State space modeling of time-varying contemporaneous and lagged relations in connectivity maps.
Molenaar, Peter C M; Beltz, Adriene M; Gates, Kathleen M; Wilson, Stephen J
2016-01-15
Most connectivity mapping techniques for neuroimaging data assume stationarity (i.e., network parameters are constant across time), but this assumption does not always hold true. The authors provide a description of a new approach for simultaneously detecting time-varying (or dynamic) contemporaneous and lagged relations in brain connectivity maps. Specifically, they use a novel raw data likelihood estimation technique (involving a second-order extended Kalman filter/smoother embedded in a nonlinear optimizer) to determine the variances of the random walks associated with state space model parameters and their autoregressive components. The authors illustrate their approach with simulated and blood oxygen level-dependent functional magnetic resonance imaging data from 30 daily cigarette smokers performing a verbal working memory task, focusing on seven regions of interest (ROIs). Twelve participants had dynamic directed functional connectivity maps: Eleven had one or more time-varying contemporaneous ROI state loadings, and one had a time-varying autoregressive parameter. Compared to smokers without dynamic maps, smokers with dynamic maps performed the task with greater accuracy. Thus, accurate detection of dynamic brain processes is meaningfully related to behavior in a clinical sample. Published by Elsevier Inc.
Modal Vibration Control in Periodic Time-Varying Structures with Focus on Rotor Blade Systems
DEFF Research Database (Denmark)
Christensen, Rene Hardam; Santos, Ilmar
2004-01-01
of active modal controllers. The main aim is to reduce vibrations in periodic time-varying structures. Special emphasis is given to vibration control of coupled bladed rotor systems. A state feedback modal control law is developed based on modal analysis in periodic time-varying structures. The first step...... in the procedure is a transformation of the model into a time-invariant modal form by applying the modal matrices, which are also periodic time-variant. Due to coupled rotor and blade motions complex vibration modes occur in the modal transformed state space model. This implies that the modal transformed model...
Time-varying linear control for tiltrotor aircraft
Directory of Open Access Journals (Sweden)
Jing ZHANG
2018-04-01
Full Text Available Tiltrotor aircraft have three flight modes: helicopter mode, airplane mode, and transition mode. A tiltrotor has characteristics of highly nonlinear, time-varying flight dynamics and inertial/control couplings in its transition mode. It can transit from the helicopter mode to the airplane mode by tilting its nacelles, and an effective controller is crucial to accomplish tilting transition missions. Longitudinal dynamic characteristics of the tiltrotor are described by a nonlinear Lagrange-form model, which takes into account inertial/control couplings and aerodynamic interferences. Reference commands for airspeed velocity and attitude in the transition mode are calculated dynamically by visiting a command library which is founded in advance by analyzing the flight envelope of the tiltrotor. A Time-Varying Linear (TVL model is obtained using a Taylor-expansion based online linearization technique from the nonlinear model. Subsequently, based on an optimal control concept, an online optimization based control method with input constraints considered is proposed. To validate the proposed control method, three typical tilting transition missions are simulated using the nonlinear model of XV-15 tiltrotor aircraft. Simulation results show that the controller can be used to control the tiltrotor throughout its operating envelop which includes a transition flight, and can also deal with vertical gust disturbances. Keywords: Constrained optimal control, Inertia/control couplings, Tiltrotor aircraft, Time-varying control, Transition mode
Time varying voltage combustion control and diagnostics sensor
Chorpening, Benjamin T [Morgantown, WV; Thornton, Jimmy D [Morgantown, WV; Huckaby, E David [Morgantown, WV; Fincham, William [Fairmont, WV
2011-04-19
A time-varying voltage is applied to an electrode, or a pair of electrodes, of a sensor installed in a fuel nozzle disposed adjacent the combustion zone of a continuous combustion system, such as of the gas turbine engine type. The time-varying voltage induces a time-varying current in the flame which is measured and used to determine flame capacitance using AC electrical circuit analysis. Flame capacitance is used to accurately determine the position of the flame from the sensor and the fuel/air ratio. The fuel and/or air flow rate (s) is/are then adjusted to provide reduced flame instability problems such as flashback, combustion dynamics and lean blowout, as well as reduced emissions. The time-varying voltage may be an alternating voltage and the time-varying current may be an alternating current.
Complexity Variability Assessment of Nonlinear Time-Varying Cardiovascular Control
Valenza, Gaetano; Citi, Luca; Garcia, Ronald G.; Taylor, Jessica Noggle; Toschi, Nicola; Barbieri, Riccardo
2017-02-01
The application of complex systems theory to physiology and medicine has provided meaningful information about the nonlinear aspects underlying the dynamics of a wide range of biological processes and their disease-related aberrations. However, no studies have investigated whether meaningful information can be extracted by quantifying second-order moments of time-varying cardiovascular complexity. To this extent, we introduce a novel mathematical framework termed complexity variability, in which the variance of instantaneous Lyapunov spectra estimated over time serves as a reference quantifier. We apply the proposed methodology to four exemplary studies involving disorders which stem from cardiology, neurology and psychiatry: Congestive Heart Failure (CHF), Major Depression Disorder (MDD), Parkinson’s Disease (PD), and Post-Traumatic Stress Disorder (PTSD) patients with insomnia under a yoga training regime. We show that complexity assessments derived from simple time-averaging are not able to discern pathology-related changes in autonomic control, and we demonstrate that between-group differences in measures of complexity variability are consistent across pathologies. Pathological states such as CHF, MDD, and PD are associated with an increased complexity variability when compared to healthy controls, whereas wellbeing derived from yoga in PTSD is associated with lower time-variance of complexity.
Dual Extended Kalman Filter for the Identification of Time-Varying Human Manual Control Behavior
Popovici, Alexandru; Zaal, Peter M. T.; Pool, Daan M.
2017-01-01
A Dual Extended Kalman Filter was implemented for the identification of time-varying human manual control behavior. Two filters that run concurrently were used, a state filter that estimates the equalization dynamics, and a parameter filter that estimates the neuromuscular parameters and time delay. Time-varying parameters were modeled as a random walk. The filter successfully estimated time-varying human control behavior in both simulated and experimental data. Simple guidelines are proposed for the tuning of the process and measurement covariance matrices and the initial parameter estimates. The tuning was performed on simulation data, and when applied on experimental data, only an increase in measurement process noise power was required in order for the filter to converge and estimate all parameters. A sensitivity analysis to initial parameter estimates showed that the filter is more sensitive to poor initial choices of neuromuscular parameters than equalization parameters, and bad choices for initial parameters can result in divergence, slow convergence, or parameter estimates that do not have a real physical interpretation. The promising results when applied to experimental data, together with its simple tuning and low dimension of the state-space, make the use of the Dual Extended Kalman Filter a viable option for identifying time-varying human control parameters in manual tracking tasks, which could be used in real-time human state monitoring and adaptive human-vehicle haptic interfaces.
Directory of Open Access Journals (Sweden)
M. de la Sen
2010-01-01
Full Text Available This paper investigates the stability properties of a class of dynamic linear systems possessing several linear time-invariant parameterizations (or configurations which conform a linear time-varying polytopic dynamic system with a finite number of time-varying time-differentiable point delays. The parameterizations may be timevarying and with bounded discontinuities and they can be subject to mixed regular plus impulsive controls within a sequence of time instants of zero measure. The polytopic parameterization for the dynamics associated with each delay is specific, so that (q+1 polytopic parameterizations are considered for a system with q delays being also subject to delay-free dynamics. The considered general dynamic system includes, as particular cases, a wide class of switched linear systems whose individual parameterizations are timeinvariant which are governed by a switching rule. However, the dynamic system under consideration is viewed as much more general since it is time-varying with timevarying delays and the bounded discontinuous changes of active parameterizations are generated by impulsive controls in the dynamics and, at the same time, there is not a prescribed set of candidate potential parameterizations.
Optimal control methods for rapidly time-varying Hamiltonians
International Nuclear Information System (INIS)
Motzoi, F.; Merkel, S. T.; Wilhelm, F. K.; Gambetta, J. M.
2011-01-01
In this article, we develop a numerical method to find optimal control pulses that accounts for the separation of timescales between the variation of the input control fields and the applied Hamiltonian. In traditional numerical optimization methods, these timescales are treated as being the same. While this approximation has had much success, in applications where the input controls are filtered substantially or mixed with a fast carrier, the resulting optimized pulses have little relation to the applied physical fields. Our technique remains numerically efficient in that the dimension of our search space is only dependent on the variation of the input control fields, while our simulation of the quantum evolution is accurate on the timescale of the fast variation in the applied Hamiltonian.
Identification of Time-Varying Pilot Control Behavior in Multi-Axis Control Tasks
Zaal, Peter M. T.; Sweet, Barbara T.
2012-01-01
Recent developments in fly-by-wire control architectures for rotorcraft have introduced new interest in the identification of time-varying pilot control behavior in multi-axis control tasks. In this paper a maximum likelihood estimation method is used to estimate the parameters of a pilot model with time-dependent sigmoid functions to characterize time-varying human control behavior. An experiment was performed by 9 general aviation pilots who had to perform a simultaneous roll and pitch control task with time-varying aircraft dynamics. In 8 different conditions, the axis containing the time-varying dynamics and the growth factor of the dynamics were varied, allowing for an analysis of the performance of the estimation method when estimating time-dependent parameter functions. In addition, a detailed analysis of pilots adaptation to the time-varying aircraft dynamics in both the roll and pitch axes could be performed. Pilot control behavior in both axes was significantly affected by the time-varying aircraft dynamics in roll and pitch, and by the growth factor. The main effect was found in the axis that contained the time-varying dynamics. However, pilot control behavior also changed over time in the axis not containing the time-varying aircraft dynamics. This indicates that some cross coupling exists in the perception and control processes between the roll and pitch axes.
Synchronization of uncertain time-varying network based on sliding mode control technique
Lü, Ling; Li, Chengren; Bai, Suyuan; Li, Gang; Rong, Tingting; Gao, Yan; Yan, Zhe
2017-09-01
We research synchronization of uncertain time-varying network based on sliding mode control technique. The sliding mode control technique is first modified so that it can be applied to network synchronization. Further, by choosing the appropriate sliding surface, the identification law of uncertain parameter, the adaptive law of the time-varying coupling matrix element and the control input of network are designed, it is sure that the uncertain time-varying network can synchronize effectively the synchronization target. At last, we perform some numerical simulations to demonstrate the effectiveness of the proposed results.
Global stabilization of linear continuous time-varying systems with bounded controls
International Nuclear Information System (INIS)
Phat, V.N.
2004-08-01
This paper deals with the problem of global stabilization of a class of linear continuous time-varying systems with bounded controls. Based on the controllability of the nominal system, a sufficient condition for the global stabilizability is proposed without solving any Riccati differential equation. Moreover, we give sufficient conditions for the robust stabilizability of perturbation/uncertain linear time-varying systems with bounded controls. (author)
H∞ Control for a Networked Control Model of Systems with Two Additive Time-Varying Delays
Directory of Open Access Journals (Sweden)
Hanyong Shao
2014-01-01
Full Text Available This paper is concerned with H∞ control for a networked control model of systems with two additive time-varying delays. A new Lyapunov functional is constructed to make full use of the information of the delays, and for the derivative of the Lyapunov functional a novel technique is employed to compute a tighter upper bound, which is dependent on the two time-varying delays instead of the upper bounds of them. Then the convex polyhedron method is proposed to check the upper bound of the derivative of the Lyapunov functional. The resulting stability criteria have fewer matrix variables but less conservatism than some existing ones. The stability criteria are applied to designing a state feedback controller, which guarantees that the closed-loop system is asymptotically stable with a prescribed H∞ disturbance attenuation level. Finally examples are given to show the advantages of the stability criteria and the effectiveness of the proposed control method.
Directory of Open Access Journals (Sweden)
Mingzhu Song
2016-01-01
Full Text Available We address the problem of globally asymptotic stability for a class of stochastic nonlinear systems with time-varying delays. By the backstepping method and Lyapunov theory, we design a linear output feedback controller recursively based on the observable linearization for a class of stochastic nonlinear systems with time-varying delays to guarantee that the closed-loop system is globally asymptotically stable in probability. In particular, we extend the deterministic nonlinear system to stochastic nonlinear systems with time-varying delays. Finally, an example and its simulations are given to illustrate the theoretical results.
Directory of Open Access Journals (Sweden)
Shu-Min Lu
2017-01-01
Full Text Available An adaptive neural network control problem is addressed for a class of nonlinear hydraulic servo-systems with time-varying state constraints. In view of the low precision problem of the traditional hydraulic servo-system which is caused by the tracking errors surpassing appropriate bound, the previous works have shown that the constraint for the system is a good way to solve the low precision problem. Meanwhile, compared with constant constraints, the time-varying state constraints are more general in the actual systems. Therefore, when the states of the system are forced to obey bounded time-varying constraint conditions, the high precision tracking performance of the system can be easily realized. In order to achieve this goal, the time-varying barrier Lyapunov function (TVBLF is used to prevent the states from violating time-varying constraints. By the backstepping design, the adaptive controller will be obtained. A radial basis function neural network (RBFNN is used to estimate the uncertainties. Based on analyzing the stability of the hydraulic servo-system, we show that the error signals are bounded in the compacts sets; the time-varying state constrains are never violated and all singles of the hydraulic servo-system are bounded. The simulation and experimental results show that the tracking accuracy of system is improved and the controller has fast tracking ability and strong robustness.
Optimal critic learning for robot control in time-varying environments.
Wang, Chen; Li, Yanan; Ge, Shuzhi Sam; Lee, Tong Heng
2015-10-01
In this paper, optimal critic learning is developed for robot control in a time-varying environment. The unknown environment is described as a linear system with time-varying parameters, and impedance control is employed for the interaction control. Desired impedance parameters are obtained in the sense of an optimal realization of the composite of trajectory tracking and force regulation. Q -function-based critic learning is developed to determine the optimal impedance parameters without the knowledge of the system dynamics. The simulation results are presented and compared with existing methods, and the efficacy of the proposed method is verified.
Overlapping quadratic optimal control of linear time-varying commutative systems
Czech Academy of Sciences Publication Activity Database
Bakule, Lubomír; Rodellar, J.; Rossell, J. M.
2002-01-01
Roč. 40, č. 5 (2002), s. 1611-1627 ISSN 0363-0129 R&D Projects: GA AV ČR IAA2075802 Institutional research plan: CEZ:AV0Z1075907 Keywords : overlapping * optimal control * linear time-varying systems Subject RIV: BC - Control Systems Theory Impact factor: 1.441, year: 2002
Rate Control for Network-Coded Multipath Relaying with Time-Varying Connectivity
2010-12-10
Armen Babikyan, Nathaniel M. Jones, Thomas H. Shake, and Andrew P. Worthen MIT Lincoln Laboratory 244 Wood Street Lexington, MA 02420 DDRE, 1777...delay U U U U SAR 11 Zach Sweet 781-981-5997 1 Rate Control for Network-Coded Multipath Relaying with Time-Varying Connectivity Brooke Shrader, Armen
Delay-Dependent Guaranteed Cost Control of an Interval System with Interval Time-Varying Delay
Directory of Open Access Journals (Sweden)
Xiao Min
2009-01-01
Full Text Available This paper concerns the problem of the delay-dependent robust stability and guaranteed cost control for an interval system with time-varying delay. The interval system with matrix factorization is provided and leads to less conservative conclusions than solving a square root. The time-varying delay is assumed to belong to an interval and the derivative of the interval time-varying delay is not a restriction, which allows a fast time-varying delay; also its applicability is broad. Based on the Lyapunov-Ktasovskii approach, a delay-dependent criterion for the existence of a state feedback controller, which guarantees the closed-loop system stability, the upper bound of cost function, and disturbance attenuation lever for all admissible uncertainties as well as out perturbation, is proposed in terms of linear matrix inequalities (LMIs. The criterion is derived by free weighting matrices that can reduce the conservatism. The effectiveness has been verified in a number example and the compute results are presented to validate the proposed design method.
Tracking control of time-varying knee exoskeleton disturbed by interaction torque.
Li, Zhan; Ma, Wenhao; Yin, Ziguang; Guo, Hongliang
2017-11-01
Knee exoskeletons have been increasingly applied as assistive devices to help lower-extremity impaired people to make their knee joints move through providing external movement compensation. Tracking control of knee exoskeletons guided by human intentions often encounters time-varying (time-dependent) issues and the disturbance interaction torque, which may dramatically put an influence up on their dynamic behaviors. Inertial and viscous parameters of knee exoskeletons can be estimated to be time-varying due to unexpected mechanical vibrations and contact interactions. Moreover, the interaction torque produced from knee joint of wearers has an evident disturbance effect on regular motions of knee exoskeleton. All of these points can increase difficultly of accurate control of knee exoskeletons to follow desired joint angle trajectories. This paper proposes a novel control strategy for controlling knee exoskeleton with time-varying inertial and viscous coefficients disturbed by interaction torque. Such designed controller is able to make the tracking error of joint angle of knee exoskeletons exponentially converge to zero. Meanwhile, the proposed approach is robust to guarantee the tracking error bounded when the interaction torque exists. Illustrative simulation and experiment results are presented to show efficiency of the proposed controller. Additionally, comparisons with gradient dynamic (GD) approach and other methods are also presented to demonstrate efficiency and superiority of the proposed control strategy for tracking joint angle of knee exoskeleton. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Reusable Launch Vehicle Attitude Control Using a Time-Varying Sliding Mode Control Technique
Shtessel, Yuri B.; Zhu, J. Jim; Daniels, Dan; Jackson, Scott (Technical Monitor)
2002-01-01
In this paper we present a time-varying sliding mode control (TVSMC) technique for reusable launch vehicle (RLV) attitude control in ascent and entry flight phases. In ascent flight the guidance commands Euler roll, pitch and yaw angles, and in entry flight it commands the aerodynamic angles of bank, attack and sideslip. The controller employs a body rate inner loop and the attitude outer loop, which are separated in time-scale by the singular perturbation principle. The novelty of the TVSMC is that both the sliding surface and the boundary layer dynamics can be varied in real time using the PD-eigenvalue assignment technique. This salient feature is used to cope with control command saturation and integrator windup in the presence of severe disturbance or control effector failure, which enhances the robustness and fault tolerance of the controller. The TV-SMC ascent and descent designs are currently being tested with high fidelity, 6-DOF dispersion simulations. The test results will be presented in the final version of this paper.
Automatic Design of a Maglev Controller in State Space
1991-12-01
Design of a Maglev Controller in State Space Feng Zhao Richard Thornton Abstract We describe the automatic synthesis of a global nonlinear controller for...the global switching points of the controller is presented. The synthesized control system can stabilize the maglev vehicle with large initial displace...NUMBERS Automation Desing of a Maglev Controller in State Space N00014-89-J-3202 MIP-9001651 6. AUTHOR(S) Feng Zhao and Richard Thornton 7. PERFORMING
Directory of Open Access Journals (Sweden)
Da Sun
2016-01-01
Full Text Available A novel control algorithm based on the modified wave-variable controllers is proposed to achieve accurate position synchronization and reasonable force tracking of the nonlinear single-master-multiple-slave teleoperation system and simultaneously guarantee overall system’s stability in the presence of large time-varying delays. The system stability in different scenarios of human and environment situations has been analyzed. The proposed method is validated through experimental work based on the 3-DOF trilateral teleoperation system consisting of three different manipulators. The experimental results clearly demonstrate the feasibility of the proposed algorithm to achieve high transparency and robust stability in nonlinear single-master-multiple-slave teleoperation system in the presence of time-varying delays.
Finite-Time Reentry Attitude Control Using Time-Varying Sliding Mode and Disturbance Observer
Directory of Open Access Journals (Sweden)
Xuzhong Wu
2015-01-01
Full Text Available This paper presents the finite-time attitude control problem for reentry vehicle with redundant actuators in consideration of planet uncertainties and external disturbances. Firstly, feedback linearization technique is used to cancel the nonlinearities of equations of motion to construct a basic mode for attitude controller. Secondly, two kinds of time-varying sliding mode control methods with disturbance observer are integrated with the basic mode in order to enhance the control performance and system robustness. One method is designed based on boundary layer technique and the other is a novel second-order sliding model control method. The finite-time stability analyses of both resultant closed-loop systems are carried out. Furthermore, after attitude controller produces the torque commands, an optimization control allocation approach is introduced to allocate them into aerodynamic surface deflections and on-off reaction control system thrusts. Finally, the numerical simulation results demonstrate that both of the time-varying sliding mode control methods are robust to uncertainties and disturbances without chattering phenomenon. Moreover, the proposed second-order sliding mode control method possesses better control accuracy.
Dynamic IQC-Based Control of Uncertain LFT Systems With Time-Varying State Delay.
Yuan, Chengzhi; Wu, Fen
2016-12-01
This paper presents a new exact-memory delay control scheme for a class of uncertain systems with time-varying state delay under the integral quadratic constraint (IQC) framework. The uncertain system is described as a linear fractional transformation model including a state-delayed linear time-invariant (LTI) system and time-varying structured uncertainties. The proposed exact-memory delay controller consists of a linear state-feedback control law and an additional term that captures the delay behavior of the plant. We first explore the delay stability and the L 2 -gain performance using dynamic IQCs incorporated with quadratic Lyapunov functions. Then, the design of exact-memory controllers that guarantee desired L 2 -gain performance is examined. The resulting delay control synthesis conditions are formulated in terms of linear matrix inequalities, which are convex on all design variables including the scaling matrices associated with the IQC multipliers. The IQC-based exact-memory control scheme provides a novel approach for delay control designs via convex optimization, and advances existing control methods in two important ways: 1) better controlled performance and 2) simplified design procedure with less computational cost. The effectiveness and advantages of the proposed approach have been demonstrated through numerical studies.
Directory of Open Access Journals (Sweden)
Lun Zhai
2014-01-01
Full Text Available A parametric learning based robust iterative learning control (ILC scheme is applied to the time varying delay multiple-input and multiple-output (MIMO linear systems. The convergence conditions are derived by using the H∞ and linear matrix inequality (LMI approaches, and the convergence speed is analyzed as well. A practical identification strategy is applied to optimize the learning laws and to improve the robustness and performance of the control system. Numerical simulations are illustrated to validate the above concepts.
Distributed Event-Triggered Control of Multiagent Systems with Time-Varying Topology
Directory of Open Access Journals (Sweden)
Jingwei Ma
2014-01-01
Full Text Available This paper studies the consensus of first-order discrete-time multiagent systems, where the interaction topology is time-varying. The event-triggered control is used to update the control input of each agent, and the event-triggering condition is designed based on the combination of the relative states of each agent to its neighbors. By applying the common Lyapunov function method, a sufficient condition for consensus, which is expressed as a group of linear matrix inequalities, is obtained and the feasibility of these linear matrix inequalities is further analyzed. Simulation examples are provided to explain the effectiveness of the theoretical results.
Gong, Shuqing; Yang, Shaofu; Guo, Zhenyuan; Huang, Tingwen
2018-06-01
The paper is concerned with the synchronization problem of inertial memristive neural networks with time-varying delay. First, by choosing a proper variable substitution, inertial memristive neural networks described by second-order differential equations can be transformed into first-order differential equations. Then, a novel controller with a linear diffusive term and discontinuous sign term is designed. By using the controller, the sufficient conditions for assuring the global exponential synchronization of the derive and response neural networks are derived based on Lyapunov stability theory and some inequality techniques. Finally, several numerical simulations are provided to substantiate the effectiveness of the theoretical results. Copyright © 2018 Elsevier Ltd. All rights reserved.
Adaptive control of chaotic systems with stochastic time varying unknown parameters
Energy Technology Data Exchange (ETDEWEB)
Salarieh, Hassan [Center of Excellence in Design, Robotics and Automation, Department of Mechanical Engineering, Sharif University of Technology, P.O. Box 11365-9567, Azadi Avenue, Tehran (Iran, Islamic Republic of)], E-mail: salarieh@mech.sharif.edu; Alasty, Aria [Center of Excellence in Design, Robotics and Automation, Department of Mechanical Engineering, Sharif University of Technology, P.O. Box 11365-9567, Azadi Avenue, Tehran (Iran, Islamic Republic of)], E-mail: aalasti@sharif.edu
2008-10-15
In this paper based on the Lyapunov stability theorem, an adaptive control scheme is proposed for stabilizing the unstable periodic orbits (UPO) of chaotic systems. It is assumed that the chaotic system has some linearly dependent unknown parameters which are stochastically time varying. The stochastic parameters are modeled through the Weiner process derivative. To demonstrate the effectiveness of the proposed technique it has been applied to the Lorenz, Chen and Rossler dynamical systems, as some case studies. Simulation results indicate that the proposed adaptive controller has a high performance in stabilizing the UPO of chaotic systems in noisy environment.
Cai, Shuiming; Hao, Junjun; Liu, Zengrong
2011-06-01
This paper studies the synchronization of coupled chaotic systems with time-varying delays in the presence of parameter mismatches by means of periodically intermittent control. Some novel and useful quasisynchronization criteria are obtained by using the methods which are different from the techniques employed in the existing works, and the derived results are less conservative. Especially, a strong constraint on the control width that the control width should be larger than the time delay imposed by the current references is released in this paper. Moreover, our results show that the synchronization criteria depend on the ratio of control width to control period, but not the control width or the control period. Finally, some numerical simulations are given to show the effectiveness of the theoretical results.
Predictive Control Based upon State Space Models
Directory of Open Access Journals (Sweden)
Jens G. Balchen
1989-04-01
Full Text Available Repetitive online computation of the control vector by solving the optimal control problem of a non-linear multivariable process with arbitrary performance indices is investigated. Two different methods are considered in the search for an optimal, parameterized control vector: Pontryagin's Maximum Principle and optimization by using the performance index and its gradient directly. Unfortunately, solving this optimization problem has turned out to be a rather time-consuming task which has resulted in a time delay that cannot be accepted when the actual process is exposed to rapidly-varying disturbances. However, an instantaneous feedback strategy operating in parallel with the original control aogorithm was found to be able to cope with this problem.
Adaptive sliding control of non-autonomous active suspension systems with time-varying loadings
Chen, Po-Chang; Huang, An-Chyau
2005-04-01
An adaptive sliding controller is proposed in this paper for controlling a non-autonomous quarter-car suspension system with time-varying loadings. The bound of the car-body loading is assumed to be available. Then, the reference coordinate is placed at the static position under the nominal loading so that the system dynamic equation is derived. Due to spring nonlinearities, the system property becomes asymmetric after coordinate transformation. Besides, in practical cases, system parameters are not easy to be obtained precisely for controller design. Therefore, in this paper, system uncertainties are lumped into two unknown time-varying functions. Since the variation bound of one of the unknown functions is not available, conventional adaptive schemes and robust designs are not applicable. To deal with this problem, the function approximation technique is employed to represent the unknown function as a finite combination of basis functions. The Lyapunov direct method can thus be used to find adaptive laws for updating coefficients in the approximating series and to prove stability of the closed-loop system. Since the position and velocity measurements of the unsprung mass are lumped into the unknown function, there is no need to install sensors on the axle and wheel assembly in the actual implementation. Simulation results are presented to show the performance of the proposed strategy.
Zhang, Langwen; Xie, Wei; Wang, Jingcheng
2017-11-01
In this work, synthesis of robust distributed model predictive control (MPC) is presented for a class of linear systems subject to structured time-varying uncertainties. By decomposing a global system into smaller dimensional subsystems, a set of distributed MPC controllers, instead of a centralised controller, are designed. To ensure the robust stability of the closed-loop system with respect to model uncertainties, distributed state feedback laws are obtained by solving a min-max optimisation problem. The design of robust distributed MPC is then transformed into solving a minimisation optimisation problem with linear matrix inequality constraints. An iterative online algorithm with adjustable maximum iteration is proposed to coordinate the distributed controllers to achieve a global performance. The simulation results show the effectiveness of the proposed robust distributed MPC algorithm.
Control of the tokamak safety factor profile with time-varying constraints using MPC
International Nuclear Information System (INIS)
Maljaars, E.; Felici, F.; De Baar, M.R.; Geelen, P.J.M.; Steinbuch, M.; Van Dongen, J.; Hogeweij, G.M.D.
2015-01-01
A controller is designed for the tokamak safety factor profile that takes real-time-varying operational and physics limits into account. This so-called model predictive controller (MPC) employs a prediction model in order to compute optimal control inputs that satisfy the given limits. The use of linearized models around a reference trajectory results in a quadratic programming problem that can easily be solved online. The performance of the controller is analysed in a set of ITER L-mode scenarios simulated with the non-linear plasma transport code RAPTOR. It is shown that the controller can reduce the tracking error due to an overestimation or underestimation of the modelled transport, while making a trade-off between residual error and amount of controller action. It is also shown that the controller can account for a sudden decrease in the available actuator power, while providing warnings ahead of time about expected violations of operational and physics limits. This controller can be extended and implemented in existing tokamaks in the near future. (paper)
Directory of Open Access Journals (Sweden)
Islam S.M. Khalil
2016-06-01
Full Text Available Targeted therapy using magnetic microparticles and nanoparticles has the potential to mitigate the negative side-effects associated with conventional medical treatment. Major technological challenges still need to be addressed in order to translate these particles into in vivo applications. For example, magnetic particles need to be navigated controllably in vessels against flowing streams of body fluid. This paper describes the motion control of paramagnetic microparticles in the flowing streams of fluidic channels with time-varying flow rates (maximum flow is 35 ml.hr−1. This control is designed using a magnetic-based proportional-derivative (PD control system to compensate for the time-varying flow inside the channels (with width and depth of 2 mm and 1.5 mm, respectively. First, we achieve point-to-point motion control against and along flow rates of 4 ml.hr−1, 6 ml.hr−1, 17 ml.hr−1, and 35 ml.hr−1. The average speeds of single microparticle (with average diameter of 100 μm against flow rates of 6 ml.hr−1 and 30 ml.hr−1 are calculated to be 45 μm.s−1 and 15 μm.s−1, respectively. Second, we implement PD control with disturbance estimation and compensation. This control decreases the steady-state error by 50%, 70%, 73%, and 78% at flow rates of 4 ml.hr−1, 6 ml.hr−1, 17 ml.hr−1, and 35 ml.hr−1, respectively. Finally, we consider the problem of finding the optimal path (minimal kinetic energy between two points using calculus of variation, against the mentioned flow rates. Not only do we find that an optimal path between two collinear points with the direction of maximum flow (middle of the fluidic channel decreases the rise time of the microparticles, but we also decrease the input current that is supplied to the electromagnetic coils by minimizing the kinetic energy of the microparticles, compared to a PD control with disturbance compensation.
State Space Reduction of Linear Processes using Control Flow Reconstruction
van de Pol, Jan Cornelis; Timmer, Mark
2009-01-01
We present a new method for fighting the state space explosion of process algebraic specifications, by performing static analysis on an intermediate format: linear process equations (LPEs). Our method consists of two steps: (1) we reconstruct the LPE's control flow, detecting control flow parameters
State Space Reduction of Linear Processes Using Control Flow Reconstruction
van de Pol, Jan Cornelis; Timmer, Mark; Liu, Zhiming; Ravn, Anders P.
2009-01-01
We present a new method for fighting the state space explosion of process algebraic specifications, by performing static analysis on an intermediate format: linear process equations (LPEs). Our method consists of two steps: (1) we reconstruct the LPE's control flow, detecting control flow parameters
Optimum Control for Nonlinear Dynamic Radial Deformation of Turbine Casing with Time-Varying LSSVM
Directory of Open Access Journals (Sweden)
Cheng-Wei Fei
2015-01-01
Full Text Available With the development of the high performance and high reliability of aeroengine, the blade-tip radial running clearance (BTRRC of high pressure turbine seriously influences the reliability and performance of aeroengine, wherein the radial deformation control of turbine casing has to be concerned in BTRRC design. To improve BTRRC design, the optimum control-based probabilistic optimization of turbine casing radial deformation was implemented using time-varying least square support vector machine (T-LSSVM by considering nonlinear material properties and dynamic thermal load. First the T-LSSVM method was proposed and its mathematical model was established. And then the nonlinear dynamic optimal control model of casing radial deformation was constructed with T-LSSVM. Thirdly, through the numerical experiments, the T-LSSVM method is demonstrated to be a promising approach in reducing additional design samples and improving computational efficiency with acceptable computational precision. Through the optimum control-based probabilistic optimization for nonlinear dynamic radial turbine casing deformation, the optimum radial deformation is 7.865 × 10−4 m with acceptable reliability degree 0.995 6, which is reduced by 7.86 × 10−5 m relative to that before optimization. These results validate the effectiveness and feasibility of the proposed T-LSSVM method, which provides a useful insight into casing radial deformation, BTRRC control, and the development of gas turbine with high performance and high reliability.
Stochastic Power Control for Time-Varying Long-Term Fading Wireless Networks
Directory of Open Access Journals (Sweden)
Charalambous Charalambos D
2006-01-01
Full Text Available A new time-varying (TV long-term fading (LTF channel model which captures both the space and time variations of wireless systems is developed. The proposed TV LTF model is based on a stochastic differential equation driven by Brownian motion. This model is more realistic than the static models usually encountered in the literature. It allows viewing the wireless channel as a dynamical system, thus enabling well-developed tools of adaptive and nonadaptive estimation and identification techniques to be applied to this class of problems. In contrast with the traditional models, the statistics of the proposed model are shown to be TV, but converge in steady state to their static counterparts. Moreover, optimal power control algorithms (PCAs based on the new model are proposed. A centralized PCA is shown to reduce to a simple linear programming problem if predictable power control strategies (PPCS are used. In addition, an iterative distributed stochastic PCA is used to solve for the optimization problem using stochastic approximations. The latter solely requires each mobile to know its received signal-to-interference ratio. Generalizations of the power control problem based on convex optimization techniques are provided if PPCS are not assumed. Numerical results show that there are potentially large gains to be achieved by using TV stochastic models, and the distributed stochastic PCA provides better power stability and consumption than the distributed deterministic PCA.
Dissipative differential systems and the state space H∞ control problem
Trentelman, H.L.; Willems, J.C.
2000-01-01
The purpose of this paper is to apply our very recent results on the synthesis of dissipative linear differential systems to the 'classical' state space H∞ control problem. We first review our general problem set-up, where the problem of rendering a given plant dissipative by general
Neuromuscular mechanisms and neural strategies in the control of time-varying muscle contractions.
Erimaki, Sophia; Agapaki, Orsalia M; Christakos, Constantinos N
2013-09-01
The organization of the neural input to motoneurons that underlies time-varying muscle force is assumed to depend on muscle transfer characteristics and neural strategies or control modes utilizing sensory signals. We jointly addressed these interlinked, but previously studied individually and partially, issues for sinusoidal (range 0.5-5.0 Hz) force-tracking contractions of a human finger muscle. Using spectral and correlation analyses of target signal, force signal, and motor unit (MU) discharges, we studied 1) patterns of such discharges, allowing inferences on the motoneuronal input; 2) transformation of MU population activity (EMG) into quasi-sinusoidal force; and 3) relation of force oscillation to target, carrying information on the input's organization. A broad view of force control mechanisms and strategies emerged. Specifically, synchronized MU and EMG modulations, reflecting a frequency-modulated motoneuronal input, accompanied the force variations. Gain and delay drops between EMG modulation and force oscillation, critical for the appropriate organization of this input, occurred with increasing target frequency. According to our analyses, gain compensation was achieved primarily through rhythmical activation/deactivation of higher-threshold MUs and secondarily through the adaptation of the input's strength expected during tracking tasks. However, the input's timing was not adapted to delay behaviors and seemed to depend on the control modes employed. Thus, for low-frequency targets, the force oscillation was highly coherent with, but led, a target, this timing error being compatible with predictive feedforward control partly based on the target's derivatives. In contrast, the force oscillation was weakly coherent, but in phase, with high-frequency targets, suggesting control mainly based on a target's rhythm.
Directory of Open Access Journals (Sweden)
Caisheng Wei
2017-03-01
Full Text Available A novel low-complexity adaptive control method, capable of guaranteeing the transient and steady-state tracking performance in the presence of unknown nonlinearities and actuator saturation, is investigated for the longitudinal dynamics of a generic hypersonic flight vehicle. In order to attenuate the negative effects of classical predefined performance function for unknown initial tracking errors, a modified predefined performance function with time-varying design parameters is presented. Under the newly developed predefined performance function, two novel adaptive controllers with low-complexity computation are proposed for velocity and altitude subsystems of the hypersonic flight vehicle, respectively. Wherein, different from neural network-based approximation, a least square support vector machine with only two design parameters is utilized to approximate the unknown hypersonic dynamics. And the relevant ideal weights are obtained by solving a linear system without resorting to specialized optimization algorithms. Based on the approximation by least square support vector machine, only two adaptive scalars are required to be updated online in the parameter projection method. Besides, a new finite-time-convergent differentiator, with a quite simple structure, is proposed to estimate the unknown generated state variables in the newly established normal output-feedback formulation of altitude subsystem. Moreover, it is also employed to obtain accurate estimations for the derivatives of virtual controllers in a recursive design. This avoids the inherent drawback of backstepping — “explosion of terms” and makes the proposed control method achievable for the hypersonic flight vehicle. Further, the compensation design is employed when the saturations of the actuator occur. Finally, the numerical simulations validate the efficiency of the proposed finite-time-convergent differentiator and control method.
Higham, Timothy E; Russell, Anthony P
2012-02-01
Autotomy (voluntary loss of an appendage) is common among diverse groups of vertebrates and invertebrates, and much attention has been given to ecological and developmental aspects of tail autotomy in lizards. Although most studies have focused on the ramifications for the lizard (behavior, biomechanics, energetics, etc.), the tail itself can exhibit interesting behaviors once segregated from the body. For example, recent work highlighted the ability of leopard gecko tails to jump and flip, in addition to being able to swing back and forth. Little is known, however, about the control mechanisms underlying these movements. Using electromyography, we examined the time-varying in vivo motor patterns at four sites (two proximal and two distal) in the tail of the leopard gecko, Eublepharis macularius, following autotomy. Using these data we tested the hypothesis that the disparity in movements results simply from overlapping pattern generators within the tail. We found that burst duration, but not cycle duration, of the rhythmic swings reached a plateau at approximately 150 s following autotomy. This is likely because of physiological changes related to muscle fatigue and ischemia. For flips and jumps, burst and cycle duration exhibited no regular pattern. The coefficient of variation in motor patterns was significantly greater for jumps and flips than for rhythmic swings. This supports the conclusion that the different tail behaviors do not stem from overlapping pattern generators, but that they rely upon independent neural circuits. The signal controlling jumps and flips may be modified by sensory information from the environment. Finally, we found that jumps and flips are initiated using relatively synchronous activity between the two sides of the tail. In contrast, alternating activation of the right and left sides of the tail result in rhythmic swings. The mechanism underlying this change in tail behavior is comparable to locomotor gait changes in vertebrates.
Practical Application of Neural Networks in State Space Control
DEFF Research Database (Denmark)
Bendtsen, Jan Dimon
the networks, although some modifications are needed for the method to apply to the multilayer perceptron network. In connection with the multilayer perceptron networks it is also pointed out how instantaneous, sample-by-sample linearized state space models can be extracted from a trained network, thus opening......In the present thesis we address some problems in discrete-time state space control of nonlinear dynamical systems and attempt to solve them using generic nonlinear models based on artificial neural networks. The main aim of the work is to examine how well such control algorithms perform when...... theoretic notions followed by a detailed description of the topology, neuron functions and learning rules of the two types of neural networks treated in the thesis, the multilayer perceptron and the neurofuzzy networks. In both cases, a Least Squares second-order gradient method is used to train...
Keogh, Ruth H; Mangtani, Punam; Rodrigues, Laura; Nguipdop Djomo, Patrick
2016-01-05
Traditional analyses of standard case-control studies using logistic regression do not allow estimation of time-varying associations between exposures and the outcome. We present two approaches which allow this. The motivation is a study of vaccine efficacy as a function of time since vaccination. Our first approach is to estimate time-varying exposure-outcome associations by fitting a series of logistic regressions within successive time periods, reusing controls across periods. Our second approach treats the case-control sample as a case-cohort study, with the controls forming the subcohort. In the case-cohort analysis, controls contribute information at all times they are at risk. Extensions allow left truncation, frequency matching and, using the case-cohort analysis, time-varying exposures. Simulations are used to investigate the methods. The simulation results show that both methods give correct estimates of time-varying effects of exposures using standard case-control data. Using the logistic approach there are efficiency gains by reusing controls over time and care should be taken over the definition of controls within time periods. However, using the case-cohort analysis there is no ambiguity over the definition of controls. The performance of the two analyses is very similar when controls are used most efficiently under the logistic approach. Using our methods, case-control studies can be used to estimate time-varying exposure-outcome associations where they may not previously have been considered. The case-cohort analysis has several advantages, including that it allows estimation of time-varying associations as a continuous function of time, while the logistic regression approach is restricted to assuming a step function form for the time-varying association.
Directory of Open Access Journals (Sweden)
Ruth H. Keogh
2016-01-01
Full Text Available Abstract Background Traditional analyses of standard case-control studies using logistic regression do not allow estimation of time-varying associations between exposures and the outcome. We present two approaches which allow this. The motivation is a study of vaccine efficacy as a function of time since vaccination. Methods Our first approach is to estimate time-varying exposure-outcome associations by fitting a series of logistic regressions within successive time periods, reusing controls across periods. Our second approach treats the case-control sample as a case-cohort study, with the controls forming the subcohort. In the case-cohort analysis, controls contribute information at all times they are at risk. Extensions allow left truncation, frequency matching and, using the case-cohort analysis, time-varying exposures. Simulations are used to investigate the methods. Results The simulation results show that both methods give correct estimates of time-varying effects of exposures using standard case-control data. Using the logistic approach there are efficiency gains by reusing controls over time and care should be taken over the definition of controls within time periods. However, using the case-cohort analysis there is no ambiguity over the definition of controls. The performance of the two analyses is very similar when controls are used most efficiently under the logistic approach. Conclusions Using our methods, case-control studies can be used to estimate time-varying exposure-outcome associations where they may not previously have been considered. The case-cohort analysis has several advantages, including that it allows estimation of time-varying associations as a continuous function of time, while the logistic regression approach is restricted to assuming a step function form for the time-varying association.
Meng, Su; Chen, Jie; Sun, Jian
2017-10-01
This paper investigates the problem of observer-based output feedback control for networked control systems with non-uniform sampling and time-varying transmission delay. The sampling intervals are assumed to vary within a given interval. The transmission delay belongs to a known interval. A discrete-time model is first established, which contains time-varying delay and norm-bounded uncertainties coming from non-uniform sampling intervals. It is then converted to an interconnection of two subsystems in which the forward channel is delay-free. The scaled small gain theorem is used to derive the stability condition for the closed-loop system. Moreover, the observer-based output feedback controller design method is proposed by utilising a modified cone complementary linearisation algorithm. Finally, numerical examples illustrate the validity and superiority of the proposed method.
Xiong, Wenjun; Patel, Ragini; Cao, Jinde; Zheng, Wei Xing
In this brief, our purpose is to apply asynchronous and intermittent sampled-data control methods to achieve the synchronization of hierarchical time-varying neural networks. The asynchronous and intermittent sampled-data controllers are proposed for two reasons: 1) the controllers may not transmit the control information simultaneously and 2) the controllers cannot always exist at any time . The synchronization is then discussed for a kind of hierarchical time-varying neural networks based on the asynchronous and intermittent sampled-data controllers. Finally, the simulation results are given to illustrate the usefulness of the developed criteria.In this brief, our purpose is to apply asynchronous and intermittent sampled-data control methods to achieve the synchronization of hierarchical time-varying neural networks. The asynchronous and intermittent sampled-data controllers are proposed for two reasons: 1) the controllers may not transmit the control information simultaneously and 2) the controllers cannot always exist at any time . The synchronization is then discussed for a kind of hierarchical time-varying neural networks based on the asynchronous and intermittent sampled-data controllers. Finally, the simulation results are given to illustrate the usefulness of the developed criteria.
Decentralized H∞ Control of Interconnected Systems with Time-varying Delays
Directory of Open Access Journals (Sweden)
Amal Zouhri
2017-01-01
Full Text Available This paper focuses on the problem of delay dependent stability/stabilization of interconnected systems with time-varying delays. The approach is based on a new Lyapunov-Krasovskii functional. A decentralized delay-dependent stability analysis is performed to characterize linear matrix inequalities (LMIs based on the conditions under which every local subsystem of the linear interconnected delay system is asymptotically stable. Then we design a decentralized state-feedback stabilization scheme such that the family of closedloop feedback subsystems enjoys the delay-dependent asymptotic stability for each subsystem. The decentralized feedback gains are determined by convex optimization over LMIs. All the developed results are tested on a representative example and compared with some recent previous ones.
Active control of time-varying broadband noise and vibrations using a sliding-window Kalman filter
van Ophem, S.; Berkhoff, Arthur P.; Sas, P.; Moens, D.; Denayer, H.
2014-01-01
Recently, a multiple-input/multiple-output Kalman filter technique was presented to control time-varying broadband noise and vibrations. By describing the feed-forward broadband active noise control problem in terms of a state estimation problem it was possible to achieve a faster rate of
Directory of Open Access Journals (Sweden)
Maode Yan
2008-01-01
Full Text Available This paper considers the problem of robust discrete-time sliding-mode control (DT-SMC design for a class of uncertain linear systems with time-varying delays. By applying a descriptor model transformation and Moon's inequality for bounding cross terms, a delay-dependent sufficient condition for the existence of stable sliding surface is given in terms of linear matrix inequalities (LMIs. Based on this existence condition, the synthesized sliding mode controller can guarantee the sliding-mode reaching condition of the specified discrete-time sliding surface for all admissible uncertainties and time-varying delays. An illustrative example verifies the effectiveness of the proposed method.
Propagation of a laser beam in a time-varying waveguide. [plasma heating for controlled fusion
Chapman, J. M.; Kevorkian, J.
1978-01-01
The propagation of an axisymmetric laser beam in a plasma column having a radially parabolic electron density distribution is reported. For the case of an axially uniform waveguide it is found that the basic characteristics of alternating focusing and defocusing beams are maintained. However, the intensity distribution is changed at the foci and outer-beam regions. The features of paraxial beam propagation are discussed with reference to axially varying waveguides. Laser plasma coupling is considered noting the case where laser heating produces a density distribution radially parabolic near the axis and the energy absorbed over the focal length of the plasma is small. It is found that: (1) beam-propagation stability is governed by the relative magnitude of the density fluctuations existing in the axial variation of the waveguides due to laser heating, and (2) for beam propagation in a time-varying waveguide, the global instability of the propagation is a function of the initial fluctuation growth rate as compared to the initial time rate of change in the radial curvature of the waveguide.
International Nuclear Information System (INIS)
Rakkiyappan, R.; Sivasamy, R.; Lakshmanan, S.
2014-01-01
In this paper, we study the exponential synchronization of chaotic Lur'e systems with time-varying delays via sampled-data control by using sector nonlinearties. In order to make full use of information about sampling intervals and interval time-varying delays, new Lyapunov—Krasovskii functionals with triple integral terms are introduced. Based on the convex combination technique, two kinds of synchronization criteria are derived in terms of linear matrix inequalities, which can be efficiently solved via standard numerical software. Finally, three numerical examples are provided to demonstrate the less conservatism and effectiveness of the proposed results
Directory of Open Access Journals (Sweden)
Fengxia Xu
2014-01-01
Full Text Available U-model can approximate a large class of smooth nonlinear time-varying delay system to any accuracy by using time-varying delay parameters polynomial. This paper proposes a new approach, namely, U-model approach, to solving the problems of analysis and synthesis for nonlinear systems. Based on the idea of discrete-time U-model with time-varying delay, the identification algorithm of adaptive neural network is given for the nonlinear model. Then, the controller is designed by using the Newton-Raphson formula and the stability analysis is given for the closed-loop nonlinear systems. Finally, illustrative examples are given to show the validity and applicability of the obtained results.
Ophem, S. van; Berkhoff, A.P.
2012-01-01
Tracking behavior and the rate of convergence are critical properties in active noise control applications with time-varying disturbance spectra. As compared to the standard filtered-reference Least Mean Square (LMS) algorithm, improved convergence can be obtained with schemes based on
International Nuclear Information System (INIS)
Jacobs, William R; Dodd, Tony J; Anderson, Sean R; Wilson, Emma D; Porrill, John; Assaf, Tareq; Rossiter, Jonathan
2015-01-01
Current models of dielectric elastomer actuators (DEAs) are mostly constrained to first principal descriptions that are not well suited to the application of control design due to their computational complexity. In this work we describe an integrated framework for the identification of control focused, data driven and time-varying DEA models that allow advanced analysis of nonlinear system dynamics in the frequency-domain. Experimentally generated input–output data (voltage-displacement) was used to identify control-focused, nonlinear and time-varying dynamic models of a set of film-type DEAs. The model description used was the nonlinear autoregressive with exogenous input structure. Frequency response analysis of the DEA dynamics was performed using generalized frequency response functions, providing insight and a comparison into the time-varying dynamics across a set of DEA actuators. The results demonstrated that models identified within the presented framework provide a compact and accurate description of the system dynamics. The frequency response analysis revealed variation in the time-varying dynamic behaviour of DEAs fabricated to the same specifications. These results suggest that the modelling and analysis framework presented here is a potentially useful tool for future work in guiding DEA actuator design and fabrication for application domains such as soft robotics. (paper)
Delay-Dependent Guaranteed Cost H∞ Control of an Interval System with Interval Time-Varying Delay
Directory of Open Access Journals (Sweden)
Zhongke Shi
2009-01-01
Full Text Available This paper concerns the problem of the delay-dependent robust stability and guaranteed cost H∞ control for an interval system with time-varying delay. The interval system with matrix factorization is provided and leads to less conservative conclusions than solving a square root. The time-varying delay is assumed to belong to an interval and the derivative of the interval time-varying delay is not a restriction, which allows a fast time-varying delay; also its applicability is broad. Based on the Lyapunov-Ktasovskii approach, a delay-dependent criterion for the existence of a state feedback controller, which guarantees the closed-loop system stability, the upper bound of cost function, and disturbance attenuation lever for all admissible uncertainties as well as out perturbation, is proposed in terms of linear matrix inequalities (LMIs. The criterion is derived by free weighting matrices that can reduce the conservatism. The effectiveness has been verified in a number example and the compute results are presented to validate the proposed design method.
Optimal control of LQR for discrete time-varying systems with input delays
Yin, Yue-Zhu; Yang, Zhong-Lian; Yin, Zhi-Xiang; Xu, Feng
2018-04-01
In this work, we consider the optimal control problem of linear quadratic regulation for discrete time-variant systems with single input and multiple input delays. An innovative and simple method to derive the optimal controller is given. The studied problem is first equivalently converted into a problem subject to a constraint condition. Last, with the established duality, the problem is transformed into a static mathematical optimisation problem without input delays. The optimal control input solution to minimise performance index function is derived by solving this optimisation problem with two methods. A numerical simulation example is carried out and its results show that our two approaches are both feasible and very effective.
Linear Time Varying Approach to Satellite Attitude Control Using only Electromagnetic Actuation
DEFF Research Database (Denmark)
Wisniewski, Rafal
2000-01-01
, lightweight, and power efficient actuators is therefore crucial and viable. This paper discusser linear attitude control strategies for a low earth orbit satellite actuated by a set of mutually perpendicular electromagnetic coils. The principle is to use the interaction between the Earth's magnetic field......, nevertheless, a solution of the riccati equation gives an excellent frame for investigations provided in this paper. An observation that geomagnetic field changes approximately periodically when satellite is on a near polar orbit is used throughout this paper. Three types of attitude controllers are proposed......: an infinite horizon, a finite horizon, and a constant gain controller. Their performance is evaluated and compared in the simulation study of the environment...
Edalati, L.; Khaki Sedigh, A.; Aliyari Shooredeli, M.; Moarefianpour, A.
2018-02-01
This paper deals with the design of adaptive fuzzy dynamic surface control for uncertain strict-feedback nonlinear systems with asymmetric time-varying output constraints in the presence of input saturation. To approximate the unknown nonlinear functions and overcome the problem of explosion of complexity, a Fuzzy logic system is combined with the dynamic surface control in the backstepping design technique. To ensure the output constraints satisfaction, an asymmetric time-varying Barrier Lyapunov Function (BLF) is used. Moreover, by applying the minimal learning parameter technique, the number of the online parameters update for each subsystem is reduced to 2. Hence, the semi-globally uniformly ultimately boundedness (SGUUB) of all the closed-loop signals with appropriate tracking error convergence is guaranteed. The effectiveness of the proposed control is demonstrated by two simulation examples.
Linear Time Varying Approach to Satellite Attitude Control Using only Electromagnetic Actuation
DEFF Research Database (Denmark)
Wisniewski, Rafal
1997-01-01
, lightweight, and power efficient actuators is therefore crucial and viable. This paper discusses linear attitude control strategies for a low earth orbit satellite actuated by a set of mutually perpendicular electromagnetic coils. The principle is to use the interaction between the Earth's magnetic field...... systems is limited, nevertheless, a solution of the Riccati equation gives an excellent frame for investigations provided in this paper. An observation that geomagnetic field changes approximately periodically when a satellite is on a near polar orbit is used throughout this paper. Three types of attitude...... controllers are proposed: an infinite horizon, a finite horizon, and a constant gain controller. Their performance is evaluated and compared in the simulation study of the realistic environment....
