-earth elements. Cerium ions, for example, vary between Ce4+ and Ce3 + oxidation state making the cerium oxide appear as CeO2 and Ce2O3 under oxidation and reduction conditions. These different electronic structures of Ce3+ (4f15d0) and Ce4+ (4f05d0) provide different catalytic and optical properties at the TiO2. In this work, samples of Ce-doped TiO2 and TiO2 were synthesized by alkali route, and its photocatalytic activity analyzed in order to create a relationship between the response obtained and the structure and morphology of each sample. Alkali route consists in submitting TiO2 (anatase) powder directly in medium of the NaOH (10M) and maintained at 120°C/20 hours by a glycerin bath with subsequent washed with water and HCl (0.1M) until reaching the desired pH. The synthesized samples were then studied by X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The photocatalytic decomposition of rhodamine B (Rh.B) it was performed under UV irradiation and visible light in air. For the obtained

  20. Synthesis and photocatalytic activity of Ce-doped TiO2 and TiO2 nanotubes

    International Nuclear Information System (INIS)

    Arruda, L.B.; Pereira, E.A.; Paula, F.R.; Lisboa Filho, P.N.

    2016-01-01

    Full text: One-dimensional nanostructures have been intensively studied, from the point of view of their synthesis and mechanisms of formation, as well as their applications in photonics, solar energy conversion, environmental and photocatalysis, since their properties due high surface area, electrical conductivity and light dispersion effects. Titanium dioxide (TiO2) nanoparticles have been demonstrated to be an effective multifunctional material especially when the particle size is less than 50 nm exhibit photoinduced activities that originate from the semiconductor band gap. TiO2 is semiconductor more used in photocatalysis, for this reason various properties have been thoroughly investigated in order to show that the photocatalytic activity and TiO2 reaction mechanism are influenced by structure, defects and impurities, surface morphology. and interfaces in addition to the concentration of dopants, such as rare-earth elements. Cerium ions, for example, vary between Ce4+ and Ce3 + oxidation state making the cerium oxide appear as CeO2 and Ce2O3 under oxidation and reduction conditions. These different electronic structures of Ce3+ (4f15d0) and Ce4+ (4f05d0) provide different catalytic and optical properties at the TiO2. In this work, samples of Ce-doped TiO2 and TiO2 were synthesized by alkali route, and its photocatalytic activity analyzed in order to create a relationship between the response obtained and the structure and morphology of each sample. Alkali route consists in submitting TiO2 (anatase) powder directly in medium of the NaOH (10M) and maintained at 120°C/20 hours by a glycerin bath with subsequent washed with water and HCl (0.1M) until reaching the desired pH. The synthesized samples were then studied by X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The photocatalytic decomposition of rhodamine B (Rh.B) it was performed under UV irradiation and visible light in air. For the obtained

  1. Light-induced antifungal activity of TiO2 nanoparticles/ZnO nanowires

    International Nuclear Information System (INIS)

    Haghighi, N.; Abdi, Y.; Haghighi, F.

    2011-01-01

    Antifungal activity of TiO 2 /ZnO nanostructures under visible light irradiation was investigated. A simple chemical method was used to synthesize ZnO nanowires. Zinc acetate dihydrate, Polyvinyl Pyrrolidone and deionized water were used as precursor, capping and solvent, respectively. TiO 2 nanoparticles were deposited on ZnO nanowires using an atmospheric pressure chemical vapor deposition system. X-ray diffraction pattern of TiO 2 /ZnO nano-composite has represented the diffraction peaks relating to the crystal planes of the TiO 2 (anatase and rutile) and ZnO. TiO 2 /ZnO nanostructure antifungal effect on Candida albicans biofilms was studied and compared with the activity of TiO 2 nanoparticles and ZnO nanowires. The high efficiency photocatalytic activity of TiO 2 nanoparticles leads to increased antifungal activity of ZnO nanowires. Scanning electron microscope was utilized to study the morphology of the as prepared nanostructures and the degradation of the yeast.

  2. Photocatalytic oxidative desulfurization of dibenzothiophene catalyzed by amorphous TiO2 in ionic liquid

    International Nuclear Information System (INIS)

    Zhu, Wenshuai; Xu, Yehai; Li, Huaming; Dai, Bilian; Xu, Hui; Wang, Chao; Chao, Yanhong; Liu, Hui

    2014-01-01

    Three types of TiO 2 were synthesized by a hydrolysis and calcination method. The catalysts were characterized by X-ray powder diffraction (XRD), diffuse reflectance spectrum (DRS), Raman spectra, and X-ray photoelectron spectroscopy (XPS). The XRD and Raman spectra indicated that amorphous TiO 2 was successfully obtained at 100 .deg. C. The results indicated that amorphous TiO 2 achieved the highest efficiency of desulfurization. The photocatalytic oxidation of dibenzothiophene (DBT), benzothiophene (BT), 4,6-dimethyldibenzothiophene (4,6-DMDBT) and dodecanethiol (RSH) in model oil was studied at room temperature (30 .deg. C) with three catalysts. The system contained amorphous TiO 2 , H 2 O 2 , and [Bmim]BF 4 ionic liquid, ultraviolet (UV), which played vitally important roles in the photocatalytic oxidative desulfurization. Especially, the molar ratio of H 2 O 2 and sulfur (O/S) was only 2 : 1, which corresponded to the stoichiometric reaction. The sulfur removal of DBT-containing model oil with amorphous TiO 2 could reach 96.6%, which was apparently superior to a system with anatase TiO 2 (23.6%) or with anatase - rutile TiO 2 (18.2%). The system could be recycled seven times without a signicant decrease in photocatalytic activity

  3. Probing Photocatalytic Characteristics of Sb-Doped TiO2 under Visible Light Irradiation

    Directory of Open Access Journals (Sweden)

    Lingjing Luo

    2014-01-01

    Full Text Available Sb-doped TiO2 nanoparticle with varied dopant concentrations was synthesized using titanium tetrachloride (TiCl4 and antimony chloride (SbCl3 as the precursors. The properties of Sb-doped TiO2 nanoparticles were characterized by X-ray diffraction (XRD, scanning electron microscope (SEM, fluorescence spectrophotometer, and Uv-vis spectrophotometer. The absorption edge of TiO2 nanoparticles could be extended to visible region after doping with antimony, in contrast to the UV absorption of pure TiO2. The results showed that the photocatalytic activity of Sb-doped TiO2 nanoparticles was much more active than pure TiO2. The 0.1% Sb-doped TiO2 nanoparticles demonstrated the best photocatalytic activity which was better than that of the Degussa P25 under visible light irradiation using terephthalic acid as fluorescent probe. The effects of Sb dopant on the photocatalytic activity and the involved mechanism were extensively investigated in this work as well.

  4. Enhanced TiO2 Photocatalytic Processing of Organic Wastes for Green Space Exploration

    Science.gov (United States)

    Udom, I.; Goswami, D. Y.; Ram, M. K.; Stefanakos, E. K.; Heep, A. F.; Kulis, M. J.; McNatt, J. S.; Jaworske, D. A.; Jones, C. A.

    2013-01-01

    The effect of transition metal co-catalysts on the photocatalytic properties of TiO2 was investigated. Ruthenium (Ru), palladium, platinum, copper, silver, and gold, were loaded onto TiO2 powders (anatase and mixed-phase P25) and screened for the decomposition of rhodamine B (RhB) under broad-band irradiation. The morphology and estimated chemical composition of photocatalysts were determined by scanning electron microscopy and energy dispersive spectroscopy, respectively. Brunhauer, Emmett and Teller (BET) analysis measured mass-specific surface area(s). X-ray diffraction analysis was performed to confirm the identity of titania phase(s) present. The BET surface area of anatase TiO2/Ru 1% (9.2 sq m/gm) was one of the highest measured of all photocatalysts prepared in our laboratory. Photolyses conducted under air-saturated and nitrogen-saturated conditions revealed photodegradation efficiencies of 85 and 2 percent, respectively, after 60 min compared to 58 percent with no catalyst. The cause of low photocatalytic activity under an inert atmosphere is discussed. TiO2/Ru 1% showed a superior photocatalytic activity relative to P25-TiO2 under broad-band irradiation. A potential deployment of photocatalytic technologies on a mission could be a reactor with modest enhancement in solar intensity brought about by a trough-style reactor, with reactants and catalyst flowing along the axis of the trough and therefore being illuminated for a controlled duration based on the flow rate.

  5. Photocatalytic degradation of an azo-dye on TiO2/activated carbon composite material.

    Science.gov (United States)

    Andriantsiferana, C; Mohamed, E F; Delmas, H

    2014-01-01

    A sequential adsorption/photocatalytic regeneration process to remove tartrazine, an azo-dye in aqueous solution, has been investigated. The aim ofthis work was to compare the effectiveness of an adsorbent/photocatalyst composite-TiO2 deposited onto activated carbon (AC) - and a simple mixture of powders of TiO2 and AC in same proportion. The composite was an innovative material as the photocatalyst, TiO2, was deposited on the porous surface ofa microporous-AC using metal-organic chemical vapour deposition in fluidized bed. The sequential process was composed of two-batch step cycles: every cycle alternated a step of adsorption and a step of photocatalytic oxidation under ultra-violet (365 nm), at 25 degreeC and atmospheric pressure. Both steps, adsorption and photocatalytic oxidation, have been investigated during four cycles. For both materials, the cumulated amounts adsorbed during four cycles corresponded to nearly twice the maximum adsorption capacities qmax proving the photocatalytic oxidation to regenerate the adsorbent. Concerning photocatalytic oxidation, the degree of mineralization was higher with the TiO2/AC composite: for each cycle, the value of the total organic carbon removal was 25% higher than that obtained with the mixture powder. These better photocatalytic performances involved better regeneration than higher adsorbed amounts for cycles 2, 3 and 4. Better performances with this promising material - TiO2 deposited onto AC - compared with TiO2 powder could be explained by the vicinity of photocatalytic and AC adsorption sites.

  6. Amorphous TiO2 doped with carbon for visible light photodegradation of rhodamine B and 4-chlorophenol

    International Nuclear Information System (INIS)

    Shao, Penghui; Tian, Jiayu; Zhao, Zhiwei; Shi, Wenxin; Gao, Shanshan; Cui, Fuyi

    2015-01-01

    Graphical abstract: - Highlights: • Amorphous TiO 2 doped with carbon is prepared as a visible photocatalyst. • RhB and 4-chlorophenol are decomposed effectively by carbon-doped amorphous TiO 2 . • The mechanism for visible light photocatalysis is discussed detailedly. - Abstract: Visible light photocatalytic activity of amorphous TiO 2 doped with carbon is prepared by a facile sol-gel route for the first time. The most active sample with mesostructure of amorphous phase, high surface area (273 m 2 g −1 ) and large pore volume (0.33 cm 3 g −1 ) is identified by X-ray diffractometer, Raman spectrometer, transmission electron microscope and N 2 adsorption–desorption isotherms. In addition, the most active sample is characterized by Fourier transform-infrared spectrometer, X-ray photoelectron spectrometer, UV–vis diffuse reflectance spectrometer and luminescence spectrometer. The results show that the most active sample with oxygenic groups has a narrower bandgap and lower recombination of electron–hole, due to the carbon doping and phase of amorphous. Effective photodegradation capability and stability of rhodamine B and colorless 4-chlorophenol are verified by photocatalytic tests under visible light irradiation. A possible mechanism of amorphous TiO 2 doped with carbon for visible light photocatalysis is proposed. The findings of this paper will provide new insights to design visible light-induced photocatalyst based on amorphous TiO 2 for organic removal

  7. One-Pot Synthesis of Cu-Nanocluster-Decorated Brookite TiO2 Quasi-Nanocubes for Enhanced Activity and Selectivity of CO2 Photoreduction to CH4.

    Science.gov (United States)

    Jin, Jingpeng; Luo, Jiang; Zan, Ling; Peng, Tianyou

    2017-11-17

    A new kind of metallic Cu-loaded brookite TiO 2 composite, in which Cu nanoclusters with a small size of 1-3 nm are decorated on brookite TiO 2 quasi nanocube (BTN) surfaces (hereafter referred to as Cu-BTN), is synthesized via a one-pot hydrothermal process and then used as photocatalyst for CO 2 reduction. It was found that the decoration of Cu nanoclusters on BTN surfaces can improve the activity and selectivity of CO 2 photoreduction to CH 4 , and 1.5 % Cu-BTN gives a maximum overall photocatalytic activity (150.9 μmol g -1  h -1 ) for CO/CH 4 production, which is ≈11.4 and ≈3.3 times higher than those of pristine BTN (13.2 μmol g -1  h -1 ) and Ag-BTN (45.2 μmol g -1  h -1 ). Moreover, the resultant Cu-BTN products can promote the selective generation of CH 4 as compared to CO due to the number of surface oxygen vacancies and the CO 2 /H 2 O adsorption behavior, which differs from that of the pristine BTN. The present results demonstrate that brookite TiO 2 would be a potential effective photocatalyst for CO 2 photoreduction, and that Cu nanoclusters can act as an inexpensive and efficient co-catalyst alternative to the commonly used noble metals to improve the photoactivity and selectivity for CO 2 reduction to CH 4 . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Photocatalytic oxidation dynamics of acetone on TiO2: tight-binding quantum chemical molecular dynamics study

    International Nuclear Information System (INIS)

    Lv Chen; Wang Xiaojing; Agalya, Govindasamy; Koyama, Michihisa; Kubo, Momoji; Miyamoto, Akira

    2005-01-01

    The clarification of the excited states dynamics on TiO 2 surface is important subject for the design of the highly active photocatalysts. In the present study, we applied our novel tight-binding quantum chemical molecular dynamics method to the investigation on the photocatalytic oxidation dynamics of acetone by photogenerated OH radicals on the hydrated anatase TiO 2 surface. The elucidated photocatalytic reaction mechanism strongly supports the previous experimental proposal and finally the effectiveness of our new approach for the clarification of the photocatalytic reaction dynamics employing the large simulation model was confirmed

  9. Electrochemically Obtained TiO2/CuxOy Nanotube Arrays Presenting a Photocatalytic Response in Processes of Pollutants Degradation and Bacteria Inactivation in Aqueous Phase

    Directory of Open Access Journals (Sweden)

    Magda Kozak

    2018-06-01

    Full Text Available TiO2/CuxOy nanotube (NT arrays were synthesized using the anodization method in the presence of ethylene glycol and different parameters applied. The presence, morphology, and chemical character of the obtained structures was characterized using a variety of methods—SEM (scanning electron microscopy, XPS (X-ray photoelectron spectroscopy, XRD (X-ray crystallography, PL (photoluminescence, and EDX (energy-dispersive X-ray spectroscopy. A p-n mixed oxide heterojunction of Ti-Cu was created with a proved response to the visible light range and the stable form that were in contact with Ti. TiO2/CuxOy NTs presented the appearance of both Cu2O (mainly and CuO components influencing the dimensions of the NTs (1.1–1.3 µm. Additionally, changes in voltage have been proven to affect the NTs’ length, which reached a value of 3.5 µm for Ti90Cu10_50V. Degradation of phenol in the aqueous phase was observed in 16% of Ti85Cu15_30V after 1 h of visible light irradiation (λ > 420 nm. Scavenger tests for phenol degradation process in presence of NT samples exposed the responsibility of superoxide radicals for degradation of organic compounds in Vis light region. Inactivation of bacteria strains Escherichia coli (E. coli, Bacillus subtilis (B. subtilis, and Clostridium sp. in presence of obtained TiO2/CuxOy NT photocatalysts, and Vis light has been studied showing a great improvement in inactivation efficiency with a response rate of 97% inactivation for E. coli and 98% for Clostridium sp. in 60 min. Evidently, TEM (transmission electron microscopy images confirmed the bacteria cells’ damage.

  10. Adsorption and Recovery of Polyphenolic Flavonoids Using TiO_2-Functionalized Mesoporous Silica Nanoparticles

    International Nuclear Information System (INIS)

    Khan, M. Arif; Wallace, William T.; Islam, Syed Z.; Nagpure, Suraj; Strzalka, Joseph

    2017-01-01

    Exploiting specific interactions with titania (TiO_2) has been proposed for the separation and recovery of a broad range of biomolecules and natural products, including therapeutic polyphenolic flavonoids which are susceptible to degradation, such as quercetin. Functionalizing mesoporous silica with TiO_2 has many potential advantages over bulk and mesoporous TiO_2 as an adsorbent for natural products, including robust synthetic approaches leading to high surface area, stable separation platforms. Here, TiO_2 surface functionalized mesoporous silica nanoparticles (MSNPs) are synthesized and characterized as a function of TiO_2 content (up to 636 mg TiO2/g). The adsorption isotherms of two polyphenolic flavonoids, quercetin and rutin, were determined (0.05-10 mg/ml in ethanol), and a 100-fold increase in the adsorption capacity was observed relative to functionalized nonporous particles with similar TiO_2 surface coverage. An optimum extent of functionalization (approximately 440 mg TiO_2/g particles) is interpreted from characterization techniques including grazing incidence x-ray scattering (GIXS), high resolution transmission electron microscopy (HRTEM) and nitrogen adsorption, which examined the interplay between the extent of TiO_2 functionalization and the accessibility of the porous structures. The recovery of flavonoids is demonstrated using ligand displacement in ethanolic citric acid solution (20% w/v), in which greater than 90% recovery can be achieved in a multistep extraction process. The radical scavenging activity (RSA) of the recovered and particle-bound quercetin as measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay demonstrates greater than 80% retention of antioxidant activity by both particle-bound and recovered quercetin. In conclusion, these mesoporous titanosilicate materials can serve as a synthetic platform to isolate, recover, and potentially deliver degradation-sensitive natural products to biological systems.

