WorldWideScience

Sample records for time-resolved infrared absorption

  1. Bimodal Exciplex Formation in Bimolecular Photoinduced Electron Transfer Revealed by Ultrafast Time-Resolved Infrared Absorption.

    Science.gov (United States)

    Koch, Marius; Licari, Giuseppe; Vauthey, Eric

    2015-09-03

    The dynamics of a moderately exergonic photoinduced charge separation has been investigated by ultrafast time-resolved infrared absorption with the dimethylanthracene/phthalonitrile donor/acceptor pair in solvents covering a broad range of polarity. A distinct spectral signature of an exciplex could be identified in the -C≡N stretching region. On the basis of quantum chemistry calculations, the 4-5 times larger width of this band compared to those of the ions and of the locally excited donor bands is explained by a dynamic distribution of exciplex geometry with different mutual orientations and distances of the constituents and, thus, with varying charge-transfer character. Although spectrally similar, two types of exciplexes could be distinguished by their dynamics: short-lived, "tight", exciplexes generated upon static quenching and longer-lived, "loose", exciplexes formed upon dynamic quenching in parallel with ion pairs. Tight exciplexes were observed in all solvents, except in the least polar diethyl ether where quenching is slower than diffusion. The product distribution of the dynamic quenching depends strongly on the solvent polarity: whereas no significant loose exciplex population could be detected in acetonitrile, both exciplex and ion pair are generated in less polar solvents, with the relative population of exciplex increasing with decreasing solvent polarity. These results are compared with those reported previously with donor/acceptor pairs in different driving force regimes to obtain a comprehensive picture of the role of the exciplexes in bimolecular photoinduced charge separation.

  2. Time-resolved infrared absorption study of nine TiO{sub 2} photocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Yamakata, Akira; Ishibashi, Taka-aki [Kanagawa Academy of Science and Technology (KAST), KSP, Takatsu, Kawasaki 213-0012 (Japan); Onishi, Hiroshi [Kanagawa Academy of Science and Technology (KAST), KSP, Takatsu, Kawasaki 213-0012 (Japan)], E-mail: oni@kobe-u.ac.jp

    2007-10-15

    Electron kinetics of nine TiO{sub 2} catalysts were compared in a microsecond time domain. Each catalyst was band-gap excited with an UV light pulse, and electron-induced absorption of mid infrared light was observed as a function of time delay. The probability of electron-hole recombination in the bulk, electron attachment to adsorbed oxygen, and hole attachment to adsorbed methoxy species was estimated.

  3. Time-resolved infrared absorption study of nine TiO2 photocatalysts

    International Nuclear Information System (INIS)

    Yamakata, Akira; Ishibashi, Taka-aki; Onishi, Hiroshi

    2007-01-01

    Electron kinetics of nine TiO 2 catalysts were compared in a microsecond time domain. Each catalyst was band-gap excited with an UV light pulse, and electron-induced absorption of mid infrared light was observed as a function of time delay. The probability of electron-hole recombination in the bulk, electron attachment to adsorbed oxygen, and hole attachment to adsorbed methoxy species was estimated

  4. Infrared absorption of gaseous ClCS detected with time-resolved Fourier-transform spectroscopy

    International Nuclear Information System (INIS)

    Chu, Li-Kang; Han, Hui-Ling; Lee, Yuan-Pern

    2007-01-01

    A transient infrared absorption spectrum of gaseous ClCS was detected with a step-scan Fourier-transform spectrometer coupled with a multipass absorption cell. ClCS was produced upon irradiating a flowing mixture of Cl 2 CS and N 2 or CO 2 with a KrF excimer laser at 248 nm. A transient band in the region of 1160-1220 cm -1 , which diminished on prolonged reaction, is assigned to the C-S stretching (ν 1 ) mode of ClCS. Calculations with density-functional theory (B3P86 and B3LYP/aug-cc-pVTZ) predict the geometry, vibrational wave numbers, and rotational parameters of ClCS. The rotational contour of the spectrum of ClCS simulated based on predicted rotational parameters agrees satisfactorily with experimental observation; from spectral simulation, the band origin is determined to be at 1194.4 cm -1 . Reaction kinetics involving ClCS, CS, and CS 2 are discussed

  5. Time resolved spectra in the infrared absorption and emission from shock heated hydrocarbons

    Science.gov (United States)

    Bauer, S. H.; Borchardt, D. B.

    1990-07-01

    We have extended the wavelength range of our previously constructed multichannel, fast recording spectrometer to the mid-infrared. With the initial configuration, using a silicon-diode (photovoltaic) array, we recorded light intensities simultaneously at 20 adjacent wavelengths, each with 20 μs time resolution. For studies in the infrared the silicon diodes are replaced by a 20 element PbSe (photoconducting) array of similar dimensions (1×4 mm/element), cooled by a three-stage thermoelectric device. These elements have useful sensitivities over 1.0-6.7 μm. Three interchangeable gratings in a 1/4 m monochromator cover the following spectral ranges: 1.0-2.5 μm (resolution 33.6 cm-1) 2.5-4.5 μm (16.8 cm-1) 4.0-6.5 μm (16.7 cm-1). Incorporated in the new housing there are individually controlled bias-power sources for each detector, two stages of analogue amplification and a 20-line parallel output to the previously constructed digitizer, and record/hold computer. The immediate application of this system is the study of emission and absorption spectra of shock heated hydrocarbons-C2H2, C4H4 and C6H6-which are possible precursors of species that generate infrared emissions in the interstellar medium. It has been recently proposed that these radiations are due to PAH that emit in the infrared upon relaxation from highly excited states. However, it is possible that such emissions could be due to shock-heated low molecular-weight hydrocarbons, which are known to be present in significant abundances, ejected into the interstellar medium during stellar outer atmospheric eruptions. The full Swan band system appeared in time-integrated emission spectra from shock heated C2H2 (1% in Ar; T5eq~=2500K) no soot was generated. At low resolution the profiles on the high frequency side of the black body maximum show no distinctive features. These could be fitted to Planck curves, with temperatures that declined with time from an initial high that was intermediate between T5 (no

  6. Infrared absorption of CH3OSO detected with time-resolved Fourier-transform spectroscopy.

    Science.gov (United States)

    Chen, Jin-Dah; Lee, Yuan-Pern

    2011-03-07

    A step-scan Fourier-transform spectrometer coupled with a multipass absorption cell was employed to detect temporally resolved infrared absorption spectra of CH(3)OSO produced upon irradiation of a flowing gaseous mixture of CH(3)OS(O)Cl in N(2) or CO(2) at 248 nm. Two intense transient features with origins near 1152 and 994 cm(-1) are assigned to syn-CH(3)OSO; the former is attributed to overlapping bands at 1154 ± 3 and 1151 ± 3 cm(-1), assigned to the S=O stretching mixed with CH(3) rocking (ν(8)) and the S=O stretching mixed with CH(3) wagging (ν(9)) modes, respectively, and the latter to the C-O stretching (ν(10)) mode at 994 ± 6 cm(-1). Two weak bands at 2991 ± 6 and 2956 ± 3 cm(-1) are assigned as the CH(3) antisymmetric stretching (ν(2)) and symmetric stretching (ν(3)) modes, respectively. Observed vibrational transition wavenumbers agree satisfactorily with those predicted with quantum-chemical calculations at level B3P86∕aug-cc-pVTZ. Based on rotational parameters predicted at that level, the simulated rotational contours of these bands agree satisfactorily with experimental results. The simulation indicates that the S=O stretching mode of anti-CH(3)OSO near 1164 cm(-1) likely makes a small contribution to the observed band near 1152 cm(-1). A simple kinetic model of self-reaction is employed to account for the decay of CH(3)OSO and yields a second-order rate coefficient k=(4 ± 2)×10(-10) cm(3)molecule(-1)s(-1). © 2011 American Institute of Physics.

  7. Time resolved spectra in the infrared absorption and emission from shock heated hydrocarbons. [in interstellar medium

    Science.gov (United States)

    Bauer, S. H.; Borchardt, D. B.

    1990-01-01

    The wavelength range of a previously constructed multichannel fast recording spectrometer was extended to the mid-infrared. With the initial configuration, light intensities were recorded simultaneously with a silicon-diode array simultaneously at 20 adjacent wavelengths, each with a 20-micron time resolution. For studies in the infrared, the silicon diodes were replaced by a 20-element PbSe array of similar dimensions, cooled by a three-stage thermoelectric device. It is proposed that infrared emissions could be due to shock-heated low molecular-weight hydrocarbons. The full Swan band system appeared in time-integrated emission spectra from shock-heated C2H2; no soot was generated. At low resolution, the profiles on the high-frequency side of the black body maximum show no distinctive features. These could be fitted to Planck curves, with temperatures that declined with time from an initial high that was intermediate between T5 (no conversion) and T5(eq).

  8. Time-resolved absorption measurements on OMEGA

    International Nuclear Information System (INIS)

    Jaanimagi, P.A.; DaSilva, L.; Delettrez, J.; Gregory, G.G.; Richardson, M.C.

    1986-01-01

    Time-resolved measurements of the incident laser light that is scattered and/or refracted from targets irradiated by the 24 uv-beam OMEGA laser at LLE, have provided some interesting features related to time-resolved absorption. The decrease in laser absorption characteristic of irradiating a target that implodes during the laser pulse has been observed. The increase in absorption expected as the critical density surface moves from a low to a high Z material in the target has also been noted. The detailed interpretation of these results is made through comparisons with simulation using the code LILAC, as well as with streak data from time-resolved x-ray imaging and spectroscopy. In addition, time and space-resolved imaging of the scattered light yields information on laser irradiation uniformity conditions on the target. The report consists of viewgraphs

  9. Time-resolved diode laser infrared absorption spectroscopy of the nascent HCl in the infrared laser chemistry of 1,2-dichloro-1,1-difluoroethane

    Science.gov (United States)

    Dietrich, Peter; Quack, Martin; Seyfang, George

    1990-04-01

    The IR multiphoton excitation and the frequency, fluence and intensity dependence of the IR-laser chemical yields of CF 2ClCH 2Cl have been studied in the fluence range of 1 to 10 J cm -2 yielding a steady-state constant k(st)/ I=0.74×10 6 s -1 MW -1 cm 2 which is approximately independent of intensity. Time-resolved IR absorption spectroscopy with diode laser sources has been used to observe the nascent HCl during the first few 100 ns indicating a population inversion between the levels ν=1, J=4 and ν=2, J=5. At low reactant pressures ( p⩽10 Pa) the time-resolved measurement gives a steady-state rate constant consistent with the theoretical result adjusted to the static yield measurements. The capability of state-selective and time-resolved IR spectroscopy is thus demonstrated, giving real-time determinations of rate constants.

  10. A novel multiplex absorption spectrometer for time-resolved studies

    Science.gov (United States)

    Lewis, Thomas; Heard, Dwayne E.; Blitz, Mark A.

    2018-02-01

    A Time-Resolved Ultraviolet/Visible (UV/Vis) Absorption Spectrometer (TRUVAS) has been developed that can simultaneously monitor absorption at all wavelengths between 200 and 800 nm with millisecond time resolution. A pulsed photolysis laser (KrF 248 nm) is used to initiate chemical reactions that create the target species. The absorption signals from these species evolve as the composition of the gas in the photolysis region changes over time. The instrument can operate at pressures over the range ˜10-800 Torr and can measure time-resolved absorbances systems (in particular the Herriott cell), there are fundamental differences, most notably the ability to adjust each mirror to maximise the overlap between the probe beam and the photolysis laser. Another feature which aids the sensitivity and versatility of the system is the use of 2 high-throughput spectrographs coupled with sensitive line-array CCDs, which can measure absorbance from ˜200 to 800 nm simultaneously. The capability of the instrument is demonstrated via measurements of the absorption spectrum of the peroxy radical, HOCH2CH2O2, and its self-reaction kinetics.

  11. Generation of pulsed far-infrared radiation and its application for far-infrared time-resolved spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, Yasuhiro [Tohoku Univ., Sendai (Japan). Faculty of Engineering

    1996-07-01

    So-called time-resolved spectroscopy technique has been used from old time as the means for studying the dynamic optical property, light-induced reaction and so on of matters. As an example, there is the method called pump and probe, and here, the wavelength of this probe light is the problem. If the object energy region is limited to about 0.1 eV, fast time-resolved spectroscopy is feasible relatively easily. However, energy region is extended to low energy region, the light source which is available as the pulsed probe light having sufficient intensity is limited. In this paper, the attempt of time-resolved spectroscopy utilizing coherent radiation, which has ended in failure, and the laser pulse-induced far-infrared radiation which can be utilized as new far-infrared probe light are reported. The reason why far-infrared radiation is used is explained. The attempt of time-resolved spectroscopy using NaCl crystals is reported on the equipment, the method of measuring absorption spectra and the results. Laser pulse-induced far-infrared radiation and the method of generating it are described. The multi-channel detector for far-infrared radiation which was made for trial is shown. (K.I.)

  12. Femtosecond time-resolved transient absorption spectroscopy of xanthophylls.

    Science.gov (United States)

    Niedzwiedzki, Dariusz M; Sullivan, James O; Polívka, Tomás; Birge, Robert R; Frank, Harry A

    2006-11-16

    Xanthophylls are a major class of photosynthetic pigments that participate in an adaptation mechanism by which higher plants protect themselves from high light stress. In the present work, an ultrafast time-resolved spectroscopic investigation of all the major xanthophyll pigments from spinach has been performed. The molecules are zeaxanthin, lutein, violaxanthin, and neoxanthin. beta-Carotene was also studied. The experimental data reveal the inherent spectral properties and ultrafast dynamics including the S(1) state lifetimes of each of the pigments. In conjunction with quantum mechanical computations the results address the molecular features of xanthophylls that control the formation and decay of the S* state in solution. The findings provide compelling evidence that S* is an excited state with a conformational geometry twisted relative to the ground state. The data indicate that S* is formed via a branched pathway from higher excited singlet states and that its yield depends critically on the presence of beta-ionylidene rings in the polyene system of pi-electron conjugated double bonds. The data are expected to be beneficial to researchers employing ultrafast time-resolved spectroscopic methods to investigate the mechanisms of both energy transfer and nonphotochemical quenching in higher plant preparations.

  13. Time-resolved absorption and hemoglobin concentration difference maps: a method to retrieve depth-related information on cerebral hemodynamics.

    Science.gov (United States)

    Montcel, Bruno; Chabrier, Renée; Poulet, Patrick

    2006-12-01

    Time-resolved diffuse optical methods have been applied to detect hemodynamic changes induced by cerebral activity. We describe a near infrared spectroscopic (NIRS) reconstruction free method which allows retrieving depth-related information on absorption variations. Variations in the absorption coefficient of tissues have been computed over the duration of the whole experiment, but also over each temporal step of the time-resolved optical signal, using the microscopic Beer-Lambert law.Finite element simulations show that time-resolved computation of the absorption difference as a function of the propagation time of detected photons is sensitive to the depth profile of optical absorption variations. Differences in deoxyhemoglobin and oxyhemoglobin concentrations can also be calculated from multi-wavelength measurements. Experimental validations of the simulated results have been obtained for resin phantoms. They confirm that time-resolved computation of the absorption differences exhibited completely different behaviours, depending on whether these variations occurred deeply or superficially. The hemodynamic response to a short finger tapping stimulus was measured over the motor cortex and compared to experiments involving Valsalva manoeuvres. Functional maps were also calculated for the hemodynamic response induced by finger tapping movements.

  14. Exciplex formation in bimolecular photoinduced electron-transfer investigated by ultrafast time-resolved infrared spectroscopy.

    Science.gov (United States)

    Koch, Marius; Letrun, Romain; Vauthey, Eric

    2014-03-12

    The dynamics of bimolecular photoinduced electron-transfer reactions has been investigated with three donor/acceptor (D/A) pairs in tetrahydrofuran (THF) and acetonitrile (ACN) using a combination of ultrafast spectroscopic techniques, including time-resolved infrared absorption. For the D/A pairs with the highest driving force of electron transfer, all transient spectroscopic features can be unambiguously assigned to the excited reactant and the ionic products. For the pair with the lowest driving force, three additional transient infrared bands, more intense in THF than in ACN, with a time dependence that differs from those of the other bands are observed. From their frequency and solvent dependence, these bands can be assigned to an exciplex. Moreover, polarization-resolved measurements point to a relatively well-defined mutual orientation of the constituents and to a slower reorientational time compared to those of the individual reactants. Thanks to the minimal overlap of the infrared signature of all transient species in THF, a detailed reaction scheme including the relevant kinetic and thermodynamic parameters could be deduced for this pair. This analysis reveals that the formation and recombination of the ion pair occur almost exclusively via the exciplex.

  15. Introduction to Time-Resolved Spectroscopy: Nanosecond Transient Absorption and Time-Resolved Fluorescence of Eosin B

    Science.gov (United States)

    Farr, Erik P.; Quintana, Jason C.; Reynoso, Vanessa; Ruberry, Josiah D.; Shin, Wook R.; Swartz, Kevin R.

    2018-01-01

    Here we present a new undergraduate laboratory that will introduce the concepts of time-resolved spectroscopy and provide insight into the natural time scales on which chemical dynamics occur through direct measurement. A quantitative treatment of the acquired data will provide a deeper understanding of the role of quantum mechanics and various…

  16. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    Directory of Open Access Journals (Sweden)

    L. Miaja-Avila

    2015-03-01

    Full Text Available We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ∼106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.

  17. Quantitative analysis of time-resolved infrared stimulated luminescence in feldspars

    DEFF Research Database (Denmark)

    Pagonis, Vasilis; Ankjærgaard, Christina; Jain, Mayank

    2016-01-01

    Time-resolved infrared-stimulated luminescence (TR-IRSL) from feldspar samples is of importance in the field of luminescence dating, since it provides information on the luminescence mechanism in these materials. In this paper we present new analytical equations which can be used to analyze TR-IR...

  18. TIME-RESOLVED INFRARED SPECTROSCOPY IN THE U121R BEAMLINE AT THE NSLS

    International Nuclear Information System (INIS)

    CARR, G.L.; LAVEIGNE, J.D.; LOBO, R.P.S.M.; REITZE, D.H.; TANNER, D.B.

    1999-01-01

    A facility for performing time-resolved infrared spectroscopy has been developed at the NSLS, primarily at beamline U12IR. The pulsed IR light from the synchrotron is used to perform pump-probe spectroscopy. The authors present here a description of the facility and results for the relaxation of photoexcitations in both a semiconductor and superconductor

  19. Time-resolved far-infrared experiments at the National Synchrotron Light Source. Final report

    International Nuclear Information System (INIS)

    Tanner, D.B.; Reitze, D.H.; Carr, G.L.

    1999-01-01

    A facility for time-resolved infrared and far-infrared spectroscopy has been built and commissioned at the National Synchrotron Light Source. This facility permits the study of time dependent phenomena over a frequency range from 2-8000cm -1 (0.25 meV-1 eV). Temporal resolution is approximately 200 psec and time dependent phenomena in the time range out to 100 nsec can be investigated

  20. Hemodynamic measurements in deep brain tissues of humans by near-infrared time-resolved spectroscopy

    Science.gov (United States)

    Suzuki, Hiroaki; Oda, Motoki; Yamaki, Etsuko; Suzuki, Toshihiko; Yamashita, Daisuke; Yoshimoto, Kenji; Homma, Shu; Yamashita, Yutaka

    2014-03-01

    Using near-infrared time-resolved spectroscopy (TRS), we measured the human head in transmittance mode to obtain the optical properties, tissue oxygenation, and hemodynamics of deep brain tissues in 50 healthy adult volunteers. The right ear canal was irradiated with 3-wavelengths of pulsed light (760, 795, and 835nm), and the photons passing through the human head were collected at the left ear canal. Optical signals with sufficient intensity could be obtained from 46 of the 50 volunteers. By analyzing the temporal profiles based on the photon diffusion theory, we successfully obtained absorption coefficients for each wavelength. The levels of oxygenated hemoglobin (HbO2), deoxygenated hemoglobin (Hb), total hemoglobin (tHb), and tissue oxygen saturation (SO2) were then determined by referring to the hemoglobin spectroscopic data. Compared with the SO2 values for the forehead measurements in reflectance mode, the SO2 values of the transmittance measurements of the human head were approximately 10% lower, and tHb values of the transmittance measurements were always lower than those of the forehead reflectance measurements. Moreover, the level of hemoglobin and the SO2 were strongly correlated between the human head measurements in transmittance mode and the forehead measurements in the reflectance mode, respectively. These results demonstrated a potential application of this TRS system in examining deep brain tissues of humans.

  1. Time-resolved tunable diode laser absorption spectroscopy of pulsed plasma

    Czech Academy of Sciences Publication Activity Database

    Adámek, Petr; Olejníček, Jiří; Čada, Martin; Kment, Š.; Hubička, Zdeněk

    2013-01-01

    Roč. 38, č. 14 (2013), s. 2428-2430 ISSN 0146-9592 R&D Projects: GA MŠk LH12045; GA ČR(CZ) GAP205/11/0386; GA MŠk LD12002; GA MŠk LH12043 Institutional support: RVO:68378271 Keywords : diode laser s * plasma diagnostics * absorption spectroscopy * time resolved Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.179, year: 2013

  2. Quantitative analysis of time-resolved infrared stimulated luminescence in feldspars

    DEFF Research Database (Denmark)

    Pagonis, Vasilis; Ankjærgaard, Christina; Jain, Mayank

    2016-01-01

    Time-resolved infrared-stimulated luminescence (TR-IRSL) from feldspar samples is of importance in the field of luminescence dating, since it provides information on the luminescence mechanism in these materials. In this paper we present new analytical equations which can be used to analyze TR-IR....... The equations are applied to experimental TR-IRSL data of natural feldspars, and good agreement is found between experimental and modeling results....

  3. Broad-band time-resolved near infrared spectroscopy in the TJ-II stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, M.C.; Pastor, I.; Cal, E. de la; McCarthy, K.J. [Laboratorio Nacional de Fusion, CIEMAT, Madrid (Spain); Diaz, D. [Universidad Autonoma de Madrid, Dept Quimica Fisica Aplicada, Madrid (Spain)

    2014-11-15

    First experimental results on broad-band, time-resolved Near Infrared (NIR;here loosely defined as covering from 750 to 1650 nm) passive spectroscopy using a high sensitivity InGaAs detector are reported for the TJ-II Stellarator. Experimental set-up is described together with its main characteristics, the most remarkable ones being its enhanced NIR response, broadband spectrum acquisition in a single shot, and time-resolved measurements with up to 1.8 kHz spectral rate. Prospects for future work and more extended physics studies in this newly open spectral region in TJ-II are discussed. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Study Of Soot Growth And Nucleation By A Time-Resolved Synchrotron Radiation Based X-Ray Absorption Method

    National Research Council Canada - National Science Library

    Mitchell, Judith I

    2001-01-01

    This report results from a contract tasking University of Rennes I as follows: The contractor will perform a study of soot growth and nucleation by a time-resolved synchrotron radiation based x-ray absorption method...

  5. Quantitative analysis of time-resolved infrared stimulated luminescence in feldspars

    Energy Technology Data Exchange (ETDEWEB)

    Pagonis, Vasilis, E-mail: vpagonis@mcdaniel.edu [McDaniel College, Physics Department, Westminster, MD 21157 (United States); Ankjærgaard, Christina [Soil Geography and Landscape Group & Netherlands Centre for Luminescence dating, Wageningen University, PO Box 47, 6700 AA Wageningen (Netherlands); Jain, Mayank [Center for Nuclear Technologies, Technical University of Denmark, DTU Risø Campus, Roskilde (Denmark); Chithambo, Makaiko L. [Department of Physics and Electronics, Rhodes University, PO BOX 94, Grahamstown 6140 (South Africa)

    2016-09-15

    Time-resolved infrared-stimulated luminescence (TR-IRSL) from feldspar samples is of importance in the field of luminescence dating, since it provides information on the luminescence mechanism in these materials. In this paper we present new analytical equations which can be used to analyze TR-IRSL signals, both during and after short infrared stimulation pulses. The equations are developed using a recently proposed kinetic model, which describes localized electronic recombination via tunneling between trapped electrons and recombination centers in luminescent materials. Recombination is assumed to take place from the excited state of the trapped electron to the nearest-neighbor center within a random distribution of luminescence recombination centers. Different possibilities are examined within the model, depending on the relative importance of electron de-excitation and recombination. The equations are applied to experimental TR-IRSL data of natural feldspars, and good agreement is found between experimental and modeling results.

  6. Structure-activity relationships of heterogeneous catalysts from time-resolved X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Ressler, T.; Jentoft, R.E.; Wienold, J.; Girgsdies, F.; Neisius, T.; Timpe, O.

    2003-01-01

    Knowing the composition and the evolution of the bulk structure of a heterogeneous catalyst under working conditions (in situ) is a pre-requisite for understanding structure-activity relationships. X-ray absorption spectroscopy can be employed to study a catalytically active material in situ. In addition to steady-state investigations, the technique permits experiments with a time-resolution in the sub-second range to elucidate the solid-state kinetics of the reactions involved. Combined with mass spectrometry, the evolution of the short-range order structure of a heterogeneous catalyst, the average valence of the constituent metals, and the phase composition can be obtained. Here we present results obtained from time-resolved studies on the reduction of MoO 3 in propene and in propene and oxygen

  7. Time-resolved photoion imaging spectroscopy: Determining energy distribution in multiphoton absorption experiments

    Science.gov (United States)

    Qian, D. B.; Shi, F. D.; Chen, L.; Martin, S.; Bernard, J.; Yang, J.; Zhang, S. F.; Chen, Z. Q.; Zhu, X. L.; Ma, X.

    2018-04-01

    We propose an approach to determine the excitation energy distribution due to multiphoton absorption in the case of excited systems following decays to produce different ion species. This approach is based on the measurement of the time-resolved photoion position spectrum by using velocity map imaging spectrometry and an unfocused laser beam with a low fluence and homogeneous profile. Such a measurement allows us to identify the species and the origin of each ion detected and to depict the energy distribution using a pure Poisson's equation involving only one variable which is proportional to the absolute photon absorption cross section. A cascade decay model is used to build direct connections between the energy distribution and the probability to detect each ionic species. Comparison between experiments and simulations permits the energy distribution and accordingly the absolute photon absorption cross section to be determined. This approach is illustrated using C60 as an example. It may therefore be extended to a wide variety of molecules and clusters having decay mechanisms similar to those of fullerene molecules.

  8. Time-resolved pump-probe X-ray absorption fine structure spectroscopy of Gaq3

    International Nuclear Information System (INIS)

    Dicke, Benjamin

    2013-01-01

    Gallium(tris-8-hydroxyquinoline) (Gaq 3 ) belongs to a class of metal organic compounds, used as electron transport layer and emissive layer in organic light emitting diodes. Many research activities have concentrated on the optical and electronic properties, especially of the homologue molecule aluminum(tris-8-hydroxyquinoline) (Alq 3 ). Knowledge of the first excited state S 1 structure of these molecules could provide deeper insight into the processes involved into the operation of electronic devices, such as OLEDs and, hence, it could further improve their efficiency and optical properties. Until now the excited state structure could not be determined experimentally. Most of the information about this structure mainly arises from theoretical calculations. X-ray absorption fine structure (XAFS) spectroscopy is a well developed technique to determine both, the electronic and the geometric properties of a sample. The connection of ultrashort pulsed X-ray sources with a pulsed laser system offers the possibility to use XAFS as a tool for studying the transient changes of a sample induced by a laser pulse. In the framework of this thesis a new setup for time-resolved pump-probe X-ray absorption spectroscopy at PETRA III beamline P11 was developed for measuring samples in liquid form. In this setup the sample is pumped into its photo-excited state by a femtosecond laser pump pulse with 343 nm wavelength and after a certain time delay probed by an X-ray probe pulse. In this way the first excited singlet state S 1 of Gaq 3 dissolved in benzyl alcohol was analyzed. A structural model for the excited state structure of the Gaq 3 molecule based on the several times reproduced results of the XAFS experiments is proposed. According to this model it was found that the Ga-N A bond length is elongated, while the Ga-O A bond length is shortened upon photoexcitation. The dynamics of the structural changes were not the focus of this thesis. Nevertheless the excited state lifetime

  9. Time-resolved near-infrared technique for bedside monitoring of absolute cerebral blood flow

    Science.gov (United States)

    Diop, Mamadou; Tichauer, Kenneth M.; Elliott, Jonathan T.; Migueis, Mark; Lee, Ting-Yim; St. Lawrence, Keith

    2010-02-01

    A primary focus of neurointensive care is monitoring the injured brain to detect harmful events that can impair cerebral blood flow (CBF). Since current non-invasive bedside methods can only indirectly assess blood flow, the goal of this research was to develop an optical technique for measuring absolute CBF. A time-resolved near-infrared (NIR) apparatus was built and its ability to accurately measure changes in optical properties was demonstrated in tissue-mimicking phantoms. The time-resolved system was combined with a bolus-tracking method for measuring CBF using the dye indocyanine green (ICG) as an intravascular flow tracer. Cerebral blood flow was measured in newborn piglets and for comparison, CBF was concurrently measured using a previously developed continuous-wave NIR method. Measurements were acquired with both techniques under three conditions: normocapnia, hypercapnia and following occlusion of the carotid arteries. Mean CBF values (N = 3) acquired with the TR-NIR system were 31.9 +/- 11.7 ml/100g/min during occlusion, 39.7 +/- 1.6 ml/100g/min at normocapnia, and 58.8 +/- 9.9 ml/100g/min at hypercapnia. Results demonstrate that the developed TR-NIR technique has the sensitivity to measure changes in CBF; however, the CBF measurements were approximately 25% lower than the values obtained with the CW-NIRS technique.

  10. Time-resolved FTIR [Fourier transform infrared] emission studies of laser photofragmentation and chain reactions

    International Nuclear Information System (INIS)

    Leone, S.R.

    1990-01-01

    Recent progress is described resulting from the past three years of DOE support for studies of combustion-related photofragmentation dynamics, energy transfer, and reaction processes using a time-resolved Fourier transform infrared (FTIR) emission technique. The FTIR is coupled to a high repetition rate excimer laser which produces radicals by photolysis to obtain novel, high resolution measurements on vibrational and rotational state dynamics. The results are important for the study of numerous radical species relevant to combustion processes. The method has been applied to the detailed study of photofragmentation dynamics in systems such as acetylene, which produces C 2 H; chlorofluoroethylene to study the HF product channel; vinyl chloride and dichloroethylene, which produce HCl; acetone, which produces CO and CH 3 ; and ammonia, which produces NH 2 . In addition, we have recently demonstrated use of the FTIR technique for preliminary studies of energy transfer events under near single collision conditions, radical-radical reactions, and laser-initiated chain reaction processes

  11. Exploring the Dynamics of Superconductors by Time-Resolved Far-Infrared Spectroscopy

    International Nuclear Information System (INIS)

    Carr, G. L.; Lobo, R. P. S. M.; LaVeigne, J.; Reitze, D. H.; Tanner, D. B.

    2000-01-01

    We have examined the recombination of excess quasiparticles in superconducting Pb by time-resolved far-infrared spectroscopy using a pulsed synchrotron source. The energy gap shift calculated by Owen and Scalapino [Phys. Rev. Lett. 28, 1559 (1972)] is directly observed, as is the associated reduction in the Cooper pair density. The relaxation process involves a two-component decay; the faster (∼200 ps) is associated with the actual (effective) recombination process, while the slower (∼10 to 100ns) is due to heat transport across the film/substrate interface. The temperature dependence of the recombination process between 0.5T c and 0.85T c is in good agreement with theory

  12. Time Resolved Detection of Infrared Synchrotron Radiation at DAΦNE

    International Nuclear Information System (INIS)

    Bocci, A.; Marcelli, A.; Drago, A.; Guidi, M. Cestelli; Pace, E.; Piccinini, M.; Sali, D.; Morini, P.; Piotrowski, J.

    2007-01-01

    Synchrotron radiation is characterized by a very wide spectral emission from IR to X-ray wavelengths and a pulsed structure that is a function of the source time structure. In a storage ring, the typical temporal distance between two bunches, whose duration is a few hundreds of picoseconds, is on the nanosecond scale. Therefore, synchrotron radiation sources are a very powerful tools to perform time-resolved experiments that however need extremely fast detectors. Uncooled IR devices optimized for the mid-IR range with sub-nanosecond response time, are now available and can be used for fast detection of intense IR sources such as synchrotron radiation storage rings. We present here different measurements of the pulsed synchrotron radiation emission at DAΦNE (Double Annular Φ-factory for Nice Experiments), the collider of the Laboratori Nazionali of Frascati (LNF) of the Istituto Nazionale di Fisica Nucleare (INFN), performed with very fast uncooled infrared detectors with a time resolution of a few hundreds of picoseconds. We resolved the emission time structure of the electron bunches of the DAΦNE collider when it works in a normal condition for high energy physics experiments with both photovoltaic and photoconductive detectors. Such a technology should pave the way to new diagnostic methods in storage rings, monitoring also source instabilities and bunch dynamics

  13. NO kinetics in pulsed low-pressure nitrogen plasmas studied by time resolved quantum cascade laser absorption spectroscopy

    NARCIS (Netherlands)

    Welzel, S.; Guaitella, O.; Lazzaroni, C.; Pintassilgo, C.; Rousseau, A.; Röpcke, J.

    2011-01-01

    Time-resolved quantum cascade laser absorption spectroscopy at 1897 cm-1 (5.27 µm) has been applied to study the NO(X) kinetics on the micro- and millisecond time scale in pulsed low-pressure N2/NO dc discharges. Experiments have been performed under flowing and static gas conditions to infer the

  14. Sol-to-Gel Transition in Fast Evaporating Systems Observed by in Situ Time-Resolved Infrared Spectroscopy.

    Science.gov (United States)

    Innocenzi, Plinio; Malfatti, Luca; Carboni, Davide; Takahashi, Masahide

    2015-06-22

    The in situ observation of a sol-to-gel transition in fast evaporating systems is a challenging task and the lack of a suitable experimental design, which includes the chemistry and the analytical method, has limited the observations. We synthesise an acidic sol, employing only tetraethylorthosilicate, SiCl4 as catalyst and deuterated water; the absence of water added to the sol allows us to follow the absorption from the external environment and the evaporation of deuterated water. The time-resolved data, obtained by attenuated total reflection infrared spectroscopy on an evaporating droplet, enables us to identify four different stages during evaporation. They are linked to specific hydrolysis and condensation rates that affect the uptake of water from external environment. The second stage is characterized by a decrease in hydroxyl content, a fast rise of condensation rate and an almost stationary absorption of water. This stage has been associated with the sol-to-gel transition. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Experimental Visualizations of a Generic Launch Vehicle Flow Field: Time-Resolved Shadowgraph and Infrared Imaging

    Science.gov (United States)

    Garbeff, Theodore J., II; Panda, Jayanta; Ross, James C.

    2017-01-01

    Time-Resolved shadowgraph and infrared (IR) imaging were performed to investigate off-body and on-body flow features of a generic, 'hammer-head' launch vehicle geometry previously tested by Coe and Nute (1962). The measurements discussed here were one part of a large range of wind tunnel test techniques that included steady-state pressure sensitive paint (PSP), dynamic PSP, unsteady surface pressures, and unsteady force measurements. Image data was captured over a Mach number range of 0.6 less than or equal to M less than or equal to 1.2 at a Reynolds number of 3 million per foot. Both shadowgraph and IR imagery were captured in conjunction with unsteady pressures and forces and correlated with IRIG-B timing. High-speed shadowgraph imagery was used to identify wake structure and reattachment behind the payload fairing of the vehicle. Various data processing strategies were employed and ultimately these results correlated well with the location and magnitude of unsteady surface pressure measurements. Two research grade IR cameras were positioned to image boundary layer transition at the vehicle nose and flow reattachment behind the payload fairing. The poor emissivity of the model surface treatment (fast PSP) proved to be challenging for the infrared measurement. Reference image subtraction and contrast limited adaptive histogram equalization (CLAHE) were used to analyze this dataset. Ultimately turbulent boundary layer transition was observed and located forward of the trip dot line at the model sphere-cone junction. Flow reattachment location was identified behind the payload fairing in both steady and unsteady thermal data. As demonstrated in this effort, recent advances in high-speed and thermal imaging technology have modernized classical techniques providing a new viewpoint for the modern researcher

  16. New methods and applications in time-resolved X-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stoetzel, Jan Eric

    2012-07-01

    Recent experimental advances and developments in the QEXAFS technique were presented along with new applications in the disciplines of catalysis and surface science. Both performance and user-friendliness of the QEXAFS method were significantly improved, while the applicability of QEXAFS was extended by newly designed mechanics. The application of a fast angular encoder proved to be capable to sample the continuously changing Bragg angle of the monochromator crystal synchronized to the acquired absorption data. A new data acquisition system was designed, based on a multifunctional ADC board, which provides high acquisition frequencies, while low noise acquisition could be achieved due to the provided differential acquisition mode. Additionally, control of all experimental devices as current amplifiers, monochromator motors and sample stages were implemented to further increase the efficiency of the experimental setup for QEFAS measurements. In order to simplify the processing of the huge generated QEXAFS raw data files, a completely new software tool for data analysis was designed, which provides not only the basic procedures of QEXAFS data analysis, but also many approaches customized for time-resolved data. Apart from technical advances, various experiments were performed with QEXAFS to gain new insights into the complex processes of several catalytic reactions, the thermal decomposition of metal oxalates, as well as layer growth processes and reactions on rough surfaces. Supported Pd catalysts were investigated during catalytic partial oxidation of methane, whereby oscillations in the conversion were linked to structural changes of the catalyst. Kinetic oscillations were also investigated on a supported Pt catalyst during the extinction of CO oxidation induced by decreasing temperature. Modulated experiments were investigated (i) on supported Pt-Rh/Al{sub 2}O{sub 3} catalysts during active catalytic partial oxidation in switching gas atmospheres of methane and

  17. Time-resolved soft x-ray absorption setup using multi-bunch operation modes at synchrotrons

    International Nuclear Information System (INIS)

    Stebel, L.; Sigalotti, P.; Ressel, B.; Cautero, G.; Malvestuto, M.; Capogrosso, V.; Bondino, F.; Magnano, E.; Parmigiani, F.

    2011-01-01

    Here, we report on a novel experimental apparatus for performing time-resolved soft x-ray absorption spectroscopy in the sub-ns time scale using non-hybrid multi-bunch mode synchrotron radiation. The present setup is based on a variable repetition rate Ti:sapphire laser (pump pulse) synchronized with the ∼500 MHz x-ray synchrotron radiation bunches and on a detection system that discriminates and singles out the significant x-ray photon pulses by means of a custom made photon counting unit. The whole setup has been validated by measuring the time evolution of the L 3 absorption edge during the melting and the solidification of a Ge single crystal irradiated by an intense ultrafast laser pulse. These results pave the way for performing synchrotron time-resolved experiments in the sub-ns time domain with variable repetition rate exploiting the full flux of the synchrotron radiation.

  18. System for time-resolved laser absorption spectroscopy and its application to high-power impulse magnetron sputtering

    Czech Academy of Sciences Publication Activity Database

    Adámek, Petr; Olejníček, Jiří; Hubička, Zdeněk; Čada, Martin; Kment, Štěpán; Kohout, Michal; Do, H.T.

    2017-01-01

    Roč. 88, č. 2 (2017), 1-8, č. článku 023105. ISSN 0034-6748 R&D Projects: GA TA ČR(CZ) TF01000084; GA ČR(CZ) GA15-00863S Institutional support: RVO:68378271 Keywords : plasma diagnostics * HiPIMS * time resolved measurement * laser absorption spectroscopy Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 1.515, year: 2016

  19. Dual time-resolved temperature-jump fluorescence and infrared spectroscopy for the study of fast protein dynamics.

    Science.gov (United States)

    Davis, Caitlin M; Reddish, Michael J; Dyer, R Brian

    2017-05-05

    Time-resolved temperature-jump (T-jump) coupled with fluorescence and infrared (IR) spectroscopy is a powerful technique for monitoring protein dynamics. Although IR spectroscopy of the polypeptide amide I mode is more technically challenging, it offers complementary information because it directly probes changes in the protein backbone, whereas, fluorescence spectroscopy is sensitive to the environment of specific side chains. With the advent of widely tunable quantum cascade lasers (QCL) it is possible to efficiently probe multiple IR frequencies with high sensitivity and reproducibility. Here we describe a dual time-resolved T-jump fluorescence and IR spectrometer and its application to study protein folding dynamics. A Q-switched Ho:YAG laser provides the T-jump source for both time-resolved IR and fluorescence spectroscopy, which are probed by a QCL and Ti:Sapphire laser, respectively. The Ho:YAG laser simultaneously pumps the time-resolved IR and fluorescence spectrometers. The instrument has high sensitivity, with an IR absorbance detection limit of jump induced difference spectrum from 50ns to 0.5ms. This study demonstrates the power of the dual time-resolved T-jump fluorescence and IR spectroscopy to resolve complex folding mechanisms by complementary IR absorbance and fluorescence measurements of protein dynamics. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Non-invasive determination of the absorption coefficient of the brain from time-resolved reflectance using a neural network

    International Nuclear Information System (INIS)

    Jaeger, Marion; Kienle, Alwin

    2011-01-01

    We investigated the performance of a neural network for derivation of the absorption coefficient of the brain from simulated non-invasive time-resolved reflectance measurements on the head. A five-layered geometry was considered assuming that the optical properties (except the absorption coefficient of the brain) and the thickness of all layers were known with an uncertainty. A solution of the layered diffusion equation was used to train the neural network. We determined the absorption coefficient of the brain with an RMS error of <6% from reflectance data at a single distance calculated by diffusion theory. By applying the neural network to reflectance curves obtained from Monte Carlo simulations, similar errors were found. (note)

  1. Diagnosis of laser ablated carbon particles measured by time-resolved X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Miyashita, Atsumi; Yoda, Osamu; Ohyanagi, T.; Murakami, K.

    1995-01-01

    The time and space resolved properties of laser ablated carbon particles were measured by X-ray absorption spectroscopy using LPX as an X-ray source. The energy density of the irradiation laser on the sample was in the range of 0.5-20J/cm 2 and the time delay was varied between 0 and 120ns. The absorption spectra exhibited several peaks originated from level to level transitions and an intense broad absorption in the energy range of C-K edge. At a delay time of 120ns, the absorption peak from 1s→2p transition of neutral carbon atom (C 0 ), C - , C + and C 2+ ions were observed. The absorption peak from C 0 was stronger as the probing position was closer to the sample surface and decreased rapidly with distance from the sample surface. The absorption peak C 2+ ion was observed only at comparatively distant positions from surface. The maximum speeds of highly charged ions were faster than that of neutral atoms and negative charged ions. The neutral atom and lower charged ions were emitted from the sample even after laser irradiation. The spatial distributions of the laser ablated carbon particles in the localized helium gas environment were measured. In the helium gas environment, the ablation plume was depressed by the helium cloud generated on the top of ablation plume. (author)

  2. Static and time-resolved mid-infrared spectroscopy of Hg0.95Cd0.05Cr2Se4 spinel.

    Science.gov (United States)

    Barsaume, S; Telegin, A V; Sukhorukov, Yu P; Stavrias, N; Fedorov, V A; Menshchikova, T K; Kimel, A V

    2017-08-16

    Static and time-resolved mid-infrared spectroscopy of ferromagnetic single crystal Hg 0.95 Cd 0.05 Cr 2 Se 4 was performed below the absorption edge, in order to reveal the origin of the electronic transitions contributing to the magneto-optical properties of this material. The mid-infrared spectroscopy reveals a strong absorption peak around 0.236 eV which formerly was assigned to a transition within the selenide-chromium complexes ([Formula: see text] Se -Cr 2+ ). To reveal the sensitivity of the transition to the magnetic order, we performed the studies in a temperature range across the Curie temperature and magnetic fields across the value at which the saturation of ferromagnetic magnetization occurs. Despite the fact that the Curie temperature of this ferromagnetic semiconductor is around 107 K, the intensity of the mid-infrared transition reduces substantially increasing the temperature, so that already at 70 K the absorption peak is hardly visible. Such a dramatic decrease of the oscillator strength is observed simultaneously with the strong red-shift of the absorption edge in the magnetic semiconductor. Employing a time-resolved pump-and-probe technique enabled us to determine the lifetime of the electrons in the excited state of this optical transition. In the temperature range from 7 K to 80 K, the lifetime changes from 3 ps to 6 ps. This behavior agrees with the phenomenon of giant oscillator strength described earlier for weakly bound excitons in nonmagnetic semiconductors.

  3. Time-Resolved Spectroscopy and Near Infrared Imaging for Prostate Cancer Detection: Receptor-targeted and Native Biomarker

    Science.gov (United States)

    Pu, Yang

    Optical spectroscopy and imaging using near-infrared (NIR) light provides powerful tools for non-invasive detection of cancer in tissue. Optical techniques are capable of quantitative reconstructions maps of tissue absorption and scattering properties, thus can map in vivo the differences in the content of certain marker chromophores and/or fluorophores in normal and cancerous tissues (for example: water, tryptophan, collagen and NADH contents). Potential clinical applications of optical spectroscopy and imaging include functional tumor detection and photothermal therapeutics. Optical spectroscopy and imaging apply contrasts from intrinsic tissue chromophores such as water, collagen and NADH, and extrinsic optical contrast agents such as Indocyanine Green (ICG) to distinguish disease tissue from the normal one. Fluorescence spectroscopy and imaging also gives high sensitivity and specificity for biomedical diagnosis. Recent developments on specific-targeting fluorophores such as small receptor-targeted dye-peptide conjugate contrast agent offer high contrast between normal and cancerous tissues hence provide promising future for early tumour detection. This thesis focus on a study to distinguish the cancerous prostate tissue from the normal prostate tissues with enhancement of specific receptor-targeted prostate cancer contrast agents using optical spectroscopy and imaging techniques. The scattering and absorption coefficients, and anisotropy factor of cancerous and normal prostate tissues were investigated first as the basis for the biomedical diagnostic and optical imaging. Understanding the receptors over-expressed prostate cancer cells and molecular target mechanism of ligand, two small ICG-derivative dye-peptides, namely Cypate-Bombesin Peptide Analogue Conjugate (Cybesin) and Cypate-Octreotate Peptide Conjugate (Cytate), were applied to study their clinical potential for human prostate cancer detection. In this work, the steady-state and time-resolved

  4. Design and implementation of a rapid-mixer flow cell for time-resolved infrared microspectroscopy

    International Nuclear Information System (INIS)

    Marinkovic, Nebojsa S.; Adzic, Aleksandar R.; Sullivan, Michael; Kovacs, Kevin; Miller, Lisa M.; Rousseau, Denis L.; Yeh, Syun-Ru; Chance, Mark R.

    2000-01-01

    A rapid mixer for the analysis of reactions in the millisecond and submillisecond time domains by Fourier-transform infrared microspectroscopy has been constructed. The cell was tested by examination of cytochrome-c folding kinetics. The device allows collection of full infrared spectral data on millisecond and faster time scales subsequent to chemical jump reaction initiation. The data quality is sufficiently good such that spectral fitting techniques could be applied to analysis of the data. Thus, this method provides an advantage over kinetic measurements at single wavelengths using infrared laser or diode sources, particularly where band overlap exists

  5. Time-resolved x-ray absorption spectroscopy: Watching atoms dance

    Science.gov (United States)

    Milne, Chris J.; Pham, Van-Thai; Gawelda, Wojciech; van der Veen, Renske M.; El Nahhas, Amal; Johnson, Steven L.; Beaud, Paul; Ingold, Gerhard; Lima, Frederico; Vithanage, Dimali A.; Benfatto, Maurizio; Grolimund, Daniel; Borca, Camelia; Kaiser, Maik; Hauser, Andreas; Abela, Rafael; Bressler, Christian; Chergui, Majed

    2009-11-01

    The introduction of pump-probe techniques to the field of x-ray absorption spectroscopy (XAS) has allowed the monitoring of both structural and electronic dynamics of disordered systems in the condensed phase with unprecedented accuracy, both in time and in space. We present results on the electronically excited high-spin state structure of an Fe(II) molecular species, [FeII(bpy)3]2+, in aqueous solution, resolving the Fe-N bond distance elongation as 0.2 Å. In addition an analysis technique using the reduced χ2 goodness of fit between FEFF EXAFS simulations and the experimental transient absorption signal in energy space has been successfully tested as a function of excited state population and chemical shift, demonstrating its applicability in situations where the fractional excited state population cannot be determined through other measurements. Finally by using a novel ultrafast hard x-ray 'slicing' source the question of how the molecule relaxes after optical excitation has been successfully resolved using femtosecond XANES.

  6. Time resolved infrared spectroscopy of femtosecond proton dynamics in the liquid phase

    International Nuclear Information System (INIS)

    Amir, W.

    2003-12-01

    This work of thesis aims to understand the strong mobility of protons in water. Water is fundamental to life and mediates many chemical and biological processes. However this liquid is poorly understood at the molecular level. The richness of interdisciplinary sciences allows us to study the properties which make it so unique. The technique used for this study was the femtosecond time resolved vibrational spectroscopy. Several experiments were carried out to characterize the femtosecond proton dynamics in water. The visualization of the rotation of water molecules obtained by anisotropy measurements will be presented. This experiment is carried out in isotopic water HDO/D 2 O for reasons of experimental and theoretical suitability. However this is not water. Pure water H 2 O was also studied without thermal effects across vibrations modes. An intermolecular energy resonant transfer was observed. Finally the localized structure of the proton in water (called Eigen form) was clearly experimentally observed. This molecule is implicated in the abnormal mobility of the proton in water (Grotthuss mechanism). (author)

  7. Ultrafast time-resolved absorption spectroscopy of geometric isomers of xanthophylls

    Science.gov (United States)

    Niedzwiedzki, Dariusz M.; Enriquez, Miriam M.; LaFountain, Amy M.; Frank, Harry A.

    2010-07-01

    This paper presents an ultrafast optical spectroscopic investigation of the excited state energies, lifetimes and spectra of specific geometric isomers of neoxanthin, violaxanthin, lutein, and zeaxanthin. All- trans- and 15,15'- cis-β-carotene were also examined. The spectroscopy was done on molecules purified by HPLC frozen immediately to inhibit isomerization. The spectra were taken at 77 K to maintain the configurations and to provide better spectral resolution than seen at room temperature. The kinetics reveal that for all of the molecules except neoxanthin, the S 1 state lifetime of the cis isomers is shorter than that of the all- trans isomers. The S 1 excited state energies of all the isomers were determined by recording S 1 → S 2 transient absorption spectra. The results obtained in this manner at cryogenic temperatures provide an unprecedented level of precision in the measurement of the S 1 energies of these xanthophylls, which are critical components in light-harvesting pigment-protein complexes of green plants.

  8. Temperature measurements of shocked translucent materials by time-resolved infrared radiometry

    International Nuclear Information System (INIS)

    Von Holle, W.G.

    1981-01-01

    Infrared emission in the range 2 to 5.5 μm has been used to measure temperatures in shock-compressed states of nitromethane, cyclohexane and benzene and in polycrystalline KBr. Polymethylmethacrylate shows anomolous emission probably associated with some heterogeneity

  9. In situ time-resolved X-ray near-edge absorption spectroscopy of selenite reduction by siderite

    International Nuclear Information System (INIS)

    Badaut, V.; Schlegel, M.L.; Descostes, M.; Moutiers, G.

    2012-01-01

    The reduction oxidation-reaction between aqueous selenite (SeO 3 2- ) and siderite (FeCO 3 (s)) was monitored by in situ, time-resolved X-ray absorption near-edge structure (XANES) spectroscopy at the selenium K edge in a controlled electrochemical environment. Spectral evolutions showed that more than 60% of selenite was reduced at the siderite surface after 20 h of experiment, at which time the reaction was still incomplete. Fitting of XANES spectra by linear combination of reference spectra showed that selenite reaction with siderite is essentially a two-step process, selenite ions being immobilized on siderite surface prior to their reduction. A kinetic model of the reduction step is proposed, allowing to identify the specific contribution of surface reduction. These results have strong implications for the retention of selenite by corrosion products in nuclear waste repositories and in a larger extent for the fate of selenium in the environment. (authors)

  10. Direct Structural and Chemical Characterization of the Photolytic Intermediates of Methylcobalamin Using Time-Resolved X-ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, Ganesh; Zhang, Xiaoyi; Kodis, Gerdenis; Kong, Qingyu; Liu, Cunming; Chizmeshya, Andrew; Weierstall, Uwe; Spence, John

    2018-04-05

    Cobalt−carbon bond cleavage is crucial to most natural and synthetic applications of the cobalamin class of compounds, and here we present the first direct electronic and geometric structural characteristics of intermediates formed following photoexcitation of methylcobalamin (MeCbl) using time-resolved X-ray absorption spectroscopy (XAS). We catch transients corresponding to two intermediates, in the hundreds of picoseconds and a few microseconds. Highlights of the picosecond intermediate, which is reduced in comparison to the ground state, are elongation of the upper axial Co−C bond and relaxation of the corrin ring. This is not so with the recombining photocleaved products captured at a few microseconds, where the Co−C bond almost (yet not entirely) reverts to its ground state configuration and a substantially elongated lower axial Co−NIm bond is observed. The reduced cobalt site here confirms formation of methyl radical as the photoproduct.

  11. Time-resolved pump and probe x-ray absorption fine structure spectroscopy at beamline P11 at PETRA III

    Energy Technology Data Exchange (ETDEWEB)

    Göries, D., E-mail: dennis.goeries@desy.de; Roedig, P.; Stübe, N.; Meyer, J.; Warmer, M.; Weckert, E.; Meents, A., E-mail: alke.meents@desy.de [DESY Photon Science, Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607 Hamburg (Germany); Dicke, B.; Naumova, M.; Rübhausen, M. [Center for Free-Electron Laser Science (CFEL), Luruper Chaussee 149, 22761 Hamburg (Germany); Galler, A.; Gawelda, W.; Geßler, P.; Sotoudi Namin, H.; Beckmann, A. [European XFEL, Albert-Einstein Ring 19, 22761 Hamburg (Germany); Britz, A.; Bressler, C. [European XFEL, Albert-Einstein Ring 19, 22761 Hamburg (Germany); The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg (Germany); Schlie, M. [Institut für Experimentalphysik, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany)

    2016-05-15

    We report about the development and implementation of a new setup for time-resolved X-ray absorption fine structure spectroscopy at beamline P11 utilizing the outstanding source properties of the low-emittance PETRA III synchrotron storage ring in Hamburg. Using a high intensity micrometer-sized X-ray beam in combination with two positional feedback systems, measurements were performed on the transition metal complex fac-Tris[2-phenylpyridinato-C2,N]iridium(III) also referred to as fac-Ir(ppy){sub 3}. This compound is a representative of the phosphorescent iridium(III) complexes, which play an important role in organic light emitting diode (OLED) technology. The experiment could directly prove the anticipated photoinduced charge transfer reaction. Our results further reveal that the temporal resolution of the experiment is limited by the PETRA III X-ray bunch length of ∼103 ps full width at half maximum (FWHM).

  12. Comparison of time-resolved and continuous-wave near-infrared techniques for measuring cerebral blood flow in piglets

    Science.gov (United States)

    Diop, Mamadou; Tichauer, Kenneth M.; Elliott, Jonathan T.; Migueis, Mark; Lee, Ting-Yim; Lawrence, Keith St.

    2010-09-01

    A primary focus of neurointensive care is monitoring the injured brain to detect harmful events that can impair cerebral blood flow (CBF), resulting in further injury. Since current noninvasive methods used in the clinic can only assess blood flow indirectly, the goal of this research is to develop an optical technique for measuring absolute CBF. A time-resolved near-infrared (TR-NIR) apparatus is built and CBF is determined by a bolus-tracking method using indocyanine green as an intravascular flow tracer. As a first step in the validation of this technique, CBF is measured in newborn piglets to avoid signal contamination from extracerebral tissue. Measurements are acquired under three conditions: normocapnia, hypercapnia, and following carotid occlusion. For comparison, CBF is concurrently measured by a previously developed continuous-wave NIR method. A strong correlation between CBF measurements from the two techniques is revealed with a slope of 0.79+/-0.06, an intercept of -2.2+/-2.5 ml/100 g/min, and an R2 of 0.810+/-0.088. Results demonstrate that TR-NIR can measure CBF with reasonable accuracy and is sensitive to flow changes. The discrepancy between the two methods at higher CBF could be caused by differences in depth sensitivities between continuous-wave and time-resolved measurements.

  13. Variation in LOV Photoreceptor Activation Dynamics Probed by Time Resolved Infrared Spectroscopy

    KAUST Repository

    Iuliano, James N.

    2017-12-14

    The light, oxygen, voltage (LOV) domain proteins are blue light photoreceptors that utilize a non-covalently bound flavin mononucleotide (FMN) cofactor as the chromophore. The modular nature of these proteins has led to their wide adoption in the emerging fields of optogenetics and optobiology, where the LOV domain has been fused to a variety of output domains leading to novel light-controlled applications. In the present work, we extend our studies of the sub-picosecond to several hundred microsecond transient infrared spectroscopy of the isolated LOV domain AsLOV2 to three full-length photoreceptors in which the LOV domain is fused to an output domain: the LOV-STAS protein, YtvA, the LOV-HTH transcription factor, EL222, and the LOV-histidine kinase, LovK. Despite differences in tertiary structure, the overall pathway leading to cysteine adduct formation from the FMN triplet state is highly conserved, although there are slight variations in rate. However significant differences are observed in the vibrational spectra and kinetics after adduct formation, which are directly linked to the specific output function of the LOV domain. While the rate of adduct formation varies by only 3.6-fold amongst the proteins, the subsequent large-scale structural changes in the full-length LOV photoreceptors occur over the micro- to sub-millisecond timescales and vary by orders of magnitude depending on the different output function of each LOV domain.

  14. Variation in LOV Photoreceptor Activation Dynamics Probed by Time Resolved Infrared Spectroscopy

    KAUST Repository

    Iuliano, James N.; Gil, Agnieszka A.; Laptenok, Sergey P.; Hall, Christopher R.; Tolentino Collado, Jinnette; Lukacs, Andras; Hag Ahmed, Safaa A; Abyad, Jenna; Daryaee, Taraneh; Greetham, Gregory M.; Sazanovich, Igor V.; Illarionov, Boris; Bacher, Adelbert; Fischer, Markus; Towrie, Michael; French, Jarrod B.; Meech, Stephen R.; Tonge, Peter J

    2017-01-01

    The light, oxygen, voltage (LOV) domain proteins are blue light photoreceptors that utilize a non-covalently bound flavin mononucleotide (FMN) cofactor as the chromophore. The modular nature of these proteins has led to their wide adoption in the emerging fields of optogenetics and optobiology, where the LOV domain has been fused to a variety of output domains leading to novel light-controlled applications. In the present work, we extend our studies of the sub-picosecond to several hundred microsecond transient infrared spectroscopy of the isolated LOV domain AsLOV2 to three full-length photoreceptors in which the LOV domain is fused to an output domain: the LOV-STAS protein, YtvA, the LOV-HTH transcription factor, EL222, and the LOV-histidine kinase, LovK. Despite differences in tertiary structure, the overall pathway leading to cysteine adduct formation from the FMN triplet state is highly conserved, although there are slight variations in rate. However significant differences are observed in the vibrational spectra and kinetics after adduct formation, which are directly linked to the specific output function of the LOV domain. While the rate of adduct formation varies by only 3.6-fold amongst the proteins, the subsequent large-scale structural changes in the full-length LOV photoreceptors occur over the micro- to sub-millisecond timescales and vary by orders of magnitude depending on the different output function of each LOV domain.

  15. Mapping of calf muscle oxygenation and haemoglobin content during dynamic plantar flexion exercise by multi-channel time-resolved near-infrared spectroscopy

    International Nuclear Information System (INIS)

    Torricelli, Alessandro; Quaresima, Valentina; Pifferi, Antonio; Biscotti, Giovanni; Spinelli, Lorenzo; Taroni, Paola; Ferrari, Marco; Cubeddu, Rinaldo

    2004-01-01

    A compact and fast multi-channel time-resolved near-infrared spectroscopy system for tissue oximetry was developed. It employs semiconductor laser and fibre optics for delivery of optical signals. Photons are collected by eight 1 mm fibres and detected by a multianode photomultiplier. A time-correlated single photon counting board is used for the parallel acquisition of time-resolved reflectance curves. Estimate of the reduced scattering coefficient is achieved by fitting with a standard model of diffusion theory, while the modified Lambert-Beer law is used to assess the absorption coefficient. In vivo measurements were performed on five healthy volunteers to monitor spatial changes in calf muscle (medial and lateral gastrocnemius; MG, LG) oxygen saturation (SmO 2 ) and total haemoglobin concentration (tHb) during dynamic plantar flexion exercise performed at 50% of the maximal voluntary contraction. At rest SmO 2 was 73.0 ± 0.9 and 70.5 ± 1.7% in MG and LG, respectively (P = 0.045). At the end of the exercise, SmO 2 decreased (69.1 ± 1.8 and 63.8 ± 2.1% in MG and LG, respectively; P 2 and tHb

  16. Time-resolved temperature measurements in a rapid compression machine using quantum cascade laser absorption in the intrapulse mode

    KAUST Repository

    Nasir, Ehson Fawad

    2016-07-16

    A temperature sensor based on the intrapulse absorption spectroscopy technique has been developed to measure in situ temperature time-histories in a rapid compression machine (RCM). Two quantum-cascade lasers (QCLs) emitting near 4.55μm and 4.89μm were operated in pulsed mode, causing a frequency "down-chirp" across two ro-vibrational transitions of carbon monoxide. The down-chirp phenomenon resulted in large spectral tuning (δν ∼2.8cm-1) within a single pulse of each laser at a high pulse repetition frequency (100kHz). The wide tuning range allowed the application of the two-line thermometry technique, thus making the sensor quantitative and calibration-free. The sensor was first tested in non-reactive CO-N2 gas mixtures in the RCM and then applied to cases of n-pentane oxidation. Experiments were carried out for end of compression (EOC) pressures and temperatures ranging 9.21-15.32bar and 745-827K, respectively. Measured EOC temperatures agreed with isentropic calculations within 5%. Temperature rise measured during the first-stage ignition of n-pentane is over-predicted by zero-dimensional kinetic simulations. This work presents, for the first time, highly time-resolved temperature measurements in reactive and non-reactive rapid compression machine experiments. © 2016 Elsevier Ltd.

  17. Time-resolved and steady-state studies of biologically and chemically relevant systems using laser, absorption, and fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Charles Ashley [Iowa State Univ., Ames, IA (United States)

    2014-12-20

    In Chapter 2 several experimental and data analysis methods used in this thesis are described. In Chapter 3 steady-state fluorescence spectroscopy was used to determine the concentration of the efflux pump inhibitors (EPIs), pheophorbide a and pyropheophorbide a, in the feces of animals and it was found that their levels far exceed those reported to be inhibitory to efflux pumps. In Chapter 4 the solvation dynamics of 6-Propionyl-2-(N,Ndimethyl) aminonaphthalene (PRODAN) was studied in reverse micelles. The two fluorescent states of PRODAN solvate on different time scales and as such care must be exercised in solvation dynamic studies involving it and its analogs. In Chapter 5 we studied the experimental and theoretical solvation dynamics of coumarin 153 (C153) in wild-type (WT) and modified myoglobins. Based on the nuclear magnetic resonance (NMR) spectroscopy and time-resolved fluorescence studies, we have concluded that it is important to thoroughly characterize the structure of a protein and probe system before comparing the theoretical and experimental results. In Chapter 6 the photophysical and spectral properties of a derivative of the medically relevant compound curcumin called cyclocurcumin was studied. Based on NMR, fluorescence, and absorption studies, the ground- and excited-states of cyclocurcumin are complicated by the existence of multiple structural isomers. In Chapter 7 the hydrolysis of cellulose by a pure form of cellulase in an ionic liquid, HEMA, and its aqueous mixtures at various temperatures were studied with the goal of increasing the cellulose to glucose conversion for biofuel production. It was found that HEMA imparts an additional stability to cellulase and can allow for faster conversion of cellulose to glucose using a pre-treatment step in comparison to only buffer.

  18. Probing specific molecular processes and intermediates by time-resolved Fourier transform infrared spectroscopy: application to the bacteriorhodopsin photocycle.