International Nuclear Information System (INIS)
Cui Baotong; Lou Xuyang
2009-01-01
In this paper, a new method to synchronize two identical chaotic recurrent neural networks is proposed. Using the drive-response concept, a nonlinear feedback control law is derived to achieve the state synchronization of the two identical chaotic neural networks. Furthermore, based on the Lyapunov method, a delay independent sufficient synchronization condition in terms of linear matrix inequality (LMI) is obtained. A numerical example with graphical illustrations is given to illuminate the presented synchronization scheme
Controllable deterioration rate for time-dependent demand and time-varying holding cost
Directory of Open Access Journals (Sweden)
Mishra Vinod Kumar
2014-01-01
Full Text Available In this paper, we develop an inventory model for non-instantaneous deteriorating items under the consideration of the facts: deterioration rate can be controlled by using the preservation technology (PT during deteriorating period, and holding cost and demand rate both are linear function of time, which was treated as constant in most of the deteriorating inventory models. So in this paper, we developed a deterministic inventory model for non-instantaneous deteriorating items in which both demand rate and holding cost are a linear function of time, deterioration rate is constant, backlogging rate is variable and depend on the length of the next replenishment, shortages are allowed and partially backlogged. The model is solved analytically by minimizing the total cost of the inventory system. The model can be applied to optimizing the total inventory cost of non-instantaneous deteriorating items inventory for the business enterprises, where the preservation technology is used to control the deterioration rate, and demand & holding cost both are a linear function of time.
Korayem, M H; Nekoo, S R
2015-07-01
This work studies an optimal control problem using the state-dependent Riccati equation (SDRE) in differential form to track for time-varying systems with state and control nonlinearities. The trajectory tracking structure provides two nonlinear differential equations: the state-dependent differential Riccati equation (SDDRE) and the feed-forward differential equation. The independence of the governing equations and stability of the controller are proven along the trajectory using the Lyapunov approach. Backward integration (BI) is capable of solving the equations as a numerical solution; however, the forward solution methods require the closed-form solution to fulfill the task. A closed-form solution is introduced for SDDRE, but the feed-forward differential equation has not yet been obtained. Different ways of solving the problem are expressed and analyzed. These include BI, closed-form solution with corrective assumption, approximate solution, and forward integration. Application of the tracking problem is investigated to control robotic manipulators possessing rigid or flexible joints. The intention is to release a general program for automatic implementation of an SDDRE controller for any manipulator that obeys the Denavit-Hartenberg (D-H) principle when only D-H parameters are received as input data. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Wang, Pengfei; Jin, Wei; Su, Huan
2018-04-01
This paper deals with the synchronization problem of a class of coupled stochastic complex-valued drive-response networks with time-varying delays via aperiodically intermittent adaptive control. Different from the previous works, the intermittent control is aperiodic and adaptive, and the restrictions on the control width and time delay are removed, which lead to a larger application scope for this control strategy. Then, based on the Lyapunov method and Kirchhoff's Matrix Tree Theorem as well as differential inequality techniques, several novel synchronization conditions are derived for the considered model. Specially, impulsive control is also considered, which can be seen as a special case of the aperiodically intermittent control when the control width tends to zero. And the corresponding synchronization criteria are given as well. As an application of the theoretical results, a class of stochastic complex-valued coupled oscillators with time-varying delays is studied, and the numerical simulations are also given to demonstrate the effectiveness of the control strategies.
Nonlinear State Space Modeling and System Identification for Electrohydraulic Control
Directory of Open Access Journals (Sweden)
Jun Yan
2013-01-01
Full Text Available The paper deals with nonlinear modeling and identification of an electrohydraulic control system for improving its tracking performance. We build the nonlinear state space model for analyzing the highly nonlinear system and then develop a Hammerstein-Wiener (H-W model which consists of a static input nonlinear block with two-segment polynomial nonlinearities, a linear time-invariant dynamic block, and a static output nonlinear block with single polynomial nonlinearity to describe it. We simplify the H-W model into a linear-in-parameters structure by using the key term separation principle and then use a modified recursive least square method with iterative estimation of internal variables to identify all the unknown parameters simultaneously. It is found that the proposed H-W model approximates the actual system better than the independent Hammerstein, Wiener, and ARX models. The prediction error of the H-W model is about 13%, 54%, and 58% less than the Hammerstein, Wiener, and ARX models, respectively.
Non-predictor control of a class of feedforward nonlinear systems with unknown time-varying delays
Koo, Min-Sung; Choi, Ho-Lim
2016-08-01
This paper generalises the several recent results on the control of feedforward time-delay nonlinear systems. First, in view of system formulation, there are unknown time-varying delays in both states and main control input. Also, the considered nonlinear system has extended feedforward nonlinearities. Second, in view of control solution, our proposed controller is a non-predictor feedback controller whereas smith-predictor type controllers are used in the several existing results. Moreover, our controller does not need any information on the unknown delays except their upper bounds. Thus, our result has certain merits in both system formulation and control solution perspective. The analysis and example are given for clear illustration.
Directory of Open Access Journals (Sweden)
Yi-You Hou
2014-01-01
Full Text Available This paper considers the problem of the robust stability for the nonlinear system with time-varying delay and parameters uncertainties. Based on the H∞ theorem, Lyapunov-Krasovskii theory, and linear matrix inequality (LMI optimization technique, the H∞ quasi-sliding mode controller and switching function are developed such that the nonlinear system is asymptotically stable in the quasi-sliding mode and satisfies the disturbance attenuation (H∞-norm performance. The effectiveness and accuracy of the proposed methods are shown in numerical simulations.
Léchappé, V.; Moulay, E.; Plestan, F.
2018-06-01
The stability of a prediction-based controller for linear time-invariant (LTI) systems is studied in the presence of time-varying input and output delays. The uncertain delay case is treated as well as the partial state knowledge case. The reduction method is used in order to prove the convergence of the closed-loop system including the state observer, the predictor and the plant. Explicit conditions that guarantee the closed-loop stability are given, thanks to a Lyapunov-Razumikhin analysis. Simulations illustrate the theoretical results.
Directory of Open Access Journals (Sweden)
Xiaoyu Su
2014-01-01
Full Text Available Aiming at the economy and security of the positioning system in semi-submersible platform, the paper presents a new scheme based on the mooring line switching strategy. Considering the input delay in switching process, H∞ control with time-varying input delay is designed to calculate the control forces to resist disturbing forces. In order to reduce the conservativeness, the information of the lower bound of delay is taken into account, and a Lyapunov function which contains the range of delay is constructed. Besides, the input constraint is considered to avoid breakage of mooring lines. The sufficient conditions for delay-range-dependent stabilization are derived in terms of LMI, and the controller is also obtained. The effectiveness of the proposed approach is illustrated by a realistic design example.
An application of gain-scheduled control using state-space interpolation to hydroactive gas bearings
DEFF Research Database (Denmark)
Theisen, Lukas Roy Svane; Camino, Juan F.; Niemann, Hans Henrik
2016-01-01
with a gain-scheduling strategy using state-space interpolation, which avoids both the performance loss and the increase of controller order associated to the Youla parametrisation. The proposed state-space interpolation for gain-scheduling is applied for mass imbalance rejection for a controllable gas...... bearing scheduled in two parameters. Comparisons against the Youla-based scheduling demonstrate the superiority of the state-space interpolation....
Directory of Open Access Journals (Sweden)
Alrijadjis .
2014-12-01
Full Text Available The proportional integral derivative (PID controllers have been widely used in most process control systems for a long time. However, it is a very important problem how to choose PID parameters, because these parameters give a great influence on the control performance. Especially, it is difficult to tune these parameters for nonlinear systems. In this paper, a new modified particle swarm optimization (PSO is presented to search for optimal PID parameters for such system. The proposed algorithm is to modify constriction coefficient which is nonlinearly decreased time-varying for improving the final accuracy and the convergence speed of PSO. To validate the control performance of the proposed method, a typical nonlinear system control, a continuous stirred tank reactor (CSTR process, is illustrated. The results testify that a new modified PSO algorithm can perform well in the nonlinear PID control system design in term of lesser overshoot, rise-time, settling-time, IAE and ISE. Keywords: PID controller, Particle Swarm Optimization (PSO,constriction factor, nonlinear system.
Hwang, Chih-Lyang; Jan, Chau
2016-02-01
At the beginning, an approximate nonlinear autoregressive moving average (NARMA) model is employed to represent a class of multivariable nonlinear dynamic systems with time-varying delay. It is known that the disadvantages of robust control for the NARMA model are as follows: 1) suitable control parameters for larger time delay are more sensitive to achieving desirable performance; 2) it only deals with bounded uncertainty; and 3) the nominal NARMA model must be learned in advance. Due to the dynamic feature of the NARMA model, a recurrent neural network (RNN) is online applied to learn it. However, the system performance becomes deteriorated due to the poor learning of the larger variation of system vector functions. In this situation, a simple network is employed to compensate the upper bound of the residue caused by the linear parameterization of the approximation error of RNN. An e -modification learning law with a projection for weight matrix is applied to guarantee its boundedness without persistent excitation. Under suitable conditions, the semiglobally ultimately bounded tracking with the boundedness of estimated weight matrix is obtained by the proposed RNN-based multivariable adaptive control. Finally, simulations are presented to verify the effectiveness and robustness of the proposed control.
Robust Moving Horizon H∞ Control of Discrete Time-Delayed Systems with Interval Time-Varying Delays
Directory of Open Access Journals (Sweden)
F. Yıldız Tascikaraoglu
2014-01-01
Full Text Available In this study, design of a delay-dependent type moving horizon state-feedback control (MHHC is considered for a class of linear discrete-time system subject to time-varying state delays, norm-bounded uncertainties, and disturbances with bounded energies. The closed-loop robust stability and robust performance problems are considered to overcome the instability and poor disturbance rejection performance due to the existence of parametric uncertainties and time-delay appeared in the system dynamics. Utilizing a discrete-time Lyapunov-Krasovskii functional, some delay-dependent linear matrix inequality (LMI based conditions are provided. It is shown that if one can find a feasible solution set for these LMI conditions iteratively at each step of run-time, then we can construct a control law which guarantees the closed-loop asymptotic stability, maximum disturbance rejection performance, and closed-loop dissipativity in view of the actuator limitations. Two numerical examples with simulations on a nominal and uncertain discrete-time, time-delayed systems, are presented at the end, in order to demonstrate the efficiency of the proposed method.
International Nuclear Information System (INIS)
Newsham, Guy R.; Bowker, Brent G.
2010-01-01
Peak demand for electricity in North America is expected to grow, challenging electrical utilities to supply this demand in a cost-effective, reliable manner. Therefore, there is growing interest in strategies to reduce peak demand by eliminating electricity use, or shifting it to non-peak times. This strategy is commonly called 'demand response'. In households, common strategies are time-varying pricing, which charge more for energy use on peak, or direct load control, which allows utilities to curtail certain loads during high demand periods. We reviewed recent North American studies of these strategies. The data suggest that the most effective strategy is a critical peak price (CPP) program with enabling technology to automatically curtail loads on event days. There is little evidence that this causes substantial hardship for occupants, particularly if they have input into which loads are controlled and how, and have an override option. In such cases, a peak load reduction of at least 30% is a reasonable expectation. It might be possible to attain such load reductions without enabling technology by focusing on household types more likely to respond, and providing them with excellent support. A simple time-of-use (TOU) program can only expect to realise on-peak reductions of 5%. (author)
Li, Zuohua; Chen, Chaojun; Teng, Jun; Wang, Ying
2018-04-01
Active mass damper/driver (AMD) control system has been proposed as an effective tool for high-rise buildings to resist strong dynamic loads. However, such disadvantage as time-varying delay in AMD control systems impedes their application in practices. Time-varying delay, which has an effect on the performance and stability of single-degree-of-freedom (SDOF) and multi-degree-of-freedom (MDOF) systems, is considered in the paper. In addition, a new time-delay compensation controller based on regional pole-assignment method is presented. To verify its effectiveness, the proposed method is applied to a numerical example of a ten-storey frame and an experiment of a single span four-storey steel frame. Both numerical and experimental results demonstrate that the proposed method can enhance the performances of an AMD control system with time-varying delays.
Sun, Bo; Sunkavalli, Kalyan; Ramamoorthi, Ravi; Belhumeur, Peter N; Nayar, Shree K
2007-01-01
The properties of virtually all real-world materials change with time, causing their bidirectional reflectance distribution functions (BRDFs) to be time varying. However, none of the existing BRDF models and databases take time variation into consideration; they represent the appearance of a material at a single time instance. In this paper, we address the acquisition, analysis, modeling, and rendering of a wide range of time-varying BRDFs (TVBRDFs). We have developed an acquisition system that is capable of sampling a material's BRDF at multiple time instances, with each time sample acquired within 36 sec. We have used this acquisition system to measure the BRDFs of a wide range of time-varying phenomena, which include the drying of various types of paints (watercolor, spray, and oil), the drying of wet rough surfaces (cement, plaster, and fabrics), the accumulation of dusts (household and joint compound) on surfaces, and the melting of materials (chocolate). Analytic BRDF functions are fit to these measurements and the model parameters' variations with time are analyzed. Each category exhibits interesting and sometimes nonintuitive parameter trends. These parameter trends are then used to develop analytic TVBRDF models. The analytic TVBRDF models enable us to apply effects such as paint drying and dust accumulation to arbitrary surfaces and novel materials.
Yu, Wenwu; Chen, Guanrong; Cao, Ming
Using tools from algebraic graph theory and nonsmooth analysis in combination with ideas of collective potential functions, velocity consensus and navigation feedback, a distributed leader-follower flocking algorithm for multi-agent dynamical systems with time-varying velocities is developed where
State-space Generalized Predicitve Control for redundant parallel robots
Czech Academy of Sciences Publication Activity Database
Belda, Květoslav; Böhm, Josef; Valášek, M.
2003-01-01
Roč. 31, č. 3 (2003), s. 413-432 ISSN 1539-7734 R&D Projects: GA ČR GA101/03/0620 Grant - others:CTU(CZ) 0204512 Institutional research plan: CEZ:AV0Z1075907 Keywords : parallel robot construction * generalized predictive control * drive redundancy Subject RIV: BC - Control Systems Theory http://library.utia.cas.cz/separaty/historie/belda-0411126.pdf
Guay, M.; Beerens, R.; Nijmeijer, H.
2014-01-01
This paper considers the solution of a real-time optimization problem using adaptive extremum seeking control for a class of unknown discrete-time nonlinear systems. It is assumed that the equations describing the dynamics of the nonlinear system and the cost function to be minimized are unknown and
Numerical analysis using state space method for vibration control of ...
African Journals Online (AJOL)
ATHARVA
carried out for two cases namely car moving on sagged bridges and car ... the vibrations of steel moment resisting frame in reinforced cement concrete buildings. ... active or semi-active dampers rolled into one (Spencer Jr. and Soong, 1999). ... implementation cost, low power consumption, ease of control, simple design ...
International Nuclear Information System (INIS)
Lu, Chien-Yu
2011-01-01
This paper considers the problem of delay-dependent global robust stabilization for discrete, distributed and neutral interval time-varying delayed neural networks described by nonlinear delay differential equations of the neutral type. The parameter uncertainties are norm bounded. The activation functions are assumed to be bounded and globally Lipschitz continuous. Using a Lyapunov functional approach and linear matrix inequality (LMI) techniques, the stability criteria for the uncertain neutral neural networks with interval time-varying delays are established in the form of LMIs, which can be readily verified using the standard numerical software. An important feature of the result reported is that all the stability conditions are dependent on the upper and lower bounds of the delays. Another feature of the results lies in that it involves fewer free weighting matrix strategy, and upper bounds of the inner product between two vectors are not introduced to reduce the conservatism of the criteria. Two illustrative examples are provided to demonstrate the effectiveness and the reduced conservatism of the proposed method
Directory of Open Access Journals (Sweden)
Manman Yuan
2018-01-01
Full Text Available The paper addresses the issue of synchronization of memristive bidirectional associative memory neural networks (MBAMNNs with mixed time-varying delays and stochastic perturbation via a sampled-data controller. First, we propose a new model of MBAMNNs with mixed time-varying delays. In the proposed approach, the mixed delays include time-varying distributed delays and discrete delays. Second, we design a new method of sampled-data control for the stochastic MBAMNNs. Traditional control methods lack the capability of reflecting variable synaptic weights. In this paper, the methods are carefully designed to confirm the synchronization processes are suitable for the feather of the memristor. Third, sufficient criteria guaranteeing the synchronization of the systems are derived based on the derive-response concept. Finally, the effectiveness of the proposed mechanism is validated with numerical experiments.
Directory of Open Access Journals (Sweden)
Minghui Yu
2017-01-01
Full Text Available The global exponential antisynchronization in mean square of memristive neural networks with stochastic perturbation and mixed time-varying delays is studied in this paper. Then, two kinds of novel delay-dependent and delay-independent adaptive controllers are designed. With the ability of adapting to environment changes, the proposed controllers can modify their behaviors to achieve the best performance. In particular, on the basis of the differential inclusions theory, inequality theory, and stochastic analysis techniques, several sufficient conditions are obtained to guarantee the exponential antisynchronization between the drive system and response system. Furthermore, two numerical simulation examples are provided to the validity of the derived criteria.
International Nuclear Information System (INIS)
Lien, C.-H.
2007-01-01
This article considers non-fragile guaranteed cost control problem for a class of uncertain neutral system with time-varying delays in both state and control input. Delay-dependent criteria are proposed to guarantee the robust stabilization of systems. Linear matrix inequality (LMI) optimization approach is used to solve the non-fragile guaranteed cost control problem. Non-fragile guaranteed cost control for unperturbed neutral system is considered in the first step. Robust non-fragile guaranteed cost control for uncertain neutral system is designed directly from the unperturbed condition. An efficient approach is proposed to design the non-fragile guaranteed cost control for uncertain neutral systems. LMI toolbox of Matlab is used to implement the proposed results. Finally, a numerical example is illustrated to show the usefulness of the proposed results
Czech Academy of Sciences Publication Activity Database
Nguyen, H.Q.; Čelikovský, Sergej
2012-01-01
Roč. 1, č. 3 (2012), s. 179-187 ISSN 2223-7038 R&D Projects: GA ČR(CZ) GAP103/12/1794 Institutional support: RVO:67985556 Keywords : Attitude control * adaptive fault estimation * LMI * PDF Subject RIV: BC - Control Systems Theory http://lib.physcon.ru/doc?id=02c925f7e4ab
Zhai, Di-Hua; Xia, Yuanqing
2018-02-01
This paper addresses the adaptive control for task-space teleoperation systems with constrained predefined synchronization error, where a novel switched control framework is investigated. Based on multiple Lyapunov-Krasovskii functionals method, the stability of the resulting closed-loop system is established in the sense of state-independent input-to-output stability. Compared with previous work, the developed method can simultaneously handle the unknown kinematics/dynamics, asymmetric varying time delays, and prescribed performance control in a unified framework. It is shown that the developed controller can guarantee the prescribed transient-state and steady-state synchronization performances between the master and slave robots, which is demonstrated by the simulation study.
Hua, Yongzhao; Dong, Xiwang; Li, Qingdong; Ren, Zhang
2017-11-01
This paper investigates the fault-tolerant time-varying formation control problems for high-order linear multi-agent systems in the presence of actuator failures. Firstly, a fully distributed formation control protocol is presented to compensate for the influences of both bias fault and loss of effectiveness fault. Using the adaptive online updating strategies, no global knowledge about the communication topology is required and the bounds of actuator failures can be unknown. Then an algorithm is proposed to determine the control parameters of the fault-tolerant formation protocol, where the time-varying formation feasible conditions and an approach to expand the feasible formation set are given. Furthermore, the stability of the proposed algorithm is proven based on the Lyapunov-like theory. Finally, two simulation examples are given to demonstrate the effectiveness of the theoretical results. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Khanzadeh, Alireza; Pourgholi, Mahdi
2016-01-01
In the conventional chaos synchronization methods, the time at which two chaotic systems are synchronized, is usually unknown and depends on initial conditions. In this work based on Lyapunov stability theory a sliding mode controller with time-varying switching surfaces is proposed to achieve chaos synchronization at a pre-specified time for the first time. The proposed controller is able to synchronize chaotic systems precisely at any time when we want. Moreover, by choosing the time-varying switching surfaces in a way that the reaching phase is eliminated, the synchronization becomes robust to uncertainties and exogenous disturbances. Simulation results are presented to show the effectiveness of the proposed method of stabilizing and synchronizing chaotic systems with complete robustness to uncertainty and disturbances exactly at a pre-specified time. (paper)
Khanzadeh, Alireza; Pourgholi, Mahdi
2016-08-01
In the conventional chaos synchronization methods, the time at which two chaotic systems are synchronized, is usually unknown and depends on initial conditions. In this work based on Lyapunov stability theory a sliding mode controller with time-varying switching surfaces is proposed to achieve chaos synchronization at a pre-specified time for the first time. The proposed controller is able to synchronize chaotic systems precisely at any time when we want. Moreover, by choosing the time-varying switching surfaces in a way that the reaching phase is eliminated, the synchronization becomes robust to uncertainties and exogenous disturbances. Simulation results are presented to show the effectiveness of the proposed method of stabilizing and synchronizing chaotic systems with complete robustness to uncertainty and disturbances exactly at a pre-specified time.
Robust control of uncertain dynamic systems a linear state space approach
Yedavalli, Rama K
2014-01-01
This textbook aims to provide a clear understanding of the various tools of analysis and design for robust stability and performance of uncertain dynamic systems. In model-based control design and analysis, mathematical models can never completely represent the “real world” system that is being modeled, and thus it is imperative to incorporate and accommodate a level of uncertainty into the models. This book directly addresses these issues from a deterministic uncertainty viewpoint and focuses on the interval parameter characterization of uncertain systems. Various tools of analysis and design are presented in a consolidated manner. This volume fills a current gap in published works by explicitly addressing the subject of control of dynamic systems from linear state space framework, namely using a time-domain, matrix-theory based approach. This book also: Presents and formulates the robustness problem in a linear state space model framework Illustrates various systems level methodologies with examples and...
State-Space Equations and the First-Phase Algorithm for Signal Control of Single Intersections
Institute of Scientific and Technical Information of China (English)
LI Jinyuan; PAN Xin; WANG Xiqin
2007-01-01
State-space equations were applied to formulate the queuing and delay of traffic at a single intersection in this paper. The signal control of a single intersection was then modeled as a discrete-time optimal control problem, with consideration of the constraints of stream conflicts, saturation flow rate, minimum green time, and maximum green time. The problem cannot be solved directly due to the nonlinear constraints.However, the results of qualitative analysis were used to develop a first-phase signal control algorithm. Simulation results show that the algorithm substantially reduces the total delay compared to fixed-time control.
Luo, Jianjun; Wei, Caisheng; Dai, Honghua; Yuan, Jianping
2018-03-01
This paper focuses on robust adaptive control for a class of uncertain nonlinear systems subject to input saturation and external disturbance with guaranteed predefined tracking performance. To reduce the limitations of classical predefined performance control method in the presence of unknown initial tracking errors, a novel predefined performance function with time-varying design parameters is first proposed. Then, aiming at reducing the complexity of nonlinear approximations, only two least-square-support-vector-machine-based (LS-SVM-based) approximators with two design parameters are required through norm form transformation of the original system. Further, a novel LS-SVM-based adaptive constrained control scheme is developed under the time-vary predefined performance using backstepping technique. Wherein, to avoid the tedious analysis and repeated differentiations of virtual control laws in the backstepping technique, a simple and robust finite-time-convergent differentiator is devised to only extract its first-order derivative at each step in the presence of external disturbance. In this sense, the inherent demerit of backstepping technique-;explosion of terms; brought by the recursive virtual controller design is conquered. Moreover, an auxiliary system is designed to compensate the control saturation. Finally, three groups of numerical simulations are employed to validate the effectiveness of the newly developed differentiator and the proposed adaptive constrained control scheme.
Stamova, Ivanka; Stamov, Gani
2017-12-01
In this paper, we propose a fractional-order neural network system with time-varying delays and reaction-diffusion terms. We first develop a new Mittag-Leffler synchronization strategy for the controlled nodes via impulsive controllers. Using the fractional Lyapunov method sufficient conditions are given. We also study the global Mittag-Leffler synchronization of two identical fractional impulsive reaction-diffusion neural networks using linear controllers, which was an open problem even for integer-order models. Since the Mittag-Leffler stability notion is a generalization of the exponential stability concept for fractional-order systems, our results extend and improve the exponential impulsive control theory of neural network system with time-varying delays and reaction-diffusion terms to the fractional-order case. The fractional-order derivatives allow us to model the long-term memory in the neural networks, and thus the present research provides with a conceptually straightforward mathematical representation of rather complex processes. Illustrative examples are presented to show the validity of the obtained results. We show that by means of appropriate impulsive controllers we can realize the stability goal and to control the qualitative behavior of the states. An image encryption scheme is extended using fractional derivatives. Copyright © 2017 Elsevier Ltd. All rights reserved.
Li, Zhijun; Su, Chun-Yi
2013-09-01
In this paper, adaptive neural network control is investigated for single-master-multiple-slaves teleoperation in consideration of time delays and input dead-zone uncertainties for multiple mobile manipulators carrying a common object in a cooperative manner. Firstly, concise dynamics of teleoperation systems consisting of a single master robot, multiple coordinated slave robots, and the object are developed in the task space. To handle asymmetric time-varying delays in communication channels and unknown asymmetric input dead zones, the nonlinear dynamics of the teleoperation system are transformed into two subsystems through feedback linearization: local master or slave dynamics including the unknown input dead zones and delayed dynamics for the purpose of synchronization. Then, a model reference neural network control strategy based on linear matrix inequalities (LMI) and adaptive techniques is proposed. The developed control approach ensures that the defined tracking errors converge to zero whereas the coordination internal force errors remain bounded and can be made arbitrarily small. Throughout this paper, stability analysis is performed via explicit Lyapunov techniques under specific LMI conditions. The proposed adaptive neural network control scheme is robust against motion disturbances, parametric uncertainties, time-varying delays, and input dead zones, which is validated by simulation studies.
Karimi, Hamid Reza; Gao, Huijun
2008-07-01
A mixed H2/Hinfinity output-feedback control design methodology is presented in this paper for second-order neutral linear systems with time-varying state and input delays. Delay-dependent sufficient conditions for the design of a desired control are given in terms of linear matrix inequalities (LMIs). A controller, which guarantees asymptotic stability and a mixed H2/Hinfinity performance for the closed-loop system of the second-order neutral linear system, is then developed directly instead of coupling the model to a first-order neutral system. A Lyapunov-Krasovskii method underlies the LMI-based mixed H2/Hinfinity output-feedback control design using some free weighting matrices. The simulation results illustrate the effectiveness of the proposed methodology.
Investigation of multidimensional control systems in the state space and wavelet medium
Fedosenkov, D. B.; Simikova, A. A.; Fedosenkov, B. A.
2018-05-01
The notions are introduced of “one-dimensional-point” and “multidimensional-point” automatic control systems. To demonstrate the joint use of approaches based on the concepts of state space and wavelet transforms, a method for optimal control in a state space medium represented in the form of time-frequency representations (maps), is considered. The computer-aided control system is formed on the basis of the similarity transformation method, which makes it possible to exclude the use of reduced state variable observers. 1D-material flow signals formed by primary transducers are converted by means of wavelet transformations into multidimensional concentrated-at-a point variables in the form of time-frequency distributions of Cohen’s class. The algorithm for synthesizing a stationary controller for feeding processes is given here. The conclusion is made that the formation of an optimal control law with time-frequency distributions available contributes to the improvement of transient processes quality in feeding subsystems and the mixing unit. Confirming the efficiency of the method presented is illustrated by an example of the current registration of material flows in the multi-feeding unit. The first section in your paper.
Schaeffner, Maximilian; Platz, Roland
2018-06-01
For slender beam-columns loaded by axial compressive forces, active buckling control provides a possibility to increase the maximum bearable axial load above that of a purely passive structure. In this paper, an approach for gain-scheduled {{\\mathscr{H}}}∞ buckling control of a slender beam-column with circular cross-section subject to time-varying axial loads is investigated experimentally. Piezo-elastic supports with integrated piezoelectric stack actuators at the beam-column ends allow an active stabilization in arbitrary lateral directions. The axial loads on the beam-column influence its lateral dynamic behavior and, eventually, cause the beam-column to buckle. A reduced modal model of the beam-column subject to axial loads including the dynamics of the electrical components is set up and calibrated with experimental data. Particularly, the linear parameter-varying open-loop plant is used to design a model-based gain-scheduled {{\\mathscr{H}}}∞ buckling control that is implemented in an experimental test setup. The beam-column is loaded by ramp- and step-shaped time-varying axial compressive loads that result in a lateral deformation of the beam-column due to imperfections, such as predeformation, eccentric loading or clamping moments. The lateral deformations and the maximum bearable loads of the beam-column are analyzed and compared for the beam-column with and without gain-scheduled {{\\mathscr{H}}}∞ buckling control or, respectively, active and passive configuration. With the proposed gain-scheduled {{\\mathscr{H}}}∞ buckling control it is possible to increase the maximum bearable load of the active beam-column by 19% for ramp-shaped axial loads and to significantly reduce the beam-column deformations for step-shaped axial loads compared to the passive structure.
DEFF Research Database (Denmark)
Christoffersen, Peter; Feunoua, Bruno; Jeon, Yoontae
We estimate a continuous-time model with stochastic volatility and dynamic crash probability for the S&P 500 index and find that market illiquidity dominates other factors in explaining the stock market crash risk. While the crash probability is time-varying, its dynamic depends only weakly on re...
Energy Technology Data Exchange (ETDEWEB)
Wang, Guo Xu; Wu, Jie; Zeng, Bifan; Wu, Wangqiang; Ma, Xiao Qian [School of Electric Power, South China University of Technology, Guangzhou (China); Xu, Zhibin [Electric Power Research Institute of Guangdong Power Grid Corporation, Guangzhou (China)
2017-02-15
A well-performed core power control to track load changes is crucial in pressurized water reactor (PWR) nuclear power stations. It is challenging to keep the core power stable at the desired value within acceptable error bands for the safety demands of the PWR due to the sensitivity of nuclear reactors. In this paper, a state-space model predictive control (MPC) method was applied to the control of the core power. The model for core power control was based on mathematical models of the reactor core, the MPC model, and quadratic programming (QP). The mathematical models of the reactor core were based on neutron dynamic models, thermal hydraulic models, and reactivity models. The MPC model was presented in state-space model form, and QP was introduced for optimization solution under system constraints. Simulations of the proposed state-space MPC control system in PWR were designed for control performance analysis, and the simulation results manifest the effectiveness and the good performance of the proposed control method for core power control.
Use of digital control theory state space formalism for feedback at SLC
International Nuclear Information System (INIS)
Himel, T.; Hendrickson, L.; Rouse, F.; Shoaee, H.
1991-05-01
The algorithms used in the database-driven SLC fast-feedback system are based on the state space formalism of digital control theory. These are implemented as a set of matrix equations which use a Kalman filter to estimate a vector of states from a vector of measurements, and then apply a gain matrix to determine the actuator settings from the state vector. The matrices used in the calculation are derived offline using Linear Quadratic Gaussian minimization. For a given noise spectrum, this procedure minimizes the rms of the states (e.g., the position or energy of the beam). The offline program also allows simulation of the loop's response to arbitrary inputs, and calculates its frequency response. 3 refs., 3 figs
Directory of Open Access Journals (Sweden)
Emran Tohidi
2013-01-01
Full Text Available The idea of approximation by monomials together with the collocation technique over a uniform mesh for solving state-space analysis and optimal control problems (OCPs has been proposed in this paper. After imposing the Pontryagins maximum principle to the main OCPs, the problems reduce to a linear or nonlinear boundary value problem. In the linear case we propose a monomial collocation matrix approach, while in the nonlinear case, the general collocation method has been applied. We also show the efficiency of the operational matrices of differentiation with respect to the operational matrices of integration in our numerical examples. These matrices of integration are related to the Bessel, Walsh, Triangular, Laguerre, and Hermite functions.
International Nuclear Information System (INIS)
Khanzadeh, Alireza; Pourgholi, Mahdi
2016-01-01
A main problem associated with the synchronization of two chaotic systems is that the time in which complete synchronization will occur is not specified. Synchronization time is either infinitely large or is finite but only its upper bound is known and this bound depends on the systems' initial conditions. In this paper we propose a method for synchronizing of two chaotic systems precisely at a time which we want. To this end, time-varying switching surfaces sliding mode control is used and the control law based on Lyapunov stability theorem is derived which is able to synchronize two fractional-order chaotic systems precisely at a pre specified time without concerning about their initial conditions. Moreover, by eliminating the reaching phase in the proposed synchronization scheme, robustness against existence of uncertainties and exogenous disturbances is obtained. Because of the existence of fractional integral of the sign function instead of the sign function in the control equation, the necessity for infinitely fast switching be obviated in this method. To show the effectiveness of the proposed method the illustrative examples under different situations are provided and the simulation results are reported.
Directory of Open Access Journals (Sweden)
Asger Emil Munch Schrøder
2017-04-01
Full Text Available Echolocating animals reduce their output level and hearing sensitivity with decreasing echo delays, presumably to stabilize the perceived echo intensity during target approaches. In bats, this variation in hearing sensitivity is formed by a call-induced stapedial reflex that tapers off over time after the call. Here, we test the hypothesis that a similar mechanism exists in toothed whales by subjecting a trained harbour porpoise to a series of double sound pulses varying in delay and frequency, while measuring the magnitudes of the evoked auditory brainstem responses (ABRs. We find that the recovery of the ABR to the second pulse is frequency dependent, and that a stapedial reflex therefore cannot account for the reduced hearing sensitivity at short pulse delays. We propose that toothed whale auditory time-varying gain control during echolocation is not enabled by the middle ear as in bats, but rather by frequency-dependent mechanisms such as forward masking and perhaps higher-order control of efferent feedback to the outer hair cells.
Correlations in state space can cause sub-optimal adaptation of optimal feedback control models.
Aprasoff, Jonathan; Donchin, Opher
2012-04-01
Control of our movements is apparently facilitated by an adaptive internal model in the cerebellum. It was long thought that this internal model implemented an adaptive inverse model and generated motor commands, but recently many reject that idea in favor of a forward model hypothesis. In theory, the forward model predicts upcoming state during reaching movements so the motor cortex can generate appropriate motor commands. Recent computational models of this process rely on the optimal feedback control (OFC) framework of control theory. OFC is a powerful tool for describing motor control, it does not describe adaptation. Some assume that adaptation of the forward model alone could explain motor adaptation, but this is widely understood to be overly simplistic. However, an adaptive optimal controller is difficult to implement. A reasonable alternative is to allow forward model adaptation to 're-tune' the controller. Our simulations show that, as expected, forward model adaptation alone does not produce optimal trajectories during reaching movements perturbed by force fields. However, they also show that re-optimizing the controller from the forward model can be sub-optimal. This is because, in a system with state correlations or redundancies, accurate prediction requires different information than optimal control. We find that adding noise to the movements that matches noise found in human data is enough to overcome this problem. However, since the state space for control of real movements is far more complex than in our simple simulations, the effects of correlations on re-adaptation of the controller from the forward model cannot be overlooked.
Liu, Ya-Juan; André, Silvère; Saint Cristau, Lydia; Lagresle, Sylvain; Hannas, Zahia; Calvosa, Éric; Devos, Olivier; Duponchel, Ludovic
2017-02-01
Multivariate statistical process control (MSPC) is increasingly popular as the challenge provided by large multivariate datasets from analytical instruments such as Raman spectroscopy for the monitoring of complex cell cultures in the biopharmaceutical industry. However, Raman spectroscopy for in-line monitoring often produces unsynchronized data sets, resulting in time-varying batches. Moreover, unsynchronized data sets are common for cell culture monitoring because spectroscopic measurements are generally recorded in an alternate way, with more than one optical probe parallelly connecting to the same spectrometer. Synchronized batches are prerequisite for the application of multivariate analysis such as multi-way principal component analysis (MPCA) for the MSPC monitoring. Correlation optimized warping (COW) is a popular method for data alignment with satisfactory performance; however, it has never been applied to synchronize acquisition time of spectroscopic datasets in MSPC application before. In this paper we propose, for the first time, to use the method of COW to synchronize batches with varying durations analyzed with Raman spectroscopy. In a second step, we developed MPCA models at different time intervals based on the normal operation condition (NOC) batches synchronized by COW. New batches are finally projected considering the corresponding MPCA model. We monitored the evolution of the batches using two multivariate control charts based on Hotelling's T 2 and Q. As illustrated with results, the MSPC model was able to identify abnormal operation condition including contaminated batches which is of prime importance in cell culture monitoring We proved that Raman-based MSPC monitoring can be used to diagnose batches deviating from the normal condition, with higher efficacy than traditional diagnosis, which would save time and money in the biopharmaceutical industry. Copyright © 2016 Elsevier B.V. All rights reserved.
Optimal control for wind turbine system via state-space method
Shanoob, Mudhafar L.
Renewable energy is becoming a fascinating research interest in future energy production because it is green and does not pollute nature. Wind energy is an excellent example of renewable resources that are evolving. Throughout the history of humanity, wind energy has been used. In ancient time, it was used to grind seeds, sailing etc. Nowadays, wind energy has been used to generate electrical power. Researchers have done a lot of research about using a wind source to generate electricity. As wind flow is not reliable, there is a challenge to get stable electricity out of this varying wind. This problem leads to the use of different control methods and the optimization of these methods to get a stable and reliable electrical energy. In this research, a wind turbine system is considered to study the transient and the steady-state stability; consisting of the aerodynamic system, drive train and generator. The Doubly Feed Induction Generator (DFIG) type generator is used in this thesis. The wind turbine system is connected to power system network. The grid is an infinite bus bar connected to a short transmission line and transformer. The generator is attached to the grid from the stator side. State-space method is used to model the wind turbine parts. The system is modeled and controlled using MATLAB/Simulation software. First, the current-mode control method (PVdq) with (PI) regulator is operated as a reference to find how the system reacts to an unexpected disturbance on the grid side or turbine side. The controller is operated with three scenarios of disruption: Disturbance-mechanical torque input, Step disturbance in the electrical torque reference and Fault Ride-through. In the simulation results, the time response and the transient stability of the system is a product of the disturbances that take a long time to settle. So, for this reason, Linear Quadratic Regulation (LQR) optimal control is utilized to solve this problem. The LQR method is designed based on
Active vibration control using state space LQG and internal model control methods
DEFF Research Database (Denmark)
Mørkholt, Jakob; Elliott, S.J.
1998-01-01
Two ways of designing discrete time robust H2-controllers for feedback broadband active vibration control are compared through computer simulations. The methods are based on different models of disturbance and plant transfer functions, but yield controllers with identical properties. Two simple...... ways of introducing robustness into the H2-design are compared, and finally an efficient way of designing a practical IIR-controller is proposed....
International Nuclear Information System (INIS)
Domijan, A.D. Jr.; Emami, M.V.
1990-01-01
This paper reports on a simulation of a MHO distance relay developed to study the effect of its operation under various system conditions. Simulation is accomplished using a state space approach and a modeling technique using ElectroMagnetic Transient Program (Transient Analysis of Control Systems). Furthermore, simulation results are compared with those obtained in another independent study as a control, to validate the results. A data code for the practical utilization of this simulation is given
Directory of Open Access Journals (Sweden)
V. Comnac
2009-12-01
Full Text Available The paper presents sensorless state-space control of two-inertia drive system with resilient coupling. The control structure contains an I+PI controller for load speed regulation and a state feedback controller for effective vibration suppression of the elastic coupling. Mechanical state variable of two-inertia drive are obtained by using a linear minimum-order (Gopinath state observer. The design of the combined (I+PI and state feedback controller is achieved with the extended version of the modulus criterion [5]. The dynamic behavior of presented control structure has been examined, for different conditions, using MATLAB/SIMULINK simulation.
Øktedalen, Tuva; Hoffart, Asle; Langkaas, Tomas Formo
2015-01-01
The specific aims of this study are to examine trauma-related shame and guilt as time-varying predictors of symptoms of posttraumatic stress disorder (PTSD). Sixty-five patients were included in the statistical analyses and the multilevel modeling analyses supported three major findings. (i) Patients with a higher level of shame and guilt at the start of treatment displayed a higher level of PTSD symptoms over the course of treatment compared to other patients. (ii) Time-specific change in shame and guilt predicted the level of PTSD symptoms 3 days later from session to session during treatment. (iii) No significant differences were evident between prolonged exposure (PE) and modified PE to include imagery rescripting in the within-person process of change in PTSD symptoms from session to session during therapy. This trial reports the first evidence that within-person change in shame and guilt predicts change in PTSD symptoms from session to session during treatment.
A time-varying magnetic flux concentrator
International Nuclear Information System (INIS)
Kibret, B; Premaratne, M; Lewis, P M; Thomson, R; Fitzgerald, P B
2016-01-01
It is known that diverse technological applications require the use of focused magnetic fields. This has driven the quest for controlling the magnetic field. Recently, the principles in transformation optics and metamaterials have allowed the realization of practical static magnetic flux concentrators. Extending such progress, here, we propose a time-varying magnetic flux concentrator cylindrical shell that uses electric conductors and ferromagnetic materials to guide magnetic flux to its center. Its performance is discussed based on finite-element simulation results. Our proposed design has potential applications in magnetic sensors, medical devices, wireless power transfer, and near-field wireless communications. (paper)
Ibrahim, I. N.; Akkad, M. A. Al; Abramov, I. V.
2018-05-01
This paper discusses the control of Unmanned Aerial Vehicles (UAVs) for active interaction and manipulation of objects. The manipulator motion with an unknown payload was analysed concerning force and moment disturbances, which influence the mass distribution, and the centre of gravity (CG). Therefore, a general dynamics mathematical model of a hexacopter was formulated where a stochastic state-space model was extracted in order to build anti-disturbance controllers. Based on the compound pendulum method, the disturbances model that simulates the robotic arm with a payload was inserted into the stochastic model. This study investigates two types of controllers in order to study the stability of a hexacopter. A controller based on Ackermann’s method and the other - on the linear quadratic regulator (LQR) approach - were presented. The latter constitutes a challenge for UAV control performance especially with the presence of uncertainties and disturbances.
Flexible time-varying filter banks
Tuncer, Temel E.; Nguyen, Truong Q.
1993-09-01
Linear phase maximally flat FIR Butterworth filter approximations are discussed and a new filter design method is introduced. This variable cutoff filter design method uses the cosine modulated versions of a prototype filter. The design procedure is simple and different variants of this procedure can be used to obtain close to optimum linear phase filters. Using this method, flexible time-varying filter banks with good reconstruction error are introduced. These types of oversampled filter banks have small magnitude error which can be easily controlled by the appropriate choice of modulation frequency. This error can be further decreased by magnitude equalization without increasing the computational complexity considerably. Two dimensional design examples are also given.
International Nuclear Information System (INIS)
Han, Jaeyoung; Jung, Mooncheong; Yu, Sangseok; Yi, Sun
2016-01-01
In this study, a model reference adaptive controller is developed to regulate the outlet air flow rate of centrifugal compressor for automotive supercharger. The centrifugal compressor is developed using the analytical based method to predict the transient behavior of operating and the designed model is validated with experimental data to confirm the system accuracy. The model reference adaptive control structure consists of a compressor model and a MRAC(model reference adaptive control) mechanism. The feedback control do not robust with variation of system parameter but the applied adaptive control is robust even if the system parameter is changed. As a result, the MRAC was regulated to reference air flow rate. Also MRAC was found to be more robust control compared with the feedback control even if the system parameter is changed.
Energy Technology Data Exchange (ETDEWEB)
Han, Jaeyoung; Jung, Mooncheong; Yu, Sangseok [Chungnam Nat’l Univ., Daejeon (Korea, Republic of); Yi, Sun [North Carolina A and T State Univ., Raleigh (United States)
2016-08-15
In this study, a model reference adaptive controller is developed to regulate the outlet air flow rate of centrifugal compressor for automotive supercharger. The centrifugal compressor is developed using the analytical based method to predict the transient behavior of operating and the designed model is validated with experimental data to confirm the system accuracy. The model reference adaptive control structure consists of a compressor model and a MRAC(model reference adaptive control) mechanism. The feedback control do not robust with variation of system parameter but the applied adaptive control is robust even if the system parameter is changed. As a result, the MRAC was regulated to reference air flow rate. Also MRAC was found to be more robust control compared with the feedback control even if the system parameter is changed.
Action selection in growing state spaces: control of network structure growth
International Nuclear Information System (INIS)
Thalmeier, Dominik; Kappen, Hilbert J; Gómez, Vicenç
2017-01-01
The dynamical processes taking place on a network depend on its topology. Influencing the growth process of a network therefore has important implications on such dynamical processes. We formulate the problem of influencing the growth of a network as a stochastic optimal control problem in which a structural cost function penalizes undesired topologies. We approximate this control problem with a restricted class of control problems that can be solved using probabilistic inference methods. To deal with the increasing problem dimensionality, we introduce an adaptive importance sampling method for approximating the optimal control. We illustrate this methodology in the context of formation of information cascades, considering the task of influencing the structure of a growing conversation thread, as in Internet forums. Using a realistic model of growing trees, we show that our approach can yield conversation threads with better structural properties than the ones observed without control. (paper)
Book, W. J.; Majett, M.
1982-01-01
The potential benefits of the ability to control more flexible mechanical arms are discussed. A justification is made in terms of speed of movement. A new controller design procedure is then developed to provide this capability. It uses both a frequency domain representation and a state variable representation of the arm model. The frequency domain model is used to update the modal state variable model to insure decoupled states. The technique is applied to a simple example with encouraging results.
A new state space model for the NASA/JPL 70-meter antenna servo controls
Hill, R. E.
1987-01-01
A control axis referenced model of the NASA/JPL 70-m antenna structure is combined with the dynamic equations of servo components to produce a comprehansive state variable (matrix) model of the coupled system. An interactive Fortran program for generating the linear system model and computing its salient parameters is described. Results are produced in a state variable, block diagram, and in factored transfer function forms to facilitate design and analysis by classical as well as modern control methods.
NON-LINEAR STATE SPACE MODEL AND CONTROL STRATEGY FOR PEM FUEL CELL SYSTEMS
Directory of Open Access Journals (Sweden)
RICHARD RIOS
2011-01-01
Full Text Available Este artículo presenta un modelo no lineal en el espacio de estado y un sistema de control lineal para una celda de combustible de Membrana de Intercambio Protónico. El modelo tiene como dinámicas la temperatura de la pila y el fl ujo de aire, y su principal rasgo es la reproducción del comportamiento de la razón de exceso de oxigeno. El sistema de control lineal es un regulador optimo cuadrático y un fi ltro de Kalman, cuyo objetivo de control es evitar el agotamiento de oxigeno y minimizar el consumo de combustible, a través del seguimiento de un perfi l optimo de potencia de carga. El observador es diseñado con el fi nde obtener una completa información de los estados.
Correlations in state space can cause sub-optimal adaptation of optimal feedback control models
Aprasoff, Jonathan; Donchin, Opher
2011-01-01
Control of our movements is apparently facilitated by an adaptive internal model in the cerebellum. It was long thought that this internal model implemented an adaptive inverse model and generated motor commands, but recently many reject that idea in favor of a forward model hypothesis. In theory, the forward model predicts upcoming state during reaching movements so the motor cortex can generate appropriate motor commands. Recent computational models of this process rely on the optimal feedb...
Aksikas, I.; Moghadam, A. Alizadeh; Forbes, J. F.
2018-04-01
This paper deals with the design of an optimal state-feedback linear-quadratic (LQ) controller for a system of coupled parabolic-hypebolic non-autonomous partial differential equations (PDEs). The infinite-dimensional state space representation and the corresponding operator Riccati differential equation are used to solve the control problem. Dynamical properties of the coupled system of interest are analysed to guarantee the existence and uniqueness of the solution of the LQ-optimal control problem and also to guarantee the exponential stability of the closed-loop system. Thanks to the eigenvalues and eigenfunctions of the parabolic operator and also the fact that the hyperbolic-associated operator Riccati differential equation can be converted to a scalar Riccati PDE, an algorithm to solve the LQ control problem has been presented. The results are applied to a non-isothermal packed-bed catalytic reactor. The LQ optimal controller designed in the early portion of the paper is implemented for the original non-linear model. Numerical simulations are performed to show the controller performances.
Zhang, Xian-Ming; Han, Qing-Long; Ge, Xiaohua
2017-09-22
This paper is concerned with the problem of robust H∞ control of an uncertain discrete-time Takagi-Sugeno fuzzy system with an interval-like time-varying delay. A novel finite-sum inequality-based method is proposed to provide a tighter estimation on the forward difference of certain Lyapunov functional, leading to a less conservative result. First, an auxiliary vector function is used to establish two finite-sum inequalities, which can produce tighter bounds for the finite-sum terms appearing in the forward difference of the Lyapunov functional. Second, a matrix-based quadratic convex approach is employed to equivalently convert the original matrix inequality including a quadratic polynomial on the time-varying delay into two boundary matrix inequalities, which delivers a less conservative bounded real lemma (BRL) for the resultant closed-loop system. Third, based on the BRL, a novel sufficient condition on the existence of suitable robust H∞ fuzzy controllers is derived. Finally, two numerical examples and a computer-simulated truck-trailer system are provided to show the effectiveness of the obtained results.
Directory of Open Access Journals (Sweden)
H. Bassi
2017-04-01
Full Text Available Advancements in wind energy technologies have led wind turbines from fixed speed to variable speed operation. This paper introduces an innovative version of a variable-speed wind turbine based on a model predictive control (MPC approach. The proposed approach provides maximum power point tracking (MPPT, whose main objective is to capture the maximum wind energy in spite of the variable nature of the wind’s speed. The proposed MPC approach also reduces the constraints of the two main functional parts of the wind turbine: the full load and partial load segments. The pitch angle for full load and the rotating force for the partial load have been fixed concurrently in order to balance power generation as well as to reduce the operations of the pitch angle. A mathematical analysis of the proposed system using state-space approach is introduced. The simulation results using MATLAB/SIMULINK show that the performance of the wind turbine with the MPC approach is improved compared to the traditional PID controller in both low and high wind speeds.
Rigatos, Gerasimos G
2017-01-01
The book conclusively solves problems associated with the control and estimation of nonlinear and chaotic dynamics in ﬁnancial systems when these are described in the form of nonlinear ordinary diﬀerential equations. It then addresses problems associated with the control and estimation of ﬁnancial systems governed by partial diﬀerential equations (e.g. the Black–Scholes partial differential equation (PDE) and its variants). Lastly it an offers optimal solution to the problem of statistical validation of computational models and tools used to support ﬁnancial engineers in decision making. The application of state-space models in ﬁnancial engineering means that the heuristics and empirical methods currently in use in decision-making procedures for ﬁnance can be eliminated. It also allows methods of fault-free performance and optimality in the management of assets and capitals and methods assuring stability in the functioning of ﬁnancial systems to be established. Covering the following key are...
Design of 2D Time-Varying Vector Fields
Chen, Guoning; Kwatra, Vivek; Wei, Li-Yi; Hansen, Charles D.; Zhang, Eugene
2012-01-01
Design of time-varying vector fields, i.e., vector fields that can change over time, has a wide variety of important applications in computer graphics. Existing vector field design techniques do not address time-varying vector fields. In this paper, we present a framework for the design of time-varying vector fields, both for planar domains as well as manifold surfaces. Our system supports the creation and modification of various time-varying vector fields with desired spatial and temporal characteristics through several design metaphors, including streamlines, pathlines, singularity paths, and bifurcations. These design metaphors are integrated into an element-based design to generate the time-varying vector fields via a sequence of basis field summations or spatial constrained optimizations at the sampled times. The key-frame design and field deformation are also introduced to support other user design scenarios. Accordingly, a spatial-temporal constrained optimization and the time-varying transformation are employed to generate the desired fields for these two design scenarios, respectively. We apply the time-varying vector fields generated using our design system to a number of important computer graphics applications that require controllable dynamic effects, such as evolving surface appearance, dynamic scene design, steerable crowd movement, and painterly animation. Many of these are difficult or impossible to achieve via prior simulation-based methods. In these applications, the time-varying vector fields have been applied as either orientation fields or advection fields to control the instantaneous appearance or evolving trajectories of the dynamic effects. © 1995-2012 IEEE.
Design of 2D time-varying vector fields.
Chen, Guoning; Kwatra, Vivek; Wei, Li-Yi; Hansen, Charles D; Zhang, Eugene
2012-10-01
Design of time-varying vector fields, i.e., vector fields that can change over time, has a wide variety of important applications in computer graphics. Existing vector field design techniques do not address time-varying vector fields. In this paper, we present a framework for the design of time-varying vector fields, both for planar domains as well as manifold surfaces. Our system supports the creation and modification of various time-varying vector fields with desired spatial and temporal characteristics through several design metaphors, including streamlines, pathlines, singularity paths, and bifurcations. These design metaphors are integrated into an element-based design to generate the time-varying vector fields via a sequence of basis field summations or spatial constrained optimizations at the sampled times. The key-frame design and field deformation are also introduced to support other user design scenarios. Accordingly, a spatial-temporal constrained optimization and the time-varying transformation are employed to generate the desired fields for these two design scenarios, respectively. We apply the time-varying vector fields generated using our design system to a number of important computer graphics applications that require controllable dynamic effects, such as evolving surface appearance, dynamic scene design, steerable crowd movement, and painterly animation. Many of these are difficult or impossible to achieve via prior simulation-based methods. In these applications, the time-varying vector fields have been applied as either orientation fields or advection fields to control the instantaneous appearance or evolving trajectories of the dynamic effects.
Design of 2D Time-Varying Vector Fields
Chen, Guoning
2012-10-01
Design of time-varying vector fields, i.e., vector fields that can change over time, has a wide variety of important applications in computer graphics. Existing vector field design techniques do not address time-varying vector fields. In this paper, we present a framework for the design of time-varying vector fields, both for planar domains as well as manifold surfaces. Our system supports the creation and modification of various time-varying vector fields with desired spatial and temporal characteristics through several design metaphors, including streamlines, pathlines, singularity paths, and bifurcations. These design metaphors are integrated into an element-based design to generate the time-varying vector fields via a sequence of basis field summations or spatial constrained optimizations at the sampled times. The key-frame design and field deformation are also introduced to support other user design scenarios. Accordingly, a spatial-temporal constrained optimization and the time-varying transformation are employed to generate the desired fields for these two design scenarios, respectively. We apply the time-varying vector fields generated using our design system to a number of important computer graphics applications that require controllable dynamic effects, such as evolving surface appearance, dynamic scene design, steerable crowd movement, and painterly animation. Many of these are difficult or impossible to achieve via prior simulation-based methods. In these applications, the time-varying vector fields have been applied as either orientation fields or advection fields to control the instantaneous appearance or evolving trajectories of the dynamic effects. © 1995-2012 IEEE.
