WorldWideScience

Sample records for timing resolution obtained

  1. Classification of Small-Scale Eucalyptus Plantations Based on NDVI Time Series Obtained from Multiple High-Resolution Datasets

    Directory of Open Access Journals (Sweden)

    Hailang Qiao

    2016-02-01

    Full Text Available Eucalyptus, a short-rotation plantation, has been expanding rapidly in southeast China in recent years owing to its short growth cycle and high yield of wood. Effective identification of eucalyptus, therefore, is important for monitoring land use changes and investigating environmental quality. For this article, we used remote sensing images over 15 years (one per year with a 30-m spatial resolution, including Landsat 5 thematic mapper images, Landsat 7-enhanced thematic mapper images, and HJ 1A/1B images. These data were used to construct a 15-year Normalized Difference Vegetation Index (NDVI time series for several cities in Guangdong Province, China. Eucalyptus reference NDVI time series sub-sequences were acquired, including one-year-long and two-year-long growing periods, using invested eucalyptus samples in the study region. In order to compensate for the discontinuity of the NDVI time series that is a consequence of the relatively coarse temporal resolution, we developed an inverted triangle area methodology. Using this methodology, the images were classified on the basis of the matching degree of the NDVI time series and two reference NDVI time series sub-sequences during the growing period of the eucalyptus rotations. Three additional methodologies (Bounding Envelope, City Block, and Standardized Euclidian Distance were also tested and used as a comparison group. Threshold coefficients for the algorithms were adjusted using commission–omission error criteria. The results show that the triangle area methodology out-performed the other methodologies in classifying eucalyptus plantations. Threshold coefficients and an optimal discriminant function were determined using a mosaic photograph that had been taken by an unmanned aerial vehicle platform. Good stability was found as we performed further validation using multiple-year data from the high-resolution Gaofen Satellite 1 (GF-1 observations of larger regions. Eucalyptus planting dates

  2. High Time Resolution Astrophysics

    CERN Document Server

    Phelan, Don; Shearer, Andrew

    2008-01-01

    High Time Resolution Astrophysics (HTRA) is an important new window to the universe and a vital tool in understanding a range of phenomena from diverse objects and radiative processes. This importance is demonstrated in this volume with the description of a number of topics in astrophysics, including quantum optics, cataclysmic variables, pulsars, X-ray binaries and stellar pulsations to name a few. Underlining this science foundation, technological developments in both instrumentation and detectors are described. These instruments and detectors combined cover a wide range of timescales and can measure fluxes, spectra and polarisation. These advances make it possible for HTRA to make a big contribution to our understanding of the Universe in the next decade.

  3. Component Repair Times Obtained from MSPI Data

    International Nuclear Information System (INIS)

    Eide, Steven A.; Cadwallader, Lee

    2015-01-01

    Information concerning times to repair or restore equipment to service given a failure is valuable to probabilistic risk assessments (PRAs). Examples of such uses in modern PRAs include estimation of the probability of failing to restore a failed component within a specified time period (typically tied to recovering a mitigating system before core damage occurs at nuclear power plants) and the determination of mission times for support system initiating event (SSIE) fault tree models. Information on equipment repair or restoration times applicable to PRA modeling is limited and dated for U.S. commercial nuclear power plants. However, the Mitigating Systems Performance Index (MSPI) program covering all U.S. commercial nuclear power plants provides up-to-date information on restoration times for a limited set of component types. This paper describes the MSPI program data available and analyzes the data to obtain median and mean component restoration times as well as non-restoration cumulative probability curves. The MSPI program provides guidance for monitoring both planned and unplanned outages of trains of selected mitigating systems deemed important to safety. For systems included within the MSPI program, plants monitor both train UA and component unreliability (UR) against baseline values. If the combined system UA and UR increases sufficiently above established baseline results (converted to an estimated change in core damage frequency or CDF), a ''white'' (or worse) indicator is generated for that system. That in turn results in increased oversight by the US Nuclear Regulatory Commission (NRC) and can impact a plant's insurance rating. Therefore, there is pressure to return MSPI program components to service as soon as possible after a failure occurs. Three sets of unplanned outages might be used to determine the component repair durations desired in this article: all unplanned outages for the train type that includes the component of

  4. Component Repair Times Obtained from MSPI Data

    Energy Technology Data Exchange (ETDEWEB)

    Eide, Steven A. [Curtiss-Wright/Scietech, Ketchum, ID (United States); Cadwallader, Lee [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-05-01

    Information concerning times to repair or restore equipment to service given a failure is valuable to probabilistic risk assessments (PRAs). Examples of such uses in modern PRAs include estimation of the probability of failing to restore a failed component within a specified time period (typically tied to recovering a mitigating system before core damage occurs at nuclear power plants) and the determination of mission times for support system initiating event (SSIE) fault tree models. Information on equipment repair or restoration times applicable to PRA modeling is limited and dated for U.S. commercial nuclear power plants. However, the Mitigating Systems Performance Index (MSPI) program covering all U.S. commercial nuclear power plants provides up-to-date information on restoration times for a limited set of component types. This paper describes the MSPI program data available and analyzes the data to obtain median and mean component restoration times as well as non-restoration cumulative probability curves. The MSPI program provides guidance for monitoring both planned and unplanned outages of trains of selected mitigating systems deemed important to safety. For systems included within the MSPI program, plants monitor both train UA and component unreliability (UR) against baseline values. If the combined system UA and UR increases sufficiently above established baseline results (converted to an estimated change in core damage frequency or CDF), a “white” (or worse) indicator is generated for that system. That in turn results in increased oversight by the US Nuclear Regulatory Commission (NRC) and can impact a plant’s insurance rating. Therefore, there is pressure to return MSPI program components to service as soon as possible after a failure occurs. Three sets of unplanned outages might be used to determine the component repair durations desired in this article: all unplanned outages for the train type that includes the component of interest, only

  5. Analysis of Time Resolution in HGCAL Testbeam

    CERN Document Server

    Steentoft, Jonas

    2017-01-01

    Using data from a 250 GeV electron run during the November 2016 HGCAL testbeam, the time resolution of the High Granularity hadronic endcap Calorimeter, HGCAL, was investigated, looking at the seven innermost Si cells, and using them as reference timers for each other. Cuts in the data was applied based on signal amplitude,$0.05 \\hspace{1mm} V < A < 0.45 \\hspace{1mm} V$, position of incoming beam particle,$0 \\hspace{1mm} mm < TDCx < 22\\hspace{1mm} mm$ and $-7\\hspace{1mm} mm time difference between two cells, $\\vert t_1 - t_2 \\vert < 200 \\hspace{1mm} ps.$ Timewalk corrections, wrt in-cell amplitude, were applied to the cut data, with the Photek as reference.\\\\ Gaussian functions were fitted to the corrected $\\Delta t$ distributions, and a time resolution of $15-50$ $ps$ was obtained, depending on which two cells were compared, and how the low-statistics cut were placed. We also confirmed a slight correlation between time resolution and distanc...

  6. Effect of image resolution manipulation in rearfoot angle measurements obtained with photogrammetry.

    Science.gov (United States)

    Sacco, I C N; Picon, A P; Ribeiro, A P; Sartor, C D; Camargo-Junior, F; Macedo, D O; Mori, E T T; Monte, F; Yamate, G Y; Neves, J G; Kondo, V E; Aliberti, S

    2012-09-01

    The aim of this study was to investigate the influence of image resolution manipulation on the photogrammetric measurement of the rearfoot static angle. The study design was that of a reliability study. We evaluated 19 healthy young adults (11 females and 8 males). The photographs were taken at 1536 pixels in the greatest dimension, resized into four different resolutions (1200, 768, 600, 384 pixels) and analyzed by three equally trained examiners on a 96-pixels per inch (ppi) screen. An experienced physiotherapist marked the anatomic landmarks of rearfoot static angles on two occasions within a 1-week interval. Three different examiners had marked angles on digital pictures. The systematic error and the smallest detectable difference were calculated from the angle values between the image resolutions and times of evaluation. Different resolutions were compared by analysis of variance. Inter- and intra-examiner reliability was calculated by intra-class correlation coefficients (ICC). The rearfoot static angles obtained by the examiners in each resolution were not different (P > 0.05); however, the higher the image resolution the better the inter-examiner reliability. The intra-examiner reliability (within a 1-week interval) was considered to be unacceptable for all image resolutions (ICC range: 0.08-0.52). The whole body image of an adult with a minimum size of 768 pixels analyzed on a 96-ppi screen can provide very good inter-examiner reliability for photogrammetric measurements of rearfoot static angles (ICC range: 0.85-0.92), although the intra-examiner reliability within each resolution was not acceptable. Therefore, this method is not a proper tool for follow-up evaluations of patients within a therapeutic protocol.

  7. Method of Obtaining High Resolution Intrinsic Wire Boom Damping Parameters for Multi-Body Dynamics Simulations

    Science.gov (United States)

    Yew, Alvin G.; Chai, Dean J.; Olney, David J.

    2010-01-01

    The goal of NASA's Magnetospheric MultiScale (MMS) mission is to understand magnetic reconnection with sensor measurements from four spinning satellites flown in a tight tetrahedron formation. Four of the six electric field sensors on each satellite are located at the end of 60- meter wire booms to increase measurement sensitivity in the spin plane and to minimize motion coupling from perturbations on the main body. A propulsion burn however, might induce boom oscillations that could impact science measurements if oscillations do not damp to values on the order of 0.1 degree in a timely fashion. Large damping time constants could also adversely affect flight dynamics and attitude control performance. In this paper, we will discuss the implementation of a high resolution method for calculating the boom's intrinsic damping, which was used in multi-body dynamics simulations. In summary, experimental data was obtained with a scaled-down boom, which was suspended as a pendulum in vacuum. Optical techniques were designed to accurately measure the natural decay of angular position and subsequently, data processing algorithms resulted in excellent spatial and temporal resolutions. This method was repeated in a parametric study for various lengths, root tensions and vacuum levels. For all data sets, regression models for damping were applied, including: nonlinear viscous, frequency-independent hysteretic, coulomb and some combination of them. Our data analysis and dynamics models have shown that the intrinsic damping for the baseline boom is insufficient, thereby forcing project management to explore mitigation strategies.

  8. Time resolution research in liquid scintillating detection

    International Nuclear Information System (INIS)

    He Hongkun; Shi Haoshan

    2006-01-01

    The signal processing design method is introduced into liquid scintillating detection system design. By analyzing the signal of liquid scintillating detection, improving time resolution is propitious to upgrade efficiency of detecting. The scheme of realization and satisfactory experiment data is demonstrated. Besides other types of liquid scintillating detection is the same, just using more high speed data signal processing techniques and elements. (authors)

  9. Super-resolution for everybody: An image processing workflow to obtain high-resolution images with a standard confocal microscope.

    Science.gov (United States)

    Lam, France; Cladière, Damien; Guillaume, Cyndélia; Wassmann, Katja; Bolte, Susanne

    2017-02-15

    In the presented work we aimed at improving confocal imaging to obtain highest possible resolution in thick biological samples, such as the mouse oocyte. We therefore developed an image processing workflow that allows improving the lateral and axial resolution of a standard confocal microscope. Our workflow comprises refractive index matching, the optimization of microscope hardware parameters and image restoration by deconvolution. We compare two different deconvolution algorithms, evaluate the necessity of denoising and establish the optimal image restoration procedure. We validate our workflow by imaging sub resolution fluorescent beads and measuring the maximum lateral and axial resolution of the confocal system. Subsequently, we apply the parameters to the imaging and data restoration of fluorescently labelled meiotic spindles of mouse oocytes. We measure a resolution increase of approximately 2-fold in the lateral and 3-fold in the axial direction throughout a depth of 60μm. This demonstrates that with our optimized workflow we reach a resolution that is comparable to 3D-SIM-imaging, but with better depth penetration for confocal images of beads and the biological sample. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Deconvolution-based resolution enhancement of chemical ice core records obtained by continuous flow analysis

    DEFF Research Database (Denmark)

    Rasmussen, Sune Olander; Andersen, Katrine K.; Johnsen, Sigfus Johann

    2005-01-01

    Continuous flow analysis (CFA) has become a popular measuring technique for obtaining high-resolution chemical ice core records due to an attractive combination of measuring speed and resolution. However, when analyzing the deeper sections of ice cores or cores from low-accumulation areas...... of the data for high-resolution studies such as annual layer counting. The presented method uses deconvolution techniques and is robust to the presence of noise in the measurements. If integrated into the data processing, it requires no additional data collection. The method is applied to selected ice core...

  11. Parametric fitting of data obtained from detectors with finite resolution and limited acceptance

    International Nuclear Information System (INIS)

    Gagunashvili, N.D.

    2011-01-01

    A goodness-of-fit test for fitting of a parametric model to data obtained from a detector with finite resolution and limited acceptance is proposed. The parameters of the model are found by minimization of a statistic that is used for comparing experimental data and simulated reconstructed data. Numerical examples are presented to illustrate and validate the fitting procedure.

  12. Time resolution performance studies of contemporary high speed photomultipliers

    International Nuclear Information System (INIS)

    Leskovar, B.; Lo, C.C.

    1978-01-01

    The time resolution capabilities of prototype microchannel plate and static crossed-field photomultipliers have been investigated. Measurements were made of electron transit time, rise time, time response, single phtoelectron time spread and multiphotoelectron time spread for LEP HR350 proximity focused high gain curved microchannel plate and VPM-154A/1.6L static crossed-field photomultipliers. The experimental data have been compared with results obtained with conventionally designed high speed photomultipliers. Descriptions are given of both the measuring techniques and the measuring systems. 16 refs

  13. Time resolution performance studies of contemporary high speed photomultipliers

    International Nuclear Information System (INIS)

    Leskovar, B.; Lo, C.C.

    1977-01-01

    The time resolution capabilities of prototype microchannel plate and static crossed-field photomultipliers have been investigated. Measurements were made of electron transit time, rise time, time response, single photoelectron time spread and multiphotoelectron time spread for LEP HR350 proximity focused high gain curved microchannel plate and VPM-154A/1.6L static crossed-field photomultipliers. The experimental data have been compared with results obtained with conventionally designed RCS 8850 and C31024 high speed photomultipliers. Descriptions are given of both the measuring techniques and the measuring systems

  14. High resolution fast neutron spectrometry without time-of-flight

    International Nuclear Information System (INIS)

    Evans, A.E.; Brandenberger, J.D.

    1978-01-01

    Performance tests of a spectrometer tube of the type developed by Cuttler and Shalev show that the measurement of fast neutron spectra with this device can be made with an energy resolution previously obtainable only in large time-of-flight facilities. In preliminary tests, resolutions of 16.4 keV for thermal neutrons and 30.9 keV for 1-MeV neutrons were obtained. A broad-window pulse-shape discrimination (PSD) system is used to remove from pulse-height distributions most of the continua due to 3 He-recoil events, noise, and wall effect. Use of PSD improved the energy resolution to 12.9 keV for thermal neutrons and 29.2 keV for 1-MeV neutrons. The detector is a viable tool for neutron research at nominally equipped accelerator laboratories

  15. An integral design strategy combining optical system and image processing to obtain high resolution images

    Science.gov (United States)

    Wang, Jiaoyang; Wang, Lin; Yang, Ying; Gong, Rui; Shao, Xiaopeng; Liang, Chao; Xu, Jun

    2016-05-01

    In this paper, an integral design that combines optical system with image processing is introduced to obtain high resolution images, and the performance is evaluated and demonstrated. Traditional imaging methods often separate the two technical procedures of optical system design and imaging processing, resulting in the failures in efficient cooperation between the optical and digital elements. Therefore, an innovative approach is presented to combine the merit function during optical design together with the constraint conditions of image processing algorithms. Specifically, an optical imaging system with low resolution is designed to collect the image signals which are indispensable for imaging processing, while the ultimate goal is to obtain high resolution images from the final system. In order to optimize the global performance, the optimization function of ZEMAX software is utilized and the number of optimization cycles is controlled. Then Wiener filter algorithm is adopted to process the image simulation and mean squared error (MSE) is taken as evaluation criterion. The results show that, although the optical figures of merit for the optical imaging systems is not the best, it can provide image signals that are more suitable for image processing. In conclusion. The integral design of optical system and image processing can search out the overall optimal solution which is missed by the traditional design methods. Especially, when designing some complex optical system, this integral design strategy has obvious advantages to simplify structure and reduce cost, as well as to gain high resolution images simultaneously, which has a promising perspective of industrial application.

  16. Space resolution obtained with a highly segmented SCIFI e.m. calorimeter

    International Nuclear Information System (INIS)

    De Zorzi, G.; Bertino, M.; Bini, C.; De Pedis, D.; Diambrini Palazzi, G.; Di Cosimo, G.; Di Domenico, A.; Gauzzi, P.; Zanello, D.

    1992-01-01

    During the setting up of the LEP-5 experiment, we tested a longitudinal SCIFI e.m. calorimeter, having a module cross area 25x25 mm 2 and 12.5x12.5 mm 2 for large and small modules respectively. The results were obtained with 10 and 50 GeV electrons, and concern the impact point resolution and the transverse distribution of the e.m. shower energy inside the calorimeter. (orig.)

  17. Resolution Effects on the Mean Square Displacement as Obtained by the Self-Distribution-Function Procedure

    International Nuclear Information System (INIS)

    Benedetto, A; Magazù, S; Migliardo, F; Mondelli, C; Gonzalez, M A

    2012-01-01

    In the present contribution, a procedure for molecular motion characterization based on the evaluation of the Mean Square Displacement (MSD), through the Self-Distribution Function (SDF), is presented. It is shown how MSD, which represents an important observable for the characterization of dynamical properties, can be decomposed into different partial contributions associated to system dynamical processes within a specific spatial scale. It is also shown how the SDF procedure allows us to evaluate both total MSD and partial MSDs through total and partial SDFs. As a result, total MSD is the weighed sum of partial MSDs in which the weights are obtained by the fitting procedure of measured Elastic Incoherent Neutron Scattering (EINS) intensity. We apply SDF procedure to data collected,by IN13, IN10 and IN4 spectrometers (Institute Laue Langevin), on aqueous mixtures of two homologous disaccharides (sucrose and trehalose) and on dry and hydrated (H 2 O and D 2 O) lysozyme with and without disaccharides. It emerges that the hydrogen bond imposed network of the water-trehalose mixture appears to be stronger with respect to that of the water-sucrose mixture. This result can justify the higher bioprotectant effectiveness of trehalose. Furthermore, it emerges that partial MSDs of sucrose and trehalose are equivalent in the low Q domain (0÷1.7) Å −1 whereas they are different in the high Q domain (1.7÷4) Å −1 . This suggests that the higher structure sensitivity of sucrose should be related to the small spatial observation windows. Moreover, the role of the instrumental resolution in EINS is considered. The nature of the dynamical transition is highlighted and it is shown that it occurs when the system relaxation time becomes shorter than the instrumental energy time. Finally, the bioprotectants effect on protein dynamics and the amplitude of vibrations in lysozyme are presented.

  18. Obtaining high-resolution stage forecasts by coupling large-scale hydrologic models with sensor data

    Science.gov (United States)

    Fries, K. J.; Kerkez, B.

    2017-12-01

    We investigate how "big" quantities of distributed sensor data can be coupled with a large-scale hydrologic model, in particular the National Water Model (NWM), to obtain hyper-resolution forecasts. The recent launch of the NWM provides a great example of how growing computational capacity is enabling a new generation of massive hydrologic models. While the NWM spans an unprecedented spatial extent, there remain many questions about how to improve forecast at the street-level, the resolution at which many stakeholders make critical decisions. Further, the NWM runs on supercomputers, so water managers who may have access to their own high-resolution measurements may not readily be able to assimilate them into the model. To that end, we ask the question: how can the advances of the large-scale NWM be coupled with new local observations to enable hyper-resolution hydrologic forecasts? A methodology is proposed whereby the flow forecasts of the NWM are directly mapped to high-resolution stream levels using Dynamical System Identification. We apply the methodology across a sensor network of 182 gages in Iowa. Of these sites, approximately one third have shown to perform well in high-resolution flood forecasting when coupled with the outputs of the NWM. The quality of these forecasts is characterized using Principal Component Analysis and Random Forests to identify where the NWM may benefit from new sources of local observations. We also discuss how this approach can help municipalities identify where they should place low-cost sensors to most benefit from flood forecasts of the NWM.

  19. Densities mixture unfolding for data obtained from detectors with finite resolution and limited acceptance

    Energy Technology Data Exchange (ETDEWEB)

    Gagunashvili, N.D., E-mail: nikolai@unak.is

    2015-04-01

    A procedure based on a Mixture Density Model for correcting experimental data for distortions due to finite resolution and limited detector acceptance is presented. Addressing the case that the solution is known to be non-negative, in the approach presented here, the true distribution is estimated by a weighted sum of probability density functions with positive weights and with the width of the densities acting as a regularization parameter responsible for the smoothness of the result. To obtain better smoothing in less populated regions, the width parameter is chosen inversely proportional to the square root of the estimated density. Furthermore, the non-negative garrote method is used to find the most economic representation of the solution. Cross-validation is employed to determine the optimal values of the resolution and garrote parameters. The proposed approach is directly applicable to multidimensional problems. Numerical examples in one and two dimensions are presented to illustrate the procedure.

  20. Proper-time resolution function for measurement of time evolution of B mesons at the KEK B-Factory

    International Nuclear Information System (INIS)

    Tajima, H.; Aihara, H.; Higuchi, T.; Kawai, H.; Nakadaira, T.; Tanaka, J.; Tomura, T.; Yokoyama, M.; Hazumi, M.; Sakai, Y.; Sumisawa, K.; Kawasaki, T.

    2004-01-01

    The proper-time resolution function for the measurement of the time evolution of B mesons with the Belle detector at KEKB is studied in detail. The obtained resolution function is applied to the measurement of B meson lifetimes, the B0B-bar 0 oscillation frequency and time-dependent CP asymmetries

  1. Diamond detector time resolution for large angle tracks

    Energy Technology Data Exchange (ETDEWEB)

    Chiodini, G., E-mail: chiodini@le.infn.it [INFN - Sezione di Lecce (Italy); Fiore, G.; Perrino, R. [INFN - Sezione di Lecce (Italy); Pinto, C.; Spagnolo, S. [INFN - Sezione di Lecce (Italy); Dip. di Matematica e Fisica “Ennio De Giorgi”, Uni. del Salento (Italy)

    2015-10-01

    The applications which have stimulated greater interest in diamond sensors are related to detectors close to particle beams, therefore in an environment with high radiation level (beam monitor, luminosity measurement, detection of primary and secondary-interaction vertices). Our aims is to extend the studies performed so far by developing the technical advances needed to prove the competitiveness of this technology in terms of time resolution, with respect to more usual ones, which does not guarantee the required tolerance to a high level of radiation doses. In virtue of these goals, measurements of diamond detector time resolution with tracks incident at different angles are discussed. In particular, preliminary testbeam results obtained with 5 GeV electrons and polycrystalline diamond strip detectors are shown.

  2. Systematic test on fast time resolution parallel plate avalanche counter

    International Nuclear Information System (INIS)

    Chen Yu; Li Guangwu; Gu Xianbao; Chen Yanchao; Zhang Gang; Zhang Wenhui; Yan Guohong

    2011-01-01

    Systematic test on each detect unit of parallel plate avalanche counter (PPAC) used in the fission multi-parameter measurement was performed with a 241 Am α source to get the time resolution and position resolution. The detectors work at 600 Pa flowing isobutane and with-600 V on cathode. The time resolution was got by TOF method and the position resolution was got by delay line method. The time resolution of detect units is better than 400 ps, and the position resolution is 6 mm. The results show that the demand of measurement is fully covered. (authors)

  3. arXiv Time resolution of silicon pixel sensors

    CERN Document Server

    Riegler, W.

    2017-11-21

    We derive expressions for the time resolution of silicon detectors, using the Landau theory and a PAI model for describing the charge deposit of high energy particles. First we use the centroid time of the induced signal and derive analytic expressions for the three components contributing to the time resolution, namely charge deposit fluctuations, noise and fluctuations of the signal shape due to weighting field variations. Then we derive expressions for the time resolution using leading edge discrimination of the signal for various electronics shaping times. Time resolution of silicon detectors with internal gain is discussed as well.

  4. A method for generating high resolution satellite image time series

    Science.gov (United States)

    Guo, Tao

    2014-10-01

    There is an increasing demand for satellite remote sensing data with both high spatial and temporal resolution in many applications. But it still is a challenge to simultaneously improve spatial resolution and temporal frequency due to the technical limits of current satellite observation systems. To this end, much R&D efforts have been ongoing for years and lead to some successes roughly in two aspects, one includes super resolution, pan-sharpen etc. methods which can effectively enhance the spatial resolution and generate good visual effects, but hardly preserve spectral signatures and result in inadequate analytical value, on the other hand, time interpolation is a straight forward method to increase temporal frequency, however it increase little informative contents in fact. In this paper we presented a novel method to simulate high resolution time series data by combing low resolution time series data and a very small number of high resolution data only. Our method starts with a pair of high and low resolution data set, and then a spatial registration is done by introducing LDA model to map high and low resolution pixels correspondingly. Afterwards, temporal change information is captured through a comparison of low resolution time series data, and then projected onto the high resolution data plane and assigned to each high resolution pixel according to the predefined temporal change patterns of each type of ground objects. Finally the simulated high resolution data is generated. A preliminary experiment shows that our method can simulate a high resolution data with a reasonable accuracy. The contribution of our method is to enable timely monitoring of temporal changes through analysis of time sequence of low resolution images only, and usage of costly high resolution data can be reduces as much as possible, and it presents a highly effective way to build up an economically operational monitoring solution for agriculture, forest, land use investigation

  5. Subpicosecond time-resolution image converter the picochron

    International Nuclear Information System (INIS)

    Butslov, M.M.; Fanchenko, S.D.; Chikin, R.V.

    The problem of X-band resonance ultra-high-speed electron image swept in image converters is considered. A time analysis image converter tube is described. It is provided with a circular image-sweeping system, the sweeping speed ranging from 1 up to 2 light velocities. The swept-image intensifier makes it possible to record every electron emerging from the input photocathode. The time analysis electrostatic lens provides an electronic field at the input photocathode, strong enough to obtain a high physical time resolution. The image sweeping system to be described enables one to have a 5.10 -13 s time resolution over on observation period as long as 5.10 -8 s. It requires no precise limiting with the process to observed. The picochron tube design is described together with some results of its testing in Nd-laser experiments. Transitories as short as 0.5-1psec have been detected in ultra-short laser radiation pulses

  6. Relation of NDVI obtained from different remote sensing at different space and resolutions sensors in Spanish Dehesas

    Science.gov (United States)

    Escribano Rodríguez, Juan; Tarquis, Ana M.; Saa-Requejo, Antonio; Díaz-Ambrona, Carlos G. H.

    2015-04-01

    Satellite data are an important source of information and serve as monitoring crops on large scales. There are several indexes, but the most used for monitoring vegetation is NDVI (Normalized Difference Vegetation Index), calculated from the spectral bands of red (RED) and near infrared (NIR), obtaining the value according to relationship: [(NIR - RED) / (NIR + RED)]. During the years 2010-2013 monthly monitoring was conducted in three areas of Spain (Salamanca, Caceres and Cordoba). Pasture plots were selected and satellite images of two different sensors, DEIMOS-1 and MODIS were obtained. DEIMOS-1 is based on the concept Microsat-100 from Surrey. It is designed for imaging the Earth with a resolution good enough to study terrestrial vegetation cover (20x20 m), although with a wide range of visual field (600 km) to get those images with high temporal resolution. By contrast, MODIS images present a much lower spatial resolution (500x500 m). Indices obtained from both sensors to the same area and date are compared and the results show r2 = 0.56; r2 = 0.65 and r2 = 0.90 for the areas of Salamanca, Cáceres and Cordoba respectively. According to the results obtained show that the NDVI obtained by MODIS is slightly larger than that obtained by the sensor for DEIMOS for same time and area. References J.A. Escribano, C.G.H. Diaz-Ambrona, L. Recuero, M. Huesca, V. Cicuendez, A. Palacios-Orueta y A.M. Tarquis. Aplicacion de Indices de Vegetacion para evaluar la falta de produccion de pastos y montaneras en dehesas. I Congreso Iberico de la Dehesa y el Montado. 6-7 Noviembre, 2013, Badajoz. J.A. Escribano Rodriguez, A.M. Tarquis, C.G. Hernandez Diaz-Ambrona. Pasture Drought Insurance Based on NDVI and SAVI. Geophysical Research Abstracts, 14, EGU2012-13945, 2012. EGU General Assembly 2012. Juan Escribano Rodriguez, Carmelo Alonso, Ana Maria Tarquis, Rosa Maria Benito, Carlos Hernandez Diaz-Ambrona. Comparison of NDVI fields obtained from different remote sensors

  7. High-resolution seismic wave propagation using local time stepping

    KAUST Repository

    Peter, Daniel; Rietmann, Max; Galvez, Percy; Ampuero, Jean Paul

    2017-01-01

    High-resolution seismic wave simulations often require local refinements in numerical meshes to accurately capture e.g. steep topography or complex fault geometry. Together with explicit time schemes, this dramatically reduces the global time step

  8. The Enhancement of 3D Scans Depth Resolution Obtained by Confocal Scanning of Porous Materials

    Science.gov (United States)

    Martisek, Dalibor; Prochazkova, Jana

    2017-12-01

    The 3D reconstruction of simple structured materials using a confocal microscope is widely used in many different areas including civil engineering. Nonetheless, scans of porous materials such as concrete or cement paste are highly problematic. The well-known problem of these scans is low depth resolution in comparison to the horizontal and vertical resolution. The degradation of the image depth resolution is caused by systematic errors and especially by different random events. Our method is focused on the elimination of such random events, mainly the additive noise. We use an averaging method based on the Lindeberg-Lévy theorem that improves the final depth resolution to a level comparable with horizontal and vertical resolution. Moreover, using the least square method, we also precisely determine the limit value of a depth resolution. Therefore, we can continuously evaluate the difference between current resolution and the optimal one. This substantially simplifies the scanning process because the operator can easily determine the required number of scans.

  9. The Enhancement of 3D Scans Depth Resolution Obtained by Confocal Scanning of Porous Materials

    Directory of Open Access Journals (Sweden)

    Martisek Dalibor

    2017-12-01

    Full Text Available The 3D reconstruction of simple structured materials using a confocal microscope is widely used in many different areas including civil engineering. Nonetheless, scans of porous materials such as concrete or cement paste are highly problematic. The well-known problem of these scans is low depth resolution in comparison to the horizontal and vertical resolution. The degradation of the image depth resolution is caused by systematic errors and especially by different random events. Our method is focused on the elimination of such random events, mainly the additive noise. We use an averaging method based on the Lindeberg-Lévy theorem that improves the final depth resolution to a level comparable with horizontal and vertical resolution. Moreover, using the least square method, we also precisely determine the limit value of a depth resolution. Therefore, we can continuously evaluate the difference between current resolution and the optimal one. This substantially simplifies the scanning process because the operator can easily determine the required number of scans.

  10. High resolution time integration for SN radiation transport

    International Nuclear Information System (INIS)

    Thoreson, Greg; McClarren, Ryan G.; Chang, Jae H.

    2009-01-01

    First-order, second-order, and high resolution time discretization schemes are implemented and studied for the discrete ordinates (S N ) equations. The high resolution method employs a rate of convergence better than first-order, but also suppresses artificial oscillations introduced by second-order schemes in hyperbolic partial differential equations. The high resolution method achieves these properties by nonlinearly adapting the time stencil to use a first-order method in regions where oscillations could be created. We employ a quasi-linear solution scheme to solve the nonlinear equations that arise from the high resolution method. All three methods were compared for accuracy and convergence rates. For non-absorbing problems, both second-order and high resolution converged to the same solution as the first-order with better convergence rates. High resolution is more accurate than first-order and matches or exceeds the second-order method

  11. High resolution time integration for Sn radiation transport

    International Nuclear Information System (INIS)

    Thoreson, Greg; McClarren, Ryan G.; Chang, Jae H.

    2008-01-01

    First order, second order and high resolution time discretization schemes are implemented and studied for the S n equations. The high resolution method employs a rate of convergence better than first order, but also suppresses artificial oscillations introduced by second order schemes in hyperbolic differential equations. All three methods were compared for accuracy and convergence rates. For non-absorbing problems, both second order and high resolution converged to the same solution as the first order with better convergence rates. High resolution is more accurate than first order and matches or exceeds the second order method. (authors)

  12. Time resolution in scintillator based detectors for positron emission tomography

    International Nuclear Information System (INIS)

    Gundacker, S.

    2014-01-01

    obtained a CTR of 154±10ps FWHM. This method produces a CTR improvement of 22ps or 14% if compared to the single sided readout. The improvement is almost fully explained by a superior light collection with the double sided readout and supports our assumption that a loss in light transfer efficiency is the main cause for deteriorating the CTR with increasing crystal length. With our developed Monte Carlo simulation tool we also investigated a new type of SiPM, the fully digital SiPM. In this type of SiPM the time of detection of every single photoelectron is recorded. We showed that the fully digital readout of a SiPM with optimized time estimators can reach the intrinsic limit of the time resolution calculated from pure statistical considerations, i.e. the Cramér-Rao lower bound. In addition we pointed out that the best CTR achievable in analog SiPMs with microcell signal pile-up and leading edge discrimination can also be close to the intrinsic limit in time resolution. Our simulations further revealed that this CTR equality between analog and digital readout of SiPMs even holds for different crystal lengths, i.e. 3mm, 5mm, 10mm and 20mm. Consequently there is no preference for either a fully digital or analog readout of SiPMs for the sake of achieving highest time resolution. (author)

  13. Can lagrangian models reproduce the migration time of European eel obtained from otolith analysis?

    Science.gov (United States)

    Rodríguez-Díaz, L.; Gómez-Gesteira, M.

    2017-12-01

    European eel can be found at the Bay of Biscay after a long migration across the Atlantic. The duration of migration, which takes place at larval stage, is of primary importance to understand eel ecology and, hence, its survival. This duration is still a controversial matter since it can range from 7 months to > 4 years depending on the method to estimate duration. The minimum migration duration estimated from our lagrangian model is similar to the duration obtained from the microstructure of eel otoliths, which is typically on the order of 7-9 months. The lagrangian model showed to be sensitive to different conditions like spatial and time resolution, release depth, release area and initial distribution. In general, migration showed to be faster when decreasing the depth and increasing the resolution of the model. In average, the fastest migration was obtained when only advective horizontal movement was considered. However, faster migration was even obtained in some cases when locally oriented random migration was taken into account.

  14. ASIC for time-of-flight measurements with picosecond timing resolution

    Energy Technology Data Exchange (ETDEWEB)

    Stankova, Vera; Shen, Wei; Harion, Tobias [Kirchhoff-Institute for Physics, Heidelberg Univ. (Germany)

    2015-07-01

    The Positron Emission Tomography (PET) images are especially affected by a high level of noise. This noise affects the potential to detect and discriminate the tumor in relation to the background. Including Time-of-Flight information, with picosecond time resolution, within the conventional PET scanners will improve the signal-to-noise ratio (SNR) and in sequence the quality of the medical images. A mix-mode ASIC (STIC3) has been developed for high precision timing measurements with Silicon Photomultipliers (SiPM). The STiC3 is 64-channel chip, with fully differential analog front-end for crosstalk and electronic noise immunity. It integrates Time to Digital Converters (TDC) with time binning of 50.2 ps for time and energy measurements. Measurements of the of the analog front-end show a time jitter less than 20 ps and jitter of the TDC together with the digital part is around 37 ps. Further the timing of a channel has been tested by injecting a pulse into two channels and measuring the time difference of the recorded timestamps. A Coincidence Time Resolution (CTR) of 215 ps FWHM has been obtained with 3.1 x 3.1 x 15 mm{sup 2} LYSO:Ce scintillator crystals and Hamamatsu SiPM matric (S12643-050CN(x)). Characterization measurements with the chip and its performances are presented.

  15. Fat suppression techniques for obtaining high resolution dynamic contrast enhanced bilateral breast MR images at 7 tesla

    DEFF Research Database (Denmark)

    van der Velden, Tijl A; Schmitz, Alexander M Th; Gilhuijs, Kenneth G A

    2016-01-01

    contained 3D T1-weighted gradient echo images obtained with both WSE fat suppression, multi echo Dixon fat suppression, and without fat suppression. Images were acquired at a (0.8mm)(3) or (0.7mm)(3) isotropic resolution with equal field of view and optimized such to obtain a maximal SNR. Image quality...... was scored qualitatively on overall image quality, sharpness of anatomical details, presence of artefacts, inhomogeneous fat suppression and the presence of water-fat shift. A quantitative scoring was obtained from the signal to noise ratio and contrast to noise ratio. RESULTS: WSE scored significantly...... better in terms of overall image quality and the absence of artefacts. No significant difference in contrast to noise ratio was found between the two fat suppression methods. CONCLUSION: When maximizing temporal and spatial resolution of high resolution DCE MRI of the breast, water selective excitation...

  16. Effect of exposure time and image resolution on fractal dimension

    International Nuclear Information System (INIS)

    An, Byung Mo; Heo, Min Suk; Lee, Seung Pyo; Lee, Sam Sun; Choi, Soon Chul; Park, Tae Won; Kim, Jong Dae

    2002-01-01

    To evaluate the effect of exposure time and image resolution on fractal dimension calculations for determining the optimal range of these two variances. Thirty-one radiographs of the mandibular angle area of sixteen human dry mandibles were taken at different exposure times (0.01, 0.08, 0.16, 0.25, 0.40, 0.64, and 0.80 s). Each radiograph was digitized at 1200 dpi, 8 bit, 256 gray level using a film scanner. We selected an Region of Interest (ROI) that corresponded to the same region as in each radiograph, but the resolution of ROI was degraded to 1000, 800, 600, 500, 400, 300, 200, and 100 dpi. The fractal dimension was calculated by using the tile-counting method for each image, and the calculated values were then compared statistically. As the exposure time and the image resolution increased, the mean value of the fractal dimension decreased, except the case where exposure time was set at 0.01 seconds (alpha = 0.05). The exposure time and image resolution affected the fractal dimension by interaction (p<0.001). When the exposure time was set to either 0.64 seconds or 0.80 seconds, the resulting fractal dimensions were lower, irrespective of image resolution, than at shorter exposure times (alpha = 0.05). The optimal range for exposure time and resolution was determined to be 0.08-0.40 seconds and from 400-1000 dpi, respectively. Adequate exposure time and image resolution is essential for acquiring the fractal dimension using tile-counting method for evaluation of the mandible.

  17. Impact of ambiguity resolution and application of transformation parameters obtained by regional GNSS network in Precise Point Positioning

    Science.gov (United States)

    Gandolfi, S.; Poluzzi, L.; Tavasci, L.

    2012-12-01

    Precise Point Positioning (PPP) is one of the possible approaches for GNSS data processing. As known this technique is faster and more flexible compared to the others which are based on a differenced approach and constitute a reliable methods for accurate positioning of remote GNSS stations, even in some remote area such as Antarctica. Until few years ago one of the major limits of the method was the impossibility to resolve the ambiguity as integer but nowadays many methods are available to resolve this aspect. The first software package permitting a PPP solution was the GIPSY OASIS realized, developed and maintained by JPL (NASA). JPL produce also orbits and files ready to be used with GIPSY. Recently, using these products came possible to resolve ambiguities improving the stability of solutions. PPP permit to estimate position into the reference frame of the orbits (IGS) and when coordinate in others reference frames, such al ITRF, are needed is necessary to apply a transformation. Within his products JPL offer, for each day, a global 7 parameter transformation that permit to locate the survey into the ITRF RF. In some cases it's also possible to create a costumed process and obtain analogous parameters using local/regional reference network of stations which coordinates are available also in the desired reference frame. In this work some tests on accuracy has been carried out comparing different PPP solutions obtained using the same software packages (GIPSY) but considering the ambiguity resolution, the global and regional transformation parameters. In particular two test area have been considered, first one located in Antarctica and the second one in Italy. Aim of the work is the evaluation of the impact of ambiguity resolution and the use of local/regional transformation parameter in the final solutions. Tests shown how the ambiguity resolution improve the precision, especially in the EAST component with a scattering reduction about 8%. And the use of global

  18. A NEW HIGH RESOLUTION OPTICAL METHOD FOR OBTAINING THE TOPOGRAPHY OF FRACTURE SURFACES IN ROCKS

    Directory of Open Access Journals (Sweden)

    Steven Ogilvie

    2011-05-01

    Full Text Available Surface roughness plays a major role in the movement of fluids through fracture systems. Fracture surface profiling is necessary to tune the properties of numerical fractures required in fluid flow modelling to those of real rock fractures. This is achieved using a variety of (i mechanical and (ii optical techniques. Stylus profilometry is a popularly used mechanical method and can measure surface heights with high precision, but only gives a good horizontal resolution in one direction on the fracture plane. This method is also expensive and simultaneous coverage of the surface is not possible. Here, we describe the development of an optical method which images cast copies of rough rock fractures using in-house developed hardware and image analysis software (OptiProf™ that incorporates image improvement and noise suppression features. This technique images at high resolutions, 15-200 μm for imaged areas of 10 × 7.5 mm and 100 × 133 mm, respectively and a similar vertical resolution (15 μm for a maximum topography of 4 mm. It uses in-house developed hardware and image analysis (OptiProf™ software and is cheap and non-destructive, providing continuous coverage of the fracture surface. The fracture models are covered with dye and fluid thicknesses above the rough surfaces converted into topographies using the Lambert-Beer Law. The dye is calibrated using 2 devices with accurately known thickness; (i a polycarbonate tile with wells of different depths and (ii a wedge-shaped vial made from silica glass. The data from each of the two surfaces can be combined to provide an aperture map of the fracture for the scenario where the surfaces touch at a single point or any greater mean aperture. The topography and aperture maps are used to provide data for the generation of synthetic fractures, tuned to the original fracture and used in numerical flow modelling.

  19. The measurement and calculation of the X-ray spatial resolution obtained in the analytical electron microscope

    International Nuclear Information System (INIS)

    Michael, J.R.; Williams, D.B.

    1990-01-01

    The X-ray microanalytical spatial resolution is determined experimentally in various analytical electron microscopes by measuring the degradation of an atomically discrete composition profile across an interphase interface in a thin-foil of Ni-Cr-Fe. The experimental spatial resolutions are then compared with calculated values. The calculated spatial resolutions are obtained by the mathematical convolution of the electron probe size with an assumed beam-broadening distribution and the single-scattering model of beam broadening. The probe size is measured directly from an image of the probe in a TEM/SETEM and indirectly from dark-field signal changes resulting from scanning the probe across the edge of an MgO crystal in a dedicated STEM. This study demonstrates the applicability of the convolution technique to the calculation of the microanalytical spatial resolution obtained in the analytical electron microscope. It is demonstrated that, contrary to popular opinion, the electron probe size has a major impact on the measured spatial resolution in foils < 150 nm thick. (author)

  20. Real-time database for high resolution neutron monitor measurements

    Energy Technology Data Exchange (ETDEWEB)

    Steigies, Christian T.; Rother, Oliver M.; Wimmer-Schweingruber, Robert F.; Heber, Bernd [IEAP, Christian-Albrechts-Universitaet zu Kiel (Germany)

    2008-07-01

    The worldwide network of standardised neutron monitors is, after 50 years, still the state-of-the-art instrumentation to measure spectral variations of the primary cosmic ray component. These measurements are an ideal complement to space based cosmic ray measurements. Data from the approximately 50 IGY and NM64 neutron monitors is stored locally but also available through data collections sites like the World Data Center (WDC) or the IZMIRAN ftp server. The data from the WDC is in a standard format, but only hourly values are available. IZMIRAN collects the data in the best available time resolution, but the data arrives on the ftp server only hours, sometimes days, after the measurements. Also, the high time-resolution measurements of the different stations do not have a common format, a conversion routine for each station is needed before they can be used for scientific analysis. Supported by the 7th framework program of the European Commission, we are setting up a real-time database where high resolution cosmic ray measurements will be stored and accessible immediately after the measurement. Stations that do not have 1-minute resolution measurements will be upgraded to 1-minute or better resolution with an affordable standard registration system, that will submit the measurements to the database via the internet in real-time.

  1. A new timing model for calculating the intrinsic timing resolution of a scintillator detector

    International Nuclear Information System (INIS)

    Shao Yiping

    2007-01-01

    The coincidence timing resolution is a critical parameter which to a large extent determines the system performance of positron emission tomography (PET). This is particularly true for time-of-flight (TOF) PET that requires an excellent coincidence timing resolution (<<1 ns) in order to significantly improve the image quality. The intrinsic timing resolution is conventionally calculated with a single-exponential timing model that includes two parameters of a scintillator detector: scintillation decay time and total photoelectron yield from the photon-electron conversion. However, this calculation has led to significant errors when the coincidence timing resolution reaches 1 ns or less. In this paper, a bi-exponential timing model is derived and evaluated. The new timing model includes an additional parameter of a scintillator detector: scintillation rise time. The effect of rise time on the timing resolution has been investigated analytically, and the results reveal that the rise time can significantly change the timing resolution of fast scintillators that have short decay time constants. Compared with measured data, the calculations have shown that the new timing model significantly improves the accuracy in the calculation of timing resolutions

  2. Correction of time resolution of an ambulatory cardiac monitor (VEST)

    International Nuclear Information System (INIS)

    Kumita, Shin-ichiro; Nishimura, Tsunehiko; Hayashida, Kohei; Uehara, Toshiisa

    1990-01-01

    Using ambulatory cardiac monitor (VEST) at exercise study, its time resolution is very important factor. We evaluated the time resolution of VEST using pulsate cardiac baloon phantom. Four analysis were carried out; no smoothing (NS) method, 3 points smoothing (3S) method, short sampling interval (SS) method, and digital filter (DF) method. By comparison of |ΔEF| (|EF:HR120-EF: HR60|) among 4 analysis methods, |ΔEF| by DF method was significant small (NS:3.58±3.01, 3S: 4.46±0.95, SS: 3.35±3.26, DF: 1.11±1.28%). We conclude that correction of time resolution by digital filter is necessary when we use VEST during exercise. (author)

  3. Geometrically necessary dislocation densities in olivine obtained using high-angular resolution electron backscatter diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Wallis, David, E-mail: davidwa@earth.ox.ac.uk [Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, Oxfordshire, OX1 3AN (United Kingdom); Hansen, Lars N. [Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, Oxfordshire, OX1 3AN (United Kingdom); Ben Britton, T. [Department of Materials, Imperial College London, Royal School of Mines, Exhibition Road, London SW7 2AZ (United Kingdom); Wilkinson, Angus J. [Department of Materials, University of Oxford, Parks Road, Oxford, Oxfordshire, OX1 3PH (United Kingdom)

    2016-09-15

    Dislocations in geological minerals are fundamental to the creep processes that control large-scale geodynamic phenomena. However, techniques to quantify their densities, distributions, and types over critical subgrain to polycrystal length scales are limited. The recent advent of high-angular resolution electron backscatter diffraction (HR-EBSD), based on diffraction pattern cross-correlation, offers a powerful new approach that has been utilised to analyse dislocation densities in the materials sciences. In particular, HR-EBSD yields significantly better angular resolution (<0.01°) than conventional EBSD (~0.5°), allowing very low dislocation densities to be analysed. We develop the application of HR-EBSD to olivine, the dominant mineral in Earth's upper mantle by testing (1) different inversion methods for estimating geometrically necessary dislocation (GND) densities, (2) the sensitivity of the method under a range of data acquisition settings, and (3) the ability of the technique to resolve a variety of olivine dislocation structures. The relatively low crystal symmetry (orthorhombic) and few slip systems in olivine result in well constrained GND density estimates. The GND density noise floor is inversely proportional to map step size, such that datasets can be optimised for analysing either short wavelength, high density structures (e.g. subgrain boundaries) or long wavelength, low amplitude orientation gradients. Comparison to conventional images of decorated dislocations demonstrates that HR-EBSD can characterise the dislocation distribution and reveal additional structure not captured by the decoration technique. HR-EBSD therefore provides a highly effective method for analysing dislocations in olivine and determining their role in accommodating macroscopic deformation. - Highlights: • Lattice orientation gradients in olivine were measured using HR-EBSD. • The limited number of olivine slip systems enable simple least squares inversion for GND

  4. High-resolution seismic wave propagation using local time stepping

    KAUST Repository

    Peter, Daniel

    2017-03-13

    High-resolution seismic wave simulations often require local refinements in numerical meshes to accurately capture e.g. steep topography or complex fault geometry. Together with explicit time schemes, this dramatically reduces the global time step size for ground-motion simulations due to numerical stability conditions. To alleviate this problem, local time stepping (LTS) algorithms allow an explicit time stepping scheme to adapt the time step to the element size, allowing nearoptimal time steps everywhere in the mesh. This can potentially lead to significantly faster simulation runtimes.

  5. Analysis of single-photon time resolution of FBK silicon photomultipliers

    International Nuclear Information System (INIS)

    Acerbi, Fabio; Ferri, Alessandro; Gola, Alberto; Zorzi, Nicola; Piemonte, Claudio

    2015-01-01

    We characterized and analyzed an important feature of silicon photomultipliers: the single-photon time resolution (SPTR). We characterized the SPTR of new RGB (Red–Green–Blue) type Silicon Photomultipliers and SPADs produced at FBK (Trento, Italy), studying its main limiting factors. We compared time resolution of 1×1 mm 2 and 3×3 mm 2 SiPMs and a single SiPM cell (i.e. a SPAD with integrated passive-quenching), employing a mode-locked pulsed laser with 2-ps wide pulses. We estimated the contribution of front-end electronic-noise, of cell-to-cell uniformity, and intrinsic cell time-resolution. At a single-cell level, we compared the results obtained with different layouts. With a circular cell with a top metallization covering part of the edge and enhancing the signal extraction, we reached ~20 ps FWHM of time resolution

  6. Analysis of single-photon time resolution of FBK silicon photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Acerbi, Fabio, E-mail: acerbi@fbk.eu; Ferri, Alessandro; Gola, Alberto; Zorzi, Nicola; Piemonte, Claudio

    2015-07-01

    We characterized and analyzed an important feature of silicon photomultipliers: the single-photon time resolution (SPTR). We characterized the SPTR of new RGB (Red–Green–Blue) type Silicon Photomultipliers and SPADs produced at FBK (Trento, Italy), studying its main limiting factors. We compared time resolution of 1×1 mm{sup 2} and 3×3 mm{sup 2} SiPMs and a single SiPM cell (i.e. a SPAD with integrated passive-quenching), employing a mode-locked pulsed laser with 2-ps wide pulses. We estimated the contribution of front-end electronic-noise, of cell-to-cell uniformity, and intrinsic cell time-resolution. At a single-cell level, we compared the results obtained with different layouts. With a circular cell with a top metallization covering part of the edge and enhancing the signal extraction, we reached ~20 ps FWHM of time resolution.

  7. High resolution time-of-flight measurements in small and large scintillation counters

    International Nuclear Information System (INIS)

    D'Agostini, G.; Marini, G.; Martellotti, G.; Massa, F.; Rambaldi, A.; Sciubba, A.

    1981-01-01

    In a test run, the experimental time-of-flight resolution was measured for several different scintillation counters of small (10 x 5 cm 2 ) and large (100 x 15 cm 2 and 75 x 25 cm 2 ) area. The design characteristics were decided on the basis of theoretical Monte Carlo calculations. We report results using twisted, fish-tail, and rectangular light- guides and different types of scintillator (NE 114 and PILOT U). Time resolution up to approx. equal to 130-150 ps fwhm for the small counters and up to approx. equal to 280-300 ps fwhm for the large counters were obtained. The spatial resolution from time measurements in the large counters is also reported. The results of Monte Carlo calculations on the type of scintillator, the shape and dimensions of the light-guides, and the nature of the external wrapping surfaces - to be used in order to optimize the time resolution - are also summarized. (orig.)

  8. Calculation of the time resolution of the J-PET tomograph using kernel density estimation

    Science.gov (United States)

    Raczyński, L.; Wiślicki, W.; Krzemień, W.; Kowalski, P.; Alfs, D.; Bednarski, T.; Białas, P.; Curceanu, C.; Czerwiński, E.; Dulski, K.; Gajos, A.; Głowacz, B.; Gorgol, M.; Hiesmayr, B.; Jasińska, B.; Kamińska, D.; Korcyl, G.; Kozik, T.; Krawczyk, N.; Kubicz, E.; Mohammed, M.; Pawlik-Niedźwiecka, M.; Niedźwiecki, S.; Pałka, M.; Rudy, Z.; Rundel, O.; Sharma, N. G.; Silarski, M.; Smyrski, J.; Strzelecki, A.; Wieczorek, A.; Zgardzińska, B.; Zieliński, M.; Moskal, P.

    2017-06-01

    In this paper we estimate the time resolution of the J-PET scanner built from plastic scintillators. We incorporate the method of signal processing using the Tikhonov regularization framework and the kernel density estimation method. We obtain simple, closed-form analytical formulae for time resolution. The proposed method is validated using signals registered by means of the single detection unit of the J-PET tomograph built from a 30 cm long plastic scintillator strip. It is shown that the experimental and theoretical results obtained for the J-PET scanner equipped with vacuum tube photomultipliers are consistent.

  9. A multi-channel high-resolution time recorder system

    International Nuclear Information System (INIS)

    Zhang Lingyun; Yang Xiaojun; Song Kezhu; Wang Yanfang

    2004-01-01

    This paper introduces a multi-channel and high-speed time recorder system, which was originally designed to work in the experiments of quantum cryptography research. The novelty of the system is that all the hardware logic is performed by only one FPGA. The system can achieve several desirable features, such as simplicity, high resolution and high processing speed. (authors)

  10. Construction and calibration of high time resolution gas pressure meter

    International Nuclear Information System (INIS)

    Rossi, J.O.; Santos, C.; Ueda, M.

    1989-11-01

    In this report, the construction and calibration of a gas pressure meter with a time resolution better than 20 μs are described. The meter consists basically of a sensor of the FIG (Fast Ionization Gauge) type and an adequate electronic circuit. A 6AU6A pentode vacuum tube without the glass envelope is used as the sensor head. (author) [pt

  11. Time resolution studies using digital constant fraction discrimination

    International Nuclear Information System (INIS)

    Fallu-Labruyere, A.; Tan, H.; Hennig, W.; Warburton, W.K.

    2007-01-01

    Digital Pulse Processing (DPP) modules are being increasingly considered to replace modular analog electronics in medium-scale nuclear physics experiments (100-1000s of channels). One major area remains, however, where it has not been convincingly demonstrated that DPP modules are competitive with their analog predecessors-time-of-arrival measurement. While analog discriminators and time-to-amplitude converters can readily achieve coincidence time resolutions in the 300-500 ps range with suitably fast scintillators and Photomultiplier Tubes (PMTs), this capability has not been widely demonstrated with DPPs. Some concern has been expressed, in fact, that such time resolutions are attainable with the 10 ns sampling times that are presently commonly available. In this work, we present time-coincidence measurements taken using a commercially available DPP (the Pixie-4 from XIA LLC) directly coupled to pairs of fast PMTs mated with either LSO or LaBr 3 scintillator crystals and excited by 22 Na γ-ray emissions. Our results, 886 ps for LSO and 576 ps for LaBr 3 , while not matching the best literature results using analog electronics, are already well below 1 ns and fully adequate for a wide variety of experiments. These results are shown not to be limited by the DPPs themselves, which achieved 57 ps time resolution using a pulser, but are degraded in part both by the somewhat limited number of photoelectrons we collected and by a sub-optimum choice of PMT. Analysis further suggests that increasing the sampling speed would further improve performance. We therefore conclude that DPP time-of-arrival resolution is already adequate to supplant analog processing in many applications and that further improvements could be achieved with only modest efforts

  12. A facile method to compare EFTEM maps obtained from materials changing composition over time

    KAUST Repository

    Casu, Alberto

    2015-10-31

    Energy Filtered Transmission Electron Microscopy (EFTEM) is an analytical tool that has been successfully and widely employed in the last two decades for obtaining fast elemental maps in TEM mode. Several studies and efforts have been addressed to investigate limitations and advantages of such technique, as well as to improve the spatial resolution of compositional maps. Usually, EFTEM maps undergo post-acquisition treatments by changing brightness and contrast levels, either via dedicated software or via human elaboration, in order to maximize their signal-to-noise ratio and render them as visible as possible. However, elemental maps forming a single set of EFTEM images are usually subjected to independent map-by-map image treatment. This post-acquisition step becomes crucial when analyzing materials that change composition over time as a consequence of an external stimulus, because the map-by-map approach doesn\\'t take into account how the chemical features of the imaged materials actually progress, in particular when the investigated elements exhibit very low signals. In this article, we present a facile procedure applicable to whole sets of EFTEM maps acquired on a sample that is evolving over time. The main aim is to find a common method to treat the images features, in order to make them as comparable as possible without affecting the information there contained. Microsc. Res. Tech. 78:1090–1097, 2015. © 2015 Wiley Periodicals, Inc.

  13. A facile method to compare EFTEM maps obtained from materials changing composition over time

    KAUST Repository

    Casu, Alberto; Genovese, Alessandro; Di Benedetto, Cristiano; Lentijo Mozo, Sergio; Sogne, Elisa; Zuddas, Efisio; Falqui, Andrea

    2015-01-01

    Energy Filtered Transmission Electron Microscopy (EFTEM) is an analytical tool that has been successfully and widely employed in the last two decades for obtaining fast elemental maps in TEM mode. Several studies and efforts have been addressed to investigate limitations and advantages of such technique, as well as to improve the spatial resolution of compositional maps. Usually, EFTEM maps undergo post-acquisition treatments by changing brightness and contrast levels, either via dedicated software or via human elaboration, in order to maximize their signal-to-noise ratio and render them as visible as possible. However, elemental maps forming a single set of EFTEM images are usually subjected to independent map-by-map image treatment. This post-acquisition step becomes crucial when analyzing materials that change composition over time as a consequence of an external stimulus, because the map-by-map approach doesn't take into account how the chemical features of the imaged materials actually progress, in particular when the investigated elements exhibit very low signals. In this article, we present a facile procedure applicable to whole sets of EFTEM maps acquired on a sample that is evolving over time. The main aim is to find a common method to treat the images features, in order to make them as comparable as possible without affecting the information there contained. Microsc. Res. Tech. 78:1090–1097, 2015. © 2015 Wiley Periodicals, Inc.

  14. Breaking time-resolution limits in pulse radiolysis

    International Nuclear Information System (INIS)

    Yang Jinfeng; Kondoh, Takafumi; Norizawa, Kimihiro; Yoshida, Yoichi; Tagawa, Seiichi

    2009-01-01

    Pulse radiolysis, which is a time-resolved stroboscopic method based on ultrashort electron pulse and ultrashort analyzing light, is widely used for the study of the chemical kinetics and radiation primary processes or reactions. Although it has become possible to use femtosecond-pulse electron beam and femtosecond laser light in pulse radiolysis, the resolution is limited by the difference in group velocities of the electrons and the light in sample. In this contribution, we introduce a concept of equivalent velocity spectroscopy (EVS) into pulse radiolysis and demonstrate the methodology experimentally. In EVS, both the electron and the analyzing light pulses precisely overlap at every point in the sample and throughout the propagation time by rotating the electron pulse. The advance allows us to overcome the resolution degradation due to the different group velocity. We also present a method for measuring the rotated angle of the electron pulse and a technique for rotating the electron pulse with a deflecting cavity.

  15. High-Resolution Esophageal Manometry: A Time Motion Study

    Directory of Open Access Journals (Sweden)

    Daniel C Sadowski

    2008-01-01

    Full Text Available INTRODUCTION: High-resolution manometry (HRM of the esophagus is a new technique that provides a more precise assessment of esophageal motility than conventional techniques. Because HRM measures pressure events along the entire length of the esophagus simultaneously, clinical procedure time should be shorter because less catheter manipulation is required. According to manufacturer advertising, the new HRM system is more accurate and up to 50% faster than conventional methods.

  16. Can Transient Phenomena Help Improving Time Resolution in Scintillators?

    CERN Document Server

    Lecoq, P; Vasiliev, A

    2014-01-01

    The time resolution of a scintillator-based detector is directly driven by the density of photoelectrons generated in the photodetector at the detection threshold. At the scintillator level it is related to the intrinsic light yield, the pulse shape (rise time and decay time) and the light transport from the gamma-ray conversion point to the photodetector. When aiming at 10 ps time resolution, fluctuations in the thermalization and relaxation time of hot electrons and holes generated by the interaction of ionization radiation with the crystal become important. These processes last for up to a few tens of ps and are followed by a complex trapping-detrapping process, Poole-Frenkel effect, Auger ionization of traps and electron-hole recombination, which can last for a few ns with very large fluctuations. This paper will review the different processes at work and evaluate if some of the transient phenomena taking place during the fast thermalization phase can be exploited to extract a time tag with a precision in...

  17. Chromatographic peak resolution using Microsoft Excel Solver. The merit of time shifting input arrays.

    Science.gov (United States)

    Dasgupta, Purnendu K

    2008-12-05

    Resolution of overlapped chromatographic peaks is generally accomplished by modeling the peaks as Gaussian or modified Gaussian functions. It is possible, even preferable, to use actual single analyte input responses for this purpose and a nonlinear least squares minimization routine such as that provided by Microsoft Excel Solver can then provide the resolution. In practice, the quality of the results obtained varies greatly due to small shifts in retention time. I show here that such deconvolution can be considerably improved if one or more of the response arrays are iteratively shifted in time.

  18. High-resolution imaging of coronary calcifications by intense low-energy fluoroscopic X-ray obtained from synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ohtsuka, S.; Sugishita, Y.; Takeda, T.; Itai, Y.; Tada, J.; Hyodo, K.; Ando, M. [Inst. of Clinical Medicine, Univ. of Tsukuba, Ibaraki (Japan). Dept. of Cardiology

    2000-07-01

    In order to obtain an intense monochromatic low-energy X-ray from synchrotron radiation (SR) and apply it to detect coronary calcifications, the SR beam was reflected with a silicon crystal to be expanded (150 mm in height and 80 mm in width) and to be monochromatized at an energy level of 37 keV. The X-ray was intermittently irradiated to obtain dynamic imaging of 30 images/s. Images were recorded by a digital fluorography system. The low-energy X-ray from SR sharply visualized calcification of coronary arteries, while conventional X-ray could not visualize coronary calcification. The intense monochromatic low-energy X-ray from SR is sensitive, has high-resolution for imaging coronary calcification and may serve as a screening method for coronary artery disease.

  19. A high-resolution optical imaging system for obtaining the serial transverse section images of biologic tissue

    Science.gov (United States)

    Wu, Li; Zhang, Bin; Wu, Ping; Liu, Qian; Gong, Hui

    2007-05-01

    A high-resolution optical imaging system was designed and developed to obtain the serial transverse section images of the biologic tissue, such as the mouse brain, in which new knife-edge imaging technology, high-speed and high-sensitive line-scan CCD and linear air bearing stages were adopted and incorporated with an OLYMPUS microscope. The section images on the tip of the knife-edge were synchronously captured by the reflection imaging in the microscope while cutting the biologic tissue. The biologic tissue can be sectioned at interval of 250 nm with the same resolution of the transverse section images obtained in x and y plane. And the cutting job can be automatically finished based on the control program wrote specially in advance, so we save the mass labor of the registration of the vast images data. In addition, by using this system a larger sample can be cut than conventional ultramicrotome so as to avoid the loss of the tissue structure information because of splitting the tissue sample to meet the size request of the ultramicrotome.

  20. 3D detectors with high space and time resolution

    Science.gov (United States)

    Loi, A.

    2018-01-01

    For future high luminosity LHC experiments it will be important to develop new detector systems with increased space and time resolution and also better radiation hardness in order to operate in high luminosity environment. A possible technology which could give such performances is 3D silicon detectors. This work explores the possibility of a pixel geometry by designing and simulating different solutions, using Sentaurus Tecnology Computer Aided Design (TCAD) as design and simulation tool, and analysing their performances. A key factor during the selection was the generated electric field and the carrier velocity inside the active area of the pixel.

  1. How Photonic Crystals Can Improve the Timing Resolution of Scintillators

    CERN Document Server

    Lecoq, P; Knapitsch, A

    2013-01-01

    Photonic crystals (PhCs) and quantum optics phenomena open interesting perspectives to enhance the light extraction from scintillating me dia with high refractive indices as demonstrated by our previous work. By doing so, they also in fl uence the timing resolution of scintillators by improving the photostatistics. The present cont ribution will demonstrate that they are actually doing much more. Indeed, photonic crystals, if properly designed, allow the extr action of fast light propagation modes in the crystal with higher efficiency, therefore contributing to increasing the density of photons in the early phase of the light pulse. This is of particular interest to tag events at future high-energy physics colliders, such as CLIC, with a bunch-crossing rate of 2 GHz, as well as for a new generation of time-of-flight positron emission tomographs (TOFPET) aiming at a coincidence timing resolution of 100 ps FWHM. At this level of precision, good control of the light propagation modes is crucial if we consid...

  2. Time lens for high-resolution neutron time-of-flight spectrometers

    International Nuclear Information System (INIS)

    Baumann, K.; Gaehler, R.; Grigoriev, P.; Kats, E.I.

    2005-01-01

    We examine in analytic and numeric ways the imaging effects of temporal neutron lenses created by traveling magnetic fields. For fields of parabolic shape we derive the imaging equations, investigate the time magnification, the evolution of the phase-space element, the gain factor, and the effect of finite beam size. The main aberration effects are calculated numerically. The system is technologically feasible and should convert neutron time-of-flight instruments from pinhole to imaging configuration in time, thus enhancing intensity and/or time resolution. Further fields of application for high-resolution spectrometry may be opened

  3. Time multiplexing for increased FOV and resolution in virtual reality

    Science.gov (United States)

    Miñano, Juan C.; Benitez, Pablo; Grabovičkić, Dejan; Zamora, Pablo; Buljan, Marina; Narasimhan, Bharathwaj

    2017-06-01

    We introduce a time multiplexing strategy to increase the total pixel count of the virtual image seen in a VR headset. This translates into an improvement of the pixel density or the Field of View FOV (or both) A given virtual image is displayed by generating a succession of partial real images, each representing part of the virtual image and together representing the virtual image. Each partial real image uses the full set of physical pixels available in the display. The partial real images are successively formed and combine spatially and temporally to form a virtual image viewable from the eye position. Partial real images are imaged through different optical channels depending of its time slot. Shutters or other schemes are used to avoid that a partial real image be imaged through the wrong optical channels or at the wrong time slot. This time multiplexing strategy needs real images be shown at high frame rates (>120fps). Available display and shutters technologies are discussed. Several optical designs for achieving this time multiplexing scheme in a compact format are shown. This time multiplexing scheme allows increasing the resolution/FOV of the virtual image not only by increasing the physical pixel density but also by decreasing the pixels switching time, a feature that may be simpler to achieve in certain circumstances.

  4. Vineyard Yield Estimation Based on the Analysis of High Resolution Images Obtained with Artificial Illumination at Night

    Directory of Open Access Journals (Sweden)

    Davinia Font

    2015-04-01

    Full Text Available This paper presents a method for vineyard yield estimation based on the analysis of high-resolution images obtained with artificial illumination at night. First, this paper assesses different pixel-based segmentation methods in order to detect reddish grapes: threshold based, Mahalanobis distance, Bayesian classifier, linear color model segmentation and histogram segmentation, in order to obtain the best estimation of the area of the clusters of grapes in this illumination conditions. The color spaces tested were the original RGB and the Hue-Saturation-Value (HSV. The best segmentation method in the case of a non-occluded reddish table-grape variety was the threshold segmentation applied to the H layer, with an estimation error in the area of 13.55%, improved up to 10.01% by morphological filtering. Secondly, after segmentation, two procedures for yield estimation based on a previous calibration procedure have been proposed: (1 the number of pixels corresponding to a cluster of grapes is computed and converted directly into a yield estimate; and (2 the area of a cluster of grapes is converted into a volume by means of a solid of revolution, and this volume is converted into a yield estimate; the yield errors obtained were 16% and −17%, respectively.

  5. Effect of radar rainfall time resolution on the predictive capability of a distributed hydrologic model

    Science.gov (United States)

    Atencia, A.; Llasat, M. C.; Garrote, L.; Mediero, L.

    2010-10-01

    The performance of distributed hydrological models depends on the resolution, both spatial and temporal, of the rainfall surface data introduced. The estimation of quantitative precipitation from meteorological radar or satellite can improve hydrological model results, thanks to an indirect estimation at higher spatial and temporal resolution. In this work, composed radar data from a network of three C-band radars, with 6-minutal temporal and 2 × 2 km2 spatial resolution, provided by the Catalan Meteorological Service, is used to feed the RIBS distributed hydrological model. A Window Probability Matching Method (gage-adjustment method) is applied to four cases of heavy rainfall to improve the observed rainfall sub-estimation in both convective and stratiform Z/R relations used over Catalonia. Once the rainfall field has been adequately obtained, an advection correction, based on cross-correlation between two consecutive images, was introduced to get several time resolutions from 1 min to 30 min. Each different resolution is treated as an independent event, resulting in a probable range of input rainfall data. This ensemble of rainfall data is used, together with other sources of uncertainty, such as the initial basin state or the accuracy of discharge measurements, to calibrate the RIBS model using probabilistic methodology. A sensitivity analysis of time resolutions was implemented by comparing the various results with real values from stream-flow measurement stations.

  6. Timing resolution performance comparison of different SiPM devices

    Energy Technology Data Exchange (ETDEWEB)

    Dolinsky, Sergei, E-mail: dolinsky@ge.com; Fu, Geng; Ivan, Adrian

    2015-11-21

    Silicon photomultiplier (SiPM) devices with improved parameters were recently introduced by several vendors. In addition to published manufacturer performance specifications, different research groups have reported on measurements of the available SiPMs in different operating conditions and using different test setups. In this work we performed a consistent set of test procedures for SiPM devices from various vendors, with focus on Time-of-Flight (TOF) PET detectors applications. SiPMs from Hamamatsu (HPK), SensL, Ketek, and Excelitas were tested. The same experimental setup and procedures were used for comparison of timing resolution for small (3×3 mm{sup 2}) and large (6×6 mm{sup 2} or 4×6 mm{sup 2}) devices coupled to short (3×3×10 mm{sup 3}) and long (4×4×25 mm{sup 3}) LYSO crystals. The potential opportunities for TOF PET detectors are also evaluated.

  7. ASIC-enabled High Resolution Optical Time Domain Reflectometer

    Science.gov (United States)

    Skendzic, Sandra

    Fiber optics has become the preferred technology in communication systems because of what it has to offer: high data transmission rates, immunity to electromagnetic interference, and lightweight, flexible cables. An optical time domain reflectometer (OTDR) provides a convenient method of locating and diagnosing faults (e.g. break in a fiber) along a fiber that can obstruct crucial optical pathways. Both the ability to resolve the precise location of the fault and distinguish between two discrete, closely spaced faults are figures of merit. This thesis presents an implementation of a high resolution OTDR through the use of a compact and programmable ASIC (application specific integrated circuit). The integration of many essential OTDR functions on a single chip is advantageous over existing commercial instruments because it enables small, lightweight packaging, and offers low power and cost efficiency. Furthermore, its compactness presents the option of placing multiple ASICs in parallel, which can conceivably ease the characterization of densely populated fiber optic networks. The OTDR ASIC consists of a tunable clock, pattern generator, precise timer, electrical receiver, and signal sampling circuit. During OTDR operation, the chip generates narrow electrical pulse, which can then be converted to optical format when coupled with an external laser diode driver. The ASIC also works with an external photodetector to measure the timing and amplitude of optical reflections in a fiber. It has a 1 cm sampling resolution, which allows for a 2 cm spatial resolution. While this OTDR ASIC has been previously demonstrated for multimode fiber fault diagnostics, this thesis focuses on extending its functionality to single mode fiber. To validate this novel approach to OTDR, this thesis is divided into five chapters: (1) introduction, (2) implementation, (3), performance of ASIC-based OTDR, (4) exploration in optical pre-amplification with a semiconductor optical amplifier, and

  8. A multichannel time-to-digital converter ASIC with better than 3 ps RMS time resolution

    International Nuclear Information System (INIS)

    Perktold, L; Christiansen, J

    2014-01-01

    The development of a new multichannel, fine-time resolution time-to-digital converter (TDC) ASIC is currently under development at CERN. A prototype TDC has been designed, fabricated and successfully verified with demonstrated time resolutions of better than 3 ps-rms. Least-significant-bit (LSB) sizes as small as 5 ps with a differential-non-linearity (DNL) of better than ±0.9 LSB and integral-non-linearity (INL) of better than ±1.3 LSB respectively have been achieved. The contribution describes the implemented architecture and presents measurement results of a prototype ASIC implemented in a commercial 130 nm technology

  9. The high-resolution time-of-flight spectrometer TOFTOF

    Energy Technology Data Exchange (ETDEWEB)

    Unruh, Tobias [Technische Universitaet Muenchen, Forschungsneutronenquelle Heinz Maier-Leibnitz FRM II and Physik Department E13, Lichtenbergstr. 1, 85747 Garching (Germany)], E-mail: Tobias.Unruh@frm2.tum.de; Neuhaus, Juergen; Petry, Winfried [Technische Universitaet Muenchen, Forschungsneutronenquelle Heinz Maier-Leibnitz FRM II and Physik Department E13, Lichtenbergstr. 1, 85747 Garching (Germany)

    2007-10-11

    The TOFTOF spectrometer is a multi-disc chopper time-of-flight spectrometer for cold neutrons at the research neutron source Heinz Maier-Leibnitz (FRM II). After five reactor cycles of routine operation the characteristics of the instrument are reported in this article. The spectrometer features an excellent signal to background ratio due to its remote position in the neutron guide hall, an elaborated shielding concept and an s-shaped curved primary neutron guide which acts i.a. as a neutron velocity filter. The spectrometer is fed with neutrons from the undermoderated cold neutron source of the FRM II leading to a total neutron flux of {approx}10{sup 10}n/cm{sup 2}/s in the continuous white beam at the sample position distributed over a continuous and particularly broad wavelength spectrum. A high energy resolution is achieved by the use of high speed chopper discs made of carbon-fiber-reinforced plastic. In the combination of intensity, resolution and signal to background ratio the spectrometer offers new scientific prospects in the fields of inelastic and quasielastic neutron scattering.