  11. Synthesis of nanocomposite coating based on TiO2/ZnAl layer double hydroxides

    International Nuclear Information System (INIS)

    Jovanov, V.; Rudic, O.; Ranogajec, J.; Fidanchevska, E.

    2017-01-01

    The aim of this investigation was the synthesis of nanocomposite coatings based on Zn-Al layered double hydroxides (Zn-Al LDH) and TiO2. The Zn-Al LDH material, which acted as the catalyst support of the active TiO2 component (in the content of 3 and 10 wt. %), was synthesized by a low super saturation co-precipitation method. The interaction between the Zn-Al LDH and the active TiO2 component was accomplished by using vacuum evaporation prior to the mechanical activation and only by mechanical activation. The final suspension based on Zn-Al LDH and 10wt. % TiO2, impregnated only by mechanical activation, showed the optimal characteristics from the aspect of particle size distribution and XRD analysis. These properties had a positive effect on the functional properties of the coatings (photocatalytic activity and self-cleaning efficiency) after the water rinsing procedure. [es

  12. Synthesis of highly ordered TiO2 nanotube in malonic acid solution by anodization.

    Science.gov (United States)

    Ryu, Won Hee; Park, Chan Jin; Kwon, Hyuk Sang

    2008-10-01

    We synthesized TiO2 nanotube array by anodizing in a solution of malonic acid (HOOCCH2COOH) and NH4F, and analyzed the morphology of the nanotube using scanning electron microscopy (SEM). The morphology of TiO2 nanotube was largely affected by anodizing time, anodizing voltage, and malonic acid concentration. With increasing the anodizing voltage from 5 V to 20 V, the diameter of TiO2 nanotube was increased from about 20 nm to 110 nm and its length from about 10 nm to 700 nm. In addition, the length of TiO2 nanotube was increased with increasing anodizing time up to 6 h at 20 V. We obtained the longest and the most highly ordered nanotube structure when anodizing Ti in a solution of 0.5 wt% NH4F and 1 M malonic acid at 20 V for 6 h.

  13. Room temperature alcohol sensing by oxygen vacancy controlled TiO2 nanotube array

    International Nuclear Information System (INIS)

    Hazra, A.; Dutta, K.; Bhowmik, B.; Bhattacharyya, P.; Chattopadhyay, P. P.

    2014-01-01

    Oxygen vacancy (OV) controlled TiO 2 nanotubes, having diameters of 50–70 nm and lengths of 200–250 nm, were synthesized by electrochemical anodization in the mixed electrolyte comprising NH 4 F and ethylene glycol with selective H 2 O content. The structural evolution of TiO 2 nanoforms has been studied by field emission scanning electron microscopy. Variation in the formation of OVs with the variation of the structure of TiO 2 nanoforms has been evaluated by photoluminescence and X-ray photoelectron spectroscopy. The sensor characteristics were correlated to the variation of the amount of induced OVs in the nanotubes. The efficient room temperature sensing achieved by the control of OVs of TiO 2 nanotube array has paved the way for developing fast responding alcohol sensor with corresponding response magnitude of 60.2%, 45.3%, and 36.5% towards methanol, ethanol, and 2-propanol, respectively.

  14. Amine functionalized TiO2-carbon nanotube composite: synthesis, characterization and application to glucose biosensing

    Science.gov (United States)

    Tasviri, Mahboubeh; Rafiee-Pour, Hossain-Ali; Ghourchian, Hedayatollah; Gholami, Mohammad Reza

    2011-12-01

    The synthesis of amine functionalized TiO2-coated multiwalled carbon nanotubes (NH2-TiO2-CNTs) using sol-gel method was investigated. The synthesized nanocomposite was characterized with XRD, FTIR spectroscopy, BET test and SEM imaging. The results demonstrated a unique nanostructure with no destruction of the CNTs' shape. In addition, the presence of amine groups on the composite surface was confirmed by FTIR. This nanocomposite was used for one-step immobilization of glucose oxidase (GOx) to sense glucose. The result of cyclic voltammetry showed a pair of well-defined and quasi-reversible peaks for direct electron transfer of GOx in the absence of glucose. Also, the result of electrochemical impedance spectroscopy indicated that GOx was successfully immobilized on the surface of NH2-TiO2-CNTs. Furthermore, good amperometric response showed that immobilized GOx on the NH2-TiO2-CNTs exhibits exceptional bioelectrocatalytic activity toward glucose oxidation.

  15. Imobilisasi TiO2 ke dalam Resin Penukar Kation dan Aplikasinya sebagai Fotokatalis dalam Proses Fotoreduksi Ion Hg2+

    Directory of Open Access Journals (Sweden)

    Rosyid Ridho

    2017-03-01

    kenaikan fotoreduksi pada ion Hg(II, akan tetapi pada pH yang lebih tinggi dari 4 menyebabkan terjadinya penurunan efektivitas fotoreduksi terhadap ion Hg(II.   Kata kunci : Fotokatalis, TiO2-resin, Ion Hg(II   Abstract To develop TiO2 photoreduction photocatalyst in order to decrease the Hg(II ion concentrate, in this research, it has been done the TiO2-Resin photocatalyst preparation with the characterization and application to Hg(II ion photoreduction process. This preparation was done with ion exchange method which followed by studied calcinations at certain temperature. The preparation has been studied the influence of titanium isopropoxide concentrate toward TiO2-Resin which has been characterized by using X-Ray Diffraction(XRD and Thermografimetry (TGA. In Hg(II ion photoreduction process, it has been studied the influence of photocatalyst mass, the content of TiO2 which immobilized into sulfonated polystyrene (resin, the ion Hg(II concentrate, and the pH influence. The photoreduction process has been done in the closed reactor that equipped by UV lamp, and uses the irradiating a mixture which contents of Hg(II ion solution and TiO2-Resin photocatalyst powder, with the stirring at certain time. The result of photoreduction was calculated based on the difference between the earlier Hg(II ion concentrate and unreduced Hg(II ion. The determining of unreduced Hg(II ion concentrate was done by using cold vapor atomic absorption spectrophotometry (CV-AAS. The preparation result showed that the higher isopropoxide titanium that was added into sulfonated polystyrene, the higher the content of TiO2 that was formed in TiO2-Resin. the result of photocatalyst test showed that the using using of TiO2-Resin photocatalyst can increase the result of Hg(II ion photoreduction  which the increase is higher than TiO2 powder. The added of photocatalyst by the higher mass, adds the photoreduction effectiveness toward the Hg(II ion. The higher the Hg(II concentrate that added, the

  16. Facile synthesis of improved room temperature gas sensing properties of TiO2 nanostructures: Effect of acid treatment

    CSIR Research Space (South Africa)

    Tshabalala, Zamaswazi P

    2016-03-01

    Full Text Available TiO2 nanoparticles were synthesized via a simple hydrothermal method in a sodium hydroxide (NaOH) aqueous solution and washed with distilled water and different concentrations of hydrochloric acid which acted as the morphological...

  17. In situ glow discharge plasma electrolytic synthesis of reduced TiO2 for enhanced visible light photocatalysis

    Science.gov (United States)

    Feng, Guang; Wu, Botao; Qayyum Khan, Abdul; Zeng, Heping

    2018-05-01

    Reduced titanium dioxide (TiO2‑x) due to its extraordinary visible light absorption has been widely investigated in photodegradation and water splitting nowadays. However, conventional routes to synthesize reduced TiO2 usually demand multiple preparation steps, harsh controlled conditions or expensive facilities. Here we developed a single-step in situ approach to prepare the gray TiO2‑x nanoparticles (sub-10 nm) effectively by the glow discharge plasma electrolysis (GDPE) under atmospheric pressure. The co-existence of self-doped oxygen vacancies and Ti3+ in the generated TiO2‑x nanoparticles is demonstrated by electron paramagnetic resonance (EPR). The tunable ratio of bulk/surface defect can be realized by controlling the glow discharge power directly. It should be noticed that Ti3+ in the synthesized TiO2‑x are quite stable in ambient air. The UV–vis spectra of gray TiO2‑x show an enhanced visible light absorption, which leads to high visible-light photocatalytic activity. Moreover, the as-prepared TiO2‑x after 6 months storage still shows excellent stability during photocatalytic reactions. Owing to its simplicity and effectivity, this preparation method with GDPE should provide a large-scale production for TiO2‑x with high photoactivity.

  18. Direct access to highly crystalline mesoporous nano TiO2 using sterically bulky organic acid templates

    Science.gov (United States)

    Bakre, Pratibha V.; Tilve, S. G.

    2018-05-01

    Sterically bulky monocarboxylic acid templates pivalic acid and phenoxyacetic acid are reported for the first time as organic templates in the sol-gel synthesis of TiO2. Mesoporous nanoparticulates of pure anatase phase and of well defined size were synthesized. The characterization of the materials prepared was done by various methods such as XRD, SEM, TEM, FTIR, UV-DRS, BET, etc. The prepared TiO2 samples were evaluated for the day light photodegradation of methylene blue by comparing with Degussa P25 and templates free synthesized TiO2 and were found to be more efficient.

  19. Photocatalysis with chromium-doped TiO2: Bulk and surface doping

    KAUST Repository

    Ould-Chikh, Samy

    2014-04-15

    The photocatalytic properties of TiO2 modified by chromium are usually found to depend strongly on the preparation method. To clarify this problem, two series of chromium-doped titania with a chromium content of up to 1.56 wt % have been prepared under hydrothermal conditions: the first series (Cr:TiO2) is intended to dope the bulk of TiO2, whereas the second series (Cr/TiO2) is intended to load the surface of TiO2 with Cr. The catalytic properties have been compared in the photocatalytic oxidation of formic acid. Characterization data provides evidence that in the Cr/TiO2 catalysts chromium is located on the surface of TiO2 as amorphous CrOOH clusters. In contrast, in the Cr:TiO 2 series, chromium is mostly dissolved in the titania lattice, although a minor part is still present on the surface. Photocatalytic tests show that both series of chromium-doped titania demonstrate visible-light-driven photo-oxidation activity. Surface-doped Cr/TiO2 solids appear to be more efficient photocatalysts than the bulk-doped Cr:TiO2 counterparts. It\\'s classified! The photocatalytic properties of TiO2 modified by chromium depend strongly on the preparation method. To clarify this problem, two types of modified titania are discussed: one with CrIII doped in the bulk and one with CrOOH clusters on the TiO2 surface (see picture). Both series show visible-light-driven photo-oxidation activity. However, surface modification appears to be a more efficient strategy. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Photocatalytic performance of TiO2 catalysts modified by H3PW12O40, ZrO2 and CeO2

    Institute of Scientific and Technical Information of China (English)

    CAI Tiejun; LIAO Yuchao; PENG Zhenshan; LONG Yunfei; WEI Zongyuan; DENG Qian

    2009-01-01

    The binary composite photo-catalysts CeO2/TiO2, ZrO2/TiO2 and the ternary composite photo-catalysts H3PW12O40-CeO2/TiO2,H2PW12O40-ZrO2/TiO2 were prepared by sol-gel method. The catalysts were characterized by thermogravimetric-differential thermal analysis (TG-DTA), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The photocatalyfic elimination of methanol was used as model reaction to evaluate the photocatalytic activity of the composite catalysts under ultraviolet light irradiation. The effects of doped content, activation temperature, time, initial concentration of methanol and gas flow rate on the catalytic activity were investigated. The results showed that after doping a certain amount of CeO2 and ZrO2, crystaniTation process of TiO2 was restrained, particles of catalysts are smaller and more uniform. Doping ZrO2 not only significantly improved the catalytic activity, but also increased thermal stability. Doping H3PW12O40 also enhanced the catalytic activity. The catalytic activities of binary and ternary composite photocatalysts were significantly higher than tin-doped TiO2. The dynamics law of photocatalytic reaction over the binary CeO2/TiO2 and ZrO2/TiO2 catalysts has been studied. The activation energy 15.627 and 15.631 kJ/mol and pre-exponential factors 0.5176 and 0.9899 s-1 over each corresponding catalyst were obtained. This reaction accords to the first order dynamics law.

  1. Investigation of energy band alignments and interfacial properties of rutile NMO2/TiO2 (NM = Ru, Rh, Os, and Ir) by first-principles calculations.

    Science.gov (United States)

    Yang, Chen; Zhao, Zong-Yan

    2017-11-08

    for understanding the role and effects of a noble metal dioxide as a transition layer between a noble metal co-catalyst and a TiO 2 photocatalyst.

  2. Structure and properties of nanophase TiO2

    International Nuclear Information System (INIS)

    Siegel, R.W.; Hahn, H.; Ramasamy, S.; Zongquan, Li; Ting, Lu; Gronsky, R.

    1987-07-01

    Ultrafine-grained, nanophase samples of TiO 2 (rutile) were synthesized by the gas-condensation method and subsequent in-situ compaction, and then studied by transmission electron microscopy, Vickers hardness measurements, and positron annihilation spectroscopy as a function of sintering temperature. The nanophase compacts densified rapidly above 500 0 C, with only a small increase in grain size. The hardness values obtained by this method are comparable to or greater than coarser-grained compacts, but at temperatures 400 to 600 0 C lower than conventional sintering temperatures and without the need for sintering aids. 11 refs., 3 figs

  3. Photocatalytic and antibacterial properties of a TiO2/nylon-6 electrospun nanocomposite mat containing silver nanoparticles

    International Nuclear Information System (INIS)

    Pant, Hem Raj; Pandeya, Dipendra Raj; Nam, Ki Taek; Baek, Woo-il; Hong, Seong Tshool; Kim, Hak Yong

    2011-01-01

    Silver-impregnated TiO 2 /nylon-6 nanocomposite mats exhibit excellent characteristics as a filter media with good photocatalytic and antibacterial properties and durability for repeated use. Silver nanoparticles (NPs) were successfully embedded in electrospun TiO 2 /nylon-6 composite nanofibers through the photocatalytic reduction of silver nitrate solution under UV-light irradiation. TiO 2 NPs present in nylon-6 solution were able to cause the formation of a high aspect ratio spider-wave-like structure during electrospinning and facilitated the UV photoreduction of AgNO 3 to Ag. TEM images, UV-visible and XRD spectra confirmed that monodisperse Ag NPs (approximately 4 nm in size) were deposited selectively upon the TiO 2 NPs of the prepared nanocomposite mat. The antibacterial property of a TiO 2 /nylon-6 composite mat loaded with Ag NPs was tested against Escherichia coli, and the photoactive property was tested against methylene blue. All of the results showed that TiO 2 /nylon-6 nanocomposite mats loaded with Ag NPs are more effective than composite mats without Ag NPs. The prepared material has potential as an economically friendly photocatalyst and water filter media because it allows the NPs to be reused.

  4. Chalcogenide Sensitized Carbon Based TiO2 Nanomaterial For Solar Driven Applications

    Science.gov (United States)

    Pathak, Pawan

    The demand for renewable energy is growing because fossils fuels are depleting at a rapid pace. Solar energy an abundant green energy resource. Utilizing this resource in a smart manner can resolve energy-crisis related issues. Sun light can be efficiently harvested using semiconductor based materials by utilizing photo-generated charges for numerous beneficial applications. The main goal of this thesis is to synthesize different nanostructures of TiO2, develop a novel method of coupling and synthesizing chalcogenide nanocrystals with TiO2 and to study the charge transportation effects of the various carbon allotropes in the chalcogenide nanocrystal sensitized TiO2 nanostructure. We have fabricated different nanostructures of TiO2 as solar energy harvesting materials. Effects of the different phases of TiO2 have also been studied. The anatase phase of TiO2 is more photoactive than the rutile phase of TiO2, and the higher dimension of the TiO2 can increase the surface area of the material which can produce higher photocurrent. Since TiO2 only absorbs in the UV range; to increase the absorbance TiO2 should be coupled to visible light absorbing materials. This dissertation presents a simple approach to synthesize and couple chalcogenide nanocrystals with TiO2 nanostructure to form a heterostructured composite. An atmospheric pressure based, single precursor, one-pot approach has been developed and tested to assemble chalcogenide nanocrystal on the TiO2 surface. Surface characterization using microscopy, X-ray diffraction, and elemental analysis indicates the formation of nanocrystals along the nanotube walls and inter-tubular spacing. Optical measurements indicate that the chalcogenide nanocrystals absorb in the visible region and demonstrate an increase in photocurrent in comparison to bare TiO2 nanostructure. The CdS synthesized TiO2 nanostructure produced the highest photocurrent as measured in the three electrode system. We have also assembled the PbS nanocrystal

  5. Correlating oxygen vacancies and phase ratio/interface with efficient photocatalytic activity in mixed phase TiO2

    International Nuclear Information System (INIS)

    Verma, Ranjana; Samdarshi, S.K.