International Nuclear Information System (INIS)
Uren, Kenneth Richard; Schoor, George van
2013-01-01
This second paper in a two part series presents the application of a developed state space model extraction methodology applied to a Brayton cycle-based PCU (power conversion unit) of a PBMR (pebble bed modular reactor). The goal is to investigate if the state space extraction methodology can cope with larger and more complex thermohydraulic systems. In Part I the state space model extraction methodology for the purpose of control was described in detail and a state space representation was extracted for a U-tube system to illustrate the concept. In this paper a 25th order nonlinear state space representation in terms of the different energy domains is extracted. This state space representation is solved and the responses of a number of important states are compared with results obtained from a PBMR PCU Flownex ® model. Flownex ® is a validated thermo fluid simulation software package. The results show that the state space model closely resembles the dynamics of the PBMR PCU. This kind of model may be used for nonlinear MIMO (multi-input, multi-output) type of control strategies. However, there is still a need for linear state space models since many control system design and analysis techniques require a linear state space model. This issue is also addressed in this paper by showing how a linear state space model can be derived from the extracted nonlinear state space model. The linearised state space model is also validated by comparing the state space model to an existing linear Simulink ® model of the PBMR PCU system. - Highlights: • State space model extraction of a pebble bed modular reactor PCU (power conversion unit). • A 25th order nonlinear time varying state space model is obtained. • Linearisation of a nonlinear state space model for use in power output control. • Non-minimum phase characteristic that is challenging in terms of control. • Models derived are useful for MIMO control strategies
DEFF Research Database (Denmark)
Mailund, Thomas
The thesis describes the sweep-line method, a newly developed reduction method for alleviating the state explosion problem inherent in explicit-state state space exploration. The basic idea underlying the sweep-line method is, when calculating the state space, to recognise and delete states...... that are not reachable from the currently unprocessed states. Intuitively we drag a sweep-line through the state space with the invariant that all states behind the sweep-line have been processed and are unreachable from the states in front of the sweep-line. When calculating the state space of a system we iteratively...
Conditional CAPM: Time-varying Betas in the Brazilian Market
Directory of Open Access Journals (Sweden)
Frances Fischberg Blank
2014-10-01
Full Text Available The conditional CAPM is characterized by time-varying market beta. Based on state-space models approach, beta behavior can be modeled as a stochastic process dependent on conditioning variables related to business cycle and estimated using Kalman filter. This paper studies alternative models for portfolios sorted by size and book-to-market ratio in the Brazilian stock market and compares their adjustment to data. Asset pricing tests based on time-series and cross-sectional approaches are also implemented. A random walk process combined with conditioning variables is the preferred model, reducing pricing errors compared to unconditional CAPM, but the errors are still significant. Cross-sectional test show that book-to-market ratio becomes less relevant, but past returns still capture cross-section variation
Inferring time-varying network topologies from gene expression data.
Rao, Arvind; Hero, Alfred O; States, David J; Engel, James Douglas
2007-01-01
Most current methods for gene regulatory network identification lead to the inference of steady-state networks, that is, networks prevalent over all times, a hypothesis which has been challenged. There has been a need to infer and represent networks in a dynamic, that is, time-varying fashion, in order to account for different cellular states affecting the interactions amongst genes. In this work, we present an approach, regime-SSM, to understand gene regulatory networks within such a dynamic setting. The approach uses a clustering method based on these underlying dynamics, followed by system identification using a state-space model for each learnt cluster--to infer a network adjacency matrix. We finally indicate our results on the mouse embryonic kidney dataset as well as the T-cell activation-based expression dataset and demonstrate conformity with reported experimental evidence.
Hua, Yongzhao; Dong, Xiwang; Li, Qingdong; Ren, Zhang
2017-05-18
This paper investigates the time-varying formation robust tracking problems for high-order linear multiagent systems with a leader of unknown control input in the presence of heterogeneous parameter uncertainties and external disturbances. The followers need to accomplish an expected time-varying formation in the state space and track the state trajectory produced by the leader simultaneously. First, a time-varying formation robust tracking protocol with a totally distributed form is proposed utilizing the neighborhood state information. With the adaptive updating mechanism, neither any global knowledge about the communication topology nor the upper bounds of the parameter uncertainties, external disturbances and leader's unknown input are required in the proposed protocol. Then, in order to determine the control parameters, an algorithm with four steps is presented, where feasible conditions for the followers to accomplish the expected time-varying formation tracking are provided. Furthermore, based on the Lyapunov-like analysis theory, it is proved that the formation tracking error can converge to zero asymptotically. Finally, the effectiveness of the theoretical results is verified by simulation examples.
Time-Varying Periodicity in Intraday Volatility
DEFF Research Database (Denmark)
Andersen, Torben Gustav; Thyrsgaard, Martin; Todorov, Viktor
We develop a nonparametric test for deciding whether return volatility exhibits time-varying intraday periodicity using a long time-series of high-frequency data. Our null hypothesis, commonly adopted in work on volatility modeling, is that volatility follows a stationary process combined...... with a constant time-of-day periodic component. We first construct time-of-day volatility estimates and studentize the high-frequency returns with these periodic components. If the intraday volatility periodicity is invariant over time, then the distribution of the studentized returns should be identical across...... with estimating volatility moments through their sample counterparts. Critical values are computed via easy-to-implement simulation. In an empirical application to S&P 500 index returns, we find strong evidence for variation in the intraday volatility pattern driven in part by the current level of volatility...
Time varying, multivariate volume data reduction
Energy Technology Data Exchange (ETDEWEB)
Ahrens, James P [Los Alamos National Laboratory; Fout, Nathaniel [UC DAVIS; Ma, Kwan - Liu [UC DAVIS
2010-01-01
Large-scale supercomputing is revolutionizing the way science is conducted. A growing challenge, however, is understanding the massive quantities of data produced by large-scale simulations. The data, typically time-varying, multivariate, and volumetric, can occupy from hundreds of gigabytes to several terabytes of storage space. Transferring and processing volume data of such sizes is prohibitively expensive and resource intensive. Although it may not be possible to entirely alleviate these problems, data compression should be considered as part of a viable solution, especially when the primary means of data analysis is volume rendering. In this paper we present our study of multivariate compression, which exploits correlations among related variables, for volume rendering. Two configurations for multidimensional compression based on vector quantization are examined. We emphasize quality reconstruction and interactive rendering, which leads us to a solution using graphics hardware to perform on-the-fly decompression during rendering. In this paper we present a solution which addresses the need for data reduction in large supercomputing environments where data resulting from simulations occupies tremendous amounts of storage. Our solution employs a lossy encoding scheme to acrueve data reduction with several options in terms of rate-distortion behavior. We focus on encoding of multiple variables together, with optional compression in space and time. The compressed volumes can be rendered directly with commodity graphics cards at interactive frame rates and rendering quality similar to that of static volume renderers. Compression results using a multivariate time-varying data set indicate that encoding multiple variables results in acceptable performance in the case of spatial and temporal encoding as compared to independent compression of variables. The relative performance of spatial vs. temporal compression is data dependent, although temporal compression has the
DEFF Research Database (Denmark)
Mørkholt, Jakob; Elliott, S.J.; Sors, T.C.
1997-01-01
with a piezoceramic patch control actuator and a point velocity sensor and excited by a point force driven by white noise acting as the primary source. The design objective has been to suppress the effect of the primary disturbance on the output by minimising the mean square value of the output. Apart from comparing......A comparison of three ways of designing optimal discrete time feedback controllers has been carried out via computer simulations. The three design methods are similar in that they are all based on the minimisation of a quadratic cost function under certain assumptions about the disturbance noise...... and sensor noise in the system to be controlled. They are also based on (different) models of the plant under control and the disturbance to be suppressed by the controllers. Controllers based on the three methods have been designed from a model of a lightly damped, rectangular plate fitted...
Modelling tourists arrival using time varying parameter
Suciptawati, P.; Sukarsa, K. G.; Kencana, Eka N.
2017-06-01
The importance of tourism and its related sectors to support economic development and poverty reduction in many countries increase researchers’ attentions to study and model tourists’ arrival. This work is aimed to demonstrate time varying parameter (TVP) technique to model the arrival of Korean’s tourists to Bali. The number of Korean tourists whom visiting Bali for period January 2010 to December 2015 were used to model the number of Korean’s tourists to Bali (KOR) as dependent variable. The predictors are the exchange rate of Won to IDR (WON), the inflation rate in Korea (INFKR), and the inflation rate in Indonesia (INFID). Observing tourists visit to Bali tend to fluctuate by their nationality, then the model was built by applying TVP and its parameters were approximated using Kalman Filter algorithm. The results showed all of predictor variables (WON, INFKR, INFID) significantly affect KOR. For in-sample and out-of-sample forecast with ARIMA’s forecasted values for the predictors, TVP model gave mean absolute percentage error (MAPE) as much as 11.24 percent and 12.86 percent, respectively.
TIME-VARYING DYNAMICAL STAR FORMATION RATE
Energy Technology Data Exchange (ETDEWEB)
Lee, Eve J.; Chang, Philip; Murray, Norman, E-mail: evelee@berkeley.edu [Canadian Institute for Theoretical Astrophysics, 60 St. George Street, University of Toronto, Toronto, ON M5S 3H8 (Canada)
2015-02-10
We present numerical evidence of dynamic star formation in which the accreted stellar mass grows superlinearly with time, roughly as t {sup 2}. We perform simulations of star formation in self-gravitating hydrodynamic and magnetohydrodynamic turbulence that is continuously driven. By turning the self-gravity of the gas in the simulations on or off, we demonstrate that self-gravity is the dominant physical effect setting the mass accretion rate at early times before feedback effects take over, contrary to theories of turbulence-regulated star formation. We find that gravitational collapse steepens the density profile around stars, generating the power-law tail on what is otherwise a lognormal density probability distribution function. Furthermore, we find turbulent velocity profiles to flatten inside collapsing regions, altering the size-line width relation. This local flattening reflects enhancements of turbulent velocity on small scales, as verified by changes to the velocity power spectra. Our results indicate that gas self-gravity dynamically alters both density and velocity structures in clouds, giving rise to a time-varying star formation rate. We find that a substantial fraction of the gas that forms stars arrives via low-density flows, as opposed to accreting through high-density filaments.
Vesicle biomechanics in a time-varying magnetic field.
Ye, Hui; Curcuru, Austen
2015-01-01
Cells exhibit distortion when exposed to a strong electric field, suggesting that the field imposes control over cellular biomechanics. Closed pure lipid bilayer membranes (vesicles) have been widely used for the experimental and theoretical studies of cellular biomechanics under this electrodeformation. An alternative method used to generate an electric field is by electromagnetic induction with a time-varying magnetic field. References reporting the magnetic control of cellular mechanics have recently emerged. However, theoretical analysis of the cellular mechanics under a time-varying magnetic field is inadequate. We developed an analytical theory to investigate the biomechanics of a modeled vesicle under a time-varying magnetic field. Following previous publications and to simplify the calculation, this model treated the inner and suspending media as lossy dielectrics, the membrane thickness set at zero, and the electric resistance of the membrane assumed to be negligible. This work provided the first analytical solutions for the surface charges, electric field, radial pressure, overall translational forces, and rotational torques introduced on a vesicle by the time-varying magnetic field. Frequency responses of these measures were analyzed, particularly the frequency used clinically by transcranial magnetic stimulation (TMS). The induced surface charges interacted with the electric field to produce a biomechanical impact upon the vesicle. The distribution of the induced surface charges depended on the orientation of the coil and field frequency. The densities of these charges were trivial at low frequency ranges, but significant at high frequency ranges. The direction of the radial force on the vesicle was dependent on the conductivity ratio between the vesicle and the medium. At relatively low frequencies (biomechanics under a time-varying magnetic field. Biological effects of clinical TMS are not likely to occur via alteration of the biomechanics of brain
Robust convergence of Cohen-Grossberg neural networks with time-varying delays
International Nuclear Information System (INIS)
Xiong Wenjun; Ma Deyi; Liang Jinling
2009-01-01
In this paper, robust convergence is studied for the Cohen-Grossberg neural networks (CGNNs) with time-varying delays. By applying the differential inequality and the Lyapunov method, some delay-independent conditions are derived ensuring the robust CGNNs to converge, globally, uniformly and exponentially, to a ball in the state space with a pre-specified convergence rate. Finally, the effectiveness of our results are verified by an illustrative example.
State space model extraction of thermohydraulic systems – Part I: A linear graph approach
International Nuclear Information System (INIS)
Uren, K.R.; Schoor, G. van
2013-01-01
Thermohydraulic simulation codes are increasingly making use of graphical design interfaces. The user can quickly and easily design a thermohydraulic system by placing symbols on the screen resembling system components. These components can then be connected to form a system representation. Such system models may then be used to obtain detailed simulations of the physical system. Usually this kind of simulation models are too complex and not ideal for control system design. Therefore, a need exists for automated techniques to extract lumped parameter models useful for control system design. The goal of this first paper, in a two part series, is to propose a method that utilises a graphical representation of a thermohydraulic system, and a lumped parameter modelling approach, to extract state space models. In this methodology each physical domain of the thermohydraulic system is represented by a linear graph. These linear graphs capture the interaction between all components within and across energy domains – hydraulic, thermal and mechanical. These linear graphs are analysed using a graph-theoretic approach to derive reduced order state space models. These models capture the dominant dynamics of the thermohydraulic system and are ideal for control system design purposes. The proposed state space model extraction method is demonstrated by considering a U-tube system. A non-linear state space model is extracted representing both the hydraulic and thermal domain dynamics of the system. The simulated state space model is compared with a Flownex ® model of the U-tube. Flownex ® is a validated systems thermal-fluid simulation software package. - Highlights: • A state space model extraction methodology based on graph-theoretic concepts. • An energy-based approach to consider multi-domain systems in a common framework. • Allow extraction of transparent (white-box) state space models automatically. • Reduced order models containing only independent state
Directory of Open Access Journals (Sweden)
C. Nagarajan
2012-09-01
Full Text Available This paper presents a Closed Loop CLL-T (capacitor inductor inductor Series Parallel Resonant Converter (SPRC has been simulated and the performance is analysised. A three element CLL-T SPRC working under load independent operation (voltage type and current type load is presented in this paper. The Steady state Stability Analysis of CLL-T SPRC has been developed using State Space technique and the regulation of output voltage is done by using Fuzzy controller. The simulation study indicates the superiority of fuzzy control over the conventional control methods. The proposed approach is expected to provide better voltage regulation for dynamic load conditions. A prototype 300 W, 100 kHz converter is designed and built to experimentally demonstrate, dynamic and steady state performance for the CLL-T SPRC are compared from the simulation studies.
Decker, A. J.
1982-01-01
The use of a Nd:YAG laser to record holographic motion pictures of time-varying reflecting objects and time-varying phase objects is discussed. Sample frames from both types of holographic motion pictures are presented. The holographic system discussed is intended for three-dimensional flow visualization of the time-varying flows that occur in jet-engine components.
Formulating state space models in R with focus on longitudinal regression models
DEFF Research Database (Denmark)
Dethlefsen, Claus; Lundbye-Christensen, Søren
We provide a language for formulating a range of state space models. The described methodology is implemented in the R -package sspir available from cran.r-project.org . A state space model is specified similarly to a generalized linear model in R , by marking the time-varying terms in the form...... We provide a language for formulating a range of state space models. The described methodology is implemented in the R -package sspir available from cran.r-project.org . A state space model is specified similarly to a generalized linear model in R , by marking the time-varying terms...
International Nuclear Information System (INIS)
Guatteri, Giuseppina; Tessitore, Gianmario
2008-01-01
We study the Riccati equation arising in a class of quadratic optimal control problems with infinite dimensional stochastic differential state equation and infinite horizon cost functional. We allow the coefficients, both in the state equation and in the cost, to be random.In such a context backward stochastic Riccati equations are backward stochastic differential equations in the whole positive real axis that involve quadratic non-linearities and take values in a non-Hilbertian space. We prove existence of a minimal non-negative solution and, under additional assumptions, its uniqueness. We show that such a solution allows to perform the synthesis of the optimal control and investigate its attractivity properties. Finally the case where the coefficients are stationary is addressed and an example concerning a controlled wave equation in random media is proposed
Renormalization group theory for percolation in time-varying networks.
Karschau, Jens; Zimmerling, Marco; Friedrich, Benjamin M
2018-05-22
Motivated by multi-hop communication in unreliable wireless networks, we present a percolation theory for time-varying networks. We develop a renormalization group theory for a prototypical network on a regular grid, where individual links switch stochastically between active and inactive states. The question whether a given source node can communicate with a destination node along paths of active links is equivalent to a percolation problem. Our theory maps the temporal existence of multi-hop paths on an effective two-state Markov process. We show analytically how this Markov process converges towards a memoryless Bernoulli process as the hop distance between source and destination node increases. Our work extends classical percolation theory to the dynamic case and elucidates temporal correlations of message losses. Quantification of temporal correlations has implications for the design of wireless communication and control protocols, e.g. in cyber-physical systems such as self-organized swarms of drones or smart traffic networks.
Directory of Open Access Journals (Sweden)
Aksjonov Andrei
2015-12-01
Full Text Available The mathematical model of the three-dimensional crane using the Euler-Lagrange approach is derived. A state-space representation of the derived model is proposed and explored in the Simulink® environment and on the laboratory stand. The obtained control design was simulated, analyzed and compared with existing encoder-based system provided by the three-dimensional (3D Crane manufacturer Inteco®. As well, an anti-swing fuzzy logic control has been developed, simulated, and analyzed. Obtained control algorithm is compared with the existing anti-swing proportional-integral controller designed by the 3D crane manufacturer Inteco®. 5-degree of freedom (5DOF control schemes are designed, examined and compared with the various load masses. The topicality of the problem is due to the wide usage of gantry cranes in industry. The solution is proposed for the future research in sensorless and intelligent control of complex motor driven application.
Finite-Time H∞ Filtering for Linear Continuous Time-Varying Systems with Uncertain Observations
Directory of Open Access Journals (Sweden)
Huihong Zhao
2012-01-01
Full Text Available This paper is concerned with the finite-time H∞ filtering problem for linear continuous time-varying systems with uncertain observations and ℒ2-norm bounded noise. The design of finite-time H∞ filter is equivalent to the problem that a certain indefinite quadratic form has a minimum and the filter is such that the minimum is positive. The quadratic form is related to a Krein state-space model according to the Krein space linear estimation theory. By using the projection theory in Krein space, the finite-time H∞ filtering problem is solved. A numerical example is given to illustrate the performance of the H∞ filter.
Analysis of time-varying psoriasis lesion image patterns
DEFF Research Database (Denmark)
Maletti, Gabriela Mariel; Ersbøll, Bjarne Kjær; Nielsen, Allan Aasbjerg
2004-01-01
The multivariate alteration detection transform is applied to pairs of within and between time varying registered psoriasis image patterns. Color band contribution to the variates explaining maximal change is analyzed.......The multivariate alteration detection transform is applied to pairs of within and between time varying registered psoriasis image patterns. Color band contribution to the variates explaining maximal change is analyzed....
Multivariate time-varying volatility modeling using probabilistic fuzzy systems
Basturk, N.; Almeida, R.J.; Golan, R.; Kaymak, U.
2016-01-01
Methods to accurately analyze financial risk have drawn considerable attention in financial institutions. One difficulty in financial risk analysis is the fact that banks and other financial institutions invest in several assets which show time-varying volatilities and hence time-varying financial
On the synchronization of neural networks containing time-varying delays and sector nonlinearity
International Nuclear Information System (INIS)
Yan, J.-J.; Lin, J.-S.; Hung, M.-L.; Liao, T.-L.
2007-01-01
We present a systematic design procedure for synchronization of neural networks subject to time-varying delays and sector nonlinearity in the control input. Based on the drive-response concept and the Lyapunov stability theorem, a memoryless decentralized control law is proposed which guarantees exponential synchronization even when input nonlinearity is present. The supplementary requirement that the time-derivative of time-varying delays must be smaller than one is released for the proposed control scheme. A four-dimensional Hopfield neural network with time-varying delays is presented as the illustrative example to demonstrate the effectiveness of the proposed synchronization scheme
State Space Modeling Using SAS
Directory of Open Access Journals (Sweden)
Rajesh Selukar
2011-05-01
Full Text Available This article provides a brief introduction to the state space modeling capabilities in SAS, a well-known statistical software system. SAS provides state space modeling in a few different settings. SAS/ETS, the econometric and time series analysis module of the SAS system, contains many procedures that use state space models to analyze univariate and multivariate time series data. In addition, SAS/IML, an interactive matrix language in the SAS system, provides Kalman filtering and smoothing routines for stationary and nonstationary state space models. SAS/IML also provides support for linear algebra and nonlinear function optimization, which makes it a convenient environment for general-purpose state space modeling.
Formulating state space models in R with focus on longitudinal regression models
DEFF Research Database (Denmark)
Dethlefsen, Claus; Lundbye-Christensen, Søren
2006-01-01
We provide a language for formulating a range of state space models with response densities within the exponential family. The described methodology is implemented in the R-package sspir. A state space model is specified similarly to a generalized linear model in R, and then the time-varying terms...
Do Time-Varying Covariances, Volatility Comovement and Spillover Matter?
Lakshmi Balasubramanyan
2005-01-01
Financial markets and their respective assets are so intertwined; analyzing any single market in isolation ignores important information. We investigate whether time varying volatility comovement and spillover impact the true variance-covariance matrix under a time-varying correlation set up. Statistically significant volatility spillover and comovement between US, UK and Japan is found. To demonstrate the importance of modelling volatility comovement and spillover, we look at a simple portfo...
Testing for time-varying loadings in dynamic factor models
DEFF Research Database (Denmark)
Mikkelsen, Jakob Guldbæk
Abstract: In this paper we develop a test for time-varying factor loadings in factor models. The test is simple to compute and is constructed from estimated factors and residuals using the principal components estimator. The hypothesis is tested by regressing the squared residuals on the squared...... there is evidence of time-varying loadings on the risk factors underlying portfolio returns for around 80% of the portfolios....
Pemodelan Markov Switching Dengan Time-varying Transition Probability
Savitri, Anggita Puri; Warsito, Budi; Rahmawati, Rita
2016-01-01
Exchange rate or currency is an economic variable which reflects country's state of economy. It fluctuates over time because of its ability to switch the condition or regime caused by economic and political factors. The changes in the exchange rate are depreciation and appreciation. Therefore, it could be modeled using Markov Switching with Time-Varying Transition Probability which observe the conditional changes and use information variable. From this model, time-varying transition probabili...
Directory of Open Access Journals (Sweden)
Johann A. Briffa
2014-06-01
Full Text Available In this study, the authors consider time-varying block (TVB codes, which generalise a number of previous synchronisation error-correcting codes. They also consider various practical issues related to maximum a posteriori (MAP decoding of these codes. Specifically, they give an expression for the expected distribution of drift between transmitter and receiver because of synchronisation errors. They determine an appropriate choice for state space limits based on the drift probability distribution. In turn, they obtain an expression for the decoder complexity under given channel conditions in terms of the state space limits used. For a given state space, they also give a number of optimisations that reduce the algorithm complexity with no further loss of decoder performance. They also show how the MAP decoder can be used in the absence of known frame boundaries, and demonstrate that an appropriate choice of decoder parameters allows the decoder to approach the performance when frame boundaries are known, at the expense of some increase in complexity. Finally, they express some existing constructions as TVB codes, comparing performance with published results and showing that improved performance is possible by taking advantage of the flexibility of TVB codes.
Soil erosion under multiple time-varying rainfall events
Heng, B. C. Peter; Barry, D. Andrew; Jomaa, Seifeddine; Sander, Graham C.
2010-05-01
Soil erosion is a function of many factors and process interactions. An erosion event produces changes in surface soil properties such as texture and hydraulic conductivity. These changes in turn alter the erosion response to subsequent events. Laboratory-scale soil erosion studies have typically focused on single independent rainfall events with constant rainfall intensities. This study investigates the effect of multiple time-varying rainfall events on soil erosion using the EPFL erosion flume. The rainfall simulator comprises ten Veejet nozzles mounted on oscillating bars 3 m above a 6 m × 2 m flume. Spray from the nozzles is applied onto the soil surface in sweeps; rainfall intensity is thus controlled by varying the sweeping frequency. Freshly-prepared soil with a uniform slope was subjected to five rainfall events at daily intervals. In each 3-h event, rainfall intensity was ramped up linearly to a maximum of 60 mm/h and then stepped down to zero. Runoff samples were collected and analysed for particle size distribution (PSD) as well as total sediment concentration. We investigate whether there is a hysteretic relationship between sediment concentration and discharge within each event and how this relationship changes from event to event. Trends in the PSD of the eroded sediment are discussed and correlated with changes in sediment concentration. Close-up imagery of the soil surface following each event highlight changes in surface soil structure with time. This study enhances our understanding of erosion processes in the field, with corresponding implications for soil erosion modelling.
DEFF Research Database (Denmark)
Löwe, Roland; Mikkelsen, Peter Steen; Rasmussen, Michael R.
2013-01-01
Merging of radar rainfall data with rain gauge measurements is a common approach to overcome problems in deriving rain intensities from radar measurements. We extend an existing approach for adjustment of C-band radar data using state-space models and use the resulting rainfall intensities as input...
DEFF Research Database (Denmark)
Löwe, Roland; Mikkelsen, Peter Steen; Rasmussen, Michael R.
2012-01-01
Merging of radar rainfall data with rain gauge measurements is a common approach to overcome problems in deriving rain intensities from radar measurements. We extend an existing approach for adjustment of C-band radar data using state-space models and use the resulting rainfall intensities as input...
Overcoming Spurious Regression Using time-Varying Fourier ...
African Journals Online (AJOL)
Non-stationary time series data have been traditionally analyzed in the frequency domain by assuming constant amplitudes regardless of the timelag. A new approach called time-varying amplitude method (TVAM) is presented here. Oscillations are analyzed for changes in the magnitude of Fourier Coefficients which are ...
Electromagnetic radiation in a time-varying background medium
Budko, N.V.
2009-01-01
Analytical solutions are presented for the electromagnetic radiation by an arbitrary pulsed source into a homogeneous time-varying background medium. In the constant-impedance case an explicit radiation formula is obtained for the synchronous permittivity and permeability described by any positive
Mediation analysis with time varying exposures and mediators.
VanderWeele, Tyler J; Tchetgen Tchetgen, Eric J
2017-06-01
In this paper we consider causal mediation analysis when exposures and mediators vary over time. We give non-parametric identification results, discuss parametric implementation, and also provide a weighting approach to direct and indirect effects based on combining the results of two marginal structural models. We also discuss how our results give rise to a causal interpretation of the effect estimates produced from longitudinal structural equation models. When there are time-varying confounders affected by prior exposure and mediator, natural direct and indirect effects are not identified. However, we define a randomized interventional analogue of natural direct and indirect effects that are identified in this setting. The formula that identifies these effects we refer to as the "mediational g-formula." When there is no mediation, the mediational g-formula reduces to Robins' regular g-formula for longitudinal data. When there are no time-varying confounders affected by prior exposure and mediator values, then the mediational g-formula reduces to a longitudinal version of Pearl's mediation formula. However, the mediational g-formula itself can accommodate both mediation and time-varying confounders and constitutes a general approach to mediation analysis with time-varying exposures and mediators.
Time Varying Market Integration and Expected Rteurns in Emerging Markets
de Jong, F.C.J.M.; de Roon, F.A.
2001-01-01
We use a simple model in which the expected returns in emerging markets depend on their systematic risk as measured by their beta relative to the world portfolio as well as on the level of integration in that market.The level of integration is a time-varying variable that depends on the market value
Scattering of a TEM wave from a time varying surface
Elcrat, Alan R.; Harder, T. Mark; Stonebraker, John T.
1990-03-01
A solution is given for reflection of a plane wave with TEM polarization from a planar surface with time varying properties. These properties are given in terms of the currents on the surface. The solution is obtained by numerically solving a system of differential-delay equations in the time domain.
Time-varying correlation and common structures in volatility
Liu, Yang
2016-01-01
This thesis studies time series properties of the covariance structure of multivariate asset returns. First, the time-varying feature of correlation is investigated at the intraday level with a new correlation model incorporating the intraday correlation dynamics. Second, the thesis develops a
Contact Dynamics of EHL Contacts under Time Varying Conditions
Venner, Cornelis H.; Popovici, G.; Wijnant, Ysbrand H.; Dalmaz, G.; Lubrecht, A.A.; Priest, M
2004-01-01
By means of numerical simulations of two situations with time varying operating conditions it is shown that the dynamic behaviour of Elasto-Hydrodynamically Lubricated contacts in terms of vibrations can be characterized as: Changes in the mutual approach lead to film thickness changes in the inlet
Electricity Futures Prices : Time Varying Sensitivity to Fundamentals
S-E. Fleten (Stein-Erik); R. Huisman (Ronald); M. Kilic (Mehtap); H.P.G. Pennings (Enrico); S. Westgaard (Sjur)
2014-01-01
textabstractThis paper provides insight in the time-varying relation between electricity futures prices and fundamentals in the form of prices of contracts for fossil fuels. As supply curves are not constant and different producers have different marginal costs of production, we argue that the
Visualizing time-varying harmonics using filter banks
Duque, C.A.; Da Silveira, P.M.; Ribeiro, P.F.
2011-01-01
Although it is well known that Fourier analysis is in reality only accurately applicable to steady state waveforms, it is a widely used tool to study and monitor time-varying signals, such as are commonplace in electrical power systems. The disadvantages of Fourier analysis, such as frequency
Time-Varying Value of Energy Efficiency in Michigan
Energy Technology Data Exchange (ETDEWEB)
Mims, Natalie; Eckman, Tom; Schwartz, Lisa C.
2018-04-02
Quantifying the time-varying value of energy efficiency is necessary to properly account for all of its benefits and costs and to identify and implement efficiency resources that contribute to a low-cost, reliable electric system. Historically, most quantification of the benefits of efficiency has focused largely on the economic value of annual energy reduction. Due to the lack of statistically representative metered end-use load shape data in Michigan (i.e., the hourly or seasonal timing of electricity savings), the ability to confidently characterize the time-varying value of energy efficiency savings in the state, especially for weather-sensitive measures such as central air conditioning, is limited. Still, electric utilities in Michigan can take advantage of opportunities to incorporate the time-varying value of efficiency into their planning. For example, end-use load research and hourly valuation of efficiency savings can be used for a variety of electricity planning functions, including load forecasting, demand-side management and evaluation, capacity planning, long-term resource planning, renewable energy integration, assessing potential grid modernization investments, establishing rates and pricing, and customer service (KEMA 2012). In addition, accurately calculating the time-varying value of efficiency may help energy efficiency program administrators prioritize existing offerings, set incentive or rebate levels that reflect the full value of efficiency, and design new programs.
Directory of Open Access Journals (Sweden)
I PUTU GEDE DIAN GERRY SUWEDAYANA
2016-08-01
Full Text Available The purpose of this research is to forecast the number of Australian tourists arrival to Bali using Time Varying Parameter (TVP model based on inflation of Indonesia and exchange rate AUD to IDR from January 2010 – December 2015 as explanatory variables. TVP model is specified in a state space model and estimated by Kalman filter algorithm. The result shows that the TVP model can be used to forecast the number of Australian tourists arrival to Bali because it satisfied the assumption that the residuals are distributed normally and the residuals in the measurement and transition equations are not correlated. The estimated TVP model is . This model has a value of mean absolute percentage error (MAPE is equal to dan root mean square percentage error (RMSPE is equal to . The number of Australian tourists arrival to Bali for the next five periods is predicted: ; ; ; ; and (January - May 2016.
Time-varying properties of renal autoregulatory mechanisms
DEFF Research Database (Denmark)
Zou, Rui; Cupples, Will A; Yip, K P
2002-01-01
In order to assess the possible time-varying properties of renal autoregulation, time-frequency and time-scaling methods were applied to renal blood flow under broad-band forced arterial blood pressure fluctuations and single-nephron renal blood flow with spontaneous oscillations obtained from...... normotensive (Sprague-Dawley, Wistar, and Long-Evans) rats, and spontaneously hypertensive rats. Time-frequency analyses of normotensive and hypertensive blood flow data obtained from either the whole kidney or the single-nephron show that indeed both the myogenic and tubuloglomerular feedback (TGF) mechanisms...... have time-varying characteristics. Furthermore, we utilized the Renyi entropy to measure the complexity of blood-flow dynamics in the time-frequency plane in an effort to discern differences between normotensive and hypertensive recordings. We found a clear difference in Renyi entropy between...
Electron dynamics in solid state via time varying wavevectors
Khaneja, Navin
2018-06-01
In this paper, we study electron wavepacket dynamics in electric and magnetic fields. We rigorously derive the semiclassical equations of electron dynamics in electric and magnetic fields. We do it both for free electron and electron in a periodic potential. We do this by introducing time varying wavevectors k(t). In the presence of magnetic field, our wavepacket reproduces the classical cyclotron orbits once the origin of the Schröedinger equation is correctly chosen to be center of cyclotron orbit. In the presence of both electric and magnetic fields, our equations for wavepacket dynamics differ from classical Lorentz force equations. We show that in a periodic potential, on application of electric field, the electron wave function adiabatically follows the wavefunction of a time varying Bloch wavevector k(t), with its energies suitably shifted with time. We derive the effective mass equation and discuss conduction in conductors and insulators.
Time varying determinants of bond flows to emerging markets
Directory of Open Access Journals (Sweden)
Yasemin Erduman
2016-06-01
Full Text Available This paper investigates the time varying nature of the determinants of bond flows with a focus on the global financial crisis period. We estimate a time varying regression model using Bayesian estimation methods, where the posterior distribution is approximated by Gibbs sampling algorithm. Our findings suggest that the interest rate differential is the most significant pull factor of portfolio bond flows, along with the inflation rate, while the growth rate does not play a significant role. Among the push factors, global liquidity is the most important driver of bond flows. It matters the most, when unconventional monetary easing policies were first announced; and its importance as a determinant of portfolio bond flows decreases over time, starting with the Eurozone crisis, and diminishes with the tapering talk. Global risk appetite and the risk perception towards the emerging countries also have relatively small and stable significant effects on bond flows.
Modelling Time-Varying Volatility in Financial Returns
DEFF Research Database (Denmark)
Amado, Cristina; Laakkonen, Helinä
2014-01-01
The “unusually uncertain” phase in the global financial markets has inspired many researchers to study the effects of ambiguity (or “Knightian uncertainty”) on the decisions made by investors and their implications for the capital markets. We contribute to this literature by using a modified...... version of the time-varying GARCH model of Amado and Teräsvirta (2013) to analyze whether the increasing uncertainty has caused excess volatility in the US and European government bond markets. In our model, volatility is multiplicatively decomposed into two time-varying conditional components: the first...... being captured by a stable GARCH(1,1) process and the second driven by the level of uncertainty in the financial market....
Scaling properties in time-varying networks with memory
Kim, Hyewon; Ha, Meesoon; Jeong, Hawoong
2015-12-01
The formation of network structure is mainly influenced by an individual node's activity and its memory, where activity can usually be interpreted as the individual inherent property and memory can be represented by the interaction strength between nodes. In our study, we define the activity through the appearance pattern in the time-aggregated network representation, and quantify the memory through the contact pattern of empirical temporal networks. To address the role of activity and memory in epidemics on time-varying networks, we propose temporal-pattern coarsening of activity-driven growing networks with memory. In particular, we focus on the relation between time-scale coarsening and spreading dynamics in the context of dynamic scaling and finite-size scaling. Finally, we discuss the universality issue of spreading dynamics on time-varying networks for various memory-causality tests.
Housing Cycles in Switzerland - A Time-Varying Approach
Drechsel, Dirk
2015-01-01
In light of the strong increase of house prices in Switzerland, we analyze the effects of mortgage rate shocks, changes in the interplay between housing demand and supply and GDP growth on house prices for the time period 1981- 2014. We employ Bayesian time-varying coefficients vector autoregressions to allow different monetary and immigration regimes over time. A number of structural changes, such as regulatory changes in the aftermath of the 1990s real estate crisis, the introduction of fre...
Modeling information diffusion in time-varying community networks
Cui, Xuelian; Zhao, Narisa
2017-12-01
Social networks are rarely static, and they typically have time-varying network topologies. A great number of studies have modeled temporal networks and explored social contagion processes within these models; however, few of these studies have considered community structure variations. In this paper, we present a study of how the time-varying property of a modular structure influences the information dissemination. First, we propose a continuous-time Markov model of information diffusion where two parameters, mobility rate and community attractiveness, are introduced to address the time-varying nature of the community structure. The basic reproduction number is derived, and the accuracy of this model is evaluated by comparing the simulation and theoretical results. Furthermore, numerical results illustrate that generally both the mobility rate and community attractiveness significantly promote the information diffusion process, especially in the initial outbreak stage. Moreover, the strength of this promotion effect is much stronger when the modularity is higher. Counterintuitively, it is found that when all communities have the same attractiveness, social mobility no longer accelerates the diffusion process. In addition, we show that the local spreading in the advantage group has been greatly enhanced due to the agglomeration effect caused by the social mobility and community attractiveness difference, which thus increases the global spreading.
Scalable Video Streaming Adaptive to Time-Varying IEEE 802.11 MAC Parameters
Lee, Kyung-Jun; Suh, Doug-Young; Park, Gwang-Hoon; Huh, Jae-Doo
This letter proposes a QoS control method for video streaming service over wireless networks. Based on statistical analysis, the time-varying MAC parameters highly related to channel condition are selected to predict available bitrate. Adaptive bitrate control of scalably-encoded video guarantees continuity in streaming service even if the channel condition changes abruptly.
Time-varying value of electric energy efficiency
Energy Technology Data Exchange (ETDEWEB)
Mims, Natalie A.; Eckman, Tom; Goldman, Charles
2017-06-30
Electric energy efficiency resources save energy and may reduce peak demand. Historically, quantification of energy efficiency benefits has largely focused on the economic value of energy savings during the first year and lifetime of the installed measures. Due in part to the lack of publicly available research on end-use load shapes (i.e., the hourly or seasonal timing of electricity savings) and energy savings shapes, consideration of the impact of energy efficiency on peak demand reduction (i.e., capacity savings) has been more limited. End-use load research and the hourly valuation of efficiency savings are used for a variety of electricity planning functions, including load forecasting, demand-side management and evaluation, capacity and demand response planning, long-term resource planning, renewable energy integration, assessing potential grid modernization investments, establishing rates and pricing, and customer service. This study reviews existing literature on the time-varying value of energy efficiency savings, provides examples in four geographically diverse locations of how consideration of the time-varying value of efficiency savings impacts the calculation of power system benefits, and identifies future research needs to enhance the consideration of the time-varying value of energy efficiency in cost-effectiveness screening analysis. Findings from this study include: -The time-varying value of individual energy efficiency measures varies across the locations studied because of the physical and operational characteristics of the individual utility system (e.g., summer or winter peaking, load factor, reserve margin) as well as the time periods during which savings from measures occur. -Across the four locations studied, some of the largest capacity benefits from energy efficiency are derived from the deferral of transmission and distribution system infrastructure upgrades. However, the deferred cost of such upgrades also exhibited the greatest range
Entropy Rate of Time-Varying Wireless Networks
DEFF Research Database (Denmark)
Cika, Arta; Badiu, Mihai Alin; Coon, Justin P.
2018-01-01
In this paper, we present a detailed framework to analyze the evolution of the random topology of a time-varying wireless network via the information theoretic notion of entropy rate. We consider a propagation channel varying over time with random node positions in a closed space and Rayleigh...... fading affecting the connections between nodes. The existence of an edge between two nodes at given locations is modeled by a Markov chain, enabling memory effects in network dynamics. We then derive a lower and an upper bound on the entropy rate of the spatiotemporal network. The entropy rate measures...
Time Varying Market Integration and Expected Rteurns in Emerging Markets
Jong, F.C.J.M. de; Roon, F.A. de
2001-01-01
We use a simple model in which the expected returns in emerging markets depend on their systematic risk as measured by their beta relative to the world portfolio as well as on the level of integration in that market.The level of integration is a time-varying variable that depends on the market value of the assets that can be held by domestic investors only versus the market value of the assets that can be traded freely.Our empirical analysis for 30 emerging markets shows that there are strong...
One-dimensional radionuclide transport under time-varying conditions
International Nuclear Information System (INIS)
Gelbard, F.; Olague, N.E.; Longsine, D.E.
1990-01-01
This paper discusses new analytical and numerical solutions presented for one-dimensional radionuclide transport under time-varying fluid-flow conditions including radioactive decay. The analytical solution assumes that all radionuclides have identical retardation factors, and is limited to instantaneous releases. The numerical solution does not have these limitations, but is tested against the limiting case given for the analytical solution. Reasonable agreement between the two solutions was found. Examples are given for the transport of a three-member radionuclide chain transported over distances and flow rates comparable to those reported for Yucca Mountain, the proposed disposal site for high-level nuclear waste
Timed arrays wideband and time varying antenna arrays
Haupt, Randy L
2015-01-01
Introduces timed arrays and design approaches to meet the new high performance standards The author concentrates on any aspect of an antenna array that must be viewed from a time perspective. The first chapters briefly introduce antenna arrays and explain the difference between phased and timed arrays. Since timed arrays are designed for realistic time-varying signals and scenarios, the book also reviews wideband signals, baseband and passband RF signals, polarization and signal bandwidth. Other topics covered include time domain, mutual coupling, wideband elements, and dispersion. The auth
Investigating Time-Varying Drivers of Grid Project Emissions Impacts
Energy Technology Data Exchange (ETDEWEB)
Barrett, Emily L.; Thayer, Brandon L.; Pal, Seemita; Studarus, Karen E.
2017-11-15
The emissions consequences of smart grid technologies depend heavily on their context and vary not only by geographical location, but by time of year. The same technology operated to meet the same objective may increase the emissions associated with energy generation for part of the year and decrease emissions during other times. The Grid Project Impact Quantification (GridPIQ) tool provides the ability to estimate these seasonal variations and garner insight into the time-varying drivers of grid project emissions impacts. This work leverages GridPIQ to examine the emissions implications across years and seasons of adding energy storage technology to reduce daily peak demand in California and New York.
Epidemic spreading in time-varying community networks.
Ren, Guangming; Wang, Xingyuan
2014-06-01
The spreading processes of many infectious diseases have comparable time scale as the network evolution. Here, we present a simple networks model with time-varying community structure, and investigate susceptible-infected-susceptible epidemic spreading processes in this model. By both theoretic analysis and numerical simulations, we show that the efficiency of epidemic spreading in this model depends intensively on the mobility rate q of the individuals among communities. We also find that there exists a mobility rate threshold qc. The epidemic will survive when q > qc and die when q epidemic spreading in complex networks with community structure.
Stochastic analysis of epidemics on adaptive time varying networks
Kotnis, Bhushan; Kuri, Joy
2013-06-01
Many studies investigating the effect of human social connectivity structures (networks) and human behavioral adaptations on the spread of infectious diseases have assumed either a static connectivity structure or a network which adapts itself in response to the epidemic (adaptive networks). However, human social connections are inherently dynamic or time varying. Furthermore, the spread of many infectious diseases occur on a time scale comparable to the time scale of the evolving network structure. Here we aim to quantify the effect of human behavioral adaptations on the spread of asymptomatic infectious diseases on time varying networks. We perform a full stochastic analysis using a continuous time Markov chain approach for calculating the outbreak probability, mean epidemic duration, epidemic reemergence probability, etc. Additionally, we use mean-field theory for calculating epidemic thresholds. Theoretical predictions are verified using extensive simulations. Our studies have uncovered the existence of an “adaptive threshold,” i.e., when the ratio of susceptibility (or infectivity) rate to recovery rate is below the threshold value, adaptive behavior can prevent the epidemic. However, if it is above the threshold, no amount of behavioral adaptations can prevent the epidemic. Our analyses suggest that the interaction patterns of the infected population play a major role in sustaining the epidemic. Our results have implications on epidemic containment policies, as awareness campaigns and human behavioral responses can be effective only if the interaction levels of the infected populace are kept in check.
Flexible Demand Management under Time-Varying Prices
Liang, Yong
In this dissertation, the problem of flexible demand management under time-varying prices is studied. This generic problem has many applications, which usually have multiple periods in which decisions on satisfying demand need to be made, and prices in these periods are time-varying. Examples of such applications include multi-period procurement problem, operating room scheduling, and user-end demand scheduling in the Smart Grid, where the last application is used as the main motivating story throughout the dissertation. The current grid is experiencing an upgrade with lots of new designs. What is of particular interest is the idea of passing time-varying prices that reflect electricity market conditions to end users as incentives for load shifting. One key component, consequently, is the demand management system at the user-end. The objective of the system is to find the optimal trade-off between cost saving and discomfort increment resulted from load shifting. In this dissertation, we approach this problem from the following aspects: (1) construct a generic model, solve for Pareto optimal solutions, and analyze the robust solution that optimizes the worst-case payoffs, (2) extend to a distribution-free model for multiple types of demand (appliances), for which an approximate dynamic programming (ADP) approach is developed, and (3) design other efficient algorithms for practical purposes of the flexible demand management system. We first construct a novel multi-objective flexible demand management model, in which there are a finite number of periods with time-varying prices, and demand arrives in each period. In each period, the decision maker chooses to either satisfy or defer outstanding demand to minimize costs and discomfort over a certain number of periods. We consider both the deterministic model, models with stochastic demand or prices, and when only partial information about the stochastic demand or prices is known. We first analyze the stochastic
H ∞ synchronization of the coronary artery system with input time-varying delay
International Nuclear Information System (INIS)
Li Xiao-Meng; Zhao Zhan-Shan; Sun Lian-Kun; Zhang Jing
2016-01-01
This paper investigates the H ∞ synchronization of the coronary artery system with input delay and disturbance. We focus on reducing the conservatism of existing synchronization strategies. Base on the triple integral forms of the Lyapunov–Krasovskii functional (LKF), we utilize single and double integral forms of Wirtinger-based inequality to guarantee that the synchronization feedback controller has good performance against time-varying delay and external disturbance. The effectiveness of our strategy can be exhibited by simulations under the different time-varying delays and different disturbances. (paper)
Generalized Projective Synchronization between Two Complex Networks with Time-Varying Coupling Delay
International Nuclear Information System (INIS)
Mei, Sun; Chang-Yan, Zeng; Li-Xin, Tian
2009-01-01
Generalized projective synchronization (GPS) between two complex networks with time-varying coupling delay is investigated. Based on the Lyapunov stability theory, a nonlinear controller and adaptive updated laws are designed. Feasibility of the proposed scheme is proven in theory. Moreover, two numerical examples are presented, using the energy resource system and Lü's system [Physica A 382 (2007) 672] as the nodes of the networks. GPS between two energy resource complex networks with time-varying coupling delay is achieved. This study can widen the application range of the generalized synchronization methods and will be instructive for the demand–supply of energy resource in some regions of China
Generalized Projective Synchronization between Two Complex Networks with Time-Varying Coupling Delay
Sun, Mei; Zeng, Chang-Yan; Tian, Li-Xin
2009-01-01
Generalized projective synchronization (GPS) between two complex networks with time-varying coupling delay is investigated. Based on the Lyapunov stability theory, a nonlinear controller and adaptive updated laws are designed. Feasibility of the proposed scheme is proven in theory. Moreover, two numerical examples are presented, using the energy resource system and Lü's system [Physica A 382 (2007) 672] as the nodes of the networks. GPS between two energy resource complex networks with time-varying coupling delay is achieved. This study can widen the application range of the generalized synchronization methods and will be instructive for the demand-supply of energy resource in some regions of China.
A comparison of time-varying covariates in two smoking cessation interventions for cardiac patients
Prenger, Hendrikje Cornelia; Pieterse, Marcel E.; Braakman-Jansen, Louise Marie Antoinette; Bolman, Catherine; Ruitenbeek-Wiggers, L.; de Vries, H.
2013-01-01
The aim of the study was to explore the time-varying contribution of social cognitive determinants of smoking cessation following an intervention on cessation. Secondary analyses were performed on data from two comparable randomized controlled trials on brief smoking cessation interventions for
Multivariate Option Pricing with Time Varying Volatility and Correlations
DEFF Research Database (Denmark)
Rombouts, Jeroen V.K.; Stentoft, Lars Peter
In recent years multivariate models for asset returns have received much attention, in particular this is the case for models with time varying volatility. In this paper we consider models of this class and examine their potential when it comes to option pricing. Specifically, we derive the risk...... neutral dynamics for a general class of multivariate heteroskedastic models, and we provide a feasible way to price options in this framework. Our framework can be used irrespective of the assumed underlying distribution and dynamics, and it nests several important special cases. We provide an application...... to options on the minimum of two indices. Our results show that not only is correlation important for these options but so is allowing this correlation to be dynamic. Moreover, we show that for the general model exposure to correlation risk carries an important premium, and when this is neglected option...
Time-varying Capital Requirements and Disclosure Rules
DEFF Research Database (Denmark)
Kragh, Jonas; Rangvid, Jesper
, implying that resilience in the banking system is also increased. The increase in capital ratios is partly due to a modest reduction in lending. Using a policy changes, we show that banks react stronger to changes in capital requirements when these are public. Our results further suggest that the impact......Unique and confidential Danish data allow us to identify how changes in disclosure requirements and bank-specific time-varying capital requirements affect banks' lending and capital accumu-lation decisions. We find that banks increase their capital ratios after capital requirements are increased...... of capital requirements differ for small and large banks. Large banks raise their capital ratios more, reduce lending less, and accumulate more new capital compared to small banks....
Epidemic spreading in time-varying community networks
Energy Technology Data Exchange (ETDEWEB)
Ren, Guangming, E-mail: wangxy@dlut.edu.cn, E-mail: ren-guang-ming@163.com [School of Electronic and Information, Guangdong Polytechnic Normal University, Guangzhou 510665 (China); Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024 (China); Wang, Xingyuan, E-mail: wangxy@dlut.edu.cn, E-mail: ren-guang-ming@163.com [Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024 (China)
2014-06-15
The spreading processes of many infectious diseases have comparable time scale as the network evolution. Here, we present a simple networks model with time-varying community structure, and investigate susceptible-infected-susceptible epidemic spreading processes in this model. By both theoretic analysis and numerical simulations, we show that the efficiency of epidemic spreading in this model depends intensively on the mobility rate q of the individuals among communities. We also find that there exists a mobility rate threshold q{sub c}. The epidemic will survive when q > q{sub c} and die when q < q{sub c}. These results can help understanding the impacts of human travel on the epidemic spreading in complex networks with community structure.
Time-varying risk aversion. An application to energy hedging
Energy Technology Data Exchange (ETDEWEB)
Cotter, John [Centre for Financial Markets, School of Business, University College Dublin, Blackrock, Co. Dublin (Ireland); Hanly, Jim [School of Accounting and Finance, Dublin Institute of Technology, Dublin 2 (Ireland)
2010-03-15
Risk aversion is a key element of utility maximizing hedge strategies; however, it has typically been assigned an arbitrary value in the literature. This paper instead applies a GARCH-in-Mean (GARCH-M) model to estimate a time-varying measure of risk aversion that is based on the observed risk preferences of energy hedging market participants. The resulting estimates are applied to derive explicit risk aversion based optimal hedge strategies for both short and long hedgers. Out-of-sample results are also presented based on a unique approach that allows us to forecast risk aversion, thereby estimating hedge strategies that address the potential future needs of energy hedgers. We find that the risk aversion based hedges differ significantly from simpler OLS hedges. When implemented in-sample, risk aversion hedges for short hedgers outperform the OLS hedge ratio in a utility based comparison. (author)
Endogenous time-varying risk aversion and asset returns.
Berardi, Michele
2016-01-01
Stylized facts about statistical properties for short horizon returns in financial markets have been identified in the literature, but a satisfactory understanding for their manifestation is yet to be achieved. In this work, we show that a simple asset pricing model with representative agent is able to generate time series of returns that replicate such stylized facts if the risk aversion coefficient is allowed to change endogenously over time in response to unexpected excess returns under evolutionary forces. The same model, under constant risk aversion, would instead generate returns that are essentially Gaussian. We conclude that an endogenous time-varying risk aversion represents a very parsimonious way to make the model match real data on key statistical properties, and therefore deserves careful consideration from economists and practitioners alike.
Time-varying risk aversion. An application to energy hedging
International Nuclear Information System (INIS)
Cotter, John; Hanly, Jim
2010-01-01
Risk aversion is a key element of utility maximizing hedge strategies; however, it has typically been assigned an arbitrary value in the literature. This paper instead applies a GARCH-in-Mean (GARCH-M) model to estimate a time-varying measure of risk aversion that is based on the observed risk preferences of energy hedging market participants. The resulting estimates are applied to derive explicit risk aversion based optimal hedge strategies for both short and long hedgers. Out-of-sample results are also presented based on a unique approach that allows us to forecast risk aversion, thereby estimating hedge strategies that address the potential future needs of energy hedgers. We find that the risk aversion based hedges differ significantly from simpler OLS hedges. When implemented in-sample, risk aversion hedges for short hedgers outperform the OLS hedge ratio in a utility based comparison. (author)
Network Coded Cooperation Over Time-Varying Channels
DEFF Research Database (Denmark)
Khamfroush, Hana; Roetter, Daniel Enrique Lucani; Barros, João
2014-01-01
transmissions, e.g., in terms of the rate of packet transmission or the energy consumption. A comprehensive analysis of the MDP solution is carried out under different network conditions to extract optimal rules of packet transmission. Inspired by the extracted rules, we propose two near-optimal heuristics......In this paper, we investigate the optimal design of cooperative network-coded strategies for a three-node wireless network with time-varying, half-duplex erasure channels. To this end, we formulate the problem of minimizing the total cost of transmitting M packets from source to two receivers...... as a Markov Decision Process (MDP). The actions of the MDP model include the source and the type of transmission to be used in a given time slot given perfect knowledge of the system state. The cost of packet transmission is defined such that it can incorporate the difference between broadcast and unicast...