    Science.gov (United States)

    Lórenz-Fonfría, Víctor A; Kandori, Hideki; Padrós, Esteve

    2011-06-23

    We present a general approach for probing the kinetics of specific molecular processes in proteins by time-resolved Fourier transform infrared (IR) spectroscopy. Using bacteriorhodopsin (bR) as a model we demonstrate that by appropriately monitoring some selected IR bands it is possible obtaining the kinetics of the most important events occurring in the photocycle, namely changes in the chromophore and the protein backbone conformation, and changes in the protonation state of the key residues implicated in the proton transfers. Besides confirming widely accepted views of the bR photocycle, our analysis also sheds light into some disputed issues: the degree of retinal torsion in the L intermediate to respect the ground state; the possibility of a proton transfer from Asp85 to Asp212; the relationship between the protonation/deprotonation of Asp85 and the proton release complex; and the timing of the protein backbone dynamics. By providing a direct way to estimate the kinetics of photocycle intermediates the present approach opens new prospects for a robust quantitative kinetic analysis of the bR photocycle, which could also benefit the study of other proteins involved in photosynthesis, in phototaxis, or in respiratory chains.

  19. Noninvasive observation of skeletal muscle contraction using near-infrared time-resolved reflectance and diffusing-wave spectroscopy

    Science.gov (United States)

    Belau, Markus; Ninck, Markus; Hering, Gernot; Spinelli, Lorenzo; Contini, Davide; Torricelli, Alessandro; Gisler, Thomas

    2010-09-01

    We introduce a method for noninvasively measuring muscle contraction in vivo, based on near-infrared diffusing-wave spectroscopy (DWS). The method exploits the information about time-dependent shear motions within the contracting muscle that are contained in the temporal autocorrelation function g(1)(τ,t) of the multiply scattered light field measured as a function of lag time, τ, and time after stimulus, t. The analysis of g(1)(τ,t) measured on the human M. biceps brachii during repetitive electrical stimulation, using optical properties measured with time-resolved reflectance spectroscopy, shows that the tissue dynamics giving rise to the speckle fluctuations can be described by a combination of diffusion and shearing. The evolution of the tissue Cauchy strain e(t) shows a strong correlation with the force, indicating that a significant part of the shear observed with DWS is due to muscle contraction. The evolution of the DWS decay time shows quantitative differences between the M. biceps brachii and the M. gastrocnemius, suggesting that DWS allows to discriminate contraction of fast- and slow-twitch muscle fibers.

  20. Time-resolved infrared stimulated luminescence signals in feldspars: Analysis based on exponential and stretched exponential functions

    International Nuclear Information System (INIS)

    Pagonis, V.; Morthekai, P.; Singhvi, A.K.; Thomas, J.; Balaram, V.; Kitis, G.; Chen, R.

    2012-01-01

    Time-resolved infrared-stimulated luminescence (TR-IRSL) signals from feldspar samples have been the subject of several recent experimental studies. These signals are of importance in the field of luminescence dating, since they exhibit smaller fading effects than the commonly employed continuous-wave infrared signals (CW-IRSL). This paper presents a semi-empirical analysis of TR-IRSL data from feldspar samples, by using a linear combination of exponential and stretched exponential (SE) functions. The best possible estimates of the five parameters in this semi-empirical approach are obtained using five popular commercially available software packages, and by employing a variety of global optimization techniques. The results from all types of software and from the different fitting algorithms were found to be in close agreement with each other, indicating that a global optimum solution has likely been reached during the fitting process. Four complete sets of TR-IRSL data on well-characterized natural feldspars were fitted by using such a linear combination of exponential and SE functions. The dependence of the extracted fitting parameters on the stimulation temperature is discussed within the context of a recently proposed model of luminescence processes in feldspar. Three of the four feldspar samples studied in this paper are K-rich, and these exhibited different behavior at higher stimulation temperatures, than the fourth sample which was a Na-rich feldspar. The new method of analysis proposed in this paper can help isolate mathematically the more thermally stable components, and hence could lead to better dating applications in these materials. - Highlights: ► TR-IRSL from four feldspars were analyzed using exponential and stretched exponential functions. ► A variety of global optimization techniques give good agreement. ► Na-rich sample behavior is different from the three K-rich samples. ► Experimental data are fitted for stimulation temperatures

  1. Validation of a high-power, time-resolved, near-infrared spectroscopy system for measurement of superficial and deep muscle deoxygenation during exercise.

    Science.gov (United States)

    Koga, Shunsaku; Barstow, Thomas J; Okushima, Dai; Rossiter, Harry B; Kondo, Narihiko; Ohmae, Etsuko; Poole, David C

    2015-06-01

    Near-infrared assessment of skeletal muscle is restricted to superficial tissues due to power limitations of spectroscopic systems. We reasoned that understanding of muscle deoxygenation may be improved by simultaneously interrogating deeper tissues. To achieve this, we modified a high-power (∼8 mW), time-resolved, near-infrared spectroscopy system to increase depth penetration. Precision was first validated using a homogenous optical phantom over a range of inter-optode spacings (OS). Coefficients of variation from 10 measurements were minimal (0.5-1.9%) for absorption (μa), reduced scattering, simulated total hemoglobin, and simulated O2 saturation. Second, a dual-layer phantom was constructed to assess depth sensitivity, and the thickness of the superficial layer was varied. With a superficial layer thickness of 1, 2, 3, and 4 cm (μa = 0.149 cm(-1)), the proportional contribution of the deep layer (μa = 0.250 cm(-1)) to total μa was 80.1, 26.9, 3.7, and 0.0%, respectively (at 6-cm OS), validating penetration to ∼3 cm. Implementation of an additional superficial phantom to simulate adipose tissue further reduced depth sensitivity. Finally, superficial and deep muscle spectroscopy was performed in six participants during heavy-intensity cycle exercise. Compared with the superficial rectus femoris, peak deoxygenation of the deep rectus femoris (including the superficial intermedius in some) was not significantly different (deoxyhemoglobin and deoxymyoglobin concentration: 81.3 ± 20.8 vs. 78.3 ± 13.6 μM, P > 0.05), but deoxygenation kinetics were significantly slower (mean response time: 37 ± 10 vs. 65 ± 9 s, P ≤ 0.05). These data validate a high-power, time-resolved, near-infrared spectroscopy system with large OS for measuring the deoxygenation of deep tissues and reveal temporal and spatial disparities in muscle deoxygenation responses to exercise. Copyright © 2015 the American Physiological Society.

  2. Time-Resolved Quantum Cascade Laser Absorption Spectroscopy of Pulsed Plasma Assisted Chemical Vapor Deposition Processes Containing BCl3

    Science.gov (United States)

    Lang, Norbert; Hempel, Frank; Strämke, Siegfried; Röpcke, Jürgen

    2011-08-01

    In situ measurements are reported giving insight into the plasma chemical conversion of the precursor BCl3 in industrial applications of boriding plasmas. For the online monitoring of its ground state concentration, quantum cascade laser absorption spectroscopy (QCLAS) in the mid-infrared spectral range was applied in a plasma assisted chemical vapor deposition (PACVD) reactor. A compact quantum cascade laser measurement and control system (Q-MACS) was developed to allow a flexible and completely dust-sealed optical coupling to the reactor chamber of an industrial plasma surface modification system. The process under the study was a pulsed DC plasma with periodically injected BCl3 at 200 Pa. A synchronization of the Q-MACS with the process control unit enabled an insight into individual process cycles with a sensitivity of 10-6 cm-1·Hz-1/2. Different fragmentation rates of the precursor were found during an individual process cycle. The detected BCl3 concentrations were in the order of 1014 molecules·cm-3. The reported results of in situ monitoring with QCLAS demonstrate the potential for effective optimization procedures in industrial PACVD processes.

  3. Time-resolved tunable diode laser absorption spectroscopy of excited argon and ground-state titanium atoms in pulsed magnetron discharges

    Czech Academy of Sciences Publication Activity Database

    Sushkov, V.; Do, H.T.; Čada, Martin; Hubička, Zdeněk; Hippler, R.

    2013-01-01

    Roč. 22, č. 1 (2013), 1-10 ISSN 0963-0252 R&D Projects: GA ČR(CZ) GAP205/11/0386; GA ČR GAP108/12/2104 Institutional research plan: CEZ:AV0Z10100522 Keywords : absorption spectroscopy * diode laser * magnetron * argon metastable * HiPIMS * titanium * time-resolved Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.056, year: 2013 http://iopscience.iop.org/0963-0252/22/1/015002/

  4. Time-resolved study of a pulsed dc discharge using quantum cascade laser absorption spectroscopy : NO and gas temperature kinetics

    NARCIS (Netherlands)

    Welzel, S.; Gatilova, L.; Röpcke, J.; Rousseau, A.

    2007-01-01

    In a pulsed dc discharge of an Ar–N2 mixture containing 0.91% of NO the kinetics of the destruction of NO has been studied under static and flowing conditions, i.e. in a closed and open discharge tube (p = 266 Pa). For this purpose quantum cascade laser absorption spectroscopy (QCLAS) in the

  5. Time-resolved temperature measurements in a rapid compression machine using quantum cascade laser absorption in the intrapulse mode

    KAUST Repository

    Nasir, Ehson Fawad; Farooq, Aamir

    2016-01-01

    A temperature sensor based on the intrapulse absorption spectroscopy technique has been developed to measure in situ temperature time-histories in a rapid compression machine (RCM). Two quantum-cascade lasers (QCLs) emitting near 4.55μm and 4.89μm

  6. Investigation of verbal and visual working memory by multi-channel time-resolved functional near-infrared spectroscopy

    Science.gov (United States)

    Contini, D.; Caffini, M.; Re, R.; Zucchelli, L.; Spinelli, L.; Basso Moro, S.; Bisconti, S.; Ferrari, M.; Quaresima, V.; Cutini, S.; Torricelli, A.

    2013-03-01

    Working memory (WM) is fundamental for a number of cognitive processes, such as comprehension, reasoning and learning. WM allows the short-term maintenance and manipulation of the information selected by attentional processes. The goal of this study was to examine by time-resolved fNIRS neural correlates of the verbal and visual WM during forward and backward digit span (DF and DB, respectively) tasks, and symbol span (SS) task. A neural dissociation was hypothesised between the maintenance and manipulation processes. In particular, a dorsolateral/ventrolateral prefrontal cortex (DLPFC/VLPFC) recruitment was expected during the DB task, whilst a lateralised involvement of Brodmann Area (BA) 10 was expected during the execution of the DF task. Thirteen subjects were monitored by a multi-channel, dual-wavelength (690 and 829 nm) time-resolved fNIRS system during 3 minutes long DF and DB tasks and 4 minutes long SS task. The participants' mean memory span was calculated for each task: DF: 6.46+/-1.05 digits; DB: 5.62+/-1.26 digits; SS: 4.69+/-1.32 symbols. No correlation was found between the span level and the heart rate data (measured by pulse oximeter). As expected, DB elicited a broad activated area, in the bilateral VLPFC and the right DLPFC, whereas a more localised activation was observed over the right hemisphere during either DF (BA 10) or SS (BA 10 and 44). The robust involvement of the DLPFC during DB, compared to DF, is compatible with previous findings and with the key role of the central executive subserving in manipulating processes.

  7. Time-resolved X-ray absorption spectroscopy for laser-ablated silicon particles in xenon gas

    International Nuclear Information System (INIS)

    Makimura, Tetsuya; Sakuramoto, Tamaki; Murakami, Kouichi

    1996-01-01

    We developed a laboratory-scale in situ apparatus for soft X-ray absorption spectroscopy with a time resolution of 10 ns and a space resolution of 100 μm. Utilizing this spectrometer, we have investigated the dynamics of silicon atoms formed by laser ablation in xenon gas. It was found that 4d-electrons in the xenon atoms are excited through collision with electrons in the laser-generated silicon plasma. (author)

  8. Time resolved measurement of laser-ablated particles by LAPXAS (Laser Plasma Soft X-ray Absorption Spectroscopy)

    International Nuclear Information System (INIS)

    Miyashita, Atsumi; Yoda, Osamu; Murakami, Kouichi

    1999-01-01

    The time- and spatially-resolved properties of laser ablated carbon, boron and silicon particles were measured by LAPXAS (Laser Plasma Soft X-ray Absorption Spectroscopy). The maximum speed of positively charged ions is higher than those of neutral atoms and negatively charged ions. The spatial distributions of the laser-ablated particles in the localized rare gas environment were measured. In helium gas environment, by the helium cloud generated on the top of ablation plume depressed the ablation plume. There is no formation of silicon clusters till 15 μs after laser ablation in the argon gas environment. (author)

  9. Factors affecting measurement of optic parameters by time-resolved near-infrared spectroscopy in breast cancer

    Science.gov (United States)

    Yoshizawa, Nobuko; Ueda, Yukio; Mimura, Tetsuya; Ohmae, Etsuko; Yoshimoto, Kenji; Wada, Hiroko; Ogura, Hiroyuki; Sakahara, Harumi

    2018-02-01

    The purpose of this study was to evaluate the effects of the thickness and depth of tumors on hemoglobin measurements in breast cancer by optical spectroscopy and to demonstrate tissue oxygen saturation (SO2) and reduced scattering coefficient (μs‧) in breast tissue and breast cancer in relation to the skin-to-chest wall distance. We examined 53 tumors from 44 patients. Total hemoglobin concentration (tHb), SO2, and μs‧ were measured by time-resolved spectroscopy (TRS). The skin-to-chest wall distance and the size and depth of tumors were measured by ultrasonography. There was a positive correlation between tHb and tumor thickness, and a negative correlation between tHb and tumor depth. SO2 in breast tissue decreased when the skin-to-chest wall distance decreased, and SO2 in tumors tended to be lower than in breast tissue. In breast tissue, there was a negative correlation between μs‧ and the skin-to-chest wall distance, and μs‧ in tumors was higher than in breast tissue. Measurement of tHb in breast cancer by TRS was influenced by tumor thickness and depth. Although SO2 seemed lower and μs‧ was higher in breast cancer than in breast tissue, the skin-to-chest wall distance may have affected the measurements.

  10. Structural evolution in the isothermal crystallization process of the molten nylon 10/10 traced by time-resolved infrared spectral measurements and synchrotron SAXS/WAXD measurements

    International Nuclear Information System (INIS)

    Tashiro, Kohji; Nishiyama, Asami; Tsuji, Sawako; Hashida, Tomoko; Hanesaka, Makoto; Takeda, Shinichi; Weiyu, Cao; Reddy, Kummetha Raghunatha; Masunaga, Hiroyasu; Sasaki, Sono; Takata, Masaki; Ito, Kazuki

    2009-01-01

    The structural evolution in the isothermal crystallization process of nylon 10/10 from the melt has been clarified concretely on the basis of the time-resolved infrared spectral measurement as well as the synchrotron wide-angle and small-angle X-ray scattering measurements. Immediately after the temperature jump from the melt to the crystallization point, the isolated domains consisting of the hydrogen-bonded random coils were formed in the melt, as revealed by Guinier plot of SAXS data and the infrared spectral data. With the passage of time these domains approached each other with stronger correlation as analyzed by Debye-Bueche equation. These domains transformed finally to the stacked crystalline lamellae, in which the conformationally-regularized methylene segments of the CO sides were connected each other by stronger intermolecular hydrogen bonds to form the crystal lattice.

  11. Photodissociation of CH3CHO at 248 nm by time-resolved Fourier-transform infrared emission spectroscopy: Verification of roaming and triple fragmentation

    Science.gov (United States)

    Hung, Kai-Chan; Tsai, Po-Yu; Li, Hou-Kuan; Lin, King-Chuen

    2014-02-01

    By using time-resolved Fourier-transform infrared emission spectroscopy, the HCO fragment dissociated from acetaldehyde (CH3CHO) at 248 nm is found to partially decompose to H and CO. The fragment yields are enhanced by the Ar addition that facilitates the collision-induced internal conversion. The channels to CH2CO + H2 and CH3CO + H are not detected significantly. The rotational population distribution of CO, after removing the Ar collision effect, shows a bimodal feature comprising both low- and high-rotational (J) components, sharing a fraction of 19% and 81%, respectively, for the vibrational state v = 1. The low-J component is ascribed to both roaming pathway and triple fragmentation. They are determined to have a branching ratio of 0.06, respectively, relative to the whole v = 1 population. The CO roaming is accompanied by a highly vibrational population of CH4 that yields a vibrational bimodality.

  12. Infrared multiphoton absorption and decomposition

    International Nuclear Information System (INIS)

    Evans, D.K.; McAlpine, R.D.

    1984-01-01

    The discovery of infrared laser induced multiphoton absorption (IRMPA) and decomposition (IRMPD) by Isenor and Richardson in 1971 generated a great deal of interest in these phenomena. This interest was increased with the discovery by Ambartzumian, Letokhov, Ryadbov and Chekalin that isotopically selective IRMPD was possible. One of the first speculations about these phenomena was that it might be possible to excite a particular mode of a molecule with the intense infrared laser beam and cause decomposition or chemical reaction by channels which do not predominate thermally, thus providing new synthetic routes for complex chemicals. The potential applications to isotope separation and novel chemistry stimulated efforts to understand the underlying physics and chemistry of these processes. At ICOMP I, in 1977 and at ICOMP II in 1980, several authors reviewed the current understandings of IRMPA and IRMPD as well as the particular aspect of isotope separation. There continues to be a great deal of effort into understanding IRMPA and IRMPD and we will briefly review some aspects of these efforts with particular emphasis on progress since ICOMP II. 31 references

  13. Time-resolved Fourier transform infrared spectrometry using a microfabricated continuous flow mixer: application to protein conformation study using the example of ubiquitin.

    Science.gov (United States)

    Kakuta, Masaya; Hinsmann, Peter; Manz, Andreas; Lendl, Bernhard

    2003-05-01

    We report on the use of time-resolved Fourier transform infrared spectroscopy (FT-IR) to study chemically induced conformational changes of proteins using the example of ubiquitin. For this purpose a micromachined mixer is coupled to a conventional IR transmission cell with a pathlength of 25 microm and operated in both the continuous and the stopped-flow mode. This experimental set-up allows the elucidation of reaction pathways in the time frame of about 500 milliseconds to seconds with little reagent consumption and low pressure. For continuous flow measurements employed in the time frame from 0.5 to 1.4 s the reaction time is determined by the flow rate used as the connection between the point of confluence in the micromixer and the flow cell was kept constant in all experiments. For stopped-flow experiments (>1.4 s) the time is determined by data acquisition of the rapid scanning infrared spectrometer. Ubiquitin, a small well-known protein with 76 amino acid residues, changes its conformation from native to A-state with the addition of methanol under low pH conditions. We investigated the conformational change in the time frame from 0.5 to 10 s by mixing ubiquitin (20% methanol-d(4)) with an 80% methanol-d(4) solution at pD 2 by evaluating the time dependent changes in the amide I band of the protein.

  14. Time-resolved vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tokmakoff, Andrei [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Champion, Paul [Northeastern Univ., Boston, MA (United States); Heilweil, Edwin J. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Nelson, Keith A. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Ziegler, Larry [Boston Univ., MA (United States)

    2009-05-14

    This document contains the Proceedings from the 14th International Conference on Time-Resolved Vibrational Spectroscopy, which was held in Meredith, NH from May 9-14, 2009. The study of molecular dynamics in chemical reaction and biological processes using time-resolved spectroscopy plays an important role in our understanding of energy conversion, storage, and utilization problems. Fundamental studies of chemical reactivity, molecular rearrangements, and charge transport are broadly supported by the DOE's Office of Science because of their role in the development of alternative energy sources, the understanding of biological energy conversion processes, the efficient utilization of existing energy resources, and the mitigation of reactive intermediates in radiation chemistry. In addition, time-resolved spectroscopy is central to all fiveof DOE's grand challenges for fundamental energy science. The Time-Resolved Vibrational Spectroscopy conference is organized biennially to bring the leaders in this field from around the globe together with young scientists to discuss the most recent scientific and technological advances. The latest technology in ultrafast infrared, Raman, and terahertz spectroscopy and the scientific advances that these methods enable were covered. Particular emphasis was placed on new experimental methods used to probe molecular dynamics in liquids, solids, interfaces, nanostructured materials, and biomolecules.

  15. Photoinduced charge transfer in a transition metal complex investigated by time-resolved X-ray absorption fine structure spectroscopy. Setup and experiment

    International Nuclear Information System (INIS)

    Goeries, Dennis

    2015-02-01

    In the framework of this thesis the development of a time-resolved X-ray absorption spectroscopy experiment and its application to fac-Ir(ppy) 3 is described. Such experiments require a very stable setup in terms of spatial and temporal accuracy. Therefore, the stability properties of the present installation were investigated in detail and continuously improved, in particular the synchronization of the ultrashort pulse laser system to the storage ring as well as the spatial stability of both X-ray and laser beam. Experiments utilizing the laser pump and X-ray probe configuration were applied on the green phosphorescence emitter complex fac-Ir(ppy) 3 dissolved in dimethyl sulfoxide. Structural and electronic changes were triggered by photoexcitation of the metal-to-ligand charge transfer band with ultrashort laser pulses at a wavelength of 343 nm. The excited triplet state spectrum was extracted from the measured pump-probe X-ray absorption spectrum using an ionic approximation. The results con rm the anticipated metal-to-ligand charge transfer as shown by an ionization potential shift of the iridium atom. The symmetry of the complex was found to be pseudo-octahedral. This allowed the first experimental determination of the bond length of fac-Ir(ppy) 3 in an octahedral approximation and revealed a decrease of bond length of the first coordination shell in the triplet state. The first and second-order decay kinetics of the triplet state were investigated in a combination of X-ray and laser based experiments and revealed self-quenching as well as triplet-triplet annihilation rate constants.

  16. Photodissociation of gaseous CH3COSH at 248 nm by time-resolved Fourier-transform infrared emission spectroscopy: Observation of three dissociation channels

    International Nuclear Information System (INIS)

    Hu, En-Lan; Tsai, Po-Yu; Fan, He; Lin, King-Chuen

    2013-01-01

    Upon one-photon excitation at 248 nm, gaseous CH 3 C(O)SH is dissociated following three pathways with the products of (1) OCS + CH 4 , (2) CH 3 SH + CO, and (3) CH 2 CO + H 2 S that are detected using time-resolved Fourier-transform infrared emission spectroscopy. The excited state 1 (n O , π * CO ) has a radiative lifetime of 249 ± 11 ns long enough to allow for Ar collisions that induce internal conversion and enhance the fragment yields. The rate constant of collision-induced internal conversion is estimated to be 1.1 × 10 −10 cm 3 molecule −1 s −1 . Among the primary dissociation products, a fraction of the CH 2 CO moiety may undergo further decomposition to CH 2 + CO, of which CH 2 is confirmed by reaction with O 2 producing CO 2 , CO, OH, and H 2 CO. Such a secondary decomposition was not observed previously in the Ar matrix-isolated experiments. The high-resolution spectra of CO are analyzed to determine the ro-vibrational energy deposition of 8.7 ± 0.7 kcal/mol, while the remaining primary products with smaller rotational constants are recognized but cannot be spectrally resolved. The CO fragment detected is mainly ascribed to the primary production. A prior distribution method is applied to predict the vibrational distribution of CO that is consistent with the experimental findings.

  17. Low pressure-induced secondary structure transitions of regenerated silk fibroin in its wet film studied by time-resolved infrared spectroscopy.

    Science.gov (United States)

    He, Zhipeng; Liu, Zhao; Zhou, Xiaofeng; Huang, He

    2018-06-01

    The secondary structure transitions of regenerated silk fibroin (RSF) under different external perturbations have been studied extensively, except for pressure. In this work, time-resolved infrared spectroscopy with the attenuated total reflectance (ATR) accessory was employed to follow the secondary structure transitions of RSF in its wet film under low pressure. It has been found that pressure alone is favorable only to the formation of β-sheet structure. Under constant pressure there is an optimum amount of D 2 O in the wet film (D 2 O : film = 2:1) so as to provide the optimal condition for the reorganization of the secondary structure and to have the largest formation of β-sheet structure. Under constant amount of D 2 O and constant pressure, the secondary structure transitions of RSF in its wet film can be divided into three stages along with time. In the first stage, random coil, α-helix, and β-turn were quickly transformed into β-sheet. In the second stage, random coil and β-turn were relatively slowly transformed into β-sheet and α-helix, and the content of α-helix was recovered to the value prior to the application of pressure. In the third and final stage, no measurable changes can be found for each secondary structure. This study may be helpful to understand the secondary structure changes of silk fibroin in silkworm's glands under hydrostatic pressure. © 2018 Wiley Periodicals, Inc.

  18. Probing the influence of X-rays on aqueous copper solutions using time-resolved in situ combined video/X-ray absorption near-edge/ultraviolet-visible spectroscopy

    NARCIS (Netherlands)

    Mesu, J. Gerbrand; Beale, Andrew M.; de Groot, Frank M. F.; Weckhuysen, Bert M.

    2006-01-01

    Time-resolved in situ video monitoring and ultraviolet-visible spectroscopy in combination with X-ray absorption near-edge spectroscopy (XANES) have been used for the first time in a combined manner to study the effect of synchrotron radiation on a series of homogeneous aqueous copper solutions in a

  19. Relationship between time-resolved and non-time-resolved Beer-Lambert law in turbid media.

    Science.gov (United States)

    Nomura, Y; Hazeki, O; Tamura, M

    1997-06-01

    The time-resolved Beer-Lambert law proposed for oxygen monitoring using pulsed light was extended to the non-time-resolved case in a scattered medium such as living tissues with continuous illumination. The time-resolved Beer-Lambert law was valid for the phantom model and living tissues in the visible and near-infrared regions. The absolute concentration and oxygen saturation of haemoglobin in rat brain and thigh muscle could be determined. The temporal profile of rat brain was reproduced by Monte Carlo simulation. When the temporal profiles of rat brain under different oxygenation states were integrated with time, the absorbance difference was linearly related to changes in the absorption coefficient. When the simulated profiles were integrated, there was a linear relationship within the absorption coefficient which was predicted for fractional inspiratory oxygen concentration from 10 to 100% and, in the case beyond the range of the absorption coefficient, the deviation from linearity was slight. We concluded that an optical pathlength which is independent of changes in the absorption coefficient is a good approximation for near-infrared oxygen monitoring.

  20. Anomalous infrared absorption in granular superconductors

    International Nuclear Information System (INIS)

    Carr, G.L.; Garland, J.C.; Tanner, D.B.

    1983-01-01

    Granular superconductors are shown to have a far-infrared absorption that is larger when the samples are superconducting than when they are normal. By constrast, theoretical models for these materials predict that when the samples become superconducting, the absorption should decrease

  1. Laser ablation of an indium target: time-resolved Fourier-transform infrared spectra of In I in the 700–7700 cm−1 range

    Czech Academy of Sciences Publication Activity Database

    Civiš, Svatopluk; Kubelík, Petr; Ferus, Martin; Chernov, Vladislav E.; Zanozina, Ekaterina M.; Juha, Libor

    2014-01-01

    Roč. 29, č. 12 (2014), s. 2275-2283 ISSN 0267-9477 R&D Projects: GA MŠk LD14115; GA MŠk(CZ) LG13029 Institutional support: RVO:61388955 ; RVO:68378271 Keywords : time-resolved fluorescence * Fourier transform infra reds * Laser-induced breakdown spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.466, year: 2014

  2. The dependence of the ultrafast relaxation kinetics of the S2 and S1 states in β-carotene homologs and lycopene on conjugation length studied by femtosecond time-resolved absorption and Kerr-gate fluorescence spectroscopies

    Science.gov (United States)

    Kosumi, Daisuke; Fujiwara, Masazumi; Fujii, Ritsuko; Cogdell, Richard J.; Hashimoto, Hideki; Yoshizawa, Masayuki

    2009-06-01

    The ultrafast relaxation kinetics of all-trans-β-carotene homologs with varying numbers of conjugated double bonds n(n =7-15) and lycopene (n =11) has been investigated using femtosecond time-resolved absorption and Kerr-gate fluorescence spectroscopies, both carried out under identical excitation conditions. The nonradiative relaxation rates of the optically allowed S2(1Bu+1) state were precisely determined by the time-resolved fluorescence. The kinetics of the optically forbidden S1(2Ag-1) state were observed by the time-resolved absorption measurements. The dependence of the S1 relaxation rates upon the conjugation length is adequately described by application of the energy gap law. In contrast to this, the nonradiative relaxation rates of S2 have a minimum at n =9 and show a reverse energy gap law dependence for values of n above 11. This anomalous behavior of the S2 relaxation rates can be explained by the presence of an intermediate state (here called the Sx state) located between the S2 and S1 states at large values of n (such as n =11). The presence of such an intermediate state would then result in the following sequential relaxation pathway S2→Sx→S1→S0. A model based on conical intersections between the potential energy curves of these excited singlet states can readily explain the measured relationships between the decay rates and the energy gaps.

  3. Time-resolved studies

    International Nuclear Information System (INIS)

    Mills, D.M.

    1992-01-01

    When new or more powerful probes become available that offer both shorter data-collection times and the opportunity to apply innovative approaches to established techniques, it is natural that investigators consider the feasibility of exploring the kinetics of time-evolving systems. This stimulating area of research not only can lead to insights into the metastable or excited states that a system may populate on its way to a ground state, but can also lead to a better understanding of that final state. Synchrotron radiation, with its unique properties, offers just such a tool to extend X-ray measurements from the static to the time-resolved regime. The most straight-forward application of synchrotron radiation to the study of transient phenomena is directly through the possibility of decreased data-collection times via the enormous increase in flux over that of a laboratory X-ray system. Even further increases in intensity can be obtained through the use of novel X-ray optical devices. Widebandpass monochromators, e.g., that utilize the continuous spectral distribution of synchrotron radiation, can increase flux on the sample several orders of magnitude over conventional X-ray optical systems thereby allowing a further shortening of the data-collection time. Another approach that uses the continuous spectral nature of synchrotron radiation to decrease data-collection times is the open-quote parallel data collectionclose quotes method. Using this technique, intensities as a function of X-ray energy are recorded simultaneously for all energies rather than sequentially recording data at each energy, allowing for a dramatic decrease in the data-collection time

  4. Time-resolved measurements of black carbon light absorption enhancement in urban and near-urban locations of southern Ontario, Canada

    Directory of Open Access Journals (Sweden)

    T. W. Chan

    2011-10-01

    Full Text Available In this study a photoacoustic spectrometer (PA, a laser-induced incandescence instrument system (LII and an Aerosol Mass Spectrometer were operated in parallel for in-situ measurements of black carbon (BC light absorption enhancement. Results of a thermodenuder experiment using ambient particles in Toronto are presented first to show that LII measurements of BC are not influenced by the presence of non-refractory material thus providing true atmospheric BC mass concentrations. In contrast, the PA response is enhanced when the non-refractory material is internally mixed with the BC particles. Through concurrent measurements using the LII and PA the specific absorption cross-section (SAC can be quantified with high time resolution (1 min. Comparisons of ambient PA and LII measurements from four different locations (suburban Toronto; a street canyon with diesel bus traffic in Ottawa; adjacent to a commuter highway in Ottawa and; regional background air in and around Windsor, Ontario, show that different impacts from emission sources and/or atmospheric processes result in different particle light absorption enhancements and hence variations in the SAC. The diversity of measurements obtained, including those with the thermodenuder, demonstrated that it is possible to identify measurements where the presence of externally-mixed non-refractory particles obscures direct observation of the effect of coating material on the SAC, thus allowing this effect to be measured with more confidence. Depending upon the time and location of measurement (urban, rural, close to and within a lake breeze frontal zone, 30 min average SAC varies between 9 ± 2 and 43 ± 4 m2 g−1. Causes of this variation, which were determined through the use of meteorological and gaseous measurements (CO, SO2, O3, include the particle emission source, airmass source region, the degree of atmospheric processing. Observations from this study

  5. Time-Resolved Transient Optical Absorption Study of Bis(terpyridyl)oligothiophenes and Their Metallo-Supramolecular Polymers with Zn(II) Ion Couplers.

    Science.gov (United States)

    Rais, David; Menšík, Miroslav; Štenclová-Bláhová, Pavla; Svoboda, Jan; Vohlídal, Jiří; Pfleger, Jiří

    2015-06-18

    α,ω-Bis(terpyridyl)oligothiophenes spontaneously assemble with Zn(II) ions giving conjugated constitutional dynamic polymers (dynamers) of the metallo-supramolecular class, which potentially might be utilized in optoelectronics. Their photophysical properties, which are of great importance in this field of application, are strongly influenced by the dynamic morphology. It was assessed in this study by using ultrafast pump-probe optical absorption spectroscopy. We identified and characterized relaxation processes running in photoexcited molecules of these oligomers and dynamers and show impacts of disturbed coplanarity of adjacent rings (twisting the thiophene-thiophene and thiophene-terpyridyl bonds by attached hexyl side groups) and Zn(II) ion couplers on these processes. Major effects are seen in the time constants of rotational relaxation, intersystem crossing, and de-excitation lifetimes. The photoexcited states formed on different repeating units within the same dynamer chain do not interact with each other even at very high excitation density. The method is presented that allows determining the equilibrium fraction of unbound oligothiophene species in a dynamer solution, from which otherwise hardly accessible values of the average degree of polymerization of constitutionally dynamic chains in solution can be estimated.

  6. Reaction dynamics of O({sup 1}D) + HCOOD/DCOOH investigated with time-resolved Fourier-transform infrared emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Shang-Chen; Putikam, Raghunath; Lin, M. C., E-mail: chemmcl@emory.edu, E-mail: tsuchis@sepia.plala.or.jp, E-mail: yplee@mail.nctu.edu.tw; Tsuchiya, Soji, E-mail: chemmcl@emory.edu, E-mail: tsuchis@sepia.plala.or.jp, E-mail: yplee@mail.nctu.edu.tw [Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Nghia, N. T. [School of Chemical Engineering - Hanoi University of Science and Technology, Hanoi (Viet Nam); Nguyen, Hue M. T. [Center for Computational Science and Faculty of Chemistry, Hanoi National University of Education, Hanoi (Viet Nam); Lee, Yuan-Pern, E-mail: chemmcl@emory.edu, E-mail: tsuchis@sepia.plala.or.jp, E-mail: yplee@mail.nctu.edu.tw [Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan (China)

    2014-10-21

    We investigated the reaction dynamics of O({sup 1}D) towards hydrogen atoms of two types in HCOOH. The reaction was initiated on irradiation of a flowing mixture of O{sub 3} and HCOOD or DCOOH at 248 nm. The relative vibration-rotational populations of OH and OD (1 ≦ v ≦ 4, J ≤ 15) states were determined from time-resolved IR emission recorded with a step-scan Fourier-transform spectrometer. In the reaction of O({sup 1}D) + HCOOD, the rotational distribution of product OH is nearly Boltzmann, whereas that of OD is bimodal. The product ratio [OH]/[OD] is 0.16 ± 0.05. In the reaction of O({sup 1}D) + DCOOH, the rotational distribution of product OH is bimodal, but the observed OD lines are too weak to provide reliable intensities. The three observed OH/OD channels agree with three major channels of production predicted with quantum-chemical calculations. In the case of O({sup 1}D) + HCOOD, two intermediates HOC(O)OD and HC(O)OOD are produced in the initial C−H and O−D insertion, respectively. The former undergoes further decomposition of the newly formed OH or the original OD, whereas the latter produces OD via direct decomposition. Decomposition of HOC(O)OD produced OH and OD with similar vibrational excitation, indicating efficient intramolecular vibrational relaxation, IVR. Decomposition of HC(O)OOD produced OD with greater rotational excitation. The predicted [OH]/[OD] ratio is 0.20 for O({sup 1}D) + HCOOD and 4.08 for O({sup 1}D) + DCOOH; the former agrees satisfactorily with experiments. We also observed the v{sub 3} emission from the product CO{sub 2}. This emission band is deconvoluted into two components corresponding to internal energies E = 317 and 96 kJ mol{sup −1} of CO{sub 2}, predicted to be produced via direct dehydration of HOC(O)OH and secondary decomposition of HC(O)O that was produced via decomposition of HC(O)OOH, respectively.

  7. Time-Resolved In Situ Liquid-Phase Atomic Force Microscopy and Infrared Nanospectroscopy during the Formation of Metal-Organic Framework Thin Films.

    Science.gov (United States)

    Mandemaker, Laurens D B; Filez, Matthias; Delen, Guusje; Tan, Huanshu; Zhang, Xuehua; Lohse, Detlef; Weckhuysen, Bert M

    2018-04-19

    Metal-organic framework (MOF) thin films show unmatched promise as smart membranes and photocatalytic coatings. However, their nucleation and growth resulting from intricate molecular assembly processes are not well understood yet are crucial to control the thin film properties. Here, we directly observe the nucleation and growth behavior of HKUST-1 thin films by real-time in situ AFM at different temperatures in a Cu-BTC solution. In combination with ex situ infrared (nano)spectroscopy, synthesis at 25 °C reveals initial nucleation of rapidly growing HKUST-1 islands surrounded by a continuously nucleating but slowly growing HKUST-1 carpet. Monitoring at 13 and 50 °C shows the strong impact of temperature on thin film formation, resulting in (partial) nucleation and growth inhibition. The nucleation and growth mechanisms as well as their kinetics provide insights to aid in future rational design of MOF thin films.

  8. Time-Resolved In Situ Liquid-Phase Atomic Force Microscopy and Infrared Nanospectroscopy during the Formation of Metal–Organic Framework Thin Films

    Science.gov (United States)

    2018-01-01

    Metal–organic framework (MOF) thin films show unmatched promise as smart membranes and photocatalytic coatings. However, their nucleation and growth resulting from intricate molecular assembly processes are not well understood yet are crucial to control the thin film properties. Here, we directly observe the nucleation and growth behavior of HKUST-1 thin films by real-time in situ AFM at different temperatures in a Cu-BTC solution. In combination with ex situ infrared (nano)spectroscopy, synthesis at 25 °C reveals initial nucleation of rapidly growing HKUST-1 islands surrounded by a continuously nucleating but slowly growing HKUST-1 carpet. Monitoring at 13 and 50 °C shows the strong impact of temperature on thin film formation, resulting in (partial) nucleation and growth inhibition. The nucleation and growth mechanisms as well as their kinetics provide insights to aid in future rational design of MOF thin films. PMID:29595980

  9. Time resolved techniques: An overview

    International Nuclear Information System (INIS)

    Larson, B.C.; Tischler, J.Z.

    1990-06-01

    Synchrotron sources provide exceptional opportunities for carrying out time-resolved x-ray diffraction investigations. The high intensity, high angular resolution, and continuously tunable energy spectrum of synchrotron x-ray beams lend themselves directly to carrying out sophisticated time-resolved x-ray scattering measurements on a wide range of materials and phenomena. When these attributes are coupled with the pulsed time-structure of synchrotron sources, entirely new time-resolved scattering possibilities are opened. Synchrotron beams typically consist of sub-nanosecond pulses of x-rays separated in time by a few tens of nanoseconds to a few hundred nanoseconds so that these beams appear as continuous x-ray sources for investigations of phenomena on time scales ranging from hours down to microseconds. Studies requiring time-resolution ranging from microseconds to fractions of a nanosecond can be carried out in a triggering mode by stimulating the phenomena under investigation in coincidence with the x-ray pulses. Time resolution on the picosecond scale can, in principle, be achieved through the use of streak camera techniques in which the time structure of the individual x-ray pulses are viewed as quasi-continuous sources with ∼100--200 picoseconds duration. Techniques for carrying out time-resolved scattering measurements on time scales varying from picoseconds to kiloseconds at present and proposed synchrotron sources are discussed and examples of time-resolved studies are cited. 17 refs., 8 figs

  10. Time-resolved ESR spectroscopy

    International Nuclear Information System (INIS)

    Beckert, D.

    1986-06-01

    The time-resolved ESR spectroscopy is one of the modern methods in radiospectroscopy and plays an important role in solving various problems in chemistry and biology. Proceeding from the basic ideas of time-resolved ESR spectroscopy the experimental equipment is described generally including the equipment developed at the Central Institute of Isotope and Radiation Research. The experimental methods applied to the investigation of effects of chemically induced magnetic polarization of electrons and to kinetic studies of free radicals in polymer systems are presented. The theory of radical pair mechanism is discussed and theoretical expressions are summarized in a computer code to compute the theoretical polarization for each pair of the radicals

  11. Time-resolved quantitative phosphoproteomics

    DEFF Research Database (Denmark)

    Verano-Braga, Thiago; Schwämmle, Veit; Sylvester, Marc

    2012-01-01

    proteins involved in the Ang-(1-7) signaling, we performed a mass spectrometry-based time-resolved quantitative phosphoproteome study of human aortic endothelial cells (HAEC) treated with Ang-(1-7). We identified 1288 unique phosphosites on 699 different proteins with 99% certainty of correct peptide...

  12. Infrared absorption spectroscopic study of Nd substituted Zn–Mg ...

    Indian Academy of Sciences (India)

    Unknown

    20, 0⋅40, 0⋅60, 0⋅80 and 1⋅00; y = 0⋅00, 0⋅05 and 0⋅10) ferrites were prepared by standard ceramic method and characterized by X-ray diffraction, scanning electron microscopy and infrared absorption spectroscopy. Far infrared absorption.

  13. Determination of blood oxygenation in the brain by time-resolved reflectance spectroscopy: influence of the skin, skull, and meninges

    Science.gov (United States)

    Hielscher, Andreas H.; Liu, Hanli; Wang, Lihong; Tittel, Frank K.; Chance, Britton; Jacques, Steven L.

    1994-07-01

    Near infrared light has been used for the determination of blood oxygenation in the brain but little attention has been paid to the fact that the states of blood oxygenation in arteries, veins, and capillaries differ substantially. In this study, Monte Carlo simulations for a heterogeneous system were conducted, and near infrared time-resolved reflectance measurements were performed on a heterogeneous tissue phantom model. The model was made of a solid polyester resin, which simulates the tissue background. A network of tubes was distributed uniformly through the resin to simulate the blood vessels. The time-resolved reflectance spectra were taken with different absorbing solutions filled in the network. Based on the simulation and experimental results, we investigated the dependence of the absorption coefficient obtained from the heterogeneous system on the absorption of the actual absorbing solution filled in the tubes. We show that light absorption by the brain should result from the combination of blood and blood-free tissue background.

  14. Invited article: The fast readout low noise camera as a versatile x-ray detector for time resolved dispersive extended x-ray absorption fine structure and diffraction studies of dynamic problems in materials science, chemistry, and catalysis

    International Nuclear Information System (INIS)

    Labiche, Jean-Claude; Mathon, Olivier; Pascarelli, Sakura; Newton, Mark A.; Ferre, Gemma Guilera; Curfs, Caroline; Vaughan, Gavin; Homs, Alejandro; Carreiras, David Fernandez

    2007-01-01

    Originally conceived and developed at the European Synchrotron Radiation Facility (ESRF) as an 'area' detector for rapid x-ray imaging studies, the fast readout low noise (FReLoN) detector of the ESRF [J.-C. Labiche, ESRF Newsletter 25, 41 (1996)] has been demonstrated to be a highly versatile and unique detector. Charge coupled device (CCD) cameras at present available on the public market offer either a high dynamic range or a high readout speed. A compromise between signal dynamic range and readout speed is always sought. The parameters of the commercial cameras can sometimes be tuned, in order to better fulfill the needs of specific experiments, but in general these cameras have a poor duty cycle (i.e., the signal integration time is much smaller than the readout time). In order to address scientific problems such as time resolved experiments at the ESRF, a FReLoN camera has been developed by the Instrument Support Group at ESRF. This camera is a low noise CCD camera that combines high dynamic range, high readout speed, accuracy, and improved duty cycle in a single image. In this paper, we show its application in a quasi-one-dimensional sense to dynamic problems in materials science, catalysis, and chemistry that require data acquisition on a time scale of milliseconds or a few tens of milliseconds. It is demonstrated that in this mode the FReLoN can be applied equally to the investigation of rapid changes in long range order (via diffraction) and local order (via energy dispersive extended x-ray absorption fine structure) and in situations of x-ray hardness and flux beyond the capacity of other detectors

  15. Time-resolved fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Gustavsson, Thomas; Mialocq, Jean-Claude

    2007-01-01

    This article addresses the evolution in time of light emitted by a molecular system after a brief photo-excitation. The authors first describe fluorescence from a photo-physical point of view and discuss the characterization of the excited state. Then, they explain some basic notions related to fluorescence characterization (lifetime and decays, quantum efficiency, so on). They present the different experimental methods and techniques currently used to study time-resolved fluorescence. They discuss basic notions of time resolution and spectral reconstruction. They briefly present some conventional methods: intensified Ccd cameras, photo-multipliers and photodiodes associated with a fast oscilloscope, and phase modulation. Other methods and techniques are more precisely presented: time-correlated single photon counting (principle, examples, and fluorescence lifetime imagery), streak camera (principle, examples), and optical methods like the Kerr optical effect (principle and examples) and fluorescence up-conversion (principle and theoretical considerations, examples of application)

  16. Spectral characterization of crude oil using fluorescence (synchronous and time-resolved) and NIR (Near Infrared Spectroscopy); Caracterizacao espectral do petroleo utilizando fluorescencia (sincronizada e resolvida no tempo) e NIR (Near Infrared Spectroscopy)

    Energy Technology Data Exchange (ETDEWEB)

    Falla Sotelo, F.; Araujo Pantoja, P.; Lopez-Gejo, J.; Le Roux, G.A.C.; Nascimento, C.A.O. [Universidade de Sao Paulo (USP), SP (Brazil). Dept. de Engenharia Quimica. Lab. de Simulacao e Controle de Processos; Quina, F.H. [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Quimica. Centro de Capacitacao e Pesquisa em Meio Ambiente (CEPEMA)

    2008-07-01

    The objective of the present work is to evaluate the performance of two spectroscopic techniques employed in the crude oil characterization: NIR spectroscopy and fluorescence spectroscopy (Synchronous fluorescence - SF and Time Resolved Fluorescence - TRF) for the development of correlation models between spectral profiles of crude oil samples and both physical properties (viscosity and API density) and physico-chemical properties (SARA analysis: Saturated, Aromatic, Resins and Asphaltenes). The better results for viscosity and density were obtained using NIR whose prediction capacity was good (1.5 cP and 0.5 deg API, respectively). For SARA analysis, fluorescence spectroscopy revealed its potential in the model calibration showing good results (R2 coefficients greater than 0.85). TRF spectroscopy had better performance than SF spectroscopy. (author)

  17. Infrared absorption of human breast tissues in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Liu Chenglin [Department of Physics, Surface Physics Laboratory (National Key laboratory), Synchrotron Radiation Research Center, Fudan University, Shanghai 200433 (China); Physics Department of Yancheng Teachers' College, Yancheng 224002 (China); Zhang Yuan [Department of Physics, Surface Physics Laboratory (National Key laboratory), Synchrotron Radiation Research Center, Fudan University, Shanghai 200433 (China); Yan Xiaohui [Department of Physics, Surface Physics Laboratory (National Key laboratory), Synchrotron Radiation Research Center, Fudan University, Shanghai 200433 (China); Zhang Xinyi [Department of Physics, Surface Physics Laboratory (National Key laboratory), Synchrotron Radiation Research Center, Fudan University, Shanghai 200433 (China) and Shanghai Research Center of Acupuncture and Meridian, Pudong, Shanghai 201203 (China)]. E-mail: xy-zhang@fudan.edu.cn; Li Chengxiang [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029 (China); Yang Wentao [Cancer Hospital, Medical Center, Fudan University, Shanghai 200032 (China); Shi Daren [Cancer Hospital, Medical Center, Fudan University, Shanghai 200032 (China)

    2006-07-15

    The spectral characteristics of human breast tissues in normal status and during different cancerous stages have been investigated by synchrotron radiation based Fourier transform infrared (SR-FTIR) absorption spectroscopy. Thanks to the excellent synchrotron radiation infrared (IR) source, higher resolving power is achieved in SR-FTIR absorption spectra than in conventional IR absorption measurements. Obvious variations in IR absorption spectrum of breast tissues were found as they change from healthy to diseased, or say in progression to cancer. On the other hand, some specific absorption peaks were found in breast cancer tissues by SR-FTIR spectroscopic methods. These spectral characteristics of breast tissue may help us in early diagnosis of breast cancer.

  18. Infrared Absorption in Acetanilide by Solitons

    DEFF Research Database (Denmark)

    Careri, G.; Buontempo, U.; Carta, F.

    1983-01-01

    The infrared spectrum of acetanilide shows a new band that is red shifted from the main amide-I maximum by about 15 cm-1, the intensity of which increases at low temperature. It is suggested that this band may arise from the creation of amide-I solitons that are similar (but not identical) to those...

  19. Infrared Absorption in Acetanilide by Solitons

    OpenAIRE

    Careri, G.; Buontempo, U.; Carta, F.; Gratton, E.; Scott, Alwyn C.

    1983-01-01

    The infrared spectrum of acetanilide shows a new band that is red shifted from the main amide-I maximum by about 15 cm-1, the intensity of which increases at low temperature. It is suggested that this band may arise from the creation of amide-I solitons that are similar (but not identical) to those proposed by Davydov for the alpha helix in proteins.

  20. Time-resolved luminescence from feldspars: New insight into fading

    DEFF Research Database (Denmark)

    Tsukamoto, S.; Denby, P.M.; Murray, A.S.

    2006-01-01

    Time-resolved infrared optically stimulated luminescence (IR-OSL) signals of K- and Na-feldspar samples extracted from sediments were measured in UV, blue and red detection windows, using a fast photon counter and pulsed IR stimulation (lambda = 875 nm). We observe that the relative contribution ...

  1. Far-Infrared Absorption of PbSe Nanorods

    KAUST Repository

    Hyun, Byung-Ryool; Bartnik, A. C.; Koh, Weon-kyu; Agladze, N. I.; Wrubel, J. P.; Sievers, A. J.; Murray, Christopher B.; Wise, Frank W.

    2011-01-01

    Measurements of the far-infrared absorption spectra of PbSe nanocrystals and nanorods are presented. As the aspect ratio of the nanorods increases, the Fröhlich sphere resonance splits into two peaks. We analyze this splitting with a classical

  2. Near-infrared free carrier absorption in heavily doped silicon

    International Nuclear Information System (INIS)

    Baker-Finch, Simeon C.; McIntosh, Keith R.; Yan, Di; Fong, Kean Chern; Kho, Teng C.

    2014-01-01

    Free carrier absorption in heavily doped silicon can have a significant impact on devices operating in the infrared. In the near infrared, the free carrier absorption process can compete with band to band absorption processes, thereby reducing the number of available photons to optoelectronic devices such as solar cells. In this work, we fabricate 18 heavily doped regions by phosphorus and boron diffusion into planar polished silicon wafers; the simple sample structure facilitates accurate and precise measurement of the free carrier absorptance. We measure and model reflectance and transmittance dispersion to arrive at a parameterisation for the free carrier absorption coefficient that applies in the wavelength range between 1000 and 1500 nm, and the range of dopant densities between ∼10 18 and 3 × 10 20  cm −3 . Our measurements indicate that previously published parameterisations underestimate the free carrier absorptance in phosphorus diffusions. On the other hand, published parameterisations are generally consistent with our measurements and model for boron diffusions. Our new model is the first to be assigned uncertainty and is well-suited to routine device analysis

  3. Kinetics and branching ratios of the reactions NH2+NO2->N2O+H2O and NH2+NO2->H2NO+NO studied by pulse radiolysis combined with time-resolved infrared diode laser spectroscopy

    DEFF Research Database (Denmark)

    Meunier, H.; Pagsberg, Palle Bjørn; Sillesen, A.

    1996-01-01

    studied by monitoring the decay of NH2 and the simultaneous formation of N2O and NO by time-resolved infrared diode laser spectroscopy. The decay rate of NH2 was studied as a function of NO2 concentration to obtain an overall rate constant k(NH2 + NO2) = (1.35 +/- 0.15) X 10(-11) molecule(-1) cm(3) s(-1...

  4. Transient Infrared Measurement of Laser Absorption Properties of Porous Materials

    Directory of Open Access Journals (Sweden)

    Marynowicz Andrzej

    2016-06-01

    Full Text Available The infrared thermography measurements of porous building materials have become more frequent in recent years. Many accompanying techniques for the thermal field generation have been developed, including one based on laser radiation. This work presents a simple optimization technique for estimation of the laser beam absorption for selected porous building materials, namely clinker brick and cement mortar. The transient temperature measurements were performed with the use of infrared camera during laser-induced heating-up of the samples’ surfaces. As the results, the absorbed fractions of the incident laser beam together with its shape parameter are reported.

  5. Transient Infrared Measurement of Laser Absorption Properties of Porous Materials

    Science.gov (United States)

    Marynowicz, Andrzej

    2016-06-01

    The infrared thermography measurements of porous building materials have become more frequent in recent years. Many accompanying techniques for the thermal field generation have been developed, including one based on laser radiation. This work presents a simple optimization technique for estimation of the laser beam absorption for selected porous building materials, namely clinker brick and cement mortar. The transient temperature measurements were performed with the use of infrared camera during laser-induced heating-up of the samples' surfaces. As the results, the absorbed fractions of the incident laser beam together with its shape parameter are reported.

  6. Infrared absorption spectroscopy and chemical kinetics of free radicals

    Energy Technology Data Exchange (ETDEWEB)

    Curl, R.F.; Glass, G.P. [Rice Univ., Houston, TX (United States)

    1993-12-01

    This research is directed at the detection, monitoring, and study of chemical kinetic behavior by infrared absorption spectroscopy of small free radical species thought to be important intermediates in combustion. During the last year, infrared kinetic spectroscopy using excimer laser flash photolysis and color-center laser probing has been employed to study the high resolution spectrum of HCCN, the rate constant of the reaction between ethynyl (C{sub 2}H) radical and H{sub 2} in the temperature region between 295 and 875 K, and the recombination rate of propargyl (CH{sub 2}CCH) at room temperature.

  7. Infra-red absorption in rare-gas mixtures

    International Nuclear Information System (INIS)

    Weiss, S.

    1980-01-01

    Infrared absorption in rare-gas mixtures has been studied extensively, so that by now the spectra at room temperature of almost all pairs are available. Turning attention first to the gas phase, it is shown that the considerable mass of experimental results can be reduced to yield a relatively simple picture. Having reviewed the experimental facts, the interpretation and extraction of information is discussed. (KBE)

  8. Impurities in semiconductors: total energy and infrared absorption calculations

    International Nuclear Information System (INIS)

    Yndurain, F.

    1987-01-01

    A new method to calculate the electronic structure of infinite nonperiodic system is discussed. The calculations are performed using atomic pseudopotentials and a basis of atomic Gaussiam wave functions. The Hartree-Fock self consistent equations are solved in the cluster-Bethe lattice system. Electron correlation is partially included in second order pertubation approximation. The formalism is applied to hydrogenated amorphous silicon. Total energy calculations of finite clusters of silicon atom in the presence of impurities, are also presented. The results show how atomic oxygen breaks the covalent silicon silicon bond forming a local configuration similar to that of SiO 2 . Calculations of the infrared absorption due to the presence of atomic oxygen in cristalline silicon are presented. The Born Hamiltonian to calculate the vibrational modes of the system and a simplied model to describe the infrared absorption mechanism are used. The interstitial and the the substitutional cases are considered and analysed. The position of the main infrared absorption peak, their intensities and their isotope shifts are calculated. The results are satisfactory agreement with the available data. (author) [pt

  9. Time-resolved terahertz spectroscopy of semiconductor nanostructures

    DEFF Research Database (Denmark)

    Porte, Henrik

    This thesis describes time-resolved terahertz spectroscopy measurements on various semiconductor nanostructures. The aim is to study the carrier dynamics in these nanostructures on a picosecond timescale. In a typical experiment carriers are excited with a visible or near-infrared pulse and by me......This thesis describes time-resolved terahertz spectroscopy measurements on various semiconductor nanostructures. The aim is to study the carrier dynamics in these nanostructures on a picosecond timescale. In a typical experiment carriers are excited with a visible or near-infrared pulse...... and by measuring the transmission of a terahertz probe pulse, the photoconductivity of the excited sample can be obtained. By changing the relative arrival time at the sample between the pump and the probe pulse, the photoconductivity dynamics can be studied on a picosecond timescale. The rst studied semiconductor...

  10. An instrument for small-animal imaging using time-resolved diffuse and fluorescence optical methods

    International Nuclear Information System (INIS)

    Montcel, Bruno; Poulet, Patrick

    2006-01-01

    We describe time-resolved optical methods that use diffuse near-infrared photons to image the optical properties of tissues and their inner fluorescent probe distribution. The assembled scanner uses picosecond laser diodes at 4 wavelengths, an 8-anode photo-multiplier tube and time-correlated single photon counting. Optical absorption and reduced scattering images as well as fluorescence emission images are computed from temporal profiles of diffuse photons. This method should improve the spatial resolution and the quantification of fluorescence signals. We used the diffusion approximation of the radiation transport equation and the finite element method to solve the forward problem. The inverse problem is solved with an optimization algorithm such as ART or conjugate gradient. The scanner and its performances are presented, together with absorption, scattering and fluorescent images obtained with it

  11. Femtosecond laser irradiation-induced infrared absorption on silicon surfaces

    Directory of Open Access Journals (Sweden)

    Qinghua Zhu

    2015-04-01

    Full Text Available The near-infrared (NIR absorption below band gap energy of crystalline silicon is significantly increased after the silicon is irradiated with femtosecond laser pulses at a simple experimental condition. The absorption increase in the NIR range primarily depends on the femtosecond laser pulse energy, pulse number, and pulse duration. The Raman spectroscopy analysis shows that after the laser irradiation, the silicon surface consists of silicon nanostructure and amorphous silicon. The femtosecond laser irradiation leads to the formation of a composite of nanocrystalline, amorphous, and the crystal silicon substrate surface with microstructures. The composite has an optical absorption enhancement at visible wavelengths as well as at NIR wavelength. The composite may be useful for an NIR detector, for example, for gas sensing because of its large surface area.

  12. Time-resolved spectroscopy in synchrotron radiation

    International Nuclear Information System (INIS)

    Rehn, V.; Stanford Univ., CA

    1980-01-01

    Synchrotron radiation (SR) from large-diameter storage rings has intrinsic time structure which facilitates time-resolved measurements form milliseconds to picoseconds and possibly below. The scientific importance of time-resolved measurements is steadily increasing as more and better techniques are discovered and applied to a wider variety of scientific problems. This paper presents a discussion of the importance of various parameters of the SR facility in providing for time-resolved spectroscopy experiments, including the role of beam-line optical design parameters. Special emphasis is placed on the requirements of extremely fast time-resolved experiments with which the effects of atomic vibrational or relaxation motion may be studied. Before discussing the state-of-the-art timing experiments, we review several types of time-resolved measurements which have now become routine: nanosecond-range fluorescence decay times, time-resolved emission and excitation spectroscopies, and various time-of-flight applications. These techniques all depend on a short SR pulse length and a long interpulse period, such as is provided by a large-diameter ring operating in a single-bunch mode. In most cases, the pulse shape and even the stability of the pulse shape is relatively unimportant as long as the pulse length is smaller than the risetime of the detection apparatus, typically 1 to 2 ns. For time resolution smaller than 1 ns, the requirements on the pulse shape become more stringent. (orig./FKS)

  13. The RATIO method for time-resolved Laue crystallography

    International Nuclear Information System (INIS)

    Coppens, P.; Pitak, M.; Gembicky, M.; Messerschmidt, M.; Scheins, S.; Benedict, J.; Adachi, S.-I.; Sato, T.; Nozawa, S.; Ichiyanagi, K.; Chollet, M.; Koshihara, S.-Y.

    2009-01-01

    A RATIO method for analysis of intensity changes in time-resolved pump-probe Laue diffraction experiments is described. The method eliminates the need for scaling the data with a wavelength curve representing the spectral distribution of the source and removes the effect of possible anisotropic absorption. It does not require relative scaling of series of frames and removes errors due to all but very short term fluctuations in the synchrotron beam.

  14. Infrared absorption studies of the annealing of irradiated diamonds

    International Nuclear Information System (INIS)

    Woods, G.S.

    1984-01-01

    Natural (types Ia and IIa) and synthetic (type Ib) diamonds have been irradiated with energetic electrons and neutrons and then heated at temperatures up to 1400 deg C. Attendant changes in the infrared absorption spectra, especially above the Raman frequency (1332 cm -1 ), have been monitored. The most prominent absorption to develop in the infrared region proper, on annealing both type Ia and type Ib specimens, whether electron- or neutron-irradiated is the H1a line at 1450 cm -1 . Measurements taken of neutron-irradiated type Ia specimens show that the strength of this line is specimen-dependent, and that it is a linear function of radiation dose. Isochronal annealing studies show that the onset of the line occurs during heating at 250 deg C for type Ia specimens and at 650 deg C for type Ib specimens. The absorption begins to weaken during heating at 1100 deg C, but it is very persistent, surviving an anneal of 4 hours at 1400 deg C, albeit with diminished intensity. Three other weaker lines at 1438, 1358 and 1355 cm -1 develop with the 1450 cm -1 line, but differ from it and from each other in subsequent annealing behaviour. Other lines were observed; these are reported and discussed. (author)

  15. Infrared Absorption by Atmospheric Aerosols in Mexico City during MILAGRO.

    Science.gov (United States)

    Kelley, K. L.; Mangu, A.; Gaffney, J. S.; Marley, N. A.

    2007-12-01

    Past research in our group using cylindrical internal reflectance spectroscopy has indicated that aqueous aerosols could contribute to the radiative warming as greenhouse species (1,2). Although aerosol radiative effects have been known for sometime and are considered one of the major uncertainties in climate change modeling, most of the studies have focused on the forcing due to scattering and absorption of radiation in the uv- visible region (3). Infrared spectral information also allows the confirmation of key functional groups that are responsible for enhanced absorption observations from secondary organics in the uv-visible region. This work extends our efforts to evaluate the infrared absorption by aerosols, particularly organics, that are now found to be a major fraction of urban and regional aerosols in the 0.1 to 1.0 micron size range and to help identify key types of organics that can contribute to aerosol absorption. During the MILAGRO campaign, quartz filter samples were taken at 12-hour intervals from 5 am to 5 pm (day) and from 5 pm to 5 am (night) during the month of March 2006. These samples were taken at the two super-sites, T-0 (Instituto Mexicano de Petroleo in Mexico City) and T-1 (Universidad Technologica de Tecamac, State of Mexico). The samples have been characterized for total carbon content (stable isotope mass spectroscopy) and natural radionuclide tracers, as well as for their UV-visible spectroscopic properties by using integrating sphere diffuse reflectance spectroscopy (Beckman DU with a Labsphere accessory). These same samples have been characterized in the mid and near infrared spectral ranges using diffuse reflection spectroscopy (Nicolet 6700 FTIR with a Smart Collector accessory). Aerosol samples were removed from the surfaces of the aerosol filters by using Si-Carb sampler. The samples clearly indicate the presence of carbonyl organic constituents and the spectra are quite similar to those observed for humic and fulvic acids

  16. Far-Infrared Absorption of PbSe Nanorods

    KAUST Repository

    Hyun, Byung-Ryool

    2011-07-13

    Measurements of the far-infrared absorption spectra of PbSe nanocrystals and nanorods are presented. As the aspect ratio of the nanorods increases, the Fröhlich sphere resonance splits into two peaks. We analyze this splitting with a classical electrostatic model, which is based on the dielectric function of bulk PbSe but without any free-carrier contribution. Good agreement between the measured and calculated spectra indicates that resonances in the local field factors underlie the measured spectra. © 2011 American Chemical Society.

  17. Time resolved infrared spectroscopy of femtosecond proton dynamics in the liquid phase; Spectroscopie infrarouge resolue en temps pour l'etude de la dynamique femtoseconde du proton en phase liquide

    Energy Technology Data Exchange (ETDEWEB)

    Amir, W

    2003-12-15

    This work of thesis aims to understand the strong mobility of protons in water. Water is fundamental to life and mediates many chemical and biological processes. However this liquid is poorly understood at the molecular level. The richness of interdisciplinary sciences allows us to study the properties which make it so unique. The technique used for this study was the femtosecond time resolved vibrational spectroscopy. Several experiments were carried out to characterize the femtosecond proton dynamics in water. The visualization of the rotation of water molecules obtained by anisotropy measurements will be presented. This experiment is carried out in isotopic water HDO/D{sub 2}O for reasons of experimental and theoretical suitability. However this is not water. Pure water H{sub 2}O was also studied without thermal effects across vibrations modes. An intermolecular energy resonant transfer was observed. Finally the localized structure of the proton in water (called Eigen form) was clearly experimentally observed. This molecule is implicated in the abnormal mobility of the proton in water (Grotthuss mechanism). (author)

  18. Decomposition of time-resolved tomographic PIV

    NARCIS (Netherlands)

    Schmid, P.J.; Violato, D.; Scarano, F.