  10. The high-resolution time-of-flight spectrometer TOFTOF

    Science.gov (United States)

    Unruh, Tobias; Neuhaus, Jürgen; Petry, Winfried

    2007-10-01

    The TOFTOF spectrometer is a multi-disc chopper time-of-flight spectrometer for cold neutrons at the research neutron source Heinz Maier-Leibnitz (FRM II). After five reactor cycles of routine operation the characteristics of the instrument are reported in this article. The spectrometer features an excellent signal to background ratio due to its remote position in the neutron guide hall, an elaborated shielding concept and an s-shaped curved primary neutron guide which acts i.a. as a neutron velocity filter. The spectrometer is fed with neutrons from the undermoderated cold neutron source of the FRM II leading to a total neutron flux of ˜1010n/cm2/s in the continuous white beam at the sample position distributed over a continuous and particularly broad wavelength spectrum. A high energy resolution is achieved by the use of high speed chopper discs made of carbon-fiber-reinforced plastic. In the combination of intensity, resolution and signal to background ratio the spectrometer offers new scientific prospects in the fields of inelastic and quasielastic neutron scattering.

  11. Precision cosmology with time delay lenses: high resolution imaging requirements

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Xiao-Lei; Liao, Kai [Department of Astronomy, Beijing Normal University, 19 Xinjiekouwai Street, Beijing, 100875 (China); Treu, Tommaso; Agnello, Adriano [Department of Physics, University of California, Broida Hall, Santa Barbara, CA 93106 (United States); Auger, Matthew W. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Marshall, Philip J., E-mail: xlmeng919@gmail.com, E-mail: tt@astro.ucla.edu, E-mail: aagnello@physics.ucsb.edu, E-mail: mauger@ast.cam.ac.uk, E-mail: liaokai@mail.bnu.edu.cn, E-mail: dr.phil.marshall@gmail.com [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, CA 94305 (United States)

    2015-09-01

    Lens time delays are a powerful probe of cosmology, provided that the gravitational potential of the main deflector can be modeled with sufficient precision. Recent work has shown that this can be achieved by detailed modeling of the host galaxies of lensed quasars, which appear as ''Einstein Rings'' in high resolution images. The distortion of these arcs and counter-arcs, as measured over a large number of pixels, provides tight constraints on the difference between the gravitational potential between the quasar image positions, and thus on cosmology in combination with the measured time delay. We carry out a systematic exploration of the high resolution imaging required to exploit the thousands of lensed quasars that will be discovered by current and upcoming surveys with the next decade. Specifically, we simulate realistic lens systems as imaged by the Hubble Space Telescope (HST), James Webb Space Telescope (JWST), and ground based adaptive optics images taken with Keck or the Thirty Meter Telescope (TMT). We compare the performance of these pointed observations with that of images taken by the Euclid (VIS), Wide-Field Infrared Survey Telescope (WFIRST) and Large Synoptic Survey Telescope (LSST) surveys. We use as our metric the precision with which the slope γ' of the total mass density profile ρ{sub tot}∝ r{sup −γ'} for the main deflector can be measured. Ideally, we require that the statistical error on γ' be less than 0.02, such that it is subdominant to other sources of random and systematic uncertainties. We find that survey data will likely have sufficient depth and resolution to meet the target only for the brighter gravitational lens systems, comparable to those discovered by the SDSS survey. For fainter systems, that will be discovered by current and future surveys, targeted follow-up will be required. However, the exposure time required with upcoming facilitites such as JWST, the Keck Next Generation

  12. Precision cosmology with time delay lenses: High resolution imaging requirements

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Xiao -Lei [Beijing Normal Univ., Beijing (China); Univ. of California, Santa Barbara, CA (United States); Treu, Tommaso [Univ. of California, Santa Barbara, CA (United States); Univ. of California, Los Angeles, CA (United States); Agnello, Adriano [Univ. of California, Santa Barbara, CA (United States); Univ. of California, Los Angeles, CA (United States); Auger, Matthew W. [Univ. of Cambridge, Cambridge (United Kingdom); Liao, Kai [Beijing Normal Univ., Beijing (China); Univ. of California, Santa Barbara, CA (United States); Univ. of California, Los Angeles, CA (United States); Marshall, Philip J. [Stanford Univ., Stanford, CA (United States)

    2015-09-28

    Lens time delays are a powerful probe of cosmology, provided that the gravitational potential of the main deflector can be modeled with sufficient precision. Recent work has shown that this can be achieved by detailed modeling of the host galaxies of lensed quasars, which appear as ``Einstein Rings'' in high resolution images. The distortion of these arcs and counter-arcs, as measured over a large number of pixels, provides tight constraints on the difference between the gravitational potential between the quasar image positions, and thus on cosmology in combination with the measured time delay. We carry out a systematic exploration of the high resolution imaging required to exploit the thousands of lensed quasars that will be discovered by current and upcoming surveys with the next decade. Specifically, we simulate realistic lens systems as imaged by the Hubble Space Telescope (HST), James Webb Space Telescope (JWST), and ground based adaptive optics images taken with Keck or the Thirty Meter Telescope (TMT). We compare the performance of these pointed observations with that of images taken by the Euclid (VIS), Wide-Field Infrared Survey Telescope (WFIRST) and Large Synoptic Survey Telescope (LSST) surveys. We use as our metric the precision with which the slope γ' of the total mass density profile ρtot∝ r–γ' for the main deflector can be measured. Ideally, we require that the statistical error on γ' be less than 0.02, such that it is subdominant to other sources of random and systematic uncertainties. We find that survey data will likely have sufficient depth and resolution to meet the target only for the brighter gravitational lens systems, comparable to those discovered by the SDSS survey. For fainter systems, that will be discovered by current and future surveys, targeted follow-up will be required. Furthermore, the exposure time required with upcoming facilitites such as JWST, the Keck Next Generation Adaptive

  13. Resolution, Scales and Predictability: Is High Resolution Detrimental To Predictability At Extended Forecast Times?

    Science.gov (United States)

    Mesinger, F.

    The traditional views hold that high-resolution limited area models (LAMs) down- scale large-scale lateral boundary information, and that predictability of small scales is short. Inspection of various rms fits/errors has contributed to these views. It would follow that the skill of LAMs should visibly deteriorate compared to that of their driver models at more extended forecast times. The limited area Eta Model at NCEP has an additional handicap of being driven by LBCs of the previous Avn global model run, at 0000 and 1200 UTC estimated to amount to about an 8 h loss in accuracy. This should make its relative skill compared to that of the Avn deteriorate even faster. These views are challenged by various Eta results including rms fits to raobs out to 84 h. It is argued that it is the largest scales that contribute the most to the skill of the Eta relative to that of the Avn.

  14. High-resolution (noble) gas time series for aquatic research

    Science.gov (United States)

    Popp, A. L.; Brennwald, M. S.; Weber, U.; Kipfer, R.

    2017-12-01

    We developed a portable mass spectrometer (miniRUEDI) for on-site quantification of gas concentrations (He, Ar, Kr, N2, O2, CO2, CH4, etc.) in terrestrial gases [1,2]. Using the gas-equilibrium membrane-inlet technique (GE-MIMS), the miniRUEDI for the first time also allows accurate on-site and long-term dissolved-gas analysis in water bodies. The miniRUEDI is designed for operation in the field and at remote locations, using battery power and ambient air as a calibration gas. In contrast to conventional sampling and subsequent lab analysis, the miniRUEDI provides real-time and continuous time series of gas concentrations with a time resolution of a few seconds.Such high-resolution time series and immediate data availability open up new opportunities for research in highly dynamic and heterogeneous environmental systems. In addition the combined analysis of inert and reactive gas species provides direct information on the linkages of physical and biogoechemical processes, such as the air/water gas exchange, excess air formation, O2 turnover, or N2 production by denitrification [1,3,4].We present the miniRUEDI instrument and discuss its use for environmental research based on recent applications of tracking gas dynamics related to rapid and short-term processes in aquatic systems. [1] Brennwald, M.S., Schmidt, M., Oser, J., and Kipfer, R. (2016). Environmental Science and Technology, 50(24):13455-13463, doi: 10.1021/acs.est.6b03669[2] Gasometrix GmbH, gasometrix.com[3] Mächler, L., Peter, S., Brennwald, M.S., and Kipfer, R. (2013). Excess air formation as a mechanism for delivering oxygen to groundwater. Water Resources Research, doi:10.1002/wrcr.20547[4] Mächler, L., Brennwald, M.S., and Kipfer, R. (2013). Argon Concentration Time-Series As a Tool to Study Gas Dynamics in the Hyporheic Zone. Environmental Science and Technology, doi: 10.1021/es305309b

  15. Sub-picosecond Resolution Time-to-Digital Converter

    Energy Technology Data Exchange (ETDEWEB)

    Bratov, Vladimir [Advanced Science and Novel Technology Company, Rancho Palos Verdes, CA (United States); Katzman, Vladimir [Advanced Science and Novel Technology Company, Rancho Palos Verdes, CA (United States); Binkley, Jeb [Advanced Science and Novel Technology Company, Rancho Palos Verdes, CA (United States)

    2006-03-30

    Time-to-digital converters with sub-picosecond resolutions are needed to satisfy the requirements of time-on-flight measurements of the next generation of high energy and nuclear physics experiments. The converters must be highly integrated, power effective, low cost, and feature plug-and-play capabilities to handle the increasing number of channels (up to hundreds of millions) in future Department of Energy experiments. Current state-off-the-art time-to-digital converter integrated circuits do not have the sufficient degree of integration and flexibility to fulfill all the described requirements. During Phase I, the Advanced Science and Novel Technology Company in cooperation with the nuclear physics division of the Oak Ridge National Laboratory has developed the architecture of a novel time-to-digital converter with multiple channels connected to an external processor through a special interfacing block and synchronized by clock signals generated by an internal phase-locked loop. The critical blocks of the system including signal delay lines and delay-locked loops with proprietary differential delay cells, as well as the required digital code converter and the clock period counter have been designed and simulated using the advanced SiGe120 BiCMOS technological process. The results of investigations demonstrate a possibility to achieve the digitization accuracy within 1ps. ADSANTEC has demonstrated the feasibility of the proposed concept in computer simulations. The proposed system will be a critical component for the next generation of NEP experiments.

  16. Tracing the Chernobyl fall-out peak in Finnish lake sediments in order to obtain a good time marker

    International Nuclear Information System (INIS)

    Jungner, H.

    1998-01-01

    The fall-out 137 Cs from the Chernobyl accident has been traced in sediments from a few lakes in Finland in order to obtain a time marker in the uppermost sediment layer. A beta multicounter system developed at Risoe was used for detection of the radionuclides. The detector system is based on GM counters and has therefore no energy resolution. It is thus not possible to identify different nuclides with the counting system. The low background and good efficiency of this detector makes it possible to use small amount of sample and thus good depth resolution can be obtained for the sediment profile. A clear advantage is that practically no sample preparation is needed. Beside providing a time marker for year 1986 in a sediment, the activity depth profile obtained can provide information about sedimentation conditions and the removal of the fall-out cesium from the lake water. The influence from natural radionuclides in the sediment material, however, puts a limit to the lowest detection level, and makes detailed mobility studies difficult. For direct home marking the beta counter is, however, an effective tool. (orig.)

  17. Measuring the electron bunch timing with femtosecond resolution at FLASH

    International Nuclear Information System (INIS)

    Bock, Marie Kristin

    2013-03-01

    Bunch arrival time monitors (BAMs) are an integral part of the laser-based synchronisation system which is being developed at the Free Electron Laser in Hamburg (FLASH).The operation principle comprises the measurement of the electron bunch arrival time relative to the optical timing reference, which is provided by actively length-stabilised fibre-links of the synchronisation system. The monitors are foreseen to be used as a standard diagnostic tool, not only for FLASH but also for the future European X-Ray Free-Electron Laser (European XFEL). The present bunch arrival time monitors have evolved from proof-of-principle experiments to beneficial diagnostic devices, which are almost permanently available during standard machine operation. This achievement has been a major objective of this thesis. The developments went in parallel to improvements in the reliable and low-maintenance operation of the optical synchronisation system. The key topics of this thesis comprised the characterisation and optimisation of the opto-mechanical front-ends of both, the fibre-links and the BAMs. The extent of applications involving the bunch arrival time information has been enlarged, providing automated measurements for properties of the RF acceleration modules, for instance, the RF on-crest phase determination and the measurement of energy fluctuations. Furthermore, two of the currently installed BAMs are implemented in an active phase and gradient stabilisation of specific modules in order to minimise the arrival time jitter of the electron bunches at the location of the FEL undulators, which is crucial for a high timing resolution of pump-probe experiments.

  18. Measuring the electron bunch timing with femtosecond resolution at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Bock, Marie Kristin

    2013-03-15

    Bunch arrival time monitors (BAMs) are an integral part of the laser-based synchronisation system which is being developed at the Free Electron Laser in Hamburg (FLASH).The operation principle comprises the measurement of the electron bunch arrival time relative to the optical timing reference, which is provided by actively length-stabilised fibre-links of the synchronisation system. The monitors are foreseen to be used as a standard diagnostic tool, not only for FLASH but also for the future European X-Ray Free-Electron Laser (European XFEL). The present bunch arrival time monitors have evolved from proof-of-principle experiments to beneficial diagnostic devices, which are almost permanently available during standard machine operation. This achievement has been a major objective of this thesis. The developments went in parallel to improvements in the reliable and low-maintenance operation of the optical synchronisation system. The key topics of this thesis comprised the characterisation and optimisation of the opto-mechanical front-ends of both, the fibre-links and the BAMs. The extent of applications involving the bunch arrival time information has been enlarged, providing automated measurements for properties of the RF acceleration modules, for instance, the RF on-crest phase determination and the measurement of energy fluctuations. Furthermore, two of the currently installed BAMs are implemented in an active phase and gradient stabilisation of specific modules in order to minimise the arrival time jitter of the electron bunches at the location of the FEL undulators, which is crucial for a high timing resolution of pump-probe experiments.

  19. A 2.9 ps equivalent resolution interpolating time counter based on multiple independent coding lines

    International Nuclear Information System (INIS)

    Szplet, R; Jachna, Z; Kwiatkowski, P; Rozyc, K

    2013-01-01

    We present the design, operation and test results of a time counter that has an equivalent resolution of 2.9 ps, a measurement uncertainty at the level of 6 ps, and a measurement range of 10 s. The time counter has been implemented in a general-purpose reprogrammable device Spartan-6 (Xilinx). To obtain both high precision and wide measurement range the counting of periods of a reference clock is combined with a two-stage interpolation within a single period of the clock signal. The interpolation involves a four-phase clock in the first interpolation stage (FIS) and an equivalent coding line (ECL) in the second interpolation stage (SIS). The ECL is created as a compound of independent discrete time coding lines (TCL). The number of TCLs used to create the virtual ECL has an effect on its resolution. We tested ECLs made from up to 16 TCLs, but the idea may be extended to a larger number of lines. In the presented time counter the coarse resolution of the counting method equal to 2 ns (period of the 500 MHz reference clock) is firstly improved fourfold in the FIS and next even more than 400 times in the SIS. The proposed solution allows us to overcome the technological limitation in achievable resolution and improve the precision of conversion of integrated interpolators based on tapped delay lines. (paper)

  20. High spatial and time resolutions with gas ionization detectors

    International Nuclear Information System (INIS)

    Pouthas, J.

    2001-09-01

    This document presents the principles and the characteristics of the gaseous ionisation detectors used in position and timing measurements. The first two parts recall the main notions (electron and ion motions, gaseous amplification, signal formation) and their applications to the proportional counter and the wire chamber. The explanation of the signal formation makes use of the Ramo theorem. The third part is devoted to the different types of wire chambers: drift or cathode strip chambers, TPC (time projection chamber). Some aspects on construction and ageing are also presented. Part 4 is on the detectors in which the multiplication is performed by a 'Parallel Plate' system (PPAC, Pestov counter). Special attention is paid to the RPCs (Resistive Plate Chambers) and their timing resolutions. Part 5 concentrates on 'Micro-pattern detectors' which use different kinds of microstructure for gaseous amplification. The new detectors MICROMEGAS, CAT (compteur a trous) and GEM (gas electron multiplier) and some of their applications are presented. The last part is a bibliography including some comments on the documents. (author)

  1. Fast time-resolved electrostatic force microscopy: Achieving sub-cycle time resolution

    Energy Technology Data Exchange (ETDEWEB)

    Karatay, Durmus U.; Harrison, Jeffrey S.; Glaz, Micah S.; Giridharagopal, Rajiv; Ginger, David S., E-mail: ginger@chem.washington.edu [Department of Chemistry, University of Washington, Seattle, Washington 98195 (United States)

    2016-05-15

    The ability to measure microsecond- and nanosecond-scale local dynamics below the diffraction limit with widely available atomic force microscopy hardware would enable new scientific studies in fields ranging from biology to semiconductor physics. However, commercially available scanning-probe instruments typically offer the ability to measure dynamics only on time scales of milliseconds to seconds. Here, we describe in detail the implementation of fast time-resolved electrostatic force microscopy using an oscillating cantilever as a means to measure fast local dynamics following a perturbation to a sample. We show how the phase of the oscillating cantilever relative to the perturbation event is critical to achieving reliable sub-cycle time resolution. We explore how noise affects the achievable time resolution and present empirical guidelines for reducing noise and optimizing experimental parameters. Specifically, we show that reducing the noise on the cantilever by using photothermal excitation instead of piezoacoustic excitation further improves time resolution. We demonstrate the discrimination of signal rise times with time constants as fast as 10 ns, and simultaneous data acquisition and analysis for dramatically improved image acquisition times.

  2. Low cost time to digital converter in real time with +-1 ns resolution

    Energy Technology Data Exchange (ETDEWEB)

    Lenzi, G; Podini, P; Reverberi, R [Parma Univ. (Italy). Istituto di Fisica; Pernestaal, K [Uppsala Univ. (Sweden). Fysiska Institutionen

    1977-04-15

    A time to digital converter (TDC) with a time resolution of 1 ns has been designed. The deadtime is T+0.6 ..mu..s where T is the measured time. The time range can be preselected between 0.3 and 10 ..mu..s. The TDC has one START and three mutually exclusive STOP inputs which accept standard pulses (-16 mA). The time information is presented as a bit binary word, including the activated stop input address. The instrument has been successfully used in ..mu../sup +/SR (muon spin rotation) measurements and has proven itself advantageous over the more common TAC+ADC combination.

  3. Signal Tracking Beyond the Time Resolution of an Atomic Sensor by Kalman Filtering

    Science.gov (United States)

    Jiménez-Martínez, Ricardo; Kołodyński, Jan; Troullinou, Charikleia; Lucivero, Vito Giovanni; Kong, Jia; Mitchell, Morgan W.

    2018-01-01

    We study causal waveform estimation (tracking) of time-varying signals in a paradigmatic atomic sensor, an alkali vapor monitored by Faraday rotation probing. We use Kalman filtering, which optimally tracks known linear Gaussian stochastic processes, to estimate stochastic input signals that we generate by optical pumping. Comparing the known input to the estimates, we confirm the accuracy of the atomic statistical model and the reliability of the Kalman filter, allowing recovery of waveform details far briefer than the sensor's intrinsic time resolution. With proper filter choice, we obtain similar benefits when tracking partially known and non-Gaussian signal processes, as are found in most practical sensing applications. The method evades the trade-off between sensitivity and time resolution in coherent sensing.

  4. 10 microsecond time resolution studies of Cygnus X-1

    Energy Technology Data Exchange (ETDEWEB)

    Wen, H. C. [Stanford Univ., CA (United States)

    1997-06-01

    Time variability analyses have been applied to data composed of event times of X-rays emitted from the binary system Cygnus X-1 to search for unique black hole signatures. The X-ray data analyzed was collected at ten microsecond time resolution or better from two instruments, the High Energy Astrophysical Observatory (HEAO) A-1 detector and the Rossi X-ray Timing Explorer (XTE) Proportional Counter Array (PCA). HEAO A-1 and RXTE/PCA collected data from 1977--79 and from 1996 on with energy sensitivity from 1--25 keV and 2--60 keV, respectively. Variability characteristics predicted by various models of an accretion disk around a black hole have been searched for in the data. Drop-offs or quasi-periodic oscillations (QPOs) in the Fourier power spectra are expected from some of these models. The Fourier spectral technique was applied to the HEAO A-1 and RXTE/PCA data with careful consideration given for correcting the Poisson noise floor for instrumental effects. Evidence for a drop-off may be interpreted from the faster fall off in variability at frequencies greater than the observed breaks. Both breaks occur within the range of Keplerian frequencies associated with the inner edge radii of advection-dominated accretion disks predicted for Cyg X-1. The break between 10--20 Hz is also near the sharp rollover predicted by Nowak and Wagoner`s model of accretion disk turbulence. No QPOs were observed in the data for quality factors Q > 9 with a 95% confidence level upper limit for the fractional rms amplitude at 1.2% for a 16 M⊙ black hole.

  5. High resolution soft X-Ray spectrometer with 5-picosecond time-resolution for laser-produced plasma diagnostics

    International Nuclear Information System (INIS)

    Mexmain, J.M.; Bourgade, J.L.; Louis-Jacquet, M.; Mascureau, J. de; Sauneuf, R.; Schwob, J.L.

    1987-01-01

    A new XUV spectrometer designed to have a time-resolution of 3 ps and a spectral resolution of 0.1 A is described. It is basically a modified version of a Schwob-Fraenkel spectrometer, which is coupled to a new ultrafast electronic streak camera

  6. Coincidence resolution time of two small scintillators coupled to high quantum-efficiency photomultipliers in a PET-like system

    Science.gov (United States)

    Galetta, G.; De Leo, R.; Garibaldi, F.; Grodzicka, M.; Lagamba, L.; Loddo, F.; Masiello, G.; Nappi, E.; Perrino, R.; Ranieri, A.; Szczęśniak, T.

    2014-03-01

    The lower limit of the time resolution for a positron emission tomography (PET) system has been measured for two scintillator types, LYSO:Ce and LuAG:Pr. Small dimension crystals and ultra bi-alkali phototubes have been used in order to increase the detected scintillation photons. Good timing resolutions of 118 ps and 223 ps FWHM have been obtained for two LYSO and two LuAG, respectively, exposed to a 22Na source.

  7. Monitoring crop leaf area index time variation from higher resolution remotely sensed data

    International Nuclear Information System (INIS)

    Jiao, Sihong

    2014-01-01

    The leaf area index (LAI) is significant for research on global climate change and ecological environment. China HJ-1 satellite has a revisit cycle of four days, providing CCD data (HJ-1 CCD) with a resolution of 30 m. However, the HJ-1 CCD is incapable of obtaining observations at multiple angles. This is problematic because single angle observations provide insufficient data for determining the LAI. This article proposes a new method for determining LAI using HJ-1 CCD data. The proposed method uses background knowledge of dynamic land surface processes that are extracted from MODerate resolution Imaging Spectroradiometer (MODIS) LAI 1-km resolution data. To process the uncertainties that arise from using two data sources with different spatial resolutions, the proposed method is implemented in a dynamitic Bayesian network scheme by integrating a LAI dynamic process model and a canopy reflectance model with remotely sensed data. Validation results showed that the determination coefficient between estimated and measured LAI was 0.791, and the RMSE was 0.61. This method can enhance the accuracy of the retrieval results while retaining the time series variation characteristics of the vegetation LAI. The results suggest that this algorithm can be widely applied to determining high-resolution leaf area indices using data from China HJ-1 satellite even if information from single angle observations are insufficient for quantitative application

  8. Digital timing: sampling frequency, anti-aliasing filter and signal interpolation filter dependence on timing resolution

    International Nuclear Information System (INIS)

    Cho, Sanghee; Grazioso, Ron; Zhang Nan; Aykac, Mehmet; Schmand, Matthias

    2011-01-01

    The main focus of our study is to investigate how the performance of digital timing methods is affected by sampling rate, anti-aliasing and signal interpolation filters. We used the Nyquist sampling theorem to address some basic questions such as what will be the minimum sampling frequencies? How accurate will the signal interpolation be? How do we validate the timing measurements? The preferred sampling rate would be as low as possible, considering the high cost and power consumption of high-speed analog-to-digital converters. However, when the sampling rate is too low, due to the aliasing effect, some artifacts are produced in the timing resolution estimations; the shape of the timing profile is distorted and the FWHM values of the profile fluctuate as the source location changes. Anti-aliasing filters are required in this case to avoid the artifacts, but the timing is degraded as a result. When the sampling rate is marginally over the Nyquist rate, a proper signal interpolation is important. A sharp roll-off (higher order) filter is required to separate the baseband signal from its replicates to avoid the aliasing, but in return the computation will be higher. We demonstrated the analysis through a digital timing study using fast LSO scintillation crystals as used in time-of-flight PET scanners. From the study, we observed that there is no significant timing resolution degradation down to 1.3 Ghz sampling frequency, and the computation requirement for the signal interpolation is reasonably low. A so-called sliding test is proposed as a validation tool checking constant timing resolution behavior of a given timing pick-off method regardless of the source location change. Lastly, the performance comparison for several digital timing methods is also shown.

  9. Data on endogenous bovine ovarian follicular cells peptides and small proteins obtained through Top-down High Resolution Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Valérie Labas

    2017-08-01

    Full Text Available The endogenous peptides and small proteins extracted from bovine ovarian follicular cells (oocytes, cumulus and granulosa cells were identified by Top-down High Resolution Mass Spectrometry (TD-HR-MS/MS in order to annotate peptido- and proteoforms detected using qualitative and quantitative profiling method based on ICM-MS (Intact Cell Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. The description and analysis of these Top-down MS data in the context of oocyte quality biomarkers research are available in the original research article of Labas et al. (2017 http://dx.doi.org/10.1016/j.jprot.2017.03.027 [1]. Raw data derived from this peptidomic/proteomic analysis have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository (dataset identifier PXD004892. Here, we described the inventory of all identified peptido- and proteoforms including their biochemical and structural features, and functional annotation of correspondent proteins. This peptide/protein inventory revealed that TD-HR-MS/MS was appropriate method for both global and targeted proteomic analysis of ovarian tissues, and it can be further employed as a reference for other studies on follicular cells including single oocytes.

  10. High resolution transmission electron microscopy study on the development of nanostructured precipitates in Al-Cu obtained by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Villalba, L.S., E-mail: luzgomez@geo.ucm.es [Materials Science and Engineering Department, Universidad Carlos III de Madrid, Leganes, Madrid (Spain); Instituto de Geociencias-(CSIC-UCM), Madrid (Spain); Delgado, M.L.; Ruiz-Navas, E.M. [Materials Science and Engineering Department, Universidad Carlos III de Madrid, Leganes, Madrid (Spain)

    2012-01-16

    Highlights: Black-Right-Pointing-Pointer Development of defect structures and nanoprecipitates after 10 h of mechanical alloying in Al-Cu system. Black-Right-Pointing-Pointer Defects act as nucleation sites of the {epsilon}Al{sub 2}Cu{sub 3} phase. Black-Right-Pointing-Pointer Incoherent and semicoherent precipitates are identified by TEM-HRTEM. Black-Right-Pointing-Pointer Moire patterns are associated to the {epsilon}Al{sub 2}Cu{sub 3} phase. - Abstract: Aluminum alloy 2014 is used to obtain nanostructured powders via mechanical alloying. The evolution of the diffusion processes is observed by the development of defect structures and nanoprecipitates after 10 h of milling. The characterization includes analytical and high resolution transmission electron microscopy. Dislocations associated with different Al/Cu ratio affect the material. These defects act as nucleation sites where precipitates of the {epsilon}Al{sub 2}Cu{sub 3} hexagonal phase have been identified. Moire fringes show the interference of {l_brace}1 1 1{r_brace}{sub Al} with {l_brace}10{sup -}10{r_brace}{sub {epsilon}Al{sub 2Cu{sub 3}}} glide planes and locally small shifts of 1/3{l_brace}1 1 1{r_brace}{sub Al} and 1/3{l_brace}10{sup -}10{r_brace}{sub {epsilon}Al{sub 2Cu{sub 3}}}. Changes in the Al/Cu ratio lead to the formation of other solid solutions identified in the Cu rich area and could correspond to transition phases.

  11. One Decade of Induced Seismicity in Basel, Switzerland: A Consistent High-Resolution Catalog Obtained by Template Matching

    Science.gov (United States)

    Herrmann, M.; Kraft, T.; Tormann, T.; Scarabello, L.; Wiemer, S.

    2017-12-01

    Induced seismicity at the site of the Basel Enhanced Geothermal System (EGS) continuously decayed for six years after injection had been stopped in December 2006. Starting in May 2012, the Swiss Seismological Service was detecting a renewed increase of induced seismicity in the EGS reservoir to levels last seen in 2007 and reaching magnitudes up to ML2.0. Seismic monitoring at this EGS site is running for more than ten years now, but the details of the long-term behavior of its induced seismicity remained unexplored because a seismic event catalog that is consistent in detection sensitivity and magnitude estimation did not exist.We have created such a catalog by applying our matched filter detector to the 11-year-long seismic recordings of a borehole station at 2.7km depth. Based on 3'600 located earthquakes of the operator's borehole-network catalog, we selected about 2'500 reasonably dissimilar templates using waveform clustering. This large template set ensures an adequate coverage of the diversity of event waveforms which is due to the reservoir's highly complex fault system and the close observation distance. To cope with the increased computational demand of scanning 11-years of data with 2'500 templates, we parallelized our detector to run on a high-performance computer of the Swiss National Supercomputing Centre.We detect more than 200'000 events down to ML-2.5 during the six-day-long stimulation in December 2006 alone. Previously, only 13'000 detections found by an amplitude-threshold-based detector were known for this period. The high temporal and spatial resolution of this new catalog allows us to analyze the statistics of the induced Basel earthquakes in great detail. We resolve spatio-temporal variations of the seismicity parameters (a- and b-value) that have not been identified before and derive the first high-resolution temporal evolution of the seismic hazard for the Basel EGS reservoir.In summer 2017, our detector monitored the 10-week pressure

  12. High-Resolution Light Transmission Spectroscopy of Nanoparticles in Real Time

    Science.gov (United States)

    Tanner, Carol; Sun, Nan; Deatsch, Alison; Li, Frank; Ruggiero, Steven

    2017-04-01

    As implemented here, Light Transmission Spectroscopy (LTS) is a high-resolution real-time technique for eliminating spectral noise and systematic effects in wide band spectroscopic measurements of nanoparticles. In this work, we combine LTS with spectral inversion for the purpose of characterizing the size, shape, and number of nanoparticles in solution. The apparatus employs a wide-band multi-wavelength light source and grating spectrometers coupled to CCD detectors. The light source ranges from 210 to 2000 nm, and the wavelength dependent light detection system ranges from 200 to 1100 nm with model the total extinction cross-section, and spectral inversion is employed to obtain quantitative particle size distributions. Discussed are the precision, accuracy, resolution, and sensitivity of our results. The technique is quite versatile and can be applied to spectroscopic investigations where wideband, accurate, low-noise, real-time spectra are desired. University of Notre Dame Office of Research, College of Science, Department of Physics, and USDA.

  13. High resolution time-of-flight (TOF) detector for particle identification

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Merlin; Lehmann, Albert; Pfaffinger, Markus; Uhlig, Fred [Physikalisches Institut, Universitaet Erlangen-Nuernberg (Germany); Collaboration: PANDA-Collaboration

    2016-07-01

    Several prototype tests were performed with the PANDA DIRC detectors at the CERN T9 beam line. A mixed hadron beam with pions, kaons and protons was used at momenta from 2 to 10 GeV/c. For these tests a good particle identification was mandatory. We report about a high resolution TOF detector built especially for this purpose. It consists of two stations each consisting of a Cherenkov radiator read out by a Microchannel-Plate Photomultiplier (MCP-PMT) and a Scintillating Tile (SciTil) counter read out by silicon photomultipliers (SiPMs). With a flight path of 29 m a pion/kaon separation up to 5 GeV/c and a pion/proton separation up to 10 GeV/c was obtained. From the TOF resolutions of different counter combinations the time resolution (sigma) of the individual MCP-PMTs and SciTils was determined. The best counter reached a time resolution of 50 ps.

  14. Imaging system for obtaining space- and time-resolved plasma images on TMX

    International Nuclear Information System (INIS)

    Koehler, H.A.; Frerking, C.E.

    1980-01-01

    A Reticon 50 x 50 photodiode array camera has been placed on Livermore's Tandem Mirror Experiment to view a 56-cm diameter plasma source of visible, vacuum-ultraviolet, and x-ray photons. The compact camera views the source through a pinhole, filters, a fiber optic coupler, a microchannel plate intensifier (MCPI), and a reducer. The images are digitized (at 3.3 MHz) and stored in a large, high-speed memory that has a capacity of 45 images. A local LSI-11 microprocessor provides immediate processing and display of the data. The data are also stored on floppy disks that can be further processed on the large Livermore Computer System. The temporal resolution is limited by the fastest MCPI gate. The number of images recorded is determined by the read-out time of the Reticon camera (minimum 0.9 msec). The spatial resolution of approximately 1.4 cm is fixed by the geometry and the pinhole of 0.025 cm. Typical high-quality color representation of some plasma images are included

  15. Discrete time interval measurement system: fundamentals, resolution and errors in the measurement of angular vibrations

    International Nuclear Information System (INIS)

    Gómez de León, F C; Meroño Pérez, P A

    2010-01-01

    The traditional method for measuring the velocity and the angular vibration in the shaft of rotating machines using incremental encoders is based on counting the pulses at given time intervals. This method is generically called the time interval measurement system (TIMS). A variant of this method that we have developed in this work consists of measuring the corresponding time of each pulse from the encoder and sampling the signal by means of an A/D converter as if it were an analog signal, that is to say, in discrete time. For this reason, we have denominated this method as the discrete time interval measurement system (DTIMS). This measurement system provides a substantial improvement in the precision and frequency resolution compared with the traditional method of counting pulses. In addition, this method permits modification of the width of some pulses in order to obtain a mark-phase on every lap. This paper explains the theoretical fundamentals of the DTIMS and its application for measuring the angular vibrations of rotating machines. It also displays the required relationship between the sampling rate of the signal, the number of pulses of the encoder and the rotating velocity in order to obtain the required resolution and to delimit the methodological errors in the measurement

  16. Exploratory study on a statistical method to analyse time resolved data obtained during nanomaterial exposure measurements

    International Nuclear Information System (INIS)

    Clerc, F; Njiki-Menga, G-H; Witschger, O

    2013-01-01

    Most of the measurement strategies that are suggested at the international level to assess workplace exposure to nanomaterials rely on devices measuring, in real time, airborne particles concentrations (according different metrics). Since none of the instruments to measure aerosols can distinguish a particle of interest to the background aerosol, the statistical analysis of time resolved data requires special attention. So far, very few approaches have been used for statistical analysis in the literature. This ranges from simple qualitative analysis of graphs to the implementation of more complex statistical models. To date, there is still no consensus on a particular approach and the current period is always looking for an appropriate and robust method. In this context, this exploratory study investigates a statistical method to analyse time resolved data based on a Bayesian probabilistic approach. To investigate and illustrate the use of the this statistical method, particle number concentration data from a workplace study that investigated the potential for exposure via inhalation from cleanout operations by sandpapering of a reactor producing nanocomposite thin films have been used. In this workplace study, the background issue has been addressed through the near-field and far-field approaches and several size integrated and time resolved devices have been used. The analysis of the results presented here focuses only on data obtained with two handheld condensation particle counters. While one was measuring at the source of the released particles, the other one was measuring in parallel far-field. The Bayesian probabilistic approach allows a probabilistic modelling of data series, and the observed task is modelled in the form of probability distributions. The probability distributions issuing from time resolved data obtained at the source can be compared with the probability distributions issuing from the time resolved data obtained far-field, leading in a

  17. Comparative analysis of time efficiency and spatial resolution between different EIT reconstruction algorithms

    International Nuclear Information System (INIS)

    Kacarska, Marija; Loskovska, Suzana

    2002-01-01

    In this paper comparative analysis between different EIT algorithms is presented. Analysis is made for spatial and temporal resolution of obtained images by several different algorithms. Discussions consider spatial resolution dependent on data acquisition method, too. Obtained results show that conventional applied-current EIT is more powerful compared to induced-current EIT. (Author)

  18. Obtaining location/arrival-time and location/outflow-quantity distributions for steady flow systems

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    A steady, two-dimensional flow system is used to demonstrate the application of location/arrival-time and location/outflow-quantity curves in determining the environmental consequences of groundwater contamination. The subsurface geologic and hydrologic evaluations needed to obtain the arrival results involve a sequence of four phases: system identification, new potential determination, flow systems kinematics, and contaminant transport analysis. Once these phases are completed, they are effectively summarized and easily used to evaluate environmental consequences through the arrival distributions

  19. High frequency, high time resolution time-to-digital converter employing passive resonating circuits.

    Science.gov (United States)

    Ripamonti, Giancarlo; Abba, Andrea; Geraci, Angelo

    2010-05-01

    A method for measuring time intervals accurate to the picosecond range is based on phase measurements of oscillating waveforms synchronous with their beginning and/or end. The oscillation is generated by triggering an LC resonant circuit, whose capacitance is precharged. By using high Q resonators and a final active quenching of the oscillation, it is possible to conjugate high time resolution and a small measurement time, which allows a high measurement rate. Methods for fast analysis of the data are considered and discussed with reference to computing resource requirements, speed, and accuracy. Experimental tests show the feasibility of the method and a time accuracy better than 4 ps rms. Methods aimed at further reducing hardware resources are finally discussed.

  20. High frequency, high time resolution time-to-digital converter employing passive resonating circuits

    International Nuclear Information System (INIS)

    Ripamonti, Giancarlo; Abba, Andrea; Geraci, Angelo

    2010-01-01

    A method for measuring time intervals accurate to the picosecond range is based on phase measurements of oscillating waveforms synchronous with their beginning and/or end. The oscillation is generated by triggering an LC resonant circuit, whose capacitance is precharged. By using high Q resonators and a final active quenching of the oscillation, it is possible to conjugate high time resolution and a small measurement time, which allows a high measurement rate. Methods for fast analysis of the data are considered and discussed with reference to computing resource requirements, speed, and accuracy. Experimental tests show the feasibility of the method and a time accuracy better than 4 ps rms. Methods aimed at further reducing hardware resources are finally discussed.

  1. 'TIME': A Web Application for Obtaining Insights into Microbial Ecology Using Longitudinal Microbiome Data.

    Science.gov (United States)

    Baksi, Krishanu D; Kuntal, Bhusan K; Mande, Sharmila S

    2018-01-01

    Realization of the importance of microbiome studies, coupled with the decreasing sequencing cost, has led to the exponential growth of microbiome data. A number of these microbiome studies have focused on understanding changes in the microbial community over time. Such longitudinal microbiome studies have the potential to offer unique insights pertaining to the microbial social networks as well as their responses to perturbations. In this communication, we introduce a web based framework called 'TIME' (Temporal Insights into Microbial Ecology'), developed specifically to obtain meaningful insights from microbiome time series data. The TIME web-server is designed to accept a wide range of popular formats as input with options to preprocess and filter the data. Multiple samples, defined by a series of longitudinal time points along with their metadata information, can be compared in order to interactively visualize the temporal variations. In addition to standard microbiome data analytics, the web server implements popular time series analysis methods like Dynamic time warping, Granger causality and Dickey Fuller test to generate interactive layouts for facilitating easy biological inferences. Apart from this, a new metric for comparing metagenomic time series data has been introduced to effectively visualize the similarities/differences in the trends of the resident microbial groups. Augmenting the visualizations with the stationarity information pertaining to the microbial groups is utilized to predict the microbial competition as well as community structure. Additionally, the 'causality graph analysis' module incorporated in TIME allows predicting taxa that might have a higher influence on community structure in different conditions. TIME also allows users to easily identify potential taxonomic markers from a longitudinal microbiome analysis. We illustrate the utility of the web-server features on a few published time series microbiome data and demonstrate the

  2. Comparative timing measurements of LYSO and LFS-3 to achieve the best time resolution for TOF-PET

    CERN Document Server

    Doroud, K; Zichichi, A; Zuyeuski, R

    2015-01-01

    The best Coincidence Time Resolution (CTR) obtained so far – with very short crystals of 3–5 mm in length – reach values between 100 and 150 ps. Such crystals are not really practical for a TOF PET imaging device, since the sensitivity is quite small for the detection of the 511 keV gammas resulting from a positron annihilation. We present our setup and measurements using 15 mm length crystals; a length we regard as reasonable for a TOF-PET scanner. We have used a new series of Silicon Photo-Multipliers (SiPM) manufactured by Hamamatsu. These are the High Fill Factor (HFF) and Low Cross-Talk (LCT) Multi-Pixel Photon Counters (MPPC). We have compared three different crystals, LFS-3 (supplied by Zecotek) and two samples of LYSO (manufactured by Saint Gobain and CPI). We have obtained an excellent value of 148 ps for the Coincidence Time Resolution (CTR) with two LFS-3 crystals (15 mm long) mounted on each side of a 22Na radioactive source with the HFF-MPPCs at 3.3 V over-voltage. Our results are148 ps obt...

  3. A software-aided time resolution doubler (TRD) operating as a TDC

    International Nuclear Information System (INIS)

    Rashid, M.M.; Matsumoto, H.; Iwamoto, O.; Nohtomi, A.; Uozumi, Y.; Sakae, T.; Matoba, M.

    1994-01-01

    A Ratio-to-Digital Converter (RDC) is used to determine the position of ionization in a single wire position sensitive proportional counter. In the RDC, the digital output is obtained by a TDC utilizing the principle of a linear discharge type ADC. The conversion time as well as the time resolution of this type of ADC is dependent on the frequency of the clock. An idea of a Time Resolution Doubler (TRD) has been conceived by applying a simple logic to the basic idea of a two-phase active TDC system to double the effective operating frequency of a TDC. The final output is obtained by the help of the data processing software. An attempt is made to minimize the problem of differential non-linearity, a factor that limits the practical use of a two-phase active TDC system. A prototype TRD has been developed focusing as a TDC in the RDC system of this laboratory. Utilizing a 100 MHz clock, the TRD acts as an effective 200 MHz TDC and gives the RDC output with a full scale capacity of 8,192 channels. The experimentally observed differential nonlinearity of the TRD based RDC is comparable to that of a conventional TDC based RDC

  4. Analysis of X-ray Spectra of High-Z Elements obtained on Nike with high spectral and spatial resolution

    Science.gov (United States)

    Aglitskiy, Yefim; Weaver, J. L.; Karasik, M.; Serlin, V.; Obenschain, S. P.; Ralchenko, Yu.

    2014-10-01

    The spectra of multi-charged ions of Hf, Ta, W, Pt, Au and Bi have been studied on Nike krypton-fluoride laser facility with the help of two kinds of X-ray spectrometers. First, survey instrument covering a spectral range from 0.5 to 19.5 angstroms which allows simultaneous observation of both M- and N- spectra of above mentioned elements with high spectral resolution. Second, an imaging spectrometer with interchangeable spherically bent Quartz crystals that added higher efficiency, higher spectral resolution and high spatial resolution to the qualities of the former one. Multiple spectral lines with X-ray energies as high as 4 keV that belong to the isoelectronic sequences of Fe, Co, Ni, Cu and Zn were identified with the help of NOMAD package developed by Dr. Yu. Ralchenko and colleagues. In our continuous effort to support DOE-NNSA's inertial fusion program, this campaign covered a wide range of plasma conditions that result in production of relatively energetic X-rays. Work supported by the US DOE/NNSA.

  5. General Relativity without paradigm of space-time covariance, and resolution of the problem of time

    Science.gov (United States)

    Soo, Chopin; Yu, Hoi-Lai

    2014-01-01

    The framework of a theory of gravity from the quantum to the classical regime is presented. The paradigm shift from full space-time covariance to spatial diffeomorphism invariance, together with clean decomposition of the canonical structure, yield transparent physical dynamics and a resolution of the problem of time. The deep divide between quantum mechanics and conventional canonical formulations of quantum gravity is overcome with a Schrödinger equation for quantum geometrodynamics that describes evolution in intrinsic time. Unitary time development with gauge-invariant temporal ordering is also viable. All Kuchar observables become physical; and classical space-time, with direct correlation between its proper times and intrinsic time intervals, emerges from constructive interference. The framework not only yields a physical Hamiltonian for Einstein's theory, but also prompts natural extensions and improvements towards a well behaved quantum theory of gravity. It is a consistent canonical scheme to discuss Horava-Lifshitz theories with intrinsic time evolution, and of the many possible alternatives that respect 3-covariance (rather than the more restrictive 4-covariance of Einstein's theory), Horava's "detailed balance" form of the Hamiltonian constraint is essentially pinned down by this framework. Issues in quantum gravity that depend on radiative corrections and the rigorous definition and regularization of the Hamiltonian operator are not addressed in this work.

  6. Universal behavior of the interoccurrence times between losses in financial markets: independence of the time resolution.

    Science.gov (United States)

    Ludescher, Josef; Bunde, Armin

    2014-12-01

    We consider representative financial records (stocks and indices) on time scales between one minute and one day, as well as historical monthly data sets, and show that the distribution P(Q)(r) of the interoccurrence times r between losses below a negative threshold -Q, for fixed mean interoccurrence times R(Q) in multiples of the corresponding time resolutions, can be described on all time scales by the same q exponentials, P(Q)(r)∝1/{[1+(q-1)βr](1/(q-1))}. We propose that the asset- and time-scale-independent analytic form of P(Q)(r) can be regarded as an additional stylized fact of the financial markets and represents a nontrivial test for market models. We analyze the distribution P(Q)(r) as well as the autocorrelation C(Q)(s) of the interoccurrence times for three market models: (i) multiplicative random cascades, (ii) multifractal random walks, and (iii) the generalized autoregressive conditional heteroskedasticity [GARCH(1,1)] model. We find that only one of the considered models, the multifractal random walk model, approximately reproduces the q-exponential form of P(Q)(r) and the power-law decay of C(Q)(s).

  7. Universal behavior of the interoccurrence times between losses in financial markets: Independence of the time resolution

    Science.gov (United States)

    Ludescher, Josef; Bunde, Armin

    2014-12-01

    We consider representative financial records (stocks and indices) on time scales between one minute and one day, as well as historical monthly data sets, and show that the distribution PQ(r ) of the interoccurrence times r between losses below a negative threshold -Q , for fixed mean interoccurrence times RQ in multiples of the corresponding time resolutions, can be described on all time scales by the same q exponentials, PQ(r ) ∝1 /{[1+(q -1 ) β r ] 1 /(q -1 )} . We propose that the asset- and time-scale-independent analytic form of PQ(r ) can be regarded as an additional stylized fact of the financial markets and represents a nontrivial test for market models. We analyze the distribution PQ(r ) as well as the autocorrelation CQ(s ) of the interoccurrence times for three market models: (i) multiplicative random cascades, (ii) multifractal random walks, and (iii) the generalized autoregressive conditional heteroskedasticity [GARCH(1,1)] model. We find that only one of the considered models, the multifractal random walk model, approximately reproduces the q -exponential form of PQ(r ) and the power-law decay of CQ(s ) .

  8. High resolution spectrometry: how the analyzer and spectrometer performances and the beam emittance contribute to the results obtained

    International Nuclear Information System (INIS)

    Roussel, P.

    1984-01-01

    Using first order calculations derived for an achromatic system A) (deltaxsub(F)/deltaEsub(i)=0) or an optimised system O) (xsub(F) minima). It is shown that the final resolution measured in the local plane of the spectrometer depends only on the emittance of the accelerator and of the efficient area of the analyser exclusive of the properties of the spectrometer. The use of this result is only limited by higher order terms in the calculation or considerations out of this scope like target effects etc.. [fr

  9. Test of high time resolution MRPC with different readout modes for the BESIII upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Yang, S. [Department of Modern Physics, University of Science and Technology of China(USTC), Hefei 230026 (China); State Key Laboratory of Particle Detection and Electronics(USTC-IHEP) (China); Sun, Y.J., E-mail: sunday@ustc.edu.cn [Department of Modern Physics, University of Science and Technology of China(USTC), Hefei 230026 (China); State Key Laboratory of Particle Detection and Electronics(USTC-IHEP) (China); Li, C., E-mail: licheng@ustc.edu.cn [Department of Modern Physics, University of Science and Technology of China(USTC), Hefei 230026 (China); State Key Laboratory of Particle Detection and Electronics(USTC-IHEP) (China); Heng, Y.K.; Qian, S. [Institute of High Energy Physics, Chinese Academy of Sciences(IHEP), Beijing 100049 (China); State Key Laboratory of Particle Detection and Electronics(USTC-IHEP) (China); Chen, H.F.; Chen, T.X. [Department of Modern Physics, University of Science and Technology of China(USTC), Hefei 230026 (China); State Key Laboratory of Particle Detection and Electronics(USTC-IHEP) (China); Dai, H.L. [Institute of High Energy Physics, Chinese Academy of Sciences(IHEP), Beijing 100049 (China); State Key Laboratory of Particle Detection and Electronics(USTC-IHEP) (China); Fan, H.H.; Liu, S.B. [Department of Modern Physics, University of Science and Technology of China(USTC), Hefei 230026 (China); State Key Laboratory of Particle Detection and Electronics(USTC-IHEP) (China); Liu, S.D.; Jiang, X.S. [Institute of High Energy Physics, Chinese Academy of Sciences(IHEP), Beijing 100049 (China); State Key Laboratory of Particle Detection and Electronics(USTC-IHEP) (China); Shao, M.; Tang, Z.B.; Zhang, H.; Zhao, Z.G. [Department of Modern Physics, University of Science and Technology of China(USTC), Hefei 230026 (China); State Key Laboratory of Particle Detection and Electronics(USTC-IHEP) (China)

    2014-11-01

    In order to further enhance the particle identification capability of the Beijing Spectrometer (BESIII), it is proposed to upgrade the current end-cap time-of-flight (eTOF) detector with multi-gap resistive plate chamber (MRPC). The prototypes, together with the front end electronics (FEE) and time digitizer (TDIG) module have been tested at the E3 line of Beijing Electron Positron Collider (BEPCII) to study the difference between the single and double-end readout MRPC designs. The time resolutions (sigma) of the single-end readout MRPC are 47/53 ps obtained by 600 MeV/c proton/pion beam, while that of the double-end readout MRPC is 40 ps (proton beam). The efficiencies of three MRPC modules tested by both proton and pion beam are better than 98%. For the double-end readout MRPC, no incident position dependence is observed.

  10. : Signal Decomposition of High Resolution Time Series River data to Separate Local and Regional Components of Conductivity

    Science.gov (United States)

    Signal processing techniques were applied to high-resolution time series data obtained from conductivity loggers placed upstream and downstream of a wastewater treatment facility along a river. Data was collected over 14-60 days, and several seasons. The power spectral densit...

  11. Signal Decomposition of High Resolution Time Series River Data to Separate Local and Regional Components of Conductivity

    Science.gov (United States)

    Signal processing techniques were applied to high-resolution time series data obtained from conductivity loggers placed upstream and downstream of an oil and gas wastewater treatment facility along a river. Data was collected over 14-60 days. The power spectral density was us...

  12. Cerebrospinal fluid metabolic profiles in multiple sclerosis and degenerative dementias obtained by high resolution proton magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Vion-Dury, J.; Confort-Gouny, S.; Maillet, S.; Cozzone, P.J.; Nicoli, F.; Gastaut, J.L.

    1996-01-01

    We have analyzed the cerebrospinal fluid (CSF) of 19 patients with multiple sclerosis (MS), 12 patients with degenerative dementia and 17 control patients using in vitro high resolution proton magnetic resonance spectroscopy (MRS) at 400 MHz. The CSF metabolic profile is slightly modified in MS patients (increased lactate and fructose concentrations, decreased creatinine and phenylalanine concentrations) and is not correlated with the intensity of the intrathecal inflammation. Proton MRS of CSF does not differentiate relapsing-remitting MS and primary progressive MS. We have not detected any specific abnormal resonance in native or lyophilized CSF. The CSF metabolic profile of demented patients is much more altered (increased concentration of lactate, pyruvate, alanine, lysine, valine, leucine-isoleucine, tyrosine, glutamine) and is in agreement with a brain oxidative metabolism impairment as already described in Alzheimer's disease. Unassigned abnormal but non specific or constant resonances have been detected on MR spectra of demented patients. CSF inositol concentration is also increased in the CSF of patients with Alzheimer's disease. In vitro high resolution proton MRS of the CSF constitutes a new and original way to explore CSF for the differential and/or early diagnosis of dementias, as a complement to in vivo proton cerebral MRS. (authors). 22 refs., 4 figs., 2 tabs

  13. Cerebrospinal fluid metabolic profiles in multiple sclerosis and degenerative dementias obtained by high resolution proton magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Vion-Dury, J.; Confort-Gouny, S.; Maillet, S.; Cozzone, P.J. [Centre Hospitalier Universitaire de la Timone, 13 - Marseille (France); Nicoli, F. [Centre Hospitalier Universitaire de la Timone, 13 - Marseille (France)]|[Hopital Sainte-Marguerite, 13 - Marseille (France); Gastaut, J.L. [Hopital Sainte-Marguerite, 13 - Marseille (France)

    1996-07-01

    We have analyzed the cerebrospinal fluid (CSF) of 19 patients with multiple sclerosis (MS), 12 patients with degenerative dementia and 17 control patients using in vitro high resolution proton magnetic resonance spectroscopy (MRS) at 400 MHz. The CSF metabolic profile is slightly modified in MS patients (increased lactate and fructose concentrations, decreased creatinine and phenylalanine concentrations) and is not correlated with the intensity of the intrathecal inflammation. Proton MRS of CSF does not differentiate relapsing-remitting MS and primary progressive MS. We have not detected any specific abnormal resonance in native or lyophilized CSF. The CSF metabolic profile of demented patients is much more altered (increased concentration of lactate, pyruvate, alanine, lysine, valine, leucine-isoleucine, tyrosine, glutamine) and is in agreement with a brain oxidative metabolism impairment as already described in Alzheimer`s disease. Unassigned abnormal but non specific or constant resonances have been detected on MR spectra of demented patients. CSF inositol concentration is also increased in the CSF of patients with Alzheimer`s disease. In vitro high resolution proton MRS of the CSF constitutes a new and original way to explore CSF for the differential and/or early diagnosis of dementias, as a complement to in vivo proton cerebral MRS. (authors). 22 refs., 4 figs., 2 tabs.

  14. Assessing cardiac preload by the Initial Systolic Time Interval obtained from impedance cardiography

    Directory of Open Access Journals (Sweden)

    Jan H Meijer

    2010-01-01

    Full Text Available The Initial Systolic Time Interval (ISTI, obtained from the electrocardiogram (ECG and impedance cardiogram (ICG, is considered to be a measure for the time delay between the electrical and mechanical activity of the heart and reflects an early active period of the cardiac cycle. The clinical relevance of this time interval is subject of study. This paper presents preliminary results of a pilot study investigating the use of ISTI in evaluating and predicting the circulatory response to fluid administration in patients after coronary artery bypass graft surgery, by comparing ISTI with cardiac output (CO responsiveness. Also the use of the pulse transit time (PTT, earlier recommended for this purpose, is investigated. The results show an inverse relationship between ISTI and CO at all moments of fluid administration and also an inverse relationship between the changes ΔISTI and ΔCO before and after full fluid administration. No relationships between PTT and CO or ΔPTT and ΔCO were found. It is concluded that ISTI is dependent upon preload, and that ISTI has the potential to be used as a clinical parameter assessing preload.

  15. Fast-slow coincidence systems with very high time resolution

    International Nuclear Information System (INIS)

    Naday, I.; Kajcsos, Zs.; Kozma, Gy.; Kanyo, M.

    1981-02-01

    The measuring of very short times has recently become increasingly important. In this paper the authors describe their studies on the various parts of a timing system in an attempt to improve its parameters. The detector system, i.e. the transit time differences of the photomultipliers, the construction of the divider network, the various types of timing discriminators, the time-to-pulse height converters and the gating system were investigated. Two types of constant fraction discriminators are introduced: one for general timing applications, the other placed inside the detector head for positron lifetime measurements. (author)

  16. Constraint Logic Programming for Resolution of Relative Time Expressions

    DEFF Research Database (Denmark)

    Christiansen, Henning

    2014-01-01

    Translating time expression into absolute time points or durations is a challenge for natural languages processing such as text mining and text understanding in general. We present a constraint logic language CLP(Time) tailored to text usages concerned with time and calendar. It provides a simple...... and flexible formalism to express relationships between different time expressions in a text, thereby giving a recipe for resolving them into absolute time. A constraint solver is developed which, as opposed to some earlier approaches, is independent of the order in which temporal information is introduced...

  17. Highly segmented, high resolution time-of-flight system

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, T.K.; Nagamiya, S.; Vossnack, O.; Wu, Y.D.; Zajc, W.A. [Columbia Univ., New York, NY (United States); Miake, Y.; Ueno, S.; Kitayama, H.; Nagasaka, Y.; Tomizawa, K.; Arai, I.; Yagi, K [Univ. of Tsukuba, (Japan)

    1991-12-31

    The light attenuation and timing characteristics of time-of-flight counters constructed of 3m long scintillating fiber bundles of different shapes and sizes are presented. Fiber bundles made of 5mm diameter fibers showed good timing characteristics and less light attenuation. The results for a 1.5m long scintillator rod are also presented.

  18. Obtaining confirmation through social relationships: Norwegian first-time mothers' experiences while on maternity leave.

    Science.gov (United States)

    Alstveit, Marit; Severinsson, Elisabeth; Karlsen, Bjørg

    2010-03-01

    The social relationships of employed women on maternity leave undergo significant changes. The aim of the study was to illuminate first-time mothers' experiences of social relationships while on maternity leave. Nine mothers were interviewed at both 3-5 months and 11-14 months post-partum and the data were analyzed by means of interpretative analysis. The main theme of obtaining confirmation through social relationships was based on two themes (being confirmed by other mothers and balancing between being a mother and an employee) and on four subthemes (seeking company, sharing experiences, feeling ineffective and in a state of stagnation, and trying to handle contact with the workplace). In order to strengthen the social relationships of mothers, the mother-child health service should offer all mothers the opportunity to join a peer support group, while employers could keep in regular contact with staff members on maternity leave.

  19. Pulse radiolysis with (sub) nanosecond time resolution using a 3 MV electron accelerator

    International Nuclear Information System (INIS)

    Luthjens, L.H.

    1986-01-01

    In this thesis the development of equipment for pulse radiolysis is described and the application of the technique to time-resolved measurements of the fluorescence emission of excited states formed after irradiation of some alkanes is dealt with. A review is given of the development of the pulsed 3MV Van de Graaf electron accelerator for the generation of subnanosecond electron beam pulses and of the development of the equipment for optical detection as accomplished by the author. The initial stage of a further development for shorter pulses and higher time resolution is briefly discussed. A collection of papers on the development of apparatus and a collection of papers dealing with the results obtained from measurements of the fluorescence of excited states, formed by the recombination of electrons and ions in irradiated alkanes such as cyclohexane and the decalines, are included. (Auth.)

  20. An Improvement on Space Focusing Resolution in Two-Field Time-of-Flight Mass Spectrometers

    International Nuclear Information System (INIS)

    Yildirim, M.; Aydin, R.; Akin, U.; Kilic, H. S.; Sise, O.; Ulu, M.; Dogan, M.

    2007-01-01

    Time-of-Flight Mass Spectrometer (TOFMS) is a sophisticated device for the mass selective analysis of a variety of samples. The main limitation on TOFMS technique is the obtainable resolution where the two main limiting factors are the initial space and energy spread of particles created in ionization region. Similar charged particles starting at different points will reach the detector at different times. So, this problem makes space focusing is very important subject. We have presented principles of two-fields TOFMS with second-order space focusing both using analytical methods and ray-tracing simulation. This work aims understanding of ion optical system clearly and gives hint of expectation for future developments

  1. Use of Light Detection and Ranging (LiDAR) to Obtain High-Resolution Elevation Data for Sussex County, Delaware

    Science.gov (United States)

    Barlow, Roger A.; Nardi, Mark R.; Reyes, Betzaida

    2008-01-01

    Sussex County, Delaware, occupies a 938-square-mile area of low relief near sea level in the Atlantic Coastal Plain. The county is bounded on the east by the Delaware Bay and the Atlantic Ocean, including a barrier-island system, and inland bays that provide habitat for valuable living resources. Eastern Sussex County is an area of rapid population growth with a long-established beach-resort community, where land elevation is a key factor in determining areas that are appropriate for development. Of concern to State and local planners are evacuation routes inland to escape flooding from severe coastal storms, as most major transportation routes traverse areas of low elevation that are subject to inundation. The western half of the county is typically rural in character, and land use is largely agricultural with some scattered forest land cover. Western Sussex County has several low-relief river flood-prone areas, where accurate high-resolution elevation data are needed for Federal Emergency Management Agency (FEMA) Digital Flood Insurance Rate Map (DFIRM) studies. This fact sheet describes the methods and techniques used to collect and process LiDAR elevation data, the generation of the digital elevation model (DEM) and the 2-foot contours, and the quality-assurance procedures and results. It indicates where to view metadata on the data sets and where to acquire bare-earth mass points, DEM data, and contour data.

  2. An advection-based model to increase the temporal resolution of PIV time series.

    Science.gov (United States)

    Scarano, Fulvio; Moore, Peter

    A numerical implementation of the advection equation is proposed to increase the temporal resolution of PIV time series. The method is based on the principle that velocity fluctuations are transported passively, similar to Taylor's hypothesis of frozen turbulence . In the present work, the advection model is extended to unsteady three-dimensional flows. The main objective of the method is that of lowering the requirement on the PIV repetition rate from the Eulerian frequency toward the Lagrangian one. The local trajectory of the fluid parcel is obtained by forward projection of the instantaneous velocity at the preceding time instant and backward projection from the subsequent time step. The trajectories are approximated by the instantaneous streamlines, which yields accurate results when the amplitude of velocity fluctuations is small with respect to the convective motion. The verification is performed with two experiments conducted at temporal resolutions significantly higher than that dictated by Nyquist criterion. The flow past the trailing edge of a NACA0012 airfoil closely approximates frozen turbulence , where the largest ratio between the Lagrangian and Eulerian temporal scales is expected. An order of magnitude reduction of the needed acquisition frequency is demonstrated by the velocity spectra of super-sampled series. The application to three-dimensional data is made with time-resolved tomographic PIV measurements of a transitional jet. Here, the 3D advection equation is implemented to estimate the fluid trajectories. The reduction in the minimum sampling rate by the use of super-sampling in this case is less, due to the fact that vortices occurring in the jet shear layer are not well approximated by sole advection at large time separation. Both cases reveal that the current requirements for time-resolved PIV experiments can be revised when information is poured from space to time . An additional favorable effect is observed by the analysis in the

  3. Generation of real-time mode high-resolution water vapor fields from GPS observations

    Science.gov (United States)

    Yu, Chen; Penna, Nigel T.; Li, Zhenhong

    2017-02-01

    Pointwise GPS measurements of tropospheric zenith total delay can be interpolated to provide high-resolution water vapor maps which may be used for correcting synthetic aperture radar images, for numeral weather prediction, and for correcting Network Real-time Kinematic GPS observations. Several previous studies have addressed the importance of the elevation dependency of water vapor, but it is often a challenge to separate elevation-dependent tropospheric delays from turbulent components. In this paper, we present an iterative tropospheric decomposition interpolation model that decouples the elevation and turbulent tropospheric delay components. For a 150 km × 150 km California study region, we estimate real-time mode zenith total delays at 41 GPS stations over 1 year by using the precise point positioning technique and demonstrate that the decoupled interpolation model generates improved high-resolution tropospheric delay maps compared with previous tropospheric turbulence- and elevation-dependent models. Cross validation of the GPS zenith total delays yields an RMS error of 4.6 mm with the decoupled interpolation model, compared with 8.4 mm with the previous model. On converting the GPS zenith wet delays to precipitable water vapor and interpolating to 1 km grid cells across the region, validations with the Moderate Resolution Imaging Spectroradiometer near-IR water vapor product show 1.7 mm RMS differences by using the decoupled model, compared with 2.0 mm for the previous interpolation model. Such results are obtained without differencing the tropospheric delays or water vapor estimates in time or space, while the errors are similar over flat and mountainous terrains, as well as for both inland and coastal areas.

  4. High-resolution and super stacking of time-reversal mirrors in locating seismic sources

    KAUST Repository

    Cao, Weiping; Hanafy, Sherif M.; Schuster, Gerard T.; Zhan, Ge; Boonyasiriwat, Chaiwoot

    2011-01-01

    Time reversal mirrors can be used to backpropagate and refocus incident wavefields to their actual source location, with the subsequent benefits of imaging with high-resolution and super-stacking properties. These benefits of time reversal mirrors

  5. Making Real Life Connections and Engaging High School Students as They Become Climate Detectives using data obtained through JOIDES Resolution Expedition 341

    Science.gov (United States)

    Chegwidden, D.; Mote, A. S.; Manley, J.; Ledley, T. S.; Haddad, N.; Ellins, K.; Lynds, S. E.

    2016-02-01

    Texas is a state that values and supports an Earth Science curriculum, and as an experienced educator in Texas, I find it crucial to educate my students about the various Ocean Science careers that exist and also be able to use the valuable data that is obtained in a core sample from the ocean floor. "Climate Detective" is an EarthLabs module that is supported by TERC and International Ocean Discovery Program (IODP) Expedition 341. This module contains hands-on activities, many opportunities to interpret actual data from a core sample, and collaborative team skills to solve a problem. Through the module, students are able to make real connections with scientists when they understand various roles aboard the JOIDES Resolution. Students can also visually experience real-time research via live video streaming within the research vessel. In my classroom, the use of the "Climate Detective" not only establishes a beneficial relationship between teacher and marine scientists, but such access to the data also helps enhance the climate-related concepts and explanatory procedures involved in obtaining reports. Data is applied to a challenge question for all student groups to answer at the end of the module. This Project-based learning module emphasizes different forms of evidence and requires that learners apply different inquiry approaches to build the knowledge each one needs to acquire, as they become climate-literate citizens. My involvement with the EarthLabs project has strengthened my overall knowledge and confidence to teach about Earth's systems and climate change. In addition, this experience has led me to become an advocate who promotes vigorous classroom discussion among my students; additionally, I am encouraged to collaborate with other educators through the delivery of professional development across the state of Texas. Regularly, I connect with scientists in my classroom and such connection truly enriches not only my personal knowledge, but also provides a

  6. Study of time resolution by digital methods with a DRS4 module

    Science.gov (United States)

    Du, Cheng-Ming, Du; Jin-Da, Chen; Xiu-Ling, Zhang; Yang, Hai-Bo; Cheng, Ke; Kong, Jie; Hu, Zheng-Guo; Sun, Zhi-Yu; Su, Hong; Xu, Hu-Shan

    2016-04-01

    A new Digital Pulse Processing (DPP) module has been developed, based on a domino ring sampler version 4 chip (DRS4), with good time resolution for LaBr3 detectors, and different digital timing analysis methods for processing the raw detector signals are reported. The module, composed of an eight channel DRS4 chip, was used as the readout electronics and acquisition system to process the output signals from XP20D0 photomultiplier tubes (PMTs). Two PMTs were coupled with LaBr3 scintillators and placed on opposite sides of a radioactive positron 22Na source for 511 keV γ-ray tests. By analyzing the raw data acquired by the module, the best coincidence timing resolution is about 194.7 ps (FWHM), obtained by the digital constant fraction discrimination (dCFD) method, which is better than other digital methods and analysis methods based on conventional analog systems which have been tested. The results indicate that it is a promising approach to better localize the positron annihilation in positron emission tomography (PET) with time of flight (TOF), as well as for scintillation timing measurement, such as in TOF-ΔE and TOF-E systems for particle identification, with picosecond accuracy timing measurement. Furthermore, this module is more simple and convenient than other systems. Supported by the Science Foundation of the Chinese Academy of Sciences (210340XBO), National Natural Science Foundation of China (11305233,11205222), General Program of National Natural Science Foundation of China (11475234), Specific Fund of National Key Scientific Instrument and Equipment Development Project (2011YQ12009604) and Joint Fund for Research Based on Large-Scale Scientific Facilities (U1532131).

  7. Dynamics of Transformation from Platinum Icosahedral Nanoparticles to Larger FCC Crystal at Millisecond Time Resolution

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Wenpei [Univ. of Illinois at Urbana-Champaign, IL (United States). Dept. of Materials Science and Engineering and Fredrick Seitz Materials Research Lab.; Wu, Jianbo [Univ. of Illinois at Urbana-Champaign, IL (United States). Dept. of Materials Science and Engineering, Fredrick Seitz Materials Research Lab. and Dept. of Chemical and Biomolecular Engineering; Shanghai Jiao Tong Univ. (China). School of Materials Science and Engineering; Yoon, Aram [Univ. of Illinois at Urbana-Champaign, IL (United States). Dept. of Materials Science and Engineering and Fredrick Seitz Materials Research Lab.; Lu, Ping [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Qi, Liang [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Materials Science and Engineering; Wen, Jianguo [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials and Electron Microscopy Center; Miller, Dean J. [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials and Electron Microscopy Center; Mabon, James C. [Univ. of Illinois at Urbana-Champaign, IL (United States). Fredrick Seitz Materials Research Lab.; Wilson, William L. [Univ. of Illinois at Urbana-Champaign, IL (United States). Dept. of Materials Science and Engineering and Fredrick Seitz Materials Research Lab.; Yang, Hong [Univ. of Illinois at Urbana-Champaign, IL (United States). Dept. of Chemical and Biomolecular Engineering; Zuo, Jian-Min [Univ. of Illinois at Urbana-Champaign, IL (United States). Dept. of Materials Science and Engineering and Fredrick Seitz Materials Research Lab.

    2017-12-08

    Atomic motion at grain boundaries is essential to microstructure development, growth and stability of catalysts and other nanostructured materials. However, boundary atomic motion is often too fast to observe in a conventional transmission electron microscope (TEM) and too slow for ultrafast electron microscopy. We report on the entire transformation process of strained Pt icosahedral nanoparticles (ICNPs) into larger FCC crystals, captured at 2.5 ms time resolution using a fast electron camera. Results show slow diffusive dislocation motion at nm/s inside ICNPs and fast surface transformation at μm/s. By characterizing nanoparticle strain, we show that the fast transformation is driven by inhomogeneous surface stress. And interaction with pre-existing defects led to the slowdown of the transformation front inside the nanoparticles. Particle coalescence, assisted by oxygen-induced surface migration at T ≥ 300°C, also played a critical role. Thus by studying transformation in the Pt ICNPs at high time and spatial resolution, we obtain critical insights into the transformation mechanisms in strained Pt nanoparticles.

  8. A novel capacitive absolute positioning sensor based on time grating with nanometer resolution

    Science.gov (United States)

    Pu, Hongji; Liu, Hongzhong; Liu, Xiaokang; Peng, Kai; Yu, Zhicheng

    2018-05-01

    The present work proposes a novel capacitive absolute positioning sensor based on time grating. The sensor includes a fine incremental-displacement measurement component combined with a coarse absolute-position measurement component to obtain high-resolution absolute positioning measurements. A single row type sensor was proposed to achieve fine displacement measurement, which combines the two electrode rows of a previously proposed double-row type capacitive displacement sensor based on time grating into a single row. To achieve absolute positioning measurement, the coarse measurement component is designed as a single-row type displacement sensor employing a single spatial period over the entire measurement range. In addition, this component employs a rectangular induction electrode and four groups of orthogonal discrete excitation electrodes with half-sinusoidal envelope shapes, which were formed by alternately extending the rectangular electrodes of the fine measurement component. The fine and coarse measurement components are tightly integrated to form a compact absolute positioning sensor. A prototype sensor was manufactured using printed circuit board technology for testing and optimization of the design in conjunction with simulations. Experimental results show that the prototype sensor achieves a ±300 nm measurement accuracy with a 1 nm resolution over a displacement range of 200 mm when employing error compensation. The proposed sensor is an excellent alternative to presently available long-range absolute nanometrology sensors owing to its low cost, simple structure, and ease of manufacturing.