Newtonian cosmology with a time-varying constant of gravitation
International Nuclear Information System (INIS)
McVittie, G.C.
1978-01-01
Newtonian cosmology is based on the Eulerian equations of fluid mechanics combined with Poisson's equation modified by the introduction of a time-varying G. Spherically symmetric model universes are worked out with instantaneously uniform densities. They are indeterminate unless instantaneous uniformity of the pressure is imposed. When G varies as an inverse power of the time, the models can in some cases be shown to depend on the solution of a second-order differential equation which also occurs in the Friedmann models of general relativity. In Section 3, a method for 'passing through' a singularity of this equation is proposed which entails making four arbitrary mathematical assumptions. When G varies as (time) -1 , models with initially cycloidal motion are possible, each cycle becoming longer as time progresses. Finally, gravitation becomes so weak that the model expands to infinity. Kinetic and potential energies for the whole model are derived from the basic equations; their sum is not constant. (author)
Time-varying vector fields and their flows
Jafarpour, Saber
2014-01-01
This short book provides a comprehensive and unified treatment of time-varying vector fields under a variety of regularity hypotheses, namely finitely differentiable, Lipschitz, smooth, holomorphic, and real analytic. The presentation of this material in the real analytic setting is new, as is the manner in which the various hypotheses are unified using functional analysis. Indeed, a major contribution of the book is the coherent development of locally convex topologies for the space of real analytic sections of a vector bundle, and the development of this in a manner that relates easily to classically known topologies in, for example, the finitely differentiable and smooth cases. The tools used in this development will be of use to researchers in the area of geometric functional analysis.
Parametric estimation of time varying baselines in airborne interferometric SAR
DEFF Research Database (Denmark)
Mohr, Johan Jacob; Madsen, Søren Nørvang
1996-01-01
A method for estimation of time varying spatial baselines in airborne interferometric synthetic aperture radar (SAR) is described. The range and azimuth distortions between two images acquired with a non-linear baseline are derived. A parametric model of the baseline is then, in a least square...... sense, estimated from image shifts obtained by cross correlation of numerous small patches throughout the image. The method has been applied to airborne EMISAR imagery from the 1995 campaign over the Storstrommen Glacier in North East Greenland conducted by the Danish Center for Remote Sensing. This has...... reduced the baseline uncertainties from several meters to the centimeter level in a 36 km scene. Though developed for airborne SAR the method can easily be adopted to satellite data...
Epidemic spreading in time-varying community networks
International Nuclear Information System (INIS)
Ren, Guangming; Wang, Xingyuan
2014-01-01
The spreading processes of many infectious diseases have comparable time scale as the network evolution. Here, we present a simple networks model with time-varying community structure, and investigate susceptible-infected-susceptible epidemic spreading processes in this model. By both theoretic analysis and numerical simulations, we show that the efficiency of epidemic spreading in this model depends intensively on the mobility rate q of the individuals among communities. We also find that there exists a mobility rate threshold q c . The epidemic will survive when q > q c and die when q c . These results can help understanding the impacts of human travel on the epidemic spreading in complex networks with community structure
Multimedia Mapping using Continuous State Space Models
DEFF Research Database (Denmark)
Lehn-Schiøler, Tue
2004-01-01
In this paper a system that transforms speech waveforms to animated faces are proposed. The system relies on continuous state space models to perform the mapping, this makes it possible to ensure video with no sudden jumps and allows continuous control of the parameters in 'face space'. Simulations...... are performed on recordings of 3-5 sec. video sequences with sentences from the Timit database. The model is able to construct an image sequence from an unknown noisy speech sequence fairly well even though the number of training examples are limited....
My Life with State Space Models
DEFF Research Database (Denmark)
Lundbye-Christensen, Søren
2007-01-01
. The conceptual idea behind the state space model is that the evolution over time in the object we are observing and the measurement process itself are modelled separately. My very first serious analysis of a data set was done using a state space model, and since then I seem to have been "haunted" by state space...
Robust stabilisation of time-varying delay systems with probabilistic uncertainties
Jiang, Ning; Xiong, Junlin; Lam, James
2016-09-01
For robust stabilisation of time-varying delay systems, only sufficient conditions are available to date. A natural question is as follows: if the existing sufficient conditions are not satisfied, and hence no controllers can be found, what can one do to improve the stability performance of time-varying delay systems? This question is addressed in this paper when there is a probabilistic structure on the parameter uncertainty set. A randomised algorithm is proposed to design a state-feedback controller, which stabilises the system over the uncertainty domain in a probabilistic sense. The capability of the designed controller is quantified by the probability of stability of the resulting closed-loop system. The accuracy of the solution obtained from the randomised algorithm is also analysed. Finally, numerical examples are used to illustrate the effectiveness and advantages of the developed controller design approach.
A Novel Time-Varying Friction Compensation Method for Servomechanism
Directory of Open Access Journals (Sweden)
Bin Feng
2015-01-01
Full Text Available Friction is an inevitable nonlinear phenomenon existing in servomechanisms. Friction errors often affect their motion and contour accuracies during the reverse motion. To reduce friction errors, a novel time-varying friction compensation method is proposed to solve the problem that the traditional friction compensation methods hardly deal with. This problem leads to an unsatisfactory friction compensation performance and the motion and contour accuracies cannot be maintained effectively. In this method, a trapezoidal compensation pulse is adopted to compensate for the friction errors. A generalized regression neural network algorithm is used to generate the optimal pulse amplitude function. The optimal pulse duration function and the pulse amplitude function can be established by the pulse characteristic parameter learning and then the optimal friction compensation pulse can be generated. The feasibility of friction compensation method was verified on a high-precision X-Y worktable. The experimental results indicated that the motion and contour accuracies were improved greatly with reduction of the friction errors, in different working conditions. Moreover, the overall friction compensation performance indicators were decreased by more than 54% and this friction compensation method can be implemented easily on most of servomechanisms in industry.
On the Anonymity Risk of Time-Varying User Profiles
Directory of Open Access Journals (Sweden)
Silvia Puglisi
2017-04-01
Full Text Available Websites and applications use personalisation services to profile their users, collect their patterns and activities and eventually use this data to provide tailored suggestions. User preferences and social interactions are therefore aggregated and analysed. Every time a user publishes a new post or creates a link with another entity, either another user, or some online resource, new information is added to the user profile. Exposing private data does not only reveal information about single users’ preferences, increasing their privacy risk, but can expose more about their network that single actors intended. This mechanism is self-evident in social networks where users receive suggestions based on their friends’ activities. We propose an information-theoretic approach to measure the differential update of the anonymity risk of time-varying user profiles. This expresses how privacy is affected when new content is posted and how much third-party services get to know about the users when a new activity is shared. We use actual Facebook data to show how our model can be applied to a real-world scenario.
Study of selected phenotype switching strategies in time varying environment
Energy Technology Data Exchange (ETDEWEB)
Horvath, Denis, E-mail: horvath.denis@gmail.com [Centre of Interdisciplinary Biosciences, Institute of Physics, Faculty of Science, P.J. Šafárik University in Košice, Jesenná 5, 040 01 Košice (Slovakia); Brutovsky, Branislav, E-mail: branislav.brutovsky@upjs.sk [Department of Biophysics, Institute of Physics, P.J. Šafárik University in Košice, Jesenná 5, 040 01 Košice (Slovakia)
2016-03-22
Population heterogeneity plays an important role across many research, as well as the real-world, problems. The population heterogeneity relates to the ability of a population to cope with an environment change (or uncertainty) preventing its extinction. However, this ability is not always desirable as can be exemplified by an intratumor heterogeneity which positively correlates with the development of resistance to therapy. Causation of population heterogeneity is therefore in biology and medicine an intensively studied topic. In this paper the evolution of a specific strategy of population diversification, the phenotype switching, is studied at a conceptual level. The presented simulation model studies evolution of a large population of asexual organisms in a time-varying environment represented by a stochastic Markov process. Each organism disposes with a stochastic or nonlinear deterministic switching strategy realized by discrete-time models with evolvable parameters. We demonstrate that under rapidly varying exogenous conditions organisms operate in the vicinity of the bet-hedging strategy, while the deterministic patterns become relevant as the environmental variations are less frequent. Statistical characterization of the steady state regimes of the populations is done using the Hellinger and Kullback–Leibler functional distances and the Hamming distance. - Highlights: • Relation between phenotype switching and environment is studied. • The Markov chain Monte Carlo based model is developed. • Stochastic and deterministic strategies of phenotype switching are utilized. • Statistical measures of the dynamic heterogeneity reveal universal properties. • The results extend to higher lattice dimensions.
Innovation diffusion on time-varying activity driven networks
Rizzo, Alessandro; Porfiri, Maurizio
2016-01-01
Since its introduction in the 1960s, the theory of innovation diffusion has contributed to the advancement of several research fields, such as marketing management and consumer behavior. The 1969 seminal paper by Bass [F.M. Bass, Manag. Sci. 15, 215 (1969)] introduced a model of product growth for consumer durables, which has been extensively used to predict innovation diffusion across a range of applications. Here, we propose a novel approach to study innovation diffusion, where interactions among individuals are mediated by the dynamics of a time-varying network. Our approach is based on the Bass' model, and overcomes key limitations of previous studies, which assumed timescale separation between the individual dynamics and the evolution of the connectivity patterns. Thus, we do not hypothesize homogeneous mixing among individuals or the existence of a fixed interaction network. We formulate our approach in the framework of activity driven networks to enable the analysis of the concurrent evolution of the interaction and individual dynamics. Numerical simulations offer a systematic analysis of the model behavior and highlight the role of individual activity on market penetration when targeted advertisement campaigns are designed, or a competition between two different products takes place.
Study of selected phenotype switching strategies in time varying environment
International Nuclear Information System (INIS)
Horvath, Denis; Brutovsky, Branislav
2016-01-01
Population heterogeneity plays an important role across many research, as well as the real-world, problems. The population heterogeneity relates to the ability of a population to cope with an environment change (or uncertainty) preventing its extinction. However, this ability is not always desirable as can be exemplified by an intratumor heterogeneity which positively correlates with the development of resistance to therapy. Causation of population heterogeneity is therefore in biology and medicine an intensively studied topic. In this paper the evolution of a specific strategy of population diversification, the phenotype switching, is studied at a conceptual level. The presented simulation model studies evolution of a large population of asexual organisms in a time-varying environment represented by a stochastic Markov process. Each organism disposes with a stochastic or nonlinear deterministic switching strategy realized by discrete-time models with evolvable parameters. We demonstrate that under rapidly varying exogenous conditions organisms operate in the vicinity of the bet-hedging strategy, while the deterministic patterns become relevant as the environmental variations are less frequent. Statistical characterization of the steady state regimes of the populations is done using the Hellinger and Kullback–Leibler functional distances and the Hamming distance. - Highlights: • Relation between phenotype switching and environment is studied. • The Markov chain Monte Carlo based model is developed. • Stochastic and deterministic strategies of phenotype switching are utilized. • Statistical measures of the dynamic heterogeneity reveal universal properties. • The results extend to higher lattice dimensions.
Monopoly models with time-varying demand function
Cavalli, Fausto; Naimzada, Ahmad
2018-05-01
We study a family of monopoly models for markets characterized by time-varying demand functions, in which a boundedly rational agent chooses output levels on the basis of a gradient adjustment mechanism. After presenting the model for a generic framework, we analytically study the case of cyclically alternating demand functions. We show that both the perturbation size and the agent's reactivity to profitability variation signals can have counterintuitive roles on the resulting period-2 cycles and on their stability. In particular, increasing the perturbation size can have both a destabilizing and a stabilizing effect on the resulting dynamics. Moreover, in contrast with the case of time-constant demand functions, the agent's reactivity is not just destabilizing, but can improve stability, too. This means that a less cautious behavior can provide better performance, both with respect to stability and to achieved profits. We show that, even if the decision mechanism is very simple and is not able to always provide the optimal production decisions, achieved profits are very close to those optimal. Finally, we show that in agreement with the existing empirical literature, the price series obtained simulating the proposed model exhibit a significant deviation from normality and large volatility, in particular when underlying deterministic dynamics become unstable and complex.
Time-varying multiplex network: Intralayer and interlayer synchronization
Rakshit, Sarbendu; Majhi, Soumen; Bera, Bidesh K.; Sinha, Sudeshna; Ghosh, Dibakar
2017-12-01
A large class of engineered and natural systems, ranging from transportation networks to neuronal networks, are best represented by multiplex network architectures, namely a network composed of two or more different layers where the mutual interaction in each layer may differ from other layers. Here we consider a multiplex network where the intralayer coupling interactions are switched stochastically with a characteristic frequency. We explore the intralayer and interlayer synchronization of such a time-varying multiplex network. We find that the analytically derived necessary condition for intralayer and interlayer synchronization, obtained by the master stability function approach, is in excellent agreement with our numerical results. Interestingly, we clearly find that the higher frequency of switching links in the layers enhances both intralayer and interlayer synchrony, yielding larger windows of synchronization. Further, we quantify the resilience of synchronous states against random perturbations, using a global stability measure based on the concept of basin stability, and this reveals that intralayer coupling strength is most crucial for determining both intralayer and interlayer synchrony. Lastly, we investigate the robustness of interlayer synchronization against a progressive demultiplexing of the multiplex structure, and we find that for rapid switching of intralayer links, the interlayer synchronization persists even when a large number of interlayer nodes are disconnected.
Reliable Memory Feedback Design for a Class of Nonlinear Fuzzy Systems with Time-varying Delay
Institute of Scientific and Technical Information of China (English)
You-Qing Wang; Dong-Hua Zhou; Li-Heng Liu
2007-01-01
This paper is concerned with the robust reliable memory controller design for a class of fuzzy uncertain systems with time-varying delay. The system under consideration is more general than those in other existent works. The controller, which is dependent on the magnitudes and derivative of the delay, is proposed in terms of linear matrix inequality (LMI). The closed-loop system is asymptotically stable for all admissible uncertainties as well as actuator faults. A numerical example is presented for illustration.
Compensating Unknown Time-Varying Delay in Opto-Electronic Platform Tracking Servo System
Directory of Open Access Journals (Sweden)
Ruihong Xie
2017-05-01
Full Text Available This paper investigates the problem of compensating miss-distance delay in opto-electronic platform tracking servo system. According to the characteristic of LOS (light-of-sight motion, we setup the Markovian process model and compensate this unknown time-varying delay by feed-forward forecasting controller based on robust H∞ control. Finally, simulation based on double closed-loop PI (Proportion Integration control system indicates that the proposed method is effective for compensating unknown time-varying delay. Tracking experiments on the opto-electronic platform indicate that RMS (root-mean-square error is 1.253 mrad when tracking 10° 0.2 Hz signal.
Adaptive Synchronization between Two Different Complex Networks with Time-Varying Delay Coupling
International Nuclear Information System (INIS)
Jian-Rui, Chen; Li-Cheng, Jiao; Jian-She, Wu; Xiao-Hua, Wang
2009-01-01
A new general network model for two complex networks with time-varying delay coupling is presented. Then we investigate its synchronization phenomena. The two complex networks of the model differ in dynamic nodes, the number of nodes and the coupling connections. By using adaptive controllers, a synchronization criterion is derived. Numerical examples are given to demonstrate the effectiveness of the obtained synchronization criterion. This study may widen the application range of synchronization, such as in chaotic secure communication. (general)
Global exponential stability of fuzzy BAM neural networks with time-varying delays
International Nuclear Information System (INIS)
Zhang Qianhong; Luo Wei
2009-01-01
In this paper, a class of fuzzy bidirectional associated memory (BAM) neural networks with time-varying delays are studied. Employing fixed point theorem, matrix theory and inequality analysis, some sufficient conditions are established for the existence, uniqueness and global exponential stability of equilibrium point. The sufficient conditions are easy to verify at pattern recognition and automatic control. Finally, an example is given to show feasibility and effectiveness of our results.
Multimodal Pilot Behavior in Multi-Axis Tracking Tasks with Time-Varying Motion Cueing Gains
Zaal, P. M. T; Pool, D. M.
2014-01-01
In a large number of motion-base simulators, adaptive motion filters are utilized to maximize the use of the available motion envelope of the motion system. However, not much is known about how the time-varying characteristics of such adaptive filters affect pilots when performing manual aircraft control. This paper presents the results of a study investigating the effects of time-varying motion filter gains on pilot control behavior and performance. An experiment was performed in a motion-base simulator where participants performed a simultaneous roll and pitch tracking task, while the roll and/or pitch motion filter gains changed over time. Results indicate that performance increases over time with increasing motion gains. This increase is a result of a time-varying adaptation of pilots' equalization dynamics, characterized by increased visual and motion response gains and decreased visual lead time constants. Opposite trends are found for decreasing motion filter gains. Even though the trends in both controlled axes are found to be largely the same, effects are less significant in roll. In addition, results indicate minor cross-coupling effects between pitch and roll, where a cueing variation in one axis affects the behavior adopted in the other axis.
International Nuclear Information System (INIS)
Yang Dong-Sheng; Liu Zhen-Wei; Liu Zhao-Bing; Zhao Yan
2012-01-01
The networked synchronization problem of a class of master-slave chaotic systems with time-varying communication topologies is investigated in this paper. Based on algebraic graph theory and matrix theory, a simple linear state feedback controller is designed to synchronize the master chaotic system and the slave chaotic systems with a time-varying communication topology connection. The exponential stability of the closed-loop networked synchronization error system is guaranteed by applying Lyapunov stability theory. The derived novel criteria are in the form of linear matrix inequalities (LMIs), which are easy to examine and tremendously reduce the computation burden from the feedback matrices. This paper provides an alternative networked secure communication scheme which can be extended conveniently. An illustrative example is given to demonstrate the effectiveness of the proposed networked synchronization method. (general)
State Space Methods for Timed Petri Nets
DEFF Research Database (Denmark)
Christensen, Søren; Jensen, Kurt; Mailund, Thomas
2001-01-01
it possible to condense the usually infinite state space of a timed Petri net into a finite condensed state space without loosing analysis power. The second method supports on-the-fly verification of certain safety properties of timed systems. We discuss the application of the two methods in a number......We present two recently developed state space methods for timed Petri nets. The two methods reconciles state space methods and time concepts based on the introduction of a global clock and associating time stamps to tokens. The first method is based on an equivalence relation on states which makes...
Zhang, Chuan; Wang, Xingyuan; Luo, Chao; Li, Junqiu; Wang, Chunpeng
2018-03-01
In this paper, we focus on the robust outer synchronization problem between two nonlinear complex networks with parametric disturbances and mixed time-varying delays. Firstly, a general complex network model is proposed. Besides the nonlinear couplings, the network model in this paper can possess parametric disturbances, internal time-varying delay, discrete time-varying delay and distributed time-varying delay. Then, according to the robust control strategy, linear matrix inequality and Lyapunov stability theory, several outer synchronization protocols are strictly derived. Simple linear matrix controllers are designed to driver the response network synchronize to the drive network. Additionally, our results can be applied on the complex networks without parametric disturbances. Finally, by utilizing the delayed Lorenz chaotic system as the dynamics of all nodes, simulation examples are given to demonstrate the effectiveness of our theoretical results.
Time-varying parameter models for catchments with land use change: the importance of model structure
Pathiraja, Sahani; Anghileri, Daniela; Burlando, Paolo; Sharma, Ashish; Marshall, Lucy; Moradkhani, Hamid
2018-05-01
Rapid population and economic growth in Southeast Asia has been accompanied by extensive land use change with consequent impacts on catchment hydrology. Modeling methodologies capable of handling changing land use conditions are therefore becoming ever more important and are receiving increasing attention from hydrologists. A recently developed data-assimilation-based framework that allows model parameters to vary through time in response to signals of change in observations is considered for a medium-sized catchment (2880 km2) in northern Vietnam experiencing substantial but gradual land cover change. We investigate the efficacy of the method as well as the importance of the chosen model structure in ensuring the success of a time-varying parameter method. The method was used with two lumped daily conceptual models (HBV and HyMOD) that gave good-quality streamflow predictions during pre-change conditions. Although both time-varying parameter models gave improved streamflow predictions under changed conditions compared to the time-invariant parameter model, persistent biases for low flows were apparent in the HyMOD case. It was found that HyMOD was not suited to representing the modified baseflow conditions, resulting in extreme and unrealistic time-varying parameter estimates. This work shows that the chosen model can be critical for ensuring the time-varying parameter framework successfully models streamflow under changing land cover conditions. It can also be used to determine whether land cover changes (and not just meteorological factors) contribute to the observed hydrologic changes in retrospective studies where the lack of a paired control catchment precludes such an assessment.
Time-varying parameter models for catchments with land use change: the importance of model structure
Directory of Open Access Journals (Sweden)
S. Pathiraja
2018-05-01
Full Text Available Rapid population and economic growth in Southeast Asia has been accompanied by extensive land use change with consequent impacts on catchment hydrology. Modeling methodologies capable of handling changing land use conditions are therefore becoming ever more important and are receiving increasing attention from hydrologists. A recently developed data-assimilation-based framework that allows model parameters to vary through time in response to signals of change in observations is considered for a medium-sized catchment (2880 km2 in northern Vietnam experiencing substantial but gradual land cover change. We investigate the efficacy of the method as well as the importance of the chosen model structure in ensuring the success of a time-varying parameter method. The method was used with two lumped daily conceptual models (HBV and HyMOD that gave good-quality streamflow predictions during pre-change conditions. Although both time-varying parameter models gave improved streamflow predictions under changed conditions compared to the time-invariant parameter model, persistent biases for low flows were apparent in the HyMOD case. It was found that HyMOD was not suited to representing the modified baseflow conditions, resulting in extreme and unrealistic time-varying parameter estimates. This work shows that the chosen model can be critical for ensuring the time-varying parameter framework successfully models streamflow under changing land cover conditions. It can also be used to determine whether land cover changes (and not just meteorological factors contribute to the observed hydrologic changes in retrospective studies where the lack of a paired control catchment precludes such an assessment.
State-Space Formulation for Circuit Analysis
Martinez-Marin, T.
2010-01-01
This paper presents a new state-space approach for temporal analysis of electrical circuits. The method systematically obtains the state-space formulation of nondegenerate linear networks without using concepts of topology. It employs nodal/mesh systematic analysis to reduce the number of undesired variables. This approach helps students to…
Figueiredo, Danilo Zucolli; Costa, Oswaldo Luiz do Valle
2017-10-01
This paper deals with the H2 optimal control problem of discrete-time Markov jump linear systems (MJLS) considering the case in which the Markov chain takes values in a general Borel space ?. It is assumed that the controller has access only to an output variable and to the jump parameter. The goal, in this case, is to design a dynamic Markov jump controller such that the H2-norm of the closed-loop system is minimised. It is shown that the H2-norm can be written as the sum of two H2-norms, such that one of them does not depend on the control, and the other one is obtained from the optimal filter for an infinite-horizon filtering problem. This result can be seen as a separation principle for MJLS with Markov chain in a Borel space ? considering the infinite time horizon case.
Molenaar, Peter; Harsh, Saurabh; Freeman, Kenneth; Xie, Jinyu; Gold, Carol; Rovine, Mike; Ulbrecht, Jan
2014-01-01
An essential component of any artificial pancreas is on the prediction of blood glucose levels as a function of exogenous and endogenous perturbations such as insulin dose, meal intake, and physical activity and emotional tone under natural living conditions. In this article, we present a new data-driven state-space dynamic model with time-varying coefficients that are used to explicitly quantify the time-varying patient-specific effects of insulin dose and meal intake on blood glucose fluctuations. Using the 3-variate time series of glucose level, insulin dose, and meal intake of an individual type 1 diabetic subject, we apply an extended Kalman filter (EKF) to estimate time-varying coefficients of the patient-specific state-space model. We evaluate our empirical modeling using (1) the FDA-approved UVa/Padova simulator with 30 virtual patients and (2) clinical data of 5 type 1 diabetic patients under natural living conditions. Compared to a forgetting-factor-based recursive ARX model of the same order, the EKF model predictions have higher fit, and significantly better temporal gain and J index and thus are superior in early detection of upward and downward trends in glucose. The EKF based state-space model developed in this article is particularly suitable for model-based state-feedback control designs since the Kalman filter estimates the state variable of the glucose dynamics based on the measured glucose time series. In addition, since the model parameters are estimated in real time, this model is also suitable for adaptive control. PMID:24876585
Wang, Qian; Molenaar, Peter; Harsh, Saurabh; Freeman, Kenneth; Xie, Jinyu; Gold, Carol; Rovine, Mike; Ulbrecht, Jan
2014-03-01
An essential component of any artificial pancreas is on the prediction of blood glucose levels as a function of exogenous and endogenous perturbations such as insulin dose, meal intake, and physical activity and emotional tone under natural living conditions. In this article, we present a new data-driven state-space dynamic model with time-varying coefficients that are used to explicitly quantify the time-varying patient-specific effects of insulin dose and meal intake on blood glucose fluctuations. Using the 3-variate time series of glucose level, insulin dose, and meal intake of an individual type 1 diabetic subject, we apply an extended Kalman filter (EKF) to estimate time-varying coefficients of the patient-specific state-space model. We evaluate our empirical modeling using (1) the FDA-approved UVa/Padova simulator with 30 virtual patients and (2) clinical data of 5 type 1 diabetic patients under natural living conditions. Compared to a forgetting-factor-based recursive ARX model of the same order, the EKF model predictions have higher fit, and significantly better temporal gain and J index and thus are superior in early detection of upward and downward trends in glucose. The EKF based state-space model developed in this article is particularly suitable for model-based state-feedback control designs since the Kalman filter estimates the state variable of the glucose dynamics based on the measured glucose time series. In addition, since the model parameters are estimated in real time, this model is also suitable for adaptive control. © 2014 Diabetes Technology Society.
International Nuclear Information System (INIS)
Zhang Yunong; Li Zhan
2009-01-01
In this Letter, by following Zhang et al.'s method, a recurrent neural network (termed as Zhang neural network, ZNN) is developed and analyzed for solving online the time-varying convex quadratic-programming problem subject to time-varying linear-equality constraints. Different from conventional gradient-based neural networks (GNN), such a ZNN model makes full use of the time-derivative information of time-varying coefficient. The resultant ZNN model is theoretically proved to have global exponential convergence to the time-varying theoretical optimal solution of the investigated time-varying convex quadratic program. Computer-simulation results further substantiate the effectiveness, efficiency and novelty of such ZNN model and method.
Nonlinear systems time-varying parameter estimation: Application to induction motors
Energy Technology Data Exchange (ETDEWEB)
Kenne, Godpromesse [Laboratoire d' Automatique et d' Informatique Appliquee (LAIA), Departement de Genie Electrique, IUT FOTSO Victor, Universite de Dschang, B.P. 134 Bandjoun (Cameroon); Ahmed-Ali, Tarek [Ecole Nationale Superieure des Ingenieurs des Etudes et Techniques d' Armement (ENSIETA), 2 Rue Francois Verny, 29806 Brest Cedex 9 (France); Lamnabhi-Lagarrigue, F. [Laboratoire des Signaux et Systemes (L2S), C.N.R.S-SUPELEC, Universite Paris XI, 3 Rue Joliot Curie, 91192 Gif-sur-Yvette (France); Arzande, Amir [Departement Energie, Ecole Superieure d' Electricite-SUPELEC, 3 Rue Joliot Curie, 91192 Gif-sur-Yvette (France)
2008-11-15
In this paper, an algorithm for time-varying parameter estimation for a large class of nonlinear systems is presented. The proof of the convergence of the estimates to their true values is achieved using Lyapunov theories and does not require that the classical persistent excitation condition be satisfied by the input signal. Since the induction motor (IM) is widely used in several industrial sectors, the algorithm developed is potentially useful for adjusting the controller parameters of variable speed drives. The method proposed is simple and easily implementable in real-time. The application of this approach to on-line estimation of the rotor resistance of IM shows a rapidly converging estimate in spite of measurement noise, discretization effects, parameter uncertainties (e.g. inaccuracies on motor inductance values) and modeling inaccuracies. The robustness analysis for this IM application also revealed that the proposed scheme is insensitive to the stator resistance variations within a wide range. The merits of the proposed algorithm in the case of on-line time-varying rotor resistance estimation are demonstrated via experimental results in various operating conditions of the induction motor. The experimental results obtained demonstrate that the application of the proposed algorithm to update on-line the parameters of an adaptive controller (e.g. IM and synchronous machines adaptive control) can improve the efficiency of the industrial process. The other interesting features of the proposed method include fault detection/estimation and adaptive control of IM and synchronous machines. (author)
Nonlinearly Activated Neural Network for Solving Time-Varying Complex Sylvester Equation.
Li, Shuai; Li, Yangming
2013-10-28
The Sylvester equation is often encountered in mathematics and control theory. For the general time-invariant Sylvester equation problem, which is defined in the domain of complex numbers, the Bartels-Stewart algorithm and its extensions are effective and widely used with an O(n³) time complexity. When applied to solving the time-varying Sylvester equation, the computation burden increases intensively with the decrease of sampling period and cannot satisfy continuous realtime calculation requirements. For the special case of the general Sylvester equation problem defined in the domain of real numbers, gradient-based recurrent neural networks are able to solve the time-varying Sylvester equation in real time, but there always exists an estimation error while a recently proposed recurrent neural network by Zhang et al [this type of neural network is called Zhang neural network (ZNN)] converges to the solution ideally. The advancements in complex-valued neural networks cast light to extend the existing real-valued ZNN for solving the time-varying real-valued Sylvester equation to its counterpart in the domain of complex numbers. In this paper, a complex-valued ZNN for solving the complex-valued Sylvester equation problem is investigated and the global convergence of the neural network is proven with the proposed nonlinear complex-valued activation functions. Moreover, a special type of activation function with a core function, called sign-bi-power function, is proven to enable the ZNN to converge in finite time, which further enhances its advantage in online processing. In this case, the upper bound of the convergence time is also derived analytically. Simulations are performed to evaluate and compare the performance of the neural network with different parameters and activation functions. Both theoretical analysis and numerical simulations validate the effectiveness of the proposed method.
Statistical Software for State Space Methods
Directory of Open Access Journals (Sweden)
Jacques J. F. Commandeur
2011-05-01
Full Text Available In this paper we review the state space approach to time series analysis and establish the notation that is adopted in this special volume of the Journal of Statistical Software. We first provide some background on the history of state space methods for the analysis of time series. This is followed by a concise overview of linear Gaussian state space analysis including the modelling framework and appropriate estimation methods. We discuss the important class of unobserved component models which incorporate a trend, a seasonal, a cycle, and fixed explanatory and intervention variables for the univariate and multivariate analysis of time series. We continue the discussion by presenting methods for the computation of different estimates for the unobserved state vector: filtering, prediction, and smoothing. Estimation approaches for the other parameters in the model are also considered. Next, we discuss how the estimation procedures can be used for constructing confidence intervals, detecting outlier observations and structural breaks, and testing model assumptions of residual independence, homoscedasticity, and normality. We then show how ARIMA and ARIMA components models fit in the state space framework to time series analysis. We also provide a basic introduction for non-Gaussian state space models. Finally, we present an overview of the software tools currently available for the analysis of time series with state space methods as they are discussed in the other contributions to this special volume.
Directory of Open Access Journals (Sweden)
Cao Jinde
2011-01-01
Full Text Available Abstract In this paper, an integral sliding mode control approach is presented to investigate synchronization of nonidentical chaotic neural networks with discrete and distributed time-varying delays as well as leakage delay. By considering a proper sliding surface and constructing Lyapunov-Krasovskii functional, as well as employing a combination of the free-weighting matrix method, Newton-Leibniz formulation and inequality technique, a sliding mode controller is designed to achieve the asymptotical synchronization of the addressed nonidentical neural networks. Moreover, a sliding mode control law is also synthesized to guarantee the reachability of the specified sliding surface. The provided conditions are expressed in terms of linear matrix inequalities, and are dependent on the discrete and distributed time delays as well as leakage delay. A simulation example is given to verify the theoretical results.
Off-Line Robust Constrained MPC for Linear Time-Varying Systems with Persistent Disturbances
Directory of Open Access Journals (Sweden)
P. Bumroongsri
2014-01-01
Full Text Available An off-line robust constrained model predictive control (MPC algorithm for linear time-varying (LTV systems is developed. A novel feature is the fact that both model uncertainty and bounded additive disturbance are explicitly taken into account in the off-line formulation of MPC. In order to reduce the on-line computational burdens, a sequence of explicit control laws corresponding to a sequence of positively invariant sets is computed off-line. At each sampling time, the smallest positively invariant set containing the measured state is determined and the corresponding control law is implemented in the process. The proposed MPC algorithm can guarantee robust stability while ensuring the satisfaction of input and output constraints. The effectiveness of the proposed MPC algorithm is illustrated by two examples.
Pinning synchronization of memristor-based neural networks with time-varying delays.
Yang, Zhanyu; Luo, Biao; Liu, Derong; Li, Yueheng
2017-09-01
In this paper, the synchronization of memristor-based neural networks with time-varying delays via pinning control is investigated. A novel pinning method is introduced to synchronize two memristor-based neural networks which denote drive system and response system, respectively. The dynamics are studied by theories of differential inclusions and nonsmooth analysis. In addition, some sufficient conditions are derived to guarantee asymptotic synchronization and exponential synchronization of memristor-based neural networks via the presented pinning control. Furthermore, some improvements about the proposed control method are also discussed in this paper. Finally, the effectiveness of the obtained results is demonstrated by numerical simulations. Copyright © 2017 Elsevier Ltd. All rights reserved.
The estimation of time-varying risks in asset pricing modelling using B-Spline method
Nurjannah; Solimun; Rinaldo, Adji
2017-12-01
Asset pricing modelling has been extensively studied in the past few decades to explore the risk-return relationship. The asset pricing literature typically assumed a static risk-return relationship. However, several studies found few anomalies in the asset pricing modelling which captured the presence of the risk instability. The dynamic model is proposed to offer a better model. The main problem highlighted in the dynamic model literature is that the set of conditioning information is unobservable and therefore some assumptions have to be made. Hence, the estimation requires additional assumptions about the dynamics of risk. To overcome this problem, the nonparametric estimators can also be used as an alternative for estimating risk. The flexibility of the nonparametric setting avoids the problem of misspecification derived from selecting a functional form. This paper investigates the estimation of time-varying asset pricing model using B-Spline, as one of nonparametric approach. The advantages of spline method is its computational speed and simplicity, as well as the clarity of controlling curvature directly. The three popular asset pricing models will be investigated namely CAPM (Capital Asset Pricing Model), Fama-French 3-factors model and Carhart 4-factors model. The results suggest that the estimated risks are time-varying and not stable overtime which confirms the risk instability anomaly. The results is more pronounced in Carhart’s 4-factors model.
H∞ state estimation of stochastic memristor-based neural networks with time-varying delays.
Bao, Haibo; Cao, Jinde; Kurths, Jürgen; Alsaedi, Ahmed; Ahmad, Bashir
2018-03-01
This paper addresses the problem of H ∞ state estimation for a class of stochastic memristor-based neural networks with time-varying delays. Under the framework of Filippov solution, the stochastic memristor-based neural networks are transformed into systems with interval parameters. The present paper is the first to investigate the H ∞ state estimation problem for continuous-time Itô-type stochastic memristor-based neural networks. By means of Lyapunov functionals and some stochastic technique, sufficient conditions are derived to ensure that the estimation error system is asymptotically stable in the mean square with a prescribed H ∞ performance. An explicit expression of the state estimator gain is given in terms of linear matrix inequalities (LMIs). Compared with other results, our results reduce control gain and control cost effectively. Finally, numerical simulations are provided to demonstrate the efficiency of the theoretical results. Copyright © 2018 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Huang He; Qu Yuzhong; Li Hanxiong
2005-01-01
With the development of intelligent control, switched systems have been widely studied. Here we try to introduce some ideas of the switched systems into the field of neural networks. In this Letter, a class of switched Hopfield neural networks with time-varying delay is investigated. The parametric uncertainty is considered and assumed to be norm bounded. Firstly, the mathematical model of the switched Hopfield neural networks is established in which a set of Hopfield neural networks are used as the individual subsystems and an arbitrary switching rule is assumed; Secondly, robust stability analysis for such switched Hopfield neural networks is addressed based on the Lyapunov-Krasovskii approach. Some criteria are given to guarantee the switched Hopfield neural networks to be globally exponentially stable for all admissible parametric uncertainties. These conditions are expressed in terms of some strict linear matrix inequalities (LMIs). Finally, a numerical example is provided to illustrate our results
Directory of Open Access Journals (Sweden)
Gill R. Tsouri
2009-01-01
Full Text Available A method of overloading subcarriers by multiple transmitters to secure OFDM in wireless time-varying channels is proposed and analyzed. The method is based on reverse piloting, superposition modulation, and joint decoding. It makes use of channel randomness, reciprocity, and fast decorrelation in space to secure OFDM with low overheads on encryption, decryption, and key distribution. These properties make it a good alternative to traditional software-based information security algorithms in systems where the costs associated with such algorithms are an implementation obstacle. A necessary and sufficient condition for achieving information theoretic security in accordance with channel and system parameters is derived. Security by complexity is assessed for cases where the condition for information theoretic security is not satisfied. In addition, practical means for implementing the method are derived including generating robust joint constellations, decoding data with low complexity, and mitigating the effects of imperfections due to mobility, power control errors, and synchronization errors.
Distributed Graph-Based State Space Generation
Blom, Stefan; Kant, Gijs; Rensink, Arend; De Lara, J.; Varro, D.
LTSMIN provides a framework in which state space generation can be distributed easily over many cores on a single compute node, as well as over multiple compute nodes. The tool works on the basis of a vector representation of the states; the individual cores are assigned the task of computing all
Stabilization of the Wave Equation with Boundary Time-Varying Delay
Directory of Open Access Journals (Sweden)
Hao Li
2014-01-01
Full Text Available We study the stabilization of the wave equation with variable coefficients in a bounded domain and a time-varying delay term in the time-varying, weakly nonlinear boundary feedbacks. By the Riemannian geometry methods and a suitable assumption of nonlinearity, we obtain the uniform decay of the energy of the closed loop system.
Experimental evidence for amplitude death induced by a time-varying interaction
Energy Technology Data Exchange (ETDEWEB)
Suresh, K. [Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu (India); Shrimali, M.D. [Department of Physics, Central University of Rajasthan, NH-8, Bandar Sindri, Ajmer 305 801 (India); Prasad, Awadhesh [Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India); Thamilmaran, K., E-mail: maran.cnld@gmail.com [Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu (India)
2014-08-01
In this paper, we study the time-varying interaction in coupled oscillatory systems. For this purpose, we have designed a novel time-varying resistive network using an analog switch and inverter circuits. We have applied this time-varying resistive network to mutually coupled identical Chua's oscillators. When the resistances are varied in time, we find that amplitude death arises in coupled identical oscillators. This has been observed numerically as well as verified through hardware experiments. - Highlights: • We have implemented the time-varying interaction in coupled oscillatory systems. • We have designed a novel time-varying resistive network using an analog switch and inverter circuits. • When the resistances are varied in time, we find that amplitude death arises in coupled identical oscillators.
Stability of Nonlinear Systems with Unknown Time-varying Feedback Delay
Chunodkar, Apurva A.; Akella, Maruthi R.
2013-12-01
This paper considers the problem of stabilizing a class of nonlinear systems with unknown bounded delayed feedback wherein the time-varying delay is 1) piecewise constant 2) continuous with a bounded rate. We also consider application of these results to the stabilization of rigid-body attitude dynamics. In the first case, the time-delay in feedback is modeled specifically as a switch among an arbitrarily large set of unknown constant values with a known strict upper bound. The feedback is a linear function of the delayed states. In the case of linear systems with switched delay feedback, a new sufficiency condition for average dwell time result is presented using a complete type Lyapunov-Krasovskii (L-K) functional approach. Further, the corresponding switched system with nonlinear perturbations is proven to be exponentially stable inside a well characterized region of attraction for an appropriately chosen average dwell time. In the second case, the concept of the complete type L-K functional is extended to a class of nonlinear time-delay systems with unknown time-varying time-delay. This extension ensures stability robustness to time-delay in the control design for all values of time-delay less than the known upper bound. Model-transformation is used in order to partition the nonlinear system into a nominal linear part that is exponentially stable with a bounded perturbation. We obtain sufficient conditions which ensure exponential stability inside a region of attraction estimate. A constructive method to evaluate the sufficient conditions is presented together with comparison with the corresponding constant and piecewise constant delay. Numerical simulations are performed to illustrate the theoretical results of this paper.
Shi, Lei; Yao, Bo; Zhao, Lei; Liu, Xiaotong; Yang, Min; Liu, Yanming
2018-01-01
The plasma sheath-surrounded hypersonic vehicle is a dynamic and time-varying medium and it is almost impossible to calculate time-varying physical parameters directly. The in-fight detection of the time-varying degree is important to understand the dynamic nature of the physical parameters and their effect on re-entry communication. In this paper, a constant envelope zero autocorrelation (CAZAC) sequence based on time-varying frequency detection and channel sounding method is proposed to detect the plasma sheath electronic density time-varying property and wireless channel characteristic. The proposed method utilizes the CAZAC sequence, which has excellent autocorrelation and spread gain characteristics, to realize dynamic time-varying detection/channel sounding under low signal-to-noise ratio in the plasma sheath environment. Theoretical simulation under a typical time-varying radio channel shows that the proposed method is capable of detecting time-variation frequency up to 200 kHz and can trace the channel amplitude and phase in the time domain well under -10 dB. Experimental results conducted in the RF modulation discharge plasma device verified the time variation detection ability in practical dynamic plasma sheath. Meanwhile, nonlinear phenomenon of dynamic plasma sheath on communication signal is observed thorough channel sounding result.
Robust Stability of Scaled-Four-Channel Teleoperation with Internet Time-Varying Delays
Directory of Open Access Journals (Sweden)
Emma Delgado
2016-04-01
Full Text Available We describe the application of a generic stability framework for a teleoperation system under time-varying delay conditions, as addressed in a previous work, to a scaled-four-channel (γ-4C control scheme. Described is how varying delays are dealt with by means of dynamic encapsulation, giving rise to mu-test conditions for robust stability and offering an appealing frequency technique to deal with the stability robustness of the architecture. We discuss ideal transparency problems and we adapt classical solutions so that controllers are proper, without single or double differentiators, and thus avoid the negative effects of noise. The control scheme was fine-tuned and tested for complete stability to zero of the whole state, while seeking a practical solution to the trade-off between stability and transparency in the Internet-based teleoperation. These ideas were tested on an Internet-based application with two Omni devices at remote laboratory locations via simulations and real remote experiments that achieved robust stability, while performing well in terms of position synchronization and force transparency.
Robust Stability of Scaled-Four-Channel Teleoperation with Internet Time-Varying Delays.
Delgado, Emma; Barreiro, Antonio; Falcón, Pablo; Díaz-Cacho, Miguel
2016-04-26
We describe the application of a generic stability framework for a teleoperation system under time-varying delay conditions, as addressed in a previous work, to a scaled-four-channel (γ-4C) control scheme. Described is how varying delays are dealt with by means of dynamic encapsulation, giving rise to mu-test conditions for robust stability and offering an appealing frequency technique to deal with the stability robustness of the architecture. We discuss ideal transparency problems and we adapt classical solutions so that controllers are proper, without single or double differentiators, and thus avoid the negative effects of noise. The control scheme was fine-tuned and tested for complete stability to zero of the whole state, while seeking a practical solution to the trade-off between stability and transparency in the Internet-based teleoperation. These ideas were tested on an Internet-based application with two Omni devices at remote laboratory locations via simulations and real remote experiments that achieved robust stability, while performing well in terms of position synchronization and force transparency.
Condensed State Spaces for Symmetrical Coloured Petri Nets
DEFF Research Database (Denmark)
Jensen, Kurt
1996-01-01
equivalence classes of states and equivalence classes of state changes. It is then possible to construct a condensed state space where each node represents an equivalence class of states while each arc represents an equivalence class of state changes. Such a condensed state space is often much smaller than...... the full state space and it is also much faster to construct. Nevertheless, it is possible to use the condensed state space to verify the same kind of behavioural properties as the full state space. Hence, we do not lose analytic power. We define state spaces and condensed state spaces for a language......-nets (or Petri nets in general) - although such knowledge will, of course, be a help. The first four sections of the paper introduce the basic concepts of CP-nets. The next three sections deal with state spaces, condensed state spaces and computer tools for state space analysis. Finally, there is a short...
Robustness Analysis of Hybrid Stochastic Neural Networks with Neutral Terms and Time-Varying Delays
Directory of Open Access Journals (Sweden)
Chunmei Wu
2015-01-01
Full Text Available We analyze the robustness of global exponential stability of hybrid stochastic neural networks subject to neutral terms and time-varying delays simultaneously. Given globally exponentially stable hybrid stochastic neural networks, we characterize the upper bounds of contraction coefficients of neutral terms and time-varying delays by using the transcendental equation. Moreover, we prove theoretically that, for any globally exponentially stable hybrid stochastic neural networks, if additive neutral terms and time-varying delays are smaller than the upper bounds arrived, then the perturbed neural networks are guaranteed to also be globally exponentially stable. Finally, a numerical simulation example is given to illustrate the presented criteria.
State-Space Modelling in Marine Science
DEFF Research Database (Denmark)
Albertsen, Christoffer Moesgaard
State-space models provide a natural framework for analysing time series that cannot be observed without error. This is the case for fisheries stock assessments and movement data from marine animals. In fisheries stock assessments, the aim is to estimate the stock size; however, the only data...... available is the number of fish removed from the population and samples on a small fraction of the population. In marine animal movement, accurate position systems such as GPS cannot be used. Instead, inaccurate alternative must be used yielding observations with large errors. Both assessment and individual...... animal movement models are important for management and conservation of marine animals. Consequently, models should be developed to be operational in a management context while adequately evaluating uncertainties in the models. This thesis develops state-space models using the Laplace approximation...
Projective loop quantum gravity. I. State space
Lanéry, Suzanne; Thiemann, Thomas
2016-12-01
Instead of formulating the state space of a quantum field theory over one big Hilbert space, it has been proposed by Kijowski to describe quantum states as projective families of density matrices over a collection of smaller, simpler Hilbert spaces. Beside the physical motivations for this approach, it could help designing a quantum state space holding the states we need. In a latter work by Okolów, the description of a theory of Abelian connections within this framework was developed, an important insight being to use building blocks labeled by combinations of edges and surfaces. The present work generalizes this construction to an arbitrary gauge group G (in particular, G is neither assumed to be Abelian nor compact). This involves refining the definition of the label set, as well as deriving explicit formulas to relate the Hilbert spaces attached to different labels. If the gauge group happens to be compact, we also have at our disposal the well-established Ashtekar-Lewandowski Hilbert space, which is defined as an inductive limit using building blocks labeled by edges only. We then show that the quantum state space presented here can be thought as a natural extension of the space of density matrices over this Hilbert space. In addition, it is manifest from the classical counterparts of both formalisms that the projective approach allows for a more balanced treatment of the holonomy and flux variables, so it might pave the way for the development of more satisfactory coherent states.
Positive Almost Periodic Solutions for a Time-Varying Fishing Model with Delay
Directory of Open Access Journals (Sweden)
Xia Li
2011-01-01
Full Text Available This paper is concerned with a time-varying fishing model with delay. By means of the continuation theorem of coincidence degree theory, we prove that it has at least one positive almost periodic solution.
Long memory of financial time series and hidden Markov models with time-varying parameters
DEFF Research Database (Denmark)
Nystrup, Peter; Madsen, Henrik; Lindström, Erik
Hidden Markov models are often used to capture stylized facts of daily returns and to infer the hidden state of financial markets. Previous studies have found that the estimated models change over time, but the implications of the time-varying behavior for the ability to reproduce the stylized...... facts have not been thoroughly examined. This paper presents an adaptive estimation approach that allows for the parameters of the estimated models to be time-varying. It is shown that a two-state Gaussian hidden Markov model with time-varying parameters is able to reproduce the long memory of squared...... daily returns that was previously believed to be the most difficult fact to reproduce with a hidden Markov model. Capturing the time-varying behavior of the parameters also leads to improved one-step predictions....
Identification of time-varying nonlinear systems using differential evolution algorithm
DEFF Research Database (Denmark)
Perisic, Nevena; Green, Peter L; Worden, Keith
2013-01-01
(DE) algorithm for the identification of time-varying systems. DE is an evolutionary optimisation method developed to perform direct search in a continuous space without requiring any derivative estimation. DE is modified so that the objective function changes with time to account for the continuing......, thus identification of time-varying systems with nonlinearities can be a very challenging task. In order to avoid conventional least squares and gradient identification methods which require uni-modal and double differentiable objective functions, this work proposes a modified differential evolution...... inclusion of new data within an error metric. This paper presents results of identification of a time-varying SDOF system with Coulomb friction using simulated noise-free and noisy data for the case of time-varying friction coefficient, stiffness and damping. The obtained results are promising and the focus...
Forecast Accuracy and Economic Gains from Bayesian Model Averaging using Time Varying Weights
L.F. Hoogerheide (Lennart); R.H. Kleijn (Richard); H.K. van Dijk (Herman); M.J.C.M. Verbeek (Marno)
2009-01-01
textabstractSeveral Bayesian model combination schemes, including some novel approaches that simultaneously allow for parameter uncertainty, model uncertainty and robust time varying model weights, are compared in terms of forecast accuracy and economic gains using financial and macroeconomic time
An Explicit MOT-TD-VIE Solver for Time Varying Media
Sayed, Sadeed Bin; Ulku, Huseyin Arda; Bagci, Hakan
2016-01-01
An explicit marching on-in-time (MOT) scheme for solving the time domain electric field integral equation enforced on volumes with time varying dielectric permittivity is proposed. Unknowns of the integral equation and the constitutive relation, i
Wavelet ridge diagnosis of time-varying elliptical signals with application to an oceanic eddy
Lilly , J. M.; Gascard , Jean-Claude
2006-01-01
International audience; A method for diagnosing the physical properties of a time-varying ellipse is presented. This essentially involves extending the notion of instantaneous frequency to the bivariate case. New complications, and possibilities, arise from the fact that there are several meaningful forms in which a time-varying ellipse may be represented. A perturbation analysis valid for the near-circular case clarifies these issues. Diagnosis of the ellipse properties may then be performed...
Global exponential stability of uncertain fuzzy BAM neural networks with time-varying delays
International Nuclear Information System (INIS)
Syed Ali, M.; Balasubramaniam, P.
2009-01-01
In this paper, the Takagi-Sugeno (TS) fuzzy model representation is extended to the stability analysis for uncertain Bidirectional Associative Memory (BAM) neural networks with time-varying delays using linear matrix inequality (LMI) theory. A novel LMI-based stability criterion is obtained by LMI optimization algorithms to guarantee the exponential stability of uncertain BAM neural networks with time-varying delays which are represented by TS fuzzy models. Finally, the proposed stability conditions are demonstrated with numerical examples.
Global exponential stability of BAM neural networks with time-varying delays: The discrete-time case
Raja, R.; Marshal Anthoni, S.
2011-02-01
This paper deals with the problem of stability analysis for a class of discrete-time bidirectional associative memory (BAM) neural networks with time-varying delays. By employing the Lyapunov functional and linear matrix inequality (LMI) approach, a new sufficient conditions is proposed for the global exponential stability of discrete-time BAM neural networks. The proposed LMI based results can be easily checked by LMI control toolbox. Moreover, an example is also provided to demonstrate the effectiveness of the proposed method.
Dynamic divisive normalization predicts time-varying value coding in decision-related circuits.
Louie, Kenway; LoFaro, Thomas; Webb, Ryan; Glimcher, Paul W
2014-11-26
Normalization is a widespread neural computation, mediating divisive gain control in sensory processing and implementing a context-dependent value code in decision-related frontal and parietal cortices. Although decision-making is a dynamic process with complex temporal characteristics, most models of normalization are time-independent and little is known about the dynamic interaction of normalization and choice. Here, we show that a simple differential equation model of normalization explains the characteristic phasic-sustained pattern of cortical decision activity and predicts specific normalization dynamics: value coding during initial transients, time-varying value modulation, and delayed onset of contextual information. Empirically, we observe these predicted dynamics in saccade-related neurons in monkey lateral intraparietal cortex. Furthermore, such models naturally incorporate a time-weighted average of past activity, implementing an intrinsic reference-dependence in value coding. These results suggest that a single network mechanism can explain both transient and sustained decision activity, emphasizing the importance of a dynamic view of normalization in neural coding. Copyright © 2014 the authors 0270-6474/14/3416046-12$15.00/0.
Directory of Open Access Journals (Sweden)
Lan Liu
2017-01-01
Full Text Available As the adoption of Software Defined Networks (SDNs grows, the security of SDN still has several unaddressed limitations. A key network security research area is in the study of malware propagation across the SDN-enabled networks. To analyze the spreading processes of network malware (e.g., viruses in SDN, we propose a dynamic model with a time-varying community network, inspired by research models on the spread of epidemics in complex networks across communities. We assume subnets of the network as communities and links that are dense in subnets but sparse between subnets. Using numerical simulation and theoretical analysis, we find that the efficiency of network malware propagation in this model depends on the mobility rate q of the nodes between subnets. We also find that there exists a mobility rate threshold qc. The network malware will spread in the SDN when the mobility rate q>qc. The malware will survive when q>qc and perish when q
Vector-field statistics for the analysis of time varying clinical gait data.