    2015-01-01

    Graphical abstract: The correlation of interfacial behavior and oxygen vacancies in mixed phase titania nanoparticles on their performance as photocatalyst has been investigated to explain the impact of photoactivity under UV and visible irradiation compared to pristine counterparts. The defects at the junction effectively reduce the band gap as well decrease the carrier recombination to enhance the photocatalytic activity. - Highlights: • Pristine and mixed phases (A/R ratio) TiO 2 synthesized by sol gel route. • Photoactivity variation has been correlated with the changes in the phase ratio. • Enhanced UV and visible activity attributable to oxygen vacancy present at the interface. • Role of A/R ratio and oxygen vacancy in the photoactivity of mixed TiO 2 depicted through a model. - Abstract: The photocatalytic activity is a result of the synergy of a succession of phenomena-photogeneration, separation, and participation of the charge carriers in redox reaction at the catalyst surface. While the extent of photogeneration is assessable in terms of absorption spectrum (band gap), the redox reaction can be correlated to specific surface area. However the respective change in the photocatalytic activity has not been rationally and consistently correlated with the above mentioned parameters. A satisfactory explanation of suppression of recombination based on separation of carriers due to differential mobility/diffusivity in the material phase(s) and/or intrinsic potential barrier exists but its correlation with common identifiable parameter/characteristics is still elusive. This paper attempts to address this issue by correlating the carrier separation with the phase ratio (phase interface) in mixed phase titania and generalizing it with the presence of oxygen vacancy at the phase interface. It essentially appears to complete the quest for identifiable parameters in the sequence of phenomena, which endow a photocatalyst with an efficient activity level. It has

  6. Enhanced visible-light photocatalytic activity for selective oxidation of amines into imines over TiO2(B)/anatase mixed-phase nanowires

    International Nuclear Information System (INIS)

    Dai, Jun; Yang, Juan; Wang, Xiaohan; Zhang, Lei; Li, Yingjie

    2015-01-01

    Graphical abstract: Visible-light photocatalytic activities for selective oxidation of amines into imines are greatly affected by the crystal structure of TiO 2 catalysts and mixed-phase TiO 2 (B)/anatase possess higher photoactivity because of the moderate adsorption ability and efficient charge separation. - Highlights: • Visible-light photocatalytic oxidation of amines to imines is studied over different TiO 2 . • Photocatalytic activities are greatly affected by the crystal structure of TiO 2 nanowires. • Mixed-phase TiO 2 (B)/anatase exhibits higher catalytic activity than single-phase TiO 2 . • Enhanced activity is ascribed to efficient adsorption ability and interfacial charge separation. • Photoinduced charge transfer mechanism on TiO 2 (B)/anatase catalysts is also proposed. - Abstract: Wirelike catalysts of mixed-phase TiO 2 (B)/anatase TiO 2 , bare anatase TiO 2 and TiO 2 (B) are synthesized via calcining precursor hydrogen titanate obtained from hydrothermal process at different temperatures between 450 and 700 °C. Under visible light irradiation, mixed-phase TiO 2 (B)/anatase TiO 2 catalysts exhibit enhanced photocatalytic activity in comparison with pure TiO 2 (B) and anatase TiO 2 toward selective oxidation of benzylamines into imines and the highest photocatalytic activity is achieved by TW-550 sample consisting of 65% TiO 2 (B) and 35% anatase. The difference in photocatalytic activities of TiO 2 samples can be attributed to the different adsorption abilities resulted from their crystal structures and interfacial charge separation driven by surface-phase junctions between TiO 2 (B) and anatase TiO 2 . Moreover, the photoinduced charge transfer mechanism of surface complex is also proposed over mixed-phase TiO 2 (B)/anatase TiO 2 catalysts. Advantages of this photocatalytic system include efficient utilization of solar light, general suitability to amines, reusability and facile separation of nanowires catalysts

  7. Photocatalytic oxidation of NOx gases using TiO2: a surface spectroscopic approach

    International Nuclear Information System (INIS)

    Dalton, J.S.; Janes, P.A.; Jones, N.G.; Nicholson, J.A.; Hallam, K.R.; Allen, G.C.

    2002-01-01

    X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy were used to study surface reactions between nitrogen oxides and TiO 2 on surfaces. - The bandgap of solid-state TiO 2 (3.2 eV) enables it to be a useful photocatalyst in the ultraviolet (λ 2 surface in the presence of sunlight therefore enables the removal of harmful NO x gases from the atmosphere by oxidation to nitrates. These properties, in addition to the whiteness, relative cheapness and non-toxicity, make TiO 2 ideal for the many de-NOX catalysts that are currently being commercially exploited both in the UK and Japan for concrete paving materials in inner cities. There is need, however, for further academic understanding of the surface reactions involved. Hence, we have used surface specific techniques, including X-ray photoelectron spectroscopy and Raman spectroscopy, to investigate the NO x adsorbate reaction at the TiO 2 substrate surface

  8. Visible light active TiO2 films prepared by electron beam deposition of noble metals

    International Nuclear Information System (INIS)

    Hou Xinggang; Ma Jun; Liu Andong; Li Dejun; Huang Meidong; Deng Xiangyun

    2010-01-01

    TiO 2 films prepared by sol-gel method were modified by electron beam deposition of noble metals (Pt, Pd, and Ag). Effects of noble metals on the chemical and surface characteristics of the films were studied using XPS, TEM and UV-Vis spectroscopy techniques. Photocatalytic activity of modified TiO 2 films was evaluated by studying the degradation of methyl orange dye solution under visible light UV irradiation. The result of TEM reveals that most of the surface area of TiO 2 is covered by tiny particles of noble metals with diameter less than 1 nm. Broad red shift of UV-Visible absorption band of modified photocatalysts was observed. The catalytic degradation of methyl orange in aqueous solutions under visible light illumination demonstrates a significant enhancement of photocatalytic activity of these films compared with the un-loaded films. The photocatalytic efficiency of modified TiO 2 films by this method is affected by the concentration of impregnating solution.

  9. TiO2 assisted photo-oxidative pretreatment of wheat straw for biogas production

    DEFF Research Database (Denmark)

    Awais, Muhammad; Alvarado-Morales, Merlin; Tsapekos, Panagiotis

    Photo-catalytic oxidation is an advanced oxidation process in which a catalyst is used to absorb light energy and oxidize the target substrates such as organic polymers. A number of metal oxides and metal ions can efficiently increase substrate’s depolymerisation during the process of photo...... to be markedly higher in the pretreated samples that were exposed for 180min with 1.5 wt% and 2 wt% of TiO2 compared to the untreated wheat straw. Moreover, it was concluded that the products of lignin oxidation and also, the presence of TiO2 did not inhibit the AD process. Finally, UV treatment or TiO2 alone......-catalytic oxidation. Titanium oxide (TiO2) is a photo-catalyst that in its rutile and anatase forms presents the property to enhance the photo-oxidation of lignin-containing substrates. Due to lignin is one of the major obstacles in methane production from lignocellulosic biomass, its destruction is a necessary step...

  10. Bactericidal Activity of TiO2 on Cells of Pseudomonas aeruginosa ATCC 27853

    Directory of Open Access Journals (Sweden)

    J. L. Aguilar Salinas

    2013-01-01

    Full Text Available The photocatalytic activity of semiconductors is increasingly being used to disinfect water, air, soils, and surfaces. Titanium dioxide (TiO2 is widely used as a photocatalyst in thin films, powder, and in mixtures with other semiconductors or metals. This work presents the antibacterial effects of TiO2 and light exposure (at 365 nm on Pseudomonas aeruginosa ATCC 27853. TiO2 powder was prepared from a mixture of titanium isopropoxide, ethanol, and nitric acid using a green and short time sol-gel technique. The obtained gel annealed at 450°C was characterized by X-ray diffraction, Raman spectroscopy, ultraviolet-visible spectroscopy, diffuse reflectance, scanning electron microscopy, and transmission electron microscopy. The nanocomposite effectively catalyzed the inactivation of Pseudomonas aeruginosa. Following 90 minutes exposure to TiO2 and UV light, logarithm of cell density was reduced from 6 to 3. These results were confirmed by a factorial design incorporating two experimental replicates and two independent factors.

  11. Opposite effect of photocorrosion on photocatalytic performance among various AgxMyOz/TiO2 (M = C, P) photocatalysts: A novel effective method for preparing Ag/TiO2 composite

    Science.gov (United States)

    Feng, Caixia; Pang, Yuhua; Wang, Yan; Sun, Mingming; Zhang, Chenyan; Zhang, Ling; Zhou, Yanmei; Li, Deliang

    2016-07-01

    Three kinds of hybrids, Ag2CO3/TiO2, Ag2C2O4/TiO2 and Ag3PO4/TiO2 comprising of P25-TiO2 and silver-containing photocatalyst, (together coded as AgxMyOz/TiO2 (M = C, P)) were prepared via a facile precipitation method. The photocatalytic activity and stability of the as-prepared AgxMyOz/TiO2 was compared by monitoring the oxidation of propylene under visible light irradiation. Results showed that both Ag2CO3/TiO2 and Ag2C2O4/TiO2 exhibit perfect performance with a high propylene degradation removal rate of 88% and 78%, respectively, during four successive experimental runs. On the contrary, for Ag3PO4/TiO2, the photocatalytic activity gradually declines to 8% from 32% under the same conditions. In order to explore the reason for the above remarkable difference in activity and stability over AgxMyOz/TiO2, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and UV-vis diffuse reflectance spectroscopy (DRS) were used to investigate the change of AgxMyOz/TiO2 before and after irradiation. It was found that three silver-containings, Ag2CO3, Ag2C2O4 and Ag3PO4 on the surface of TiO2, all experienced photo-corrosion to various extents during irradiation process. Surprisingly, the effect of photo-corrosion on visible light activity and stability among various AgxMyOz/TiO2 is very different. For both Ag2CO3 and Ag2C2O4, they are easily decomposed into metallic Ag and CO2, and gaseous CO2 escaped from catalyst leaving silver nanoparticles on the surface of TiO2 resulted in the formation of plasmonic photocatalyst Ag/TiO2. The synergetic effect between surface plasma resonance of silver and interfacial electron transfer over the obtained Ag/TiO2 heterojunctions is in favor of the superior photocatalytic performance under visible light. While for Ag3PO4/TiO2, Ag3PO4 on the surface of TiO2 is partially photo-decomposed into Ag and phosphorus oxide and the phosphorus oxide covering on the surface of undecomposed Ag3PO4/TiO2 deactivates its photocatalytic performance

  12. Nano-design of quantum dot-based photocatalysts for hydrogen generation using advanced surface molecular chemistry

    KAUST Repository

    Yu, Weili; Noureldine, Dalal; Isimjan, Tayirjan T.; Lin, Bin; Del Gobbo, Silvano; Abulikemu, Mutalifu; Hedhili, Mohamed N.; Anjum, Dalaver H.; Takanabe, Kazuhiro

    2015-01-01

    Efficient photocatalytic hydrogen generation in a suspension system requires a sophisticated nano-device that combines a photon absorber with effective redox catalysts. This study demonstrates an innovative molecular linking strategy for fabricating photocatalytic materials that allow effective charge separation of excited carriers, followed by efficient hydrogen evolution. The method for the sequential replacement of ligands with appropriate molecules developed in this study tethers both quantum dots (QDs), as photosensitizers, and metal nanoparticles, as hydrogen evolution catalysts, to TiO2 surfaces in a controlled manner at the nano-level. Combining hydrophobic and hydrophilic interactions on the surface, CdSe-ZnS core-shell QDs and an Au-Pt alloy were attached to TiO2 without overlapping during the synthesis. The resultant nano-photocatalysts achieved substantially high-performance visible-light-driven photocatalysis for hydrogen evolution. All syntheses were conducted at room temperature and in ambient air, providing a promising route for fabricating visible-light-responsive photocatalysts.

  13. Formation of hydroxyl radicals and kinetic study of 2-chlorophenol photocatalytic oxidation using C-doped TiO2, N-doped TiO2, and C,N Co-doped TiO2 under visible light.

    Science.gov (United States)

    Ananpattarachai, Jirapat; Seraphin, Supapan; Kajitvichyanukul, Puangrat

    2016-02-01

    This work reports on synthesis, characterization, adsorption ability, formation rate of hydroxyl radicals (OH(•)), photocatalytic oxidation kinetics, and mineralization ability of C-doped titanium dioxide (TiO2), N-doped TiO2, and C,N co-doped TiO2 prepared by the sol-gel method. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and UV-visible spectroscopy were used to analyze the titania. The rate of formation of OH(•) for each type of titania was determined, and the OH-index was calculated. The kinetics of as-synthesized TiO2 catalysts in photocatalytic oxidation of 2-chlorophenol (2-CP) under visible light irradiation were evaluated. Results revealed that nitrogen was incorporated into the lattice of titania with the structure of O-Ti-N linkages in N-doped TiO2 and C,N co-doped TiO2. Carbon was joined to the Ti-O-C bond in the C-doped TiO2 and C,N co-doped TiO2. The 2-CP adsorption ability of C,N co-doped TiO2 and C-doped TiO2 originated from a layer composed of a complex carbonaceous mixture at the surface of TiO2. C,N co-doped TiO2 had highest formation rate of OH(•) and photocatalytic activity due to a synergistic effect of carbon and nitrogen co-doping. The order of photocatalytic activity per unit surface area was the same as that of the formation rate of OH(•) unit surface area in the following order: C,N co-doped TiO2 > C-doped TiO2 > N-doped TiO2 > undoped TiO2.

  14. Photo catalytic reduction of benzophenone on TiO2: Effect of preparation method and reaction conditions

    International Nuclear Information System (INIS)

    Albiter E, E.; Valenzuela Z, M. A.; Alfaro H, S.; Flores V, S. O.; Rios B, O.; Gonzalez A, V. J.; Cordova R, I.

    2010-01-01

    The photo catalytic reduction of benzophenone was studied focussing on improving the yield to benzhydrol. TiO 2 was synthesized by means of a hydrothermal technique. TiO 2 (Degussa TiO 2 -P25) was used as a reference. Catalysts were characterized by X-ray diffraction and nitrogen physisorption. The photo catalytic reduction was carried out in a batch reactor at 25 C under nitrogen atmosphere, acetonitrile as solvent and isopropanol as electron donor. A 200 W Xe-Hg lamp (λ= 360 nm) was employed as irradiation source. The chemical composition of the reaction system was determined by HPLC. Structural and textural properties of the synthesized TiO 2 depended on the type of acid used during sol formation step. Using HCl, a higher specific surface area and narrower pore size distribution of TiO 2 was obtained in comparison with acetic acid. As expected, the photochemical reduction of benzophenone yielded benzopinacol as main product, whereas, benzhydrol is only produced in presence of TiO 2 (i.e. photo catalytic route). In general, the hydrothermally synthesized catalysts were less active and with a lower yield to benzhydrol. The optimal reaction conditions to highest values of benzhydrol yield (70-80%) were found at 2 g/L (catalyst loading) and 0.5 m M of initial concentration of benzophenone, using commercial TiO 2 -P25. (Author)

  15. Synthesis of mesoporous TiO2 in aqueous alcoholic medium and evaluation of its photocatalytic activity

    International Nuclear Information System (INIS)

    Kumaresan, L.; Prabhu, A.; Palanichamy, M.; Murugesan, V.

    2011-01-01

    Research highlights: → Mesoporous TiO 2 synthesized using P123 as soft template in sol-gel method. → Nanoparticle aggregates are better for photocatalytic activity than free nanoparticles. → Particle to particle transport of electrons in the conduction band of aggregates are important factor. - Abstract: Mesoporous TiO 2 was synthesized using triblock copolymer as the structure directing template in ethanol/water, isopropanol/water or 1-butanol/water medium by sol-gel method. The presence of intense peak at low angle in the XRD patterns confirmed the orderly arrangement of mesopores in the material. Among the three different alcohols, ethanol had influenced better in controlling the particle size than others. The enhanced specific surface area also revealed the formation of mesopores. Aggregates of particles were clearly seen in the TEM images and the size of the particles was approximately 10 nm. The photocatalytic activity of mesoporous TiO 2 was evaluated using aqueous alachlor as a model pollutant. The activity of mesoporous TiO 2 synthesized in ethanol/water mole ratio of 50 was higher than other mesoporous TiO 2 and commercial TiO 2 (Degussa P-25). The transport of excited electrons from one particle to its neighboring nanoparticles of mesoporous TiO 2 is suggested to be the cause for enhanced photocatalytic activity.