  9. A high time and spatial resolution MRPC designed for muon tomography

    Science.gov (United States)

    Shi, L.; Wang, Y.; Huang, X.; Wang, X.; Zhu, W.; Li, Y.; Cheng, J.

    2014-12-01

    A prototype of cosmic muon scattering tomography system has been set up in Tsinghua University in Beijing. Multi-gap Resistive Plate Chamber (MRPC) is used in the system to get the muon tracks. Compared with other detectors, MRPC can not only provide the track but also the Time of Flight (ToF) between two detectors which can estimate the energy of particles. To get a more accurate track and higher efficiency of the tomography system, a new type of high time and two-dimensional spatial resolution MRPC has been developed. A series of experiments have been done to measure the efficiency, time resolution and spatial resolution. The results show that the efficiency can reach 95% and its time resolution is around 65 ps. The cluster size is around 4 and the spatial resolution can reach 200 μ m.

  10. A high-resolution mini-microscope system for wireless real-time monitoring.

    Science.gov (United States)

    Wang, Zongjie; Boddeda, Akash; Parker, Benjamin; Samanipour, Roya; Ghosh, Sanjoy; Menard, Frederic; Kim, Keekyoung

    2017-09-04

    Compact, cost-effective and high-performance microscope that enables the real-time imaging of cells and lab-on-a-chip devices is highly demanded for cell biology and biomedical engineering. This paper aims to present the design and application of an inexpensive wireless mini-microscope with resolution up to 2592 × 1944 pixels and speed up to 90 fps. The mini-microscope system was built on a commercial embedded system (Raspberry Pi). We modified a camera module and adopted an inverse dual lens system to obtain the clear field of view and appropriate magnification for tens of micrometer objects. The system was capable of capturing time-lapse images and transferring image data wirelessly. The entire system can be operated wirelessly and cordlessly in a conventional cell culturing incubator. The developed mini-microscope was used to monitor the attachment and proliferation of NIH-3T3 and HEK 293 cells inside an incubator for 50 hours. In addition, the mini-microscope was used to monitor a droplet generation process in a microfluidic device. The high-quality images captured by the mini-microscope enabled us an automated analysis of experimental parameters. The successful applications prove the great potential of the developed mini-microscope for monitoring various biological samples and microfluidic devices. This paper presents the design of a high resolution mini-microscope system that enables the wireless real-time imaging of cells inside the incubator. This system has been verified to be a useful tool to obtain high-quality images and videos for the automated quantitative analysis of biological samples and lab-on-a-chip devices in the long term.

  11. Features of ozone intraannual variability in polar regions based on ozone sounding data obtained at the Resolute and Amundsen-Scott stations

    Energy Technology Data Exchange (ETDEWEB)

    Gruzdev, A.N.; Sitnov, S.A. (AN SSSR, Institut Fiziki Atmosfery, Moscow (USSR))

    1991-04-01

    Ozone sounding data obtained at the Resolute and Amundsen-Scott stations are used to analyze ozone intraannual variability in Southern and Northern polar regions. For the Arctic, in particular, features associated with winter stratospheric warmings, stratospheric-tropospheric exchange, and the isolated evolution of surface ozone are noted. Correlative connections between ozone and temperature making it possible to concretize ozone variability mechanisms are analyzed. 31 refs.

  12. Tablet disintegration studied by high-resolution real-time magnetic resonance imaging.

    OpenAIRE

    Quodbach, J.; Moussavi, A.; Tammer, R.; Frahm, J.; Kleinebudde, P.

    2014-01-01

    The present work employs recent advances in high-resolution real-time magnetic resonance imaging (MRI) to investigate the disintegration process of tablets containing disintegrants. A temporal resolution of 75 ms and a spatial resolution of 80 x 80 m with a section thickness of only 600 m were achieved. The histograms of MRI videos were quantitatively analyzed with MATLAB. The mechanisms of action of six commercially available disintegrants, the influence of relative tablet density, and the i...

  13. Development of hard X-ray spectrometer with high time resolution on the J-TEXT tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Ma, T.K.; Chen, Z.Y., E-mail: zychen@hust.edu.cn; Huang, D.W.; Tong, R.H.; Yan, W.; Wang, S.Y.; Dai, A.J.; Wang, X.L.

    2017-06-01

    A hard X-ray (HXR) spectrometer has been developed to study the runaway electrons during the sawtooth activities and during the runaway current plateau phase on the J-TEXT tokamak. The spectrometer system contains four NaI scintillator detectors and a multi-channel analyzer (MCA) with 0.5 ms time resolution. The dedicated peak detection circuit embedded in the MCA provides a pulse height analysis at count rate up to 1.2 million counts per second (Mcps), which is the key to reach the high time resolution. The accuracy and reliability of the system have been verified by comparing with the hardware integrator of HXR flux. The temporal evolution of HXR flux in different energy ranges can be obtained with high time resolution by this dedicated HXR spectrometer. The response of runaway electron transport with different energy during the sawtooth activities can be studied. The energy evolution of runaway electrons during the plateau phase of runaway current can be obtained. - Highlights: • A HXR spectrometer with high time resolution has been developed on J-TEXT tokamak. • The response of REs transport during the sawtooth activities can be investigated. • The energy evolution of REs following the disruptions can be monitored.

  14. High-Resolution Digital-to-Time Converter Implemented in an FPGA Chip

    Directory of Open Access Journals (Sweden)

    Hai Wang

    2017-01-01

    Full Text Available This paper presents the design and implementation of a new digital-to-time converter (DTC. The obtained resolution is 1.02 ps, and the dynamic range is about 590 ns. The experimental results indicate that the measured differential nonlinearity (DNL and integral nonlinearity (INL are −0.17~+0.13 LSB and −0.35~+0.62 LSB, respectively. This DTC builds coarse and fine Vernier delay lines constructed by programmable delay lines (PDLs to ensure high performance delay. Benefited by the close-loop feedback mechanism of the PDLs’ control module, the presented DTC has excellent voltage and temperature stability. What is more, the proposed DTC can be implemented in a single field programmable gate array (FPGA chip.

  15. Large area spark counters with fine time and position resolution

    International Nuclear Information System (INIS)

    Ogawa, A.; Atwood, W.B.; Fujiwara, N.; Pestov, Yu.N.; Sugahara, R.

    1983-10-01

    Spark counters trace their history back over three decades but have been used in only a limited number of experiments. The key properties of these devices include their capability of precision timing (at the sub 100 ps level) and of measuring the position of the charged particle to high accuracy. At SLAC we have undertaken a program to develop these devices for use in high energy physics experiments involving large detectors. A spark counter of size 1.2 m x 0.1 m has been constructed and has been operating continuously in our test setup for several months. In this talk I will discuss some details of its construction and its properties as a particle detector. 14 references

  16. SiPM Photodetectors for Highest Time Resolution in PET

    CERN Document Server

    Gundacker, S; Meyer, T; Lecoq, P; Jarron, P; Frisch, B

    2012-01-01

    Mesh anode Vacuum Phototriodes (VPTs) are radiation resistant, single gain-stage photomultipliers which are designed to operate in a strong quasi-axial magnetic field. These VPTs are used in the endcap electromagnetic calorimeter of the CMS experiment at the CERN LHC to detect scintillation light from lead tungstate crystals. Short term dynamic response changes occur because of pulse rate variations during normal LHC operation cycles. Over the longer term the effect of increasing integrated charge taken from the photocathode causes an overall degradation of response. We have investigated these effects over time periods exceeding two years of simulated operation and discuss the implications for the long term performance of the VPTs in CMS.

  17. Real-time underwater object detection based on an electrically scanned high-resolution sonar

    DEFF Research Database (Denmark)

    Henriksen, Lars

    1994-01-01

    The paper describes an approach to real time detection and tracking of underwater objects, using image sequences from an electrically scanned high-resolution sonar. The use of a high resolution sonar provides a good estimate of the location of the objects, but strains the computers on board, beca...

  18. Multi-resolution time series imagery for forest disturbance and regrowth monitoring in Queensland, Australia

    NARCIS (Netherlands)

    Schmidt, M.; Lucas, R.; Bunting, P.; Verbesselt, J.; Armston, J.

    2015-01-01

    High spatio-temporal resolution optical remote sensing data provide unprecedented opportunities to monitor and detect forest disturbance and loss. To demonstrate this potential, a 12-year time series (2000 to 2011) with an 8-day interval of a 30 m spatial resolution data was generated by the use of

  19. A 30 ps Timing Resolution for Single Photons with Multi-pixel Burle MCP-PMT

    Energy Technology Data Exchange (ETDEWEB)

    Va' vra, J.; Benitez, J.; Coleman, J.; Leith, D.W.G.S.; Mazaheri, G.; Ratcliff, B.; Schwiening, J.; /SLAC

    2006-07-05

    We have achieved {approx}30 psec single-photoelectron and {approx}12ps for multi-photoelectron timing resolution with a new 64 pixel Burle MCP-PMT with 10 micron microchannel holes. We have also demonstrated that this detector works in a magnetic field of 15kG, and achieved a single-photoelectron timing resolution of better than 60 psec. The study is relevant for a new focusing DIRC RICH detector for particle identification at future Colliders such as the super B-factory or ILC, and for future TOF techniques. This study shows that a highly pixilated MCP-PMT can deliver excellent timing resolution.

  20. Measurement and simulation of the inelastic resolution function of a time-of-flight spectrometer

    International Nuclear Information System (INIS)

    Roth, S.V.; Zirkel, A.; Neuhaus, J.; Petry, W.; Bossy, J.; Peters, J.; Schober, H.

    2002-01-01

    The deconvolution of inelastic neutron scattering data requires the knowledge of the inelastic resolution function. The inelastic resolution function of the time-of-flight spectrometer IN5/ILL has been measured by exploiting the sharp resonances of the roton and maxon excitations in superfluid 4 He for the two respective (q,ω) values. The calculated inelastic resolution function for three different instrumental setups is compared to the experimentally determined resolution function. The agreement between simulation and experimental data is excellent, allowing us in principle to extrapolate the simulations and thus to determine the resolution function in the whole accessible dynamic range of IN5 or any other time-of-flight spectrometer. (orig.)

  1. Measurement and simulation of the inelastic resolution function of a time-of-flight spectrometer

    CERN Document Server

    Roth, S V; Neuhaus, J; Petry, W; Bossy, J; Peters, J; Schober, H

    2002-01-01

    The deconvolution of inelastic neutron scattering data requires the knowledge of the inelastic resolution function. The inelastic resolution function of the time-of-flight spectrometer IN5/ILL has been measured by exploiting the sharp resonances of the roton and maxon excitations in superfluid sup 4 He for the two respective (q,omega) values. The calculated inelastic resolution function for three different instrumental setups is compared to the experimentally determined resolution function. The agreement between simulation and experimental data is excellent, allowing us in principle to extrapolate the simulations and thus to determine the resolution function in the whole accessible dynamic range of IN5 or any other time-of-flight spectrometer. (orig.)

  2. Comparing bulk electrical conductivities spatial series obtained by Time Domain Reflectometry and Electromagnetic Induction sensors

    Science.gov (United States)

    Saeed, Ali; Ajeel, Ali; dragonetti, giovanna; Comegna, Alessandro; Lamaddalena, Nicola; Coppola, Antonio

    2016-04-01

    The ability to determine and monitor the effects of salts on soils and plants, are of great importance to agriculture. To control its harmful effects, soil salinity needs to be monitored in space and time. This requires knowledge of its magnitude, temporal dynamics, and spatial variability. Conventional ground survey procedures by direct soil sampling are time consuming, costly and destructive. Alternatively, soil salinity can be evaluated by measuring the bulk electrical conductivity (σb) directly in the field. Time domain reflectometry (TDR) sensors allow simultaneous measurements of water content, θ, and σb. They may be calibrated for estimating the electrical conductivity of the soil solution (σw). However, they have a relatively small observation window and thus they are thought to only provide local-scale measurements. The spatial range of the sensors is limited to tens of centimeters and extension of the information to a large area can be problematic. Also, information on the vertical distribution of the σb soil profile may only be obtained by installing sensors at different depths. In this sense, the TDR may be considered as an invasive technique. Compared to the TDR, other geophysical methods based for example on Electromagnetic Induction (EMI) techniques are non-invasive methods and represent a viable alternative to traditional techniques for soil characterization. The problem is that all these techniques give depth-weighted apparent electrical conductivity (σa) measurements, depending on the specific depth distribution of the σb, as well as on the depth response function of the sensor used. In order to deduce the actual distribution of the bulk electrical conductivity, σb, in the soil profile, one needs to invert the signal coming from EMI. Because of their relatively lower observation window, TDR sensors provide quasi-point values and do not adequately integrate the spatial variability of the chemical concentration distribution in the soil

  3. Analytical model of SiPM time resolution and order statistics with crosstalk

    International Nuclear Information System (INIS)

    Vinogradov, S.

    2015-01-01

    Time resolution is the most important parameter of photon detectors in a wide range of time-of-flight and time correlation applications within the areas of high energy physics, medical imaging, and others. Silicon photomultipliers (SiPM) have been initially recognized as perfect photon-number-resolving detectors; now they also provide outstanding results in the scintillator timing resolution. However, crosstalk and afterpulsing introduce false secondary non-Poissonian events, and SiPM time resolution models are experiencing significant difficulties with that. This study presents an attempt to develop an analytical model of the timing resolution of an SiPM taking into account statistics of secondary events resulting from a crosstalk. Two approaches have been utilized to derive an analytical expression for time resolution: the first one based on statistics of independent identically distributed detection event times and the second one based on order statistics of these times. The first approach is found to be more straightforward and “analytical-friendly” to model analog SiPMs. Comparisons of coincidence resolving times predicted by the model with the known experimental results from a LYSO:Ce scintillator and a Hamamatsu MPPC are presented

  4. Analytical model of SiPM time resolution and order statistics with crosstalk

    Energy Technology Data Exchange (ETDEWEB)

    Vinogradov, S., E-mail: Sergey.Vinogradov@liverpool.ac.uk [University of Liverpool and Cockcroft Institute, Sci-Tech Daresbury, Keckwick Lane, Warrington WA4 4AD (United Kingdom); P.N. Lebedev Physical Institute of the Russian Academy of Sciences, 119991 Leninskiy Prospekt 53, Moscow (Russian Federation)

    2015-07-01

    Time resolution is the most important parameter of photon detectors in a wide range of time-of-flight and time correlation applications within the areas of high energy physics, medical imaging, and others. Silicon photomultipliers (SiPM) have been initially recognized as perfect photon-number-resolving detectors; now they also provide outstanding results in the scintillator timing resolution. However, crosstalk and afterpulsing introduce false secondary non-Poissonian events, and SiPM time resolution models are experiencing significant difficulties with that. This study presents an attempt to develop an analytical model of the timing resolution of an SiPM taking into account statistics of secondary events resulting from a crosstalk. Two approaches have been utilized to derive an analytical expression for time resolution: the first one based on statistics of independent identically distributed detection event times and the second one based on order statistics of these times. The first approach is found to be more straightforward and “analytical-friendly” to model analog SiPMs. Comparisons of coincidence resolving times predicted by the model with the known experimental results from a LYSO:Ce scintillator and a Hamamatsu MPPC are presented.

  5. A comprehensive & systematic study of coincidence time resolution and light yield using scintillators of different size, wrapping and doping

    CERN Document Server

    Auffray, E.; Geraci, F.; Ghezzi, A.; Gundacker, S.; Hillemanns, H.; Jarron, P.; Meyer, T.; Paganoni, M.; Pauwels, K.; Pizzichemi, M.; Lecoq, P.

    2011-01-01

    Over the last years interest in using time-of-flight-based Positron Emission Tomography (TOF-PET) systems has significantly increased. High time resolution in such PET systems is a powerful tool to improve signal to noise ratio and therefore to allow smaller exposure rates for patients as well as faster image reconstruction. Improvement in coincidence time resolution (CTR) in PET systems to the level of 200ps FWHM requires the optimization of all parameters in the photon detection chain influencing the time resolution: crystal, photodetector and readout electronics. After reviewing the factors influencing the time resolution of scintillators, we will present in this paper the light yield and CTR obtained for different scintillator types (LSO:Ce, LYSO:Ce, LGSO:Ce, LSO:Ce:0.4Ca, LuAG:Ce, LuAG:Pr) with different cross-sections, lengths and reflectors. Whereas light yield measurements were made with a classical PMT, all CTR tests were performed with Hamamatsu-MPPCs or SiPMs S10931-050P. The CTR measurements were ...

  6. Multi-Grid detector for neutron spectroscopy: results obtained on time-of-flight spectrometer CNCS

    Science.gov (United States)

    Anastasopoulos, M.; Bebb, R.; Berry, K.; Birch, J.; Bryś, T.; Buffet, J.-C.; Clergeau, J.-F.; Deen, P. P.; Ehlers, G.; van Esch, P.; Everett, S. M.; Guerard, B.; Hall-Wilton, R.; Herwig, K.; Hultman, L.; Höglund, C.; Iruretagoiena, I.; Issa, F.; Jensen, J.; Khaplanov, A.; Kirstein, O.; Lopez Higuera, I.; Piscitelli, F.; Robinson, L.; Schmidt, S.; Stefanescu, I.

    2017-04-01

    The Multi-Grid detector technology has evolved from the proof-of-principle and characterisation stages. Here we report on the performance of the Multi-Grid detector, the MG.CNCS prototype, which has been installed and tested at the Cold Neutron Chopper Spectrometer, CNCS at SNS. This has allowed a side-by-side comparison to the performance of 3He detectors on an operational instrument. The demonstrator has an active area of 0.2 m2. It is specifically tailored to the specifications of CNCS. The detector was installed in June 2016 and has operated since then, collecting neutron scattering data in parallel to the He-3 detectors of CNCS. In this paper, we present a comprehensive analysis of this data, in particular on instrument energy resolution, rate capability, background and relative efficiency. Stability, gamma-ray and fast neutron sensitivity have also been investigated. The effect of scattering in the detector components has been measured and provides input to comparison for Monte Carlo simulations. All data is presented in comparison to that measured by the 3He detectors simultaneously, showing that all features recorded by one detector are also recorded by the other. The energy resolution matches closely. We find that the Multi-Grid is able to match the data collected by 3He, and see an indication of a considerable advantage in the count rate capability. Based on these results, we are confident that the Multi-Grid detector will be capable of producing high quality scientific data on chopper spectrometers utilising the unprecedented neutron flux of the ESS.

  7. SYSTEM OF GUARANTEED RESOLUTION OF DYNAMIC CONFLICTS OF AIRCRAFTS IN REAL TIME

    Directory of Open Access Journals (Sweden)

    Svitlana Pavlova

    2017-03-01

    Full Text Available Purpose: The present work is devoted to improving of flight safety in civil aviation by creating and implementing a new system of resolution of dynamic conflict of aircrafts. The developed system is aimed at ensuring a guaranteed level of safety when resolution of rarefied conflict situations of aircraft in real-time. Methods: The proposed system is based on a new method of conflict resolution of aircraft on the basis of the theory of invariance. Results: The development of the system of conflict resolution of aircraft in real time and the implementation of the respective algorithms such control will ensure effective prevention of dangerous approaches. Discussion: The system is implemented as single unified equipment using satellite and radar navigation systems that will ensure the positioning of aircraft in real time. Provided that the system should be installed on all aircraft and integrated on board to properly ensure its functionality and interact with navigation systems.

  8. Time and Frequency Localized Pulse Shape for Resolution Enhancement in STFT-BOTDR

    Directory of Open Access Journals (Sweden)

    Linqing Luo

    2016-01-01

    Full Text Available Short-Time Fourier Transform-Brillouin Optical Time-Domain Reflectometry (STFT-BOTDR implements STFT over the full frequency spectrum to measure the distributed temperature and strain along the optic fiber, providing new research advances in dynamic distributed sensing. The spatial and frequency resolution of the dynamic sensing are limited by the Signal to Noise Ratio (SNR and the Time-Frequency (T-F localization of the input pulse shape. T-F localization is fundamentally important for the communication system, which suppresses interchannel interference (ICI and intersymbol interference (ISI to improve the transmission quality in multicarrier modulation (MCM. This paper demonstrates that the T-F localized input pulse shape can enhance the SNR and the spatial and frequency resolution in STFT-BOTDR. Simulation and experiments of T-F localized different pulses shapes are conducted to compare the limitation of the system resolution. The result indicates that rectangular pulse should be selected to optimize the spatial resolution and Lorentzian pulse could be chosen to optimize the frequency resolution, while Gaussian shape pulse can be used in general applications for its balanced performance in both spatial and frequency resolution. Meanwhile, T-F localization is proved to be useful in the pulse shape selection for system resolution optimization.

  9. A Simple Approach for Obtaining High Resolution, High Sensitivity ¹H NMR Metabolite Spectra of Biofluids with Limited Mass Supply

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jian Zhi; Rommereim, Donald N.; Wind, Robert A.; Minard, Kevin R.; Sears, Jesse A.

    2006-11-01

    A simple approach is reported that yields high resolution, high sensitivity ¹H NMR spectra of biofluids with limited mass supply. This is achieved by spinning a capillary sample tube containing a biofluid at the magic angle at a frequency of about 80Hz. A 2D pulse sequence called ¹H PASS is then used to produce a high-resolution ¹H NMR spectrum that is free from magnetic susceptibility induced line broadening. With this new approach a high resolution ¹H NMR spectrum of biofluids with a volume less than 1.0 µl can be easily achieved at a magnetic field strength as low as 7.05T. Furthermore, the methodology facilitates easy sample handling, i.e., the samples can be directly collected into inexpensive and disposable capillary tubes at the site of collection and subsequently used for NMR measurements. In addition, slow magic angle spinning improves magnetic field shimming and is especially suitable for high throughput investigations. In this paper first results are shown obtained in a magnetic field of 7.05T on urine samples collected from mice using a modified commercial NMR probe.

  10. Estimation of mean tree stand volume using high-resolution aerial RGB imagery and digital surface model, obtained from sUAV and Trestima mobile application

    Directory of Open Access Journals (Sweden)

    G. K. Rybakov

    2017-06-01

    Full Text Available This study considers a remote sensing technique for mean volume estimation based on a very high-resolution (VHR aerial RGB imagery obtained using a small-sized unmanned aerial vehicle (sUAV and a high-resolution photogrammetric digital surface model (DSM as well as an innovative technology for field measurements (Trestima. The study area covers approx. 220 ha of forestland in Finland. The work concerns the entire process from remote sensing and field data acquisition to statistical analysis and forest volume wall-to-wall mapping. The study showed that the VHR aerial imagery and the high-resolution DSM produced based on the application of the sUAV have good prospects for forest inventory. For the sUAV based estimation of forest variables such as Height, Basal Area and mean Volume, Root Mean Square Error constituted 6.6 %, 22.6 % and 26.7 %, respectively. Application of Trestima for estimation of the mean volume of the standing forest showed minor difference over the existing Forest Management Plan at all the selected forest compartments. Simultaneously, the results of the study confirmed that the technologies and the tools applied at this work could be a reliable and potentially cost-effective means of forest data acquisition with high potential of operational use.

  11. Analysis of time series exposure rates obtained at a monitoring station around nuclear power stations

    International Nuclear Information System (INIS)

    Urabe, I.; Ogawa, Y.; Kimura, Y.; Honda, Y.; Nakashima, Y.; Yoshimoto, T.; Tsujimoto, T.

    1991-01-01

    From the investigation on the variation of AAD rates monitored in the natural environment around nuclear power station, it may be concluded; (1) Differences between monthly averaged air absorbed dose rates (AAD rates) given by all data obtained and those obtained in fine weather become larger in winter (from Dec. to Feb.) (2) Cummulative frequency distributions of AAD rates are very different among four seasons. Remarkably high AAD rates are observed by heavy rains in summer and snow falls or rains in winter. (3) Though the hypothesis that the frequency distribution of AAD rates fit to the lognormal distribution can not be accepted by chi-square test, higher part of the frequency distribution of AAD rates agree approximately with the lognormal one. (4) Identification of AAD rates due to plume exposure may be possible by statistical analysis assuming lognormal distribution of AAD rates as well as the discrimination method based on the reference standard using mean values and standard deviations of the data obtained in fine weather. (author)

  12. Wide-range time-to-digital converters with a high resolution

    International Nuclear Information System (INIS)

    Aul'chenko, V.M.

    1977-01-01

    A combined time-number converter in which measurements of time intervals to within a period of clock frequency are made directly and those within a period are by a time-amplitude-code conversion is described. It allows time intervals up to 4 mcsec with a resolution of 100 psec to be measured. The differential nonlinearity of conversion is not greater than +-1.5%, and the integral error from measurements of time intervals is not greater than +-100 psec

  13. A multi-step strategy to obtain crystals of the dengue virus RNA-dependent RNA polymerase that diffract to high resolution

    International Nuclear Information System (INIS)

    Yap, Thai Leong; Chen, Yen Liang; Xu, Ting; Wen, Daying; Vasudevan, Subhash G.; Lescar, Julien

    2007-01-01

    Crystals of the RNA-dependent RNA polymerase catalytic domain from the dengue virus NS5 protein have been obtained using a strategy that included expression screening of naturally occurring serotype variants of the protein, the addition of divalent metal ions and crystal dehydration. These crystals diffract to 1.85 Å resolution and are thus suitable for a structure-based drug-design program. Dengue virus, a member of the Flaviviridae genus, causes dengue fever, an important emerging disease with several million infections occurring annually for which no effective therapy exists. The viral RNA-dependent RNA polymerase NS5 plays an important role in virus replication and represents an interesting target for the development of specific antiviral compounds. Crystals that diffract to 1.85 Å resolution that are suitable for three-dimensional structure determination and thus for a structure-based drug-design program have been obtained using a strategy that included expression screening of naturally occurring serotype variants of the protein, the addition of divalent metal ions and crystal dehydration

  14. A multi-step strategy to obtain crystals of the dengue virus RNA-dependent RNA polymerase that diffract to high resolution

    Energy Technology Data Exchange (ETDEWEB)

    Yap, Thai Leong [Novartis Institute for Tropical Diseases, 10 Biopolis Road, Chromos Building, Singapore 138670 (Singapore); School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore); Chen, Yen Liang; Xu, Ting; Wen, Daying; Vasudevan, Subhash G. [Novartis Institute for Tropical Diseases, 10 Biopolis Road, Chromos Building, Singapore 138670 (Singapore); Lescar, Julien, E-mail: julien@ntu.edu.sg [Novartis Institute for Tropical Diseases, 10 Biopolis Road, Chromos Building, Singapore 138670 (Singapore); School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore)

    2007-02-01

    Crystals of the RNA-dependent RNA polymerase catalytic domain from the dengue virus NS5 protein have been obtained using a strategy that included expression screening of naturally occurring serotype variants of the protein, the addition of divalent metal ions and crystal dehydration. These crystals diffract to 1.85 Å resolution and are thus suitable for a structure-based drug-design program. Dengue virus, a member of the Flaviviridae genus, causes dengue fever, an important emerging disease with several million infections occurring annually for which no effective therapy exists. The viral RNA-dependent RNA polymerase NS5 plays an important role in virus replication and represents an interesting target for the development of specific antiviral compounds. Crystals that diffract to 1.85 Å resolution that are suitable for three-dimensional structure determination and thus for a structure-based drug-design program have been obtained using a strategy that included expression screening of naturally occurring serotype variants of the protein, the addition of divalent metal ions and crystal dehydration.

  15. Development of high speed integrated circuit for very high resolution timing measurements

    International Nuclear Information System (INIS)

    Mester, Christian

    2009-10-01

    A multi-channel high-precision low-power time-to-digital converter application specific integrated circuit for high energy physics applications has been designed and implemented in a 130 nm CMOS process. To reach a target resolution of 24.4 ps, a novel delay element has been conceived. This nominal resolution has been experimentally verified with a prototype, with a minimum resolution of 19 ps. To further improve the resolution, a new interpolation scheme has been described. The ASIC has been designed to use a reference clock with the LHC bunch crossing frequency of 40 MHz and generate all required timing signals internally, to ease to use within the framework of an LHC upgrade. Special care has been taken to minimise the power consumption. (orig.)

  16. Development of high speed integrated circuit for very high resolution timing measurements

    Energy Technology Data Exchange (ETDEWEB)

    Mester, Christian

    2009-10-15

    A multi-channel high-precision low-power time-to-digital converter application specific integrated circuit for high energy physics applications has been designed and implemented in a 130 nm CMOS process. To reach a target resolution of 24.4 ps, a novel delay element has been conceived. This nominal resolution has been experimentally verified with a prototype, with a minimum resolution of 19 ps. To further improve the resolution, a new interpolation scheme has been described. The ASIC has been designed to use a reference clock with the LHC bunch crossing frequency of 40 MHz and generate all required timing signals internally, to ease to use within the framework of an LHC upgrade. Special care has been taken to minimise the power consumption. (orig.)

  17. Time resolution improvement of Schottky CdTe PET detectors using digital signal processing

    International Nuclear Information System (INIS)

    Nakhostin, M.; Ishii, K.; Kikuchi, Y.; Matsuyama, S.; Yamazaki, H.; Torshabi, A. Esmaili

    2009-01-01

    We present the results of our study on the timing performance of Schottky CdTe PET detectors using the technique of digital signal processing. The coincidence signals between a CdTe detector (15x15x1 mm 3 ) and a fast liquid scintillator detector were digitized by a fast digital oscilloscope and analyzed. In the analysis, digital versions of the elements of timing circuits, including pulse shaper and time discriminator, were created and a digital implementation of the Amplitude and Rise-time Compensation (ARC) mode of timing was performed. Owing to a very fine adjustment of the parameters of timing measurement, a good time resolution of less than 9.9 ns (FWHM) at an energy threshold of 150 keV was achieved. In the next step, a new method of time pickoff for improvement of timing resolution without loss in the detection efficiency of CdTe detectors was examined. In the method, signals from a CdTe detector are grouped by their rise-times and different procedures of time pickoff are applied to the signals of each group. Then, the time pickoffs are synchronized by compensating the fixed time offset, caused by the different time pickoff procedures. This method leads to an improved time resolution of ∼7.2 ns (FWHM) at an energy threshold of as low as 150 keV. The methods presented in this work are computationally fast enough to be used for online processing of data in an actual PET system.

  18. The Effects of Survey Timing on Student Evaluation of Teaching Measures Obtained Using Online Surveys

    Science.gov (United States)

    Estelami, Hooman

    2015-01-01

    Teaching evaluations are an important measurement tool used by business schools in gauging the level of student satisfaction with the educational services delivered by faculty. The growing use of online teaching evaluations has enabled educational administrators to expand the time period during which student evaluation of teaching (SET) surveys…

  19. Obtaining local reflectivity at two-way travel time by filtering acoustic reflection data

    NARCIS (Netherlands)

    Slob, E.C.; Zhang, L.; Wapenaar, C.P.A.; Mihai Popovici, A.; Fomel, S.

    2017-01-01

    A modified implementation of Marchenko redatuming leads to a filter that removes internal multiples from reflection data. It produces local reflectivity at two-way travel time. The method creates new primary reflections resulting from emitted events that eliminate internal multiples. We call these

  20. Detection and Segmentation of Vine Canopy in Ultra-High Spatial Resolution RGB Imagery Obtained from Unmanned Aerial Vehicle (UAV: A Case Study in a Commercial Vineyard

    Directory of Open Access Journals (Sweden)

    Carlos Poblete-Echeverría

    2017-03-01

    Full Text Available The use of Unmanned Aerial Vehicles (UAVs in viticulture permits the capture of aerial Red-Green-Blue (RGB images with an ultra-high spatial resolution. Recent studies have demonstrated that RGB images can be used to monitor spatial variability of vine biophysical parameters. However, for estimating these parameters, accurate and automated segmentation methods are required to extract relevant information from RGB images. Manual segmentation of aerial images is a laborious and time-consuming process. Traditional classification methods have shown satisfactory results in the segmentation of RGB images for diverse applications and surfaces, however, in the case of commercial vineyards, it is necessary to consider some particularities inherent to canopy size in the vertical trellis systems (VSP such as shadow effect and different soil conditions in inter-rows (mixed information of soil and weeds. Therefore, the objective of this study was to compare the performance of four classification methods (K-means, Artificial Neural Networks (ANN, Random Forest (RForest and Spectral Indices (SI to detect canopy in a vineyard trained on VSP. Six flights were carried out from post-flowering to harvest in a commercial vineyard cv. Carménère using a low-cost UAV equipped with a conventional RGB camera. The results show that the ANN and the simple SI method complemented with the Otsu method for thresholding presented the best performance for the detection of the vine canopy with high overall accuracy values for all study days. Spectral indices presented the best performance in the detection of Plant class (Vine canopy with an overall accuracy of around 0.99. However, considering the performance pixel by pixel, the Spectral indices are not able to discriminate between Soil and Shadow class. The best performance in the classification of three classes (Plant, Soil, and Shadow of vineyard RGB images, was obtained when the SI values were used as input data in trained

  1. Culturally appropriate methodology in obtaining a representative sample of South Australian Aboriginal adults for a cross-sectional population health study: challenges and resolutions.

    Science.gov (United States)

    Marin, Tania; Taylor, Anne Winifred; Grande, Eleonora Dal; Avery, Jodie; Tucker, Graeme; Morey, Kim

    2015-05-19

    The considerably lower average life expectancy of Aboriginal and Torres Strait Islander Australians, compared with non-Aboriginal and non-Torres Strait Islander Australians, has been widely reported. Prevalence data for chronic disease and health risk factors are needed to provide evidence based estimates for Australian Aboriginal and Torres Strait Islanders population health planning. Representative surveys for these populations are difficult due to complex methodology. The focus of this paper is to describe in detail the methodological challenges and resolutions of a representative South Australian Aboriginal population-based health survey. Using a stratified multi-stage sampling methodology based on the Australian Bureau of Statistics 2006 Census with culturally appropriate and epidemiological rigorous methods, 11,428 randomly selected dwellings were approached from a total of 209 census collection districts. All persons eligible for the survey identified as Aboriginal and/or Torres Strait Islander and were selected from dwellings identified as having one or more Aboriginal person(s) living there at the time of the survey. Overall, the 399 interviews from an eligible sample of 691 SA Aboriginal adults yielded a response rate of 57.7%. These face-to-face interviews were conducted by ten interviewers retained from a total of 27 trained Aboriginal interviewers. Challenges were found in three main areas: identification and recruitment of participants; interviewer recruitment and retainment; and using appropriate engagement with communities. These challenges were resolved, or at least mainly overcome, by following local protocols with communities and their representatives, and reaching agreement on the process of research for Aboriginal people. Obtaining a representative sample of Aboriginal participants in a culturally appropriate way was methodologically challenging and required high levels of commitment and resources. Adhering to these principles has resulted in a

  2. Femtosecond Resolution Timing in Multi-GS/s Waveform Digitizing ASICs

    Science.gov (United States)

    Orel, Peter; Varner, Gary S.

    2017-07-01

    A waveform digitizer with high-resolution timing provides with the possibility of a novel approach to vertex detectors for high-luminosity particle colliders. Present efforts are centered on the development of an application specific integrated circuit (ASIC) intended to measure signal arrival times with timing resolution in the range of 100 fs or less. The design of such an ASIC requires very good understanding of the effects that impact the timing resolution. This paper presents the simulation results that clearly identify and quantify the sources of error and the underlying coupling mechanisms. In addition, a synthetic waveform generator, developed solely for this purpose, is presented and validated through the measurement results. Crucial knowledge, insights, and confidence have been gained for the development of the ASIC or any other fast, wideband RF systems that aim to achieve such performance.

  3. Analysis of Real Time Technical Data Obtained While Shotcreting: An Approach Towards Automation

    OpenAIRE

    Rodríguez, Ángel; Río, Olga

    2010-01-01

    Automation of shotcreting process is a key factor in both improving the working conditions and increasing productivity; as well as in increasing the quality of shotcrete. The confidence in the quality of the automation process itself and shotcrete linings can be improved by real time monitoring of pumping as well as other shotcreting machine related parameters. Prediction of how the difIerent technical parameters of application are governing the whole process is being a subject of increasing ...

  4. Comparison of LMFBR piping response obtained using response spectrum and time history methods

    International Nuclear Information System (INIS)

    Hulbert, G.M.

    1981-04-01

    The dynamic response to a seismic event is calculated for a piping system using a response spectrum analysis method and two time history analysis methods. The results from the analytical methods are compared to identify causes for the differences between the sets of analytical results. Comparative methods are also presented which help to gain confidence in the accuracy of the analytical methods in predicting piping system structure response during seismic events

  5. Pumping time required to obtain tube well water samples with aquifer characteristic radon concentrations

    International Nuclear Information System (INIS)

    Ricardo, Carla Pereira; Oliveira, Arno Heeren de

    2011-01-01

    Radon is an inert noble gas, which comes from the natural radioactive decay of uranium and thorium in soil, rock and water. Radon isotopes emanated from radium-bearing grains of a rock or soil are released into the pore space. Radon that reaches the pore space is partitioned between the gaseous and aqueous phases. Thus, the groundwater presents a radon signature from the rock that is characteristic of the aquifer. The characteristic radon concentration of an aquifer, which is mainly related to the emanation, is also influenced by the degree of subsurface degassing, especially in the vicinity of a tube well, where the radon concentration is strongly reduced. Looking for the required pumping time to take a tube well water sample that presents the characteristic radon concentration of the aquifer, an experiment was conducted in an 80 m deep tube well. In this experiment, after twenty-four hours without extraction, water samples were collected periodically, about ten minutes intervals, during two hours of pumping time. The radon concentrations of the samples were determined by using the RAD7 Electronic Radon Detector from Durridge Company, a solid state alpha spectrometric detector. It was realized that the necessary time to reach the maximum radon concentration, that means the characteristic radon concentration of the aquifer, is about sixty minutes. (author)

  6. The implementing of high resolution time measuring circuit based on FPGA

    International Nuclear Information System (INIS)

    Zhang Ji; Zeng Yun; Wang Zheng; Li Quiju; Lu Jifang; Wu Jinyuan

    2011-01-01

    It presents the implementing of TDC based on FPGA. The fine timing function part is accomplished through the time interpolators that are composed of the carry chain of intrinsic adders in FPGA. This architecture dates back to the latest technology-WUTDC (Wave Union TDC) that is developed to sub-divide the ultra-wide bins and improve the measure resolution. The board and the online test have been proved that the linearity of converters is satisfying and the time resolution is better than 40 ps. (authors)

  7. Motor preparation is modulated by the resolution of the response timing information.

    Science.gov (United States)

    Carlsen, Anthony N; Mackinnon, Colum D

    2010-03-31

    In the present experiment, the temporal predictability of response time was systematically manipulated to examine its effect on the time course of motor pre-programming and release of the intended movement by an acoustic startle stimulus. Participants performed a ballistic right wrist extension task in four different temporal conditions: 1) a variable foreperiod simple RT task, 2) a fixed foreperiod simple RT task, 3) a low resolution countdown anticipation-timing task, and 4) a high resolution anticipation-timing task. For each task, a startling acoustic stimulus (124dB) was presented at several intervals prior to the "go" signal ("go" -150ms, -500ms, and -1500ms). Results from the startle trials showed that the time course of movement pre-programming was affected by the temporal uncertainty of the imperative "go" cue. These findings demonstrate that the resolution of the timing information regarding the response cue has a marked effect on the timing of movement preparation such that under conditions of low temporal resolution, participants plan the movement well in advance in accordance with the anticipated probability of onset of the cue, whereas movement preparation is delayed until less than 500ms prior to response time when continuous temporal information is provided. Copyright 2010 Elsevier B.V. All rights reserved.

  8. High-Resolution Time-Frequency Spectrum-Based Lung Function Test from a Smartphone Microphone

    Directory of Open Access Journals (Sweden)

    Tharoeun Thap

    2016-08-01

    Full Text Available In this paper, a smartphone-based lung function test, developed to estimate lung function parameters using a high-resolution time-frequency spectrum from a smartphone built-in microphone is presented. A method of estimation of the forced expiratory volume in 1 s divided by forced vital capacity (FEV1/FVC based on the variable frequency complex demodulation method (VFCDM is first proposed. We evaluated our proposed method on 26 subjects, including 13 healthy subjects and 13 chronic obstructive pulmonary disease (COPD patients, by comparing with the parameters clinically obtained from pulmonary function tests (PFTs. For the healthy subjects, we found that an absolute error (AE and a root mean squared error (RMSE of the FEV1/FVC ratio were 4.49% ± 3.38% and 5.54%, respectively. For the COPD patients, we found that AE and RMSE from COPD patients were 10.30% ± 10.59% and 14.48%, respectively. For both groups, we compared the results using the continuous wavelet transform (CWT and short-time Fourier transform (STFT, and found that VFCDM was superior to CWT and STFT. Further, to estimate other parameters, including forced vital capacity (FVC, forced expiratory volume in 1 s (FEV1, and peak expiratory flow (PEF, regression analysis was conducted to establish a linear transformation. However, the parameters FVC, FEV1, and PEF had correlation factor r values of 0.323, 0.275, and −0.257, respectively, while FEV1/FVC had an r value of 0.814. The results obtained suggest that only the FEV1/FVC ratio can be accurately estimated from a smartphone built-in microphone. The other parameters, including FVC, FEV1, and PEF, were subjective and dependent on the subject’s familiarization with the test and performance of forced exhalation toward the microphone.

  9. ALTIROC0, a 20 pico-second time resolution ASIC for the ATLAS High Granularity Timing Detector (HGTD)

    CERN Document Server

    de la Taille, C.; Conforti, S.; Dinaucourt, P.; Martin-Chassard, G.; Seguin-Moreau, N.; Agapopoulou, C.; Makovec, N.; Serin, L.; Simion, S.

    2018-01-01

    ALTIROC0 is an 8-channel ASIC prototype designed to readout 1x1 or 2x2 mm^2 50 µm thick Low Gain Avalanche Diodes (LGAD) of the ATLAS High Granularity Timing Detector (HGTD). The targeted combined time resolution of the sensor and the readout electronics is 30 ps for one MIP. Each analog channel of the ASIC must exhibit an extremely low jitter to ensure this challenging time resolution, while keeping a low power consumption of 2 mW/channel. A “Time Over Threshold” and a “Constant Fraction Discriminator” architecture are integrated to correct for the time walk. Test bench measurements performed on the ASIC received in April 2017 are presented.

  10. Time-resolved XRD study of TiC-TiB2 composites obtained by SHS

    International Nuclear Information System (INIS)

    Contreras, L.; Turrillas, X.; Vaughan, G.B.M.; Kvick, A.; Rodriguez, M.A.

    2004-01-01

    Composites of TiC and TiB 2 were prepared by self-propagating high-temperature synthesis (SHS). Two routes were attempted; from the elements and from a mixture of anatase, boron oxide, graphite and magnesium. The reactions were monitored in situ by synchrotron X-ray diffraction (λ = 0.26102 A). The powder mixtures were compacted as cylindrical pellets and upon ignition diffraction patterns were collected every 65 ms with a CCD camera. TiC was the first phase to form, followed by TiB 2 . The reactions take place in time scales of 0.1 s. The temperature profile for the first route was established from the peak position and the known thermal expansion coefficients. The microstructure of the final products was different: particles of 10 μm for the first and submicron for the second. The viability of the second route to produce ceramic powders in a cheaper way was confirmed

  11. High time resolution beam-based measurement of the rf-to-laser jitter in a photocathode rf gun

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    2014-03-01

    Full Text Available Characterizing the rf-to-laser jitter in the photocathode rf gun and its possible origins is important for improving the synchronization and beam quality of the linac based on the photocathode rf gun. A new method based on the rf compression effect in the photocathode rf gun is proposed to measure the rf-to-laser jitter in the gun. By taking advantage of the correlation between the rf compression and the laser injection phase, the error caused by the jitter of the accelerating field in the gun is minimized and thus 10 fs time resolution is expected. Experimental demonstration at the Tsinghua Thomson scattering x-ray source with a time resolution better than 35 fs is reported in this paper. The experimental results are successfully used to obtain information on the possible cause of the jitter and the accompanying drifts.

  12. Real time, high resolution studies of protein adsorption and structure at the solid-liquid interface using dual polarization interferometry

    International Nuclear Information System (INIS)

    Freeman, Neville J; Peel, Louise L; Swann, Marcus J; Cross, Graham H; Reeves, Andrew; Brand, Stuart; Lu, Jian R

    2004-01-01

    A novel method for the analysis of thin biological films, called dual polarization interferometry (DPI), is described. This high resolution (<1 A), laboratory-based technique allows the thickness and refractive index (density) of biological molecules adsorbing or reacting at the solid-liquid interface to be measured in real time (up to 10 measurements per second). Results from the adsorption of bovine serum albumin (BSA) on to a silicon oxynitride chip surface are presented to demonstrate how time dependent molecular behaviour can be examined using DPI. Mechanistic and structural information relating to the adsorption process is obtained as a function of the solution pH

  13. Measurements of timing resolution of ultra-fast silicon detectors with the SAMPIC waveform digitizer

    Energy Technology Data Exchange (ETDEWEB)

    Breton, D. [CNRS/IN2P3/LAL Orsay, Université Paris-Saclay, F-91898 Orsay (France); De Cacqueray, V.; Delagnes, E. [IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette (France); Grabas, H. [Santa Cruz Institute for Particle Physics UC Santa Cruz, CA 95064 (United States); Maalmi, J. [CNRS/IN2P3/LAL Orsay, Université Paris-Saclay, F-91898 Orsay (France); Minafra, N. [Dipartimento Interateneo di Fisica di Bari, Bari (Italy); CERN, Geneva (Switzerland); Royon, C. [University of Kansas, Lawrence (United States); Saimpert, M., E-mail: matthias.saimpert@cern.ch [IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette (France)

    2016-11-01

    The SAMpler for PICosecond time (SAMPIC) chip has been designed by a collaboration including CEA/IRFU/SEDI, Saclay and CNRS/LAL/SERDI, Orsay. It benefits from both the quick response of a time to digital converter and the versatility of a waveform digitizer to perform accurate timing measurements. Thanks to the sampled signals, smart algorithms making best use of the pulse shape can be used to improve time resolution. A software framework has been developed to analyse the SAMPIC output data and extract timing information by using either a constant fraction discriminator or a fast cross-correlation algorithm. SAMPIC timing capabilities together with the software framework have been tested using pulses generated by a signal generator or by a silicon detector illuminated by a pulsed infrared laser. Under these ideal experimental conditions, the SAMPIC chip has proven to be capable of timing resolutions down to 4 ps with synthesized signals and 40 ps with silicon detector signals.

  14. Measurements of timing resolution of ultra-fast silicon detectors with the SAMPIC WTDC

    CERN Document Server

    Breton, Dominique

    2016-11-01

    The SAMpler for PICosecond time (SAMPIC) chip has been designed by a collaboration including CEA/IRFU/SEDI, Saclay and CNRS/LAL/SERDI, Orsay. It benefits from both the quick response of a time to digital converter (TDC) and the versatility of a waveform digitizer to perform accurate timing measurements. Thanks to the sampled signals, smart algorithms making best use of the pulse shape can be used to maximize time resolution. A software framework has been developed to analyse the SAMPIC output data and extract timing information by using either a constant fraction discriminator or a fast cross-correlation algorithm. SAMPIC timing capabilities together with the software framework have been tested using Gaussian signals generated by a signal generator or by silicon detectors pulsed with an infra-red laser. Under these ideal experimental conditions, the SAMPIC chip has proven to be capable of timing resolutions down to 4 (40) ps with synthesized (silicon detector) signals.

  15. Improved Resolution Optical Time Stretch Imaging Based on High Efficiency In-Fiber Diffraction.

    Science.gov (United States)

    Wang, Guoqing; Yan, Zhijun; Yang, Lei; Zhang, Lin; Wang, Chao

    2018-01-12

    Most overlooked challenges in ultrafast optical time stretch imaging (OTSI) are sacrificed spatial resolution and higher optical loss. These challenges are originated from optical diffraction devices used in OTSI, which encode image into spectra of ultrashort optical pulses. Conventional free-space diffraction gratings, as widely used in existing OTSI systems, suffer from several inherent drawbacks: limited diffraction efficiency in a non-Littrow configuration due to inherent zeroth-order reflection, high coupling loss between free-space gratings and optical fibers, bulky footprint, and more importantly, sacrificed imaging resolution due to non-full-aperture illumination for individual wavelengths. Here we report resolution-improved and diffraction-efficient OTSI using in-fiber diffraction for the first time to our knowledge. The key to overcome the existing challenges is a 45° tilted fiber grating (TFG), which serves as a compact in-fiber diffraction device offering improved diffraction efficiency (up to 97%), inherent compatibility with optical fibers, and improved imaging resolution owning to almost full-aperture illumination for all illumination wavelengths. 50 million frames per second imaging of fast moving object at 46 m/s with improved imaging resolution has been demonstrated. This conceptually new in-fiber diffraction design opens the way towards cost-effective, compact and high-resolution OTSI systems for image-based high-throughput detection and measurement.

  16. On Space-Time Resolution of Inflow Representations for Wind Turbine Loads Analysis

    Directory of Open Access Journals (Sweden)

    Lance Manuel

    2012-06-01

    Full Text Available Efficient spatial and temporal resolution of simulated inflow wind fields is important in order to represent wind turbine dynamics and derive load statistics for design. Using Fourier-based stochastic simulation of inflow turbulence, we first investigate loads for a utility-scale turbine in the neutral atmospheric boundary layer. Load statistics, spectra, and wavelet analysis representations for different space and time resolutions are compared. Next, large-eddy simulation (LES is employed with space-time resolutions, justified on the basis of the earlier stochastic simulations, to again derive turbine loads. Extreme and fatigue loads from the two approaches used in inflow field generation are compared. On the basis of simulation studies carried out for three different wind speeds in the turbine’s operating range, it is shown that inflow turbulence described using 10-meter spatial resolution and 1 Hz temporal resolution is adequate for assessing turbine loads. Such studies on the investigation of adequate filtering or resolution of inflow wind fields help to establish efficient strategies for LES and other physical or stochastic simulation needed in turbine loads studies.

  17. Human factors assessment of conflict resolution aid reliability and time pressure in future air traffic control.

    Science.gov (United States)

    Trapsilawati, Fitri; Qu, Xingda; Wickens, Chris D; Chen, Chun-Hsien

    2015-01-01

    Though it has been reported that air traffic controllers' (ATCos') performance improves with the aid of a conflict resolution aid (CRA), the effects of imperfect automation on CRA are so far unknown. The main objective of this study was to examine the effects of imperfect automation on conflict resolution. Twelve students with ATC knowledge were instructed to complete ATC tasks in four CRA conditions including reliable, unreliable and high time pressure, unreliable and low time pressure, and manual conditions. Participants were able to resolve the designated conflicts more accurately and faster in the reliable versus unreliable CRA conditions. When comparing the unreliable CRA and manual conditions, unreliable CRA led to better conflict resolution performance and higher situation awareness. Surprisingly, high time pressure triggered better conflict resolution performance as compared to the low time pressure condition. The findings from the present study highlight the importance of CRA in future ATC operations. Practitioner Summary: Conflict resolution aid (CRA) is a proposed automation decision aid in air traffic control (ATC). It was found in the present study that CRA was able to promote air traffic controllers' performance even when it was not perfectly reliable. These findings highlight the importance of CRA in future ATC operations.

  18. Proton Radiography of Laser-Plasma Interactions with Picosecond Time Resolution

    International Nuclear Information System (INIS)

    Mackinnon, A J; Patel, P K; Town, R J; Hatchett, S P; Hicks, D; Phillips, T H; Wilks, S C; Price, D; Key, M H; Lasinski, B; Langdon, B; Borghesi, M; Romagnani, L; Kar, S

    2005-01-01

    Radiography of laser-produced plasmas with MeV protons has the potential to provide new information on plasma conditions in extreme states of matter. Protons with energies up to many hundreds MeV, produced by large scale accelerators have been recently been used to obtain mass density radiographs of the behavior of large samples which have been shocked on microsecond timescales with approximately mm spatial resolution. The recent discovery of laminar proton beams accelerated to multi-MeV energies by picosecond duration laser beams has provided the opportunity to probe dense plasmas with hitherto unparalleled temporal and spatial resolution

  19. A time resolving data acquisition system for multiple high-resolution position sensitive detectors

    International Nuclear Information System (INIS)

    Dimmler, D.G.

    1988-01-01

    An advanced time resolving data collection system for use in neutron and x-ray spectrometry has been implemented and put into routine operation. The system collects data from high-resolution position-sensitive area detectors with a maximum cumulative rate of 10/sup 6/ events per second. The events are sorted, in real-time, into many time-slice arrays. A programmable timing control unit allows for a wide choice of time sequences and time-slice array sizes. The shortest dwell time on a slice may be below 1 ms and the delay to switch between slices is zero

  20. Obtaining absolute spatial flux measurements with a time-resolved pinhole camera

    International Nuclear Information System (INIS)

    Baker, K.L.; Porter, J.L.; Ruggles, L.E.; Fehl, D.L.; Chandler, G.A.; Vargas, M.; Mix, L.P.; Simpson, W.W.; Deeney, C.; Chrien, R.E.; Idzorek, G.C.

    1999-01-01

    A technique is described to determine the spatial x-ray flux emitted from a hohlraum wall and subsequently transmitted through a diagnostic hole. This technique uses x-ray diodes, bolometers, and a time-resolved pinhole camera to determine the spatial flux of x rays emitted through a hohlraum close-quote s diagnostic hole. The primary motivation for this analysis was the relatively long duration, nearly 100 ns, of the x-ray drive present in z-pinch driven hohlraums. This radiation causes plasma to ablate from the hohlraum walls surrounding the diagnostic hole and results in a partial obscuration that reduces the effective area over which diagnostics view the radiation. The effective change in area leads to an underestimation of the wall temperature when nonimaging diagnostics such as x-ray diodes and bolometers are used to determine power and later to infer a wall temperature. An analysis similar to the one described below is then necessary to understand the radiation environment present in x-ray driven hohlraums when these diagnostics are used and hole closure is important. copyright 1999 American Institute of Physics

  1. High-resolution near real-time drought monitoring in South Asia

    OpenAIRE

    Aadhar, Saran; Mishra, Vimal

    2017-01-01

    Drought in South Asia affect food and water security and pose challenges for millions of people. For policy-making, planning, and management of water resources at sub-basin or administrative levels, high-resolution datasets of precipitation and air temperature are required in near-real time. We develop a high-resolution (0.05°) bias-corrected precipitation and temperature data that can be used to monitor near real-time drought conditions over South Asia. Moreover, the dataset can be used to m...

  2. Measurement of the time resolution of small SiPM-based scintillation counters

    Science.gov (United States)

    Kravchenko, E. A.; Porosev, V. V.; Savinov, G. A.

    2017-12-01

    In this research, we evaluated the timing resolution of SiPM-based scintillation detector on a 1-GeV electron beam "extracted" from VEPP-4M. We tested small scintillation crystals of pure CsI, YAP, LYSO, and LFS-3 with HAMAMATSU S10362-33-025C and S13360-3050CS. The CsI scintillator together with HAMAMATSU S13360-3050CS demonstrated the best results. Nevertheless, the achieved time resolution of ~80 ps (RMS) relates mainly to the photodetector itself. It makes the silicon photomultiplier an attractive candidate to replace other devices in applications where sub-nanosecond accuracy is required.

  3. Test beam & time resolution analysis for UFSD and CVD diamond detectors

    CERN Document Server

    Scali, Stefano

    2017-01-01

    The ever-increasing luminosity in particle physics, aimed at seeking new phenomena, has led to the need for radiation-hard detectors with a remarkable time resolution. To reach the goal several tests and data analysis has been performed but further development is still required. During my internship I have participated to the test of new sensors. After an introduction to the theoretical framework this report describes the data taking procedure using SPS beam at the H8 site in Prevessin. The second part describes the data analysis and extrapolation of the time resolution for many boards.

  4. High-resolution and super stacking of time-reversal mirrors in locating seismic sources

    KAUST Repository

    Cao, Weiping

    2011-07-08

    Time reversal mirrors can be used to backpropagate and refocus incident wavefields to their actual source location, with the subsequent benefits of imaging with high-resolution and super-stacking properties. These benefits of time reversal mirrors have been previously verified with computer simulations and laboratory experiments but not with exploration-scale seismic data. We now demonstrate the high-resolution and the super-stacking properties in locating seismic sources with field seismic data that include multiple scattering. Tests on both synthetic data and field data show that a time reversal mirror has the potential to exceed the Rayleigh resolution limit by factors of 4 or more. Results also show that a time reversal mirror has a significant resilience to strong Gaussian noise and that accurate imaging of source locations from passive seismic data can be accomplished with traces having signal-to-noise ratios as low as 0.001. Synthetic tests also demonstrate that time reversal mirrors can sometimes enhance the signal by a factor proportional to the square root of the product of the number of traces, denoted as N and the number of events in the traces. This enhancement property is denoted as super-stacking and greatly exceeds the classical signal-to-noise enhancement factor of. High-resolution and super-stacking are properties also enjoyed by seismic interferometry and reverse-time migration with the exact velocity model. © 2011 European Association of Geoscientists & Engineers.

  5. All-passive pixel super-resolution of time-stretch imaging

    Science.gov (United States)

    Chan, Antony C. S.; Ng, Ho-Cheung; Bogaraju, Sharat C. V.; So, Hayden K. H.; Lam, Edmund Y.; Tsia, Kevin K.

    2017-03-01

    Based on image encoding in a serial-temporal format, optical time-stretch imaging entails a stringent requirement of state-of-the-art fast data acquisition unit in order to preserve high image resolution at an ultrahigh frame rate — hampering the widespread utilities of such technology. Here, we propose a pixel super-resolution (pixel-SR) technique tailored for time-stretch imaging that preserves pixel resolution at a relaxed sampling rate. It harnesses the subpixel shifts between image frames inherently introduced by asynchronous digital sampling of the continuous time-stretch imaging process. Precise pixel registration is thus accomplished without any active opto-mechanical subpixel-shift control or other additional hardware. Here, we present the experimental pixel-SR image reconstruction pipeline that restores high-resolution time-stretch images of microparticles and biological cells (phytoplankton) at a relaxed sampling rate (≈2-5 GSa/s)—more than four times lower than the originally required readout rate (20 GSa/s) — is thus effective for high-throughput label-free, morphology-based cellular classification down to single-cell precision. Upon integration with the high-throughput image processing technology, this pixel-SR time-stretch imaging technique represents a cost-effective and practical solution for large scale cell-based phenotypic screening in biomedical diagnosis and machine vision for quality control in manufacturing.

  6. A high time resolution x-ray diagnostic on the Madison Symmetric Torus

    Science.gov (United States)

    DuBois, Ami M.; Lee, John David; Almagri, Abdulgadar F.

    2015-07-01

    A new high time resolution x-ray detector has been installed on the Madison Symmetric Torus (MST) to make measurements around sawtooth events. The detector system is comprised of a silicon avalanche photodiode, a 20 ns Gaussian shaping amplifier, and a 500 MHz digitizer with 14-bit sampling resolution. The fast shaping time diminishes the need to restrict the amount of x-ray flux reaching the detector, limiting the system dead-time. With a much higher time resolution than systems currently in use in high temperature plasma physics experiments, this new detector has the versatility to be used in a variety of discharges with varying flux and the ability to study dynamics on both slow and fast time scales. This paper discusses the new fast x-ray detector recently installed on MST and the improved time resolution capabilities compared to the existing soft and hard x-ray diagnostics. In addition to the detector hardware, improvements to the detector calibration and x-ray pulse identification software, such as additional fitting parameters and a more sophisticated fitting routine are discussed. Finally, initial data taken in both high confinement and standard reversed-field pinch plasma discharges are compared.

  7. Measurements of atmospheric mercury with high time resolution: recent applications in environmental research and monitoring.

    Science.gov (United States)

    Ebinghaus, R; Kock, H H; Schmolke, S R

    2001-11-01

    In the past five years automated high time-resolution measurements of mercury species in ambient air have promoted remarkable progress in the understanding of the spatial distribution, short-term variability, and fate of this priority pollutant in the lower troposphere. Examples show the wide range of possible applications of these techniques in environmental research and monitoring. Presented applications of measurement methods for total gaseous mercury (TGM) include long-term monitoring of atmospheric mercury at a coastal station, simultaneous measurements during a south-to-north transect measurement campaign covering a distance of approximately 800 km, the operation on board of a research aircraft, and the quantification of mercury emissions from naturally enriched surface soils. First results obtained with a new method for the determination of reactive gaseous mercury (RGM) are presented. Typical background concentrations of TGM are between 1.5 and 2 ng m(-3) in the lower troposphere. Concentrations of RGM have been determined at a rural site in Germany between 2 and 35 pg m(-3). Flux measurements over naturally enriched surface soils in the Western U.S.A. have revealed emission fluxes of up to 200 ng Hg m(-1) h(-1) under dry conditions.

  8. Time-resolved High Spectral Resolution Observation of 2MASSW J0746425+200032AB

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ji; Mawet, Dimitri [Department of Astronomy, California Institute of Technology, MC 249-17, 1200 E. California Boulevard, Pasadena, CA 91106 (United States); Prato, Lisa, E-mail: ji.wang@caltech.edu [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States)

    2017-03-20

    Many brown dwarfs (BDs) exhibit photometric variability at levels from tenths to tens of percents. The photometric variability is related to magnetic activity or patchy cloud coverage, characteristic of BDs near the L–T transition. Time-resolved spectral monitoring of BDs provides diagnostics of cloud distribution and condensate properties. However, current time-resolved spectral studies of BDs are limited to low spectral resolution ( R ∼ 100) with the exception of the study of Luhman 16 AB at a resolution of 100,000 using the VLT+CRIRES. This work yielded the first map of BD surface inhomogeneity, highlighting the importance and unique contribution of high spectral resolution observations. Here, we report on the time-resolved high spectral resolution observations of a nearby BD binary, 2MASSW J0746425+200032AB. We find no coherent spectral variability that is modulated with rotation. Based on simulations, we conclude that the coverage of a single spot on 2MASSW J0746425+200032AB is smaller than 1% or 6.25% if spot contrast is 50% or 80% of its surrounding flux, respectively. Future high spectral resolution observations aided by adaptive optics systems can put tighter constraints on the spectral variability of 2MASSW J0746425+200032AB and other nearby BDs.

  9. Simulations of the temporal and spatial resolution for a compact time-resolved electron diffractometer

    Science.gov (United States)

    Robinson, Matthew S.; Lane, Paul D.; Wann, Derek A.

    2016-02-01

    A novel compact electron gun for use in time-resolved gas electron diffraction experiments has recently been designed and commissioned. In this paper we present and discuss the extensive simulations that were performed to underpin the design in terms of the spatial and temporal qualities of the pulsed electron beam created by the ionisation of a gold photocathode using a femtosecond laser. The response of the electron pulses to a solenoid lens used to focus the electron beam has also been studied. The simulated results show that focussing the electron beam affects the overall spatial and temporal resolution of the experiment in a variety of ways, and that factors that improve the resolution of one parameter can often have a negative effect on the other. A balance must, therefore, be achieved between spatial and temporal resolution. The optimal experimental time resolution for the apparatus is predicted to be 416 fs for studies of gas-phase species, while the predicted spatial resolution of better than 2 nm-1 compares well with traditional time-averaged electron diffraction set-ups.

  10. High-Time-Resolution Study of Magnetic Holes in the Solar Wind

    Science.gov (United States)

    Lazarus, Alan; Kasper, Justin; Stevens, Michael

    2003-01-01

    The objectives of this investigation are to determine the internal plasma structure of kinetic-scale and larger scale magnetic holes, and to determine their stability, their source mechanism(s), and their spatial extent. It is also of importance to determine the relationship between kinetic-scale holes and long-duration holes. As smaller and smaller magnetic depressions are investigated in order to make this a complete study, a robust criterion is necessary for distinguishing magnetic holes from random or unresolvable fluctuations in the interplanetary magnetic field. In order to resolve this ambiguity, we obtained from the MFI experiments magnetic field measurements from the WIND spacecraft at a time resolution of 46 to 184 ms over certain periods. We have also devised a measure of certainty for magnetic hole detections. The certainty factor, q, is defined as the difference between the mean magnetic field in the hole and the local magnetic field, in units of the local standard deviation of the field strength. For fullest generality, it is necessary to calculate this q over the range of available scales of interest, from 60 ms up to 300 s. This technique establishes a two dimensional matrix of relative probabilities that a hole of some duration (d) might exist in the data set at a given time (t). In identifying q-peaks in time and duration, we also come upon a natural method for distinguishing holes with internal structure from multiple holes in close proximity or holes nested inside of others. If two q-peaks are more than a half-width apart, they are simply said to be separate events.

  11. Pulse Rise Time Characterization of a High Pressure Xenon Gamma Detector for use in Resolution Enhancement

    International Nuclear Information System (INIS)

    TROYER, G.L.

    2000-01-01

    High pressure xenon ionization chamber detectors are possible alternatives to traditional thallium doped sodium iodide (NaI(Tl)) and hyperpure germanium as gamma spectrometers in certain applications. Xenon detectors incorporating a Frisch grid exhibit energy resolutions comparable to cadmium/zinc/telluride (CZT) (e.g. 2% (at) 662keV) but with far greater sensitive volumes. The Frisch grid reduces the position dependence of the anode pulse risetimes, but it also increases the detector vibration sensitivity, anode capacitance, voltage requirements and mechanical complexity. We have been investigating the possibility of eliminating the grid electrode in high-pressure xenon detectors and preserving the high energy resolution using electronic risetime compensation methods. A two-electrode cylindrical high pressure xenon gamma detector coupled to time-to-amplitude conversion electronics was used to characterize the pulse rise time of deposited gamma photons. Time discrimination was used to characterize the pulse rise time versus photo peak position and resolution. These data were collected to investigate the effect of pulse rise time compensation on resolution and efficiency

  12. Tablet disintegration studied by high-resolution real-time magnetic resonance imaging.

    Science.gov (United States)

    Quodbach, Julian; Moussavi, Amir; Tammer, Roland; Frahm, Jens; Kleinebudde, Peter

    2014-01-01

    The present work employs recent advances in high-resolution real-time magnetic resonance imaging (MRI) to investigate the disintegration process of tablets containing disintegrants. A temporal resolution of 75 ms and a spatial resolution of 80 × 80 µm with a section thickness of only 600 µm were achieved. The histograms of MRI videos were quantitatively analyzed with MATLAB. The mechanisms of action of six commercially available disintegrants, the influence of relative tablet density, and the impact of disintegrant concentration were examined. Crospovidone seems to be the only disintegrant acting by a shape memory effect, whereas the others mainly swell. A higher relative density of tablets containing croscarmellose sodium leads to a more even distribution of water within the tablet matrix but hardly impacts the disintegration kinetics. Increasing the polacrilin potassium disintegrant concentration leads to a quicker and more thorough disintegration process. Real-time MRI emerges as valuable tool to visualize and investigate the process of tablet disintegration.

  13. A new method for obtaining time resolved optical spectra of transients produced by a single pulse of electrons

    International Nuclear Information System (INIS)

    Gordon, S.; Schmidt, K.H.; Martin, J.E.

    1975-01-01

    The essential features of the kinetic spectroscopic method and the kinetic spectrophotometric method are summarized. It is stated that the new method embodies some of the advantages of both. A diagram of the apparatus is shown. This is essentially a version of a conventional pulse radiolysis experimental arrangement with the modification that the usual monochromator is replaced by a spectrograph equipped with a horizontal and a vertical slit and the usual photomultiplier-amplifier detector is replaced by a streak camera (TRW) incorporating an image converter tube (ICT) and a TV camera interfaced to a 2000 channel Biomation transient recorder. The time resolved absorption spectrum (or emission spectrum) is displayed on the P-11 phosphor of the ICT. This image is focussed on the photoelements of the TV tube. The TV camera scans the image of the spectrum stored on these elements and the output of this scan is stored in the Biomation. This recorder is in turn interfaced to a Sigma 5 computer. Results are presented for several experiments, from which it is concluded that with the present equipment absorbances down to 0.02 can be measured, and a time resolution of 1ns can be achieved. It is stated that with improved equipment it should be possible to extend the time resolution of the method to less than 50 picoseconds. (U.K.)

  14. A Four-Gap Glass-RPC Time-of-Flight Array with 90 ps Time Resolution

    CERN Document Server

    Akindinov, A; Formenti, F; Golovine, V; Klempt, W; Kluge, A; Martemyanov, A N; Martinengo, P; Pinhão, J; Smirnitsky, A V; Spegel, M; Szymanski, P; Zalipska, J

    2001-01-01

    In this paper, we describe the performance of a prototype developed in the context of the ALICE time-of-flight research and development system. The detector module consists of a 32-channel array of 3 x 3 cm2 glass resistive plate chamber (RPC) cells, each of which has four accurately space gaps of 0.3 mm thickness arranged as a pair of double-gap resisitive plate chambers. Operated with a nonflammable gas mixture at atmospheric pressure, the system achieved a time resolution of 90 ps at 98% efficiency with good uniformity and moderate crosstalk. This result shows the feasibility of large-area high-resolution time-of-flight systems based on RPCs at affordable cost.

  15. A high resolution, low power time-of-flight system for the space experiment AMS

    International Nuclear Information System (INIS)

    Alvisi, D.; Anselmo, F.; Baldini, L.; Bari, G.; Basile, M.; Bellagamba, L.; Bruni, A.; Bruni, G.; Boscherini, D.; Casadei, D.; Cara Romeo, G.; Castellini, G.; Cifarelli, L.; Cindolo, F.; Contin, A.; De Pasquale, S.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Palmonari, F.; Polini, A.; Recupero, S.; Sartorelli, G.; Williams, C.; Zichichi, A.

    1999-01-01

    The system of plastic scintillator counters for the AMS experiment is described. The main characteristics of the detector are: (a) large sensitive area (four 1.6 m 2 planes) with small dead space; (b) low-power consumption (150 W for the power and the read-out electronics of 336 PMs); (c) 120 ps time resolution

  16. Divergence identities in curved space-time. A resolution of the stress-energy problem

    International Nuclear Information System (INIS)

    Yilmaz, H.; Tufts Univ., Medford, MA

    1989-01-01

    It is noted that the joint use of two basic differential identities in curved space-time, namely. 1) the Einstein-Hilbert identity (1915), and 2) the identity of P. Freud (1939), permits a viable alternative to general relativity and a resolution of the field stress-energy' problem of the gravitational theory. (orig.)

  17. A time-domain binaural detection model and its predictions temporal-resolution data

    NARCIS (Netherlands)

    Breebaart, D.J.; Par, van de S.L.J.D.E.; Kohlrausch, A.G.

    2002-01-01

    This paper discusses the application of a time-domain binaural signal-detection model in the context of estimates of the temporal resolution of the binaural auditory system. It is demonstrated that the optimal detector which is present in the model is crucial to account for specific temporal

  18. Energy and time resolution of a LYSO matrix prototype for the Mu2e experiment

    Energy Technology Data Exchange (ETDEWEB)

    Atanov, N.; Baranov, V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Colao, F.; Cordelli, M.; Corradi, G.; Dané, E. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Davydov, Yu.I. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Flood, K. [California Institute of Technology, Pasadena (United States); Giovannella, S., E-mail: simona.giovannella@lnf.infn.it [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Glagolev, V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Happacher, F. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Hitlin, D.G. [California Institute of Technology, Pasadena (United States); Martini, M. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Università “Guglielmo Marconi”, Roma (Italy); Miscetti, S. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Miyashita, T. [California Institute of Technology, Pasadena (United States); Morescalchi, L. [INFN Sezione di Pisa, Pisa (Italy); Dipartimento di Fisica dell' Università di Siena, Siena (Italy); Ott, P. [Institut für Kernphysik, University of Mainz, Mainz (Germany); Pezzullo, G. [INFN Sezione di Pisa, Pisa (Italy); Dipartimento di Fisica dell' Università di Pisa, Pisa (Italy); Saputi, A.; Sarra, I. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); and others

    2016-07-11

    We have measured the performances of a LYSO crystal matrix prototype tested with electron and photon beams in the energy range 60–450 MeV. This study has been carried out to determine the achievable energy and time resolutions for the calorimeter of the Mu2e experiment.