Donnelly, C J; Alexander, C; Pataky, T C; Stannage, K; Reid, S; Robinson, M A
2017-01-01
In clinical settings, the time varying analysis of gait data relies heavily on the experience of the individual(s) assessing these biological signals. Though three dimensional kinematics are recognised as time varying waveforms (1D), exploratory statistical analysis of these data are commonly carried out with multiple discrete or 0D dependent variables. In the absence of an a priori 0D hypothesis, clinicians are at risk of making type I and II errors in their analyis of time varying gait signatures in the event statistics are used in concert with prefered subjective clinical assesment methods. The aim of this communication was to determine if vector field waveform statistics were capable of providing quantitative corroboration to practically significant differences in time varying gait signatures as determined by two clinically trained gait experts. The case study was a left hemiplegic Cerebral Palsy (GMFCS I) gait patient following a botulinum toxin (BoNT-A) injection to their left gastrocnemius muscle. When comparing subjective clinical gait assessments between two testers, they were in agreement with each other for 61% of the joint degrees of freedom and phases of motion analysed. For tester 1 and tester 2, they were in agreement with the vector-field analysis for 78% and 53% of the kinematic variables analysed. When the subjective analyses of tester 1 and tester 2 were pooled together and then compared to the vector-field analysis, they were in agreement for 83% of the time varying kinematic variables analysed. These outcomes demonstrate that in principle, vector-field statistics corroborates with what a team of clinical gait experts would classify as practically meaningful pre- versus post time varying kinematic differences. The potential for vector-field statistics to be used as a useful clinical tool for the objective analysis of time varying clinical gait data is established. Future research is recommended to assess the usefulness of vector-field analyses
Wang, Qian; Molenaar, Peter; Harsh, Saurabh; Freeman, Kenneth; Xie, Jinyu; Gold, Carol; Rovine, Mike; Ulbrecht, Jan
2014-01-01
An essential component of any artificial pancreas is on the prediction of blood glucose levels as a function of exogenous and endogenous perturbations such as insulin dose, meal intake, and physical activity and emotional tone under natural living conditions. In this article, we present a new data-driven state-space dynamic model with time-varying coefficients that are used to explicitly quantify the time-varying patient-specific effects of insulin dose and meal intake on blood glucose fluctu...
Li, Jiarong; Jiang, Haijun; Hu, Cheng; Yu, Zhiyong
2018-03-01
This paper is devoted to the exponential synchronization, finite time synchronization, and fixed-time synchronization of Cohen-Grossberg neural networks (CGNNs) with discontinuous activations and time-varying delays. Discontinuous feedback controller and Novel adaptive feedback controller are designed to realize global exponential synchronization, finite time synchronization and fixed-time synchronization by adjusting the values of the parameters ω in the controller. Furthermore, the settling time of the fixed-time synchronization derived in this paper is less conservative and more accurate. Finally, some numerical examples are provided to show the effectiveness and flexibility of the results derived in this paper. Copyright © 2018 Elsevier Ltd. All rights reserved.
Zhang, Zhen; Yan, Peng; Jiang, Huan; Ye, Peiqing
2014-09-01
In this paper, we consider the discrete time-varying internal model-based control design for high precision tracking of complicated reference trajectories generated by time-varying systems. Based on a novel parallel time-varying internal model structure, asymptotic tracking conditions for the design of internal model units are developed, and a low order robust time-varying stabilizer is further synthesized. In a discrete time setting, the high precision tracking control architecture is deployed on a Voice Coil Motor (VCM) actuated servo gantry system, where numerical simulations and real time experimental results are provided, achieving the tracking errors around 3.5‰ for frequency-varying signals. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Modeling volatility using state space models.
Timmer, J; Weigend, A S
1997-08-01
In time series problems, noise can be divided into two categories: dynamic noise which drives the process, and observational noise which is added in the measurement process, but does not influence future values of the system. In this framework, we show that empirical volatilities (the squared relative returns of prices) exhibit a significant amount of observational noise. To model and predict their time evolution adequately, we estimate state space models that explicitly include observational noise. We obtain relaxation times for shocks in the logarithm of volatility ranging from three weeks (for foreign exchange) to three to five months (for stock indices). In most cases, a two-dimensional hidden state is required to yield residuals that are consistent with white noise. We compare these results with ordinary autoregressive models (without a hidden state) and find that autoregressive models underestimate the relaxation times by about two orders of magnitude since they do not distinguish between observational and dynamic noise. This new interpretation of the dynamics of volatility in terms of relaxators in a state space model carries over to stochastic volatility models and to GARCH models, and is useful for several problems in finance, including risk management and the pricing of derivative securities. Data sets used: Olsen & Associates high frequency DEM/USD foreign exchange rates (8 years). Nikkei 225 index (40 years). Dow Jones Industrial Average (25 years).
Identifiability of Additive, Time-Varying Actuator and Sensor Faults by State Augmentation
Upchurch, Jason M.; Gonzalez, Oscar R.; Joshi, Suresh M.
2014-01-01
Recent work has provided a set of necessary and sucient conditions for identifiability of additive step faults (e.g., lock-in-place actuator faults, constant bias in the sensors) using state augmentation. This paper extends these results to an important class of faults which may affect linear, time-invariant systems. In particular, the faults under consideration are those which vary with time and affect the system dynamics additively. Such faults may manifest themselves in aircraft as, for example, control surface oscillations, control surface runaway, and sensor drift. The set of necessary and sucient conditions presented in this paper are general, and apply when a class of time-varying faults affects arbitrary combinations of actuators and sensors. The results in the main theorems are illustrated by two case studies, which provide some insight into how the conditions may be used to check the theoretical identifiability of fault configurations of interest for a given system. It is shown that while state augmentation can be used to identify certain fault configurations, other fault configurations are theoretically impossible to identify using state augmentation, giving practitioners valuable insight into such situations. That is, the limitations of state augmentation for a given system and configuration of faults are made explicit. Another limitation of model-based methods is that there can be large numbers of fault configurations, thus making identification of all possible configurations impractical. However, the theoretical identifiability of known, credible fault configurations can be tested using the theorems presented in this paper, which can then assist the efforts of fault identification practitioners.
Robustness analysis of the Zhang neural network for online time-varying quadratic optimization
International Nuclear Information System (INIS)
Zhang Yunong; Ruan Gongqin; Li Kene; Yang Yiwen
2010-01-01
A general type of recurrent neural network (termed as Zhang neural network, ZNN) has recently been proposed by Zhang et al for the online solution of time-varying quadratic-minimization (QM) and quadratic-programming (QP) problems. Global exponential convergence of the ZNN could be achieved theoretically in an ideal error-free situation. In this paper, with the normal differentiation and dynamics-implementation errors considered, the robustness properties of the ZNN model are investigated for solving these time-varying problems. In addition, linear activation functions and power-sigmoid activation functions could be applied to such a perturbed ZNN model. Both theoretical-analysis and computer-simulation results demonstrate the good ZNN robustness and superior performance for online time-varying QM and QP problem solving, especially when using power-sigmoid activation functions.
Jia, Xingyu; Liu, Zhigang; Tao, Long; Deng, Zhongwen
2017-10-16
Frequency scanning interferometry (FSI) with a single external cavity diode laser (ECDL) and time-invariant Kalman filtering is an effective technique for measuring the distance of a dynamic target. However, due to the hysteresis of the piezoelectric ceramic transducer (PZT) actuator in the ECDL, the optical frequency sweeps of the ECDL exhibit different behaviors, depending on whether the frequency is increasing or decreasing. Consequently, the model parameters of Kalman filter appear time varying in each iteration, which produces state estimation errors with time-invariant filtering. To address this, in this paper, a time-varying Kalman filter is proposed to model the instantaneous movement of a target relative to the different optical frequency tuning durations of the ECDL. The combination of the FSI method with the time-varying Kalman filter was theoretically analyzed, and the simulation and experimental results show the proposed method greatly improves the performance of dynamic FSI measurements.
Modeling of Electricity Demand for Azerbaijan: Time-Varying Coefficient Cointegration Approach
Directory of Open Access Journals (Sweden)
Jeyhun I. Mikayilov
2017-11-01
Full Text Available Recent literature has shown that electricity demand elasticities may not be constant over time and this has investigated using time-varying estimation methods. As accurate modeling of electricity demand is very important in Azerbaijan, which is a transitional country facing significant change in its economic outlook, we analyze whether the response of electricity demand to income and price is varying over time in this economy. We employed the Time-Varying Coefficient cointegration approach, a cutting-edge time-varying estimation method. We find evidence that income elasticity demonstrates sizeable variation for the period of investigation ranging from 0.48% to 0.56%. The study has some useful policy implications related to the income and price aspects of the electricity consumption in Azerbaijan.
Finite-time stability of neutral-type neural networks with random time-varying delays
Ali, M. Syed; Saravanan, S.; Zhu, Quanxin
2017-11-01
This paper is devoted to the finite-time stability analysis of neutral-type neural networks with random time-varying delays. The randomly time-varying delays are characterised by Bernoulli stochastic variable. This result can be extended to analysis and design for neutral-type neural networks with random time-varying delays. On the basis of this paper, we constructed suitable Lyapunov-Krasovskii functional together and established a set of sufficient linear matrix inequalities approach to guarantee the finite-time stability of the system concerned. By employing the Jensen's inequality, free-weighting matrix method and Wirtinger's double integral inequality, the proposed conditions are derived and two numerical examples are addressed for the effectiveness of the developed techniques.
Some properties of zero power neutron noise in a time-varying medium with delayed neutrons
International Nuclear Information System (INIS)
Kitamura, Y.; Pal, L.; Pazsit, I.; Yamamoto, A.; Yamane, Y.
2008-01-01
The temporal evolution of the distribution of the number of neutrons in a time-varying multiplying system, producing only prompt neutrons, was treated recently with the master equation technique by some of the present authors. Such a treatment gives account of both the so-called zero power reactor noise and the power reactor noise simultaneously. In particular, the first two moments of the neutron number, as well as the concept of criticality for time-varying systems, were investigated and discussed. The present paper extends these investigations to the case when delayed neutrons are also taken into account. Due to the complexity of the description, only the expectation of the neutron number is calculated. The concept of criticality of a time-varying system is also generalized to systems with delayed neutrons. The temporal behaviour of the expectation of the number of neutrons and its asymptotic properties are displayed and discussed
Robust stability analysis of uncertain stochastic neural networks with interval time-varying delay
International Nuclear Information System (INIS)
Feng Wei; Yang, Simon X.; Fu Wei; Wu Haixia
2009-01-01
This paper addresses the stability analysis problem for uncertain stochastic neural networks with interval time-varying delays. The parameter uncertainties are assumed to be norm bounded, and the delay factor is assumed to be time-varying and belong to a given interval, which means that the lower and upper bounds of interval time-varying delays are available. A sufficient condition is derived such that for all admissible uncertainties, the considered neural network is robustly, globally, asymptotically stable in the mean square. Some stability criteria are formulated by means of the feasibility of a linear matrix inequality (LMI), which can be effectively solved by some standard numerical packages. Finally, numerical examples are provided to demonstrate the usefulness of the proposed criteria.
Harmonic Interaction Analysis in Grid Connected Converter using Harmonic State Space (HSS) Modeling
DEFF Research Database (Denmark)
Kwon, Jun Bum; Wang, Xiongfei; Bak, Claus Leth
2015-01-01
-model, are introduced to analyze these problems. However, it is found that Linear Time Invariant (LTI) base model analysis makes it difficult to analyze these phenomenon because of time varying system operation trajectories, varying output impedance seen by grid connected systems and neglected switching component......An increasing number of power electronics based Distributed Generation (DG) systems and loads generate coupled harmonic as well as non-characteristic harmonic with each other. Several methods like impedance based analysis, which is derived from conventional small signal- and average...... during the modeling process. This paper investigates grid connected converter by means of Harmonic State Space (HSS) small signal model, which is modeled from Linear Time varying Periodically (LTP) system. Further, a grid connected converter harmonic matrix is investigated to analyze the harmonic...
New results on global exponential stability of recurrent neural networks with time-varying delays
International Nuclear Information System (INIS)
Xu Shengyuan; Chu Yuming; Lu Junwei
2006-01-01
This Letter provides new sufficient conditions for the existence, uniqueness and global exponential stability of the equilibrium point of recurrent neural networks with time-varying delays by employing Lyapunov functions and using the Halanay inequality. The time-varying delays are not necessarily differentiable. Both Lipschitz continuous activation functions and monotone nondecreasing activation functions are considered. The derived stability criteria are expressed in terms of linear matrix inequalities (LMIs), which can be checked easily by resorting to recently developed algorithms solving LMIs. Furthermore, the proposed stability results are less conservative than some previous ones in the literature, which is demonstrated via some numerical examples
Time-varying long term memory in the European Union stock markets
Sensoy, Ahmet; Tabak, Benjamin M.
2015-10-01
This paper proposes a new efficiency index to model time-varying inefficiency in stock markets. We focus on European stock markets and show that they have different degrees of time-varying efficiency. We observe that the 2008 global financial crisis has an adverse effect on almost all EU stock markets. However, the Eurozone sovereign debt crisis has a significant adverse effect only on the markets in France, Spain and Greece. For the late members, joining EU does not have a uniform effect on stock market efficiency. Our results have important implications for policy makers, investors, risk managers and academics.
Exponential stability of fuzzy cellular neural networks with constant and time-varying delays
International Nuclear Information System (INIS)
Liu Yanqing; Tang Wansheng
2004-01-01
In this Letter, the global stability of delayed fuzzy cellular neural networks (FCNN) with either constant delays or time varying delays is proposed. Firstly, we give the existence and uniqueness of the equilibrium point by using the theory of topological degree and the properties of nonsingular M-matrix and the sufficient conditions for ascertaining the global exponential stability by constructing a suitable Lyapunov functional. Secondly, the criteria for guaranteeing the global exponential stability of FCNN with time varying delays are given and the estimation of exponential convergence rate with regard to speed of vary of delays is presented by constructing a suitable Lyapunov functional
International Nuclear Information System (INIS)
Zhang Qun-Jiao; Zhao Jun-Chan
2012-01-01
This paper mainly investigates the exponential synchronization of an inner time-varying complex network with coupling delay. Firstly, the synchronization of complex networks is decoupled into the stability of the corresponding dynamical systems. Based on the Lyapunov function theory, some sufficient conditions to guarantee its stability with any given convergence rate are derived, thus the synchronization of the networks is achieved. Finally, the results are illustrated by a simple time-varying network model with a coupling delay. All involved numerical simulations verify the correctness of the theoretical analysis. (general)
New results on global exponential stability of recurrent neural networks with time-varying delays
Energy Technology Data Exchange (ETDEWEB)
Xu Shengyuan [Department of Automation, Nanjing University of Science and Technology, Nanjing 210094 (China)]. E-mail: syxu02@yahoo.com.cn; Chu Yuming [Department of Mathematics, Huzhou Teacher' s College, Huzhou, Zhejiang 313000 (China); Lu Junwei [School of Electrical and Automation Engineering, Nanjing Normal University, 78 Bancang Street, Nanjing, 210042 (China)
2006-04-03
This Letter provides new sufficient conditions for the existence, uniqueness and global exponential stability of the equilibrium point of recurrent neural networks with time-varying delays by employing Lyapunov functions and using the Halanay inequality. The time-varying delays are not necessarily differentiable. Both Lipschitz continuous activation functions and monotone nondecreasing activation functions are considered. The derived stability criteria are expressed in terms of linear matrix inequalities (LMIs), which can be checked easily by resorting to recently developed algorithms solving LMIs. Furthermore, the proposed stability results are less conservative than some previous ones in the literature, which is demonstrated via some numerical examples.
Long Memory of Financial Time Series and Hidden Markov Models with Time-Varying Parameters
DEFF Research Database (Denmark)
Nystrup, Peter; Madsen, Henrik; Lindström, Erik
2016-01-01
Hidden Markov models are often used to model daily returns and to infer the hidden state of financial markets. Previous studies have found that the estimated models change over time, but the implications of the time-varying behavior have not been thoroughly examined. This paper presents an adaptive...... to reproduce with a hidden Markov model. Capturing the time-varying behavior of the parameters also leads to improved one-step density forecasts. Finally, it is shown that the forecasting performance of the estimated models can be further improved using local smoothing to forecast the parameter variations....
A Method of Time-Varying Rayleigh Channel Tracking in MIMO Radio System
Institute of Scientific and Technical Information of China (English)
GONG Yan-fei; HE Zi-shu; HAN Chun-lin
2005-01-01
A method of MIMO channel tracking based on Kalman filter and MMSE-DFE is proposed. The Kalman filter tracks the time-varying channel by using the MMSE-DFE decision and the MMSE-DFE conducts the next decision by using the channel estimates produced by the Kalman filter. Polynomial fitting is used to bridge the gap between the channel estimates produced by the Kalman filter and those needed for the DFE decision. Computer simulation demonstrates that this method can track the MIMO time-varying channel effectively.
Modeling polar cap F-region patches using time varying convection
International Nuclear Information System (INIS)
Sojka, J.J.; Bowline, M.D.; Schunk, R.W.; Decker, D.T.; Valladares, C.E.; Sheehan, R.; Anderson, D.N.; Heelis, R.A.
1993-01-01
Here the authors present the results of computerized simulations of the polar cap regions which were able to model the formation of polar cap patches. They used the Utah State University Time-Dependent Ionospheric Model (TDIM) and the Phillips Laboratory (PL) F-region models in this work. By allowing a time varying magnetospheric electric field in the models, they were able to generate the patches. This time varying field generates a convection in the ionosphere. This convection is similar to convective changes observed in the ionosphere at times of southward pointing interplanetary magnetic field, due to changes in the B y component of the IMF
Mean Square Exponential Stability of Stochastic Switched System with Interval Time-Varying Delays
Directory of Open Access Journals (Sweden)
Manlika Rajchakit
2012-01-01
Full Text Available This paper is concerned with mean square exponential stability of switched stochastic system with interval time-varying delays. The time delay is any continuous function belonging to a given interval, but not necessary to be differentiable. By constructing a suitable augmented Lyapunov-Krasovskii functional combined with Leibniz-Newton’s formula, a switching rule for the mean square exponential stability of switched stochastic system with interval time-varying delays and new delay-dependent sufficient conditions for the mean square exponential stability of the switched stochastic system are first established in terms of LMIs. Numerical example is given to show the effectiveness of the obtained result.
Time-Varying Biased Proportional Guidance with Seeker’s Field-of-View Limit
Yang, Zhe; Wang, Hui; Lin, Defu
2016-01-01
Traditional guidance laws with range-to-go information or time-to-go estimation may not be implemented in passive homing missiles since passive seekers cannot measure relative range directly. A time-varying biased proportional guidance law, which only uses line-of-sight (LOS) rate and look angle information, is proposed to satisfy both impact angle constraint and seeker’s field-of-view (FOV) limit. In the proposed guidance law, two time-varying bias terms are applied to divide the trajectory ...
Robust stability for uncertain stochastic fuzzy BAM neural networks with time-varying delays
Syed Ali, M.; Balasubramaniam, P.
2008-07-01
In this Letter, by utilizing the Lyapunov functional and combining with the linear matrix inequality (LMI) approach, we analyze the global asymptotic stability of uncertain stochastic fuzzy Bidirectional Associative Memory (BAM) neural networks with time-varying delays which are represented by the Takagi-Sugeno (TS) fuzzy models. A new class of uncertain stochastic fuzzy BAM neural networks with time varying delays has been studied and sufficient conditions have been derived to obtain conservative result in stochastic settings. The developed results are more general than those reported in the earlier literatures. In addition, the numerical examples are provided to illustrate the applicability of the result using LMI toolbox in MATLAB.
Robust stability for uncertain stochastic fuzzy BAM neural networks with time-varying delays
International Nuclear Information System (INIS)
Syed Ali, M.; Balasubramaniam, P.
2008-01-01
In this Letter, by utilizing the Lyapunov functional and combining with the linear matrix inequality (LMI) approach, we analyze the global asymptotic stability of uncertain stochastic fuzzy Bidirectional Associative Memory (BAM) neural networks with time-varying delays which are represented by the Takagi-Sugeno (TS) fuzzy models. A new class of uncertain stochastic fuzzy BAM neural networks with time varying delays has been studied and sufficient conditions have been derived to obtain conservative result in stochastic settings. The developed results are more general than those reported in the earlier literatures. In addition, the numerical examples are provided to illustrate the applicability of the result using LMI toolbox in MATLAB
International Nuclear Information System (INIS)
Balasubramaniam, P.; Lakshmanan, S.; Manivannan, A.
2012-01-01
Highlights: ► Robust stability analysis for Markovian jumping interval neural networks is considered. ► Both linear fractional and interval uncertainties are considered. ► A new LKF is constructed with triple integral terms. ► MATLAB LMI control toolbox is used to validate theoretical results. ► Numerical examples are given to illustrate the effectiveness of the proposed method. - Abstract: This paper investigates robust stability analysis for Markovian jumping interval neural networks with discrete and distributed time-varying delays. The parameter uncertainties are assumed to be bounded in given compact sets. The delay is assumed to be time-varying and belong to a given interval, which means that the lower and upper bounds of interval time-varying delays are available. Based on the new Lyapunov–Krasovskii functional (LKF), some inequality techniques and stochastic stability theory, new delay-dependent stability criteria have been obtained in terms of linear matrix inequalities (LMIs). Finally, two numerical examples are given to illustrate the less conservative and effectiveness of our theoretical results.
Directory of Open Access Journals (Sweden)
Beatriz Vaz de Melo Mendes
2005-12-01
Full Text Available It is now widespread the use of Value-at-Risk (VaR as a canonical measure at risk. Most accurate VaR measures make use of some volatility model such as GARCH-type models. However, the pattern of volatility dynamic of a portfolio follows from the (univariate behavior of the risk assets, as well as from the type and strength of the associations among them. Moreover, the dependence structure among the components may change conditionally t past observations. Some papers have attempted to model this characteristic by assuming a multivariate GARCH model, or by considering the conditional correlation coefficient, or by incorporating some possibility for switches in regimes. In this paper we address this problem using time-varying copulas. Our modeling strategy allows for the margins to follow some FIGARCH type model while the copula dependence structure changes over time.
Directory of Open Access Journals (Sweden)
Chen Qin
2013-01-01
Full Text Available This paper considers the problems of the robust stability and robust H∞ controller design for time-varying delay switched systems using delta operator approach. Based on the average dwell time approach and delta operator theory, a sufficient condition of the robust exponential stability is presented by choosing an appropriate Lyapunov-Krasovskii functional candidate. Then, a state feedback controller is designed such that the resulting closed-loop system is exponentially stable with a guaranteed H∞ performance. The obtained results are formulated in the form of linear matrix inequalities (LMIs. Finally, a numerical example is provided to explicitly illustrate the feasibility and effectiveness of the proposed method.
Multivariable Wind Modeling in State Space
DEFF Research Database (Denmark)
Sichani, Mahdi Teimouri; Pedersen, B. J.
2011-01-01
Turbulence of the incoming wind field is of paramount importance to the dynamic response of wind turbines. Hence reliable stochastic models of the turbulence should be available from which time series can be generated for dynamic response and structural safety analysis. In the paper an empirical...... for the vector turbulence process incorporating its phase spectrum in one stage, and its results are compared with a conventional ARMA modeling method....... the succeeding state space and ARMA modeling of the turbulence rely on the positive definiteness of the cross-spectral density matrix, the problem with the non-positive definiteness of such matrices is at first addressed and suitable treatments regarding it are proposed. From the adjusted positive definite cross...
International Nuclear Information System (INIS)
Liu Bingwen
2008-01-01
In this Letter, we consider a class of delayed cellular neural networks with time-varying coefficients. By applying Lyapunov functional method and differential inequality techniques, we establish new results to ensure that all solutions of the networks converge exponentially to zero point
Frequency variations of gravity waves interacting with a time-varying tide
Energy Technology Data Exchange (ETDEWEB)
Huang, C.M.; Zhang, S.D.; Yi, F.; Huang, K.M.; Gan, Q.; Gong, Y. [Wuhan Univ., Hubei (China). School of Electronic Information; Ministry of Education, Wuhan, Hubei (China). Key Lab. of Geospace Environment and Geodesy; State Observatory for Atmospheric Remote Sensing, Wuhan, Hubei (China); Zhang, Y.H. [Nanjing Univ. of Information Science and Technology (China). College of Hydrometeorolgy
2013-11-01
Using a nonlinear, 2-D time-dependent numerical model, we simulate the propagation of gravity waves (GWs) in a time-varying tide. Our simulations show that when aGW packet propagates in a time-varying tidal-wind environment, not only its intrinsic frequency but also its ground-based frequency would change significantly. The tidal horizontal-wind acceleration dominates the GW frequency variation. Positive (negative) accelerations induce frequency increases (decreases) with time. More interestingly, tidal-wind acceleration near the critical layers always causes the GW frequency to increase, which may partially explain the observations that high-frequency GW components are more dominant in the middle and upper atmosphere than in the lower atmosphere. The combination of the increased ground-based frequency of propagating GWs in a time-varying tidal-wind field and the transient nature of the critical layer induced by a time-varying tidal zonal wind creates favorable conditions for GWs to penetrate their originally expected critical layers. Consequently, GWs have an impact on the background atmosphere at much higher altitudes than expected, which indicates that the dynamical effects of tidal-GW interactions are more complicated than usually taken into account by GW parameterizations in global models.
International Nuclear Information System (INIS)
Chen, S.-F.
2009-01-01
The asymptotic stability problem for discrete-time systems with time-varying delay subject to saturation nonlinearities is addressed in this paper. In terms of linear matrix inequalities (LMIs), a delay-dependent sufficient condition is derived to ensure the asymptotic stability. A numerical example is given to demonstrate the theoretical results.
Time-varying coefficient estimation in SURE models. Application to portfolio management
DEFF Research Database (Denmark)
Casas, Isabel; Ferreira, Eva; Orbe, Susan
This paper provides a detailed analysis of the asymptotic properties of a kernel estimator for a Seemingly Unrelated Regression Equations model with time-varying coefficients (tv-SURE) under very general conditions. Theoretical results together with a simulation study differentiates the cases...
Time-varying market integration and expected returns in emerging mrkets
de Jong, F.C.J.M.; de Roon, F.
2001-01-01
We use a simple model in which the expected returns in emerging markets depend on their systematicrisk as measured by their beta relative to the world portfolio as well as on the level ofintegration in that market. The level of integration is a time-varying variable that depends on themarket value
Time-Varying Networks of Inter-Ictal Discharging Reveal Epileptogenic Zone.
Zhang, Luyan; Liang, Yi; Li, Fali; Sun, Hongbin; Peng, Wenjing; Du, Peishan; Si, Yajing; Song, Limeng; Yu, Liang; Xu, Peng
2017-01-01
The neuronal synchronous discharging may cause an epileptic seizure. Currently, most of the studies conducted to investigate the mechanism of epilepsy are based on EEGs or functional magnetic resonance imaging (fMRI) recorded during the ictal discharging or the resting-state, and few studies have probed into the dynamic patterns during the inter-ictal discharging that are much easier to record in clinical applications. Here, we propose a time-varying network analysis based on adaptive directed transfer function to uncover the dynamic brain network patterns during the inter-ictal discharging. In addition, an algorithm based on the time-varying outflow of information derived from the network analysis is developed to detect the epileptogenic zone. The analysis performed revealed the time-varying network patterns during different stages of inter-ictal discharging; the epileptogenic zone was activated prior to the discharge onset then worked as the source to propagate the activity to other brain regions. Consistence between the epileptogenic zones detected by our proposed approach and the actual epileptogenic zones proved that time-varying network analysis could not only reveal the underlying neural mechanism of epilepsy, but also function as a useful tool in detecting the epileptogenic zone based on the EEGs in the inter-ictal discharging.
Bank loan components and the time-varying effects of monetary policy shocks
den Haan, W.J.; Sumner, S.W.; Yamashiro, G.M.
2011-01-01
The impulse response function (IRF) of an aggregate variable is time-varying if the IRFs of its components are different from each other and the relative magnitudes of the components are not constant—two conditions likely to be true in practice. We model the behaviour of loan components and document
Delay-dependent exponential stability of cellular neural networks with time-varying delays
International Nuclear Information System (INIS)
Zhang Qiang; Wei Xiaopeng; Xu Jin
2005-01-01
The global exponential stability of cellular neural networks (CNNs) with time-varying delays is analyzed. Two new sufficient conditions ensuring global exponential stability for delayed CNNs are obtained. The conditions presented here are related to the size of delay. The stability results improve the earlier publications. Two examples are given to demonstrate the effectiveness of the obtained results
Exponential stability of switched linear systems with time-varying delay
Directory of Open Access Journals (Sweden)
Satiracoo Pairote
2007-11-01
Full Text Available We use a Lyapunov-Krasovskii functional approach to establish the exponential stability of linear systems with time-varying delay. Our delay-dependent condition allows to compute simultaneously the two bounds that characterize the exponential stability rate of the solution. A simple procedure for constructing switching rule is also presented.
The time-varying shortest path problem with fuzzy transit costs and speedup
Directory of Open Access Journals (Sweden)
Rezapour Hassan
2016-08-01
Full Text Available In this paper, we focus on the time-varying shortest path problem, where the transit costs are fuzzy numbers. Moreover, we consider this problem in which the transit time can be shortened at a fuzzy speedup cost. Speedup may also be a better decision to find the shortest path from a source vertex to a specified vertex.
DEFF Research Database (Denmark)
Andersen, P.; Skjærbæk, P. S.; Kirkegaard, Poul Henning
with the smoothed quanties which have been obtained from SARCOF. The results show the usefulness of the technique for identification of a time varying civil engineering structure. It is found that all the techniques give reliable estiates of the frequencies of the two lowest modes and the first mode shape. Only...
Lyapunov Functions to Caputo Fractional Neural Networks with Time-Varying Delays
Directory of Open Access Journals (Sweden)
Ravi Agarwal
2018-05-01
Full Text Available One of the main properties of solutions of nonlinear Caputo fractional neural networks is stability and often the direct Lyapunov method is used to study stability properties (usually these Lyapunov functions do not depend on the time variable. In connection with the Lyapunov fractional method we present a brief overview of the most popular fractional order derivatives of Lyapunov functions among Caputo fractional delay differential equations. These derivatives are applied to various types of neural networks with variable coefficients and time-varying delays. We show that quadratic Lyapunov functions and their Caputo fractional derivatives are not applicable in some cases when one studies stability properties. Some sufficient conditions for stability of equilibrium of nonlinear Caputo fractional neural networks with time dependent transmission delays, time varying self-regulating parameters of all units and time varying functions of the connection between two neurons in the network are obtained. The cases of time varying Lipschitz coefficients as well as nonLipschitz activation functions are studied. We illustrate our theory on particular nonlinear Caputo fractional neural networks.
DEFF Research Database (Denmark)
Callot, Laurent; Kristensen, Johannes Tang
the monetary policy response to inflation and business cycle fluctuations in the US by estimating a parsimoniously time varying parameter Taylor rule.We document substantial changes in the policy response of the Fed in the 1970s and 1980s, and since 2007, but also document the stability of this response...
The necessity for a time local dimension in systems with time-varying attractors
DEFF Research Database (Denmark)
Særmark, Knud H; Ashkenazy, Y; Levitan, J
1997-01-01
We show that a simple non-linear system for ordinary differential equations may possess a time-varying attractor dimension. This indicates that it is infeasible to characterize EEG and MEG time series with a single time global dimension. We suggest another measure for the description of non...
Analysis of nonlinear systems with time varying inputs and its application to gain scheduling
Directory of Open Access Journals (Sweden)
J.-T. Lim
1996-01-01
Full Text Available An analytical framework for analysis of a class of nonlinear systems with time varying inputs is presented. It is shown that the trajectories of the transformed nonlinear systems are uniformly bounded with an ultimate bound under certain conditions shown in this paper. The result obtained is useful for applications, in particular, analysis and design of gain scheduling.
DEFF Research Database (Denmark)
Pittalà, Fabio; Msallem, Majdi; Hauske, Fabian N.
2012-01-01
We propose a non-weighted feed-forward equalization method with filter update by averaging channel estimations based on short CAZAC sequences. Three averaging methods are presented and tested by simulations in a time-varying 2×2 MIMO optical system....
Global exponential stability of BAM neural networks with time-varying delays and diffusion terms
International Nuclear Information System (INIS)
Wan Li; Zhou Qinghua
2007-01-01
The stability property of bidirectional associate memory (BAM) neural networks with time-varying delays and diffusion terms are considered. By using the method of variation parameter and inequality technique, the delay-independent sufficient conditions to guarantee the uniqueness and global exponential stability of the equilibrium solution of such networks are established
Global exponential stability of BAM neural networks with time-varying delays and diffusion terms
Wan, Li; Zhou, Qinghua
2007-11-01
The stability property of bidirectional associate memory (BAM) neural networks with time-varying delays and diffusion terms are considered. By using the method of variation parameter and inequality technique, the delay-independent sufficient conditions to guarantee the uniqueness and global exponential stability of the equilibrium solution of such networks are established.
Etienne, Xiaoli L.; Trujillo-Barrera, Andrés; Hoffman, Linwood A.
2017-01-01
We find distiller's dried grains with solubles (DDGS) prices to be positively correlated with both corn and soybean meal prices in the long run. However, neither corn nor soybean meal prices respond to deviations from this long-run relationship. We also identify strong time-varying dynamic
A new time-varying harmonic decomposition structure based on recursive hanning window
Martins, C.H.; Silva, L.R.M.; Duque, C.A.; Cerqueira, A.S.; Teixeira, E.C.; Ribeiro, P.F.
2012-01-01
Analysis of power quality phenomena under time-varying conditions has become an important subject as the complexity of the grid increases. As a consequence, several methods have been developed/applied also to study power quality parameters during transient conditions such as time-frequency methods.
Perfect fluid Bianchi Type-I cosmological models with time varying G ...
Indian Academy of Sciences (India)
Abstract. Bianchi Type-I cosmological models containing perfect fluid with time vary- ing G and Λ have been presented. The solutions obtained represent an expansion scalar θ bearing a constant ratio to the anisotropy in the direction of space-like unit vector λi. Of the two models obtained, one has negative vacuum energy ...
Time-varying Concurrent Risk of Extreme Droughts and Heatwaves in California
Sarhadi, A.; Diffenbaugh, N. S.; Ausin, M. C.
2016-12-01
Anthropogenic global warming has changed the nature and the risk of extreme climate phenomena such as droughts and heatwaves. The concurrent of these nature-changing climatic extremes may result in intensifying undesirable consequences in terms of human health and destructive effects in water resources. The present study assesses the risk of concurrent extreme droughts and heatwaves under dynamic nonstationary conditions arising from climate change in California. For doing so, a generalized fully Bayesian time-varying multivariate risk framework is proposed evolving through time under dynamic human-induced environment. In this methodology, an extreme, Bayesian, dynamic copula (Gumbel) is developed to model the time-varying dependence structure between the two different climate extremes. The time-varying extreme marginals are previously modeled using a Generalized Extreme Value (GEV) distribution. Bayesian Markov Chain Monte Carlo (MCMC) inference is integrated to estimate parameters of the nonstationary marginals and copula using a Gibbs sampling method. Modelled marginals and copula are then used to develop a fully Bayesian, time-varying joint return period concept for the estimation of concurrent risk. Here we argue that climate change has increased the chance of concurrent droughts and heatwaves over decades in California. It is also demonstrated that a time-varying multivariate perspective should be incorporated to assess realistic concurrent risk of the extremes for water resources planning and management in a changing climate in this area. The proposed generalized methodology can be applied for other stochastic nature-changing compound climate extremes that are under the influence of climate change.
An estimation of U.S. gasoline demand. A smooth time-varying cointegration approach
International Nuclear Information System (INIS)
Park, Sung Y.; Zhao, Guochang
2010-01-01
In this paper the U.S. gasoline demand from 1976 to 2008 is estimated using a time-varying cointegrating regression. We find that price elasticity increased rapidly during the late 1970s and then decreased until 1987. After a relatively small-scaled 'increase-decrease' cycle from 1987 to 2000, the price elasticity rose again after 2000. The time-varying change of the elasticities may be explained by the proportion of gasoline consumption to income and fluctuation of the degree of necessity. The result of the error correction model shows that a deviation from a long-run equilibrium is corrected quickly, and the welfare analysis illustrates there may be a gain by shifting the tax scheme from income tax to gasoline tax. (author)
Achieving Synchronization in Arrays of Coupled Differential Systems with Time-Varying Couplings
Directory of Open Access Journals (Sweden)
Xinlei Yi
2013-01-01
Full Text Available We study complete synchronization of the complex dynamical networks described by linearly coupled ordinary differential equation systems (LCODEs. Here, the coupling is timevarying in both network structure and reaction dynamics. Inspired by our previous paper (Lu et al. (2007-2008, the extended Hajnal diameter is introduced and used to measure the synchronization in a general differential system. Then we find that the Hajnal diameter of the linear system induced by the time-varying coupling matrix and the largest Lyapunov exponent of the synchronized system play the key roles in synchronization analysis of LCODEs with identity inner coupling matrix. As an application, we obtain a general sufficient condition guaranteeing directed time-varying graph to reach consensus. Example with numerical simulation is provided to show the effectiveness of the theoretical results.
Modelling Conditional and Unconditional Heteroskedasticity with Smoothly Time-Varying Structure
DEFF Research Database (Denmark)
Amado, Christina; Teräsvirta, Timo
multiplier type misspecification tests. Finite-sample properties of these procedures and tests are examined by simulation. An empirical application to daily stock returns and another one to daily exchange rate returns illustrate the functioning and properties of our modelling strategy in practice......In this paper, we propose two parametric alternatives to the standard GARCH model. They allow the conditional variance to have a smooth time-varying structure of either ad- ditive or multiplicative type. The suggested parameterizations describe both nonlinearity and structural change...... in the conditional and unconditional variances where the transition between regimes over time is smooth. A modelling strategy for these new time-varying parameter GARCH models is developed. It relies on a sequence of Lagrange multiplier tests, and the adequacy of the estimated models is investigated by Lagrange...
Estimation of time-varying reactivity by the H∞ optimal linear filter
International Nuclear Information System (INIS)
Suzuki, Katsuo; Shimazaki, Junya; Watanabe, Koiti
1995-01-01
The problem of estimating the time-varying net reactivity from flux measurements is solved for a point reactor kinetics model using a linear filtering technique in an H ∞ settings. In order to sue this technique, an appropriate dynamical model of the reactivity is constructed that can be embedded into the reactor model as one of its variables. A filter, which minimizes the H ∞ norm of the estimation error power spectrum, operates on neutron density measurements corrupted by noise and provides an estimate of the dynamic net reactivity. Computer simulations are performed to reveal the basic characteristics of the H ∞ optimal filter. The results of the simulation indicate that the filter can be used to determine the time-varying reactivity from neutron density measurements that have been corrupted by noise
Structural nested mean models for assessing time-varying effect moderation.
Almirall, Daniel; Ten Have, Thomas; Murphy, Susan A
2010-03-01
This article considers the problem of assessing causal effect moderation in longitudinal settings in which treatment (or exposure) is time varying and so are the covariates said to moderate its effect. Intermediate causal effects that describe time-varying causal effects of treatment conditional on past covariate history are introduced and considered as part of Robins' structural nested mean model. Two estimators of the intermediate causal effects, and their standard errors, are presented and discussed: The first is a proposed two-stage regression estimator. The second is Robins' G-estimator. The results of a small simulation study that begins to shed light on the small versus large sample performance of the estimators, and on the bias-variance trade-off between the two estimators are presented. The methodology is illustrated using longitudinal data from a depression study.
Directory of Open Access Journals (Sweden)
Cheng Liu
2010-01-01
Full Text Available Time-varying coherence is a powerful tool for revealing functional dynamics between different regions in the brain. In this paper, we address ways of estimating evolutionary spectrum and coherence using the general Cohen's class distributions. We show that the intimate connection between the Cohen's class-based spectra and the evolutionary spectra defined on the locally stationary time series can be linked by the kernel functions of the Cohen's class distributions. The time-varying spectra and coherence are further generalized with the Stockwell transform, a multiscale time-frequency representation. The Stockwell measures can be studied in the framework of the Cohen's class distributions with a generalized frequency-dependent kernel function. A magnetoencephalography study using the Stockwell coherence reveals an interesting temporal interaction between contralateral and ipsilateral motor cortices under the multisource interference task.
An estimation of U.S. gasoline demand. A smooth time-varying cointegration approach
Energy Technology Data Exchange (ETDEWEB)
Park, Sung Y. [Department of Economics, University of Illinois, Urbana, IL 61801 (United States); The Wang Yanan Institute for Studies in Economics, Xiamen University, Xiamen, Fujian 361005 (China); Zhao, Guochang [Research School of Economics, College of Business and Economics, The Australian National University, Canberra, ACT 2601 (Australia)
2010-01-15
In this paper the U.S. gasoline demand from 1976 to 2008 is estimated using a time-varying cointegrating regression. We find that price elasticity increased rapidly during the late 1970s and then decreased until 1987. After a relatively small-scaled 'increase-decrease' cycle from 1987 to 2000, the price elasticity rose again after 2000. The time-varying change of the elasticities may be explained by the proportion of gasoline consumption to income and fluctuation of the degree of necessity. The result of the error correction model shows that a deviation from a long-run equilibrium is corrected quickly, and the welfare analysis illustrates there may be a gain by shifting the tax scheme from income tax to gasoline tax. (author)
Vadivel, P.; Sakthivel, R.; Mathiyalagan, K.; Arunkumar, A.
2013-09-01
This paper addresses the issue of robust state estimation for a class of fuzzy bidirectional associative memory (BAM) neural networks with time-varying delays and parameter uncertainties. By constructing the Lyapunov-Krasovskii functional, which contains the triple-integral term and using the free-weighting matrix technique, a set of sufficient conditions are derived in terms of linear matrix inequalities (LMIs) to estimate the neuron states through available output measurements such that the dynamics of the estimation error system is robustly asymptotically stable. In particular, we consider a generalized activation function in which the traditional assumptions on the boundedness, monotony and differentiability of the activation functions are removed. More precisely, the design of the state estimator for such BAM neural networks can be obtained by solving some LMIs, which are dependent on the size of the time derivative of the time-varying delays. Finally, a numerical example with simulation result is given to illustrate the obtained theoretical results.
Cao, Jinde; Song, Qiankun
2006-07-01
In this paper, the exponential stability problem is investigated for a class of Cohen-Grossberg-type bidirectional associative memory neural networks with time-varying delays. By using the analysis method, inequality technique and the properties of an M-matrix, several novel sufficient conditions ensuring the existence, uniqueness and global exponential stability of the equilibrium point are derived. Moreover, the exponential convergence rate is estimated. The obtained results are less restrictive than those given in the earlier literature, and the boundedness and differentiability of the activation functions and differentiability of the time-varying delays are removed. Two examples with their simulations are given to show the effectiveness of the obtained results.
International Nuclear Information System (INIS)
Vadivel, P; Sakthivel, R; Mathiyalagan, K; Arunkumar, A
2013-01-01
This paper addresses the issue of robust state estimation for a class of fuzzy bidirectional associative memory (BAM) neural networks with time-varying delays and parameter uncertainties. By constructing the Lyapunov–Krasovskii functional, which contains the triple-integral term and using the free-weighting matrix technique, a set of sufficient conditions are derived in terms of linear matrix inequalities (LMIs) to estimate the neuron states through available output measurements such that the dynamics of the estimation error system is robustly asymptotically stable. In particular, we consider a generalized activation function in which the traditional assumptions on the boundedness, monotony and differentiability of the activation functions are removed. More precisely, the design of the state estimator for such BAM neural networks can be obtained by solving some LMIs, which are dependent on the size of the time derivative of the time-varying delays. Finally, a numerical example with simulation result is given to illustrate the obtained theoretical results. (paper)
Applications, dosimetry and biological interactions of static and time-varying magnetic fields
International Nuclear Information System (INIS)
Tenforde, T.S.
1988-08-01
The primary topics of this presentation include: (1) the applications of magnetic fields in research, industry, and medical technologies; (2) mechanisms of interaction of static and time-varying magnetic fields with living systems; (3) human health effects of exposure to static and time-varying magnetic fields in occupational, medical, and residential settings; and (4) recent advances in the dosimetry of extremely-low-frequency electromagnetic fields. The discussion of these topics is centered about two issues of considerable contemporary interest: (1) potential health effects of the fields used in magnetic resonance imaging and in vivo spectroscopy, and (2) the controversial issue of whether exposure to extremely-low-frequency (ELF) electromagnetic fields in the home and workplace leads to an elevated risk of cancer. 11 refs
AN ALTERNATIVE METHOD FOR THE DESIGN OF TIME-VARYING FEEDBACK CONTROL SYSTEMS
Directory of Open Access Journals (Sweden)
CARLOS GÓMEZ
2012-01-01
Full Text Available El presente artículo propone utilizar una estrategia numérica basada en un algoritmo de optimización metaheurístico de enjambre de partículas discreto, para resolver un problema de diseño de compensadores en sistemas retroalimentados variantes en el tiempo. Se demuestra inicialmente como se puede convertir el problema de solución del sistema de ecuaciones Diofánticas lineales resultante en la solución de un problema de optimización. Se desarrollan ejemplos demostrativos que ilustran la idea principal. Se lograron soluciones de excelente calidad en cuanto a precisión y exactitud en tiempos de computación relativamente breves.
Estimation and Properties of a Time-Varying GQARCH(1,1-M Model
Directory of Open Access Journals (Sweden)
Sofia Anyfantaki
2011-01-01
analysis of these models computationally infeasible. This paper outlines the issues and suggests to employ a Markov chain Monte Carlo algorithm which allows the calculation of a classical estimator via the simulated EM algorithm or a simulated Bayesian solution in only ( computational operations, where is the sample size. Furthermore, the theoretical dynamic properties of a time-varying GQARCH(1,1-M are derived. We discuss them and apply the suggested Bayesian estimation to three major stock markets.
Testing for Change in Mean of Independent Multivariate Observations with Time Varying Covariance
Directory of Open Access Journals (Sweden)
Mohamed Boutahar
2012-01-01
Full Text Available We consider a nonparametric CUSUM test for change in the mean of multivariate time series with time varying covariance. We prove that under the null, the test statistic has a Kolmogorov limiting distribution. The asymptotic consistency of the test against a large class of alternatives which contains abrupt, smooth and continuous changes is established. We also perform a simulation study to analyze the size distortion and the power of the proposed test.
Unbiasedness and time varying risk premia in the crude oil futures market
International Nuclear Information System (INIS)
Moosa, I.A.; Al-Loughani, N.E.
1994-01-01
This paper presents some empirical evidence on market efficiency and unbiasedness in the crude oil futures market and some related issues. On the basis of monthly observations on spot and futures prices of the West Texas Intermediate (WTI) crude oil, several tests are carried out on the relevant hypotheses. The evidence suggests that futures prices are neither unbiased nor efficient forecasters of spot prices. Furthermore, a GARCH-M(1,1) model reveals the existence of a time varying risk premium. (author)
International Nuclear Information System (INIS)
Tu Fenghua; Liao Xiaofeng
2005-01-01
We study the problem of estimating the exponential convergence rate and exponential stability for neural networks with time-varying delay. Some criteria for exponential stability are derived by using the linear matrix inequality (LMI) approach. They are less conservative than the existing ones. Some analytical methods are employed to investigate the bounds on the interconnection matrix and activation functions so that the systems are exponentially stable
Improving Delay-Range-Dependent Stability Condition for Systems with Interval Time-Varying Delay
Directory of Open Access Journals (Sweden)
Wei Qian
2013-01-01
Full Text Available This paper discusses the delay-range-dependent stability for systems with interval time-varying delay. Through defining the new Lyapunov-Krasovskii functional and estimating the derivative of the LKF by introducing new vectors, using free matrices and reciprocally convex approach, the new delay-range-dependent stability conditions are obtained. Two well-known examples are given to illustrate the less conservatism of the proposed theoretical results.
Delay-Dependent Asymptotic Stability of Cohen-Grossberg Models with Multiple Time-Varying Delays
Directory of Open Access Journals (Sweden)
Xiaofeng Liao
2007-01-01
Full Text Available Dynamical behavior of a class of Cohen-Grossberg models with multiple time-varying delays is studied in detail. Sufficient delay-dependent criteria to ensure local and global asymptotic stabilities of the equilibrium of this network are derived by constructing suitable Lyapunov functionals. The obtained conditions are shown to be less conservative and restrictive than those reported in the known literature. Some numerical examples are included to demonstrate our results.
On global exponential stability of high-order neural networks with time-varying delays
International Nuclear Information System (INIS)
Zhang Baoyong; Xu Shengyuan; Li Yongmin; Chu Yuming
2007-01-01
This Letter investigates the problem of stability analysis for a class of high-order neural networks with time-varying delays. The delays are bounded but not necessarily differentiable. Based on the Lyapunov stability theory together with the linear matrix inequality (LMI) approach and the use of Halanay inequality, sufficient conditions guaranteeing the global exponential stability of the equilibrium point of the considered neural networks are presented. Two numerical examples are provided to demonstrate the effectiveness of the proposed stability criteria
On global exponential stability of high-order neural networks with time-varying delays
Energy Technology Data Exchange (ETDEWEB)
Zhang Baoyong [School of Automation, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu (China)]. E-mail: baoyongzhang@yahoo.com.cn; Xu Shengyuan [School of Automation, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu (China)]. E-mail: syxu02@yahoo.com.cn; Li Yongmin [School of Automation, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu (China) and Department of Mathematics, Huzhou Teacher' s College, Huzhou 313000, Zhejiang (China)]. E-mail: ymlwww@163.com; Chu Yuming [Department of Mathematics, Huzhou Teacher' s College, Huzhou 313000, Zhejiang (China)
2007-06-18
This Letter investigates the problem of stability analysis for a class of high-order neural networks with time-varying delays. The delays are bounded but not necessarily differentiable. Based on the Lyapunov stability theory together with the linear matrix inequality (LMI) approach and the use of Halanay inequality, sufficient conditions guaranteeing the global exponential stability of the equilibrium point of the considered neural networks are presented. Two numerical examples are provided to demonstrate the effectiveness of the proposed stability criteria.
Magnetohydrodynamic flow of a rarefied gas near a time-varying accelerated plate
International Nuclear Information System (INIS)
Mishra, S.P.; Mohapatra, Priti
1975-01-01
The flow of an electrically conducting rarefied gas due to the time-varying motion of an infinite flat plate has been studied in the presence of a uniform magnetic field. The magnetic lines of force are taken to be fixed relative to the fluid. General expressions of the velocity and the skin friction have been compared by means of some qraphs and tables. (author)
A note on "Multicriteria adaptive paths in stochastic, time-varying networks"
DEFF Research Database (Denmark)
Pretolani, Daniele; Nielsen, Lars Relund; Andersen, Kim Allan
In a recent paper, Opasanon and Miller-Hooks study multicriteria adaptive paths in stochastic time-varying networks. They propose a label correcting algorithm for finding the full set of efficient strategies. In this note we show that their algorithm is not correct, since it is based on a property...... that does not hold in general. Opasanon and Miller-Hooks also propose an algorithm for solving a parametric problem. We give a simplified algorithm which is linear in the input size....
International Nuclear Information System (INIS)
Liang Jinling; Cao Jinde
2003-01-01
Employing general Halanay inequality, we analyze the global exponential stability of a class of reaction-diffusion recurrent neural networks with time-varying delays. Several new sufficient conditions are obtained to ensure existence, uniqueness and global exponential stability of the equilibrium point of delayed reaction-diffusion recurrent neural networks. The results extend and improve the earlier publications. In addition, an example is given to show the effectiveness of the obtained result
Uwate, Y; Nishio, Y; Stoop, R
2009-01-01
We explore the synchronization and switching behavior of a system of two identical van der Pol oscillators coupled by a stochastically timevarying resistor. Triggered by the time-varying resistor, the system of oscillators switches between synchronized and anti-synchronized behavior. We find that the preference of the synchronized/antisynchronized state is determined by the ratio of the probabilities of the two resistor states. The length of the phases of maintained resistor states, however, ...
International Nuclear Information System (INIS)
Park, Ju H.; Lee, S.M.; Kwon, O.M.
2009-01-01
For bidirectional associate memory neural networks with time-varying delays, the problems of determining the exponential stability and estimating the exponential convergence rate are investigated by employing the Lyapunov functional method and linear matrix inequality (LMI) technique. A novel criterion for the stability, which give information on the delay-dependent property, is derived. A numerical example is given to demonstrate the effectiveness of the obtained results.
Passivity of memristive BAM neural networks with leakage and additive time-varying delays
Wang, Weiping; Wang, Meiqi; Luo, Xiong; Li, Lixiang; Zhao, Wenbing; Liu, Linlin; Ping, Yuan
2018-02-01
This paper investigates the passivity of memristive bidirectional associate memory neural networks (MBAMNNs) with leakage and additive time-varying delays. Based on some useful inequalities and appropriate Lyapunov-Krasovskii functionals (LKFs), several delay-dependent conditions for passivity performance are obtained in linear matrix inequalities (LMIs). Moreover, the leakage delays as well as additive delays are considered separately. Finally, numerical simulations are provided to demonstrate the feasibility of the theoretical results.
Time-Varying Dynamic Properties of Offshore Wind Turbines Evaluated by Modal Testing
DEFF Research Database (Denmark)
Damgaard, Mads; Andersen, J. K. F.; Ibsen, Lars Bo
2014-01-01
resonance of the wind turbine structure. In this paper, free vibration tests and a numerical Winkler type approach are used to evaluate the dynamic properties of a total of 30 offshore wind turbines located in the North Sea. Analyses indicate time-varying eigenfrequencies and damping ratios of the lowest...... structural eigenmode. Isolating the oscillation oil damper performance, moveable seabed conditions may lead to the observed time dependency....