  16. Hydrothermal synthesis, characterization, photocatalytic activity and dye-sensitized solar cell performance of mesoporous anatase TiO2 nanopowders

    International Nuclear Information System (INIS)

    Pavasupree, Sorapong; Jitputti, Jaturong; Ngamsinlapasathian, Supachai; Yoshikawa, Susumu

    2008-01-01

    Mesoporous anatase TiO 2 nanopowder was synthesized by hydrothermal method at 130 deg. C for 12 h. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected-area electron diffraction (SAED), HRTEM, and Brunauer-Emmett-Teller (BET) surface area. The as-synthesized sample with narrow pore size distribution had average pore diameter about 3-4 nm. The specific BET surface area of the as-synthesized sample was about 193 m 2 /g. Mesoporous anatase TiO 2 nanopowders (prepared by this study) showed higher photocatalytic activity than the nanorods TiO 2 , nanofibers TiO 2 mesoporous TiO 2 , and commercial TiO 2 nanoparticles (P-25, JRC-01, and JRC-03). The solar energy conversion efficiency (η) of the cell using the mesoporous anatase TiO 2 was about 6.30% with the short-circuit current density (Jsc) of 13.28 mA/cm 2 , the open-circuit voltage (Voc) of 0.702 V and the fill factor (ff) of 0.676; while η of the cell using P-25 reached 5.82% with Jsc of 12.74 mA/cm 2 , Voc of 0.704 V and ff of 0.649

  17. Study on The Application of Composed TiO2-diatomite in The Removal of Phenol in Water

    Science.gov (United States)

    Liu, S.; Li, J.

    2017-10-01

    As an environmentally friendly pollution control technology, TiO2 photocatalytic technology has a broad prospect in the field of environmental protection. In this paper, composed nano-TiO2-diatomite were prepared by depositing TiO2 nanoparticles on the surface of diatomite microparticles. The nano-TiO2/diatomite composed photocatalyst is used to remove phenol in water in a specific designed reaction box under 4 different operation factors such as different reaction time, different pollutant concentration, different UV light powers and different amount of catalytic powder. The experimental results indicate that the phenol removal percentages are influenced by the reaction time most significantly, the second is the phenol concentration, the next one is the photocatalyst amount and the UV light powers’ effect is quite limited. Tthe degradation of phenol typically slows down at the reaction time about 30 or 60 minutes. Besides that, the phenol removal kinetic removal rates were also investigated.

  18. The effects of solvent on photocatalytic properties of Bi2WO6/TiO2 heterojunction under visible light irradiation

    Science.gov (United States)

    Guo, Qiyao; Huang, Yunfang; Xu, Hui; Luo, Dan; Huang, Feiyue; Gu, Lin; Wei, Yuelin; Zhao, Huang; Fan, Leqing; Wu, Jihuai

    2018-04-01

    Bi2WO6/TiO2 heterojunction photocatalysts with two different microstructures were controllably fabricated via a facile two-step synthetic route. XRD, XPS, SEM, TEM, BET-surface, DRS, PL spectra, photoelectrochemical measurement (Mott-Schottky), and zeta-potential analyzer were employed to clarify structural and morphological characteristics of the obtained products. The results showed that Bi2WO6 nanoparticles/nanosheets grew on the primary TiO2 nanorods. The TiO2 nanorods used as a synthetic template inhibit the growth of Bi2WO6 crystals along the c-axis, resulting in Bi2WO6/TiO2 heterostructure with one-dimensional (1D) morphology. The photocatalytic properties of Bi2WO6/TiO2 heterojunction photocatalysts were strongly dependent on their shapes and structures. Compared with bare Bi2WO6 and TiO2, Bi2WO6/TiO2 composite have stronger adsorption ability and better visible light photocatalytic activities towards organic dyes. The Bi2WO6/TiO2 composite prepared in EG solvent with optimal Bi:Ti ratio of 2:12 (S-TB2) showed the highest photocatalytic activity, which could totally decompose Rhodamine B within 10 min upon irradiation with visible light (λ > 422 nm), and retained the high photocatalytic performance after five recycles, confirming its stability and practical usability. The results of PL indicated that Bi2WO6 and TiO2 could combine well to form a heterojunction structure which facilitated electron-hole separation, and lead to the increasing photocatalytic activity.

  19. In Situ FTIR Spectroscopy Study of the Photodegradation of Acetaldehyde and azo Dye Photobleaching on Bismuth-Modified TiO2

    Czech Academy of Sciences Publication Activity Database

    Henych, Jiří; Štengl, Václav; Mattsson, A.; Österlund, L.

    2015-01-01

    Roč. 91, č. 1 (2015), s. 48-58 ISSN 0031-8655 Institutional support: RVO:61388980 Keywords : TITANIUM-DIOXIDE PHOTOCATALYSTS * RAY PHOTOELECTRON-SPECTROSCOPY * DOPED TIO2 * SURFACE * ADSORPTION Subject RIV: CA - Inorganic Chemistry Impact factor: 2.008, year: 2015

  20. Surface Plasmon Enhanced Photocatalysis of Au/Pt-decorated TiO2 Nanopillar Arrays

    Science.gov (United States)

    Shuang, Shuang; Lv, Ruitao; Xie, Zheng; Zhang, Zhengjun

    2016-05-01

    The low quantum yields and lack of visible light utilization hinder the practical application of TiO2 in high-performance photocatalysis. Herein, we present a design of TiO2 nanopillar arrays (NPAs) decorated with both Au and Pt nanoparticles (NPs) directly synthesized through successive ion layer adsorption and reaction (SILAR) at room temperature. Au/Pt NPs with sizes of ~4 nm are well-dispersed on the TiO2 NPAs as evidenced by electron microscopic analyses. The present design of Au/Pt co-decoration on the TiO2 NPAs shows much higher visible and ultraviolet (UV) light absorption response, which leads to remarkably enhanced photocatalytic activities on both the dye degradation and photoelectrochemical (PEC) performance. Its photocatalytic reaction efficiency is 21 and 13 times higher than that of pure TiO2 sample under UV-vis and visible light, respectively. This great enhancement can be attributed to the synergy of electron-sink function of Pt and surface plasmon resonance (SPR) of Au NPs, which significantly improves charge separation of photoexcited TiO2. Our studies demonstrate that through rational design of composite nanostructures one can harvest visible light through the SPR effect to enhance the photocatalytic activities initiated by UV-light, and thus realize more effectively utilization of the whole solar spectrum for energy conversion.

  1. Improved Visible Light Photocatalytic Activity for TiO2 Nanomaterials by Codoping with Zinc and Sulfur

    Directory of Open Access Journals (Sweden)

    Qianzhi Xu

    2015-01-01

    Full Text Available S/Zn codoped TiO2 nanomaterials were synthesized by a sol-gel method. X-ray diffraction, UV-vis diffuse reflectance spectroscopy, transmission electron microscopy, photoluminescence spectroscopy, and X-ray photoelectron spectroscopy were used to characterize the morphology, structure, and optical properties of the prepared samples. The introduction of Zn and S resulted in significant red shift of absorption edge for TiO2-based nanomaterials. The photocatalytic activity was evaluated by degrading reactive brilliant red X-3B solution under simulated sunlight irradiation. The results showed S/Zn codoped TiO2 exhibited higher photocatalytic activity than pure TiO2 and commercial P25, due to the photosynergistic effect of obvious visible light absorption, efficient separation of photoinduced charge carriers, and large surface area. Moreover, the content of Zn and S in the composites played important roles in photocatalytic activity of TiO2-based nanomaterials.

  2. A Facile Approach to Prepare Black TiO2 with Oxygen Vacancy for Enhancing Photocatalytic Activity

    Science.gov (United States)

    Chen, Shihao; Xiao, Yang; Hu, Zhengfa; Zhao, Hui; Xie, Wei

    2018-01-01

    Black TiO2 has triggered worldwide research interest due to its excellent photocatalytic properties. However, the understanding of its structure–property relationships and a more effective, facile and versatile method to produce it remain great challenges. We have developed a facile approach to synthesize black TiO2 nanoparticles with significantly improved light absorption in the visible and infrared regions. The experimental results show that oxygen vacancies are the major factors responsible for black coloration. More importantly, our black TiO2 nanoparticles have no Ti3+ ions. These oxygen vacancies could introduce localized states in the bandgap and act as trap centers, significantly decreasing the electron–hole recombination. The photocatalytic decomposition of both rhodamine B and methylene blue demonstrated that, under ultraviolet light irradiation, better photocatalytic performance is achieved with our black TiO2 nanoparticles than with commercial TiO2 nanoparticles. PMID:29659500

  3. Synthesis, Structural and Optical Properties of Co Doped TiO2 Nanocrystals by Sol-Gel Method

    Directory of Open Access Journals (Sweden)

    D.V. Sridevi

    2017-06-01

    Full Text Available A TiO2 nanoparticle doped with cobalt was synthesized by sol-gel technique employed at room temperature with appropriate reactants. In the present case, we used titanium tetra isoprotoxide (TTIP and 2–propanol as a common starting material and the obtained products were calcined at 450˚ C. From the Powder XRD data the particle size was calculated by Scherrer method. The FE-SEM analysis shows the morphology of cobalt doped TiO2 nanoparticles. The various functional groups of the samples were identified by Fourier transform spectroscopy (FT-IR. The UV-Vis-NIR spectra of cobalt doped TiO2 material shows two absorption peaks in the visible region related to d-d transitions of Co2+ in TiO2 lattice. Compared to un-doped TiO2 nanoparticles, the cobalt doped material show a red shift in the band gap.

  4. Low-temperature preparation and microwave photocatalytic activity study of TiO2-mounted activated carbon

    International Nuclear Information System (INIS)

    Liu Yazi; Yang Shaogui; Hong Jun; Sun Cheng

    2007-01-01

    TiO 2 thin films were deposited on granular activated carbon by a dip-coating method at low temperature (373 K), using microwave radiation to enhance the crystallization of titania nanoparticles. Uniform and continuous anatase titania films were deposited on the surface of activated carbon. BET surface area of TiO 2 -mounted activated carbon (TiO 2 /AC) decreased a little in comparison with activated carbon. TiO 2 /AC possessed strong optical absorption capacity with a band gap absorption edge around 360 nm. The photocatalytic activity did not increase when the as-synthesized TiO 2 /AC was thermally treated, but was much higher than commercial P-25 in degradation of phenol by irradiation of electrodeless discharge lamps (EDLs)

  5. Room-temperature synthesis of TiO 2 nanospheres and their solar driven photoelectrochemical hydrogen production

    KAUST Repository

    Avasare, Vidya

    2015-08-13

    Highly monodisperse and crystalline anatase phase TiO2 nanospheres have been synthesized at room temperature from organometallic precursor, titanocene dichloride and sodium azide. The photoelectrochemical (PEC) water splitting performance on the TiO2 nanospheres was studied under illumination of AM 1.5G. The optimized photocurrent density and photoconversion efficiency of TiO2 NSPs were observed ~0.95mAcm-2 at 1.23V and 0.69%, respectively. The transient photocurrent response measurements on the TiO2 NSPs during repeated ON/OFF visible light illumination cycles at 1.23V vs RHE show that both samples exhibited fast and reproducible photocurrent responses. The TiO2 NSPs show excellent catalytic stability, and significant dark current was not observed even at high potentials (2.0V vs RHE). © 2015 John Wiley & Sons, Ltd.

  6. Facile fabrication of p-n heterojunctions for Cu2O submicroparticles deposited on anatase TiO2 nanobelts

    International Nuclear Information System (INIS)

    Li, Li; Lei, Jingguo; Ji, Tianhao

    2011-01-01

    Graphical abstract: Cu 2 O particle-deposited TiO 2 nanobelts with p-n semiconductor heterojunction structure were successfully prepared via two-step preparation process, and their visible-light photodegradation activities of Rhodamine B were investigated in detail. Highlights: → Cu 2 O particle-deposited TiO 2 nanobelts mainly with diameters in a range of 200-400 nm were successfully prepared. → The amount of Cu 2 O particles deposited on TiO 2 nanobelts can be tuned. → The composite structure with Cu 2 O particles and TiO 2 nanobelts exhibits p-n semiconductor heterojunction performance. → Photocatalytic properties of such composites. -- Abstract: In this paper, Cu 2 O particle-deposited TiO 2 nanobelts with p-n semiconductor heterojunction structure were successfully prepared via a two-step preparation process to investigate electron-transfer performance between p-type Cu 2 O and n-type TiO 2 . Various measurement results confirm that the amount of pure Cu 2 O submicroparticles, with diameters within the range of 200-400 nm and deposited on the surface of TiO 2 nanobelts, can be controlled, and that the purity of Cu 2 O is heavily affected by reaction time. Visible-light photodegradation activities of Rhodamine B show that photocatalysts have little or no photocatalytic activities mainly due to their p-n heterojunction structure, indicating that there hardly appears any electron-transfer from Cu 2 O to TiO 2 .

  7. Improved visible-light photocatalytic activity of TiO2 co-doped with copper and iodine

    Science.gov (United States)

    Dorraj, Masoumeh; Goh, Boon Tong; Sairi, Nor Asrina; Woi, Pei Meng; Basirun, Wan Jefrey

    2018-05-01

    Cu-I-co-doped TiO2 photocatalysts active to visible light absorption were prepared by hydrothermal method and calcined at various temperatures (350 °C, 450 °C, and 550 °C). The co-doped powders at 350 °C displayed the highest experimental Brunauer-Emmett-Teller surface area and lowest photoluminescence intensity, which demonstrated that a decrease in electron-hole recombination process. The synthesis of co-doped TiO2 was performed at this optimized temperature. In the co-doped sample, the Cu2+ doped TiO2 lattice created a major "red-shift" in the absorption edge due to the presence of the 3d Cu states, whereas the amount of red-shift from the I5+ doping in the TiO2 lattice was minor. Interestingly, the presence of Cu2+ species also boosted the reduction of I5+ ions to the lower multi-valance state I- in the TiO2 lattice by trapping the photogenerated electrons, which resulted in effective separation of the photogenerated charges. The Cu-I-co-doped TiO2 was able to degrade methyl orange dye under visible-light irradiation with improved photocatalytic activity compared with the single metal-doped TiO2 and pure TiO2 because of the strong visible light absorption and effective separation of photogenerated charges caused by the synergistic effects of Cu and I co-dopants.

  8. TiO2-Based Nanomaterials for Gas Sensing-Influence of Anatase and Rutile Contributions.

    Science.gov (United States)

    Zakrzewska, K; Radecka, M

    2017-12-01

    The paper deals with application of three nanomaterial systems: undoped TiO 2 , chromium-doped TiO 2 :Cr and TiO 2 -SnO 2 synthesized by flame spray synthesis (FSS) technique for hydrogen sensing. The emphasis is put on the role of anatase and rutile polymorphic forms of TiO 2 in enhancing sensitivity towards reducing gases. Anatase-to-rutile transformation is achieved by annealing of undoped TiO 2 in air at 700 °C, specific Cr doping and modification with SnO 2 . Undoped TiO 2 and TiO 2 -SnO 2 exhibit n-type behaviour and while TiO 2 : 5 at.% Cr is a p-type semiconductor. X-ray diffraction (XRD) has been applied to determine anatase-to-rutile weight ratio as well as anatase and rutile crystal size. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) have been used to characterize the structure and morphological parameters. Optical reflectometry enabled to find and compare the band gaps E g of anatase and rutile predominated compositions. Electrical properties, i.e. the electrical conductivity and values of constant phase element (CPE), have been established on the basis of impedance spectroscopy. Dynamic responses of the electrical resistance as a function of hydrogen concentration revealed that predominance of rutile in anatase/rutile mixture is beneficial for gas sensing. Partial transformation to rutile in all three material systems under study resulted in an increased sensitivity towards hydrogen. It is proposed that this effect can be explained in a similar way as in photocatalysis, i.e. by specific band alignment and electron transfer from rutile to anatase to facilitate oxygen preadsorption on the surface of anatase grains.