    2012-01-01

    An experimental study has been conducted on a transitional water jet at a Reynolds number of Re = 5,000. Flow fields have been obtained by means of time-resolved tomographic particle image velocimetry capturing all relevant spatial and temporal scales. The measured threedimensional flow fields have

  19. Broadband infrared absorption enhancement by electroless-deposited silver nanoparticles

    Directory of Open Access Journals (Sweden)

    Gritti Claudia

    2016-07-01

    Full Text Available Decorating semiconductor surfaces with plasmonic nanoparticles (NPs is considered a viable solution for enhancing the absorptive properties of photovoltaic and photodetecting devices. We propose to deposit silver NPs on top of a semiconductor wafer by a cheap and fast electroless plating technique. Optical characterization confirms that the random array of electroless-deposited NPs improves absorption by up to 20% in a broadband of near-infrared frequencies from the bandgap edge to 2000 nm. Due to the small filling fraction of particles, the reflection in the visible range is practically unchanged, which points to the possible applications of such deposition method for harvesting photons in nanophotonics and photovoltaics. The broadband absorption is a consequence of the resonant behavior of particles with different shapes and sizes, which strongly localize the incident light at the interface of a high-index semiconductor substrate. Our hypothesis is substantiated by examining the plasmonic response of the electroless-deposited NPs using both electron energy loss spectroscopy and numerical calculations.

  20. Modeling of light absorption in tissue during infrared neural stimulation

    Science.gov (United States)

    Thompson, Alexander C.; Wade, Scott A.; Brown, William G. A.; Stoddart, Paul R.

    2012-07-01

    A Monte Carlo model has been developed to simulate light transport and absorption in neural tissue during infrared neural stimulation (INS). A range of fiber core sizes and numerical apertures are compared illustrating the advantages of using simulations when designing a light delivery system. A range of wavelengths, commonly used for INS, are also compared for stimulation of nerves in the cochlea, in terms of both the energy absorbed and the change in temperature due to a laser pulse. Modeling suggests that a fiber with core diameter of 200 μm and NA=0.22 is optimal for optical stimulation in the geometry used and that temperature rises in the spiral ganglion neurons are as low as 0.1°C. The results show a need for more careful experimentation to allow different proposed mechanisms of INS to be distinguished.

  1. Infrared Absorption Spectroscopy and Chemical Kinetics of Free Radicals

    Energy Technology Data Exchange (ETDEWEB)

    Curl, Robert F; Glass, Graham

    2004-11-01

    This research was directed at the detection, monitoring, and study of the chemical kinetic behavior by infrared absorption spectroscopy of small free radical species thought to be important intermediates in combustion. Work on the reaction of OH with acetaldehyde has been completed and published and work on the reaction of O({sup 1}D) with CH{sub 4} has been completed and submitted for publication. In the course of our investigation of branching ratios of the reactions of O({sup 1}D) with acetaldehyde and methane, we discovered that hot atom chemistry effects are not negligible at the gas pressures (13 Torr) initially used. Branching ratios of the reaction of O({sup 1}D) with CH{sub 4} have been measured at a tenfold higher He flow and fivefold higher pressure.

  2. Infrared absorption spectra of selenate compounds of indium (3)

    International Nuclear Information System (INIS)

    Kharitonov, Yu.Ya.; Kadoshnikova, N.V.; Tananaev, I.V.

    1979-01-01

    Obtained and discussed are infrared absorption spectra (400-4000 cm -1 ) of the following indium selenates: In 2 (SeO 4 ) 3 x5H 2 O, In 2 (SeO 4 ) 3 x9H 2 O, NaIn(SeO 4 ) 2 x6H 2 O, NaIn(SeO 4 ) 2 xH 2 O, MIn(SeO 4 ) 2 x4H 2 O (M=NH 4 , K, Rb), CsIn(SeO 4 ) 2 x2H 2 O, Na 3 In(SeO 4 ) 3 x7H 2 O, MIn(SeO 4 ) 2 (M=NH 4 , Na, K, Rb, Cs), M 2 InOH(SeO 4 ) 2 xyH 2 O (M=NH 4 , Na, K, Rb) and K 2 InOD(SeO 4 ) 2 xyD 2 O

  3. Broadband enhancement of infrared absorption in microbolometers using Ag nanocrystals

    International Nuclear Information System (INIS)

    Hyun, Jerome K.; Ahn, Chi Won; Kim, Woo Choong; Kim, Tae Hyun; Hyun, Moon Seop; Kim, Hee Yeoun; Park, Jae Hong; Lee, Won-Oh

    2015-01-01

    High performance microbolometers are widely sought for thermal imaging applications. In order to increase the performance limits of microbolometers, the responsivity of the device to broadband infrared (IR) radiation needs to be improved. In this work, we report a simple, quick, and cost-effective approach to modestly enhance the broadband IR response of the device by evaporating Ag nanocrystals onto the light entrance surface of the device. When irradiated with IR light, strong fields are built up within the gaps between adjacent Ag nanocrystals. These fields resistively generate heat in the nanocrystals and underlying substrate, which is transduced into an electrical signal via a resistive sensing element in the device. Through this method, we are able to enhance the IR absorption over a broadband spectrum and improve the responsivity of the device by ∼11%

  4. Deflection evaluation using time-resolved radiography

    International Nuclear Information System (INIS)

    Fry, D.A.; Lucero, J.P.

    1990-01-01

    Time-resolved radiography is the creation of an x-ray image for which both the start-exposure and stop-exposure times are known with respect to the event under study. The combination of image and timing are used to derive information about the event. The authors have applied time-resolved radiography to evaluate motions of explosive-driven events. In the particular application discussed in this paper, the author's intent is to measure maximum deflections of the components involved. Exposures are made during the time just before to just after the event of interest occurs. A smear or blur of motion out to its furthest extent is recorded on the image. Comparison of the dynamic images with static images allows deflection measurements to be made

  5. Ultrafast time-resolved spectroscopy of lead halide perovskite films

    Science.gov (United States)

    Idowu, Mopelola A.; Yau, Sung H.; Varnavski, Oleg; Goodson, Theodore

    2015-09-01

    Recently, lead halide perovskites which are organic-inorganic hybrid structures, have been discovered to be highly efficient as light absorbers. Herein, we show the investigation of the excited state dynamics and emission properties of non-stoichiometric precursor formed lead halide perovskites grown by interdiffusion method using steady-state and time-resolved spectroscopic measurements. The influence of the different ratios of the non-stoichiometric precursor solution was examined. The observed photoluminescence properties were correlated with the femtosecond transient absorption measurements.

  6. Intramolecular charge transfer of 4-(dimethylamino)benzonitrile probed by time-resolved fluorescence and transient absorption: No evidence for two ICT states and a πσ* reaction intermediate

    International Nuclear Information System (INIS)

    Zachariasse, Klaas A.; Druzhinin, Sergey I.; Senyushkina, Tamara; Kovalenko, Sergey A.

    2009-01-01

    For the double exponential fluorescence decays of the locally excited (LE) and intramolecular charge transfer (ICT) states of 4-(dimethylamino)benzonitrile (DMABN) in acetonitrile (MeCN) the same times τ 1 and τ 2 are observed. This means that the reversible LE ICT reaction, starting from the initially excited LE state, can be adequately described by a two state mechanism. The most important factor responsible for the sometimes experimentally observed differences in the nanosecond decay time, with τ 1 (LE) 1 (ICT), is photoproduct formation. By employing a global analysis of the LE and ICT fluorescence response functions with a time resolution of 0.5 ps/channel in 1200 channels reliable kinetic and thermodynamic data can be obtained. The arguments presented in the literature in favor of a πσ* state with a bent CN group as an intermediate in the ICT reaction of DMABN are discussed. From the appearance of an excited state absorption (ESA) band in the spectral region between 700 and 800 nm in MeCN for N,N-dimethylanilines with CN, Br, F, CF 3 , and C(=O)OC 2 H 2 p-substituents, it is concluded that this ESA band cannot be attributed to a πσ * state, as only the C-C≡N group can undergo the required 120 deg. bending.

  7. Nitrogen and hydrogen related infrared absorption in CVD diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Titus, E. [Department of Mechanical Engineering, University of Aveiro, 3810-193 (Portugal)]. E-mail: elby@mec.ua.pt; Ali, N. [Department of Mechanical Engineering, University of Aveiro, 3810-193 (Portugal); Cabral, G. [Department of Mechanical Engineering, University of Aveiro, 3810-193 (Portugal); Madaleno, J.C. [Department of Mechanical Engineering, University of Aveiro, 3810-193 (Portugal); Neto, V.F. [Department of Mechanical Engineering, University of Aveiro, 3810-193 (Portugal); Gracio, J. [Department of Mechanical Engineering, University of Aveiro, 3810-193 (Portugal); Ramesh Babu, P [Materials Ireland, Polymer research Centre, School of Physics, Dublin (Ireland); Sikder, A.K. [Department of Physics, Indian Institute of Technology (IIT), Bombay (India); Okpalugo, T.I. [Northern Ireland Bio-Engineering Centre, NIBEC, University of Ulster (United Kingdom); Misra, D.S. [Department of Physics, Indian Institute of Technology (IIT), Bombay (India)

    2006-09-25

    In this paper, we investigate on the presence of hydrogen and nitrogen related infrared absorptions in chemical vapour deposited (CVD) diamond films. Investigations were carried out in cross sections of diamond windows, deposited using hot filament CVD (HFCVD). The results of Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR) and Raman spectroscopy carried out in a cross section of self-standing diamond sheets are presented. The FTIR spectra showed several features that have not been reported before. In order to confirm the frequency of nitrogen related vibrations, ab-initio calculations were carried out using GAMESS program. The investigations showed the presence of several C-N related peaks in one-phonon (1000-1333 cm{sup -1}). The deconvolution of the spectra in the three-phonon region (2700-3150 cm{sup -1}) also showed a number of vibration modes corresponding to sp {sup m}CH {sub n} phase of carbon. Elastic recoil detection analysis (ERDA) was employed to compare the H content measured using FTIR technique. Using these measurements we point out that the oscillator strength of the different IR modes varies depending upon the structure and H content of CVD diamond sheets.

  8. nBn Infrared Detector Containing Graded Absorption Layer

    Science.gov (United States)

    Gunapala, Sarath D.; Ting, David Z.; Hill, Cory J.; Bandara, Sumith V.

    2009-01-01

    It has been proposed to modify the basic structure of an nBn infrared photodetector so that a plain electron-donor- type (n-type) semiconductor contact layer would be replaced by a graded n-type III V alloy semiconductor layer (i.e., ternary or quarternary) with appropriate doping gradient. The abbreviation nBn refers to one aspect of the unmodified basic device structure: There is an electron-barrier ("B" ) layer between two n-type ("n" ) layers, as shown in the upper part of the figure. One of the n-type layers is the aforementioned photon-absorption layer; the other n-type layer, denoted the contact layer, collects the photocurrent. The basic unmodified device structure utilizes minority-charge-carrier conduction, such that, for reasons too complex to explain within the space available for this article, the dark current at a given temperature can be orders of magnitude lower (and, consequently, signal-to-noise ratios can be greater) than in infrared detectors of other types. Thus, to obtain a given level of performance, less cooling (and, consequently, less cooling equipment and less cooling power) is needed. [In principle, one could obtain the same advantages by means of a structure that would be called pBp because it would include a barrier layer between two electron-acceptor- type (p-type) layers.] The proposed modifications could make it practical to utilize nBn photodetectors in conjunction with readily available, compact thermoelectric coolers in diverse infrared- imaging applications that could include planetary exploration, industrial quality control, monitoring pollution, firefighting, law enforcement, and medical diagnosis.

  9. Infrared absorption characteristics of hydroxyl groups in coal tars

    Energy Technology Data Exchange (ETDEWEB)

    Cannon, S A; Chu, C J; Hange, R H; Margrave, J L

    1987-01-01

    Tar evolution was observed over a temperature range of 150-600 C for four coals. Pittsburgh bituminous, Illinois No.6, Rawhide subbituminous, and Texas lignite. Isolation of the evolved tars in a nitrogen matrix at 15 degrees K produced better resolved infrared spectra than those in a coal matrix, thus enhancing structural characterization of the tar molecules. Two distinct hydroxyl functional groups in the tar molecules free of hydrogen bonding were identified for the first time without interference from H/sub 2/O absorptions. These absorptions at 3626.5 cm/sup -1/ have been assigned to phenolic hydroxyls. It is suggested that carboxylic and aliphatic hydroxyl groups do not survive the vaporization process. Tars from Illinois No.6 were found to contain the largest amount of phenolic hydroxyl; Pittsburgh No. 8 tar contains approximately half of that for Illinois No.6 while Rawhide and Texas lignite contain much less phenolic than either of the other coals. 10 references, 6 figures, 1 table.

  10. Photophysical characterization and time-resolved spectroscopy of a anthradithiophene dimer: exploring the role of conformation in singlet fission

    KAUST Repository

    Dean, Jacob C.; Zhang, Ruomeng; Hallani, Rawad K.; Pensack, Ryan D.; Sanders, Samuel N.; Oblinsky, Daniel G.; Parkin, Sean R.; Campos, Luis M.; Anthony, John E.; Scholes, Gregory D.

    2017-01-01

    carried out in toluene and acetone solution via absorption and fluorescence spectroscopy, and their photo-initiated dynamics were investigated with time-resolved fluorescence (TRF) and transient absorption (TA) spectroscopy. In accordance

  11. Time-resolved studies. Ch. 9

    International Nuclear Information System (INIS)

    Mills, Dennis M.; Argonne National Lab., IL

    1991-01-01

    Synchrotron radiation, with its unique properties, offers a tool to extend X-ray measurements from the static to the time-resolved regime. The most straight-forward application of synchrotron radiation to the study of transient phenomena is directly through the possibility of decreased data-collection times via the enormous increase in flux over that of a laboratory X-ray system. Even further increases in intensity can be obtained through the use of novel X-ray optical devices. Wide-bandpass monochromators, e.g., that utilize the continuous spectral distribution of synchrotron radiation, can increase flux on the sample several orders of magnitude over conventional X-ray optical systems thereby allowing a further shortening of the data-collection time. Another approach that uses the continuous spectral nature of synchrotron radiation to decrease data-collection times is the 'parallel data collection' method. Using this technique, intensities as a function of X-ray energy are recorded simultaneously for all energies rather than sequentially recording data at each energy, allowing for a dramatic decrease in data-collection time. Perhaps the most exciting advances in time-resolved X-ray studies will be made by those methods that exploit the pulsed nature of the radiation emitted from storage rings. Pulsed techniques have had an enormous impact in the study of the temporal evolution of transient phenomena. The extension from continuous to modulated sources for use in time-resolved work has been carried over in a host of fields that use both pulsed particle and pulsed electro-magnetic beams. In this chapter the new experimental techniques are reviewed and illustrated with some experiments. (author). 98 refs.; 20 figs.; 5 tabs

  12. Silicon oxide particle formation in RF plasmas investigated by infrared absorption spectroscopy and mass spectrometry

    NARCIS (Netherlands)

    Hollenstein, Ch.; Howling, A.A.; Courteille, C.; Magni, D.; Scholz, S.M.; Kroesen, G.M.W.; Simons, N.; de Zeeuw, W.; Schwarzenbach, W.

    1998-01-01

    In situ Fourier transform infrared absorption spectroscopy has been used to study the composition of particles formed and suspended in radio-frequency discharges of silane - oxygen-argon gas mixtures. The silane gas consumption was observed by infrared absorption. The stoichiometry of the produced

  13. Infrared and UV-visible absorption measurement at Syowa Station (abstract)

    OpenAIRE

    Murata,Isao; Kita,Kazuyuki; Iwagami,Naomoto; Ogawa ,Toshihiro

    1993-01-01

    Vertical column contents of some trace gases were observed by solar infrared and UV-visible absorption techniques at Syowa Station, to study the dynamics and chemistry of Antarctic ozone. HCl, HF, N_2O, OCS, CO and C_2H_6 column contents were measured by infrared absorption spectroscopy in the 3-5

  14. Photoacoustic Experimental System to Confirm Infrared Absorption Due to Greenhouse Gases

    Science.gov (United States)

    Kaneko, Fumitoshi; Monjushiro, Hideaki; Nishiyama, Masayoshi; Kasai, Toshio; Harris, Harold H.

    2010-01-01

    An experimental system for detecting infrared absorption using the photoacoustic (PA) effect is described. It is aimed for use at high-school level to illustrate the difference in infrared (IR) absorption among the gases contained in the atmosphere in connection with the greenhouse effect. The experimental system can be built with readily…

  15. Time-resolved x-ray diagnostics

    International Nuclear Information System (INIS)

    Lyons, P.B.

    1981-01-01

    Techniques for time-resolved x-ray diagnostics will be reviewed with emphasis on systems utilizing x-ray diodes or scintillators. System design concerns for high-bandwidth (> 1 GHz) diagnostics will be emphasized. The limitations of a coaxial cable system and a technique for equalizing to improve bandwidth of such a system will be reviewed. Characteristics of new multi-GHz amplifiers will be presented. An example of a complete operational system on the Los Alamos Helios laser will be presented which has a bandwidth near 3 GHz over 38 m of coax. The system includes the cable, an amplifier, an oscilloscope, and a digital camera readout

  16. Time-resolved UV spectroscopy on ammonia excited by a pulsed CO2 laser

    International Nuclear Information System (INIS)

    Holbach, H.

    1980-07-01

    This work investigates the excitation of ammonia by a pulsed CO 2 laser, in particular the processes associated with collisions with argon. It was prompted by two previous observations: the previously reported infrared multiphoton dissociation of NH 3 under nearly collisionless conditions, and the ill understood excitation mechanism of apparently nonresonant low vibrational levels in the presence of Ar. Based on recent spectroscopic data, all vibrational-rotational levels were determined which are simultaneously excited by different CO 2 laser lines. Transitions between the 1 + and 2 - vibrational levels were also taken into account. The linewidth in these calculations was dominated by power broadening, which generates a half width at half maximum of 0.36 cm -1 at the typical power density of 10 MW/cm 2 . In order to reproduce published experimental absorption data, it proved necessary to take account all transitions within a distance of 20 cm -1 from the laser line. This fact implies in most cases the simultaneous population of a large number of vibrational-rotational levels. The population of levels by absorption or by subsequent collisional processes was probed by time-resolved absorption measurement of vibrational bands and their rotational envelope in the near UV. Time resolution (5...10) was sufficient to observe rotational relaxation within individual vibrational levels. Characteristic differences were found for the various excitation lines. (orig.) [de

  17. Femtosecond Time-resolved Optical Polarigraphy (FTOP)

    International Nuclear Information System (INIS)

    Aoshima, S.; Fujimoto, M.; Hosoda, M.; Tsuchiya, Y.

    2000-01-01

    A novel time-resolved imaging technique named FTOP (Femtosecond Time-resolved Optical Polarigraphy) for visualizing the ultrafast propagation dynamics of intense light pulses in a medium has been proposed and demonstrated. Femtosecond snapshot images can be created with a high spatial resolution by imaging only the polarization components of the probe pulse; these polarization components change due to the instantaneous birefringence induced by the pump pulse in the medium. Ultrafast temporal changes in the two-dimensional spatial distribution of the optical pulse intensity were clearly visualized in consecutive images by changing the delay between the pump and probe. We observe that several filaments appear and then come together before the vacuum focus due to nonlinear effects in air. We also prove that filamentation dynamics such as the formation position and the propagation behavior are complex and are strongly affected by the pump energy. The results collected clearly show that this method FTOP succeeds for the first time in directly visualizing the ultrafast dynamics of the self-modulated nonlinear propagation of light. (author)

  18. Time Resolved Deposition Measurements in NSTX

    International Nuclear Information System (INIS)

    Skinner, C.H.; Kugel, H.; Roquemore, A.L.; Hogan, J.; Wampler, W.R.

    2004-01-01

    Time-resolved measurements of deposition in current tokamaks are crucial to gain a predictive understanding of deposition with a view to mitigating tritium retention and deposition on diagnostic mirrors expected in next-step devices. Two quartz crystal microbalances have been installed on NSTX at a location 0.77m outside the last closed flux surface. This configuration mimics a typical diagnostic window or mirror. The deposits were analyzed ex-situ and found to be dominantly carbon, oxygen, and deuterium. A rear facing quartz crystal recorded deposition of lower sticking probability molecules at 10% of the rate of the front facing one. Time resolved measurements over a 4-week period with 497 discharges, recorded 29.2 (micro)g/cm 2 of deposition, however surprisingly, 15.9 (micro)g/cm 2 of material loss occurred at 7 discharges. The net deposited mass of 13.3 (micro)g/cm 2 matched the mass of 13.5 (micro)g/cm 2 measured independently by ion beam analysis. Monte Carlo modeling suggests that transient processes are likely to dominate the deposition

  19. Quantification of atmospheric formaldehyde by infrared absorption spectroscopy

    Science.gov (United States)

    Hoffnagle, John; Fleck, Derek; Rella, Chris; Kim-Hak, David

    2017-04-01

    Formaldehyde is a toxic, carcinogenic compound that can contaminate ambient air as a result of combustion or outgassing of commercial products such as adhesives used to fabricate plywood and to affix indoor carpeting. Like many small molecules, formaldehyde has an infrared absorption spectrum exhibiting bands of ro-vibrational transitions that are well resolved at low pressure and therefore well suited for optical analysis of formaldehyde concentration. We describe progress in applying cavity ring-down spectroscopy of the 2v5 band (the first overtone of the asymmetric C-H stretch, origin at 1770 nm) to the quantitative analysis of formaldehyde concentration in ambient air. Preliminary results suggest that a sensitivity of 1-2 ppb in a measurement interval of a few seconds, and 0.1-0.2 ppb in a few minutes, should be achievable with a compact, robust, and field-deployable instrument. Finally, we note that recent satellites monitoring snapshots of formaldehyde columns give insights into global formaldehyde production, migration and lifetime. The ability to monitor formaldehyde with a small and portable analyzer has the potential to aid in validation of these snapshots and to provide complementary data to show vertical dispersions with high spatial accuracy.

  20. Femtosecond time-resolved transient absorption spectroscopy of xanthophylls

    Czech Academy of Sciences Publication Activity Database

    Niedzwiedzki, D.; Sullivan, J.O.; Polívka, Tomáš; Birge, R.R.; Frank, H.A.

    2006-01-01

    Roč. 110, č. 45 (2006), s. 22872-22885 ISSN 1520-6106 Institutional research plan: CEZ:AV0Z50510513 Keywords : xanthophyll * spectroscopy study Subject RIV: BO - Biophysics Impact factor: 4.115, year: 2006

  1. Time-resolved brightness measurements by streaking

    Science.gov (United States)

    Torrance, Joshua S.; Speirs, Rory W.; McCulloch, Andrew J.; Scholten, Robert E.

    2018-03-01

    Brightness is a key figure of merit for charged particle beams, and time-resolved brightness measurements can elucidate the processes involved in beam creation and manipulation. Here we report on a simple, robust, and widely applicable method for the measurement of beam brightness with temporal resolution by streaking one-dimensional pepperpots, and demonstrate the technique to characterize electron bunches produced from a cold-atom electron source. We demonstrate brightness measurements with 145 ps temporal resolution and a minimum resolvable emittance of 40 nm rad. This technique provides an efficient method of exploring source parameters and will prove useful for examining the efficacy of techniques to counter space-charge expansion, a critical hurdle to achieving single-shot imaging of atomic scale targets.

  2. Time-resolved measurements of luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Collier, Bradley B. [Department of Biomedical Engineering, 408 Mechanical Engineering Office Building, Spence Street, Texas A and M University, College Station, TX 77843 (United States); McShane, Michael J., E-mail: mcshane@tamu.edu [Department of Biomedical Engineering, 408 Mechanical Engineering Office Building, Spence Street, Texas A and M University, College Station, TX 77843 (United States); Materials Science and Engineering Program, 408 Mechanical Engineering Office Building, Spence Street, Texas A and M University, College Station, TX 77843 (United States)

    2013-12-15

    Luminescence sensing and imaging has become more widespread in recent years in a variety of industries including the biomedical and environmental fields. Measurements of luminescence lifetime hold inherent advantages over intensity-based response measurements, and advances in both technology and methods have enabled their use in a broader spectrum of applications including real-time medical diagnostics. This review will focus on recent advances in analytical methods, particularly calculation techniques, including time- and frequency-domain lifetime approaches as well as other time-resolved measurements of luminescence. -- Highlights: • Developments in technology have led to widespread use of luminescence lifetime. • Growing interest for sensing and imaging applications. • Recent advances in approaches to lifetime calculations are reviewed. • Advantages and disadvantages of various methods are weighed. • Other methods for measurement of luminescence lifetime also described.

  3. Time-resolved measurements of luminescence

    International Nuclear Information System (INIS)

    Collier, Bradley B.; McShane, Michael J.

    2013-01-01

    Luminescence sensing and imaging has become more widespread in recent years in a variety of industries including the biomedical and environmental fields. Measurements of luminescence lifetime hold inherent advantages over intensity-based response measurements, and advances in both technology and methods have enabled their use in a broader spectrum of applications including real-time medical diagnostics. This review will focus on recent advances in analytical methods, particularly calculation techniques, including time- and frequency-domain lifetime approaches as well as other time-resolved measurements of luminescence. -- Highlights: • Developments in technology have led to widespread use of luminescence lifetime. • Growing interest for sensing and imaging applications. • Recent advances in approaches to lifetime calculations are reviewed. • Advantages and disadvantages of various methods are weighed. • Other methods for measurement of luminescence lifetime also described

  4. Time - resolved thermography at Tokamak T-10

    International Nuclear Information System (INIS)

    Grunow, C.; Guenther, K.; Lingertat, J.; Chicherov, V.M.; Evstigneev, S.A.; Zvonkov, S.N.

    1987-01-01

    Thermographic experiments were performed at T-10 tokamak to investigate the thermic coupling of plasma and the limiter. The limiter is an internal equipment of the vacuum vessel of tokamak-type fusion devices and the interaction of plasma with limiter results a high thermal load of limiter for short time. In according to improve the limiter design the temperature distribution on the limiter surface was measured by a time-resolved thermographic method. Typical isotherms and temperature increment curves are presented. This measurement can be used as a systematic plasma diagnostic method because the limiter is installed in the tokamak whereas special additional probes often disturb the plasma discharge. (D.Gy.) 3 refs.; 7 figs

  5. Infrared absorption spectroscopy and chemical kinetics of free radicals

    International Nuclear Information System (INIS)

    Curl, R.F.; Glass, G.P.

    1991-01-01

    A new channel producing ketenyl radical (HCCO) was discovered in the flash photolysis of ketene at 193 nm. H 2 CCO + hν(193 nm) → H + HCCO by observation near 2020 cm -1 of the infrared fundamental of ketenyl corresponding to the antisymmetric motion of the heavy atoms. This band has been partially rotationally analyzed and the rate constant for the reaction of ketenyl with NO has been determined. The OH stretching fundamental of hydroxymethyl radical (CH 2 OH) has been observed near 3600 cm -1 producing the radical either by the excimer flash photolysis of acetol (CH 3 COCH 2 OH) or by Cl atom abstraction of a methyl hydrogen from methanol. The assignment of the spectrum to CH 2 OH was confirmed by the agreement of the rate constant for the reaction of the species with O 2 with the literature value. The mechanism of the reaction of C 2 H with O 2 has been explored. There appear to be two channels producing CO product: a fast, direct one producing highly vibrationally excited CO up to v = 6 at the same rate C 2 H disappears and a slow, indirect one producing primarily ground state CO on a much longer timescale than the disappearance of C 2 H. The rate constants for the reactions of C 2 H with CH 4 , C 2 H 6 , C 2 H 4 , D 2 , and CO were determined by following the time decay of a C 2 H infrared transient absorption line originating from the ground vibronic state using diode laser spectroscopy creating the C 2 H by excimer laser flash photolysis (ArF, 193 nm) of CF 3 CCH. The branching ratio into OH of the reaction between NH 2 , and NO, which is the channel thought to propagate the radical chain of the Thermal deNOx process, has been measured up to 925 degree C. The OH yield thus obtained appears to be too small to maintain the process. 5 refs., 3 figs

  6. Methanogenic activity tests by Infrared Tunable Diode Laser Absorption Spectroscopy.

    Science.gov (United States)

    Martinez-Cruz, Karla; Sepulveda-Jauregui, Armando; Escobar-Orozco, Nayeli; Thalasso, Frederic

    2012-10-01

    Methanogenic activity (MA) tests are commonly carried out to estimate the capability of anaerobic biomass to treat effluents, to evaluate anaerobic activity in bioreactors or natural ecosystems, or to quantify inhibitory effects on methanogenic activity. These activity tests are usually based on the measurement of the volume of biogas produced by volumetric, pressure increase or gas chromatography (GC) methods. In this study, we present an alternative method for non-invasive measurement of methane produced during activity tests in closed vials, based on Infrared Tunable Diode Laser Absorption Spectroscopy (MA-TDLAS). This new method was tested during model acetoclastic and hydrogenotrophic methanogenic activity tests and was compared to a more traditional method based on gas chromatography. From the results obtained, the CH(4) detection limit of the method was estimated to 60 ppm and the minimum measurable methane production rate was estimated to 1.09(.)10(-3) mg l(-1) h(-1), which is below CH(4) production rate usually reported in both anaerobic reactors and natural ecosystems. Additionally to sensitivity, the method has several potential interests compared to more traditional methods among which short measurements time allowing the measurement of a large number of MA test vials, non-invasive measurements avoiding leakage or external interferences and similar cost to GC based methods. It is concluded that MA-TDLAS is a promising method that could be of interest not only in the field of anaerobic digestion but also, in the field of environmental ecology where CH(4) production rates are usually very low. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Time-resolved infrared studies of protein conformational dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Woodruff, W.H.; Causgrove, T.P.; Dyer, R.B. [Los Alamos National Laboratory, NM (United States); Callender, R.H. [Univ. of New York, NY (United States)

    1994-12-01

    We have demonstrated that TRIR in the amide I region gives structural information regarding protein conformational changes in realtime, both on processes involved in the development of the functional structure (protein folding) and on protein structural changes that accompany the functional dynamics of the native structure. Assignment of many of the amide I peaks to specific amide or sidechain structures will require much additional effort. Specifically, the congestion and complexity of the protein vibrational spectra dictate that isotope studies are an absolute requirement for more than a qualitative notion of the structural interpretation of these measurements. It is clear, however, that enormous potential exists for elucidating structural relaxation dynamics and energetics with a high degree of structural specificity using this approach.

  8. Time resolved ion beam induced charge collection

    International Nuclear Information System (INIS)

    Sexton W, Frederick; Walsh S, David; Doyle L, Barney; Dodd E, Paul

    2000-01-01

    Under this effort, a new method for studying the single event upset (SEU) in microelectronics has been developed and demonstrated. Called TRIBICC, for Time Resolved Ion Beam Induced Charge Collection, this technique measures the transient charge-collection waveform from a single heavy-ion strike with a -.03db bandwidth of 5 GHz. Bandwidth can be expanded up to 15 GHz (with 5 ps sampling windows) by using an FFT-based off-line waveform renormalization technique developed at Sandia. The theoretical time resolution of the digitized waveform is 24 ps with data re-normalization and 70 ps without re-normalization. To preserve the high bandwidth from IC to the digitizing oscilloscope, individual test structures are assembled in custom high-frequency fixtures. A leading-edge digitized waveform is stored with the corresponding ion beam position at each point in a two-dimensional raster scan. The resulting data cube contains a spatial charge distribution map of up to 4,096 traces of charge (Q) collected as a function of time. These two dimensional traces of Q(t) can cover a period as short as 5 ns with up to 1,024 points per trace. This tool overcomes limitations observed in previous multi-shot techniques due to the displacement damage effects of multiple ion strikes that changed the signal of interest during its measurement. This system is the first demonstration of a single-ion transient measurement capability coupled with spatial mapping of fast transients

  9. Enzyme reactions and their time resolved measurements

    International Nuclear Information System (INIS)

    Hajdu, Janos

    1990-01-01

    This paper discusses experimental strategies in data collection with the Laue method and summarises recent results using synchrotron radiation. Then, an assessment is made of the progress towards time resolved studies with protein crystals and the problems that remain. The paper consists of three parts which respectively describe some aspects of Laue diffraction, recent examples of structural results from Laue diffraction, and kinetic Laue crystallography. In the first part, characteristics of Laue diffraction is discussed first, focusing on the harmonics problems, spatials problem, wavelength normalization, low resolution hole, data completeness, and uneven coverage of reciprocal space. Then, capture of the symmetry unique reflection set is discussed focusing on the effect of wavelength range on the number of reciprocal lattice points occupying diffracting positions, effect of crystal to film distance and the film area and shape on the number of reflections captured, and effect of crystal symmetry on the number of unique reflections within the number of reflections captured. The second part addresses the determination of the structure of turkey egg white lysozyme, and calcium binding in tomato bushy stunt virus. The third part describes the initiation of reactions in enzyme crystals, picosecond Laue diffraction at high energy storage rings, and detectors. (N.K.)

  10. Time resolved ion beam induced charge collection

    Energy Technology Data Exchange (ETDEWEB)

    SEXTON,FREDERICK W.; WALSH,DAVID S.; DOYLE,BARNEY L.; DODD,PAUL E.

    2000-04-01

    Under this effort, a new method for studying the single event upset (SEU) in microelectronics has been developed and demonstrated. Called TRIBICC, for Time Resolved Ion Beam Induced Charge Collection, this technique measures the transient charge-collection waveform from a single heavy-ion strike with a {minus}.03db bandwidth of 5 GHz. Bandwidth can be expanded up to 15 GHz (with 5 ps sampling windows) by using an FFT-based off-line waveform renormalization technique developed at Sandia. The theoretical time resolution of the digitized waveform is 24 ps with data re-normalization and 70 ps without re-normalization. To preserve the high bandwidth from IC to the digitizing oscilloscope, individual test structures are assembled in custom high-frequency fixtures. A leading-edge digitized waveform is stored with the corresponding ion beam position at each point in a two-dimensional raster scan. The resulting data cube contains a spatial charge distribution map of up to 4,096 traces of charge (Q) collected as a function of time. These two dimensional traces of Q(t) can cover a period as short as 5 ns with up to 1,024 points per trace. This tool overcomes limitations observed in previous multi-shot techniques due to the displacement damage effects of multiple ion strikes that changed the signal of interest during its measurement. This system is the first demonstration of a single-ion transient measurement capability coupled with spatial mapping of fast transients.

  11. Brown carbon absorption in the red and near-infrared spectral region

    Science.gov (United States)

    Hoffer, András; Tóth, Ádám; Pósfai, Mihály; Eddy Chung, Chul; Gelencsér, András

    2017-06-01

    Black carbon (BC) aerosols have often been assumed to be the only light-absorbing carbonaceous particles in the red and near-infrared spectral regions of solar radiation in the atmosphere. Here we report that tar balls (a specific type of organic aerosol particles from biomass burning) do absorb red and near-infrared radiation significantly. Tar balls were produced in a laboratory experiment, and their chemical and optical properties were measured. The absorption of these particles in the range between 470 and 950 nm was measured with an aethalometer, which is widely used to measure atmospheric aerosol absorption. We find that the absorption coefficient of tar balls at 880 nm is more than 10 % of that at 470 nm. The considerable absorption of red and infrared light by tar balls also follows from their relatively low absorption Ångström coefficient (and significant mass absorption coefficient) in the spectral range between 470 and 950 nm. Our results support the previous finding that tar balls may play an important role in global warming. Due to the non-negligible absorption of tar balls in the near-infrared region, the absorption measured in the field at near-infrared wavelengths cannot solely be due to soot particles.

  12. Infrared absorption spectroscopic study of Nd 3+ substituted Zn–Mg ...

    Indian Academy of Sciences (India)

    Compositions of polycrystalline ZnMg1-Fe2–NdO4 ( = 0.00, 0.20, 0.40, 0.60, 0.80 and 1.00; = 0.00, 0.05 and 0.10) ferrites were prepared by standard ceramic method and characterized by X-ray diffraction, scanning electron microscopy and infrared absorption spectroscopy. Far infrared absorption spectra show ...

  13. Near-infrared light absorption by brown carbon in the ambient atmosphere

    Science.gov (United States)

    Chung, C.; Hoffer, A.; Beres, N. D.; Moosmüller, H.; Liu, C.; Green, M.; Kim, S. W.; Engelbrecht, J. P.; Gelencser, A.

    2017-12-01

    Organic aerosols have been assumed to have little-to-no absorption in the red and near-infrared spectral regions of solar radiation, even though a class of organic aerosols were shown to absorb significantly in these spectral regions. Here, we show that ambient atmospheric data from commonly-used 7-wavelength aethalometers contain evidence of abundant near-infrared light absorption by organic aerosol. This evidence comes from the absorption Ångström exponent over 880 950 nm, which often exceeds values explainable by fresh or coated black carbon, or mineral dust. This evidence is not due to an artifact from the instrument random errors or biases, either. The best explanation for these large 880/950 nm absorption Ångström exponent values in the aethalometer data is near-infrared light absorption by tar balls. Tar balls are among common particles from forest fire.

  14. Recommendations for the presentation of infrared absorption spectra in data collections condensed phases

    CERN Document Server

    Becker, E D

    2013-01-01

    Recommendations for the Presentation of Infrared Absorption Spectra in Data Collections-A. Condensed Phases presents the recommendations related to the infrared spectra of condensed phase materials that are proposed for permanent retention in data collections. These recommendations are based on two reports published by the Coblentz Society. This book emphasizes the three levels of quality evaluation for infrared spectra as designated by the Coblentz Society, including critically defined physical data, research quality analytical spectra, and approved analytical spectra. This text discusses the

  15. Time-resolved resonance Raman spectroscopy of radiation-chemical processes

    International Nuclear Information System (INIS)

    Tripathi, G.N.R.

    1983-01-01

    A tunable pulsed laser Raman spectrometer for time resolved Raman studies of radiation-chemical processes is described. This apparatus utilizes the state of art optical multichannel detection and analysis techniques for data acquisition and electron pulse radiolysis for initiating the reactions. By using this technique the resonance Raman spectra of intermediates with absorption spectra in the 248-900 nm region, and mean lifetimes > 30 ns can be examined. This apparatus can be used to time resolve the vibrational spectral overlap between transients absorbing in the same region, and to follow their decay kinetics by monitoring the well resolved Raman peaks. For kinetic measurements at millisecond time scale, the Raman technique is preferable over optical absorption method where low frequency noise is quite bothersome. A time resolved Raman study of the pulse radiolytic oxidation of aqueous tetrafluorohydroquinone and p-methoxyphenol is briefly discussed. 15 references, 5 figures

  16. Infrared absorption and Raman scattering spectroscopic studies of condensed ions

    International Nuclear Information System (INIS)

    Dao, N.Q.; Knidiri, M.

    1975-01-01

    Infrared and Raman spectra of the complex K 5 (UO 2 ) 2 F 9 were recorded in the region 4000 to 80 cm -1 . Factor group analysis was used to classify the internal vibrations of the binuclear ion (UO 2 ) 2 F 9 5- . Infrared and Raman spectra were assigned and splitting of the internal modes of the (UO 2 ) 2 F 9 5- anion interpreted. (author)

  17. Infrared absorption in PbTe single crystals

    International Nuclear Information System (INIS)

    Kudykina, T.A.

    1982-01-01

    A group-theoretical analysis is conducted to select rules for optical transitions between bands in PbTe single crystals. It is shown that transitions between valence bands which are near a forbidden band are also forbidden. The extra absorption observed in p-PbTe and p-Pbsub(1-x)Snsub(x)Te in the region between the self-absorption edge and the free-carrier absorption edge is probably connected with transitions between one of valence bands and the p-state of the impurity

  18. Determination of true optical absorption and scattering coefficient of wooden cell wall substance by time-of-flight near infrared spectroscopy.

    Science.gov (United States)

    Kitamura, Ryunosuke; Inagaki, Tetsuya; Tsuchikawa, Satoru

    2016-02-22

    The true absorption coefficient (μa) and reduced scattering coefficient (μ´s) of the cell wall substance in Douglas fir were determined using time-of-flight near infrared spectroscopy. Samples were saturated with hexane, toluene or quinolone to minimize the multiple reflections of light on the boundary between pore-cell wall substance in wood. μ´s exhibited its minimum value when the wood was saturated with toluene because the refractive index of toluene is close to that of the wood cell wall substance. The optical parameters of the wood cell wall substance calculated were μa = 0.030 mm(-1) and μ´s= 18.4 mm(-1). Monte Carlo simulations using these values were in good agreement with the measured time-resolved transmittance profiles.

  19. Low-Absorption Liquid Crystals for Infrared Beam Steering

    Science.gov (United States)

    2015-09-30

    controlled the curing temperature at 0oC to obtain small domain size and fast response time is expected. Here, a UV light-emitting diode ( LED ) lamp ...absorption; def.=deformation; w =weak absorption; v.=variable intensity) [B. D. Mistry, A Handbook of Spectroscopic Data: Chemistry- UV , IR, PMR, CNMR and...contributed by the core structure and terminal groups. Due to UV instability of double bonds and carbon-carbon triple bonds, conjugated phenyl rings have

  20. Hexamethylcyclopentadiene: time-resolved photoelectron spectroscopy and ab initio multiple spawning simulations

    DEFF Research Database (Denmark)

    Wolf, T. J. A.; Kuhlman, Thomas Scheby; Schalk, O.

    2014-01-01

    comparing time-resolved photoelectron spectroscopy (TRPES) with ab initio multiple spawning (AIMS) simulations on the MS-MR-CASPT2 level of theory. We disentangle the relationship between two phenomena that dominate the immediate molecular response upon light absorption: a spectrally dependent delay...

  1. Broadband infrared absorption enhancement by electroless-deposited silver nanoparticles

    DEFF Research Database (Denmark)

    Gritti, Claudia; Raza, Søren; Kadkhodazadeh, Shima

    2017-01-01

    Decorating semiconductor surfaces with plasmonic nanoparticles (NPs) is considered a viable solution for enhancing the absorptive properties of photovoltaic and photodetecting devices. We propose to deposit silver NPs on top of a semiconductor wafer by a cheap and fast electroless plating technique....... Optical characterization confirms that the random array of electroless-deposited NPs improves absorption by up to 20% in a broadband of nearinfrared frequencies from the bandgap edge to 2000 nm. Due to the small filling fraction of particles, the reflection in the visible range is practically unchanged......, which points to the possible applications of such deposition method for harvesting photons in nanophotonics and photovoltaics. The broadband absorption is a consequence of the resonant behavior of particles with different shapes and sizes, which strongly localize the incident light at the interface...

  2. Time resolved FTIR study of the catalytic CO oxidation under periodic variation of the reactant concentration

    Energy Technology Data Exchange (ETDEWEB)

    Kritzenberger, J; Wokaun, A [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Oxidation of CO over palladium/zirconia catalyst obtained from an amorphous Pd{sub 25}Zr{sub 75} precursor was investigated by time resolved FTIR spectroscopy. Sine wave shaped modulation of the reactant concentration, i.e. variation of CO or O{sub 2} partial pressure, was used to induce variations of the IR signals of product (CO{sub 2}) and unconverted reactant (CO), which were detected in a multi-pass absorption cell. The phase shift {phi} between external perturbation and variation of the CO{sub 2} signal was examined in dependence on temperature (100{sup o}C{<=}T{<=}350{sup o}C) and modulation frequency (1.39x10{sup -4}Hz{<=}{omega}{<=}6.67x10{sup -2}Hz). From the phase shift values, a simple Eley-Rideal mechanism is excluded, and the rate limiting step of the Langmuir-Hinshelwood mechanism for the CO oxidation may be identified. Adsorption and possible surface movement of CO to the actual reaction site determine the rate of the CO oxidation on the palladium/zirconia catalyst used in our study. The introduction of an external perturbation is a first step towards the application of two-dimensional infrared spectroscopy to heterogeneous catalyzed reactions. (author) 3 figs., 4 refs.

  3. Broadband infrared absorption enhancement by electroless-deposited silver nanoparticles

    DEFF Research Database (Denmark)

    Gritti, Claudia; Raza, Søren; Kadkhodazadeh, Shima

    2017-01-01

    Decorating semiconductor surfaces with plasmonic nanoparticles (NPs) is considered a viable solution for enhancing the absorptive properties of photovoltaic and photodetecting devices. We propose to deposit silver NPs on top of a semiconductor wafer by a cheap and fast electroless plating technique......, which points to the possible applications of such deposition method for harvesting photons in nanophotonics and photovoltaics. The broadband absorption is a consequence of the resonant behavior of particles with different shapes and sizes, which strongly localize the incident light at the interface...

  4. Controlling coulomb interactions in infrared stereometamaterials for unity light absorption

    Science.gov (United States)

    Mudachathi, Renilkumar; Moritake, Yuto; Tanaka, Takuo

    2018-05-01

    We investigate the influence of near field interactions between the constituent 3D split ring resonators on the absorbance and resonance frequency of a stereo metamaterial based perfect light absorber. The experimental and theoretical analyses reveal that the magnetic resonance red shifts and broadens for both the decreasing vertical and lateral separations of the constituents within the metamaterial lattice, analogous to plasmon hybridization. The strong interparticle interactions for higher density reduce the effective cross-section per resonator, which results in weak light absorption observed in both experimental and theoretical analyses. The red shift of the magnetic resonance with increasing lattice density is an indication of the dominating electric dipole interactions and we analyzed the metamaterial system in an electrostatic point of view to explain the observed resonance shift and decreasing absorption peak. From these analyses, we found that the fill factor introduces two competing factors determining the absorption efficiency such as coulomb interactions between the constituent resonators and their number density in a given array structure. We predicted unity light absorption for a fill factor of 0.17 balancing these two opposing factors and demonstrate an experimental absorbance of 99.5% at resonance with our 3D device realized using residual stress induced bending of 2D patterns.

  5. A mid-infrared absorption diagnostic for acetylene detection

    KAUST Repository

    KC, Utsav

    2015-05-14

    Acetylene is an important combustion intermediate and plays a critical role in soot formation. Accurate measurements of trace concentrations of acetylene can be very useful in validating hydrocarbon oxidation and soot formation mechanisms. Strongest vibrational band of acetylene near 13.7 μm is probed here to develop a highly sensitive absorption diagnostic. Experiments are carried out behind reflected shock waves to measure absorption cross sections of acetylene near 730 cm−1 over a wide range of temperatures (1000–2200 K) and pressures (1–5 bar). The diagnostic is demonstrated by measuring acetylene formation during the shock-heated pyrolysis and oxidation of propene. © 2015 Springer-Verlag Berlin Heidelberg

  6. Time-resolved photoluminescence of SiOx encapsulated Si

    Science.gov (United States)

    Kalem, Seref; Hannas, Amal; Österman, Tomas; Sundström, Villy

    Silicon and its oxide SiOx offer a number of exciting electrical and optical properties originating from defects and size reduction enabling engineering new electronic devices including resistive switching memories. Here we present the results of photoluminescence dynamics relevant to defects and quantum confinement effects. Time-resolved luminescence at room temperature exhibits an ultrafast decay component of less than 10 ps at around 480 nm and a slower component of around 60 ps as measured by streak camera. Red shift at the initial stages of the blue luminescence decay confirms the presence of a charge transfer to long lived states. Time-correlated single photon counting measurements revealed a life-time of about 5 ns for these states. The same quantum structures emit in near infrared close to optical communication wavelengths. Nature of the emission is described and modeling is provided for the luminescence dynamics. The electrical characteristics of metal-oxide-semiconductor devices were correlated with the optical and vibrational measurement results in order to have better insight into the switching mechanisms in such resistive devices as possible next generation RAM memory elements. ``This work was supported by ENIAC Joint Undertaking and Laser-Lab Europe''.

  7. Near infrared laser penetration and absorption in human skin

    Science.gov (United States)

    Nasouri, Babak; Murphy, Thomas E.; Berberoglu, Halil

    2014-02-01

    For understanding the mechanisms of low level laser/light therapy (LLLT), accurate knowledge of light interaction with tissue is necessary. In this paper, we present a three dimensional, multi-layer Monte Carlo simulation tool for studying light penetration and absorption in human skin. The skin is modeled as a three-layer participating medium, namely epidermis, dermis, and subcutaneous, where its geometrical and optical properties are obtained from the literature. Both refraction and reflection are taken into account at the boundaries according to Snell's law and Fresnel relations. A forward Monte Carlo method was implemented and validated for accurately simulating light penetration and absorption in absorbing and anisotropically scattering media. Local profiles of light penetration and volumetric absorption densities were simulated for uniform as well as Gaussian profile beams with different spreads at 155 mW average power over the spectral range from 1000 nm to 1900 nm. The results show the effects of beam profiles and wavelength on the local fluence within each skin layer. Particularly, the results identify different wavelength bands for targeted deposition of power in different skin layers. Finally, we show that light penetration scales well with the transport optical thickness of skin. We expect that this tool along with the results presented will aid researchers resolve issues related to dose and targeted delivery of energy in tissues for LLLT.

  8. Time-resolved imaging of purely valence-electron dynamics during a chemical reaction

    DEFF Research Database (Denmark)

    Hockett, Paul; Bisgaard, Christer Z.; Clarkin, Owen J.

    2011-01-01

    Chemical reactions are manifestations of the dynamics of molecular valence electrons and their couplings to atomic motions. Emerging methods in attosecond science can probe purely electronic dynamics in atomic and molecular systems(1-6). By contrast, time-resolved structural-dynamics methods...... such as electron(7-10) or X-ray diffraction(11) and X-ray absorption(12) yield complementary information about the atomic motions. Time-resolved methods that are directly sensitive to both valence-electron dynamics and atomic motions include photoelectron spectroscopy(13-15) and high-harmonic generation(16......,17): in both cases, this sensitivity derives from the ionization-matrix element(18,19). Here we demonstrate a time-resolved molecular-frame photoelectron-angular-distribution (TRMFPAD) method for imaging the purely valence-electron dynamics during a chemical reaction. Specifically, the TRMFPADs measured during...

  9. Time-resolved Femtosecond Photon Echo Probes Bimodal Solvent Dynamics

    NARCIS (Netherlands)

    Pshenichnikov, M.S; Duppen, K.; Wiersma, D. A.

    1995-01-01

    We report on time-resolved femtosecond photon echo experiments of a dye molecule in a polar solution. The photon echo is time resolved by mixing the echo with a femtosecond gate pulse in a nonlinear crystal. It is shown that the temporal profile of the photon echo allows separation of the

  10. The Relationship Between Dynamics and Structure in the Far Infrared Absorption Spectrum of Liquid Water

    Energy Technology Data Exchange (ETDEWEB)

    Woods, K.

    2005-01-14

    Using an intense source of far-infrared radiation, the absorption spectrum of liquid water is measured at a temperature ranging from 269 to 323 K. In the infrared spectrum we observe modes that are related to the local structure of liquid water. Here we present a FIR measured spectrum that is sensitive to the low frequency (< 100cm{sup -1}) microscopic details that exist in liquid water.

  11. In-pile Thermal Conductivity Characterization with Time Resolved Raman

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xinwei [Iowa State Univ., Ames, IA (United States). Dept. of Mechanical Engineering; Hurley, David H. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2018-03-19

    The project is designed to achieve three objectives: (1) Develop a novel time resolved Raman technology for direct measurement of fuel and cladding thermal conductivity. (2) Validate and improve the technology development by measuring ceramic materials germane to the nuclear industry. (3) Conduct instrumentation development to integrate optical fiber into our sensing system for eventual in-pile measurement. We have developed three new techniques: time-domain differential Raman (TD-Raman), frequency-resolved Raman (FR-Raman), and energy transport state-resolved Raman (ET-Raman). The TD-Raman varies the laser heating time and does simultaneous Raman thermal probing, the FR-Raman probes the material’s thermal response under periodical laser heating of different frequencies, and the ET-Raman probes the thermal response under steady and pulsed laser heating. The measurement capacity of these techniques have been fully assessed and verified by measuring micro/nanoscale materials. All these techniques do not need the data of laser absorption and absolute material temperature rise, yet still be able to measure the thermal conductivity and thermal diffusivity with unprecedented accuracy. It is expected they will have broad applications for in-pile thermal characterization of nuclear materials based on pure optical heating and sensing.

  12. Peculiarities of infrared absorption in V/sub 3/Si

    Energy Technology Data Exchange (ETDEWEB)

    Nomerovannaya, L V; Marchenko, V A [AN SSSR, Sverdlovsk. Inst. Fiziki Metallov

    1985-01-01

    Using the polarimetry method, optical properties of V/sub 3/Si monocrystals have been studied in the 0.07... 500 eV (lambda = 17...0.25 ..mu..m) spectrum range at room temperature. An anomalous frequency dependence of the optical conductivity, sigma(..omega..), in the infrared region of spectrum at the energies E < 0.1 eV is detected which is manifested in the increase of sigma(..omega..) with the frequency ..omega... Possible reasons of such frequency dependence are discussed.

  13. The use of infrared absorption to determine density of liquid hydrogen.

    Science.gov (United States)

    Unland, H. D.; Timmerhaus, K. D.; Kropschot, R. H.

    1972-01-01

    Experimental evaluation of the use of infrared absorption for determining the density of liquid hydrogen, and discussion of the feasibility of an airborne densitometer based on this concept. The results indicate that infrared absorption of liquid hydrogen is highly sensitive to the density of hydrogen, and, under the operating limitations of the equipment and experimental techniques used, the determined values proved to be repeatable to an accuracy of 2.7%. The desiderata and limitations of an in-flight density-determining device are outlined, and some of the feasibility problems are defined.

  14. Time-resolved diffuse optical tomographic imaging for the provision of both anatomical and functional information about biological tissue

    Science.gov (United States)

    Zhao, Huijuan; Gao, Feng; Tanikawa, Yukari; Homma, Kazuhiro; Yamada, Yukio

    2005-04-01

    We present in vivo images of near-infrared (NIR) diffuse optical tomography (DOT) of human lower legs and forearm to validate the dual functions of a time-resolved (TR) NIR DOT in clinical diagnosis, i.e., to provide anatomical and functional information simultaneously. The NIR DOT system is composed of time-correlated single-photon-counting channels, and the image reconstruction algorithm is based on the modified generalized pulsed spectral technique, which effectively incorporates the TR data with reasonable computation time. The reconstructed scattering images of both the lower legs and the forearm revealed their anatomies, in which the bones were clearly distinguished from the muscles. In the absorption images, some of the blood vessels were observable. In the functional imaging, a subject was requested to do handgripping exercise to stimulate physiological changes in the forearm tissue. The images of oxyhemoglobin, deoxyhemoglobin, and total hemoglobin concentration changes in the forearm were obtained from the differential images of the absorption at three wavelengths between the exercise and the rest states, which were reconstructed with a differential imaging scheme. These images showed increases in both blood volume and oxyhemoglobin concentration in the arteries and simultaneously showed hypoxia in the corresponding muscles. All the results have demonstrated the capability of TR NIR DOT by reconstruction of the absolute images of the scattering and the absorption with a high spatial resolution that finally provided both the anatomical and functional information inside bulky biological tissues.

  15. Inapplicability of small-polaron model for the explanation of infrared absorption spectrum in acetanilide.

    Science.gov (United States)

    Zeković, Slobodan; Ivić, Zoran

    2009-01-01

    The applicability of small-polaron model for the interpretation of infrared absorption spectrum in acetanilide has been critically reexamined. It is shown that the energy difference between the normal and anomalous peak, calculated by means of small-polaron theory, displays pronounced temperature dependence which is in drastic contradiction with experiment. It is demonstrated that self-trapped states, which are recently suggested to explain theoretically the experimental absorption spectrum in protein, cannot cause the appearance of the peaks in absorption spectrum for acetanilide.

  16. A new and fast in-situ spectroscopic infrared absorption measurement technique

    NARCIS (Netherlands)

    Hest, van M.F.A.M.; Klaver, A.; Sanden, van de M.C.M.

    2001-01-01

    Silicon oxide like films are deposited using an expanding thermal plasma (cascaded arc) in combination with HMDSO and oxygen as deposition precursors. These films are deposited at high rate (up to 200 nm/s). In general Fourier transform infrared (FTIR) reflection absorption spectroscopy is a useful

  17. FDTD/TDSE study of surface-enhanced infrared absorption by metal nanoparticles.

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S.-H.; Schatz, G. C.; Gray, S. K.; Chemistry; Northwestern Univ.; National Cheng-Kung Univ.

    2006-01-01

    We study surface-enhanced infrared absorption, including multiphoton processes, due to the excitation of surface plasmons on metal nanoparticles. The time-dependent Schroedinger equation and finite-difference time-domain method are self-consistently coupled to treat the problem.

  18. Study of cancer cell lines with Fourier transform infrared (FTIR)/vibrational absorption (VA) spectroscopy

    DEFF Research Database (Denmark)

    Uceda Otero, E. P.; Eliel, G. S. N.; Fonseca, E. J. S.

    2013-01-01

    In this work we have used Fourier transform infrared (FTIR) / vibrational absorption (VA) spectroscopy to study two cancer cell lines: the Henrietta Lacks (HeLa) human cervix carcinoma and 5637 human bladder carcinoma cell lines. Our goal is to experimentally investigate biochemical changes...

  19. Electrochemical and Infrared Absorption Spectroscopy Detection of SF₆ Decomposition Products.

    Science.gov (United States)

    Dong, Ming; Zhang, Chongxing; Ren, Ming; Albarracín, Ricardo; Ye, Rixin

    2017-11-15

    Sulfur hexafluoride (SF₆) gas-insulated electrical equipment is widely used in high-voltage (HV) and extra-high-voltage (EHV) power systems. Partial discharge (PD) and local heating can occur in the electrical equipment because of insulation faults, which results in SF₆ decomposition and ultimately generates several types of decomposition products. These SF₆ decomposition products can be qualitatively and quantitatively detected with relevant detection methods, and such detection contributes to diagnosing the internal faults and evaluating the security risks of the equipment. At present, multiple detection methods exist for analyzing the SF₆ decomposition products, and electrochemical sensing (ES) and infrared (IR) spectroscopy are well suited for application in online detection. In this study, the combination of ES with IR spectroscopy is used to detect SF₆ gas decomposition. First, the characteristics of these two detection methods are studied, and the data analysis matrix is established. Then, a qualitative and quantitative analysis ES-IR model is established by adopting a two-step approach. A SF₆ decomposition detector is designed and manufactured by combining an electrochemical sensor and IR spectroscopy technology. The detector is used to detect SF₆ gas decomposition and is verified to reliably and accurately detect the gas components and concentrations.

  20. Coherent optical effect on time-resolved vibrational SFG spectrum of adsorbates

    Science.gov (United States)

    Ueba, H.; Sawabu, T.; Mii, T.

    2002-04-01

    We present a theory to study the influence of the coherent mixing between pump-infrared and probe-visible pulse on a time-resolved sum-frequency generation (TR-SFG) spectrum for vibrations at surfaces. The general formula of the time-dependent and its Fourier transform of the SFG polarization and its Fourier transform allows us to calculate the time-resolved vibrational SFG spectrum and the transient characteristics of the SFG intensity as a function of the delay time td between the pump-infrared and probe-visible pulse. It is found the coherent optical effect manifests itself in the broadening and narrowing of the SFG spectrum with the intrinsic width of T2 at negative and positive td, respectively, being in qualitative agreement with recent experimental results. The influence of the coherent mixing on the transient behavior of the SFG intensity is also discussed in conjunction to the T2 determination.

  1. Infrared absorption spectra of various doping states in cuprate superconductors

    International Nuclear Information System (INIS)

    Yonemitsu, K.; Bishop, A.R.; Lorenzana, J.

    1992-01-01

    Doping states in a two-dimensional three-band extended Peierls-Hubbard model was investigated within inhomogeneous Hartree-Fock and random phase approximation. They are very sensitive to small changes of interaction parameters and their distinct vibrational and optical absorption spectra can be used to identify different doping states. For electronic parameters relevant to cuprate superconductors, as intersite electron-phonon interaction strength increases, the doping state changes from a Zhang-Rice state to a covalent molecular singlet state accompanied by local quenching of the Cu magnetic moment and large local lattice distortion in an otherwise undistorted antiferromagnetic background. In a region where both intersite electron-phonon interaction and on-site electron-electron repulsion are large, we obtain new stable global phases including a bond-order-wave state and a mixed state of spin-Peierls bonds and antiferromagnetic Cu spins, as well as many metastable states. Doping in the bond-order-wave region induces separation of spin and charge. 9 refs

  2. Combined effect of solvents and gamma irradiation on the infrared absorption spectra of polyethylene terephthalate

    International Nuclear Information System (INIS)

    Rabie, S.M.; ElBially, A.; Elshourbaguie, S.

    1991-01-01

    The combined effect of solvents and gamma irradiation on the intensities of infrared absorption bands of polyethylene terephthalate, particularly the bands sensitive to conformational changes, were studied. The results revealed that solvent treatment of PET results in significant changes in the intensities of its infrared absorption bands and the exposure of PET to gamma radiation in the presence of solvents helps in the appearance of the two bands at 1550 and 1630 cm . Also, the combined effect of solvents and gamma irradiation on the intensities of the absorption bands is greater than the effect of each agent alone. The extent of the induced changes depends on the nature of solvent and the applied dosage. Further more, for any given solvent or dosage, the rate of change of the intensities of the trans band is not equal to that of the gauche bands.3 fig

  3. Thyroid lesions diagnosis by Fourier transformed infrared absorption spectroscopy (FTIR)

    International Nuclear Information System (INIS)

    Albero, Felipe Guimaraes

    2009-01-01

    Thyroid nodules are a common disorder, with 4-7% of incidence in the Brazilian population. Although the fine needle aspiration (FNA) is an accurate method for thyroid tumors diagnosis, the discrimination between benign and malignant neoplasm is currently not possible in some cases with high incidence of false negative diagnosis, leading to a surgical intervention due to the risk of carcinomas. The aim of this study was to verify if the Fourier Transform infrared spectroscopy (FTIR) can contribute to the diagnosis of thyroid carcinomas and goiters, using samples of tissue and aspirates. Samples of FNA, homogenates and tissues of thyroid nodules with histopathological diagnosis were obtained and prepared for FTIR spectroscopy analysis. The FNA and homogenates samples were measured by μ-FTIR (between 950 . 1750 cm -1 ), at a nominal resolution of 4 cm -1 and 120 scans). Tissue samples were analyzed directly by ATR-FTIR technique, at a resolution 2 cm -1 , with 60 scans in the same region. All spectra were corrected by the baseline and normalized by amides area (1550-1640 cm -1 ) in order to minimize variations of sample homogeneity. Then, spectra were converted into second derivatives using the Savitzk-Golay algorithm with a 13 points window. The Ward's minimum variance algorithm and Euclidean distances among the points were used for cluster analysis. Some FNA samples showed complex spectral pattern. All samples showed some cell pellets and large amount of hormone, represented by the bands of 1545 and 1655 cm -1 . Bands in 1409, 1412, 1414, 1578 and 1579 cm -1 were also found, indicating possible presence of sugar, DNA, citric acid or metabolic products. In this study, it was obtained an excellent separation between goiter and malign lesion for the samples of tissues, with 100% of specificity in specific cluster and 67% sensibility and 50 of specificity. In homogenate and FNA samples this sensibility and specificity were lower, because among these samples, it were

  4. Collision-Induced Infrared Absorption by Hydrogen-Helium gas mixtures at Thousands of Kelvin

    Science.gov (United States)

    Abel, Martin; Frommhold, Lothar; Li, Xiaoping; Hunt, Katharine L. C.

    2010-10-01

    The interaction-induced absorption by collisional pairs of H2 molecules is an important opacity source in the atmospheres of the outer planets and cool stars ^[1]. The emission spectra of cool white dwarf stars differ significantly in the infrared from the expected blackbody spectra of their cores, which is largely due to absorption by collisional H2--H2, H2--He, and H2--H complexes in the stellar atmospheres. Using quantum-chemical methods we compute the atmospheric absorption from hundreds to thousands of kelvin ^[2]. Laboratory measurements of interaction-induced absorption spectra by H2 pairs exist only at room temperature and below. We show that our results reproduce these measurements closely ^[2], so that our computational data permit reliable modeling of stellar atmosphere opacities even for the higher temperatures ^[2]. [1] L. Frommhold, Collision-Induced Absorption in Gases, Cambridge University Press, Cambridge, New York, 1993 and 2006 [2] Xiaoping Li, Katharine L. C. Hunt, Fei Wang, Martin Abel, and Lothar Frommhold, ``Collision-Induced Infrared Absorption by Molecular Hydrogen Pairs at Thousands of Kelvin'', International Journal of Spectroscopy, vol. 2010, Article ID 371201, 11 pages, 2010. doi: 10.1155/2010/371201

  5. Seventh international conference on time-resolved vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, R.B.; Martinez, M.A.D.; Shreve, A.; Woodruff, W.H. [comps.