  19. Energy and time resolution of a LYSO matrix prototype for the Mu2e experiment

    International Nuclear Information System (INIS)

    Atanov, N.; Baranov, V.; Colao, F.; Cordelli, M.; Corradi, G.; Dané, E.; Davydov, Yu.I.; Flood, K.; Giovannella, S.; Glagolev, V.; Happacher, F.; Hitlin, D.G.; Martini, M.; Miscetti, S.; Miyashita, T.; Morescalchi, L.; Ott, P.; Pezzullo, G.; Saputi, A.; Sarra, I.

    2016-01-01

    We have measured the performances of a LYSO crystal matrix prototype tested with electron and photon beams in the energy range 60–450 MeV. This study has been carried out to determine the achievable energy and time resolutions for the calorimeter of the Mu2e experiment.

  20. Picosecond resolution on relativistic heavy ions' time-of-flight measurement

    Energy Technology Data Exchange (ETDEWEB)

    Ebran, A., E-mail: adeline.ebran@cea.fr; Taieb, J., E-mail: julien.taieb@cea.fr; Belier, G.; Chatillon, A.; Laurent, B.; Martin, J.-F.; Pellereau, E.

    2013-11-11

    We developed a time-of-flight measurement system for relativistic heavy ions with a requested resolution of 40 ps Full Width Half Maximum. Such a resolution is mandatory to assign the correct mass number to every fission fragment, identified using the Bρ-ToF-ΔE method with the recoil spectrometer designed for the SOFIA experiment—which hold very recently at GSI. To achieve such a performance, fast plastic scintillators read-out by dedicated photomultiplier tubes were chosen among other possible options. We have led several test-measurements from 2009 to 2011, in order to investigate: the effect of the addition of a quenching molecule in the scintillator's matrix, the influence of the detector's size and the impact of the photomultiplier tube. The contribution of the dedicated electronics is also characterized. Time-of-flight measurements were performed realized with electron pulses and relativistic heavy ions, respectively provided by the LASER driven electron–accelerator (ELSA) at CEA–DAM Ile-de-France and by the SIS18/FRS facility at GSI. The reported results exhibit a time resolution better than 20 ps Full Width Half Maximum reached with the last prototype at GSI with an Uranium beam. These results confirm that the SOFIA experiment should enable the measurement of the relativistic fission fragments' time-of-flight with the requested resolution.

  1. Picosecond resolution on relativistic heavy ions' time-of-flight measurement

    International Nuclear Information System (INIS)

    Ebran, A.; Taieb, J.; Belier, G.; Chatillon, A.; Laurent, B.; Martin, J.-F.; Pellereau, E.

    2013-01-01

    We developed a time-of-flight measurement system for relativistic heavy ions with a requested resolution of 40 ps Full Width Half Maximum. Such a resolution is mandatory to assign the correct mass number to every fission fragment, identified using the Bρ-ToF-ΔE method with the recoil spectrometer designed for the SOFIA experiment—which hold very recently at GSI. To achieve such a performance, fast plastic scintillators read-out by dedicated photomultiplier tubes were chosen among other possible options. We have led several test-measurements from 2009 to 2011, in order to investigate: the effect of the addition of a quenching molecule in the scintillator's matrix, the influence of the detector's size and the impact of the photomultiplier tube. The contribution of the dedicated electronics is also characterized. Time-of-flight measurements were performed realized with electron pulses and relativistic heavy ions, respectively provided by the LASER driven electron–accelerator (ELSA) at CEA–DAM Ile-de-France and by the SIS18/FRS facility at GSI. The reported results exhibit a time resolution better than 20 ps Full Width Half Maximum reached with the last prototype at GSI with an Uranium beam. These results confirm that the SOFIA experiment should enable the measurement of the relativistic fission fragments' time-of-flight with the requested resolution

  2. Time resolution deterioration with increasing crystal length in a TOF-PET system

    CERN Document Server

    Gundacker, S; Auffray, E; Jarron, P; Meyer, T; Lecoq, P

    2014-01-01

    Highest time resolution in scintillator based detectors is becoming more and more important. In medical detector physics L(Y)SO scintillators are commonly used for time of flight positron emission tomography (TOF-PET). Coincidence time resolutions (CTRs) smaller than 100 ps FWHM are desirable in order to improve the image signal to noise ratio and thus give benefit to the patient by shorter scanning times. Also in high energy physics there is the demand to improve the timing capabilities of calorimeters down to 10 ps. To achieve these goals it is important to study the whole chain, i.e. the high energy particle interaction in the crystal, the scintillation process itself, the scintillation light transfer in the crystal, the photodetector and the electronics. Time resolution measurements for a PET like system are performed with the time-over-threshold method in a coincidence setup utilizing the ultra-fast amplifier-discriminator NINO. With 2×2×3 mm3 LSO:Ce codoped 0.4%Ca crystals coupled to commercially avai...

  3. Factors Influencing Time Resolution of Scintillators and Ways to Improve Them

    CERN Document Server

    Lecoq, P; Brunner, S; Meyer, T; Auffray, E; Knapitsch, A; Jarron, P

    2010-01-01

    The renewal of interest in Time of Flight Positron Emission Tomography (TOF-PET), as well as the necessity to precisely tag events in high energy physics (HEP) experiments at future colliders are pushing for an optimization of all factors affecting the time resolution of the whole acquisition chain comprising the crystal, the photo detector, and the electronics. The time resolution of a scintillator-based detection system is determined by the rate of photo electrons at the detection threshold, which depends on the time distribution of photons being converted in the photo detector. The possibility to achieve time resolution of about 100 ps Full Width at Half Maximum (FWHM) requires an optimization of the light production in the scintillator, the light transport and its transfer from the scintillator to the photo detector. In order to maximize the light yield, and in particular the density of photons in the first nanosecond, while minimizing the rise time and decay time, particular attention must be paid to the...

  4. A homemade high-resolution orthogonal-injection time-of-flight mass spectrometer with a heated capillary inlet

    International Nuclear Information System (INIS)

    Guo Changjuan; Huang Zhengxu; Gao Wei; Nian Huiqing; Chen Huayong; Dong Junguo; Shen Guoying; Fu Jiamo; Zhou Zhen

    2008-01-01

    We describe a homemade high-resolution orthogonal-injection time-of-flight (O-TOF) mass spectrometer combing a heated capillary inlet. The O-TOF uses a heated capillary tube combined with a radio-frequency only quadrupole (rf-only quadrupole) as an interface to help the ion transmission from the atmospheric pressure to the low-pressure regions. The principle, configuration of the O-TOF, and the performance of the instrument are introduced in this paper. With electrospray ion source, the performances of the mass resolution, the sensitivity, the mass range, and the mass accuracy are described. We also include our results obtained by coupling atmospheric pressure matrix-assisted laser deporption ionization with this instrument

  5. Mobile Robots Path Planning Using the Overall Conflict Resolution and Time Baseline Coordination

    Directory of Open Access Journals (Sweden)

    Yong Ma

    2014-01-01

    Full Text Available This paper aims at resolving the path planning problem in a time-varying environment based on the idea of overall conflict resolution and the algorithm of time baseline coordination. The basic task of the introduced path planning algorithms is to fulfill the automatic generation of the shortest paths from the defined start poses to their end poses with consideration of generous constraints for multiple mobile robots. Building on this, by using the overall conflict resolution, within the polynomial based paths, we take into account all the constraints including smoothness, motion boundary, kinematics constraints, obstacle avoidance, and safety constraints among robots together. And time baseline coordination algorithm is proposed to process the above formulated problem. The foremost strong point is that much time can be saved with our approach. Numerical simulations verify the effectiveness of our approach.

  6. A CAMAC timing module for the use with high energy resolution detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bulian, N.; Plaga, R. (Max-Planck-Inst. fuer Kernphysik, Heidelberg (Germany))

    1992-06-15

    A CAMAC module which measures event times with a resolution of 10 ns continuously over a period of 32.6 days has been built. The event times are stored in a deep buffer memory in form of 48-bit data words. The pulse amplitude of each event can be measured concurrently in a high resolution ADC and stored in another FIFO buffer memory. These amplitudes are tagged with a flag to correlate time with amplitude value unambiguously. In spite of the high operating frequency of 100 MHz necessitating the use of ECL counters, the module is compact (single-width) thanks to the use of TTL registers for the intermediate storage of the 48-bit time-word. The setup and testing of the modules with a NaI-pair spectrometer used in the GALLEX dolar neutrino experiment is described. Other possible applications of the module in the field of non-accelerator particle physics are also mentioned. (orig.).

  7. High energy resolution and first time-dependent positron annihilation induced Auger electron spectroscopty

    International Nuclear Information System (INIS)

    Mayer, Jakob

    2010-01-01

    It was the aim of this thesis to improve the existing positron annihilation induced Auger spectrometer at the highly intense positron source NEPOMUC (NEutron induced POsitron source MUniCh) in several ways: Firstly, the measurement time for a single spectrum should be reduced from typically 12 h to roughly 1 h or even less. Secondly, the energy resolution, which amounted to ΔE/E∼10%, should be increased by at least one order of magnitude in order to make high resolution positron annihilation induced Auger spectroscopy (PAES)-measurements of Auger transitions possible and thus deliver more information about the nature of the Auger process. In order to achieve these objectives, the PAES spectrometer was equipped with a new electron energy analyzer. For its ideal operation all other components of the Auger analysis chamber had to be adapted. Particularly the sample manipulation and the positron beam guidance had to be renewed. Simulations with SIMION registered ensured the optimal positron lens parameters. After the adjustment of the new analyzer and its components, first measurements illustrated the improved performance of the PAES setup: Firstly, the measurement time for short overview measurements was reduced from 3 h to 420 s. The measurement time for more detailed Auger spectra was shortened from 12 h to 80 min. Secondly, even with the reduced measurement time, the signal to noise ratio was also enhanced by one order of magnitude. Finally, the energy resolution was improved to ΔE/E 2,3 VV-transition with PAES. Thus, within this thesis two objectives were achieved: Firstly, the PAES spectrometer was renewed and improved by at least one order of magnitude with respect to the signal to noise ratio, the measurement time and the energy resolution. Secondly, several measurements have been carried out, demonstrating the high performance of the spectrometer. Amongst them are first dynamic PAES measurements and a high resolution measurement of the CuM 2,3 VV

  8. Implementation of high-resolution time-to-digital converter in 8-bit microcontrollers.

    Science.gov (United States)

    Bengtsson, Lars E

    2012-04-01

    This paper will demonstrate how a time-to-digital converter (TDC) with sub-nanosecond resolution can be implemented into an 8-bit microcontroller using so called "direct" methods. This means that a TDC is created using only five bidirectional digital input-output-pins of a microcontroller and a few passive components (two resistors, a capacitor, and a diode). We will demonstrate how a TDC for the range 1-10 μs is implemented with 0.17 ns resolution. This work will also show how to linearize the output by combining look-up tables and interpolation. © 2012 American Institute of Physics

  9. High-Resolution Near Real-Time Drought Monitoring in South Asia

    Science.gov (United States)

    Aadhar, S.; Mishra, V.

    2017-12-01

    Drought in South Asia affect food and water security and pose challenges for millions of people. For policy-making, planning and management of water resources at the sub-basin or administrative levels, high-resolution datasets of precipitation and air temperature are required in near-real time. Here we develop a high resolution (0.05 degree) bias-corrected precipitation and temperature data that can be used to monitor near real-time drought conditions over South Asia. Moreover, the dataset can be used to monitor climatic extremes (heat waves, cold waves, dry and wet anomalies) in South Asia. A distribution mapping method was applied to correct bias in precipitation and air temperature (maximum and minimum), which performed well compared to the other bias correction method based on linear scaling. Bias-corrected precipitation and temperature data were used to estimate Standardized precipitation index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI) to assess the historical and current drought conditions in South Asia. We evaluated drought severity and extent against the satellite-based Normalized Difference Vegetation Index (NDVI) anomalies and satellite-driven Drought Severity Index (DSI) at 0.05˚. We find that the bias-corrected high-resolution data can effectively capture observed drought conditions as shown by the satellite-based drought estimates. High resolution near real-time dataset can provide valuable information for decision-making at district and sub- basin levels.

  10. Real-time and quantitative isotropic spatial resolution susceptibility imaging for magnetic nanoparticles

    Science.gov (United States)

    Pi, Shiqiang; Liu, Wenzhong; Jiang, Tao

    2018-03-01

    The magnetic transparency of biological tissue allows the magnetic nanoparticle (MNP) to be a promising functional sensor and contrast agent. The complex susceptibility of MNPs, strongly influenced by particle concentration, excitation magnetic field and their surrounding microenvironment, provides significant implications for biomedical applications. Therefore, magnetic susceptibility imaging of high spatial resolution will give more detailed information during the process of MNP-aided diagnosis and therapy. In this study, we present a novel spatial magnetic susceptibility extraction method for MNPs under a gradient magnetic field, a low-frequency drive magnetic field, and a weak strength high-frequency magnetic field. Based on this novel method, a magnetic particle susceptibility imaging (MPSI) of millimeter-level spatial resolution (<3 mm) was achieved using our homemade imaging system. Corroborated by the experimental results, the MPSI shows real-time (1 s per frame acquisition) and quantitative abilities, and isotropic high resolution.

  11. Time-domain multiplexed high resolution fiber optics strain sensor system based on temporal response of fiber Fabry-Perot interferometers.

    Science.gov (United States)

    Chen, Jiageng; Liu, Qingwen; He, Zuyuan

    2017-09-04

    We developed a multiplexed strain sensor system with high resolution using fiber Fabry-Perot interferometers (FFPI) as sensing elements. The temporal responses of the FFPIs excited by rectangular laser pulses are used to obtain the strain applied on each FFPI. The FFPIs are connected by cascaded couplers and delay fiber rolls for the time-domain multiplexing. A compact optoelectronic system performing closed-loop cyclic interrogation is employed to improve the sensing resolution and the frequency response. In the demonstration experiment, 3-channel strain sensing with resolutions better than 0.1 nε and frequency response higher than 100 Hz is realized.

  12. Time resolution of the plastic scintillator strips with matrix photomultiplier readout for J-PET tomograph

    Science.gov (United States)

    Moskal, P.; Rundel, O.; Alfs, D.; Bednarski, T.; Białas, P.; Czerwiński, E.; Gajos, A.; Giergiel, K.; Gorgol, M.; Jasińska, B.; Kamińska, D.; Kapłon, Ł.; Korcyl, G.; Kowalski, P.; Kozik, T.; Krzemień, W.; Kubicz, E.; Niedźwiecki, Sz; Pałka, M.; Raczyński, L.; Rudy, Z.; Sharma, N. G.; Słomski, A.; Silarski, M.; Strzelecki, A.; Wieczorek, A.; Wiślicki, W.; Witkowski, P.; Zieliński, M.; Zoń, N.

    2016-03-01

    Recent tests of a single module of the Jagiellonian Positron Emission Tomography system (J-PET) consisting of 30 cm long plastic scintillator strips have proven its applicability for the detection of annihilation quanta (0.511 MeV) with a coincidence resolving time (CRT) of 0.266 ns. The achieved resolution is almost by a factor of two better with respect to the current TOF-PET detectors and it can still be improved since, as it is shown in this article, the intrinsic limit of time resolution for the determination of time of the interaction of 0.511 MeV gamma quanta in plastic scintillators is much lower. As the major point of the article, a method allowing to record timestamps of several photons, at two ends of the scintillator strip, by means of matrix of silicon photomultipliers (SiPM) is introduced. As a result of simulations, conducted with the number of SiPM varying from 4 to 42, it is shown that the improvement of timing resolution saturates with the growing number of photomultipliers, and that the 2× 5 configuration at two ends allowing to read twenty timestamps, constitutes an optimal solution. The conducted simulations accounted for the emission time distribution, photon transport and absorption inside the scintillator, as well as quantum efficiency and transit time spread of photosensors, and were checked based on the experimental results. Application of the 2× 5 matrix of SiPM allows for achieving the coincidence resolving time in positron emission tomography of ≈ 0.170 ns for 15 cm axial field-of-view (AFOV) and ≈ 0.365 ns for 100 cm AFOV. The results open perspectives for construction of a cost-effective TOF-PET scanner with significantly better TOF resolution and larger AFOV with respect to the current TOF-PET modalities.

  13. Pulse Rise Time Characterization of a High Pressure Xenon Gamma Detector for use in Resolution Enhancement

    CERN Document Server

    Troyer, G L

    2000-01-01

    High pressure xenon ionization chamber detectors are possible alternatives to traditional thallium doped sodium iodide (NaI(Tl)) and hyperpure germanium as gamma spectrometers in certain applications. Xenon detectors incorporating a Frisch grid exhibit energy resolutions comparable to cadmium/zinc/telluride (CZT) (e.g. 2% (at) 662keV) but with far greater sensitive volumes. The Frisch grid reduces the position dependence of the anode pulse risetimes, but it also increases the detector vibration sensitivity, anode capacitance, voltage requirements and mechanical complexity. We have been investigating the possibility of eliminating the grid electrode in high-pressure xenon detectors and preserving the high energy resolution using electronic risetime compensation methods. A two-electrode cylindrical high pressure xenon gamma detector coupled to time-to-amplitude conversion electronics was used to characterize the pulse rise time of deposited gamma photons. Time discrimination was used to characterize the pulse r...

  14. Parameters affecting temporal resolution of Time Resolved Integrative Optical Neutron Detector (TRION)

    International Nuclear Information System (INIS)

    Mor, I; Vartsky, D; Bar, D; Feldman, G; Goldberg, M B; Brandis, M; Dangendorf, V; Tittelmeier, K; Bromberger, B; Weierganz, M

    2013-01-01

    The Time-Resolved Integrative Optical Neutron (TRION) detector was developed for Fast Neutron Resonance Radiography (FNRR), a fast-neutron transmission imaging method that exploits characteristic energy-variations of the total scattering cross-section in the E n = 1–10 MeV range to detect specific elements within a radiographed object. As opposed to classical event-counting time of flight (ECTOF), it integrates the detector signal during a well-defined neutron Time of Flight window corresponding to a pre-selected energy bin, e.g., the energy-interval spanning a cross-section resonance of an element such as C, O and N. The integrative characteristic of the detector permits loss-free operation at very intense, pulsed neutron fluxes, at a cost however, of recorded temporal resolution degradation This work presents a theoretical and experimental evaluation of detector related parameters which affect temporal resolution of the TRION system

  15. Serial isoelectric focusing as an effective and economic way to obtain maximal resolution and high-throughput in 2D-based comparative proteomics of scarce samples: proof-of-principle.

    Science.gov (United States)

    Farhoud, Murtada H; Wessels, Hans J C T; Wevers, Ron A; van Engelen, Baziel G; van den Heuvel, Lambert P; Smeitink, Jan A

    2005-01-01

    In 2D-based comparative proteomics of scarce samples, such as limited patient material, established methods for prefractionation and subsequent use of different narrow range IPG strips to increase overall resolution are difficult to apply. Also, a high number of samples, a prerequisite for drawing meaningful conclusions when pathological and control samples are considered, will increase the associated amount of work almost exponentially. Here, we introduce a novel, effective, and economic method designed to obtain maximum 2D resolution while maintaining the high throughput necessary to perform large-scale comparative proteomics studies. The method is based on connecting different IPG strips serially head-to-tail so that a complete line of different IPG strips with sequential pH regions can be focused in the same experiment. We show that when 3 IPG strips (covering together the pH range of 3-11) are connected head-to-tail an optimal resolution is achieved along the whole pH range. Sample consumption, time required, and associated costs are reduced by almost 70%, and the workload is reduced significantly.

  16. Research for obtaining a detection system with high spatial and temporal resolution for a tomograph with positron emission (PET-Tomography)

    International Nuclear Information System (INIS)

    Cruceru, Ilie; Bartos, Daniel; Stanescu, Daniela

    2002-01-01

    This report describes a new type of detector for a tomograph system with positron emission. The detector has a new design with detection characteristics better than other detectors used currently in tomographic systems. We have in view the detectors like NaI(Tl), CsI(Tl), BGO and others. The new detector is based on discharge in gases and the interaction of gamma radiation - generated in the annihilation processes of positrons - with the mixture of gases within detector. The main novelty is the structure of electrodes with central readout microstrip plate. This structure is composed from two identical chambers. Each of these chambers have two glass resistive electrodes and one metallic electrode (cathode). One of the glass electrodes is separated from the metallic electrode while the other one is in contact with the central readout microstrip plate. In this way to gaps of 0.3 mm are generated. The gas mixture flows between these gaps. The electric charges generated in this gas are collected on the strips under the influence of the electric field applied between cathode and the anode of the detector.The arrangement of electrodes is shown. The structure of electrodes is mounted into a metallic box of special construction which allows the gas to flow through the detector and collects the electric charges generated in the detector. At present the detector is in the stage of a laboratory model and the tests carried out led to the following detection parameters: detection efficiency, 95%; spatial resolution, 3 mm; time resolution, 82 ps. The measurements were performed in coincidence using two similar detectors and the source of positrons was located between detectors. In the next stage of research will be defined the final constructive solution of the experimental model, built and tested for this positron source. The mixture of gases used for tests contained 85%C 2 H 2 F 4 + 10%SF 6 + 5%C 4 H 10 (isobutane). (authors)

  17. Simulation studies for a high resolution time projection chamber at the international linear collider

    Energy Technology Data Exchange (ETDEWEB)

    Muennich, A.

    2007-03-26

    The International Linear Collider (ILC) is planned to be the next large accelerator. The ILC will be able to perform high precision measurements only possible at the clean environment of electron positron collisions. In order to reach this high accuracy, the requirements for the detector performance are challenging. Several detector concepts are currently under study. The understanding of the detector and its performance will be crucial to extract the desired physics results from the data. To optimise the detector design, simulation studies are needed. Simulation packages like GEANT4 allow to model the detector geometry and simulate the energy deposit in the different materials. However, the detector response taking into account the transportation of the produced charge to the readout devices and the effects ofthe readout electronics cannot be described in detail. These processes in the detector will change the measured position of the energy deposit relative to the point of origin. The determination of this detector response is the task of detailed simulation studies, which have to be carried out for each subdetector. A high resolution Time Projection Chamber (TPC) with gas amplification based on micro pattern gas detectors, is one of the options for the main tracking system at the ILC. In the present thesis a detailed simulation tool to study the performance of a TPC was developed. Its goal is to find the optimal settings to reach an excellent momentum and spatial resolution. After an introduction to the present status of particle physics and the ILC project with special focus on the TPC as central tracker, the simulation framework is presented. The basic simulation methods and implemented processes are introduced. Within this stand-alone simulation framework each electron produced by primary ionisation is transferred through the gas volume and amplified using Gas Electron Multipliers (GEMs). The output format of the simulation is identical to the raw data from a

  18. A new analytical method for the classification of time-location data obtained from the global positioning system (GPS).

    Science.gov (United States)

    Kim, Taehyun; Lee, Kiyoung; Yang, Wonho; Yu, Seung Do

    2012-08-01

    Although the global positioning system (GPS) has been suggested as an alternative way to determine time-location patterns, its use has been limited. The purpose of this study was to evaluate a new analytical method of classifying time-location data obtained by GPS. A field technician carried a GPS device while simulating various scripted activities and recorded all movements by the second in an activity diary. The GPS device recorded geological data once every 15 s. The daily monitoring was repeated 18 times. The time-location data obtained by the GPS were compared with the activity diary to determine selection criteria for the classification of the GPS data. The GPS data were classified into four microenvironments (residential indoors, other indoors, transit, and walking outdoors); the selection criteria used were used number of satellites (used-NSAT), speed, and distance from residence. The GPS data were classified as indoors when the used-NSAT was below 9. Data classified as indoors were further classified as residential indoors when the distance from the residence was less than 40 m; otherwise, they were classified as other indoors. Data classified as outdoors were further classified as being in transit when the speed exceeded 2.5 m s(-1); otherwise, they were classified as walking outdoors. The average simple percentage agreement between the time-location classifications and the activity diary was 84.3 ± 12.4%, and the kappa coefficient was 0.71. The average differences between the time diary and the GPS results were 1.6 ± 2.3 h for the time spent in residential indoors, 0.9 ± 1.7 h for the time spent in other indoors, 0.4 ± 0.4 h for the time spent in transit, and 0.8 ± 0.5 h for the time spent walking outdoors. This method can be used to determine time-activity patterns in exposure-science studies.

  19. Time Resolution Dependence of Information Measures for Spiking Neurons: Scaling and Universality

    Directory of Open Access Journals (Sweden)

    James P Crutchfield

    2015-08-01

    Full Text Available The mutual information between stimulus and spike-train response is commonly used to monitor neural coding efficiency, but neuronal computation broadly conceived requires more refined and targeted information measures of input-output joint processes. A first step towards that larger goal is todevelop information measures for individual output processes, including information generation (entropy rate, stored information (statisticalcomplexity, predictable information (excess entropy, and active information accumulation (bound information rate. We calculate these for spike trains generated by a variety of noise-driven integrate-and-fire neurons as a function of time resolution and for alternating renewal processes. We show that their time-resolution dependence reveals coarse-grained structural properties of interspike interval statistics; e.g., $tau$-entropy rates that diverge less quickly than the firing rate indicate interspike interval correlations. We also find evidence that the excess entropy and regularized statistical complexity of different types of integrate-and-fire neurons are universal in the continuous-time limit in the sense that they do not depend on mechanism details. This suggests a surprising simplicity in the spike trains generated by these model neurons. Interestingly, neurons with gamma-distributed ISIs and neurons whose spike trains are alternating renewal processes do not fall into the same universality class. These results lead to two conclusions. First, the dependence of information measures on time resolution reveals mechanistic details about spike train generation. Second, information measures can be used as model selection tools for analyzing spike train processes.

  20. Processing of A New Digital Orthoimage Map of The Martian Western Hemisphere Using Data Obtained From The Mars Orbiter Camera At A Resolution of 256 Pixel/deg

    Science.gov (United States)

    Wählisch, M.; Niedermaier, G.; van Gasselt, S.; Scholten, F.; Wewel, F.; Roatsch, T.; Matz, K.-D.; Jaumann, R.

    We present a new digital orthoimage map of Mars using data obtained from the CCD line scanner Mars Orbiter Camera (MOC) of the Mars Global Surveyor Mis- sion (MGS) [1,2]. The map covers the Mars surface from 0 to 180 West and from 60 South to 60 North with the MDIM2 resolution of 256 pixel/degree and size. Image data processing has been performed using multiple programs, developed by DLR, Technical University of Berlin [3], JPL, and the USGS. 4,339 Context and 183 Geodesy images [2] were included. After radiometric corrections, the images were Mars referenced [4], geometrically corrected [5] and orthoprojected using a global Martian Digital Terrain Model (DTM) with a resolution of 64 pixel/degree, developed at DLR and based on MGS Mars Orbiter Laser Altimeter (MOLA) data [6]. To elim- inate major differences in brightness between the individual images of the mosaics, high- and low-pass filter processing techniques were applied for each image. After filtering, the images were mosaicked without registering or using block adjustment techniques in order to improve the geometric quality. It turns out that the accuracy of the navigation data has such a good quality that the orthoimages fit very well to each other. When merging the MOC mosaic with the MOLA data using IHS- trans- formation, we recognized very good correspondence between these two datasets. We create a topographic image map of the Coprates region (MC­18) adding contour lines derived from the global DTM to the mosaic. These maps are used for geological and morphological interpretations in order to review and improve our current Viking-based knowledge about the Martian surface. References: [1] www.mssss.com, [2] Caplinger, M. and M. Malin, "The Mars Or- biter Camera Geodesy Campaign, JGR, in press, [3] Scholten, F., Vol XXXI, Part B2, Wien 1996, p.351-356, [4] naïf.jpl.nasa.gov, [5] R.L.Kirk. et al. (2001), "Geometric Calibration of the Mars Orbiter Cameras and Coalignment with Mars Orbiter Laser Altimeter

  1. Effects of detector–source distance and detector bias voltage variations on time resolution of general purpose plastic scintillation detectors

    International Nuclear Information System (INIS)

    Ermis, E.E.; Celiktas, C.

    2012-01-01

    Effects of source-detector distance and the detector bias voltage variations on time resolution of a general purpose plastic scintillation detector such as BC400 were investigated. 133 Ba and 207 Bi calibration sources with and without collimator were used in the present work. Optimum source-detector distance and bias voltage values were determined for the best time resolution by using leading edge timing method. Effect of the collimator usage on time resolution was also investigated. - Highlights: ► Effect of the source-detector distance on time spectra was investigated. ► Effect of the detector bias voltage variations on time spectra was examined. ► Optimum detector–source distance was determined for the best time resolution. ► Optimum detector bias voltage was determined for the best time resolution. ► 133 Ba and 207 Bi radioisotopes were used.

  2. Design and calibration of a fast-time resolution charge exchange analyzer

    International Nuclear Information System (INIS)

    Scime, E.; Hokin, S.

    1992-04-01

    A five channel, fast time resolution, scanning charge exchange analyzer has been developed for the Madison Symmetric Torus (MST). The analyzer consists of an iron vacuum vessel, a gas stripping cell, an electrostatic bending field, and five continuous electron multiplier detectors. The incident neutral flux and operation of the detectors in current mode limits the time resolution of the analyzer to 10 μs. The analyzer was absolutely calibrated over the energy range of interest (500--2000 eV) with an H + beam, so that the charge exchange power loss could also be measured. The analyzer can be swiveled on a shot-to-shot basis for measurements of T i (r), where 0.3 < r/a < 0.7. The mechanical design was driven by the need for a low cost, expandable ion temperature diagnostic

  3. Results from the NA62 Gigatracker Prototype: A Low-Mass and sub-ns Time Resolution Silicon Pixel Detector

    Science.gov (United States)

    Fiorini, M.; Rinella, G. Aglieri; Carassiti, V.; Ceccucci, A.; Gil, E. Cortina; Ramusino, A. Cotta; Dellacasa, G.; Garbolino, S.; Jarron, P.; Kaplon, J.; Kluge, A.; Marchetto, F.; Mapelli, A.; Martin, E.; Mazza, G.; Morel, M.; Noy, M.; Nuessle, G.; Petagna, P.; Petrucci, F.; Perktold, L.; Riedler, P.; Rivetti, A.; Statera, M.; Velghe, B.

    The Gigatracker (GTK) is a hybrid silicon pixel detector developed for NA62, the experiment aimed at studying ultra-rare kaon decays at the CERN SPS. Three GTK stations will provide precise momentum and angular measurements on every track of the high intensity NA62 hadron beam with a time-tagging resolution of 150 ps. Multiple scattering and hadronic interactions of beam particles in the GTK have to be minimized to keep background events at acceptable levels, hence the total material budget is fixed to 0.5% X0 per station. In addition the calculated fluence for 100 days of running is 2×1014 1 MeV neq/cm2, comparable to the one expected for the inner trackers of LHC detectors in 10 years of operation. These requirements pose challenges for the development of an efficient and low-mass cooling system, to be operated in vacuum, and on the thinning of read-out chips to 100 μm or less. The most challenging requirement is represented by the time resolution, which can be achieved by carefully compensating for the discriminator time-walk. For this purpose, two complementary read-out architectures have been designed and produced as small-scale prototypes: the first is based on the use of a Time-over-Threshold circuit followed by a TDC shared by a group of pixels, while the other uses a constant-fraction discriminator followed by an on-pixel TDC. The readout pixel ASICs are produced in 130 nm IBM CMOS technology and bump-bonded to 200 μm thick silicon sensors. The Gigatracker detector system is described with particular emphasis on recent experimental results obtained from laboratory and beam tests of prototype bump-bonded assemblies, which show a time resolution of less than 200 ps for single hits.

  4. Enhancing time resolution by stabilized inverse filter and Q estimated on instantaneous spectra

    OpenAIRE

    Corrales, Álvaro; Cabrera, Francisco; Montes, Luis

    2014-01-01

    Physical phenomena, such as attenuation of high frequency components and velocity dispersion, deteriorate seismic images. To enhance seismic resolution, Q filtering is usually applied, where the accurate estimation of Q is the core of this approach. The Matching Pursuit (MP) approach is an instantaneous spectral analysis method that overcomes windowing problems caused by decomposing a seismic trace, providing a frequency spectrum for each time sample of the trace. By changing variables, the s...

  5. Digital synthesis of pulse shapes in real time for high resolution radiation spectroscopy

    International Nuclear Information System (INIS)

    Jordanov, Valentin T.; Knoll, Glenn F.

    1994-01-01

    Techniques have been developed for the synthesis of pulse shapes using fast digital schemes in place of the traditional analog methods of pulse shaping. Efficient recursive algorithms have been developed that allow real time implementation of a shaper that can produce either trapezoidal or triangular pulse shapes. Other recursive techniques are presented which allow a synthesis of finite cusp-like shapes. Preliminary experimental tests show potential advantages of using these techniques in high resolution, high count rate pulse spectroscopy. ((orig.))

  6. PET System Synchronization and Timing Resolution Using High-Speed Data Links

    OpenAIRE

    Aliaga Varea, Ramón José; Monzó Ferrer, José María; SPAGGIARI, MICHELE; Ferrando Jódar, Néstor; Gadea Gironés, Rafael; Colom Palero, Ricardo José

    2011-01-01

    Current PET systems with fully digital trigger rely on early digitization of detector signals and the use of digital processors, usually FPGAs, for recognition of valid gamma events on single detectors. Timestamps are assigned and later used for coincidence analysis. In order to maintain a decent timing resolution for events detected on different acquisition boards, it is necessary that local timestamps on different FPGAs be synchronized. Sub-nanosecond accuracy is mandatory if we want this e...

  7. Using hyperentanglement to enhance resolution, signal-to-noise ratio, and measurement time

    Science.gov (United States)

    Smith, James F.

    2017-03-01

    A hyperentanglement-based atmospheric imaging/detection system involving only a signal and an ancilla photon will be considered for optical and infrared frequencies. Only the signal photon will propagate in the atmosphere and its loss will be classical. The ancilla photon will remain within the sensor experiencing low loss. Closed form expressions for the wave function, normalization, density operator, reduced density operator, symmetrized logarithmic derivative, quantum Fisher information, quantum Cramer-Rao lower bound, coincidence probabilities, probability of detection, probability of false alarm, probability of error after M measurements, signal-to-noise ratio, quantum Chernoff bound, time-on-target expressions related to probability of error, and resolution will be provided. The effect of noise in every mode will be included as well as loss. The system will provide the basic design for an imaging/detection system functioning at optical or infrared frequencies that offers better than classical angular and range resolution. Optimization for enhanced resolution will be included. The signal-to-noise ratio will be increased by a factor equal to the number of modes employed during the hyperentanglement process. Likewise, the measurement time can be reduced by the same factor. The hyperentanglement generator will typically make use of entanglement in polarization, energy-time, orbital angular momentum and so on. Mathematical results will be provided describing the system's performance as a function of loss mechanisms and noise.

  8. Low-Power Amplifier-Discriminators for High Time Resolution Detection

    CERN Document Server

    Despeisse, M; Anghinolfi, F; Tiuraniemi, S; Osmic, F; Riedler, P; Kluge, A; Ceccucci, A

    2009-01-01

    Low-power amplifier-discriminators based on a so-called NINO architecture have been developed with high time resolution for the readout of radiation detectors. Two different circuits were integrated in the NINO13 chip, processed in IBM 130 nm CMOS technology. The LCO version (Low Capacitance and consumption Optimization) was designed for potential use as front-end electronics in the Gigatracker of the NA62 experiment at CERN. It was developed as pixel readout for solid-state pixel detectors to permit minimum ionizing particle detection with less than 180 ps rms resolution per pixel on the output pulse, for power consumption below 300 mu W per pixel. The HCO version (High Capacitance Optimization) was designed with 4 mW power consumption per channel to provide timing resolution below 20 ps rms on the output pulse, for charges above 10 fC. Results presented show the potential of the LCO and HCO circuits for the precise timing readout of solid-state detectors, vacuum tubes or gas detectors, for applications in h...

  9. A time-frequency analysis method to obtain stable estimates of magnetotelluric response function based on Hilbert-Huang transform

    Science.gov (United States)

    Cai, Jianhua

    2017-05-01

    The time-frequency analysis method represents signal as a function of time and frequency, and it is considered a powerful tool for handling arbitrary non-stationary time series by using instantaneous frequency and instantaneous amplitude. It also provides a possible alternative to the analysis of the non-stationary magnetotelluric (MT) signal. Based on the Hilbert-Huang transform (HHT), a time-frequency analysis method is proposed to obtain stable estimates of the magnetotelluric response function. In contrast to conventional methods, the response function estimation is performed in the time-frequency domain using instantaneous spectra rather than in the frequency domain, which allows for imaging the response parameter content as a function of time and frequency. The theory of the method is presented and the mathematical model and calculation procedure, which are used to estimate response function based on HHT time-frequency spectrum, are discussed. To evaluate the results, response function estimates are compared with estimates from a standard MT data processing method based on the Fourier transform. All results show that apparent resistivities and phases, which are calculated from the HHT time-frequency method, are generally more stable and reliable than those determined from the simple Fourier analysis. The proposed method overcomes the drawbacks of the traditional Fourier methods, and the resulting parameter minimises the estimation bias caused by the non-stationary characteristics of the MT data.

  10. A new technique for obtaining high-resolution pore pressure records in thick claystone aquitards and its use to determine in situ compressibility

    Science.gov (United States)

    Smith, Laura A.; van der Kamp, Garth; Jim Hendry, M.

    2013-02-01

    Laboratory tests are commonly used to determine properties (vertical compressibility, α; specific storage, SS; and vertical hydraulic conductivity, Kv) of claystone aquitards; however, whether data representative of in situ conditions can be obtained from disturbed samples is questionable. Here, we present a method to determine the in situ α and SS of a thick sequence of Cretaceous aged claystone by estimating the loading efficiency (γ) of a formation from pore pressure responses to barometric pressure fluctuations. We installed 10 vibrating wire pressure transducers at different depths (25-325 m below ground) in a thick claystone aquitard by placing them directly within the cement-bentonite grout. Two years of continuous transducer records using this method appeared to provide pore pressure data with a resolution of better than one part in 105, equivalent to millimeter of hydraulic head change. Pore pressure responses to barometric pressure changes, earth tides, and precipitation events can be clearly identified, and the barometric responses can be easily analyzed. The resulting values of γ (0.6-0.93), α (2.5 × 10-7 to 2.2 × 10-6 kPa-1), and SS (2.6 × 10-5 to 4.5 × 10-6 m-1) all decrease with depth. The results are comparable with the limited existing data for in situ estimates of SS and are as much as an order of magnitude smaller than laboratory estimates of SS for similar aquitard deposits. Our findings suggest that the fully grouted transducer method can provide an accurate and reliable means to monitor pore pressure changes and to determine in situ parameters for bedrock aquitard systems.

  11. In-depth study of single photon time resolution for the Philips digital silicon photomultiplier

    International Nuclear Information System (INIS)

    Liu, Z.; Pizzichemi, M.; Ghezzi, A.; Paganoni, M.; Gundacker, S.; Auffray, E.; Lecoq, P.

    2016-01-01

    The digital silicon photomultiplier (SiPM) has been commercialised by Philips as an innovative technology compared to analog silicon photomultiplier devices. The Philips digital SiPM, has a pair of time to digital converters (TDCs) connected to 12800 single photon avalanche diodes (SPADs). Detailed measurements were performed to understand the low photon time response of the Philips digital SiPM. The single photon time resolution (SPTR) of every single SPAD in a pixel consisting of 3200 SPADs was measured and an average value of 85 ps full width at half maximum (FWHM) was observed. Each SPAD sends the signal to the TDC with different signal propagation time, resulting in a so called trigger network skew. This distribution of the trigger network skew for a pixel (3200 SPADs) has been measured and a variation of 50 ps FWHM was extracted. The SPTR of the whole pixel is the combination of SPAD jitter, trigger network skew, and the SPAD non-uniformity. The SPTR of a complete pixel was 103 ps FWHM at 3.3 V above breakdown voltage. Further, the effect of the crosstalk at a low photon level has been studied, with the two photon time resolution degrading if the events are a combination of detected (true) photons and crosstalk events. Finally, the time response to multiple photons was investigated.

  12. Study on the ratio of signal to noise for single photon resolution time spectrometer

    International Nuclear Information System (INIS)

    Wang Zhaomin; Huang Shengli; Xu Zizong; Wu Chong

    2001-01-01

    The ratio of signal to noise for single photon resolution time spectrometer and their influence factors were studied. A method to depress the background, to shorten the measurement time and to increase the ratio of signal to noise was discussed. Results show that ratio of signal to noise is proportional to solid angle of detector to source and detection efficiency, and inverse proportional to electronics noise. Choose the activity of the source was important for decreasing of random coincidence counting. To use a coincidence gate and a discriminator of single photon were an effective way of increasing measurement accuracy and detection efficiency

  13. A high-resolution, multi-stop, time-to-digital converter for nuclear time-of-flight measurements

    International Nuclear Information System (INIS)

    Spencer, D.F.; Cole, J.; Drigert, M.; Aryaeinejad, R.

    2006-01-01

    A high-resolution, multi-stop, time-to-digital converter (TDC) was designed and developed to precisely measure the times-of-flight (TOF) of incident neutrons responsible for induced fission and capture reactions on actinide targets. The minimum time resolution is ±1 ns. The TDC design was implemented into a single, dual-wide CAMAC module. The CAMAC bus is used for command and control as well as an alternative data output. A high-speed ECL interface, compatible with LeCroy FERA modules, was also provided for the principle data output path. An Actel high-speed field programmable gate array (FPGA) chip was incorporated with an external oscillator and an internal multiple clock phasing system. This device implemented the majority of the high-speed register functions, the state machine for the FERA interface, and the high-speed counting circuit used for the TDC conversion. An external microcontroller was used to monitor and control system-level changes. In this work we discuss the performance of this TDC module as well as its application

  14. Robust high-resolution quantification of time signals encoded by in vivo magnetic resonance spectroscopy

    Science.gov (United States)

    Belkić, Dževad; Belkić, Karen

    2018-01-01

    This paper on molecular imaging emphasizes improving specificity of magnetic resonance spectroscopy (MRS) for early cancer diagnostics by high-resolution data analysis. Sensitivity of magnetic resonance imaging (MRI) is excellent, but specificity is insufficient. Specificity is improved with MRS by going beyond morphology to assess the biochemical content of tissue. This is contingent upon accurate data quantification of diagnostically relevant biomolecules. Quantification is spectral analysis which reconstructs chemical shifts, amplitudes and relaxation times of metabolites. Chemical shifts inform on electronic shielding of resonating nuclei bound to different molecular compounds. Oscillation amplitudes in time signals retrieve the abundance of MR sensitive nuclei whose number is proportional to metabolite concentrations. Transverse relaxation times, the reciprocal of decay probabilities of resonances, arise from spin-spin coupling and reflect local field inhomogeneities. In MRS single voxels are used. For volumetric coverage, multi-voxels are employed within a hybrid of MRS and MRI called magnetic resonance spectroscopic imaging (MRSI). Common to MRS and MRSI is encoding of time signals and subsequent spectral analysis. Encoded data do not provide direct clinical information. Spectral analysis of time signals can yield the quantitative information, of which metabolite concentrations are the most clinically important. This information is equivocal with standard data analysis through the non-parametric, low-resolution fast Fourier transform and post-processing via fitting. By applying the fast Padé transform (FPT) with high-resolution, noise suppression and exact quantification via quantum mechanical signal processing, advances are made, presented herein, focusing on four areas of critical public health importance: brain, prostate, breast and ovarian cancers.

  15. Gain and time resolution of 45 μm thin Low Gain Avalanche Detectors before and after irradiation up to a fluence of 1015 neq/cm2

    International Nuclear Information System (INIS)

    Lange, J.; Cavallaro, E.; Förster, F.; Grinstein, S.; Carulla, M.; Flores, D.; Hidalgo, S.; Merlos, A.; Pellegrini, G.; Quirion, D.; Chytka, L.; Komarek, T.; Nozka, L.; Davis, P.M.; Kramberger, G.; Mandić, I.; Sykora, T.

    2017-01-01

    Low Gain Avalanche Detectors (LGADs) are silicon sensors with a built-in charge multiplication layer providing a gain of typically 10 to 50. Due to the combination of high signal-to-noise ratio and short rise time, thin LGADs provide good time resolutions. LGADs with an active thickness of about 45 μm were produced at CNM Barcelona. Their gains and time resolutions were studied in beam tests for two different multiplication layer implantation doses, as well as before and after irradiation with neutrons up to 10 15 n eq /cm 2 . The gain showed the expected decrease at a fixed voltage for a lower initial implantation dose, as well as for a higher fluence due to effective acceptor removal in the multiplication layer. Time resolutions below 30 ps were obtained at the highest applied voltages for both implantation doses before irradiation. Also after an intermediate fluence of 3×10 14 n eq /cm 2 , similar values were measured since a higher applicable reverse bias voltage could recover most of the pre-irradiation gain. At 10 15 n eq /cm 2 , the time resolution at the maximum applicable voltage of 620 V during the beam test was measured to be 57 ps since the voltage stability was not good enough to compensate for the gain layer loss. The time resolutions were found to follow approximately a universal function of gain for all implantation doses and fluences.

  16. High energy resolution and first time-dependent positron annihilation induced Auger electron spectroscopty

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Jakob

    2010-04-03

    It was the aim of this thesis to improve the existing positron annihilation induced Auger spectrometer at the highly intense positron source NEPOMUC (NEutron induced POsitron source MUniCh) in several ways: Firstly, the measurement time for a single spectrum should be reduced from typically 12 h to roughly 1 h or even less. Secondly, the energy resolution, which amounted to {delta}E/E{approx}10%, should be increased by at least one order of magnitude in order to make high resolution positron annihilation induced Auger spectroscopy (PAES)-measurements of Auger transitions possible and thus deliver more information about the nature of the Auger process. In order to achieve these objectives, the PAES spectrometer was equipped with a new electron energy analyzer. For its ideal operation all other components of the Auger analysis chamber had to be adapted. Particularly the sample manipulation and the positron beam guidance had to be renewed. Simulations with SIMION {sup registered} ensured the optimal positron lens parameters. After the adjustment of the new analyzer and its components, first measurements illustrated the improved performance of the PAES setup: Firstly, the measurement time for short overview measurements was reduced from 3 h to 420 s. The measurement time for more detailed Auger spectra was shortened from 12 h to 80 min. Secondly, even with the reduced measurement time, the signal to noise ratio was also enhanced by one order of magnitude. Finally, the energy resolution was improved to {delta}E/E < 1. The exceptional surface sensitivity and elemental selectivity of PAES was demonstrated in measurements of Pd and Fe, both coated with Cu layers of varying thickness. PAES showed that with 0.96 monolayer of Cu on Fe, more than 55% of the detected Auger electrons stem from Cu. In the case of the Cu coated Pd sample 0.96 monolayer of Cu resulted in a Cu Auger fraction of more than 30% with PAES and less than 5% with electron induced Auger spectroscopy

  17. Wide-field time-correlated single photon counting (TCSPC) microscopy with time resolution below the frame exposure time

    Energy Technology Data Exchange (ETDEWEB)

    Hirvonen, Liisa M. [Department of Physics, King' s College London, Strand, London WC2R 2LS (United Kingdom); Petrášek, Zdeněk [Max Planck Institute of Biochemistry, Department of Cellular and Molecular Biophysics, Am Klopferspitz 18, D-82152 Martinsried (Germany); Suhling, Klaus, E-mail: klaus.suhling@kcl.ac.uk [Department of Physics, King' s College London, Strand, London WC2R 2LS (United Kingdom)

    2015-07-01

    Fast frame rate CMOS cameras in combination with photon counting intensifiers can be used for fluorescence imaging with single photon sensitivity at kHz frame rates. We show here how the phosphor decay of the image intensifier can be exploited for accurate timing of photon arrival well below the camera exposure time. This is achieved by taking ratios of the intensity of the photon events in two subsequent frames, and effectively allows wide-field TCSPC. This technique was used for measuring decays of ruthenium compound Ru(dpp) with lifetimes as low as 1 μs with 18.5 μs frame exposure time, including in living HeLa cells, using around 0.1 μW excitation power. We speculate that by using an image intensifier with a faster phosphor decay to match a higher camera frame rate, photon arrival time measurements on the nanosecond time scale could well be possible.

  18. A digital approach for real time high-rate high-resolution radiation measurements

    International Nuclear Information System (INIS)

    Gerardi, G.; Abbene, L.

    2014-01-01

    Modern spectrometers are currently developed by using digital pulse processing (DPP) systems, showing several advantages over traditional analog electronics. The aim of this work is to present digital strategies, in a time domain, for the development of real time high-rate high-resolution spectrometers. We propose a digital method, based on the single delay line (SDL) shaping technique, able to perform multi-parameter analysis with high performance even at high photon counting rates. A robust pulse shape and height analysis (PSHA), applied on single isolated time windows of the detector output waveforms, is presented. The potentialities of the proposed strategy are highlighted through both theoretical and experimental approaches. To strengthen our approach, the implementation of the method on a real-time system together with some experimental results are presented. X-ray spectra measurements with a semiconductor detector are performed both at low and high photon counting rates (up to 1.1 Mcps)

  19. A digital approach for real time high-rate high-resolution radiation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Gerardi, G.; Abbene, L., E-mail: leonardo.abbene@unipa.it

    2014-12-21

    Modern spectrometers are currently developed by using digital pulse processing (DPP) systems, showing several advantages over traditional analog electronics. The aim of this work is to present digital strategies, in a time domain, for the development of real time high-rate high-resolution spectrometers. We propose a digital method, based on the single delay line (SDL) shaping technique, able to perform multi-parameter analysis with high performance even at high photon counting rates. A robust pulse shape and height analysis (PSHA), applied on single isolated time windows of the detector output waveforms, is presented. The potentialities of the proposed strategy are highlighted through both theoretical and experimental approaches. To strengthen our approach, the implementation of the method on a real-time system together with some experimental results are presented. X-ray spectra measurements with a semiconductor detector are performed both at low and high photon counting rates (up to 1.1 Mcps)

  20. An approach for generating synthetic fine temporal resolution solar radiation time series from hourly gridded datasets

    Directory of Open Access Journals (Sweden)

    Matthew Perry

    2017-06-01

    Full Text Available A tool has been developed to statistically increase the temporal resolution of solar irradiance time series. Fine temporal resolution time series are an important input into the planning process for solar power plants, and lead to increased understanding of the likely short-term variability of solar energy. The approach makes use of the spatial variability of hourly gridded datasets around a location of interest to make inferences about the temporal variability within the hour. The unique characteristics of solar irradiance data are modelled by classifying each hour into a typical weather situation. Low variability situations are modelled using an autoregressive process which is applied to ramps of clear-sky index. High variability situations are modelled as a transition between states of clear sky conditions and different levels of cloud opacity. The methods have been calibrated to Australian conditions using 1 min data from four ground stations for a 10 year period. These stations, together with an independent dataset, have also been used to verify the quality of the results using a number of relevant metrics. The results show that the method generates realistic fine resolution synthetic time series. The synthetic time series correlate well with observed data on monthly and annual timescales as they are constrained to the nearest grid-point value on each hour. The probability distributions of the synthetic and observed global irradiance data are similar, with Kolmogorov-Smirnov test statistic less than 0.04 at each station. The tool could be useful for the estimation of solar power output for integration studies.

  1. High time resolution measurements of the thermosphere from Fabry-Perot Interferometer measurements of atomic oxygen

    Directory of Open Access Journals (Sweden)

    E. A. K. Ford

    2007-06-01

    Full Text Available Recent advances in the performance of CCD detectors have enabled a high time resolution study of the high latitude upper thermosphere with Fabry-Perot Interferometers (FPIs to be performed. 10-s integration times were used during a campaign in April 2004 on an FPI located in northern Sweden in the auroral oval. The FPI is used to study the thermosphere by measuring the oxygen red line emission at 630.0 nm, which emits at an altitude of approximately 240 km. Previous time resolutions have been 4 min at best, due to the cycle of look directions normally observed. By using 10 s rather than 40 s integration times, and by limiting the number of full cycles in a night, high resolution measurements down to 15 s were achievable. This has allowed the maximum variability of the thermospheric winds and temperatures, and 630.0 nm emission intensities, at approximately 240 km, to be determined as a few minutes. This is a significantly greater variability than the often assumed value of 1 h or more. A Lomb-Scargle analysis of this data has shown evidence of gravity wave activity with waves with short periods. Gravity waves are an important feature of mesosphere-lower thermosphere (MLT dynamics, observed using many techniques and providing an important mechanism for energy transfer between atmospheric regions. At high latitudes gravity waves may be generated in-situ by localised auroral activity. Short period waves were detected in all four clear nights when this experiment was performed, in 630.0 nm intensities and thermospheric winds and temperatures. Waves with many periodicities were observed, from periods of several hours, down to 14 min. These waves were seen in all parameters over several nights, implying that this variability is a typical property of the thermosphere.

  2. HIGH-TIME-RESOLUTION MEASUREMENTS OF THE POLARIZATION OF THE CRAB PULSAR AT 1.38 GHz

    Energy Technology Data Exchange (ETDEWEB)

    Słowikowska, Agnieszka [Kepler Institute of Astronomy, University of Zielona Góra, Lubuska 2, 65-265 Zielona Góra (Poland); Stappers, Benjamin W. [Jodrell Bank Centre for Astrophysics, University of Manchester, Manchester M13 9PL (United Kingdom); Harding, Alice K. [Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); O' Dell, Stephen L.; Elsner, Ronald F.; Weisskopf, Martin C. [Astrophysics Office, NASA Marshall Space Flight Center, ZP12, Huntsville, AL 35812 (United States); Van der Horst, Alexander J. [Astronomical Institute, University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands)

    2015-01-20

    Using the Westerbork Synthesis Radio Telescope, we obtained high-time-resolution measurements of the full polarization of the Crab pulsar. At a resolution of 1/8192 of the 34 ms pulse period (i.e., 4.1 μs), the 1.38 GHz linear-polarization measurements are in general agreement with previous lower-time-resolution 1.4 GHz measurements of linear polarization in the main pulse (MP), in the interpulse (IP), and in the low-frequency component (LFC). We find the MP and IP to be linearly polarized at about 24% and 21% with no discernible difference in polarization position angle. However, contrary to theoretical expectations and measurements in the visible, we find no evidence for significant variation (sweep) in the polarization position angle over the MP, the IP, or the LFC. We discuss the implications, which appear to be in contradiction to theoretical expectations. We also detect weak circular polarization in the MP and IP, and strong (≈20%) circular polarization in the LFC, which also exhibits very strong (≈98%) linear polarization at a position angle of 40° from that of the MP or IP. The properties are consistent with the LFC, which is a low-altitude component, and the MP and IP, which are high-altitude caustic components. Current models for the MP and IP emission do not readily account for the absence of pronounced polarization changes across the pulse. We measure IP and LFC pulse phases relative to the MP consistent with recent measurements, which have shown that the phases of these pulse components are evolving with time.

  3. Constant resolution of time-dependent Hartree--Fock phase ambiguity

    International Nuclear Information System (INIS)

    Lichtner, P.C.; Griffin, J.J.; Schultheis, H.; Schultheis, R.; Volkov, A.B.

    1978-01-01

    The customary time-dependent Hartree--Fock problem is shown to be ambiguous up to an arbitrary function of time additive to H/sub HF/, and, consequently, up to an arbitrary time-dependent phase for the solution, PHI(t). The ''constant'' (H)'' phase is proposed as the best resolution of this ambiguity. It leads to the following attractive features: (a) the time-dependent Hartree--Fock (TDHF) Hamiltonian, H/sub HF/, becomes a quantity whose expectation value is equal to the average energy and, hence, constant in time; (b) eigenstates described exactly by determinants, have time-dependent Hartree--Fock solutions identical with the exact time-dependent solutions; (c) among all possible TDHF solutions this choice minimizes the norm of the quantity (H--i dirac constant delta/delta t) operating on the ket PHI, and guarantees optimal time evolution over an infinitesimal period; (d) this choice corresponds both to the stationary value of the absolute difference between (H) and (i dirac constant delta/delta t) and simultaneously to its absolute minimal value with respect to choice of the time-dependent phase. The source of the ambiguity is discussed. It lies in the time-dependent generalization of the freedom to transform unitarily among the single-particle states of a determinant at the (physically irrelevant for stationary states) cost of altering only a factor of unit magnitude

  4. Transmission-Line Readout with Good Time and Space Resolutions for Planacon MCP-PMTs

    CERN Document Server

    Tang, F; Byrum, K; Drake, G; Ertley, C; Frisch, H; Genat, J-F; May, E

    2008-01-01

    With commercially-available multi-anode microchannel plate photomultiplier tubes (MCP-PMT) and electronics, resolutions significantly better than 10 psec have been achieved in small systems with a few readout channels[1,2]. For large-scale time-of-flight systems used in particle physics, which may cover tens of square meters, a solution must be found with a manageable number of electronics channels and low total power consumption on the readout electronics without degrading the system timing resolution. We present here the design of a transmission-line readout for a Photonis Planacon MCP-PMT that has these characteristics. The tube, which is 5 cm square, is characterized by signal pulse rise times in the order of 200 psec and transit time spreads (TTS) in the order of 25 psec[1, 2]. The model 85011-011 MCP has 1024 anode pads laid out in an array of 32 by 32 on the back of the tube. The proposed readout is implemented on a Rogers 4350B printed circuit board with 32 parallel 50-ohm transmission lines on 1.6 mm...

  5. Effects of post exposure bake temperature and exposure time on SU-8 nanopattern obtained by electron beam lithography

    Science.gov (United States)

    Yasui, Manabu; Kazawa, Elito; Kaneko, Satoru; Takahashi, Ryo; Kurouchi, Masahito; Ozawa, Takeshi; Arai, Masahiro

    2014-11-01

    SU-8 is a photoresist imaged using UV rays. However, we investigated the characteristics of an SU-8 nanopattern obtained by electron beam lithography (EBL). In particular, we studied the relationship between post-exposure bake (PEB) temperature and exposure time on an SU-8 nanopattern with a focus on phase transition temperature. SU-8 residue was formed by increasing both PEB temperature and exposure time. To prevent the formation of this, Monte Carlo simulation was performed; the results of such simulation showed that decreasing the thickness of SU-8 can reduce the amount of residue from the SU-8 nanopattern. We confirmed that decreasing the thickness of SU-8 can also prevent the formation of residue from the SU-8 nanopattern with EBL.

  6. Obtaining the time evolution for spherically symmetric Lemaitre-Tolman-Bondi models given data on our past light cone

    International Nuclear Information System (INIS)

    Araujo, M. E.; Stoeger, W. R.

    2009-01-01

    A rigorous demonstration that given appropriate data on our past light cone leads to the determination of the metric functions and all their time derivatives on our past light cone is presented, thus showing how to evolve the solution we obtain from data on the light cone off it in a well-defined and straightforward way. It also automatically gives a procedure for constructing the solution for all spherically symmetric, inhomogeneous cosmological Lemaitre-Tolman-Bondi models in observational coordinates as a Taylor series in time of however many terms we need. Our procedure takes into account the essential data giving the maximum of the observer area (angular-diameter) distance, and the redshift z max at which that occurs. This enables the determination of the vacuum-energy density μ Λ , which would otherwise remain undetermined.

  7. FAST INTEGER AMBIGUITY RESOLUTION IN GPS KINEMATIC POSITIONING USING LEFT NULL SPACE AND MULTI-TIME (INVERSE PAIRED CHOLESKY DECORRELATION

    Directory of Open Access Journals (Sweden)

    Rong Duan

    Full Text Available Aiming at the problems that huge amount of computation in ambiguity resolution with multiple epochs and high-order matrix inversion occurred in the GPS kinematic relative positioning, a modified algorithm for fast integer ambiguity resolution is proposed. Firstly, Singular Value Decomposition (SVD is applied to construct the left null space matrix in order to eliminate the baselines components, which is able to separate ambiguity parameters from the position parameters efficiently. Kalman filter is applied only to estimate the ambiguity parameters so that the real-time ambiguity float solution is obtained. Then, sorting and multi-time (inverse paired Cholesky decomposition are adopted for decorrelation of ambiguity. After diagonal elements preprocessing and diagonal elements sorting according to the results of Cholesky decomposition, the efficiency of decomposition and decorrelation is improved. Lastly, the integer search algorithm implemented in LAMBDA method is used for searching the integer ambiguity. To verify the validity and efficacy of the proposed algorithm, static and kinematic tests are carried out. Experimental results show that this algorithm has good performance of decorrelation and precision of float solution, with computation speed also increased effectively. The final positioning accuracy result with static baseline error less than 1 cm and kinematic error less than 2 cm, which indicates that it can be used for fast kinematic positioning of high precision carrier.

  8. The investigation of Martian dune fields using very high resolution photogrammetric measurements and time series analysis

    Science.gov (United States)

    Kim, J.; Park, M.; Baik, H. S.; Choi, Y.

    2016-12-01

    At the present time, arguments continue regarding the migration speeds of Martian dune fields and their correlation with atmospheric circulation. However, precisely measuring the spatial translation of Martian dunes has rarely conducted only a very few times Therefore, we developed a generic procedure to precisely measure the migration of dune fields with recently introduced 25-cm resolution High Resolution Imaging Science Experimen (HIRISE) employing a high-accuracy photogrammetric processor and sub-pixel image correlator. The processor was designed to trace estimated dune migration, albeit slight, over the Martian surface by 1) the introduction of very high resolution ortho images and stereo analysis based on hierarchical geodetic control for better initial point settings; 2) positioning error removal throughout the sensor model refinement with a non-rigorous bundle block adjustment, which makes possible the co-alignment of all images in a time series; and 3) improved sub-pixel co-registration algorithms using optical flow with a refinement stage conducted on a pyramidal grid processor and a blunder classifier. Moreover, volumetric changes of Martian dunes were additionally traced by means of stereo analysis and photoclinometry. The established algorithms have been tested using high-resolution HIRISE images over a large number of Martian dune fields covering whole Mars Global Dune Database. Migrations over well-known crater dune fields appeared to be almost static for the considerable temporal periods and were weakly correlated with wind directions estimated by the Mars Climate Database (Millour et al. 2015). Only over a few Martian dune fields, such as Kaiser crater, meaningful migration speeds (>1m/year) compared to phtotogrammetric error residual have been measured. Currently a technical improved processor to compensate error residual using time series observation is under developing and expected to produce the long term migration speed over Martian dune

  9. High resolution time-of-flight spectrometer for crossed molecular beam study of elementary chemical reactions

    International Nuclear Information System (INIS)

    Qiu Minghui; Che Li; Ren Zefeng; Dai Dongxu; Wang Xiuyan; Yang Xueming

    2005-01-01

    In this article, we describe an apparatus in our laboratory for investigating elementary chemical reactions using the high resolution time-of-flight Rydberg tagging method. In this apparatus, we have adopted a rotating source design so that collision energy can be changed for crossed beam studies of chemical reactions. Preliminary results on the HI photodissociation and the F atom reaction with H 2 are reported here. These results suggest that the experimental apparatus is potentially a powerful tool for investigating state-to-state dynamics of elementary chemical reactions

  10. Real-time haptic cutting of high-resolution soft tissues.

    Science.gov (United States)

    Wu, Jun; Westermann, Rüdiger; Dick, Christian

    2014-01-01

    We present our systematic efforts in advancing the computational performance of physically accurate soft tissue cutting simulation, which is at the core of surgery simulators in general. We demonstrate a real-time performance of 15 simulation frames per second for haptic soft tissue cutting of a deformable body at an effective resolution of 170,000 finite elements. This is achieved by the following innovative components: (1) a linked octree discretization of the deformable body, which allows for fast and robust topological modifications of the simulation domain, (2) a composite finite element formulation, which thoroughly reduces the number of simulation degrees of freedom and thus enables to carefully balance simulation performance and accuracy, (3) a highly efficient geometric multigrid solver for solving the linear systems of equations arising from implicit time integration, (4) an efficient collision detection algorithm that effectively exploits the composition structure, and (5) a stable haptic rendering algorithm for computing the feedback forces. Considering that our method increases the finite element resolution for physically accurate real-time soft tissue cutting simulation by an order of magnitude, our technique has a high potential to significantly advance the realism of surgery simulators.

  11. The optimization of the time resolution and the sensitivity in the pulsed nuclear resonance

    International Nuclear Information System (INIS)

    Umathum, R.

    1987-01-01

    The time resolution of pulsed NMR spectrometer and its spectral sensitivity are closely connected together. An important obstacle in the attempt to increase the resolution represents the dead time of the spectrometer. In the present thesis therefore the different contributions to the system dead time and their causes are analyzed and ways to the reduction respectively complete removement of a part of these contributions are indicated. So a duplexer was developed and constructed on the base of a principle novel for the NMR under application of quadrature hybrids which reduces the residual voltage of the sender pulse to less than 1/10 of the hitherto reached value. In this thesis a concept is extensively discussed which allows to generate at constant quality respectively damping constant of the sample circuit and given sender power a larger high frequency field strength than it is possible in the state of the power fitting. It could be shown than also concerning the noise behaviour by the application of the principle of the defined misfit no compromise must be made but it is even facilitated to approach the ideal of the noise fit of the first receiver stage to the sample circuit. (orig./HSI) [de

  12. Auroral radar measurements at 16-cm wavelength with high range and time resolution

    International Nuclear Information System (INIS)

    Schlegel, K.; Turunen, T.; Moorcroft, D.R.

    1990-01-01

    Auroral radar measurements performed with the EISCAT facility are presented. Backscatter cross sections of the irregularities produced by the two-stream (Farley-Buneman) or gradient drift plasma instabilities have been recorded with a range separation of 1.5 km, corresponding to a spacing of successive values in height of about 0.4 km. The apparent height profiles of the backscatter have a width of about 5-6 km and occur between 95 and 112 km altitude, with a mean at 104 km. Very often, fast motions of the backscatter layers are observed which can be explained as fast moving ionospheric structures controlled by magnetospheric convection. The maximal time resolution of the measurements is 12.5 ms. The statistics of the backscatter amplitudes at this time resolution is close to a Rice distribution with a Rice parameter a ∼ 3.7. The observed backscatter spectra do not change significantly in shape when the integration time is reduced from 5 s to 100 ms

  13. High time resolution characteristics of intermediate ion distributions upstream of the earth's bow shock

    Science.gov (United States)

    Potter, D. W.

    1985-01-01

    High time resolution particle data upstream of the bow shock during time intervals that have been identified as having intermediate ion distributions often show high amplitude oscillations in the ion fluxes of energy 2 and 6 keV. These ion oscillations, observed with the particle instruments of the University of California, Berkeley, on the ISEE 1 and 2 spacecraft, are at the same frequency (about 0.04 Hz) as the magnetic field oscillations. Typically, the 6-keV ion flux increases then the 2-keV flux increases followed by a decrease in the 2-keV flux and then the 6-keV flux decreases. This process repeats many times. Although there is no entirely satisfactory explanation, the presence of these ion flux oscillations suggests that distributions often are misidentified as intermediate ion distributions.

  14. Effects of detector-source distance and detector bias voltage variations on time resolution of general purpose plastic scintillation detectors.

    Science.gov (United States)

    Ermis, E E; Celiktas, C

    2012-12-01

    Effects of source-detector distance and the detector bias voltage variations on time resolution of a general purpose plastic scintillation detector such as BC400 were investigated. (133)Ba and (207)Bi calibration sources with and without collimator were used in the present work. Optimum source-detector distance and bias voltage values were determined for the best time resolution by using leading edge timing method. Effect of the collimator usage on time resolution was also investigated. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. High spatial and temporal resolution retrospective cine cardiovascular magnetic resonance from shortened free breathing real-time acquisitions.

    Science.gov (United States)

    Xue, Hui; Kellman, Peter; Larocca, Gina; Arai, Andrew E; Hansen, Michael S

    2013-11-14

    Cine cardiovascular magnetic resonance (CMR) is challenging in patients who cannot perform repeated breath holds. Real-time, free-breathing acquisition is an alternative, but image quality is typically inferior. There is a clinical need for techniques that achieve similar image quality to the segmented cine using a free breathing acquisition. Previously, high quality retrospectively gated cine images have been reconstructed from real-time acquisitions using parallel imaging and motion correction. These methods had limited clinical applicability due to lengthy acquisitions and volumetric measurements obtained with such methods have not previously been evaluated systematically. This study introduces a new retrospective reconstruction scheme for real-time cine imaging which aims to shorten the required acquisition. A real-time acquisition of 16-20s per acquired slice was inputted into a retrospective cine reconstruction algorithm, which employed non-rigid registration to remove respiratory motion and SPIRiT non-linear reconstruction with temporal regularization to fill in missing data. The algorithm was used to reconstruct cine loops with high spatial (1.3-1.8 × 1.8-2.1 mm²) and temporal resolution (retrospectively gated, 30 cardiac phases, temporal resolution 34.3 ± 9.1 ms). Validation was performed in 15 healthy volunteers using two different acquisition resolutions (256 × 144/192 × 128 matrix sizes). For each subject, 9 to 12 short axis and 3 long axis slices were imaged with both segmented and real-time acquisitions. The retrospectively reconstructed real-time cine images were compared to a traditional segmented breath-held acquisition in terms of image quality scores. Image quality scoring was performed by two experts using a scale between 1 and 5 (poor to good). For every subject, LAX and three SAX slices were selected and reviewed in the random order. The reviewers were blinded to the reconstruction approach and acquisition protocols and

  16. Monthly Rainfall Erosivity: Conversion Factors for Different Time Resolutions and Regional Assessments

    Directory of Open Access Journals (Sweden)

    Panos Panagos

    2016-03-01

    Full Text Available As a follow up and an advancement of the recently published Rainfall Erosivity Database at European Scale (REDES and the respective mean annual R-factor map, the monthly aspect of rainfall erosivity has been added to REDES. Rainfall erosivity is crucial to be considered at a monthly resolution, for the optimization of land management (seasonal variation of vegetation cover and agricultural support practices as well as natural hazard protection (landslides and flood prediction. We expanded REDES by 140 rainfall stations, thus covering areas where monthly R-factor values were missing (Slovakia, Poland or former data density was not satisfactory (Austria, France, and Spain. The different time resolutions (from 5 to 60 min of high temporal data require a conversion of monthly R-factor based on a pool of stations with available data at all time resolutions. Because the conversion factors show smaller monthly variability in winter (January: 1.54 than in summer (August: 2.13, applying conversion factors on a monthly basis is suggested. The estimated monthly conversion factors allow transferring the R-factor to the desired time resolution at a European scale. The June to September period contributes to 53% of the annual rainfall erosivity in Europe, with different spatial and temporal patterns depending on the region. The study also investigated the heterogeneous seasonal patterns in different regions of Europe: on average, the Northern and Central European countries exhibit the largest R-factor values in summer, while the Southern European countries do so from October to January. In almost all countries (excluding Ireland, United Kingdom and North France, the seasonal variability of rainfall erosivity is high. Very few areas (mainly located in Spain and France show the largest from February to April. The average monthly erosivity density is very large in August (1.67 and July (1.63, while very small in January and February (0.37. This study addresses

  17. Sub-100 ps coincidence time resolution for positron emission tomography with LSO:Ce codoped with Ca

    CERN Document Server

    Nemallapudi, Mythra Varun; Lecoq, Paul; Auffray, Etiennette; Ferri, Alessandro; Gola, Alberto; Piemonte, Claudio

    2015-01-01

    The coincidence time resolution (CTR) becomes a key parameter of 511keV gamma detection in time of flight positron emission tomography (TOF-PET). This is because additional information obtained through timing leads to a better noise suppression and therefore a better signal to noise ratio in the reconstructed image. In this paper we present the results of CTR measurements on two different SiPM technologies from FBK coupled to LSO:Ce codoped 0.4%Ca crystals. We compare the measurements performed at two separate test setups, i.e. at CERN and at FBK, showing that the obtained results agree within a few percent. We achieve a best CTR value of 85  ±  4 ps FWHM for 2  ×  2  ×  3 mm3 LSO:Ce codoped 0.4%Ca crystals, thus breaking the 100 ps barrier with scintillators similar to LSO:Ce or LYSO:Ce. We also demonstrate that a CTR of 140  ±  5 ps can be achieved for longer 2  ×  2  ×  20 mm3 crystals, which can readily be implemented in the current generation PET syst...

  18. On the impact of GNSS ambiguity resolution: geometry, ionosphere, time and biases

    Science.gov (United States)

    Khodabandeh, A.; Teunissen, P. J. G.

    2018-06-01

    Integer ambiguity resolution (IAR) is the key to fast and precise GNSS positioning and navigation. Next to the positioning parameters, however, there are several other types of GNSS parameters that are of importance for a range of different applications like atmospheric sounding, instrumental calibrations or time transfer. As some of these parameters may still require pseudo-range data for their estimation, their response to IAR may differ significantly. To infer the impact of ambiguity resolution on the parameters, we show how the ambiguity-resolved double-differenced phase data propagate into the GNSS parameter solutions. For that purpose, we introduce a canonical decomposition of the GNSS network model that, through its decoupled and decorrelated nature, provides direct insight into which parameters, or functions thereof, gain from IAR and which do not. Next to this qualitative analysis, we present for the GNSS estimable parameters of geometry, ionosphere, timing and instrumental biases closed-form expressions of their IAR precision gains together with supporting numerical examples.