  9. CdS-sensitized TiO2 nanocorals: hydrothermal synthesis, characterization, application.

    Science.gov (United States)

    Mali, S S; Desai, S K; Dalavi, D S; Betty, C A; Bhosale, P N; Patil, P S

    2011-10-01

    Cadmium sulfide (CdS) nanoparticle-sensitized titanium oxide nanocorals (TNC) were synthesized using a two-step deposition process. The TiO(2) nanocorals were grown on the conducting glass substrates (FTO) using A hydrothermal process and CdS nanoparticles were loaded on TNC using successive ionic layer adsorption and reaction (SILAR) method. The TiO(2), CdS and TiO(2)-CdS samples were characterized by optical absorption, X-ray diffraction (XRD), FT-Raman, FT-IR, scanning electron microscopy (SEM) and contact angle. Further, their photoelectrochemical (PEC) performance was tested in NaOH, Na(2)S-NaOH-S and Na(2)S electrolytes, respectively. When CdS nanoparticles are coated on TNCs, the optical absorption is found to be enhanced and band edge is red-shifted towards visible region. The TiO(2)-CdS sample exhibits improved photoelectrochemical (PEC) performance with maximum short circuit current of (J(sc)) 1.04 mA cm(-2). After applying these TiO(2)-CdS electrodes in photovoltaic cells, the photocurrent was found to be enhanced by 2.7 and 32.5 times, as compared with those of bare CdS and TiO(2) nanocorals films electrodes respectively. Also, the power conversion efficiency of TiO(2)-CdS electrodes is 0.72%, which is enhanced by about 16 and 29 times for TiO(2), CdS samples. This journal is © The Royal Society of Chemistry and Owner Societies 2011

  10. TiO2/Pt/TiO2 Sandwich Nanostructures: Towards Alcohol Sensing and UV Irradiation-Assisted Recovery

    Directory of Open Access Journals (Sweden)

    Rungroj Maolanon

    2017-01-01

    Full Text Available The TiO2/Pt/TiO2 sandwich nanostructures were synthesized by RF magnetron sputtering and demonstrated as an alcohol sensor at room-temperature operation with a fast recovery by UV irradiation. The TiO2/Pt/TiO2 layers on SiO2/Si substrate were confirmed by Auger electron spectroscopy with the interdiffusion of each layer. The TiO2/Pt/TiO2 layers on printed circuit board show the superior sensor response to alcohol in terms of the sensitivity and stability compared to the nonsandwich structure, that is, the only Pt layer or the TiO2/Pt structures. Moreover, the recovery time of the TiO2/Pt/TiO2 was improved by UV irradiation-assisted recovery. The optimum TiO2/Pt/TiO2 with thicknesses of the undermost TiO2 layer, a Pt layer, and the topmost TiO2 layer being 50 nm, 6 nm, and 5 nm, respectively, showed the highest response to ethanol down to 10 ppm. Additionally, TiO2/Pt/TiO2 shows an excellent sensing stability and exhibits different sensing selectivity among ethanol, methanol, and 2-propanol. The sensing mechanism could be attributed to the change of Pt work function during vapor adsorption. The TiO2 layer plays an important role in UV-assisted recovery by photocatalytic activity and the topmost TiO2 acts as protective layer for Pt.

  11. PHOTOCATALYTIC DECOMPOSITION OF GASEOUS TOLUENE BY TIO2 NANOPARTICLES COATED ON ACTIVATED CARBON

    Directory of Open Access Journals (Sweden)

    A. Rezaee ، Gh. H. Pourtaghi ، A. Khavanin ، R. Sarraf Mamoory ، M. T. Ghaneian ، H. Godini

    2008-10-01

    Full Text Available Volatile organic compounds are considered as a group of major environmental pollutants and toluene is recognized as one of the representatives. In this research, the photocatalytic activity for toluene removal was studied over TiO2 nanoparticles embeded on activated carbon. Laboratory-scale experiments were conducted in a fixed-bed reactor equipped with 4 w and 8 w UV lamps (peak wavelength at 365 nm to determine the oxidation rates of toluene. The photocatalyst was extensively characterized by means of X- ray diffraction and scan electronmicroscopy. Experiments were conducted under general laboratory temperature (25ºC±2 while the irradiation was provided by the UV lamps. The dependence of the reaction rate on light intensity as well as the deactivation of the catalyst were determined. The results indicated that the rate of the photocatalytic process increased with increasing the intensity of UV irradiation. Using the UV-A lamps, the decomposition rate of toluene was 98%. The stabilized photocatalyst presented remarkable stability (no deactivation and excellent repeatability. The catalyst could be regenerated by UV irradiation in the absence of gas phase. The control experiments confirmed that the photocatalytic effects of toluene onto the TiO2/activated carbon catalysts in the dark conditions were negligible. Reproducibility tests proved that the photocatalytic activity of the photocatalyst remains intact even after several experiments of new added toluene quantities. The study demonstrated that the TiO2/activated carbon catalyst may be a practical and promising way to degrade the toluene under ultraviolet irradiation.

  12. A Simple Method for the Preparation of TiO2 /Ag-AgCl@Polypyrrole Composite and Its Enhanced Visible-Light Photocatalytic Activity.

    Science.gov (United States)

    Yao, Tongjie; Shi, Lei; Wang, Hao; Wang, Fangxiao; Wu, Jie; Zhang, Xiao; Sun, Jianmin; Cui, Tieyu

    2016-01-01

    A novel and facile method was developed to prepare a visible-light driven TiO2 /Ag-AgCl@polypyrrole (PPy) photocatalyst with Ag-AgCl nanoparticles supported on TiO2 nanofibers and covered by a thin PPy shell. During the synthesis, the PPy shell and Ag-AgCl nanoparticles were prepared simultaneously onto TiO2 nanofibers, which simplified the preparation procedure. In addition, because Ag-AgCl aggregates were fabricated via partly etching the Ag nanoparticles, their size was well controlled at the nanoscale, which was beneficial for improvement of the contact surface area. Compared with reference photocatalysts, the TiO2 /Ag-AgCl@PPy composite exhibited an enhanced photodegradation activity towards rhodamine B under visible-light irradiation. The superior photocatalytic property originated from synergistic effects between TiO2 nanofibers, Ag-AgCl nanoparticles and the PPy shell. Furthermore, the TiO2 /Ag-AgCl@PPy composite could be easily separated and recycled without obvious reduction in activity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Ag-Coated Heterostructures of ZnO-TiO2/Delaminated Montmorillonite as Solar Photocatalysts

    Directory of Open Access Journals (Sweden)

    Carolina Belver

    2017-08-01

    Full Text Available Heterostructures based on ZnO-TiO2/delaminated montmorillonite coated with Ag have been prepared by sol–gel and photoreduction procedures, varying the Ag and ZnO contents. They have been thoroughly characterized by XRD, WDXRF, UV–Vis, and XPS spectroscopies, and N2 adsorption, SEM, and TEM. In all cases, the montmorillonite was effectively delaminated with the formation of TiO2 anatase particles anchored on the clay layer’s surface, yielding porous materials with high surface areas. The structural and textural properties of the heterostructures synthesized were unaffected by the ZnO incorporated. The photoreduction led to solids with Ag nanoparticles decorating the surface. These materials were tested as photocatalysts for the degradation of several emerging contaminants with different nitrogen-bearing chemical structures under solar light. The catalysts yielded high rates of disappearance of the starting pollutants and showed quite stable performance upon successive applications.

  14. Solvothermal synthesis and high optical performance of three-dimensional sea-urchin-like TiO2

    International Nuclear Information System (INIS)

    Zhou, Yi; Wang, Yutang; Li, Mengyao; Li, Xuzhi; Yi, Qin; Deng, Pan; Wu, Hongyan

    2015-01-01

    Graphical abstract: I–V characteristics of different TiO 2 microspheres based DSSCs (a) 3D sphere-like, (b) 3D flower-like, (c) 3D sea-urchin-like. - Highlights: • 3D sea-urchin-like TiO 2 was synthesized by solvothermal method. • The effects of preparation parameters on the microstructure of the microspheres were investigated. • The photoelectric properties of 3D sea-urchin-like TiO 2 were studied upon DSSCs. • The PCE of the 3D sea-urchin-like TiO 2 was higher than that of other morphologies. - Abstract: Three-dimensional (3D) sea-urchin-like TiO 2 microspheres were successfully synthesised by solvothermal method. The effects of preparation parameters including reaction temperature, concentration and mass fraction of precursor, and solvent volume on the microstructure of the microspheres were investigated. Results of scanning electron microscopy showed that the preparation parameters played a critical role in the morphology of 3D sea-urchin-like TiO 2 . In addition, when the sea-urchin-like TiO 2 nanostructures were used as the dye-sensitized solar cells (DSSCs) anode, the power-conversion efficiency was higher than that of other morphologies, which was due to the special 3D hierarchical nanostructure, large specific surface area, and enhanced absorption of UV–vis of the TiO 2 nanostructures

  15. Photocathodic Protection of 304 Stainless Steel by Bi2S3/TiO2 Nanotube Films Under Visible Light.

    Science.gov (United States)

    Li, Hong; Wang, Xiutong; Wei, Qinyi; Hou, Baorong

    2017-12-01

    We report the preparation of TiO 2 nanotubes coupled with a narrow bandgap semiconductor, i.e., Bi 2 S 3 , to improve the photocathodic protection property of TiO 2 for metals under visible light. Bi 2 S 3 /TiO 2 nanotube films were successfully synthesized using the successive ionic layer adsorption and reaction (SILAR) method. The morphology and structure of the composite films were studied by scanning electron microscopy and X-ray diffraction, respectively. UV-visible diffuse reflectance spectra were recorded to analyze the optical absorption property of the composite films. In addition, the influence of Bi 2 S 3 deposition cycles on the photoelectrochemical and photocathodic protection properties of the composite films was also studied. Results revealed that the heterostructure comprised crystalline anatase TiO 2 and orthorhombic Bi 2 S 3 and exhibited a high visible light response. The photocurrent density of Bi 2 S 3 /TiO 2 was significantly higher than that of pure TiO 2 under visible light. The sensitization of Bi 2 S 3 enhanced the separation efficiency of the photogenerated charges and photocathodic protection properties of TiO 2 . The Bi 2 S 3 /TiO 2 nanotubes prepared by SILAR deposition with 20 cycles exhibited the optimal photogenerated cathodic protection performance on the 304 stainless steel under visible light.

  16. Quantum dot sensitized solar cell based on TiO2/CdS/Ag2S heterostructure

    Science.gov (United States)

    Pawar, Sachin A.; Patil, Dipali S.; Kim, Jin Hyeok; Patil, Pramod S.; Shin, Jae Cheol

    2017-04-01

    Quantum dot sensitized solar cell (QDSSC) is fabricated based on a stepwise band structure of TiO2/CdS/Ag2S to improve the photoconversion efficiency of TiO2/CdS system by incorporating a low band gap Ag2S QDs. Vertically aligned TiO2 nanorods assembly is prepared by a simple hydrothermal technique. The formation of CdS and Ag2S QDs over TiO2 nanorods assembly as a photoanode is carried out by successive ionic layer adsorption and reaction (SILAR) technique. The synthesized electrode materials are characterized by XRD, XPS, field emission scanning electron microscopy (FE-SEM), Optical, solar cell and electrochemical performances. The results designate that the QDs of CdS and Ag2S have efficiently covered exterior surfaces of TiO2 nanorods assembly. A cautious evaluation between TiO2/CdS and TiO2/CdS/Ag2S sensitized cells tells that CdS and Ag2S synergetically helps to enhance the light harvesting ability. Under AM 1.5G illumination, the photoanodes show an improved power conversion efficiency of 1.87%, in an aqueous polysulfide electrolyte with short-circuit photocurrent density of 7.03 mA cm-2 which is four fold higher than that of a TiO2/CdS system.

  17. Photocathodic Protection of 304 Stainless Steel by Bi2S3/TiO2 Nanotube Films Under Visible Light

    Science.gov (United States)

    Li, Hong; Wang, Xiutong; Wei, Qinyi; Hou, Baorong

    2017-01-01

    We report the preparation of TiO2 nanotubes coupled with a narrow bandgap semiconductor, i.e., Bi2S3, to improve the photocathodic protection property of TiO2 for metals under visible light. Bi2S3/TiO2 nanotube films were successfully synthesized using the successive ionic layer adsorption and reaction (SILAR) method. The morphology and structure of the composite films were studied by scanning electron microscopy and X-ray diffraction, respectively. UV-visible diffuse reflectance spectra were recorded to analyze the optical absorption property of the composite films. In addition, the influence of Bi2S3 deposition cycles on the photoelectrochemical and photocathodic protection properties of the composite films was also studied. Results revealed that the heterostructure comprised crystalline anatase TiO2 and orthorhombic Bi2S3 and exhibited a high visible light response. The photocurrent density of Bi2S3/TiO2 was significantly higher than that of pure TiO2 under visible light. The sensitization of Bi2S3 enhanced the separation efficiency of the photogenerated charges and photocathodic protection properties of TiO2. The Bi2S3/TiO2 nanotubes prepared by SILAR deposition with 20 cycles exhibited the optimal photogenerated cathodic protection performance on the 304 stainless steel under visible light.

  18. TiO2-Impregnated Porous Silica Tube and Its Application for Compact Air- and Water-Purification Units

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Ochiai

    2015-09-01

    Full Text Available A simple, convenient, reusable, and inexpensive air- and water-purification unit including a one-end sealed porous amorphous-silica (a-silica tube coated with TiO2 photocatalyst layers has been developed. The porous a-silica layers were formed through outside vapor deposition (OVD. TiO2 photocatalyst layers were formed through impregnation and calcination onto a-silica layers. The resulting porous TiO2-impregnated a-silica tubes were evaluated for air-purification capacity using an acetaldehyde gas decomposition test. The tube (8.5 mm e.d. × 150 mm demonstrated a 93% removal rate for high concentrations (ca. 300 ppm of acetaldehyde gas at a single-pass condition with a 250 mL/min flow rate under UV irradiation. The tube also demonstrated a water purification capacity at a rate 2.0 times higher than a-silica tube without TiO2 impregnation. Therefore, the tubes have a great potential for developing compact and in-line VOC removal and water-purification units.

  19. Application of carbon-coated TiO2 for decomposition of methylene blue in a photocatalytic membrane reactor

    International Nuclear Information System (INIS)

    Mozia, Sylwia; Toyoda, Masahiro; Inagaki, Michio; Tryba, Beata; Morawski, Antoni W.

    2007-01-01

    An application of carbon-coated TiO 2 for decomposition of methylene blue (MB) in a photocatalytic membrane reactor (PMR), coupling photocatalysis and direct contact membrane distillation (DCMD) was investigated. Moreover, photodegradation of a model pollutant in a batch reactor without membrane distillation (MD) was also examined. Carbon-modified TiO 2 catalysts containing different amount of carbon and commercially available TiO 2 (ST-01) were used in this study. The carbon-coated catalyst prepared from a mixture of ST-01 and polyvinyl alcohol in the mass ratio of 70/30 was the most effective in degradation of MB from all of the photocatalysts applied. Photodecomposition of MB on the recovered photocatalysts was lower than on the fresh ones. The photodegradation of MB in the PMR was slower than in the batch reactor, what probably resulted from shorter time of exposure of the catalyst particles to UV irradiation. The MD process could be successfully applied for separation of photocatalyst and by-products from the feed solution

  20. Compact light-emitting diode optical fiber immobilized TiO2 reactor for photocatalytic water treatment.

    Science.gov (United States)

    O'Neal Tugaoen, Heather; Garcia-Segura, Sergi; Hristovski, Kiril; Westerhoff, Paul

    2018-02-01

    A key barrier to implementing photocatalysis is delivering light to photocatalysts that are in contact with aqueous pollutants. Slurry photocatalyst systems suffer from poor light penetration and require post-treatment to separate the catalyst. The alternative is to deposit photocatalysts on fixed films and deliver light onto the surface or the backside of the attached catalysts. In this study, TiO 2 -coated quartz optical fibers were coupled to light emitting diodes (OF/LED) to improve in situ light delivery. Design factors and mechanisms studied for OF/LEDs in a flow-through reactor included: (i) the influence of number of LED sources coupled to fibers and (ii) the use of multiple optical fibers bundled to a single LED. The light delivery mechanism from the optical fibers into the TiO 2 coatings is thoroughly discussed. To demonstrate influence of design variables, experiments were conducted in the reactor using the chlorinated pollutant para-chlorobenzoic acid (pCBA). From the degradation kinetics of pCBA, the quantum efficiencies (Φ) of oxidation and electrical energies per order (E EO ) were determined. The use of TiO 2 coated optical fiber bundles reduced the energy requirements to deliver photons and increased available surface area, which improved Φ and enhanced oxidative pollutant removal performance (E EO ). Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Eosin-Y sensitized core-shell TiO2-ZnO nano-structured photoanodes for dye-sensitized solar cell applications.