    1997-04-01

    The International Conference on Time-Resolved Vibrational Spectroscopy (TRVS) is widely recognized as the major international forum for the discussion of advances in this rapidly growing field. The 1995 conference was the seventh in a series that began at Lake Placid, New York, 1982. Santa Fe, New Mexico, was the site of the Seventh International Conference on Time-Resolved Vibrational Spectroscopy, held from June 11 to 16, 1995. TRVS-7 was attended by 157 participants from 16 countries and 85 institutions, and research ranging across the full breadth of the field of time-resolved vibrational spectroscopy was presented. Advances in both experimental capabilities for time-resolved vibrational measurements and in theoretical descriptions of time-resolved vibrational methods continue to occur, and several sessions of the conference were devoted to discussion of these advances and the associated new directions in TRVS. Continuing the interdisciplinary tradition of the TRVS meetings, applications of time-resolved vibrational methods to problems in physics, biology, materials science, and chemistry comprised a large portion of the papers presented at the conference.

  6. Time-resolved measurements of supersonic fuel sprays using synchrotron x-rays

    International Nuclear Information System (INIS)

    Powell, C.F.; Yue, Y.; Poola, R.; Wang, J.

    2000-11-01

    A time-resolved radiographic technique has been developed for probing the fuel distribution close to the nozzle of a high-pressure single-hole diesel injector. The measurement was made using X-ray absorption of monochromatic synchrotron-generated radiation, allowing quantitative determination of the fuel distribution in this optically impenetrable region with a time resolution of better than 1 μs. These quantitative measurements constitute the most detailed near-nozzle study of a fuel spray to date

  7. Time-resolved measurements of supersonic fuel sprays using synchrotron X-rays.

    Science.gov (United States)

    Powell, C F; Yue, Y; Poola, R; Wang, J

    2000-11-01

    A time-resolved radiographic technique has been developed for probing the fuel distribution close to the nozzle of a high-pressure single-hole diesel injector. The measurement was made using X-ray absorption of monochromatic synchrotron-generated radiation, allowing quantitative determination of the fuel distribution in this optically impenetrable region with a time resolution of better than 1 micros. These quantitative measurements constitute the most detailed near-nozzle study of a fuel spray to date.

  8. Ultrafast time-resolved spectroscopy of xanthophylls at low temperature.

    Science.gov (United States)

    Cong, Hong; Niedzwiedzki, Dariusz M; Gibson, George N; Frank, Harry A

    2008-03-20

    Many of the spectroscopic features and photophysical properties of xanthophylls and their role in energy transfer to chlorophyll can be accounted for on the basis of a three-state model. The characteristically strong visible absorption of xanthophylls is associated with a transition from the ground state S0 (1(1)Ag-) to the S2 (1(1)Bu+) excited state. The lowest lying singlet state denoted S1 (2(1)Ag-), is a state into which absorption from the ground state is symmetry forbidden. Ultrafast optical spectroscopic studies and quantum computations have suggested the presence of additional excited singlet states in the vicinity of S1 (2(1)Ag-) and S2 (1(1)Bu+). One of these is denoted S* and has been suggested in previous work to be associated with a twisted molecular conformation of the molecule in the S1 (2(1)Ag-) state. In this work, we present the results of a spectroscopic investigation of three major xanthophylls from higher plants: violaxanthin, lutein, and zeaxanthin. These molecules have systematically increasing extents of pi-electron conjugation from nine to eleven conjugated carbon-carbon double bonds. All-trans isomers of the molecules were purified by high-performance liquid chromatography (HPLC) and studied by steady-state and ultrafast time-resolved optical spectroscopy at 77 K. Analysis of the data using global fitting techniques has revealed the inherent spectral properties and ultrafast dynamics of the excited singlet states of each of the molecules. Five different global fitting models were tested, and it was found that the data are best explained using a kinetic model whereby photoexcitation results in the promotion of the molecule into the S2 (1(1)Bu+) state that subsequently undergoes decay to a vibrationally hot S1 (1(1)Ag-) state and with the exception of violaxanthin also to the S* state. The vibrationally hot S1 (1(1)Ag-) state then cools to a vibrationally relaxed S1 (2(1)Ag-) state in less than a picosecond. It was also found that a portion

  9. High intersubband absorption in long-wave quantum well infrared photodetector based on waveguide resonance

    Science.gov (United States)

    Zheng, Yuanliao; Chen, Pingping; Ding, Jiayi; Yang, Heming; Nie, Xiaofei; Zhou, Xiaohao; Chen, Xiaoshuang; Lu, Wei

    2018-06-01

    A hybrid structure consisting of periodic gold stripes and an overlaying gold film has been proposed as the optical coupler of a long-wave quantum well infrared photodetector. Absorption spectra and field distributions of the structure at back-side normal incidence are calculated by the finite difference time-domain method. The results indicate that the intersubband absorption can be greatly enhanced based on the waveguide resonance as well as the surface plasmon polariton (SPP) mode. With the optimized structural parameters of the periodic gold stripes, the maximal intersubband absorption can exceed 80%, which is much higher than the SPP-enhanced intersubband absorption (the one of the standard device. The relationship between the structural parameters and the waveguide resonant wavelength is derived. Other advantages of the efficient optical coupling based on waveguide resonance are also discussed.

  10. A Group Increment Scheme for Infrared Absorption Intensities of Greenhouse Gases

    Science.gov (United States)

    Kokkila, Sara I.; Bera, Partha P.; Francisco, Joseph S.; Lee, Timothy J.

    2012-01-01

    A molecule's absorption in the atmospheric infrared (IR) window (IRW) is an indicator of its efficiency as a greenhouse gas. A model for estimating the absorption of a fluorinated molecule within the IRW was developed to assess its radiative impact. This model will be useful in comparing different hydrofluorocarbons and hydrofluoroethers contribution to global warming. The absorption of radiation by greenhouse gases, in particular hydrofluoroethers and hydrofluorocarbons, was investigated using ab initio quantum mechanical methods. Least squares regression techniques were used to create a model based on this data. The placement and number of fluorines in the molecule were found to affect the absorption in the IR window and were incorporated into the model. Several group increment models are discussed. An additive model based on one-carbon groups is found to work satisfactorily in predicting the ab initio calculated vibrational intensities.

  11. Thermally activated delayed fluorescence of fluorescein derivative for time-resolved and confocal fluorescence imaging.

    Science.gov (United States)

    Xiong, Xiaoqing; Song, Fengling; Wang, Jingyun; Zhang, Yukang; Xue, Yingying; Sun, Liangliang; Jiang, Na; Gao, Pan; Tian, Lu; Peng, Xiaojun

    2014-07-09

    Compared with fluorescence imaging utilizing fluorophores whose lifetimes are in the order of nanoseconds, time-resolved fluorescence microscopy has more advantages in monitoring target fluorescence. In this work, compound DCF-MPYM, which is based on a fluorescein derivative, showed long-lived luminescence (22.11 μs in deaerated ethanol) and was used in time-resolved fluorescence imaging in living cells. Both nanosecond time-resolved transient difference absorption spectra and time-correlated single-photon counting (TCSPC) were employed to explain the long lifetime of the compound, which is rare in pure organic fluorophores without rare earth metals and heavy atoms. A mechanism of thermally activated delayed fluorescence (TADF) that considers the long wavelength fluorescence, large Stokes shift, and long-lived triplet state of DCF-MPYM was proposed. The energy gap (ΔEST) of DCF-MPYM between the singlet and triplet state was determined to be 28.36 meV by the decay rate of DF as a function of temperature. The ΔE(ST) was small enough to allow efficient intersystem crossing (ISC) and reverse ISC, leading to efficient TADF at room temperature. The straightforward synthesis of DCF-MPYM and wide availability of its starting materials contribute to the excellent potential of the compound to replace luminescent lanthanide complexes in future time-resolved imaging technologies.

  12. Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yonghao; Chadha, Arvinder; Zhao, Deyin; Shuai, Yichen; Menon, Laxmy; Yang, Hongjun; Zhou, Weidong, E-mail: wzhou@uta.edu [Nanophotonics Lab, Department of Electrical Engineering, University of Texas at Arlington, Arlington, Texas 76019 (United States); Piper, Jessica R.; Fan, Shanhui [Ginzton Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Jia, Yichen; Xia, Fengnian [Department of Electrical Engineering, Yale University, New Haven, Connecticut 06520 (United States); Ma, Zhenqiang [Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2014-11-03

    We demonstrate experimentally close to total absorption in monolayer graphene based on critical coupling with guided resonances in transfer printed photonic crystal Fano resonance filters at near infrared. Measured peak absorptions of 35% and 85% were obtained from cavity coupled monolayer graphene for the structures without and with back reflectors, respectively. These measured values agree very well with the theoretical values predicted with the coupled mode theory based critical coupling design. Such strong light-matter interactions can lead to extremely compact and high performance photonic devices based on large area monolayer graphene and other two–dimensional materials.

  13. [A new measurement method of time-resolved spectrum].

    Science.gov (United States)

    Shi, Zhi-gang; Huang, Shi-hua; Liang, Chun-jun; Lei, Quan-sheng

    2007-02-01

    A new method for measuring time-resolved spectrum (TRS) is brought forward. Programming with assemble language controlled the micro-control-processor (AT89C51), and a kind of peripheral circuit constituted the drive circuit, which drived the stepping motor to run the monochromator. So the light of different kinds of expected wavelength could be obtained. The optical signal was transformed to electrical signal by optical-to-electrical transform with the help of photomultiplier tube (Hamamatsu 1P28). The electrical signal of spectrum data was transmitted to the oscillograph. Connecting the two serial interfaces of RS232 between the oscillograph and computer, the electrical signal of spectrum data could be transmitted to computer for programming to draw the attenuation curve and time-resolved spectrum (TRS) of the swatch. The method for measuring time-resolved spectrum (TRS) features parallel measurement in time scale but serial measurement in wavelength scale. Time-resolved spectrum (TRS) and integrated emission spectrum of Tb3+ in swatch Tb(o-BBA)3 phen were measured using this method. Compared with the real time-resolved spectrum (TRS). It was validated to be feasible, credible and convenient. The 3D spectra of fluorescence intensity-wavelength-time, and the integrated spectrum of the swatch Tb(o-BBA)3 phen are given.

  14. Timely resolved measurements on CdSe nanoparticles

    International Nuclear Information System (INIS)

    Holt, B.E. von

    2006-01-01

    By means of infrared spectroscopy the influence of the organic cover on structure and dynamics of CdSe nanoparticles was studied. First a procedure was developed, which allows to get from the static infrared spectrum informations on the quality of the organic cover and the binding behaviour of the ligands. On qualitatively high-grade and well characterized samples thereafter the dynamics of the lowest-energy electron level 1S e was time-resolvedly meausred in thew visible range. As reference served CdSe TOPO, which was supplemented by samples with the ligands octanthiole, octanic acid, octylamine, naphthoquinone, benzoquinone, and pyridine. The studied nanoparticles had a diameter of 4.86 nm. By means of the excitation-scanning or pump=probe procedure first measurements in the picosecond range were performed. The excitation wavelengths were thereby spectrally confined and so chosen that selectively the transitions 1S 3/2 -1S-e and 1P 3/2 -1P e but not the intermediately lyingt transition 2S 3/2 -1S e were excited. The excitation energies were kept so low that the excitation of several excitons in one crystal could be avoided. The scanning wavelength in the infrared corresponded to the energy difference between the electron levels 1S e and 1P e . The transients in the picosecond range are marked by a steep increasement of the signal, on which a multi-exponential decay follows. The increasement, which reproduces the popiulation of the excited state, isa inependent on the choice of the ligands. The influence of the organic cover is first visible in the different decay times of the excited electron levels. the decay of the measurement signal of CdSe TOPO can be approximatively described by three time constants: a decay constant in the early picosecond region, a time constant around hundert picoseconds, and a time constant of some nanoseconds. At increasing scanning wavelength the decay constants become longer. By directed excitation of the 1S 3/2 -1S e and the 1P 3

  15. A time-resolved image sensor for tubeless streak cameras

    Science.gov (United States)

    Yasutomi, Keita; Han, SangMan; Seo, Min-Woong; Takasawa, Taishi; Kagawa, Keiichiro; Kawahito, Shoji

    2014-03-01

    This paper presents a time-resolved CMOS image sensor with draining-only modulation (DOM) pixels for tube-less streak cameras. Although the conventional streak camera has high time resolution, the device requires high voltage and bulky system due to the structure with a vacuum tube. The proposed time-resolved imager with a simple optics realize a streak camera without any vacuum tubes. The proposed image sensor has DOM pixels, a delay-based pulse generator, and a readout circuitry. The delay-based pulse generator in combination with an in-pixel logic allows us to create and to provide a short gating clock to the pixel array. A prototype time-resolved CMOS image sensor with the proposed pixel is designed and implemented using 0.11um CMOS image sensor technology. The image array has 30(Vertical) x 128(Memory length) pixels with the pixel pitch of 22.4um. .

  16. Emerging biomedical applications of time-resolved fluorescence spectroscopy

    Science.gov (United States)

    Lakowicz, Joseph R.; Szmacinski, Henryk; Koen, Peter A.

    1994-07-01

    Time-resolved fluorescence spectroscopy is presently regarded as a research tool in biochemistry, biophysics, and chemical physics. Advances in laser technology, the development of long-wavelength probes, and the use of lifetime-based methods are resulting in the rapid migration of time-resolved fluorescence to the clinical chemistry lab, to the patient's bedside, to flow cytometers, to the doctor's office, and even to home health care. Additionally, time-resolved imaging is now a reality in fluorescence microscopy, and will provide chemical imaging of a variety of intracellular analytes and/or cellular phenomena. In this overview paper we attempt to describe some of the opportunities available using chemical sensing based on fluorescence lifetimes, and to predict those applications of lifetime-based sensing which are most likely in the near future.

  17. Integration of Absorption Feature Information from Visible to Longwave Infrared Spectral Ranges for Mineral Mapping

    Directory of Open Access Journals (Sweden)

    Veronika Kopačková

    2017-09-01

    Full Text Available Merging hyperspectral data from optical and thermal ranges allows a wider variety of minerals to be mapped and thus allows lithology to be mapped in a more complex way. In contrast, in most of the studies that have taken advantage of the data from the visible (VIS, near-infrared (NIR, shortwave infrared (SWIR and longwave infrared (LWIR spectral ranges, these different spectral ranges were analysed and interpreted separately. This limits the complexity of the final interpretation. In this study a presentation is made of how multiple absorption features, which are directly linked to the mineral composition and are present throughout the VIS, NIR, SWIR and LWIR ranges, can be automatically derived and, moreover, how these new datasets can be successfully used for mineral/lithology mapping. The biggest advantage of this approach is that it overcomes the issue of prior definition of endmembers, which is a requested routine employed in all widely used spectral mapping techniques. In this study, two different airborne image datasets were analysed, HyMap (VIS/NIR/SWIR image data and Airborne Hyperspectral Scanner (AHS, LWIR image data. Both datasets were acquired over the Sokolov lignite open-cast mines in the Czech Republic. It is further demonstrated that even in this case, when the absorption feature information derived from multispectral LWIR data is integrated with the absorption feature information derived from hyperspectral VIS/NIR/SWIR data, an important improvement in terms of more complex mineral mapping is achieved.

  18. MCNP simulations of a new time-resolved Compton scattering imaging technique

    International Nuclear Information System (INIS)

    Ilan, Y.

    2004-01-01

    Medical images of human tissue can be produced using Computed Tomography (CT), Positron Emission Tomography (PET), Ultrasound or Magnetic Resonance Imaging (MRI). In all of the above techniques, in order to get a three-dimensional (3D) image, one has to rotate or move the source, the detectors or the scanned target. This procedure is complicated, time consuming and increases the cost and weight of the scanning equipment. Time resolved optical tomography has been suggested as an alternative to the above conventional methods. This technique implies near infrared light (NIR) and fast time-resolved detectors to obtain a 3D image of the scanned target. However, due to the limited penetration of the NIR light in the tissue, the application of this technique is limited to soft tissue like a female breast or a premature infant brain

  19. Time-resolved emission from laser-ablated uranium

    International Nuclear Information System (INIS)

    Stoffels, E.; Mullen, J. van der; Weijer, P. van de

    1991-01-01

    Time-resolved emission spectra from the plasma, induced by laser ablation of uranium samples have been studied. The dependence of the emission intensity on time is strongly affected by the nature and pressure of the buffer gas. Air and argon have been used in the pressure range 0.002 to 5 mbar. The emission intensity as a function of time displays three maxima, indicating that three different processes within the expanding plasma plume are involved. On basis of the time-resolved spectra we propose a model that explains qualitatively the phenomena that are responsible for this time behaviour. (author)

  20. Modelling of infrared multiphoton absorption and dissociation for design of reactors for isotope separation by lasers

    International Nuclear Information System (INIS)

    Takeuchi, Kazuo; Nakane, Ryohei; Inoue, Cihiro

    1981-01-01

    A series of experiments were performed on infrared laser beam absorption (multiphoton absorption) and subsequent dissociation (multiphoton dissociation) of CF 3 Cl to propose models for the design of reactors for isotope separation by lasers. A parallel beam geometry was utilized in batch irradiation experiments to make direct compilation of lumped-parameter data possible. Multiphoton absorption is found to be expressed by a power-law extension of the law of Lambert and by an addition of a new term for buffer gas effect to the law of Beer. For reaction analysis, a method to evaluate the effect of incomplete mixing on apparent reaction rates is first presented. Secondly, multiphoton dissociation of Cf 3 Cl is found to occur in pseudo-first order fashion and the specific reaction rates for different beam fluence are shown to be correlated to the absorbed energy. (author)

  1. Mid-infrared quantum cascade laser spectroscopy probing of the ...

    Indian Academy of Sciences (India)

    Aparajeo Chattopadhyay

    2018-05-07

    May 7, 2018 ... cm3 molecule. −1 s. −1 ... Quantum cascade laser; time-resolved mid-infrared spectroscopy; transient absorption; peroxy radicals .... peak of the laser emission profile. .... cal with O2 is a termolecular reaction (Eq. 3) and the.

  2. Infrared Absorption Spectroscopy and Chemical Kinetics of Free Radicals. Final Performance Report, August 1, 1985--July 31, 1994

    Science.gov (United States)

    Curl, R. F.; Glass, G. P.

    1995-06-01

    This research was directed at the detection, monitoring, and study (by infrared absorption spectroscopy) of the chemical kinetic behavior of small free radical species thought to be important intermediates in combustion. The work typically progressed from the detection and analysis of the infrared spectrum of combustion radical to the utilization of the infrared spectrum thus obtained in the investigation of chemical kinetics of the radical species. The methodology employed was infrared kinetic spectroscopy. In this technique the radical is produced by UV flash photolysis using an excimer laser and then its transient infrared absorption is observed using a single frequency cw laser as the source of the infrared probe light. When the probe laser frequency is near the center of an absorption line of the radical produced by the flash, the transient infrared absorption rises rapidly and then decays as the radical reacts with the precursor or with substances introduced for the purpose of studying the reaction kinetics or with itself. The decay times observed in these studies varied from less than one microsecond to more than one millisecond. By choosing appropriate time windows after the flash and the average infrared detector signal in a window as data channels, the infrared spectrum of the radical may be obtained. By locking the infrared probe laser to the center of the absorption line and measuring the rate of decay of the transient infrared absorption signal as the chemical composition of the gas mixture is varied, the chemical kinetics of the radical may be investigated. In what follows the systems investigated and the results obtained are outlined.

  3. Time resolved spectroscopy of GRB 030501 using INTEGRAL

    DEFF Research Database (Denmark)

    Beckmann, V.; Borkowski, J.; Courvoisier, T.J.L.

    2003-01-01

    The gamma-ray instruments on-board INTEGRAL offer an unique opportunity to perform time resolved analysis on GRBs. The imager IBIS allows accurate positioning of GRBs and broad band spectral analysis, while SPI provides high resolution spectroscopy. GRB 030501 was discovered by the INTEGRAL Burst...... the Ulysses and RHESSI experiments....

  4. Multi-frame pyramid correlation for time-resolved PIV

    NARCIS (Netherlands)

    Sciacchitano, A.; Scarano, F.; Wieneke, B.

    2012-01-01

    A novel technique is introduced to increase the precision and robustness of time-resolved particle image velocimetry (TR-PIV) measurements. The innovative element of the technique is the linear combination of the correlation signal computed at different separation time intervals. The domain of the

  5. Time Resolved Broadband Terahertz Relaxation Dynamics of Electron in Water

    DEFF Research Database (Denmark)

    Wang, Tianwu; Iwaszczuk, Krzysztof; Cooke, David G.

    We investigated the transient response of the solvated electron in water ejected by photodetachment from potassium ferrocyanide using time resolved terahertz spectroscopy (TSTS). Ultrabroadband THz transients are generated and detected by a two-color femtosecond-induced air plasma and air biased...

  6. Time-resolved fluorescence analysis of the mobile flavin cofactor

    Indian Academy of Sciences (India)

    Conformational heterogeneity of the FAD cofactor in -hydroxybenzoate hydroxylase (PHBH) was investigated with time-resolved polarized flavin fluorescence. For binary enzyme/substrate (analogue) complexes of wild-type PHBH and Tyr222 mutants, crystallographic studies have revealed two distinct flavin conformations ...

  7. An x-ray detector for time-resolved studies

    International Nuclear Information System (INIS)

    Rodricks, B.; Brizard, C.; Clarke, R.; Lowe, W.

    1992-01-01

    The development of ultrahigh-brightness x-ray sources makes time-resolved x-ray studies more and more feasible. Improvements in x-ray optics components are also critical for obtaining the appropriate beam for a particular type of experiment. Moreover, fast parallel detectors will be essential in order to exploit the combination of high intensity x-ray sources and novel optics for time-resolved experiments. A CCD detector with a time resolution of microseconds has been developed at the Advanced Photon Source (APS). This detector is fully programmable using CAMAC electronics and a Micro Vax computer. The techniques of time-resolved x-ray studies, which include scattering, microradiography, microtomography, stroboscopy, etc., can be applied to a range of phenomena (including rapid thermal annealing, surface ordering, crystallization, and the kinetics of phase transition) in order to understand these time-dependent microscopic processes. Some of these applications will be illustrated by recent results performed at synchrotrons. New powerful x-ray sources now under construction offer the opportunity to apply innovative approaches in time-resolved work

  8. Time-Resolved Small-Angle X-Ray Scattering

    NARCIS (Netherlands)

    ten Elshof, Johan E.; Besselink, R.; Stawski, Tomasz; Castricum, H.L.; Levy, D.; Zayat, M.

    2015-01-01

    This chapter focuses on time-resolved studies of nanostructure development in sol-gel liquids, that is, diluted sols, wet gels, and drying thin fffilms. The most commonly investigated classes of sol-gel materials are silica, organically modified silica, template-directed mesostructured silica,

  9. Numerical simulations of time-resolved quantum electronics

    International Nuclear Information System (INIS)

    Gaury, Benoit; Weston, Joseph; Santin, Matthieu; Houzet, Manuel; Groth, Christoph; Waintal, Xavier

    2014-01-01

    Numerical simulation has become a major tool in quantum electronics both for fundamental and applied purposes. While for a long time those simulations focused on stationary properties (e.g. DC currents), the recent experimental trend toward GHz frequencies and beyond has triggered a new interest for handling time-dependent perturbations. As the experimental frequencies get higher, it becomes possible to conceive experiments which are both time-resolved and fast enough to probe the internal quantum dynamics of the system. This paper discusses the technical aspects–mathematical and numerical–associated with the numerical simulations of such a setup in the time domain (i.e. beyond the single-frequency AC limit). After a short review of the state of the art, we develop a theoretical framework for the calculation of time-resolved observables in a general multiterminal system subject to an arbitrary time-dependent perturbation (oscillating electrostatic gates, voltage pulses, time-varying magnetic fields, etc.) The approach is mathematically equivalent to (i) the time-dependent scattering formalism, (ii) the time-resolved non-equilibrium Green’s function (NEGF) formalism and (iii) the partition-free approach. The central object of our theory is a wave function that obeys a simple Schrödinger equation with an additional source term that accounts for the electrons injected from the electrodes. The time-resolved observables (current, density, etc.) and the (inelastic) scattering matrix are simply expressed in terms of this wave function. We use our approach to develop a numerical technique for simulating time-resolved quantum transport. We find that the use of this wave function is advantageous for numerical simulations resulting in a speed up of many orders of magnitude with respect to the direct integration of NEGF equations. Our technique allows one to simulate realistic situations beyond simple models, a subject that was until now beyond the simulation

  10. Near-infrared diode laser absorption diagnostic for temperature and water vapor in a scramjet combustor

    International Nuclear Information System (INIS)

    Liu, Jonathan T.C.; Rieker, Gregory B.; Jeffries, Jay B.; Gruber, Mark R.; Carter, Campbell D.; Mathur, Tarun; Hanson, Ronald K.

    2005-01-01

    Tunable diode laser absorption measurements of gas temperature and water concentration were made at the exit of a model scramjet combustor fueled on JP-7. Multiplexed, fiber-coupled, near-infrared distributed feedback lasers were used to probe three water vapor absorption features in the 1.34-1.47 μm spectral region (2v1and v1+ v3overtone bands). Ratio thermometry was performed using direct-absorption wavelength scans of isolated features at a 4-kHz repetition rate, as well as 2f wavelength modulation scans at a 2-kHz scan rate. Large signal-to-noise ratios demonstrate the ability of the optimally engineered optical hardware to reject beam steering and vibration noise. Successful measurements were made at full combustion conditions for a variety of fuel/air equivalence ratios and at eight vertical positions in the duct to investigate spatial uniformity. The use of three water vapor absorption features allowed for preliminary estimates of temperature distributions along the line of sight. The improved signal quality afforded by 2f measurements, in the case of weak absorption, demonstrates the utility of a scanned wavelength modulation strategy in such situations

  11. Quantum state-resolved gas/surface reaction dynamics probed by reflection absorption infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chen Li [Department of Dynamics at Surfaces, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Goettingen (Germany); Ueta, Hirokazu; Beck, Rainer D. [Laboratoire de Chimie Physique Moleculaire, Ecole Polytechnique Federale de Lausanne (Switzerland); Bisson, Regis [Aix-Marseille Universite, PIIM, CNRS, UMR 7345, 13397 Marseille (France)

    2013-05-15

    We report the design and characterization of a new molecular-beam/surface-science apparatus for quantum state-resolved studies of gas/surface reaction dynamics combining optical state-specific reactant preparation in a molecular beam by rapid adiabatic passage with detection of surface-bound reaction products by reflection absorption infrared spectroscopy (RAIRS). RAIRS is a non-invasive infrared spectroscopic detection technique that enables online monitoring of the buildup of reaction products on the target surface during reactant deposition by a molecular beam. The product uptake rate obtained by calibrated RAIRS detection yields the coverage dependent state-resolved reaction probability S({theta}). Furthermore, the infrared absorption spectra of the adsorbed products obtained by the RAIRS technique provide structural information, which help to identify nascent reaction products, investigate reaction pathways, and determine branching ratios for different pathways of a chemisorption reaction. Measurements of the dissociative chemisorption of methane on Pt(111) with this new apparatus are presented to illustrate the utility of RAIRS detection for highly detailed studies of chemical reactions at the gas/surface interface.

  12. Measurement of the C{sub 2}H{sub 2} destruction kinetics by infrared laser absorption spectroscopy in a pulsed low pressure dc discharge

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, A [LPTP, Ecole Polytechnique, CNRS, Route de Saclay, 91 128 Palaiseau Cedex (France); Guaitella, O [LPTP, Ecole Polytechnique, CNRS, Route de Saclay, 91 128 Palaiseau Cedex (France); Gatilova, L [LPTP, Ecole Polytechnique, CNRS, Route de Saclay, 91 128 Palaiseau Cedex (France); Hannemann, M [INP-Greifswald, Friedrich-Ludwig-Jahn-Str. 19, 17489 Greifswald (Germany); Roepcke, J [INP-Greifswald, Friedrich-Ludwig-Jahn-Str. 19, 17489 Greifswald (Germany)

    2007-04-07

    The kinetics of destruction of C{sub 2}H{sub 2} is investigated in a low pressure pulsed dc discharge in dry air. Tuneable diode laser absorption spectroscopy in the mid-infrared region (1350 cm{sup -1}) has been used to measure the influence of (i) the pulse duration (ii) the pulse repetition rate and (iii) the pulse current on the C{sub 2}H{sub 2} concentration in situ the discharge tube. First, it is shown that in the plasma region under flow conditions the time averaged concentration of C{sub 2}H{sub 2} depends only on the time averaged discharge current. Second, time resolved measurements have been performed in a closed reactor, i.e. under static conditions. A simple kinetic modelling of the pulsed discharge leads to a good agreement with the experimental results and shows that the oxidation rate of C{sub 2}H{sub 2} is mainly controlled by the time averaged concentration of O atoms. Finally, the influence of porous TiO{sub 2} photocatalyst on the C{sub 2}H{sub 2} oxidation rate is reported.

  13. Measurement of the C2H2 destruction kinetics by infrared laser absorption spectroscopy in a pulsed low pressure dc discharge

    International Nuclear Information System (INIS)

    Rousseau, A; Guaitella, O; Gatilova, L; Hannemann, M; Roepcke, J

    2007-01-01

    The kinetics of destruction of C 2 H 2 is investigated in a low pressure pulsed dc discharge in dry air. Tuneable diode laser absorption spectroscopy in the mid-infrared region (1350 cm -1 ) has been used to measure the influence of (i) the pulse duration (ii) the pulse repetition rate and (iii) the pulse current on the C 2 H 2 concentration in situ the discharge tube. First, it is shown that in the plasma region under flow conditions the time averaged concentration of C 2 H 2 depends only on the time averaged discharge current. Second, time resolved measurements have been performed in a closed reactor, i.e. under static conditions. A simple kinetic modelling of the pulsed discharge leads to a good agreement with the experimental results and shows that the oxidation rate of C 2 H 2 is mainly controlled by the time averaged concentration of O atoms. Finally, the influence of porous TiO 2 photocatalyst on the C 2 H 2 oxidation rate is reported

  14. Conformational aspects of proteins at the air/water interface studied by infrared reflection-absorption spectroscopy

    NARCIS (Netherlands)

    Martin, A.H.; Meinders, M.B.J.; Bos, M.A.; Cohen Stuart, M.A.; Vliet, T. van

    2003-01-01

    From absorption spectra obtained with infrared reflection - absorption spectroscopy (IRRAS), it is possible to obtain information on conformational changes at a secondary folding level of proteins adsorbed at the air/water interface. In addition, information on protein concentration at the interface

  15. Time-resolved spectroscopy of plasma resonances in highly excited silicon and germanium

    International Nuclear Information System (INIS)

    Huang, C.Y.; Malvezzi, A.M.; Bloembergen, N.; Kurz, H.

    1985-01-01

    The dynamics of the electron-hole plasma in silicon and germanium samples irradiated by 20 ps. 532 nm laser pulses has been investigated in the near infrared by the time-resolved picosecond optical spectroscopy. The experimental reflectivities and transmission are compared with the predictions of the thermal model for degenerate carrier distributions through the Drude formalism. Above a certain fluence, a significant deviation between measured and calculated values indicates a strong increase of the recombination rate as soon as the plasma resonances become comparable with the band gaps. These new plasmon-aided recombination channels are particularly pronounced in germanium. 15 refs., 8 figs

  16. Fourier transform infrared absorption spectroscopy characterization of gaseous atmospheric pressure plasmas with 2 mm spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Laroche, G. [Laboratoire d' Ingenierie de Surface, Centre de Recherche sur les Materiaux Avances, Departement de genie des mines, de la metallurgie et des materiaux, Universite Laval, 1065, avenue de la Medecine, Quebec G1V 0A6 (Canada); Centre de recherche du CHUQ, Hopital St Francois d' Assise, 10, rue de l' Espinay, local E0-165, Quebec G1L 3L5 (Canada); Vallade, J. [Laboratoire Procedes, Materiaux et Energie Solaire, PROMES, CNRS, Technosud, Rambla de la Thermodynamique, F-66100 Perpignan (France); Agence de l' environnement et de la Ma Latin-Small-Letter-Dotless-I -carettrise de l' Energie, 20, avenue du Gresille, BP 90406, F-49004 Angers Cedex 01 (France); Bazinette, R.; Hernandez, E.; Hernandez, G.; Massines, F. [Laboratoire Procedes, Materiaux et Energie Solaire, PROMES, CNRS, Technosud, Rambla de la Thermodynamique, F-66100 Perpignan (France); Nijnatten, P. van [OMT Solutions bv, High Tech Campus 9, 5656AE Eindhoven (Netherlands)

    2012-10-15

    This paper describes an optical setup built to record Fourier transform infrared (FTIR) absorption spectra in an atmospheric pressure plasma with a spatial resolution of 2 mm. The overall system consisted of three basic parts: (1) optical components located within the FTIR sample compartment, making it possible to define the size of the infrared beam (2 mm Multiplication-Sign 2 mm over a path length of 50 mm) imaged at the site of the plasma by (2) an optical interface positioned between the spectrometer and the plasma reactor. Once through the plasma region, (3) a retro-reflector module, located behind the plasma reactor, redirected the infrared beam coincident to the incident path up to a 45 Degree-Sign beamsplitter to reflect the beam toward a narrow-band mercury-cadmium-telluride detector. The antireflective plasma-coating experiments performed with ammonia and silane demonstrated that it was possible to quantify 42 and 2 ppm of these species in argon, respectively. In the case of ammonia, this was approximately three times less than this gas concentration typically used in plasma coating experiments while the silane limit of quantification was 35 times lower. Moreover, 70% of the incoming infrared radiation was focused within a 2 mm width at the site of the plasma, in reasonable agreement with the expected spatial resolution. The possibility of reaching this spatial resolution thus enabled us to measure the gaseous precursor consumption as a function of their residence time in the plasma.

  17. Source brightness fluctuation correction of solar absorption fourier transform mid infrared spectra

    Directory of Open Access Journals (Sweden)

    T. Ridder

    2011-06-01

    Full Text Available The precision and accuracy of trace gas observations using solar absorption Fourier Transform infrared spectrometry depend on the stability of the light source. Fluctuations in the source brightness, however, cannot always be avoided. Current correction schemes, which calculate a corrected interferogram as the ratio of the raw DC interferogram and a smoothed DC interferogram, are applicable only to near infrared measurements. Spectra in the mid infrared spectral region below 2000 cm−1 are generally considered uncorrectable, if they are measured with a MCT detector. Such measurements introduce an unknown offset to MCT interferograms, which prevents the established source brightness fluctuation correction. This problem can be overcome by a determination of the offset using the modulation efficiency of the instrument. With known modulation efficiency the offset can be calculated, and the source brightness correction can be performed on the basis of offset-corrected interferograms. We present a source brightness fluctuation correction method which performs the smoothing of the raw DC interferogram in the interferogram domain by an application of a running mean instead of high-pass filtering the corresponding spectrum after Fourier transformation of the raw DC interferogram. This smoothing can be performed with the onboard software of commercial instruments. The improvement of MCT spectra and subsequent ozone profile and total column retrievals is demonstrated. Application to InSb interferograms in the near infrared spectral region proves the equivalence with the established correction scheme.

  18. Programming for time resolved spectrum in pulse radiolysis experiments

    International Nuclear Information System (INIS)

    Betty, C.A.; Panajkar, M.S.; Shirke, N.D.

    1993-01-01

    A user friendly program in Pascal has been developed for data acquisition and subsequent processing of time resolved spectra of transient species produced in pulse radiolysis experiments. The salient features of the program are (i) thiocyanate dosimetry and (ii) spectrum acquisition. The thiocyanate dosimetry is carried out to normalize experimental conditions to a standard value as determined by computing absorbance of the transient signal CNS -2 that is produced from thiocyanate solution by a 7 MeV electron pulse. Spectrum acquisition allows the acquisition of the time resolved data at 20 different times points and subsequent display of the plots of absorbance vs. wavelength for the desired time points during the experiment. It is also possible to plot single time point spectrum as well as superimposed spectra for different time points. Printing, editing and merging facilities are also provided. (author). 2 refs., 7 figs

  19. Application of mid-infrared tuneable diode laser absorption spectroscopy to plasma diagnostics: a review

    International Nuclear Information System (INIS)

    Roepcke, J; Lombardi, G; Rousseau, A; Davies, P B

    2006-01-01

    Within the last decade mid-infrared absorption spectroscopy over a region from 3 to 17μm and based on tuneable lead salt diode lasers, often called tuneable diode laser absorption spectroscopy or TDLAS, has progressed considerably as a powerful diagnostic technique for in situ studies of the fundamental physics and chemistry in molecular plasmas. The increasing interest in processing plasmas containing hydrocarbons, fluorocarbons, organo-silicon and boron compounds has led to further applications of TDLAS because most of these compounds and their decomposition products are infrared active. TDLAS provides a means of determining the absolute concentrations of the ground states of stable and transient molecular species, which is of particular importance for the investigation of reaction kinetic phenomena. Information about gas temperature and population densities can also be derived from TDLAS measurements. A variety of free radicals and molecular ions have been detected by TDLAS. Since plasmas with molecular feed gases are used in many applications such as thin film deposition, semiconductor processing, surface activation and cleaning, and materials and waste treatment, this has stimulated the adaptation of infrared spectroscopic techniques to industrial requirements. The recent development of quantum cascade lasers (QCLs) offers an attractive new option for the monitoring and control of industrial plasma processes. The aim of the present paper is threefold: (i) to review recent achievements in our understanding of molecular phenomena in plasmas (ii) to report on selected studies of the spectroscopic properties and kinetic behaviour of radicals and (iii) to describe the current status of advanced instrumentation for TDLAS in the mid-infrared

  20. Near-infrared radiation absorption properties of covellite (CuS using first-principles calculations

    Directory of Open Access Journals (Sweden)

    Lihua Xiao

    2016-08-01

    Full Text Available First-principles density functional theory was used to investigate the electronic structure, optical properties and the origin of the near-infrared (NIR absorption of covellite (CuS. The calculated lattice constant and optical properties are found to be in reasonable agreement with experimental and theoretical findings. The electronic structure reveals that the valence and conduction bands of covellite are determined by the Cu 3d and S 3p states. By analyzing its optical properties, we can fully understand the potential of covellite (CuS as a NIR absorbing material. Our results show that covellite (CuS exhibits NIR absorption due to its metal-like plasma oscillation in the NIR range.

  1. Indirect absorption spectroscopy using quantum cascade lasers: mid-infrared refractometry and photothermal spectroscopy.

    Science.gov (United States)

    Pfeifer, Marcel; Ruf, Alexander; Fischer, Peer

    2013-11-04

    We record vibrational spectra with two indirect schemes that depend on the real part of the index of refraction: mid-infrared refractometry and photothermal spectroscopy. In the former, a quantum cascade laser (QCL) spot is imaged to determine the angles of total internal reflection, which yields the absorption line via a beam profile analysis. In the photothermal measurements, a tunable QCL excites vibrational resonances of a molecular monolayer, which heats the surrounding medium and changes its refractive index. This is observed with a probe laser in the visible. Sub-monolayer sensitivities are demonstrated.

  2. Absorption Spectroscopy in Hollow-Glass Waveguides Using Infrared Diode Lasers[4817-25

    International Nuclear Information System (INIS)

    Blake, Thomas A.; Kelly, James F.; Stewart, Timothy L.; Hartman, John S.; Sharpe, Steven W.; Sams, Robert L.; Alan Fried

    2002-01-01

    Near- and mid-infrared diode lasers combined with flexible, hollow waveguides hold the promise of light weight, field portable, fast response gas sensors. The advantages of using the waveguides compared to White or Herriott multireflection cells include a small gas volume, a high photon fill factor in the waveguide, which increases molecule-light interactions, and reduction or elimination of optical fringing, which usually sets the practical limit of detectivity in absorption spectroscopy. Though hollow waveguides have been commercially available for several years, relatively few results have been reported in the literature. We present here results from our laboratory where we have injected infrared laser light into straight and coiled lengths of hollow waveguides and performed direct and wavelength modulated absorption spectroscopy on nitrous oxide, ethylene, and nitric oxide. Using a 1 mm bore, 3 meter long coiled waveguide coated for the near infrared, nitrous oxide transitions near 6595 cm-1 were observed under flowing conditions. Signal-to-noise ratios on the order of 1500:1 with RMS noise equal to 2 X 10-5 were measured. In the mid-infrared light from either a 10.1 or 5.3 micron lead salt diode laser was injected into a three meter length of 1 mm bore hollow waveguide coated for the mid-infrared. The waveguide was coiled with one loop at a diameter of 52 cm. Ethylene transitions were observed in the vicinity of 985 cm-1 with a static fill of 0.2 Torr of pure ethylene in the waveguide and nitric oxide transitions were observed in the vicinity of 1906 cm-1 using either a flow or a static fill of 1 ppm NO in nitrogen. In direct absorption the NO transitions are observed to have a signal-to-noise of approximately 5:1 for transitions with absorbances on the order of 10-3. Using wavelength modulated techniques the signal-to-noise ratio improves at least an order of magnitude. These encouraging results indicate that waveguides can be used for in situ gas monitoring

  3. Time-resolved crystallography using the Hadamard Transform

    Science.gov (United States)

    Yorke, Briony A.; Beddard, Godfrey S.; Owen, Robin L.; Pearson, Arwen R.

    2014-01-01

    A new method for performing time-resolved X-ray crystallographic experiments based on the Hadamard Transform is proposed and demonstrated. The time-resolution is defined by the underlying periodicity of the probe pulse sequence and the signal to noise is greatly improved compared to the fastest experiments depending on a single pulse. This approach is general and equally applicable to any spectroscopic or imaging measurement where the probe can be encoded. PMID:25282611

  4. Time-resolved spectral measurements above 80 A

    International Nuclear Information System (INIS)

    Kauffman, R.L.; Ceglio, N.; Medecki, H.

    1983-01-01

    We have made time-resolved spectral measurements above 80 A from laser-produced plasmas. These are made using a transmission grating spectrograph whose primary components are a cylindrically-curved x-ray mirror for light collection, a transmission grating for spectral dispersions, and an x-ray streak camera for temporal resolution. A description of the instrument and an example of the data are given

  5. Theory of time-resolved inelastic x-ray diffraction

    DEFF Research Database (Denmark)

    Lorenz, Ulf; Møller, Klaus Braagaard; Henriksen, Niels Engholm

    2010-01-01

    Starting from a general theory of time-resolved x-ray scattering, we derive a convenient expression for the diffraction signal based on a careful analysis of the relevant inelastic scattering processes. We demonstrate that the resulting inelastic limit applies to a wider variety of experimental...... conditions than similar, previously derived formulas, and it directly allows the application of selection rules when interpreting diffraction signals. Furthermore, we present a simple extension to systems simultaneously illuminated by x rays and a laser beam....

  6. Time-resolved CT angiography in aortic dissection

    International Nuclear Information System (INIS)

    Meinel, Felix G.; Nikolaou, Konstantin; Weidenhagen, Rolf; Hellbach, Katharina; Helck, Andreas; Bamberg, Fabian; Reiser, Maximilian F.; Sommer, Wieland H.

    2012-01-01

    Objectives: We performed this study to assess feasibility and additional diagnostic value of time-resolved CT angiography of the entire aorta in patients with aortic dissection. Materials and methods: 14 consecutive patients with known or suspected aortic dissection (aged 60 ± 9 years) referred for aortic CT angiography were scanned on a dual-source CT scanner (Somatom Definition Flash; Siemens, Forchheim, Germany) using a shuttle mode for multiphasic image acquisition (range 48 cm, time resolution 6 s, 6 phases, 100 kV, 110 mAs/rot). Effective radiation doses were calculated from recorded dose length products. For all phases, CT densities were measured in the aortic lumen and renal parenchyma. From the multiphasic data, 3 phases corresponding to a triphasic standard CT protocol, served as a reference and were compared against findings from the time-resolved datasets. Results: Mean effective radiation dose was 27.7 ± 3.5 mSv. CT density of the true lumen peaked at 355 ± 53 HU. Compared to the simulated triphasic protocol, time-resolved CT angiography added diagnostic information regarding a number of important findings: the enhancement delay between true and false lumen (n = 14); the degree of membrane oscillation (n = 14); the perfusion delay in arteries originating from the false lumen (n = 9). Other additional information included true lumen collapse (n = 4), quantitative assessment of renal perfusion asymmetry (n = 2), and dynamic occlusion of aortic branches (n = 2). In 3/14 patients (21%), these additional findings of the multiphasic protocol altered patient management. Conclusions: Multiphasic, time-resolved CT angiography covering the entire aorta is feasible at a reasonable effective radiation dose and adds significant diagnostic information with therapeutic consequences in patients with aortic dissection.

  7. Studies of hydrogen incorporation in hydrogenated amorphous carbon films by infrared absorption spectroscopy

    International Nuclear Information System (INIS)

    Alameh, R.; Bounouh, Y.; Sadki, A.; Naud, C.; Theye, M.L.

    1997-01-01

    Author.Hydrogenated amorphous carbon (a-C:H) films presently attract considerable interest because of their potential applications in the domain of multifunctional coatings: transparent in the infrared, very hard, chemically inert, etc...This material is rather complex since it contains C atoms in both sp 3 (diamond) and sp 2 (graphite) electronic configurations, as well as a large concentration of H atoms. Its properties are strongly dependent on the deposition conditions which determine the film microstructure, i.e. the relative proportions of sp 3 and sp 2 C sites, their connection in the network and the hydrogen bonding modes. It has been suggested that the sp 2 C sites tend to cluster into unsaturated chains ans rings, which are then embedded in the sp 3 C sites m atrix . Hydrogen incorporation plays a crucial role in this intrinsic microheterogeneity, which determines the electronic properties, and especially the gap value, of a-C:H. We here present and discuss the results of Fourrier transform infrared absorption spectroscopy measurements performed on a-C:H films prepared under different conditions and submitted to controlled annealing cycles, which exhibit quite different optical gap values (from 1 to 2.5 eV). We carefully analyze the absorption bands detected in the 400-7500 cm -1 spectral range in terms of the vibration modes of C-H and C-C bonds in different local environments and we interpret the results in relation with the film microstructure and optical properties. Special attention is also paid to the absorption background and to the variations of the whole absorption spectra with measurement temperature

  8. Alignment of time-resolved data from high throughput experiments.

    Science.gov (United States)

    Abidi, Nada; Franke, Raimo; Findeisen, Peter; Klawonn, Frank

    2016-12-01

    To better understand the dynamics of the underlying processes in cells, it is necessary to take measurements over a time course. Modern high-throughput technologies are often used for this purpose to measure the behavior of cell products like metabolites, peptides, proteins, [Formula: see text]RNA or mRNA at different points in time. Compared to classical time series, the number of time points is usually very limited and the measurements are taken at irregular time intervals. The main reasons for this are the costs of the experiments and the fact that the dynamic behavior usually shows a strong reaction and fast changes shortly after a stimulus and then slowly converges to a certain stable state. Another reason might simply be missing values. It is common to repeat the experiments and to have replicates in order to carry out a more reliable analysis. The ideal assumptions that the initial stimulus really started exactly at the same time for all replicates and that the replicates are perfectly synchronized are seldom satisfied. Therefore, there is a need to first adjust or align the time-resolved data before further analysis is carried out. Dynamic time warping (DTW) is considered as one of the common alignment techniques for time series data with equidistant time points. In this paper, we modified the DTW algorithm so that it can align sequences with measurements at different, non-equidistant time points with large gaps in between. This type of data is usually known as time-resolved data characterized by irregular time intervals between measurements as well as non-identical time points for different replicates. This new algorithm can be easily used to align time-resolved data from high-throughput experiments and to come across existing problems such as time scarcity and existing noise in the measurements. We propose a modified method of DTW to adapt requirements imposed by time-resolved data by use of monotone cubic interpolation splines. Our presented approach

  9. Collision-Induced Infrared Absorption by Molecular Hydrogen Pairs at Thousands of Kelvin

    Directory of Open Access Journals (Sweden)

    Xiaoping Li

    2010-01-01

    Full Text Available Collision-induced absorption by hydrogen and helium in the stellar atmospheres of cool white dwarfs causes the emission spectra to differ significantly from the expected blackbody spectra of the cores. For detailed modeling of radiative processes at temperatures up to 7000 K, the existing H2–H2 induced dipole and potential energy surfaces of high quality must be supplemented by calculations with the H2 bonds stretched or compressed far from the equilibrium length. In this work, we describe new dipole and energy surfaces, based on more than 20 000 ab initio calculations for H2–H2. Our results agree well with previous ab initio work (where those data exist; the calculated rototranslational absorption spectrum at 297.5 K matches experiment similarly well. We further report the calculated absorption spectra of H2–H2 for frequencies from the far infrared to 20 000 cm−1, at temperatures of 600 K, 1000 K, and 2000 K, for which there are no experimental data.

  10. Lucas–Kanade fluid trajectories for time-resolved PIV

    International Nuclear Information System (INIS)

    Yegavian, Robin; Leclaire, Benjamin; Illoul, Cédric; Losfeld, Gilles; Champagnat, Frédéric

    2016-01-01

    We introduce a new method for estimating fluid trajectories in time-resolved PIV. It relies on a Lucas–Kanade paradigm and consists in a simple and direct extension of a two-frame estimation with FOLKI-PIV (Champagnat et al 2011 Exp. Fluids 50 1169–82). The so-called Lucas–Kanade Fluid Trajectories (LKFT) are assumed to be polynomial in time, and are found as the minimizer of a global functional, in which displacements are sought so as to match the intensities of a series of images pairs in the sequence, in the least-squares sense. All pairs involve the central image, similar to other recent time-resolved approaches (FTC (Lynch and Scarano 2013 Meas. Sci. Technol . 24 035305) and FTEE (Jeon et al 2014 Exp. Fluids 55 1–16)). As switching from a two-frame to a time-resolved objective simply amounts to adding terms in a functional, no significant additional algorithmic element is required. Similar to FOLKI-PIV the method is very well suited for GPU acceleration, which is an important feature as computational complexity increases with the image sequence size. Tests on synthetic data exhibiting peak-locking show that increasing the image sequence size strongly reduces both associated bias and random error, and that LKFT has a remaining total error comparable to that of FTEE on this case. Results on case B of the third PIV challenge (Stanislas et al 2008 Exp. Fluids 45 27–71) also show its ability to drastically reduce the error in situations with low signal-to-noise ratio. These results are finally confirmed on experimental images acquired in the near-field of a low Reynolds number jet. Strong reductions in peak-locking, spatial and temporal noise compared to two-frame estimation are also observed, on the displacement components themselves, as well as on spatial or temporal derivatives, such as vorticity and material acceleration. (paper)

  11. Time-resolved photoelectron spectroscopy of nitrobenzene and its aldehydes

    Science.gov (United States)

    Schalk, Oliver; Townsend, Dave; Wolf, Thomas J. A.; Holland, David M. P.; Boguslavskiy, Andrey E.; Szöri, Milan; Stolow, Albert

    2018-01-01

    We report the first femtosecond time-resolved photoelectron spectroscopy study of 2-, 3- and 4-nitrobenzaldehyde (NBA) and nitrobenzene (NBE) in the gas phase upon excitation at 200 nm. In 3- and 4-NBA, the dynamics follow fast intersystem crossing within 1-2 picoseconds. In 2-NBA and NBE, the dynamics are faster (∼ 0.5 ps). 2-NBA undergoes hydrogen transfer similar to solution phase dynamics. NBE either releases NO2 in the excited state or converts internally back to the ground state. We discuss why these channels are suppressed in the other nitrobenzaldehydes.

  12. Time Resolved X-Ray Scattering of molecules in Solution

    DEFF Research Database (Denmark)

    Brandt van Driel, Tim

    The dissertation describes the use of Time-Resolved X-ray Diffuse Scattering (TR-XDS) to study photo-induced structural changes in molecules in solution. The application of the technique is exemplified with experiments on two bimetallic molecules. The main focus is on the data-flow and process......)42+ obtained at European Synchrotron Radiation Facility (ESRF) are presented to exemplify TR-XDS at synchrotrons. Similarly, measurements on Ir2(dimen)42+ are used to show the XFEL data-flow and how it deviates from the prior. A method to identify and account for systematic fluctuations...

  13. Time-resolved spectroscopy defines perturbation in molecules

    International Nuclear Information System (INIS)

    Ahmed, K.

    1998-01-01

    Time-resolved LIF spectroscopy is employed in order to investigate perturbations in different excited electronic state of alkali molecules. Dunham Coefficients are used to search the selected excited ro-vibrational level, which is overlap with the other nearby excited states. Lifetime measurement has been performed of more than 50 ro-vibrational levels. Out of these 25 levels were observed drastically different lifetimes from the other unperturbed levels. In this report, influence of different perturbations on this anomalous behavior is investigated and discussed. (author)

  14. Time-resolved explosion of intense-laser-heated clusters.

    Science.gov (United States)

    Kim, K Y; Alexeev, I; Parra, E; Milchberg, H M

    2003-01-17

    We investigate the femtosecond explosive dynamics of intense laser-heated argon clusters by measuring the cluster complex transient polarizability. The time evolution of the polarizability is characteristic of competition in the optical response between supercritical and subcritical density regions of the expanding cluster. The results are consistent with time-resolved Rayleigh scattering measurements, and bear out the predictions of a recent laser-cluster interaction model [H. M. Milchberg, S. J. McNaught, and E. Parra, Phys. Rev. E 64, 056402 (2001)

  15. Time-resolved explosion of intense-laser-heated clusters

    International Nuclear Information System (INIS)

    Kim, K.Y.; Alexeev, I.; Parra, E.; Milchberg, H.M.

    2003-01-01

    We investigate the femtosecond explosive dynamics of intense laser-heated argon clusters by measuring the cluster complex transient polarizability. The time evolution of the polarizability is characteristic of competition in the optical response between supercritical and subcritical density regions of the expanding cluster. The results are consistent with time-resolved Rayleigh scattering measurements, and bear out the predictions of a recent laser-cluster interaction model [H. M. Milchberg, S. J. McNaught, and E. Parra, Phys. Rev. E 64, 056402 (2001)

  16. Time-resolved diffusion tomographic 2D and 3D imaging in highly scattering turbid media

    Science.gov (United States)

    Alfano, Robert R. (Inventor); Cai, Wei (Inventor); Gayen, Swapan K. (Inventor)

    2000-01-01

    A method for imaging objects in highly scattering turbid media. According to one embodiment of the invention, the method involves using a plurality of intersecting source/detectors sets and time-resolving equipment to generate a plurality of time-resolved intensity curves for the diffusive component of light emergent from the medium. For each of the curves, the intensities at a plurality of times are then inputted into the following inverse reconstruction algorithm to form an image of the medium: wherein W is a matrix relating output at source and detector positions r.sub.s and r.sub.d, at time t, to position r, .LAMBDA. is a regularization matrix, chosen for convenience to be diagonal, but selected in a way related to the ratio of the noise, to fluctuations in the absorption (or diffusion) X.sub.j that we are trying to determine: .LAMBDA..sub.ij =.lambda..sub.j .delta..sub.ij with .lambda..sub.j =/ Y is the data collected at the detectors, and X.sup.k is the kth iterate toward the desired absorption information. An algorithm, which combines a two dimensional (2D) matrix inversion with a one-dimensional (1D) Fourier transform inversion is used to obtain images of three dimensional hidden objects in turbid scattering media.

  17. Single and Double Infrared Transitions in Rapid Vapor Deposited Parahydrogen Solids: Application to Sample Thickness Determination and Quantitative Infrared Absorption Spectroscopy

    National Research Council Canada - National Science Library

    Tam, Simon

    2001-01-01

    ...) solid from its infrared (IR) absorption spectrum. Millimeters-thick pH2 solids of exceptional optical clarity can be produced by the rapid vapor deposition method M.E. Fajardo and S. Tam, J. Chem. Phys. 108, 4237 (1998...

  18. Time-resolved Laue diffraction from protein crystals: Instrumental considerations

    International Nuclear Information System (INIS)

    Bilderback, D.H.; Cornell Univ., Ithaca, NY; Moffat, K.; Szebenyi, D.M.E.

    1984-01-01

    A serious limitation of macromolecular crystallography has been its inability to determine changes in structure on a biochemical time scale of milliseconds or less. Recently, we have shown that X-ray exposures on single crystals of macromolecules may be obtained in the millisecond time range through the use of intense, polychromatic radiation with Δlambda/lambda approx.= 0.2 derived from the Cornell High Energy Synchrotron Source, CHESS. Such radiation falling on a stationary crystal yields a Laue diffraction pattern, in which almost all Laue reflections arise from a unique set of Miller indices and where their intensities are automatically integrated over wavelength. This Laue technique requires wide band pass optics, which may be obtained by a combination of reflection and transmission mirrors, filters or layered synthetic microstructures. Time-resolved macromolecular crystallography may be achieved by several data collection schemes: 'one-shot' recording coupled to a simple streak camera, repetitive sample perturbation coupled to a detector with temporal resolution and repetitive perturbation which uses the synchrotron pulses for stroboscopic triggering and detection. These schemes are appropriate for different time scales, roughly the milli-, micro- and nanosecond regimes. It appears that time-resolved crystallography is entirely feasible, with an ultimate time resolution limited only by the length of a synchrotron light pulse, some 150 ps at CHESS. (orig.)

  19. Time resolved fluorescence of cow and goat milk powder

    Science.gov (United States)

    Brandao, Mariana P.; de Carvalho dos Anjos, Virgílio; Bell., Maria José V.

    2017-01-01

    Milk powder is an international dairy commodity. Goat and cow milk powders are significant sources of nutrients and the investigation of the authenticity and classification of milk powder is particularly important. The use of time-resolved fluorescence techniques to distinguish chemical composition and structure modifications could assist develop a portable and non-destructive methodology to perform milk powder classification and determine composition. This study goal is to differentiate milk powder samples from cows and goats using fluorescence lifetimes. The samples were excited at 315 nm and the fluorescence intensity decay registered at 468 nm. We observed fluorescence lifetimes of 1.5 ± 0.3, 6.4 ± 0.4 and 18.7 ± 2.5 ns for goat milk powder; and 1.7 ± 0.3, 6.9 ± 0.2 and 29.9 ± 1.6 ns for cow's milk powder. We discriminate goat and cow powder milk by analysis of variance using Fisher's method. In addition, we employed quadratic discriminant analysis to differentiate the milk samples with accuracy of 100%. Our results suggest that time-resolved fluorescence can provide a new method to the analysis of powder milk and its composition.

  20. Observation of enhanced infrared absorption in silicon supersaturated with gold by pulsed laser melting of nanometer-thick gold films

    Science.gov (United States)

    Chow, Philippe K.; Yang, Wenjie; Hudspeth, Quentin; Lim, Shao Qi; Williams, Jim S.; Warrender, Jeffrey M.

    2018-04-01

    We demonstrate that pulsed laser melting (PLM) of thin 1, 5, and 10 nm-thick vapor-deposited gold layers on silicon enhances its room-temperature sub-band gap infrared absorption, as in the case of ion-implanted and PLM-treated silicon. The former approach offers reduced fabrication complexity and avoids implantation-induced lattice damage compared to ion implantation and pulsed laser melting, while exhibiting comparable optical absorptance. We additionally observed strong broadband absorptance enhancement in PLM samples made using 5- and 10-nm-thick gold layers. Raman spectroscopy and Rutherford backscattering analysis indicate that such an enhancement could be explained by absorption by a metastable, disordered and gold-rich surface layer. The sheet resistance and the diode electrical characteristics further elucidate the role of gold-supersaturation in silicon, revealing the promise for future silicon-based infrared device applications.

  1. Study on the surface hydroxyl group on solid breeding materials by infrared absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Satoru; Taniguchi, Masaki [Tokyo Univ. (Japan). Faculty of Engineering

    1996-10-01

    Hydroxyl groups on the surface of Li{sub 2}O were studied by using a diffuse reflectance method with Fourier transform infrared absorption spectroscopy at high temperature up to 973K under controlled D{sub 2}O or D{sub 2} partial pressure. It was found that hydroxyl groups could exist on Li{sub 2}O surface up to 973K under Ar atmosphere. Under D{sub 2}O containing atmosphere, only the sharp peak at 2520cm{sup -1} was observed at 973K in the O-D stretching vibration region. Below 973K, multiple peaks due to the surface -OD were observed and they showed different behavior with temperature or atmosphere. Multiple peaks mean that surface is not homogeneous for D{sub 2}O adsorption. Assignment of the observed peaks to the surface bonding structure was also discussed. (author)

  2. Preparation and infrared absorption properties of buried SiC layers

    International Nuclear Information System (INIS)

    Yan Hui; Chen Guanghua; Wong, S.P.; Kwok, R.W.M.

    1997-01-01

    Buried SiC layers were formed by using a metal vapor vacuum arc (MEVVA) ion source, with C + ions implanted into Si substrates under different doses. In the present study, the extracted voltage was 50 kV and the ion dose was varied from 3.0 x 10 17 to 1.6 x 10 18 cm -2 . According to infrared absorption measurements, it was fount that the structure of the buried SiC layers depended on the ion dose. Moreover, the results also demonstrated that the buried SiC layers including cubic crystalline SiC could be synthesized at an averaged substrate temperature of lower than 400 degree C with the MEVVA ion source

  3. Infrared Absorption Spectroscopy and Chemical Kinetics of Free Radicals, Final Technical Report

    Science.gov (United States)

    Curl, Robert F.; Glass, Graham P.

    2004-11-01

    This research was directed at the detection, monitoring, and study of the chemical kinetic behavior by infrared absorption spectroscopy of small free radical species thought to be important intermediates in combustion. Work on the reaction of OH with acetaldehyde has been completed and published and work on the reaction of O({sup 1}D) with CH{sub 4} has been completed and submitted for publication. In the course of our investigation of branching ratios of the reactions of O({sup 1}D) with acetaldehyde and methane, we discovered that hot atom chemistry effects are not negligible at the gas pressures (13 Torr) initially used. Branching ratios of the reaction of O({sup 1}D) with CH{sub 4} have been measured at a tenfold higher He flow and fivefold higher pressure.

  4. Infrared absorption and emission characteristics of interstellar PAHs [Polycyclic Aromatic Hydrocarbon

    International Nuclear Information System (INIS)

    Allamandola, L.J.; Tielens, A.G.G.M.; Barker, J.R.

    1986-01-01

    The mid-infrared interstellar emission spectrum with features at 3050, 1610, 1300, 1150, and 885 cm -1 (3.28, 6.2, 7.7, 8.7 and 11.3 microns) is discussed in terms of the Polycyclic Aromatic Hydrocarbon (PAH) hypothesis. This hypothesis is based on the suggestive, but inconclusive comparison between the interstellar emission spectrum with the infrared absorption and Raman spectra of a few PAHs. The fundamental vibrations of PAHs and PAH-like species which determine the ir and Raman properties are discussed. Interstellar ir band emission is due to relaxation from highly vibrationally excited PAHs which have been excited by ultraviolet photons. The excitation/emission process is described in general and the ir fluorescence from one PAH, chrysene, is traced in detail. Generally, there is sufficient energy to populate several vibrational levels in each mode. Molecular vibrational potentials are anharmonic and emission from these higher levels will fall at lower frequencies and produce weak features to the red of the stronger fundamentals. This process is also described and can account for some spectroscopic details of the interstellar emission spectra previously unexplained. Analysis of the interstellar spectrum shows that PAHs containing between 20 and 30 carbon atoms are responsible for the emission. 43 refs., 11 figs

  5. Infrared absorption and emission characteristics of interstellar PAHs (Polycyclic Aromatic Hydrocarbon)

    Energy Technology Data Exchange (ETDEWEB)

    Allamandola, L.J.; Tielens, A.G.G.M.; Barker, J.R.

    1986-01-01

    The mid-infrared interstellar emission spectrum with features at 3050, 1610, 1300, 1150, and 885 cm/sup -1/ (3.28, 6.2, 7.7, 8.7 and 11.3 microns) is discussed in terms of the Polycyclic Aromatic Hydrocarbon (PAH) hypothesis. This hypothesis is based on the suggestive, but inconclusive comparison between the interstellar emission spectrum with the infrared absorption and Raman spectra of a few PAHs. The fundamental vibrations of PAHs and PAH-like species which determine the ir and Raman properties are discussed. Interstellar ir band emission is due to relaxation from highly vibrationally excited PAHs which have been excited by ultraviolet photons. The excitation/emission process is described in general and the ir fluorescence from one PAH, chrysene, is traced in detail. Generally, there is sufficient energy to populate several vibrational levels in each mode. Molecular vibrational potentials are anharmonic and emission from these higher levels will fall at lower frequencies and produce weak features to the red of the stronger fundamentals. This process is also described and can account for some spectroscopic details of the interstellar emission spectra previously unexplained. Analysis of the interstellar spectrum shows that PAHs containing between 20 and 30 carbon atoms are responsible for the emission. 43 refs., 11 figs.