  19. APES: Acute Precipitating Electron Spectrometer - A High Time Resolution Monodirectional Magnetic Deflection Electron Spectrometer

    Science.gov (United States)

    Michell, R. G.; Samara, M.; Grubbs, G., II; Ogasawara, K.; Miller, G.; Trevino, J. A.; Webster, J.; Stange, J.

    2016-01-01

    We present a description of the Acute Precipitating Electron Spectrometer (APES) that was designed and built for the Ground-to-Rocket Electron Electrodynamics Correlative Experiment (GREECE) auroral sounding rocket mission. The purpose was to measure the precipitating electron spectrum with high time resolution, on the order of milliseconds. The trade-off made in order to achieve high time resolution was to limit the aperture to only one look direction. The energy selection was done by using a permanent magnet to separate the incoming electrons, such that the different energies would fall onto different regions of the microchannel plate and therefore be detected by different anodes. A rectangular microchannel plate (MCP) was used (15 mm x 100 mm), and there was a total of 50 discrete anodes under the MCP, each one 15 mm x 1.5 mm, with a 0.5 mm spacing between anodes. The target energy range of APES was 200 eV to 30 keV.

  20. Time-efficient, high-resolution, whole brain three-dimensional macromolecular proton fraction mapping.

    Science.gov (United States)

    Yarnykh, Vasily L

    2016-05-01

    Macromolecular proton fraction (MPF) mapping is a quantitative MRI method that reconstructs parametric maps of a relative amount of macromolecular protons causing the magnetization transfer (MT) effect and provides a biomarker of myelination in neural tissues. This study aimed to develop a high-resolution whole brain MPF mapping technique using a minimal number of source images for scan time reduction. The described technique was based on replacement of an actually acquired reference image without MT saturation by a synthetic one reconstructed from R1 and proton density maps, thus requiring only three source images. This approach enabled whole brain three-dimensional MPF mapping with isotropic 1.25 × 1.25 × 1.25 mm(3) voxel size and a scan time of 20 min. The synthetic reference method was validated against standard MPF mapping with acquired reference images based on data from eight healthy subjects. Mean MPF values in segmented white and gray matter appeared in close agreement with no significant bias and small within-subject coefficients of variation (maps demonstrated sharp white-gray matter contrast and clear visualization of anatomical details, including gray matter structures with high iron content. The proposed synthetic reference method improves resolution of MPF mapping and combines accurate MPF measurements with unique neuroanatomical contrast features. © 2015 Wiley Periodicals, Inc.

  1. The High Time Resolution Universe surveys for pulsars and fast transients

    Science.gov (United States)

    Keith, Michael J.

    2013-03-01

    The High Time Resolution Universe survey for pulsars and transients is the first truly all-sky pulsar survey, taking place at the Parkes Radio Telescope in Australia and the Effelsberg Radio Telescope in Germany. Utilising multibeam receivers with custom built all-digital recorders the survey targets the fastest millisecond pulsars and radio transients on timescales of 64 μs to a few seconds. The new multibeam digital filter-bank system at has a factor of eight improvement in frequency resolution over previous Parkes multibeam surveys, allowing us to probe further into the Galactic plane for short duration signals. The survey is split into low, mid and high Galactic latitude regions. The mid-latitude portion of the southern hemisphere survey is now completed, discovering 107 previously unknown pulsars, including 26 millisecond pulsars. To date, the total number of discoveries in the combined survey is 135 and 29 MSPs These discoveries include the first magnetar to be discovered by it's radio emission, unusual low-mass binaries, gamma-ray pulsars and pulsars suitable for pulsar timing array experiments.

  2. Optimisation of chromatographic resolution using objective functions including both time and spectral information.

    Science.gov (United States)

    Torres-Lapasió, J R; Pous-Torres, S; Ortiz-Bolsico, C; García-Alvarez-Coque, M C

    2015-01-16

    The optimisation of the resolution in high-performance liquid chromatography is traditionally performed attending only to the time information. However, even in the optimal conditions, some peak pairs may remain unresolved. Such incomplete resolution can be still accomplished by deconvolution, which can be carried out with more guarantees of success by including spectral information. In this work, two-way chromatographic objective functions (COFs) that incorporate both time and spectral information were tested, based on the peak purity (analyte peak fraction free of overlapping) and the multivariate selectivity (figure of merit derived from the net analyte signal) concepts. These COFs are sensitive to situations where the components that coelute in a mixture show some spectral differences. Therefore, they are useful to find out experimental conditions where the spectrochromatograms can be recovered by deconvolution. Two-way multivariate selectivity yielded the best performance and was applied to the separation using diode-array detection of a mixture of 25 phenolic compounds, which remained unresolved in the chromatographic order using linear and multi-linear gradients of acetonitrile-water. Peak deconvolution was carried out using the combination of orthogonal projection approach and alternating least squares. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Time-optimized high-resolution readout-segmented diffusion tensor imaging.

    Directory of Open Access Journals (Sweden)

    Gernot Reishofer

    Full Text Available Readout-segmented echo planar imaging with 2D navigator-based reacquisition is an uprising technique enabling the sampling of high-resolution diffusion images with reduced susceptibility artifacts. However, low signal from the small voxels and long scan times hamper the clinical applicability. Therefore, we introduce a regularization algorithm based on total variation that is applied directly on the entire diffusion tensor. The spatially varying regularization parameter is determined automatically dependent on spatial variations in signal-to-noise ratio thus, avoiding over- or under-regularization. Information about the noise distribution in the diffusion tensor is extracted from the diffusion weighted images by means of complex independent component analysis. Moreover, the combination of those features enables processing of the diffusion data absolutely user independent. Tractography from in vivo data and from a software phantom demonstrate the advantage of the spatially varying regularization compared to un-regularized data with respect to parameters relevant for fiber-tracking such as Mean Fiber Length, Track Count, Volume and Voxel Count. Specifically, for in vivo data findings suggest that tractography results from the regularized diffusion tensor based on one measurement (16 min generates results comparable to the un-regularized data with three averages (48 min. This significant reduction in scan time renders high resolution (1 × 1 × 2.5 mm(3 diffusion tensor imaging of the entire brain applicable in a clinical context.

  4. High resolution distributed time-to-digital converter (TDC) in a White Rabbit network

    International Nuclear Information System (INIS)

    Pan, Weibin; Gong, Guanghua; Du, Qiang; Li, Hongming; Li, Jianmin

    2014-01-01

    The Large High Altitude Air Shower Observatory (LHAASO) project consists of a complex detector array with over 6000 detector nodes spreading over 1.2 km 2 areas. The arrival times of shower particles are captured by time-to-digital converters (TDCs) in the detectors' frontend electronics, the arrival direction of the high energy cosmic ray are then to be reconstructed from the space-time information of all detector nodes. To guarantee the angular resolution of 0.5°, a time synchronization of 500 ps (RMS) accuracy and 100 ps precision must be achieved among all TDC nodes. A technology enhancing Gigabit Ethernet, called the White Rabbit (WR), has shown the capability of delivering sub-nanosecond accuracy and picoseconds precision of synchronization over the standard data packet transfer. In this paper we demonstrate a distributed TDC prototype system combining the FPGA based TDC and the WR technology. With the time synchronization and data transfer services from a compact WR node, separate FPGA-TDC nodes can be combined to provide uniform time measurement information for correlated events. The design detail and test performance will be described in the paper

  5. High resolution distributed time-to-digital converter (TDC) in a White Rabbit network

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Weibin, E-mail: pwb.thu@gmail.com; Gong, Guanghua; Du, Qiang; Li, Hongming; Li, Jianmin

    2014-02-21

    The Large High Altitude Air Shower Observatory (LHAASO) project consists of a complex detector array with over 6000 detector nodes spreading over 1.2 km{sup 2} areas. The arrival times of shower particles are captured by time-to-digital converters (TDCs) in the detectors' frontend electronics, the arrival direction of the high energy cosmic ray are then to be reconstructed from the space-time information of all detector nodes. To guarantee the angular resolution of 0.5°, a time synchronization of 500 ps (RMS) accuracy and 100 ps precision must be achieved among all TDC nodes. A technology enhancing Gigabit Ethernet, called the White Rabbit (WR), has shown the capability of delivering sub-nanosecond accuracy and picoseconds precision of synchronization over the standard data packet transfer. In this paper we demonstrate a distributed TDC prototype system combining the FPGA based TDC and the WR technology. With the time synchronization and data transfer services from a compact WR node, separate FPGA-TDC nodes can be combined to provide uniform time measurement information for correlated events. The design detail and test performance will be described in the paper.

  6. High-resolution time-frequency representation of EEG data using multi-scale wavelets

    Science.gov (United States)

    Li, Yang; Cui, Wei-Gang; Luo, Mei-Lin; Li, Ke; Wang, Lina

    2017-09-01

    An efficient time-varying autoregressive (TVAR) modelling scheme that expands the time-varying parameters onto the multi-scale wavelet basis functions is presented for modelling nonstationary signals and with applications to time-frequency analysis (TFA) of electroencephalogram (EEG) signals. In the new parametric modelling framework, the time-dependent parameters of the TVAR model are locally represented by using a novel multi-scale wavelet decomposition scheme, which can allow the capability to capture the smooth trends as well as track the abrupt changes of time-varying parameters simultaneously. A forward orthogonal least square (FOLS) algorithm aided by mutual information criteria are then applied for sparse model term selection and parameter estimation. Two simulation examples illustrate that the performance of the proposed multi-scale wavelet basis functions outperforms the only single-scale wavelet basis functions or Kalman filter algorithm for many nonstationary processes. Furthermore, an application of the proposed method to a real EEG signal demonstrates the new approach can provide highly time-dependent spectral resolution capability.

  7. Analytical and numerical treatment of the heat conduction equation obtained via time-fractional distributed-order heat conduction law

    Science.gov (United States)

    Želi, Velibor; Zorica, Dušan

    2018-02-01

    Generalization of the heat conduction equation is obtained by considering the system of equations consisting of the energy balance equation and fractional-order constitutive heat conduction law, assumed in the form of the distributed-order Cattaneo type. The Cauchy problem for system of energy balance equation and constitutive heat conduction law is treated analytically through Fourier and Laplace integral transform methods, as well as numerically by the method of finite differences through Adams-Bashforth and Grünwald-Letnikov schemes for approximation derivatives in temporal domain and leap frog scheme for spatial derivatives. Numerical examples, showing time evolution of temperature and heat flux spatial profiles, demonstrate applicability and good agreement of both methods in cases of multi-term and power-type distributed-order heat conduction laws.

  8. Time and temperature dependent breakdown characteristics of ZnS:Mn films obtained by rf-magnetron sputtering

    Science.gov (United States)

    Zhigal'Skii, A. A.; Mukhachev, V. A.; Troyan, P. E.

    1994-04-01

    Breakdown delay times (tdel) for films of managanese-doped zinc sulfide (ZnS:Mn) were measured in the range 10-6-10-1 s. The maximum value was tdel=10-3-10-2 s. The electrical strength (Ebr) was found to increase as the voltage pulse duration was reduced, the more so the thinner the ZnS:Mn film. The temperature dependence of Ebr exhibited a weak reduction in Ebr as the temperature was raised to roughly 80°C and a sharp reduction in Ebr for T>130°C. A maximum in Ebr was observed at T≈130°C which is presumably explained by a structural modification of the ZnS:Mn film. The experimental results obtained are explained in terms of a combined electronic and thermal breakdown mechanism.

  9. Visualization of crust in metallic piping through real-time neutron radiography obtained with low intensity thermal neutron flux

    International Nuclear Information System (INIS)

    Luiz, Leandro C.; Crispim, Verginia R.; Ferreira, Francisco J. O.

    2017-01-01

    The presence of crust on the inner walls of metallic ducts impairs transportation because crust completely or partially hinders the passage of fluid to the processing unit and causes damage to equipment connected to the production line. Its localization is crucial. With the development of the electronic imaging system installed at the Argonauta/Nuclear Engineering Institute (IEN)/National Nuclear Energy Commission (CNEN) reactor, it became possible to visualize crust in the interior of metallic piping of small diameter using real-time neutron radiography images obtained with a low neutron flux. The obtained images showed the resistance offered by crust on the passage of water inside the pipe. No discrepancy of the flow profile at the bottom of the pipe, before the crust region, was registered. However, after the passage of liquid through the pipe, images of the disturbances of the flow were clear and discrepancies in the flow profile were steep. This shows that this technique added the assembled apparatus was efficient for the visualization of the crust and of the two-phase flows

  10. Visualization of crust in metallic piping through real-time neutron radiography obtained with low intensity thermal neutron flux

    Energy Technology Data Exchange (ETDEWEB)

    Luiz, Leandro C.; Crispim, Verginia R. [Nuclear Engineering Program, Federal University of Rio de Janeiro, Rio de Janeiro (Brazil); Ferreira, Francisco J. O. [National Nuclear Energy Commission, CNEN/IEN, Division Reactors, Rio de Janeiro (Brazil)

    2017-06-15

    The presence of crust on the inner walls of metallic ducts impairs transportation because crust completely or partially hinders the passage of fluid to the processing unit and causes damage to equipment connected to the production line. Its localization is crucial. With the development of the electronic imaging system installed at the Argonauta/Nuclear Engineering Institute (IEN)/National Nuclear Energy Commission (CNEN) reactor, it became possible to visualize crust in the interior of metallic piping of small diameter using real-time neutron radiography images obtained with a low neutron flux. The obtained images showed the resistance offered by crust on the passage of water inside the pipe. No discrepancy of the flow profile at the bottom of the pipe, before the crust region, was registered. However, after the passage of liquid through the pipe, images of the disturbances of the flow were clear and discrepancies in the flow profile were steep. This shows that this technique added the assembled apparatus was efficient for the visualization of the crust and of the two-phase flows.

  11. Femtosecond resolution timing jitter correction on a TW scale Ti:sapphire laser system for FEL pump-probe experiments.

    Science.gov (United States)

    Csatari Divall, Marta; Mutter, Patrick; Divall, Edwin J; Hauri, Christoph P

    2015-11-16

    Intense ultrashort pulse lasers are used for fs resolution pump-probe experiments more and more at large scale facilities, such as free electron lasers (FEL). Measurement of the arrival time of the laser pulses and stabilization to the machine or other sub-systems on the target, is crucial for high time-resolution measurements. In this work we report on a single shot, spectrally resolved, non-collinear cross-correlator with sub-fs resolution. With a feedback applied we keep the output of the TW class Ti:sapphire amplifier chain in time with the seed oscillator to ~3 fs RMS level for several hours. This is well below the typical pulse duration used at FELs and supports fs resolution pump-probe experiments. Short term jitter and long term timing drift measurements are presented. Applicability to other wavelengths and integration into the timing infrastructure of the FEL are also covered to show the full potential of the device.

  12. Optimisation of time resolution in Positron Emission Tomography dedicated to dose control in hadron-therapy

    International Nuclear Information System (INIS)

    Joly, Baptiste

    2010-01-01

    Hadron-therapy is a tumor treatment technique based on irradiation by ions beams. The dose distribution can be controlled during the treatment by Positron Emission Tomography (PET). Indeed, the nuclear collisions between the incident ions and the target medium produce β + emitters, whose spatial distribution is correlated to the dose distribution. However, this application of PET suffers from a low β + activity, a high parasitic activity, and requires fast reconstruction. The Time-Of-Flight technique appears as a key factor to make the in beam PET technique feasible. This work starts from a front-end concept based on fast digital sampling of the detector signals and digital processing for energy and time extraction. The statistical limitations to time resolution determined by the scintillation process are first examined. An experimental set-up with two scintillation detectors in coincidence is then used to test various algorithms: digital discriminators (leading-edge, constant fraction), and filters (least squares, optimal filter, low-pass interpolating filter). The timing performances of all the algorithms are very similar, except the least squares filter, which is not adapted to the non-stationary noise conditions resulting from the scintillation process. Various scintillator materials and configurations are tested, confirming the importance of light yield, scintillation time constants and photodetector response. An avalanche photodiode detector is tested and used for a multichannel demonstrator, which will be used for in-beam tests. (author)

  13. Effect of high energy milling time of the aluminum bronze alloy obtained by powder metallurgy with niobium carbide addition

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Alexandre Nogueira Ottoboni; Silva, Aline da; Rodrigues, Carlos Alberto; Melo, Mirian de Lourdes Noronha Motta; Rodrigues, Geovani; Silva, Gilbert, E-mail: aottoboni@yahoo.com.br [Universidade Federal de Itajuba (UNIFEI), Itajuba, MG (Brazil)

    2017-05-15

    The aluminum bronze alloy is part of a class of highly reliable materials due to high mechanical strength and corrosion resistance being used in the aerospace and shipbuilding industry. It's machined to produce parts and after its use cycle, it's discarded, but third process is considered expensive and besides not being correct for environment reasons. Thus, reusing this material through the powder metallurgy (PM) route is considered advantageous. The aluminum bronze chips were submitted to high energy ball milling process with 3% of niobium carbide (NbC) addition. The NbC is a metal-ceramic composite with a ductile-brittle behaviour. It was analyzed the morphology of powders by scanning electron microscopy as well as particle size it was determined. X ray diffraction identified the phases and the influence of milling time in the diffractogram patterns. Results indicates that milling time and NbC addition improves the milling efficiency significantly and being possible to obtain nanoparticles. (author)

  14. New strategy to identify radicals in a time evolving EPR data set by multivariate curve resolution-alternating least squares

    Energy Technology Data Exchange (ETDEWEB)

    Fadel, Maya Abou [LASIR CNRS UMR 8516, Université Lille 1, Sciences et Technologies, 59655 Villeneuve d' Ascq Cedex (France); Juan, Anna de [Chemometrics Group, Section of Analytical Chemistry, Universitat de Barcelona, Diagonal 645, 08028 Barcelona (Spain); Vezin, Hervé [LASIR CNRS UMR 8516, Université Lille 1, Sciences et Technologies, 59655 Villeneuve d' Ascq Cedex (France); Duponchel, Ludovic, E-mail: ludovic.duponchel@univ-lille1.fr [LASIR CNRS UMR 8516, Université Lille 1, Sciences et Technologies, 59655 Villeneuve d' Ascq Cedex (France)

    2016-12-01

    Electron paramagnetic resonance (EPR) spectroscopy is a powerful technique that is able to characterize radicals formed in kinetic reactions. However, spectral characterization of individual chemical species is often limited or even unmanageable due to the severe kinetic and spectral overlap among species in kinetic processes. Therefore, we applied, for the first time, multivariate curve resolution-alternating least squares (MCR-ALS) method to EPR time evolving data sets to model and characterize the different constituents in a kinetic reaction. Here we demonstrate the advantage of multivariate analysis in the investigation of radicals formed along the kinetic process of hydroxycoumarin in alkaline medium. Multiset analysis of several EPR-monitored kinetic experiments performed in different conditions revealed the individual paramagnetic centres as well as their kinetic profiles. The results obtained by MCR-ALS method demonstrate its prominent potential in analysis of EPR time evolved spectra. - Highlights: • A new strategy to identify radicals in a time evolving EPR data set. • Extraction of pure EPR spectral signatures and corresponding kinetic profiles. • The proposed method does not require any prior knowledge of the chemical system. • A multiset analysis in order to decrease rotational ambiguity.

  15. A novel fast gas chromatography method for higher time resolution measurements of speciated monoterpenes in air

    Science.gov (United States)

    Jones, C. E.; Kato, S.; Nakashima, Y.; Kajii, Y.

    2014-05-01

    Biogenic emissions supply the largest fraction of non-methane volatile organic compounds (VOC) from the biosphere to the atmospheric boundary layer, and typically comprise a complex mixture of reactive terpenes. Due to this chemical complexity, achieving comprehensive measurements of biogenic VOC (BVOC) in air within a satisfactory time resolution is analytically challenging. To address this, we have developed a novel, fully automated Fast Gas Chromatography (Fast-GC) based technique to provide higher time resolution monitoring of monoterpenes (and selected other C9-C15 terpenes) during plant emission studies and in ambient air. To our knowledge, this is the first study to apply a Fast-GC based separation technique to achieve quantification of terpenes in ambient air. Three chromatography methods have been developed for atmospheric terpene analysis under different sampling scenarios. Each method facilitates chromatographic separation of selected BVOC within a significantly reduced analysis time compared to conventional GC methods, whilst maintaining the ability to quantify individual monoterpene structural isomers. Using this approach, the C9-C15 BVOC composition of single plant emissions may be characterised within a 14.5 min analysis time. Moreover, in-situ quantification of 12 monoterpenes in unpolluted ambient air may be achieved within an 11.7 min chromatographic separation time (increasing to 19.7 min when simultaneous quantification of multiple oxygenated C9-C10 terpenoids is required, and/or when concentrations of anthropogenic VOC are significant). These analysis times potentially allow for a twofold to fivefold increase in measurement frequency compared to conventional GC methods. Here we outline the technical details and analytical capability of this chromatographic approach, and present the first in-situ Fast-GC observations of 6 monoterpenes and the oxygenated BVOC (OBVOC) linalool in ambient air. During this field deployment within a suburban forest

  16. Coarse Resolution SAR Imagery to Support Flood Inundation Models in Near Real Time

    Science.gov (United States)

    Di Baldassarre, Giuliano; Schumann, Guy; Brandimarte, Luigia; Bates, Paul

    2009-11-01

    In recent years, the availability of new emerging data (e.g. remote sensing, intelligent wireless sensors, etc) has led to a sudden shift from a data-sparse to a data-rich environment for hydrological and hydraulic modelling. Furthermore, the increased socioeconomic relevance of river flood studies has motivated the development of complex methodologies for the simulation of the hydraulic behaviour of river systems. In this context, this study aims at assessing the capability of coarse resolution SAR (Synthetic Aperture Radar) imagery to support and quickly validate flood inundation models in near real time. A hydraulic model of a 98km reach of the River Po (Italy), previously calibrated on a high-magnitude flood event with extensive and high quality field data, is tested using a SAR flood image, acquired and processed in near real time, during the June 2008 low-magnitude event. Specifically, the image is an acquisition by the ENVISAT-ASAR sensor in wide swath mode and has been provided through ESA (European Space Agency) Fast Registration system at no cost 24 hours after the acquisition. The study shows that the SAR image enables validation and improvement of the model in a time shorter than the flood travel time. This increases the reliability of model predictions (e.g. water elevation and inundation width along the river reach) and, consequently, assists flood management authorities in undertaking the necessary prevention activities.

  17. High Resolution Near Real Time Image Processing and Support for MSSS Modernization

    Science.gov (United States)

    Duncan, R. B.; Sabol, C.; Borelli, K.; Spetka, S.; Addison, J.; Mallo, A.; Farnsworth, B.; Viloria, R.

    2012-09-01

    This paper describes image enhancement software applications engineering development work that has been performed in support of Maui Space Surveillance System (MSSS) Modernization. It also includes R&D and transition activity that has been performed over the past few years with the objective of providing increased space situational awareness (SSA) capabilities. This includes Air Force Research Laboratory (AFRL) use of an FY10 Dedicated High Performance Investment (DHPI) cluster award -- and our selection and planned use for an FY12 DHPI award. We provide an introduction to image processing of electro optical (EO) telescope sensors data; and a high resolution image enhancement and near real time processing and summary status overview. We then describe recent image enhancement applications development and support for MSSS Modernization, results to date, and end with a discussion of desired future development work and conclusions. Significant improvements to image processing enhancement have been realized over the past several years, including a key application that has realized more than a 10,000-times speedup compared to the original R&D code -- and a greater than 72-times speedup over the past few years. The latest version of this code maintains software efficiency for post-mission processing while providing optimization for image processing of data from a new EO sensor at MSSS. Additional work has also been performed to develop low latency, near real time processing of data that is collected by the ground-based sensor during overhead passes of space objects.

  18. Measurement of the Retention Time of Different Ophthalmic Formulations with Ultrahigh-Resolution Optical Coherence Tomography.

    Science.gov (United States)

    Gagliano, Caterina; Papa, Vincenzo; Amato, Roberta; Malaguarnera, Giulia; Avitabile, Teresio

    2018-04-01

    Purpose/aim of the study: The purpose of this study was to measure the pre-corneal retention time of two marketed formulations (eye drops and eye gel) of a steroid-antibiotic fixed combination (FC) containing 0.1% dexamethasone and 0.3% netilmicin. Pre-corneal retention time was evaluated in 16 healthy subjects using an ultrahigh-resolution anterior segment spectral domain optical coherence tomography (OCT). All subjects randomly received both formulations of the FC (Netildex, SIFI, Italy). Central tear film thickness (CTFT) was measured before instillation (time 0) and then after 1, 10, 20, 30, 40 50, 60 and 120 min. The pre-corneal retention time was calculated by plotting CTFT as a function of time. Differences between time points and groups were analyzed by Student's t-test. CTFT increased significantly after the instillation of the eye gel formulation (p < 0.001). CTFT reached its maximum value 1 min after instillation and returned to baseline after 60 min. No effect on CTFT was observed after the instillation of eye drops. The difference between the two formulations was statistically significant at time 1 min (p < 0.0001), 10 min (p < 0.001) and 20 min (p < 0.01). The FC formulated as eye gel was retained on the ocular surface longer than the corresponding eye drop solution. Consequently, the use of the eye gel might extend the interval between instillations and decrease the frequency of administration.

  19. High-efficient method for spectrometric data real time processing with increased resolution of a measuring channel

    International Nuclear Information System (INIS)

    Ashkinaze, S.I.; Voronov, V.A.; Nechaev, Yu.I.

    1988-01-01

    Solution of reduction problem as a mean to increase spectrometric tract resolution when it is realized using the digit-by-digit modified method and special strategy, significantly reducing the time of processing, is considered. The results presented confirm that the complex measurement tract plus microcomputer is equivalent to the use of the tract with a higher resolution, and the use of the digit-by-digit modified method permits to process spectrometric information in real time scale

  20. High resolution real time capable combustion chamber simulation; Zeitlich hochaufloesende echtzeitfaehige Brennraumsimulation

    Energy Technology Data Exchange (ETDEWEB)

    Piewek, J. [Volkswagen AG, Wolfsburg (Germany)

    2008-07-01

    The article describes a zero-dimensional model for the real time capable combustion chamber pressure calculation with analogue pressure sensor output. The closed-loop-operation of an Engine Control Unit is shown at the hardware-in-the-loop-simulator (HiL simulator) for a 4-cylinder common rail diesel engine. The presentation of the model focuses on the simulation of the load variation which does not depend on the injection system and thus the simulated heat release rate. Particular attention is paid to the simulation and the resulting test possibilities regarding to full-variable valve gears. It is shown that black box models consisting in the HiL mean value model for the aspirated gas mass, the exhaust gas temperature after the outlet valve and the mean indicated pressure can be replaced by calculations from the high-resolution combustion chamber model. (orig.)

  1. Extremely high resolution corrosion monitoring of pipelines: retrofittable, non-invasive and real-time

    Energy Technology Data Exchange (ETDEWEB)

    Baltzersen, Oeystein; Tveit, Edd [Sensorlink AS, Trondheim (Norway); Verley, Richard [StatoilHydro ASA, Stockholm (Sweden)

    2009-07-01

    The Ultramonit unit is a clamp-on tool (removable) that uses an array of sensors to provide online, real-time, reliable and repeatable high accuracy ultrasonic wall thickness measurements and corrosion monitoring at selected locations along the pipeline. The unit can be installed on new or existing pipelines by diver or ROV. The system is based on the well-established ultrasonic pulse-echo method (A-scan). Special processing methods, and the fact that the unit is fixed to the pipeline, enable detection of changes in wall thickness in the micro-meter range. By utilizing this kind of resolution, it is possible to project corrosion rates in hours or days. The tool is used for calibration of corrosion inhibitor programs, verification and calibration of inspection pig data and general corrosion monitoring of new and existing pipelines. (author)

  2. A design for a high resolution very-low-Q time-of flight diffractometer

    International Nuclear Information System (INIS)

    Hjelm, R. P.

    1998-01-01

    The design of a high resolution view low-Q time of flight diffractometer was motivated by the anticipated need to perform small-angle neutron scattering measurements at far lower momentum transfer and higher precision than currently available at either pulsed or steady state sources. In addition, it was recognized that flexibility in the configuration of the instrument and ease in which data is acquired are important. The design offers two configurations, a high intensity/very low Q geometry employing a focusing mirror and a medium to high Q-precision/low Q configuration using standard pinhole collimation geometry. The quality of the mirror optics is very important to the performance of the high intensity/very low Q configuration. We believe that the necessary technology exists to fabricate the high quality mirror optics required for the instrument

  3. Near-infrared high-resolution real-time omnidirectional imaging platform for drone detection

    Science.gov (United States)

    Popovic, Vladan; Ott, Beat; Wellig, Peter; Leblebici, Yusuf

    2016-10-01

    Recent technological advancements in hardware systems have made higher quality cameras. State of the art panoramic systems use them to produce videos with a resolution of 9000 x 2400 pixels at a rate of 30 frames per second (fps).1 Many modern applications use object tracking to determine the speed and the path taken by each object moving through a scene. The detection requires detailed pixel analysis between two frames. In fields like surveillance systems or crowd analysis, this must be achieved in real time.2 In this paper, we focus on the system-level design of multi-camera sensor acquiring near-infrared (NIR) spectrum and its ability to detect mini-UAVs in a representative rural Swiss environment. The presented results show the UAV detection from the trial that we conducted during a field trial in August 2015.

  4. High-resolution real-time sonography and MR imaging in assessment of osteocartilaginous exostoses

    International Nuclear Information System (INIS)

    Prayer, L.M.; Kropej, D.H.; Wimberger, D.M.; Wurnig, C.F.; Kramer, J.; Kainberger, F.M.; Braun, O.H.; Ritschl, P.W.; Imhof, H.

    1991-01-01

    High-resolution real-time ultrasonography (US) and MR imaging, using both spin-echo (SE) and gradient-echo (GE) sequences, were performed prospectively in 14 patients with solitary osteocartilaginous exostoses to assess cartilage cap thickness and bursa formation. Results were compared to surgical and histopathologic findings in all cases. Both US and MR imaging were useful in evaluating exostotic cartilage cap thickness, which is supposed to be the most reliable sign of malignant transformation. Hyaline cartilage matrix had distinctive features in US and MR imaging caused by its specific histologic composition. The formation of bursae over the protruding exostoses, which results in pain and clinically could raise the suspicion of growth and malignant transformation, was demonstrated best using GE sequences. MR imaging was thus superior to US in the detection of bursa formation. (orig.)

  5. High-resolution real-time sonography and MR imaging in assessment of osteocartilaginous exostoses

    Energy Technology Data Exchange (ETDEWEB)

    Prayer, L.M.; Kropej, D.H.; Wimberger, D.M.; Wurnig, C.F.; Kramer, J.; Kainberger, F.M.; Braun, O.H.; Ritschl, P.W.; Imhof, H. (Vienna Univ. (Austria). Depts. of Radiology, Orthopedic Surgery, Pathology, and the MR Inst.)

    1991-09-01

    High-resolution real-time ultrasonography (US) and MR imaging, using both spin-echo (SE) and gradient-echo (GE) sequences, were performed prospectively in 14 patients with solitary osteocartilaginous exostoses to assess cartilage cap thickness and bursa formation. Results were compared to surgical and histopathologic findings in all cases. Both US and MR imaging were useful in evaluating exostotic cartilage cap thickness, which is supposed to be the most reliable sign of malignant transformation. Hyaline cartilage matrix had distinctive features in US and MR imaging caused by its specific histologic composition. The formation of bursae over the protruding exostoses, which results in pain and clinically could raise the suspicion of growth and malignant transformation, was demonstrated best using GE sequences. MR imaging was thus superior to US in the detection of bursa formation. (orig.).

  6. Parotid gland shrinkage during IMRT predicts the time to Xerostomia resolution.

    Science.gov (United States)

    Sanguineti, Giuseppe; Ricchetti, Francesco; Wu, Binbin; McNutt, Todd; Fiorino, Claudio

    2015-01-17

    To assess the impact of mid-treatment parotid gland shrinkage on long term xerostomia during IMRT for oropharyngeal SCC. All patients treated with IMRT at a single Institution from November 2007 to June 2010 and undergoing weekly CT scans were selected. Parotid glands were contoured retrospectively on the mid treatment CT scan. For each parotid gland, the percent change relative to the planning volume was calculated and combined as weighted average. Patients were considered to be xerostomic if developed GR2+ dry mouth according to CTCAE v3.0. Predictors of the time to xerostomia resolution or downgrade to 1 were investigated at both uni- and multivariate analysis. 85 patients were selected. With a median follow up of 35.8 months (range: 2.4-62.6 months), the actuarial rate of xerostomia is 26.2% (SD: 5.3%) and 15.9% (SD: 5.3%) at 2 and 3 yrs, respectively. At multivariate analysis, mid-treatment shrink along with weighted average mean parotid dose at planning and body mass index are independent predictors of the time to xerostomia resolution. Patients were pooled in 4 groups based on median values of both mid-treatment shrink (cut-off: 19.6%) and mean WA parotid pl-D (cut-off: 35.7 Gy). Patients with a higher than median parotid dose at planning and who showed poor shrinkage at mid treatment are the ones with the outcome significantly worse (3-yr rate of xerostomia ≈ 50%) than the other three subgroups (3-yr rate of xerostomia ≈ 10%). For a given planned dose, patients whose parotids significantly shrink during IMRT are less likely to be long-term supplemental fluids dependent.

  7. Gain and time resolution of 45 μm thin Low Gain Avalanche Detectors before and after irradiation up to a fluence of 1015 neq/cm2

    CERN Document Server

    Lange, J; Cavallaro, E; Chytka, L; Davis, P.M; Flores, D; Förster, F; Grinstein, S; Hidalgo, S; Komarek, T; Kramberger, G; Mandić, I; Merlos, A; Nozka, L; Pellegrini, G; Quirion, D; Sykora, T; Physics

    2018-01-01

    The gain showed the expected decrease at a fixed voltage for a lower initial implantation dose, as well as for a higher fluence due to effective acceptor removal in the multiplication layer. Time resolutions below 30 ps were obtained at the highest applied voltages for both implantation doses before irradiation. Also after an intermediate fluence of 3 × 1014 neq/cm2, similar values were measured since a higher applicable reverse bias voltage could recover most of the pre-irradiation gain...

  8. The effect of finite-difference time-domain resolution and power-loss computation method on SAR values in plane-wave exposure of Zubal phantom

    International Nuclear Information System (INIS)

    Uusitupa, T M; Ilvonen, S A; Laakso, I M; Nikoskinen, K I

    2008-01-01

    In this paper, the anatomically realistic body model Zubal is exposed to a plane wave. A finite-difference time-domain (FDTD) method is used to obtain field data for specific-absorption-rate (SAR) computation. It is investigated how the FDTD resolution, power-loss computation method and positioning of the material voxels in the FDTD grid affect the SAR results. The results enable one to estimate the effects due to certain fundamental choices made in the SAR simulation

  9. Low-Resolution Structure of the Full-Length Barley (Hordeum vulgare) SGT1 Protein in Solution, Obtained Using Small-Angle X-Ray Scattering

    Science.gov (United States)

    Taube, Michał; Pieńkowska, Joanna R.; Jarmołowski, Artur; Kozak, Maciej

    2014-01-01

    SGT1 is an evolutionarily conserved eukaryotic protein involved in many important cellular processes. In plants, SGT1 is involved in resistance to disease. In a low ionic strength environment, the SGT1 protein tends to form dimers. The protein consists of three structurally independent domains (the tetratricopeptide repeats domain (TPR), the CHORD- and SGT1-containing domain (CS), and the SGT1-specific domain (SGS)), and two less conserved variable regions (VR1 and VR2). In the present study, we provide the low-resolution structure of the barley (Hordeum vulgare) SGT1 protein in solution and its dimer/monomer equilibrium using small-angle scattering of synchrotron radiation, ab-initio modeling and circular dichroism spectroscopy. The multivariate curve resolution least-square method (MCR-ALS) was applied to separate the scattering data of the monomeric and dimeric species from a complex mixture. The models of the barley SGT1 dimer and monomer were formulated using rigid body modeling with ab-initio structure prediction. Both oligomeric forms of barley SGT1 have elongated shapes with unfolded inter-domain regions. Circular dichroism spectroscopy confirmed that the barley SGT1 protein had a modular architecture, with an α-helical TPR domain, a β-sheet sandwich CS domain, and a disordered SGS domain separated by VR1 and VR2 regions. Using molecular docking and ab-initio protein structure prediction, a model of dimerization of the TPR domains was proposed. PMID:24714665

  10. Data Assimilation of the High-Resolution Sea Surface Temperature Obtained from the Aqua-Terra Satellites (MODIS-SST Using an Ensemble Kalman Filter

    Directory of Open Access Journals (Sweden)

    Takuji Waseda

    2013-06-01

    Full Text Available We develop an assimilation method of high horizontal resolution sea surface temperature data, provided from the Moderate Resolution Imaging Spectroradiometer (MODIS-SST sensors boarded on the Aqua and Terra satellites operated by National Aeronautics and Space Administration (NASA, focusing on the reproducibility of the Kuroshio front variations south of Japan in February 2010. Major concerns associated with the development are (1 negative temperature bias due to the cloud effects, and (2 the representation of error covariance for detection of highly variable phenomena. We treat them by utilizing an advanced data assimilation method allowing use of spatiotemporally varying error covariance: the Local Ensemble Transformation Kalman Filter (LETKF. It is found that the quality control, by comparing the model forecast variable with the MODIS-SST data, is useful to remove the negative temperature bias and results in the mean negative bias within −0.4 °C. The additional assimilation of MODIS-SST enhances spatial variability of analysis SST over 50 km to 25 km scales. The ensemble spread variance is effectively utilized for excluding the erroneous temperature data from the assimilation process.

  11. Crispy banana obtained by the combination of a high temperature and short time drying stage and a drying process

    Directory of Open Access Journals (Sweden)

    K. Hofsetz

    2005-06-01

    Full Text Available The effect of the high temperature and short time (HTST drying stage was combined with an air drying process to produce crispness in bananas. The fruit was dehydrated in an air drier for five minutes at 70°C and then immediately set at a HTST stage (130, 140, 150°C and 9, 12, 15 minutes and then at 70°C until water activity (a w was around 0.300. Crispness was evaluated as a function of water activity, using sensory and texture analyses. Drying kinetics was evaluated using the empirical Lewis model. Crispy banana was obtained at 140°C-12min and 150°C-15min in the HTST stage, with a w = 0.345 and a w = 0.363, respectively. Analysis of the k parameter (Lewis model suggests that the initial moisture content of the samples effects this parameter, overcoming the HTST effect. Results showed a relationship between sensory crispness, instrumental texture and the HTST stage.

  12. Real-Time PCR in faecal samples of Triatoma infestans obtained by xenodiagnosis: proposal for an exogenous internal control.

    Science.gov (United States)

    Bravo, Nicolás; Muñoz, Catalina; Nazal, Nicolás; Saavedra, Miguel; Martínez, Gabriela; Araya, Eduardo; Apt, Werner; Zulantay, Inés

    2012-03-26

    The polymerase chain reaction (PCR) has proved to be a sensitive technique to detect Trypanosoma cruzi in the chronic phase of Chagas disease, which is characterized by low and fluctuating parasitemia. Another technique proposed for parasitological diagnosis in this phase of infection combines a microscopic search for motile trypomastigote forms in faecal samples (FS) obtained by xenodiagnosis (XD) with conventional PCR (XD-PCR). In this study we evaluate the use of human blood DNA as an exogenous internal control (EIC) for real time PCR (qPCR) combined with XD (XD-qPCR) using chromosome 12 (X12) detection. None of the FS-XD evaluated by qPCR amplified for X12. Nevertheless, all the EIC-FS-XD mixtures amplified for X12. We determined that X12 is useful as an EIC for XD-qPCR because we showed that the FS-XD does not contain human DNA after 30 or more days of XD incubation. This information is relevant for research on T. cruzi by XD-qPCR since it allows ruling out inhibition and false negative results due to DNA loss during the process of extraction and purification.

  13. PLLA-PHB fiber membranes obtained by solvent-free electrospinning for short-time drug delivery.

    Science.gov (United States)

    Cao, K; Liu, Y; Olkhov, A A; Siracusa, V; Iordanskii, A L

    2018-02-01

    Fibers of poly(L-lactic acid) (PLLA)/polyhydroxybutyrate (PHB) with different concentrations of the drug dipyridamole (DPD) were prepared using solvent-free melt electrospinning to obtain a polymeric drug delivery system. The electrospun fibers were morphologically, structurally, thermally, and dynamically characterized. Crazes that resemble lotus root crevices were interestingly observed in the 7:3 PLLA/PHB fibers with 1% DPD. The crystallinity of PLLA slightly decreased as PHB was incorporated, and the addition of DPD significantly reduced the melting temperature of the composite. The interactions between PLLA and PHB mainly occurred at a proportion of 7:3, and drug encapsulation in the fibers was verified. The kinetic profiles of drug release demonstrated the predominant multiple patterns involving a diffusional stage in the short-term mode of release and kinetic process related to the hydrolysis of the biopolymers. Furthermore, the dynamic behavior of the polymer molecules was evaluated based on the segmental mobility using probe electron spin resonance spectroscopy. The segmental mobility in the amorphous fraction of PLLA decreased with increasing PLLA content. The 9:1 PLLA/PHB system was more resistant to polymer hydrolysis than to the 7:3 system and the rate of diffusion transport was approximately two times higher for the 7:3 PLLA/PHB fibers than for the 9:1 PLLA/PHB fibers.

  14. Resolution of ray-finned fish phylogeny and timing of diversification.

    Science.gov (United States)

    Near, Thomas J; Eytan, Ron I; Dornburg, Alex; Kuhn, Kristen L; Moore, Jon A; Davis, Matthew P; Wainwright, Peter C; Friedman, Matt; Smith, W Leo

    2012-08-21

    Ray-finned fishes make up half of all living vertebrate species. Nearly all ray-finned fishes are teleosts, which include most commercially important fish species, several model organisms for genomics and developmental biology, and the dominant component of marine and freshwater vertebrate faunas. Despite the economic and scientific importance of ray-finned fishes, the lack of a single comprehensive phylogeny with corresponding divergence-time estimates has limited our understanding of the evolution and diversification of this radiation. Our analyses, which use multiple nuclear gene sequences in conjunction with 36 fossil age constraints, result in a well-supported phylogeny of all major ray-finned fish lineages and molecular age estimates that are generally consistent with the fossil record. This phylogeny informs three long-standing problems: specifically identifying elopomorphs (eels and tarpons) as the sister lineage of all other teleosts, providing a unique hypothesis on the radiation of early euteleosts, and offering a promising strategy for resolution of the "bush at the top of the tree" that includes percomorphs and other spiny-finned teleosts. Contrasting our divergence time estimates with studies using a single nuclear gene or whole mitochondrial genomes, we find that the former underestimates ages of the oldest ray-finned fish divergences, but the latter dramatically overestimates ages for derived teleost lineages. Our time-calibrated phylogeny reveals that much of the diversification leading to extant groups of teleosts occurred between the late Mesozoic and early Cenozoic, identifying this period as the "Second Age of Fishes."

  15. Electric field measurements in a dielectric barrier nanosecond pulse discharge with sub-nanosecond time resolution

    International Nuclear Information System (INIS)

    Goldberg, Benjamin M; Shkurenkov, Ivan; Adamovich, Igor V; Lempert, Walter R; O’Byrne, Sean

    2015-01-01

    The paper presents the results of time-resolved electric field measurements in a nanosecond discharge between two plane electrodes covered by dielectric plates, using picosecond four-wave mixing diagnostics. For absolute calibration, the IR signal was measured in hydrogen at a pressure of 440 Torr, for electrostatic electric field ranging from 0 to 8 kV cm −1 . The calibration curve (i.e. the square root of IR signal intensity versus electric field) was shown to be linear. By measuring the intensities of the pump, Stokes, and IR signal beam for each laser shot during the time sweep across the high-voltage pulse, temporal evolution of the electric field in the nanosecond pulse discharge was determined with sub-nanosecond time resolution. The results are compared to kinetic modeling predictions, showing good agreement, including non-zero electric field offset before the main high voltage pulse, breakdown moment, and reduction of electric field in the plasma after breakdown. The difference between the experimental results and model predictions is likely due to non-1D structure of the discharge. Comparison with the kinetic modeling predictions shows that electric field in the nanosecond pulse discharge is controlled primarily by electron impact excitation and charge accumulation on the dielectric surfaces. (paper)

  16. Faster-Than-Real-Time Simulation of Lithium Ion Batteries with Full Spatial and Temporal Resolution

    Directory of Open Access Journals (Sweden)

    Sandip Mazumder

    2013-01-01

    Full Text Available A one-dimensional coupled electrochemical-thermal model of a lithium ion battery with full temporal and normal-to-electrode spatial resolution is presented. Only a single pair of electrodes is considered in the model. It is shown that simulation of a lithium ion battery with the inclusion of detailed transport phenomena and electrochemistry is possible with faster-than-real-time compute times. The governing conservation equations of mass, charge, and energy are discretized using the finite volume method and solved using an iterative procedure. The model is first successfully validated against experimental data for both charge and discharge processes in a LixC6-LiyMn2O4 battery. Finally, it is demonstrated for an arbitrary rapidly changing transient load typical of a hybrid electric vehicle drive cycle. The model is able to predict the cell voltage of a 15-minute drive cycle in less than 12 seconds of compute time on a laptop with a 2.33 GHz Intel Pentium 4 processor.

  17. Micro-Doppler Ambiguity Resolution Based on Short-Time Compressed Sensing

    Directory of Open Access Journals (Sweden)

    Jing-bo Zhuang

    2015-01-01

    Full Text Available When using a long range radar (LRR to track a target with micromotion, the micro-Doppler embodied in the radar echoes may suffer from ambiguity problem. In this paper, we propose a novel method based on compressed sensing (CS to solve micro-Doppler ambiguity. According to the RIP requirement, a sparse probing pulse train with its transmitting time random is designed. After matched filtering, the slow-time echo signals of the micromotion target can be viewed as randomly sparse sampling of Doppler spectrum. Select several successive pulses to form a short-time window and the CS sensing matrix can be built according to the time stamps of these pulses. Then performing Orthogonal Matching Pursuit (OMP, the unambiguous micro-Doppler spectrum can be obtained. The proposed algorithm is verified using the echo signals generated according to the theoretical model and the signals with micro-Doppler signature produced using the commercial electromagnetic simulation software FEKO.

  18. Time-of-flight resolution of scintillating counters with Burle 85001 microchannel plate photomultipliers in comparison with Hamamatsu R2083

    Energy Technology Data Exchange (ETDEWEB)

    Baturin, V. [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Burkert, V. [Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 (United States); Kim, W. [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of)]. E-mail: wooyoung@jlab.org; Majewsky, S. [Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 (United States); Park, K. [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Popov, V. [Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 (United States); Smith, E.S. [Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 (United States); Son, D. [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Stepanyan, S.S. [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Zorn, C. [Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 (United States)

    2006-06-15

    Improvements in the time resolution of the CEBAF Large Acceptance Spectrometer (CLAS) below {approx}50ps will be required for experiments using the planned upgraded accelerator facility at Jefferson Lab. The improved time resolution will allow particle identification using time-of-flight techniques to be used effectively up to the proposed operating energy of 12GeV. The challenge of achieving this time resolution over a relatively large area is compounded because the photomultipliers (PM) in the CLAS 'time-zero' scintillating counters must operate in very high magnetic fields. Therefore, we have studied the resolution of 'time-zero' prototypes with microchannel plate PMs 85001-501 from Burle. For reference and comparison, measurements were also made using the standard PMs R2083 from Hamamatsu using two timing methods. The cosmic ray method, which utilizes three identical scintillating counters (Bicron BC-408, 2x3x50cm{sup 3}) with PMs at the ends, yields {sigma}{sub R2083}=59.1+/-0.7ps. The location method of particles from a radiative source with known coordinates has been used to compare timing resolutions of R2083 and 85001-501. This method yields {sigma}{sub R2083}=59.5+/-0.7ps and it also provides an estimate of the number of primary photoelectrons. For the microchannel plate PM from Burle the method yields {sigma}{sub 85001}=130+/-4ps due to lower number of primary photoelectrons.

  19. Real-time cardiovascular magnetic resonance at high temporal resolution: radial FLASH with nonlinear inverse reconstruction

    Directory of Open Access Journals (Sweden)

    Merboldt Klaus-Dietmar

    2010-07-01

    Full Text Available Abstract Background Functional assessments of the heart by dynamic cardiovascular magnetic resonance (CMR commonly rely on (i electrocardiographic (ECG gating yielding pseudo real-time cine representations, (ii balanced gradient-echo sequences referred to as steady-state free precession (SSFP, and (iii breath holding or respiratory gating. Problems may therefore be due to the need for a robust ECG signal, the occurrence of arrhythmia and beat to beat variations, technical instabilities (e.g., SSFP "banding" artefacts, and limited patient compliance and comfort. Here we describe a new approach providing true real-time CMR with image acquisition times as short as 20 to 30 ms or rates of 30 to 50 frames per second. Methods The approach relies on a previously developed real-time MR method, which combines a strongly undersampled radial FLASH CMR sequence with image reconstruction by regularized nonlinear inversion. While iterative reconstructions are currently performed offline due to limited computer speed, online monitoring during scanning is accomplished using gridding reconstructions with a sliding window at the same frame rate but with lower image quality. Results Scans of healthy young subjects were performed at 3 T without ECG gating and during free breathing. The resulting images yield T1 contrast (depending on flip angle with an opposed-phase or in-phase condition for water and fat signals (depending on echo time. They completely avoid (i susceptibility-induced artefacts due to the very short echo times, (ii radiofrequency power limitations due to excitations with flip angles of 10° or less, and (iii the risk of peripheral nerve stimulation due to the use of normal gradient switching modes. For a section thickness of 8 mm, real-time images offer a spatial resolution and total acquisition time of 1.5 mm at 30 ms and 2.0 mm at 22 ms, respectively. Conclusions Though awaiting thorough clinical evaluation, this work describes a robust and

  20. Real-time cardiovascular magnetic resonance at high temporal resolution: radial FLASH with nonlinear inverse reconstruction.

    Science.gov (United States)

    Zhang, Shuo; Uecker, Martin; Voit, Dirk; Merboldt, Klaus-Dietmar; Frahm, Jens

    2010-07-08

    Functional assessments of the heart by dynamic cardiovascular magnetic resonance (CMR) commonly rely on (i) electrocardiographic (ECG) gating yielding pseudo real-time cine representations, (ii) balanced gradient-echo sequences referred to as steady-state free precession (SSFP), and (iii) breath holding or respiratory gating. Problems may therefore be due to the need for a robust ECG signal, the occurrence of arrhythmia and beat to beat variations, technical instabilities (e.g., SSFP "banding" artefacts), and limited patient compliance and comfort. Here we describe a new approach providing true real-time CMR with image acquisition times as short as 20 to 30 ms or rates of 30 to 50 frames per second. The approach relies on a previously developed real-time MR method, which combines a strongly undersampled radial FLASH CMR sequence with image reconstruction by regularized nonlinear inversion. While iterative reconstructions are currently performed offline due to limited computer speed, online monitoring during scanning is accomplished using gridding reconstructions with a sliding window at the same frame rate but with lower image quality. Scans of healthy young subjects were performed at 3 T without ECG gating and during free breathing. The resulting images yield T1 contrast (depending on flip angle) with an opposed-phase or in-phase condition for water and fat signals (depending on echo time). They completely avoid (i) susceptibility-induced artefacts due to the very short echo times, (ii) radiofrequency power limitations due to excitations with flip angles of 10 degrees or less, and (iii) the risk of peripheral nerve stimulation due to the use of normal gradient switching modes. For a section thickness of 8 mm, real-time images offer a spatial resolution and total acquisition time of 1.5 mm at 30 ms and 2.0 mm at 22 ms, respectively. Though awaiting thorough clinical evaluation, this work describes a robust and flexible acquisition and reconstruction technique for

  1. EEG can track the time course of successful reference resolution in small visual worlds

    Directory of Open Access Journals (Sweden)

    Christian eBrodbeck

    2015-11-01

    Full Text Available Previous research has shown that language comprehenders resolve reference quickly and incrementally, but not much is known about the neural processes and representations that are involved. Studies of visual short-term memory suggest that access to the representation of an item from a previously seen display is associated with a negative evoked potential at posterior electrodes contralateral to the spatial location of that item in the display. In this paper we demonstrate that resolving the reference of a noun phrase in a recently seen visual display is associated with an event-related potential that is analogous to this effect. Our design was adapted from the visual world paradigm: in each trial, participants saw a display containing 3 simple objects, followed by a question about the objects, such as Was the pink fish next to a boat?, presented word by word. Questions differed in whether the color adjective allowed the reader to identify the referent of the noun phrase or not (i.e., whether one or more objects of the named color were present. Consistent with our hypothesis, we observed that reference resolution by the adjective was associated with a negative evoked potential at posterior electrodes contralateral to spatial location of the referent, starting approximately 333 ms after the onset of the adjective. The fact that the laterality of the effect depended upon the location of the referent within the display suggests that reference resolution in visual domains involves, at some level, a modality-specific representation. In addition, the effect gives us an estimate of the time course of processing from perception of the written word to the point at which its meaning is brought into correspondence with the referential domain.

  2. Variations in energy, flux, and brightness of pulsating aurora measured at high time resolution

    Directory of Open Access Journals (Sweden)

    H. Dahlgren

    2017-03-01

    Full Text Available High-resolution multispectral optical and incoherent scatter radar data are used to study the variability of pulsating aurora. Two events have been analysed, and the data combined with electron transport and ion chemistry modelling provide estimates of the energy and energy flux during both the ON and OFF periods of the pulsations. Both the energy and energy flux are found to be reduced during each OFF period compared with the ON period, and the estimates indicate that it is the number flux of foremost higher-energy electrons that is reduced. The energies are found never to drop below a few kilo-electronvolts during the OFF periods for these events. The high-resolution optical data show the occurrence of dips in brightness below the diffuse background level immediately after the ON period has ended. Each dip lasts for about a second, with a reduction in brightness of up to 70 % before the intensity increases to a steady background level again. A different kind of variation is also detected in the OFF period emissions during the second event, where a slower decrease in the background diffuse emission is seen with its brightness minimum just before the ON period, for a series of pulsations. Since the dips in the emission level during OFF are dependent on the switching between ON and OFF, this could indicate a common mechanism for the precipitation during the ON and OFF phases. A statistical analysis of brightness rise, fall, and ON times for the pulsations is also performed. It is found that the pulsations are often asymmetric, with either a slower increase of brightness or a slower fall.

  3. Applying petrophysical models to radar travel time and electrical resistivity tomograms: Resolution-dependent limitations

    Science.gov (United States)

    Day-Lewis, F. D.; Singha, K.; Binley, A.M.

    2005-01-01

    Geophysical imaging has traditionally provided qualitative information about geologic structure; however, there is increasing interest in using petrophysical models to convert tomograms to quantitative estimates of hydrogeologic, mechanical, or geochemical parameters of interest (e.g., permeability, porosity, water content, and salinity). Unfortunately, petrophysical estimation based on tomograms is complicated by limited and variable image resolution, which depends on (1) measurement physics (e.g., electrical conduction or electromagnetic wave propagation), (2) parameterization and regularization, (3) measurement error, and (4) spatial variability. We present a framework to predict how core-scale relations between geophysical properties and hydrologic parameters are altered by the inversion, which produces smoothly varying pixel-scale estimates. We refer to this loss of information as "correlation loss." Our approach upscales the core-scale relation to the pixel scale using the model resolution matrix from the inversion, random field averaging, and spatial statistics of the geophysical property. Synthetic examples evaluate the utility of radar travel time tomography (RTT) and electrical-resistivity tomography (ERT) for estimating water content. This work provides (1) a framework to assess tomograms for geologic parameter estimation and (2) insights into the different patterns of correlation loss for ERT and RTT. Whereas ERT generally performs better near boreholes, RTT performs better in the interwell region. Application of petrophysical models to the tomograms in our examples would yield misleading estimates of water content. Although the examples presented illustrate the problem of correlation loss in the context of near-surface geophysical imaging, our results have clear implications for quantitative analysis of tomograms for diverse geoscience applications. Copyright 2005 by the American Geophysical Union.

  4. Novel approaches to estimating the turbulent kinetic energy dissipation rate from low- and moderate-resolution velocity fluctuation time series

    Directory of Open Access Journals (Sweden)

    M. Wacławczyk

    2017-11-01

    Full Text Available In this paper we propose two approaches to estimating the turbulent kinetic energy (TKE dissipation rate, based on the zero-crossing method by Sreenivasan et al. (1983. The original formulation requires a fine resolution of the measured signal, down to the smallest dissipative scales. However, due to finite sampling frequency, as well as measurement errors, velocity time series obtained from airborne experiments are characterized by the presence of effective spectral cutoffs. In contrast to the original formulation the new approaches are suitable for use with signals originating from airborne experiments. The suitability of the new approaches is tested using measurement data obtained during the Physics of Stratocumulus Top (POST airborne research campaign as well as synthetic turbulence data. They appear useful and complementary to existing methods. We show the number-of-crossings-based approaches respond differently to errors due to finite sampling and finite averaging than the classical power spectral method. Hence, their application for the case of short signals and small sampling frequencies is particularly interesting, as it can increase the robustness of turbulent kinetic energy dissipation rate retrieval.

  5. Newmark-Beta-FDTD method for super-resolution analysis of time reversal waves

    Science.gov (United States)

    Shi, Sheng-Bing; Shao, Wei; Ma, Jing; Jin, Congjun; Wang, Xiao-Hua

    2017-09-01

    In this work, a new unconditionally stable finite-difference time-domain (FDTD) method with the split-field perfectly matched layer (PML) is proposed for the analysis of time reversal (TR) waves. The proposed method is very suitable for multiscale problems involving microstructures. The spatial and temporal derivatives in this method are discretized by the central difference technique and Newmark-Beta algorithm, respectively, and the derivation results in the calculation of a banded-sparse matrix equation. Since the coefficient matrix keeps unchanged during the whole simulation process, the lower-upper (LU) decomposition of the matrix needs to be performed only once at the beginning of the calculation. Moreover, the reverse Cuthill-Mckee (RCM) technique, an effective preprocessing technique in bandwidth compression of sparse matrices, is used to improve computational efficiency. The super-resolution focusing of TR wave propagation in two- and three-dimensional spaces is included to validate the accuracy and efficiency of the proposed method.

  6. High resolution vertical profiles of wind, temperature and humidity obtained by computer processing and digital filtering of radiosonde and radar tracking data from the ITCZ experiment of 1977

    Science.gov (United States)

    Danielson, E. F.; Hipskind, R. S.; Gaines, S. E.

    1980-01-01

    Results are presented from computer processing and digital filtering of radiosonde and radar tracking data obtained during the ITCZ experiment when coordinated measurements were taken daily over a 16 day period across the Panama Canal Zone. The temperature relative humidity and wind velocity profiles are discussed.

  7. Towards a High-resolution Time Scale for the Early Devonian

    Science.gov (United States)

    Dekkers, M. J.; da Silva, A. C.

    2017-12-01

    High-resolution time scales are crucial to understand Earth's history in detail. The construction of a robust geological time scale, however, inevitably becomes increasingly harder further back in time. Uncertainties associated with anchor radiometric ages increase in size, not speaking of the mere presence of suitable datable strata. However, durations of stages can be tightly constrained by making use of cyclic expressions in sediments, an approach that revolutionized the Cenozoic time scale. When precisely determined durations are stitched together, ultimately, a very precise time scale is the result. For the Mesozoic and Paleozoic an astronomical solution as a tuning target is not available but the dominant periods of eccentricity, obliquity and precession are reasonably well constrained for the entire Phanerozoic which enables their detection by means of spectral analysis. Eccentricity is time-invariant and is used as the prime building block. Here we focus on the Early Devonian, on its lowermost three stages: the Lochkovian, Pragian and Emsian. The uncertainties on the Devonian stage boundaries are currently in the order of several millions of years. The preservation of climatic cycles in diagenetically or even anchimetamorphically affected successions, however, is essential. The fit of spectral peak ratios with those calculated for orbital cycles, is classically used as a strong argument for a preserved climatic signal. Here we use primarily the low field magnetic susceptibility (MS) as proxy parameter, supported by gamma-ray spectrometry to test for consistency. Continuous Wavelet Transform, Evolutive Harmonic Analysis, Multitaper Method, and Average Spectral Misfit are used to reach an optimal astronomical interpretation. We report on classic Early Devonian sections from the Czech Republic: the Pozar-CS (Lochkovian and Pragian), Pod Barrandovem (Pragian and Lower Emsian), and Zlichov (Middle-Upper Emsian). Also a Middle-Upper Emsian section from the US

  8. Real-time person detection in low-resolution thermal infrared imagery with MSER and CNNs

    Science.gov (United States)

    Herrmann, Christian; Müller, Thomas; Willersinn, Dieter; Beyerer, Jürgen

    2016-10-01

    In many camera-based systems, person detection and localization is an important step for safety and security applications such as search and rescue, reconnaissance, surveillance, or driver assistance. Long-wave infrared (LWIR) imagery promises to simplify this task because it is less affected by background clutter or illumination changes. In contrast to a lot of related work, we make no assumptions about any movement of persons or the camera, i.e. persons may stand still and the camera may move or any combination thereof. Furthermore, persons may appear arbitrarily in near or far distances to the camera leading to low-resolution persons in far distances. To address this task, we propose a two-stage system, including a proposal generation method and a classifier to verify, if the detected proposals really are persons. In contradiction to use all possible proposals as with sliding window approaches, we apply Maximally Stable Extremal Regions (MSER) and classify the detected proposals afterwards with a Convolutional Neural Network (CNN). The MSER algorithm acts as a hot spot detector when applied to LWIR imagery. Because the body temperature of persons is usually higher than the background, they appear as hot spots in the image. However, the MSER algorithm is unable to distinguish between different kinds of hot spots. Thus, all further LWIR sources such as windows, animals or vehicles will be detected, too. Still by applying MSER, the number of proposals is reduced significantly in comparison to a sliding window approach which allows employing the high discriminative capabilities of deep neural networks classifiers that were recently shown in several applications such as face recognition or image content classification. We suggest using a CNN as classifier for the detected hot spots and train it to discriminate between person hot spots and all further hot spots. We specifically design a CNN that is suitable for the low-resolution person hot spots that are common with

  9. Monitoring vegetation dynamics with medium resolution MODIS-EVI time series at sub-regional scale in southern Africa

    Science.gov (United States)

    Dubovyk, Olena; Landmann, Tobias; Erasmus, Barend F. N.; Tewes, Andreas; Schellberg, Jürgen

    2015-06-01

    Currently there is a lack of knowledge on spatio-temporal patterns of land surface dynamics at medium spatial scale in southern Africa, even though this information is essential for better understanding of ecosystem response to climatic variability and human-induced land transformations. In this study, we analysed vegetation dynamics across a large area in southern Africa using the 14-years (2000-2013) of medium spatial resolution (250 m) MODIS-EVI time-series data. Specifically, we investigated temporal changes in the time series of key phenometrics including overall greenness, peak and timing of annual greenness over the monitoring period and study region. In order to specifically capture spatial and per pixel vegetation changes over time, we calculated trends in these phenometrics using a robust trend analysis method. The results showed that interannual vegetation dynamics followed precipitation patterns with clearly differentiated seasonality. The earliest peak greenness during 2000-2013 occurred at the end of January in the year 2000 and the latest peak greenness was observed at the mid of March in 2012. Specifically spatial patterns of long-term vegetation trends allowed mapping areas of (i) decrease or increase in overall greenness, (ii) decrease or increase of peak greenness, and (iii) shifts in timing of occurrence of peak greenness over the 14-year monitoring period. The observed vegetation decline in the study area was mainly attributed to human-induced factors. The obtained information is useful to guide selection of field sites for detailed vegetation studies and land rehabilitation interventions and serve as an input for a range of land surface models.

  10. Radio and X-ray observations of a multiple impulsive solar burst with high time resolution

    International Nuclear Information System (INIS)

    Kosugi, T.

    1981-01-01

    A well-developed multiple impulsive microwave burst occurred on February 17, 1979 simultaneously with a hard X-ray burst and a large group of type III bursts at metric wavelengths. The whole event is composed of serveral subgroups of elementary spike bursts. Detailed comparisons between these three classes of emissions with high time resolution of approx. equal to0.5 s reveal that individual type III bursts coincide in time with corresponding elementary X-ray and microwave spike bursts. It suggests that a non-thermal electron pulse generating a type III spike burst is produced simultaneously with those responsible for the corresponding hard X-ray and microwave spike bursts. The rise and decay characteristic time scales of the elementary spike burst are << 1 s, and approx. equal to1 s and approx. equal to3 s for type III, hard X-ray and microwave emissions respectively. Radio interferometric observations made at 17 GHz reveal that the spatial structure varies from one subgroup to others while it remains unchanged in a subgroup. Spectral evolution of the microwave burst seems to be closely related to the spatial evolution. The spatial evolution together with the spectral evolution suggests that the electron-accelerating region shifts to a different location after it stays at one location for several tens of seconds, duration of a subgroup of elementary spike bursts. We discuss several requirements for a model of the impulsive burst which come out from these observational results, and propose a migrating double-source model. (orig.)

  11. Magnetopause boundary structure deduced from the high-time resolution particle experiment on the Equator-S spacecraft

    Directory of Open Access Journals (Sweden)

    G. K. Parks

    1999-12-01

    Full Text Available An electrostatic analyser (ESA onboard the Equator-S spacecraft operating in coordination with a potential control device (PCD has obtained the first accurate electron energy spectrum with energies ≈7 eV–100 eV in the vicinity of the magnetopause. On 8 January, 1998, a solar wind pressure increase pushed the magnetopause inward, leaving the Equator-S spacecraft in the magnetosheath. On the return into the magnetosphere approximately 80 min later, the magnetopause was observed by the ESA and the solid state telescopes (the SSTs detected electrons and ions with energies ≈20–300 keV. The high time resolution (3 s data from ESA and SST show the boundary region contains of multiple plasma sources that appear to evolve in space and time. We show that electrons with energies ≈7 eV–100 eV permeate the outer regions of the magnetosphere, from the magnetopause to ≈6Re. Pitch-angle distributions of ≈20–300 keV electrons show the electrons travel in both directions along the magnetic field with a peak at 90° indicating a trapped configuration. The IMF during this interval was dominated by Bx and By components with a small Bz.Key words. Magnetospheric physics (magnetopause · cusp · and boundary layers; magnetospheric configuration and dynamics; solar wind · magnetosphere interactions

  12. Resolution-of-identity stochastic time-dependent configuration interaction for dissipative electron dynamics in strong fields.

    Science.gov (United States)

    Klinkusch, Stefan; Tremblay, Jean Christophe

    2016-05-14

    In this contribution, we introduce a method for simulating dissipative, ultrafast many-electron dynamics in intense laser fields. The method is based on the norm-conserving stochastic unraveling of the dissipative Liouville-von Neumann equation in its Lindblad form. The N-electron wave functions sampling the density matrix are represented in the basis of singly excited configuration state functions. The interaction with an external laser field is treated variationally and the response of the electronic density is included to all orders in this basis. The coupling to an external environment is included via relaxation operators inducing transition between the configuration state functions. Single electron ionization is represented by irreversible transition operators from the ionizing states to an auxiliary continuum state. The method finds its efficiency in the representation of the operators in the interaction picture, where the resolution-of-identity is used to reduce the size of the Hamiltonian eigenstate basis. The zeroth-order eigenstates can be obtained either at the configuration interaction singles level or from a time-dependent density functional theory reference calculation. The latter offers an alternative to explicitly time-dependent density functional theory which has the advantage of remaining strictly valid for strong field excitations while improving the description of the correlation as compared to configuration interaction singles. The method is tested on a well-characterized toy system, the excitation of the low-lying charge transfer state in LiCN.

  13. Resolution-of-identity stochastic time-dependent configuration interaction for dissipative electron dynamics in strong fields

    Energy Technology Data Exchange (ETDEWEB)

    Klinkusch, Stefan; Tremblay, Jean Christophe [Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, D-14195 Berlin (Germany)

    2016-05-14

    In this contribution, we introduce a method for simulating dissipative, ultrafast many-electron dynamics in intense laser fields. The method is based on the norm-conserving stochastic unraveling of the dissipative Liouville-von Neumann equation in its Lindblad form. The N-electron wave functions sampling the density matrix are represented in the basis of singly excited configuration state functions. The interaction with an external laser field is treated variationally and the response of the electronic density is included to all orders in this basis. The coupling to an external environment is included via relaxation operators inducing transition between the configuration state functions. Single electron ionization is represented by irreversible transition operators from the ionizing states to an auxiliary continuum state. The method finds its efficiency in the representation of the operators in the interaction picture, where the resolution-of-identity is used to reduce the size of the Hamiltonian eigenstate basis. The zeroth-order eigenstates can be obtained either at the configuration interaction singles level or from a time-dependent density functional theory reference calculation. The latter offers an alternative to explicitly time-dependent density functional theory which has the advantage of remaining strictly valid for strong field excitations while improving the description of the correlation as compared to configuration interaction singles. The method is tested on a well-characterized toy system, the excitation of the low-lying charge transfer state in LiCN.

  14. Programmable ion mobility spectrometer: Time resolution improvement and ion counter comparison

    International Nuclear Information System (INIS)

    Harrison, R.G.; Wilding, R.J.

    2005-01-01

    Atmospheric ion mobility spectrometers operating on the aspirated electrode principle require switching of a bias voltage to select ions of different mobility. The ion spectrum can be obtained by sweeping across a set of bias voltages. If rapid temporal changes in atmospheric ion spectra are to be measured, however, such as for a balloon-carried instrument, the sweep time across the ion spectrum must be kept short. As bias voltage steps can generate saturation in the mobility spectrometer's electrometer amplifier, the electrometer recovery time limits the ion mobility spectrum sweep rate. Here, active compensation of the charge injected at a bias voltage step is used to reduce the saturation time. Further, the optimal setting of the charge compensation circuitry provides a determination of the system capacitance, a necessary calibration parameter for absolute measurements. Using laboratory air, hourly variations in ion concentrations and air conductivity found using the voltage switching system were similar to those obtained with a traditional ion counter operating at a single mobility: ion growth, however, could only be detected using the ion spectrometer

  15. Comparing spatial series of soil bulk electrical conductivity as obtained by Time Domain Reflectometry and Electrical Resistivity Tomography

    Science.gov (United States)

    Saeed, Ali; Dragonetti, Giovanna; Comegna, Allessandro; Garre, Sarah; Lamaddalena, Nicola; Coppola, Antonio

    2016-04-01

    Conventional ground survey of soil root zone salinity by direct soil sampling are time consuming, costly and destructive. Alternatively, soil salinity can be evaluated by measuring the bulk electrical conductivity, σb, in the field. This approach is faster and cheaper, and allows a more intensive surveying. Measurements of σb can be made either in situ or with remote devices. Time domain reflectometry (TDR) sensors allow simultaneous measurements of water content, θ, and σb. They may be calibrated for estimating the electrical conductivity of the soil solution (σw). However, they have a relatively small observation window and thus they are thought to only provide local-scale measurements. The spatial range of the sensors is limited to tens of centimeters and extension of the information to a large area can be problematic. Also, information on the vertical distribution of the σb soil profile may only be obtained by installing sensors at different depths. In this sense, the TDR may be considered as an invasive technique. Compared to the TDR, other geophysical methods based for example on the Electrical Resistivity Tomography (ERT) techniques represent an alternative in respect to those traditional for soil salinity characterization. In order to deduce the actual distribution of the bulk electrical conductivity, σb, in the soil profile, one needs to invert the signal coming from ERT sensors. The latter, in turn, depends on the specific depth distribution of the σb, as well as on the electrical configuration of the sensor used. With these premises, the main aim of this study is to estimate the vertical σb distribution starting from resistivity data series measured using the ERT method under different salinity conditions and using TDR data as ground-truth data for calibration and validation of the ERT sensor. This way, limited measured TDR data may be used for translating extensive ERT apparent electrical conductivity, σa, measurements to estimate depth

  16. A Kalman Filter-Based Method to Generate Continuous Time Series of Medium-Resolution NDVI Images

    Directory of Open Access Journals (Sweden)

    Fernando Sedano

    2014-12-01

    Full Text Available A data assimilation method to produce complete temporal sequences of synthetic medium-resolution images is presented. The method implements a Kalman filter recursive algorithm that integrates medium and moderate resolution imagery. To demonstrate the approach, time series of 30-m spatial resolution NDVI images at 16-day time steps were generated using Landsat NDVI images and MODIS NDVI products at four sites with different ecosystems and land cover-land use dynamics. The results show that the time series of synthetic NDVI images captured seasonal land surface dynamics and maintained the spatial structure of the landscape at higher spatial resolution. The time series of synthetic medium-resolution NDVI images were validated within a Monte Carlo simulation framework. Normalized residuals decreased as the number of available observations increased, ranging from 0.2 to below 0.1. Residuals were also significantly lower for time series of synthetic NDVI images generated at combined recursion (smoothing than individually at forward and backward recursions (filtering. Conversely, the uncertainties of the synthetic images also decreased when the number of available observations increased and combined recursions were implemented.