International Nuclear Information System (INIS)
Lou, X.; Cui, B.
2008-01-01
In this paper we consider the problem of exponential stability for recurrent neural networks with multiple time varying delays and reaction-diffusion terms. The activation functions are supposed to be bounded and globally Lipschitz continuous. By means of Lyapunov functional, sufficient conditions are derived, which guarantee global exponential stability of the delayed neural network. Finally, a numerical example is given to show the correctness of our analysis. (author)
Specification and testing of Multiplicative Time-Varying GARCH models with applications
DEFF Research Database (Denmark)
Amado, Cristina; Teräsvirta, Timo
2017-01-01
In this article, we develop a specification technique for building multiplicative time-varying GARCH models of Amado and Teräsvirta (2008, 2013). The variance is decomposed into an unconditional and a conditional component such that the unconditional variance component is allowed to evolve smooth...... is illustrated in practice with two real examples: an empirical application to daily exchange rate returns and another one to daily coffee futures returns....
Decomposition of gene expression state space trajectories.
Directory of Open Access Journals (Sweden)
Jessica C Mar
2009-12-01
Full Text Available Representing and analyzing complex networks remains a roadblock to creating dynamic network models of biological processes and pathways. The study of cell fate transitions can reveal much about the transcriptional regulatory programs that underlie these phenotypic changes and give rise to the coordinated patterns in expression changes that we observe. The application of gene expression state space trajectories to capture cell fate transitions at the genome-wide level is one approach currently used in the literature. In this paper, we analyze the gene expression dataset of Huang et al. (2005 which follows the differentiation of promyelocytes into neutrophil-like cells in the presence of inducers dimethyl sulfoxide and all-trans retinoic acid. Huang et al. (2005 build on the work of Kauffman (2004 who raised the attractor hypothesis, stating that cells exist in an expression landscape and their expression trajectories converge towards attractive sites in this landscape. We propose an alternative interpretation that explains this convergent behavior by recognizing that there are two types of processes participating in these cell fate transitions-core processes that include the specific differentiation pathways of promyelocytes to neutrophils, and transient processes that capture those pathways and responses specific to the inducer. Using functional enrichment analyses, specific biological examples and an analysis of the trajectories and their core and transient components we provide a validation of our hypothesis using the Huang et al. (2005 dataset.
Volumes of conditioned bipartite state spaces
International Nuclear Information System (INIS)
Milz, Simon; Strunz, Walter T
2015-01-01
We analyze the metric properties of conditioned quantum state spaces M η (n×m) . These spaces are the convex sets of nm×nm density matrices that, when partially traced over m degrees of freedom, respectively yield the given n × n density matrix η. For the case n = 2, the volume of M η (2×m) equipped with the Hilbert–Schmidt measure can be conjectured to be a simple polynomial of the radius of η in the Bloch-ball. Remarkably, for m=2,3 we find numerically that the probability p sep (2×m) (η) to find a separable state in M η (2×m) is independent of η (except for η pure). For m>3, the same holds for p PosPart (2×m) (η), the probability to find a state with a positive partial transpose in M η (2×m) . These results are proven analytically for the case of the family of 4 × 4 X-states, and thoroughly numerically investigated for the general case. The important implications of these findings for the clarification of open problems in quantum theory are pointed out and discussed. (paper)
Almirall, Daniel; Griffin, Beth Ann; McCaffrey, Daniel F.; Ramchand, Rajeev; Yuen, Robert A.; Murphy, Susan A.
2014-01-01
This article considers the problem of examining time-varying causal effect moderation using observational, longitudinal data in which treatment, candidate moderators, and possible confounders are time varying. The structural nested mean model (SNMM) is used to specify the moderated time-varying causal effects of interest in a conditional mean model for a continuous response given time-varying treatments and moderators. We present an easy-to-use estimator of the SNMM that combines an existing regression-with-residuals (RR) approach with an inverse-probability-of-treatment weighting (IPTW) strategy. The RR approach has been shown to identify the moderated time-varying causal effects if the time-varying moderators are also the sole time-varying confounders. The proposed IPTW+RR approach provides estimators of the moderated time-varying causal effects in the SNMM in the presence of an additional, auxiliary set of known and measured time-varying confounders. We use a small simulation experiment to compare IPTW+RR versus the traditional regression approach and to compare small and large sample properties of asymptotic versus bootstrap estimators of the standard errors for the IPTW+RR approach. This article clarifies the distinction between time-varying moderators and time-varying confounders. We illustrate the methodology in a case study to assess if time-varying substance use moderates treatment effects on future substance use. PMID:23873437
Time-varying economic dominance in financial markets: A bistable dynamics approach
He, Xue-Zhong; Li, Kai; Wang, Chuncheng
2018-05-01
By developing a continuous-time heterogeneous agent financial market model of multi-assets traded by fundamental and momentum investors, we provide a potential mechanism for generating time-varying dominance between fundamental and non-fundamental in financial markets. We show that investment constraints lead to the coexistence of a locally stable fundamental steady state and a locally stable limit cycle around the fundamental, characterized by a Bautin bifurcation. This provides a mechanism for market prices to switch stochastically between the two persistent but very different market states, leading to the coexistence and time-varying dominance of seemingly controversial efficient market and price momentum over different time periods. The model also generates other financial market stylized facts, such as spillover effects in both momentum and volatility, market booms, crashes, and correlation reduction due to cross-sectional momentum trading. Empirical evidence based on the U.S. market supports the main findings. The mechanism developed in this paper can be used to characterize time-varying economic dominance in economics and finance in general.
Yoon, Heonjun; Kim, Miso; Park, Choon-Su; Youn, Byeng D.
2018-01-01
Piezoelectric vibration energy harvesting (PVEH) has received much attention as a potential solution that could ultimately realize self-powered wireless sensor networks. Since most ambient vibrations in nature are inherently random and nonstationary, the output performances of PVEH devices also randomly change with time. However, little attention has been paid to investigating the randomly time-varying electroelastic behaviors of PVEH systems both analytically and experimentally. The objective of this study is thus to make a step forward towards a deep understanding of the time-varying performances of PVEH devices under nonstationary random vibrations. Two typical cases of nonstationary random vibration signals are considered: (1) randomly-varying amplitude (amplitude modulation; AM) and (2) randomly-varying amplitude with randomly-varying instantaneous frequency (amplitude and frequency modulation; AM-FM). In both cases, this study pursues well-balanced correlations of analytical predictions and experimental observations to deduce the relationships between the time-varying output performances of the PVEH device and two primary input parameters, such as a central frequency and an external electrical resistance. We introduce three correlation metrics to quantitatively compare analytical prediction and experimental observation, including the normalized root mean square error, the correlation coefficient, and the weighted integrated factor. Analytical predictions are in an excellent agreement with experimental observations both mechanically and electrically. This study provides insightful guidelines for designing PVEH devices to reliably generate electric power under nonstationary random vibrations.
A Tentative Application Of Morphological Filters To Time-Varying Images
Billard, D.; Poquillon, B.
1989-03-01
In this paper, morphological filters, which are commonly used to process either 2D or multidimensional static images, are generalized to the analysis of time-varying image sequence. The introduction of the time dimension induces then interesting prop-erties when designing such spatio-temporal morphological filters. In particular, the specification of spatio-temporal structuring ele-ments (equivalent to time-varying spatial structuring elements) can be adjusted according to the temporal variations of the image sequences to be processed : this allows to derive specific morphological transforms to perform noise filtering or moving objects discrimination on dynamic images viewed by a non-stationary sensor. First, a brief introduction to the basic principles underlying morphological filters will be given. Then, a straightforward gener-alization of these principles to time-varying images will be pro-posed. This will lead us to define spatio-temporal opening and closing and to introduce some of their possible applications to process dynamic images. At last, preliminary results obtained us-ing a natural forward looking infrared (FUR) image sequence are presented.
International Nuclear Information System (INIS)
Lin, Chang Sheng; Tseng, Tse Chuan
2014-01-01
Modal Identification from response data only is studied for structural systems under nonstationary ambient vibration. The topic of this paper is the estimation of modal parameters from nonstationary ambient vibration data by applying the random decrement algorithm with time-varying threshold level. In the conventional random decrement algorithm, the threshold level for evaluating random dec signatures is defined as the standard deviation value of response data of the reference channel. The distortion of random dec signatures may be, however, induced by the error involved in noise from the original response data in practice. To improve the accuracy of identification, a modification of the sampling procedure in random decrement algorithm is proposed for modal-parameter identification from the nonstationary ambient response data. The time-varying threshold level is presented for the acquisition of available sample time history to perform averaging analysis, and defined as the temporal root-mean-square function of structural response, which can appropriately describe a wide variety of nonstationary behaviors in reality, such as the time-varying amplitude (variance) of a nonstationary process in a seismic record. Numerical simulations confirm the validity and robustness of the proposed modal-identification method from nonstationary ambient response data under noisy conditions.
A New Time-varying Concept of Risk in a Changing Climate.
Sarhadi, Ali; Ausín, María Concepción; Wiper, Michael P
2016-10-20
In a changing climate arising from anthropogenic global warming, the nature of extreme climatic events is changing over time. Existing analytical stationary-based risk methods, however, assume multi-dimensional extreme climate phenomena will not significantly vary over time. To strengthen the reliability of infrastructure designs and the management of water systems in the changing environment, multidimensional stationary risk studies should be replaced with a new adaptive perspective. The results of a comparison indicate that current multi-dimensional stationary risk frameworks are no longer applicable to projecting the changing behaviour of multi-dimensional extreme climate processes. Using static stationary-based multivariate risk methods may lead to undesirable consequences in designing water system infrastructures. The static stationary concept should be replaced with a flexible multi-dimensional time-varying risk framework. The present study introduces a new multi-dimensional time-varying risk concept to be incorporated in updating infrastructure design strategies under changing environments arising from human-induced climate change. The proposed generalized time-varying risk concept can be applied for all stochastic multi-dimensional systems that are under the influence of changing environments.
A New Time-varying Concept of Risk in a Changing Climate
Sarhadi, Ali; Ausín, María Concepción; Wiper, Michael P.
2016-10-01
In a changing climate arising from anthropogenic global warming, the nature of extreme climatic events is changing over time. Existing analytical stationary-based risk methods, however, assume multi-dimensional extreme climate phenomena will not significantly vary over time. To strengthen the reliability of infrastructure designs and the management of water systems in the changing environment, multidimensional stationary risk studies should be replaced with a new adaptive perspective. The results of a comparison indicate that current multi-dimensional stationary risk frameworks are no longer applicable to projecting the changing behaviour of multi-dimensional extreme climate processes. Using static stationary-based multivariate risk methods may lead to undesirable consequences in designing water system infrastructures. The static stationary concept should be replaced with a flexible multi-dimensional time-varying risk framework. The present study introduces a new multi-dimensional time-varying risk concept to be incorporated in updating infrastructure design strategies under changing environments arising from human-induced climate change. The proposed generalized time-varying risk concept can be applied for all stochastic multi-dimensional systems that are under the influence of changing environments.
Two-dimensional phononic crystals with time-varying properties: a multiple scattering analysis
International Nuclear Information System (INIS)
Wright, D W; Cobbold, R S C
2010-01-01
Multiple scattering theory is a versatile two- and three-dimensional method for characterizing the acoustic wave transmission through many scatterers. It provides analytical solutions to wave propagation in scattering structures, and its computational complexity grows logarithmically with the number of scatterers. In this paper we show how the 2D method can be adapted to include the effects of time-varying material parameters. Specifically, a new T-matrix is defined to include the effects of frequency modulation that occurs in time-varying phononic crystals. Solutions were verified against finite difference time domain (FDTD) simulations and showed excellent agreement. This new method enables fast characterization of time-varying phononic crystals without the need to resort to lengthy FDTD simulations. Also, the method of combining T-matrices to form the T-supermatrix remains unchanged provided that the new matrix definitions are used. The method is quite compatible with existing implementations of multiple scattering theory and could be readily extended to three-dimensional multiple scattering theory
A behavioral asset pricing model with a time-varying second moment
International Nuclear Information System (INIS)
Chiarella, Carl; He Xuezhong; Wang, Duo
2006-01-01
We develop a simple behavioral asset pricing model with fundamentalists and chartists in order to study price behavior in financial markets when chartists estimate both conditional mean and variance by using a weighted averaging process. Through a stability, bifurcation, and normal form analysis, the market impact of the weighting process and time-varying second moment are examined. It is found that the fundamental price becomes stable (unstable) when the activities from both types of traders are balanced (unbalanced). When the fundamental price becomes unstable, the weighting process leads to different price dynamics, depending on whether the chartists act as either trend followers or contrarians. It is also found that a time-varying second moment of the chartists does not change the stability of the fundamental price, but it does influence the stability of the bifurcations. The bifurcation becomes stable (unstable) when the chartists are more (less) concerned about the market risk characterized by the time-varying second moment. Different routes to complicated price dynamics are also observed. The analysis provides an analytical foundation for the statistical analysis of the corresponding stochastic version of this type of behavioral model
The Scalp Time-Varying Networks of N170: Reference, Latency, and Information Flow
Directory of Open Access Journals (Sweden)
Yin Tian
2018-04-01
Full Text Available Using the scalp time-varying network method, the present study is the first to investigate the temporal influence of the reference on N170, a negative event-related potential component (ERP appeared about 170 ms that is elicited by facial recognition, in the network levels. Two kinds of scalp electroencephalogram (EEG references, namely, AR (average of all recording channels and reference electrode standardization technique (REST, were comparatively investigated via the time-varying processing of N170. Results showed that the latency and amplitude of N170 were significantly different between REST and AR, with the former being earlier and smaller. In particular, the information flow from right temporal-parietal P8 to left P7 in the time-varying network was earlier in REST than that in AR, and this phenomenon was reproduced by simulation, in which the performance of REST was closer to the true case at source level. These findings indicate that reference plays a crucial role in ERP data interpretation, and importantly, the newly developed approximate zero-reference REST would be a superior choice for precise evaluation of the scalp spatio-temporal changes relating to various cognitive events.
Hu, Yong; Kwok, Jerry Weilun; Tse, Jessica Yuk-Hang; Luk, Keith Dip-Kei
2014-06-01
Nonsurgical rehabilitation therapy is a commonly used strategy to treat chronic low back pain (LBP). The selection of the most appropriate therapeutic options is still a big challenge in clinical practices. Surface electromyography (sEMG) topography has been proposed to be an objective assessment of LBP rehabilitation. The quantitative analysis of dynamic sEMG would provide an objective tool of prognosis for LBP rehabilitation. To evaluate the prognostic value of quantitative sEMG topographic analysis and to verify the accuracy of the performance of proposed time-varying topographic parameters for identifying the patients who have better response toward the rehabilitation program. A retrospective study of consecutive patients. Thirty-eight patients with chronic nonspecific LBP and 43 healthy subjects. The accuracy of the time-varying quantitative sEMG topographic analysis for monitoring LBP rehabilitation progress was determined by calculating the corresponding receiver-operating characteristic (ROC) curves. Physiologic measure was the sEMG during lumbar flexion and extension. Patients who suffered from chronic nonspecific LBP without the history of back surgery and any medical conditions causing acute exacerbation of LBP during the clinical test were enlisted to perform the clinical test during the 12-week physiotherapy (PT) treatment. Low back pain patients were classified into two groups: "responding" and "nonresponding" based on the clinical assessment. The responding group referred to the LBP patients who began to recover after the PT treatment, whereas the nonresponding group referred to some LBP patients who did not recover or got worse after the treatment. The results of the time-varying analysis in the responding group were compared with those in the nonresponding group. In addition, the accuracy of the analysis was analyzed through ROC curves. The time-varying analysis showed discrepancies in the root-mean-square difference (RMSD) parameters between the
Rapid State Space Modeling Tool for Rectangular Wing Aeroservoelastic Studies
Suh, Peter M.; Conyers, Howard Jason; Mavris, Dimitri N.
2015-01-01
This report introduces a modeling and simulation tool for aeroservoelastic analysis of rectangular wings with trailing-edge control surfaces. The inputs to the code are planform design parameters such as wing span, aspect ratio, and number of control surfaces. Using this information, the generalized forces are computed using the doublet-lattice method. Using Roger's approximation, a rational function approximation is computed. The output, computed in a few seconds, is a state space aeroservoelastic model which can be used for analysis and control design. The tool is fully parameterized with default information so there is little required interaction with the model developer. All parameters can be easily modified if desired. The focus of this report is on tool presentation, verification, and validation. These processes are carried out in stages throughout the report. The rational function approximation is verified against computed generalized forces for a plate model. A model composed of finite element plates is compared to a modal analysis from commercial software and an independently conducted experimental ground vibration test analysis. Aeroservoelastic analysis is the ultimate goal of this tool, therefore, the flutter speed and frequency for a clamped plate are computed using damping-versus-velocity and frequency-versus-velocity analysis. The computational results are compared to a previously published computational analysis and wind-tunnel results for the same structure. A case study of a generic wing model with a single control surface is presented. Verification of the state space model is presented in comparison to damping-versus-velocity and frequency-versus-velocity analysis, including the analysis of the model in response to a 1-cos gust.
State-Space Inference and Learning with Gaussian Processes
Turner, R; Deisenroth, MP; Rasmussen, CE
2010-01-01
18.10.13 KB. Ok to add author version to spiral, authors hold copyright. State-space inference and learning with Gaussian processes (GPs) is an unsolved problem. We propose a new, general methodology for inference and learning in nonlinear state-space models that are described probabilistically by non-parametric GP models. We apply the expectation maximization algorithm to iterate between inference in the latent state-space and learning the parameters of the underlying GP dynamics model. C...
ASAP: An Extensible Platform for State Space Analysis
DEFF Research Database (Denmark)
Westergaard, Michael; Evangelista, Sami; Kristensen, Lars Michael
2009-01-01
The ASCoVeCo State space Analysis Platform (ASAP) is a tool for performing explicit state space analysis of coloured Petri nets (CPNs) and other formalisms. ASAP supports a wide range of state space reduction techniques and is intended to be easy to extend and to use, making it a suitable tool fo...... for students, researchers, and industrial users that would like to analyze protocols and/or experiment with different algorithms. This paper presents ASAP from these two perspectives....
State-space solutions to the h_inf/ltr design problem
DEFF Research Database (Denmark)
Niemann, Hans Henrik
1993-01-01
observer based approach is proposed, where the Z part of the controller is appended to a standard full-order observer. Second, allowing for general controllers, an JC state-space problem is formulated directly from the recovery errors. Both approaches lead to controller orders of at most 2n. In the minimum...
Chung, Tammy; Maisto, Stephen A
2016-06-01
An important goal of addictions treatment is to develop a positive association between high levels of confidence and motivation to abstain from substance use. This study modeled the time-varying association between confidence and motivation to abstain from marijuana use among youth in treatment, and the time-varying effect of pre-treatment covariates (marijuana abstinence goal and perceived peer marijuana use) on motivation to abstain. 150 adolescents (75% male, 83% White) in community-based intensive outpatient treatment in Pennsylvania completed a pre-treatment assessment of abstinence goal, perceived peer marijuana use, and motivation and confidence to abstain from marijuana. Ratings of motivation and confidence to abstain also were collected after each session. A time-varying effect model (TVEM) was used to characterize changes in the association between confidence and motivation to abstain (lagged), and included covariates representing pre-treatment abstinence goal and perceived peer marijuana use. Confidence and motivation to abstain from marijuana generally increased during treatment. The association between confidence and motivation strengthened across sessions 1-4, and was maintained through later sessions. Pre-treatment abstinence goal had an early time-limited effect (through session 6) on motivation to abstain. Pre-treatment perception of peer marijuana use had a significant effect on motivation to abstain only at session 2. Early treatment sessions represent a critical period during which the association between confidence and motivation to abstain generally increased. The time-limited effects of pre-treatment characteristics suggest the importance of early sessions in addressing abstinence goal and peer substance use that may impact motivation to abstain from marijuana. Copyright © 2016 Elsevier Ltd. All rights reserved.
Emergence of synchronization and regularity in firing patterns in time-varying neural hypernetworks
Rakshit, Sarbendu; Bera, Bidesh K.; Ghosh, Dibakar; Sinha, Sudeshna
2018-05-01
We study synchronization of dynamical systems coupled in time-varying network architectures, composed of two or more network topologies, corresponding to different interaction schemes. As a representative example of this class of time-varying hypernetworks, we consider coupled Hindmarsh-Rose neurons, involving two distinct types of networks, mimicking interactions that occur through the electrical gap junctions and the chemical synapses. Specifically, we consider the connections corresponding to the electrical gap junctions to form a small-world network, while the chemical synaptic interactions form a unidirectional random network. Further, all the connections in the hypernetwork are allowed to change in time, modeling a more realistic neurobiological scenario. We model this time variation by rewiring the links stochastically with a characteristic rewiring frequency f . We find that the coupling strength necessary to achieve complete neuronal synchrony is lower when the links are switched rapidly. Further, the average time required to reach the synchronized state decreases as synaptic coupling strength and/or rewiring frequency increases. To quantify the local stability of complete synchronous state we use the Master Stability Function approach, and for global stability we employ the concept of basin stability. The analytically derived necessary condition for synchrony is in excellent agreement with numerical results. Further we investigate the resilience of the synchronous states with respect to increasing network size, and we find that synchrony can be maintained up to larger network sizes by increasing either synaptic strength or rewiring frequency. Last, we find that time-varying links not only promote complete synchronization, but also have the capacity to change the local dynamics of each single neuron. Specifically, in a window of rewiring frequency and synaptic coupling strength, we observe that the spiking behavior becomes more regular.
Tracking time-varying cerebral autoregulation in response to changes in respiratory PaCO2
International Nuclear Information System (INIS)
Liu, Jia; Simpson, M David; Allen, Robert; Yan, Jingyu
2010-01-01
Cerebral autoregulation has been studied by linear filter systems, with arterial blood pressure (ABP) as the input and cerebral blood flow velocity (CBFV—from transcranial Doppler Ultrasound) as the output. The current work extends this by using adaptive filters to investigate the dynamics of time-varying cerebral autoregulation during step-wise changes in arterial PaCO 2 . Cerebral autoregulation was transiently impaired in 11 normal adult volunteers, by switching inspiratory air to a CO 2 /air mixture (5% CO 2 , 30% O 2 and 65% N 2 ) for approximately 2 min and then back to the ambient air, causing step-wise changes in end-tidal CO 2 (EtCO 2 ). Simultaneously, ABP and CBFV were recorded continuously. Simulated data corresponding to the same protocol were also generated using an established physiological model, in order to refine the signal analysis methods. Autoregulation was quantified by the time-varying phase lead, estimated from the adaptive filter model. The adaptive filter was able to follow rapid changes in autoregulation, as was confirmed in the simulated data. In the recorded signals, there was a slow decrease in autoregulatory function following the step-wise increase in PaCO 2 (but this did not reach a steady state within approximately 2 min of recording), with a more rapid change in autoregulation on return to normocapnia. Adaptive filter modelling was thus able to demonstrate time-varying autoregulation. It was further noted that impairment and recovery of autoregulation during transient increases in EtCO 2 occur in an asymmetric manner, which should be taken into account when designing experimental protocols for the study of autoregulation
A Kalman-filter based approach to identification of time-varying gene regulatory networks.
Directory of Open Access Journals (Sweden)
Jie Xiong
Full Text Available MOTIVATION: Conventional identification methods for gene regulatory networks (GRNs have overwhelmingly adopted static topology models, which remains unchanged over time to represent the underlying molecular interactions of a biological system. However, GRNs are dynamic in response to physiological and environmental changes. Although there is a rich literature in modeling static or temporally invariant networks, how to systematically recover these temporally changing networks remains a major and significant pressing challenge. The purpose of this study is to suggest a two-step strategy that recovers time-varying GRNs. RESULTS: It is suggested in this paper to utilize a switching auto-regressive model to describe the dynamics of time-varying GRNs, and a two-step strategy is proposed to recover the structure of time-varying GRNs. In the first step, the change points are detected by a Kalman-filter based method. The observed time series are divided into several segments using these detection results; and each time series segment belonging to two successive demarcating change points is associated with an individual static regulatory network. In the second step, conditional network structure identification methods are used to reconstruct the topology for each time interval. This two-step strategy efficiently decouples the change point detection problem and the topology inference problem. Simulation results show that the proposed strategy can detect the change points precisely and recover each individual topology structure effectively. Moreover, computation results with the developmental data of Drosophila Melanogaster show that the proposed change point detection procedure is also able to work effectively in real world applications and the change point estimation accuracy exceeds other existing approaches, which means the suggested strategy may also be helpful in solving actual GRN reconstruction problem.
The relationship between global oil price shocks and China's output: A time-varying analysis
International Nuclear Information System (INIS)
Cross, Jamie; Nguyen, Bao H.
2017-01-01
We employ a class of time-varying Bayesian vector autoregressive (VAR) models on new standard dataset of China's GDP constructed by to examine the relationship between China's economic growth and global oil market fluctuations between 1992Q1 and 2015Q3. We find that: (1) the time varying parameter VAR with stochastic volatility provides a better fit as compared to it's constant counterparts; (2) the impacts of intertemporal global oil price shocks on China's output are often small and temporary in nature; (3) oil supply and specific oil demand shocks generally produce negative movements in China's GDP growth whilst oil demand shocks tend to have positive effects; (4) domestic output shocks have no significant impact on price or quantity movements within the global oil market. The results are generally robust to three commonly employed indicators of global economic activity: Kilian's global real economic activity index, the metal price index and the global industrial production index, and two alternative oil price metrics: the US refiners' acquisition cost for imported crude oil and the West Texas Intermediate price of crude oil. - Highlights: • A class of time-varying BVARs is used to examine the relationship between China's economic growth and global oil market fluctuations. • The impacts of intertemporal global oil price shocks on China's output are often small and temporary in nature. • Oil supply and specific oil demand shocks generally produce negative movements in China's GDP growth while oil demand shocks tend to have positive effects. • Domestic output shocks have no significant impact on price or quantity movements within the global oil market.
H∞ Consensus for Multiagent Systems with Heterogeneous Time-Varying Delays
Directory of Open Access Journals (Sweden)
Beibei Wang
2013-01-01
Full Text Available We apply the linear matrix inequality method to consensus and H∞ consensus problems of the single integrator multiagent system with heterogeneous delays in directed networks. To overcome the difficulty caused by heterogeneous time-varying delays, we rewrite the multiagent system into a partially reduced-order system and an integral system. As a result, a particular Lyapunov function is constructed to derive sufficient conditions for consensus of multiagent systems with fixed (switched topologies. We also apply this method to the H∞ consensus of multiagent systems with disturbances and heterogeneous delays. Numerical examples are given to illustrate the theoretical results.
Stagewise pseudo-value regression for time-varying effects on the cumulative incidence
DEFF Research Database (Denmark)
Zöller, Daniela; Schmidtmann, Irene; Weinmann, Arndt
2016-01-01
In a competing risks setting, the cumulative incidence of an event of interest describes the absolute risk for this event as a function of time. For regression analysis, one can either choose to model all competing events by separate cause-specific hazard models or directly model the association...... for time-varying effects. This is implemented by coupling variable selection between the grid times, but determining estimates separately. The effect estimates are regularized to also allow for model fitting with a low to moderate number of observations. This technique is illustrated in an application...
Robust Stabilization of Discrete-Time Systems with Time-Varying Delay: An LMI Approach
Directory of Open Access Journals (Sweden)
Valter J. S. Leite
2008-01-01
Full Text Available Sufficient linear matrix inequality (LMI conditions to verify the robust stability and to design robust state feedback gains for the class of linear discrete-time systems with time-varying delay and polytopic uncertainties are presented. The conditions are obtained through parameter-dependent Lyapunov-Krasovskii functionals and use some extra variables, which yield less conservative LMI conditions. Both problems, robust stability analysis and robust synthesis, are formulated as convex problems where all system matrices can be affected by uncertainty. Some numerical examples are presented to illustrate the advantages of the proposed LMI conditions.
Projective synchronization of time-varying delayed neural network with adaptive scaling factors
International Nuclear Information System (INIS)
Ghosh, Dibakar; Banerjee, Santo
2013-01-01
Highlights: • Projective synchronization in coupled delayed neural chaotic systems with modulated delay time is introduced. • An adaptive rule for the scaling factors is introduced. • This scheme is highly applicable in secure communication. -- Abstract: In this work, the projective synchronization between two continuous time delayed neural systems with time varying delay is investigated. A sufficient condition for synchronization for the coupled systems with modulated delay is presented analytically with the help of the Krasovskii–Lyapunov approach. The effect of adaptive scaling factors on synchronization are also studied in details. Numerical simulations verify the effectiveness of the analytic results
Ponderomotive force of a uniform electromagnetic wave in a time varying dielectric medium
International Nuclear Information System (INIS)
Mori, W.B.; Katsouleas, T.
1992-01-01
A ponderomotive force associated with a uniform electromagnetic wave propagating in a medium with time varying dielectric properties [e.g., ε=ε(x-v 0 t)] is identified. In particular, when a laser ionizes a gas through which it propagates, a force is exerted on the medium at the ionization front that is proportional to (∇ε)E 2 rather than the usual (ε-1)∇E 2 . This force excites a wake in the plasma medium behind the ionization front. The ponderomotive force and wake amplitude are derived and tested with 1D particle-in-cell simulations
Gold as an Infl ation Hedge in a Time-Varying Coefficient Framework
Beckmann, Joscha; Czudaj, Robert
2012-01-01
This study analyzes the question whether gold provides the ability of hedging against inflation from a new perspective. Using data for four major economies, namely the USA, the UK, the Euro Area, and Japan, we allow for nonlinearity and discriminate between long-run and time-varying short-run dynamics. Thus, we conduct a Markov-switching vector error correction model (MS-VECM) approach for a sample period ranging from January 1970 to December 2011. Our main findings are threefold: First, we s...
Gold as an Infl ation Hedge in a Time-Varying Coeffi cient Framework
Joscha Beckmann; Robert Czudaj
2012-01-01
This study analyzes the question whether gold provides the ability of hedging against inflation from a new perspective. Using data for four major economies, namely the USA, the UK, the Euro Area, and Japan, we allow for nonlinearity and discriminate between long-run and time-varying short-run dynamics. Thus, we conduct a Markov-switching vector error correction model (MS-VECM) approach for a sample period ranging from January 1970 to December 2011. Our main findings are threefold: First, we s...
Time-Varying Market Integration and Expected Returns in Emerging Markets
de Jong, Frank; de Roon, Frans
2001-01-01
We use a simple model in which the expected returns in emerging markets depend on their systematic risk as measured by their beta relative to the world portfolio as well as on the level of integration in that market. The level of integration is a time-varying variable that depends on the market value of the assets that can be held by domestic investors only versus the market value of the assets that can be traded freely. Our empirical analysis for 30 emerging markets shows that there are stro...
Combined time-varying forecast based on the proper scoring approach for wind power generation
DEFF Research Database (Denmark)
Chen, Xingying; Jiang, Yu; Yu, Kun
2017-01-01
Compared with traditional point forecasts, combined forecast have been proposed as an effective method to provide more accurate forecasts than individual model. However, the literature and research focus on wind-power combined forecasts are relatively limited. Here, based on forecasting error...... distribution, a proper scoring approach is applied to combine plausible models to form an overall time-varying model for the next day forecasts, rather than weights-based combination. To validate the effectiveness of the proposed method, real data of 3 years were used for testing. Simulation results...... demonstrate that the proposed method improves the accuracy of overall forecasts, even compared with a numerical weather prediction....
Time-varying exchange rate pass-through: experiences of some industrial countries
Toshitaka Sekine
2006-01-01
This paper estimates exchange rate pass-through of six major industrial countries using a time-varying parameter with stochastic volatility model. Exchange rate pass-through is divided into impacts of exchange rate fluctuations to import prices (first-stage pass-through) and those of import price movements to consumer prices (second-stage pass-through). The paper finds that both stages of pass-through have declined over time for all the sample countries. The decline in second-stage pass-throu...
Scalar Aharonov–Bohm Phase in Ramsey Atom Interferometry under Time-Varying Potential
Directory of Open Access Journals (Sweden)
Atsuo Morinaga
2016-08-01
Full Text Available In a Ramsey atom interferometer excited by two electromagnetic fields, if atoms are under a time-varying scalar potential during the interrogation time, the phase of the Ramsey fringes shifts owing to the scalar Aharonov–Bohm effect. The phase shift was precisely examined using a Ramsey atom interferometer with a two-photon Raman transition under the second-order Zeeman potential, and a formula for the phase shift was derived. Using the derived formula, the frequency shift due to the scalar Aharonov–Bohm effect in the frequency standards utilizing the Ramsey atom interferometer was discussed.
Multi-disciplinary techniques for understanding time-varying space-based imagery
Casasent, D.; Sanderson, A.; Kanade, T.
1984-06-01
A multidisciplinary program for space-based image processing is reported. This project combines optical and digital processing techniques and pattern recognition, image understanding and artificial intelligence methodologies. Time change image processing was recognized as the key issue to be addressed. Three time change scenarios were defined based on the frame rate of the data change. This report details the recent research on: various statistical and deterministic image features, recognition of sub-pixel targets in time varying imagery, and 3-D object modeling and recognition.
Estimating time-varying RSA to examine psychophysiological linkage of marital dyads.
Gates, Kathleen M; Gatzke-Kopp, Lisa M; Sandsten, Maria; Blandon, Alysia Y
2015-08-01
One of the primary tenets of polyvagal theory dictates that parasympathetic influence on heart rate, often estimated by respiratory sinus arrhythmia (RSA), shifts rapidly in response to changing environmental demands. The current standard analytic approach of aggregating RSA estimates across time to arrive at one value fails to capture this dynamic property within individuals. By utilizing recent methodological developments that enable precise RSA estimates at smaller time intervals, we demonstrate the utility of computing time-varying RSA for assessing psychophysiological linkage (or synchrony) in husband-wife dyads using time-locked data collected in a naturalistic setting. © 2015 Society for Psychophysiological Research.
Analysis on Passivity for Uncertain Neural Networks with Time-Varying Delays
Directory of Open Access Journals (Sweden)
O. M. Kwon
2014-01-01
Full Text Available The problem of passivity analysis for neural networks with time-varying delays and parameter uncertainties is considered. By the consideration of newly constructed Lyapunov-Krasovskii functionals, improved sufficient conditions to guarantee the passivity of the concerned networks are proposed with the framework of linear matrix inequalities (LMIs, which can be solved easily by various efficient convex optimization algorithms. The enhancement of the feasible region of the proposed criteria is shown via two numerical examples by the comparison of maximum allowable delay bounds.
International Nuclear Information System (INIS)
Liang Jinling; Cao Jinde
2003-01-01
In this Letter, the problems of boundedness and stability for a general class of non-autonomous recurrent neural networks with variable coefficients and time-varying delays are analyzed via employing Young inequality technique and Lyapunov method. Some simple sufficient conditions are given for boundedness and stability of the solutions for the recurrent neural networks. These results generalize and improve the previous works, and they are easy to check and apply in practice. Two illustrative examples and their numerical simulations are also given to demonstrate the effectiveness of the proposed results
International Nuclear Information System (INIS)
Zhu Xunlin; Wang Youyi
2009-01-01
This Letter studies the exponential stability for a class of neural networks (NNs) with both discrete and distributed time-varying delays. Under weaker assumptions on the activation functions, by defining a more general type of Lyapunov functionals and developing a new convex combination technique, new less conservative and less complex stability criteria are established to guarantee the global exponential stability of the discussed NNs. The obtained conditions are dependent on both discrete and distributed delays, are expressed in terms of linear matrix inequalities (LMIs), and contain fewer decision variables. Numerical examples are given to illustrate the effectiveness and the less conservatism of the proposed conditions.
End-of-the-year economic growth and time-varying expected returns
DEFF Research Database (Denmark)
Møller, Stig V.; Rangvid, Jesper
2015-01-01
We show that macroeconomic growth at the end of the year (fourth quarter or December) strongly influences expected returns on risky financial assets, whereas economic growth during the rest of the year does not. We find this pattern for many different asset classes, across different time periods......, and for US and international data. We also show that movements in the surplus consumption ratio of Campbell and Cochrane (1999) , a theoretically well-founded measure of time-varying risk aversion linked to macroeconomic growth, influence expected returns stronger during the fourth quarter than the other...
Computing and visualizing time-varying merge trees for high-dimensional data
Energy Technology Data Exchange (ETDEWEB)
Oesterling, Patrick [Univ. of Leipzig (Germany); Heine, Christian [Univ. of Kaiserslautern (Germany); Weber, Gunther H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Morozov, Dmitry [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Scheuermann, Gerik [Univ. of Leipzig (Germany)
2017-06-03
We introduce a new method that identifies and tracks features in arbitrary dimensions using the merge tree -- a structure for identifying topological features based on thresholding in scalar fields. This method analyzes the evolution of features of the function by tracking changes in the merge tree and relates features by matching subtrees between consecutive time steps. Using the time-varying merge tree, we present a structural visualization of the changing function that illustrates both features and their temporal evolution. We demonstrate the utility of our approach by applying it to temporal cluster analysis of high-dimensional point clouds.
Directory of Open Access Journals (Sweden)
Yueyang Li
2014-01-01
Full Text Available This paper investigates the H∞ fixed-lag fault estimator design for linear discrete time-varying (LDTV systems with intermittent measurements, which is described by a Bernoulli distributed random variable. Through constructing a novel partially equivalent dynamic system, the fault estimator design is converted into a deterministic quadratic minimization problem. By applying the innovation reorganization technique and the projection formula in Krein space, a necessary and sufficient condition is obtained for the existence of the estimator. The parameter matrices of the estimator are derived by recursively solving two standard Riccati equations. An illustrative example is provided to show the effectiveness and applicability of the proposed algorithm.
Online Estimation of Time-Varying Volatility Using a Continuous-Discrete LMS Algorithm
Directory of Open Access Journals (Sweden)
Jacques Oksman
2008-09-01
Full Text Available The following paper addresses a problem of inference in financial engineering, namely, online time-varying volatility estimation. The proposed method is based on an adaptive predictor for the stock price, built from an implicit integration formula. An estimate for the current volatility value which minimizes the mean square prediction error is calculated recursively using an LMS algorithm. The method is then validated on several synthetic examples as well as on real data. Throughout the illustration, the proposed method is compared with both UKF and offline volatility estimation.
H∞ state estimation of generalised neural networks with interval time-varying delays
Saravanakumar, R.; Syed Ali, M.; Cao, Jinde; Huang, He
2016-12-01
This paper focuses on studying the H∞ state estimation of generalised neural networks with interval time-varying delays. The integral terms in the time derivative of the Lyapunov-Krasovskii functional are handled by the Jensen's inequality, reciprocally convex combination approach and a new Wirtinger-based double integral inequality. A delay-dependent criterion is derived under which the estimation error system is globally asymptotically stable with H∞ performance. The proposed conditions are represented by linear matrix inequalities. Optimal H∞ norm bounds are obtained easily by solving convex problems in terms of linear matrix inequalities. The advantage of employing the proposed inequalities is illustrated by numerical examples.
Observation of time-varying photoconductivity and persistent photoconductivity in porous silicon
DEFF Research Database (Denmark)
Frello, T.; Veje, E.; Leistiko, Otto
1996-01-01
We have observed time-varying photoconductivity and persistent photoconductivity in porous silicon, both with time-evolution scales of the order of several minutes or hours. The time evolutions depend on the wavelength and the intensity of the illuminating light. The data indicate the presence...... of at least two competing mechanisms, one is tentatively related to photoinduced creation of charge carriers in the silicon substrate followed by diffusion into the porous silicon layer, and the other is tentatively related to desorption of hydrogen from the porous silicon. ©1996 American Institute of Physics....
Globally exponential stability condition of a class of neural networks with time-varying delays
International Nuclear Information System (INIS)
Liao, T.-L.; Yan, J.-J.; Cheng, C.-J.; Hwang, C.-C.
2005-01-01
In this Letter, the globally exponential stability for a class of neural networks including Hopfield neural networks and cellular neural networks with time-varying delays is investigated. Based on the Lyapunov stability method, a novel and less conservative exponential stability condition is derived. The condition is delay-dependent and easily applied only by checking the Hamiltonian matrix with no eigenvalues on the imaginary axis instead of directly solving an algebraic Riccati equation. Furthermore, the exponential stability degree is more easily assigned than those reported in the literature. Some examples are given to demonstrate validity and excellence of the presented stability condition herein
Resonant e+e- production by time-varying electromagnetic field
International Nuclear Information System (INIS)
Farakos, K.; Koutsoumbas, G.; Tiktopoulos, G.
1990-01-01
As pointed out by Cornwall and Tiktopoulos (CT) strong, time-varying electric fields may produce e + e - pairs in a resonant fashion. This effect could be related to the sharp peaks in the e + e - spectrum observed in the GSI heavy-ion collision experiments. We attempt to go beyond the case of spatially uniform fields discussed by CT. We find that resonant e + e - production indeed takes place for electric fields derived from four-potentials of the form A 1 =A 2 =A 0 =0, A 3 =δ(t)b(x 3 ) provided by b(x) has discontinuities with a jump at least equal to π. (orig.)
San Roman Alerigi, Damian
2014-01-01
Over the past several decades our understanding and meticulous characterization of the transient and spatial properties of materials evolved rapidly. The results present an exciting field for discovery, and craft materials to control and reshape light that we are just beginning to fathom. State-of-the-art nano-deposition processes, for example, can be utilized to build stratified waveguides made of thin dielectric layers, which put together result in a material with effective abnormal dispersion. Moreover, materials once deemed well known are revealing astonishing properties, v.gr. chalcogenide glasses undergo an atomic reconfiguration when illuminated with electrons or photons, this ensues in a temporal modification of its permittivity and permeability which could be used to build new Photonic Integrated Circuits.. This work revolves around the characterization and model of heterogeneous and time-varying materials and their applications, revisits Maxwell's equations in the context of nonlinear space- and time-varying media, and based on it introduces a numerical scheme that can be used to model waves in this kind of media. Finally some interesting applications for light confinement and beam transformations are shown.
San Roman Alerigi, Damian
2014-11-01
Over the past several decades our understanding and meticulous characterization of the transient and spatial properties of materials evolved rapidly. The results present an exciting field for discovery, and craft materials to control and reshape light that we are just beginning to fathom. State-of-the-art nano-deposition processes, for example, can be utilized to build stratified waveguides made of thin dielectric layers, which put together result in a material with effective abnormal dispersion. Moreover, materials once deemed well known are revealing astonishing properties, v.gr. chalcogenide glasses undergo an atomic reconfiguration when illuminated with electrons or photons, this ensues in a temporal modification of its permittivity and permeability which could be used to build new Photonic Integrated Circuits.. This work revolves around the characterization and model of heterogeneous and time-varying materials and their applications, revisits Maxwell\\'s equations in the context of nonlinear space- and time-varying media, and based on it introduces a numerical scheme that can be used to model waves in this kind of media. Finally some interesting applications for light confinement and beam transformations are shown.
Bayesian state space models for dynamic genetic network construction across multiple tissues.
Liang, Yulan; Kelemen, Arpad
2016-08-01
Construction of gene-gene interaction networks and potential pathways is a challenging and important problem in genomic research for complex diseases while estimating the dynamic changes of the temporal correlations and non-stationarity are the keys in this process. In this paper, we develop dynamic state space models with hierarchical Bayesian settings to tackle this challenge for inferring the dynamic profiles and genetic networks associated with disease treatments. We treat both the stochastic transition matrix and the observation matrix time-variant and include temporal correlation structures in the covariance matrix estimations in the multivariate Bayesian state space models. The unevenly spaced short time courses with unseen time points are treated as hidden state variables. Hierarchical Bayesian approaches with various prior and hyper-prior models with Monte Carlo Markov Chain and Gibbs sampling algorithms are used to estimate the model parameters and the hidden state variables. We apply the proposed Hierarchical Bayesian state space models to multiple tissues (liver, skeletal muscle, and kidney) Affymetrix time course data sets following corticosteroid (CS) drug administration. Both simulation and real data analysis results show that the genomic changes over time and gene-gene interaction in response to CS treatment can be well captured by the proposed models. The proposed dynamic Hierarchical Bayesian state space modeling approaches could be expanded and applied to other large scale genomic data, such as next generation sequence (NGS) combined with real time and time varying electronic health record (EHR) for more comprehensive and robust systematic and network based analysis in order to transform big biomedical data into predictions and diagnostics for precision medicine and personalized healthcare with better decision making and patient outcomes.
Mapping from Speech to Images Using Continuous State Space Models
DEFF Research Database (Denmark)
Lehn-Schiøler, Tue; Hansen, Lars Kai; Larsen, Jan
2005-01-01
In this paper a system that transforms speech waveforms to animated faces are proposed. The system relies on continuous state space models to perform the mapping, this makes it possible to ensure video with no sudden jumps and allows continuous control of the parameters in 'face space...... a subjective point of view the model is able to construct an image sequence from an unknown noisy speech sequence even though the number of training examples are limited.......'. The performance of the system is critically dependent on the number of hidden variables, with too few variables the model cannot represent data, and with too many overfitting is noticed. Simulations are performed on recordings of 3-5 sec.\\$\\backslash\\$ video sequences with sentences from the Timit database. From...
A simple analytical model for dynamics of time-varying target leverage ratios
Lo, C. F.; Hui, C. H.
2012-03-01
In this paper we have formulated a simple theoretical model for the dynamics of the time-varying target leverage ratio of a firm under some assumptions based upon empirical observations. In our theoretical model the time evolution of the target leverage ratio of a firm can be derived self-consistently from a set of coupled Ito's stochastic differential equations governing the leverage ratios of an ensemble of firms by the nonlinear Fokker-Planck equation approach. The theoretically derived time paths of the target leverage ratio bear great resemblance to those used in the time-dependent stationary-leverage (TDSL) model [Hui et al., Int. Rev. Financ. Analy. 15, 220 (2006)]. Thus, our simple model is able to provide a theoretical foundation for the selected time paths of the target leverage ratio in the TDSL model. We also examine how the pace of the adjustment of a firm's target ratio, the volatility of the leverage ratio and the current leverage ratio affect the dynamics of the time-varying target leverage ratio. Hence, with the proposed dynamics of the time-dependent target leverage ratio, the TDSL model can be readily applied to generate the default probabilities of individual firms and to assess the default risk of the firms.
Zhang, Shangbin; Lu, Siliang; He, Qingbo; Kong, Fanrang
2016-09-01
For rotating machines, the defective faults of bearings generally are represented as periodic transient impulses in acquired signals. The extraction of transient features from signals has been a key issue for fault diagnosis. However, the background noise reduces identification performance of periodic faults in practice. This paper proposes a time-varying singular value decomposition (TSVD) method to enhance the identification of periodic faults. The proposed method is inspired by the sliding window method. By applying singular value decomposition (SVD) to the signal under a sliding window, we can obtain a time-varying singular value matrix (TSVM). Each column in the TSVM is occupied by the singular values of the corresponding sliding window, and each row represents the intrinsic structure of the raw signal, namely time-singular-value-sequence (TSVS). Theoretical and experimental analyses show that the frequency of TSVS is exactly twice that of the corresponding intrinsic structure. Moreover, the signal-to-noise ratio (SNR) of TSVS is improved significantly in comparison with the raw signal. The proposed method takes advantages of the TSVS in noise suppression and feature extraction to enhance fault frequency for diagnosis. The effectiveness of the TSVD is verified by means of simulation studies and applications to diagnosis of bearing faults. Results indicate that the proposed method is superior to traditional methods for bearing fault diagnosis.
PCA-based detection of damage in time-varying systems
Bellino, A.; Fasana, A.; Garibaldi, L.; Marchesiello, S.
2010-10-01
When performing Structural Health Monitoring, it is well known that the natural frequencies do not depend only on the damage but also on environmental conditions, such as temperature and humidity. The Principal Component Analysis is used to take this problem into account, because it allows eliminating the effect of external factors. The purpose of the present work is to show that this technique can be successfully used not only for time-invariant systems, but also for time-varying ones. Referring to the latter, one of the most studied systems which shows these characteristics is the bridge with crossing loads, such as the case of the railway bridge studied in present paper; in this case, the mass and the velocity of the train can be considered as "environmental" factors.This paper, after a brief description of the PCA method and one example of its application on time-invariant systems, presents the great potentialities of the methodology when applied to time-varying systems. The results show that this method is able to better detect the presence of damage and also to properly distinguish among different levels of crack depths.
Joint optimization of green vehicle scheduling and routing problem with time-varying speeds
Zhang, Dezhi; Wang, Xin; Ni, Nan; Zhang, Zhuo
2018-01-01
Based on an analysis of the congestion effect and changes in the speed of vehicle flow during morning and evening peaks in a large- or medium-sized city, the piecewise function is used to capture the rules of the time-varying speed of vehicles, which are very important in modelling their fuel consumption and CO2 emission. A joint optimization model of the green vehicle scheduling and routing problem with time-varying speeds is presented in this study. Extra wages during nonworking periods and soft time-window constraints are considered. A heuristic algorithm based on the adaptive large neighborhood search algorithm is also presented. Finally, a numerical simulation example is provided to illustrate the optimization model and its algorithm. Results show that, (1) the shortest route is not necessarily the route that consumes the least energy, (2) the departure time influences the vehicle fuel consumption and CO2 emissions and the optimal departure time saves on fuel consumption and reduces CO2 emissions by up to 5.4%, and (3) extra driver wages have significant effects on routing and departure time slot decisions. PMID:29466370
Bit-level plane image encryption based on coupled map lattice with time-varying delay
Lv, Xiupin; Liao, Xiaofeng; Yang, Bo
2018-04-01
Most of the existing image encryption algorithms had two basic properties: confusion and diffusion in a pixel-level plane based on various chaotic systems. Actually, permutation in a pixel-level plane could not change the statistical characteristics of an image, and many of the existing color image encryption schemes utilized the same method to encrypt R, G and B components, which means that the three color components of a color image are processed three times independently. Additionally, dynamical performance of a single chaotic system degrades greatly with finite precisions in computer simulations. In this paper, a novel coupled map lattice with time-varying delay therefore is applied in color images bit-level plane encryption to solve the above issues. Spatiotemporal chaotic system with both much longer period in digitalization and much excellent performances in cryptography is recommended. Time-varying delay embedded in coupled map lattice enhances dynamical behaviors of the system. Bit-level plane image encryption algorithm has greatly reduced the statistical characteristics of an image through the scrambling processing. The R, G and B components cross and mix with one another, which reduces the correlation among the three components. Finally, simulations are carried out and all the experimental results illustrate that the proposed image encryption algorithm is highly secure, and at the same time, also demonstrates superior performance.
Time-varying mixed logit model for vehicle merging behavior in work zone merging areas.
Weng, Jinxian; Du, Gang; Li, Dan; Yu, Yao
2018-08-01
This study aims to develop a time-varying mixed logit model for the vehicle merging behavior in work zone merging areas during the merging implementation period from the time of starting a merging maneuver to that of completing the maneuver. From the safety perspective, vehicle crash probability and severity between the merging vehicle and its surrounding vehicles are regarded as major factors influencing vehicle merging decisions. Model results show that the model with the use of vehicle crash risk probability and severity could provide higher prediction accuracy than previous models with the use of vehicle speeds and gap sizes. It is found that lead vehicle type, through lead vehicle type, through lag vehicle type, crash probability of the merging vehicle with respect to the through lag vehicle, crash severities of the merging vehicle with respect to the through lead and lag vehicles could exhibit time-varying effects on the merging behavior. One important finding is that the merging vehicle could become more and more aggressive in order to complete the merging maneuver as quickly as possible over the elapsed time, even if it has high vehicle crash risk with respect to the through lead and lag vehicles. Copyright © 2018 Elsevier Ltd. All rights reserved.
Relay selection in cooperative communication systems over continuous time-varying fading channel
Directory of Open Access Journals (Sweden)
Ke Geng
2017-02-01
Full Text Available In this paper, we study relay selection under outdated channel state information (CSI in a decode-and-forward (DF cooperative system. Unlike previous researches on cooperative communication under outdated CSI, we consider that the channel varies continuously over time, i.e., the channel not only changes between relay selection and data transmission but also changes during data transmission. Thus the level of accuracy of the CSI used in relay selection degrades with data transmission. We first evaluate the packet error rate (PER of the cooperative system under continuous time-varying fading channel, and find that the PER performance deteriorates more seriously under continuous time-varying fading channel than when the channel is assumed to be constant during data transmission. Then, we propose a repeated relay selection (RRS strategy to improve the PER performance, in which the forwarded data is divided into multiple segments and relay is reselected before the transmission of each segment based on the updated CSI. Finally, we propose a combined relay selection (CRS strategy which takes advantage of three different relay selection strategies to further mitigate the impact of outdated CSI.
Testing and estimating time-varying elasticities of Swiss gasoline demand
International Nuclear Information System (INIS)
Neto, David
2012-01-01
This paper is intended to test and estimate time-varying elasticities for gasoline demand in Switzerland. For this purpose, a smooth time-varying cointegrating parameters model is investigated in order to describe smooth mutations of the Swiss gasoline demand. The methodology, based on Chebyshev polynomials, is rigorously outlined. Our empirical finding states that the time-invariance assumption does not hold for long-run price and income elasticities. Furthermore they highlight that gasoline demand passed through some periods of sensitivity and non sensitivity with respect to the price. Our empirical statements are of great importance to assess the performance of a gasoline tax as an instrument for CO 2 reduction policy. Indeed, such an instrument can contribute to reduce emissions of greenhouse gases only if the demand is not fully inelastic with respect to the price. Our results suggest that such a carbon-tax would not be always suitable since the price elasticity is found not stable over time and not always significant.
Identification of time-varying structural dynamic systems - An artificial intelligence approach
Glass, B. J.; Hanagud, S.