  6. Gold/Chitosan Nanocomposites with Specific Near Infrared Absorption for Photothermal Therapy Applications

    Directory of Open Access Journals (Sweden)

    Guandong Zhang

    2012-01-01

    Full Text Available Gold/chitosan nanocomposites were synthesized and evaluated as a therapeutic agent for the photothermal therapy. Gold nanoparticles (Au NPs with controllable optical absorption in the near infrared (NIR region were prepared by the reaction of chloroauric acid and sodium thiosulfate. To apply these particles to cancer therapy, the bare Au NPs were coated with chitosan (CS, O-carboxymethyl chitosan (CMCS, and a blend of CS and CMCS for utilizations in physiologic conditions. The surface properties, optical stability, and photothermal ablation efficiency on hepatocellular carcinoma cells (HepG2 and human dermal fibroblast cells (HDF demonstrate that these gold nanocomposites have great potential as a therapeutic agent in in vitro tests. The CS-coated nanocomposites show the highest efficiency for the photo-ablation on the HepG2 cells, and the CS and CMCS blended coated particles show the best discrimination between the cancer cell and normal cells. The well-controlled NIR absorption and the biocompatible surface of these nanocomposites allow low-power NIR laser activation and low-dosage particle injection for the cancer cell treatment.

  7. Fusion of Ultraviolet-Visible and Infrared Transient Absorption Spectroscopy Data to Model Ultrafast Photoisomerization.

    Science.gov (United States)

    Debus, Bruno; Orio, Maylis; Rehault, Julien; Burdzinski, Gotard; Ruckebusch, Cyril; Sliwa, Michel

    2017-08-03

    Ultrafast photoisomerization reactions generally start at a higher excited state with excess of internal vibrational energy and occur via conical intersections. This leads to ultrafast dynamics which are difficult to investigate with a single transient absorption spectroscopy technique, be it in the ultraviolet-visible (UV-vis) or infrared (IR) domain. On one hand, the information available in the UV-vis domain is limited as only slight spectral changes are observed for different isomers. On the other hand, the interpretation of vibrational spectra is strongly hindered by intramolecular relaxation and vibrational cooling. These limitations can be circumvented by fusing UV-vis and IR transient absorption spectroscopy data in a multiset multivariate curve resolution analysis. We apply this approach to describe the spectrodynamics of the ultrafast cis-trans photoisomerization around the C-N double bond observed for aromatic Schiff bases. Twisted intermediate states could be elucidated, and isomerization was shown to occur through a continuous complete rotation. More broadly, data fusion can be used to rationalize a vast range of ultrafast photoisomerization processes of interest in photochemistry.

  8. Time-resolving electron temperature diagnostic for ALCATOR C

    International Nuclear Information System (INIS)

    Fairfax, S.A.

    1984-05-01

    A diagnostic that provides time-resolved central electron temperatures has been designed, built, and tested on the ALCATOR C Tokamak. The diagnostic uses an array of fixed-wavelength x-ray crystal monochromators to sample the x-ray continuum and determine the absolute electron temperature. The resolution and central energy of each channel were chosen to exclude any contributions from impurity line radiation. This document describes the need for such a diagnostic, the design methodology, and the results with typical ALCATOR C plasmas. Sawtooth (m = 1) temperature oscillations were observed after pellet fueling of the plasma. This is the first time that such oscillations have been observed with an x-ray temperature diagnostic

  9. Fast time-resolved aerosol collector: proof of concept

    Science.gov (United States)

    Yu, X.-Y.; Cowin, J. P.; Iedema, M. J.; Ali, H.

    2010-10-01

    Atmospheric particles can be collected in the field on substrates for subsequent laboratory analysis via chemically sensitive single particle methods such as scanning electron microscopy with energy dispersive x-ray analysis. With moving substrates time resolution of seconds to minutes can be achieved. In this paper, we demonstrate how to increase the time resolution when collecting particles on a substrate to a few milliseconds to provide real-time information. Our fast time-resolved aerosol collector ("Fast-TRAC") microscopically observes the particle collection on a substrate and records an on-line video. Particle arrivals are resolved to within a single frame (4-17 ms in this setup), and the spatial locations are matched to the subsequent single particle analysis. This approach also provides in-situ information on particle size and number concentration. Applications are expected in airborne studies of cloud microstructure, pollution plumes, and surface long-term monitoring.

  10. Examining Electron-Boson Coupling Using Time-Resolved Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sentef, Michael; Kemper, Alexander F.; Moritz, Brian; Freericks, James K.; Shen, Zhi-Xun; Devereaux, Thomas P.

    2013-12-26

    Nonequilibrium pump-probe time-domain spectroscopies can become an important tool to disentangle degrees of freedom whose coupling leads to broad structures in the frequency domain. Here, using the time-resolved solution of a model photoexcited electron-phonon system, we show that the relaxational dynamics are directly governed by the equilibrium self-energy so that the phonon frequency sets a window for “slow” versus “fast” recovery. The overall temporal structure of this relaxation spectroscopy allows for a reliable and quantitative extraction of the electron-phonon coupling strength without requiring an effective temperature model or making strong assumptions about the underlying bare electronic band dispersion.

  11. Determination of quenching coefficients by time resolved emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gans, T.; Schulz-von der Gathen, V.; Doebele, H.F. [Essen Univ. (Gesamthochschule) (Germany). Inst. fuer Laser- und Plasmaphysik

    2001-07-01

    Capacitively coupled RF discharges (CCRF discharges) at 13.56 MHz in hydrogen exhibit a field reversal phase of about 10 ns during which an intense electron current provides collisional excitation, within the sheath region. After this strongly dominant short pulsed electron impact excitation, it is possible to determine quenching coefficients from the lifetime of the fluorescence at various pressures by time resolved OES even for high energy levels and without any restrictions of optical selection rules. This novel technique allows the measurement of quenching coefficients for atomic and molecular emission lines of hydrogen itself, as well as for emission lines of small admixtures (e.g. noble gases) to the hydrogen discharge, since with a fast gate-able ICCD camera operating at 13.56 MHz it is possible to measure even faint emission lines temporally resolved.

  12. Determination of quenching coefficients by time resolved emission spectroscopy

    International Nuclear Information System (INIS)

    Gans, T.; Schulz-von der Gathen, V.; Doebele, H.F.

    2001-01-01

    Capacitively coupled RF discharges (CCRF discharges) at 13.56 MHz in hydrogen exhibit a field reversal phase of about 10 ns during which an intense electron current provides collisional excitation, within the sheath region. After this strongly dominant short pulsed electron impact excitation, it is possible to determine quenching coefficients from the lifetime of the fluorescence at various pressures by time resolved OES even for high energy levels and without any restrictions of optical selection rules. This novel technique allows the measurement of quenching coefficients for atomic and molecular emission lines of hydrogen itself, as well as for emission lines of small admixtures (e.g. noble gases) to the hydrogen discharge, since with a fast gate-able ICCD camera operating at 13.56 MHz it is possible to measure even faint emission lines temporally resolved

  13. Time-resolved tomographic images of a relativistic electron beam

    International Nuclear Information System (INIS)

    Koehler, H.A.; Jacoby, B.A.; Nelson, M.

    1984-07-01

    We obtained a sequential series of time-resolved tomographic two-dimensional images of a 4.5-MeV, 6-kA, 30-ns electron beam. Three linear fiber-optic arrays of 30 or 60 fibers each were positioned around the beam axis at 0 0 , 61 0 , and 117 0 . The beam interacting with nitrogen at 20 Torr emitted light that was focused onto the fiber arrays and transmitted to a streak camera where the data were recorded on film. The film was digitized, and two-dimensional images were reconstructed using the maximum-entropy tomographic technique. These images were then combined to produce an ultra-high-speed movie of the electron-beam pulse

  14. Photon-Counting Arrays for Time-Resolved Imaging

    Directory of Open Access Journals (Sweden)

    I. Michel Antolovic

    2016-06-01

    Full Text Available The paper presents a camera comprising 512 × 128 pixels capable of single-photon detection and gating with a maximum frame rate of 156 kfps. The photon capture is performed through a gated single-photon avalanche diode that generates a digital pulse upon photon detection and through a digital one-bit counter. Gray levels are obtained through multiple counting and accumulation, while time-resolved imaging is achieved through a 4-ns gating window controlled with subnanosecond accuracy by a field-programmable gate array. The sensor, which is equipped with microlenses to enhance its effective fill factor, was electro-optically characterized in terms of sensitivity and uniformity. Several examples of capture of fast events are shown to demonstrate the suitability of the approach.

  15. Far-infrared reflection-absorption spectroscopy of amorphous and polycrystalline gallium arsenide films

    International Nuclear Information System (INIS)

    Gregory, J.R.

    1992-01-01

    We have reported far-infrared reflection absorption spectra (30-320CM -1 ) at 30 and 310K for nine films of non-stoichiometric GaAs. The FIRRAS measurements were performed using the grazing incidence FIR double-modulation spectroscopy technique first described by DaCosta and Coleman. The films were fabricated by molecular beam deposition on metallized substrates for two As/Ga molecular beam flux ratios. The films were characterized by depth profilometry, IRAS, XRD, and x-ray microprobe analysis. Film thicknesses ranged from 800 to 5800 angstrom and compositions were 45-50% As for a MB flux ratio of 0.29 and 60-70% As for a ratio of 1.12. FIRRAS measurements were made and characterizations performed for as-deposited films and for 5 hour anneals at 473, 573, 673 and 723 degrees C. Vibrational spectra of the crystallized films were interpreted in terms of the exact reflectivity of a thin dielectric film on a conducting substrate, using a classical Lorentzian dielectric function for the response of the film. Resonances appearing in the open-quote forbidden close-quote region between the TO and LO frequencies were modelled with an effective medium approximation and are interpreted as arising from small-scale surface roughness. The behavior of the amorphous film spectra were examined within two models. The effective force constant model describes the variation of the reflection-absorption maxima with measured crystallite size in terms of the effective vibration frequency of 1-D atomic chains having force constants distributed according to the parameters of the crystalline-to-amorphous relaxation length and the crystalline to amorphous force constant ratio. The dielectric function continuum model uses the relaxation of the crystal momentum selection rule to calculate the reflection-absorption spectrum based on a dielectric function in which the oscillator strength is the normalized product of a constant dipole strength and the smoothed vibrational density of states

  16. Contribution of water dimer absorption to the millimeter and far infrared atmospheric water continuum

    Science.gov (United States)

    Scribano, Yohann; Leforestier, Claude

    2007-06-01

    We present a rigorous calculation of the contribution of water dimers to the absorption coefficient α(ν¯,T ) in the millimeter and far infrared domains, over a wide range (276-310K) of temperatures. This calculation relies on the explicit consideration of all possible transitions within the entire rovibrational bound state manifold of the dimer. The water dimer is described by the flexible 12-dimensional potential energy surface previously fitted to far IR transitions [C. Leforestier et al., J. Chem. Phys. 117, 8710 (2002)], and which was recently further validated by the good agreement obtained for the calculated equilibrium constant Kp(T) with experimental data [Y. Scribano et al., J. Phys. Chem. A. 110, 5411 (2006)]. Transition dipole matrix elements were computed between all rovibrational states up to an excitation energy of 750cm-1, and J =K=5 rotational quantum numbers. It was shown by explicit calculations that these matrix elements could be extrapolated to much higher J values (J=30). Transitions to vibrational states located higher in energy were obtained from interpolation of computed matrix elements between a set of initial states spanning the 0-750cm-1 range and all vibrational states up to the dissociation limit (˜1200cm-1). We compare our calculations with available experimental measurements of the water continuum absorption in the considered range. It appears that water dimers account for an important fraction of the observed continuum absorption in the millimeter region (0-10cm-1). As frequency increases, their relative contribution decreases, becoming small (˜3%) at the highest frequency considered ν¯=944cm-1.

  17. Femtosecond time-resolved vibrational SFG spectroscopy of CO/Ru( 0 0 1 )

    Science.gov (United States)

    Hess, Ch.; Wolf, M.; Roke, S.; Bonn, M.

    2002-04-01

    Vibrational sum-frequency generation (SFG) employing femtosecond infrared (IR) laser pulses is used to study the dynamics of the C-O stretch vibration on Ru(0 0 1). Time-resolved measurements of the free induction decay (FID) of the IR-polarization for 0.33 ML CO/Ru(0 0 1) exhibit single exponential decays over three decades corresponding to dephasing times of T2=1.94 ps at 95 K and T2=1.16 ps at 340 K. This is consistent with pure homogeneous broadening due to anharmonic coupling with the thermally activated low-frequency dephasing mode together with a contribution from saturation of the IR transition. In pump-probe SFG experiments using a strong visible (VIS) pump pulse the perturbation of the FID leads to transient line shifts even at negative delay times, i.e. when the IR-VIS SFG probe pair precedes the pump pulse. Based on an analysis of the time-dependent polarization we discuss the influence of the perturbed FID on time-resolved SFG spectra. We investigate how coherent effects affect the SFG spectra and we examine the time resolution in these experiments, in particular in dependence of the dephasing time.

  18. Time-resolved diffusion tomographic imaging in highly scattering turbid media

    Science.gov (United States)

    Alfano, Robert R. (Inventor); Cai, Wei (Inventor); Liu, Feng (Inventor); Lax, Melvin (Inventor); Das, Bidyut B. (Inventor)

    1998-01-01

    A method for imaging objects in highly scattering turbid media. According to one embodiment of the invention, the method involves using a plurality of intersecting source/detectors sets and time-resolving equipment to generate a plurality of time-resolved intensity curves for the diffusive component of light emergent from the medium. For each of the curves, the intensities at a plurality of times are then inputted into the following inverse reconstruction algorithm to form an image of the medium: X.sup.(k+1).spsp.T =?Y.sup.T W+X.sup.(k).spsp.T .LAMBDA.!?W.sup.T W+.LAMBDA.!.sup.-1 wherein W is a matrix relating output at detector position r.sub.d, at time t, to source at position r.sub.s, .LAMBDA. is a regularization matrix, chosen for convenience to be diagonal, but selected in a way related to the ratio of the noise, to fluctuations in the absorption (or diffusion) X.sub.j that we are trying to determine: .LAMBDA..sub.ij =.lambda..sub.j .delta..sub.ij with .lambda..sub.j =/ Here Y is the data collected at the detectors, and X.sup.k is the kth iterate toward the desired absoption information.

  19. Microcontroller based resonance tracking unit for time resolved continuous wave cavity-ringdown spectroscopy measurements.

    Science.gov (United States)

    Votava, Ondrej; Mašát, Milan; Parker, Alexander E; Jain, Chaithania; Fittschen, Christa

    2012-04-01

    We present in this work a new tracking servoloop electronics for continuous wave cavity-ringdown absorption spectroscopy (cw-CRDS) and its application to time resolved cw-CRDS measurements by coupling the system with a pulsed laser photolysis set-up. The tracking unit significantly increases the repetition rate of the CRDS events and thus improves effective time resolution (and/or the signal-to-noise ratio) in kinetics studies with cw-CRDS in given data acquisition time. The tracking servoloop uses novel strategy to track the cavity resonances that result in a fast relocking (few ms) after the loss of tracking due to an external disturbance. The microcontroller based design is highly flexible and thus advanced tracking strategies are easy to implement by the firmware modification without the need to modify the hardware. We believe that the performance of many existing cw-CRDS experiments, not only time-resolved, can be improved with such tracking unit without any additional modification to the experiment. © 2012 American Institute of Physics

  20. Collision-Induced Infrared Absorption by Collisional Complexes in Dense Hydrogen-Helium Gas Mixtures at Thousands of Kelvin

    Science.gov (United States)

    Abel, Martin; Frommhold, Lothar; Li, Xiaoping; Hunt, Katharine L. C.

    2011-06-01

    The interaction-induced absorption by collisional pairs of H{_2} molecules is an important opacity source in the atmospheres of the outer planets and cool stars. The emission spectra of cool white dwarf stars differ significantly in the infrared from the expected blackbody spectra of their cores, which is largely due to absorption by collisional H{_2}-H{_2}, H{_2}-He, and H{_2}-H complexes in the stellar atmospheres. Using quantum-chemical methods we compute the atmospheric absorption from hundreds to thousands of kelvin. Laboratory measurements of interaction-induced absorption spectra by H{_2} pairs exist only at room temperature and below. We show that our results reproduce these measurements closely, so that our computational data permit reliable modeling of stellar atmosphere opacities even for the higher temperatures. L. Frommhold, Collision-Induced Absorption in Gases, Cambridge University Press, Cambridge, New York, 1993 and 2006 Xiaoping Li, Katharine L. C. Hunt, Fei Wang, Martin Abel, and Lothar Frommhold, "Collision-Induced Infrared Absorption by Molecular Hydrogen Pairs at Thousands of Kelvin", International Journal of Spectroscopy, vol. 2010, Article ID 371201, 11 pages, 2010. doi: 10.1155/2010/371201 M. Abel, L. Frommhold, X. Li, and K. L. C. Hunt, "Collision-induced absorption by H{_2} pairs: From hundreds to thousands of Kelvin," J. Phys. Chem. A, published online, DOI: 10.1021/jp109441f L. Frommhold, M. Abel, F. Wang, M. Gustafsson, X. Li, and K. L. C. Hunt, "Infrared atmospheric emission and absorption by simple molecular complexes, from first principles", Mol. Phys. 108, 2265, 2010

  1. Time-Resolved Surface Temperature Measurement for Pulsed Ablative Thrusters

    National Research Council Canada - National Science Library

    Antonsen, Erik

    2003-01-01

    .... The diagnostic draws on heritage from the experimental dynamic crack propagation community which has used photovoltaic infrared detectors to measure temperature rise in materials in the process of fracture...

  2. Ultrafast time-resolved carotenoid to-bacteriochlorophyll energy transfer in LH2 complexes from photosynthetic bacteria.

    Science.gov (United States)

    Cong, Hong; Niedzwiedzki, Dariusz M; Gibson, George N; LaFountain, Amy M; Kelsh, Rhiannon M; Gardiner, Alastair T; Cogdell, Richard J; Frank, Harry A

    2008-08-28

    Steady-state and ultrafast time-resolved optical spectroscopic investigations have been carried out at 293 and 10 K on LH2 pigment-protein complexes isolated from three different strains of photosynthetic bacteria: Rhodobacter (Rb.) sphaeroides G1C, Rb. sphaeroides 2.4.1 (anaerobically and aerobically grown), and Rps. acidophila 10050. The LH2 complexes obtained from these strains contain the carotenoids, neurosporene, spheroidene, spheroidenone, and rhodopin glucoside, respectively. These molecules have a systematically increasing number of pi-electron conjugated carbon-carbon double bonds. Steady-state absorption and fluorescence excitation experiments have revealed that the total efficiency of energy transfer from the carotenoids to bacteriochlorophyll is independent of temperature and nearly constant at approximately 90% for the LH2 complexes containing neurosporene, spheroidene, spheroidenone, but drops to approximately 53% for the complex containing rhodopin glucoside. Ultrafast transient absorption spectra in the near-infrared (NIR) region of the purified carotenoids in solution have revealed the energies of the S1 (2(1)Ag-)-->S2 (1(1)Bu+) excited-state transitions which, when subtracted from the energies of the S0 (1(1)Ag-)-->S2 (1(1)Bu+) transitions determined by steady-state absorption measurements, give precise values for the positions of the S1 (2(1)Ag-) states of the carotenoids. Global fitting of the ultrafast spectral and temporal data sets have revealed the dynamics of the pathways of de-excitation of the carotenoid excited states. The pathways include energy transfer to bacteriochlorophyll, population of the so-called S* state of the carotenoids, and formation of carotenoid radical cations (Car*+). The investigation has found that excitation energy transfer to bacteriochlorophyll is partitioned through the S1 (1(1)Ag-), S2 (1(1)Bu+), and S* states of the different carotenoids to varying degrees. This is understood through a consideration of the

  3. Energy levels and far-infrared optical absorption of impurity doped semiconductor nanorings: Intense laser and electric fields effects

    Energy Technology Data Exchange (ETDEWEB)

    Barseghyan, M.G., E-mail: mbarsegh@ysu.am

    2016-11-10

    Highlights: • The electron-impurity interaction on energy levels in nanoring have been investigated. • The electron-impurity interaction on far-infrared absorption have been investigated. • The energy levels are more stable for higher values of electric field. - Abstract: The effects of electron-impurity interaction on energy levels and far-infrared absorption in semiconductor nanoring under the action of intense laser and lateral electric fields have been investigated. Numerical calculations are performed using exact diagonalization technique. It is found that the electron-impurity interaction and external fields change the energy spectrum dramatically, and also have significant influence on the absorption spectrum. Strong dependence on laser field intensity and electric field of lowest energy levels, also supported by the Coulomb interaction with impurity, is clearly revealed.

  4. Ultrafast Time-Resolved Photoluminescence Studies of Gallium-Arsenide

    Science.gov (United States)

    Johnson, Matthew Bruce

    This thesis concerns the study of ultrafast phenomena in GaAs using time-resolved photoluminescence (PL). The thesis consists of five chapters. Chapter one is an introduction, which discusses the study of ultrafast phenomena in semiconductors. Chapter two is a description of the colliding-pulse mode-locked (CPM) ring dye laser, which is at the heart of the experimental apparatus used in this thesis. Chapter three presents a detailed experimental and theoretical investigation of photoluminescence excitation correlation spectroscopy (PECS), the novel technique which is used to time-resolve ultrafast PL phenomena. Chapters 4 and 5 discuss two applications of the PECS technique. In Chapter 4 the variation of PL intensity in In-alloyed GaAs substrate material is studied, while Chapter 5 discusses the variation of carrier lifetimes in ion-damaged GaAs used in photo-conductive circuit elements (PCEs). PECS is a pulse-probe technique that measures the cross correlation of photo-excited carrier populations. The theoretical model employed in this thesis is based upon the rate equation for a simple three-level system consisting of valence and conduction bands and a single trap level. In the limit of radiative band-to-band dominated recombination, no PECS signal should be observed; while in the capture -dominated recombination limit, the PECS signal from the band-to-band PL measures the cross correlation of the excited electron and hole populations and thus, the electron and hole lifetimes. PECS is experimentally investigated using a case study of PL in semi-insulating (SI) GaAs and In -alloyed GaAs. At 77 K, the PECS signal is characteristic of a capture-dominated system, yielding an electron-hole lifetime of about 200 ps. However, at 5 K the behavior is more complicated and shows saturation effects due to the C acceptor level, which is un-ionized at 5 K. As a first application, PECS is used to investigate the large band-to-band PL contrast observed near dislocations in In

  5. A time resolved microfocus XEOL facility at the Diamond Light Source

    International Nuclear Information System (INIS)

    Mosselmans, J F W; Taylor, R P; Quinn, P D; Cibin, G; Gianolio, D; Finch, A A; Sapelkin, A V

    2013-01-01

    We have constructed a Time-Resolved X-ray Excited Optical Luminescence (TR-XEOL) detection system at the Microfocus Spectroscopy beamline I18 at the Diamond Light Source. Using the synchrotron in h ybrid bunch mode , the data collection is triggered by the RF clock, and we are able to record XEOL photons with a time resolution of 6.1 ps during the 230 ns gap between the hybrid bunch and the main train of electron bunches. We can detect photons over the range 180-850 nm using a bespoke optical fibre, with X-ray excitation energies between 2 and 20 keV. We have used the system to study a range of feldspars. The detector is portable and has also been used on beamline B18 to collect Optically Determined X-ray Absorption Spectroscopy (OD-XAS) in QEXAFS mode.

  6. A time resolved microfocus XEOL facility at the Diamond Light Source

    Science.gov (United States)

    Mosselmans, J. F. W.; Taylor, R. P.; Quinn, P. D.; Finch, A. A.; Cibin, G.; Gianolio, D.; Sapelkin, A. V.

    2013-03-01

    We have constructed a Time-Resolved X-ray Excited Optical Luminescence (TR-XEOL) detection system at the Microfocus Spectroscopy beamline I18 at the Diamond Light Source. Using the synchrotron in "hybrid bunch mode", the data collection is triggered by the RF clock, and we are able to record XEOL photons with a time resolution of 6.1 ps during the 230 ns gap between the hybrid bunch and the main train of electron bunches. We can detect photons over the range 180-850 nm using a bespoke optical fibre, with X-ray excitation energies between 2 and 20 keV. We have used the system to study a range of feldspars. The detector is portable and has also been used on beamline B18 to collect Optically Determined X-ray Absorption Spectroscopy (OD-XAS) in QEXAFS mode.

  7. Studying electron distributions using the time-resolved free-bound spectra from coronal plasmas

    International Nuclear Information System (INIS)

    Matthews, D.L.; Kauffman, R.L.; Kilkenny, J.D.; Lee, R.W.

    1982-11-01

    Absorption of laser light in a plasma by inverse bremsstrahlung, I.B., can lead to a non-Maxwellian velocity distribution provided the electron-elecron collision frequency is too low to equilibrate the velocity distribution in the coronal plasma region of a laser heated aluminum disk by measuring the radiation recombination continuum. The experiments are performed using lambda/sub L/ = 0.532 μm laser light at intensities of approx. 10 16 W/cm 2 . Such parameters are predicted to produce conditions suitable for a non-thermal electron distribution. The shape of the K-shell recombination radiation has been measured using a time-resolved x-ray spectrograph. The electron distribution can be determined from deconvolution of the recombination continuum shape

  8. Near shot-noise limited time-resolved circular dichroism pump-probe spectrometer

    Science.gov (United States)

    Stadnytskyi, Valentyn; Orf, Gregory S.; Blankenship, Robert E.; Savikhin, Sergei

    2018-03-01

    We describe an optical near shot-noise limited time-resolved circular dichroism (TRCD) pump-probe spectrometer capable of reliably measuring circular dichroism signals in the order of μdeg with nanosecond time resolution. Such sensitivity is achieved through a modification of existing TRCD designs and introduction of a new data processing protocol that eliminates approximations that have caused substantial nonlinearities in past measurements and allows the measurement of absorption and circular dichroism transients simultaneously with a single pump pulse. The exceptional signal-to-noise ratio of the described setup makes the TRCD technique applicable to a large range of non-biological and biological systems. The spectrometer was used to record, for the first time, weak TRCD kinetics associated with the triplet state energy transfer in the photosynthetic Fenna-Matthews-Olson antenna pigment-protein complex.

  9. X-RAY ABSORPTION, NUCLEAR INFRARED EMISSION, AND DUST COVERING FACTORS OF AGNs: TESTING UNIFICATION SCHEMES

    Energy Technology Data Exchange (ETDEWEB)

    Mateos, S.; Carrera, F. J.; Alonso-Herrero, A.; Hernán-Caballero, A.; Barcons, X. [Instituto de Física de Cantabria (CSIC-Universidad de Cantabria), E-39005, Santander (Spain); Ramos, A. Asensio; Almeida, C. Ramos [Instituto de Astrofísica de Canarias, E-38205, La Laguna, Tenerife (Spain); Watson, M. G.; Blain, A. [Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Caccianiga, A.; Ballo, L. [INAF-Osservatorio Astronomico di Brera, via Brera 28, I-20121 Milano (Italy); Braito, V., E-mail: mateos@ifca.unican.es [INAF-Osservatorio Astronomico di Brera, Via Bianchi 46, I-23807 Merate (Italy)

    2016-03-10

    We present the distributions of the geometrical covering factors of the dusty tori (f{sub 2}) of active galactic nuclei (AGNs) using an X-ray selected complete sample of 227 AGNs drawn from the Bright Ultra-hard XMM-Newton Survey. The AGNs have z from 0.05 to 1.7, 2–10 keV luminosities between 10{sup 42} and 10{sup 46} erg s{sup −1}, and Compton-thin X-ray absorption. Employing data from UKIDSS, 2MASS, and the Wide-field Infrared Survey Explorer in a previous work, we determined the rest-frame 1–20 μm continuum emission from the torus, which we model here with the clumpy torus models of Nenkova et al. Optically classified type 1 and type 2 AGNs are intrinsically different, with type 2 AGNs having, on average, tori with higher f{sub 2} than type 1 AGNs. Nevertheless, ∼20% of type 1 AGNs have tori with large covering factors, while ∼23%–28% of type 2 AGNs have tori with small covering factors. Low f{sub 2} are preferred at high AGN luminosities, as postulated by simple receding torus models, although for type 2 AGNs the effect is certainly small. f{sub 2} increases with the X-ray column density, which implies that dust extinction and X-ray absorption take place in material that share an overall geometry and most likely belong to the same structure, the putative torus. Based on our results, the viewing angle, AGN luminosity, and also f{sub 2} determine the optical appearance of an AGN and control the shape of the rest-frame ∼1–20 μm nuclear continuum emission. Thus, the torus geometrical covering factor is a key ingredient of unification schemes.

  10. Time-resolved laser-induced fluorescence system

    Science.gov (United States)

    Bautista, F. J.; De la Rosa, J.; Gallegos, F. J.

    2006-02-01

    Fluorescence methods are being used increasingly in the measurement of species concentrations in gases, liquids and solids. Laser induced fluorescence is spontaneous emission from atoms or molecules that have been excited by laser radiation. Here we present a time resolved fluorescence instrument that consists of a 5 μJ Nitrogen laser (337.1 nm), a sample holder, a quartz optical fiber, a spectrometer, a PMT and a PC that allows the measurement of visible fluorescence spectra (350-750 nm). Time response of the system is approximately 5 ns. The instrument has been used in the measurement of colored bond paper, antifreeze, diesel, cochineal pigment and malignant tissues. The data acquisition was achieved through computer control of a digital oscilloscope (using General Purpose Interface Bus GPIB) and the spectrometer via serial (RS232). The instrument software provides a graphic interface that lets make some data acquisition tasks like finding fluorescence spectra, and fluorescence lifetimes. The software was developed using the Lab-View 6i graphic programming package and can be easily managed in order to add more functions to it.

  11. Time-Resolved Hard X-Ray Spectrometer

    International Nuclear Information System (INIS)

    Kenneth Moya; Ian McKennaa; Thomas Keenana; Michael Cuneob

    2007-01-01

    Wired array studies are being conducted at the SNL Z accelerator to maximize the x-ray generation for inertial confinement fusion targets and high energy density physics experiments. An integral component of these studies is the characterization of the time-resolved spectral content of the x-rays. Due to potential spatial anisotropy in the emitted radiation, it is also critical to diagnose the time-evolved spectral content in a space-resolved manner. To accomplish these two measurement goals, we developed an x-ray spectrometer using a set of high-speed detectors (silicon PIN diodes) with a collimated field-of-view that converged on a 1-cm-diameter spot at the pinch axis. Spectral discrimination is achieved by placing high Z absorbers in front of these detectors. We built two spectrometers to permit simultaneous different angular views of the emitted radiation. Spectral data have been acquired from recent Z shots for the radial and polar views. UNSPEC1 has been adapted to analyze and unfold the measured data to reconstruct the x-ray spectrum. The unfold operator code, UFO2, is being adapted for a more comprehensive spectral unfolding treatment

  12. Spectral and time-resolved studies on ocular structures

    Science.gov (United States)

    Schweitzer, D.; Jentsch, S.; Schenke, S.; Hammer, M.; Biskup, C.; Gaillard, E.

    2007-07-01

    Measurements of endogeous fluorophores open the possibility for evaluation of metabolic state at the eye. For interpretation of 2-dimensional measurements of time-resolved auto fluorescence in 2 separate spectral ranges at the human eye, comparing measurements were performed on porcine eyes. Determining excitation and emission spectra, attention was drawn of proof of coenzymes NADH and FAD in isolated anatomical structures cornea, aqueous humor, lens, vitreous, neuronal retina, retinal pigment epithelium (RPE), choroid, and sclera. All these structures exhibit auto fluorescence, highest in lens. Excitation at 350 nm results in local fluorescence maxima at 460 nm, corresponding to NADH, in all structures. This short-wave excitation allows metabolic studies only at the anterior eye, because of the limited transmission of the ocular media. During excitation at 446 nm the existence of FAD is expressed by local fluorescence maxima at 530 nm. The composition fluorescence spectra allow no discrimination between single ocular structures. Approximating the dynamic fluorescence by a double exponential function, the shortest lifetimes were detected in RPE and neuronal retina. The histograms of mean lifetime t M cover each other on lens with cornea and also on sclera with choroid. Despite the lifetimes are close between RPE and neuronal retina, the relative contributions Q I are wide different. The gradient of trend lines in cluster diagrams of amplitudes α II vs. α I allows a discrimination of ocular structures.

  13. Time resolved EUV spectra from Zpinching capillary discharge plasma

    Science.gov (United States)

    Jancarek, Alexandr; Nevrkla, Michal; Nawaz, Fahad

    2015-09-01

    We developed symmetrically charged driver to obtain high voltage, high current Z-pinching capillary discharge. Plasma is created by up to 70 kA, 29 ns risetime current pulse passing through a 5 mm inner diameter, 224 mm long capillary filled with gas to initial pressure in the range of 1 kPa. Due to the low inductance design of the driver, the pinch is observable directly from the measured current curve. Time-integrated and time-resolved spectra of discharge plasma radiation are recorded together with the capillary current and analyzed. The most encouraging spectra were captured in the wavelength range 8.3 ÷ 14 nm. This spectral region contains nitrogen Balmer series lines including potentially lasing NVII 2 - 3 transition. Spectral lines are identified in the NIST database using the FLY kinetic code. The line of 13.38 nm wavelength, transition NVII 2 - 3, was observed in gated, and also in time-integrated spectra for currents >60 kA. This work has been supported by the Ministry of Education, Youth and Sports of the Czech Republic grants LG13029.

  14. Time-Resolved Synchronous Fluorescence for Biomedical Diagnosis

    Science.gov (United States)

    Zhang, Xiaofeng; Fales, Andrew; Vo-Dinh, Tuan

    2015-01-01

    This article presents our most recent advances in synchronous fluorescence (SF) methodology for biomedical diagnostics. The SF method is characterized by simultaneously scanning both the excitation and emission wavelengths while keeping a constant wavelength interval between them. Compared to conventional fluorescence spectroscopy, the SF method simplifies the emission spectrum while enabling greater selectivity, and has been successfully used to detect subtle differences in the fluorescence emission signatures of biochemical species in cells and tissues. The SF method can be used in imaging to analyze dysplastic cells in vitro and tissue in vivo. Based on the SF method, here we demonstrate the feasibility of a time-resolved synchronous fluorescence (TRSF) method, which incorporates the intrinsic fluorescent decay characteristics of the fluorophores. Our prototype TRSF system has clearly shown its advantage in spectro-temporal separation of the fluorophores that were otherwise difficult to spectrally separate in SF spectroscopy. We envision that our previously-tested SF imaging and the newly-developed TRSF methods will combine their proven diagnostic potentials in cancer diagnosis to further improve the efficacy of SF-based biomedical diagnostics. PMID:26404289

  15. Time-resolved pump-probe experiments at the LCLS

    Energy Technology Data Exchange (ETDEWEB)

    Glownia, James; /SLAC /Stanford U., Appl. Phys. Dept.; Cryan, J.; /SLAC /Stanford U., Phys. Dept.; Andreasson, J.; /Uppsala U.; Belkacem, A.; /LBNL, Berkeley; Berrah, N.; /Western Michigan U.; Blaga, C.L.; /Ohio State U.; Bostedt, C.; Bozek, J.; /SLAC; DiMauro, L.F.; /Ohio State U.; Fang, L.; /Western Michigan U.; Frisch, J.; /SLAC; Gessner, O.; /LBNL; Guhr, M.; /SLAC; Hajdu, J.; /Uppsala U.; Hertlein, M.P.; /LBNL; Hoener, M.; /Western Michigan U. /LBNL; Huang, G.; Kornilov, O.; /LBNL; Marangos, J.P.; /Imperial Coll., London; March, A.M.; /Argonne; McFarland, B.K.; /SLAC /Stanford U., Phys. Dept. /SLAC /IRAMIS, Saclay /Stanford U., Phys. Dept. /Georgia Tech /Argonne /Kansas State U. /SLAC /Stanford U., Phys. Dept. /SLAC /Stanford U., Appl. Phys. Dept. /Stanford U., Appl. Phys. Dept. /SLAC /LBNL /Argonne /SLAC /SLAC /Stanford U., Appl. Phys. Dept. /Stanford U., Phys. Dept.

    2011-08-12

    The first time-resolved x-ray/optical pump-probe experiments at the SLAC Linac Coherent Light Source (LCLS) used a combination of feedback methods and post-analysis binning techniques to synchronize an ultrafast optical laser to the linac-based x-ray laser. Transient molecular nitrogen alignment revival features were resolved in time-dependent x-ray-induced fragmentation spectra. These alignment features were used to find the temporal overlap of the pump and probe pulses. The strong-field dissociation of x-ray generated quasi-bound molecular dications was used to establish the residual timing jitter. This analysis shows that the relative arrival time of the Ti:Sapphire laser and the x-ray pulses had a distribution with a standard deviation of approximately 120 fs. The largest contribution to the jitter noise spectrum was the locking of the laser oscillator to the reference RF of the accelerator, which suggests that simple technical improvements could reduce the jitter to better than 50 fs.

  16. Time-resolved optical studies of wide-gap II-VI semiconductor heterostructures

    Science.gov (United States)

    Wang, Hong

    ZnSe and ZnSe-based quantum well and superlattice structures are potential candidates for light emitting devices and other optical devices such as switches and modulators working in the blue-green wavelength range. Carrier dynamics studies of these structures are important in evaluating device performance as well as understanding the underlying physical processes. In this thesis, a carrier dynamics investigation is conducted for temperature from 77K to 295K on CdZnSSe/ZnSSe single quantum well structure (SQW) and ZnSe/ZnSTe superlattice fabricated by molecular beam epitaxy (MBE). Two experimental techniques with femtosecond time resolution are used in this work: up-conversion technique for time- resolved photoluminescence (PL) and pump-probe technique for time-resolved differential absorption studies. For both heterostructures, the radiative recombination is dominated by exciton transition due to the large exciton binding energy as a result of quantum confinement effect. The measured decay time of free exciton PL in CdZnSSe/ZnSSe SQW increases linearly with increasing temperature which agrees with the theoretical prediction by considering the conservation of momentum requirement for radiative recombination. However, the recombination of free carriers is also observed in CdZnSSe/ZnSSe SQW for the whole temperature range studied. On the other hand, in ZnSe/ZnSTe superlattice structures, the non- radiative recombination processes are non-negligible even at 77K and become more important in higher temperature range. The relaxation processes such as spectral hole burning, carrier thermalization and hot-carrier cooling are observed in ZnSe/ZnSTe superlattices at room temperature (295K) by the femtosecond pump-probe measurements. A rapid cooling of the thermalized hot- carrier from 763K to 450K within 4ps is deduced. A large optical nonlinearity (i.e., the induced absorption change) around the heavy-hole exciton energy is also obtained.

  17. Time-resolved X-ray absorption spectroscopy for the study of solid state reactions: synthesis of nanocrystalline barium titanate and thermal decomposition of ammonium hexachlorometallate compounds; Zeitaufgeloeste Roentgenabsorptionspektroskopie zur Untersuchung von Festkoerperreaktionen: Synthese von nanokristallinem Bariumtitanat und thermische Zersetzung von Ammoniumhexachlorometallat-Verbindungen

    Energy Technology Data Exchange (ETDEWEB)

    Rumpf, H.

    2001-07-01

    This report presents investigations on the mechanism of two different types of solid-state reactions: At first, barium titanate nanopowders were prepared through a combined polymerization and pyrolysis of a metallo-organic precursor. The mean particle size d{sub m} could be adjusted by choosing appropriate reaction temperatures and tempering atmospheres. In the present in situ study of this particular solid-phase reaction, X-ray absorption near edge structure (XANES) spectroscopy at the Ti K and Ba L{sub 3}-edges was applied in the preparation route of BaTiO{sub 3} nanopowders. A pronounced distortion of the lattice symmetry was found to occur in very fine BaTiO{sub 3} nanopowders (d{sub m} < 20 nm). Secondly, in situ XANES investigations were carried out at the Cl K, Pd L{sub 3}, Rh L{sub 3}, and Pt L{sub 3}-edges to study the mechanism of the thermal decomposition of ammonium hexachlorometallates. The results exceed structural information obtained by in situ X-ray diffraction methods and thermal analysis. Feff8 multiple scattering simulations have been carried out to disclose new intermediate phases of unknown reference compounds. (orig.)

  18. Highly doped semiconductor plasmonic nanoantenna arrays for polarization selective broadband surface-enhanced infrared absorption spectroscopy of vanillin

    Science.gov (United States)

    Barho, Franziska B.; Gonzalez-Posada, Fernando; Milla, Maria-Jose; Bomers, Mario; Cerutti, Laurent; Tournié, Eric; Taliercio, Thierry

    2017-11-01

    Tailored plasmonic nanoantennas are needed for diverse applications, among those sensing. Surface-enhanced infrared absorption (SEIRA) spectroscopy using adapted nanoantenna substrates is an efficient technique for the selective detection of molecules by their vibrational spectra, even in small quantity. Highly doped semiconductors have been proposed as innovative materials for plasmonics, especially for more flexibility concerning the targeted spectral range. Here, we report on rectangular-shaped, highly Si-doped InAsSb nanoantennas sustaining polarization switchable longitudinal and transverse plasmonic resonances in the mid-infrared. For small array periodicities, the highest reflectance intensity is obtained. Large periodicities can be used to combine localized surface plasmon resonances (SPR) with array resonances, as shown in electromagnetic calculations. The nanoantenna arrays can be efficiently used for broadband SEIRA spectroscopy, exploiting the spectral overlap between the large longitudinal or transverse plasmonic resonances and narrow infrared active absorption features of an analyte molecule. We demonstrate an increase of the vibrational line intensity up to a factor of 5.7 of infrared-active absorption features of vanillin in the fingerprint spectral region, yielding enhancement factors of three to four orders of magnitude. Moreover, an optimized readout for SPR sensing is proposed based on slightly overlapping longitudinal and transverse localized SPR.

  19. Highly doped semiconductor plasmonic nanoantenna arrays for polarization selective broadband surface-enhanced infrared absorption spectroscopy of vanillin

    Directory of Open Access Journals (Sweden)

    Barho Franziska B.

    2017-11-01

    Full Text Available Tailored plasmonic nanoantennas are needed for diverse applications, among those sensing. Surface-enhanced infrared absorption (SEIRA spectroscopy using adapted nanoantenna substrates is an efficient technique for the selective detection of molecules by their vibrational spectra, even in small quantity. Highly doped semiconductors have been proposed as innovative materials for plasmonics, especially for more flexibility concerning the targeted spectral range. Here, we report on rectangular-shaped, highly Si-doped InAsSb nanoantennas sustaining polarization switchable longitudinal and transverse plasmonic resonances in the mid-infrared. For small array periodicities, the highest reflectance intensity is obtained. Large periodicities can be used to combine localized surface plasmon resonances (SPR with array resonances, as shown in electromagnetic calculations. The nanoantenna arrays can be efficiently used for broadband SEIRA spectroscopy, exploiting the spectral overlap between the large longitudinal or transverse plasmonic resonances and narrow infrared active absorption features of an analyte molecule. We demonstrate an increase of the vibrational line intensity up to a factor of 5.7 of infrared-active absorption features of vanillin in the fingerprint spectral region, yielding enhancement factors of three to four orders of magnitude. Moreover, an optimized readout for SPR sensing is proposed based on slightly overlapping longitudinal and transverse localized SPR.

  20. Surface-Enhanced Infrared Absorption of o-Nitroaniline on Nickel Nanoparticles Synthesized by Electrochemical Deposition

    Directory of Open Access Journals (Sweden)

    Yufang Niu

    2014-01-01

    Full Text Available Nickel nanoparticles were electrochemically deposited on indium-tin oxide (ITO coated glass plate in a modified Watt’s electrolyte. The surface-enhanced infrared absorption (SEIRA effect of the nanoparticles was evaluated by attenuated total reflection spectroscopy (ATR-FTIR using o-nitroaniline as a probe molecule. Electrodeposition parameters such as deposition time, pH value, and the type of surfactants were investigated. The morphology and the microstructure of the deposits were characterized by the field emission scanning electron microscope (FESEM and the atomic force microscope (AFM, respectively. The results indicate that the optimum parameters were potential of 1.3 V, time of 30 s, and pH of 8.92 in the solution of 0.3756 mol/L diethanolamine, 0.1 mol/L nickel sulfate, 0.01 mol/L nickel chloride, and 0.05 mol/L boric acid. The FESEM observation shows that the morphology of nickel nanoparticles with best enhancement effect is spherical and narrowly distributed particles with the average size of 50 nm. SEIRA enhancement factor is about 68.

  1. Influence of Water Activated by Far infrared Porous Ceramics on Nitrogen Absorption in the Pig Feed.

    Science.gov (United States)

    Meng, Junping; Liu, Jie; Liang, Jinsheng; Zhang, Hongchen; Ding, Yan

    2016-04-01

    Under modern and, intensive feeding livestock and poultry density has increased, and brought a deterioration of the farm environment. The livestock and their excrement generate harmful gases such as ammonia, etc. which restricted the sustainable development and improvement of production efficiency of animal husbandry. In this paper, a new kind of far infrared porous ceramics was prepared to activate, the animal drinking water. The activated water and common water were then supplied to pigs, and the fresh pig feces of experimental group and:control group were collected on a regular basis. The residual protein content in feces was tested by Kjeldahl nitrogen method to study the influence law of the porous ceramics on absorbing nitrogen element in animal feces. The results showed that compared with the control group, the protein content in the experimental group decreased on average by 39.2%. The activated drinking water was conducive to the absorption of nitrogen in pig feed. The clusters of water molecules became smaller under the action of the porous ceramics. Hence, they were easy to pass through the water protein channel on the cell membrane for speeding up the metabolism.

  2. Phase transitions of amorphous solid acetone in confined geometry investigated by reflection absorption infrared spectroscopy.

    Science.gov (United States)

    Shin, Sunghwan; Kang, Hani; Kim, Jun Soo; Kang, Heon

    2014-11-26

    We investigated the phase transformations of amorphous solid acetone under confined geometry by preparing acetone films trapped in amorphous solid water (ASW) or CCl4. Reflection absorption infrared spectroscopy (RAIRS) and temperature-programmed desorption (TPD) were used to monitor the phase changes of the acetone sample with increasing temperature. An acetone film trapped in ASW shows an abrupt change in the RAIRS features of the acetone vibrational bands during heating from 80 to 100 K, which indicates the transformation of amorphous solid acetone to a molecularly aligned crystalline phase. Further heating of the sample to 140 K produces an isotropic solid phase, and eventually a fluid phase near 157 K, at which the acetone sample is probably trapped in a pressurized, superheated condition inside the ASW matrix. Inside a CCl4 matrix, amorphous solid acetone crystallizes into a different, isotropic structure at ca. 90 K. We propose that the molecularly aligned crystalline phase formed in ASW is created by heterogeneous nucleation at the acetone-water interface, with resultant crystal growth, whereas the isotropic crystalline phase in CCl4 is formed by homogeneous crystal growth starting from the bulk region of the acetone sample.

  3. Near-infrared light absorption by polycrystalline SiSn alloys grown on insulating layers

    Energy Technology Data Exchange (ETDEWEB)

    Kurosawa, Masashi, E-mail: kurosawa@alice.xtal.nagoya-u.ac.jp [Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); JSPS, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083 (Japan); Kato, Motohiro; Yamaha, Takashi; Taoka, Noriyuki; Nakatsuka, Osamu [Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Zaima, Shigeaki [Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2015-04-27

    High-Sn-content SiSn alloys are strongly desired for the next-generation near-infrared optoelectronics. A polycrystalline growth study has been conducted on amorphous SiSn layers with a Sn-content of 2%–30% deposited on either a substrate of SiO{sub 2} or SiN. Incorporating 30% Sn into Si permits the crystallization of the amorphous layers at annealing temperatures below the melting point of Sn (231.9 °C). Composition analyses indicate that approximately 20% of the Sn atoms are substituted into the Si lattice after solid-phase crystallization at 150–220 °C for 5 h. Correspondingly, the optical absorption edge is red-shifted from 1.12 eV (Si) to 0.83 eV (Si{sub 1−x}Sn{sub x} (x ≈ 0.18 ± 0.04)), and the difference between the indirect and direct band gap is significantly reduced from 3.1 eV (Si) to 0.22 eV (Si{sub 1−x}Sn{sub x} (x ≈ 0.18 ± 0.04)). These results suggest that with higher substitutional Sn content the SiSn alloys could become a direct band-gap material, which would provide benefits for Si photonics.

  4. Ultrasensitive time-resolved immunofluorometric assay of pepsinogen I

    International Nuclear Information System (INIS)

    Huang Biao; Xiao Hualong; Zhang Xiangrui; Zhu Lan; Jiang Menjun

    2004-01-01

    Purpose: To construct a two-site sandwich-type assay for pepsinogen I with time-resolved fluoroimmunoassay (TRFIA) as a detection technique. Methods: On the noncompetitive assay, one monoclonal antibody (McAb) coating on wells directed against a specific antigenic site on the pepsinogen I, the europium-labelled McAb which was prepared by with helpful of the europium-chelate of N-(p-isothiocyanatobenzyl)- diethylenetriamine-N, N, N, N-tetraacetic acid directed against a different antigenic site on the pepsinogen I molecule we called labelling McAb. The luminescent enhancement system was enhancement solution which contained mainly 2-naphthoyltrifluoroacetone. 25μl of Calibrators or samples and 200 μl of the assay buffer were pipetted into coated microtiter wells. The plates were incubated with mechanical shaking for 1 h at 25 degree C, washed two times, then added 100 μl Eu3+- McAb solution diluted 50-fold in assay buffer. The plates were incubated again with mechanical shaking for 1 h at 25 degree C,After six washings, 200 μl of enhancement solution were dispense into each well. The plates were shaken for 5 min and fluorescence readings. All the proceeding were done by auto DELFIA1235, software was designed by our lab. The calibration curve and calculation of the concentrations in the unknown samples were performed automatically by using Multicalc software program, where a spline algorithm on logarithmically transformed data was employed. Results: The average labelling yield is 8.6 Eu3+/McAb giving high sensitivity with low background(<1000 cps). The measurement range was 3.5-328 μ g /L with ED25, ED50, ED80 of 11.34 ±0.2 μ g/L, 38.73±0.8 μ g /L and 132,3±2.9 μ g/L. The detection limit, defined as the concentration of PGI corresponding to the fluorescence of the zero calibrators plus two SDs, is 0..05μg/L. Within-run and between-run precision was l.9% and 4.7% which assessed at various PGI concentrations between 5 and 300 μg/L. We checked for cross

  5. Application of microfluidic devices for time resolved FTIR spectroscopy

    International Nuclear Information System (INIS)

    Wagner, C.

    2012-01-01

    Within this thesis, micro fluidic mixers, operated in continuous flow mode, were used for time resolved FTIR studies of chemical reactions in aqueous solution. Any chemical reaction, that can be started upon mixing two reagents, can be examined with this technique. The mixing channel also serves as the observation window for the IR measurements. The actual measurements take place at well defined spots along this channel, corresponding to specific reaction times: moving the measurement spot (100 × 100 μm 2 ) towards the entry yields shorter reaction times, moving it towards the channel's end gives longer reaction times. The temporal resolution of the experiment depends on the flow rate inside the mixing channel and the spacing between subsequent measurement points. Fast flow rates, limited by the back pressure of the mixer leading to leakages, allow time resolutions in the sub-millisecond time range using a standard FTIR microscope, whereas slow flow rates allow the measurement of reaction times up to 1000 ms. Evaluating the mixer using a fast chemical reaction resulted in mixing times of approximately 5 ms and a homogeneous distribution of the liquids across the width of the mixing channel. The mixer was then used for the measurement of the H/D exchange on carbohydrates, the complex formaldehyde sulfite clock reaction, and the folding of the protein ubiquitin from its native to the ''A'' state, induced by mixing it with an acidified methanol solution. For cleaning the mixer a software tool, called ATLAS, was developed in LabVIEW, which was used to automatize the necessary cleaning steps performed by a dedicated flow system. Additionally, the micro mixer technology was combined with the step scan measurement technique using a beam condenser focusing the IR beam of an FTIR spectrometer down to a spot size of 1 mm diameter and through the mixer. The laser light, initiating the chemical reaction inside the mixing channel, was coupled into the focusing unit using a

  6. Time-resolved biophysical approaches to nucleocytoplasmic transport

    Directory of Open Access Journals (Sweden)

    Francesco Cardarelli

    Full Text Available Molecules are continuously shuttling across the nuclear envelope barrier that separates the nucleus from the cytoplasm. Instead of being just a barrier to diffusion, the nuclear envelope is rather a complex filter that provides eukaryotes with an elaborate spatiotemporal regulation of fundamental molecular processes, such as gene expression and protein translation. Given the highly dynamic nature of nucleocytoplasmic transport, during the past few decades large efforts were devoted to the development and application of time resolved, fluorescence-based, biophysical methods to capture the details of molecular motion across the nuclear envelope. These methods are here divided into three major classes, according to the differences in the way they report on the molecular process of nucleocytoplasmic transport. In detail, the first class encompasses those methods based on the perturbation of the fluorescence signal, also known as ensemble-averaging methods, which average the behavior of many molecules (across many pores. The second class comprises those methods based on the localization of single fluorescently-labelled molecules and tracking of their position in space and time, potentially across single pores. Finally, the third class encompasses methods based on the statistical analysis of spontaneous fluorescence fluctuations out of the equilibrium or stationary state of the system. In this case, the behavior of single molecules is probed in presence of many similarly-labelled molecules, without dwelling on any of them. Here these three classes, with their respective pros and cons as well as their main applications to nucleocytoplasmic shuttling will be briefly reviewed and discussed. Keywords: Fluorescence recovery after photobleaching, Single particle tracking, Fluorescence correlation spectroscopy, Diffusion, Transport, GFP, Nuclear pore complex, Live cell, Confocal microscopy

  7. In vivo determination of the optical properties of muscle with time-resolved reflectance using a layered model

    International Nuclear Information System (INIS)

    Kienle, A.; Glanzmann, T.

    1999-01-01

    We have investigated the possibility of determining the optical coefficients of muscle in the extremities with in vivo time-resolved reflectance measurements using a layered model. A solution of the diffusion equation for two layers was fitted to three-layered Monte Carlo calculations simulating the skin, the subcutaneous fat and the muscle. Relative time-resolved reflectance data at two distances were used to derive the optical coefficients of the layers. We found for skin and subcutaneous fat layer thicknesses (l 2 ) of up to 10 mm that the estimated absorption coefficients of the second layer of the diffusion model have differences of less than 20% compared with those of the muscle layer of the Monte Carlo simulations if the thickness of the first layer of the diffusion model is also fitted. If l 2 is known, the differences are less than 5%, whereas the use of a semi-infinite model delivers differences of up to 55%. Even if l 2 is only approximately known the absorption coefficient of the muscle can be determined accurately. Experimentally, the time-resolved reflectance was measured on the forearms of volunteers at two distances from the incident beam by means of a streak camera. The thicknesses of the tissues involved were determined by ultrasound. The optical coefficients were derived from these measurements by applying the two-layered diffusion model, and results in accordance with the theoretical studies were observed. (author)

  8. Preclinical, fluorescence and diffuse optical tomography: non-contact instrumentation, modeling and time-resolved 3D reconstruction

    International Nuclear Information System (INIS)

    Nouizi, F.

    2011-09-01

    Time-Resolved Diffuse Optical Tomography (TR-DOT) is a new non-invasive imaging technique increasingly used in the clinical and preclinical fields. It yields optical absorption and scattering maps of the explored organs, and related physiological parameters. Time-Resolved Fluorescence Diffuse Optical Tomography (TR-FDOT) is based on the detection of fluorescence photons. It provides spatio-temporal maps of fluorescent probe concentrations and life times, and allows access to metabolic and molecular imaging which is important for diagnosis and therapeutic monitoring, particularly in oncology. The main goal of this thesis was to reconstruct 3D TR-DOT/TR-FDOT images of small animals using time-resolved optical technology. Data were acquired using optical fibers fixed around the animal without contact with its surface. The work was achieved in four steps: 1)- Setting up an imaging device to record the 3D coordinates of an animal's surface; 2)- Modeling the no-contact approach to solve the forward problem; 3)- Processing of the measured signals taking into account the impulse response of the device; 4)- Implementation of a new image reconstruction method based on a selection of carefully chosen points. As a result, good-quality 3D optical images were obtained owing to reduced cross-talk between absorption and scattering. Moreover, the computation time was cut down, compared to full-time methods using whole temporal profiles. (author)

  9. Airborne Laser Infrared Absorption Spectrometer (ALIAS-II) for in situ Atmospheric Measurements of N(sub 2)0, CH(sub 4), CO, HCl, and NO(sub 2) from Balloon or RPA Platforms

    Science.gov (United States)

    Scott, D.; Herman, R.; Webster, C.; May, R.; Flesch, G.; Moyer, E.

    1998-01-01

    The Airborne Laser Infrared Absorption Spectrometer II (ALIAS-II) is a lightweight, high-resolution (0.0003 cm-1), scanning, mid-infrared absorption spectrometer based on cooled (80 K) lead-salt tunable diode laser sources.

  10. Broadband perfect infrared absorption by tuning epsilon-near-zero and epsilon-near-pole resonances of multilayer ITO nanowires.

    Science.gov (United States)

    Zhou, Kun; Cheng, Qiang; Song, Jinlin; Lu, Lu; Jia, Zhihao; Li, Junwei

    2018-01-01

    We numerically investigate the broadband perfect infrared absorption by tuning epsilon-near-zero (ENZ) and epsilon-near-pole (ENP) resonances of multilayer indium tin oxide nanowires (ITO NWs). The monolayer ITO NWs array shows intensive absorption at ENZ and ENP wavelengths for p polarization, while only at the ENP wavelength for s polarization. Moreover, the ENP resonances are almost omnidirectional and the ENZ resonances are angularly dependent. Therefore, the absorption bandwidth is broader for p polarization than that for s polarization when polarized waves are incident obliquely. The ENZ resonances can be tuned by altering the doping concentration and volume filling factor of ITO NWs. However, the ENP resonances only can be tuned by changing the doping concentration of ITO NWs, and volume filling factor impacts little on the ENP resonances. Based on the strong absorption properties of each layer at their own ENP and ENZ resonances, the tuned absorption of the bilayer ITO NWs with the different doping concentrations can be broader and stronger. Furthermore, multilayer ITO NWs can achieve broadband perfect absorption by controlling the doping concentration, volume filling factor, and length of the NWs in each layer. This study has the potential to apply to applications requiring efficient absorption and energy conversion.

  11. Time-resolved diffraction studies of muscle using synchrotron radiation

    International Nuclear Information System (INIS)

    Harford, Jeffrey; Squire, John

    1997-01-01

    details the practical methods involved in recording time-resolved x-ray diffraction patterns from active muscles and the theoretical approaches that are being used to interpret the diffraction patterns that are obtained. The ultimate aim is to produce a series of time-sliced images of the changing molecular arrangements and shapes in the muscle as force is produced; together these images will form 'Muscle - The Movie'. (author)

  12. Kinetics of the reaction F+NO+M->FNO+M studied by pulse radiolysis combined with time-resolved IR and UV spectroscopy

    DEFF Research Database (Denmark)

    Pagsberg, Palle Bjørn; Sillesen, A.; Jodkowski, J.T.

    1996-01-01

    The title reaction was initiated by pulse radiolysis of SF6/NO gas mixtures, and the formation of FNO was studied by time-resolved IR and UV spectroscopy. At SF6 pressures of 10-320 mbar at 298 K, the formation of FNO was studied by infrared diode laser spectroscopy at 1857.324 cm(-1). Comparative...

  13. Fluorescence diffuse optical tomography: benefits of using the time-resolved modality

    International Nuclear Information System (INIS)

    Ducros, Nicolas

    2009-01-01

    Fluorescence diffuse optical tomography enables the three-dimensional reconstruction of fluorescence markers injected within a biological tissue, with light in the near infrared range. The simple continuous modality uses steady excitation light and operates from the measurements at different positions of the attenuation of the incident beam. This technique is low-cost, non-ionizing, and easy to handle, but subject to low resolution for thick tissues due to diffusion. Hopefully, the time-resolved modality, which provides the time of flight of any detected photon, could overcome this limitation and pave the way to clinical applications. This thesis aims at determining the best way to exploit the time resolved information and at quantifying the advantages of this modality over the standard continuous wave one. Model deviations must be carefully limited when ill-posed problems as fluorescence diffuse optical tomography are considered. As a result, we have first addressed the modelling part of the problem. We have shown that the photons density models to good approximation the measurable quantity that is the quantity measured by an actual acquisition set-up. Then, the moment-based reconstruction scheme has been thoroughly evaluated by means of a theoretical analysis of the moments properties. It was found that the moment-based approach requires high photon counts to be profitable compared to the continuous wave modality. Last, a novel wavelet-based approach, which enables an improved reconstruction quality, has been introduced. This approach has shown good ability to exploit the temporal information at lower photon counts. (author) [fr

  14. Microscopic time-resolved imaging of singlet oxygen by delayed fluorescence in living cells.

    Science.gov (United States)

    Scholz, Marek; Dědic, Roman; Hála, Jan

    2017-11-08

    Singlet oxygen is a highly reactive species which is involved in a number of processes, including photodynamic therapy of cancer. Its very weak near-infrared emission makes imaging of singlet oxygen in biological systems a long-term challenge. We address this challenge by introducing Singlet Oxygen Feedback Delayed Fluorescence (SOFDF) as a novel modality for semi-direct microscopic time-resolved wide-field imaging of singlet oxygen in biological systems. SOFDF has been investigated in individual fibroblast cells incubated with a well-known photosensitizer aluminium phthalocyanine tetrasulfonate. The SOFDF emission from the cells is several orders of magnitude stronger and much more readily detectable than the very weak near-infrared phosphorescence of singlet oxygen. Moreover, the analysis of SOFDF kinetics enables us to estimate the lifetimes of the involved excited states. Real-time SOFDF images with micrometer spatial resolution and submicrosecond temporal-resolution have been recorded. Interestingly, a steep decrease in the SOFDF intensity after the photodynamically induced release of a photosensitizer from lysosomes has been demonstrated. This effect could be potentially employed as a valuable diagnostic tool for monitoring and dosimetry in photodynamic therapy.

  15. Structure and function of proteins investigated by crystallographic and spectroscopic time-resolved methods

    Science.gov (United States)

    Purwar, Namrta

    crystal. Time-resolved X-ray data collected at pH's of 4, 7 and 9 demonstrate that pH alters the kinetics of the PYP photocycle dramatically. At pH 4 the photocycle lasts almost one order of magnitude longer in time compared to pH 7. The final intermediate that accumulates at both pH 7 and pH 4 is absent at pH 9. Results from the dose- and the pH-dependent time-resolved crystallographic experiments show that it is imperative to carefully control the conditions under which time-resolved data are collected. With these considerations we collected a comprehensive time-series from nanoseconds to seconds at 14 different temperature settings from -40 °C to 70 °C. Results from time-resolved crystallography are corroborated by employing time-resolved absorption spectroscopy. For this, absorption spectra on crystals and solution are collected by a fast micro-spectrophotometer custom-designed in our lab. We identify kinetic phases of the PYP photocycle at all 14 temperature settings. Relaxation times associated with these phases are temperature-dependent and can be fit by the Van't Hoff-Arrhenius equation. Kinetic modeling yields entropy and enthalpy values at the barriers of the activation solely from the time-resolved crystallographic data. With this, we advance crystallography to a new frontier: the determination of free energy surfaces. Investigating enzymatic reactions can be challenging, because they are non-cyclic. After one turnover product must be washed away and substrate must be reloaded. A promising approach for routine application can be envisioned at the new 4th generation X-ray sources, such as X-ray free electron lasers (XFELs). With our results we set the scene to comprehensively investigate all kinds of enzymatic reactions with these instruments.