  17. Surface correlation function analysis of high resolution scattering data from mirrored surfaces obtained using a triple-axis X-ray diffractometer

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Hornstrup, Allan; Schnopper, H. W.

    1988-01-01

    methods is that they are bandwidth-limited. A crucial point in the analysis of data is, therefore, to specify accurately the wavelength bandwidth limitation and to determine the surface autocorrelation function within this bandwidth. The authors present a number of scattering measurements obtained using...... a triple-axis perfect-crystal X-ray diffractometer and the results of an autocorrelation function analysis. Furthermore, they present some measurements of integrated reflectivity, which they believe provide evidence for microroughness in the range from a few angstroms to tens of microns...

  18. Time-frequency analysis with temporal and spectral resolution as the human auditory system

    DEFF Research Database (Denmark)

    Agerkvist, Finn T.

    1992-01-01

    The human perception of sound is a suitable area for the application of a simultaneous time-frequency analysis, since the ear is selective in both domains. A perfect reconstruction filter bank with bandwidths approximating the critical bands is presented. The orthogonality of the filter makes...... it possible to examine the masking effect with realistic signals. The tree structure of the filter bank makes it difficult to obtain well-attenuated stop-bands. The use of filters of different length solves this problem...

  19. THE STATISTICS OF RADIO ASTRONOMICAL POLARIMETRY: BRIGHT SOURCES AND HIGH TIME RESOLUTION

    International Nuclear Information System (INIS)

    Van Straten, W.

    2009-01-01

    A four-dimensional statistical description of electromagnetic radiation is developed and applied to the analysis of radio pulsar polarization. The new formalism provides an elementary statistical explanation of the modal-broadening phenomenon in single-pulse observations. It is also used to argue that the degree of polarization of giant pulses has been poorly defined in past studies. Single- and giant-pulse polarimetry typically involves sources with large flux-densities and observations with high time-resolution, factors that necessitate consideration of source-intrinsic noise and small-number statistics. Self-noise is shown to fully explain the excess polarization dispersion previously noted in single-pulse observations of bright pulsars, obviating the need for additional randomly polarized radiation. Rather, these observations are more simply interpreted as an incoherent sum of covariant, orthogonal, partially polarized modes. Based on this premise, the four-dimensional covariance matrix of the Stokes parameters may be used to derive mode-separated pulse profiles without any assumptions about the intrinsic degrees of mode polarization. Finally, utilizing the small-number statistics of the Stokes parameters, it is established that the degree of polarization of an unresolved pulse is fundamentally undefined; therefore, previous claims of highly polarized giant pulses are unsubstantiated.

  20. Time Course of Resolution of Hyperprolactinemia After Transsphenoidal Surgery Among Patients Presenting with Pituitary Stalk Compression.

    Science.gov (United States)

    Zaidi, Hasan A; Cote, David J; Castlen, Joseph P; Burke, William T; Liu, Yong-Hui; Smith, Timothy R; Laws, Edward R

    2017-01-01

    Primary lactotroph disinhibition, or stalk effect, occurs when mechanical compression of the pituitary stalk disrupts the tonic inhibition by dopamine released by the hypothalamus. The resolution of pituitary stalk effect-related hyperprolactinemia postoperatively has not been studied in a large cohort of patients. We performed a retrospective review to investigate the time course of recovery of lactotroph disinhibition after transsphenoidal surgery. Medical records were retrospectively reviewed for all patients undergoing transsphenoidal surgery with the senior author from April 2008 to November 2014. Of 556 pituitary adenomas, 289 (52.0%) were eliminated: 77 (13.9%) had an immunohistochemically confirmed prolactinoma, 119 (21.4%) patients had previous surgery, 93 (16.7%) had incomplete medical records, leaving 267 patients (48.0%) for final analysis. Of these patients, 72 (27.0%) had increased serum prolactin levels (≥23.3 ng/mL), suggestive of pituitary stalk effect (maximum prolactin level = 148.0 ng/mL). Patients with stalk effect were more likely than those with normal serum prolactin levels to present with menstrual dysfunction (29.7% vs. 19.4%; P Transsphenoidal surgery can provide durable normalization of serum prolactin levels and related symptoms caused by pituitary stalk compression-related lactotroph disinhibition. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Augmented Reality Experience: From High-Resolution Acquisition to Real Time Augmented Contents

    Directory of Open Access Journals (Sweden)

    Paolo Clini

    2014-01-01

    Full Text Available This paper presents results of a research project “dUcale” that experiments ICT solutions for the museum of Palazzo Ducale (Urbino. In this project, the famed painting the “Città Ideale” becomes a case to exemplify a specific approach to the digital mediation of cultural heritage. An augmented reality (AR mobile application, able to enhance the museum visit experience, is presented. The computing technologies involved in the project (websites, desktop and social applications, mobile software, and AR constitute a persuasive environment for the artwork knowledge. The overall goal of our research is to provide to cultural institutions best practices efficiently on low budgets. Therefore, we present a low cost method for high-resolution acquisition of paintings; the image is used as a base in AR approach. The proposed methodology consists of an improved SIFT extractor for real time image. The other novelty of this work is the multipoint probabilistic layer. Experimental results demonstrated the robustness of the proposed approach with extensive use of the AR application in front of the “Città Ideale” painting. To prove the usability of the application and to ensure a good user experience, we also carried out several users tests in the real scenario.

  2. Observation of human embryonic behavior in vitro by high-resolution time-lapse cinematography.

    Science.gov (United States)

    Iwata, Kyoko; Mio, Yasuyuki

    2016-07-01

    Assisted reproductive technology (ART) has yielded vast amounts of information and knowledge on human embryonic development in vitro; however, still images provide limited data on dynamic changes in the developing embryos. Using our high-resolution time-lapse cinematography (hR-TLC) system, we were able to describe normal human embryonic development continuously from the fertilization process to the hatched blastocyst stage in detail. Our hR-TLC observation also showed the embryonic abnormality of a third polar body (PB)-like substance likely containing a small pronucleus being extruded and resulting in single-pronucleus (1PN) formation, while our molecular biological investigations suggested the possibility that some 1PN embryos could be diploid, carrying both maternal and paternal genomes. Furthermore, in some embryos the extruded third PB-like substance was eventually re-absorbed into the ooplasm resulting in the formation of an uneven-sized, two-PN zygote. In addition, other hR-TLC observations showed that cytokinetic failure was correlated with equal-sized, multi-nucleated blastomeres that were also observed in the embryo showing early initiation of compaction. Assessment combining our hR-TLC with molecular biological techniques enables a better understanding of embryonic development and potential improvements in ART outcomes.

  3. Time-Efficient High-Resolution Large-Area Nano-Patterning of Silicon Dioxide

    Directory of Open Access Journals (Sweden)

    Li Lin

    2017-01-01

    Full Text Available A nano-patterning approach on silicon dioxide (SiO2 material, which could be used for the selective growth of III-V nanowires in photovoltaic applications, is demonstrated. In this process, a silicon (Si stamp with nanopillar structures was first fabricated using electron-beam lithography (EBL followed by a dry etching process. Afterwards, the Si stamp was employed in nanoimprint lithography (NIL assisted with a dry etching process to produce nanoholes on the SiO2 layer. The demonstrated approach has advantages such as a high resolution in nanoscale by EBL and good reproducibility by NIL. In addition, high time efficiency can be realized by one-spot electron-beam exposure in the EBL process combined with NIL for mass production. Furthermore, the one-spot exposure enables the scalability of the nanostructures for different application requirements by tuning only the exposure dose. The size variation of the nanostructures resulting from exposure parameters in EBL, the pattern transfer during nanoimprint in NIL, and subsequent etching processes of SiO2 were also studied quantitatively. By this method, a hexagonal arranged hole array in SiO2 with a hole diameter ranging from 45 to 75 nm and a pitch of 600 nm was demonstrated on a four-inch wafer.

  4. High Efficiency XAFS Data Collection With Sub-Nanosecond Time Resolution

    International Nuclear Information System (INIS)

    Brewe, Dale; Heald, Steve M.; Stern, Edward; Beck, Kenneth M.; Feng, Yejun

    2004-01-01

    Synchrotron-based laser pump/x-ray probe experiments on a ns or faster time scale have typically used ultrafast lasers suffering from the limitation of low repetition rates on the order of 1-10 kHz. This severely limits the data collection efficiency, since the x-ray bunches repeat at a much higher rate. This is particularly critical for XAFS experiments, which require very large S/N ratios (∼ 104 or better) to extract useful EXAFS far above the absorption edge. PNC-CAT has developed an apparatus based on a laser repeating at the rate of the APS bunch repetition frequency of 272 kHz, allowing an increase in data collection efficiency by two orders of magnitude. We have used this apparatus to obtain preliminary results for the time-resolved EXAFS from a 200nm thick polycrystalline Ge film which has been heated by the laser

  5. How can audiovisual pathways enhance the temporal resolution of time-compressed speech in blind subjects?

    Directory of Open Access Journals (Sweden)

    Ingo eHertrich

    2013-08-01

    Full Text Available In blind people, the visual channel cannot assist face-to-face communication via lipreading or visual prosody. Nevertheless, the visual system may enhance the evaluation of auditory information due to its cross-links to (1 the auditory system, (2 supramodal representations, and (3 frontal action-related areas. Apart from feedback or top-down support of, for example, the processing of spatial or phonological representations, experimental data have shown that the visual system can impact auditory perception at more basic computational stages such as temporal resolution. For example, blind as compared to sighted subjects are more resistant against backward masking, and this ability appears to be associated with activity in visual cortex. Regarding the comprehension of continuous speech, blind subjects can learn to use accelerated text-to-speech systems for "reading" texts at ultra-fast speaking rates (> 16 syllables/s, exceeding by far the normal range of 6 syllables/s. An fMRI study has shown that this ability, among other brain regions, significantly covaries with BOLD responses in bilateral pulvinar, right visual cortex, and left supplementary motor area. Furthermore, magnetoencephalographic (MEG measurements revealed a particular component in right occipital cortex phase-locked to the syllable onsets of accelerated speech. In sighted people, the "bottleneck" for understanding time-compressed speech seems related to a demand for buffering phonological material and is, presumably, linked to frontal brain structures. On the other hand, the neurophysiological correlates of functions overcoming this bottleneck, seem to depend upon early visual cortex activity. The present Hypothesis and Theory paper outlines a model that aims at binding these data together, based on early cross-modal pathways that are already known from various audiovisual experiments considering cross-modal adjustments in space, time, and object recognition.

  6. High Time-Resolution 640-Gb/s Clock Recovery Using Time-Domain Optical Fourier Transformation and Narrowband Optical Filter

    DEFF Research Database (Denmark)

    Guan, P.; Mulvad, Hans Christian Hansen; Kasai, K.

    2010-01-01

    We present a novel scheme for subharmonic clock recovery from an optical time-division-multiplexing signal using time-domain optical Fourier transformation and a narrowband optical filter. High-resolution 640-Gb/s clock recovery is successfully demonstrated with no pattern dependence. The clock...

  7. Novel Super-Resolution Approach to Time-Resolved Volumetric 4-Dimensional Magnetic Resonance Imaging With High Spatiotemporal Resolution for Multi-Breathing Cycle Motion Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guang, E-mail: lig2@mskcc.org [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York (United States); Wei, Jie [Department of Computer Science, City College of New York, New York, New York (United States); Kadbi, Mo [Philips Healthcare, MR Therapy Cleveland, Ohio (United States); Moody, Jason; Sun, August; Zhang, Shirong; Markova, Svetlana; Zakian, Kristen; Hunt, Margie; Deasy, Joseph O. [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York (United States)

    2017-06-01

    Purpose: To develop and evaluate a super-resolution approach to reconstruct time-resolved 4-dimensional magnetic resonance imaging (TR-4DMRI) with a high spatiotemporal resolution for multi-breathing cycle motion assessment. Methods and Materials: A super-resolution approach was developed to combine fast 3-dimensional (3D) cine MRI with low resolution during free breathing (FB) and high-resolution 3D static MRI during breath hold (BH) using deformable image registration. A T1-weighted, turbo field echo sequence, coronal 3D cine acquisition, partial Fourier approximation, and SENSitivity Encoding parallel acceleration were used. The same MRI pulse sequence, field of view, and acceleration techniques were applied in both FB and BH acquisitions; the intensity-based Demons deformable image registration method was used. Under an institutional review board–approved protocol, 7 volunteers were studied with 3D cine FB scan (voxel size: 5 × 5 × 5 mm{sup 3}) at 2 Hz for 40 seconds and a 3D static BH scan (2 × 2 × 2 mm{sup 3}). To examine the image fidelity of 3D cine and super-resolution TR-4DMRI, a mobile gel phantom with multi-internal targets was scanned at 3 speeds and compared with the 3D static image. Image similarity among 3D cine, 4DMRI, and 3D static was evaluated visually using difference image and quantitatively using voxel intensity correlation and Dice index (phantom only). Multi-breathing-cycle waveforms were extracted and compared in both phantom and volunteer images using the 3D cine as the references. Results: Mild imaging artifacts were found in the 3D cine and TR-4DMRI of the mobile gel phantom with a Dice index of >0.95. Among 7 volunteers, the super-resolution TR-4DMRI yielded high voxel-intensity correlation (0.92 ± 0.05) and low voxel-intensity difference (<0.05). The detected motion differences between TR-4DMRI and 3D cine were −0.2 ± 0.5 mm (phantom) and −0.2 ± 1.9 mm (diaphragms). Conclusion: Super-resolution TR-4

  8. Novel Super-Resolution Approach to Time-Resolved Volumetric 4-Dimensional Magnetic Resonance Imaging With High Spatiotemporal Resolution for Multi-Breathing Cycle Motion Assessment

    International Nuclear Information System (INIS)

    Li, Guang; Wei, Jie; Kadbi, Mo; Moody, Jason; Sun, August; Zhang, Shirong; Markova, Svetlana; Zakian, Kristen; Hunt, Margie; Deasy, Joseph O.

    2017-01-01

    Purpose: To develop and evaluate a super-resolution approach to reconstruct time-resolved 4-dimensional magnetic resonance imaging (TR-4DMRI) with a high spatiotemporal resolution for multi-breathing cycle motion assessment. Methods and Materials: A super-resolution approach was developed to combine fast 3-dimensional (3D) cine MRI with low resolution during free breathing (FB) and high-resolution 3D static MRI during breath hold (BH) using deformable image registration. A T1-weighted, turbo field echo sequence, coronal 3D cine acquisition, partial Fourier approximation, and SENSitivity Encoding parallel acceleration were used. The same MRI pulse sequence, field of view, and acceleration techniques were applied in both FB and BH acquisitions; the intensity-based Demons deformable image registration method was used. Under an institutional review board–approved protocol, 7 volunteers were studied with 3D cine FB scan (voxel size: 5 × 5 × 5 mm"3) at 2 Hz for 40 seconds and a 3D static BH scan (2 × 2 × 2 mm"3). To examine the image fidelity of 3D cine and super-resolution TR-4DMRI, a mobile gel phantom with multi-internal targets was scanned at 3 speeds and compared with the 3D static image. Image similarity among 3D cine, 4DMRI, and 3D static was evaluated visually using difference image and quantitatively using voxel intensity correlation and Dice index (phantom only). Multi-breathing-cycle waveforms were extracted and compared in both phantom and volunteer images using the 3D cine as the references. Results: Mild imaging artifacts were found in the 3D cine and TR-4DMRI of the mobile gel phantom with a Dice index of >0.95. Among 7 volunteers, the super-resolution TR-4DMRI yielded high voxel-intensity correlation (0.92 ± 0.05) and low voxel-intensity difference (<0.05). The detected motion differences between TR-4DMRI and 3D cine were −0.2 ± 0.5 mm (phantom) and −0.2 ± 1.9 mm (diaphragms). Conclusion: Super-resolution TR-4DMRI has been

  9. High Time Resolution Measurements of VOCs from Vehicle Cold Starts: The Air Toxic Cold Start Pulse

    Science.gov (United States)

    Jobson, B. T.; Huangfu, Y.; Vanderschelden, G. S.

    2017-12-01

    Pollutants emitted during motor vehicle cold starts, especially in winter in some climates, is a significant source of winter time air pollution. While data exist for CO, NO, and total hydrocarbon emissions from federal testing procedures for vehicle emission certification, little is known about the emission rates of individual volatile organic compounds, in particular the air toxics benzene, formaldehyde, and acetaldehyde. Little is known about the VOC speciation and temperature dependence for cold starts. The US EPA vehicle emission model MOVES assumes that cold start emissions have the same speciation profile as running emissions. We examined this assumption by measuring cold start exhaust composition for 4 vehicles fueled with E10 gasoline over a temperature range of -4°C to 10°C in winter of 2015. The extra cold start emissions were determined by comparison with emissions during engine idling. In addition to CO and NOx measurements a proton transfer reaction mass spectrometer was used to measure formaldehyde, acetaldehyde, benzene, toluene, and C2-alkylbenzenes at high time resolution to compare with the cold start emission speciation profiles used in the EPA MOVES2014 model. The results show that after the vehicle was started, CO mixing ratios can reach a few percent of the exhaust and then drop to several ppmv within 2 minutes of idling, while NOx showed different temporal behaviors among the four vehicles. VOCs displayed elevated levels during cold start and the peak mixing ratios can be two orders higher than idling phase levels. Molar emission ratios relative to toluene were used to compare with the emission ratio used in MOVES2014 and we found the formaldehyde-to-toluene emission ratio was about 0.19, which is 5 times higher than the emission ratio used in MOVES2014 and the acetaldehyde-to-toluene emission ratios were 0.86-0.89, which is 8 times higher than the ones in MOVES2014. The C2-alkylbenzene-to-toluene ratio agreed well with moves. Our results

  10. Time-to-onset and -resolution of adverse events before/after atomoxetine discontinuation in adult patients with ADHD.

    Science.gov (United States)

    Upadhyaya, Himanshu; Tanaka, Yoko; Lipsius, Sarah; Kryzhanovskaya, Ludmila A; Lane, Jeannine R; Escobar, Rodrigo; Trzepacz, Paula T; Allen, Albert J

    2015-01-01

    Adults with attention-deficit/hyperactivity disorder treated with atomoxetine were examined for time-to-onset and -resolution of common treatment-emergent adverse events (TEAEs) and male sexual dysfunction, and for changes in blood pressure (BP) and heart rate (HR) upon atomoxetine discontinuation. 12-week open-label atomoxetine (40-100 mg/day) was followed by 12-week double-blind maintenance treatment (atomoxetine 80 or 100 mg/day). Responders were then randomized to atomoxetine (n = 266) or placebo (n = 258) for 25-week randomized withdrawal. Examined were (1) median time-to-onset and -resolution of TEAEs during atomoxetine treatment, and (2) within group, visitwise mean changes for sitting HR, systolic BP, and diastolic BP for the postrandomization placebo group. Common adverse events (AEs) appeared early, within week 1 of atomoxetine treatment. Some AEs resolve relatively rapidly, whereas others have a more lingering course of resolution (including male sexual side effects); median resolution times were 3 - 53 days. BP and HR increases during atomoxetine treatment returned to baseline upon atomoxetine discontinuation. Atomoxetine is associated with common AEs, with 3- to 53-day median resolution times. ClincialTrials.gov - NCT00700427.

  11. Calculation of upper esophageal sphincter restitution time from high resolution manometry data using machine learning.

    Science.gov (United States)

    Jungheim, Michael; Busche, Andre; Miller, Simone; Schilling, Nicolas; Schmidt-Thieme, Lars; Ptok, Martin

    2016-10-15

    After swallowing, the upper esophageal sphincter (UES) needs a certain amount of time to return from maximum pressure to the resting condition. Disturbances of sphincter function not only during the swallowing process but also in this phase of pressure restitution may lead to globus sensation or dysphagia. Since UES pressures do not decrease in a linear or asymptotic manner, it is difficult to determine the exact time when the resting pressure is reached, even when using high resolution manometry (HRM). To overcome this problem a Machine Learning model was established to objectively determine the UES restitution time (RT) and moreover to collect physiological data on sphincter function after swallowing. HRM-data of 15 healthy participants performing 10 swallows each were included. After manual annotation of the RT interval by two swallowing experts, data were transferred to the Machine Learning model, which applied a sequence labeling modeling approach based on logistic regression to learn and objectivize the characteristics of all swallows. Individually computed RT values were then compared with the annotated values. Estimates of the RT were generated by the Machine Learning model for all 150 swallows. When annotated by swallowing experts mean RT of 11.16s±5.7 (SD) and 10.04s±5.74 were determined respectively, compared to model-generated values from 8.91s±3.71 to 10.87s±4.68 depending on model selection. The correlation score for the annotated RT of both examiners was 0.76 and 0.63 to 0.68 for comparison of model predicted values. Restitution time represents an important physiologic swallowing parameter not previously considered in HRM-studies of the UES, especially since disturbances of UES restitution may increase the risk of aspiration. The data presented here show that it takes approximately 9 to 11s for the UES to come to rest after swallowing. Based on maximal RT values, we demonstrate that an interval of 25-30s in between swallows is necessary until the

  12. Position sensitive detection coupled to high-resolution time-of-flight mass spectrometry: Imaging for molecular beam deflection experiments

    International Nuclear Information System (INIS)

    Abd El Rahim, M.; Antoine, R.; Arnaud, L.; Barbaire, M.; Broyer, M.; Clavier, Ch.; Compagnon, I.; Dugourd, Ph.; Maurelli, J.; Rayane, D.

    2004-01-01

    We have developed and tested a high-resolution time-of-flight mass spectrometer coupled to a position sensitive detector for molecular beam deflection experiments. The major achievement of this new spectrometer is to provide a three-dimensional imaging (X and Y positions and time-of-flight) of the ion packet on the detector, with a high acquisition rate and a high resolution on both the mass and the position. The calibration of the experimental setup and its application to molecular beam deflection experiments are discussed

  13. A hybrid, broadband, low noise charge preamplifier for simultaneous high resolution energy and time information with large capacitance semiconductor detector

    International Nuclear Information System (INIS)

    Goyot, M.

    1975-05-01

    A broadband and low noise charge preamplifier was developed in hybrid form, for a recoil spectrometer requiring large capacitance semiconductor detectors. This new hybrid and low cost preamplifier permits good timing information without compromising energy resolution. With a 500 pF external input capacity, it provides two simultaneous outputs: (i) the faster, current sensitive, with a rise time of 9 nsec and 2 mV/MeV on 50 ohms load, (ii) the lower, charge sensitive, with an energy resolution of 14 keV (FWHM Si) using a RC-CR ungated filter of 2 μsec and a FET input protection [fr

  14. Comparison between data obtained through real-time data capture by SMS and a retrospective telephone interview

    OpenAIRE

    Johansen, Bendt; Wedderkopp, Niels

    2010-01-01

    Abstract Background The aims of the current study were: a) to quantitatively compare data obtained by Short Message Service (SMS) with data from a telephone interview, b) to investigate whether the respondents had found it acceptable to answer the weekly two SMS questions, c) to explore whether an additional weekly third SMS question would have been acceptable, and d) to calculate the total cost of using the SMS technology. Methods SMS technology was used each week for 53 weeks to monitor 260...

  15. High-resolution molybdenum K-edge X-ray absorption spectroscopy analyzed with time-dependent density functional theory.

    Science.gov (United States)

    Lima, Frederico A; Bjornsson, Ragnar; Weyhermüller, Thomas; Chandrasekaran, Perumalreddy; Glatzel, Pieter; Neese, Frank; DeBeer, Serena

    2013-12-28

    X-ray absorption spectroscopy (XAS) is a widely used experimental technique capable of selectively probing the local structure around an absorbing atomic species in molecules and materials. When applied to heavy elements, however, the quantitative interpretation can be challenging due to the intrinsic spectral broadening arising from the decrease in the core-hole lifetime. In this work we have used high-energy resolution fluorescence detected XAS (HERFD-XAS) to investigate a series of molybdenum complexes. The sharper spectral features obtained by HERFD-XAS measurements enable a clear assignment of the features present in the pre-edge region. Time-dependent density functional theory (TDDFT) has been previously shown to predict K-pre-edge XAS spectra of first row transition metal compounds with a reasonable degree of accuracy. Here we extend this approach to molybdenum K-edge HERFD-XAS and present the necessary calibration. Modern pure and hybrid functionals are utilized and relativistic effects are accounted for using either the Zeroth Order Regular Approximation (ZORA) or the second order Douglas-Kroll-Hess (DKH2) scalar relativistic approximations. We have found that both the predicted energies and intensities are in excellent agreement with experiment, independent of the functional used. The model chosen to account for relativistic effects also has little impact on the calculated spectra. This study provides an important calibration set for future applications of molybdenum HERFD-XAS to complex catalytic systems.

  16. In-situ high resolution particle sampling by large time sequence inertial spectrometry

    International Nuclear Information System (INIS)

    Prodi, V.; Belosi, F.

    1990-09-01

    In situ sampling is always preferred, when possible, because of the artifacts that can arise when the aerosol has to flow through long sampling lines. On the other hand, the amount of possible losses can be calculated with some confidence only when the size distribution can be measured with a sufficient precision and the losses are not too large. This makes it desirable to sample directly in the vicinity of the aerosol source or containment. High temperature sampling devices with a detailed aerodynamic separation are extremely useful to this purpose. Several measurements are possible with the inertial spectrometer (INSPEC), but not with cascade impactors or cyclones. INSPEC - INertial SPECtrometer - has been conceived to measure the size distribution of aerosols by separating the particles while airborne according to their size and collecting them on a filter. It consists of a channel of rectangular cross-section with a 90 degree bend. Clean air is drawn through the channel, with a thin aerosol sheath injected close to the inner wall. Due to the bend, the particles are separated according to their size, leaving the original streamline by a distance which is a function of particle inertia and resistance, i.e. of aerodynamic diameter. The filter collects all the particles of the same aerodynamic size at the same distance from the inlet, in a continuous distribution. INSPEC particle separation at high temperature (up to 800 C) has been tested with Zirconia particles as calibration aerosols. The feasibility study has been concerned with resolution and time sequence sampling capabilities under high temperature (700 C)

  17. Stochastic modelling of a single ion channel: an alternating renewal approach with application to limited time resolution.

    Science.gov (United States)

    Milne, R K; Yeo, G F; Edeson, R O; Madsen, B W

    1988-04-22

    Stochastic models of ion channels have been based largely on Markov theory where individual states and transition rates must be specified, and sojourn-time densities for each state are constrained to be exponential. This study presents an approach based on random-sum methods and alternating-renewal theory, allowing individual states to be grouped into classes provided the successive sojourn times in a given class are independent and identically distributed. Under these conditions Markov models form a special case. The utility of the approach is illustrated by considering the effects of limited time resolution (modelled by using a discrete detection limit, xi) on the properties of observable events, with emphasis on the observed open-time (xi-open-time). The cumulants and Laplace transform for a xi-open-time are derived for a range of Markov and non-Markov models; several useful approximations to the xi-open-time density function are presented. Numerical studies show that the effects of limited time resolution can be extreme, and also highlight the relative importance of the various model parameters. The theory could form a basis for future inferential studies in which parameter estimation takes account of limited time resolution in single channel records. Appendixes include relevant results concerning random sums and a discussion of the role of exponential distributions in Markov models.

  18. Evaluation of different co-inoculation time of non-Saccharomyces/Saccharomyces yeasts in order to obtain reduced ethanol wines

    Directory of Open Access Journals (Sweden)

    Mestre María Victoria

    2016-01-01

    Full Text Available Decreasing ethanol content in wines has become one of the main objectives of winemakers in different areas of the world. The use of selected wine yeasts can be considered one of the most effective and simple tools. The aim of this study was to evaluate the effect of co-inoculation times of selected non-Saccharomyces/Saccharomyces yeasts on the reduction of ethanol levels in wines. Hanseniaspora uvarum BHu9, Starmerella bacillaris BSb55 and Candida membranaefasciens BCm71 were co-inoculate with Saccharomyces cerevisiae under fermentative conditions. Treatments assayed were: pure fermentations of S. cerevisiae BSc203 and non-Saccharomyces yeasts BHu9, BSb55 and BCm71; -co-fermentations: A-BHu9/BSc203; B-BSb55/BSc203 and C-BCm71/BSc203. These co-inoculations were carried out under mixed (simultaneous inoculation, and sequential conditions (non-Saccharomyces yeasts inoculated at initial time and S. cerevisiae at 48, 96 and 144 h. Lower fermentative efficiencies were registered when BHu9 and BSb55 remained pure more time. Conversely, the conversion efficiency was reduced in co-inocula of BCm71/BSc203, when both yeasts interact more time. Metabolites produced during all vinification processes were within acceptable concentration ranges according to the current legislations. Conclusion Time interaction during fermentation processes of non-Saccharomyces and Saccharomyces yeasts showed influence on ethanol production, and this effect would be dependent on the co-inoculated species.

  19. Photonics-based real-time ultra-high-range-resolution radar with broadband signal generation and processing.

    Science.gov (United States)

    Zhang, Fangzheng; Guo, Qingshui; Pan, Shilong

    2017-10-23

    Real-time and high-resolution target detection is highly desirable in modern radar applications. Electronic techniques have encountered grave difficulties in the development of such radars, which strictly rely on a large instantaneous bandwidth. In this article, a photonics-based real-time high-range-resolution radar is proposed with optical generation and processing of broadband linear frequency modulation (LFM) signals. A broadband LFM signal is generated in the transmitter by photonic frequency quadrupling, and the received echo is de-chirped to a low frequency signal by photonic frequency mixing. The system can operate at a high frequency and a large bandwidth while enabling real-time processing by low-speed analog-to-digital conversion and digital signal processing. A conceptual radar is established. Real-time processing of an 8-GHz LFM signal is achieved with a sampling rate of 500 MSa/s. Accurate distance measurement is implemented with a maximum error of 4 mm within a range of ~3.5 meters. Detection of two targets is demonstrated with a range-resolution as high as 1.875 cm. We believe the proposed radar architecture is a reliable solution to overcome the limitations of current radar on operation bandwidth and processing speed, and it is hopefully to be used in future radars for real-time and high-resolution target detection and imaging.

  20. SU-C-201-04: Noise and Temporal Resolution in a Near Real-Time 3D Dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Rilling, M [Department of physics, engineering physics and optics, Universite Laval, Quebec City, QC (Canada); Centre de recherche sur le cancer, Universite Laval, Quebec City, QC (Canada); Radiation oncology department, CHU de Quebec, Quebec City, QC (Canada); Center for optics, photonics and lasers, Universite Laval, Quebec City, Quebec (Canada); Goulet, M [Radiation oncology department, CHU de Quebec, Quebec City, QC (Canada); Beaulieu, L; Archambault, L [Department of physics, engineering physics and optics, Universite Laval, Quebec City, QC (Canada); Centre de recherche sur le cancer, Universite Laval, Quebec City, QC (Canada); Radiation oncology department, CHU de Quebec, Quebec City, QC (Canada); Thibault, S [Center for optics, photonics and lasers, Universite Laval, Quebec City, Quebec (Canada)

    2016-06-15

    Purpose: To characterize the performance of a real-time three-dimensional scintillation dosimeter in terms of signal-to-noise ratio (SNR) and temporal resolution of 3D dose measurements. This study quantifies its efficiency in measuring low dose levels characteristic of EBRT dynamic treatments, and in reproducing field profiles for varying multileaf collimator (MLC) speeds. Methods: The dosimeter prototype uses a plenoptic camera to acquire continuous images of the light field emitted by a 10×10×10 cm{sup 3} plastic scintillator. Using EPID acquisitions, ray tracing-based iterative tomographic algorithms allow millimeter-sized reconstruction of relative 3D dose distributions. Measurements were taken at 6MV, 400 MU/min with the scintillator centered at the isocenter, first receiving doses from 1.4 to 30.6 cGy. Dynamic measurements were then performed by closing half of the MLCs at speeds of 0.67 to 2.5 cm/s, at 0° and 90° collimator angles. A reference static half-field was obtained for measured profile comparison. Results: The SNR steadily increases as a function of dose and reaches a clinically adequate plateau of 80 at 10 cGy. Below this, the decrease in light collected and increase in pixel noise diminishes the SNR; nonetheless, the EPID acquisitions and the voxel correlation employed in the reconstruction algorithms result in suitable SNR values (>75) even at low doses. For dynamic measurements at varying MLC speeds, central relative dose profiles are characterized by gradients at %D{sub 50} of 8.48 to 22.7 %/mm. These values converge towards the 32.8 %/mm-gradient measured for the static reference field profile, but are limited by the dosimeter’s current acquisition rate of 1Hz. Conclusion: This study emphasizes the efficiency of the 3D dose distribution reconstructions, while identifying limits of the current prototype’s temporal resolution in terms of dynamic EBRT parameters. This work paves the way for providing an optimized, second

  1. SU-C-201-04: Noise and Temporal Resolution in a Near Real-Time 3D Dosimeter

    International Nuclear Information System (INIS)

    Rilling, M; Goulet, M; Beaulieu, L; Archambault, L; Thibault, S

    2016-01-01

    Purpose: To characterize the performance of a real-time three-dimensional scintillation dosimeter in terms of signal-to-noise ratio (SNR) and temporal resolution of 3D dose measurements. This study quantifies its efficiency in measuring low dose levels characteristic of EBRT dynamic treatments, and in reproducing field profiles for varying multileaf collimator (MLC) speeds. Methods: The dosimeter prototype uses a plenoptic camera to acquire continuous images of the light field emitted by a 10×10×10 cm"3 plastic scintillator. Using EPID acquisitions, ray tracing-based iterative tomographic algorithms allow millimeter-sized reconstruction of relative 3D dose distributions. Measurements were taken at 6MV, 400 MU/min with the scintillator centered at the isocenter, first receiving doses from 1.4 to 30.6 cGy. Dynamic measurements were then performed by closing half of the MLCs at speeds of 0.67 to 2.5 cm/s, at 0° and 90° collimator angles. A reference static half-field was obtained for measured profile comparison. Results: The SNR steadily increases as a function of dose and reaches a clinically adequate plateau of 80 at 10 cGy. Below this, the decrease in light collected and increase in pixel noise diminishes the SNR; nonetheless, the EPID acquisitions and the voxel correlation employed in the reconstruction algorithms result in suitable SNR values (>75) even at low doses. For dynamic measurements at varying MLC speeds, central relative dose profiles are characterized by gradients at %D_5_0 of 8.48 to 22.7 %/mm. These values converge towards the 32.8 %/mm-gradient measured for the static reference field profile, but are limited by the dosimeter’s current acquisition rate of 1Hz. Conclusion: This study emphasizes the efficiency of the 3D dose distribution reconstructions, while identifying limits of the current prototype’s temporal resolution in terms of dynamic EBRT parameters. This work paves the way for providing an optimized, second-generational real-time 3D

  2. Time resolution below 100 ps for the SciTil detector of PANDA employing SiPM

    Science.gov (United States)

    Brunner, S. E.; Gruber, L.; Marton, J.; Orth, H.; Suzuki, K.

    2014-03-01

    The barrel time-of-flight (TOF) detector for the bar PANDA experiment at FAIR in Darmstadt is planned as a scintillator tile hodoscope (SciTil) using 8000 small scintillator tiles. It will provide fast event timing for a software trigger in the otherwise trigger-less data acquisition scheme of bar PANDA, relative timing in a multiple track event topology as well as additional particle identification in the low momentum region. The goal is to achieve a time resolution of σ simeq 100 ps. We have conducted measurements using organic scintillators coupled to Silicon Photomultipliers (SiPM). The results are encouraging such that we are confident to reach the required system time resolution.

  3. Study of the dependence of resolution temporal activity for a Philips gemini TF PET/CT scanner by applying a statistical analysis of time series

    International Nuclear Information System (INIS)

    Sanchez Merino, G.; Cortes Rpdicio, J.; Lope Lope, R.; Martin Gonzalez, T.; Garcia Fidalgo, M. A.

    2013-01-01

    The aim of the present work is to study the dependence of temporal resolution with the activity using statistical techniques applied to the series of values time series measurements of temporal resolution during daily equipment checks. (Author)

  4. Plasma density evolution in plasma opening switch obtained by a time-resolved sensitive He-Ne interferometer

    Science.gov (United States)

    Chen, Lin; Ren, Jing; Guo, Fan; Zhou, LiangJi; Li, Ye; He, An; Jiang, Wei

    2014-03-01

    To understand the formation process of vacuum gap in coaxial microsecond conduction time plasma opening switch (POS), we have made measurements of the line-integrated plasma density during switch operation using a time-resolved sensitive He-Ne interferometer. The conduction current and conduction time in experiments are about 120 kA and 1 μs, respectively. As a result, more than 85% of conduction current has been transferred to an inductive load with rise time of 130 ns. The radial dependence of the density is measured by changing the radial location of the line-of-sight for shots with the same nominal POS parameters. During the conduction phase, the line-integrated plasma density in POS increases at all radial locations over the gun-only case by further ionization of material injected from the guns. The current conduction is observed to cause a radial redistribution of the switch plasma. A vacuum gap forms rapidly in the plasma at 5.5 mm from the center conductor, which is consistent with the location where magnetic pressure is the largest, allowing current to be transferred from the POS to the load.

  5. Obtaining edaphic biostimulants/biofertilizers from sewage sludge using fermentative processes. Short-time effects on soil biochemical properties.

    Science.gov (United States)

    Rodríguez-Morgado, Bruno; Caballero, Pablo; Paneque, Patricia; Gómez, Isidoro; Parrado, Juan; Tejada, Manuel

    2017-10-28

    In this manuscript, we study the manufacture and effect on soils of different edaphic biostimulants/biofertilizers (BS) obtained from sewage sludge using Bacillus licheniformis as biological tool. These BS consist of different combinations of organic matter, bacteria and enzymes that were subjected to several treatments. These BS were applied in soil in order to observe their influence on the biochemical properties (enzymatic activities and ergosterol content). Dehydrogenase, urease, β-glucosidase, phosphatase activities and ergosterol content were measured at different incubation days. Only dehydrogenase activity and ergosterol content were significantly stimulated after the application of BS1 and BS4. Rest of the extracellular activities were not stimulated probably because B. licheniformis practically has digested all organic substrates during fermentation process.

  6. Comparison between data obtained through real-time data capture by SMS and a retrospective telephone interview

    DEFF Research Database (Denmark)

    Johansen, Bendt; Wedderkopp, Niels

    2010-01-01

    BACKGROUND: The aims of the current study were: a) to quantitatively compare data obtained by Short Message Service (SMS) with data from a telephone interview, b) to investigate whether the respondents had found it acceptable to answer the weekly two SMS questions, c) to explore whether....... Bland-Altman limits of agreement were calculated. The two quantitative questions were reported as percentages. Actual costs for the SMS-Track-Questionnaire (SMS-T-Q) were compared with estimated costs for paper version surveys. RESULTS: There was high agreement between telephone interview and SMS...... an additional weekly third SMS question would have been acceptable, and d) to calculate the total cost of using the SMS technology. METHODS: SMS technology was used each week for 53 weeks to monitor 260 patients with low back pain (LBP) in a clinical study. Each week, these patients were asked the same two...

  7. Global system for hydrological monitoring and forecasting in real time at high resolution

    Science.gov (United States)

    Ortiz, Enrique; De Michele, Carlo; Todini, Ezio; Cifres, Enrique

    2016-04-01

    This project presented at the EGU 2016 born of solidarity and the need to dignify the most disadvantaged people living in the poorest countries (Africa, South America and Asia, which are continually exposed to changes in the hydrologic cycle suffering events of large floods and/or long periods of droughts. It is also a special year this 2016, Year of Mercy, in which we must engage with the most disadvantaged of our Planet (Gaia) making available to them what we do professionally and scientifically. The project called "Global system for hydrological monitoring and forecasting in real time at high resolution" is Non-Profit and aims to provide at global high resolution (1km2) hydrological monitoring and forecasting in real time and continuously coupling Weather Forecast of Global Circulation Models, such us GFS-0.25° (Deterministic and Ensembles Run) forcing a physically based distributed hydrological model computationally efficient, such as the latest version extended of TOPKAPI model, named TOPKAPI-eXtended. Finally using the MCP approach for the proper use of ensembles for Predictive Uncertainty assessment essentially based on a multiple regression in the Normal space, can be easily extended to use ensembles to represent the local (in time) smaller or larger conditional predictive uncertainty, as a function of the ensemble spread. In this way, each prediction in time accounts for both the predictive uncertainty of the ensemble mean and that of the ensemble spread. To perform a continuous hydrological modeling with TOPKAPI-X model and have hot start of hydrological status of watersheds, the system assimilated products of rainfall and temperature derived from remote sensing, such as product 3B42RT of TRMM NASA and others.The system will be integrated into a Decision Support System (DSS) platform, based on geographical data. The DSS is a web application (For Pc, Tablet/Mobile phone): It does not need installation (all you need is a web browser and an internet

  8. High mass resolution time of flight mass spectrometer for measuring products in heterogeneous catalysis in highly sensitive microreactors

    DEFF Research Database (Denmark)

    Andersen, Thomas; Jensen, Robert; Christensen, M. K.

    2012-01-01

    We demonstrate a combined microreactor and time of flight system for testing and characterization of heterogeneous catalysts with high resolution mass spectrometry and high sensitivity. Catalyst testing is performed in silicon-based microreactors which have high sensitivity and fast thermal...

  9. Gas chromatographic quadrupole time-of-flight full scan high resolution mass spectrometric screening of human urine in antidoping analysis

    NARCIS (Netherlands)

    Abushareeda, Wadha; Lyris, Emmanouil; Kraiem, Suhail; Wahaibi, Aisha Al; Alyazidi, Sameera; Dbes, Najib; Lommen, Arjen; Nielen, Michel; Horvatovich, Peter L.; Alsayrafi, Mohammed; Georgakopoulos, Costas

    2017-01-01

    This paper presents the development and validation of a high-resolution full scan (FS) electron impact ionization (EI) gas chromatography coupled to quadrupole Time-of-Flight mass spectrometry (GC/QTOF) platform for screening anabolic androgenic steroids (AAS) in human urine samples. The World

  10. Gas chromatographic quadrupole time-of-flight full scan high resolution mass spectrometric screening of human urine in antidoping analysis

    NARCIS (Netherlands)

    Abushareeda, Wadha; Lyris, Emmanouil; Kraiem, Suhail; Wahaibi, Aisha Al; Alyazidi, Sameera; Dbes, Najib; Lommen, Arjen; Nielen, Michel; Horvatovich, Peter L.; Alsayrafi, Mohammed; Georgakopoulos, Costas

    2017-01-01

    This paper presents the development and validation of a high-resolution full scan (FS) electron impact ionization (EI) gas chromatography coupled to quadrupole Time-of-Flight mass spectrometry (GC/QTOF) platform for screening anabolic androgenic steroids (AAS) in human urine samples. The World

  11. Synthetic biology's tall order: Reconstruction of 3D, super resolution images of single molecules in real-time

    CSIR Research Space (South Africa)

    Henriques, R

    2010-08-31

    Full Text Available -to-use reconstruction software coupled with image acquisition. Here, we present QuickPALM, an Image plugin, enabling real-time reconstruction of 3D super-resolution images during acquisition and drift correction. We illustrate its application by reconstructing Cy5...

  12. Radio frequency phototube and optical clock: High resolution, high rate and highly stable single photon timing technique

    Energy Technology Data Exchange (ETDEWEB)

    Margaryan, Amur

    2011-10-01

    A new timing technique for single photons based on the radio frequency phototube and optical clock or femtosecond optical frequency comb generator is proposed. The technique has a 20 ps resolution for single photons, is capable of operating with MHz frequencies and achieving 10 fs instability level.

  13. Microbiology specimens obtained at the time of surgical lung biopsy for interstitial lung disease: clinical yield and cost analysis.

    Science.gov (United States)

    Fibla, Juan J; Brunelli, Alessandro; Allen, Mark S; Wigle, Dennis; Shen, Robert; Nichols, Francis; Deschamps, Claude; Cassivi, Stephen D

    2012-01-01

    In efforts to obtain complete results, current practice in surgical lung biopsy (LB) for interstitial lung disease (ILD) recommends sending lung tissue samples for bacterial, mycobacterial, fungal, and viral cultures. This study assesses the value of this practice by evaluating the microbiology findings obtained from LB for ILD and their associated costs. A total of 296 consecutive patients (140 women, 156 men, median age=61 years) underwent LB for ILD from 2002 to 2009. All had lung tissue sent for microbiology examination. Microbiology results and resultant changes in patient management were analyzed retrospectively. A cost analysis was performed based upon nominal hospital charges adjusted on current inflation rates. Cost data included cultures, stains, smears, direct fluorescent antibody studies, and microbiologist consulting fees. As many as 25 patients (8.4%) underwent open LB and 271 (91.6%) underwent thoracoscopic LB. A total of 592 specimens were assessed (range 1-4 per patient). The most common pathologic diagnoses were idiopathic pulmonary fibrosis in 122 (41.2%), cryptogenic organizing pneumonia in 31 (10.5%), and respiratory bronchiolitis ILD in 16 (5.4%). Microbiology testing was negative in 174 patients (58.8%). A total of 118 of 122 (96.7%) positive results were clinically considered to be contaminants and resulted in no change in clinical management. The most common contaminants were Propionibacterium acnes (38 patients; 31%) and Penicillium fungus (16 patients; 13%). In only four patients (1.4%), the organism cultured (Nocardia one, Histoplasma one, and Aspergillus fumigatus two) resulted in a change in clinical management. The cost of microbiology studies per specimen was $984 (€709), with a total cost for the study cohort being $582,000 (€420,000). The yield and impact on clinical management of microbiology specimens from LB for ILD is very low. Its routine use in LB is questionable. We suggest it should be limited to those cases of ILD with

  14. Resolution tests of global geodynamic models by travel-time tomography

    Czech Academy of Sciences Publication Activity Database

    Běhounková, Marie; Čížková, H.; Matyska, C.

    2005-01-01

    Roč. 49, č. 3 (2005), s. 343-363 ISSN 0039-3169 R&D Projects: GA ČR GA205/02/1306 Institutional research plan: CEZ:AV0Z30120515 Keywords : seismic tomography * synthetic inversion * resolution tests Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.656, year: 2005

  15. Fast collision resolution for real time services in SDMA based wireless ATM networks

    DEFF Research Database (Denmark)

    Vornefeld, U.; Schieimer, D.; Walke, B.

    1999-01-01

    protocol, the influence of SDMA on a contention based access protocol is investigated under collision resolution schemes derived from classical splitting algorithms. Although this work is embedded in the framework of wireless ATM and HIPERLAN/2 systems, the ideas are generally applicable....

  16. Very high resolution time-lapse photography for plant and ecosystems research

    Science.gov (United States)

    Very high resolution gigapixel photography increasingly is being used to support a broad range of ecosystem and physical process research because it offers an inexpensive means of simultaneously collecting information at a range of spatial scales. Recently, methods have been developed to incorporate...

  17. Characteristics of time-activity curves obtained from dynamic 11C-methionine PET in common primary brain tumors.

    Science.gov (United States)

    Nomura, Yuichi; Asano, Yoshitaka; Shinoda, Jun; Yano, Hirohito; Ikegame, Yuka; Kawasaki, Tomohiro; Nakayama, Noriyuki; Maruyama, Takashi; Muragaki, Yoshihiro; Iwama, Toru

    2018-07-01

    The aim of this study was to assess whether dynamic PET with 11 C-methionine (MET) (MET-PET) is useful in the diagnosis of brain tumors. One hundred sixty patients with brain tumors (139 gliomas, 9 meningiomas, 4 hemangioblastomas and 8 primary central nervous system lymphomas [PCNSL]) underwent dynamic MET-PET with a 3-dimensional acquisition mode, and the maximum tumor MET-standardized uptake value (MET-SUV) was measured consecutively to construct a time-activity curve (TAC). Furthermore, receiver operating characteristic (ROC) curves were generated from the time-to-peak (TTP) and the slope of the curve in the late phase (SLOPE). The TAC patterns of MET-SUVs (MET-TACs) could be divided into four characteristic types when MET dynamics were analyzed by dividing the MET-TAC into three phases. MET-SUVs were significantly higher in early and late phases in glioblastoma compared to anaplastic astrocytoma, diffuse astrocytoma and the normal frontal cortex (P dynamic MET-PET study could be helpful in the non-invasive discrimination of brain tumor subtypes, in particular gliomas.

  18. Comparison between data obtained through real-time data capture by SMS and a retrospective telephone interview.

    Science.gov (United States)

    Johansen, Bendt; Wedderkopp, Niels

    2010-05-26

    The aims of the current study were: a) to quantitatively compare data obtained by Short Message Service (SMS) with data from a telephone interview, b) to investigate whether the respondents had found it acceptable to answer the weekly two SMS questions, c) to explore whether an additional weekly third SMS question would have been acceptable, and d) to calculate the total cost of using the SMS technology. SMS technology was used each week for 53 weeks to monitor 260 patients with low back pain (LBP) in a clinical study. Each week, these patients were asked the same two questions: "How many days in the past week have you had problems due to LBP?" and "How many days in the past week have you been off work due to LBP problems?" The last 31 patients were also contacted by telephone 53 weeks after recruitment and asked to recall the number of days with LBP problems and days off work for the a) past week, b) past month, and c) past year. The two sets of answers to the same questions for these patients were compared. Patients were also asked whether a third SMS question would have been acceptable. The test-retest reliability was compared for 1-week, 1-month, and 1-year. Bland-Altman limits of agreement were calculated. The two quantitative questions were reported as percentages. Actual costs for the SMS-Track-Questionnaire (SMS-T-Q) were compared with estimated costs for paper version surveys. There was high agreement between telephone interview and SMS-T-Q responses for the 1-week and 1-month recall. In contrast, the 1-year recall showed very low agreement. A third SMS question would have been acceptable. The SMS system was considerably less costly than a paper-based survey, beyond a certain threshold number of questionnaires. SMS-T-Q appears to be a cheaper and better method to collect reliable LBP data than paper-based surveys.

  19. Mapping and Evaluation of NDVI Trends from Synthetic Time Series Obtained by Blending Landsat and MODIS Data around a Coalfield on the Loess Plateau

    Directory of Open Access Journals (Sweden)

    Kun Wang

    2013-09-01

    Full Text Available The increasingly intensive and extensive coal mining activities on the Loess Plateau pose a threat to the fragile local ecosystems. Quantifying the effects of coal mining activities on environmental conditions is of great interest for restoring and managing the local ecosystems and resources. This paper generates dense NDVI (Normalized Difference Vegetation Index time series between 2000 and 2011 at a spatial resolution of 30 m by blending Landsat and MODIS (Moderate Resolution Imaging Spectroradiometer data using the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM and further evaluates its capability for mapping vegetation trends around a typical coalfield on the Loss Plateau. Synthetic NDVI images were generated using (1 STARFM-generated NIR (near infrared and red band reflectance data (scheme 1 and (2 Landsat and MODIS NDVI images directly as inputs for STARFM (scheme 2. By comparing the synthetic NDVI images with the corresponding Landsat NDVI, we found that scheme 2 consistently generated better results (0.70 < R2 < 0.76 than scheme 1 (0.56 < R2 < 0.70 in this study area. Trend analysis was then performed with the synthetic dense NDVI time series and the annual maximum NDVI (NDVImax time series. The accuracy of these trends was evaluated by comparing to those from the corresponding MODIS time series, and it was concluded that both the trends from synthetic/MODIS NDVI dense time series and synthetic/MODIS NDVImax time series (2000–2011 were highly consistent. Compared to trends from MODIS time series, trends from synthetic time series are better able to capture fine scale vegetation changes. STARFM-generated synthetic NDVI time series could be used to quantify the effects of mining activities on vegetation, but the test areas should be selected with caution, as the trends derived from synthetic and MODIS time series may be significantly different in some areas.

  20. High-resolution space-time characterization of convective rain cells: implications on spatial aggregation and temporal sampling operated by coarser resolution instruments

    Science.gov (United States)

    Marra, Francesco; Morin, Efrat

    2017-04-01

    Forecasting the occurrence of flash floods and debris flows is fundamental to save lives and protect infrastructures and properties. These natural hazards are generated by high-intensity convective storms, on space-time scales that cannot be properly monitored by conventional instrumentation. Consequently, a number of early-warning systems are nowadays based on remote sensing precipitation observations, e.g. from weather radars or satellites, that proved effective in a wide range of situations. However, the uncertainty affecting rainfall estimates represents an important issue undermining the operational use of early-warning systems. The uncertainty related to remote sensing estimates results from (a) an instrumental component, intrinsic of the measurement operation, and (b) a discretization component, caused by the discretization of the continuous rainfall process. Improved understanding on these sources of uncertainty will provide crucial information to modelers and decision makers. This study aims at advancing knowledge on the (b) discretization component. To do so, we take advantage of an extremely-high resolution X-Band weather radar (60 m, 1 min) recently installed in the Eastern Mediterranean. The instrument monitors a semiarid to arid transition area also covered by an accurate C-Band weather radar and by a relatively sparse rain gauge network ( 1 gauge/ 450 km2). Radar quantitative precipitation estimation includes corrections reducing the errors due to ground echoes, orographic beam blockage and attenuation of the signal in heavy rain. Intense, convection-rich, flooding events recently occurred in the area serve as study cases. We (i) describe with very high detail the spatiotemporal characteristics of the convective cores, and (ii) quantify the uncertainty due to spatial aggregation (spatial discretization) and temporal sampling (temporal discretization) operated by coarser resolution remote sensing instruments. We show that instantaneous rain intensity

  1. Note: Large active area solid state photon counter with 20 ps timing resolution and 60 fs detection delay stability

    Science.gov (United States)

    Prochazka, Ivan; Kodet, Jan; Eckl, Johann; Blazej, Josef

    2017-10-01

    We are reporting on the design, construction, and performance of a photon counting detector system, which is based on single photon avalanche diode detector technology. This photon counting device has been optimized for very high timing resolution and stability of its detection delay. The foreseen application of this detector is laser ranging of space objects, laser time transfer ground to space and fundamental metrology. The single photon avalanche diode structure, manufactured on silicon using K14 technology, is used as a sensor. The active area of the sensor is circular with 200 μm diameter. Its photon detection probability exceeds 40% in the wavelength range spanning from 500 to 800 nm. The sensor is operated in active quenching and gating mode. A new control circuit was optimized to maintain high timing resolution and detection delay stability. In connection to this circuit, timing resolution of the detector is reaching 20 ps FWHM. In addition, the temperature change of the detection delay is as low as 70 fs/K. As a result, the detection delay stability of the device is exceptional: expressed in the form of time deviation, detection delay stability of better than 60 fs has been achieved. Considering the large active area aperture of the detector, this is, to our knowledge, the best timing performance reported for a solid state photon counting detector so far.

  2. Timing of maximum glacial extent and deglaciation from HualcaHualca volcano (southern Peru), obtained with cosmogenic 36Cl.

    Science.gov (United States)

    Alcalá, Jesus; Palacios, David; Vazquez, Lorenzo; Juan Zamorano, Jose

    2015-04-01

    Andean glacial deposits are key records of climate fluctuations in the southern hemisphere. During the last decades, in situ cosmogenic nuclides have provided fresh and significant dates to determine past glacier behavior in this region. But still there are many important discrepancies such as the impact of Last Glacial Maximum or the influence of Late Glacial climatic events on glacial mass balances. Furthermore, glacial chronologies from many sites are still missing, such as HualcaHualca (15° 43' S; 71° 52' W; 6,025 masl), a high volcano of the Peruvian Andes located 70 km northwest of Arequipa. The goal of this study is to establish the age of the Maximum Glacier Extent (MGE) and deglaciation at HualcaHualca volcano. To achieve this objetive, we focused in four valleys (Huayuray, Pujro Huayjo, Mollebaya and Mucurca) characterized by a well-preserved sequence of moraines and roches moutonnées. The method is based on geomorphological analysis supported by cosmogenic 36Cl surface exposure dating. 36Cl ages have been estimated with the CHLOE calculator and were compared with other central Andean glacial chronologies as well as paleoclimatological proxies. In Huayuray valley, exposure ages indicates that MGE occurred ~ 18 - 16 ka. Later, the ice mass gradually retreated but this process was interrupted by at least two readvances; the last one has been dated at ~ 12 ka. In the other hand, 36Cl result reflects a MGE age of ~ 13 ka in Mollebaya valley. Also, two samples obtained in Pujro-Huayjo and Mucurca valleys associated with MGE have an exposure age of 10-9 ka, but likely are moraine boulders affected by exhumation or erosion processes. Deglaciation in HualcaHualca volcano began abruptly ~ 11.5 ka ago according to a 36Cl age from a polished and striated bedrock in Pujro Huayjo valley, presumably as a result of reduced precipitation as well as a global increase of temperatures. The glacier evolution at HualcaHualca volcano presents a high correlation with

  3. A Systematic Study to Optimize SiPM Photo-Detectors for Highest Time Resolution in PET

    CERN Document Server

    Gundacker, S.; Frisch, B.; Hillemanns, H.; Jarron, P.; Meyer, T.; Pauwels, K.; Lecoq, P.

    2012-01-01

    We report on a systematic study of time resolution made with three different commercial silicon photomultipliers (SiPMs) (Hamamatsu MPPC S10931-025P, S10931-050P, and S10931-100P) and two LSO scintillating crystals. This study aimed to determine the optimum detector conditions for highest time resolution in a prospective time-of-flight positron emission tomography (TOF-PET) system. Measurements were based on the time over threshold method in a coincidence setup using the ultrafast amplifier-discriminator NINO and a fast oscilloscope. Our tests with the three SiPMs of the same area but of different SPAD sizes and fill factors led to best results with the Hamamatsu type of 50×50×μm2 single-pixel size. For this type of SiPM and under realistic geometrical PET scanner conditions, i.e., with 2×2×10×mm3 LSO crystals, a coincidence time resolution of 220 ±4 ps FWHM could be achieved. The results are interpreted in terms of SiPM photon detection efficiency (PDE), dark noise, and photon yield.

  4. Max CAPR: high-resolution 3D contrast-enhanced MR angiography with acquisition times under 5 seconds.

    Science.gov (United States)

    Haider, Clifton R; Borisch, Eric A; Glockner, James F; Mostardi, Petrice M; Rossman, Phillip J; Young, Phillip M; Riederer, Stephen J

    2010-10-01

    High temporal and spatial resolution is desired in imaging of vascular abnormalities having short arterial-to-venous transit times. Methods that exploit temporal correlation to reduce the observed frame time demonstrate temporal blurring, obfuscating bolus dynamics. Previously, a Cartesian acquisition with projection reconstruction-like (CAPR) sampling method has been demonstrated for three-dimensional contrast-enhanced angiographic imaging of the lower legs using two-dimensional sensitivity-encoding acceleration and partial Fourier acceleration, providing 1mm isotropic resolution of the calves, with 4.9-sec frame time and 17.6-sec temporal footprint. In this work, the CAPR acquisition is further undersampled to provide a net acceleration approaching 40 by eliminating all view sharing. The tradeoff of frame time and temporal footprint in view sharing is presented and characterized in phantom experiments. It is shown that the resultant 4.9-sec acquisition time, three-dimensional images sets have sufficient spatial and temporal resolution to clearly portray arterial and venous phases of contrast passage. It is further hypothesized that these short temporal footprint sequences provide diagnostic quality images. This is tested and shown in a series of nine contrast-enhanced MR angiography patient studies performed with the new method.

  5. Development of an integrated four-channel fast avalanche-photodiode detector system with nanosecond time resolution

    Science.gov (United States)

    Li, Zhenjie; Li, Qiuju; Chang, Jinfan; Ma, Yichao; Liu, Peng; Wang, Zheng; Hu, Michael Y.; Zhao, Jiyong; Alp, E. E.; Xu, Wei; Tao, Ye; Wu, Chaoqun; Zhou, Yangfan

    2017-10-01

    A four-channel nanosecond time-resolved avalanche-photodiode (APD) detector system is developed at Beijing Synchrotron Radiation. It uses a single module for signal processing and readout. This integrated system provides better reliability and flexibility for custom improvement. The detector system consists of three parts: (i) four APD sensors, (ii) four fast preamplifiers and (iii) a time-digital-converter (TDC) readout electronics. The C30703FH silicon APD chips fabricated by Excelitas are used as the sensors of the detectors. It has an effective light-sensitive area of 10 × 10 mm2 and an absorption layer thickness of 110 μm. A fast preamplifier with a gain of 59 dB and bandwidth of 2 GHz is designed to readout of the weak signal from the C30703FH APD. The TDC is realized by a Spartan-6 field-programmable-gate-array (FPGA) with multiphase method in a resolution of 1ns. The arrival time of all scattering events between two start triggers can be recorded by the TDC. The detector has been used for nuclear resonant scattering study at both Advanced Photon Source and also at Beijing Synchrotron Radiation Facility. For the X-ray energy of 14.4 keV, the time resolution, the full width of half maximum (FWHM) of the detector (APD sensor + fast amplifier) is 0.86 ns, and the whole detector system (APD sensors + fast amplifiers + TDC readout electronics) achieves a time resolution of 1.4 ns.

  6. Spectroscopic investigation of ELM phenomena in the ASDEX-Upgrade divertor with high time resolution

    International Nuclear Information System (INIS)

    Field, A.R.; Buechl, K.; Fuchs, C.J.; Fussmann, G.; Herrmann, A.; Lieder, G.; Napiontek, B.; Radtke, R.; Wenzel, U.; Zohm, H.

    1993-01-01

    Improved tokamak H-mode confinement is associated with the formation of an insulating zone just within the separatrix. At a critical pressure gradient a sudden burst of MHD activity (an ELM) degrades edge confinement, releasing particles and energy into the scrape-off layer (SOL) which is subsequently transported to the divertor. Here, these phenomena are studied using spectroscopic diagnostics and target plate thermography of high spatial and temporal resolution. (author) 3 refs., 6 figs

  7. Spectroscopic investigation of ELM phenomena in the ASDEX-Upgrade divertor with high time resolution

    Energy Technology Data Exchange (ETDEWEB)

    Field, A R; Buechl, K; Fuchs, C J; Fussmann, G; Herrmann, A; Lieder, G; Napiontek, B; Radtke, R; Wenzel, U; Zohm, H [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    1994-12-31

    Improved tokamak H-mode confinement is associated with the formation of an insulating zone just within the separatrix. At a critical pressure gradient a sudden burst of MHD activity (an ELM) degrades edge confinement, releasing particles and energy into the scrape-off layer (SOL) which is subsequently transported to the divertor. Here, these phenomena are studied using spectroscopic diagnostics and target plate thermography of high spatial and temporal resolution. (author) 3 refs., 6 figs.

  8. Windowed time-reversal music technique for super-resolution ultrasound imaging

    Science.gov (United States)

    Huang, Lianjie; Labyed, Yassin

    2018-05-01

    Systems and methods for super-resolution ultrasound imaging using a windowed and generalized TR-MUSIC algorithm that divides the imaging region into overlapping sub-regions and applies the TR-MUSIC algorithm to the windowed backscattered ultrasound signals corresponding to each sub-region. The algorithm is also structured to account for the ultrasound attenuation in the medium and the finite-size effects of ultrasound transducer elements.

  9. HPGe detectors long time behaviour in high-resolution γ spectrometry

    International Nuclear Information System (INIS)

    Sajo-Bohus, L.; Rosso, D.; Sajo Castelli, A.M.; Napoli, D.R.; Fioretto, E.; Menegazzo, R.; Barros, H.; Ur, C.A.; Palacios, D.; Liendo, J.

    2011-01-01

    A large set of data on long term performance of n-type HPGe detectors used in GASP, EUROBALL and CLARA γ spectrometers, as well as environmental measurements have been collected over two decades. In this paper a detailed statistical analysis of this data is given and detector long term behaviour is provided to the scientific community. We include failure, failure mode, repair frequency, repair outcome and its influence in the energy efficiency and energy resolution. A remarkable result is that the life span distribution is exponential. A detector's failure is a memory-less process, where a previous failure does not influence the upcoming one. Repaired spectrometers result in high reliability with deep implications in the management of large scale high-resolution gamma spectrometry related projects. Findings show that on average, detectors initial counting efficiency is slightly lower (∼2%) than that reported by the manufacturers and the repair process (including annealing) does not affect significantly the energy efficiency, even after a long period of use. Repaired detector energy resolution statistics show that the probability, that a repaired detector will be at least as good as it was originally, is more than 3/4.

  10. Quasielastic high-resolution time-of-flight spectrometers employing multi-disk chopper cascades for spallation sources

    International Nuclear Information System (INIS)

    Lechner, R.E.

    2001-01-01

    The design of multi-disk chopper time-of-flight (MTOF) spectrometers for high-resolution quasielastic and low-energy inelastic neutron scattering at spallation sources is discussed in some detail. A continuously variable energy resolution (1 μeV to 10 meV), and a large dynamic range (1 μeV to 100 meV), are outstanding features of this type of instrument, which are easily achieved also at a pulsed source using state-of-the-art technology. The method of intensity-resolution optimization of MTOF spectrometers at spallation sources is treated on the basis of the requirement of using (almost) 'all the neutrons of the pulse', taking into account the constant, but wavelength-dependent duration of the source pulse. It follows, that the optimization procedure (which is slightly different from that employed in the steady-state source case) should give priority to the highest resolution, whenever such a choice becomes necessary. This leads to long monochromator distances (L l2 ) of the order of 50 m, for achieving resolutions now available at reactor sources. A few examples of spectrometer layout and corresponding design parameters for large-angle and for small-angle quasielastic scattering instruments are given. In the latter case higher energy resolution than for large-angle scattering is required and achieved. The use of phase-space transformers, neutron wavelength band-pass filters and multichromatic operation for the purpose of intensity-resolution optimization are discussed. This spectrometer can be designed to make full use of the pulsed source peak flux. Therefore, and because of a number of improvements, high resolution will be available at high intensity: for any given resolution the total intensity at the detectors, when placed at one of the planned new spallation sources (SNS, JSNS, ESS, AUSTRON) will be larger by at least three orders of magnitude than the total intensity of any of the presently existing instruments of this type in routine operation at steady

  11. High spatial and time resolutions with gas ionization detectors; Hautes resolutions en position et temps avec des detecteurs gazeux a ionisation

    Energy Technology Data Exchange (ETDEWEB)

    Pouthas, J

    2001-09-01

    This document presents the principles and the characteristics of the gaseous ionisation detectors used in position and timing measurements. The first two parts recall the main notions (electron and ion motions, gaseous amplification, signal formation) and their applications to the proportional counter and the wire chamber. The explanation of the signal formation makes use of the Ramo theorem. The third part is devoted to the different types of wire chambers: drift or cathode strip chambers, TPC (time projection chamber). Some aspects on construction and ageing are also presented. Part 4 is on the detectors in which the multiplication is performed by a 'Parallel Plate' system (PPAC, Pestov counter). Special attention is paid to the RPCs (Resistive Plate Chambers) and their timing resolutions. Part 5 concentrates on 'Micro-pattern detectors' which use different kinds of microstructure for gaseous amplification. The new detectors MICROMEGAS, CAT (compteur a trous) and GEM (gas electron multiplier) and some of their applications are presented. The last part is a bibliography including some comments on the documents. (author)

  12. The TDCpix readout ASIC: A 75 ps resolution timing front-end for the NA62 Gigatracker hybrid pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Kluge, A., E-mail: alexander.kluge@cern.ch; Aglieri Rinella, G.; Bonacini, S.; Jarron, P.; Kaplon, J.; Morel, M.; Noy, M.; Perktold, L.; Poltorak, K.

    2013-12-21

    The TDCpix is a novel pixel readout ASIC for the NA62 Gigatracker detector. NA62 is a new experiment being installed at the CERN Super Proton Synchrotron. Its Gigatracker detector shall provide on-beam tracking and time stamping of individual particles with a time resolution of 150 ps rms. It will consist of three tracking stations, each with one hybrid pixel sensor. The peak flow of particles crossing the detector modules reaches 1.27 MHz/mm{sup 2} for a total rate of about 0.75 GHz. Ten TDCpix chips will be bump-bonded to every silicon pixel sensor. Each chip shall perform time stamping of 100 M particle hits per second with a detection efficiency above 99% and a timing accuracy better than 200 ps rms for an overall three-station-setup time resolution of better than 150 ps. The TDCpix chip has been designed in a 130 nm CMOS technology. It will feature 45×40 square pixels of 300×300μm{sup 2} and a complex End of Column peripheral region including an array of TDCs based on DLLs, four high speed serializers, a low-jitter PLL, readout and control circuits. This contribution will describe the complete design of the final TDCpix ASIC. It will discuss design choices, the challenges faced and some of the lessons learned. Furthermore, experimental results from the testing of circuit prototypes will be presented. These demonstrate the achievement of key performance figures such as a time resolution of the processing chain of 75 ps rms with a laser sent to the center of the pixel and the capability of time stamping charged particles with an overall resolution below 200 ps rms. -- Highlights: • Feasibility demonstration of a silicon pixel detector with sub-ns time tagging capability. • Demonstrator detector assembly with a time resolution of 75 ps RMS with laser charge injection; 170 ps RMS with particle beam. • Design of trigger-less TDCpix ASIC with 1800 pixels, 720 TDC channels and 4 3.2 Gbit/s serializers.

  13. Time-resolved PIV technique for high temporal resolution measurement of mechanical prosthetic aortic valve fluid dynamics.

    Science.gov (United States)

    Kaminsky, R; Morbiducci, U; Rossi, M; Scalise, L; Verdonck, P; Grigioni, M

    2007-02-01

    Prosthetic heart valves (PHVs) have been used to replace diseased native valves for more than five decades. Among these, mechanical PHVs are the most frequently implanted. Unfortunately, these devices still do not achieve ideal behavior and lead to many complications, many of which are related to fluid mechanics. The fluid dynamics of mechanical PHVs are particularly complex and the fine-scale characteristics of such flows call for very accurate experimental techniques. Adequate temporal resolution can be reached by applying time-resolved PIV, a high-resolution dynamic technique which is able to capture detailed chronological changes in the velocity field. The aim of this experimental study is to investigate the evolution of the flow field in a detailed time domain of a commercial bileaflet PHV in a mock-loop mimicking unsteady conditions, by means of time-resolved 2D Particle Image Velocimetry (PIV). The investigated flow field corresponded to the region immediately downstream of the valve plane. Spatial resolution as in "standard" PIV analysis of prosthetic valve fluid dynamics was used. The combination of a Nd:YLF high-repetition-rate double-cavity laser with a high frame rate CMOS camera allowed a detailed, highly temporally resolved acquisition (up to 10000 fps depending on the resolution) of the flow downstream of the PHV. Features that were observed include the non-homogeneity and unsteadiness of the phenomenon and the presence of large-scale vortices within the field, especially in the wake of the valve leaflets. Furthermore, we observed that highly temporally cycle-resolved analysis allowed the different behaviors exhibited by the bileaflet valve at closure to be captured in different acquired cardiac cycles. By accurately capturing hemodynamically relevant time scales of motion, time-resolved PIV characterization can realistically be expected to help designers in improving PHV performance and in furnishing comprehensive validation with experimental data

  14. Impact of oxygen concentration on time to resolution of spontaneous pneumothorax in term infants: a population based cohort study

    Science.gov (United States)

    2014-01-01

    Background Little evidence exists regarding the optimal concentration of oxygen to use in the treatment of term neonates with spontaneous pneumothorax (SP). The practice of using high oxygen concentrations to promote “nitrogen washout” still exists at many centers. The aim of this study was to identify the time to clinical resolution of SP in term neonates treated with high oxygen concentrations (HO: FiO2 ≥ 60%), moderate oxygen concentrations (MO: FiO2 pneumothorax admitted to all neonatal intensive care units in Calgary, Alberta, Canada, within 72 hours of birth between 2006 and 2010. Newborns with congenital and chromosomal anomalies, meconium aspiration, respiratory distress syndrome, and transient tachypnea of newborn, pneumonia, tension pneumothorax requiring thoracocentesis or chest tube drainage or mechanical ventilation before the diagnosis of pneumothorax were excluded. The primary outcome was time to clinical resolution (hours) of SP. A Cox proportional hazards model was developed to assess differences in time to resolution of SP between treatment groups. Results Neonates were classified into three groups based on the treatment received: HO (n = 27), MO (n = 35) and RA (n = 30). There was no significant difference in time to resolution of SP between the three groups, median (range 25th-75th percentile) for HO = 12 hr (8–27), MO = 12 hr (5–24) and RA = 11 hr (4–24) (p = 0.50). A significant difference in time to resolution of SP was also not observed after adjusting for inhaled oxygen concentration [MO (a HR = 1.13, 95% CI 0.54-2.37); RA (a HR = 1.19, 95% CI 0.69-2.05)], gender (a HR = 0.87, 95% CI 0.53-1.43) and ACoRN respiratory score (a HR = 0.7, 95% CI 0.41-1.34). Conclusions Supplemental oxygen use or nitrogen washout was not associated with faster resolution of SP. Infants treated with room air remained stable and did not require supplemental oxygen at any point of their admission. PMID

  15. Time reversal and phase coherent music techniques for super-resolution ultrasound imaging

    Science.gov (United States)

    Huang, Lianjie; Labyed, Yassin

    2018-05-01

    Systems and methods for super-resolution ultrasound imaging using a windowed and generalized TR-MUSIC algorithm that divides the imaging region into overlapping sub-regions and applies the TR-MUSIC algorithm to the windowed backscattered ultrasound signals corresponding to each sub-region. The algorithm is also structured to account for the ultrasound attenuation in the medium and the finite-size effects of ultrasound transducer elements. A modified TR-MUSIC imaging algorithm is used to account for ultrasound scattering from both density and compressibility contrasts. The phase response of ultrasound transducer elements is accounted for in a PC-MUSIC system.