    Science.gov (United States)

    Manikandan, V S; Palai, Akshaya K; Mohanty, Smita; Nayak, Sanjay K

    2018-06-01

    In the current investigation, TiO 2 and TiO 2 -ZnO (core-shell) spherical nanoparticles were synthesized by simple combined hydrolysis and refluxing method. A TiO 2 core nanomaterial on the shell material of ZnO was synthesized by utilizing variable ratios of ZnO. The structural characterization of TiO 2 -ZnO core/shell nanoparticles were done by XRD analysis. The spherical structured morphology of the TiO 2 -ZnO has been confirmed through field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) studies. The UV-visible spectra of TiO 2 -ZnO nanostructures were also compared with the pristine TiO 2 to investigate the shift of wavelength. The TiO 2 -ZnO core/shell nanoparticles at the interface efficiently collect the photogenarated electrons from ZnO and also ZnO act a barrier for reduced charge recombination of electrolyte and dye-nanoparticles interface. This combination improved the light absorption which induced the charge transfer ability and dye loading capacity of core-shell nanoparticles. An enhancement in the short circuit current (J sc ) from 1.67 mA/cm 2 to 2.1 mA/cm 2 has been observed for TiO 2 -ZnObased photoanode (with platinum free counter electrode), promises an improvement in the energy conversion efficiency by 57% in comparison with that of the DSSCs based on the pristine TiO 2 . Henceforth, TiO 2 -ZnO photoelectrode in ZnO will effectively act as barrier at the interface of TiO 2 -ZnO and TiO 2 , ensuring the potential for DSSC application. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. TiO2/EVOH based reactive interlayer in Surlyn for organic device encapsulation

    International Nuclear Information System (INIS)

    Kopanati, Gayathri N; Madras, Giridhar; Ramamurthy, Praveen C

    2016-01-01

    Barrier materials are important for improving the stability and lifetimes of organic electronic devices. A simple technique for improving the barrier properties of polymer films was considered in this work by using TiO 2 nanoparticles in the interlayer to be incorporated in the polymer film. TiO 2 was synthesized by the solution combustion technique, was further functionalized using stearic acid or octadecylamine to induce hydrophobicity and enhance processing of the composite interlayer. The grafting of these compounds on to TiO 2 was investigated using Fourier transform infrared spectroscopy, Raman spectroscopy, elemental analysis and thermo-gravimetric analysis. The functionalized and neat TiO 2 were blended with poly (vinyl alcohol-ethylene) (EVOH) and were melt compressed between Surlyn films. The resulting nanocomposite films were tested for their transparency and barrier properties using UV–visible spectroscopy and calcium degradation test, respectively. Further, the effectiveness of these barrier films in encapsulating organic devices was determined from accelerated aging tests. Therefore, the synthesized barrier films with neat and functionalized TiO 2 in the interlayers proved to be effective as moisture barrier composite films. (paper)

  3. Iron promotion of the TiO2 photosensitization process towards the photocatalytic oxidation of azo dyes under solar-simulated light irradiation

    International Nuclear Information System (INIS)

    Castro, Camilo A.; Centeno, Aristobulo; Giraldo, Sonia A.

    2011-01-01

    Highlights: → Azo dye photooxidation occurs under strict combination of ultraviolet and visible irradiation of Fe-TiO 2 . → Fe 3+ enhances the TiO 2 photooxidation of azo dyes while decreases that of phenol. → UV irradiation leads to a decrease in photooxidation activity of Fe-TiO 2 photocatalysts. - Abstract: The photocatalytic oxidation of the azo dye Orange-II (Or-II) using Fe loaded TiO 2 (Fe-TiO 2 ) was studied under ultraviolet (UV), visible (vis) and simultaneous UV-vis irradiations using a solar light simulator. Photocatalysts were characterized by means of XRD, SEM-EDX, FTIR and DRS. Fe 3+ species, identified in XPS analyses, were responsible of the increased absorption of visible light. Moreover, DRS analyses showed a decrease in the bandgap due to Fe 3+ loading. Photocatalystic tests proved that Fe modification enhanced the TiO 2 photocatalytic activity towards Or-II photodegradation under simultaneous UV-vis irradiation. Even so, the performance of the Fe-TiO 2 samples towards the photodegradation of phenol, under UV irradiation, was lower than TiO 2 suggesting the recombination of the UV photogenerated electron-hole pair. Therefore, results evidence a Fe 3+ promotion of the electron caption in the photosensitization process of TiO 2 by Or-II acting as a sensitizer. Such process leads to the Or-II photooxidation under UV-vis irradiation by losing energy in electron transferring processes to sensitize TiO 2 , and, the formation of reactive oxygen species promoted by the injected electron to the TiO 2 conduction band.

  4. Preparation and solar-light photocatalytic activity of TiO2 composites: TiO2/kaolin, TiO2/diatomite, and TiO2/zeolite

    Science.gov (United States)

    Li, Y.; Li, S. G.; Wang, J.; Li, Y.; Ma, C. H.; Zhang, L.

    2014-12-01

    Three TiO2 loaded composites, TiO2/kaolin, TiO2/diatomite, and TiO2/zeolite, were prepared in order to improve the solar-light photocatalytic activity of TiO2. The results showed that the photocatalytic activity could obviously be enhanced by loading appropriate amount of inorganic mineral materials. Meanwhile, TiO2 content, heat-treatment temperature and heat-treatment time on the photocatalytic activity were reviewed. Otherwise, the effect of solar light irradiation time and dye concentration on the photocatalytic degradation of Acid Red B was investigated. Furthermore, the degradation mechanism and adsorption process were also discussed.

  5. Improved Treatment of Photothermal Cancer by Coating TiO2 on Porous Silicon.

    Science.gov (United States)

    Na, Kil Ju; Park, Gye-Choon

    2016-02-01

    In present society, the technology in various field has been sharply developed and advanced. In medical technology, especially, photothermal therapy and photodynamic therapy have had limelight for curing cancers and diseases. The study investigates the photothermal therapy that reduces side effects of existing cancer treatment, is applied to only cancer cells, and dose not harm any other normal cells. The photothermal properties of porous silicon for therapy are analyzed in order to destroy cancer cells that are more weak at heat than normal ones. For improving performance of porous silicon, it also analyzes the properties when irradiating the near infrared by heterologously junction TiO2 and TiO2NW, photocatalysts that are very stable and harmless to the environment and the human body, to porous silicon. Each sample of Si, PSi, TiO2/Psi, and TiO2NW/PSi was irradiated with 808 nm near-IR of 300, 500, and 700 mW/cm2 light intensity, where the maximum heating temperature was 43.8, 61.6, 67.9, and 61.9 degrees C at 300 mW/cm2; 54.1, 64.3, 78.8, and 68.9 degrees C at 500 mW/cm2; and 97.3, 102.8, 102.5, and 95 0C at 700 mW/cm2. The time required to reach the maximum temperature was less than 10 min for every case. The results indicate that TiO2/PSi thin film irradiated with a single near-infrared wavelength of 808 nm, which is known to have the best human permeability, offers the potential of being the most successful photothermal cancer therapy agent. It maximizes the photo-thermal characteristics within the shortest time, and minimizes the adverse effects on the human body.

  6. Self-Assembled TiO2 Nanotube Arrays with U-Shaped Profile by Controlling Anodization Temperature

    Directory of Open Access Journals (Sweden)

    Jingfei Chen

    2010-01-01

    Full Text Available TiO2 nanotube arrays with uniform diameter from top to bottom were fabricated. The synthesizing approach is based on the investigation of the influence of electrolyte temperature on the tube diameter. We found that the inner diameter of the tubes increased with the electrolyte temperature. Accordingly, we improved the tube profile from the general V shape to U shape by raising the electrolyte temperature gradually. This is a simple and fast approach to fabricate uniform TiO2 nanotubes in diameter. The improved TiO2 nanotube arrays may show better properties and have broad potential applications.

  7. Synthesis, Characterization and Properties of CeO2-doped TiO2 Composite Nanocrystals

    Directory of Open Access Journals (Sweden)

    Oman ZUAS

    2013-12-01

    Full Text Available Pure TiO2 and CeO2-doped TiO2 (3 % CeO2-97 %TiO2 composite nanocrystals were synthesized via co-precipitation method and characterized using TGA, XRD, FTIR, DR-UV-vis and TEM. The XRD data revealed that the phase structure of the synthesized samples was mainly in pure anatase having crystallite size in the range of 7 nm – 11 nm. Spherical shapes with moderate aggregation of the crystal particles were observed under the TEM observation. The presence of the CeO2 at TiO2 site has not only affected morphologically but also induced the electronic property of the TiO2 by lowering the band gap energy from 3.29 eV (Eg-Ti to 3.15 eV (Eg-CeTi. Performance evaluation of the synthesized samples showed that both samples have a strong adsorption capacity toward Congo red (CR dye in aqueous solution at room temperature experiment, where  the capacity of the CeTi was higher than the Ti sample. Based on DR-UV data, the synthesized samples obtained in this study may also become promising catalysts for photo-assisted removal of synthetic dye in aqueous solution. DOI: http://dx.doi.org/10.5755/j01.ms.19.4.2732

  8. Study on photocatalysis of TiO2 nanotubes prepared by methanol ...

    Indian Academy of Sciences (India)

    TiO2 nanotubes were synthesized by the solvothermal process at low temperature in a highly alkaline water–methanol mixed solution. Their characteristics were identified by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), specific surface area (BET), Fourier transform infrared spectroscopy (FTIR) ...

  9. The Effect of Calcination Temperature on the Performance of TiO2 Aggregates-based Dye Solar Cells (DSCs)

    International Nuclear Information System (INIS)

    Siti Nur Azella Zaine; Norani Muti Mohamed; Mohamad Azmi Bustam

    2011-01-01

    In this paper, the effect of calcination temperature on the physicochemical properties of synthesized TiO 2 aggregates and their influence on overall light conversion efficiency of dye solar cell (DSc) were investigated. Samples of TiO 2 aggregates (mean size of 0.45 μm) composing of nano crystallites (10-40 nm) were synthesized through hydrolysis of dilute titanium alkoxide in ethanol. Phase and microstructure of the TiO 2 obtained have been characterized using FESEM, XRD and UV-Vis spectroscopy. I-V characterization shows that TiO 2 aggregates based DSC demonstrated better performance compared to nanoparticles (P-25)-based DSC. The optimum calcination temperature was found to be about 500 degree Celsius with efficiency of 4.456 %, which is 30 % increment compared to P-25-based DSC under the same condition. (author)

  10. Glycine assisted synthesis of flower-like TiO 2 hierarchical spheres and its application in photocatalysis

    KAUST Repository

    Tao, Yugui; Xu, Yanqiu; Pan, Jun; Gu, Hao; Qin, Changyun; Zhou, Peng

    2012-01-01

    Flower-like anatase TiO 2 hierarchical spheres assembled by nanosheets were synthesized by glycine assistant via a simple hydrothermal approach and after-annealing process. These flower-like spheres are about 2 μm in diameter with sheet thickness about 20 nm. Results showed reaction time, temperature, solution pH and glycine dosage all played an important role in control of shape and size of the as-synthesized TiO 2 nanocrystals. The photocatalytic activity of this nano-TiO 2 was evaluated by the photocatalytic oxidation decomposition of methyl orange under sunlight illumination in the presence of hydrogen peroxide (H 2O 2). The photocatalytic activity of the obtained TiO 2 was higher than that of commercial TiO 2. © 2012 Elsevier B.V.

  11. Glycine assisted synthesis of flower-like TiO 2 hierarchical spheres and its application in photocatalysis

    KAUST Repository

    Tao, Yugui

    2012-11-01

    Flower-like anatase TiO 2 hierarchical spheres assembled by nanosheets were synthesized by glycine assistant via a simple hydrothermal approach and after-annealing process. These flower-like spheres are about 2 μm in diameter with sheet thickness about 20 nm. Results showed reaction time, temperature, solution pH and glycine dosage all played an important role in control of shape and size of the as-synthesized TiO 2 nanocrystals. The photocatalytic activity of this nano-TiO 2 was evaluated by the photocatalytic oxidation decomposition of methyl orange under sunlight illumination in the presence of hydrogen peroxide (H 2O 2). The photocatalytic activity of the obtained TiO 2 was higher than that of commercial TiO 2. © 2012 Elsevier B.V.

  12. Facile synthesis and enhanced visible light photocatalytic activity of N and Zr co-doped TiO2 nanostructures from nanotubular titanic acid precursors

    Science.gov (United States)

    Zhang, Min; Yu, Xinluan; Lu, Dandan; Yang, Jianjun

    2013-12-01

    Zr/N co-doped TiO2 nanostructures were successfully synthesized using nanotubular titanic acid (NTA) as precursors by a facile wet chemical route and subsequent calcination. These Zr/N-doped TiO2 nanostructures made by NTA precursors show significantly enhanced visible light absorption and much higher photocatalytic performance than the Zr/N-doped P25 TiO2 nanoparticles. Impacts of Zr/N co-doping on the morphologies, optical properties, and photocatalytic activities of the NTA precursor-based TiO2 were thoroughly investigated. The origin of the enhanced visible light photocatalytic activity is discussed in detail.

  13. Synthesis, characterization, and analysis of enhanced photocatalytic activity of Zr-doped TiO2 nanostructured powders under UV light

    Science.gov (United States)

    Sekhar, M. Chandra; Purusottam Reddy, B.; Mallikarjuna, K.; Shanmugam, Gnanendra; Ahn, Chang-Hoi; Park, Si-Hyun

    2018-01-01

    Zr-doped and pure TiO2 nanoparticles (NPs) were synthesized using a simple inexpensive sol-gel method. X-ray powder diffractometry and Fourier transform infrared spectrometry revealed the presence of anatase-phase TiO2 NPs. Scanning electron microscopy and transmission electron microscopy revealed that the average nanocrystalline size of approximately 15 nm. The photocatalytic activities of these materials were evaluated using Rhodamine B (Rh B) as an organic contaminant. The photocatalytic activity of pure and Zr-doped TiO2 NPs (with at% 4, 8, 12 and 16) was measured in terms of the degradation of Rh B under UV light. The antibacterial activities of pure and Zr-doped (with 8 at%) TiO2 NPs were evaluated against Bacillus subtillis, Escherichia coli, and Pseudomonas aeruginosa. A maximum inhibition zone (19 mm) was observed for pure TiO2 NPs, against Bacillus subtillis and Pseudomonas aeruginosa, while Zr-doped TiO2 (8 at%) exhibited a lesser inhibition zone (18 mm) against the same Bacillus subtillis and Pseudomonas aeruginosa (18 mm). However, Zr-doped TiO2 (8 at%) NPs exhibited a greater inhibition zone against Escherichia coli (17 mm), while the activity of pure TiO2 NPs against Escherichia coli (15 mm) was retarded. Thus, pure TiO2 NPs and Zr-doped TiO2 (8 at%) NPs have competent activities and can be used as antibacterial agents against different bacteria.

  14. Pr3+ doped biphasic TiO2 (rutile-brookite) nanorod arrays grown on activated carbon fibers: Hydrothermal synthesis and photocatalytic properties

    Science.gov (United States)

    Li, Min; Zhang, Xiaomei; Liu, Ying; Yang, Yi

    2018-05-01

    Praseodymium-doped biphasic TiO2 (rutile-brookite) nanorod arrays (Pr-TiO2 NRAs) were successfully prepared via a two-step hydrothermal reaction on activated carbon fibers (ACFs) which pre-coated with TiO2 nanoparticles at first step. The bicrystalline arrays grown on ACFs are primarily constructed by the well-aligned TiO2 nanorods growing along [0 0 1] direction, which were indicated by the results of SEM and XRD. The nanorods are uniform in diameter and length with about 250 nm and 2.5 μm. The composite photocatalyst with high specific surface area and well-aligned nanostructure are beneficial to enhance the adsorption capacity and even help to suppress electron-hole recombination effectively, which consequently revealed much better (2 times) catalytic performance than that of commercially available P25 TiO2 on methylene blue(MB) photodegradation. In addition, the existence of praseodymium in TiO2 gives rise to shift of absorption edge towards long wavelength, which was indicated by the results of UV-vis DRS. Photodegradation results reveal that Pr-doping significantly improves the activity of TiO2, which was 20% higher than that of undoped TiO2 NRAs for the photodegradation of MB in aqueous medium under visible light irradiation. Meanwhile, the doped amount of Pr had a tiny influence on the photocatalytic performance of the composites. In our experiment, 3% Pr-doped molar concentration was proven to be the relatively optimal dopant concentration for the doping of TiO2 NRAs. Moreover, the photocatalyst grown on ACFs substrates is favorable to reuse and photodegradation rate kept on 76% even after 4 times of reuse.

  15. Preparation of MoS2/TiO2 based nanocomposites for photocatalysis and rechargeable batteries: progress, challenges, and perspective.

    Science.gov (United States)

    Chen, Biao; Meng, Yuhuan; Sha, Junwei; Zhong, Cheng; Hu, Wenbin; Zhao, Naiqin

    2017-12-21

    The rapidly increasing severity of the energy crisis and environmental degradation are stimulating the rapid development of photocatalysts and rechargeable lithium/sodium ion batteries. In particular, MoS 2 /TiO 2 based nanocomposites show great potential and have been widely studied in the areas of both photocatalysis and rechargeable lithium/sodium ion batteries due to their superior combination properties. In addition to the low-cost, abundance, and high chemical stability of both MoS 2 and TiO 2 , MoS 2 /TiO 2 composites also show complementary advantages. These include the strong optical absorption of TiO 2 vs. the high catalytic activity of MoS 2 , which is promising for photocatalysis; and excellent safety and superior structural stability of TiO 2 vs. the high theoretic specific capacity and unique layered structure of MoS 2 , thus, these composites are exciting as anode materials. In this review, we first summarize the recent progress in MoS 2 /TiO 2 -based nanomaterials for applications in photocatalysis and rechargeable batteries. We highlight the synthesis, structure and mechanism of MoS 2 /TiO 2 -based nanomaterials. Then, advancements and strategies for improving the performance of these composites in photocatalytic degradation, hydrogen evolution, CO 2 reduction, LIBs and SIBs are critically discussed. Finally, perspectives on existing challenges and probable opportunities for future exploration of MoS 2 /TiO 2 -based composites towards photocatalysis and rechargeable batteries are presented. We believe the present review would provide enriched information for a deeper understanding of MoS 2 /TiO 2 composites and open avenues for the rational design of MoS 2 /TiO 2 based composites for energy and environment-related applications.