  16. Time-resolved studies at PETRA III with a highly repetitive synchronized laser system

    Energy Technology Data Exchange (ETDEWEB)

    Schlie, Mortiz

    2013-09-15

    Atomic and molecular processes can nowadays be directly followed in the time domain. This is a core technique for a better understanding of the involved fundamental physics, thus auguring new applications in the future as well. Usually the so-called pump-probe technique making use of two synchronized ultrashort light pulses is utilized to obtain this time-resolved data. In this work, the development and characterization of a synchronization system enabling such pump-probe studies at the storage ring PETRA III in combination with an external, then synchronized fs-laser system is described. The synchronization is based on an extended PLL approach with three interconnected feedback loops allowing to monitor short-time losses of the lock and thus prevent them. This way, the jitter between the laser PHAROS and the PETRA III reference signal is reduced to {sigma} <5 ps. Thus the system allows to conduct experiments at a repetition rate of 130 kHz with a temporal resolution limited only by the X-ray pulse length. A major emphasis in the fundamental introductory chapters is an intuitive explanation of the basic principles of phase locked loops and the different aspects of phase noise to allow a deeper understanding of the synchronization. Furthermore, first pump-probe experiments conducted at different beamlines at PETRA III are presented, demonstrating the usability of the laser system in a scientific environment as well. In first characterizing experiments the pulse duration of PETRA III X-ray pulses has been measured to be 90 ps FWHM. In particular, there have been time resolved X-ray absorption spectroscopy experiments on Gaq3 and Znq2 conducted at beamline P11. First results show dynamics of the electronic excitation on the timescale of a few hundred pico seconds up to a few nano seconds and provide a basic understanding for further research on those molecules. For Gaq3 this data is analyzed in detail and compared with visible fluorescence measurements suggesting at

  17. Time-resolved studies at PETRA III with a highly repetitive synchronized laser system

    International Nuclear Information System (INIS)

    Schlie, Mortiz

    2013-09-01

    Atomic and molecular processes can nowadays be directly followed in the time domain. This is a core technique for a better understanding of the involved fundamental physics, thus auguring new applications in the future as well. Usually the so-called pump-probe technique making use of two synchronized ultrashort light pulses is utilized to obtain this time-resolved data. In this work, the development and characterization of a synchronization system enabling such pump-probe studies at the storage ring PETRA III in combination with an external, then synchronized fs-laser system is described. The synchronization is based on an extended PLL approach with three interconnected feedback loops allowing to monitor short-time losses of the lock and thus prevent them. This way, the jitter between the laser PHAROS and the PETRA III reference signal is reduced to σ <5 ps. Thus the system allows to conduct experiments at a repetition rate of 130 kHz with a temporal resolution limited only by the X-ray pulse length. A major emphasis in the fundamental introductory chapters is an intuitive explanation of the basic principles of phase locked loops and the different aspects of phase noise to allow a deeper understanding of the synchronization. Furthermore, first pump-probe experiments conducted at different beamlines at PETRA III are presented, demonstrating the usability of the laser system in a scientific environment as well. In first characterizing experiments the pulse duration of PETRA III X-ray pulses has been measured to be 90 ps FWHM. In particular, there have been time resolved X-ray absorption spectroscopy experiments on Gaq3 and Znq2 conducted at beamline P11. First results show dynamics of the electronic excitation on the timescale of a few hundred pico seconds up to a few nano seconds and provide a basic understanding for further research on those molecules. For Gaq3 this data is analyzed in detail and compared with visible fluorescence measurements suggesting at least

  18. Infrared absorption spectroscopy characterization of liquid-solid interfaces: The case of chiral modification of catalysts

    Science.gov (United States)

    Zaera, Francisco

    2018-03-01

    An overview is provided here of our work on the characterization of chiral modifiers for the bestowing of enantioselectivity to metal-based hydrogenation catalysts, with specific reference to the so-called Orito reaction. We start with a brief discussion of the use of infrared absorption spectroscopy (IR) for the characterization of chemical species at liquid-solid interfaces, describing the options available as well as the information that can be extracted from such experiments and the advantages and disadvantages associated with the technique. We then summarize the main results that we have reported to date from our IR study of the adsorption of cinchona alkaloids and related compounds from solutions onto platinum surfaces. Several observations are highlighted and placed in context in terms of the existing knowledge and their relevance to catalysis. Key conclusions include the uniqueness of the nature of the adsorbed species when in the presence of the solvent (versus when the uptake is done under vacuum, or versus the pure or dissolved molecules), the fact that each modifier adopts unique and distinct adsorption geometries on the surface and that those change with the concentration of the solution in ways that correlate well with the performance of the catalyst, the potential tendency of at least some of these chiral modifiers to bind to the surface primarily via the nitrogen atom of the amine group, not the aromatic ring as it is often assumed, and the observation that the ability of one modifier to dominate the catalytic chemistry in solutions containing mixtures of two or more of those is linked to their capacity for displacing each other from the surface, which in turn is determined by a balance between the strength of their binding to the surface and their solubility in the liquid solvent.

  19. Structure and dynamics in liquid water from x-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Wernet, Philippe

    2009-01-01

    Oxygen K-edge x-ray absorption spectra of water are discussed. The spectra of gas-phase water, liquid water and ice illustrate the sensitivity of oxygen K-edge x-ray absorption spectroscopy to hydrogen bonding in water. Transmission mode spectra of amorphous and crystalline ice are compared to x-ray Raman spectra of ice. The good agreement consolidates the experimental spectrum of crystalline ice and represents an incentive for theoretical calculations of the oxygen K-edge absorption spectrum of crystalline ice. Time-resolved infrared-pump and x-ray absorption probe results are finally discussed in the light of this structural interpretation.

  20. Time-resolved four-wave mixing in InAs/InGaAs quantum-dot amplifiers under electrical injection

    DEFF Research Database (Denmark)

    Borri, Paola; Langbein, Wolfgang Werner; Hvam, Jørn Märcher

    2000-01-01

    Time-resolved four-wave mixing in an InAs/InGaAs/GaAs electrically pumped quantum-dot amplifier is measured at room temperature for different applied bias currents going from optical absorption to gain of the device. The four-wave mixing signal from 140 fs pulses shows a transition from a delayed...

  1. Direct Determination of the Absorption of Graphene Mono- and Multi-layers in the Visible and Near-Infrared

    Science.gov (United States)

    Wu, Yang; Mak, Kin Fai; Lui, Chun Hung; Maultzsch, Janina; Heinz, Tony

    2008-03-01

    Single-crystal mono- and multi-layer graphene samples were prepared by mechanical exfoliation on quartz substrates. The absorption spectra of samples of 1 -- 8 monolayer thickness were measured in the optical and near-infrared range. The absorption coefficient was found to be largely independent of photon energy and linear in the number of graphene layers. Such absorption measurements can thus be used to determine the thickness of mesoscopic graphite to monolayer accuracy, as already demonstrated in the context of Rayleigh scattering [Casiraghi et al. Nano Letters 2007]. By analysis of the optical transmission problem for a thin film at the air-quartz interface, we deduced an absorption of 2.3% per layer. The magnitude of the monolayer absorption agrees with the value of πα, where α is the fine-structure constant, and corresponds the result obtained from a tight-binding model of the graphene electronic structure [Gusynin et al. PRL 2006]. The predicted (and measured) optical absorption, we note, is equivalent to a constant optical conductance ofπe^22h=6.09x10-5φ-1.

  2. Mid-infrared two-photon absorption in an extended-wavelength InGaAs photodetector

    Science.gov (United States)

    Piccardo, Marco; Rubin, Noah A.; Meadowcroft, Lauren; Chevalier, Paul; Yuan, Henry; Kimchi, Joseph; Capasso, Federico

    2018-01-01

    We investigate the nonlinear optical response of a commercial extended-wavelength In0.81Ga0.19As uncooled photodetector. Degenerate two-photon absorption in the mid-infrared range is observed using a quantum cascade laser emitting at λ = 4.5 μm as the excitation source. From the measured two-photon photocurrent signal, we extract a two-photon absorption coefficient β(2) = 0.6 ± 0.2 cm/MW, in agreement with the theoretical value obtained from the Eg-3 scaling law. Considering the wide spectral range covered by extended-wavelength InxGa1-xAs alloys, this result holds promise for applications based on two-photon absorption for this family of materials at wavelengths between 1.8 and 5.6 μm.

  3. Infrared reflection absorption spectroscopy study of radiation-heterogeneous processes in the system of aluminum-hexane

    International Nuclear Information System (INIS)

    Gadzhieva, N.N.; Rimikhanova, A.N.; Garibov, A.A.

    2004-01-01

    Full text: Infrared reflection absorption spectroscopy (IRRAS) was applied to study the regularities of radiation conversion of hexane on the surface of aluminum. The research object was the thin polished aluminum plate by mark of AD-00 with reflection coefficient R=0.8†0.85 in infrared range λ=2.2†15 μ . As adsorbate unsaturated vapors of spectroscopy clear hexane were used. The absorption of hexane (C 2 H 14 ) was being studied manometric at pressures P=(0.1†1.0)·10 2 Pa , what corresponded to monolayer value of 1-10. The samples were irradiated with γ-quanta of 60 Co with D=1.03 Gy·s -1 doze rate. Infrared reflection spectrum when linear-polarized radiation fall on the sample under angle ψ=10 o was measured by spectrophotometer 'Specord 71 JR' in diapason of 4000-650cm -1 at the temperature by mean of special reflecting arrangements. Formation of molecular hydrogen (H 2 ) and other gaseous products of decomposition were controlled by chromotographical and infrared spectroscopical methods. The analysis of hexane infrared absorption spectra after radiation-stimulated adsorption on the surface of aluminum, points out the formation of H-bonded hydrocarbon complex ( ν∼2680cm -1 ) with much loosening of C-H bond (the molecular form of absorption) and the possibility of proceeding dissociative absorption with formation of metal-alkyls (ν∼2880, 2920, 2970 cm -1 ). Probability of the last mentioned process, which proceeds in the most defective centers, increases with increasing of γ-radiation doze. It was established that the radiation processes in hetero system Al-ads.C 6 H 14 accelerate the radiolysis of hexane. At all these the radiation decomposition of hexane in hetero system Al-ads.C 6 H 14 is accompanied by formation the surface hydrides (ν∼1700-2000 cm -1 ), acetylene (ν∼3200-3300 cm -1 ), ethylene (ν∼980 cm -1 ), and also gaseous products of molecular hydrogen decomposition (H 2 ) and hydrocarbons C 1 -C 5 (bands with maxima 770, 790

  4. Time-resolved photoelectron spectroscopy of IR-driven electron dynamics in a charge transfer model system.

    Science.gov (United States)

    Falge, Mirjam; Fröbel, Friedrich Georg; Engel, Volker; Gräfe, Stefanie

    2017-08-02

    If the adiabatic approximation is valid, electrons smoothly adapt to molecular geometry changes. In contrast, as a characteristic of diabatic dynamics, the electron density does not follow the nuclear motion. Recently, we have shown that the asymmetry in time-resolved photoelectron spectra serves as a tool to distinguish between these dynamics [Falge et al., J. Phys. Chem. Lett., 2012, 3, 2617]. Here, we investigate the influence of an additional, moderately intense infrared (IR) laser field, as often applied in attosecond time-resolved experiments, on such asymmetries. This is done using a simple model for coupled electronic-nuclear motion. We calculate time-resolved photoelectron spectra and their asymmetries and demonstrate that the spectra directly map the bound electron-nuclear dynamics. From the asymmetries, we can trace the IR field-induced population transfer and both the field-driven and intrinsic (non-)adiabatic dynamics. This holds true when considering superposition states accompanied by electronic coherences. The latter are observable in the asymmetries for sufficiently short XUV pulses to coherently probe the coupled states. It is thus documented that the asymmetry is a measure for phases in bound electron wave packets and non-adiabatic dynamics.

  5. The Oxford-Diamond In Situ Cell for studying chemical reactions using time-resolved X-ray diffraction

    Science.gov (United States)

    Moorhouse, Saul J.; Vranješ, Nenad; Jupe, Andrew; Drakopoulos, Michael; O'Hare, Dermot

    2012-08-01

    A versatile, infrared-heated, chemical reaction cell has been assembled and commissioned for the in situ study of a range of chemical syntheses using time-resolved energy-dispersive X-ray diffraction (EDXRD) on Beamline I12 at the Diamond Light Source. Specialized reactor configurations have been constructed to enable in situ EDXRD investigation of samples under non-ambient conditions. Chemical reactions can be studied using a range of sample vessels such as alumina crucibles, steel hydrothermal autoclaves, and glassy carbon tubes, at temperatures up to 1200 °C.

  6. Time-resolved optical absorption microspectroscopy of magnetic field sensitive flavin photochemistry

    Science.gov (United States)

    Antill, Lewis M.; Beardmore, Joshua P.; Woodward, Jonathan R.

    2018-02-01

    The photochemical reactions of blue-light receptor proteins have received much attention due to their very important biological functions. In addition, there is also growing evidence that the one particular class of such proteins, the cryptochromes, may be associated with not only a biological photo-response but also a magneto-response, which may be responsible for the mechanism by which many animals can respond to the weak geomagnetic field. Therefore, there is an important scientific question over whether it is possible to directly observe such photochemical processes, and indeed the effects of weak magnetic fields thereon, taking place both in purified protein samples in vitro and in actual biochemical cells and tissues. For the former samples, the key lies in being able to make sensitive spectroscopic measurements on very small volumes of samples at potentially low protein concentrations, while the latter requires, in addition, spatially resolved measurements on length scales smaller than typical cellular components, i.e., sub-micron resolution. In this work, we discuss a two- and three-color confocal pump-probe microscopic approach to this question which satisfies these requirements and is thus useful for experimental measurements in both cases.

  7. Ultrafast time-resolved absorption spectroscopy of geometric isomers of carotenoids

    International Nuclear Information System (INIS)

    Niedzwiedzki, Dariusz M.; Sandberg, Daniel J.; Cong, Hong; Sandberg, Megan N.; Gibson, George N.; Birge, Robert R.; Frank, Harry A.

    2009-01-01

    The structures of a number of stereoisomers of carotenoids have been revealed in three-dimensional X-ray crystallographic investigations of pigment-protein complexes from photosynthetic organisms. Despite these structural elucidations, the reason for the presence of stereoisomers in these systems is not well understood. An important unresolved issue is whether the natural selection of geometric isomers of carotenoids in photosynthetic pigment-protein complexes is determined by the structure of the protein binding site or by the need for the organism to accomplish a specific physiological task. The association of cis isomers of a carotenoid with reaction centers and trans isomers of the same carotenoid with light-harvesting pigment-protein complexes has led to the hypothesis that the stereoisomers play distinctly different physiological roles. A systematic investigation of the photophysics and photochemistry of purified, stable geometric isomers of carotenoids is needed to understand if a relationship between stereochemistry and biological function exists. In this work we present a comparative study of the spectroscopy and excited state dynamics of cis and trans isomers of three different open-chain carotenoids in solution. The molecules are neurosporene (n = 9), spheroidene (n = 10), and spirilloxanthin (n = 13), where n is the number of conjugated π-electron double bonds. The spectroscopic experiments were carried out on geometric isomers of the carotenoids purified by high performance liquid chromatography (HPLC) and then frozen to 77 K to inhibit isomerization. The spectral data taken at 77 K provide a high resolution view of the spectroscopic differences between geometric isomers. The kinetic data reveal that the lifetime of the lowest excited singlet state of a cis-isomer is consistently shorter than that of its corresponding all-trans counterpart despite the fact that the excited state energy of the cis molecule is typically higher than that of the trans molecule. Quantum theoretical calculations on an n = 9 linear polyene were carried out to examine this process. The calculations indicate that the electronic coupling terms are significantly higher for the cis isomer, and when combined with the Franck-Condon factors, predict internal conversion rates roughly double those of the all-trans species. The electronic effects more than offset the decrease in coupling efficiencies associated with the higher system origin energies and explain the observed shorter cis isomer lifetimes

  8. Reaction-time-resolved measurements of laser-induced fluorescence in a shock tube with a single laser pulse

    Science.gov (United States)

    Zabeti, S.; Fikri, M.; Schulz, C.

    2017-11-01

    Shock tubes allow for the study of ultra-fast gas-phase reactions on the microsecond time scale. Because the repetition rate of the experiments is low, it is crucial to gain as much information as possible from each individual measurement. While reaction-time-resolved species concentration and temperature measurements with fast absorption methods are established, conventional laser-induced fluorescence (LIF) measurements with pulsed lasers provide data only at a single reaction time. Therefore, fluorescence methods have rarely been used in shock-tube diagnostics. In this paper, a novel experimental concept is presented that allows reaction-time-resolved LIF measurements with one single laser pulse using a test section that is equipped with several optical ports. After the passage of the shock wave, the reactive mixture is excited along the center of the tube with a 266-nm laser beam directed through a window in the end wall of the shock tube. The emitted LIF signal is collected through elongated sidewall windows and focused onto the entrance slit of an imaging spectrometer coupled to an intensified CCD camera. The one-dimensional spatial resolution of the measurement translates into a reaction-time-resolved measurement while the species information can be gained from the spectral axis of the detected two-dimensional image. Anisole pyrolysis was selected as the benchmark reaction to demonstrate the new apparatus.

  9. Time-resolved photoelectron spectrometry of a dephasing process in pyrazine

    International Nuclear Information System (INIS)

    Pavlov, R.L.; Pavlov, L.I.; Delchev, Ya.I.; Pavlova, S.I.

    2001-01-01

    The first femtosecond time-resolved photoelectron imaging (PEI) is presented. The method is characterized by photoionization of NO and further applied to ultrafast dephasing in pyrazine. Intermediate case behaviour in radiationless transition is clearly observed in time-resolved photoelectron kinetic energy distribution. Femtosecond PEI is with much improved efficiency than conventional photoelectron spectroscopies. It is anticipated that the unifield approach of time-resolved photoelectron and photoion imaging opens the possibility of observing photon-induced dynamics in real time

  10. Time-resolved studies of energy transfer from meso-tetrakis(N-methylpyridinium-4-yl)- porphyrin to 3,3'-diethyl-2,2'-thiatricarbocyanine iodide along deoxyribonucleic acid Chain.

    Science.gov (United States)

    Kakiuchi, Toshifumi; Ito, Fuyuki; Nagamura, Toshihiko

    2008-04-03

    The excitation energy transfer from meso-tetrakis(N-methylpyridinium-4-yl)porphyrin (TMPyP) to 3,3'-diethyl-2,2'-thiatricarbocyanine iodide (DTTCI) along the deoxyribonucleic acid (DNA) double strand was investigated by the steady-state absorption and fluorescence measurements and time-resolved fluorescence measurements. The steady-state fluorescence spectra showed that the near-infrared fluorescence of DTTCI was strongly enhanced up to 86 times due to the energy transfer from the excited TMPyP molecule in DNA buffer solution. Furthermore, we elucidated the mechanism of fluorescence quenching and enhancement by the direct observation of energy transfer using the time-resolved measurements. The fluorescence quenching of TMPyP chiefly consists of a static component due to the formation of complex and dynamic components due to the excitation energy transfer. In a heterogeneous one-dimensional system such as a DNA chain, it was proved that the energy transfer process only carries out within the critical distance based on the Förster theory and within a threshold value estimated from the modified Stern-Volmer equation. The present results showed that DNA chain is one of the most powerful tools for nanoassemblies and will give a novel concepts of material design.

  11. FeNi3/indium tin oxide (ITO) composite nanoparticles with excellent microwave absorption performance and low infrared emissivity

    International Nuclear Information System (INIS)

    Fu, Li-Shun; Jiang, Jian-Tang; Zhen, Liang; Shao, Wen-Zhu

    2013-01-01

    Highlights: ► Electrical conductivity and infrared emissivity can be controlled by ITO content. ► The infrared emissivity is the lowest when the mole ratio of In:Sn in sol is 9:1. ► The permittivity in microwave band can be controlled by the electrical conductivity. ► EMA performance is significantly influenced by the content of ITO phase. ► FeNi 3 /ITO composite particles are suitable for both infrared and radar camouflage. - Abstract: FeNi 3 /indium tin oxide (ITO) composite nanoparticles were synthesized by a self-catalyzed reduction method and a sol–gel process. The dependence of the content of ITO phase with the mole ratios of In:Sn of different sols was investigated. The relation between the electrical conductivity, infrared emissivity of FeNi 3 /ITO composite nanoparticles and the content of ITO phase was discussed. Electromagnetic wave absorption (EMA) performance of products was evaluated by using transmission line theory. It was found that EMA performance including the intensity and the location of effective band is significantly dependent on the content of ITO phase. The low infrared emissivity and superior EMA performance of FeNi 3 /ITO composite nanoparticles can be both achieved when the mole ratio of In:Sn in sol is 9:1.

  12. FeNi{sub 3}/indium tin oxide (ITO) composite nanoparticles with excellent microwave absorption performance and low infrared emissivity

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Li-Shun; Jiang, Jian-Tang [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Zhen, Liang, E-mail: lzhen@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); MOE Key Laboratory of Micro-systems and Micro-structures Manufacturing, Harbin Institute of Technology, Harbin 150080 (China); Shao, Wen-Zhu [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2013-03-01

    Highlights: Black-Right-Pointing-Pointer Electrical conductivity and infrared emissivity can be controlled by ITO content. Black-Right-Pointing-Pointer The infrared emissivity is the lowest when the mole ratio of In:Sn in sol is 9:1. Black-Right-Pointing-Pointer The permittivity in microwave band can be controlled by the electrical conductivity. Black-Right-Pointing-Pointer EMA performance is significantly influenced by the content of ITO phase. Black-Right-Pointing-Pointer FeNi{sub 3}/ITO composite particles are suitable for both infrared and radar camouflage. - Abstract: FeNi{sub 3}/indium tin oxide (ITO) composite nanoparticles were synthesized by a self-catalyzed reduction method and a sol-gel process. The dependence of the content of ITO phase with the mole ratios of In:Sn of different sols was investigated. The relation between the electrical conductivity, infrared emissivity of FeNi{sub 3}/ITO composite nanoparticles and the content of ITO phase was discussed. Electromagnetic wave absorption (EMA) performance of products was evaluated by using transmission line theory. It was found that EMA performance including the intensity and the location of effective band is significantly dependent on the content of ITO phase. The low infrared emissivity and superior EMA performance of FeNi{sub 3}/ITO composite nanoparticles can be both achieved when the mole ratio of In:Sn in sol is 9:1.

  13. Pulsed-laser time-resolved thermal mirror technique in low-absorbance homogeneous linear elastic materials.

    Science.gov (United States)

    Lukasievicz, Gustavo V B; Astrath, Nelson G C; Malacarne, Luis C; Herculano, Leandro S; Zanuto, Vitor S; Baesso, Mauro L; Bialkowski, Stephen E

    2013-10-01

    A theoretical model for a time-resolved photothermal mirror technique using pulsed-laser excitation was developed for low absorption samples. Analytical solutions to the temperature and thermoelastic deformation equations are found for three characteristic pulse profiles and are compared to finite element analysis methods results for finite samples. An analytical expression for the intensity of the center of a continuous probe laser at the detector plane is derived using the Fresnel diffraction theory, which allows modeling of experimental results. Experiments are performed in optical glasses, and the models are fitted to the data. The parameters of the fit are in good agreement with previous literature data for absorption, thermal diffusion, and thermal expansion of the materials tested. The combined modeling and experimental techniques are shown to be useful for quantitative determination of the physical properties of low absorption homogeneous linear elastic material samples.

  14. The analysis of time-resolved optically stimulated luminescence: I. Theoretical considerations

    International Nuclear Information System (INIS)

    Chithambo, M L

    2007-01-01

    This is the first of two linked papers on the analysis of time-resolved optically stimulated luminescence. This paper focusses on a theoretical basis of analytical methods and on methods for interpretation of time-resolved luminescence spectra and calculation of luminescence throughput. Using a comparative analysis of the principal features of time-resolved luminescence and relevant analogues from steady state optical stimulation, formulae for configuring a measurement system for optimum performance are presented. We also examine the possible use of stretched-exponential functions for analysis of time-resolved optically stimulated luminescence spectra

  15. A mid-infrared laser absorption sensor for carbon monoxide and temperature measurements

    Science.gov (United States)

    Vanderover, Jeremy

    A mid-infrared (mid-IR) absorption sensor based on quantum cascade laser (QCL) technology has been developed and demonstrated for high-temperature thermometry and carbon monoxide (CO) measurements in combustion environments. The sensor probes the high-intensity fundamental CO ro-vibrational band at 4.6 mum enabling sensitive measurement of CO and temperature at kHz acquisition rates. Because the sensor operates in the mid-IR CO fundamental band it is several orders of magnitude more sensitive than most of the previously developed CO combustion sensors which utilized absorption in the near-IR overtone bands and mature traditional telecommunications-based diode lasers. The sensor has been demonstrated and validated under operation in both scanned-wavelength absorption and wavelength-modulation spectroscopy (WMS) modes in room-temperature gas cell and high-temperature shock tube experiments with known and specified gas conditions. The sensor has also been demonstrated for CO and temperature measurements in an atmospheric premixed ethylene/air McKenna burner flat flame for a range of equivalence ratios (phi = 0.7-1.4). Demonstration of the sensor under scanned-wavelength direct absorption operation was performed in a room-temperature gas cell (297 K and 0.001-1 atm) allowing validation of the line strengths and line shapes predicted by the HITRAN 2004 spectroscopic database. Application of the sensor in scanned-wavelength mode, at 1-2 kHz acquisition bandwidths, to specified high-temperature shock-heated gases (950-3400 K, 1 atm) provided validation of the sensor for measurements under the high-temperature conditions found in combustion devices. The scanned-wavelength shock tube measurements yielded temperature determinations that deviated by only +/-1.2% (1-sigma deviation) with the reflected shock temperatures and CO mole fraction determinations that deviated by that specified CO mole fraction by only +/-1.5% (1-sigma deviation). These deviations are in fact smaller

  16. Stack emission monitoring using non-dispersive infrared spectroscopy with an optimized nonlinear absorption cross interference correction algorithm

    Directory of Open Access Journals (Sweden)

    Y. W. Sun

    2013-08-01

    Full Text Available In this paper, we present an optimized analysis algorithm for non-dispersive infrared (NDIR to in situ monitor stack emissions. The proposed algorithm simultaneously compensates for nonlinear absorption and cross interference among different gases. We present a mathematical derivation for the measurement error caused by variations in interference coefficients when nonlinear absorption occurs. The proposed algorithm is derived from a classical one and uses interference functions to quantify cross interference. The interference functions vary proportionally with the nonlinear absorption. Thus, interference coefficients among different gases can be modeled by the interference functions whether gases are characterized by linear or nonlinear absorption. In this study, the simultaneous analysis of two components (CO2 and CO serves as an example for the validation of the proposed algorithm. The interference functions in this case can be obtained by least-squares fitting with third-order polynomials. Experiments show that the results of cross interference correction are improved significantly by utilizing the fitted interference functions when nonlinear absorptions occur. The dynamic measurement ranges of CO2 and CO are improved by about a factor of 1.8 and 3.5, respectively. A commercial analyzer with high accuracy was used to validate the CO and CO2 measurements derived from the NDIR analyzer prototype in which the new algorithm was embedded. The comparison of the two analyzers show that the prototype works well both within the linear and nonlinear ranges.

  17. Infrared study of the absorption edge of β-InN films grown on GaN/MgO structures

    Science.gov (United States)

    Pérez-Caro, M.; Rodríguez, A. G.; Vidal, M. A.; Navarro-Contreras, H.

    2010-07-01

    Infrared optical studies were carried out in a group of cubic InN samples grown by gas source molecular beam epitaxy on MgO (001) substrates. Room temperature (RT) reflectance and low-temperature (LT) transmittance measurements were performed by using fast Fourier transform infrared spectrometry. Reflectance fittings allowed to establish that β-InN films have large free-carrier concentrations present (>1019 cm-3), a result that is corroborated by Hall effect measurements. Each sample explored exhibited a different optical absorption edge. The Varshni parameters that describe adequately the optical absorption edge responses with temperature are obtained for the set of samples studied. The observed temperatures changes, from LT to RT, are the lowest reported for III-V semiconductor binary compounds. The temperature coefficient of the conduction band depends on the strength of the electron-phonon interaction (e-ph-i), as well as on the thermal expansion. It has been predicted that cubic InN has one of the smallest e-ph-i of all III-V compounds, which is corroborated by these results. The variation in values of absorption edges is clearly consistent with the Burstein-Moss and band renormalization effects, produced by high free electron concentrations. It is shown that the conduction band in β-InN, analogous to wurtzite InN, follows a nonparabolic behavior.

  18. Infrared study of the absorption edge of β-InN films grown on GaN/MgO structures

    International Nuclear Information System (INIS)

    Perez-Caro, M.; Rodriguez, A. G.; Vidal, M. A.; Navarro-Contreras, H.

    2010-01-01

    Infrared optical studies were carried out in a group of cubic InN samples grown by gas source molecular beam epitaxy on MgO (001) substrates. Room temperature (RT) reflectance and low-temperature (LT) transmittance measurements were performed by using fast Fourier transform infrared spectrometry. Reflectance fittings allowed to establish that β-InN films have large free-carrier concentrations present (>10 19 cm -3 ), a result that is corroborated by Hall effect measurements. Each sample explored exhibited a different optical absorption edge. The Varshni parameters that describe adequately the optical absorption edge responses with temperature are obtained for the set of samples studied. The observed temperatures changes, from LT to RT, are the lowest reported for III-V semiconductor binary compounds. The temperature coefficient of the conduction band depends on the strength of the electron-phonon interaction (e-ph-i), as well as on the thermal expansion. It has been predicted that cubic InN has one of the smallest e-ph-i of all III-V compounds, which is corroborated by these results. The variation in values of absorption edges is clearly consistent with the Burstein-Moss and band renormalization effects, produced by high free electron concentrations. It is shown that the conduction band in β-InN, analogous to wurtzite InN, follows a nonparabolic behavior.

  19. Wide-area remote-sensing system of pollution and gas dispersal by near-infrared absorption based on low-loss optical fiber network

    Science.gov (United States)

    Inaba, H.

    1986-01-01

    An all optical remote sensing system utilizing long distance, ultralow loss optical fiber networks is studied and discussed for near infrared absorption measurements of combustible and/or explosive gases such as CH4 and C3H8 in our environment, including experimental results achieved in a diameter more than 20 km. The use of a near infrared wavelength range is emphasized.

  20. Study of combustion properties of a solid propellant by highly time-resolved passive FTIR

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Liming; Zhang, Lin; Li, Yan; Liu, Bingping; Wang, Junde [Laboratory of Advanced Spectroscopy, Nanjing University of Science and Technology, Nanjing 210014 (China)

    2006-10-15

    With a time resolution of 0.125 s and a spectral resolution of 4 cm{sup -1}, emission spectra of the combustion process of a solid propellant were recorded by highly time-resolved passive FTIR. Some gaseous combustion products, such as H{sub 2}O, CO, CO{sub 2}, NO and HCl, were distinguished by the characteristic emission band of each molecule. The equation for flame temperature calculation based on the diatomic molecule emission fine structure theory was improved through judicious utilization of the spectral running number 'm' which makes the temperature measurement simpler and faster. Some combustion information of the solid propellant had been given including the characteristic spectral profile, the distribution of the absolute spectral energy, the distribution of the combustion flame temperature, and the concentration distributions of HCl and NO versus burning time. The results will provide theoretical and experimental bases for improving the formula and raising combustion efficiency of solid propellant, and developing the design of rocket motor, infrared guidance and antiguidance systems. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  1. Multiplexed measurements by time resolved spectroscopy using colloidal CdSe/ZnS quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, U.; Jimenez de Aberasturi, D.; Malinowski, R.; Amin, F.; Parak, W. J.; Heimbrodt, W., E-mail: Wolfram.Heimbrodt@physik.uni-marburg.de [Department of Physics and Materials Sciences Center, Philipps-University of Marburg, Renthof 5, D-35032 Marburg (Germany)

    2014-01-27

    Multiplexed measurements of analytes in parallel is a topical demand in bioanalysis and bioimaging. An interesting alternative to commonly performed spectral multiplexing is lifetime multiplexing. In this Letter, we present a proof of principle of single-color lifetime multiplexing by coupling the same fluorophore to different nanoparticles. The effective lifetime of the fluorophores can be tuned by more than one order of magnitude due to resonance energy transfer from donor states. Measurements have been done on a model systems consisting of ATTO-590 dye molecules linked to either gold particles or to CdSe/ZnS core shell quantum dots. Both systems show the same luminescence spectrum of ATTO-590 dye emission in continuous wave excitation, but can be distinguished by means of time resolved measurements. The dye molecules bound to gold particles exhibit a mono-exponential decay with a lifetime of 4.5 ns, whereas the dye molecules bound to CdSe/ZnS dots show a nonexponential decay with a slow component of about 135 ns due to the energy transfer from the quantum dots. We demonstrate the fundamental possibility to determine the mixing ratio for dyes with equal luminescence spectra but very different transients. This opens up a pathway independent of the standard optical multiplexing with many different fluorophores emitting from the near ultraviolet to the near infrared spectral region.

  2. Development of a differential infrared absorption method to measure the deuterium content of natural water

    International Nuclear Information System (INIS)

    D'Alessio, Enrique; Bonadeo, Hernan; Karaianev de Del Carril, Stiliana.

    1975-07-01

    A system to measure the deuterium content of natural water using differential infrared spectroscopy is described. Parameters conducing to an optimized design are analyzed, and the construction of the system is described. A Perkin Elmer 225 infrared spectrometer, to which a scale expansion system has been added, is used. Sample and reference waters are alternatively introduced by a pneumatical-mechanical system into a unique F Ca thermostatized infrared cell. Results and calibration curves shown prove that the system is capable of measuring deuterium content with a precision of 1 part per million. (author)

  3. Assembly and application of an instrument for attosecond-time-resolved ionization chronoscopy

    International Nuclear Information System (INIS)

    Uphues, T.

    2006-11-01

    In the framework of this thesis a new setup for attosecond time-resolved measurements has been built and observations of ionization dynamics in rare gas atoms have been made. This new technique is entitled Ionization Chronoscopy and gives further evidence that time-resolved experiments in the attosecond regime will become a powerful tool for investigations in atomic physics. (orig.)

  4. Application of Polarization Modulated Infrared Reflection Absorption Spectroscopy for electrocatalytic activity studies of laccase adsorbed on modified gold electrodes

    International Nuclear Information System (INIS)

    Olejnik, Piotr; Pawłowska, Aleksandra; Pałys, Barbara

    2013-01-01

    Orientation of the enzyme macromolecule on the electrode surface is crucially important for the efficiency of the electron transport between the active site and electrode surface. The orientation can be controlled by affecting the surface charge and the pH of the buffer solution. In this contribution we study laccase physically adsorbed on gold surface modified by mercapto-ethanol, lipid and variously charged diazonium salts. Polarization Modulated Infrared Reflection Absorption Spectroscopy (PMIRRAS) enables the molecular orientation study of the protein molecule by comparison of the amide I to amide II band intensity ratios assuming that the protein secondary structure does not change. We observe significant differences in the intensity ratios depending on the kind of support and the enzyme deposition. The comparison of infrared spectra and cyclic voltammetry responses of variously prepared laccase layers reveals that the parallel orientation of beta-sheet moieties results in high enzyme activity

  5. Nanocomposites of polypropylene and organophilic clay: X ray diffraction, absorption infrared spectroscopy with fourier transform and water vapor permeation

    International Nuclear Information System (INIS)

    Morelli, Fernanda C.; Ruvolo Filho, Adhemar

    2010-01-01

    In this work nano composites were prepared from polypropylene, graft polypropylene with maleic anhydride as compatibilizer and organophilic montmorillonite Cloisite 20A with concentrations of 1.5, 2.5, 5.0 and 7.5% clay. The mixture was made in the melt state using a twin screw extruder. The materials were characterized by X ray diffraction, infrared spectroscopy with Fourier transform and analysis of water vapor permeation. The results of X ray diffraction and absorption infrared spectroscopy indicates the formation of nano composites with structures probably exfoliate and or intercalated for concentrations of 1.5 and 2.5% clay, and provided a marked decrease in the water permeability, corroborating with other analyses. (author)

  6. Two-crystal mid-infrared optical parametric oscillator for absorption and dispersion dual-comb spectroscopy.

    Science.gov (United States)

    Jin, Yuwei; Cristescu, Simona M; Harren, Frans J M; Mandon, Julien

    2014-06-01

    We present a femtosecond optical parametric oscillator (OPO) containing two magnesium-doped periodically poled lithium niobate crystals in a singly resonant ring cavity, pumped by two mode-locked Yb-fiber lasers. As such, the OPO generates two idler combs (up to 220 mW), covering a wavelength range from 2.7 to 4.2 μm, from which a mid-infrared dual-comb Fourier transform spectrometer is constructed. By detecting the heterodyning signal between the two idler beams a full broadband spectrum of a molecular gas can be observed over 250  cm(-1) within 70 μs with a spectral resolution of 15 GHz. The absorption and dispersion spectra of acetylene and methane have been measured around 3000  cm(-1), indicating that this OPO represents an ideal broadband mid-infrared source for fast chemical sensing.

  7. Time-resolved X-ray spectroscopies of chemical systems: New perspectives

    Directory of Open Access Journals (Sweden)

    Majed Chergui

    2016-05-01

    Full Text Available The past 3–5 years have witnessed a dramatic increase in the number of time-resolved X-ray spectroscopic studies, mainly driven by novel technical and methodological developments. The latter include (i the high repetition rate optical pump/X-ray probe studies, which have greatly boosted the signal-to-noise ratio for picosecond (ps X-ray absorption spectroscopy studies, while enabling ps X-ray emission spectroscopy (XES at synchrotrons; (ii the X-ray free electron lasers (XFELs are a game changer and have allowed the first femtosecond (fs XES and resonant inelastic X-ray scattering experiments to be carried out; (iii XFELs are also opening the road to the development of non-linear X-ray methods. In this perspective, I will mainly focus on the most recent technical developments and briefly address some examples of scientific questions that have been addressed thanks to them. I will look at the novel opportunities in the horizon.

  8. The steady-state and time-resolved photophysical properties of a dimeric indium phthalocyanine complex

    International Nuclear Information System (INIS)

    Chen Yu; Araki, Yasuyuki; Dini, Danilo; Liu Ying; Ito, Osamu; Fujitsuka, Mamoru

    2006-01-01

    The steady-state and time-resolved photophysical properties and some molecular orbital calculation results of a dimeric indium phthalocyanine complex with an indium-indium bond, i.e., [tBu 4 PcIn] 2 .2tmed, have been described. The results regarding triplet excited state lifetimes can be ascribed to strong intramolecular interactions existing only in the excited state of this dimer because no significant difference in the absorption spectra of the tBu 4 PcInCl monomer and the [tBu 4 PcIn] 2 .2tmed dimer is observed, suggesting that no ground-state interaction can be assessed. The deactivation processes of the excited singlet state of [tBu 4 PcIn] 2 .2tmed are apparently faster than that of μ-oxo-bridged PcIn dimer [tBu 4 PcIn] 2 O. Molecular orbital calculation on the PcIn dimer shows no node between two indium atoms was found in the HOMO - 2 of the PcIn-InPc dimer, suggesting that bonding electrons distribute between two indium atoms

  9. Time-Resolved Soft X-ray Diffraction Reveals Transient Structural Distortions of Ternary Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Klaus Mann

    2009-11-01

    Full Text Available Home-based soft X-ray time-resolved scattering experiments with nanosecond time resolution (10 ns and nanometer spatial resolution were carried out at a table top soft X-ray plasma source (2.2–5.2 nm. The investigated system was the lyotropic liquid crystal C16E7/paraffin/glycerol/formamide/IR 5. Usually, major changes in physical, chemical, and/or optical properties of the sample occur as a result of structural changes and shrinking morphology. Here, these effects occur as a consequence of the energy absorption in the sample upon optical laser excitation in the IR regime. The liquid crystal shows changes in the structural response within few hundred nanoseconds showing a time decay of 182 ns. A decrease of the Bragg peak diffracted intensity of 30% and a coherent macroscopic movement of the Bragg reflection are found as a response to the optical pump. The Bragg reflection movement is established to be isotropic and diffusion controlled (1 μs. Structural processes are analyzed in the Patterson analysis framework of the time-varying diffraction peaks revealing that the inter-lamellar distance increases by 2.7 Å resulting in an elongation of the coherently expanding lamella crystallite. The present studies emphasize the possibility of applying TR-SXRD techniques for studying the mechanical dynamics of nanosystems.

  10. Light adaptation of the unicellular red alga, Cyanidioschyzon merolae, probed by time-resolved fluorescence spectroscopy.

    Science.gov (United States)

    Ueno, Yoshifumi; Aikawa, Shimpei; Kondo, Akihiko; Akimoto, Seiji

    2015-08-01

    Photosynthetic organisms change the quantity and/or quality of their pigment-protein complexes and the interactions among these complexes in response to light conditions. In the present study, we analyzed light adaptation of the unicellular red alga Cyanidioschyzon merolae, whose pigment composition is similar to that of cyanobacteria because its phycobilisomes (PBS) lack phycoerythrin. C. merolae were grown under different light qualities, and their responses were measured by steady-state absorption, steady-state fluorescence, and picosecond time-resolved fluorescence spectroscopies. Cells were cultivated under four monochromatic light-emitting diodes (blue, green, yellow, and red), and changes in pigment composition and energy transfer were observed. Cells grown under blue and green light increased their relative phycocyanin levels compared with cells cultured under white light. Energy-transfer processes to photosystem I (PSI) were sensitive to yellow and red light. The contribution of direct energy transfer from PBS to PSI increased only under yellow light, while red light induced a reduction in energy transfer from photosystem II to PSI and an increase in energy transfer from light-harvesting chlorophyll protein complex I to PSI. Differences in pigment composition, growth, and energy transfer under different light qualities are discussed.

  11. Electromagnetic radiation energy arrangement. [coatings for solar energy absorption and infrared reflection

    Science.gov (United States)

    Lipkis, R. R.; Vehrencamp, J. E. (Inventor)

    1965-01-01

    A solar energy collector and infrared energy reflector is described which comprises a vacuum deposited layer of aluminum of approximately 200 to 400 Angstroms thick on one side of a substrate. An adherent layer of titanium with a thickness of between 800 and 1000 Angstroms is vacuum deposited on the aluminum substrate and is substantially opaque to solar energy and substantially transparent to infrared energy.

  12. New techniques of time-resolved infrared and Raman spectroscopy using ultrashort laser pulses

    International Nuclear Information System (INIS)

    Laubereau, A.

    1986-01-01

    Considerable progress has been made in recent years in the field of spectroscopic applications of ultrashort laser pulses. This paper examines two approaches toward studying ultrafast relaxation processes in condensed matter: an IR technique which complements coherent Raman scattering; and a Fourier Raman method with high frequency resolution. The time domain IR spectroscopy technique has been applied to various vibration-rotation transitions of pure HCl gas and in mixtures with Ar buffer gas. The advantage of the time domain measurements instead of frequency spectroscopy is readily visualized when one recalls that a frequency resolution of 10 -3 cm -1 corresponds to time observations over 10 -8 , which are readily feasible. As a first demonstration of the FT-Raman technique the author presents experimental data on the Q-branch of the v 1 -vibrational mode of methane. An example for the experimental data obtained approximately 2 mm behind the nozzle is presented; the coherent anti-Stokes Raman signal is plotted versus delay time. A complicated beating structure and the decay of the signal envelope are readily seen. The desired spectroscopic information is obtained by numerical Fourier transformation of the experimental points presented

  13. Investigation of setting reaction in magnesium potassium phosphate ceramics with time resolved infrared spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Mácová, Petra; Viani, Alberto

    2017-01-01

    Roč. 205, October (2017), s. 62-66 ISSN 0167-577X R&D Projects: GA MŠk(CZ) LO1219 Keywords : amorphous materials * magnesium potassium phosphate cements * FTIR Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass OBOR OECD: Ceramics Impact factor: 2.572, year: 2016 http://www.sciencedirect.com/science/article/pii/S0167577X17309552

  14. Intersubband absorption in annealed InAs/GaAs quantum dots: a case for polarization-sensitive infrared detection

    International Nuclear Information System (INIS)

    Chakrabarti, S; Bhattacharya, P; Stiff-Roberts, A D; Lin, Y Y; Singh, J; Lei, Y; Browning, N

    2003-01-01

    We have studied the characteristics of intersubband absorption of polarized infrared (IR) radiation in as-grown and annealed self-organized InAs/GaAs quantum dots. It is observed that with the increase of annealing time and temperature, the dots tend to flatten and behave more like quantum wells. As a result, their sensitivity to TE (in-plane)-polarized light decreases and that to TM (out-of-plane)-polarized light increases. The effect could be utilized for the realization of polarization-sensitive IR detectors

  15. Infrared absorption cross sections for ethane (C2H6) in the 3 μm region

    International Nuclear Information System (INIS)

    Harrison, Jeremy J.; Allen, Nicholas D.C.; Bernath, Peter F.

    2010-01-01

    Infrared absorption cross sections for ethane have been measured in the 3 μm spectral region from spectra recorded using a high-resolution FTIR spectrometer (Bruker IFS 125/HR). Results are presented for pure ethane gas from spectra recorded at 0.004 cm -1 resolution and for mixtures with dry synthetic air from spectra obtained at 0.015 cm -1 resolution (calculated as 0.9/MOPD using the Bruker definition of resolution), at a number of temperatures and pressures appropriate for atmospheric conditions. Intensities were calibrated using three ethane spectra (recorded at 278, 293, and 323 K) taken from the Pacific Northwest National Laboratory (PNNL) IR database.

  16. Nonlinear absorption and receptivity of the third order in InAs infrared region

    International Nuclear Information System (INIS)

    Musayev, M.A.

    2005-01-01

    Nonlinear absorption and receptivity of the third order and coefficient nonlinear absorption in InAs n-type with different degree of alloying was measured. Obtained score considerably exceed sense, calculated on the basis of the models describing nonlinear receptivity of electrons, situated in the nonparabolic area of conductivity. It was shown that, observable deviations withdraw; if in the calculation apply energy dissipation of electrons. Growth of the efficiency under four-wave interaction in low-energy-gap semiconductors confines nonlinear absorption of interacting waves

  17. Highly efficient absorption of visible and near infrared light in convex gold and nickel grooves

    DEFF Research Database (Denmark)

    Eriksen, René Lynge; Beermann, Jonas; Søndergaard, Thomas

    The realization of nonresonant light absorption with nanostructured metal surfaces by making practical use of nanofocusing optical energy in tapered plasmonic waveguides, is of one of the most fascinating and fundamental phenomena in plasmonics [1,2]. We recently realized broadband light absorption...... in gold via adiabatic nanofocusing of gap surface plasmon modes in well-defined geometries of ultra-sharp convex grooves and being excited by scattering off subwavelength-sized wedges [3]....

  18. Ultrafast time-resolved spectroscopy of the light-harvesting complex 2 (LH2) from the photosynthetic bacterium Thermochromatium tepidum.

    Science.gov (United States)

    Niedzwiedzki, Dariusz M; Fuciman, Marcel; Kobayashi, Masayuki; Frank, Harry A; Blankenship, Robert E

    2011-10-01

    The light-harvesting complex 2 from the thermophilic purple bacterium Thermochromatium tepidum was purified and studied by steady-state absorption and fluorescence, sub-nanosecond-time-resolved fluorescence and femtosecond time-resolved transient absorption spectroscopy. The measurements were performed at room temperature and at 10 K. The combination of both ultrafast and steady-state optical spectroscopy methods at ambient and cryogenic temperatures allowed the detailed study of carotenoid (Car)-to-bacteriochlorophyll (BChl) as well BChl-to-BChl excitation energy transfer in the complex. The studies show that the dominant Cars rhodopin (N=11) and spirilloxanthin (N=13) do not play a significant role as supportive energy donors for BChl a. This is related with their photophysical properties regulated by long π-electron conjugation. On the other hand, such properties favor some of the Cars, particularly spirilloxanthin (N=13) to play the role of the direct quencher of the excited singlet state of BChl. © Springer Science+Business Media B.V. 2011

  19. Infrared-laser spectroscopy using a long-pathlength absorption cell

    International Nuclear Information System (INIS)

    Kim, K.C.; Briesmeister, R.A.

    1983-01-01

    The absorption measurements in an ordinary cell may require typically a few torr pressure of sample gas. At these pressures the absorption lines are usually pressure-broadened and, therefore, closely spaced transitions are poorly resolved even at diode-laser resolution. This situation is greatly improved in Doppler-limited spectroscopy at extremely low sample pressures. Two very long-pathlength absorption cells were developed to be used in conjunction with diode lasers. They were designed to operate at controlled temperatures with the optical pathlength variable up to approx. 1.5 km. Not only very low sample pressures are used for studies with such cells but also the spectroscopic sensitivity is enhanced over conventional methods by a factor of 10 3 to 10 4 , improving the analytical capability of measuring particle densities to the order of 1 x 10'' molecules/cm 3 . This paper presents some analytical aspects of the diode laser spectroscopy using the long-pathlength absorption cells in the areas of absorption line widths, pressure broadening coefficients, isotope composition measurements and trace impurity analysis

  20. Detection of transient infrared absorption of SO3 and 1,3,2-dioxathietane-2,2-dioxide [cyc-(CH2)O(SO2)O] in the reaction CH2OO+SO2

    Science.gov (United States)

    Wang, Yi-Ying; Dash, Manas Ranjan; Chung, Chao-Yu; Lee, Yuan-Pern

    2018-02-01

    We recorded time-resolved infrared absorption spectra of transient species produced on irradiation at 308 nm of a flowing mixture of CH2I2/O2/N2/SO2 at 298 K. Bands of CH2OO were observed initially upon irradiation; their decrease in intensity was accompanied by the appearance of an intense band at 1391.5 cm-1 that is associated with the degenerate SO-stretching mode of SO3, two major bands of HCHO at 1502 and 1745 cm-1, and five new bands near >1340, 1225, 1100, 940, and 880 cm-1. The band near 1340 cm-1 was interfered by absorption of SO2 and SO3, so its band maximum might be greater than 1340 cm-1. SO3 in its internally excited states was produced initially and became thermalized at a later period. The rotational contour of the band of thermalized SO3 agrees satisfactorily with the reported spectrum of SO3. These five new bands are tentatively assigned to an intermediate 1,3,2-dioxathietane-2,2-dioxide [cyc-(CH2)O(SO2)O] according to comparison with anharmonic vibrational wavenumbers and relative IR intensities predicted for this intermediate. Observation of a small amount of cyc-(CH2)O(SO2)O is consistent with the expected reaction according to the potential energy scheme predicted previously. SO3+HCHO are the major products of the title reaction. The other predicted product channel HCOOH+SO2 was unobserved and its branching ratio was estimated to be <5%.

  1. Development of a ratiometric time-resolved luminescence sensor for pH based on lanthanide complexes.

    Science.gov (United States)

    Liu, Mingjing; Ye, Zhiqiang; Xin, Chenglong; Yuan, Jingli

    2013-01-25

    Time-resolved luminescence bioassay technique using lanthanide complexes as luminescent probes/sensors has shown great utilities in clinical diagnostics and biotechnology discoveries. In this work, a novel terpyridine polyacid derivative that can form highly stable complexes with lanthanide ions in aqueous media, (4'-hydroxy-2,2':6',2''-terpyridine-6,6''-diyl) bis(methylenenitrilo) tetrakis(acetic acid) (HTTA), was designed and synthesized for developing time-resolved luminescence pH sensors based on its Eu(3+) and Tb(3+) complexes. The luminescence characterization results reveal that the luminescence intensity of HTTA-Eu(3+) is strongly dependent on the pH values in weakly acidic to neutral media (pK(a) = 5.8, pH 4.8-7.5), while that of HTTA-Tb(3+) is pH-independent. This unique luminescence response allows the mixture of HTTA-Eu(3+) and HTTA-Tb(3+) (the HTTA-Eu(3+)/Tb(3+) mixture) to be used as a ratiometric luminescence sensor for the time-resolved luminescence detection of pH with the intensity ratio of its Tb(3+) emission at 540 nm to its Eu(3+) emission at 610 nm, I(540 nm)/I(610 nm), as a signal. Moreover, the UV absorption spectrum changes of the HTTA-Eu(3+)/Tb(3+) mixture at different pHs (pH 4.0-7.0) also display a ratiometric response to the pH changes with the ratio of absorbance at 290 nm to that at 325 nm, A(290 nm)/A(325 nm), as a signal. This feature enables the HTTA-Eu(3+)/Tb(3+) mixture to have an additional function for the pH detection with the absorption spectrometry technique. For loading the complexes into the living cells, the acetoxymethyl ester of HTTA was synthesized and used for loading HTTA-Eu(3+) and HTTA-Tb(3+) into the cultured HeLa cells. The luminescence imaging results demonstrated the practical utility of the new sensor for the time-resolved luminescence cell imaging application. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Infrared absorption in pseudobinary InSb1-xBix compounds

    International Nuclear Information System (INIS)

    El-Den, M.B.; Mina, N.K.; Samy, A.M.; El-Mously, M.K.

    1988-08-01

    The group III-V pseudobinary InSb 1-x Bi x compounds, with x = 0, 0.2 and 0.04, were prepared in thin ribbon forms (30 μ) by splat cooling in air. The optical absorption α(λ) was measured in the wavelength range from 4 to 15 μm. The optical energy gap E opt. , was calculated for the three compounds. A shift of the absorption edge towards longer wavelengths with increasing Bi content was observed. (author). 7 refs, 4 figs

  3. Environmental Temperature Effect on the Far-Infrared Absorption Features of Aromatic-Based Titan's Aerosol Analogs

    Science.gov (United States)

    Gautier, Thomas; Trainer, Melissa G.; Loeffler, Mark J.; Sebree, Joshua A.; Anderson, Carrie M.

    2016-01-01

    Benzene detection has been reported in Titans atmosphere both in the stratosphere at ppb levels by remote sensing and in the thermosphere at ppm levels by the Cassini's Ion and Neutral Mass Spectrometer. This detection supports the idea that aromatic and heteroaromatic reaction pathways may play an important role in Titans atmospheric chemistry, especially in the formation of aerosols. Indeed, aromatic molecules are easily dissociated by ultraviolet radiation and can therefore contribute significantly to aerosol formation. It has been shown recently that aerosol analogs produced from a gas mixture containing a low concentration of aromatic and/or heteroaromatic molecules (benzene, naphthalene, pyridine, quinoline and isoquinoline) have spectral signatures below 500/cm, a first step towards reproducing the aerosol spectral features observed by Cassini's Composite InfraRed Spectrometer (CIRS) in the far infrared. In this work we investigate the influence of environmental temperature on the absorption spectra of such aerosol samples, simulating the temperature range to which aerosols, once formed, are exposed during their transport through Titans stratosphere. Our results show that environmental temperature does not have any major effect on the spectral shape of these aerosol analogs in the far-infrared, which is consistent with the CIRS observations.

  4. Near-infrared incoherent broadband cavity enhanced absorption spectroscopy (NIR-IBBCEAS) for detection and quantification of natural gas components.

    Science.gov (United States)

    Prakash, Neeraj; Ramachandran, Arun; Varma, Ravi; Chen, Jun; Mazzoleni, Claudio; Du, Ke

    2018-06-28

    The principle of near-infrared incoherent broadband cavity enhanced absorption spectroscopy was employed to develop a novel instrument for detecting natural gas leaks as well as for testing the quality of natural gas mixtures. The instrument utilizes the absorption features of methane, butane, ethane, and propane in the wavelength region of 1100 nm to 1250 nm. The absorption cross-section spectrum in this region for methane was adopted from the HITRAN database, and those for the other three gases were measured in the laboratory. A singular-value decomposition (SVD) based analysis scheme was employed for quantifying methane, butane, ethane, and propane by performing a linear least-square fit. The developed instrument achieved a detection limit of 460 ppm, 141 ppm, 175 ppm and 173 ppm for methane, butane, ethane, and propane, respectively, with a measurement time of 1 second and a cavity length of 0.59 m. These detection limits are less than 1% of the Lower Explosive Limit (LEL) for each gas. The sensitivity can be further enhanced by changing the experimental parameters (such as cavity length, lamp power etc.) and using longer averaging intervals. The detection system is a low-cost and portable instrument suitable for performing field monitorings. The results obtained on the gas mixture emphasize the instrument's potential for deployment at industrial facilities dealing with natural gas, where potential leaks pose a threat to public safety.

  5. Temperatures and Species Concentration in Propellant Dark Zones via Fitting Infrared (IR) Spectral Absorption Data

    National Research Council Canada - National Science Library

    Vanderhoff, J

    1997-01-01

    .... Within this range, absorptions for HCN, H2O, N2O, CO, CO2, and CH4 have been detected through the use of a 1,024 element platinum silicide array detector with the ability to read complete spectra in 10 ms...

  6. Precise Measurement of Refractive Index and Absorption Coefficient of Near Millimeter Wave and Far Infrared Materials.

    Science.gov (United States)

    1987-06-01

    polyethylene. The plexiglass is a polymethyl methacrylate and the acrylic is a polymethacrylate . The polyamide(nylon) is made with adipic acid and hexamethylene...are made with acrylic acid . It was not sur- prizing to see both exhibiting similar absorption characteristics atleast 30 times higher than

  7. Low temperature hydrogen plasma-assisted atomic layer deposition of copper studied using in situ infrared reflection absorption spectroscopy

    International Nuclear Information System (INIS)

    Chaukulkar, Rohan P.; Rai, Vikrant R.; Agarwal, Sumit; Thissen, Nick F. W.

    2014-01-01

    Atomic layer deposition (ALD) is an ideal technique to deposit ultrathin, conformal, and continuous metal thin films. However, compared to the ALD of binary materials such as metal oxides and metal nitrides, the surface reaction mechanisms during metal ALD are not well understood. In this study, the authors have designed and implemented an in situ reflection-absorption infrared spectroscopy (IRAS) setup to study the surface reactions during the ALD of Cu on Al 2 O 3 using Cu hexafluoroacetylacetonate [Cu(hfac) 2 ] and a remote H 2 plasma. Our infrared data show that complete ligand-exchange reactions occur at a substrate temperature of 80 °C in the absence of surface hydroxyl groups. Based on infrared data and previous studies, the authors propose that Cu(hfac) 2 dissociatively chemisorbs on the Al 2 O 3 surface, where the Al-O-Al bridge acts as the surface reactive site, leading to surface O-Cu-hfac and O-Al-hfac species. Surface saturation during the Cu(hfac) 2 half-cycle occurs through blocking of the available chemisorption sites. In the next half-reaction cycle, H radicals from an H 2 plasma completely remove these surface hfac ligands. Through this study, the authors have demonstrated the capability of in situ IRAS as a tool to study surface reactions during ALD of metals. While transmission and internal reflection infrared spectroscopy are limited to the first few ALD cycles, IRAS can be used to probe all stages of metal ALD starting from initial nucleation to the formation of a continuous film

  8. Infrared absorption study of hydrogen incorporation in thick nanocrystalline diamond films

    International Nuclear Information System (INIS)

    Tang, C.J.; Neves, A.J.; Carmo, M.C.

    2005-01-01

    We present an infrared (IR) optical absorbance study of hydrogen incorporation in nanocrystalline diamond films. The thick nanocrystalline diamond films were synthesized by microwave plasma-assisted chemical vapor deposition and a high growth rate about 3.0 μm/h was achieved. The morphology, phase quality, and hydrogen incorporation were assessed by means of scanning electron microscopy, Raman spectroscopy, and Fourier-transform infrared spectroscopy (FTIR). Large amount of hydrogen bonded to nanocrystalline diamond is clearly evidenced by the huge CH stretching band in the FTIR spectrum. The mechanism of hydrogen incorporation is discussed in light of the growth mechanism of nanocrystalline diamond. This suggests the potential of nanocrystalline diamond for IR electro-optical device applications

  9. Feasibility of tropospheric water vapor profiling using infrared heterodyne differential absorption lidar

    Energy Technology Data Exchange (ETDEWEB)

    Grund, C.J.; Hardesty, R.M. [National Oceanic and Atmospheric Administration Environmental Technology Laboratoy, Boulder, CO (United States); Rye, B.J. [Univ. of Colorado, Boulder, CO (United States)

    1996-04-01

    The development and verification of realistic climate model parameterizations for clouds and net radiation balance and the correction of other site sensor observations for interferences due to the presence of water vapor are critically dependent on water vapor profile measurements. In this study, we develop system performance models and examine the potential of infrared differential absoroption lidar (DIAL) to determine the concentration of water vapor.

  10. Investigations on the photoreactions of phenothiazine and phenoxazine in presence of 9-cyanoanthracene by using steady state and time resolved spectroscopic techniques.

    Science.gov (United States)

    Bardhan, Munmun; Mandal, Paulami; Tzeng, Wen-Bih; Ganguly, Tapan

    2010-09-01

    By using electrochemical, steady state and time resolved (fluorescence lifetime and transient absorption) spectroscopic techniques, detailed investigations were made to reveal the mechanisms of charge separation or forward electron transfer reactions within the electron donor phenothiazine (PTZH) or phenoxazine (PXZH) and well known electron acceptor 9-cyanoanthracene (CNA). The transient absorption spectra suggest that the charge separated species formed in the excited singlet state resulted from intermolecular photoinduced electron transfer reactions within the donor PTZH (or PXZH) and CNA acceptor relaxes to the corresponding triplet state. Though alternative mechanisms of via formations of contact neutral radical by H-transfer reaction have been proposed but the observed results obtained from the time resolved measurements indicate that the regeneration of ground state reactants is primarily responsible due to direct recombination of triplet contact ion-pair (CIP) or solvent-separated ion-pair (SSIP).

  11. Time-resolved detection of surface plasmon polaritons with a scanning tunneling microscope

    DEFF Research Database (Denmark)

    Keil, Ulrich Dieter Felix; Ha, T.; Jensen, Jacob Riis

    1998-01-01

    We present the time-resolved detection of surface plasmon polaritons with an STM. The results indicate that the time resolved signal is due to rectification of coherently superimposed plasmon voltages. The comparison with differential reflectivity measurements shows that the tip itself influences...... the decay of the plasmon-field coherence. Generation of the measured signal at the tunneling junction offers the possibility to observe ultrafast effects with a spatial resolution determined by the tunneling junction...

  12. Time-resolved photoelectron spectroscopy and ab initio multiple spawning studies of hexamethylcyclopentadiene

    DEFF Research Database (Denmark)

    Wolf, T. J. A.; Kuhlman, Thomas Scheby; Schalk, O.

    2014-01-01

    Time-resolved photoelectron spectroscopy and ab initio multiple spawning were applied to the ultrafast non-adiabatic dynamics of hexamethylcyclopentadiene. The high level of agreement between experiment and theory associates wavepacket motion with a distinct degree of freedom.......Time-resolved photoelectron spectroscopy and ab initio multiple spawning were applied to the ultrafast non-adiabatic dynamics of hexamethylcyclopentadiene. The high level of agreement between experiment and theory associates wavepacket motion with a distinct degree of freedom....

  13. New layout of time resolved beam energy spectrum measurement for dragon-I

    International Nuclear Information System (INIS)

    Liao Shuqing; Zhang Kaizhi; Shi Jinshui

    2010-01-01

    A new layout of time resolved beam energy spectrum measurement is proposed for Dragon-I by a new method named RBS (rotating beams in solenoids). The basic theory of RBS and the new layout are presented and the measuring error is also discussed. The derived time resolved beam energy spectrum is discrete and is determined by measuring the beam's rotating angle and expanding width through a group of solenoids at the export of Dragon-I. (authors)

  14. Time resolved resonance Raman spectra of anilino radical and aniline radical cation

    International Nuclear Information System (INIS)

    Tripathi, G.N.R.; Schuler, R.H.