  16. An FPGA-Integrated Time-to-Digital Converter Based on a Ring Oscillator for Programmable Delay Line Resolution Measurement

    Directory of Open Access Journals (Sweden)

    Chao Chen

    2014-01-01

    Full Text Available We describe the architecture of a time-to-digital converter (TDC, specially intended to measure the delay resolution of a programmable delay line (PDL. The configuration, which consists of a ring oscillator, a frequency divider (FD, and a period measurement circuit (PMC, is implemented in a field programmable gate array (FPGA device. The ring oscillator realized in loop containing a PDL and a look-up table (LUT generates periodic oscillatory pulses. The FD amplifies the oscillatory period from nanosecond range to microsecond range. The time-to-digital conversion is based on counting the number of clock cycles between two consecutive pulses of the FD by the PMC. Experiments have been conducted to verify the performance of the TDC. The achieved relative errors for four PDLs are within 0.50%–1.21% and the TDC has an equivalent resolution of about 0.4 ps.

  17. Development of high time-resolution laser flash equipment for thermal diffusivity measurements using miniature-size specimens

    International Nuclear Information System (INIS)

    Shikama, Tatsuo; Namba, Chusei; Kosuda, Michinori; Maeda, Yukio.

    1994-01-01

    For measurements of thermal diffusivity of miniature-size specimens heavily irradiated by neutrons, a new Q-switched laser-flash instrument was developed. In the present instrument the time-resolution was improved to 0.1 ms by using a laser-pulse width of 25 ns. The realization of high time-resolution made it possible to measure the thermal diffusivity of thin specimens. It is expected that copper of 0.7 mm thick, and SUS 304 of 0.1 mm could be used for the measurements. In case of ATJ graphite, 0.5 mm thick specimen could be used for the reliable measurement in the temperature range of 300-1300 K. (author)

  18. Real-time pure shift {sup 15}N HSQC of proteins: a real improvement in resolution and sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Kiraly, Peter; Adams, Ralph W.; Paudel, Liladhar; Foroozandeh, Mohammadali [University of Manchester, School of Chemistry (United Kingdom); Aguilar, Juan A. [Durham University, Department of Chemistry (United Kingdom); Timári, István [University of Debrecen, Department of Inorganic and Analytical Chemistry (Hungary); Cliff, Matthew J. [University of Manchester, Manchester Institute of Biotechnology (United Kingdom); Nilsson, Mathias [University of Manchester, School of Chemistry (United Kingdom); Sándor, Péter [Agilent Technologies R& D and Marketing GmbH & Co. KG (Germany); Batta, Gyula [University of Debrecen, Department of Organic Chemistry (Hungary); Waltho, Jonathan P. [University of Manchester, Manchester Institute of Biotechnology (United Kingdom); Kövér, Katalin E. [University of Debrecen, Department of Inorganic and Analytical Chemistry (Hungary); Morris, Gareth A., E-mail: g.a.morris@manchester.ac.uk [University of Manchester, School of Chemistry (United Kingdom)

    2015-05-15

    Spectral resolution in proton NMR spectroscopy is reduced by the splitting of resonances into multiplets due to the effect of homonuclear scalar couplings. Although these effects are often hidden in protein NMR spectroscopy by low digital resolution and routine apodization, behind the scenes homonuclear scalar couplings increase spectral overcrowding. The possibilities for biomolecular NMR offered by new pure shift NMR methods are illustrated here. Both resolution and sensitivity are improved, without any increase in experiment time. In these experiments, free induction decays are collected in short bursts of data acquisition, with durations short on the timescale of J-evolution, interspersed with suitable refocusing elements. The net effect is real-time (t{sub 2}) broadband homodecoupling, suppressing the multiplet structure caused by proton–proton interactions. The key feature of the refocusing elements is that they discriminate between the resonances of active (observed) and passive (coupling partner) spins. This can be achieved either by using band-selective refocusing or by the BIRD element, in both cases accompanied by a nonselective 180° proton pulse. The latter method selects the active spins based on their one-bond heteronuclear J-coupling to {sup 15}N, while the former selects a region of the {sup 1}H spectrum. Several novel pure shift experiments are presented, and the improvements in resolution and sensitivity they provide are evaluated for representative samples: the N-terminal domain of PGK; ubiquitin; and two mutants of the small antifungal protein PAF. These new experiments, delivering improved sensitivity and resolution, have the potential to replace the current standard HSQC experiments.

  19. Rapid Detection and Differentiation of Clonorchis sinensis and Opisthorchis viverrini Using Real-Time PCR and High Resolution Melting Analysis

    OpenAIRE

    Cai, Xian-Quan; Yu, Hai-Qiong; Li, Rong; Yue, Qiao-Yun; Liu, Guo-Hua; Bai, Jian-Shan; Deng, Yan; Qiu, De-Yi; Zhu, Xing-Quan

    2014-01-01

    Clonorchis sinensis and Opisthorchis viverrini are both important fish-borne pathogens, causing serious public health problem in Asia. The present study developed an assay integrating real-time PCR and high resolution melting (HRM) analysis for the specific detection and rapid identification of C. sinensis and O. viverrini. Primers targeting COX1 gene were highly specific for these liver flukes, as evidenced by the negative amplification of closely related trematodes. Assays using genomic DNA...

  20. Property Analysis of the Real-Time Uncalibrated Phase Delay Product Generated by Regional Reference Stations and Its Influence on Precise Point Positioning Ambiguity Resolution

    Directory of Open Access Journals (Sweden)

    Yong Zhang

    2017-05-01

    Full Text Available The real-time estimation of the wide-lane and narrow-lane Uncalibrated Phase Delay (UPD of satellites is realized by real-time data received from regional reference station networks; The properties of the real-time UPD product and its influence on real-time precise point positioning ambiguity resolution (RTPPP-AR are experimentally analyzed according to real-time data obtained from the regional Continuously Operating Reference Stations (CORS network located in Tianjin, Shanghai, Hong Kong, etc. The results show that the real-time wide-lane and narrow-lane UPD products differ significantly from each other in time-domain characteristics; the wide-lane UPDs have daily stability, with a change rate of less than 0.1 cycle/day, while the narrow-lane UPDs have short-term stability, with significant change in one day. The UPD products generated by different regional networks have obvious spatial characteristics, thus significantly influencing RTPPP-AR: the adoption of real-time UPD products employing the sparse stations in the regional network for estimation is favorable for improving the regional RTPPP-AR up to 99%; the real-time UPD products of different regional networks slightly influence PPP-AR positioning accuracy. After ambiguities are successfully fixed, the real-time dynamic RTPPP-AR positioning accuracy is better than 3 cm in the plane and 8 cm in the upward direction.

  1. Sensitivity of isoprene emissions estimated using MEGAN to the time resolution of input climate data

    Directory of Open Access Journals (Sweden)

    K. Ashworth

    2010-02-01

    Full Text Available We evaluate the effect of varying the temporal resolution of the input climate data on isoprene emission estimates generated by the community emissions model MEGAN (Model of Emissions of Gases and Aerosols from Nature. The estimated total global annual emissions of isoprene is reduced from 766 Tg y−1 when using hourly input data to 746 Tg y−1 (a reduction of 3% for daily average input data and 711 Tg y−1 (down 7% for monthly average input data. The impact on a local scale can be more significant with reductions of up to 55% at some locations when using monthly average data compared with using hourly data. If the daily and monthly average temperature data are used without the imposition of a diurnal cycle the global emissions estimates fall by 27–32%, and local annual emissions by up to 77%. A similar pattern emerges if hourly isoprene fluxes are considered. In order to better simulate and predict isoprene emission rates using MEGAN, we show it is necessary to use temperature and radiation data resolved to one hour. Given the importance of land-atmosphere interactions in the Earth system and the low computational cost of the MEGAN algorithms, we recommend that chemistry-climate models and the new generation of Earth system models input biogenic emissions at the highest temporal resolution possible.

  2. Nitro Stretch Probing of a Single Molecular Layer to Monitor Shock Compression with Picosecond Time-Resolution

    Science.gov (United States)

    Berg, Christopher; Lagutchev, Alexei; Fu, Yuanxi; Dlott, Dana

    2011-06-01

    To obtain maximum possible temporal resolution, laser-driven shock compression of a molecular monolayer was studied using vibrational spectroscopy. The stretching transitions of nitro groups bound to aromatic rings was monitored using a nonlinear coherent infrared spectroscopy termed sum-frequency generation, which produced high-quality signals from this very thin layer. To overcome the shock opacity problem, a novel polymer overcoat method allowed us to make the observation window (witness plate) a few micrometers thick. The high signal-to-noise ratios (>100:1) obtained via this spectroscopy allowed us to study detailed behavior of the shocked molecules. To help interpret these vibrational spectra, additional spectra were obtained under conditions of static pressures up to 10 GPa and static temperatures up to 1000 C. Consequently, this experiment represents a significant step in resolving molecular dynamics during shock compression and unloading with both high spatial and temporal resolution. Supported by the Stewardship Sciences Academic Alliance Program from the Carnegie-DOE Alliance Center under grant number DOE CIW 4-3253-13 and the US Air Force Office of Scientific Research under award number FAA9550-09-1-0163.

  3. Investigating the tradeoffs between spatial resolution and diffusion sampling for brain mapping with diffusion tractography: time well spent?

    Science.gov (United States)

    Calabrese, Evan; Badea, Alexandra; Coe, Christopher L; Lubach, Gabriele R; Styner, Martin A; Johnson, G Allan

    2014-11-01

    Interest in mapping white matter pathways in the brain has peaked with the recognition that altered brain connectivity may contribute to a variety of neurologic and psychiatric diseases. Diffusion tractography has emerged as a popular method for postmortem brain mapping initiatives, including the ex-vivo component of the human connectome project, yet it remains unclear to what extent computer-generated tracks fully reflect the actual underlying anatomy. Of particular concern is the fact that diffusion tractography results vary widely depending on the choice of acquisition protocol. The two major acquisition variables that consume scan time, spatial resolution, and diffusion sampling, can each have profound effects on the resulting tractography. In this analysis, we determined the effects of the temporal tradeoff between spatial resolution and diffusion sampling on tractography in the ex-vivo rhesus macaque brain, a close primate model for the human brain. We used the wealth of autoradiography-based connectivity data available for the rhesus macaque brain to assess the anatomic accuracy of six time-matched diffusion acquisition protocols with varying balance between spatial and diffusion sampling. We show that tractography results vary greatly, even when the subject and the total acquisition time are held constant. Further, we found that focusing on either spatial resolution or diffusion sampling at the expense of the other is counterproductive. A balanced consideration of both sampling domains produces the most anatomically accurate and consistent results. Copyright © 2014 Wiley Periodicals, Inc.

  4. A Study of Correlations among Image Resolution, Reaction Time, and Extent of Motion in Remote Motor Interactions

    Directory of Open Access Journals (Sweden)

    Zoltán Rusák

    2014-01-01

    Full Text Available Motor interaction in virtual sculpting, dance trainings, and physiological rehabilitation requires close virtual proximity of users, which may be hindered by low resolution of images and system latency. This paper reports on the results of our investigation aiming to explore the pros and cons of using ultrahigh 4K resolution displays (4096 × 2160 pixels in remote motor interaction. 4K displays are able to overcome the problem of visible pixels and they are able to show more accurate image details on the level of textures, shadows, and reflections. It was our assumption that such image details can not only satisfy visual comfort of the users, but also provide detailed visual cues and improve the reaction time of users in motor interaction. To validate this hypothesis, we explored the relationships between the reaction time of subjects responding to a series of action-reaction type of games and resolution of the image used in an experiment. The results of our experiment showed that the subjects’ reaction time is significantly shorter in 4K images than in HD or VGA images in motor interaction with small motion envelope.

  5. High-resolution, time-resolved MRA provides superior definition of lower-extremity arterial segments compared to 2D time-of-flight imaging.

    Science.gov (United States)

    Thornton, F J; Du, J; Suleiman, S A; Dieter, R; Tefera, G; Pillai, K R; Korosec, F R; Mistretta, C A; Grist, T M

    2006-08-01

    To evaluate a novel time-resolved contrast-enhanced (CE) projection reconstruction (PR) magnetic resonance angiography (MRA) method for identifying potential bypass graft target vessels in patients with Class II-IV peripheral vascular disease. Twenty patients (M:F = 15:5, mean age = 58 years, range = 48-83 years), were recruited from routine MRA referrals. All imaging was performed on a 1.5 T MRI system with fast gradients (Signa LX; GE Healthcare, Waukesha, WI). Images were acquired with a novel technique that combined undersampled PR with a time-resolved acquisition to yield an MRA method with high temporal and spatial resolution. The method is called PR hyper time-resolved imaging of contrast kinetics (PR-hyperTRICKS). Quantitative and qualitative analyses were used to compare two-dimensional (2D) time-of-flight (TOF) and PR-hyperTRICKS in 13 arterial segments per lower extremity. Statistical analysis was performed with the Wilcoxon signed-rank test. Fifteen percent (77/517) of the vessels were scored as missing or nondiagnostic with 2D TOF, but were scored as diagnostic with PR-hyperTRICKS. Image quality was superior with PR-hyperTRICKS vs. 2D TOF (on a four-point scale, mean rank = 3.3 +/- 1.2 vs. 2.9 +/- 1.2, P < 0.0001). PR-hyperTRICKS produced images with high contrast-to-noise ratios (CNR) and high spatial and temporal resolution. 2D TOF images were of inferior quality due to moderate spatial resolution, inferior CNR, greater flow-related artifacts, and absence of temporal resolution. PR-hyperTRICKS provides superior preoperative assessment of lower limb ischemia compared to 2D TOF.

  6. Handling time misalignment and rank deficiency in liquid chromatography by multivariate curve resolution: Quantitation of five biogenic amines in fish.

    Science.gov (United States)

    Pinto, Licarion; Díaz Nieto, César Horacio; Zón, María Alicia; Fernández, Héctor; de Araujo, Mario Cesar Ugulino

    2016-01-01

    Biogenic amines (BAs) are used for identifying spoilage in food. The most common are tryptamine (TRY), 2-phenylethylamine (PHE), putrescine (PUT), cadaverine (CAD) and histamine (HIS). Due to lack of chromophores, chemical derivatization with dansyl was employed to analyze these BAs using high performance liquid chromatography with a diode array detector (HPLC-DAD). However, the derivatization reaction occurs with any primary or secondary amine, leading to co-elution of analytes and interferents with identical spectral profiles, and thus causing rank deficiency. When the spectral profile is the same and peak misalignment is present on the chromatographic runs, it is not possible to handle the data only with Multivariate Curve Resolution and Alternative Least Square (MCR-ALS), by augmenting the time, or the spectral mode. A way to circumvent this drawback is to receive information from another detector that leads to a selective profile for the analyte. To overcome both problems, (tri-linearity break in time, and spectral mode), this paper proposes a new analytical methodology for fast quantitation of these BAs in fish with HPLC-DAD by using the icoshift algorithm for temporal misalignment correction before MCR-ALS spectral mode augmented treatment. Limits of detection, relative errors of prediction (REP) and average recoveries, ranging from 0.14 to 0.50 µg mL(-1), 3.5-8.8% and 88.08%-99.68%, respectively. These are outstanding results obtained, reaching quantification limits for the five BAs much lower than those established by the Food and Agriculture Organization of the United Nations and World Health Organization (FAO/WHO), and the European Food Safety Authority (EFSA), all without any pre-concentration steps. The concentrations of BAs in fish samples ranged from 7.82 to 29.41 µg g(-1), 8.68-25.95 µg g(-1), 4.76-28.54 µg g(-1), 5.18-39.95 µg g(-1) and 1.45-52.62 µg g(-1) for TRY, PHE, PUT, CAD, and HIS, respectively. In addition, the proposed method spends

  7. High time resolution boundary layer description using combined remote sensing instruments

    Directory of Open Access Journals (Sweden)

    C. Gaffard

    2008-09-01

    Full Text Available Ground based remote sensing systems for future observation operations will allow continuous monitoring of the lower troposphere at temporal resolutions much better than every 30 min. Observations which may be considered spurious from an individual instrument can be validated or eliminated when considered in conjunction with measurements from other instruments observing at the same location. Thus, improved quality control of atmospheric profiles from microwave radiometers and wind profilers should be sought by considering the measurements from different systems together rather than individually. In future test bed deployments for future operational observing systems, this should be aided by observations from laser ceilometers and cloud radars. Observations of changes in atmospheric profiles at high temporal resolution in the lower troposphere are presented from a 12 channel microwave radiometer and 1290 MHz UHF wind profiler deployed in southern England during the CSIP field experiment in July/August 2005. The observations chosen were from days when thunderstorms occurred in southern England. Rapid changes near the surface in dry layers are considered, both when rain/hail may be falling from above and where the dry air is associated with cold pools behind organised thunderstorms. Also, short term variations in atmospheric profiles and vertical stability are presented on a day with occasional low cloud, when thunderstorms triggered 50 km down wind of the observing site Improved quality control of the individual remote sensing systems need to be implemented, examining the basic quality of the underlying observations as well as the final outputs, and so for instance eliminating ground clutter as far as possible from the basic Doppler spectra measurements of the wind profiler. In this study, this was performed manually. The potential of incorporating these types of instruments in future upper air observational networks leads to the challenge to

  8. Timing resolution improvement using DOI information in a four-layer scintillation detector for TOF-PET

    Energy Technology Data Exchange (ETDEWEB)

    Shibuya, Kengo [jPET Project Team, Molecular Imaging Center, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage-ku, Chiba 263-0024 (Japan)], E-mail: shibuken@gakushikai.jp; Nishikido, Fumihiko [jPET Project Team, Molecular Imaging Center, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage-ku, Chiba 263-0024 (Japan); Tsuda, Tomoaki [Technology Research Laboratory, Shimadzu Corporation, Hikaridai 3-9-4, Seika-cho, Kyoto 619-0237 (Japan); Kobayashi, Tetsuya [Department of Medical System Engineering, Graduate School of Engineering, Chiba University, Yayoi 1-33, Inage-ku, Chiba 263-8522 (Japan); Lam, Chihfung; Yamaya, Taiga; Yoshida, Eiji; Inadama, Naoko; Murayama, Hideo [jPET Project Team, Molecular Imaging Center, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage-ku, Chiba 263-0024 (Japan)

    2008-08-11

    Depth-of-interaction (DOI) detectors are considered to be advantageous for time-of-flight positron emission tomography (TOF-PET) because they can correct timing errors arising in the scintillation crystals due to a propagation speed difference between annihilation radiation and scintillation photons. We experimentally measured this timing error, using our four-layer DOI encoding method. The upper layers exhibited the larger timing delays due to the longer path lengths after conversion from annihilation radiation into scintillation photons that traveled by zigzag paths at a speed decreased by a factor of the refractive index (n). The maximum timing delay between the uppermost and the lowermost layers was evaluated as 164 ps when n=1.47. A TOF error correction was demonstrated to improve the timing resolution of the four-layer DOI detector by 10.3%, which would increase the effective sensitivity of the scanner by about 12% comparison with a non-DOI TOF-PET scanner. This is the first step towards combining these two important fields in PET instrumentation, namely DOI and TOF, for the purpose of achieving a higher sensitivity as well as a more uniform spatial resolution.

  9. Distributed UAV-Swarm Real-Time Geomatic Data Collection Under Dynamically Changing Resolution Requirements

    Science.gov (United States)

    Almeida, Miguel; Hildmann, Hanno; Solmaz, Gürkan

    2017-08-01

    Unmanned Aerial Vehicles (UAVs) have been used for reconnaissance and surveillance missions as far back as the Vietnam War, but with the recent rapid increase in autonomy, precision and performance capabilities - and due to the massive reduction in cost and size - UAVs have become pervasive products, available and affordable for the general public. The use cases for UAVs are in the areas of disaster recovery, environmental mapping & protection and increasingly also as extended eyes and ears of civil security forces such as fire-fighters and emergency response units. In this paper we present a swarm algorithm that enables a fleet of autonomous UAVs to collectively perform sensing tasks related to environmental and rescue operations and to dynamically adapt to e.g. changing resolution requirements. We discuss the hardware used to build our own drones and the settings under which we validate the proposed approach.

  10. The TDCpix Readout ASIC: A 75 ps Resolution Timing Front-End for the Gigatrackerof theNA62 Experiment

    Science.gov (United States)

    Rinella, G. Aglieri; Fiorini, M.; Jarron, P.; Kaplon, J.; Kluge, A.; Martin, E.; Morel, M.; Noy, M.; Perktold, L.; Poltorak, K.

    NA62 is an experiment under development at the CERN Super Proton Synchrotron, aiming at measuring ultra rare kaon decays. The Gigatracker (GTK) detector shall combine on-beam tracking of individual particles with a time resolution of 150 ps rms. The peak flow of particles crossing the detector modules reaches 1.27 MHz/mm2 fora total rateof about 0.75 GHz.Ahybrid siliconpixel detectoris beingdevelopedto meet these requirements. The pixel chip for the Gigatracker (TDCpix) is under design. The TDCpix chip will feature 1800 square pixels of 300×300 μm2 arranged in a matrix of 45 rows × 40 columns. Bump-bonded to a silicon pixel sensor it shall perform time stamping of particle hits with a timing accuracybetter than 200 ps rms and a detection efficiencyabove 99%. The chosen architecture provides full separation of the sensitive analog amplifiers of the pixel matrix from the noisy digital circuits of the TDCs and of the readout blocks. Discriminated hit signals from each pixel are transmitted to the end of column region. An array ofTime to Digital Converters (TDC) is implemented at the bottom of the pixel array. The TDCs are based on time tagging the events with the fine time codes generated by Delay Locked Loops (DLL) and have a nominal time bin of ˜100 ps. Time stamps and time-over-threshold are recorded for each discriminated hit and the correction of the discriminator's time-walk is performed off-detector. Data are continuously transmitted on four 2.4 Gb/s serial output links. Adescription of the on-going design of the final TDCpix is given in this paper. Design choices and some technical implementation details are presented. Aprototype ASIC including thekeycomponents of this architecture has been manufactured. The achievement of specification figures such as a time resolution of the processing chain of 75 ps rms as well as charged particle time stampingwitha resolutionbetterthan200psrmswere demonstratedexperimentally.Asummaryoftheseresultsisalso presented in

  11. A 75 ps rms time resolution BiCMOS time to digital converter optimized for high rate imaging detectors

    CERN Document Server

    Hervé, C

    2002-01-01

    This paper presents an integrated time to digital converter (TDC) with a bin size adjustable in the range of 125 to 175 ps and a differential nonlinearity of +-0.3%. The TDC has four channels. Its architecture has been optimized for the readout of imaging detectors in use at Synchrotron Radiation facilities. In particular, a built-in logic flags piled-up events. Multi-hit patterns are also supported for other applications. Time measurements are extracted off chip at the maximum throughput of 40 MHz. The dynamic range is 14 bits. It has been fabricated in 0.8 mu m BiCMOS technology. Time critical inputs are PECL compatible whereas other signals are CMOS compatible. A second application specific integrated circuit (ASIC) has been developed which translates NIM electrical levels to PECL ones. Both circuits are used to assemble board level TDCs complying with industry standards like VME, NIM and PCI.

  12. X-ray bang-time and fusion reaction history at ∼ ps resolution using RadOptic detection

    International Nuclear Information System (INIS)

    Vernon, S.P.; Lowry, M.E.; Baker, K.L.; Bennett, C.V.; Celeste, J.R.; Cerjan, C.; Haynes, S.; Hernandez, V.J.; Hsing, W.W.; London, R.A.; Moran, B.; von Wittenau, A.S.; Steele, P.T.; Stewart, R.E.

    2012-01-01

    We report recent progress in the development of RadOptic detectors, radiation to optical converters, that rely upon x-ray absorption induced modulation of the optical refractive index of a semiconductor sensor medium to amplitude modulate an optical probe beam. The sensor temporal response is determined by the dynamics of the electron-hole pair creation and subsequent relaxation in the sensor medium. Response times of a few ps have been demonstrated in a series of experiments conducted at the LLNL Jupiter Laser Facility. This technology will enable x-ray bang-time and fusion burn-history measurements with ∼ ps resolution.

  13. High-resolution time-resolved Experiments on mixing and entrainment of buoyant jets in stratified environments

    Energy Technology Data Exchange (ETDEWEB)

    Manera, Annalisa; Bardet, Philippe; Petrov, Victor

    2018-03-29

    scales, which leads to anisotropy. This important physical phenomenon is highly three dimensional and is challenging to capture even with high-fidelity CFD simulations, due in part to lack of sufficiently resolved validation data. Furthermore, the experimental data available in the open literature do not feature the level of fidelity needed for an extensive validation of turbulence models in lower order CFD. To shed new lights into the crucial phenomena object of the present research project, it was proposed to conduct coordinated experiments and simulations at the University of Michigan and the George Washington University. The project has resulted in an experimental database of high-resolution time-resolved measurements of jets in uniform and stratified environments. The novel experimental data will be used to validate computational fluid dynamic (CFD) codes, including both Large Eddy Simulations (LES) and unsteady Reynolds-averaged Navier-Stokes equations (URANS) methodologies. In the Experimental and Multiphase flow (ECMF) laboratory at Univerisity of Michigan, we built two experimental facilities to investigate also the effect of scaling. The first facility, DESTROJER (DEnsity Stratified Turbulent ROund free Jet ExpeRiment), featuring a contoured jet nozzle with a diameter of D=12.7mm and a 1m×1m×1m cubic tank, which is made of acrylic glass for optical access. The ratio between the tank width and the nozzle diameter is equal to 78, which ensures that there is no direct interaction between the jet and the side walls. A second, modular experimental facility, features three different tank sizes of size 10×10×30, 20×20×30, 30×30×30 cm3 respectively (all tanks have the same height of 30 cm), and a jet diameter of 2mm. For the modular facility, tank-to-nozzle ratio of 50, 100, and 150 are obtained respectively. Experiments with different-density jet impactions and sharp interface with a density difference of 3.16% In the Laboratory at George Washington University

  14. A novel super-resolution camera model

    Science.gov (United States)

    Shao, Xiaopeng; Wang, Yi; Xu, Jie; Wang, Lin; Liu, Fei; Luo, Qiuhua; Chen, Xiaodong; Bi, Xiangli

    2015-05-01

    Aiming to realize super resolution(SR) to single image and video reconstruction, a super resolution camera model is proposed for the problem that the resolution of the images obtained by traditional cameras behave comparatively low. To achieve this function we put a certain driving device such as piezoelectric ceramics in the camera. By controlling the driving device, a set of continuous low resolution(LR) images can be obtained and stored instantaneity, which reflect the randomness of the displacements and the real-time performance of the storage very well. The low resolution image sequences have different redundant information and some particular priori information, thus it is possible to restore super resolution image factually and effectively. The sample method is used to derive the reconstruction principle of super resolution, which analyzes the possible improvement degree of the resolution in theory. The super resolution algorithm based on learning is used to reconstruct single image and the variational Bayesian algorithm is simulated to reconstruct the low resolution images with random displacements, which models the unknown high resolution image, motion parameters and unknown model parameters in one hierarchical Bayesian framework. Utilizing sub-pixel registration method, a super resolution image of the scene can be reconstructed. The results of 16 images reconstruction show that this camera model can increase the image resolution to 2 times, obtaining images with higher resolution in currently available hardware levels.

  15. Mixed-time parallel evolution in multiple quantum NMR experiments: sensitivity and resolution enhancement in heteronuclear NMR

    International Nuclear Information System (INIS)

    Ying Jinfa; Chill, Jordan H.; Louis, John M.; Bax, Ad

    2007-01-01

    A new strategy is demonstrated that simultaneously enhances sensitivity and resolution in three- or higher-dimensional heteronuclear multiple quantum NMR experiments. The approach, referred to as mixed-time parallel evolution (MT-PARE), utilizes evolution of chemical shifts of the spins participating in the multiple quantum coherence in parallel, thereby reducing signal losses relative to sequential evolution. The signal in a given PARE dimension, t 1 , is of a non-decaying constant-time nature for a duration that depends on the length of t 2 , and vice versa, prior to the onset of conventional exponential decay. Line shape simulations for the 1 H- 15 N PARE indicate that this strategy significantly enhances both sensitivity and resolution in the indirect 1 H dimension, and that the unusual signal decay profile results in acceptable line shapes. Incorporation of the MT-PARE approach into a 3D HMQC-NOESY experiment for measurement of H N -H N NOEs in KcsA in SDS micelles at 50 o C was found to increase the experimental sensitivity by a factor of 1.7±0.3 with a concomitant resolution increase in the indirectly detected 1 H dimension. The method is also demonstrated for a situation in which homonuclear 13 C- 13 C decoupling is required while measuring weak H3'-2'OH NOEs in an RNA oligomer

  16. Tunneling time, the Hartman effect, and superluminality: A proposed resolution of an old paradox

    International Nuclear Information System (INIS)

    Winful, Herbert G.

    2006-01-01

    The issue of tunneling time is replete with controversy and paradoxes. The controversy stems from the fact that many tunneling time definitions seem to predict superluminal tunneling velocities. One prediction, termed the Hartman effect, states that the tunneling time becomes independent of barrier length for thick enough barriers, ultimately resulting in unbounded tunneling velocities. Experiments done with 'single photons', classical light waves, and microwaves all show this apparent superluminality. The origin of these paradoxical effects has been a mystery for decades. In this article, we review the history of tunneling times starting with the early work of MacColl, Hartman, and Wigner. We discuss some of the tunneling time definitions, with particular emphasis on the phase time (also known as the group delay or Wigner time) and the dwell time. The key experiments are reviewed. We then discuss our recent work, which suggests that the group delay in tunneling is not a transit time as has been assumed for decades. It is, in reality, a lifetime and hence should not be used to assign a speed of barrier traversal. We show how this new understanding along with the concept of energy storage and release resolves all the outstanding tunneling time paradoxes

  17. Relationships among Ocular Blood Flow Shown by Laser Speckle Flowgraphy, Retinal Arteriosclerotic Change, and Chorioretinal Circulation Time Obtained by Fluorescein Angiography

    Directory of Open Access Journals (Sweden)

    Hironori Osamura

    2017-01-01

    Full Text Available Purpose. To determine the correlations among the mean blur rate (MBR in the optic nerve head (ONH shown by laser speckle flowgraphy (LSFG, retinal arteriosclerosis, and the circulation time obtained by fluorescein angiography (FA. Method. We evaluated 118 patients and assessed their time of choroidal flush, arm-to-retina time, and early and late phases of retinal circulation time (RT: sec obtained by FA. The severity of retinal arteriosclerosis was classified according to the Scheie classification. The MBR values throughout the ONH (MBR-A, in the tissue (MBR-T, and in the vessels (MBR-V were analyzed. Results. Patients with retinal vein occlusion (RVO showed prolonged early and late phases of RT compared to other ocular diseases. Single and multiple regression analyses showed that the MBR-V and Scheie classification were significantly associated with both the choroidal flush and arm-to-retina times. The incidences of RVO and MVR-V were significantly associated with the early phase of RT, and the incidences of RVO, MBR-V, Scheie classification, and gender were revealed to be factors independently contributing to the late phase of RT. Conclusion. MBR-V in the ONH and retinal arteriosclerosis are important contributing factors for the circulation time of each stage obtained by FA.

  18. The TDCpix readout ASIC: A 75ps resolution timing front-end for the NA62 Gigatracker hybrid pixel detector

    CERN Document Server

    Kluge, A; Bonacini, S; Jarron, P; Kaplon, J; Morel, M; Noy, M; Perktold, L; Poltorak, K

    2013-01-01

    The TDCpix is a novel pixel readout ASIC for the NA62 Gigatracker detector. NA62 is a new experiment being installed at the CERN Super Proton Synchrotron. Its Gigatracker detector shall provide on-beam tracking and time stamping of individual particles with a time resolution of 150 ps rms. It will consist of three tracking stations, each with one hybrid pixel sensor. The peak fl ow of particles crossing the detector modules reaches 1.27 MHz/mm 2 for a total rate of about 0.75 GHz. Ten TDCpix chips will be bump-bonded to every silicon pixel sensor. Each chip shall perform time stamping of 100 M particle hits per second with a detection ef fi ciency above 99% and a timing accuracy better than 200 ps rms for an overall three-station-setup time resolution of better than 150 ps. The TDCpix chip has been designed in a 130 nm CMOS technology. It will feature 45 40 square pixels of 300 300 μ m 2 and a complex End of Column peripheral region including an array of TDCs based on DLLs, four high speed serializers, a low...

  19. Modular 125 ps resolution time interval digitizer for 10 MHz stop burst rates and 33 ms range

    International Nuclear Information System (INIS)

    Turko, B.

    1978-01-01

    A high resolution multiple stop time interval digitizer is described. It is capable of resolving stop burst rates of up to 10 MHz with an incremental resolution of 125 ps within a range of 33 ms. The digitizer consists of five CAMAC modules and uses a standard CAMAC crate and controller. All the functions and ranges are completely computer controlled. Any two subsequent stop pulses in a burst can be resolved within 100 ns due to a new dual interpolation technique employed. The accuracy is maintained by a high stability 125 MHz reference clock. Up to 131 stop events can be stored in a 48-bit, 10 MHz derandomizing storage register before the digitizer overflows. The experimental data are also given

  20. Experimental study to optimize time resolution and detection limit of online 222Rn-in-water measurements

    International Nuclear Information System (INIS)

    Just, G.; Freyer, K.; Treutler, H.C.; Philipsborn, H. von

    2001-01-01

    The possibility to detect short-term variations of the activity concentration of 222 Rn in water by online monitoring with temporal resolutions of a few minutes and a lower limit of detection of about 1 Bq/l enhances the applicability of such measurements. New applications would be possible in the field of hydro-geology in which Rn is used as tracer gas, the monitoring of pumping procedures, for the study of exchange processes during groundwater sampling and for various applications with geophysical effects. A suitable, simple method is the measuring principle proposed by Surbeck (Fribourg) some years ago which is based on the separation of air and water by a diffusion membrane. Process parameters enhancing the time resolution of the method as well as the efficiency of different radon detectors have been studied. (orig.) [de

  1. High-resolution time series of Pseudomonas aeruginosa gene expression and rhamnolipid secretion through growth curve synchronization

    Directory of Open Access Journals (Sweden)

    Xavier João B

    2011-06-01

    Full Text Available Abstract Background Online spectrophotometric measurements allow monitoring dynamic biological processes with high-time resolution. Contrastingly, numerous other methods require laborious treatment of samples and can only be carried out offline. Integrating both types of measurement would allow analyzing biological processes more comprehensively. A typical example of this problem is acquiring quantitative data on rhamnolipid secretion by the opportunistic pathogen Pseudomonas aeruginosa. P. aeruginosa cell growth can be measured by optical density (OD600 and gene expression can be measured using reporter fusions with a fluorescent protein, allowing high time resolution monitoring. However, measuring the secreted rhamnolipid biosurfactants requires laborious sample processing, which makes this an offline measurement. Results Here, we propose a method to integrate growth curve data with endpoint measurements of secreted metabolites that is inspired by a model of exponential cell growth. If serial diluting an inoculum gives reproducible time series shifted in time, then time series of endpoint measurements can be reconstructed using calculated time shifts between dilutions. We illustrate the method using measured rhamnolipid secretion by P. aeruginosa as endpoint measurements and we integrate these measurements with high-resolution growth curves measured by OD600 and expression of rhamnolipid synthesis genes monitored using a reporter fusion. Two-fold serial dilution allowed integrating rhamnolipid measurements at a ~0.4 h-1 frequency with high-time resolved data measured at a 6 h-1 frequency. We show how this simple method can be used in combination with mutants lacking specific genes in the rhamnolipid synthesis or quorum sensing regulation to acquire rich dynamic data on P. aeruginosa virulence regulation. Additionally, the linear relation between the ratio of inocula and the time-shift between curves produces high-precision measurements of

  2. The rapid use of gender information: evidence of the time course of pronoun resolution from eyetracking.

    Science.gov (United States)

    Arnold, J E; Eisenband, J G; Brown-Schmidt, S; Trueswell, J C

    2000-07-14

    Eye movements of listeners were monitored to investigate how gender information and accessibility influence the initial processes of pronoun interpretation. Previous studies on this issue have produced mixed results, and several studies have concluded that gender cues are not automatically used during the early processes of pronoun interpretation (e.g. Garnham, A., Oakhill, J. & Cruttenden, H. (1992). The role of implicit causality and gender cue in the interpretation of pronouns. Language and Cognitive Processes, 73 (4), 231-255; Greene, S. B., McKoon, G. & Ratcliff, R. (1992). Pronoun resolution and discourse models. Journal of Experimental Psychology: Learning, Memory, and Cognition, 182, 266-283). In the two experiments presented here, participants viewed a picture with two familiar cartoon characters of either same or different gender. They listened to a text describing the picture, in which a pronoun referred to either the first, more accessible, character, or the second. (For example, Donald is bringing some mail to ¿Mickey/Minnie¿ while a violent storm is beginning. He's carrying an umbrellaellipsis.) The results of both experiments show rapid use of both gender and accessibility at approximately 200 ms after the pronoun offset.

  3. Diagnosis of asbestosis by a time expanded wave form analysis, auscultation and high resolution computed tomography: a comparative study.

    Science.gov (United States)

    al Jarad, N; Strickland, B; Bothamley, G; Lock, S; Logan-Sinclair, R; Rudd, R M

    1993-01-01

    BACKGROUND--Crackles are a prominent clinical feature of asbestosis and may be an early sign of the condition. Auscultation, however, is subjective and interexaminer disagreement is a problem. Computerised lung sound analysis can visualise, store, and analyse lung sounds and disagreement on the presence of crackles is minimal. High resolution computed tomography (HRCT) is superior to chest radiography in detecting early signs of asbestosis. The aim of this study was to compare clinical auscultation, time expanded wave form analysis (TEW), chest radiography, and HRCT in detecting signs of asbestosis in asbestos workers. METHODS--Fifty three asbestos workers (51 men and two women) were investigated. Chest radiography and HRCT were assessed by two independent readers for detection of interstitial opacities. HRCT was performed in the supine position with additional sections at the bases in the prone position. Auscultation for persistent fine inspiratory crackles was performed by two independent examiners unacquainted with the diagnosis. TEW analysis was obtained from a 33 second recording of lung sounds over the lung bases. TEW and auscultation were performed in a control group of 13 subjects who had a normal chest radiograph. There were 10 current smokers and three previous smokers. In asbestos workers the extent of pulmonary opacities on the chest radiograph was scored according to the International Labour Office (ILO) scale. Patients were divided into two groups: 21 patients in whom the chest radiograph was > 1/0 (group 1) and 32 patients in whom the chest radiograph was scored auscultation in seven (22%) patients and by TEW in 14 (44%). HRCT detected definite interstitial opacities in 11 (34%) and gravity dependent subpleural lines in two (6%) patients. All but two patients with evidence of interstitial disease or gravity dependent subpleural lines on HRCT had crackles detected by TEW. In patients with an ILO score of > 1/0 auscultation and TEW revealed mid to late

  4. Challenges for energy dispersive X-ray absorption spectroscopy at the ESRF: microsecond time resolution and Mega-bar pressures

    International Nuclear Information System (INIS)

    Aquilanti, G.

    2002-01-01

    This Thesis concerns the development of two different applications of energy-dispersive X-ray absorption spectroscopy at the ESRF: time-resolved studies pushed to the microsecond time resolution and high-pressure studies at the limit of the Mega-bar pressures. The work has been developed in two distinct parts, and the underlying theme has been the exploitation of the capabilities of an X-ray absorption spectrometer in dispersive geometry on a third generation synchrotron source. For time-resolved studies, the study of the triplet excited state following a laser excitation of Pt 2 (P 2 O 5 H 2 ) 4 4- has been chosen to push the technique to the microsecond time resolution. In the high-pressure part, the suitability of the energy dispersive X-ray absorption spectrometer for high-pressure studies using diamond anvils cell is stressed. Some technical developments carried out on beamline ID24 are discussed. Finally, the most extensive scientific part concerns a combined X-ray absorption and diffraction study of InAs under pressure. (author)

  5. A new front-face optical cell for measuring weak fluorescent emissions with time resolution in the picosecond time scale.

    Science.gov (United States)

    Gryczynski, Z; Bucci, E

    1993-11-01

    Recent developments of ultrafast fluorimeters allow measuring time-resolved fluorescence on the picosecond time scale. This implies one is able to monitor lifetimes and anisotropy decays of highly quenched systems and of systems that contain fluorophores having lifetimes in the subnanosecond range; both systems that emit weak signals. The combination of weak signals and very short lifetimes makes the measurements prone to distortions which are negligible in standard fluorescence experiments. To cope with these difficulties, we have designed a new optical cell for front-face optics which offers to the excitation beam a horizontal free liquid surface in the absence of interactions with optical windows. The new cell has been tested with probes of known lifetimes and anisotropies. It proved very useful in detecting tryptophan fluorescence in hemoglobin. If only diluted samples are available, which cannot be used in front-face optics, regular square geometry can still be utilized by inserting light absorbers into a cuvette of 1 cm path length.

  6. Is a 4-bit synaptic weight resolution enough? - constraints on enabling spike-timing dependent plasticity in neuromorphic hardware.

    Science.gov (United States)

    Pfeil, Thomas; Potjans, Tobias C; Schrader, Sven; Potjans, Wiebke; Schemmel, Johannes; Diesmann, Markus; Meier, Karlheinz

    2012-01-01

    Large-scale neuromorphic hardware systems typically bear the trade-off between detail level and required chip resources. Especially when implementing spike-timing dependent plasticity, reduction in resources leads to limitations as compared to floating point precision. By design, a natural modification that saves resources would be reducing synaptic weight resolution. In this study, we give an estimate for the impact of synaptic weight discretization on different levels, ranging from random walks of individual weights to computer simulations of spiking neural networks. The FACETS wafer-scale hardware system offers a 4-bit resolution of synaptic weights, which is shown to be sufficient within the scope of our network benchmark. Our findings indicate that increasing the resolution may not even be useful in light of further restrictions of customized mixed-signal synapses. In addition, variations due to production imperfections are investigated and shown to be uncritical in the context of the presented study. Our results represent a general framework for setting up and configuring hardware-constrained synapses. We suggest how weight discretization could be considered for other backends dedicated to large-scale simulations. Thus, our proposition of a good hardware verification practice may rise synergy effects between hardware developers and neuroscientists.

  7. Is a 4-bit synaptic weight resolution enough? - Constraints on enabling spike-timing dependent plasticity in neuromorphic hardware

    Directory of Open Access Journals (Sweden)

    Thomas ePfeil

    2012-07-01

    Full Text Available Large-scale neuromorphic hardware systems typically bear the trade-off be-tween detail level and required chip resources. Especially when implementingspike-timing-dependent plasticity, reduction in resources leads to limitations ascompared to floating point precision. By design, a natural modification that savesresources would be reducing synaptic weight resolution. In this study, we give anestimate for the impact of synaptic weight discretization on different levels, rangingfrom random walks of individual weights to computer simulations of spiking neuralnetworks. The FACETS wafer-scale hardware system offers a 4-bit resolution ofsynaptic weights, which is shown to be sufficient within the scope of our networkbenchmark. Our findings indicate that increasing the resolution may not even beuseful in light of further restrictions of customized mixed-signal synapses. In ad-dition, variations due to production imperfections are investigated and shown tobe uncritical in the context of the presented study. Our results represent a generalframework for setting up and configuring hardware-constrained synapses. We sug-gest how weight discretization could be considered for other backends dedicatedto large-scale simulations. Thus, our proposition of a good hardware verificationpractice may rise synergy effects between hardware developers and neuroscientists.

  8. Evaluation of the CPU time for solving the radiative transfer equation with high-order resolution schemes applying the normalized weighting-factor method

    Science.gov (United States)

    Xamán, J.; Zavala-Guillén, I.; Hernández-López, I.; Uriarte-Flores, J.; Hernández-Pérez, I.; Macías-Melo, E. V.; Aguilar-Castro, K. M.

    2018-03-01

    In this paper, we evaluated the convergence rate (CPU time) of a new mathematical formulation for the numerical solution of the radiative transfer equation (RTE) with several High-Order (HO) and High-Resolution (HR) schemes. In computational fluid dynamics, this procedure is known as the Normalized Weighting-Factor (NWF) method and it is adopted here. The NWF method is used to incorporate the high-order resolution schemes in the discretized RTE. The NWF method is compared, in terms of computer time needed to obtain a converged solution, with the widely used deferred-correction (DC) technique for the calculations of a two-dimensional cavity with emitting-absorbing-scattering gray media using the discrete ordinates method. Six parameters, viz. the grid size, the order of quadrature, the absorption coefficient, the emissivity of the boundary surface, the under-relaxation factor, and the scattering albedo are considered to evaluate ten schemes. The results showed that using the DC method, in general, the scheme that had the lowest CPU time is the SOU. In contrast, with the results of theDC procedure the CPU time for DIAMOND and QUICK schemes using the NWF method is shown to be, between the 3.8 and 23.1% faster and 12.6 and 56.1% faster, respectively. However, the other schemes are more time consuming when theNWFis used instead of the DC method. Additionally, a second test case was presented and the results showed that depending on the problem under consideration, the NWF procedure may be computationally faster or slower that the DC method. As an example, the CPU time for QUICK and SMART schemes are 61.8 and 203.7%, respectively, slower when the NWF formulation is used for the second test case. Finally, future researches to explore the computational cost of the NWF method in more complex problems are required.

  9. Relativistic algorithm for time transfer in Mars missions under IAU Resolutions: an analytic approach

    International Nuclear Information System (INIS)

    Pan Jun-Yang; Xie Yi

    2015-01-01

    With tremendous advances in modern techniques, Einstein's general relativity has become an inevitable part of deep space missions. We investigate the relativistic algorithm for time transfer between the proper time τ of the onboard clock and the Geocentric Coordinate Time, which extends some previous works by including the effects of propagation of electromagnetic signals. In order to evaluate the implicit algebraic equations and integrals in the model, we take an analytic approach to work out their approximate values. This analytic model might be used in an onboard computer because of its limited capability to perform calculations. Taking an orbiter like Yinghuo-1 as an example, we find that the contributions of the Sun, the ground station and the spacecraft dominate the outcomes of the relativistic corrections to the model. (research papers)

  10. Lognormal switching times for titanium dioxide bipolar memristors: origin and resolution

    International Nuclear Information System (INIS)

    Medeiros-Ribeiro, Gilberto; Perner, Frederick; Carter, Richard; Abdalla, Hisham; Pickett, Matthew D; Williams, R Stanley

    2011-01-01

    We measured the switching time statistics for a TiO 2 memristor and found that they followed a lognormal distribution, which is a potentially serious problem for computer memory and data storage applications. We examined the underlying physical phenomena that determine the switching statistics and proposed a simple analytical model for the distribution based on the drift/diffusion equation and previously measured nonlinear drift behavior. We designed a closed-loop switching protocol that dramatically narrows the time distribution, which can significantly improve memory circuit performance and reliability.

  11. Priority Queuing on the Docket: Universality of Judicial Dispute Resolution Timing

    Directory of Open Access Journals (Sweden)

    Satyam Mukherjee

    2018-01-01

    Full Text Available This paper analyzes court priority queuing behavior by examining the time lapse between when a case enters a court's docket and when it is ultimately disposed of. Using data from the Supreme courts of the United States, Massachusetts, and Canada we show that each court's docket features a slow decay with a decreasing tail. This demonstrates that, in each of the courts examined, the vast majority of cases are resolved relatively quickly, while there remains a small number of outlier cases that take an extremely long time to resolve. We discuss the implications for this on legal systems, the study of the law, and future research.

  12. Real-time generation of images with pixel-by-pixel spectra for a coded aperture imager with high spectral resolution

    International Nuclear Information System (INIS)

    Ziock, K.P.; Burks, M.T.; Craig, W.; Fabris, L.; Hull, E.L.; Madden, N.W.

    2003-01-01

    The capabilities of a coded aperture imager are significantly enhanced when a detector with excellent energy resolution is used. We are constructing such an imager with a 1.1 cm thick, crossed-strip, planar detector which has 38 strips of 2 mm pitch in each dimension followed by a large coaxial detector. Full value from this system is obtained only when the images are 'fully deconvolved' meaning that the energy spectrum is available from each pixel in the image. The large number of energy bins associated with the spectral resolution of the detector, and the fixed pixel size, present significant computational challenges in generating an image in a timely manner at the conclusion of a data acquisition. The long computation times currently preclude the generation of intermediate images during the acquisition itself. We have solved this problem by building the images on-line as each event comes in using pre-imaged arrays of the system response. The generation of these arrays and the use of fractional mask-to-detector pixel sampling is discussed

  13. Handling time misalignment and rank deficiency in liquid chromatography by multivariate curve resolution: Quantitation of five biogenic amines in fish

    International Nuclear Information System (INIS)

    Pinto, Licarion; Díaz Nieto, César Horacio; Zón, María Alicia; Fernández, Héctor; Ugulino de Araujo, Mario Cesar

    2016-01-01

    Biogenic amines (BAs) are used for identifying spoilage in food. The most common are tryptamine (TRY), 2-phenylethylamine (PHE), putrescine (PUT), cadaverine (CAD) and histamine (HIS). Due to lack of chromophores, chemical derivatization with dansyl was employed to analyze these BAs using high performance liquid chromatography with a diode array detector (HPLC-DAD). However, the derivatization reaction occurs with any primary or secondary amine, leading to co-elution of analytes and interferents with identical spectral profiles, and thus causing rank deficiency. When the spectral profile is the same and peak misalignment is present on the chromatographic runs, it is not possible to handle the data only with Multivariate Curve Resolution and Alternative Least Square (MCR-ALS), by augmenting the time, or the spectral mode. A way to circumvent this drawback is to receive information from another detector that leads to a selective profile for the analyte. To overcome both problems, (tri-linearity break in time, and spectral mode), this paper proposes a new analytical methodology for fast quantitation of these BAs in fish with HPLC-DAD by using the icoshift algorithm for temporal misalignment correction before MCR-ALS spectral mode augmented treatment. Limits of detection, relative errors of prediction (REP) and average recoveries, ranging from 0.14 to 0.50 µg mL"−"1, 3.5–8.8% and 88.08%–99.68%, respectively. These are outstanding results obtained, reaching quantification limits for the five BAs much lower than those established by the Food and Agriculture Organization of the United Nations and World Health Organization (FAO/WHO), and the European Food Safety Authority (EFSA), all without any pre-concentration steps. The concentrations of BAs in fish samples ranged from 7.82 to 29.41 µg g"−"1, 8.68–25.95 µg g"−"1, 4.76–28.54 µg g"−"1, 5.18–39.95 µg g"−"1 and 1.45–52.62 µg g"−"1 for TRY, PHE, PUT, CAD, and HIS, respectively. In

  14. Handling time misalignment and rank deficiency in liquid chromatography by multivariate curve resolution: Quantitation of five biogenic amines in fish

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Licarion [Laboratório de Automação e Instrumentação em Química Analítica e Quimiometria (LAQA), Universidade Federal da Paraíba, CCEN, Departamento de Química, Caixa Postal 5093, CEP 58051-970, João Pessoa, PB (Brazil); Díaz Nieto, César Horacio; Zón, María Alicia; Fernández, Héctor [Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, 5800, Río Cuarto (Argentina); Ugulino de Araujo, Mario Cesar, E-mail: laqa@quimica.ufpb.br [Laboratório de Automação e Instrumentação em Química Analítica e Quimiometria (LAQA), Universidade Federal da Paraíba, CCEN, Departamento de Química, Caixa Postal 5093, CEP 58051-970, João Pessoa, PB (Brazil)

    2016-01-01

    Biogenic amines (BAs) are used for identifying spoilage in food. The most common are tryptamine (TRY), 2-phenylethylamine (PHE), putrescine (PUT), cadaverine (CAD) and histamine (HIS). Due to lack of chromophores, chemical derivatization with dansyl was employed to analyze these BAs using high performance liquid chromatography with a diode array detector (HPLC-DAD). However, the derivatization reaction occurs with any primary or secondary amine, leading to co-elution of analytes and interferents with identical spectral profiles, and thus causing rank deficiency. When the spectral profile is the same and peak misalignment is present on the chromatographic runs, it is not possible to handle the data only with Multivariate Curve Resolution and Alternative Least Square (MCR-ALS), by augmenting the time, or the spectral mode. A way to circumvent this drawback is to receive information from another detector that leads to a selective profile for the analyte. To overcome both problems, (tri-linearity break in time, and spectral mode), this paper proposes a new analytical methodology for fast quantitation of these BAs in fish with HPLC-DAD by using the icoshift algorithm for temporal misalignment correction before MCR-ALS spectral mode augmented treatment. Limits of detection, relative errors of prediction (REP) and average recoveries, ranging from 0.14 to 0.50 µg mL{sup −1}, 3.5–8.8% and 88.08%–99.68%, respectively. These are outstanding results obtained, reaching quantification limits for the five BAs much lower than those established by the Food and Agriculture Organization of the United Nations and World Health Organization (FAO/WHO), and the European Food Safety Authority (EFSA), all without any pre-concentration steps. The concentrations of BAs in fish samples ranged from 7.82 to 29.41 µg g{sup −1}, 8.68–25.95 µg g{sup −1}, 4.76–28.54 µg g{sup −1}, 5.18–39.95 µg g{sup −1} and 1.45–52.62 µg g{sup −1} for TRY, PHE, PUT, CAD, and

  15. Calibrating a hydraulic model using water levels derived from time series high-resolution Radarsat-2 synthetic aperture radar images and elevation data

    Science.gov (United States)

    Trudel, M.; Desrochers, N.; Leconte, R.

    2017-12-01

    Knowledge of water extent (WE) and level (WL) of rivers is necessary to calibrate and validate hydraulic models and thus to better simulate and forecast floods. Synthetic aperture radar (SAR) has demonstrated its potential for delineating water bodies, as backscattering of water is much lower than that of other natural surfaces. The ability of SAR to obtain information despite cloud cover makes it an interesting tool for temporal monitoring of water bodies. The delineation of WE combined with a high-resolution digital terrain model (DTM) allows extracting WL. However, most research using SAR data to calibrate hydraulic models has been carried out using one or two images. The objectives of this study is to use WL derived from time series high resolution Radarsat-2 SAR images for the calibration of a 1-D hydraulic model (HEC-RAS). Twenty high-resolution (5 m) Radarsat-2 images were acquired over a 40 km reach of the Athabasca River, in northern Alberta, Canada, between 2012 and 2016, covering both low and high flow regimes. A high-resolution (2m) DTM was generated combining information from LIDAR data and bathymetry acquired between 2008 and 2016 by boat surveying. The HEC-RAS model was implemented on the Athabasca River to simulate WL using cross-sections spaced by 100 m. An image histogram thresholding method was applied on each Radarsat-2 image to derive WE. WE were then compared against each cross-section to identify those were the slope of the banks is not too abrupt and therefore amenable to extract WL. 139 observations of WL at different locations along the river reach and with streamflow measurements were used to calibrate the HEC-RAS model. The RMSE between SAR-derived and simulated WL is under 0.35 m. Validation was performed using in situ observations of WL measured in 2008, 2012 and 2016. The RMSE between the simulated water levels calibrated with SAR images and in situ observations is less than 0.20 m. In addition, a critical success index (CSI) was

  16. Development of a pixel sensor with fine space-time resolution based on SOI technology for the ILC vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Shun, E-mail: s-ono@champ.hep.sci.osaka-u.ac.jp [Osaka University, 1-1 Machikaneyama, Toyonaka (Japan); Togawa, Manabu; Tsuji, Ryoji; Mori, Teppei [Osaka University, 1-1 Machikaneyama, Toyonaka (Japan); Yamada, Miho; Arai, Yasuo; Tsuboyama, Toru; Hanagaki, Kazunori [Institute of Particle and Nuclear Studies, High Energy Accelerator Research Org. (KEK), 1-1 Oho, Tsukuba (Japan)

    2017-02-11

    We have been developing a new monolithic pixel sensor with silicon-on-insulator (SOI) technology for the International Linear Collider (ILC) vertex detector system. The SOI monolithic pixel detector is realized using standard CMOS circuits fabricated on a fully depleted sensor layer. The new SOI sensor SOFIST can store both the position and timing information of charged particles in each 20×20 μm{sup 2} pixel. The position resolution is further improved by the position weighted with the charges spread to multiple pixels. The pixel also records the hit timing with an embedded time-stamp circuit. The sensor chip has column-parallel analog-to-digital conversion (ADC) circuits and zero-suppression logic for high-speed data readout. We are designing and evaluating some prototype sensor chips for optimizing and minimizing the pixel circuit.

  17. Development of a CMOS time memory cell VLSI and CAMAC module with 0.5 ns resolution

    International Nuclear Information System (INIS)

    Arai, Y.; Ikeno, M.; Matsumura, T.

    1992-01-01

    A CMOS time-to-digital converter chip, the Time Memory Cell (TMC), for high-rate wire chamber application has been developed. The chip has a timing resolution of 0.52 ns, dissipates only 7 mW/channel, and contains 4 channels in a chip. Each channel has 1024 memory locations which act as a buffer 1μs deep. The chip was fabricated in a 0.8 μm CMOS process and is 5.0 mm by 5.6 mm. Using the TMC chip, a CAMAC module with 32 input channels was developed. This module is designed to operate in both 'Common Start' and 'Common Stop' modes. The circuit of the module and test results are described in this paper

  18. An experimentally verified model for estimating the distance resolution capability of direct time of flight 3D optical imaging systems

    International Nuclear Information System (INIS)

    Nguyen, K Q K; Fisher, E M D; Walton, A J; Underwood, I

    2013-01-01

    This report introduces a new statistical model for time-resolved photon detection in a generic single-photon-sensitive sensor array. The model is validated by comparing modelled data with experimental data collected on a single-photon avalanche diode sensor array. Data produced by the model are used alongside corresponding experimental data to calculate, for the first time, the effective distance resolution of a pulsed direct time of flight 3D optical imaging system over a range of conditions using four peak-detection algorithms. The relative performance of the algorithms is compared. The model can be used to improve the system design process and inform selection of the optimal peak-detection algorithm. (paper)

  19. A quenched-flow system for measuring heterogeneous enzyme kinetics with sub-second time resolution

    DEFF Research Database (Denmark)

    Olsen, Johan Pelck; Kari, Jeppe; Borch, Kim

    2017-01-01

    of insoluble substrate. Perhaps for this reason, transient kinetics has rarely been reported for heterogeneous enzyme reactions. Here, we describe a quenched-flow system using peristaltic pumps and stirred substrate suspensions with a dead time below 100 ms. The general performance was verified by alkali...

  20. It's time for a crisper image of the Face of the Earth: Landsat and climate time series for massive land cover & climate change mapping at detailed resolution.

    Science.gov (United States)

    Pons, Xavier; Miquel, Ninyerola; Oscar, González-Guerrero; Cristina, Cea; Pere, Serra; Alaitz, Zabala; Lluís, Pesquer; Ivette, Serral; Joan, Masó; Cristina, Domingo; Maria, Serra Josep; Jordi, Cristóbal; Chris, Hain; Martha, Anderson; Juanjo, Vidal

    2014-05-01

    Combining climate dynamics and land cover at a relative coarse resolution allows a very interesting approach to global studies, because in many cases these studies are based on a quite high temporal resolution, but they may be limited in large areas like the Mediterranean. However, the current availability of long time series of Landsat imagery and spatially detailed surface climate models allow thinking on global databases improving the results of mapping in areas with a complex history of landscape dynamics, characterized by fragmentation, or areas where relief creates intricate climate patterns that can be hardly monitored or modeled at coarse spatial resolutions. DinaCliVe (supported by the Spanish Government and ERDF, and by the Catalan Government, under grants CGL2012-33927 and SGR2009-1511) is the name of the project that aims analyzing land cover and land use dynamics as well as vegetation stress, with a particular emphasis on droughts, and the role that climate variation may have had in such phenomena. To meet this objective is proposed to design a massive database from long time series of Landsat land cover products (grouped in quinquennia) and monthly climate records (in situ climate data) for the Iberian Peninsula (582,000 km2). The whole area encompasses 47 Landsat WRS2 scenes (Landsat 4 to 8 missions, from path 197 to 202 and from rows 30 to 34), and 52 Landsat WRS1 scenes (for the previous Landsat missions, 212 to 221 and 30 to 34). Therefore, a mean of 49.5 Landsat scenes, 8 quinquennia per scene and a about 6 dates per quinquennium , from 1975 to present, produces around 2376 sets resulting in 30 m x 30 m spatial resolution maps. Each set is composed by highly coherent geometric and radiometric multispectral and multitemporal (to account for phenology) imagery as well as vegetation and wetness indexes, and several derived topographic information (about 10 Tbyte of data). Furthermore, on the basis on a previous work: the Digital Climatic Atlas of

  1. Estimation of time-varying pollutant emission rates in a ventilated enclosure: inversion of a reduced model obtained by experimental application of the modal identification method

    International Nuclear Information System (INIS)

    Girault, M; Maillet, D; Bonthoux, F; Galland, B; Martin, P; Braconnier, R; Fontaine, J R

    2008-01-01

    A method is proposed for the estimation of time-varying emission rates of pollutant sources in a ventilated enclosure, through the resolution of an inverse forced convection problem. Unsteady transport–diffusion of the pollutant is considered, with the assumption of a stationary velocity field remaining unchanged during emission (passive contaminant). The pollutant transport equation is therefore linear with respect to concentration. The source's location is also supposed to be known. As the first step, a reduced model (RM) linking concentrations at a set of control points to emission rates of sources is identified from experimental data by using the modal identification method (MIM). This parameter estimation problem uses transient contaminant concentration measurements made at control points inside the ventilated enclosure, corresponding to increasing and decreasing steps of emission rates. Such experimental modelling allows us to avoid dealing with a CFD code involving turbulence modelling and to get rid of uncertainties about sensors position. In a second step, the identified RM is used to solve an inverse forced convection problem: from contaminant concentration measured at the same control points, rates of sources emitting simultaneously are estimated with a sequential in time algorithm using future time steps

  2. 4-channel rad-hard delay generation ASIC with 1ns timing resolution for LHC

    International Nuclear Information System (INIS)

    Toifl, T.; Moreira, P.; Marchioro, A.; Vari, R.

    1999-01-01

    An ASIC was developed to precisely delay digital signals within the range of 0--24ns in steps of 1ns. To obtain well defined delay values independent of variations in process, supply voltage and temperature, four independent delay channels are controlled by a common control voltage derived from a delay-locked loop (DLL), which is synchronized to an external 40 MHz clock signal. The delay values of the four signal channels and the clock channel can be individually programmed via an I 2 C interface. Due to an automatic reset logic the chip does not need an external reset signal. A first version of the chip was developed in a non-rad-hard 0.8 microm technology and the successful prototype was then transferred to a radiation hard process (DMILL). Measurement results for both chip variants will be presented

  3. Real-time high-resolution measurement of collagen alignment in dynamically loaded soft tissue.

    Science.gov (United States)

    York, Timothy; Kahan, Lindsey; Lake, Spencer P; Gruev, Viktor

    2014-06-01

    A technique for creating maps of the direction and strength of fiber alignment in collagenous soft tissues is presented. The method uses a division of focal plane polarimeter to measure circularly polarized light transmitted through the tissue. The architecture of the sensor allows measurement of the retardance and fiber alignment at the full frame rate of the sensor without any moving optics. The technique compares favorably to the standard method of using a rotating polarizer. How the new technique enables real-time capture of the full angular spread of fiber alignment and retardance under various cyclic loading conditions is illustrated.

  4. Time-Efficient High-Resolution Large-Area Nano-Patterning of Silicon Dioxide

    DEFF Research Database (Denmark)

    Lin, Li; Ou, Yiyu; Aagesen, Martin

    2017-01-01

    A nano-patterning approach on silicon dioxide (SiO2) material, which could be used for the selective growth of III-V nanowires in photovoltaic applications, is demonstrated. In this process, a silicon (Si) stamp with nanopillar structures was first fabricated using electron-beam lithography (EBL....... In addition, high time efficiency can be realized by one-spot electron-beam exposure in the EBL process combined with NIL for mass production. Furthermore, the one-spot exposure enables the scalability of the nanostructures for different application requirements by tuning only the exposure dose. The size...

  5. High resolution time-lapse gravity field from GRACE for hydrological modelling

    DEFF Research Database (Denmark)

    Krogh, Pernille Engelbredt

    Calibration of large scale hydrological models have traditionally been performed using point observations, which are often sparsely distributed. The Gravity Recovery And Climate Experiment (GRACE) mission provides global remote sensing information about mass fluxes with unprecedented accuracy...... than for the mascon only solution, but later than the GLDAS/Noah TWS and the CNES/GRGS SH solutions. The deviations are 10–20 days. From this point of view, the tuning of hydrological models with KBRR data is certainly feasible, though highly time consuming and complicated at the moment. The method...

  6. Major unresolved issues preventing a timely resolution to radioactive waste disposal

    International Nuclear Information System (INIS)

    1978-01-01

    GAO surveyed a portion of the literature on radioactive waste management and identified those major issues which could impede the timely and comprehensive removal of obstacles to demonstrating a national radioactive waste disposal program. Presently, U.S. radioactive waste policy goals are unclear in that there is no clear differentiation of management, regulation (licensing), and research, development, and demonstration functions. Decisions on such important issues as regulatory responsibility over radioactive wastes, criteria for radioactive waste form and performance, method of final disposition, and repository site locations must be made, and made soon, in order to assure public health and safety and adequate management of these potentially hazardous materials

  7. High-resolution morphologic and ultrashort time-to-echo quantitative magnetic resonance imaging of the temporomandibular joint

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Won C.; Chang, Eric Y.; Biswas, Reni; Statum, Sheronda; Chung, Christine B. [Veterans Administration San Diego Healthcare System, Department of Radiology, San Diego, CA (United States); University of California, San Diego, School of Medicine, Department of Radiology, San Diego, CA (United States); Tafur, Monica; Du, Jiang; Healey, Robert [University of California, San Diego, School of Medicine, Department of Radiology, San Diego, CA (United States); Kwack, Kyu-Sung [Ajou University Medical Center, Department of Radiology, Wonchon-dong, Yeongtong-gu, Gyeonggi-do, Suwon (Korea, Republic of)

    2016-03-15

    To implement high-resolution morphologic and quantitative magnetic resonance imaging (MRI) of the temporomandibular joint (TMJ) using ultrashort time-to-echo (UTE) techniques in cadavers and volunteers. This study was approved by the institutional review board. TMJs of cadavers and volunteers were imaged on a 3-T MR system. High-resolution morphologic and quantitative sequences using conventional and UTE techniques were performed in cadaveric TMJs. Morphologic and UTE quantitative sequences were performed in asymptomatic and symptomatic volunteers. Morphologic evaluation demonstrated the TMJ structures in open- and closed-mouth position. UTE techniques facilitated the visualization of the disc and fibrocartilage. Quantitative UTE MRI was successfully performed ex vivo and in vivo, reflecting the degree of degeneration. There was a difference in the mean UTE T2* values between asymptomatic and symptomatic volunteers. MRI evaluation of the TMJ using UTE techniques allows characterization of the internal structure and quantification of the MR properties of the disc. Quantitative UTE MRI can be performed in vivo with short scan times. (orig.)

  8. Characterisation and exploitation of Atlas electromagnetic calorimeter performances: muons study and timing resolution use

    International Nuclear Information System (INIS)

    Camard, A.

    2004-10-01

    The ATLAS detector in LHC involves electromagnetic calorimeters. The purpose of this work is to study the calorimeter response to the muons contaminating the beam used to test the different modules of ATLAS. We have showed how data analysis from the testing beam can be used to assure that the required performance for the study of the detector response to muons provides a complementary diagnostic tool for electrons. We have taken part into the design of a testing bench aimed at assessing the performance of the receiver circuit for timing and triggering signals. We have developed, in the framework of a quick simulation of ATLAS, a tool for the reconstruction in a simple and fast manner of the localization of the main event vertex by using the measurement of the arrival time of particles with ATLAS's calorimeters. It is likely that this tool will be fully used during the starting phase of the ATLAS experiment because it is easier to operate it quickly and is less sensitive to the background noise than traditional tools based on charged-particle tracks recognition inside the detector

  9. Retrospective Reconstruction of High Temporal Resolution Cine Images from Real-Time MRI using Iterative Motion Correction

    DEFF Research Database (Denmark)

    Hansen, Michael Schacht; Sørensen, Thomas Sangild; Arai, Andrew

    2012-01-01

    acquisitions in 10 (N = 10) subjects. Acceptable image quality was obtained in all motion-corrected reconstructions, and the resulting mean image quality score was (a) Cartesian real-time: 2.48, (b) Golden Angle real-time: 1.90 (1.00–2.50), (c) Cartesian motion correction: 3.92, (d) Radial motion correction: 4...... and motion correction based on nonrigid registration and can be applied to arbitrary k-space trajectories. The method is demonstrated with real-time Cartesian imaging and Golden Angle radial acquisitions, and the motion-corrected acquisitions are compared with raw real-time images and breath-hold cine...

  10. Monitoring irrigation water consumption using high resolution NDVI image time series (Sentinel-2 like). Calibration and validation in the Kairouan plain (Tunisia)

    Science.gov (United States)

    Saadi, Sameh; Simonneaux, Vincent; Boulet, Gilles; Mougenot, Bernard; Zribi, Mehrez; Lili Chabaane, Zohra

    2015-04-01

    Water scarcity is one of the main factors limiting agricultural development in semi-arid areas. It is thus of major importance to design tools allowing a better management of this resource. Remote sensing has long been used for computing evapotranspiration estimates, which is an input for crop water balance monitoring. Up to now, only medium and low resolution data (e.g. MODIS) are available on regular basis to monitor cultivated areas. However, the increasing availability of high resolution high repetitivity VIS-NIR remote sensing, like the forthcoming Sentinel-2 mission to be lunched in 2015, offers unprecedented opportunity to improve this monitoring. In this study, regional crops water consumption was estimated with the SAMIR software (Satellite of Monitoring Irrigation) using the FAO-56 dual crop coefficient water balance model fed with high resolution NDVI image time series providing estimates of both the actual basal crop coefficient (Kcb) and the vegetation fraction cover. The model includes a soil water model, requiring the knowledge of soil water holding capacity, maximum rooting depth, and water inputs. As irrigations are usually not known on large areas, they are simulated based on rules reproducing the farmer practices. The main objective of this work is to assess the operationality and accuracy of SAMIR at plot and perimeter scales, when several land use types (winter cereals, summer vegetables…), irrigation and agricultural practices are intertwined in a given landscape, including complex canopies such as sparse orchards. Meteorological ground stations were used to compute the reference evapotranspiration and get the rainfall depths. Two time series of ten and fourteen high-resolution SPOT5 have been acquired for the 2008-2009 and 2012-2013 hydrological years over an irrigated area in central Tunisia. They span the various successive crop seasons. The images were radiometrically corrected, first, using the SMAC6s Algorithm, second, using invariant

  11. Speleothem stable isotope records for east-central Europe: resampling sedimentary proxy records to obtain evenly spaced time series with spectral guidance

    Science.gov (United States)

    Gábor Hatvani, István; Kern, Zoltán; Leél-Őssy, Szabolcs; Demény, Attila

    2018-01-01

    Uneven spacing is a common feature of sedimentary paleoclimate records, in many cases causing difficulties in the application of classical statistical and time series methods. Although special statistical tools do exist to assess unevenly spaced data directly, the transformation of such data into a temporally equidistant time series which may then be examined using commonly employed statistical tools remains, however, an unachieved goal. The present paper, therefore, introduces an approach to obtain evenly spaced time series (using cubic spline fitting) from unevenly spaced speleothem records with the application of a spectral guidance to avoid the spectral bias caused by interpolation and retain the original spectral characteristics of the data. The methodology was applied to stable carbon and oxygen isotope records derived from two stalagmites from the Baradla Cave (NE Hungary) dating back to the late 18th century. To show the benefit of the equally spaced records to climate studies, their coherence with climate parameters is explored using wavelet transform coherence and discussed. The obtained equally spaced time series are available at PANGAEA.875917" target="_blank">https://doi.org/10.1594/PANGAEA.875917.