1992-01-01
An application of the artificial intelligence-derived methodologies of heuristic search and object-oriented programming to the problem of identifying the form of the model and the associated parameters of a time-varying structural dynamic system is presented in this paper. Possible model variations due to changes in boundary conditions or configurations of a structure are organized into a taxonomy of models, and a variant of best-first search is used to identify the model whose simulated response best matches that of the current physical structure. Simulated model responses are verified experimentally. An output-error approach is used in a discontinuous model space, and an equation-error approach is used in the parameter space. The advantages of the AI methods used, compared with conventional programming techniques for implementing knowledge structuring and inheritance, are discussed. Convergence conditions and example problems have been discussed. In the example problem, both the time-varying model and its new parameters have been identified when changes occur.
Uniform stability for time-varying infinite-dimensional discrete linear systems
International Nuclear Information System (INIS)
Kubrusly, C.S.
1988-09-01
Stability for time-varying discrete linear systems in a Banach space is investigated. On the one hand, it established a fairly complete collection of necessary and sufficient conditions for uniform asymptotic equistability for input-free systems. This includes uniform and strong power equistability, and uniform and strong l p -equistability, among other technical conditions which also play essential role in stability theory. On other hand, it is shown that uniform asymptotic equistability for input-free systems is equivalent to each of the following concepts of uniform stability for forced systems: l p -input l p -state, c o -input c o -state, bounded-input bounded-state, l p>1 -input bounded-state, c sub (o)-input bounded-state, and convergent-input bounded-state; which are also equivalent to their nonuniform counterparts. For time-varying convergent systems, the above is also equivalent to convergent-input convergent-state stability. The proofs presented here are all ''elementary'' in the sense that they are based essentially only on the Banach-Steinhaus theorem. (autor) [pt
Quantum theory for magnons and phonons interactions under time-varying magnetic fields
International Nuclear Information System (INIS)
Guerreiro, S.C.
1971-01-01
The magnon-fonon interaction in a ferromagnetic material submited to a time-varying magnetic field is studied by quantum methods. This problem has already been solved by semi-classical methods, and one of its results is that under certain conditions a state of lattice vibrations may be completely converted into spin oscillations. The main proporties of magnetoelastic waves in static magnetic fields and extend the quantum treatment for the time varying magnetic field case is revised. Field operators whose equations of motion are analogous to the classical ones are introduced. Their equations, which appear as a linear system of first order coupled equations, are converted into equations for complex functions by an expansion of the field operators in a time t as linear combinations of the same operators in a time t 0 prior to the variation of the magnetic field. The quantity g vector obtained from the classical solution is quantized and shown to be the linear momentum density of the magnetoelastic system, the quantum field spin density operator is deduced for the two interacting fields, and finally the results are used to study the magnetization and lattice displacement vector fields in the case of a system described by a coherent state of one of its normal modes
Modeling the time--varying subjective quality of HTTP video streams with rate adaptations.
Chen, Chao; Choi, Lark Kwon; de Veciana, Gustavo; Caramanis, Constantine; Heath, Robert W; Bovik, Alan C
2014-05-01
Newly developed hypertext transfer protocol (HTTP)-based video streaming technologies enable flexible rate-adaptation under varying channel conditions. Accurately predicting the users' quality of experience (QoE) for rate-adaptive HTTP video streams is thus critical to achieve efficiency. An important aspect of understanding and modeling QoE is predicting the up-to-the-moment subjective quality of a video as it is played, which is difficult due to hysteresis effects and nonlinearities in human behavioral responses. This paper presents a Hammerstein-Wiener model for predicting the time-varying subjective quality (TVSQ) of rate-adaptive videos. To collect data for model parameterization and validation, a database of longer duration videos with time-varying distortions was built and the TVSQs of the videos were measured in a large-scale subjective study. The proposed method is able to reliably predict the TVSQ of rate adaptive videos. Since the Hammerstein-Wiener model has a very simple structure, the proposed method is suitable for online TVSQ prediction in HTTP-based streaming.
Asymptotic theory of time varying networks with burstiness and heterogeneous activation patterns
Burioni, Raffaella; Ubaldi, Enrico; Vezzani, Alessandro
2017-05-01
The recent availability of large-scale, time-resolved and high quality digital datasets has allowed for a deeper understanding of the structure and properties of many real-world networks. The empirical evidence of a temporal dimension prompted the switch of paradigm from a static representation of networks to a time varying one. In this work we briefly review the framework of time-varying-networks in real world social systems, especially focusing on the activity-driven paradigm. We develop a framework that allows for the encoding of three generative mechanisms that seem to play a central role in the social networks’ evolution: the individual’s propensity to engage in social interactions, its strategy in allocate these interactions among its alters and the burstiness of interactions amongst social actors. The functional forms and probability distributions encoding these mechanisms are typically data driven. A natural question arises if different classes of strategies and burstiness distributions, with different local scale behavior and analogous asymptotics can lead to the same long time and large scale structure of the evolving networks. We consider the problem in its full generality, by investigating and solving the system dynamics in the asymptotic limit, for general classes of ties allocation mechanisms and waiting time probability distributions. We show that the asymptotic network evolution is driven by a few characteristics of these functional forms, that can be extracted from direct measurements on large datasets.
Study on the Variation of Groundwater Level under Time-varying Recharge
Wu, Ming-Chang; Hsieh, Ping-Cheng
2017-04-01
The slopes of the suburbs come to important areas by focusing on the work of soil and water conservation in recent years. The water table inside the aquifer is affected by rainfall, geology and topography, which will result in the change of groundwater discharge and water level. Currently, the way to obtain water table information is to set up the observation wells; however, owing to that the cost of equipment and the wells excavated is too expensive, we develop a mathematical model instead, which might help us to simulate the groundwater level variation. In this study, we will discuss the groundwater level change in a sloping unconfined aquifer with impermeable bottom under time-varying rainfall events. Referring to Child (1971), we employ the Boussinesq equation as the governing equation, and apply the General Integral Transforms Method (GITM) to analyzing the groundwater level after linearizing the Boussinesq equation. After comparing the solution with Verhoest & Troch (2000) and Bansal & Das (2010), we get satisfactory results. To sum up, we have presented an alternative approach to solve the linearized Boussinesq equation for the response of groundwater level in a sloping unconfined aquifer. The present analytical results combine the effect of bottom slope and the time-varying recharge pattern on the water table fluctuations. Owing to the limitation and difficulty of measuring the groundwater level directly, we develop such a mathematical model that we can predict or simulate the variation of groundwater level affected by any rainfall events in advance.
Time-varying metamaterials based on graphene-wrapped microwires: Modeling and potential applications
Salary, Mohammad Mahdi; Jafar-Zanjani, Samad; Mosallaei, Hossein
2018-03-01
The successful realization of metamaterials and metasurfaces requires the judicious choice of constituent elements. In this paper, we demonstrate the implementation of time-varying metamaterials in the terahertz frequency regime by utilizing graphene-wrapped microwires as building blocks and modulation of graphene conductivity through exterior electrical gating. These elements enable enhancement of light-graphene interaction by utilizing optical resonances associated with Mie scattering, yielding a large tunability and modulation depth. We develop a semianalytical framework based on transition-matrix formulation for modeling and analysis of periodic and aperiodic arrays of such time-varying building blocks. The proposed method is validated against full-wave numerical results obtained using the finite-difference time-domain method. It provides an ideal tool for mathematical synthesis and analysis of space-time gradient metamaterials, eliminating the need for computationally expensive numerical models. Moreover, it allows for a wider exploration of exotic space-time scattering phenomena in time-modulated metamaterials. We apply the method to explore the role of modulation parameters in the generation of frequency harmonics and their emerging wavefronts. Several potential applications of such platforms are demonstrated, including frequency conversion, holographic generation of frequency harmonics, and spatiotemporal manipulation of light. The presented results provide key physical insights to design time-modulated functional metadevices using various building blocks and open up new directions in the emerging paradigm of time-modulated metamaterials.
System resiliency quantification using non-state-space and state-space analytic models
International Nuclear Information System (INIS)
Ghosh, Rahul; Kim, DongSeong; Trivedi, Kishor S.
2013-01-01
Resiliency is becoming an important service attribute for large scale distributed systems and networks. Key problems in resiliency quantification are lack of consensus on the definition of resiliency and systematic approach to quantify system resiliency. In general, resiliency is defined as the ability of (system/person/organization) to recover/defy/resist from any shock, insult, or disturbance [1]. Many researchers interpret resiliency as a synonym for fault-tolerance and reliability/availability. However, effect of failure/repair on systems is already covered by reliability/availability measures and that of on individual jobs is well covered under the umbrella of performability [2] and task completion time analysis [3]. We use Laprie [4] and Simoncini [5]'s definition in which resiliency is the persistence of service delivery that can justifiably be trusted, when facing changes. The changes we are referring to here are beyond the envelope of system configurations already considered during system design, that is, beyond fault tolerance. In this paper, we outline a general approach for system resiliency quantification. Using examples of non-state-space and state-space stochastic models, we analytically–numerically quantify the resiliency of system performance, reliability, availability and performability measures w.r.t. structural and parametric changes
Complexity in Simplicity: Flexible Agent-based State Space Exploration
DEFF Research Database (Denmark)
Rasmussen, Jacob Illum; Larsen, Kim Guldstrand
2007-01-01
In this paper, we describe a new flexible framework for state space exploration based on cooperating agents. The idea is to let various agents with different search patterns explore the state space individually and communicate information about fruitful subpaths of the search tree to each other...
Adaptive importance sampling of random walks on continuous state spaces
International Nuclear Information System (INIS)
Baggerly, K.; Cox, D.; Picard, R.
1998-01-01
The authors consider adaptive importance sampling for a random walk with scoring in a general state space. Conditions under which exponential convergence occurs to the zero-variance solution are reviewed. These results generalize previous work for finite, discrete state spaces in Kollman (1993) and in Kollman, Baggerly, Cox, and Picard (1996). This paper is intended for nonstatisticians and includes considerable explanatory material
A Database Approach to Distributed State Space Generation
Blom, Stefan; Lisser, Bert; van de Pol, Jan Cornelis; Weber, M.
2007-01-01
We study distributed state space generation on a cluster of workstations. It is explained why state space partitioning by a global hash function is problematic when states contain variables from unbounded domains, such as lists or other recursive datatypes. Our solution is to introduce a database
State Space Analysis of Hierarchical Coloured Petri Nets
DEFF Research Database (Denmark)
Christensen, Søren; Kristensen, Lars Michael
2003-01-01
In this paper, we consider state space analysis of Coloured Petri Nets. It is well-known that almost all dynamic properties of the considered system can be verified when the state space is finite. However, state space analysis is more than just formulating a set of formal requirements and invokin...... supporting computation and storage of state spaces which exploi the hierarchical structure of the models....... in which formal verification, partial state spaces, and analysis by means of graphical feedback and simulation are integrated entities. The focus of the paper is twofold: the support for graphical feedback and the way it has been integrated with simulation, and the underlying algorithms and data-structures......In this paper, we consider state space analysis of Coloured Petri Nets. It is well-known that almost all dynamic properties of the considered system can be verified when the state space is finite. However, state space analysis is more than just formulating a set of formal requirements and invoking...
A Compositional Sweep-Line State Space Exploration Method
DEFF Research Database (Denmark)
Kristensen, Lars Michael; Mailund, Thomas
2002-01-01
State space exploration is a main approach to verification of finite-state systems. The sweep-line method exploits a certain kind of progress present in many systems to reduce peak memory usage during state space exploration. We present a new sweep-line algorithm for a compositional setting where...
A Database Approach to Distributed State Space Generation
Blom, Stefan; Lisser, Bert; van de Pol, Jan Cornelis; Weber, M.; Cerna, I.; Haverkort, Boudewijn R.H.M.
2008-01-01
We study distributed state space generation on a cluster of workstations. It is explained why state space partitioning by a global hash function is problematic when states contain variables from unbounded domains, such as lists or other recursive datatypes. Our solution is to introduce a database
Alleviating Border Effects in Wavelet Transforms for Nonlinear Time-varying Signal Analysis
Directory of Open Access Journals (Sweden)
SU, H.
2011-08-01
Full Text Available Border effects are very common in many finite signals analysis and processing approaches using convolution operation. Alleviating the border effects that can occur in the processing of finite-length signals using wavelet transform is considered in this paper. Traditional methods for alleviating the border effects are suitable to compression or coding applications. We propose an algorithm based on Fourier series which is proved to be appropriate to the application of time-frequency analysis of nonlinear signals. Fourier series extension method preserves the time-varying characteristics of the signals. A modified signal duration expression for measuring the extent of border effects region is presented. The proposed algorithm is confirmed to be efficient to alleviate the border effects in comparison to the current methods through the numerical examples.
A Time-Varied Probabilistic ON/OFF Switching Algorithm for Cellular Networks
Rached, Nadhir B.; Ghazzai, Hakim; Kadri, Abdullah; Alouini, Mohamed-Slim
2018-01-01
In this letter, we develop a time-varied probabilistic on/off switching planning method for cellular networks to reduce their energy consumption. It consists in a risk-aware optimization approach that takes into consideration the randomness of the user profile associated with each base station (BS). The proposed approach jointly determines (i) the instants of time at which the current active BS configuration must be updated due to an increase or decrease of the network traffic load, and (ii) the set of minimum BSs to be activated to serve the networks’ subscribers. Probabilistic metrics modeling the traffic profile variation are developed to trigger this dynamic on/off switching operation. Selected simulation results are then performed to validate the proposed algorithm for different system parameters.
Invariant operator theory for the single-photon energy in time-varying media
International Nuclear Information System (INIS)
Jeong-Ryeol, Choi
2010-01-01
After the birth of quantum mechanics, the notion in physics that the frequency of light is the only factor that determines the energy of a single photon has played a fundamental role. However, under the assumption that the theory of Lewis–Riesenfeld invariants is applicable in quantum optics, it is shown in the present work that this widely accepted notion is valid only for light described by a time-independent Hamiltonian, i.e., for light in media satisfying the conditions, ε(i) = ε(0), μ(t) = μ(0), and σ(t) = 0 simultaneously. The use of the Lewis–Riesenfeld invariant operator method in quantum optics leads to a marvelous result: the energy of a single photon propagating through time-varying linear media exhibits nontrivial time dependence without a change of frequency. (general)
A First-order Prediction-Correction Algorithm for Time-varying (Constrained) Optimization: Preprint
Energy Technology Data Exchange (ETDEWEB)
Dall-Anese, Emiliano [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Simonetto, Andrea [Universite catholique de Louvain
2017-07-25
This paper focuses on the design of online algorithms based on prediction-correction steps to track the optimal solution of a time-varying constrained problem. Existing prediction-correction methods have been shown to work well for unconstrained convex problems and for settings where obtaining the inverse of the Hessian of the cost function can be computationally affordable. The prediction-correction algorithm proposed in this paper addresses the limitations of existing methods by tackling constrained problems and by designing a first-order prediction step that relies on the Hessian of the cost function (and do not require the computation of its inverse). Analytical results are established to quantify the tracking error. Numerical simulations corroborate the analytical results and showcase performance and benefits of the algorithms.
Almost Periodic Solution for Memristive Neural Networks with Time-Varying Delays
Directory of Open Access Journals (Sweden)
Huaiqin Wu
2013-01-01
Full Text Available This paper is concerned with the dynamical stability analysis for almost periodic solution of memristive neural networks with time-varying delays. Under the framework of Filippov solutions, by applying the inequality analysis techniques, the existence and asymptotically almost periodic behavior of solutions are discussed. Based on the differential inclusions theory and Lyapunov functional approach, the stability issues of almost periodic solution are investigated, and a sufficient condition for the existence, uniqueness, and global exponential stability of the almost periodic solution is established. Moreover, as a special case, the condition which ensures the global exponential stability of a unique periodic solution is also presented for the considered memristive neural networks. Two examples are given to illustrate the validity of the theoretical results.
On-line statistical processing of radiation detector pulse trains with time-varying count rates
International Nuclear Information System (INIS)
Apostolopoulos, G.
2008-01-01
Statistical analysis is of primary importance for the correct interpretation of nuclear measurements, due to the inherent random nature of radioactive decay processes. This paper discusses the application of statistical signal processing techniques to the random pulse trains generated by radiation detectors. The aims of the presented algorithms are: (i) continuous, on-line estimation of the underlying time-varying count rate θ(t) and its first-order derivative dθ/dt; (ii) detection of abrupt changes in both of these quantities and estimation of their new value after the change point. Maximum-likelihood techniques, based on the Poisson probability distribution, are employed for the on-line estimation of θ and dθ/dt. Detection of abrupt changes is achieved on the basis of the generalized likelihood ratio statistical test. The properties of the proposed algorithms are evaluated by extensive simulations and possible applications for on-line radiation monitoring are discussed
The co-movement of monetary policy and its time-varying nature: A DCCA approach
Rohit, Abhishek; Mitra, Subrata Kumar
2018-02-01
Employing a novel methodology of DCCA cross-correlation coefficient (ρDCCA), this study attempts to provide fresh evidences for the co-movement of monetary policies of the advanced (AEs) as well as the emerging economies (EMEs) vis-à-vis the United States. A higher degree of monetary co-movement as measured by ρDCCA values, is identified for the AEs as compared to the EMEs. Lower co-movement of monetary policy is especially noticeable in the short run for EMEs. We further investigate the time-varying nature of such co-movements for the AEs by splitting the period (1980-2014) into four sub periods and also by performing a rolling window estimation for the entire period to reveal smoother dynamics. Significant evidence of higher monetary coordination is revealed for sub-periods with stronger trade and financial linkages.
Time-varying predictability in crude-oil markets: the case of GCC countries
International Nuclear Information System (INIS)
El Hedi Arouri, Mohamed; Thanh Huong Dinh; Duc Khuong Nguyen
2010-01-01
This paper uses a time-varying parameter model with generalized autoregressive conditional heteroscedasticity effects to examine the dynamic behavior of crude-oil prices for the period February 7, 1997-January 8, 2010. Using data from four countries of the Gulf Cooperation Council, we find evidence of short-term predictability in oil-price changes over time, except for several short sub-periods. However, the hypothesis of convergence towards weak-form informational efficiency is rejected for all markets. In addition, we explore the possibility of structural breaks in the time-paths of the estimated predictability indices and detect only one breakpoint, for the oil markets in Qatar and the United Arab Emirates. Our empirical results therefore call for new empirical research to further gauge the predictability characteristics and the determinants of oil-price changes.
Ghumare, Eshwar; Schrooten, Maarten; Vandenberghe, Rik; Dupont, Patrick
2015-08-01
Kalman filter approaches are widely applied to derive time varying effective connectivity from electroencephalographic (EEG) data. For multi-trial data, a classical Kalman filter (CKF) designed for the estimation of single trial data, can be implemented by trial-averaging the data or by averaging single trial estimates. A general linear Kalman filter (GLKF) provides an extension for multi-trial data. In this work, we studied the performance of the different Kalman filtering approaches for different values of signal-to-noise ratio (SNR), number of trials and number of EEG channels. We used a simulated model from which we calculated scalp recordings. From these recordings, we estimated cortical sources. Multivariate autoregressive model parameters and partial directed coherence was calculated for these estimated sources and compared with the ground-truth. The results showed an overall superior performance of GLKF except for low levels of SNR and number of trials.
A Comparison of Evolutionary Algorithms for Tracking Time-Varying Recursive Systems
Directory of Open Access Journals (Sweden)
White Michael S
2003-01-01
Full Text Available A comparison is made of the behaviour of some evolutionary algorithms in time-varying adaptive recursive filter systems. Simulations show that an algorithm including random immigrants outperforms a more conventional algorithm using the breeder genetic algorithm as the mutation operator when the time variation is discontinuous, but neither algorithm performs well when the time variation is rapid but smooth. To meet this deficit, a new hybrid algorithm which uses a hill climber as an additional genetic operator, applied for several steps at each generation, is introduced. A comparison is made of the effect of applying the hill climbing operator a few times to all members of the population or a larger number of times solely to the best individual; it is found that applying to the whole population yields the better results, substantially improved compared with those obtained using earlier methods.
Measurement of speech levels in the presence of time varying background noise
Pearsons, K. S.; Horonjeff, R.
1982-01-01
Short-term speech level measurements which could be used to note changes in vocal effort in a time varying noise environment were studied. Knowing the changes in speech level would in turn allow prediction of intelligibility in the presence of aircraft flyover noise. Tests indicated that it is possible to use two second samples of speech to estimate long term root mean square speech levels. Other tests were also performed in which people read out loud during aircraft flyover noise. Results of these tests indicate that people do indeed raise their voice during flyovers at a rate of about 3-1/2 dB for each 10 dB increase in background level. This finding is in agreement with other tests of speech levels in the presence of steady state background noise.
Time-Varying Transition Probability Matrix Estimation and Its Application to Brand Share Analysis.
Chiba, Tomoaki; Hino, Hideitsu; Akaho, Shotaro; Murata, Noboru
2017-01-01
In a product market or stock market, different products or stocks compete for the same consumers or purchasers. We propose a method to estimate the time-varying transition matrix of the product share using a multivariate time series of the product share. The method is based on the assumption that each of the observed time series of shares is a stationary distribution of the underlying Markov processes characterized by transition probability matrices. We estimate transition probability matrices for every observation under natural assumptions. We demonstrate, on a real-world dataset of the share of automobiles, that the proposed method can find intrinsic transition of shares. The resulting transition matrices reveal interesting phenomena, for example, the change in flows between TOYOTA group and GM group for the fiscal year where TOYOTA group's sales beat GM's sales, which is a reasonable scenario.
Time-Varying Transition Probability Matrix Estimation and Its Application to Brand Share Analysis.
Directory of Open Access Journals (Sweden)
Tomoaki Chiba
Full Text Available In a product market or stock market, different products or stocks compete for the same consumers or purchasers. We propose a method to estimate the time-varying transition matrix of the product share using a multivariate time series of the product share. The method is based on the assumption that each of the observed time series of shares is a stationary distribution of the underlying Markov processes characterized by transition probability matrices. We estimate transition probability matrices for every observation under natural assumptions. We demonstrate, on a real-world dataset of the share of automobiles, that the proposed method can find intrinsic transition of shares. The resulting transition matrices reveal interesting phenomena, for example, the change in flows between TOYOTA group and GM group for the fiscal year where TOYOTA group's sales beat GM's sales, which is a reasonable scenario.
The time-varying correlation between policy uncertainty and stock returns: Evidence from China
Xiong, Xiong; Bian, Yuxiang; Shen, Dehua
2018-06-01
In this paper, we use a new policy uncertainty index to investigate the time-varying correlation between economic policy uncertainty (EPU) and Chinese stock market returns. The correlation is examined in the period from January 1995 to December 2016. We show that absolute changes in EPU have a significant impact on stock market returns. Specifically, empirical results based on the DCC-GARCH model reveal that the correlation between EPU and stock returns has large fluctuations, especially during a financial crisis; in addition, the impact of EPU on the Shanghai stock market is greater than on the Shenzhen stock market. Robustness results reveal that the impact of EPU on state-owned enterprises is larger than on non-state enterprises. All of these results highlight the important role of EPU in the Chinese stock market, and shed light on such issues for future research.
The time-varying role of the family in student time use and achievement
Directory of Open Access Journals (Sweden)
Marie C. Hull
2017-10-01
Full Text Available Abstract In this paper, I use a unique dataset linking administrative school data with birth records to quantify the importance of time-varying family factors for child achievement and time use. Specifically, I take a model of academic achievement commonly used in the test score literature, and I augment it to include a family-year effect. Identification comes from the large number of sibling pairs observed in the same year. While prior literature has focused on specific shocks, such as job loss, I capture the full set of innovations that are shared across siblings in a given year. The distributions of fixed effects reveal that annual family innovations, relative to what was expected based on the previous year, are more important than teacher assignment for student achievement and also play a substantial role in the time students spend on homework, free reading, and television. JEL Classification I21, J13, J24
Multistability and instability analysis of recurrent neural networks with time-varying delays.
Zhang, Fanghai; Zeng, Zhigang
2018-01-01
This paper provides new theoretical results on the multistability and instability analysis of recurrent neural networks with time-varying delays. It is shown that such n-neuronal recurrent neural networks have exactly [Formula: see text] equilibria, [Formula: see text] of which are locally exponentially stable and the others are unstable, where k 0 is a nonnegative integer such that k 0 ≤n. By using the combination method of two different divisions, recurrent neural networks can possess more dynamic properties. This method improves and extends the existing results in the literature. Finally, one numerical example is provided to show the superiority and effectiveness of the presented results. Copyright © 2017 Elsevier Ltd. All rights reserved.
Passivity analysis of memristor-based impulsive inertial neural networks with time-varying delays.
Wan, Peng; Jian, Jigui
2018-03-01
This paper focuses on delay-dependent passivity analysis for a class of memristive impulsive inertial neural networks with time-varying delays. By choosing proper variable transformation, the memristive inertial neural networks can be rewritten as first-order differential equations. The memristive model presented here is regarded as a switching system rather than employing the theory of differential inclusion and set-value map. Based on matrix inequality and Lyapunov-Krasovskii functional method, several delay-dependent passivity conditions are obtained to ascertain the passivity of the addressed networks. In addition, the results obtained here contain those on the passivity for the addressed networks without impulse effects as special cases and can also be generalized to other neural networks with more complex pulse interference. Finally, one numerical example is presented to show the validity of the obtained results. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Gu, Huaying; Liu, Zhixue; Weng, Yingliang
2017-04-01
The present study applies the multivariate generalized autoregressive conditional heteroscedasticity (MGARCH) with spatial effects approach for the analysis of the time-varying conditional correlations and contagion effects among global real estate markets. A distinguishing feature of the proposed model is that it can simultaneously capture the spatial interactions and the dynamic conditional correlations compared with the traditional MGARCH models. Results reveal that the estimated dynamic conditional correlations have exhibited significant increases during the global financial crisis from 2007 to 2009, thereby suggesting contagion effects among global real estate markets. The analysis further indicates that the returns of the regional real estate markets that are in close geographic and economic proximities exhibit strong co-movement. In addition, evidence of significantly positive leverage effects in global real estate markets is also determined. The findings have significant implications on global portfolio diversification opportunities and risk management practices.
Estimating time-varying conditional correlations between stock and foreign exchange markets
Tastan, Hüseyin
2006-02-01
This study explores the dynamic interaction between stock market returns and changes in nominal exchange rates. Many financial variables are known to exhibit fat tails and autoregressive variance structure. It is well-known that unconditional covariance and correlation coefficients also vary significantly over time and multivariate generalized autoregressive model (MGARCH) is able to capture the time-varying variance-covariance matrix for stock market returns and changes in exchange rates. The model is applied to daily Euro-Dollar exchange rates and two stock market indexes from the US economy: Dow-Jones Industrial Average Index and S&P500 Index. The news impact surfaces are also drawn based on the model estimates to see the effects of idiosyncratic shocks in respective markets.
Parameter Estimation of a Closed Loop Coupled Tank Time Varying System using Recursive Methods
International Nuclear Information System (INIS)
Basir, Siti Nora; Yussof, Hanafiah; Shamsuddin, Syamimi; Selamat, Hazlina; Zahari, Nur Ismarrubie
2013-01-01
This project investigates the direct identification of closed loop plant using discrete-time approach. The uses of Recursive Least Squares (RLS), Recursive Instrumental Variable (RIV) and Recursive Instrumental Variable with Centre-Of-Triangle (RIV + COT) in the parameter estimation of closed loop time varying system have been considered. The algorithms were applied in a coupled tank system that employs covariance resetting technique where the time of parameter changes occur is unknown. The performances of all the parameter estimation methods, RLS, RIV and RIV + COT were compared. The estimation of the system whose output was corrupted with white and coloured noises were investigated. Covariance resetting technique successfully executed when the parameters change. RIV + COT gives better estimates than RLS and RIV in terms of convergence and maximum overshoot
Time-varying Entry Heating Profile Replication with a Rotating Arc Jet Test Article
Grinstead, Jay Henderson; Venkatapathy, Ethiraj; Noyes, Eric A.; Mach, Jeffrey J.; Empey, Daniel M.; White, Todd R.
2014-01-01
A new approach for arc jet testing of thermal protection materials at conditions approximating the time-varying conditions of atmospheric entry was developed and demonstrated. The approach relies upon the spatial variation of heat flux and pressure over a cylindrical test model. By slowly rotating a cylindrical arc jet test model during exposure to an arc jet stream, each point on the test model will experience constantly changing applied heat flux. The predicted temporal profile of heat flux at a point on a vehicle can be replicated by rotating the cylinder at a prescribed speed and direction. An electromechanical test model mechanism was designed, built, and operated during an arc jet test to demonstrate the technique.
Horner, Andrew B; Beauchamp, James W; So, Richard H Y
2009-01-01
Gradated spectral interpolations between musical instrument tone pairs were used to investigate discrimination as a function of time-averaged spectral difference. All possible nonidentical pairs taken from a collection of eight musical instrument sounds consisting of bassoon, clarinet, flute, horn, oboe, saxophone, trumpet, and violin were tested. For each pair, several tones were generated with different balances between the primary and secondary instruments, where the balance was fixed across the duration of each tone. Among primary instruments it was found that changes to horn and bassoon [corrected] were most easily discriminable, while changes to saxophone and trumpet timbres were least discriminable. Among secondary instruments, the clarinet had the strongest effect on discrimination, whereas the bassoon had the least effect. For primary instruments, strong negative correlations were found between discrimination and their spectral incoherences, suggesting that the presence of dynamic spectral variations tends to increase the difficulty of detecting time-varying alterations such as spectral interpolation.
Fault Detection for Non-Gaussian Stochastic Systems with Time-Varying Delay
Directory of Open Access Journals (Sweden)
Tao Li
2013-01-01
Full Text Available Fault detection (FD for non-Gaussian stochastic systems with time-varying delay is studied. The available information for the addressed problem is the input and the measured output probability density functions (PDFs of the system. In this framework, firstly, by constructing an augmented Lyapunov functional, which involves some slack variables and a tuning parameter, a delay-dependent condition for the existence of FD observer is derived in terms of linear matrix inequality (LMI and the fault can be detected through a threshold. Secondly, in order to improve the detection sensitivity performance, the optimal algorithm is applied to minimize the threshold value. Finally, paper-making process example is given to demonstrate the applicability of the proposed approach.
A Time-Varied Probabilistic ON/OFF Switching Algorithm for Cellular Networks
Rached, Nadhir B.
2018-01-11
In this letter, we develop a time-varied probabilistic on/off switching planning method for cellular networks to reduce their energy consumption. It consists in a risk-aware optimization approach that takes into consideration the randomness of the user profile associated with each base station (BS). The proposed approach jointly determines (i) the instants of time at which the current active BS configuration must be updated due to an increase or decrease of the network traffic load, and (ii) the set of minimum BSs to be activated to serve the networks’ subscribers. Probabilistic metrics modeling the traffic profile variation are developed to trigger this dynamic on/off switching operation. Selected simulation results are then performed to validate the proposed algorithm for different system parameters.
A topological approach to migration and visualization of time-varying volume data
International Nuclear Information System (INIS)
Fujishiro, Issei; Otsuka, Rieko; Hamaoka, Aya; Takeshima, Yuriko; Takahashi, Shigeo
2004-01-01
Rapid advance in high performance computing and measurement technologies has recently made it possible to produce a stupendous amount of time-varying volume datasets in various disciplines. However, there exist a few known visual exploration tools which allow us to investigate the core of their complex behavior effectively. In this article, our previous approach to topological volume skeletonization is extended to capture the topological skeleton of a 4D volumetric field in terms of critical timing. A cyclic information drilldown scheme, termed T-map, is presented, where a wide choice of information visualization techniques are deployed so that the users are allowed to repeatedly squeeze partial spatiotemporal domains of interest until the size gets fitted into an available computing storage space, prior to topologically-accentuated visualization of the pinpointed volumetric domains. A case study with datasets from atomic collision research is performed to illustrate the feasibility of the present method. (author)
Efficiency or speculation? A time-varying analysis of European sovereign debt
Ferreira, Paulo
2018-01-01
The outbreak of the Greek debt crisis caused turmoil in European markets and drew attention to the problem of public debt and its consequences. The increase in the return rates of sovereign debts was one of these consequences. However, like any other asset, sovereign debt returns are expected to have a memoryless behaviour. Analysing a total of 15 European countries (Eurozone and non-Eurozone), and applying a time-varying analysis of the Hurst exponent, we found evidence of long-range memory in sovereign bonds. When analysing the spreads between each bond and the German one, it is possible to conclude that Eurozone countries' spreads show more evidence of long-range dependence. Considering the Eurozone countries most affected by the Eurozone crisis, that long-range dependence is more evident, but started before the crisis, which could be interpreted as possible speculation by investors.
The optimal replenishment policy for time-varying stochastic demand under vendor managed inventory
DEFF Research Database (Denmark)
Govindan, Kannan
2015-01-01
A Vendor Managed Inventory (VMI) partnership places the responsibility on the vendor (rather than on buyers) to schedule purchase orders for inventory replenishment in the supply chain system. In this research, the supply chain network considers the Silver-Meal heuristic with an augmentation...... quantity replenishment policy between both traditional and VMI systems. We consider time-varying stochastic demand in two-echelon (one vendor, multiple retailers) supply chains. This paper seeks to find the supply chain that minimizes system cost through comparing performance between traditional and VMI...... systems. A mathematical model is developed, and total supply chain cost is used as the measure of comparison. The models are applied in both traditional and VMI supply chains based on pharmaceutical industry data, and we focus on total cost difference compared through the use of Adjusted Silver-Meal (ASM...
Linear response approach to active Brownian particles in time-varying activity fields
Merlitz, Holger; Vuijk, Hidde D.; Brader, Joseph; Sharma, Abhinav; Sommer, Jens-Uwe
2018-05-01
In a theoretical and simulation study, active Brownian particles (ABPs) in three-dimensional bulk systems are exposed to time-varying sinusoidal activity waves that are running through the system. A linear response (Green-Kubo) formalism is applied to derive fully analytical expressions for the torque-free polarization profiles of non-interacting particles. The activity waves induce fluxes that strongly depend on the particle size and may be employed to de-mix mixtures of ABPs or to drive the particles into selected areas of the system. Three-dimensional Langevin dynamics simulations are carried out to verify the accuracy of the linear response formalism, which is shown to work best when the particles are small (i.e., highly Brownian) or operating at low activity levels.
Weighted H∞ Filtering for a Class of Switched Linear Systems with Additive Time-Varying Delays
Directory of Open Access Journals (Sweden)
Li-li Li
2015-01-01
Full Text Available This paper is concerned with the problem of weighted H∞ filtering for a class of switched linear systems with two additive time-varying delays, which represent a general class of switched time-delay systems with strong practical background. Combining average dwell time (ADT technique with piecewise Lyapunov functionals, sufficient conditions are established to guarantee the exponential stability and weighted H∞ performance for the filtering error systems. The parameters of the designed switched filters are obtained by solving linear matrix inequalities (LMIs. A modification of Jensen integral inequality is exploited to derive results with less theoretical conservatism and computational complexity. Finally, two examples are given to demonstrate the effectiveness of the proposed method.
Synchronization criterion for Lur'e type complex dynamical networks with time-varying delay
International Nuclear Information System (INIS)
Ji, D.H.; Park, Ju H.; Yoo, W.J.; Won, S.C.; Lee, S.M.
2010-01-01
In this Letter, the synchronization problem for a class of complex dynamical networks in which every identical node is a Lur'e system with time-varying delay is considered. A delay-dependent synchronization criterion is derived for the synchronization of complex dynamical network that represented by Lur'e system with sector restricted nonlinearities. The derived criterion is a sufficient condition for absolute stability of error dynamics between the each nodes and the isolated node. Using a convex representation of the nonlinearity for error dynamics, the stability condition based on the discretized Lyapunov-Krasovskii functional is obtained via LMI formulation. The proposed delay-dependent synchronization criterion is less conservative than the existing ones. The effectiveness of our work is verified through numerical examples.
International Nuclear Information System (INIS)
Xu Shengyuan; Lam, James; Ho, Daniel W.C.
2005-01-01
This Letter is concerned with the problem of robust stability analysis for interval neural networks with multiple time-varying delays and parameter uncertainties. The parameter uncertainties are assumed to be bounded in given compact sets and the activation functions are supposed to be bounded and globally Lipschitz continuous. A sufficient condition is obtained by means of Lyapunov functionals, which guarantees the existence, uniqueness and global asymptotic stability of the delayed neural network for all admissible uncertainties. This condition is in terms of a linear matrix inequality (LMI), which can be easily checked by using recently developed algorithms in solving LMIs. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed method
Discrete-time recurrent neural networks with time-varying delays: Exponential stability analysis
International Nuclear Information System (INIS)
Liu, Yurong; Wang, Zidong; Serrano, Alan; Liu, Xiaohui
2007-01-01
This Letter is concerned with the analysis problem of exponential stability for a class of discrete-time recurrent neural networks (DRNNs) with time delays. The delay is of the time-varying nature, and the activation functions are assumed to be neither differentiable nor strict monotonic. Furthermore, the description of the activation functions is more general than the recently commonly used Lipschitz conditions. Under such mild conditions, we first prove the existence of the equilibrium point. Then, by employing a Lyapunov-Krasovskii functional, a unified linear matrix inequality (LMI) approach is developed to establish sufficient conditions for the DRNNs to be globally exponentially stable. It is shown that the delayed DRNNs are globally exponentially stable if a certain LMI is solvable, where the feasibility of such an LMI can be easily checked by using the numerically efficient Matlab LMI Toolbox. A simulation example is presented to show the usefulness of the derived LMI-based stability condition
An Explicit MOT-TD-VIE Solver for Time Varying Media
Sayed, Sadeed Bin
2016-03-15
An explicit marching on-in-time (MOT) scheme for solving the time domain electric field integral equation enforced on volumes with time varying dielectric permittivity is proposed. Unknowns of the integral equation and the constitutive relation, i.e., flux density and field intensity, are discretized using full and half Schaubert-Wilton-Glisson functions in space. Temporal interpolation is carried out using band limited approximate prolate spherical wave functions. The discretized coupled system of integral equation and constitutive relation is integrated in time using a PE(CE)m type linear multistep scheme. Unlike the existing MOT methods, the resulting explicit MOT scheme allows for straightforward incorporation of the time variation in the dielectric permittivity.
Periodic solution for state-dependent impulsive shunting inhibitory CNNs with time-varying delays.
Şaylı, Mustafa; Yılmaz, Enes
2015-08-01
In this paper, we consider existence and global exponential stability of periodic solution for state-dependent impulsive shunting inhibitory cellular neural networks with time-varying delays. By means of B-equivalence method, we reduce these state-dependent impulsive neural networks system to an equivalent fix time impulsive neural networks system. Further, by using Mawhin's continuation theorem of coincide degree theory and employing a suitable Lyapunov function some new sufficient conditions for existence and global exponential stability of periodic solution are obtained. Previous results are improved and extended. Finally, we give an illustrative example with numerical simulations to demonstrate the effectiveness of our theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.
Luo, T. H.; Liang, S.; Miao, C. B.
2017-12-01
A method of terminal vibration analysis based on Time-varying Glowworm Swarm Optimization algorithm is proposed in order to solve the problem that terminal vibration of the large flexible robot cantilever under heavy load precision.The robot cantilever of the ballastless track is used as the research target and the natural parameters of the flexible cantilever such as the natural frequency, the load impact and the axial deformation is considered. Taking into account the change of the minimum distance between the glowworm individuals, the terminal vibration response and adaptability could meet. According to the Boltzmann selection mechanism, the dynamic parameters in the motion simulation process are determined, while the influence of the natural frequency and the load impact as well as the axial deformation on the terminal vibration is studied. The method is effective and stable, which is of great theoretical basis for the study of vibration control of flexible cantilever terminal.
Lakshmanan, Shanmugam; Prakash, Mani; Lim, Chee Peng; Rakkiyappan, Rajan; Balasubramaniam, Pagavathigounder; Nahavandi, Saeid
2018-01-01
In this paper, synchronization of an inertial neural network with time-varying delays is investigated. Based on the variable transformation method, we transform the second-order differential equations into the first-order differential equations. Then, using suitable Lyapunov-Krasovskii functionals and Jensen's inequality, the synchronization criteria are established in terms of linear matrix inequalities. Moreover, a feedback controller is designed to attain synchronization between the master and slave models, and to ensure that the error model is globally asymptotically stable. Numerical examples and simulations are presented to indicate the effectiveness of the proposed method. Besides that, an image encryption algorithm is proposed based on the piecewise linear chaotic map and the chaotic inertial neural network. The chaotic signals obtained from the inertial neural network are utilized for the encryption process. Statistical analyses are provided to evaluate the effectiveness of the proposed encryption algorithm. The results ascertain that the proposed encryption algorithm is efficient and reliable for secure communication applications.
A multiscale MDCT image-based breathing lung model with time-varying regional ventilation
Energy Technology Data Exchange (ETDEWEB)
Yin, Youbing, E-mail: youbing-yin@uiowa.edu [Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States); IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242 (United States); Department of Radiology, The University of Iowa, Iowa City, IA 52242 (United States); Choi, Jiwoong, E-mail: jiwoong-choi@uiowa.edu [Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States); IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242 (United States); Hoffman, Eric A., E-mail: eric-hoffman@uiowa.edu [Department of Radiology, The University of Iowa, Iowa City, IA 52242 (United States); Department of Biomedical Engineering, The University of Iowa, Iowa City, IA 52242 (United States); Department of Internal Medicine, The University of Iowa, Iowa City, IA 52242 (United States); Tawhai, Merryn H., E-mail: m.tawhai@auckland.ac.nz [Auckland Bioengineering Institute, The University of Auckland, Auckland (New Zealand); Lin, Ching-Long, E-mail: ching-long-lin@uiowa.edu [Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States); IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242 (United States)
2013-07-01
A novel algorithm is presented that links local structural variables (regional ventilation and deforming central airways) to global function (total lung volume) in the lung over three imaged lung volumes, to derive a breathing lung model for computational fluid dynamics simulation. The algorithm constitutes the core of an integrative, image-based computational framework for subject-specific simulation of the breathing lung. For the first time, the algorithm is applied to three multi-detector row computed tomography (MDCT) volumetric lung images of the same individual. A key technique in linking global and local variables over multiple images is an in-house mass-preserving image registration method. Throughout breathing cycles, cubic interpolation is employed to ensure C{sub 1} continuity in constructing time-varying regional ventilation at the whole lung level, flow rate fractions exiting the terminal airways, and airway deformation. The imaged exit airway flow rate fractions are derived from regional ventilation with the aid of a three-dimensional (3D) and one-dimensional (1D) coupled airway tree that connects the airways to the alveolar tissue. An in-house parallel large-eddy simulation (LES) technique is adopted to capture turbulent-transitional-laminar flows in both normal and deep breathing conditions. The results obtained by the proposed algorithm when using three lung volume images are compared with those using only one or two volume images. The three-volume-based lung model produces physiologically-consistent time-varying pressure and ventilation distribution. The one-volume-based lung model under-predicts pressure drop and yields un-physiological lobar ventilation. The two-volume-based model can account for airway deformation and non-uniform regional ventilation to some extent, but does not capture the non-linear features of the lung.
Evolution of colloidal dispersions in novel time-varying optical potentials
Koss, Brian Alan
Optical traps use forces exerted by a tightly focused light beam to trap objects from tens of nanometers to tens of micrometers in size. Since their introduction in 1986, optical tweezers have become very useful to biology, chemistry, and soft condensed-matter physics. Work presented here, promises to advance optical tweezers not only in fundamental scientific research, but also in applications outside of the laboratory and into the mainstream of miniaturized manufacturing and diagnostics. By providing unprecedented access to the mesoscopic world, a new generation of optical traps, called Dynamic Holographic Optical Tweezers (HOTs) offers revolutionary new opportunities for fundamental and applied research. To demonstrate this technique, HOTs will be used to pump particles via a new method of transport called Optical Peristalsis (OP). OP is efficient method for transporting mesoscopic objects in three dimensions using short repetitive sequences of holographic optical trapping patterns. Transport in this process is analogous to peristaltic pumping, with the configurations of optical traps mimicking states of a peristaltic pump. While not limited to the deterministic particle transport, OP, can also be a platform to investigate the stochastic limit of particle transport. Advances in recent years have demonstrated that a variety of time-varying perturbations can induce drift in a diffusive system without exerting an overall force. Among these, are thermal ratchet models in which the system is subjected to time-varying energy landscapes that break spatiotemporal symmetry and thereby induce drift. Typically, the potential energy landscape is chosen to be the sawtooth potential. This work describes an alternate class of symmetric thermal ratchet models, that are not sawtooth, and demonstrates their efficacy in biasing the diffusion of colloidal spheres in both the stochastic and deterministic limits. Unlike previous models, each state in this thermal ratchet consists of
A multiscale MDCT image-based breathing lung model with time-varying regional ventilation
Yin, Youbing; Choi, Jiwoong; Hoffman, Eric A.; Tawhai, Merryn H.; Lin, Ching-Long
2012-01-01
A novel algorithm is presented that links local structural variables (regional ventilation and deforming central airways) to global function (total lung volume) in the lung over three imaged lung volumes, to derive a breathing lung model for computational fluid dynamics simulation. The algorithm constitutes the core of an integrative, image-based computational framework for subject-specific simulation of the breathing lung. For the first time, the algorithm is applied to three multi-detector row computed tomography (MDCT) volumetric lung images of the same individual. A key technique in linking global and local variables over multiple images is an in-house mass-preserving image registration method. Throughout breathing cycles, cubic interpolation is employed to ensure C1 continuity in constructing time-varying regional ventilation at the whole lung level, flow rate fractions exiting the terminal airways, and airway deformation. The imaged exit airway flow rate fractions are derived from regional ventilation with the aid of a three-dimensional (3D) and one-dimensional (1D) coupled airway tree that connects the airways to the alveolar tissue. An in-house parallel large-eddy simulation (LES) technique is adopted to capture turbulent-transitional-laminar flows in both normal and deep breathing conditions. The results obtained by the proposed algorithm when using three lung volume images are compared with those using only one or two volume images. The three-volume-based lung model produces physiologically-consistent time-varying pressure and ventilation distribution. The one-volume-based lung model under-predicts pressure drop and yields un-physiological lobar ventilation. The two-volume-based model can account for airway deformation and non-uniform regional ventilation to some extent, but does not capture the non-linear features of the lung. PMID:23794749
A hepatitis C virus infection model with time-varying drug effectiveness: solution and analysis.
Directory of Open Access Journals (Sweden)
Jessica M Conway
2014-08-01
Full Text Available Simple models of therapy for viral diseases such as hepatitis C virus (HCV or human immunodeficiency virus assume that, once therapy is started, the drug has a constant effectiveness. More realistic models have assumed either that the drug effectiveness depends on the drug concentration or that the effectiveness varies over time. Here a previously introduced varying-effectiveness (VE model is studied mathematically in the context of HCV infection. We show that while the model is linear, it has no closed-form solution due to the time-varying nature of the effectiveness. We then show that the model can be transformed into a Bessel equation and derive an analytic solution in terms of modified Bessel functions, which are defined as infinite series, with time-varying arguments. Fitting the solution to data from HCV infected patients under therapy has yielded values for the parameters in the model. We show that for biologically realistic parameters, the predicted viral decay on therapy is generally biphasic and resembles that predicted by constant-effectiveness (CE models. We introduce a general method for determining the time at which the transition between decay phases occurs based on calculating the point of maximum curvature of the viral decay curve. For the parameter regimes of interest, we also find approximate solutions for the VE model and establish the asymptotic behavior of the system. We show that the rate of second phase decay is determined by the death rate of infected cells multiplied by the maximum effectiveness of therapy, whereas the rate of first phase decline depends on multiple parameters including the rate of increase of drug effectiveness with time.
Toward the integration of European natural gas markets:A time-varying approach
International Nuclear Information System (INIS)
Renou-Maissant, Patricia
2012-01-01
Over the past fifteen years, European gas markets have radically changed. In order to build a single European gas market, a new regulatory framework has been established through three European Gas Directives. The purpose of this article is to investigate the impact of the reforms in the natural gas industry on consumer prices, with a specific focus on gas prices for industrial use. The strength of the relationship between the industrial gas prices of six western European countries is studied by testing the Law of One Price for the period 1991–2009. Estimations were carried out using both cointegration analysis and time-varying parameter models. Results highlight an emerging and on-going process of convergence between the industrial gas prices in western Europe since 2001 for the six EU member states. The strength and the level of convergence differ widely between countries. Strong integration of gas markets in continental Europe, except for the Belgian market, has been established. It appears that the convergence process between continental countries and the UK is not completed. Thus, the integration of European gas markets remains an open issue and the question of how far integration will proceed will still be widely discussed in the coming years. - Highlights: ► We investigate the integration of European natural gas markets. ► We use both cointegration analysis and time-varying parameter models. ► We show the failure of cointegration techniques to take account of evolving processes. ► An emerging and on-going process of convergence between the industrial gas prices is at work. ► Strong integration of gas markets in continental Europe has been established.
Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies.
Zheng, Lingxiao; Hedrick, Tyson L; Mittal, Rajat
2013-01-01
Insect wings can undergo significant chordwise (camber) as well as spanwise (twist) deformation during flapping flight but the effect of these deformations is not well understood. The shape and size of butterfly wings leads to particularly large wing deformations, making them an ideal test case for investigation of these effects. Here we use computational models derived from experiments on free-flying butterflies to understand the effect of time-varying twist and camber on the aerodynamic performance of these insects. High-speed videogrammetry is used to capture the wing kinematics, including deformation, of a Painted Lady butterfly (Vanessa cardui) in untethered, forward flight. These experimental results are then analyzed computationally using a high-fidelity, three-dimensional, unsteady Navier-Stokes flow solver. For comparison to this case, a set of non-deforming, flat-plate wing (FPW) models of wing motion are synthesized and subjected to the same analysis along with a wing model that matches the time-varying wing-twist observed for the butterfly, but has no deformation in camber. The simulations show that the observed butterfly wing (OBW) outperforms all the flat-plate wings in terms of usable force production as well as the ratio of lift to power by at least 29% and 46%, respectively. This increase in efficiency of lift production is at least three-fold greater than reported for other insects. Interestingly, we also find that the twist-only-wing (TOW) model recovers much of the performance of the OBW, demonstrating that wing-twist, and not camber is key to forward flight in these insects. The implications of this on the design of flapping wing micro-aerial vehicles are discussed.
Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies.
Directory of Open Access Journals (Sweden)
Lingxiao Zheng
Full Text Available Insect wings can undergo significant chordwise (camber as well as spanwise (twist deformation during flapping flight but the effect of these deformations is not well understood. The shape and size of butterfly wings leads to particularly large wing deformations, making them an ideal test case for investigation of these effects. Here we use computational models derived from experiments on free-flying butterflies to understand the effect of time-varying twist and camber on the aerodynamic performance of these insects. High-speed videogrammetry is used to capture the wing kinematics, including deformation, of a Painted Lady butterfly (Vanessa cardui in untethered, forward flight. These experimental results are then analyzed computationally using a high-fidelity, three-dimensional, unsteady Navier-Stokes flow solver. For comparison to this case, a set of non-deforming, flat-plate wing (FPW models of wing motion are synthesized and subjected to the same analysis along with a wing model that matches the time-varying wing-twist observed for the butterfly, but has no deformation in camber. The simulations show that the observed butterfly wing (OBW outperforms all the flat-plate wings in terms of usable force production as well as the ratio of lift to power by at least 29% and 46%, respectively. This increase in efficiency of lift production is at least three-fold greater than reported for other insects. Interestingly, we also find that the twist-only-wing (TOW model recovers much of the performance of the OBW, demonstrating that wing-twist, and not camber is key to forward flight in these insects. The implications of this on the design of flapping wing micro-aerial vehicles are discussed.
Time-Varying Distortions of Binaural Information by Bilateral Hearing Aids
Rodriguez, Francisco A.; Portnuff, Cory D. F.; Goupell, Matthew J.; Tollin, Daniel J.
2016-01-01
In patients with bilateral hearing loss, the use of two hearing aids (HAs) offers the potential to restore the benefits of binaural hearing, including sound source localization and segregation. However, existing evidence suggests that bilateral HA users’ access to binaural information, namely interaural time and level differences (ITDs and ILDs), can be compromised by device processing. Our objective was to characterize the nature and magnitude of binaural distortions caused by modern digital behind-the-ear HAs using a variety of stimuli and HA program settings. Of particular interest was a common frequency-lowering algorithm known as nonlinear frequency compression, which has not previously been assessed for its effects on binaural information. A binaural beamforming algorithm was also assessed. Wide dynamic range compression was enabled in all programs. HAs were placed on a binaural manikin, and stimuli were presented from an arc of loudspeakers inside an anechoic chamber. Stimuli were broadband noise bursts, 10-Hz sinusoidally amplitude-modulated noise bursts, or consonant–vowel–consonant speech tokens. Binaural information was analyzed in terms of ITDs, ILDs, and interaural coherence, both for whole stimuli and in a time-varying sense (i.e., within a running temporal window) across four different frequency bands (1, 2, 4, and 6 kHz). Key findings were: (a) Nonlinear frequency compression caused distortions of high-frequency envelope ITDs and significantly reduced interaural coherence. (b) For modulated stimuli, all programs caused time-varying distortion of ILDs. (c) HAs altered the relationship between ITDs and ILDs, introducing large ITD–ILD conflicts in some cases. Potential perceptual consequences of measured distortions are discussed. PMID:27698258
Charbonneau, Jeremy
As the perceived quality of a product is becoming more important in the manufacturing industry, more emphasis is being placed on accurately predicting the sound quality of everyday objects. This study was undertaken to improve upon current prediction techniques with regard to the psychoacoustic descriptor of loudness and an improved binaural summation technique. The feasibility of this project was first investigated through a loudness matching experiment involving thirty-one subjects and pure tones of constant sound pressure level. A dependence of binaural summation on frequency was observed which had previously not been a subject of investigation in the reviewed literature. A follow-up investigation was carried out with forty-eight volunteers and pure tones of constant sensation level. Contrary to existing theories in literature the resulting loudness matches revealed an amplitude versus frequency relationship which confirmed the perceived increase in loudness when a signal was presented to both ears simultaneously as opposed to one ear alone. The resulting trend strongly indicated that the higher the frequency of the presented signal, the greater the increase in observed binaural summation. The results from each investigation were summarized into a single binaural summation algorithm and inserted into an improved time-varying loudness model. Using experimental techniques, it was demonstrated that the updated binaural summation algorithm was a considerable improvement over the state of the art approach for predicting the perceived binaural loudness. The improved function retained the ease of use from the original model while additionally providing accurate estimates of diotic listening conditions from monaural WAV files. It was clearly demonstrated using a validation jury test that the revised time-varying loudness model was a significant improvement over the previously standardized approach.