    1987-01-01

    We report, in this paper, submicrosecond time resolved resonance Raman spectra of anilino radical and its radical cation as observed in pulse radiolytic studies of the oxidation of aniline in aqueous solution. By excitation in resonance with the broad and weak electronic transition of anilino radical at 400 nm (ε--1250 M -1 cm -1 ) we have observed, for the first time, the vibrational features of this radical. The Wilson ν 8 /sub a/ ring stretching mode at 1560 cm -1 is most strongly resonance enhanced. The ν 7 /sub a/ CN stretching band at 1505 cm -1 , which is shifted to higher frequency by 231 cm -1 with respect to aniline, is also prominent. The frequency of this latter mode indicates that the CN bond in the radical has considerable double bond character. The Raman spectrum of aniline radical cation, excited in resonance with the --425 nm electronic absorption (ε--4000 M -1 cm -1 ), shows features which are similar to phenoxyl radical. Most of the observed frequencies of this radical in solution are in good agreement with vibrational energies determined by recent laser photoelectron spectroscopic studies in the vapor phase. The bands most strongly enhanced in the resonance Raman spectrum are, however, weak in the photoelectron spectrum. While the vibrational frequencies observed for anilino radical and its isoelectronic cation are quite similar, the resonance enhancement patterns are very different. In particular the ν 14 b 2 mode of anilino radical observed at 1324 cm -1 is highly resonance enhanced because of strong vibronic coupling between the 400 nm 2 A 2 -- 2 B 1 and the higher 2 B 1 -- 2 B 1 electronic transitions

  15. Experimental test of depth dependence of solutions for time-resolved diffusion equation

    Energy Technology Data Exchange (ETDEWEB)

    Laidevant, A.; Da Silva, A.; Moy, J.P.; Berger, M.; Dinten, J.M

    2004-07-01

    The determination of optical properties of a semi-infinite medium such as biological tissue has been widely investigated by many authors. Reflectance formulas can be derived from the diffusion equation for different boundary conditions at the medium-air interface. This quantity can be measured at the medium surface. For realistic objects, such as a mouse, tissue optical properties can realistically only be determined at the object surface. However, near the surface diffusion approximation is weak and boundary models have to be considered. In order to investigate the validity of the time resolved reflectance approach at the object boundary, we have estimated optical properties of a liquid semi-infinite medium by this method for different boundary conditions and different fiber's position beneath the surface. The time-correlated single photon counting (TCSPC) technique is used to measure the reflectance curve. Our liquid phantoms are made of water, Intra-lipid and Ink. Laser light is delivered by a pulsed laser diode. Measurements are then fitted to theoretical solutions expressed as a function of source and detector's depth and distance. By taking as reference the optical properties obtained from the infinite model for fibers deeply immersed, influence of the different boundary conditions and bias induced are established for different fibers' depth and a variety of solutions. This influence is analysed by comparing evolution of the reflectance models, as well as estimations of absorption and scattering coefficients. According to this study we propose a strategy for determining optical properties of a solid phantom where measurements can only be realized at the surface. (authors)

  16. Simultaneous measurement of thermal diffusivity and effective infrared absorption coefficient in IR semitransparent and semiconducting n-CdMgSe crystals using photothermal radiometry

    Energy Technology Data Exchange (ETDEWEB)

    Pawlak, M., E-mail: mpawlak@fizyka.umk.pl [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziądzka 5/7, Toruń (Poland); Maliński, M. [Department of Electronics and Computer Science, Koszalin University of Technology, 2 Śniadeckich St., Koszalin 75-453 (Poland)

    2015-01-10

    Highlights: • The new method of determination of the effective infrared absorption coefficient is presented. • The method can be used for transparent samples for the excitation radiation. • The effect of aluminum foil on the PTR signal in a transmission configuration is discussed. - Abstract: In this paper we propose a new procedure of simultaneous estimation of the effective infrared optical absorption coefficient and the thermal diffusivity of solid state samples using the photothermal infrared radiometry method in the transmission configuration. The proposed procedure relies on the analysis of the frequency dependent signal obtained from the samples covered with thin aluminum foil. This method can be applied for both optically opaque and transparent samples. The proposed method is illustrated with the results of the thermal diffusivity and the effective IR absorption coefficient obtained for several Cd{sub 1−x}Mg{sub x}Se crystals.

  17. A comprehensive study of the use of temporal moments in time-resolved diffuse optical tomography: part I. Theoretical material

    Energy Technology Data Exchange (ETDEWEB)

    Ducros, Nicolas; Herve, Lionel; Dinten, Jean-Marc [CEA, LETI, MINATEC, 17 rue des Martyrs, F-38054 Grenoble (France); Da Silva, Anabela [Institut Fresnel, CNRS UMR 6133, Universite Aix-Marseille, Ecole Centrale Marseille, Campus universitaire de Saint-Jerome, F-13013 Marseille (France); Peyrin, Francoise [CREATIS, INSERM U 630, CNRS UMR 5220, Universite de Lyon, INSA de Lyon, bat. Blaise Pascal, F-69621 Villeurbanne Cedex (France)], E-mail: nicolas.ducros@cea.fr

    2009-12-07

    The problem of fluorescence diffuse optical tomography consists in localizing fluorescent markers from near-infrared light measurements. Among the different available acquisition modalities, the time-resolved modality is expected to provide measurements of richer information content. To extract this information, the moments of the time-resolved measurements are often considered. In this paper, a theoretical analysis of the moments of the forward problem in fluorescence diffuse optical tomography is proposed for the infinite medium geometry. The moments are expressed as a function of the source, detector and markers positions as well as the optical properties of the medium and markers. Here, for the first time, an analytical expression holding for any moments order is mathematically derived. In addition, analytical expressions of the mean, variance and covariance of the moments in the presence of noise are given. These expressions are used to demonstrate the increasing sensitivity of moments to noise. Finally, the newly derived expressions are illustrated by means of sensitivity maps. The physical interpretation of the analytical formulae in conjunction with their map representations could provide new insights into the analysis of the information content provided by moments.

  18. Improvements in brain activation detection using time-resolved diffuse optical means

    Science.gov (United States)

    Montcel, Bruno; Chabrier, Renee; Poulet, Patrick

    2005-08-01

    An experimental method based on time-resolved absorbance difference is described. The absorbance difference is calculated over each temporal step of the optical signal with the time-resolved Beer-Lambert law. Finite element simulations show that each step corresponds to a different scanned zone and that cerebral contribution increases with the arrival time of photons. Experiments are conducted at 690 and 830 nm with a time-resolved system consisting of picosecond laser diodes, micro-channel plate photo-multiplier tube and photon counting modules. The hemodynamic response to a short finger tapping stimulus is measured over the motor cortex. Time-resolved absorbance difference maps show that variations in the optical signals are not localized in superficial regions of the head, which testify for their cerebral origin. Furthermore improvements in the detection of cerebral activation is achieved through the increase of variations in absorbance by a factor of almost 5 for time-resolved measurements as compared to non-time-resolved measurements.

  19. Simultaneous infrared and UV-visible absorption spectra of matrix-isolated carbon vapor

    Science.gov (United States)

    Kurtz, Joe; Huffman, Donald R.

    1989-01-01

    Carbon molecules were suggested as possible carriers of the diffuse interstellar bands. In particular, it was proposed that the 443 nm diffuse interstellar band is due to the same molecule which gives rise to the 447 nm absorption feature in argon matrix-isolated carbon vapor. If so, then an associated C-C stretching mode should be seen in the IR. By doing spectroscopy in both the IR and UV-visible regions on the same sample, the present work provides evidence for correlating UV-visible absorption features with those found in the IR. Early data indicates no correlation between the strongest IR feature (1997/cm) and the 447 nm band. Correlation with weaker IR features is being investigated.

  20. Reduction of Poisson noise in measured time-resolved data for time-domain diffuse optical tomography.

    Science.gov (United States)

    Okawa, S; Endo, Y; Hoshi, Y; Yamada, Y

    2012-01-01

    A method to reduce noise for time-domain diffuse optical tomography (DOT) is proposed. Poisson noise which contaminates time-resolved photon counting data is reduced by use of maximum a posteriori estimation. The noise-free data are modeled as a Markov random process, and the measured time-resolved data are assumed as Poisson distributed random variables. The posterior probability of the occurrence of the noise-free data is formulated. By maximizing the probability, the noise-free data are estimated, and the Poisson noise is reduced as a result. The performances of the Poisson noise reduction are demonstrated in some experiments of the image reconstruction of time-domain DOT. In simulations, the proposed method reduces the relative error between the noise-free and noisy data to about one thirtieth, and the reconstructed DOT image was smoothed by the proposed noise reduction. The variance of the reconstructed absorption coefficients decreased by 22% in a phantom experiment. The quality of DOT, which can be applied to breast cancer screening etc., is improved by the proposed noise reduction.

  1. Infrared emission from a polycyclic aromatic hydrocarbon (PAH) excited by ultraviolet laser

    International Nuclear Information System (INIS)

    Cherchneff, I.; Barker, J.R.

    1989-01-01

    The infrared fluorescence spectrum from the C-H stretch modes of vibrationally excited azulene (C10H8), a PAH was measured in the laboratory. PAHs are candidates as carriers of the unidentified infrared emission bands that are observed in many astronomical objects associated with dust and ultraviolet light. In the present experiment, gas phase azulene was excited with light from a 308 nm pulsed laser, and the infrared emission spectrum was time-resolved and wavelength-resolved. Moreover, the infrared absorption spectrum of gas phase azulene was obtained using an FTIR spectrometer. The laboratory emission spectrum resembles observed infrared emission spectra from the interstellar medium, providing support for the hypothesis that PAHs are the responsible carriers. The azulene C-H stretch emission spectrum is more asymmetric than the absorption spectrum, probably due to anharmonicity of levels higher than nu = 1. 36 refs

  2. Infrared Absorption Spectroscopic Study on Reaction between Self-Assembled Monolayers and Atmospheric-Pressure Plasma

    Directory of Open Access Journals (Sweden)

    Masanori Shinohara

    2015-01-01

    Full Text Available Plasma is becoming increasingly adopted in bioapplications such as plasma medicine and agriculture. This study investigates the interaction between plasma and molecules in living tissues, focusing on plasma-protein interactions. To this end, the reaction of air-pressure air plasma with NH2-terminated self-assembled monolayer is investigated by infrared spectroscopy in multiple internal reflection geometry. The atmospheric-pressure plasma decomposed the NH2 components, the characteristic units of proteins. The decomposition is attributed to water clusters generated in the plasma, indicating that protein decomposition by plasma requires humid air.

  3. Carbon dioxide adsorption on a ZnO(101[combining macron]0) substrate studied by infrared reflection absorption spectroscopy.

    Science.gov (United States)

    Buchholz, Maria; Weidler, Peter G; Bebensee, Fabian; Nefedov, Alexei; Wöll, Christof

    2014-01-28

    The adsorption of carbon dioxide on the mixed-terminated ZnO(101[combining macron]0) surface of a bulk single crystal was studied by UHV Infrared Reflection Absorption Spectroscopy (IRRAS). In contrast to metals, the classic surface selection rule for IRRAS does not apply to bulk oxide crystals, and hence vibrational bands can also be observed for s-polarized light. Although this fact substantially complicates data interpretation, a careful analysis allows for a direct determination of the adsorbate geometry. Here, we demonstrate the huge potential of IR-spectroscopy for investigations on oxide single crystal surfaces by considering all three components of the incident polarized light separately. We find that the tridentate (surface) carbonate is aligned along the [0001] direction. A comparison to data reported previously for CO2 adsorbed on the surfaces of ZnO nanoparticles provides important insight into the role of defects in the surface chemistry of powder particles.

  4. Electrooxidation of ethanol on Pt and PtRu surfaces investigated by ATR surface-enhanced infrared absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marcio F.; Camara, Giuseppe A., E-mail: giuseppe.silva@ufms.br [Departamento de Quimica, Universidade Federal do Mato Grosso do Sul, Campo Grande-MS (Brazil); Batista, Bruno C.; Boscheto, Emerson [Instituto de Quimica de Sao Carlos, Universidade de Sao Paulo, Sao Carlos-SP, (Brazil); Varela, Hamilton, E-mail: varela@iqsc.usp.br [Ertl Center for Electrochemistry and Catalysis, Gwangju Institute of Science and Technology (GIST), Gwangju (Korea, Republic of)

    2012-05-15

    Herein, it was investigated for the first time the electro-oxidation of ethanol on Pt and PtRu electrodeposits in acidic media by using in situ surface enhanced infrared absorption spectroscopy with attenuated total reflection (ATR-SEIRAS). The experimental setup circumvents the weak absorbance signals related to adsorbed species, usually observed for rough, electrodeposited surfaces, and allows a full description of the CO coverage with the potential for both catalysts. The dynamics of adsorption-oxidation of CO was accessed by ATR-SEIRAS experiments (involving four ethanol concentrations) and correlated with expressions derived from a simple kinetic model. Kinetic analysis suggests that the growing of the CO adsorbed layer is nor influenced by the presence of Ru neither by the concentration of ethanol. The results suggest that the C-C scission is not related to the presence of Ru and probably happens at Pt sites. (author)

  5. Short-wave infrared barriode detectors using InGaAsSb absorption material lattice matched to GaSb

    Energy Technology Data Exchange (ETDEWEB)

    Craig, A. P.; Percy, B.; Marshall, A. R. J. [Physics Department, Lancaster University, Lancaster LA1 4YB (United Kingdom); Jain, M. [Amethyst Research Ltd., Kelvin Campus, West of Scotland Science Park, Glasgow G20 0SP (United Kingdom); Wicks, G.; Hossain, K. [Amethyst Research, Inc., 123 Case Circle, Ardmore, Oklahoma 73401 (United States); Golding, T. [Amethyst Research Ltd., Kelvin Campus, West of Scotland Science Park, Glasgow G20 0SP (United Kingdom); Amethyst Research, Inc., 123 Case Circle, Ardmore, Oklahoma 73401 (United States); McEwan, K.; Howle, C. [Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ (United Kingdom)

    2015-05-18

    Short-wave infrared barriode detectors were grown by molecular beam epitaxy. An absorption layer composition of In{sub 0.28}Ga{sub 0.72}As{sub 0.25}Sb{sub 0.75} allowed for lattice matching to GaSb and cut-off wavelengths of 2.9 μm at 250 K and 3.0 μm at room temperature. Arrhenius plots of the dark current density showed diffusion limited dark currents approaching those expected for optimized HgCdTe-based detectors. Specific detectivity figures of around 7×10{sup 10} Jones and 1×10{sup 10} Jones were calculated, for 240 K and room temperature, respectively. Significantly, these devices could support focal plane arrays working at higher operating temperatures.

  6. Hybrid tandem quantum dot/organic photovoltaic cells with complementary near infrared absorption

    KAUST Repository

    Kim, Taesoo

    2017-06-01

    Monolithically integrated hybrid tandem solar cells that effectively combine solution-processed colloidal quantum dot (CQD) and organic bulk heterojunction subcells to achieve tandem performance that surpasses the individual subcell efficiencies have not been demonstrated to date. In this work, we demonstrate hybrid tandem cells with a low bandgap PbS CQD subcell harvesting the visible and near-infrared photons and a polymer:fullerene—poly (diketopyrrolopyrrole-terthiophene) (PDPP3T):[6,6]-phenyl-C60-butyric acid methyl ester (PC61BM)—top cell absorbing effectively the red and near-infrared photons of the solar spectrum in a complementary fashion. The two subcells are connected in series via an interconnecting layer (ICL) composed of a metal oxide layer, a conjugated polyelectrolyte, and an ultrathin layer of Au. The ultrathin layer of Au forms nano-islands in the ICL, reducing the series resistance, increasing the shunt resistance, and enhancing the device fill-factor. The hybrid tandems reach a power conversion efficiency (PCE) of 7.9%, significantly higher than the PCE of the corresponding individual single cells, representing one of the highest efficiencies reported to date for hybrid tandem solar cells based on CQD and polymer subcells.

  7. Mechanically activated SHS reaction in the Fe-Al system: in-situ time resolved diffraction using synchrotron radiation

    International Nuclear Information System (INIS)

    Gaffet, E.; Charlot, F.; Klein, D.; Bernard, F.; Niepce, J.C.

    1998-01-01

    The mechanical activation self propagating high temperature synthesis (M.A.S.H.S.) processing is a new way to produce nanocrystalline iron aluminide intermetallic compounds. This process is maily the combination of two steps; in the one hand, a mechanical activation where the Fe - Al powder mixture was milled during a short time at given energy and frequency of shocks and in the other hand, a self propagating high temperature synthesis (S.H.S.) reaction, for which the exothermicity of the Fe + Al reaction is used. This fast propagated MASHS reaction has been in-situ investigated using the time resolved X-ray diffraction (TRXRD) using a X-ray synchrotron beam and an infrared thermography camera, allowing the coupling of the materials structure and the temperature field. The effects of the initial mean compositions, of the milling conditions as well as of the compaction parameters on the MASHS reaction are reported. (orig.)

  8. A flexible experimental setup for femtosecond time-resolved broad-band ellipsometry and magneto-optics

    Energy Technology Data Exchange (ETDEWEB)

    Boschini, F.; Hedayat, H.; Piovera, C.; Dallera, C. [Dipartimento di Fisica, Politecnico di Milano, p.zza Leonardo da Vinci 32, 20133 Milano (Italy); Gupta, A. [Department of Chemistry, University of Alabama, Tuscaloosa, Alabama 35487 (United States); Carpene, E., E-mail: ettore.carpene@polimi.it [CNR-IFN, Dipartimento di Fisica, Politecnico di Milano, p.zza Leonardo da Vinci 32, 20133 Milano (Italy)

    2015-01-15

    A versatile experimental setup for femtosecond time-resolved ellipsometry and magneto-optical Kerr effect measurements in the visible light range is described. The apparatus is based on the pump-probe technique and combines a broad-band probing beam with an intense near-infrared pump. According to Fresnel scattering matrix formalism, the analysis of the reflected beam at different polarization states of the incident probe light allows one to determine the diagonal and the off-diagonal elements of the dielectric tensor in the investigated sample. Moreover, the pump-probe method permits to study the dynamics of the dielectric response after a short and intense optical excitation. The performance of the experimental apparatus is tested on CrO{sub 2} single crystals as a benchmark.

  9. A flexible experimental setup for femtosecond time-resolved broad-band ellipsometry and magneto-optics

    International Nuclear Information System (INIS)

    Boschini, F.; Hedayat, H.; Piovera, C.; Dallera, C.; Gupta, A.; Carpene, E.

    2015-01-01

    A versatile experimental setup for femtosecond time-resolved ellipsometry and magneto-optical Kerr effect measurements in the visible light range is described. The apparatus is based on the pump-probe technique and combines a broad-band probing beam with an intense near-infrared pump. According to Fresnel scattering matrix formalism, the analysis of the reflected beam at different polarization states of the incident probe light allows one to determine the diagonal and the off-diagonal elements of the dielectric tensor in the investigated sample. Moreover, the pump-probe method permits to study the dynamics of the dielectric response after a short and intense optical excitation. The performance of the experimental apparatus is tested on CrO 2 single crystals as a benchmark

  10. Islanding and strain-induced shifts in the infrared absorption peaks of cubic boron nitride thin films

    International Nuclear Information System (INIS)

    Fahy, S.; Taylor, C.A. II and; Clarke, R.

    1997-01-01

    Experimental and theoretical investigations of the infrared-active, polarization-dependent phonon frequencies of cubic boron nitride films have been performed in light of recent claims that large frequency shifts during initial nucleation are the result of strain caused by highly nonequilibrium growth conditions. We show that the formation of small, separate grains of cubic boron nitride during the initial growth leads to a frequency shift in the infrared-active transverse-optic mode, polarized normal to the substrate, which is opposite in sign and twice the magnitude of the shift for modes polarized parallel to the substrate. In contrast, film strain causes a frequency shift in the mode polarized normal to the substrate, which is much smaller in magnitude than the frequency shift for modes polarized parallel to the substrate. Normal and off-normal incidence absorption measurements, performed at different stages of nucleation and growth, show that large frequency shifts in the transverse-optic-phonon modes during the initial stage of growth are not compatible with the expected effects of strain, but are in large part due to nucleation of small isolated cubic BN grains which coalesce to form a uniform layer. Numerical results from a simple model of island nucleation and growth are in good agreement with experimental results. copyright 1997 The American Physical Society

  11. Temperature evaluation of UF6 and cluster detection in nozzle expansion using low-resolution infrared absorption spectroscopy

    International Nuclear Information System (INIS)

    Sbampato, M.E.; Antunes, L.M.D.; Miranda, S.F.; Sena, S.C.; Santos, A.M.

    1998-01-01

    The continuous supersonic expansion of pure gaseous UF 6 and mixtures of UF 6 with argon and nitrogen through a bidimensional nozzle was studied using low-resolution infrared spectroscopy in the ν 3 absorption band region. The experiments were carried out in order to calculate the molecular temperature of the beam and also to verify cluster formation in the expansion. The molecular beam temperature evaluation was based on the measurements of the low-resolution bandwidth, which were compared to simulated spectra results. The temperatures were also evaluated using the measured pressure at the end of the nozzle by a Pitot tube. In the conditions where no cluster formation was observed the calculated theoretical temperatures using an equilibrium expansion model are in good agreement with the data obtained through the analysis of the experimental spectra and through the Pitot tube pressure measurement. Cluster formation was observed for temperatures below about 120 K. In these conditions the infrared spectra showed shoulders in the region above 630 cm -1 and a shoulder or band between 616 and 600 cm -1 . (orig.)

  12. Development of a ratiometric time-resolved luminescence sensor for pH based on lanthanide complexes

    International Nuclear Information System (INIS)

    Liu Mingjing; Ye Zhiqiang; Xin Chenglong; Yuan Jingli

    2013-01-01

    Highlights: ► A lanthanide complex-based ratiometric luminescent pH sensor was developed. ► The sensor can luminously respond to pH in weakly acidic to neutral media. ► The sensor can be used for monitoring pH with time-resolved luminescence mode. ► The sensor can be also used for monitoring pH with absorbance mode. ► The utility of the sensor for the luminescent cell imaging was demonstrated. - Abstract: Time-resolved luminescence bioassay technique using lanthanide complexes as luminescent probes/sensors has shown great utilities in clinical diagnostics and biotechnology discoveries. In this work, a novel terpyridine polyacid derivative that can form highly stable complexes with lanthanide ions in aqueous media, (4′-hydroxy-2,2′:6′,2′′-terpyridine-6,6′′-diyl) bis(methylenenitrilo) tetrakis(acetic acid) (HTTA), was designed and synthesized for developing time-resolved luminescence pH sensors based on its Eu 3+ and Tb 3+ complexes. The luminescence characterization results reveal that the luminescence intensity of HTTA–Eu 3+ is strongly dependent on the pH values in weakly acidic to neutral media (pK a = 5.8, pH 4.8–7.5), while that of HTTA–Tb 3+ is pH-independent. This unique luminescence response allows the mixture of HTTA–Eu 3+ and HTTA–Tb 3+ (the HTTA–Eu 3+ /Tb 3+ mixture) to be used as a ratiometric luminescence sensor for the time-resolved luminescence detection of pH with the intensity ratio of its Tb 3+ emission at 540 nm to its Eu 3+ emission at 610 nm, I 540nm /I 610nm , as a signal. Moreover, the UV absorption spectrum changes of the HTTA–Eu 3+ /Tb 3+ mixture at different pHs (pH 4.0–7.0) also display a ratiometric response to the pH changes with the ratio of absorbance at 290 nm to that at 325 nm, A 290nm /A 325nm , as a signal. This feature enables the HTTA–Eu 3+ /Tb 3+ mixture to have an additional function for the pH detection with the absorption spectrometry technique. For loading the complexes into the

  13. [Desmoid fibromatosis in absorption infrared spectroscopy, emission spectral analysis and roentgen diffraction recording].

    Science.gov (United States)

    Zejkan, A; Bejcek, Z; Horejs, J; Vrbová, H; Bakosová, M; Macholda, F; Rykl, D

    1989-10-01

    The authors present results of serial quality and quantity microanalyses of bone patterns and dental tissue patterns in patient with desmoid fibromatosis. Methods of absorption spectroscopy, emission spectral analysis and X-ray diffraction analysis with follow-up to x-ray examination are tested. The above mentioned methods function in a on-line system by means of specially adjusted monitor unit which is controlled centrally by the computer processor system. The whole process of measurement is fully automated and the data obtained are recorded processed in the unit data structure classified into index sequence blocks of data. Serial microanalyses offer exact data for the study of structural changes of dental and bone tissues which manifest themselves in order of crystal grid shifts. They prove the fact that microanalyses give new possibilities in detection and interpretation of chemical and structural changes of apatite cell.

  14. Timely resolved measurements on CdSe nanoparticles; Zeitaufgeloeste Messungen an CdSe Nanopartikeln

    Energy Technology Data Exchange (ETDEWEB)

    Holt, B.E. von

    2006-06-06

    By means of infrared spectroscopy the influence of the organic cover on structure and dynamics of CdSe nanoparticles was studied. First a procedure was developed, which allows to get from the static infrared spectrum informations on the quality of the organic cover and the binding behaviour of the ligands. On qualitatively high-grade and well characterized samples thereafter the dynamics of the lowest-energy electron level 1S{sub e} was time-resolvedly meausred in thew visible range. As reference served CdSe TOPO, which was supplemented by samples with the ligands octanthiole, octanic acid, octylamine, naphthoquinone, benzoquinone, and pyridine. The studied nanoparticles had a diameter of 4.86 nm. By means of the excitation-scanning or pump=probe procedure first measurements in the picosecond range were performed. The excitation wavelengths were thereby spectrally confined and so chosen that selectively the transitions 1S{sub 3/2}-1S-e and 1P{sub 3/2}-1P{sub e} but not the intermediately lyingt transition 2S{sub 3/2}-1S{sub e} were excited. The excitation energies were kept so low that the excitation of several excitons in one crystal could be avoided. The scanning wavelength in the infrared corresponded to the energy difference between the electron levels 1S{sub e} and 1P{sub e}. The transients in the picosecond range are marked by a steep increasement of the signal, on which a multi-exponential decay follows. The increasement, which reproduces the popiulation of the excited state, isa inependent on the choice of the ligands. The influence of the organic cover is first visible in the different decay times of the excited electron levels. the decay of the measurement signal of CdSe TOPO can be approximatively described by three time constants: a decay constant in the early picosecond region, a time constant around hundert picoseconds, and a time constant of some nanoseconds. At increasing scanning wavelength the decay constants become longer. By directed excitation

  15. NuSTAR reveals an intrinsically x-ray weak broad absorption line quasar in the ultraluminous infrared galaxy Markarian 231

    DEFF Research Database (Denmark)

    Teng, Stacy H.; Brandt, W. N.; Harrison, F. A.

    2014-01-01

    -ionization broad absorption line quasar that is intrinsically X-ray weak. The weak ionizing continuum may explain the lack of mid-infrared [O IV], [Ne V], and [Ne VI] fine-structure emission lines which are present in sources with otherwise similar AGN properties. We argue that the intrinsic X-ray weakness may...

  16. High Aspect Ratio Plasmonic Nanotrench Structures with Large Active Surface Area for Label-Free Mid-Infrared Molecular Absorption Sensing

    DEFF Research Database (Denmark)

    Shkondin, Evgeniy; Repän, Taavi; Panah, Mohammad Esmail Aryaee

    2018-01-01

    . Here, we demonstrate the enhancement of infrared absorption in plasmonic trench structures that function as hyperbolic metamaterials. The metamaterial is composed of plasmonic trenches made of aluminum-doped zinc oxide. We use a 5 nm thick silica layer as a model analyte conformally coated around...

  17. The time resolved SBS and SRS research in heavy water and its application in CARS

    Science.gov (United States)

    Liu, Jinbo; Gai, Baodong; Yuan, Hong; Sun, Jianfeng; Zhou, Xin; Liu, Di; Xia, Xusheng; Wang, Pengyuan; Hu, Shu; Chen, Ying; Guo, Jingwei; Jin, Yuqi; Sang, Fengting

    2018-05-01

    We present the time-resolved character of stimulated Brillouin scattering (SBS) and backward stimulated Raman scattering (BSRS) in heavy water and its application in Coherent Anti-Stokes Raman Scattering (CARS) technique. A nanosecond laser from a frequency-doubled Nd: YAG laser is introduced into a heavy water cell, to generate SBS and BSRS beams. The SBS and BSRS beams are collinear, and their time resolved characters are studied by a streak camera, experiment show that they are ideal source for an alignment-free CARS system, and the time resolved property of SBS and BSRS beams could affect the CARS efficiency significantly. By inserting a Dye cuvette to the collinear beams, the time-overlapping of SBS and BSRS could be improved, and finally the CARS efficiency is increased, even though the SBS energy is decreased. Possible methods to improve the efficiency of this CARS system are discussed too.

  18. Time-resolved materials science opportunities using synchrotron x-ray sources

    International Nuclear Information System (INIS)

    Larson, B.C.; Tischler, J.Z.

    1995-06-01

    The high brightness, high intensity, and pulsed time-structure of synchrotron sources provide new opportunities for time-resolved x-ray diffraction investigations. With third generation synchrotron sources coming on line, high brilliance and high brightness are now available in x-ray beams with the highest flux. In addition to the high average flux, the instantaneous flux available in synchrotron beams is greatly enhanced by the pulsed time structure, which consists of short bursts of x-rays that are separated by ∼tens to hundreds of nanoseconds. Time-resolved one- and two-dimensional position sensitive detection techniques that take advantage of synchrotron radiation for materials science x-ray diffraction investigations are presented, and time resolved materials science applications are discussed in terms of recent diffraction and spectroscopy results and materials research opportunities

  19. Time-resolved PHERMEX image restorations constrained with an additional multiply-exposed image

    International Nuclear Information System (INIS)

    Kruger, R.P.; Breedlove, J.R. Jr.; Trussell, H.J.

    1978-06-01

    There are a number of possible industrial and scientific applications of nanosecond cineradiographs. Although the technology exists to produce closely spaced pulses of x rays for this application, the quality of the time-resolved radiographs is severely limited. The limitations arise from the necessity of using a fluorescent screen to convert the transmitted x rays to light and then using electro-optical imaging systems to gate and to record the images with conventional high-speed cameras. It has been proposed that, in addition to the time-resolved images, a conventional multiply exposed radiograph be obtained. This report uses both PHERMEX and conventional photographic simulations to demonstrate that the additional information supplied by the multiply exposed radiograph can be used to improve the quality of digital image restorations of the time-resolved pictures over what could be achieved with the degraded images alone

  20. Detecting aromatic compounds on planetary surfaces using ultraviolet time-resolved fluorescence spectroscopy

    Science.gov (United States)

    Eshelman, E.; Daly, M. G.; Slater, G.; Cloutis, E.

    2018-02-01

    Many aromatic organic molecules exhibit strong and characteristic fluorescence when excited with ultraviolet radiation. As laser excitation in the ultraviolet generates both fluorescence and resonantly enhanced Raman scattering of aromatic vibrational modes, combined Raman and fluorescence instruments have been proposed to search for organic compounds on Mars. In this work the time-resolved fluorescence of a suite of 24 compounds composed of 2-5 ringed alternant, non-alternant, and heterocyclic PAHs was measured. Fluorescence instrumentation with similar specifications to a putative flight instrument was capable of observing the fluorescence decay of these compounds with a sub-ns resolution. Incorporating time-resolved capabilities was also found to increase the ability to discriminate between individual PAHs. Incorporating time-resolved fluorescence capabilities into an ultraviolet gated Raman system intended for a rover or lander can increase the ability to detect and characterize PAHs on planetary surfaces.

  1. Femtosecond Time-Resolved Resonance-Enhanced CARS of Gaseous Iodine at Room Temperature

    International Nuclear Information System (INIS)

    He Ping; Fan Rong-Wei; Xia Yuan-Qin; Yu Xin; Chen De-Ying; Yao Yong

    2011-01-01

    Time-resolved resonance-enhanced coherent anti-Stokes Raman scattering (CARS) is applied to investigate molecular dynamics in gaseous iodine. 40 fs laser pulses are applied to create and monitor the high vibrational states of iodine at room temperature (corresponding to a vapor pressure as low as about 35 Pa) by femtosecond time-resolved CARS. Depending on the time delay between the probe pulse and the pump/Stokes pulse pairs, the high vibrational states both on the electronically ground states and the excited states can be detected as oscillations in the CARS transient signal. It is proved that the femtosecond time-resolved CARS technique is a promising candidate for investigating the molecular dynamics of a low concentration system and can be applied to environmental and atmospheric monitoring measurements. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  2. A prototype stationary Fourier transform spectrometer for near-infrared absorption spectroscopy.

    Science.gov (United States)

    Li, Jinyang; Lu, Dan-feng; Qi, Zhi-mei

    2015-09-01

    A prototype stationary Fourier transform spectrometer (FTS) was constructed with a fiber-coupled lithium niobate (LiNbO3) waveguide Mach-Zehnder interferometer (MZI) for the purpose of rapid on-site spectroscopy of biological and chemical measurands. The MZI contains push-pull electrodes for electro-optic modulation, and its interferogram as a plot of intensity against voltage was obtained by scanning the modulating voltage from -60 to +60 V in 50 ms. The power spectrum of input signal was retrieved by Fourier transform processing of the interferogram combined with the wavelength dispersion of half-wave voltage determined for the MZI used. The prototype FTS operates in the single-mode wavelength range from 1200 to 1700 nm and allows for reproducible spectroscopy. A linear concentration dependence of the absorbance at λmax = 1451 nm for water in ethanolic solution was obtained using the prototype FTS. The near-infrared spectroscopy of solid samples was also implemented, and the different spectra obtained with different materials evidenced the chemical recognition capability of the prototype FTS. To make this prototype FTS practically applicable, work on improving its spectral resolution by increasing the maximum optical path length difference is in progress.

  3. Electrochemical and Infrared Absorption Spectroscopy Detection of SF6 Decomposition Products

    Directory of Open Access Journals (Sweden)

    Ming Dong

    2017-11-01

    Full Text Available Sulfur hexafluoride (SF6 gas-insulated electrical equipment is widely used in high-voltage (HV and extra-high-voltage (EHV power systems. Partial discharge (PD and local heating can occur in the electrical equipment because of insulation faults, which results in SF6 decomposition and ultimately generates several types of decomposition products. These SF6 decomposition products can be qualitatively and quantitatively detected with relevant detection methods, and such detection contributes to diagnosing the internal faults and evaluating the security risks of the equipment. At present, multiple detection methods exist for analyzing the SF6 decomposition products, and electrochemical sensing (ES and infrared (IR spectroscopy are well suited for application in online detection. In this study, the combination of ES with IR spectroscopy is used to detect SF6 gas decomposition. First, the characteristics of these two detection methods are studied, and the data analysis matrix is established. Then, a qualitative and quantitative analysis ES-IR model is established by adopting a two-step approach. A SF6 decomposition detector is designed and manufactured by combining an electrochemical sensor and IR spectroscopy technology. The detector is used to detect SF6 gas decomposition and is verified to reliably and accurately detect the gas components and concentrations.

  4. Diamond-coated ATR prism for infrared absorption spectroscopy of surface-modified diamond nanoparticles

    Science.gov (United States)

    Remes, Z.; Kozak, H.; Rezek, B.; Ukraintsev, E.; Babchenko, O.; Kromka, A.; Girard, H. A.; Arnault, J.-C.; Bergonzo, P.

    2013-04-01

    Linear antenna microwave chemical vapor deposition process was used to homogeneously coat a 7 cm long silicon prism by 85 nm thin nanocrystalline diamond (NCD) layer. To show the advantages of the NCD-coated prism for attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) of nanoparticles, we apply diamond nanoparticles (DNPs) of 5 nm nominal size with various surface modifications by a drop-casting of their methanol dispersions. ATR-FTIR spectra of as-received, air-annealed, plasma-oxidized, and plasma-hydrogenated DNPs were measured in the 4000-1500 cm-1 spectral range. The spectra show high spectral resolution, high sensitivity to specific DNP surface moieties, and repeatability. The NCD coating provides mechanical protection against scratching and chemical stability of the surface. Moreover, unlike on bare Si surface, NCD hydrophilic properties enable optically homogeneous coverage by DNPs with some aggregation on submicron scale as evidenced by scanning electron microscopy and atomic force microscopy. Compared to transmission FTIR regime with KBr pellets, direct and uniform deposition of DNPs on NCD-ATR prism significantly simplifies and speeds up the analysis (from days to minutes). We discuss prospects for in situ monitoring of surface modifications and molecular grafting.

  5. Diamond-coated ATR prism for infrared absorption spectroscopy of surface-modified diamond nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Remes, Z., E-mail: remes@fzu.cz [Institute of Physics of the ASCR, v.v.i., Cukrovarnicka 10, Praha 6 (Czech Republic); Kozak, H.; Rezek, B.; Ukraintsev, E.; Babchenko, O.; Kromka, A. [Institute of Physics of the ASCR, v.v.i., Cukrovarnicka 10, Praha 6 (Czech Republic); Girard, H.A.; Arnault, J.-C.; Bergonzo, P. [CEA, LIST, Diamond Sensors Laboratory, F-91191 Gif-sur-Yvette (France)

    2013-04-01

    Linear antenna microwave chemical vapor deposition process was used to homogeneously coat a 7 cm long silicon prism by 85 nm thin nanocrystalline diamond (NCD) layer. To show the advantages of the NCD-coated prism for attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) of nanoparticles, we apply diamond nanoparticles (DNPs) of 5 nm nominal size with various surface modifications by a drop-casting of their methanol dispersions. ATR-FTIR spectra of as-received, air-annealed, plasma-oxidized, and plasma-hydrogenated DNPs were measured in the 4000–1500 cm{sup −1} spectral range. The spectra show high spectral resolution, high sensitivity to specific DNP surface moieties, and repeatability. The NCD coating provides mechanical protection against scratching and chemical stability of the surface. Moreover, unlike on bare Si surface, NCD hydrophilic properties enable optically homogeneous coverage by DNPs with some aggregation on submicron scale as evidenced by scanning electron microscopy and atomic force microscopy. Compared to transmission FTIR regime with KBr pellets, direct and uniform deposition of DNPs on NCD-ATR prism significantly simplifies and speeds up the analysis (from days to minutes). We discuss prospects for in situ monitoring of surface modifications and molecular grafting.

  6. Electrochemical and Infrared Absorption Spectroscopy Detection of SF6 Decomposition Products

    Science.gov (United States)

    Dong, Ming; Ren, Ming; Ye, Rixin

    2017-01-01

    Sulfur hexafluoride (SF6) gas-insulated electrical equipment is widely used in high-voltage (HV) and extra-high-voltage (EHV) power systems. Partial discharge (PD) and local heating can occur in the electrical equipment because of insulation faults, which results in SF6 decomposition and ultimately generates several types of decomposition products. These SF6 decomposition products can be qualitatively and quantitatively detected with relevant detection methods, and such detection contributes to diagnosing the internal faults and evaluating the security risks of the equipment. At present, multiple detection methods exist for analyzing the SF6 decomposition products, and electrochemical sensing (ES) and infrared (IR) spectroscopy are well suited for application in online detection. In this study, the combination of ES with IR spectroscopy is used to detect SF6 gas decomposition. First, the characteristics of these two detection methods are studied, and the data analysis matrix is established. Then, a qualitative and quantitative analysis ES-IR model is established by adopting a two-step approach. A SF6 decomposition detector is designed and manufactured by combining an electrochemical sensor and IR spectroscopy technology. The detector is used to detect SF6 gas decomposition and is verified to reliably and accurately detect the gas components and concentrations. PMID:29140268

  7. Temperature modulation of the visible and near infrared absorption and scattering coefficients of human skin.

    Science.gov (United States)

    Khalil, Omar S; Yeh, Shu-Jen; Lowery, Michael G; Wu, Xiaomao; Hanna, Charles F; Kantor, Stanislaw; Jeng, Tzyy-Wen; Kanger, Johannes S; Bolt, Rene A; de Mul, Frits F

    2003-04-01

    We determine temperature effect on the absorption and reduced scattering coefficients (mu(a) and mu(s)(')) of human forearm skin. Optical and thermal simulation data suggest that mu( a) and mu(s)(') are determined within a temperature-controlled depth of approximately 2 mm. Cutaneous mu(s)(') change linearly with temperature. Change in mu(a) was complex and irreversible above body normal temperatures. Light penetration depth (delta) in skin increased on cooling, with considerable person-to-person variations. We attribute the effect of temperature on mu(s)(') to change in refractive index mismatch, and its effect on mu(a) to perfusion changes. The reversible temperature effect on mu (s)(' ) was maintained during more than 90 min. contact between skin and the measuring probe, where temperature was modulated between 38 and 22 degrees C for multiple cycles While temperature modulated mu(s)(' ) instantaneously and reversibly, mu(a) exhibited slower response time and consistent drift. There was a statistically significant upward drift in mu(a) and a mostly downward drift in mu( s)(') over the contact period. The drift in temperature-induced fractional change in mu(s)(') was less statistically significant than the drift in mu(s)('). Deltamu( s)(') values determined under temperature modulation conditions may have less nonspecific drift than mu(s)(') which may have significance for noninvasive determination of analytes in human tissue.

  8. Time-resolved electron transport in quantum-dot systems; Zeitaufgeloester Elektronentransport in Quantendotsystemen

    Energy Technology Data Exchange (ETDEWEB)

    Croy, Alexander

    2010-06-30

    In this thesis the time-resolved electron transport in quantum dot systems was studied. For this two different formalisms were presented: The nonequilibrium Green functions and the generalized quantum master equations. For both formalisms a propagation method for the numerical calculation of time-resolved expectation values, like the occupation and the electron current, was developed. For the demonstration of the propagation method two different question formulations were considered. On the one hand the stochastically driven resonant-level model was studied. On the other hand the pulse-induced transport through a double quantum dot was considered.

  9. Advances in high-order harmonic generation sources for time-resolved investigations

    Energy Technology Data Exchange (ETDEWEB)

    Reduzzi, Maurizio [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Institute of Photonics and Nanotechnologies, CNR-IFN, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Carpeggiani, Paolo [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Kühn, Sergei [ELI-ALPS, ELI-Hu Kft., Dugonics ter 13, H-6720 Szeged (Hungary); Calegari, Francesca [Institute of Photonics and Nanotechnologies, CNR-IFN, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Nisoli, Mauro; Stagira, Salvatore [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Institute of Photonics and Nanotechnologies, CNR-IFN, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Vozzi, Caterina [Institute of Photonics and Nanotechnologies, CNR-IFN, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Dombi, Peter [ELI-ALPS, ELI-Hu Kft., Dugonics ter 13, H-6720 Szeged (Hungary); Wigner Research Center for Physics, 1121 Budapest (Hungary); Kahaly, Subhendu [ELI-ALPS, ELI-Hu Kft., Dugonics ter 13, H-6720 Szeged (Hungary); Tzallas, Paris; Charalambidis, Dimitris [ELI-ALPS, ELI-Hu Kft., Dugonics ter 13, H-6720 Szeged (Hungary); Foundation for Research and Technology – Hellas, Institute of Electronic Structure and Lasers, P.O. Box 1527, GR-711 10 Heraklion, Crete (Greece); Varju, Katalin [ELI-ALPS, ELI-Hu Kft., Dugonics ter 13, H-6720 Szeged (Hungary); Department of Optics and Quantum Electronics, University of Szeged, Dóm tér 9, 6720 Szeged (Hungary); Osvay, Karoly [ELI-ALPS, ELI-Hu Kft., Dugonics ter 13, H-6720 Szeged (Hungary); and others

    2015-10-15

    We review the main research directions ongoing in the development of extreme ultraviolet sources based on high-harmonic generation for the synthesization and application of trains and isolated attosecond pulses to time-resolved spectroscopy. A few experimental and theoretical works will be discussed in connection to well-established attosecond techniques. In this context, we present the unique possibilities offered for time-resolved investigations on the attosecond timescale by the new Extreme Light Infrastructure Attosecond Light Pulse Source, which is currently under construction.

  10. Advances in high-order harmonic generation sources for time-resolved investigations

    International Nuclear Information System (INIS)

    Reduzzi, Maurizio; Carpeggiani, Paolo; Kühn, Sergei; Calegari, Francesca; Nisoli, Mauro; Stagira, Salvatore; Vozzi, Caterina; Dombi, Peter; Kahaly, Subhendu; Tzallas, Paris; Charalambidis, Dimitris; Varju, Katalin; Osvay, Karoly

    2015-01-01

    We review the main research directions ongoing in the development of extreme ultraviolet sources based on high-harmonic generation for the synthesization and application of trains and isolated attosecond pulses to time-resolved spectroscopy. A few experimental and theoretical works will be discussed in connection to well-established attosecond techniques. In this context, we present the unique possibilities offered for time-resolved investigations on the attosecond timescale by the new Extreme Light Infrastructure Attosecond Light Pulse Source, which is currently under construction.

  11. Spin and time-resolved magnetic resonance in radiation chemistry. Recent developments and perspectives

    International Nuclear Information System (INIS)

    Shkrob, I.A.; Trifunac, A.D.

    1997-01-01

    Time-resolved pulsed EPR and ODMR in studies on early events in radiation chemistry are examined. It is concluded that these techniques yield valuable and diverse information about chemical reactions in spurs, despite the fact that the spur reactions occur on a time scale that is much shorter than the time resolution of these methods. Several recent examples include EPR of H/D atoms in vitreous silica and cryogenic liquids and ODMR of doped alkane solids and amorphous semiconductors. It is argued that a wider use of time-resolved magnetic resonance methods would benefit the studies on radiation chemistry of disordered solids, simple liquids, and polymers. (author)

  12. Mobile charge generation dynamics in P3HT: PCBM observed by time-resolved terahertz spectroscopy

    DEFF Research Database (Denmark)

    Cooke, D. G.; Krebs, Frederik C; Jepsen, Peter Uhd

    2012-01-01

    Ultra-broadband time-resolved terahertz spectroscopy is used to examine the sub-ps conductivity dynamics of a conjugated polymer bulk heterojunction film P3HT:PCBM. We directly observe mobile charge generation dynamics on a sub-100 fs time scale.......Ultra-broadband time-resolved terahertz spectroscopy is used to examine the sub-ps conductivity dynamics of a conjugated polymer bulk heterojunction film P3HT:PCBM. We directly observe mobile charge generation dynamics on a sub-100 fs time scale....

  13. Time resolved spectroscopic investigation of SiD2 + D2: kinetic study

    Science.gov (United States)

    Al-Rubaiey, Najem A.; Walsh, Robin

    2017-03-01

    Silylenes (silanediyls) have made an important impact on organosilicon chemistry even if it is of more recent foundation than carbenes in organic chemistry and much less complete. These species are highly reactive intermediates. They play a central role in the chemical vapour deposition (CVD) of various silicon-containing thin films which have a technological importance in microelectronics as well as in the dry etching processes of silicon wafers. Spectroscopic methods have been developed to observe these species, a necessary pre-requisite to their direct monitoring. In this work, deuterated phenylsilane precursor, PhSiD3 was chosen for SiD2 because its analogue phenylsilane, PhSiH3 proved to be a good precursor for SiH2 and the high quality decay signals observed revealed that SiD2 be readily detected from PhSiD3 and that if other decomposition pathways (e.g. PhSiD + D2) are occurring, they do not effect measurements of the rate constants for SiD2. The absorption spectrum of SiD2 formed from the flash photolysis of a mixture of PhSiD3 and SF6 at 193nm were found in the region 17384-17391 cm-1 with strong band at 17387.07 cm-1. This single rotational line of pQ1 was chosen to monitor SiD2 removal. Time-resolved studies of SiD2 have been carried out to obtain rate constants for its bimolecular reactions with D2. The reactions were studied over the pressure range 5-100 Torr (in SF6 bath gas) at four temperatures in the range 298-498K. Single decay from 10 photolysis laser shots were averaged and found to give reasonable first-order kinetics fits. Second order kinetics were obtained by pressure dependence of the pseudo first order decay constants and substance D2 pressures within experimental error. The reaction was found to be weakly pressure dependent at all temperatures, consistent with a third-body mediated association process. In addition, SiH2+ H2 reaction is approximately ca. 60% faster than SiD2+D2 reaction. Theoretical extrapolations (using Lindemann

  14. Time resolved spectroscopic investigation of SiD2 + D2: kinetic study

    Directory of Open Access Journals (Sweden)

    Al-Rubaiey Najem A.

    2017-01-01

    Full Text Available Silylenes (silanediyls have made an important impact on organosilicon chemistry even if it is of more recent foundation than carbenes in organic chemistry and much less complete. These species are highly reactive intermediates. They play a central role in the chemical vapour deposition (CVD of various silicon-containing thin films which have a technological importance in microelectronics as well as in the dry etching processes of silicon wafers. Spectroscopic methods have been developed to observe these species, a necessary pre-requisite to their direct monitoring. In this work, deuterated phenylsilane precursor, PhSiD3 was chosen for SiD2 because its analogue phenylsilane, PhSiH3 proved to be a good precursor for SiH2 and the high quality decay signals observed revealed that SiD2 be readily detected from PhSiD3 and that if other decomposition pathways (e.g. PhSiD + D2 are occurring, they do not effect measurements of the rate constants for SiD2. The absorption spectrum of SiD2 formed from the flash photolysis of a mixture of PhSiD3 and SF6 at 193nm were found in the region 17384-17391 cm-1 with strong band at 17387.07 cm-1. This single rotational line of pQ1 was chosen to monitor SiD2 removal. Time-resolved studies of SiD2 have been carried out to obtain rate constants for its bimolecular reactions with D2. The reactions were studied over the pressure range 5-100 Torr (in SF6 bath gas at four temperatures in the range 298-498K. Single decay from 10 photolysis laser shots were averaged and found to give reasonable first-order kinetics fits. Second order kinetics were obtained by pressure dependence of the pseudo first order decay constants and substance D2 pressures within experimental error. The reaction was found to be weakly pressure dependent at all temperatures, consistent with a third-body mediated association process. In addition, SiH2+ H2 reaction is approximately ca. 60% faster than SiD2+D2 reaction. Theoretical extrapolations (using

  15. Measurements of size and composition of particles in polar stratospheric clouds from infrared solar absorption spectra

    International Nuclear Information System (INIS)

    Kinne, S.; Toon, O.B.; Toon, G.C.; Farmer, C.B.; Browell, E.V.; McCormick, M.P.

    1989-01-01

    The attenuation of solar radiation between 1.8- and 15-μm wavelength was measured with the airborne Jet Propulsion Laboratory Mark IV interferometer during the Airborne Antarctic Ozone Expedition in 1987. The measurements not only provide information about the abundance of stratospheric gases, but also about the optical depths of polar stratospheric clouds (PSCs) at wavelengths of negligible gas absorption. The spectral dependence of the PSC optical depth contains information about PSC particle size and particle composition. Thirty-three PSC cases were analyzed and categorized into two types. Type I clouds contain particles with radii of about 0.5 μm and nitric acid concentrations greater than 40%. Type II clouds contain particles composed of water ice with radii of 6 μm and larger. Cloud altitudes were determined from 1.064-μm backscattering observations of the airborne Langley DIAL lidar system. Based on the PSC geometrical thickness, both mass and particle density were estimated. Type I clouds typically had visible wavelength optical depths of about 0.008, mass densities of about 20 ppb, and about 2 particles/cm 3 . The observed type II clouds had optical depths of about 0.03, mass densities of about 400 ppb mass, and about 0.03 particles/cm 3 . The detected PSC type I clouds extended to altitudes of 21 km and were nearly in the ozone-depleted region of the polar stratosphere. The observed type II cases during September were predominantly found at altitudes below 15 km

  16. Nustar Reveals an Intrinsically X-ray Weak Broad Absorption Line Quasar in the Ultraluminous Infrared Galaxy Markarian 231

    Science.gov (United States)

    Teng, Stacy H.; Brandt. W. N.; Harrison, F. A.; Luo, B.; Alexander, D. M.; Bauer, F. E.; Boggs, S. E.; Christensen, F. E.; Comastri, A.; Craig, W. W.; hide

    2014-01-01

    We present high-energy (3-30 keV) NuSTAR observations of the nearest quasar, the ultraluminous infrared galaxy (ULIRG) Markarian 231 (Mrk 231), supplemented with new and simultaneous low-energy (0.5-8 keV) data from Chandra. The source was detected, though at much fainter levels than previously reported, likely due to contamination in the large apertures of previous non-focusing hard X-ray telescopes. The full band (0.5-30 keV) X-ray spectrum suggests the active galactic nucleus (AGN) in Mrk 231 is absorbed by a patchy and Compton-thin N(sub H) approx. 1.2(sup +0.3) sub-0.3) x 10(exp 23) / sq cm) column. The intrinsic X-ray luminosity L(sub 0.5-30 Kev) approx. 1.0 x 10(exp 43) erg /s) is extremely weak relative to the bolometric luminosity where the 2-10 keV to bolometric luminosity ratio is approx. 0.03% compared to the typical values of 2-15%. Additionally, Mrk 231 has a low X-ray-to-optical power law slope alpha(sub 0X) approx. -1.7. It is a local example of a low-ionization broad absorption line (LoBAL) quasar that is intrinsically X-ray weak. The weak ionizing continuum may explain the lack of mid-infrared [O IV], [Ne V], and [Ne VI] fine-structure emission lines which are present in sources with otherwise similar AGN properties. We argue that the intrinsic X-ray weakness may be a result of the super-Eddington accretion occurring in the nucleus of this ULIRG, and may also be naturally related to the powerful wind event seen in Mrk 231, a merger remnant escaping from its dusty cocoon.

  17. Time resolved Thomson scattering measurements on a high pressure mercury lamp

    NARCIS (Netherlands)

    Vries, de N.; Zhu, Xiao-Yan; Kieft, E.R.; Mullen, van der J.J.A.M.

    2005-01-01

    Time resolved Thomson scattering (TS) measurements have been performed on an ac driven high pressure mercury lamp. For this high intensity discharge (HID) lamp, TS is coherent and a coherent fitting routine, including rotational Raman calibration, was used to determine ne and Te from the measured

  18. Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources

    International Nuclear Information System (INIS)

    Rutherford, Michael E.; Chapman, David J.; White, Thomas G.; Drakopoulos, Michael; Rack, Alexander; Eakins, Daniel E.

    2016-01-01

    Scintillator performance in time-resolved, hard, indirect detection X-ray studies on the sub-microsecond timescale at synchrotron light sources is reviewed, modelled and examined experimentally. LYSO:Ce is found to be the only commercially available crystal suitable for these experiments. The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits)

  19. Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources

    Energy Technology Data Exchange (ETDEWEB)

    Rutherford, Michael E.; Chapman, David J.; White, Thomas G. [Imperial College London, London (United Kingdom); Drakopoulos, Michael [Diamond Light Source, I12 Joint Engineering, Environmental, Processing (JEEP) Beamline, Didcot, Oxfordshire (United Kingdom); Rack, Alexander [European Synchrotron Radiation Facility, Grenoble (France); Eakins, Daniel E., E-mail: d.eakins@imperial.ac.uk [Imperial College London, London (United Kingdom)

    2016-03-24

    Scintillator performance in time-resolved, hard, indirect detection X-ray studies on the sub-microsecond timescale at synchrotron light sources is reviewed, modelled and examined experimentally. LYSO:Ce is found to be the only commercially available crystal suitable for these experiments. The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits)

  20. Time-resolved VUV spectroscopy in the EXTRAP-T2 reversed field pinch

    International Nuclear Information System (INIS)

    Hedqvist, A.; Rachlew-Kaellne, E.

    1998-01-01

    Time-resolved VUV spectroscopy has been used to investigate the effects of impurities in a reversed field pinch operating with a resistive shell. Results of electron temperature, impurity ion densities, particle confinement time and Z eff together with a description of the interpretation and the equipment are presented. (author)

  1. Time-resolved VUV spectroscopy in the EXTRAP-T2 reversed field pinch

    Science.gov (United States)

    Hedqvist, Anders; Rachlew-Källne, Elisabeth

    1998-09-01

    Time-resolved VUV spectroscopy has been used to investigate the effects of impurities in a reversed field pinch operating with a resistive shell. Results of electron temperature, impurity ion densities, particle confinement time and 0741-3335/40/9/004/img1 together with a description of the interpretation and the equipment are presented.

  2. Time Resolved Shadowgraph Images of Silicon during Laser Ablation: Shockwaves and Particle Generation

    International Nuclear Information System (INIS)

    Liu, C Y; Mao, X L; Greif, R; Russo, R E

    2007-01-01

    Time resolved shadowgraph images were recorded of shockwaves and particle ejection from silicon during laser ablation. Particle ejection and expansion were correlated to an internal shockwave resonating between the shockwave front and the target surface. The number of particles ablated increased with laser energy and was related to the crater volume

  3. On the use of time resolved laser-induced spectrofluorometry in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Moulin, C.; Decambox, P.; Mauchien, P.; Davin, T.; Pradel, B.

    1991-01-01

    Time Resolved Laser-Induced Spectrofluorometry (TRLIS) has been used for actinides trace analysis and complexation analysis in the nuclear fuel cycle. Results obtained in the different fields such as in geology, in the Purex process, in the environment, in the medical and in waste storage assessment are presented. 4 figs., 6 refs

  4. Finite-difference time-domain analysis of time-resolved terahertz spectroscopy experiments

    DEFF Research Database (Denmark)

    Larsen, Casper; Cooke, David G.; Jepsen, Peter Uhd

    2011-01-01

    In this paper we report on the numerical analysis of a time-resolved terahertz (THz) spectroscopy experiment using a modified finite-difference time-domain method. Using this method, we show that ultrafast carrier dynamics can be extracted with a time resolution smaller than the duration of the T...

  5. Reduction of Guanosyl Radical by Cysteine and Cysteine-Glycine Studied by Time-Resolved CIDNP

    NARCIS (Netherlands)

    Morozova, O.B.; Kaptein, R.; Yurkovskaya, A.V.

    2012-01-01

    As a model for chemical DNA repair, reduction of guanosyl radicals in the reaction with cysteine or the dipeptide cysteine-glycine has been studied by time-resolved chemically induced dynamic nuclear polarization (CIDNP). Radicals were generated photochemically by pulsed laser irradiation of a

  6. Time-Resolved WAXD and SAXS Investigations on Butyl Branched Alkane at Elevated Pressures

    NARCIS (Netherlands)

    Rastogi, A.; Hobbs, J.K.; Rastogi, S.

    2002-01-01

    The crystallization behavior and the morphological aspect of the butyl branched alkane C96H193CH(C4H9)C94H189 have been investigated using time-resolved wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) at atmospheric and elevated pressures. The solution crystallized sample

  7. Speciation of actinides in aqueous solution by time-resolved laser-induced fluorescence spectroscopy (TRLFS)

    International Nuclear Information System (INIS)

    Kimura, Takaumi; Kato, Yoshiharu; Meinrath, G.; Yoshida, Zenko; Choppin, G.R.

    1995-01-01

    Time-resolved laser-induced fluorescence spectroscopy (TRLFS) as a sensitive and selective method has been applied to the speciation of actinides in aqueous solution. Studies on hydrolysis and carbonate complexation of U(VI) and on determination of hydration number of Cm(III) are reported. (author)

  8. Plasma polarization spectroscopy. Time resolved spectroscopy in soft x-ray region on recombining plasma

    International Nuclear Information System (INIS)

    Iwamae, Atsushi; Hasuo, Masahiro; Atake, Makoto; Hasegawa, Noboru; Kawachi, Tetsuya

    2007-01-01

    We present an experimental study of polarization of emission radiations from recombining plasmas generated by the interaction of 60 fs ultra-short laser pulses with a gas jet. Time-resolved spectroscopy with a temporal resolution of 5 ps with repetitive accumulation is used to follow the recombination time histories. (author)

  9. Time-resolved proton polarisation (TPP) images tyrosyl radical sites in bovine liver catalase.

    Science.gov (United States)

    Zimmer, Oliver; Jouve, Hélène M.; Stuhrmann, Heinrich B.

    2017-05-01

    A differentiation between dynamic polarised protons close to tyrosyl radical sites in catalase and those of the bulk is achieved by time-resolved polarised neutron scattering. Three radical sites, all of them being close to the molecular centre and the heme, appear to be equally possible. Among these is tyr-369 the radial site of which had previously been proven by EPR.

  10. Time-resolved magnetic field effects in exciplex systems under X-irradiation

    International Nuclear Information System (INIS)

    Anishchik, S.V.; Lavrik, N.L.

    1988-01-01

    The presence of exciplex systems after X-irradiation of pyrene and N,N-diethylaniline in methanol as well as the influence of the applied magnetic field on exciplex fluorescence was registered using a time-resolving method. The experimental results confirmed the hypothesis on exciplex emergence in the system under study. (author)

  11. Time resolved optical emission spectroscopy of cross-beam pulsed laser ablation on graphite targets

    International Nuclear Information System (INIS)

    Sangines, R.; Sanchez Ake, C.; Sobral, H.; Villagran-Muniz, M.

    2007-01-01

    Cross-beam pulsed laser ablation with two delayed lasers is performed on two perpendicular graphite targets. The time delay between lasers is varied by up to 5 μs, and physical changes on the second plasma, due to the interaction with the first generated one, are determined by time resolved optical emission spectroscopy

  12. Time-resolved investigation of an asymmetric bipolar pulsed magnetron deposition discharge: Influence of pressure

    NARCIS (Netherlands)

    Dunger, Th.; Welzel, Th.; Welzel, S.; Richter, F.

    2005-01-01

    A bipolar pulsed magnetron deposition discharge has been studied with pulse frequencies of 100 and 150 kHz, respectively. The discharge was operated in an argon/oxygen mixture at different total pressures with a circular magnesium target as cathode. Time-resolved Langmuir double probe measurements

  13. Time Resolved Shadowgraph Images of Silicon during Laser Ablation:Shockwaves and Particle Generation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.Y.; Mao, X.L.; Greif, R.; Russo, R.E.

    2006-05-06

    Time resolved shadowgraph images were recorded of shockwaves and particle ejection from silicon during laser ablation. Particle ejection and expansion were correlated to an internal shockwave resonating between the shockwave front and the target surface. The number of particles ablated increased with laser energy and was related to the crater volume.

  14. Compact cryogenic Kerr microscope for time-resolved studies of electron spin transport in microstructures

    NARCIS (Netherlands)

    Rizo, P. J.; Pugzlys, A.; Liu, J.; Reuter, D.; Wieck, A. D.; van der Wal, C. H.; van Loosdrecht, P. H. M.; Pugžlys, A.

    2008-01-01

    A compact cryogenic Kerr microscope for operation in the small volume of high-field magnets is described. It is suited for measurements both in Voigt and Faraday configurations. Coupled with a pulsed laser source, the microscope is used to measure the time-resolved Kerr rotation response of

  15. PLASTIQUE: A synchrotron radiation beamline for time resolved fluorescence in the frequency domain

    International Nuclear Information System (INIS)

    De Stasio, G.; Zema, N.; Antonangeli, F.; Parasassi, T.; Rosato, N.

    1991-01-01

    PLASTIQUE is the only synchrotron radiation beamline in the world that performs time resolved fluorescence experiments in the frequency domain. These experiments are extremely valuable sources of informations on the structure and dynamics of molecules. The beamline and some examples of initial data are described

  16. Plastique: A synchrotron radiation beamline for time resolved fluorescence in the frequency domain

    Science.gov (United States)

    De Stasio, Gelsomina; Zema, N.; Antonangeli, F.; Savoia, A.; Parasassi, T.; Rosato, N.

    1991-06-01

    PLASTIQUE is the only synchrotron radiation beamline in the world that performs time resolved fluorescence experiments in frequency domain. These experiments are extremely valuable sources of information on the structure and dynamics of molecules. We describe the beamline and some initial data.

  17. Infrared

    Science.gov (United States)

    Vollmer, M.