  12. A poly(dimethylsiloxane)-based device enabling time-lapse imaging with high spatial resolution

    International Nuclear Information System (INIS)

    Hirano, Masahiko; Hoshida, Tetsushi; Sakaue-Sawano, Asako; Miyawaki, Atsushi

    2010-01-01

    We have developed a regulator-free device that enables long-term incubation of mammalian cells for epi-fluorescence imaging, based on a concept that the size of sample to be gassed and heated is reduced to observation scale. A poly(dimethylsiloxane) block stamped on a coverslip works as a long-lasting supplier of CO 2 -rich gas to adjust bicarbonate-containing medium in a tiny chamber at physiological pH, and an oil-immersion objective warms cells across the coverslip. A time-lapse imaging experiment using HeLa cells stably expressing fluorescent cell-cycle indicators showed that the cells in the chamber proliferated with normal cell-cycle period over 2 days.

  13. A high-resolution time-of-flight spectrometer for fission fragments and ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Kosev, Krasimir Milchev

    2007-07-01

    For the purpose of fission-fragment detection a double time-of-flight (TOF) spectrometer has been developed. The key component of the TOF spectrometer is a TOF detector consisting of multichannel-plate (MCP) detectors with a position-sensitive readout, a foil for secondary electron (SE) production and an electrostatic mirror. The fission fragments are detected by measuring the SEs impinging on the position-sensitive anode after emission from the foil, acceleration and deflection by the electrostatic mirror. The functionality of the different detector components is proven in detail. Optimised schemes for the high-voltage supplies of the MCP detectors have been implemented successfully. In order to process the multichannel-plate detector signals optimally, a new state-of-the-art constant-fraction discriminator based on the amplitude and rise time compensated technique with very low threshold capabilities and optimised walk properties has been developed and incorporated into the setup. In a setup consisting of two mirror MCP detectors, we could successfully observe the TOF spectrum of a mixed ({sup 226}Ra,{sup 222}Rn,{sup 210}Po,{sup 218}Po,{sup 214}Po) {alpha}-source. Testing photo-fission experiments were performed at the bremsstrahlung facility at the ELBE accelerator. The setup consisted of two mirror detectors (first arm) and a 80 mm diameter MCP detector (second arm) with a {sup 238}U target positioned in between. TOF measurements with two bremsstrahlung end-point energies of 12.9 and 16.0 MeV were carried out. A clear cut separation of the TOF peaks for the medium-mass and heavy fission fragments was observed. (orig.)

  14. A high-resolution time-of-flight spectrometer for fission fragments and ion beams

    International Nuclear Information System (INIS)

    Kosev, Krasimir Milchev

    2007-01-01

    For the purpose of fission-fragment detection a double time-of-flight (TOF) spectrometer has been developed. The key component of the TOF spectrometer is a TOF detector consisting of multichannel-plate (MCP) detectors with a position-sensitive readout, a foil for secondary electron (SE) production and an electrostatic mirror. The fission fragments are detected by measuring the SEs impinging on the position-sensitive anode after emission from the foil, acceleration and deflection by the electrostatic mirror. The functionality of the different detector components is proven in detail. Optimised schemes for the high-voltage supplies of the MCP detectors have been implemented successfully. In order to process the multichannel-plate detector signals optimally, a new state-of-the-art constant-fraction discriminator based on the amplitude and rise time compensated technique with very low threshold capabilities and optimised walk properties has been developed and incorporated into the setup. In a setup consisting of two mirror MCP detectors, we could successfully observe the TOF spectrum of a mixed ( 226 Ra, 222 Rn, 210 Po, 218 Po, 214 Po) α-source. Testing photo-fission experiments were performed at the bremsstrahlung facility at the ELBE accelerator. The setup consisted of two mirror detectors (first arm) and a 80 mm diameter MCP detector (second arm) with a 238 U target positioned in between. TOF measurements with two bremsstrahlung end-point energies of 12.9 and 16.0 MeV were carried out. A clear cut separation of the TOF peaks for the medium-mass and heavy fission fragments was observed. (orig.)

  15. On the possibility of time-lapse ultrahigh-resolution optical coherence tomography for bladder cancer grading

    Science.gov (United States)

    Yuan, Zhijia; Chen, Bai; Ren, Hugang; Pan, Yingtian

    2009-09-01

    It has been recently demonstrated that the cellular details of bladder epithelium embedded in speckle noise can be uncovered with time-lapse ultrahigh-resolution optical coherence tomography (TL-uOCT) by proper time-lapse frame averaging that takes advantage of cellular micromotion in fresh biological tissue ex vivo. Here, spectral-domain 3-D TL-uOCT is reported to further improve the image fidelity, and new experimental evidence is presented to differentiate normal and cancerous nuclei of rodent bladder epithelia. Results of animal cancer study reveal that despite a slight overestimation (e.g., cancerous (e.g., high-grade DN''~13 μm) urothelia, which may potentially be very useful for enhancing the diagnosis of nonpapillary bladder cancer. More animal study is being conducted to examine the utility to differentiate hyperplasia, dysplasia, and carcinoma in situ.

  16. Test beam studies of the light yield, time and coordinate resolutions of scintillator strips with WLS fibers and SiPM readout

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, Dmitri [Fermilab, Batavia IL (United States); Evdokimov, Valery [Institute for High Energy Physics, Protvino (Russian Federation); Lukić, Strahinja; Ujić, Predrag [Vinča Institute, University of Belgrade (Serbia)

    2017-03-11

    Prototype scintilator+WLS strips with SiPM readout for large muon detection systems were tested in the muon beam of the Fermilab Test Beam Facility. Light yield of up to 137 photoelectrons per muon per strip has been observed , as well as time resolution of 330 ps and position resolution along the strip of 5.4 cm.

  17. Reduced timing Sensitivity in all-optical switching using flat-top control pulses obtained by the optical fourier transform technique

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Galili, Michael; Mulvad, Hans Christian Hansen

    2006-01-01

    into the time domain, referred to as the optical Fourier transform technique. A 3 ps flat-top pulse derived from a 3 nm wide square filter is obtained, and used to gate an all-optical OTDM demultiplexer, yielding an error-free timing jitter tolerance of 3 ps for 80 Gb/s and 160 Gb/s data signals.......For high-speed serial data, timing tolerance is crucial for switching and regeneration. We propose a novel scheme to generate flat-top pulses, for use as gating control pulses. The scheme relies on spectral shaping by a square-shaped filter, followed by a linear transformation of the spectral shape...

  18. Automatic Detection of Clouds and Shadows Using High Resolution Satellite Image Time Series

    Science.gov (United States)

    Champion, Nicolas

    2016-06-01

    Detecting clouds and their shadows is one of the primaries steps to perform when processing satellite images because they may alter the quality of some products such as large-area orthomosaics. The main goal of this paper is to present the automatic method developed at IGN-France for detecting clouds and shadows in a sequence of satellite images. In our work, surface reflectance orthoimages are used. They were processed from initial satellite images using a dedicated software. The cloud detection step consists of a region-growing algorithm. Seeds are firstly extracted. For that purpose and for each input ortho-image to process, we select the other ortho-images of the sequence that intersect it. The pixels of the input ortho-image are secondly labelled seeds if the difference of reflectance (in the blue channel) with overlapping ortho-images is bigger than a given threshold. Clouds are eventually delineated using a region-growing method based on a radiometric and homogeneity criterion. Regarding the shadow detection, our method is based on the idea that a shadow pixel is darker when comparing to the other images of the time series. The detection is basically composed of three steps. Firstly, we compute a synthetic ortho-image covering the whole study area. Its pixels have a value corresponding to the median value of all input reflectance ortho-images intersecting at that pixel location. Secondly, for each input ortho-image, a pixel is labelled shadows if the difference of reflectance (in the NIR channel) with the synthetic ortho-image is below a given threshold. Eventually, an optional region-growing step may be used to refine the results. Note that pixels labelled clouds during the cloud detection are not used for computing the median value in the first step; additionally, the NIR input data channel is used to perform the shadow detection, because it appeared to better discriminate shadow pixels. The method was tested on times series of Landsat 8 and Pl

  19. AUTOMATIC DETECTION OF CLOUDS AND SHADOWS USING HIGH RESOLUTION SATELLITE IMAGE TIME SERIES

    Directory of Open Access Journals (Sweden)

    N. Champion

    2016-06-01

    Full Text Available Detecting clouds and their shadows is one of the primaries steps to perform when processing satellite images because they may alter the quality of some products such as large-area orthomosaics. The main goal of this paper is to present the automatic method developed at IGN-France for detecting clouds and shadows in a sequence of satellite images. In our work, surface reflectance orthoimages are used. They were processed from initial satellite images using a dedicated software. The cloud detection step consists of a region-growing algorithm. Seeds are firstly extracted. For that purpose and for each input ortho-image to process, we select the other ortho-images of the sequence that intersect it. The pixels of the input ortho-image are secondly labelled seeds if the difference of reflectance (in the blue channel with overlapping ortho-images is bigger than a given threshold. Clouds are eventually delineated using a region-growing method based on a radiometric and homogeneity criterion. Regarding the shadow detection, our method is based on the idea that a shadow pixel is darker when comparing to the other images of the time series. The detection is basically composed of three steps. Firstly, we compute a synthetic ortho-image covering the whole study area. Its pixels have a value corresponding to the median value of all input reflectance ortho-images intersecting at that pixel location. Secondly, for each input ortho-image, a pixel is labelled shadows if the difference of reflectance (in the NIR channel with the synthetic ortho-image is below a given threshold. Eventually, an optional region-growing step may be used to refine the results. Note that pixels labelled clouds during the cloud detection are not used for computing the median value in the first step; additionally, the NIR input data channel is used to perform the shadow detection, because it appeared to better discriminate shadow pixels. The method was tested on times series of Landsat 8

  20. Novel Insight for Organic Matter Sourcing: Interest of Time Resolved Fluorescence to Qualify and Quantify PAH Content of Solid Matrix at High Resolution

    Science.gov (United States)

    Quiers, M.; Perrette, Y.; Jacq, K.; Pousset, E.; Plassart, G.

    2017-12-01

    OM fluorescence is today a well-developed tool used to characterize and quantify organic matter (OM), but also to evaluate and discriminate OM fate and changes related to climate and environmental modifications. While fluorescence measurements on water and soils extracts provide information about organic fluxes today, solid phase fluorescence using natural archives allows to obtain high resolution records of OM evolution during time. These evolutions can be discussed in regards of climate and environmental perturbations detected in archives using different proxies, and thus provide keys for understanding factors driving carbon fluxes mechanisms. Among fluorescent organic species, Polycyclic Aromatic Hydrocarbons (PAH) have been used as probe molecules for organic contamination tracking. Moreover, monitoring studies have shown that PAH could also be used as markers to discriminates atmospheric and erosion factors leading to PAH and organic matter fluxes to the aquifer. PAH records in soils and natural archives appear as a promising proxy to follow both past atmospheric contamination and soil erosion. But, PAH fluorescence is difficult to discriminate from bulk OM fluorescence using steady-state fluorescence (SSF) technics as their fluorescence domains recover. Time resolved emission spectroscopy (TRES) increases the information provided by SSF technic, adding a time dimension to measurements and allowing to discriminate PAH fluorescence. We report here a first application of this technic on natural archives. The challenge is to obtain TRES signature along the sample, including for low PAH concentrations. This study aims to evaluate the reliability of high resolution TRES measurement as PAH carbon fluxes sources. Method is based on LIF instrument for solid phase fluorescence measurement. An instrument coupling an excitation system constituting by 2 pulsed lasers (266 and 355 nm) and a detection system was developed. This measurement provides high resolution record of

  1. Chemical composition, antioxidant and antimicrobial activities of essential oil obtained from Ferula assa-foetida oleo-gum-resin: effect of collection time.

    Science.gov (United States)

    Kavoosi, Gholamreza; Rowshan, Vahid

    2013-06-15

    The properties of essential oils obtained from Ferula assa-foetida oleo-gum-resins (OGRs) collectioned in three collections times in 15 June (OGR1), 30 June (OGR2) and 15 July (OGR3) 2011 was investigated. Essential oil from OGR1 was constituted high levels of (E)-1-propenyl sec-butyl disulfide (23.9%) and 10-epi-γ-eudesmol (15.1%). Essential oil from OGR2 was constituted high levels of (Z)-1-propenyl sec-butyl disulfide (27.7%) and (E)-1-propenyl sec-butyl disulfide (20.3%). Essential oil from OGR3 was constituted high levels of β-pinene (47.1%) and α-pinene (21.3%). Inhibitory concentration (IC50) for radical scavenging were 0.012-0.035, 0.025-0.047 and 0.035-0.066 mg/ml of essential oil obtained from OGR1, OGR2 and OGR3, respectively. Minimal inhibitory concentration (MIC) for Gram-positive and Gram-negative bacteria and fungi grpwth were 0.028-0.111, 0.027-0.107 and 0.018-0.058 mg/ml of essential oil obtained from OGR1, OGR2 and OGR3, respectively. Essential oils obtained from different OGRs have different composition and biological activity thus have different applications in food and health industry. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  2. High Time Resolution Measurements of Methane Fluxes From Enteric Fermentation in Cattle Rumen

    Science.gov (United States)

    Floerchinger, C. R.; Herndon, S.; Fortner, E.; Roscioli, J. R.; Kolb, C. E.; Knighton, W. B.; Molina, L. T.; Zavala, M.; Castelán, O.; Ku Vera, J.; Castillo, E.

    2013-12-01

    Methane accounts for roughly 20% of the global radiative climate forcing in the last two and a half centuries. Methane emissions arise from a number of anthropogenic and biogenic sources. In some areas enteric fermentation in livestock produces over 90% of agricultural methane. In the spring of 2013, as a part of the Short Lived Climate Forcer-Mexico field campaign, the Aerodyne Mobile Laboratory in partnership with the Molina Center for the Environment studied methane production associated with enteric fermentation in the rumen of cattle. A variety of different breeds and stocks being raised in two agricultural and veterinary research facilities located in different areas of Mexico were examined. Methane fluxes were quantified using two methods: 1) an atmospherically stable gaseous tracer release was collocated with small herds in a pasture, allowing tracer ratio flux measurements; 2) respiratory CO2 was measured in tandem with methane in the breath of individual animals allowing methane production to be related to metabolism. The use of an extensive suite of very high time response instruments allows for differentiation of individual methane producing rumination events and respiratory CO2 from possible background interferences. The results of these studies will be presented and compared to data from traditional chamber experiments.

  3. Real-time resolution of point mutations that cause phenovariance in mice

    Science.gov (United States)

    Wang, Tao; Zhan, Xiaowei; Bu, Chun-Hui; Lyon, Stephen; Pratt, David; Hildebrand, Sara; Choi, Jin Huk; Zhang, Zhao; Zeng, Ming; Wang, Kuan-wen; Turer, Emre; Chen, Zhe; Zhang, Duanwu; Yue, Tao; Wang, Ying; Shi, Hexin; Wang, Jianhui; Sun, Lei; SoRelle, Jeff; McAlpine, William; Hutchins, Noelle; Zhan, Xiaoming; Fina, Maggy; Gobert, Rochelle; Quan, Jiexia; Kreutzer, McKensie; Arnett, Stephanie; Hawkins, Kimberly; Leach, Ashley; Tate, Christopher; Daniel, Chad; Reyna, Carlos; Prince, Lauren; Davis, Sheila; Purrington, Joel; Bearden, Rick; Weatherly, Jennifer; White, Danielle; Russell, Jamie; Sun, Qihua; Tang, Miao; Li, Xiaohong; Scott, Lindsay; Moresco, Eva Marie Y.; McInerney, Gerald M.; Karlsson Hedestam, Gunilla B.; Xie, Yang; Beutler, Bruce

    2015-01-01

    With the wide availability of massively parallel sequencing technologies, genetic mapping has become the rate limiting step in mammalian forward genetics. Here we introduce a method for real-time identification of N-ethyl-N-nitrosourea-induced mutations that cause phenotypes in mice. All mutations are identified by whole exome G1 progenitor sequencing and their zygosity is established in G2/G3 mice before phenotypic assessment. Quantitative and qualitative traits, including lethal effects, in single or multiple combined pedigrees are then analyzed with Linkage Analyzer, a software program that detects significant linkage between individual mutations and aberrant phenotypic scores and presents processed data as Manhattan plots. As multiple alleles of genes are acquired through mutagenesis, pooled “superpedigrees” are created to analyze the effects. Our method is distinguished from conventional forward genetic methods because it permits (1) unbiased declaration of mappable phenotypes, including those that are incompletely penetrant (2), automated identification of causative mutations concurrent with phenotypic screening, without the need to outcross mutant mice to another strain and backcross them, and (3) exclusion of genes not involved in phenotypes of interest. We validated our approach and Linkage Analyzer for the identification of 47 mutations in 45 previously known genes causative for adaptive immune phenotypes; our analysis also implicated 474 genes not previously associated with immune function. The method described here permits forward genetic analysis in mice, limited only by the rates of mutant production and screening. PMID:25605905

  4. Clinical evaluation of reducing acquisition time on single-photon emission computed tomography image quality using proprietary resolution recovery software.

    Science.gov (United States)

    Aldridge, Matthew D; Waddington, Wendy W; Dickson, John C; Prakash, Vineet; Ell, Peter J; Bomanji, Jamshed B

    2013-11-01

    A three-dimensional model-based resolution recovery (RR) reconstruction algorithm that compensates for collimator-detector response, resulting in an improvement in reconstructed spatial resolution and signal-to-noise ratio of single-photon emission computed tomography (SPECT) images, was tested. The software is said to retain image quality even with reduced acquisition time. Clinically, any improvement in patient throughput without loss of quality is to be welcomed. Furthermore, future restrictions in radiotracer supplies may add value to this type of data analysis. The aims of this study were to assess improvement in image quality using the software and to evaluate the potential of performing reduced time acquisitions for bone and parathyroid SPECT applications. Data acquisition was performed using the local standard SPECT/CT protocols for 99mTc-hydroxymethylene diphosphonate bone and 99mTc-methoxyisobutylisonitrile parathyroid SPECT imaging. The principal modification applied was the acquisition of an eight-frame gated data set acquired using an ECG simulator with a fixed signal as the trigger. This had the effect of partitioning the data such that the effect of reduced time acquisitions could be assessed without conferring additional scanning time on the patient. The set of summed data sets was then independently reconstructed using the RR software to permit a blinded assessment of the effect of acquired counts upon reconstructed image quality as adjudged by three experienced observers. Data sets reconstructed with the RR software were compared with the local standard processing protocols; filtered back-projection and ordered-subset expectation-maximization. Thirty SPECT studies were assessed (20 bone and 10 parathyroid). The images reconstructed with the RR algorithm showed improved image quality for both full-time and half-time acquisitions over local current processing protocols (Pimproved image quality compared with local processing protocols and has been

  5. Real-Time Very High-Resolution Regional 4D Assimilation in Supporting CRYSTAL-FACE Experiment

    Science.gov (United States)

    Wang, Donghai; Minnis, Patrick

    2004-01-01

    To better understand tropical cirrus cloud physical properties and formation processes with a view toward the successful modeling of the Earth's climate, the CRYSTAL-FACE (Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment) field experiment took place over southern Florida from 1 July to 29 July 2002. During the entire field campaign, a very high-resolution numerical weather prediction (NWP) and assimilation system was performed in support of the mission with supercomputing resources provided by NASA Center for Computational Sciences (NCCS). By using NOAA NCEP Eta forecast for boundary conditions and as a first guess for initial conditions assimilated with all available observations, two nested 15/3 km grids are employed over the CRYSTAL-FACE experiment area. The 15-km grid covers the southeast US domain, and is run two times daily for a 36-hour forecast starting at 0000 UTC and 1200 UTC. The nested 3-km grid covering only southern Florida is used for 9-hour and 18-hour forecasts starting at 1500 and 0600 UTC, respectively. The forecasting system provided more accurate and higher spatial and temporal resolution forecasts of 4-D atmospheric fields over the experiment area than available from standard weather forecast models. These forecasts were essential for flight planning during both the afternoon prior to a flight day and the morning of a flight day. The forecasts were used to help decide takeoff times and the most optimal flight areas for accomplishing the mission objectives. See more detailed products on the web site http://asd-www.larc.nasa.gov/mode/crystal. The model/assimilation output gridded data are archived on the NASA Center for Computational Sciences (NCCS) UniTree system in the HDF format at 30-min intervals for real-time forecasts or 5-min intervals for the post-mission case studies. Particularly, the data set includes the 3-D cloud fields (cloud liquid water, rain water, cloud ice, snow and graupe/hail).

  6. Object-Based Classification of Grasslands from High Resolution Satellite Image Time Series Using Gaussian Mean Map Kernels

    Directory of Open Access Journals (Sweden)

    Mailys Lopes

    2017-07-01

    Full Text Available This paper deals with the classification of grasslands using high resolution satellite image time series. Grasslands considered in this work are semi-natural elements in fragmented landscapes, i.e., they are heterogeneous and small elements. The first contribution of this study is to account for grassland heterogeneity while working at the object level by modeling its pixels distributions by a Gaussian distribution. To measure the similarity between two grasslands, a new kernel is proposed as a second contribution: the α -Gaussian mean kernel. It allows one to weight the influence of the covariance matrix when comparing two Gaussian distributions. This kernel is introduced in support vector machines for the supervised classification of grasslands from southwest France. A dense intra-annual multispectral time series of the Formosat-2 satellite is used for the classification of grasslands’ management practices, while an inter-annual NDVI time series of Formosat-2 is used for old and young grasslands’ discrimination. Results are compared to other existing pixel- and object-based approaches in terms of classification accuracy and processing time. The proposed method is shown to be a good compromise between processing speed and classification accuracy. It can adapt to the classification constraints, and it encompasses several similarity measures known in the literature. It is appropriate for the classification of small and heterogeneous objects such as grasslands.

  7. Experimental prediction of severe droughts on seasonal to intra-annual time scales with GFDL High-Resolution Atmosphere Model

    Science.gov (United States)

    Yu, Z.; Lin, S.

    2011-12-01

    Regional heat waves and drought have major economic and societal impacts on regional and even global scales. For example, during and following the 2010-2011 La Nina period, severe droughts have been reported in many places around the world including China, the southern US, and the east Africa, causing severe hardship in China and famine in east Africa. In this study, we investigate the feasibility and predictability of severe spring-summer draught events, 3 to 6 months in advance with the 25-km resolution Geophysical Fluid Dynamics Laboratory High-Resolution Atmosphere Model (HiRAM), which is built as a seamless weather-climate model, capable of long-term climate simulations as well as skillful seasonal predictions (e.g., Chen and Lin 2011, GRL). We adopted a similar methodology and the same (HiRAM) model as in Chen and Lin (2011), which is used successfully for seasonal hurricane predictions. A series of initialized 7-month forecasts starting from Dec 1 are performed each year (5 members each) during the past decade (2000-2010). We will then evaluate the predictability of the severe drought events during this period by comparing model predictions vs. available observations. To evaluate the predictive skill, in this preliminary report, we will focus on the anomalies of precipitation, sea-level-pressure, and 500-mb height. These anomalies will be computed as the individual model prediction minus the mean climatology obtained by an independent AMIP-type "simulation" using observed SSTs (rather than using predictive SSTs in the forecasts) from the same model.

  8. Measurements of angles of the normal auditory ossicles relative to the reference plane and image reconstruction technique for obtaining optimal sections of the ossicles in high-resolution multiplanar reconstruction using a multislice CT scanner

    International Nuclear Information System (INIS)

    Fujii, Naoko; Katada, Kazuhiro; Yoshioka, Satoshi; Takeuchi, Kenji; Takasu, Akihiko; Naito, Kensei

    2005-01-01

    Using high-resolution isotropic volume data obtained by 0.5 mm, 4-row multislice CT, cross-sectional observation of the auditory ossicles is possible from any desired direction without difficulty in high-resolution multiplanar reconstruction (HR-MPR) images, also distortion-free three-dimensional images of the ossicles are generated in three-dimensional CT (3D-CT) images. We measured angles of fifty normal ossicles relative to the reference plane, which has been defined as a plane through the bilateral infraorbital margins to the middle portion of the external auditory canal. Based on the results of angle measurement, four optimal sections of the ossicles for efficient viewing to the ossicular chain were identified. To understand the position of the angle measurement and the four sections, the ossicles and the reference plane were reconstructed in the 3D-CT images. As the result of observation of the ossicles and the reference plane, the malleus was parallel to the incudal long process and perpendicular to the reference plane. As the results of angle measurement, the mean angle of the tympanic portion of the facial nerve relative to the reference plane in the sagittal plane was found to be 17 deg, and the mean angle of the stapedial crura relative to the reference plane in the sagittal plane was found to be 6 deg. The mean angle of the stapes relative to the reference plane in the coronal plane was 44 deg, and the mean angle of the incudal long process relative to the stapes in the coronal plane was 89 deg. In 80% of ears, the stapes extended straight from the incudal long process. Image reconstruction technique for viewing four sections of the ossicles was investigated. Firstly, the image of the malleal head and the incudal short process was identified in the axial plane. Secondly, an image of the malleus along the malleal manubrium was reconstructed in the coronal plane. Thirdly, the image of the incudal long process was seen immediately behind the malletis image

  9. Textural characterization and chemistry of activated coal obtained starting from stone of African palm at different conditions of temperature and carbonization time

    International Nuclear Information System (INIS)

    Diaz, Claudia Marcela; Briceno, Nelson; Baquero, Maria Cristina; Giraldo, Liliana; Moreno, Juan Carlos

    2002-01-01

    Activated carbons are obtained starting from stone of African palm, by means of chemical activation with k 2 CO 3 and thermal activation with CO 2 . The initial material undergoes different conditions of carbonization temperature 600, 750 and 900 Celsius degrades and different times of carbonization 1.0; 1.5; 2.0 and 2.5 hours, with the objective of observing how these conditions affect the porosity of the material. It is observed a low development of the porosity in the carbons carbonized to 900 Celsius degrade and activated chemically. The acidity and basicity are determined for each one of the activated carbons obtained for titration with solutions 0.05 m of sodium hydroxide and of hydrochloric acid respectively. The samples activated chemically present bigger contents of acid groups, for the experimental conditions of work? Than the samples obtained by thermal activation for the activated carbons thermally activated, the values for acid and basic groups are low-between 0,20 and 0,72 meq g-l

  10. It gets better: resolution of internalized homophobia over time and associations with positive health outcomes among MSM.

    Science.gov (United States)

    Herrick, Amy L; Stall, Ron; Chmiel, Joan S; Guadamuz, Thomas E; Penniman, Typhanye; Shoptaw, Steven; Ostrow, David; Plankey, Michael W

    2013-05-01

    Health disparities research among gay and bisexual men has focused primarily on risk and deficits. However, a focus on resiliencies within this population may greatly benefit health promotion. We describe a pattern of resilience (internalized homophobia (IHP) resolution) over the life-course and its associations with current health outcomes. 1,541 gay and bisexual men from the Multi-Center AIDS Cohort study, an ongoing prospective study of the natural and treated histories of HIV, completed a survey about life-course events thought to be related to health. The majority of men resolved IHP over time independent of demographics. Men who resolved IHP had significantly higher odds of positive health outcomes compared to those who did not. These results provide evidence of resilience among participants that is associated with positive health outcomes. Understanding resiliencies and incorporating them into interventions may help to promote health and well-being among gay and bisexual men.

  11. Precision Near-Field Reconstruction in the Time Domain via Minimum Entropy for Ultra-High Resolution Radar Imaging

    Directory of Open Access Journals (Sweden)

    Jiwoong Yu

    2017-05-01

    Full Text Available Ultra-high resolution (UHR radar imaging is used to analyze the internal structure of objects and to identify and classify their shapes based on ultra-wideband (UWB signals using a vector network analyzer (VNA. However, radar-based imaging is limited by microwave propagation effects, wave scattering, and transmit power, thus the received signals are inevitably weak and noisy. To overcome this problem, the radar may be operated in the near-field. The focusing of UHR radar signals over a close distance requires precise geometry in order to accommodate the spherical waves. In this paper, a geometric estimation and compensation method that is based on the minimum entropy of radar images with sub-centimeter resolution is proposed and implemented. Inverse synthetic aperture radar (ISAR imaging is used because it is applicable to several fields, including medical- and security-related applications, and high quality images of various targets have been produced to verify the proposed method. For ISAR in the near-field, the compensation for the time delay depends on the distance from the center of rotation and the internal RF circuits and cables. Required parameters for the delay compensation algorithm that can be used to minimize the entropy of the radar images are determined so that acceptable results can be achieved. The processing speed can be enhanced by performing the calculations in the time domain without the phase values, which are removed after upsampling. For comparison, the parameters are also estimated by performing random sampling in the data set. Although the reduced data set contained only 5% of the observed angles, the parameter optimization method is shown to operate correctly.

  12. A novel Fast Gas Chromatography based technique for higher time resolution measurements of speciated monoterpenes in air

    Science.gov (United States)

    Jones, C. E.; Kato, S.; Nakashima, Y.; Kajii, Y.

    2013-12-01

    Biogenic emissions supply the largest fraction of non-methane volatile organic compounds (VOC) from the biosphere to the atmospheric boundary layer, and typically comprise a complex mixture of reactive terpenes. Due to this chemical complexity, achieving comprehensive measurements of biogenic VOC (BVOC) in air within a satisfactory time resolution is analytically challenging. To address this, we have developed a novel, fully automated Fast Gas Chromatography (Fast-GC) based technique to provide higher time resolution monitoring of monoterpenes (and selected other C9-C15 terpenes) during plant emission studies and in ambient air. To our knowledge, this is the first study to apply a Fast-GC based separation technique to achieve quantification of terpenes in air. Three chromatography methods have been developed for atmospheric terpene analysis under different sampling scenarios. Each method facilitates chromatographic separation of selected BVOC within a significantly reduced analysis time compared to conventional GC methods, whilst maintaining the ability to quantify individual monoterpene structural isomers. Using this approach, the C10-C15 BVOC composition of single plant emissions may be characterised within a ~ 14 min analysis time. Moreover, in situ quantification of 12 monoterpenes in unpolluted ambient air may be achieved within an ~ 11 min chromatographic separation time (increasing to ~ 19 min when simultaneous quantification of multiple oxygenated C9-C10 terpenoids is required, and/or when concentrations of anthropogenic VOC are significant). This corresponds to a two- to fivefold increase in measurement frequency compared to conventional GC methods. Here we outline the technical details and analytical capability of this chromatographic approach, and present the first in situ Fast-GC observations of 6 monoterpenes and the oxygenated BVOC linalool in ambient air. During this field deployment within a suburban forest ~ 30 km west of central Tokyo, Japan, the

  13. Qualitative and Quantitative Analysis of Andrographis paniculata by Rapid Resolution Liquid Chromatography/Time-of-Flight Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Jian-Fei Qin

    2013-09-01

    Full Text Available A rapid resolution liquid chromatography/time-of-flight tandem mass spectrometry (RRLC-TOF/MS method was developed for qualitative and quantitative analysis of the major chemical constituents in Andrographis paniculata. Fifteen compounds, including flavonoids and diterpenoid lactones, were unambiguously or tentatively identified in 10 min by comparing their retention times and accurate masses with standards or literature data. The characteristic fragmentation patterns of flavonoids and diterpenoid lactones were summarized, and the structures of the unknown compounds were predicted. Andrographolide, dehydroandrographolide and neoandrographolide were further quantified as marker substances. It was found that the calibration curves for all analytes showed good linearity (R2 > 0.9995 within the test ranges. The overall limits of detection (LODs and limits of quantification (LOQs were 0.02 μg/mL to 0.06 μg/mL and 0.06 μg/mL to 0.2 μg/mL, respectively. The relative standard deviations (RSDs for intra- and inter-day precisions were below 3.3% and 4.2%, respectively. The mean recovery rates ranged from 96.7% to 104.5% with the relative standard deviations (RSDs less than 2.72%. It is concluded that RRLC-TOF/MS is powerful and practical in qualitative and quantitative analysis of complex plant samples due to time savings, sensitivity, precision, accuracy and lowering solvent consumption.

  14. High-time resolution conjugate SuperDARN radar observations of the dayside convection response to changes in IMF By

    Directory of Open Access Journals (Sweden)

    G. Chisham

    2000-02-01

    Full Text Available We present data from conjugate SuperDARN radars describing the high-latitude ionosphere's response to changes in the direction of IMF By during a period of steady IMF Bz southward and Bx positive. During this interval, the radars were operating in a special mode which gave high-time resolution data (30 s sampling period on three adjacent beams with a full scan every 3 min. The location of the radars around magnetic local noon at the time of the event allowed detailed observations of the variations in the ionospheric convection patterns close to the cusp region as IMF By varied. A significant time delay was observed in the ionospheric response to the IMF By changes between the two hemispheres. This is explained as being partially a consequence of the location of the dominant merging region on the magnetopause, which is ~8-12RE closer to the northern ionosphere than to the southern ionosphere (along the magnetic field line due to the dipole tilt of the magnetosphere and the orientation of the IMF. This interpretation supports the anti-parallel merging hypothesis and highlights the importance of the IMF Bx component in solar wind-magnetosphere coupling.Key words: Ionosphere (plasma convection - Magnetospheric physics (magnetopause, cusp, and boundary layers; solar wind - magnetosphere interactions

  15. Time resolution of Burle 85001 micro-channel plate photo-multipliers in comparison with Hamamatsu R2083

    Energy Technology Data Exchange (ETDEWEB)

    V. Baturin; V. Burkert; W. Kim; S. Majewsky; D. Nekrasov; K. Park; V. Popov; E. S. Smith; D. Son; S. S. Stepanyan; C. Zorn

    2005-06-01

    The CLAS detector will require improvements in its particle identification system to take advantage of the higher energies provided by the Jefferson Laboratory accelerator upgrade to 12 GeV. To this end, we have studied the timing characteristics of the micro-channel plate photo-multiplier 85001 from Burle, which can be operated in a high magnetic field environment. For reference and comparison, measurements were also made using the standard PMT R2083 from Hamamatsu using two timing methods. The cosmic ray method, which utilizes three identical scintillating counters 2cm x 3cm x 50cm with PMs at the ends, yields 59.1(0.7)ps. The location method of particles from radiative source with known coordinates has been used to compare timing resolutions of R2083 and Burle-85001. This ''coordinate method'' requires only one counter instrumented with two PMs and it yields 59.5(0.7)ps. For the micro-channel plate photomultiplier from Burle with an external amplification of 10 to the signals, the co ordinate method yields 130(4)ps. This method also makes it possible to estimate the number of primary photo-electrons.

  16. Benchmarking flood models from space in near real-time: accommodating SRTM height measurement errors with low resolution flood imagery

    Science.gov (United States)

    Schumann, G.; di Baldassarre, G.; Alsdorf, D.; Bates, P. D.

    2009-04-01

    In February 2000, the Shuttle Radar Topography Mission (SRTM) measured the elevation of most of the Earth's surface with spatially continuous sampling and an absolute vertical accuracy greater than 9 m. The vertical error has been shown to change with topographic complexity, being less important over flat terrain. This allows water surface slopes to be measured and associated discharge volumes to be estimated for open channels in large basins, such as the Amazon. Building on these capabilities, this paper demonstrates that near real-time coarse resolution radar imagery of a recent flood event on a 98 km reach of the River Po (Northern Italy) combined with SRTM terrain height data leads to a water slope remarkably similar to that derived by combining the radar image with highly accurate airborne laser altimetry. Moreover, it is shown that this space-borne flood wave approximation compares well to a hydraulic model and thus allows the performance of the latter, calibrated on a previous event, to be assessed when applied to an event of different magnitude in near real-time. These results are not only of great importance to real-time flood management and flood forecasting but also support the upcoming Surface Water and Ocean Topography (SWOT) mission that will routinely provide water levels and slopes with higher precision around the globe.

  17. An effective assay for high cellular resolution time-lapse imaging of sensory placode formation and morphogenesis

    Directory of Open Access Journals (Sweden)

    Das Raman M

    2011-05-01

    Full Text Available Abstract Background The vertebrate peripheral nervous system contains sensory neurons that arise from ectodermal placodes. Placodal cells ingress to move inside the head to form sensory neurons of the cranial ganglia. To date, however, the process of placodal cell ingression and underlying cellular behavior are poorly understood as studies have relied upon static analyses on fixed tissues. Visualizing placodal cell behavior requires an ability to distinguish the surface ectoderm from the underlying mesenchyme. This necessitates high resolution imaging along the z-plane which is difficult to accomplish in whole embryos. To address this issue, we have developed an imaging system using cranial slices that allows direct visualization of placode formation. Results We demonstrate an effective imaging assay for capturing placode development at single cell resolution using chick embryonic tissue ex vivo. This provides the first time-lapse imaging of mitoses in the trigeminal placodal ectoderm, ingression, and intercellular contacts of placodal cells. Cell divisions with varied orientations were found in the placodal ectoderm all along the apical-basal axis. Placodal cells initially have short cytoplasmic processes during ingression as young neurons and mature over time to elaborate long axonal processes in the mesenchyme. Interestingly, the time-lapse imaging data reveal that these delaminating placodal neurons begin ingression early on from within the ectoderm, where they start to move and continue on to exit as individual or strings of neurons through common openings on the basal side of the epithelium. Furthermore, dynamic intercellular contacts are abundant among the delaminating placodal neurons, between these and the already delaminated cells, as well as among cells in the forming ganglion. Conclusions This new imaging assay provides a powerful method to analyze directly development of placode-derived sensory neurons and subsequent ganglia

  18. High-resolution, real-time mapping of surface soil moisture at the field scale using ground penetrating radar

    Science.gov (United States)

    Lambot, S.; Minet, J.; Slob, E.; Vereecken, H.; Vanclooster, M.

    2008-12-01

    Measuring soil surface water content is essential in hydrology and agriculture as this variable controls important key processes of the hydrological cycle such as infiltration, runoff, evaporation, and energy exchanges between the earth and the atmosphere. We present a ground-penetrating radar (GPR) method for automated, high-resolution, real-time mapping of soil surface dielectric permittivity and correlated water content at the field scale. Field scale characterization and monitoring is not only necessary for field scale management applications, but also for unravelling upscaling issues in hydrology and bridging the scale gap between local measurements and remote sensing. In particular, such methods are necessary to validate and improve remote sensing data products. The radar system consists of a vector network analyzer combined with an off-ground, ultra-wideband monostatic horn antenna, thereby setting up a continuous-wave steeped-frequency GPR. Radar signal analysis is based on three-dimensional electromagnetic inverse modelling. The forward model accounts for all antenna effects, antenna-soil interactions, and wave propagation in three-dimensional multilayered media. A fast procedure was developed to evaluate the involved Green's function, resulting from a singular, complex integral. Radar data inversion is focused on the surface reflection in the time domain. The method presents considerable advantages compared to the current surface characterization methods using GPR, namely, the ground wave and common reflection methods. Theoretical analyses were performed, dealing with the effects of electric conductivity on the surface reflection when non-negligible, and on near-surface layering, which may lead to unrealistic values for the surface dielectric permittivity if not properly accounted for. Inversion strategies are proposed. In particular the combination of GPR with electromagnetic induction data appears to be promising to deal with highly conductive soils

  19. Quality control and authentication of packaged integrated circuits using enhanced-spatial-resolution terahertz time-domain spectroscopy and imaging

    Science.gov (United States)

    Ahi, Kiarash; Shahbazmohamadi, Sina; Asadizanjani, Navid

    2018-05-01

    In this paper, a comprehensive set of techniques for quality control and authentication of packaged integrated circuits (IC) using terahertz (THz) time-domain spectroscopy (TDS) is developed. By material characterization, the presence of unexpected materials in counterfeit components is revealed. Blacktopping layers are detected using THz time-of-flight tomography, and thickness of hidden layers is measured. Sanded and contaminated components are detected by THz reflection-mode imaging. Differences between inside structures of counterfeit and authentic components are revealed through developing THz transmission imaging. For enabling accurate measurement of features by THz transmission imaging, a novel resolution enhancement technique (RET) has been developed. This RET is based on deconvolution of the THz image and the THz point spread function (PSF). The THz PSF is mathematically modeled through incorporating the spectrum of the THz imaging system, the axis of propagation of the beam, and the intensity extinction coefficient of the object into a Gaussian beam distribution. As a result of implementing this RET, the accuracy of the measurements on THz images has been improved from 2.4 mm to 0.1 mm and bond wires as small as 550 μm inside the packaging of the ICs are imaged.

  20. Low resolution scans can provide a sufficiently accurate, cost- and time-effective alternative to high resolution scans for 3D shape analyses

    Directory of Open Access Journals (Sweden)

    Ariel E. Marcy

    2018-06-01

    Full Text Available Background Advances in 3D shape capture technology have made powerful shape analyses, such as geometric morphometrics, more feasible. While the highly accurate micro-computed tomography (µCT scanners have been the “gold standard,” recent improvements in 3D surface scanners may make this technology a faster, portable, and cost-effective alternative. Several studies have already compared the two devices but all use relatively large specimens such as human crania. Here we perform shape analyses on Australia’s smallest rodent to test whether a 3D scanner produces similar results to a µCT scanner. Methods We captured 19 delicate mouse (Pseudomys delicatulus crania with a µCT scanner and a 3D scanner for geometric morphometrics. We ran multiple Procrustes ANOVAs to test how variation due to scan device compared to other sources such as biologically relevant variation and operator error. We quantified operator error as levels of variation and repeatability. Further, we tested if the two devices performed differently at classifying individuals based on sexual dimorphism. Finally, we inspected scatterplots of principal component analysis (PCA scores for non-random patterns. Results In all Procrustes ANOVAs, regardless of factors included, differences between individuals contributed the most to total variation. The PCA plots reflect this in how the individuals are dispersed. Including only the symmetric component of shape increased the biological signal relative to variation due to device and due to error. 3D scans showed a higher level of operator error as evidenced by a greater spread of their replicates on the PCA, a higher level of multivariate variation, and a lower repeatability score. However, the 3D scan and µCT scan datasets performed identically in classifying individuals based on intra-specific patterns of sexual dimorphism. Discussion Compared to µCT scans, we find that even low resolution 3D scans of very small specimens are

  1. An Improved Method for Producing High Spatial-Resolution NDVI Time Series Datasets with Multi-Temporal MODIS NDVI Data and Landsat TM/ETM+ Images

    OpenAIRE

    Rao, Yuhan; Zhu, Xiaolin; Chen, Jin; Wang, Jianmin

    2015-01-01

    Due to technical limitations, it is impossible to have high resolution in both spatial and temporal dimensions for current NDVI datasets. Therefore, several methods are developed to produce high resolution (spatial and temporal) NDVI time-series datasets, which face some limitations including high computation loads and unreasonable assumptions. In this study, an unmixing-based method, NDVI Linear Mixing Growth Model (NDVI-LMGM), is proposed to achieve the goal of accurately and efficiently bl...

  2. Influence of malaxation time of olive paste on oil extraction yields and chemical and organoleptic characteristics of virgin olive oil obtained by a centrifugal decanter at water saving

    Directory of Open Access Journals (Sweden)

    Serraiocco, A.

    2002-06-01

    Full Text Available Experimental tests were carried out to ascertain the influence of malaxation time of olive paste on extraction yields and qualitative characteristics of virgin olive oils obtained by a centrifugal decanter at water saving. Results show that malaxation time has to be no less than 45 minutes to have a satisfactory oil extraction yield. Furthermore, it was ascertained that the malaxation time, protracted up to 90 minutes, does not have influence upon qualitative and organoleptic characteristics of oils. Only the total phenols content of oils changed significantly when the malaxation time of olive paste increased from 15 to 90 minutes. However, in this research has been demonstrated that in some cases the total phenols content of oils increased during the first 30-45 minutes of malaxation and after it diminished. This is due to the variation of total phenols content of vegetable water that in the first time increased and after diminished very quickly. Because of the partition equilibrium law, the total phenols content of oil changed in the same way. Finally, results show that the composition of volatile substances of head-space of oils did not change increasing the malaxation time of olive paste obtained from good quality olive fruits.Se realizaron pruebas experimentales para verificar la influencia del tiempo de batido sobre los rendimientos en aceite y sobre las características de la calidad de los aceites obtenidos con un decanter centrifugo con ahorro de agua. Los resultados conseguidos indicaron que el tiempo de batido no debe ser inferior a 45 minutos para poder obtener rendimientos en aceite satisfactorios. Además, se pudo verificar que la operación de batido, aun siendo prolongada a 90 minutos, no influencia significativamente en las características cualitativas y organolépticas de los aceites. Solo el contenido de fenoles totales en los aceites disminuyó cuando el tiempo de batido fue incrementado de 15 a 90 minutos. Sin embargo, se

  3. Detection of Schistosoma mansoni and Schistosoma haematobium by Real-Time PCR with High Resolution Melting Analysis

    Directory of Open Access Journals (Sweden)

    Hany Sady

    2015-07-01

    Full Text Available The present study describes a real-time PCR approach with high resolution melting-curve (HRM assay developed for the detection and differentiation of Schistosoma mansoni and S. haematobium in fecal and urine samples collected from rural Yemen. The samples were screened by microscopy and PCR for the Schistosoma species infection. A pair of degenerate primers were designed targeting partial regions in the cytochrome oxidase subunit I (cox1 gene of S. mansoni and S. haematobium using real-time PCR-HRM assay. The overall prevalence of schistosomiasis was 31.8%; 23.8% of the participants were infected with S. haematobium and 9.3% were infected with S. mansoni. With regards to the intensity of infections, 22.1% and 77.9% of S. haematobium infections were of heavy and light intensities, respectively. Likewise, 8.1%, 40.5% and 51.4% of S. mansoni infections were of heavy, moderate and light intensities, respectively. The melting points were distinctive for S. mansoni and S. haematobium, categorized by peaks of 76.49 ± 0.25 °C and 75.43 ± 0.26 °C, respectively. HRM analysis showed high detection capability through the amplification of Schistosoma DNA with as low as 0.0001 ng/µL. Significant negative correlations were reported between the real-time PCR-HRM cycle threshold (Ct values and microscopic egg counts for both S. mansoni in stool and S. haematobium in urine (p < 0.01. In conclusion, this closed-tube HRM protocol provides a potentially powerful screening molecular tool for the detection of S. mansoni and S. haematobium. It is a simple, rapid, accurate, and cost-effective method. Hence, this method is a good alternative approach to probe-based PCR assays.

  4. Remote Sensing of River Delta Inundation: Exploiting the Potential of Coarse Spatial Resolution, Temporally-Dense MODIS Time Series

    Directory of Open Access Journals (Sweden)

    Claudia Kuenzer

    2015-07-01

    Full Text Available River deltas belong to the most densely settled places on earth. Although they only account for 5% of the global land surface, over 550 million people live in deltas. These preferred livelihood locations, which feature flat terrain, fertile alluvial soils, access to fluvial and marine resources, a rich wetland biodiversity and other advantages are, however, threatened by numerous internal and external processes. Socio-economic development, urbanization, climate change induced sea level rise, as well as flood pulse changes due to upstream water diversion all lead to changes in these highly dynamic systems. A thorough understanding of a river delta’s general setting and intra-annual as well as long-term dynamic is therefore crucial for an informed management of natural resources. Here, remote sensing can play a key role in analyzing and monitoring these vast areas at a global scale. The goal of this study is to demonstrate the potential of intra-annual time series analyses at dense temporal, but coarse spatial resolution for inundation characterization in five river deltas located in four different countries. Based on 250 m MODIS reflectance data we analyze inundation dynamics in four densely populated Asian river deltas—namely the Yellow River Delta (China, the Mekong Delta (Vietnam, the Irrawaddy Delta (Myanmar, and the Ganges-Brahmaputra (Bangladesh, India—as well as one very contrasting delta: the nearly uninhabited polar Mackenzie Delta Region in northwestern Canada for the complete time span of one year (2013. A complex processing chain of water surface derivation on a daily basis allows the generation of intra-annual time series, which indicate inundation duration in each of the deltas. Our analyses depict distinct inundation patterns within each of the deltas, which can be attributed to processes such as overland flooding, irrigation agriculture, aquaculture, or snowmelt and thermokarst processes. Clear differences between mid

  5. Surface electromyography based muscle fatigue detection using high-resolution time-frequency methods and machine learning algorithms.

    Science.gov (United States)

    Karthick, P A; Ghosh, Diptasree Maitra; Ramakrishnan, S

    2018-02-01

    Surface electromyography (sEMG) based muscle fatigue research is widely preferred in sports science and occupational/rehabilitation studies due to its noninvasiveness. However, these signals are complex, multicomponent and highly nonstationary with large inter-subject variations, particularly during dynamic contractions. Hence, time-frequency based machine learning methodologies can improve the design of automated system for these signals. In this work, the analysis based on high-resolution time-frequency methods, namely, Stockwell transform (S-transform), B-distribution (BD) and extended modified B-distribution (EMBD) are proposed to differentiate the dynamic muscle nonfatigue and fatigue conditions. The nonfatigue and fatigue segments of sEMG signals recorded from the biceps brachii of 52 healthy volunteers are preprocessed and subjected to S-transform, BD and EMBD. Twelve features are extracted from each method and prominent features are selected using genetic algorithm (GA) and binary particle swarm optimization (BPSO). Five machine learning algorithms, namely, naïve Bayes, support vector machine (SVM) of polynomial and radial basis kernel, random forest and rotation forests are used for the classification. The results show that all the proposed time-frequency distributions (TFDs) are able to show the nonstationary variations of sEMG signals. Most of the features exhibit statistically significant difference in the muscle fatigue and nonfatigue conditions. The maximum number of features (66%) is reduced by GA and BPSO for EMBD and BD-TFD respectively. The combination of EMBD- polynomial kernel based SVM is found to be most accurate (91% accuracy) in classifying the conditions with the features selected using GA. The proposed methods are found to be capable of handling the nonstationary and multicomponent variations of sEMG signals recorded in dynamic fatiguing contractions. Particularly, the combination of EMBD- polynomial kernel based SVM could be used to

  6. A new scintillation counter with very fast resolving time (1961); Nouveau compteur a scintillation a tres faible temps de resolution (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Koch, L [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    The rare gases used as scintillators are characterized by their short time of luminescence and by the linearity of their response as a function of the total energy imparted to the gas by the incident particle. It is possible with these scintillators, when associated with a fast response photomultiplier, to solve certain problems of nuclear physics demanding a linear detector with a very fast resolving time (a few nanoseconds). Two examples of the construction of this apparatus are described. The results obtained and future possibilities are briefly outlined. (author) [French] Les gaz rares utilises comme scintillateurs sont caracterises par leur faible duree de luminescence et par la linearite de leur reponse en fonction de l'energie totale cedee au gaz par la particule incidente. Ces scintillateurs, associes a un photomultiplicateur a une reponse rapide, permettent de resoudre certains problemes de physique nucleaire dans lesquels un detecteur lineaire a tres faible temps de resolution (quelques nanosecondes) se revele indispensable. Deux exemples de realisation sont decrits. Les resultats obtenus et les possibilites futures sont brievement exposes. (auteur)

  7. [A comparison of time resolution among auditory, tactile and promontory electrical stimulation--superiority of cochlear implants as human communication aids].

    Science.gov (United States)

    Matsushima, J; Kumagai, M; Harada, C; Takahashi, K; Inuyama, Y; Ifukube, T

    1992-09-01

    Our previous reports showed that second formant information, using a speech coding method, could be transmitted through an electrode on the promontory. However, second formant information can also be transmitted by tactile stimulation. Therefore, to find out whether electrical stimulation of the auditory nerve would be superior to tactile stimulation for our speech coding method, the time resolutions of the two modes of stimulation were compared. The results showed that the time resolution of electrical promontory stimulation was three times better than the time resolution of tactile stimulation of the finger. This indicates that electrical stimulation of the auditory nerve is much better for our speech coding method than tactile stimulation of the finger.

  8. TU-CD-207-03: Time Evolution of Texture Parameters of Subtracted Images Obtained by Contrast-Enhanced Digital Mammography (CEDM)

    Energy Technology Data Exchange (ETDEWEB)

    Mateos, M-J; Brandan, M-E [Instituto de Fisica, Universidad Nacional Autonom de Mexico, Mexico, Distrito Federal (Mexico); Gastelum, A; Marquez, J [Centro de Ciencias Aplicadas y Desarrollo Tecnologico Universidad Nacional Autonoma de Mexico, Mexico, Distrito Federal (Mexico)

    2015-06-15

    Purpose: To evaluate the time evolution of texture parameters, based on the gray level co-occurrence matrix (GLCM), in subtracted images of 17 patients (10 malignant and 7 benign) subjected to contrast-enhanced digital mammography (CEDM). The goal is to determine the sensitivity of texture to iodine uptake at the lesion, and its correlation (or lack of) with mean-pixel-value (MPV). Methods: Acquisition of clinical images followed a single-energy CEDM protocol using Rh/Rh/48 kV plus external 0.5 cm Al from a Senographe DS unit. Prior to the iodine-based contrast medium (CM) administration a mask image was acquired; four CM images were obtained 1, 2, 3, and 5 minutes after CM injection. Temporal series were obtained by logarithmic subtraction of registered CM minus mask images.Regions of interest (ROI) for the lesion were drawn by a radiologist and the texture was analyzed. GLCM was evaluated at a 3 pixel distance, 0° angle, and 64 gray-levels. Pixels identified as registration errors were excluded from the computation. 17 texture parameters were chosen, classified according to similarity into 7 groups, and analyzed. Results: In all cases the texture parameters within a group have similar dynamic behavior. Two texture groups (associated to cluster and sum mean) show a strong correlation with MPV; their average correlation coefficient (ACC) is r{sup 2}=0.90. Other two groups (contrast, homogeneity) remain constant with time, that is, a low-sensitivity to CM uptake. Three groups (regularity, lacunarity and diagonal moment) are sensitive to CM uptake but less correlated with MPV; their ACC is r{sup 2}=0.78. Conclusion: This analysis has shown that, at least groups associated to regularity, lacunarity and diagonal moment offer dynamical information additional to the mean pixel value due to the presence of CM at the lesion. The next step will be the analysis in terms of the lesion pathology. Authors thank PAPIIT-IN105813 for support. Consejo Nacional de Ciencia Y

  9. Rapid detection and differentiation of Clonorchis sinensis and Opisthorchis viverrini using real-time PCR and high resolution melting analysis.

    Science.gov (United States)

    Cai, Xian-Quan; Yu, Hai-Qiong; Li, Rong; Yue, Qiao-Yun; Liu, Guo-Hua; Bai, Jian-Shan; Deng, Yan; Qiu, De-Yi; Zhu, Xing-Quan

    2014-01-01

    Clonorchis sinensis and Opisthorchis viverrini are both important fish-borne pathogens, causing serious public health problem in Asia. The present study developed an assay integrating real-time PCR and high resolution melting (HRM) analysis for the specific detection and rapid identification of C. sinensis and O. viverrini. Primers targeting COX1 gene were highly specific for these liver flukes, as evidenced by the negative amplification of closely related trematodes. Assays using genomic DNA extracted from the two flukes yielded specific amplification and their identity was confirmed by sequencing, having the accuracy of 100% in reference to conventional methods. The assay was proved to be highly sensitive with a detection limit below 1 pg of purified genomic DNA, 5 EPG, or 1 metacercaria of C. sinensis. Moreover, C. sinensis and O. viverrini were able to be differentiated by their HRM profiles. The method can reduce labor of microscopic examination and the contamination of agarose electrophoresis. Moreover, it can differentiate these two flukes which are difficult to be distinguished using other methods. The established method provides an alternative tool for rapid, simple, and duplex detection of C. sinensis and O. viverrini.

  10. Molecular differentiation of Opisthorchis viverrini and Clonorchis sinensis eggs by multiplex real-time PCR with high resolution melting analysis.

    Science.gov (United States)

    Kaewkong, Worasak; Intapan, Pewpan M; Sanpool, Oranuch; Janwan, Penchom; Thanchomnang, Tongjit; Laummaunwai, Porntip; Lulitanond, Viraphong; Doanh, Pham Ngoc; Maleewong, Wanchai

    2013-12-01

    Opisthorchis viverrini and Clonorchis sinensis are parasites known to be carcinogenic and causative agents of cholangiocarcinoma in Asia. The standard method for diagnosis for those parasite infections is stool examination to detect parasite eggs. However, the method has low sensitivity, and eggs of O. viverrini and C. sinensis are difficult to distinguish from each other and from those of some other trematodes. Here, we report a multiplex real-time PCR coupled with high resolution melting (HRM) analysis for the differentiation of O. viverrini and C. sinensis eggs in fecal samples. Using 2 pairs of species-specific primers, DNA sequences from a portion of the mitochondrial NADH dehydrogenase subunit 2 (nad 2) gene, were amplified to generate 209 and 165 bp products for O. viverrini and C. sinensis, respectively. The distinct characteristics of HRM patterns were analyzed, and the melting temperatures peaked at 82.4±0.09℃ and 85.9±0.08℃ for O. viverrini and C. sinensis, respectively. This technique was able to detect as few as 1 egg of O. viverrini and 2 eggs of C. sinensis in a 150 mg fecal sample, which is equivalent to 7 and 14 eggs per gram of feces, respectively. The method is species-specific, rapid, simple, and does not require fluorescent probes or post-PCR processing for discrimination of eggs of the 2 species. It offers a new tool for differentiation and detection of Asian liver fluke infections in stool specimens.

  11. Rapid Detection and Differentiation of Clonorchis sinensis and Opisthorchis viverrini Using Real-Time PCR and High Resolution Melting Analysis

    Directory of Open Access Journals (Sweden)

    Xian-Quan Cai

    2014-01-01

    Full Text Available Clonorchis sinensis and Opisthorchis viverrini are both important fish-borne pathogens, causing serious public health problem in Asia. The present study developed an assay integrating real-time PCR and high resolution melting (HRM analysis for the specific detection and rapid identification of C. sinensis and O. viverrini. Primers targeting COX1 gene were highly specific for these liver flukes, as evidenced by the negative amplification of closely related trematodes. Assays using genomic DNA extracted from the two flukes yielded specific amplification and their identity was confirmed by sequencing, having the accuracy of 100% in reference to conventional methods. The assay was proved to be highly sensitive with a detection limit below 1 pg of purified genomic DNA, 5 EPG, or 1 metacercaria of C. sinensis. Moreover, C. sinensis and O. viverrini were able to be differentiated by their HRM profiles. The method can reduce labor of microscopic examination and the contamination of agarose electrophoresis. Moreover, it can differentiate these two flukes which are difficult to be distinguished using other methods. The established method provides an alternative tool for rapid, simple, and duplex detection of C. sinensis and O. viverrini.

  12. Agricultural Recharge Practices for Managing Nitrate in Regional Groundwater: Time-Resolution Assessment of Numerical Modeling Approach

    Science.gov (United States)

    Bastani, M.; Harter, T.

    2017-12-01

    Intentional recharge practices in irrigated landscapes are promising options to control and remediate groundwater quality degradation with respect to nitrate. To better understand the effect of these practices, a fully 3D transient heterogeneous transport model simulation is developed using MODFLOW and MT3D. The model is developed for a long-term study of nitrate improvements in an alluvial groundwater basin in Eastern San Joaquin Valley, CA. Different scenarios of agricultural recharge strategies including crop type change and winter flood flows are investigated. Transient simulations with high spatio-temporal resolutions are performed. We then consider upscaling strategies that would allow us to simplify the modeling process such that it can be applied at a very large basin-scale (1000s of square kilometers) for scenario analysis. We specifically consider upscaling of time-variant boundary conditions (both internal and external) that have significant influence on calculation cost of the model. We compare monthly transient stresses to upscaled annual and further upscaled average steady-state stresses on nitrate transport in groundwater under recharge scenarios.

  13. Comprehensive Two-dimensional Liquid Chromatography coupled to High Resolution Time of Flight Mass Spectrometry for Chemical Characterization of Sewage Treatment Plant Effluents

    NARCIS (Netherlands)

    Ouyang, X.; Leonards, P.E.G.; Legler, J.; van der Oost, R.; de Boer, J.; Lamoree, M.H.

    2015-01-01

    For the first time a comprehensive two-dimensional liquid chromatography (LC. ×. LC) system coupled with a high resolution time-of-flight mass spectrometer (HR-ToF MS) was developed and applied for analysis of emerging toxicants in wastewater effluent. The system was optimized and validated using

  14. Simultaneous measurements of new particle formation at 1 s time resolution at a street site and a rooftop site

    Science.gov (United States)

    Zhu, Yujiao; Yan, Caiqing; Zhang, Renyi; Wang, Zifa; Zheng, Mei; Gao, Huiwang; Gao, Yang; Yao, Xiaohong

    2017-08-01

    This study is the first to use two identical Fast Mobility Particle Sizers for simultaneous measurement of particle number size distributions (PNSDs) at a street site and a rooftop site within 500 m distance in wintertime and springtime to investigate new particle formation (NPF) in Beijing. The collected datasets at 1 s time resolution allow deduction of the freshly emitted traffic particle signal from the measurements at the street site and thereby enable the evaluation of the effects on NPF in an urban atmosphere through a site-by-site comparison. The number concentrations of 8 to 20 nm newly formed particles and the apparent formation rate (FR) in the springtime were smaller at the street site than at the rooftop site. In contrast, NPF was enhanced in the wintertime at the street site with FR increased by a factor of 3 to 5, characterized by a shorter NPF time and higher new particle yields than at the rooftop site. Our results imply that the street canyon likely exerts distinct effects on NPF under warm or cold ambient temperature conditions because of on-road vehicle emissions, i.e., stronger condensation sinks that may be responsible for the reduced NPF in the springtime but efficient nucleation and partitioning of gaseous species that contribute to the enhanced NPF in the wintertime. The occurrence or absence of apparent growth for new particles with mobility diameters larger than 10 nm was also analyzed. The oxidization of biogenic organics in the presence of strong photochemical reactions is suggested to play an important role in growing new particles with diameters larger than 10 nm, but sulfuric acid is unlikely to be the main species for the apparent growth. However, the number of datasets used in this study is relatively small, and larger datasets are essential to draw a general conclusion.

  15. Direct determination of acrylamide in food by gas chromatography-high-resolution time-of-flight mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Dunovska, Lenka [Institute of Chemical Technology, Department of Food Chemistry and Analysis, Technicka 3, 166 28 Prague 6 (Czech Republic); Cajka, Tomas [Institute of Chemical Technology, Department of Food Chemistry and Analysis, Technicka 3, 166 28 Prague 6 (Czech Republic); Hajslova, Jana [Institute of Chemical Technology, Department of Food Chemistry and Analysis, Technicka 3, 166 28 Prague 6 (Czech Republic)]. E-mail: jana.hajslova@vscht.cz; Holadova, Katerina [Institute of Chemical Technology, Department of Food Chemistry and Analysis, Technicka 3, 166 28 Prague 6 (Czech Republic)

    2006-09-25

    Simple and rapid gas chromatographic (GC) method employing a high-resolution time-of-flight mass analyzer that enables direct analysis (no derivatization) of acrylamide in various heat-processed foodstuffs has been developed and validated. Co-isolation of acrylamide precursors such as sugars and asparagine, constituting the risk of results overestimation due to additional formation of analyte in hot GC injector, is avoided by the extraction with n-propanol followed by solvent exchange to acetonitrile (MeCN). Introduction of a novel purification strategy, dispersive solid phase extraction, based on addition of primary-secondary amine (PSA) sorbent into deffated extract in MeCN, provides a significant reduction of some abundant matrix co-extracts (mainly free fatty acids). Isotope dilution technique (d{sub 3}-acrylamide as an internal standard) is employed for compensation of potential target analyte losses and/or matrix-inducted chromatographic response enhancement. Limits of quantifications (LOQs) ranged between 15 and 40 {mu}g kg{sup -1} and recoveries were between 97 and 108% depending on the examined food matrix. The repeatability of measurements (expressed as relative standard deviation, R.S.D.) was as low as 1.9% for potato crisps containing acrylamide at a level of 1 mg kg{sup -1}. Slightly higher values (R.S.D. < 4.0%) were achieved for breakfast cereals and crisp bread with approximately 10 times lower content of this processing contaminant. Trueness of results generated by this new method was demonstrated via FAPAS[reg] (Food Analysis Performance Assessment Scheme) interlaboratory proficiency tests.

  16. Isotope Investigations at an Alpine Karst Aquifer by Means of On-Site Measurements with High Time Resolution and Near Real-Time Data Availability

    International Nuclear Information System (INIS)

    Leis, A.; Plieschnegger, M.; Harum, T.; Stadler, H.; Schmitt, R.; Pelt, A. Van; Zerobin, W.

    2011-01-01

    For numerous hydrological investigations as the characterization of storage and discharge dynamics at karst springs on-site isotopic measurements with high time resolution could improve the significance of the investigations. Conventional isotope ratio mass spectrometers (IRMS) can only be used in laboratories because of their technical complexity. Since a short time more compact laser based instruments, the so called cavity ringdown spectrometers (CRDS) are commercially available. For on-site use of such an instrument several adaptations are necessary. This concerns especially a direct sample injection from the outflow of the spring, because this is originally not intended. The studied alpine and mountainous karst system is located in the so called Northern Calcareous Alps in Austria reaching altitudes up to approx. 2300 masl. The spring is situated in the Salza-valley at an altitude of approximately 650 masl. The investigated karst spring is a typical limestone spring type according to having well developed karst conduits. The isotopic composition of the water samples were measured by using cavity ring-down spectroscopy with a WS-CRDS (Wavelength-Scanned Cavity Ring-Down Spectroscopy) instrument (Picarro, Inc.). In order to adapt the System for on-site isotope measurements at the spring the laser spectrometer was coupled to an automatic injection module for continuous measurements of liquid samples based on a VALCO valve. The device replaces the auto-sampler and allows quasi-continuous injections of a 2 ul-water samples into the Picarro L1102-iso-water analyzer via the Picarro vaporizer module.

  17. Highly time-resolved chemical characterization of atmospheric submicron particles during 2008 Beijing Olympic Games using an Aerodyne High-Resolution Aerosol Mass Spectrometer

    Directory of Open Access Journals (Sweden)

    X.-F. Huang

    2010-09-01

    Full Text Available As part of Campaigns of Air Quality Research in Beijing and Surrounding Region-2008 (CAREBeijing-2008, an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS was deployed in urban Beijing to characterize submicron aerosol particles during the time of 2008 Beijing Olympic Games and Paralympic Games (24 July to 20 September 2008. The campaign mean PM1 mass concentration was 63.1 ± 39.8 μg m−3; the mean composition consisted of organics (37.9%, sulfate (26.7%, ammonium (15.9%, nitrate (15.8%, black carbon (3.1%, and chloride (0.87%. The average size distributions of the species (except BC were all dominated by an accumulation mode peaking at about 600 nm in vacuum aerodynamic diameter, and organics was characterized by an additional smaller mode extending below 100 nm. Positive Matrix Factorization (PMF analysis of the high resolution organic mass spectral dataset differentiated the organic aerosol into four components, i.e., hydrocarbon-like (HOA, cooking-related (COA, and two oxygenated organic aerosols (OOA-1 and OOA-2, which on average accounted for 18.1, 24.4, 33.7 and 23.7% of the total organic mass, respectively. The HOA was identified to be closely associated with primary combustion sources, while the COA mass spectrum and diurnal pattern showed similar characteristics to that measured for cooking emissions. The OOA components correspond to aged secondary organic aerosol. Although the two OOA components have similar elemental (O/C, H/C compositions, they display differences in mass spectra and time series which appear to correlate with the different source regions sampled during the campaign. Back trajectory clustering analysis indicated that the southerly air flows were associated with the highest PM1 pollution during the campaign. Aerosol particles in southern airmasses were especially rich in inorganic and oxidized organic species. Aerosol particles in northern airmasses

  18. Highly time-resolved chemical characterization of atmospheric submicron particles during 2008 Beijing Olympic Games using an Aerodyne High-Resolution Aerosol Mass Spectrometer

    Science.gov (United States)

    Huang, X.-F.; He, L.-Y.; Hu, M.; Canagaratna, M. R.; Sun, Y.; Zhang, Q.; Zhu, T.; Xue, L.; Zeng, L.-W.; Liu, X.-G.; Zhang, Y.-H.; Jayne, J. T.; Ng, N. L.; Worsnop, D. R.

    2010-09-01

    As part of Campaigns of Air Quality Research in Beijing and Surrounding Region-2008 (CAREBeijing-2008), an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) was deployed in urban Beijing to characterize submicron aerosol particles during the time of 2008 Beijing Olympic Games and Paralympic Games (24 July to 20 September 2008). The campaign mean PM1 mass concentration was 63.1 ± 39.8 μg m-3; the mean composition consisted of organics (37.9%), sulfate (26.7%), ammonium (15.9%), nitrate (15.8%), black carbon (3.1%), and chloride (0.87%). The average size distributions of the species (except BC) were all dominated by an accumulation mode peaking at about 600 nm in vacuum aerodynamic diameter, and organics was characterized by an additional smaller mode extending below 100 nm. Positive Matrix Factorization (PMF) analysis of the high resolution organic mass spectral dataset differentiated the organic aerosol into four components, i.e., hydrocarbon-like (HOA), cooking-related (COA), and two oxygenated organic aerosols (OOA-1 and OOA-2), which on average accounted for 18.1, 24.4, 33.7 and 23.7% of the total organic mass, respectively. The HOA was identified to be closely associated with primary combustion sources, while the COA mass spectrum and diurnal pattern showed similar characteristics to that measured for cooking emissions. The OOA components correspond to aged secondary organic aerosol. Although the two OOA components have similar elemental (O/C, H/C) compositions, they display differences in mass spectra and time series which appear to correlate with the different source regions sampled during the campaign. Back trajectory clustering analysis indicated that the southerly air flows were associated with the highest PM1 pollution during the campaign. Aerosol particles in southern airmasses were especially rich in inorganic and oxidized organic species. Aerosol particles in northern airmasses contained a large fraction of primary HOA

  19. Analysis of bovine milk caseins on organic monolithic columns: an integrated capillary liquid chromatography-high resolution mass spectrometry approach for the study of time-dependent casein degradation.

    Science.gov (United States)

    Pierri, Giuseppe; Kotoni, Dorina; Simone, Patrizia; Villani, Claudio; Pepe, Giacomo; Campiglia, Pietro; Dugo, Paola; Gasparrini, Francesco

    2013-10-25

    Casein proteins constitute approximately 80% of the proteins present in bovine milk and account for many of its nutritional and technological properties. The analysis of the casein fraction in commercially available pasteurized milk and the study of its time-dependent degradation is of considerable interest in the agro-food industry. Here we present new analytical methods for the study of caseins in fresh and expired bovine milk, based on the use of lab-made capillary organic monolithic columns. An integrated capillary high performance liquid chromatography and high-resolution mass spectrometry (Cap-LC-HRMS) approach was developed, exploiting the excellent resolution, permeability and biocompatibility of organic monoliths, which is easily adaptable to the analysis of intact proteins. The resolution obtained on the lab-made Protein-Cap-RP-Lauryl-γ-Monolithic column (270 mm × 0.250 mm length × internal diameter, L × I.D.) in the analysis of commercial standard caseins (αS-CN, β-CN and κ-CN) through Cap-HPLC-UV was compared to the one observe using two packed capillary C4 columns, the ACE C4 (3 μm, 150 mm × 0.300 mm, L × I.D.) and the Jupiter C4 column (5 μm, 150 mm × 0.300 mm, L × I.D.). Thanks to the higher resolution observed, the monolithic capillary column was chosen for the successive degradation studies of casein fractions extracted from bovine milk 1-4 weeks after expiry date. The comparison of the UV chromatographic profiles of skim, semi-skim and whole milk showed a major stability of whole milk towards time-dependent degradation of caseins, which was further sustained by high-resolution analysis on a 50-cm long monolithic column using a 120-min time gradient. Contemporarily, the exact monoisotopic and average molecular masses of intact αS-CN and β-CN protein standards were obtained through high resolution mass spectrometry and used for casein identification in Cap-LC-HRMS analysis. Finally, the proteolytic degradation of β-CN in skim milk

  20. Time and position resolution of high granularity, high counting rate MRPC for the inner zone of the CBM-TOF wall

    CERN Document Server

    Petriş, M.

    2016-09-13

    Multi-gap RPC prototypes with readout on a multi-strip electrode were developed for the small polar angle region of the CBM-TOF subdetector, the most demanding zone in terms of granularity and counting rate. The prototypes are based on low resistivity ($\\sim$10$^{10}$ $\\Omega$cm) glass electrodes for performing in high counting rate environment. The strip width/pitch size was chosen such to fulfill the impedance matching with the front-end electronics and the granularity requirements of the innermost zone of the CBM-TOF wall. The in