Local inertial oscillations in the surface ocean generated by time-varying winds
Chen, Shengli; Polton, Jeff A.; Hu, Jianyu; Xing, Jiuxing
2015-12-01
A new relationship is presented to give a review study on the evolution of inertial oscillations in the surface ocean locally generated by time-varying wind stress. The inertial oscillation is expressed as the superposition of a previous oscillation and a newly generated oscillation, which depends upon the time-varying wind stress. This relationship is employed to investigate some idealized wind change events. For a wind series varying temporally with different rates, the induced inertial oscillation is dominated by the wind with the greatest variation. The resonant wind, which rotates anti-cyclonically at the local inertial frequency with time, produces maximal amplitude of inertial oscillations, which grows monotonically. For the wind rotating at non-inertial frequencies, the responses vary periodically, with wind injecting inertial energy when it is in phase with the currents, but removing inertial energy when it is out of phase. The wind rotating anti-cyclonically with time is much more favorable to generate inertial oscillations than the cyclonic rotating wind. The wind with a frequency closer to the inertial frequency generates stronger inertial oscillations. For a diurnal wind, the induced inertial oscillation is dependent on latitude and is most significant at 30 °. This relationship is also applied to examine idealized moving cyclones. The inertial oscillation is much stronger on the right-hand side of the cyclone path than on the left-hand side (in the northern hemisphere). This is due to the wind being anti-cyclonic with time on the right-hand side, but cyclonic on the other side. The inertial oscillation varies with the cyclone translation speed. The optimal translation speed generating the greatest inertial oscillations is 2 m/s at the latitude of 10 ° and gradually increases to 6 m/s at the latitude of 30 °.
Fluctuating interaction network and time-varying stability of a natural fish community
Ushio, Masayuki; Hsieh, Chih-Hao; Masuda, Reiji; Deyle, Ethan R.; Ye, Hao; Chang, Chun-Wei; Sugihara, George; Kondoh, Michio
2018-02-01
Ecological theory suggests that large-scale patterns such as community stability can be influenced by changes in interspecific interactions that arise from the behavioural and/or physiological responses of individual species varying over time. Although this theory has experimental support, evidence from natural ecosystems is lacking owing to the challenges of tracking rapid changes in interspecific interactions (known to occur on timescales much shorter than a generation time) and then identifying the effect of such changes on large-scale community dynamics. Here, using tools for analysing nonlinear time series and a 12-year-long dataset of fortnightly collected observations on a natural marine fish community in Maizuru Bay, Japan, we show that short-term changes in interaction networks influence overall community dynamics. Among the 15 dominant species, we identify 14 interspecific interactions to construct a dynamic interaction network. We show that the strengths, and even types, of interactions change with time; we also develop a time-varying stability measure based on local Lyapunov stability for attractor dynamics in non-equilibrium nonlinear systems. We use this dynamic stability measure to examine the link between the time-varying interaction network and community stability. We find seasonal patterns in dynamic stability for this fish community that broadly support expectations of current ecological theory. Specifically, the dominance of weak interactions and higher species diversity during summer months are associated with higher dynamic stability and smaller population fluctuations. We suggest that interspecific interactions, community network structure and community stability are dynamic properties, and that linking fluctuating interaction networks to community-level dynamic properties is key to understanding the maintenance of ecological communities in nature.
Zhang, Junzhi; Li, Yutong; Lv, Chen; Gou, Jinfang; Yuan, Ye
2017-03-01
The flexibility of the electrified powertrain system elicits a negative effect upon the cooperative control performance between regenerative and hydraulic braking and the active damping control performance. Meanwhile, the connections among sensors, controllers, and actuators are realized via network communication, i.e., controller area network (CAN), that introduces time-varying delays and deteriorates the control performances of the closed-loop control systems. As such, the goal of this paper is to develop a control algorithm to cope with all these challenges. To this end, the models of the stochastic network induced time-varying delays, based on a real in-vehicle network topology and on a flexible electrified powertrain, were firstly built. In order to further enhance the control performances of active damping and cooperative control of regenerative and hydraulic braking, the time-varying delays compensation algorithm for the electrified powertrain active damping during regenerative braking was developed based on a predictive scheme. The augmented system is constructed and the H∞ performance is analyzed. Based on this analysis, the control gains are derived by solving a nonlinear minimization problem. The simulations and hardware-in-loop (HIL) tests were carried out to validate the effectiveness of the developed algorithm. The test results show that the active damping and cooperative control performances are enhanced significantly.
A Sweep-Line Method for State Space Exploration
DEFF Research Database (Denmark)
Christensen, Søren; Kristensen, Lars Michael; Mailund, Thomas
2001-01-01
generation, since these states can never be reached again. This in turn reduces the memory used for state space storage during the task of verification. Examples of progress measures are sequence numbers in communication protocols and time in certain models with time. We illustrate the application...... of the method on a number of Coloured Petri Net models, and give a first evaluation of its practicality by means of an implementation based on the Design/CPN state space tool. Our experiments show significant reductions in both space and time used during state space exploration. The method is not specific...... to Coloured Petri Nets but applicable to a wide range of modelling languages....
A d-person Differential Game with State Space Constraints
International Nuclear Information System (INIS)
Ramasubramanian, S.
2007-01-01
We consider a network of d companies (insurance companies, for example) operating under a treaty to diversify risk. Internal and external borrowing are allowed to avert ruin of any member of the network. The amount borrowed to prevent ruin is viewed upon as control. Repayment of these loans entails a control cost in addition to the usual costs. Each company tries to minimize its repayment liability. This leads to a d -person differential game with state space constraints. If the companies are also in possible competition a Nash equilibrium is sought. Otherwise a utopian equilibrium is more appropriate. The corresponding systems of HJB equations and boundary conditions are derived. In the case of Nash equilibrium, the Hamiltonian can be discontinuous; there are d interlinked control problems with state constraints; each value function is a constrained viscosity solution to the appropriate discontinuous HJB equation. Uniqueness does not hold in general in this case. In the case of utopian equilibrium, each value function turns out to be the unique constrained viscosity solution to the appropriate HJB equation. Connection with Skorokhod problem is briefly discussed
Mixture estimation with state-space components and Markov model of switching
Czech Academy of Sciences Publication Activity Database
Nagy, Ivan; Suzdaleva, Evgenia
2013-01-01
Roč. 37, č. 24 (2013), s. 9970-9984 ISSN 0307-904X R&D Projects: GA TA ČR TA01030123 Institutional support: RVO:67985556 Keywords : probabilistic dynamic mixtures, * probability density function * state-space models * recursive mixture estimation * Bayesian dynamic decision making under uncertainty * Kerridge inaccuracy Subject RIV: BC - Control Systems Theory Impact factor: 2.158, year: 2013 http://library.utia.cas.cz/separaty/2013/AS/nagy-mixture estimation with state-space components and markov model of switching.pdf
Phan, Anh Tuan; Ho, Duc Du; Hermann, Gilles; Wira, Patrice
2015-12-01
For power quality issues like reducing harmonic pollution, reactive power and load unbalance, the estimation of the fundamental frequency of a power lines in a fast and precise way is essential. This paper introduces a new state-space model to be used with an extended Kalman filter (EKF) for estimating the frequency of distorted power system signals in real-time. The proposed model takes into account all the characteristics of a general three-phase power system and mainly the unbalance. Therefore, the symmetrical components of the power system, i.e., their amplitude and phase angle values, can also be deduced at each iteration from the proposed state-space model. The effectiveness of the method has been evaluated. Results and comparisons of online frequency estimation and symmetrical components identification show the efficiency of the proposed method for disturbed and time-varying signals.
Mass Redistribution in the Core and Time-varying Gravity at the Earth's Surface
Kuang, Wei-Jia; Chao, Benjamin F.; Fang, Ming
2003-01-01
The Earth's liquid outer core is in convection, as suggested by the existence of the geomagnetic field in much of the Earth's history. One consequence of the convection is the redistribution of mass resulting from relative motion among fluid parcels with slightly different densities. This time dependent mass redistribution inside the core produces a small perturbation on the gravity field of the Earth. With our numerical dynamo solutions, we find that the mass redistribution (and the resultant gravity field) symmetric about the equator is much stronger than that anti-symmetric about the equator. In particular, J(sub 2) component is the strongest. In addition, the gravity field variation increases with the Rayleigh number that measures the driving force for the geodynamo in the core. With reasonable scaling from the current dynamo solutions, we could expect that at the surface of the Earth, the J(sub 2) variation from the core is on the order of l0(exp -16)/year relative to the mean (i.e. spherically symmetric) gravity field of the Earth. The possible shielding effect due to core-mantle boundary pressure variation loading is likely much smaller and is therefore negligible. Our results suggest that time-varying gravity field perturbation due to core mass redistribution may be measured with modem space geodetic observations, which will result a new means of detecting dynamical processes in the Earth's deep interior.
Replicability of time-varying connectivity patterns in large resting state fMRI samples.
Abrol, Anees; Damaraju, Eswar; Miller, Robyn L; Stephen, Julia M; Claus, Eric D; Mayer, Andrew R; Calhoun, Vince D
2017-12-01
The past few years have seen an emergence of approaches that leverage temporal changes in whole-brain patterns of functional connectivity (the chronnectome). In this chronnectome study, we investigate the replicability of the human brain's inter-regional coupling dynamics during rest by evaluating two different dynamic functional network connectivity (dFNC) analysis frameworks using 7 500 functional magnetic resonance imaging (fMRI) datasets. To quantify the extent to which the emergent functional connectivity (FC) patterns are reproducible, we characterize the temporal dynamics by deriving several summary measures across multiple large, independent age-matched samples. Reproducibility was demonstrated through the existence of basic connectivity patterns (FC states) amidst an ensemble of inter-regional connections. Furthermore, application of the methods to conservatively configured (statistically stationary, linear and Gaussian) surrogate datasets revealed that some of the studied state summary measures were indeed statistically significant and also suggested that this class of null model did not explain the fMRI data fully. This extensive testing of reproducibility of similarity statistics also suggests that the estimated FC states are robust against variation in data quality, analysis, grouping, and decomposition methods. We conclude that future investigations probing the functional and neurophysiological relevance of time-varying connectivity assume critical importance. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Solution to the monoenergetic time-dependent neutron transport equation with a time-varying source
International Nuclear Information System (INIS)
Ganapol, B.D.
1986-01-01
Even though fundamental time-dependent neutron transport problems have existed since the inception of neutron transport theory, it has only been recently that a reliable numerical solution to one of the basic problems has been obtained. Experience in generating numerical solutions to time-dependent transport equations has indicated that the multiple collision formulation is the most versatile numerical technique for model problems. The formulation coupled with a moment reconstruction of each collided flux component has led to benchmark-quality (four- to five-digit accuracy) numerical evaluation of the neutron flux in plane infinite geometry for any degree of scattering anisotropy and for both pulsed isotropic and beam sources. As will be shown in this presentation, this solution can serve as a Green's function, thus extending the previous results to more complicated source situations. Here we will be concerned with a time-varying source at the center of an infinite medium. If accurate, such solutions have both pedagogical and practical uses as benchmarks against which other more approximate solutions designed for a wider class of problems can be compared
Visualizing Robustness of Critical Points for 2D Time-Varying Vector Fields
Wang, B.
2013-06-01
Analyzing critical points and their temporal evolutions plays a crucial role in understanding the behavior of vector fields. A key challenge is to quantify the stability of critical points: more stable points may represent more important phenomena or vice versa. The topological notion of robustness is a tool which allows us to quantify rigorously the stability of each critical point. Intuitively, the robustness of a critical point is the minimum amount of perturbation necessary to cancel it within a local neighborhood, measured under an appropriate metric. In this paper, we introduce a new analysis and visualization framework which enables interactive exploration of robustness of critical points for both stationary and time-varying 2D vector fields. This framework allows the end-users, for the first time, to investigate how the stability of a critical point evolves over time. We show that this depends heavily on the global properties of the vector field and that structural changes can correspond to interesting behavior. We demonstrate the practicality of our theories and techniques on several datasets involving combustion and oceanic eddy simulations and obtain some key insights regarding their stable and unstable features. © 2013 The Author(s) Computer Graphics Forum © 2013 The Eurographics Association and Blackwell Publishing Ltd.
Connelly, Blair C.
In order to reduce the emission of pollutants such as soot and NO x from combustion systems, a detailed understanding of pollutant formation is required. In addition to environmental concerns, this is important for a fundamental understanding of flame behavior as significant quantities of soot lower local flame temperatures, increase overall flame length and affect the formation of such temperature-dependent species as NOx. This problem is investigated by carrying out coupled computational and experimental studies of steady and time-varying sooting, coflow diffusion flames. Optical diagnostic techniques are a powerful tool for characterizing combustion systems, as they provide a noninvasive method of probing the environment. Laser diagnostic techniques have added advantages, as systems can be probed with high spectral, temporal and spatial resolution, and with species selectivity. Experimental soot volume fractions were determined by using two-dimensional laser-induced incandescence (LII), calibrated with an on-line extinction measurement, and soot pyrometry. Measurements of soot particle size distributions are made using time-resolved LII (TR-LII). Laser-induced fluorescence measurements are made of NO and formaldehyde. These experimental measurements, and others, are compared with computational results in an effort to understand and model soot formation and to examine the coupled relationship of soot and NO x formation.
Optimal routing of hazardous substances in time-varying, stochastic transportation networks
International Nuclear Information System (INIS)
Woods, A.L.; Miller-Hooks, E.; Mahmassani, H.S.
1998-07-01
This report is concerned with the selection of routes in a network along which to transport hazardous substances, taking into consideration several key factors pertaining to the cost of transport and the risk of population exposure in the event of an accident. Furthermore, the fact that travel time and the risk measures are not constant over time is explicitly recognized in the routing decisions. Existing approaches typically assume static conditions, possibly resulting in inefficient route selection and unnecessary risk exposure. The report described the application of recent advances in network analysis methodologies to the problem of routing hazardous substances. Several specific problem formulations are presented, reflecting different degrees of risk aversion on the part of the decision-maker, as well as different possible operational scenarios. All procedures explicitly consider travel times and travel costs (including risk measures) to be stochastic time-varying quantities. The procedures include both exact algorithms, which may require extensive computational effort in some situations, as well as more efficient heuristics that may not guarantee a Pareto-optimal solution. All procedures are systematically illustrated for an example application using the Texas highway network, for both normal and incident condition scenarios. The application illustrates the trade-offs between the information obtained in the solution and computational efficiency, and highlights the benefits of incorporating these procedures in a decision-support system for hazardous substance shipment routing decisions
Directory of Open Access Journals (Sweden)
Surafel Luleseged Tilahun
2017-01-01
Full Text Available Traffic congestion is one of the main issues in the study of transportation planning and management. It creates different problems including environmental pollution and health problem and incurs a cost which is increasing through years. One-third of this congestion is created by cars searching for parking places. Drivers may be aware that parking places are fully occupied but will drive around hoping that a parking place may become vacant. Opportunistic services, involving learning, predicting, and exploiting Internet of Things scenarios, are able to adapt to dynamic unforeseen situations and have the potential to ease parking search issues. Hence, in this paper, a cooperative dynamic prediction mechanism between multiple agents for parking space availability in the neighborhood, integrating foreseen and unforeseen events and adapting for long-term changes, is proposed. An agent in each parking place will use a dynamic and time varying Markov chain to predict the parking availability and these agents will communicate to produce the parking availability prediction in the whole neighborhood. Furthermore, a learning approach is proposed where the system can adapt to different changes in the parking demand including long-term changes. Simulation results, using synthesized data based on an actual parking lot data from a shopping mall in Geneva, show that the proposed model is promising based on the learning accuracy with service adaptation and performance in different cases.
St-Onge, Guillaume; Young, Jean-Gabriel; Laurence, Edward; Murphy, Charles; Dubé, Louis J.
2018-02-01
We present a degree-based theoretical framework to study the susceptible-infected-susceptible (SIS) dynamics on time-varying (rewired) configuration model networks. Using this framework on a given degree distribution, we provide a detailed analysis of the stationary state using the rewiring rate to explore the whole range of the time variation of the structure relative to that of the SIS process. This analysis is suitable for the characterization of the phase transition and leads to three main contributions: (1) We obtain a self-consistent expression for the absorbing-state threshold, able to capture both collective and hub activation. (2) We recover the predictions of a number of existing approaches as limiting cases of our analysis, providing thereby a unifying point of view for the SIS dynamics on random networks. (3) We obtain bounds for the critical exponents of a number of quantities in the stationary state. This allows us to reinterpret the concept of hub-dominated phase transition. Within our framework, it appears as a heterogeneous critical phenomenon: observables for different degree classes have a different scaling with the infection rate. This phenomenon is followed by the successive activation of the degree classes beyond the epidemic threshold.
On the link between oil price and exchange rate: A time-varying VAR parameter approach
International Nuclear Information System (INIS)
Bremond, Vincent; Razafindrabe, Tovonony; Hache, Emmanuel
2015-07-01
The aim of this paper is to study the relationship between the effective exchange rate of the dollar and the oil price dynamics from 1976 to 2013. In this context, we propose to explore the economic literature dedicated to financial channels factors (exchange rate, monetary policy, and international liquidity) that could affect the oil price dynamics. In addition to oil prices and the effective exchange rate of the dollar, we use the dry cargo index as a proxy for the real economic activity and prices for precious and industrial raw materials. Using a Bayesian time-varying parameter vector auto-regressive estimation, our main results show that the US Dollar effective exchange rate elasticity of the crude oil prices is not constant across the time and remains negative from 1989. It then highlights that a depreciation of the effective exchange rate of the dollar leads to an increase of the crude oil prices. Our paper also demonstrates the growing influence of financial and commodities markets development upon the global economy. (authors)
Time-varying span efficiency through the wingbeat of desert locusts.
Henningsson, Per; Bomphrey, Richard J
2012-06-07
The flight performance of animals depends greatly on the efficacy with which they generate aerodynamic forces. Accordingly, maximum range, load-lifting capacity and peak accelerations during manoeuvres are all constrained by the efficiency of momentum transfer to the wake. Here, we use high-speed particle image velocimetry (1 kHz) to record flow velocities in the near wake of desert locusts (Schistocerca gregaria, Forskål). We use the measured flow fields to calculate time-varying span efficiency throughout the wing stroke cycle. The locusts are found to operate at a maximum span efficiency of 79 per cent, typically at a plateau of about 60 per cent for the majority of the downstroke, but at lower values during the upstroke. Moreover, the calculated span efficiencies are highest when the largest lift forces are being generated (90% of the total lift is generated during the plateau of span efficiency) suggesting that the combination of wing kinematics and morphology in locust flight perform most efficiently when doing the most work.
Interactive exploration of large-scale time-varying data using dynamic tracking graphs
Widanagamaachchi, W.
2012-10-01
Exploring and analyzing the temporal evolution of features in large-scale time-varying datasets is a common problem in many areas of science and engineering. One natural representation of such data is tracking graphs, i.e., constrained graph layouts that use one spatial dimension to indicate time and show the "tracks" of each feature as it evolves, merges or disappears. However, for practical data sets creating the corresponding optimal graph layouts that minimize the number of intersections can take hours to compute with existing techniques. Furthermore, the resulting graphs are often unmanageably large and complex even with an ideal layout. Finally, due to the cost of the layout, changing the feature definition, e.g. by changing an iso-value, or analyzing properly adjusted sub-graphs is infeasible. To address these challenges, this paper presents a new framework that couples hierarchical feature definitions with progressive graph layout algorithms to provide an interactive exploration of dynamically constructed tracking graphs. Our system enables users to change feature definitions on-the-fly and filter features using arbitrary attributes while providing an interactive view of the resulting tracking graphs. Furthermore, the graph display is integrated into a linked view system that provides a traditional 3D view of the current set of features and allows a cross-linked selection to enable a fully flexible spatio-temporal exploration of data. We demonstrate the utility of our approach with several large-scale scientific simulations from combustion science. © 2012 IEEE.
Design and implementation of multi-signal and time-varying neural reconstructions.
Nanda, Sumit; Chen, Hanbo; Das, Ravi; Bhattacharjee, Shatabdi; Cuntz, Hermann; Torben-Nielsen, Benjamin; Peng, Hanchuan; Cox, Daniel N; De Schutter, Erik; Ascoli, Giorgio A
2018-01-23
Several efficient procedures exist to digitally trace neuronal structure from light microscopy, and mature community resources have emerged to store, share, and analyze these datasets. In contrast, the quantification of intracellular distributions and morphological dynamics is not yet standardized. Current widespread descriptions of neuron morphology are static and inadequate for subcellular characterizations. We introduce a new file format to represent multichannel information as well as an open-source Vaa3D plugin to acquire this type of data. Next we define a novel data structure to capture morphological dynamics, and demonstrate its application to different time-lapse experiments. Importantly, we designed both innovations as judicious extensions of the classic SWC format, thus ensuring full back-compatibility with popular visualization and modeling tools. We then deploy the combined multichannel/time-varying reconstruction system on developing neurons in live Drosophila larvae by digitally tracing fluorescently labeled cytoskeletal components along with overall dendritic morphology as they changed over time. This same design is also suitable for quantifying dendritic calcium dynamics and tracking arbor-wide movement of any subcellular substrate of interest.
International Nuclear Information System (INIS)
Wang, Zuo-Cai; Ren, Wei-Xin; Chen, Gen-Da
2012-01-01
This paper presents a recursive Hilbert transform method for the time-varying property identification of large-scale shear-type buildings with limited sensor deployments. An observer technique is introduced to estimate the building responses from limited available measurements. For an n-story shear-type building with l measurements (l ≤ n), the responses of other stories without measurements can be estimated based on the first r mode shapes (r ≤ l) as-built conditions and l measurements. Both the measured responses and evaluated responses and their Hilbert transforms are then used to track any variation of structural parameters of a multi-story building over time. Given floor masses, both the stiffness and damping coefficients of the building are identified one-by-one from the top to the bottom story. When variations of parameters are detected, a new developed branch-and-bound technique can be used to update the first r mode shapes with the identified parameters. A 60-story shear building with abruptly varying stiffness at different floors is simulated as an example. The numerical results indicate that the proposed method can detect variations of the parameters of large-scale shear-type buildings with limited sensor deployments at appropriate locations. (paper)
International Nuclear Information System (INIS)
Kumar, V.; Mukherjee, S.
1977-01-01
In the present paper a general time-dependent inelastic analysis procedure for three-dimensional bodies subjected to arbitrary time varying mechanical and thermal loads using these state variable theories is presented. For the purpose of illustrations, the problems of hollow spheres, cylinders and solid circular shafts subjected to various combinations of internal and external pressures, axial force (or constraint) and torque are analyzed using the proposed solution procedure. Various cyclic thermal and mechanical loading histories with rectangular or sawtooth type waves with or without hold-time are considered. Numerical results for these geometrical shapes for various such loading histories are presented using Hart's theory (Journal of Engineering Materials and Technology 1976). The calculations are performed for nickel in the temperature range of 25 0 C to 400 0 C. For integrating forward in time, a method of solving a stiff system of ordinary differential equations is employed which corrects the step size and order of the method automatically. The limit loads for hollow spheres and cylinders are calculated using the proposed method and Hart's theory, and comparisons are made against the known theoretical results. The numerical results for other loading histories are discussed in the context of Hart's state variable type constitutive relations. The significance of phenomena such as strain rate sensitivity, Bauschinger's effect, crep recovery, history dependence and material softening with regard to these multiaxial problems are discussed in the context of Hart's theory
Visualizing Robustness of Critical Points for 2D Time-Varying Vector Fields
Wang, B.; Rosen, P.; Skraba, P.; Bhatia, H.; Pascucci, V.
2013-01-01
Analyzing critical points and their temporal evolutions plays a crucial role in understanding the behavior of vector fields. A key challenge is to quantify the stability of critical points: more stable points may represent more important phenomena or vice versa. The topological notion of robustness is a tool which allows us to quantify rigorously the stability of each critical point. Intuitively, the robustness of a critical point is the minimum amount of perturbation necessary to cancel it within a local neighborhood, measured under an appropriate metric. In this paper, we introduce a new analysis and visualization framework which enables interactive exploration of robustness of critical points for both stationary and time-varying 2D vector fields. This framework allows the end-users, for the first time, to investigate how the stability of a critical point evolves over time. We show that this depends heavily on the global properties of the vector field and that structural changes can correspond to interesting behavior. We demonstrate the practicality of our theories and techniques on several datasets involving combustion and oceanic eddy simulations and obtain some key insights regarding their stable and unstable features. © 2013 The Author(s) Computer Graphics Forum © 2013 The Eurographics Association and Blackwell Publishing Ltd.
From dynamical systems with time-varying delay to circle maps and Koopman operators
Müller, David; Otto, Andreas; Radons, Günter
2017-06-01
In this paper, we investigate the influence of the retarded access by a time-varying delay on the dynamics of delay systems. We show that there are two universality classes of delays, which lead to fundamental differences in dynamical quantities such as the Lyapunov spectrum. Therefore, we introduce an operator theoretic framework, where the solution operator of the delay system is decomposed into the Koopman operator describing the delay access and an operator similar to the solution operator known from systems with constant delay. The Koopman operator corresponds to an iterated map, called access map, which is defined by the iteration of the delayed argument of the delay equation. The dynamics of this one-dimensional iterated map determines the universality classes of the infinite-dimensional state dynamics governed by the delay differential equation. In this way, we connect the theory of time-delay systems with the theory of circle maps and the framework of the Koopman operator. In this paper, we extend our previous work [A. Otto, D. Müller, and G. Radons, Phys. Rev. Lett. 118, 044104 (2017), 10.1103/PhysRevLett.118.044104] by elaborating the mathematical details and presenting further results also on the Lyapunov vectors.
Noise level estimation in weakly nonlinear slowly time-varying systems
International Nuclear Information System (INIS)
Aerts, J R M; Dirckx, J J J; Lataire, J; Pintelon, R
2008-01-01
Recently, a method using multisine excitation was proposed for estimating the frequency response, the nonlinear distortions and the disturbing noise of weakly nonlinear time-invariant systems. This method has been demonstrated on the measurement of nonlinear distortions in the vibration of acoustically driven systems such as a latex membrane, which is a good example of a time-invariant system [1]. However, not all systems are perfectly time invariant, e.g. biomechanical systems. This time variation can be misinterpreted as an elevated noise floor, and the classical noise estimation method gives a wrong result. Two improved methods to retrieve the correct noise information from the measurements are presented. Both of them make use of multisine excitations. First, it is demonstrated that the improved methods give the same result as the classical noise estimation method when applied to a time-invariant system (high-quality microphone membrane). Next, it is demonstrated that the new methods clearly give an improved estimate of the noise level on time-varying systems. As an application example results for the vibration response of an eardrum are shown
Energy Technology Data Exchange (ETDEWEB)
Alexander S. Rattner; Donna Post Guillen; Alark Joshi
2012-12-01
Photo- and physically-realistic techniques are often insufficient for visualization of simulation results, especially for 3D and time-varying datasets. Substantial research efforts have been dedicated to the development of non-photorealistic and illustration-inspired visualization techniques for compact and intuitive presentation of such complex datasets. While these efforts have yielded valuable visualization results, a great deal of work has been reproduced in studies as individual research groups often develop purpose-built platforms. Additionally, interoperability between illustrative visualization software is limited due to specialized processing and rendering architectures employed in different studies. In this investigation, a generalized framework for illustrative visualization is proposed, and implemented in marmotViz, a ParaView plugin, enabling its use on variety of computing platforms with various data file formats and mesh geometries. Detailed descriptions of the region-of-interest identification and feature-tracking algorithms incorporated into this tool are provided. Additionally, implementations of multiple illustrative effect algorithms are presented to demonstrate the use and flexibility of this framework. By providing a framework and useful underlying functionality, the marmotViz tool can act as a springboard for future research in the field of illustrative visualization.
Cao, Jiguo; Huang, Jianhua Z.; Wu, Hulin
2012-01-01
Ordinary differential equations (ODEs) are widely used in biomedical research and other scientific areas to model complex dynamic systems. It is an important statistical problem to estimate parameters in ODEs from noisy observations. In this article we propose a method for estimating the time-varying coefficients in an ODE. Our method is a variation of the nonlinear least squares where penalized splines are used to model the functional parameters and the ODE solutions are approximated also using splines. We resort to the implicit function theorem to deal with the nonlinear least squares objective function that is only defined implicitly. The proposed penalized nonlinear least squares method is applied to estimate a HIV dynamic model from a real dataset. Monte Carlo simulations show that the new method can provide much more accurate estimates of functional parameters than the existing two-step local polynomial method which relies on estimation of the derivatives of the state function. Supplemental materials for the article are available online.
Modeling Nonstationary Emotion Dynamics in Dyads using a Time-Varying Vector-Autoregressive Model.
Bringmann, Laura F; Ferrer, Emilio; Hamaker, Ellen L; Borsboom, Denny; Tuerlinckx, Francis
2018-01-01
Emotion dynamics are likely to arise in an interpersonal context. Standard methods to study emotions in interpersonal interaction are limited because stationarity is assumed. This means that the dynamics, for example, time-lagged relations, are invariant across time periods. However, this is generally an unrealistic assumption. Whether caused by an external (e.g., divorce) or an internal (e.g., rumination) event, emotion dynamics are prone to change. The semi-parametric time-varying vector-autoregressive (TV-VAR) model is based on well-studied generalized additive models, implemented in the software R. The TV-VAR can explicitly model changes in temporal dependency without pre-existing knowledge about the nature of change. A simulation study is presented, showing that the TV-VAR model is superior to the standard time-invariant VAR model when the dynamics change over time. The TV-VAR model is applied to empirical data on daily feelings of positive affect (PA) from a single couple. Our analyses indicate reliable changes in the male's emotion dynamics over time, but not in the female's-which were not predicted by her own affect or that of her partner. This application illustrates the usefulness of using a TV-VAR model to detect changes in the dynamics in a system.
Coded throughput performance simulations for the time-varying satellite channel. M.S. Thesis
Han, LI
1995-01-01
The design of a reliable satellite communication link involving the data transfer from a small, low-orbit satellite to a ground station, but through a geostationary satellite, was examined. In such a scenario, the received signal power to noise density ratio increases as the transmitting low-orbit satellite comes into view, and then decreases as it then departs, resulting in a short-duration, time-varying communication link. The optimal values of the small satellite antenna beamwidth, signaling rate, modulation scheme and the theoretical link throughput (in bits per day) have been determined. The goal of this thesis is to choose a practical coding scheme which maximizes the daily link throughput while satisfying a prescribed probability of error requirement. We examine the throughput of both fixed rate and variable rate concatenated forward error correction (FEC) coding schemes for the additive white Gaussian noise (AWGN) channel, and then examine the effect of radio frequency interference (RFI) on the best coding scheme among them. Interleaving is used to mitigate degradation due to RFI. It was found that the variable rate concatenated coding scheme could achieve 74 percent of the theoretical throughput, equivalent to 1.11 Gbits/day based on the cutoff rate R(sub 0). For comparison, 87 percent is achievable for AWGN-only case.
Dziak, John J; Li, Runze; Tan, Xianming; Shiffman, Saul; Shiyko, Mariya P
2015-12-01
Behavioral scientists increasingly collect intensive longitudinal data (ILD), in which phenomena are measured at high frequency and in real time. In many such studies, it is of interest to describe the pattern of change over time in important variables as well as the changing nature of the relationship between variables. Individuals' trajectories on variables of interest may be far from linear, and the predictive relationship between variables of interest and related covariates may also change over time in a nonlinear way. Time-varying effect models (TVEMs; see Tan, Shiyko, Li, Li, & Dierker, 2012) address these needs by allowing regression coefficients to be smooth, nonlinear functions of time rather than constants. However, it is possible that not only observed covariates but also unknown, latent variables may be related to the outcome. That is, regression coefficients may change over time and also vary for different kinds of individuals. Therefore, we describe a finite mixture version of TVEM for situations in which the population is heterogeneous and in which a single trajectory would conceal important, interindividual differences. This extended approach, MixTVEM, combines finite mixture modeling with non- or semiparametric regression modeling, to describe a complex pattern of change over time for distinct latent classes of individuals. The usefulness of the method is demonstrated in an empirical example from a smoking cessation study. We provide a versatile SAS macro and R function for fitting MixTVEMs. (c) 2015 APA, all rights reserved).
The Fast Simulation of Scattering Characteristics from a Simplified Time Varying Sea Surface
Directory of Open Access Journals (Sweden)
Yiwen Wei
2015-01-01
Full Text Available This paper aims at applying a simplified sea surface model into the physical optics (PO method to accelerate the scattering calculation from 1D time varying sea surface. To reduce the number of the segments and make further improvement on the efficiency of PO method, a simplified sea surface is proposed. In this simplified sea surface, the geometry of long waves is locally approximated by tilted facets that are much longer than the electromagnetic wavelength. The capillary waves are considered to be sinusoidal line superimposing on the long waves. The wavenumber of the sinusoidal waves is supposed to satisfy the resonant condition of Bragg waves which is dominant in all the scattered short wave components. Since the capillary wave is periodical within one facet, an analytical integration of the PO term can be performed. The backscattering coefficient obtained from a simplified sea surface model agrees well with that obtained from a realistic sea surface. The Doppler shifts and width also agree well with the realistic model since the capillary waves are taken into consideration. The good agreements indicate that the simplified model is reasonable and valid in predicting both the scattering coefficients and the Doppler spectra.
Soni, V.; Hadjadj, A.; Roussel, O.
2017-12-01
In this paper, a fully adaptive multiresolution (MR) finite difference scheme with a time-varying tolerance is developed to study compressible fluid flows containing shock waves in interaction with solid obstacles. To ensure adequate resolution near rigid bodies, the MR algorithm is combined with an immersed boundary method based on a direct-forcing approach in which the solid object is represented by a continuous solid-volume fraction. The resulting algorithm forms an efficient tool capable of solving linear and nonlinear waves on arbitrary geometries. Through a one-dimensional scalar wave equation, the accuracy of the MR computation is, as expected, seen to decrease in time when using a constant MR tolerance considering the accumulation of error. To overcome this problem, a variable tolerance formulation is proposed, which is assessed through a new quality criterion, to ensure a time-convergence solution for a suitable quality resolution. The newly developed algorithm coupled with high-resolution spatial and temporal approximations is successfully applied to shock-bluff body and shock-diffraction problems solving Euler and Navier-Stokes equations. Results show excellent agreement with the available numerical and experimental data, thereby demonstrating the efficiency and the performance of the proposed method.
Do Tick Attachment Times Vary between Different Tick-Pathogen Systems?
Directory of Open Access Journals (Sweden)
Stephanie L. Richards
2017-05-01
Full Text Available Improvements to risk assessments are needed to enhance our understanding of tick-borne disease epidemiology. We review tick vectors and duration of tick attachment required for pathogen transmission for the following pathogens/toxins and diseases: (1 Anaplasma phagocytophilum (anaplasmosis; (2 Babesia microti (babesiosis; (3 Borrelia burgdorferi (Lyme disease; (4 Southern tick-associated rash illness; (5 Borrelia hermsii (tick-borne relapsing fever; (6 Borrelia parkeri (tick-borne relapsing fever; (7 Borrelia turicatae (tick-borne relapsing fever; (8 Borrelia mayonii; (9 Borrelia miyamotoi; (10 Coxiella burnetii (Query fever; (11 Ehrlichia chaffeensis (ehrlichiosis; (12 Ehrlichia ewingii (ehrlichiosis; (13 Ehrlichia muris; (14 Francisella tularensis (tularemia; (15 Rickettsia 364D; (16 Rickettsia montanensis; (17 Rickettsia parkeri (American boutonneuse fever, American tick bite fever; (18 Rickettsia ricketsii (Rocky Mountain spotted fever; (19 Colorado tick fever virus (Colorado tick fever; (20 Heartland virus; (21 Powassan virus (Powassan disease; (22 tick paralysis neurotoxin; and (23 Galactose-α-1,3-galactose (Mammalian Meat Allergy-alpha-gal syndrome. Published studies for 12 of the 23 pathogens/diseases showed tick attachment times. Reported tick attachment times varied (<1 h to seven days between pathogen/toxin type and tick vector. Not all studies were designed to detect the duration of attachment required for transmission. Knowledge of this important aspect of vector competence is lacking and impairs risk assessment for some tick-borne pathogens.
A Class of Prediction-Correction Methods for Time-Varying Convex Optimization
Simonetto, Andrea; Mokhtari, Aryan; Koppel, Alec; Leus, Geert; Ribeiro, Alejandro
2016-09-01
This paper considers unconstrained convex optimization problems with time-varying objective functions. We propose algorithms with a discrete time-sampling scheme to find and track the solution trajectory based on prediction and correction steps, while sampling the problem data at a constant rate of $1/h$, where $h$ is the length of the sampling interval. The prediction step is derived by analyzing the iso-residual dynamics of the optimality conditions. The correction step adjusts for the distance between the current prediction and the optimizer at each time step, and consists either of one or multiple gradient steps or Newton steps, which respectively correspond to the gradient trajectory tracking (GTT) or Newton trajectory tracking (NTT) algorithms. Under suitable conditions, we establish that the asymptotic error incurred by both proposed methods behaves as $O(h^2)$, and in some cases as $O(h^4)$, which outperforms the state-of-the-art error bound of $O(h)$ for correction-only methods in the gradient-correction step. Moreover, when the characteristics of the objective function variation are not available, we propose approximate gradient and Newton tracking algorithms (AGT and ANT, respectively) that still attain these asymptotical error bounds. Numerical simulations demonstrate the practical utility of the proposed methods and that they improve upon existing techniques by several orders of magnitude.
Detection of random alterations to time-varying musical instrument spectra.
Horner, Andrew; Beauchamp, James; So, Richard
2004-09-01
The time-varying spectra of eight musical instrument sounds were randomly altered by a time-invariant process to determine how detection of spectral alteration varies with degree of alteration, instrument, musical experience, and spectral variation. Sounds were resynthesized with centroids equalized to the original sounds, with frequencies harmonically flattened, and with average spectral error levels of 8%, 16%, 24%, 32%, and 48%. Listeners were asked to discriminate the randomly altered sounds from reference sounds resynthesized from the original data. For all eight instruments, discrimination was very good for the 32% and 48% error levels, moderate for the 16% and 24% error levels, and poor for the 8% error levels. When the error levels were 16%, 24%, and 32%, the scores of musically experienced listeners were found to be significantly better than the scores of listeners with no musical experience. Also, in this same error level range, discrimination was significantly affected by the instrument tested. For error levels of 16% and 24%, discrimination scores were significantly, but negatively correlated with measures of spectral incoherence and normalized centroid deviation on unaltered instrument spectra, suggesting that the presence of dynamic spectral variations tends to increase the difficulty of detecting spectral alterations. Correlation between discrimination and a measure of spectral irregularity was comparatively low.
Schmidt, Christoph; Piper, Diana; Pester, Britta; Mierau, Andreas; Witte, Herbert
2018-05-01
Identification of module structure in brain functional networks is a promising way to obtain novel insights into neural information processing, as modules correspond to delineated brain regions in which interactions are strongly increased. Tracking of network modules in time-varying brain functional networks is not yet commonly considered in neuroscience despite its potential for gaining an understanding of the time evolution of functional interaction patterns and associated changing degrees of functional segregation and integration. We introduce a general computational framework for extracting consensus partitions from defined time windows in sequences of weighted directed edge-complete networks and show how the temporal reorganization of the module structure can be tracked and visualized. Part of the framework is a new approach for computing edge weight thresholds for individual networks based on multiobjective optimization of module structure quality criteria as well as an approach for matching modules across time steps. By testing our framework using synthetic network sequences and applying it to brain functional networks computed from electroencephalographic recordings of healthy subjects that were exposed to a major balance perturbation, we demonstrate the framework's potential for gaining meaningful insights into dynamic brain function in the form of evolving network modules. The precise chronology of the neural processing inferred with our framework and its interpretation helps to improve the currently incomplete understanding of the cortical contribution for the compensation of such balance perturbations.
Zhang, Hongjie; Hou, Yanyan; Yang, Tao; Zhang, Qian; Zhao, Jian
2018-05-01
In the spot welding process, a high alternating current is applied, resulting in a time-varying electromagnetic field surrounding the welder. When measuring the welding voltage signal, the impedance of the measuring circuit consists of two parts: dynamic resistance relating to weld nugget nucleation event and inductive reactance caused by mutual inductance. The aim of this study is to develop a method to acquire the dynamic reactance signal and to discuss the possibility of using this signal to evaluate the weld quality. For this purpose, a series of experiments were carried out. The reactance signals under different welding conditions were compared and the results showed that the morphological feature of the reactance signal was closely related to the welding current and it was also significantly influenced by some abnormal welding conditions. Some features were extracted from the reactance signal and combined to construct weld nugget strength and diameter prediction models based on the radial basis function (RBF) neural network. In addition, several features were also used to monitor the expulsion in the welding process by using Fisher linear discriminant analysis. The results indicated that using the dynamic reactance signal to evaluate weld quality is possible and feasible.
Knowledge diffusion in complex networks by considering time-varying information channels
Zhu, He; Ma, Jing
2018-03-01
In this article, based on a model of epidemic spreading, we explore the knowledge diffusion process with an innovative mechanism for complex networks by considering time-varying information channels. To cover the knowledge diffusion process in homogeneous and heterogeneous networks, two types of networks (the BA network and the ER network) are investigated. The mean-field theory is used to theoretically draw the knowledge diffusion threshold. Numerical simulation demonstrates that the knowledge diffusion threshold is almost linearly correlated with the mean of the activity rate. In addition, under the influence of the activity rate and distinct from the classic Susceptible-Infected-Susceptible (SIS) model, the density of knowers almost linearly grows with the spreading rate. Finally, in consideration of the ubiquitous mechanism of innovation, we further study the evolution of knowledge in our proposed model. The results suggest that compared with the effect of the spreading rate, the average knowledge version of the population is affected more by the innovation parameter and the mean of the activity rate. Furthermore, in the BA network, the average knowledge version of individuals with higher degree is always newer than those with lower degree.
Zhou, Si-Da; Ma, Yuan-Chen; Liu, Li; Kang, Jie; Ma, Zhi-Sai; Yu, Lei
2018-01-01
Identification of time-varying modal parameters contributes to the structural health monitoring, fault detection, vibration control, etc. of the operational time-varying structural systems. However, it is a challenging task because there is not more information for the identification of the time-varying systems than that of the time-invariant systems. This paper presents a vector time-dependent autoregressive model and least squares support vector machine based modal parameter estimator for linear time-varying structural systems in case of output-only measurements. To reduce the computational cost, a Wendland's compactly supported radial basis function is used to achieve the sparsity of the Gram matrix. A Gamma-test-based non-parametric approach of selecting the regularization factor is adapted for the proposed estimator to replace the time-consuming n-fold cross validation. A series of numerical examples have illustrated the advantages of the proposed modal parameter estimator on the suppression of the overestimate and the short data. A laboratory experiment has further validated the proposed estimator.
Directory of Open Access Journals (Sweden)
Zhinong Jiang
2018-01-01
Full Text Available Under frequently time-varying operating conditions, equipment with dual rotors like gas turbines is influenced by two rotors with different rotating speeds. Alarm methods of fixed threshold are unable to consider the influences of time-varying operating conditions. Hence, those methods are not suitable for monitoring dual-rotor equipment. An early warning method for dual-rotor equipment under time-varying operating conditions is proposed in this paper. The influences of time-varying rotating speeds of dual rotors on alarm thresholds have been considered. Firstly, the operating conditions are divided into several limited intervals according to rotating speeds of dual rotors. Secondly, the train data within each interval is processed by SVDD and the allowable ranges (i.e., the alarm threshold of the vibration are determined. The alarm threshold of each interval of operating conditions is obtained. The alarm threshold can be expressed as a sphere, whose controlling parameters are the coordinate of the center and the radius. Then, the cluster center of the test data, whose alarm state is to be judged, can be extracted through K-means. Finally, the alarm state can be obtained by comparing the cluster center with the corresponding sphere. Experiments are conducted to validate the proposed method.
International Nuclear Information System (INIS)
Stefanou, G.D.
1978-01-01
The work described herein relates to the prediction of stresses in materials which exhibit time varying strains with particular reference to the ligaments of perforated circular concrete slabs, subjected to long-term radial prestress and uniform elevated temperature. The perforations are reinforced with steel liners and arranged in a square central lattice symmetrical about two orthogonal axes. Special reference is made to the distribution of stress in the standpipe region of prestressed concrete cylindrical pressure or containment vessels for gas cooled reactors. In order to assess the stress distribution around the perforated zone of a circular slab, a method of analysis was developed by the author, based on the ''Equivalent Elastic Modulus'' of the perforated zone and the ''Effective Modulus Method'', utilizing experimental data obtained from tests performed on model specimens. The object of this paper is to extend the above method of analysis into the perforated region, and assess the long-term stresses in the ligaments. The proposed method is accomplished by an application of the Finite Element Method for the elastic plane stress case. Comparisons of experimental results and theoretical predictions by the proposed method, and other analytical methods are made for a series of perforated concrete slabs subjected to radial in-plane loading: 10,342 kN/m 2 (1,5000 psi), and uniform elevated temperature of 80 0 C. The investigation, though in general terms, could be applied to the perforated region of cylindrical pressure vessels for nuclear reactors. Finally the paper describes briefly in Appendix 3 a direct solution procedure for calculating time dependent stresses in concrete structures based on the principles of variational calculus. Analytical predictions obtained by the proposed method which is a step-by-step analysis, are compared with the variational principle method. (author)
Stability analysis and backward whirl investigation of cracked rotors with time-varying stiffness
AL-Shudeifat, Mohammad A.
2015-07-01
The dynamic stability of dynamical systems with time-periodic stiffness is addressed here. Cracked rotor systems with time-periodic stiffness are well-known examples of such systems. Time-varying area moments of inertia at the cracked element cross-section of a cracked rotor have been used to formulate the time-periodic finite element stiffness matrix. The semi-infinite coefficient matrix obtained by applying the harmonic balance (HB) solution to the finite element (FE) equations of motion is employed here to study the dynamic stability of the system. Consequently, the sign of the determinant of a scaled version of a sub-matrix of this semi-infinite coefficient matrix at a finite number of harmonics in the HB solution is found to be sufficient for identifying the major unstable zones of the system in the parameter plane. Specifically, it is found that the negative determinant always corresponds to unstable zones in all of the systems considered. This approach is applied to a parametrically excited Mathieu's equation, a two degree-of-freedom linear time-periodic dynamical system, a cracked Jeffcott rotor and a finite element model of the cracked rotor system. Compared to the corresponding results obtained by Floquet's theory, the sign of the determinant of the scaled sub-matrix is found to be an efficient tool for identifying the major unstable zones of the linear time-periodic parametrically excited systems, especially large-scale FE systems. Moreover, it is found that the unstable zones for a FE cracked rotor with an open transverse crack model only appear at the backward whirl. The theoretical and experimental results have been found to agree well for verifying that the open crack model excites the backward whirl amplitudes at the critical backward whirling rotational speeds.
The Assessment of Left Ventricular Time-Varying Radius Using Tissue Doppler Imaging
Directory of Open Access Journals (Sweden)
Fardin Mirbolouk
2012-03-01
Full Text Available Background: Left ventricular twist/torsion is believed to be a sensitive indicator of systolic and diastolic performance. To obtain circumferential rotation using tissue Doppler imaging, we need to estimate the time-varying radius of the left ventricle throughout the cardiac cycle to convert the tangential velocity into angular velocity. Objectives: The aim of this study was to investigate accuracy of measured LV radius using tissue Doppler imaging throughout the cardiac cycle compared to two-dimensional (2D imaging. Methods: A total of 35 subjects (47±12 years old underwent transthoracic echocardiographic standard examinations. Left ventricular radius during complete cardiac cycle measured using tissue Doppler and 2D-imaging at basal and apical short axis levels. For this reason, the 2D-images and velocity-time data derived and transferred to a personal computer for off-line analysis. 2D image frames analyzed via a program written in the MATLAB software. Velocity-time data from anteroseptal at basal level (or anterior wall at apical level and posterior walls transferred to a spreadsheet Excel program for the radius calculations. Linear correlation and Bland-Altman analysis were calculated to assess the relationships and agreements between the tissue Doppler and 2D-measured radii throughout the cardiac cycle. Results: There was significant correlation between tissue Doppler and 2D-measured radii and the Pearson correlation coefficients were 0.84 to 0.97 (P<0.05. Bland-Altman analysis by constructing the 95% limits of agreement showed that the good agreements existed between the two methods. Conclusion: It can be concluded from our experience that the tissue Doppler imaging can reasonably estimate radius of the left ventricle throughout the cardiac cycle.
The time-varying association between perceived stress and hunger within and between days.
Huh, Jimi; Shiyko, Mariya; Keller, Stefan; Dunton, Genevieve; Schembre, Susan M
2015-06-01
Examine the association between perceived stress and hunger continuously over a week in free-living individuals. Forty five young adults (70% women, 30% overweight/obese) ages 18 to 24 years (Mean = 20.7, SD = 1.5), with BMI between 17.4 and 36.3 kg/m(2) (Mean = 23.6, SD = 4.0) provided between 513 and 577 concurrent ratings of perceived stress and hunger for 7 days via hourly, text messaging assessments and real-time eating records. Time-varying effect modeling was used to explore whether the within-day fluctuations in stress are related to perceived hunger assessed on a momentary basis. A generally positive stress-hunger relationship was confirmed, but we found that the strength of the relationship was not linear. Rather, the magnitude of the association between perceived stress and hunger changed throughout the day such that only during specific time intervals were stress and hunger significantly related. Specifically, the strength of the positive association peaked during late afternoon hours on weekdays (β = 0.31, p hunger associations that peak in the afternoon or evening hours. While we are unable to infer causality from these analyses, our findings provide empirical evidence for a potentially high-risk time of day for stress-induced eating. Replication of these findings in larger, more diverse samples will aid with the design and implementation of real-time intervention studies aimed at reducing stress-eating. Copyright © 2015 Elsevier Ltd. All rights reserved.
Time-varying bispectral analysis of visually evoked multi-channel EEG
Chandran, Vinod
2012-12-01
Theoretical foundations of higher order spectral analysis are revisited to examine the use of time-varying bicoherence on non-stationary signals using a classical short-time Fourier approach. A methodology is developed to apply this to evoked EEG responses where a stimulus-locked time reference is available. Short-time windowed ensembles of the response at the same offset from the reference are considered as ergodic cyclostationary processes within a non-stationary random process. Bicoherence can be estimated reliably with known levels at which it is significantly different from zero and can be tracked as a function of offset from the stimulus. When this methodology is applied to multi-channel EEG, it is possible to obtain information about phase synchronization at different regions of the brain as the neural response develops. The methodology is applied to analyze evoked EEG response to flash visual stimulii to the left and right eye separately. The EEG electrode array is segmented based on bicoherence evolution with time using the mean absolute difference as a measure of dissimilarity. Segment maps confirm the importance of the occipital region in visual processing and demonstrate a link between the frontal and occipital regions during the response. Maps are constructed using bicoherence at bifrequencies that include the alpha band frequency of 8Hz as well as 4 and 20Hz. Differences are observed between responses from the left eye and the right eye, and also between subjects. The methodology shows potential as a neurological functional imaging technique that can be further developed for diagnosis and monitoring using scalp EEG which is less invasive and less expensive than magnetic resonance imaging.
Bayesian switching factor analysis for estimating time-varying functional connectivity in fMRI.
Taghia, Jalil; Ryali, Srikanth; Chen, Tianwen; Supekar, Kaustubh; Cai, Weidong; Menon, Vinod
2017-07-15
There is growing interest in understanding the dynamical properties of functional interactions between distributed brain regions. However, robust estimation of temporal dynamics from functional magnetic resonance imaging (fMRI) data remains challenging due to limitations in extant multivariate methods for modeling time-varying functional interactions between multiple brain areas. Here, we develop a Bayesian generative model for fMRI time-series within the framework of hidden Markov models (HMMs). The model is a dynamic variant of the static factor analysis model (Ghahramani and Beal, 2000). We refer to this model as Bayesian switching factor analysis (BSFA) as it integrates factor analysis into a generative HMM in a unified Bayesian framework. In BSFA, brain dynamic functional networks are represented by latent states which are learnt from the data. Crucially, BSFA is a generative model which estimates the temporal evolution of brain states and transition probabilities between states as a function of time. An attractive feature of BSFA is the automatic determination of the number of latent states via Bayesian model selection arising from penalization of excessively complex models. Key features of BSFA are validated using extensive simulations on carefully designed synthetic data. We further validate BSFA using fingerprint analysis of multisession resting-state fMRI data from the Human Connectome Project (HCP). Our results show that modeling temporal dependencies in the generative model of BSFA results in improved fingerprinting of individual participants. Finally, we apply BSFA to elucidate the dynamic functional organization of the salience, central-executive, and default mode networks-three core neurocognitive systems with central role in cognitive and affective information processing (Menon, 2011). Across two HCP sessions, we demonstrate a high level of dynamic interactions between these networks and determine that the salience network has the highest temporal