  16. Facile synthesis and characterization of N-doped TiO2/C nanocomposites with enhanced visible-light photocatalytic performance

    Science.gov (United States)

    Jia, Tiekun; Fu, Fang; Yu, Dongsheng; Cao, Jianliang; Sun, Guang

    2018-02-01

    Ultrafine anatase N-doped TiO2 nanocrystals modified with carbon (denoted as N-doped TiO2/C) were successfully prepared via a facile and low-cost approach, using titanium tetrachloride, aqueous ammonia and urea as starting materials. The phase composition, surface chemical composition, morphological structure, electronic and optical properties of the as-prepared photocatalysts were well characterized and analyzed. On the basis of Raman spectral characterization combining with the results of X-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (HRTEM), it could be concluded that N dopant ions were successfully introduced into TiO2 crystal lattice and carbon species were modified on the surface or between the nanoparticles to form N-doped TiO2/C nanocomposites. Compared with that of bare TiO2, the adsorption band edge of N-doped TiO2/C nanocomposites were found to have an evident red-shift toward visible light region, implying that the bandgap of N-doped TiO2/C nanocomposites is narrowed and the visible light absorption capacity is significantly enhanced due to N doping and carbon modification. The photoactivity of the as-prepared photocatalytsts was tested by the degradation of Rhodamine B (RhB) under visible light (λ > 420 nm), and the results showed that the N-doped TiO2/C nanocomposites exhibited much higher photodegradation rate than pure TiO2 and N-doped TiO2, which was mainly attributed to the synergistic effect of the enhanced light harvesting, augmented catalytic active sites and efficient separation of photogenerated electron-hole pairs.

  17. Ag3PO4-TiO2-Graphene Oxide Ternary Composites with Efficient Photodegradation, Hydrogen Evolution, and Antibacterial Properties

    Directory of Open Access Journals (Sweden)

    Fu-Jye Sheu

    2018-02-01

    Full Text Available Ag3PO4-TiO2-graphene oxide ternary composite photocatalysts were fabricated by the photocatalytic reduction and ion exchange methods. The properties and photocatalytic activity of the composites were examined, and the photodegradation mechanism was investigated. More TiO2 nanoparticles in the composites were found to improve light absorption, but caused a larger impedance and inferior charge transport. Excess TiO2 nanoparticles distributed over the surfaces of Ag3PO4 and graphene oxide decreased the specific surface area and thus lowered light absorbance. An appropriate TiO2 content enhanced photocatalytic performance. When the molar ratio of Ag3PO4 to TiO2 was 0.6, the highest efficiency in photodegradation, hydrogen production (with a quantum efficiency of 8.1% and a hydrogen evolution rate of 218.7 μmole·g−1·h−1 and bacterial inactivation was achieved. Trapping experiments demonstrated that superoxide radicals and holes are the major active species involved in the photodegradation process.

  18. Visible-light photocatalytic performances of TiO2 nanoparticles modified by trace derivatives of PVA

    Directory of Open Access Journals (Sweden)

    Le SHI

    2016-10-01

    Full Text Available In order to study the visible-light photocatalytic activity and catalysis stability of nanocomposites, a TiO2-based visible-light photocatalyst is prepared by surface-modification of TiO2 nanoparticles using trace conjugated derivatives from polyvinyl alcohol (DPVA via a facile method. The obtained DPVA/TiO2 nanocomposites are characterized by X-ray diffraction (XRD, Fourier transform infrared Spectra (FT-IR, scanning electron microscopy (SEM, UV-vis diffuse reflection spectroscopy (DRS, and X-ray photoelectron spectroscopy (XPS. With Rhodamine B (RhB as a model pollutant, the visible-light photocatalytic activity and stability of DPVA/TiO2 nanocomposites are investigated by evaluating the RhB decomposition under visible light irradiation. The results reveal that the trace conjugated polymers on the TiO2 surface doesn’t change the crystalline and crystal size of TiO2 nanoparticles, but significantly enhances their visible-light absorbance and visible-light photocatalytic activity. The nanocomposite with the PVA and TiO2 mass ratio of 1∶200 exhibits the highest visible-light photocatalytic activity. The investigated nanocomposites exhibit well visible-light photoctatalytic stability. The photogenerated holes are thought as the main active species for the RhB photodegradation in the presence of the DPVA/TiO2 nanocomposites.

  19. The effects of antimony doping on the surface structure of rutile TiO2(110)

    International Nuclear Information System (INIS)

    Bechstein, Ralf; Schuette, Jens; Kuehnle, Angelika; Kitta, Mitsunori; Onishi, Hiroshi

    2009-01-01

    Titanium dioxide represents a very important wide bandgap photocatalyst that is known to be sensitized to visible light by transition metal doping. Antimony doping has been demonstrated to provide photocatalytic activity when codoped with chromium at an optimum dopant ratio [Sb]/[Cr] of about 1.5. Here, the role of antimony doping on the surface structure of rutile TiO 2 (110) is studied using non-contact atomic force microscopy (NC-AFM) under ultra-high vacuum conditions. At first glance, the surface structure of antimony-doped TiO 2 (110) resembles the structure of pristine TiO 2 (110). However, in contrast to what is found in pristine TiO 2 (110), a dense layer of protruding features is observed upon antimony doping, which is tentatively ascribed to antimony-rich clusters. Moreover, homogeneously distributed holes are found on the surface, which differ in depth and shape depending on the preparation conditions. Holes with depths ranging from a few up to more than a hundred monatomic steps are observed. These holes are explained by surface segregation of antimony during annealing, as the ionic radius of Sb 3+ is considerably larger than the ionic radius of Ti 4+ . Our finding provides an indication of why an antimony concentration larger than the optimum ratio results in decreased photocatalytic activity. Moreover, controlling annealing temperature seems to constitute a promising strategy for creating nanosized holes on TiO 2 surfaces.

  20. Facile synthesis of the Ti3+ self-doped TiO2-graphene nanosheet composites with enhanced photocatalysis.

    Science.gov (United States)

    Qiu, Bocheng; Zhou, Yi; Ma, Yunfei; Yang, Xiaolong; Sheng, Weiqin; Xing, Mingyang; Zhang, Jinlong

    2015-02-26

    This study developed a facile approach for preparing Ti(3+) self-doped TiO2-graphene photocatalyst by a one-step vacuum activation technology involved a relative lower temperature, which could be activated by the visible light owing to the synergistic effect among Ti(3+) doping, some new intersurface bonds generation and graphene oxide reduction. Compared with the traditional methods, the vacuum activation involves a low temperature and low-costing, which can achieve the reduction of GO, the self doping of Ti(3+) in TiO2 and the loading of TiO2 nanoparticles on GR surface at the same time. These resulting TiO2-graphene composites show the high photodegradation rate of MO, high hydrogen evolution activity and excellent IPCE in the visible light irradiation. The facile vacuum activation method can provide an effective and practical approach to improve the performance of TiO2-graphene and other metal oxides-graphene towards their practical photocatalytic applications.

  1. Photocatalytic properties of nano-structured TiO2-carbon films obtained by means of electrophoretic deposition

    International Nuclear Information System (INIS)

    Peralta-Hernandez, J.M.; Manriquez, J.; Meas-Vong, Y.; Rodriguez, Francisco J.; Chapman, Thomas W.; Maldonado, Manuel I.; Godinez, Luis A.

    2007-01-01

    Recent studies have shown that the light-absorption and photocatalytic efficiencies of TiO 2 can be improved by coupling TiO 2 nano-particles with nonmetallic dopants, such as carbon. In this paper, we describe the electrophoretic preparation of a novel TiO 2 -carbon nano-composite photocatalyst on a glass indium thin oxide (ITO) substrate. The objective is to take better advantage of the (e - /h + ) pair generated by photoexcitation of semiconducting TiO 2 particles. The transfer of electrons (e - ) into adjacent carbon nano-particles promotes reduction of oxygen to produce hydrogen peroxide (H 2 O 2 ) which, in the presence of iron ions, can subsequently form hydroxyl radicals ( · OH) via the Fenton reaction. At the same time, · OH is formed from water by the (h + ) holes in the TiO 2 . Thus, the · OH oxidant is produced by two routes. The efficiency of this photolytic-Fenton process was tested with a model organic compound, Orange-II (OG-II) azo dye, which is employed in the textile industry

  2. Enhanced Photocatalytic Activity of La3+-Doped TiO2 Nanotubes with Full Wave-Band Absorption

    Science.gov (United States)

    Xia, Minghao; Huang, Lingling; Zhang, Yubo; Wang, Yongqian

    2018-06-01

    TiO2 nanotubes doped with La3+ were synthesized by anodic oxidation method and the photocatalytic activity was detected by photodegrading methylene blue. As-prepared samples improved the absorption of both ultraviolet light and visible light and have a great enhancement on the photocatalytic activity while contrasting with the pristine TiO2 nanotubes. A tentative mechanism for the enhancement of photocatalytic activity with full wave-band absorption is proposed.

  3. Interface role in the enhanced photocatalytic activity of TiO2-Na0.9Mg0.45Ti3.55O8 nanoheterojunction

    Directory of Open Access Journals (Sweden)

    Ze-Qing Guo

    2017-02-01

    Full Text Available TiO2-Na0.9Mg0.45Ti3.55O8 (TiO2-NMTO nanocomposites were synthesized via a simple hydrothermal method. TiO2 nanoparticles were loaded on NMTO nanosheets with well matched lattices. The TiO2-NMTO nanoheterojunctions enjoyed high photodegradative ability for a RhB pollutant. The photoinduced electron-hole pairs were separated effectively by the TiO2-NMTO nanoheterojunctions, which were directly observed by surface potential measurements with a scanning Kelvin probe microscopy. The photogenerated electrons accumulate at interface due to the high density of interface states, and holes remain TiO2 and NMTO particles, other than they migrate from one part to another in heterojunctions by comparing the surface potentials under illumination with different wavelengths.

  4. Preparation of weak-light-driven TiO2-based catalysts via adsorbed-layer nanoreactor synthesis and enhancement of their photo-degradation performance in seawater

    Science.gov (United States)

    Wang, Ting; Xu, Zhi-yong; Zhu, Yi-chen; Wu, Li-guang; Yuan, Hao-xuan; Li, Chang-chun; Liu, Ya-yu; Cai, Jing

    2017-11-01

    Graphene oxide (GO) was first employed as a support in preparing TiO2 nanoparticles by adsorbed-layer nanoreactor synthesis (ALNS). Both TiO2 crystallization and GO reduction simultaneously occurred during solvothermal treatment with alcohol as a solvent. By transmission electron microscopy, high resolution transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and photoluminescence spectroscopy, the results showed that TiO2 nanoparticles with less than 10 nm of size distributed very homogeneously on the GO surface. Tight interaction between TiO2 particles and GO surface could effectively inhibit the aggregation of TiO2 particles, during solvothermal treatment for anatase TiO2 formation. Alcohol could also reduce oxygenated functional groups on GO surface after solvothermal treatment. TiO2 particles with small size and the decrease in oxygenated functional groups on the GO surface both caused high separation efficiency of photo-generated charge carriers, thus resulting in high photo-degradation performance of catalysts. Strong phenol adsorption on photocatalyst was key to enhancing photo-degradation efficiency for phenol in seawater. Moreover, the change in catalyst structure was minimal at different temperatures of solvothermal treatment. But, the degradation rate and efficiency for phenol in seawater were obviously enhanced because of the sensitive structure-activity relationship of catalysts under weak-light irradiation.

  5. Functionalized TiO2 nanoparticle containing isocyanate groups

    International Nuclear Information System (INIS)

    Ou, Baoli; Li, Duxin; Liu, Qingquan; Zhou, Zhihua; Liao, Bo

    2012-01-01

    Functionalized TiO 2 nanoparticle containing isocyanate groups can extend the TiO 2 nanoparticle chemistry, and may promote their many potential applications such as in polymer composites and coatings. This paper describes a facile method to prepare functionalized TiO 2 nanoparticle with highly reactive isocyanate groups on its surface, via the reaction between toluene-2, 4-diisocyanate (TDI) and hydroxyl on TiO 2 nanoparticle surface. The main effect factors on the reaction of TiO 2 with TDI were studied by determining the reaction extent of hydroxyl groups on TiO 2 surface. Fourier-transformed infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) confirmed that reactive isocyanate groups were covalently attached to the TiO 2 nanoparticle surface. The dispersion of the TDI-functionalized TiO 2 nanoparticle was studied by transmission electron microscopy (TEM). Owing to the TDI molecules covalently bonded on TiO 2 nanoparticle surface, it was established that the TiO 2 nanoparticle can be uniformly dispersed in toluene, thus indicating that this functionalization method can prevent TiO 2 nanoparticle from agglomerating. -- Highlights: ► TiO 2 nanoparticle was functionalized with toluene-2, 4-diisocyanate. ► Functionalized TiO 2 nanoparticle can be uniformly dispersed in xylene. ► Compatibility of TiO 2 nanoparticle and organic solvent is significantly improved. ► TiO 2 containing isocyanate groups can extend the TiO 2 nanoparticle chemistry.

  6. A novel synthesis method for TiO2 particles with magnetic Fe3O4 cores.

    Science.gov (United States)

    Dong, Qi; Zhang, Keqiang; An, Yi

    2014-01-01

    TiO2@(AC/Fe3O4) (AC is activated carbon) was prepared by using AC and Fe3O4 as joint support. The morphological features, crystal structure, and magnetism of the final product were characterized. The results indicate that TiO2 particles formed on the surface of AC and Fe3O4; the sizes of TiO2 and Fe3O4 were 0.5 and 0.7 μm respectively, and that of AC fell within a wide range. The highly crystalline cubic structures of the TiO2 particles was in accord with the standard X-ray diffractometry spectrum of magnetite and anatase. The maximum saturation magnetization of TiO2@(AC/Fe3O4) was 75 emu g(-1), which was enough to support magnetic recovery. The rate of methylene blue (MB) removal photocatalyzed by TiO2@(AC/Fe3O4) was higher by 50% than that achieved with AC/Fe3O4 photocatalysis, and similar to that achieved with TiO2@AC. The removal rate (kobs) decreased drastically from 1.77 × 10(-2) to 9.36 × 10(-3)min(-1) when the initial concentration of MB solution increased from 2.0 to 5.0 mg L(-1). The kobs value increased from 9.41 × 10(-3) to 1.34 × 10(-2)min(-1) with increasing photocatalyst dosage from 0.2 to 1.0 g, then slightly decreased to 1.33 × 10(-2)min(-1) at 2.0 g dosage.

  7. Controllable preparation of TiO2 nanowire arrays on titanium mesh for flexible dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Liu, Wenwu; Lu, Hui; Zhang, Mei; Guo, Min

    2015-01-01

    Graphical abstract: TiO 2 nanowire arrays with controlled morphology and density have been synthesized on Ti mesh substrates by hydrothermal approach for flexible dye-sensitized solar cells which showed well photovoltaic efficiency of 3.42%. - Highlights: • Flexible titanium mesh was first used for hydrothermal preparation of TiO 2 NWAs. • The formation mechanism of the TiO 2 nanostructures was discussed. • The density, average diameter, and morphology of TiO 2 NWAs can be controlled. • The effects of the sensitization temperature and time on the properties were studied. - Abstract: TiO 2 nanowire arrays (NWAs) with an average diameter of 80 nm have been successfully synthesized on titanium (Ti) mesh substrates via hydrothermal method. The effects of preparing conditions such as concentration of NaOH solution, reaction time, and hydrothermal temperature on the growth of TiO 2 nanoarrays and its related photovoltaic properties were systematically investigated by scanning electron microscopy, X-ray diffraction, and photovoltaic properties test. The growth mechanism of the Ti mesh-supported TiO 2 nanostructures was discussed in detail. Moreover, a parametric study was performed to determine the optimized temperature and time of the dye sensitized process for the flexible dye-sensitized solar cell (DSSC). It is demonstrated that hydrothermal parameters had obvious influence on the morphology and growth density of the as-prepared TiO 2 nanoarrays. In addition, the performance of the flexible DSSC depended strongly on the sensitization temperature and time. By utilizing Ti mesh-supported TiO 2 NWAs (with a length of about 14 μm) as a photoanode, the flexible DSSC with a short circuit current density of 10.49 mA cm −2 , an open-circuit voltage of 0.69 V, and an overall power conversion efficiency of 3.42% was achieved

  8. Recovery of hexavalent chromium from water using photoactive TiO2-montmorillonite under sunlight

    Directory of Open Access Journals (Sweden)

    Ridha Djellabi

    2016-04-01

    Full Text Available Hexavalent chromium was removed from water under sunlight using a synthesized TiO2-montmorillonite (TiO2-M employing tartaric acid as a hole scavenger. Cr(VI species was then reduced to Cr(III species by electrons arising from TiO2 particles. After that, the produced Cr(III species  was transferred to montmorillonite  due to electrostatic attractions leading to  set free TiO2 particles for a further Cr(VI species reduction. Furthermore, produced Cr(III, after Cr(VI reduction, does not  penetrate into the solution. The results indicate that no dark adsorption of Cr(VI species on TiO2-M is present, however, the reduction of Cr(VI species under sunlight increased strongly as a function of tartaric acid concentration up to 60 ppm, for which the extent of reduction is maximum within 3 h. On the other hand, the reduction extent of Cr(VI species is maximum with an initial concentration of Cr(VI species lower than 30 ppm by the use of 0.2 g/L of TiO2-M. Nevertheless, the increase of the Cr(VI initial concentration led to increase the amount of Cr(VI species reduced (capacity of reduction until a Cr(VI concentration of 75 and 100 ppm, for which  it remained constant at around 221 mg/g. For comparison, the increase of Cr(VI species concentration in the case of the commercial TiO2 P25 under the same conditions exhibited its deactivation when the reduced amount decreased from 198.1 to 157.6 mg/g as the concentration increased from 75 to 100 ppm.

  9. Mesoporous TiO2 Micro-Nanometer Composite Structure: Synthesis, Optoelectric Properties, and Photocatalytic Selectivity

    Directory of Open Access Journals (Sweden)

    Kun Liu

    2012-01-01

    Full Text Available Mesoporous anatase TiO2 micro-nanometer composite structure was synthesized by solvothermal method at 180°C, followed by calcination at 400°C for 2 h. The as-prepared TiO2 was characterized by X-ray diffraction (XRD, scanning electron microscope (SEM, transmission electron microscope (TEM, and Fourier transform infrared spectrum (FT-IR. The specific surface area and pore size distribution were obtained from N2 adsorption-desorption isotherm, and the optoelectric property of the mesoporous TiO2 was studied by UV-Vis absorption spectrum and surface photovoltage spectra (SPS. The photocatalytic activity was evaluated by photodegradation of sole rhodamine B (RhB and sole phenol aqueous solutions under simulated sunlight irradiation and compared with that of Degussa P-25 (P25 under the same conditions. The photodegradation preference of this mesoporous TiO2 was also investigated for an RhB-phenol mixed solution. The results show that the TiO2 composite structure consists of microspheres (∼0.5–2 μm in diameter and irregular aggregates (several hundred nanometers with rough surfaces and the average primary particle size is 10.2 nm. The photodegradation activities of this mesoporous TiO2 on both RhB and phenol solutions are higher than those of P25. Moreover, this as-prepared TiO2 exhibits photodegradation preference on RhB in the RhB-phenol mixture solution.

  10. Quantum Dot Sensitized Solar Cells Based on TiO2/AgInS2

    Science.gov (United States)

    Pawar, Sachin A.; Jeong, Jae Pil; Patil, Dipali S.; More, Vivek M.; Lee, Rochelle S.; Shin, Jae Cheol; Choi, Won Jun

    2018-05-01

    Quantum dot heterojunctions with type-II band alignment can efficiently separate photogenerated electron-hole pairs and, hence, are useful for solar cell studies. In this study, a quantum dot sensitized solar cell (QDSSC) made of TiO2/AgInS2 is achieved to boost the photoconversion efficiency for the TiO2-based system by varying the AgInS2 layer's thickness. The TiO2 nanorods array film is prepared by using a simple hydrothermal technique. The formation of a AgInS2 QD-sensitized TiO2-nanorod photoelectrode is carried out by successive ionic layer adsorption and reaction (SILAR) technique. The effect of the QD layer on the performance of the solar cell is studied by varying the SILAR cycles of the QD coating. The synthesized electrode materials are characterized by using X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, high resolution transmission electron microscopy and solar cell performances. The results indicate that the nanocrystals have effectively covered the outer surfaces of the TiO2 nanorods. The interfacial structure of quantum dots (QDs)/TiO2 is also investigated, and the growth interface is verified. A careful comparison between TiO2/AgInS2 sensitized cells reveals that the trasfer of electrons and hole proceeds efficiently, the recombination is suppressed for the optimum thickness of the QD layer and light from the entire visible spectrum is utilised. Under AM 1.5G illumination, a high photocurrent of 1.36 mAcm-2 with an improved power conversion efficiency of 0.48% is obtained. The solar cell properties of our photoanodes suggest that the TiO2 nanorod array films co-sensitized by AgInS2 nanoclusters have potential applications in solar cells.

  11. Wide band gap Ga2O3 as efficient UV-C photocatalyst for gas-phase degradation applications.

    Science.gov (United States)

    Jędrzejczyk, Marcin; Zbudniewek, Klaudia; Rynkowski, Jacek; Keller, Valérie; Grams, Jacek; Ruppert, Agnieszka M; Keller, Nicolas

    2017-12-01

    α, β, γ, and δ polymorphs of 4.6-4.8 eV wide band gap Ga 2 O 3 photocatalysts were prepared via a soft chemistry route. Their photocatalytic activity under 254 nm UV-C light in the degradation of gaseous toluene was strongly depending on the polymorph phase. α- and β-Ga 2 O 3 photocatalysts enabled achieving high and stable conversions of toluene with selectivities to CO 2 within the 50-90% range, by contrast to conventional TiO 2 photocatalysts that fully deactivate very rapidly on stream in similar operating conditions with rather no CO 2 production, no matter whether UV-A or UV-C light was used. The highest performances were achieved on the high specific surface area β-Ga 2 O 3 photocatalyst synthesized by adding polyethylene glycol (PEG) as porogen before precipitation, with stable toluene conversion and mineralization rate into CO 2 strongly overcoming those obtained on commercial β-Ga 2 O 3 . They were attributed to favorable physicochemical properties in terms of high specific surface area, small mean crystallite size, good crystallinity, high pore volume with large size mesopore distribution and appropriate surface acidity, and to the possible existence of a double local internal field within Ga 3+ units. In the degradation of hydrogen sulfide, PEG-derived β-Ga 2 O 3 takes advantage from its high specific surface area for storing sulfate, and thus for increasing its resistance to deactivation and the duration at total sulfur removal when compared to other β-Ga 2 O 3 photocatalysts. So, we illustrated the interest of using high surface area β-Ga 2 O 3 in environmental photocatalysis for gas-phase depollution applications.

  12. A chemical route to room-temperature synthesis of nanocrystalline TiO2 thin films

    International Nuclear Information System (INIS)

    Pathan, Habib M.; Kim, Woo Young; Jung, Kwang-Deog; Joo, Oh-Shim

    2005-01-01

    A lot of methods are developed for the deposition of TiO 2 thin films; however, in each of these methods as-deposited films are amorphous and need further heat treatment at high temperature. In the present article, a chemical bath deposition (CBD) method was used for the preparation of TiO 2 thin films. We investigated nanocrystalline TiO 2 thin films using CBD at room temperature onto glass and ITO coated glass substrate. The films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM) techniques. The chemically synthesized films were nanocrystalline and composed of crystal grains of 2-3 nm

  13. Temperature dependence of gas sensing behaviour of TiO2 doped PANI composite thin films

    Science.gov (United States)

    Srivastava, Subodh; Sharma, S. S.; Sharma, Preetam; Sharma, Vinay; Rajura, Rajveer Singh; Singh, M.; Vijay, Y. K.

    2014-04-01

    In the present work we have reported the effect of temperature on the gas sensing properties of TiO2 doped PANI composite thin film based chemiresistor type gas sensors for hydrogen gas sensing application. PANI and TiO2 doped PANI composite were synthesized by in situ chemical oxidative polymerization of aniline at low temperature. The electrical properties of these composite thin films were characterized by I-V measurements as function of temperature. The I-V measurement revealed that conductivity of composite thin films increased as the temperature increased. The changes in resistance of the composite thin film sensor were utilized for detection of hydrogen gas. It was observed that at room temperature TiO2 doped PANI composite sensor shows higher response value and showed unstable behavior as the temperature increased. The surface morphology of these composite thin films has also been characterized by scanning electron microscopy (SEM) measurement.

  14. Laser irradiation in water for the novel, scalable synthesis of black TiOx photocatalyst for environmental remediation

    Directory of Open Access Journals (Sweden)

    Massimo Zimbone

    2017-01-01

    Full Text Available Since 1970, TiO2 photocatalysis has been considered a possible alternative for sustainable water treatment. This is due to its material stability, abundance, nontoxicity and high activity. Unfortunately, its wide band gap (≈3.2 eV in the UV portion of the spectrum makes it inefficient under solar illumination. Recently, so-called “black TiO2” has been proposed as a candidate to overcome this issue. However, typical synthesis routes require high hydrogen pressure and long annealing treatments. In this work, we present an industrially scalable synthesis of TiO2-based material based on laser irradiation. The resulting black TiOx shows a high activity and adsorbs visible radiation, overcoming the main concerns related to the use of TiO2 under solar irradiation. We employed a commercial high repetition rate green laser in order to synthesize a black TiOx layer and we demonstrate the scalability of the present methodology. The photocatalyst is composed of a nanostructured titanate film (TiOx synthetized on a titanium foil, directly back-contacted to a layer of Pt nanoparticles (PtNps deposited on the rear side of the same foil. The result is a monolithic photochemical diode with a stacked, layered structure (TiOx/Ti/PtNps. The resulting high photo-efficiency is ascribed to both the scavenging of electrons by Pt nanoparticles and the presence of trap surface states for holes in an amorphous hydrogenated TiOx layer.

  15. Immobilized TiO2 for Phenol Degradation in a Pilot-Scale Photocatalytic Reactor

    Directory of Open Access Journals (Sweden)

    Sylwia Mozia

    2012-01-01

    Full Text Available Phenol degradation was carried out in a photocatalytic pilot plant reactor equipped with a UV/vis mercury lamp. The total volume of treated water was equal to 1.35 m3. TiO2 P25 was used as a photocatalyst and it was immobilized on two different supports: (i a steel mesh and (ii a fiberglass cloth. Moreover, the performance of commercially available Photospheres-40 was examined. In addition, an experiment in the absence of a photocatalyst was conducted. The commercially available Photospheres-40 were found to be inadequate for the presented application due to their fragility, which in connection with vigorous mixing and pumping led to their mechanical destruction and loss of floating abilities. The highest effectiveness of phenol decomposition and mineralization was observed in the presence of TiO2 supported on the fiberglass cloth. After 15 h of the process, phenol and total organic carbon concentrations decreased by ca. 80% and 50%, respectively.

  16. Electron microscopy of Mg/TiO2 photocatalyst morphology for deep desulfurization of diesel

    International Nuclear Information System (INIS)

    Yin, Yee Cia; Kait, Chong Fai; Fatimah, Hayyiratul; Wilfred, Cecilia

    2015-01-01

    A series of Mg/TiO 2 photocatalysts were prepared and characterized using Field Emission Scanning Electron Microscopy (FESEM) and High-Resolution Transmission Electron Microscopy (HRTEM). The average particle sizes of the photocatalysts were ranging from 25.7 to 35.8 nm. Incorporation of Mg on TiO 2 did not lead to any surface lattice distortion to TiO 2 . HRTEM data indicated the presence of MgO and Mg(OH) 2 mixture at low Mg loading while at higher Mg loading, the presence of lamellar Mg-oxyhydroxide intermediates and Mg(OH) 2

  17. Synthesis and Photocatalytic Activity of Mo-Doped TiO2 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ji-guo Huang

    2015-01-01

    Full Text Available The undoped and Mo-doped TiO2 nanoparticles were synthesized by sol-gel method. The as-prepared samples were characterized by X-ray diffraction (XRD, diffuse reflectance UV-visible absorption spectra (UV-vis DRS, X-ray photoelectron spectra (XPS, and transmission electron microscopy (TEM. The photocatalytic activity was evaluated by photocatalytic degradation of methylene blue under irradiation of a 500 W xenon lamp and natural solar light outdoor. Effects of calcination temperatures and Mo doping amounts on crystal phase, crystallite size, lattice distortion, and optical properties were investigated. The results showed that most of Mo6+ took the place of Ti4+ in the crystal lattice of TiO2, which inhibited the growth of crystallite size, suppressed the transformation from anatase to rutile, and led to lattice distortion of TiO2. Mo doping narrowed the band gap (from 3.05 eV of TiO2 to 2.73 eV of TiMo0.02O and efficiently increased the optical absorption in visible region. Mo doping was shown to be an efficient method for degradation of methylene blue under visible light, especially under solar light. When the calcination temperature was 550°C and the Mo doping amount was 2.0%, the Mo-doped TiO2 sample exhibited the highest photocatalytic activity.

  18. Highly stable colloidal TiO2 nanocrystals with strong violet-blue emission

    International Nuclear Information System (INIS)

    Ghamsari, Morteza Sasani; Gaeeni, Mohammad Reza; Han, Wooje; Park, Hyung-Ho

    2016-01-01

    Improved sol–gel method has been applied to prepare highly stable colloidal TiO 2 nanocrystals. The synthesized titania nanocrystals exhibit strong emission in the violet-blue wavelength region. Very long evolution time was obtained by preventing the sol to gel conversion with reflux process. FTIR, XRD, UV–vis absorption, photoluminescence and high resolution transmission electron microscope (HRTEM) were used to study the optical properties, crystalline phase, morphology, shape and size of prepared TiO 2 colloidal nanocrystals. HRTEM showed that the diameter of TiO 2 colloidal nanocrystals is about 5 nm. Although the PL spectra show similar spectral features upon excitation wavelengths at 280, 300 and 350 nm, but their emission intensities are significantly different from each other. Photoluminescence quantum yield for TiO 2 colloidal nanocrystals is estimated to be 49% with 280 nm excitation wavelength which is in agreement and better than reported before. Obtained results confirm that the prepared colloidal TiO 2 sample has enough potential for optoelectronics applications.

  19. Nitrogen and europium doped TiO2 anodized films with applications in photocatalysis

    International Nuclear Information System (INIS)

    Chi, Choong-Soo; Choi, Jinwook; Jeong, Yongsoo; Lee, Oh Yeon; Oh, Han-Jun

    2011-01-01

    Micro-arc oxidation method is a useful process for mesoporous titanium dioxide films. In order to improve the photocatalytic activity of the TiO 2 film, N-Eu co-doped titania catalyst was synthesized by micro-arc oxidation in the H 2 SO 4 /Eu(NO 3 ) 3 mixture solution. The specific surface area and the roughness of the anodic titania film fabricated in the H 2 SO 4 /Eu(NO 3 ) 3 electrolyte, were increased compared to that of the anodic TiO 2 film prepared in H 2 SO 4 solution. The absorbance response of N-Eu titania film shows a higher adsorption onset toward visible light region, and the incorporated N and Eu ions during anodization as a dopant in the anodic TiO 2 film significantly enhanced the photocatalytic activity for dye degradation. After dye decomposition test for 3 h, dye removal rates for the anodic TiO 2 film were 60.7% and 90.1% for the N-Eu doped titania film. The improvement of the photocatalytic activity was ascribed to the synergistic effects of the surface enlargement and the new electronic state of the TiO 2 band gap by N and Eu co-doping.

  20. Core–shell TiO2 microsphere with enhanced photocatalytic activity and improved lithium storage

    International Nuclear Information System (INIS)

    Guo, Hong; Tian, Dongxue; Liu, Lixiang; Wang, Yapeng; Guo, Yuan; Yang, Xiangjun

    2013-01-01

    Inorganic hollow core–shell spheres have attracted considerable interest due to their singular properties and wide range of potential applications. Herein a novel facile generic strategy of combining template assisted and solvothermal alcoholysis is employed to prepare core–void–shell anatase TiO 2 nanoparticle aggregates with an excellent photocatalytic activity, and enhanced lithium storage in large quantities. Amorphous carbon can be loaded on the TiO 2 nanoparticles uniformly under a suitably formulated ethanol/water system in the solvothermal alcoholysis process, and the subsequent calcination results of the formation of core–shell–shell anatase TiO 2 nanoparticle aggregates. The intrinsic core–void–shell nature as well as high porosity of the unique nanostructures contributes greatly to the superior photocatalytic activity and improved performance as anode materials for lithium ion batteries. - Graphical abstract: A novel strategy of combining template assisted and solvothermal alcoholysis is employed to prepare unique core–void–shell anatase TiO 2 nanoparticle aggregates with the superior photocatalytic activity and improved lithium storage. Highlights: ► TiO 2 mesospheres are synthesized by solvothermal alcoholysis. ► It is core–void–shell structure and the thickness of shell is estimated to 80 nm. ► It exhibits a remarkable photocatalytic activity and improved lithium storage