    2013-11-01

    'Infrared' is a very wide field in physics and the natural sciences which has evolved enormously in recent decades. It all started in 1800 with Friedrich Wilhelm Herschel's discovery of infrared (IR) radiation within the spectrum of the Sun. Thereafter a few important milestones towards widespread use of IR were the quantitative description of the laws of blackbody radiation by Max Planck in 1900; the application of quantum mechanics to understand the rotational-vibrational spectra of molecules starting in the first half of the 20th century; and the revolution in source and detector technologies due to micro-technological breakthroughs towards the end of the 20th century. This has led to much high-quality and sophisticated equipment in terms of detectors, sources and instruments in the IR spectral range, with a multitude of different applications in science and technology. This special issue tries to focus on a few aspects of the astonishing variety of different disciplines, techniques and applications concerning the general topic of infrared radiation. Part of the content is based upon an interdisciplinary international conference on the topic held in 2012 in Bad Honnef, Germany. It is hoped that the information provided here may be useful for teaching the general topic of electromagnetic radiation in the IR spectral range in advanced university courses for postgraduate students. In the most general terms, the infrared spectral range is defined to extend from wavelengths of 780 nm (upper range of the VIS spectral range) up to wavelengths of 1 mm (lower end of the microwave range). Various definitions of near, middle and far infrared or thermal infrared, and lately terahertz frequencies, are used, which all fall in this range. These special definitions often depend on the scientific field of research. Unfortunately, many of these fields seem to have developed independently from neighbouring disciplines, although they deal with very similar topics in respect of the

  18. Usefulness of time-resolved projection MRA on evaluation of hemodynamics in cerebral occlusive diseases

    International Nuclear Information System (INIS)

    Oka, Yoshihisa; Kusunoki, Katsusuke; Nochide, Ichiro; Igase, Keiji; Harada, Hironobu; Sadamoto, Kazuhiko; Nagasawa, Kiyoshi

    2001-01-01

    The usefulness for evaluation of cerebral hemodynamics using time-resolved projection MRA was studied in normal volunteers and patients of cerebrovascular diseases. Six normal volunteers and ten patients with cerebrovascular occlusive diseases including 6 of IC occlusion and 4 of post EC/IC bypass surgery underwent time-resolved projection MRA on a 1.5 T clinical MRI system. Projection angiograms are acquired with 2D-fast SPGR sequence with a time resolution of approximately one image per second, 40 images being acquired consecutively before and after bolus injection Gd-DTPA. And all images were calculated by complex subtraction from the background mask in a work station. In normal volunteers, the quality of images of time-resolved projection MRA was satisfactory. The arteries from internal carotid artery through M2 segment of middle cerebral artery and all major venous systems were well portrayed. In 4 cases of IC occlusion who were assessed the collateral flow through the anterior communicating artery and posterior communicating artery, there were delayed to demonstrate the ipsilateral MCA. However, in 2 cases of IC occlusion that were assessed the collateral flow through leptomeningeal anastomosis, ipsilateral MCA and collateral circulation were not demonstrated. In all patients of post EC/IC bypass surgery, the patency of EC/IC bypass could be evaluated as properly with time-resolved projection MRA as 3D-TOF MRA. Although the temporal and spatial resolutions are insufficient, time-resolved projection MRA was power-full non-invasive method to evaluate the cerebral hemodynamics vis the basal communicating arteries in IC occlusion and identify the patency of EC/IC bypass. (author)

  19. Exploratory study on a statistical method to analyse time resolved data obtained during nanomaterial exposure measurements

    International Nuclear Information System (INIS)

    Clerc, F; Njiki-Menga, G-H; Witschger, O

    2013-01-01

    Most of the measurement strategies that are suggested at the international level to assess workplace exposure to nanomaterials rely on devices measuring, in real time, airborne particles concentrations (according different metrics). Since none of the instruments to measure aerosols can distinguish a particle of interest to the background aerosol, the statistical analysis of time resolved data requires special attention. So far, very few approaches have been used for statistical analysis in the literature. This ranges from simple qualitative analysis of graphs to the implementation of more complex statistical models. To date, there is still no consensus on a particular approach and the current period is always looking for an appropriate and robust method. In this context, this exploratory study investigates a statistical method to analyse time resolved data based on a Bayesian probabilistic approach. To investigate and illustrate the use of the this statistical method, particle number concentration data from a workplace study that investigated the potential for exposure via inhalation from cleanout operations by sandpapering of a reactor producing nanocomposite thin films have been used. In this workplace study, the background issue has been addressed through the near-field and far-field approaches and several size integrated and time resolved devices have been used. The analysis of the results presented here focuses only on data obtained with two handheld condensation particle counters. While one was measuring at the source of the released particles, the other one was measuring in parallel far-field. The Bayesian probabilistic approach allows a probabilistic modelling of data series, and the observed task is modelled in the form of probability distributions. The probability distributions issuing from time resolved data obtained at the source can be compared with the probability distributions issuing from the time resolved data obtained far-field, leading in a

  20. Absorption spectroscopic studies of carbon dioxide conversion in a low pressure glow discharge using tunable infrared diode lasers

    International Nuclear Information System (INIS)

    Hempel, F; Roepcke, J; Miethke, F; Wagner, H-E

    2002-01-01

    The time and spatial dependence of the chemical conversion of CO 2 to CO were studied in a closed glow discharge reactor (p = 50 Pa, I = 2-30 mA) consisting of a small plasma zone and an extended stationary afterglow. Tunable infrared diode laser absorption spectroscopy has been applied to determine the absolute ground state concentrations of CO and CO 2 . After a certain discharge time an equilibrium of the concentrations of both species could be observed. The spatial dependence of the equilibrium CO concentration in the afterglow was found to be varying less than 10%. The feed gas was converted to CO more predominantly between 43% and 60% with increasing discharge current, forming so-called quasi-equilibrium states of the stable reaction products. The formation time of the stable gas composition also decreased with the current. For currents higher than 10 mA the conversion rate of CO 2 to CO was estimated to be 1.2x10 13 molecules J -1 . Based on the experimental results, a plasma chemical modelling has been established

  1. Potential drug – nanosensor conjugates: Raman, infrared absorption, surface – enhanced Raman, and density functional theory investigations of indolic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Pięta, Ewa, E-mail: Ewa.Pieta@ifj.edu.pl [Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow (Poland); Paluszkiewicz, Czesława [Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow (Poland); Oćwieja, Magdalena [J. Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, PL-30239 Krakow (Poland); Kwiatek, Wojciech M. [Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow (Poland)

    2017-05-15

    Highlights: • Molecular fragments involved in the adsorption process were determined. • Formation of hydrogen bonds with the negatively charged gold substrates was observed. • Indole moiety strongly interacts with gold nanosensors. • The synthesized sensors are characterized by high stability and reproducibility. • Chemical mechanism plays a crucial role in the enhancement of the Raman signal. - Abstract: An extremely important aspect of planning cancer treatment is not only the drug efficiency but also a number of challenges associated with the side effects and control of this process. That is why it is worth paying attention to the promising potential of the gold nanoparticles combined with a compound treated as a potential drug. This work presents Raman (RS), infrared absorption (IR) and surface–enhanced Raman scattering (SERS) spectroscopic investigations of N–acetyl–5–methoxytryptamine (melatonin) and α–methyl–DL–tryptophan, regarding as anti breast cancer agents. The experimental spectroscopic analysis was supported by the quantum-chemical calculations based on the B3LYP hybrid density functional theory (DFT) at the B3LYP 6–311G(d,p) level of theory. The studied compounds were adsorbed onto two colloidal gold nanosensors synthesized by a chemical reduction method using sodium borohydride (SB) and trisodium citrate (TC), respectively. Its morphology characteristics were obtained using transmission electron microscopy (TEM). It has been suggested that the NH moiety from the aromatic ring, a well-known proton donor, causes the formation of hydrogen bonds with the negatively charged gold surface.

  2. Fourier Transform Infrared Absorption Spectroscopy for Quantitative Analysis of Gas Mixtures at Low Temperatures for Homeland Security Applications.

    Science.gov (United States)

    Meier, D C; Benkstein, K D; Hurst, W S; Chu, P M

    2017-05-01

    Performance standard specifications for point chemical vapor detectors are established in ASTM E 2885-13 and ASTM E 2933-13. The performance evaluation of the detectors requires the accurate delivery of known concentrations of the chemical target to the system under test. Referee methods enable the analyte test concentration and associated uncertainties in the analyte test concentration to be validated by independent analysis, which is especially important for reactive analytes. This work extends the capability of a previously demonstrated method for using Fourier transform infrared (FT-IR) absorption spectroscopy for quantitatively evaluating the composition of vapor streams containing hazardous materials at Acute Exposure Guideline Levels (AEGL) to include test conditions colder than laboratory ambient temperatures. The described method covers the use of primary reference spectra to establish analyte concentrations, the generation of secondary reference spectra suitable for measuring analyte concentrations under specified testing environments, and the use of additional reference spectra and spectral profile strategies to mitigate the uncertainties due to impurities and water condensation within the low-temperature (7 °C, -5 °C) test cell. Important benefits of this approach include verification of the test analyte concentration with characterized uncertainties by in situ measurements co-located with the detector under test, near-real-time feedback, and broad applicability to toxic industrial chemicals.

  3. In Situ Nondestructive Analysis of Kalanchoe pinnata Leaf Surface Structure by Polarization-Modulation Infrared Reflection-Absorption Spectroscopy.

    Science.gov (United States)

    Hama, Tetsuya; Kouchi, Akira; Watanabe, Naoki; Enami, Shinichi; Shimoaka, Takafumi; Hasegawa, Takeshi

    2017-12-14

    The outermost surface of the leaves of land plants is covered with a lipid membrane called the cuticle that protects against various stress factors. Probing the molecular-level structure of the intact cuticle is highly desirable for understanding its multifunctional properties. We report the in situ characterization of the surface structure of Kalanchoe pinnata leaves using polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS). Without sample pretreatment, PM-IRRAS measures the IR spectra of the leaf cuticle of a potted K. pinnata plant. The peak position of the CH 2 -related modes shows that the cuticular waxes on the leaf surface are mainly crystalline, and the alkyl chains are highly packed in an all-trans zigzag conformation. The surface selection rule of PM-IRRAS revealed the average orientation of the cuticular molecules, as indicated by the positive and negative signals of the IR peaks. This unique property of PM-IRRAS revealed that the alkyl chains of the waxes and the main chains of polysaccharides are oriented almost perpendicular to the leaf surface. The nondestructive, background-free, and environmental gas-free nature of PM-IRRAS allows the structure and chemistry of the leaf cuticle to be studied directly in its native environment.

  4. Preparation and near-infrared absorption of nano-SnO{sub 2}/SiO{sub 2} assemblies with doping and without doping

    Energy Technology Data Exchange (ETDEWEB)

    Hai Shujie [Faculty of Material Science and Chemical Engineering, China University of Geosciences, Lu Mo Road 388, Wuhan 430074 (China); Yan Chunjie, E-mail: chjyan2005@126.co [Engineering Research Center of Nano-Geomaterials, Ministry of Education, China University of Geosciences, Lu Mo Road 388, Wuhan 430074 (China); Yu Hongjie; Xiao Guoqi; Wang Duo [Faculty of Material Science and Chemical Engineering, China University of Geosciences, Lu Mo Road 388, Wuhan 430074 (China)

    2009-11-20

    The assemblies of nano-SnO{sub 2}/SiO{sub 2} and Sb- or Pd-doped nano-SnO{sub 2}/SiO{sub 2}, in which the nano-SnO{sub 2} particles are located in the pores of mesoporous SiO{sub 2} dry gels, were synthesized. Only for the Sb-doped nano-SnO{sub 2}/SiO{sub 2} assemblies, a broad near-infrared absorption step occurs in the optical absorption spectrum of the wavelength range from 300 to 1500 nm. The near-infrared absorption phenomenon is attributed to electronic transitions from the ground states to the excitation states of the impurity energy levels, which are formed by Sb doping in SnO{sub 2}. With increasing the weight ratio of SnO{sub 2}:SiO{sub 2} or the annealing temperature, the near-infrared absorption step slope side exhibits 'red shift', which is caused by the quantum confinement effect weakening due to the increased SnO{sub 2} crystalline diameter.

  5. Modeling transition diffusive–nondiffusive transport in a turbid media and application to time-resolved reflectance

    International Nuclear Information System (INIS)

    Di Rocco, Héctor O.; Carbone, Nicolás A.; Iriarte, Daniela I.; Pomarico, Juan A.; Ranea Sandoval, Héctor F.

    2013-01-01

    In this work a generalized solution for the photon density, Φ gen (r,t), is applied to two types of experiments in turbid media carried out in the last years. Both involve small typical distances, where it is known that the diffusion approximation ceases to be valid. In one case, the use of time-resolved reflectance at small or null source-detector separation using fast single photon gating to localize small inhomogeneities embedded in diffusive media has been proposed. In other type of experiments, it is addressed the transition between the ballistic and the diffusive regimes, measuring the transmitted light within a relatively narrow solid angle. The model proposed here corroborates the importance of the solid angle of the measurement device in order to see the ballistic photons, and the given generalized solution provides valid answers to problems posed by the mentioned experiments. Furthermore, it permits the description of diffusive photons when the absorption coefficient is relatively high, where the diffusion approximation is not valid. -- Highlights: ► Separation of Ballistic and Snake photons from diffusive ones. ► Modeling of short propagation distances in turbid media. ► Photons in high absorption limit

  6. Quantum-dot-based homogeneous time-resolved fluoroimmunoassay of alpha-fetoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Chen Meijun; Wu Yingsong; Lin Guanfeng; Hou Jingyuan; Li Ming [Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou, 510515 (China); Liu Tiancai, E-mail: liutc@smu.edu.cn [Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou, 510515 (China)

    2012-09-05

    Highlights: Black-Right-Pointing-Pointer QDs-based homogeneous time-resolved fluoroimmunoassay was developed to detect AFP. Black-Right-Pointing-Pointer The conjugates were prepared with QDs-doped microspheres and anti-AFP McAb. Black-Right-Pointing-Pointer The conjugates were prepared with LTCs and another anti-AFP McAb. Black-Right-Pointing-Pointer Excess amounts of conjugates were used for detecting AFP without rinsing. Black-Right-Pointing-Pointer The wedding of QPs and LTCs was suitable for HTRFIA to detect AFP. - Abstract: Quantum dots (QDs) with novel photoproperties are not widely used in clinic diagnosis, and homogeneous time-resolved fluorescence assays possess many advantages over current methods for alpha-fetoprotein (AFP) detection. A novel QD-based homogeneous time-resolved fluorescence assay was developed and used for detection of AFP, a primary marker for many cancers and diseases. QD-doped carboxyl-modified polystyrene microparticles (QPs) were prepared by doping oil-soluble QDs possessing a 605 nm emission peak. The antibody conjugates (QPs-E014) were prepared from QPs and an anti-AFP monoclonal antibody, and luminescent terbium chelates (LTCs) were prepared and conjugated to a second anti-AFP monoclonal antibody (LTCs-E010). In a double-antibodies sandwich structure, QPs-E014 and LTCs-E010 were used for detection of AFP, serving as energy acceptor and donor, respectively, with an AFP bridge. The results demonstrated that the luminescence lifetime of these QPs was sufficiently long for use in a time-resolved fluoroassay, with the efficiency of time-resolved Foerster resonance transfer (TR-FRET) at 67.3% and the spatial distance of the donor to acceptor calculated to be 66.1 Angstrom-Sign . Signals from TR-FRET were found to be proportional to AFP concentrations. The resulting standard curve was log Y = 3.65786 + 0.43863{center_dot}log X (R = 0.996) with Y the QPs fluorescence intensity and X the AFP concentration; the calculated sensitivity was 0

  7. Kinetics of the F+NO2+M->FNO2+M reaction studied by pulse radiolysis combined with time-resolved IR and UV spectroscopy

    DEFF Research Database (Denmark)

    Pagsberg, Palle Bjørn; Sillesen, A.; Jodkowski, J.T.

    1996-01-01

    was studied with SF6 pressures of 5-1000 mbar at 298 K. Comparative studies were carried out by monitoring the decay kinetics of NO2 at 445 nm using pressures of 100-1000 mbar at 295 and 341 K. The observed pressure dependence is represented in terms of a fall-off curve with the following values......The title reaction was initiated by the pulse radiolysis of SF6/NO2 gas mixtures, and the formation of FNO2 was studied by time-resolved infrared spectroscopy employing strong rotational transitions within the nu(1) and nu(4) bands of FNO2. The pressure dependence of the formation kinetics...

  8. Exploration of CdTe quantum dots as mesoscale pressure sensors via time-resolved shock-compression photoluminescent emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Zhitao [Georgia Tech Research Institute, Georgia Institute of Technology, Atlanta, Georgia 30332-0826 (United States); School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245 (United States); Banishev, Alexandr A.; Christensen, James; Dlott, Dana D. [School of Chemical Sciences and Fredrick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Lee, Gyuhyon; Scripka, David A.; Breidenich, Jennifer; Summers, Christopher J.; Thadhani, Naresh N., E-mail: naresh.thadhani@mse.gatech.edu [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245 (United States); Xiao, Pan [LNM, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0405 (United States); Zhou, Min [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0405 (United States)

    2016-07-28

    The nanometer size of CdTe quantum dots (QDs) and their unique optical properties, including size-tunable narrow photoluminescent emission, broad absorption, fast photoluminescence decay, and negligible light scattering, are ideal features for spectrally tagging the shock response of localized regions in highly heterogeneous materials such as particulate media. In this work, the time-resolved laser-excited photoluminescence response of QDs to shock-compression was investigated to explore their utilization as mesoscale sensors for pressure measurements and in situ diagnostics during shock loading experiments. Laser-driven shock-compression experiments with steady-state shock pressures ranging from 2.0 to 13 GPa were performed on nanocomposite films of CdTe QDs dispersed in a soft polyvinyl alcohol polymer matrix and in a hard inorganic sodium silicate glass matrix. Time-resolved photoluminescent emission spectroscopy was used to correlate photoluminescence changes with the history of shock pressure and the dynamics of the matrix material surrounding the QDs. The results revealed pressure-induced blueshifts in emitted wavelength, decreases in photoluminescent emission intensity, reductions in peak width, and matrix-dependent response times. Data obtained for these QD response characteristics serve as indicators for their use as possible time-resolved diagnostics of the dynamic shock-compression response of matrix materials in which such QDs are embedded as in situ sensors.

  9. Exploration of CdTe quantum dots as mesoscale pressure sensors via time-resolved shock-compression photoluminescent emission spectroscopy

    International Nuclear Information System (INIS)

    Kang, Zhitao; Banishev, Alexandr A.; Christensen, James; Dlott, Dana D.; Lee, Gyuhyon; Scripka, David A.; Breidenich, Jennifer; Summers, Christopher J.; Thadhani, Naresh N.; Xiao, Pan; Zhou, Min

    2016-01-01

    The nanometer size of CdTe quantum dots (QDs) and their unique optical properties, including size-tunable narrow photoluminescent emission, broad absorption, fast photoluminescence decay, and negligible light scattering, are ideal features for spectrally tagging the shock response of localized regions in highly heterogeneous materials such as particulate media. In this work, the time-resolved laser-excited photoluminescence response of QDs to shock-compression was investigated to explore their utilization as mesoscale sensors for pressure measurements and in situ diagnostics during shock loading experiments. Laser-driven shock-compression experiments with steady-state shock pressures ranging from 2.0 to 13 GPa were performed on nanocomposite films of CdTe QDs dispersed in a soft polyvinyl alcohol polymer matrix and in a hard inorganic sodium silicate glass matrix. Time-resolved photoluminescent emission spectroscopy was used to correlate photoluminescence changes with the history of shock pressure and the dynamics of the matrix material surrounding the QDs. The results revealed pressure-induced blueshifts in emitted wavelength, decreases in photoluminescent emission intensity, reductions in peak width, and matrix-dependent response times. Data obtained for these QD response characteristics serve as indicators for their use as possible time-resolved diagnostics of the dynamic shock-compression response of matrix materials in which such QDs are embedded as in situ sensors.

  10. Influence of temperature on water and aqueous glucose absorption spectra in the near- and mid-infrared regions at physiologically relevant temperatures

    DEFF Research Database (Denmark)

    Jensen, P.S.; Bak, J.; Andersson-Engels, S.

    2003-01-01

    transmission cell controlled within 0.02 degreesC. Pathlengths of 50 mum and 0.4 mm were used in the mid- and near-infrared spectral region, respectively. Difference spectra were used to determine the effect of temperature on the water spectra quantitatively. These spectra were obtained by subtracting the 37...... degreesC water spectrum from the spectra measured at other temperatures. The difference spectra reveal that the effect of temperature is highest in the vicinity of the strong absorption bands, with a number of isosbestic points with no temperature dependence and relatively flat plateaus in between......Near- and mid-infrared absorption spectra of pure water and aqueous 1.0 g/dL glucose solutions in the wavenumber range 8000-950 cm(-1) were measured in the temperature range 30-42 C in steps of 2 degreesC. Measurements were carried out with an FT-IR spectrometer and a variable pathlength...

  11. Spectrum of excess partial molar absorptivity. Part II: a near infrared spectroscopic study of aqueous Na-halides.

    Science.gov (United States)

    Sebe, Fumie; Nishikawa, Keiko; Koga, Yoshikata

    2012-04-07

    Our earlier thermodynamic studies suggested that F(-) and Cl(-) form hydration shells with the hydration number 14 ± 2 and 2.3 ± 0.6, respectively, and leave the bulk H(2)O away from hydration shells unperturbed. Br(-) and I(-), on the other hand, form hydrogen bonds directly with the momentarily existing hydrogen bond network of H(2)O, and retard the degree of entropy-volume cross fluctuation inherent in liquid H(2)O. The effect of the latter is stronger for I(-) than Br(-). Here we seek additional information about this qualitative difference between Cl(-) and (Br(-) and I(-)) pair by near infrared (NIR) spectroscopy. We analyze the ν(2) + ν(3) band of H(2)O in the range 4600-5500 cm(-1) of aqueous solutions of NaCl, NaBr and NaI, by a new approach. From observed absorbance, we calculate excess molar absorptivity, ε(E), excess over the additive contributions of solute and solvent. ε(E) thus contains information about the effect of inter-molecular interactions in the ν(2) + ν(3) spectrum. The spectrum of ε(E) shows three bands; two negative ones at 5263 and 4873 cm(-1), and the positive band at 5123 cm(-1). We then define and calculate the excess partial molar absorptivity of each salt, ε(E)(salt). From the behaviour of ε(E)(salt) we suggest that the negative band at 5263 cm(-1) represents free H(2)O without much hydrogen bonding under the influence of local electric field of ions. Furthermore, from a sudden change in the x(salt) (mole fraction of salt) dependence of ε(E)(salt), we suggest that there is an ion-pairing in x(salt) > 0.032, 0.036, and 0.04 for NaCl, NaBr and NaI respectively. The positive band of ε(E) at 5123 cm(-1) is attributed to a modestly organized hydrogen bond network of H(2)O (or liquid-likeness), and the x(salt) dependence of ε indicated a qualitative difference in the effect of Cl(-) from those of Br(-) and I(-). Namely, the values of ε(E)(salt) stay constant for Cl(-) but those for Br(-) and I(-) decrease smoothly on

  12. Timepix3 as X-ray detector for time resolved synchrotron experiments

    Energy Technology Data Exchange (ETDEWEB)

    Yousef, Hazem, E-mail: hazem.yousef@diamond.ac.uk; Crevatin, Giulio; Gimenez, Eva N.; Horswell, Ian; Omar, David; Tartoni, Nicola

    2017-02-11

    The Timepix3 ASIC can be used very effectively for time resolved experiments at synchrotron facilities. We have carried out characterizations with the synchrotron beam in order to determine the time resolution and other characteristics such as the energy resolution, charge sharing and signals overlapping. The best time resolution achieved is 19 ns FWHM for 12 keV photons and 350 V bias voltage. The time resolution shows dependency on the photon energy as well as on the chip and acquisition parameters. - Highlights: • An estimate time resolution of the Timepix3 is produced based on the arrival time. • At high resolution, the time structure of the DLS synchrotron beam is resolved. • The arrival time information improves combining the charge split events. • The results enable performing a wide range of time resolved experiments.

  13. Laser-time resolved fluorimetric determination of trace of boron in U3O8

    International Nuclear Information System (INIS)

    Xu Yongyuan; Wang Yulong; Wang Qin

    1988-01-01

    In this work, a laser-time resolved fluorimetric determinatin of trace of boron in U 3 O 8 had been developed. The boron complex with dibenzoyl methane (DBM) in a suitable medium is excited by a small nitrogen laser and emits the delay fluorescence with lifetime of 2 ms which is much longer than that of the fluorescence of uranium. Since the fluorescence of uranium doesn't interfere with determination of boron in the time resolved fluorimetric method boron need not be separated from uranium in advance. Thus the determination is very rapid and simple. The limit of determination is 0.02 ngB/ml. When 10 mgU is taken, 0.01 ppm of boron in uranium can be determined. Several samples of U 3 O 8 with boron content from 0.04 to 0.5 ppm have been determined by using this method. The results of determination have been accordant with other methods

  14. Time-resolved X-ray studies using third generation synchrotron radiation sources

    International Nuclear Information System (INIS)

    Mills, D.M.

    1991-10-01

    The third generation, high-brilliance, hard x-ray, synchrotron radiation (SR) sources currently under construction (ESRF at Grenoble, France; APS at Argonne, Illinois; and SPring-8 at Harima, Japan) will usher in a new era of x-ray experimentation for both physical and biological sciences. One of the most exciting areas of experimentation will be the extension of x-ray scattering and diffraction techniques to the study of transient or time-evolving systems. The high repetition rate, short-pulse duration, high brilliance, and variable spectral bandwidth of these sources make them ideal for x-ray time-resolved studies. The temporal properties (bunch length, interpulse period, etc.) of these new sources will be summarized. Finally, the scientific potential and the technological challenges of time-resolved x-ray scattering from these new sources will be described. 13 refs., 4 figs

  15. Time-resolved X-ray scattering program at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Rodricks, B.

    1994-01-01

    The Time-Resolved Scattering Program's goal is the development of instruments and techniques for time-resolved studies. This entails the development of wide bandpass and focusing optics, high-speed detectors, mechanical choppers, and components for the measurement and creation of changes in samples. Techniques being developed are pump-probe experiments, single-bunch scattering experiments, high-speed white and pink beam Laue scattering, and nanosecond to microsecond synchronization of instruments. This program will be carried out primarily from a white-beam, bend-magnet source, experimental station, 1-BM-B, that immediately follows the first optics enclosure (1-BM-A). This paper will describe the experimental station and instruments under development to carry out the program

  16. Time-resolved UV-excited microarray reader for fluorescence energy transfer (FRET) measurements

    Science.gov (United States)

    Orellana, Adelina; Hokkanen, Ari P.; Pastinen, Tomi; Takkinen, Kristina; Soderlund, Hans

    2001-05-01

    Analytical systems based on immunochemistry are largely used in medical diagnostics and in biotechnology. There is a significant pressure to develop the present assay formats to become easier to use, faster, and less reagent consuming. Further developments towards high density array--like multianalyte measurement systems would be valuable. To this aim we have studied the applicability of fluorescence resonance energy transfer and time-resolved fluorescence resonance energy transfer in immunoassays on microspots and in microwells. We have used engineered recombinant antibodies detecting the pentameric protein CRP as a model analyte system, and tested different assay formats. We describe also the construction of a time-resolved scanning epifluorometer with which we could measure the FRET interaction between the slow fluorescence decay from europium chelates and its energy transfer to the rapidly decaying fluorophore Cy5.

  17. A review of the analysis of complex time-resolved fluorescence anisotropy data

    International Nuclear Information System (INIS)

    Smith, Trevor A; Ghiggino, Kenneth P

    2015-01-01

    Time-resolved fluorescence anisotropy measurements (TRAMs) are widely used to probe the dynamics of the various processes that can lead to the depolarisation of emission following photoselection by polarised excitation. The most commonly investigated of these emission depolarising phenomena is molecular rotational motion, but TRAMs are very useful for determining the kinetics of a host of other processes. In this paper we review several examples for which we have observed in our laboratories initially unexpectedly complex temporal behaviour of the time-resolved fluorescence anisotropy signal from relatively ‘simple’ chemical systems. In certain circumstances the anisotropy (i) decays on timescales when superficially it might be thought it should remain constant, (ii) shows marked ‘dip and rise’ behaviour in its intensity, or (iii) can change sign as the anisotropy evolves in time. Fundamentally simple processes, including molecular rotational motion, energy migration and excited state photophysics, can cause such behaviour. (topical review)

  18. A system for time-resolved x-ray diffraction and its application to muscle contraction

    International Nuclear Information System (INIS)

    Amemiya, Yoshiyuki; Hashizume, Hiroo.

    1979-01-01

    A data-collection system has been built which permits time-resolved studies of X-ray diffraction diagrams obtained from contracting muscle on millisecond time scale. The system consists of a linear delay-line position sensitive proportional counter (PSPC), a special data transfer unit and an on-line computer. The PSPC used with a mirror-monochromator camera can detect equatorial reflections from stimulated muscle in a total exposure time of a few seconds. Time-resolved data-collection is achieved by stimulating muscle at a regular time interval, dividing a complete cycle of muscle contraction into many successive time slices and accumulating in computer memory X-ray data for each time slice from many repeated cycles of stimulation. The performances of the system have been demonstrated by recording equatorial reflections from frog skeletal muscle during isometric and isotonic twitch with a time resolution of 25 ms. (author)

  19. Mix and Inject: Reaction Initiation by Diffusion for Time-Resolved Macromolecular Crystallography

    Directory of Open Access Journals (Sweden)

    Marius Schmidt

    2013-01-01

    Full Text Available Time-resolved macromolecular crystallography unifies structure determination with chemical kinetics, since the structures of transient states and chemical and kinetic mechanisms can be determined simultaneously from the same data. To start a reaction in an enzyme, typically, an initially inactive substrate present in the crystal is activated. This has particular disadvantages that are circumvented when active substrate is directly provided by diffusion. However, then it is prohibitive to use macroscopic crystals because diffusion times become too long. With small micro- and nanocrystals diffusion times are adequately short for most enzymes and the reaction can be swiftly initiated. We demonstrate here that a time-resolved crystallographic experiment becomes feasible by mixing substrate with enzyme nanocrystals which are subsequently injected into the X-ray beam of a pulsed X-ray source.

  20. A direct electron detector for time-resolved MeV electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Vecchione, T.; Denes, P.; Jobe, R. K.; Johnson, I. J.; Joseph, J. M.; Li, R. K.; Perazzo, A.; Shen, X.; Wang, X. J.; Weathersby, S. P.; Yang, J.; Zhang, D.

    2017-03-01

    The introduction of direct electron detectors enabled the structural biology revolution of cryogenic electron microscopy. Direct electron detectors are now expected to have a similarly dramatic impact on time-resolved MeV electron microscopy, particularly by enabling both spatial and temporal jitter correction. Here we report on the commissioning of a direct electron detector for time-resolved MeV electron microscopy. The direct electron detector demonstrated MeV single electron sensitivity and is capable of recording megapixel images at 180 Hz. The detector has a 15-bit dynamic range, better than 30-μmμm spatial resolution and less than 20 analogue-to-digital converter count RMS pixel noise. The unique capabilities of the direct electron detector and the data analysis required to take advantage of these capabilities are presented. The technical challenges associated with generating and processing large amounts of data are also discussed.

  1. Sub-nanosecond time-resolved near-field scanning magneto-optical microscope.

    Science.gov (United States)

    Rudge, J; Xu, H; Kolthammer, J; Hong, Y K; Choi, B C

    2015-02-01

    We report on the development of a new magnetic microscope, time-resolved near-field scanning magneto-optical microscope, which combines a near-field scanning optical microscope and magneto-optical contrast. By taking advantage of the high temporal resolution of time-resolved Kerr microscope and the sub-wavelength spatial resolution of a near-field microscope, we achieved a temporal resolution of ∼50 ps and a spatial resolution of microscope, the magnetic field pulse induced gyrotropic vortex dynamics occurring in 1 μm diameter, 20 nm thick CoFeB circular disks has been investigated. The microscope provides sub-wavelength resolution magnetic images of the gyrotropic motion of the vortex core at a resonance frequency of ∼240 MHz.

  2. Time-resolved protein nano-crystallography using an X-ray free-electron laser

    International Nuclear Information System (INIS)

    Aquila, Andrew; Hunter, Mark S.; Fromme, Petra; Fromme, Raimund; Grotjohann, Ingo; Doak, R. Bruce; Kirian, Richard A.; Schmidt, Kevin E.; Wang, Xiaoyu; Weierstall, Uwe; Spence, John C.H.; White, Thomas A.; Caleman, Carl; DePonte, Daniel P.; Fleckenstein, Holger; Gumprecht, Lars; Liang, Mengning; Martin, Andrew V.; Schulz, Joachim; Stellato, Francesco; Stern, Stephan; Barty, Anton; Andreasson, Jakob; Davidsson, Jan; Hajdu, Janos; Maia, Filipe R.N.C.; Seibert, M. Marvin; Timneanu, Nicusor; Arnlund, David; Johansson, Linda; Malmerberg, Erik; Neutze, Richard; Bajt, Sasa; Barthelmess, Miriam; Graafsma, Heinz; Hirsemann, Helmut; Wunderer, Cornelia; Barends, Thomas R.M.; Foucar, Lutz; Krasniqi, Faton; Lomb, Lukas; Rolles, Daniel; Schlichting, Ilme; Schmidt, Carlo; Bogan, Michael J.; Hampton, Christina Y.; Sierra, Raymond; Starodub, Dmitri; Bostedt, Christoph; Bozek, John D.; Messerschmidt, Marc; Williams, Garth J.; Bottin, Herve

    2012-01-01

    We demonstrate the use of an X-ray free electron laser synchronized with an optical pump laser to obtain X-ray diffraction snapshots from the photo-activated states of large membrane protein complexes in the form of nano-crystals flowing in a liquid jet. Light-induced changes of Photosystem I-Ferredoxin co-crystals were observed at time delays of 5 to 10 μs after excitation. The result correlates with the microsecond kinetics of electron transfer from Photosystem I to ferredoxin. The undocking process that follows the electron transfer leads to large rearrangements in the crystals that will terminally lead to the disintegration of the crystals. We describe the experimental setup and obtain the first time resolved femtosecond serial X-ray crystallography results from an irreversible photo-chemical reaction at the Linac Coherent Light Source. This technique opens the door to time-resolved structural studies of reaction dynamics in biological systems. (authors)

  3. Time-resolved resonance fluorescence spectroscopy for study of chemical reactions in laser-induced plasmas.

    Science.gov (United States)

    Liu, Lei; Deng, Leimin; Fan, Lisha; Huang, Xi; Lu, Yao; Shen, Xiaokang; Jiang, Lan; Silvain, Jean-François; Lu, Yongfeng

    2017-10-30

    Identification of chemical intermediates and study of chemical reaction pathways and mechanisms in laser-induced plasmas are important for laser-ablated applications. Laser-induced breakdown spectroscopy (LIBS), as a promising spectroscopic technique, is efficient for elemental analyses but can only provide limited information about chemical products in laser-induced plasmas. In this work, time-resolved resonance fluorescence spectroscopy was studied as a promising tool for the study of chemical reactions in laser-induced plasmas. Resonance fluorescence excitation of diatomic aluminum monoxide (AlO) and triatomic dialuminum monoxide (Al 2 O) was used to identify these chemical intermediates. Time-resolved fluorescence spectra of AlO and Al 2 O were used to observe the temporal evolution in laser-induced Al plasmas and to study their formation in the Al-O 2 chemistry in air.

  4. Time-resolved x-ray laser induced photoelectron spectroscopy of isochoric heated copper

    International Nuclear Information System (INIS)

    Nelson, A.J.; Dunn, J.; Hunter, J.; Widmann, K.

    2005-01-01

    Time-resolved x-ray photoelectron spectroscopy is used to probe the nonsteady-state evolution of the valence band electronic structure of laser heated ultrathin (50 nm) copper. A metastable phase is studied using a 527 nm wavelength 400 fs laser pulse containing 0.1-2.5 mJ laser energy focused in a large 500x700 μm 2 spot to create heated conditions of 0.07-1.8x10 12 W cm -2 intensity. Valence band photoemission spectra are presented showing the changing occupancy of the Cu 3d level with heating are presented. These picosecond x-ray laser induced time-resolved photoemission spectra of laser-heated ultrathin Cu foil show dynamic changes in the electronic structure. The ultrafast nature of this technique lends itself to true single-state measurements of shocked and heated materials

  5. Time-resolved wave profile measurements in copper to Megabar pressures

    Energy Technology Data Exchange (ETDEWEB)

    Chhabildas, L C; Asay, J R

    1981-01-01

    Many time-resolved techniques have been developed which have greatly aided in the understanding of dynamic material behavior such as the high pressure-dynamic strength of materials. In the paper, time-resolved measurements of copper (at shock-induced high pressures and temperatures) are used to illustrate the capability of using such techniques to investigate high pressure strength. Continuous shock loading and release wave profiles have been made in copper to 93 GPa using velocity interferometric techniques. Fine structure in the release wave profiles from the shocked state indicates an increase in shear strength of copper to 1.5 GPa at 93 GPa from its ambient value of 0.08 GPa.

  6. Time resolved Thomson scattering diagnostic of pulsed gas metal arc welding (GMAW) process

    International Nuclear Information System (INIS)

    Kühn-Kauffeldt, M; Schein, J; Marquès, J L

    2014-01-01

    In this work a Thomson scattering diagnostic technique was applied to obtain time resolved electron temperature and density values during a gas metal arc welding (GMAW) process. The investigated GMAW process was run with aluminum wire (AlMg 4,5 Mn) with 1.2 mm diameter as a wire electrode, argon as a shielding gas and peak currents in the range of 400 A. Time resolved measurements could be achieved by triggering the laser pulse at shifted time positions with respect to the current pulse driving the process. Time evaluation of resulting electron temperatures and densities is used to investigate the state of the plasma in different phases of the current pulse and to determine the influence of the metal vapor and droplets on the plasma properties

  7. Developments in time-resolved high pressure x-ray diffraction using rapid compression and decompression

    International Nuclear Information System (INIS)

    Smith, Jesse S.; Sinogeikin, Stanislav V.; Lin, Chuanlong; Rod, Eric; Bai, Ligang; Shen, Guoyin

    2015-01-01

    Complementary advances in high pressure research apparatus and techniques make it possible to carry out time-resolved high pressure research using what would customarily be considered static high pressure apparatus. This work specifically explores time-resolved high pressure x-ray diffraction with rapid compression and/or decompression of a sample in a diamond anvil cell. Key aspects of the synchrotron beamline and ancillary equipment are presented, including source considerations, rapid (de)compression apparatus, high frequency imaging detectors, and software suitable for processing large volumes of data. A number of examples are presented, including fast equation of state measurements, compression rate dependent synthesis of metastable states in silicon and germanium, and ultrahigh compression rates using a piezoelectric driven diamond anvil cell

  8. Timepix3 as X-ray detector for time resolved synchrotron experiments

    International Nuclear Information System (INIS)

    Yousef, Hazem; Crevatin, Giulio; Gimenez, Eva N.; Horswell, Ian; Omar, David; Tartoni, Nicola

    2017-01-01

    The Timepix3 ASIC can be used very effectively for time resolved experiments at synchrotron facilities. We have carried out characterizations with the synchrotron beam in order to determine the time resolution and other characteristics such as the energy resolution, charge sharing and signals overlapping. The best time resolution achieved is 19 ns FWHM for 12 keV photons and 350 V bias voltage. The time resolution shows dependency on the photon energy as well as on the chip and acquisition parameters. - Highlights: • An estimate time resolution of the Timepix3 is produced based on the arrival time. • At high resolution, the time structure of the DLS synchrotron beam is resolved. • The arrival time information improves combining the charge split events. • The results enable performing a wide range of time resolved experiments.

  9. Computational time-resolved and resonant x-ray scattering of strongly correlated materials

    Energy Technology Data Exchange (ETDEWEB)

    Bansil, Arun [Northeastern Univ., Boston, MA (United States)

    2016-11-09

    predominantly decays via Auger processes, thereby providing an internal time-scale, which limits intermediate-state processes to timescales of a few femtoseconds. Accordingly, a number of activities directed at modeling K-, L- and M-edge RIXS in correlated materials were also pursused by our CRT. Our research effort supported by this CMCSN grant substantially advanced the understanding of x-ray scattering processes in the time-domain as well as in the more conventional scattering channels, including time-resolved photoemission, and how such processes can be modeled realistically in complex correlated materials more generally. The modeling of relaxation processes involved in time-domain spectroscopies is important also for understanding photoinduced effects such as energy conversion in photosynthesis and solar cell applications, and thus impacts the basic science for energy needs.

  10. Time-resolved photoluminescence spectroscopy of semiconductors for optical applications beyond the visible spectral range

    Energy Technology Data Exchange (ETDEWEB)

    Chernikov, Alexey A.

    2011-07-01

    The work discussed in this thesis is focused on the experimental studies regarding these three steps: (1) investigation of the fundamental effects, (2) characterization of new material systems, and (3) optimization of the semiconductor devices. In all three cases, the experimental technique of choice is photoluminescence (PL) spectroscopy. The thesis is organized as follows. Chapter 2 gives a summary of the PL properties of semiconductors relevant for this work. The first section deals with the intrinsic processes in an ideal direct band gap material, starting with a brief summary of the theoretical background followed by the overview of a typical PL scenario. In the second part of the chapter, the role of the lattice-vibrations, the internal electric fields as well as the influence of the band-structure and the dielectric environment are discussed. Finally, extrinsic PL properties are presented in the third section, focusing on defects and disorder in real materials. In chapter 3, the experimental realization of the spectroscopic studies is discussed. The time-resolved photoluminescence (TRPL) setup is presented, focusing on the applied excitation source, non-linear frequency mixing, and the operation of the streak camera used for the detection. In addition, linear spectroscopy setup for continous-wave (CW) PL and absorption measurements is illustrated. Chapter 4 aims at the study of the interactions between electrons and lattice-vibrations in semiconductor crystals relevant for the proper description of carrier dynamics as well as the heat-transfer processes. The presented discussion covers the experimental studies of many-body effects in phonon-assisted emission of semiconductors due to the carriercarrier Coulomb-interaction. The corresponding theoretical background is discussed in detail in chapter 2. The investigations are focused on the two main questions regarding electron-hole plasma contributions to the phonon-assisted light-matter interaction as well as

  11. Tight beta-turns in peptides. DFT-based study of infrared absorption and vibrational circular dichroism for various conformers including solvent effects

    Czech Academy of Sciences Publication Activity Database

    Kim, J.; Kapitán, Josef; Lakhani, A.; Bouř, Petr; Keiderling, T. A.

    2008-01-01

    Roč. 119, 1/3 (2008), s. 81-97 ISSN 1432-881X R&D Projects: GA ČR GA203/06/0420 Grant - others:NSF(US) CHE03-16014 Institutional research plan: CEZ:AV0Z40550506 Keywords : peptide beta -turn * density functional theory * infrared absorption * vibrational circular dichroism Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.370, year: 2008

  12. Space- and time-resolved raman and breakdown spectroscopy: advanced lidar techniques

    Science.gov (United States)

    Silviu, Gurlui; Marius Mihai, Cazacu; Adrian, Timofte; Oana, Rusu; Georgiana, Bulai; Dimitriu, Dan

    2018-04-01

    DARLIOES - the advanced LIDAR is based on space- and time-resolved RAMAN and breakdown spectroscopy, to investigate chemical and toxic compounds, their kinetics and physical properties at high temporal (2 ns) and spatial (1 cm) resolution. The high spatial and temporal resolution are needed to resolve a large variety of chemical troposphere compounds, emissions from aircraft, the self-organization space charges induced light phenomena, temperature and humidity profiles, ice nucleation, etc.

  13. Technical note: Time-resolved immunofluorometric assay for growth hormone in ruminants

    DEFF Research Database (Denmark)

    Løvendahl, P.; Adamsen, J.; Lund, Regina Teresa

    2003-01-01

    for 4 h at 25degreesC. Plates were then washed six times, incubated for 5 to 10 min with 250 muL of enhancement solution, and fluorescence read with a time-resolved fluorometer. The sensitivity of the assay was 0.1 ng/mL, and the working range was 0.2 to 200 ng/mL. Recovery of quantitative amounts...

  14. Laser induced breakdown spectroscopy of the uranium including calcium. Time resolved measurement spectroscopic analysis (Contract research)

    International Nuclear Information System (INIS)

    Akaoka, Katsuaki; Maruyama, Youichiro; Oba, Masaki; Miyabe, Masabumi; Otobe, Haruyoshi; Wakaida, Ikuo

    2010-05-01

    For the remote analysis of low DF TRU (Decontamination Factor Transuranic) fuel, Laser Breakdown Spectroscopy (LIBS) was applied to uranium oxide including a small amount of calcium oxide. The characteristics, such as spectrum intensity and plasma excitation temperature, were measured using time-resolved spectroscopy. As a result, in order to obtain the stable intensity of calcium spectrum for the uranium spectrum, it was found out that the optimum observation delay time of spectrum is 4 microseconds or more after laser irradiation. (author)

  15. Optimization of experimental conditions in uranium trace determination using laser time-resolved fluorimetry

    International Nuclear Information System (INIS)

    Baly, L.; Garcia, M.A.

    1996-01-01

    At the present paper a new sample excitation geometry is presented for the uranium trace determination in aqueous solutions by the Time-Resolved Laser-Induced Fluorescence. This new design introduces the laser radiation through the top side of the cell allowing the use of cells with two quartz sides, less expensive than commonly used at this experimental set. Optimization of the excitation conditions, temporal discrimination and spectral selection are presented

  16. Time-resolved laser-induced fluorescence in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Moulin, C.; Decambox, P.; Mauchien, P.; Petit, A.

    1995-01-01

    Time-Resolved Laser-Induced Fluorescence (TRLIF) is a very sensitive and selective method that has been used for actinides and lanthanides analysis in the nuclear fuel cycle. This technique has been used in different fields such as in geology, in the Purex process, in the environment, in the medical and in waste storage assessment. Spectroscopic data, limits of detection and results obtained in previously quoted fields are presented. (author)

  17. A synchrotron radiation camera and data acquisition system for time resolved x-ray scattering studies

    International Nuclear Information System (INIS)

    Bordas, J.; Koch, M.H.J.; Clout, P.N.; Dorrington, E.; Boulin, C.; Gabriel, A.

    1980-01-01

    Until recently, time resolved measurements of x-ray scattering patterns have not been feasible because laboratory x-ray sources were too weak and detectors unavailable. Recent developments in both these fields have changed the situation, and it is now possible to follow changes in x-ray scattering patterns with a time resolution of a few ms. The apparatus used to achieve this is described and some examples from recent biological experiments are given. (author)

  18. Ultrafast Structural Dynamics in InSb Probed by Time-Resolved X-Ray Diffraction

    International Nuclear Information System (INIS)

    Chin, A.H.; Shank, C.V.; Chin, A.H.; Schoenlein, R.W.; Shank, C.V.; Glover, T.E.; Leemans, W.P.; Balling, P.

    1999-01-01

    Ultrafast structural dynamics in laser-perturbed InSb are studied using time-resolved x-ray diffraction with a novel femtosecond x-ray source. We report the first observation of a delay in the onset of lattice expansion, which we attribute to energy relaxation processes and lattice strain propagation. In addition, we observe direct indications of ultrafast disordering on a subpicosecond time scale. copyright 1999 The American Physical Society

  19. A diagnostic for time-resolved spatial profiles measurements on the ion temperature on JET

    International Nuclear Information System (INIS)

    Brocken, H.J.B.M.; Ven, H.W van der.

    1980-05-01

    A neutral particle scattering experiment for a continuous measurement of the ion temperature and ion density of the JET plasma in the hydrogen and deuterium phase is proposed. Space- and time-resolved measurements are possible by injection of a mono-energetic particle beam into the plasma and from the analysis of the velocity distribution of the scattered particles. The requirements on the injection system are specified and a suitable analyzer system is described

  20. Charge transport in nanostructured materials for solar energy conversion studied by time-resolved terahertz spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Němec, Hynek; Kužel, Petr; Sundström, V.

    2010-01-01

    Roč. 215, 2-3 (2010), s. 123-139 ISSN 1010-6030 R&D Projects: GA ČR(CZ) GP202/09/P099; GA AV ČR(CZ) IAA100100902; GA MŠk LC512 Institutional research plan: CEZ:AV0Z10100520 Keywords : time-resolved terahertz spectroscopy * ultrafast dynamics * bulk heterojunction * semiconductor nanostructures * transport * mobility Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.243, year: 2010

  1. Time-resolved small-angle neutron scattering study on soap-free emulsion polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Motokawa, Ryuhei [Research Group of Soft Matter and Neutron Scattering, Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195 (Japan); Koizumi, Satoshi [Research Group of Soft Matter and Neutron Scattering, Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195 (Japan)]. E-mail: koizumi@neutrons.tokai.jaeri.go.jp; Hashimoto, Takeji [Research Group of Soft Matter and Neutron Scattering, Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195 (Japan); Nakahira, Takayuki [Department of Applied Chemistry and Biotechnology, Chiba University, Chiba-shi, Chiba 263-8522 (Japan); Annaka, Masahiko [Department of Chemistry, Kyushu University, Fukuoka 812-8581 (Japan)

    2006-11-15

    We investigated an aqueous soap-free emulsion polymerization process of Poly(N-isopropylacrylamide)-block-poly(ethylene glycol) by ultra-small-angle and time-resolved small-angle neutron scattering methods. The results indicate that the compartmentalization of chain end radicals into solid-like micelle cores crucially leads to the quasi-living behavior of the radical polymerization by prohibiting recombination process.

  2. Ionic classification of Xe laser lines: A new approach through time resolved spectroscopy

    International Nuclear Information System (INIS)

    Schinca, D.; Duchowicz, R.; Gallardo, M.

    1992-01-01

    Visible and UV laser emission from a highly ionized pulsed Xe plasma was studied in relation to the ionic assignment of the laser lines. Time-resolved spectroscopy was used to determine the ionic origin of the studied lines. The results are in agreement with an intensity versus pressure analysis performed over the same wavelength range. From the temporal behaviour of the spontaneous emission, a probable classification can be obtained. (author). 7 refs, 7 figs, 1 tab

  3. Time resolved analysis of water drainage in porous asphalt concrete using neutron radiography.

    Science.gov (United States)

    Poulikakos, L D; Sedighi Gilani, M; Derome, D; Jerjen, I; Vontobel, P

    2013-07-01

    Porous asphalt as a road surface layer controls aquaplaning as rain water can drain through its highly porous structure. The process of water drainage through this permeable layer is studied using neutron radiography. Time-resolved water configuration and distribution within the porous structure are reported. It is shown that radiography depicts the process of liquid water transport within the complex geometry of porous asphalt, capturing water films, filled dead end pores and water islands. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Time-resolved luminescence of Eu2+-aggregate centers in CsBr crystals

    International Nuclear Information System (INIS)

    Zorenko, Yu.V.; Turchak, R.M.; Voznjak, T.I.; Stryganjuk, G.B.

    2005-01-01

    The luminescence of Eu 2+ -V Cs dipole centers and CsEuBr 3 aggregate centers, as well as the features of the energy transfer to these centers by excitons have been studied in CsBr:Eu crystals by means of investigation of the time-resolved emission spectra and luminescence decay kinetics under excitation by synchrotron radiation at RT. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Time-resolved fuel injector flow characterisation based on 3D laser Doppler vibrometry

    OpenAIRE

    Crua, Cyril; Heikal, Morgan R.

    2015-01-01

    In order to enable investigations of the fuel flow inside unmodified injectors, we have developed a new experimental approach to measure time-resolved vibration spectra of diesel nozzles using a three dimensional laser vibrometer. The technique we propose is based on the triangulation of the vibrometer and fuel pressure transducer signals, and enables the quantitative characterisation of quasi-cyclic internal flows without requiring modifications to the injector, the working fluid, or limitin...

  6. Combined Monte Carlo and path-integral method for simulated library of time-resolved reflectance curves from layered tissue models

    Science.gov (United States)

    Wilson, Robert H.; Vishwanath, Karthik; Mycek, Mary-Ann

    2009-02-01

    Monte Carlo (MC) simulations are considered the "gold standard" for mathematical description of photon transport in tissue, but they can require large computation times. Therefore, it is important to develop simple and efficient methods for accelerating MC simulations, especially when a large "library" of related simulations is needed. A semi-analytical method involving MC simulations and a path-integral (PI) based scaling technique generated time-resolved reflectance curves from layered tissue models. First, a zero-absorption MC simulation was run for a tissue model with fixed scattering properties in each layer. Then, a closed-form expression for the average classical path of a photon in tissue was used to determine the percentage of time that the photon spent in each layer, to create a weighted Beer-Lambert factor to scale the time-resolved reflectance of the simulated zero-absorption tissue model. This method is a unique alternative to other scaling techniques in that it does not require the path length or number of collisions of each photon to be stored during the initial simulation. Effects of various layer thicknesses and absorption and scattering coefficients on the accuracy of the method will be discussed.

  7. Preparation and microwave-infrared absorption of reduced graphene oxide/Cu-Ni ferrite/Al2O3 composites

    Science.gov (United States)

    De-yue, Ma; Xiao-xia, Li; Yu-xiang, Guo; Yu-run, Zeng

    2018-01-01

    Reduced graphene oxide (RGO)/Cu-Ni ferrite/Al2O3 composite was prepared by solvothermal method, and its properties were characterized by SEM, x-ray diffraction, energy-dispersive x-ray spectroscopy and FTIR. The electromagnetic parameters in 2-18 GHz and mid-infrared (IR) spectral transmittance of the composite were measured, respectively. The results show that Cu0.7Ni0.3Fe2O4 nanoparticles with an average size of tens nanometers adsorb on surface of RGO, and meanwhile, Al2O3 nanoparticles adhere to the surface of Cu0.7Ni0.3Fe2O4 nanoparticles and RGO. The composite has both dielectric and magnetic loss mechanism. Its reflection loss is lower than -19 dB in 2-18 GHz, and the maximum of -23.2 dB occurs at 15.6 GHz. With the increasing of Al2O3 amount, its reflection loss becomes lower and the maximum moves towards low frequency slightly. Compared with RGO/Cu-Ni ferrite composites, its magnetic loss and reflection loss slightly reduce with the increasing of Al2O3 amount, and the maximum of reflection loss shifts from a low frequency to a high one. However, its broadband IR absorption is significantly enhanced owing to nano-Al2O3. Therefore, RGO/Cu-Ni ferrite/Al2O3 composites can be used as excellent broadband microwave and IR absorbing materials, and maybe have broad application prospect in electromagnetic shielding, IR absorbing and coating materials.

  8. Hemodynamic measurements in rat brain and human muscle using diffuse near-infrared absorption and correlation spectroscopies

    Science.gov (United States)

    Yu, Guoqiang; Durduran, Turgut; Furuya, D.; Lech, G.; Zhou, Chao; Chance, Britten; Greenberg, J. H.; Yodh, Arjun G.

    2003-07-01

    Measurement of concentration, oxygenation, and flow characteristics of blood cells can reveal information about tissue metabolism and functional heterogeneity. An improved multifunctional hybrid system has been built on the basis of our previous hybrid instrument that combines two near-infrared diffuse optical techniques to simultaneously monitor the changes of blood flow, total hemoglobin concentration (THC) and blood oxygen saturation (StO2). Diffuse correlation spectroscopy (DCS) monitors blood flow (BF) by measuring the optical phase shifts caused by moving blood cells, while diffuse photon density wave spectroscopy (DPDW) measures tissue absorption and scattering. Higher spatial resolution, higher data acquisition rate and higher dynamic range of the improved system allow us to monitor rapid hemodynamic changes in rat brain and human muscles. We have designed two probes with different source-detector pairs and different separations for the two types of experiments. A unique non-contact probe mounted on the back of a camera, which allows continuous measurements without altering the blood flow, was employed to in vivo monitor the metabolic responses in rat brain during KCl induced cortical spreading depression (CSD). A contact probe was used to measure changes of blood flow and oxygenation in human muscle during and after cuff occlusion or exercise, where the non-contact probe is not appropriate for monitoring the moving target. The experimental results indicate that our multifunctional hybrid system is capable of in vivo and non-invasive monitoring of the hemodynamic changes in different tissues (smaller tissues in rat brain, larger tissues in human muscle) under different conditions (static versus moving). The time series images of flow during CSD obtained by our technique revealed spatial and temporal hemodynamic changes in rat brain. Two to three fold longer recovery times of flow and oxygenation after cuff occlusion or exercise from calf flexors in a

  9. Time-resolved single-shot terahertz time-domain spectroscopy for ultrafast irreversible processes

    Science.gov (United States)

    Zhai, Zhao-Hui; Zhong, Sen-Cheng; Li, Jun; Zhu, Li-Guo; Meng, Kun; Li, Jiang; Liu, Qiao; Peng, Qi-Xian; Li, Ze-Ren; Zhao, Jian-Heng

    2016-09-01

    Pulsed terahertz spectroscopy is suitable for spectroscopic diagnostics of ultrafast events. However, the study of irreversible or single shot ultrafast events requires ability to record transient properties at multiple time delays, i.e., time resolved at single shot level, which is not available currently. Here by angular multiplexing use of femtosecond laser pulses, we developed and demonstrated a time resolved, transient terahertz time domain spectroscopy technique, where burst mode THz pulses were generated and then detected in a single shot measurement manner. The burst mode THz pulses contain 2 sub-THz pulses, and the time gap between them is adjustable up to 1 ns with picosecond accuracy, thus it can be used to probe the single shot event at two different time delays. The system can detect the sub-THz pulses at 0.1 THz-2.5 THz range with signal to noise ratio (SNR) of ˜400 and spectrum resolution of 0.05 THz. System design was described here, and optimizations of single shot measurement of THz pulses were discussed in detail. Methods to improve SNR were also discussed in detail. A system application was demonstrated where pulsed THz signals at different time delays of the ultrafast process were successfully acquired within single shot measurement. This time resolved transient terahertz time domain spectroscopy technique provides a new diagnostic tool for irreversible or single shot ultrafast events where dynamic information can be extracted at terahertz range within one-shot experiment.

  10. Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources.

    Science.gov (United States)

    Rutherford, Michael E; Chapman, David J; White, Thomas G; Drakopoulos, Michael; Rack, Alexander; Eakins, Daniel E

    2016-05-01

    The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits).

  11. The TimBel synchronization board for time resolved experiments at synchrotron SOLEIL

    International Nuclear Information System (INIS)

    Ricaud, J.P.; Betinelli-Deck, P.; Bisou, J.; Elattaoui, X.; Laulhe, C.; Monteiro, P.; Nadolski, L.S.; Renaud, G.; Ravy, S.; Silly, M.; Sirotti, F.

    2012-01-01

    Time resolved experiments are one of the major services that synchrotrons can provide to scientists. The short, high frequency and regular flashes of synchrotron light are a fantastic tool to study the evolution of phenomena over time. To carry out time resolved experiments, beamlines need to synchronize their devices with these flashes of light with a jitter shorter than the pulse duration. For that purpose, Synchrotron SOLEIL has developed the TimBeL (Timing Beamlines) board fully interfaced to TANGO framework. The TimBeL system is a compact PCI board. It is made of a mother with one daughter board. All functions are performed inside a FPGA (Field Programmable Gate Array) implemented on the mother board. A PLX Technology chip is used to communicate with the compact PCI crate. To enable experiments to remain always synchronous with the same bunch of electrons, the storage ring clock (CLK-SR) and the radio frequency clock (CLK-RF) are provided by the machine to beamlines. These clocks are used inside the FPGA as main clocks for state machines. Because the jitter is too large on the FPGA outputs, a daughter board with a jitter cleaner has been added to the system. This board also provides delay lines for compensating time offsets by 10 ps steps. This paper presents the main features required by time resolved experiments and how we achieved our goals with the TimBeL board

  12. Time-resolved High Spectral Resolution Observation of 2MASSW J0746425+200032AB

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ji; Mawet, Dimitri [Department of Astronomy, California Institute of Technology, MC 249-17, 1200 E. California Boulevard, Pasadena, CA 91106 (United States); Prato, Lisa, E-mail: ji.wang@caltech.edu [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States)

    2017-03-20

    Many brown dwarfs (BDs) exhibit photometric variability at levels from tenths to tens of percents. The photometric variability is related to magnetic activity or patchy cloud coverage, characteristic of BDs near the L–T transition. Time-resolved spectral monitoring of BDs provides diagnostics of cloud distribution and condensate properties. However, current time-resolved spectral studies of BDs are limited to low spectral resolution ( R ∼ 100) with the exception of the study of Luhman 16 AB at a resolution of 100,000 using the VLT+CRIRES. This work yielded the first map of BD surface inhomogeneity, highlighting the importance and unique contribution of high spectral resolution observations. Here, we report on the time-resolved high spectral resolution observations of a nearby BD binary, 2MASSW J0746425+200032AB. We find no coherent spectral variability that is modulated with rotation. Based on simulations, we conclude that the coverage of a single spot on 2MASSW J0746425+200032AB is smaller than 1% or 6.25% if spot contrast is 50% or 80% of its surrounding flux, respectively. Future high spectral resolution observations aided by adaptive optics systems can put tighter constraints on the spectral variability of 2MASSW J0746425+200032AB and other nearby BDs.

  13. Particle tracking during Ostwald ripening using time-resolved laboratory X-ray microtomography

    Energy Technology Data Exchange (ETDEWEB)

    Werz, T., E-mail: thomas.werz@uni-ulm.de [Ulm University, Institute of Micro and Nanomaterials, Albert-Einstein-Allee 47, 89081 (Germany); Baumann, M. [Ulm University, Institute of Micro and Nanomaterials, Albert-Einstein-Allee 47, 89081 (Germany); Wolfram, U. [Ulm University, Institute of Orthopaedic Research and Biomechanics, Helmholtzstrasse 14, 89081 (Germany); Krill, C.E. [Ulm University, Institute of Micro and Nanomaterials, Albert-Einstein-Allee 47, 89081 (Germany)

    2014-04-01

    Laboratory X-ray microtomography is investigated as a method for obtaining time-resolved images of microstructural coarsening of the semisolid state of Al–5 wt.% Cu samples during Ostwald ripening. Owing to the 3D imaging capability of tomography, this technique uniquely provides access to the growth rates of individual particles, thereby not only allowing a statistical characterization of coarsening—as has long been possible by conventional metallography—but also enabling quantification of the influence of local environment on particle boundary migration. The latter information is crucial to understanding growth kinetics during Ostwald ripening at high volume fractions of the coarsening phase. Automated image processing and segmentation routines were developed to close gaps in the network of particle boundaries and to track individual particles from one annealing step to the next. The particle tracking success rate places an upper bound of only a few percent on the likelihood of segmentation errors for any given particle. The accuracy of particle size trajectories extracted from the time-resolved tomographic reconstructions is correspondingly high. Statistically averaged coarsening data and individual particle growth rates are in excellent agreement with the results of prior experimental studies and with computer simulations of Ostwald ripening. - Highlights: • Ostwald ripening in Al–5 wt.% Cu measured by laboratory X-ray microtomography • Time-resolved measurement of individual particle growth • Automated segmentation routines developed to close gaps in particle boundary network • Particle growth/shrinkage rates deviate from LSW model prediction.

  14. Time-resolved spectroscopy using a chopper wheel as a fast shutter

    International Nuclear Information System (INIS)

    Wang, Shicong; Wendt, Amy E.; Boffard, John B.; Lin, Chun C.

    2015-01-01

    Widely available, small form-factor, fiber-coupled spectrometers typically have a minimum exposure time measured in milliseconds, and thus cannot be used directly for time-resolved measurements at the microsecond level. Spectroscopy at these faster time scales is typically done with an intensified charge coupled device (CCD) system where the image intensifier acts as a “fast” electronic shutter for the slower CCD array. In this paper, we describe simple modifications to a commercially available chopper wheel system to allow it to be used as a “fast” mechanical shutter for gating a fiber-coupled spectrometer to achieve microsecond-scale time-resolved optical measurements of a periodically pulsed light source. With the chopper wheel synchronized to the pulsing of the light source, the time resolution can be set to a small fraction of the pulse period by using a chopper wheel with narrow slots separated by wide spokes. Different methods of synchronizing the chopper wheel and pulsing of the light sources are explored. The capability of the chopper wheel system is illustrated with time-resolved measurements of pulsed plasmas

  15. Quantitative analysis of pulmonary perfusion using time-resolved parallel 3D MRI - initial results

    International Nuclear Information System (INIS)

    Fink, C.; Buhmann, R.; Plathow, C.; Puderbach, M.; Kauczor, H.U.; Risse, F.; Ley, S.; Meyer, F.J.

    2004-01-01

    Purpose: to assess the use of time-resolved parallel 3D MRI for a quantitative analysis of pulmonary perfusion in patients with cardiopulmonary disease. Materials and methods: eight patients with pulmonary embolism or pulmonary hypertension were examined with a time-resolved 3D gradient echo pulse sequence with parallel imaging techniques (FLASH 3D, TE/TR: 0.8/1.9 ms; flip angle: 40 ; GRAPPA). A quantitative perfusion analysis based on indicator dilution theory was performed using a dedicated software. Results: patients with pulmonary embolism or chronic thromboembolic pulmonary hypertension revealed characteristic wedge-shaped perfusion defects at perfusion MRI. They were characterized by a decreased pulmonary blood flow (PBF) and pulmonary blood volume (PBV) and increased mean transit time (MTT). Patients with primary pulmonary hypertension or eisenmenger syndrome showed a more homogeneous perfusion pattern. The mean MTT of all patients was 3.3 - 4.7 s. The mean PBF and PBV showed a broader interindividual variation (PBF: 104-322 ml/100 ml/min; PBV: 8 - 21 ml/100 ml). Conclusion: time-resolved parallel 3D MRI allows at least a semi-quantitative assessment of lung perfusion. Future studies will have to assess the clinical value of this quantitative information for the diagnosis and management of cardiopulmonary disease. (orig.) [de

  16. Tropospheric and total ozone columns over Paris (France measured using medium-resolution ground-based solar-absorption Fourier-transform infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    C. Viatte

    2011-10-01

    Full Text Available Ground-based Fourier-transform infrared (FTIR solar absorption spectroscopy is a powerful remote sensing technique providing information on the vertical distribution of various atmospheric constituents. This work presents the first evaluation of a mid-resolution ground-based FTIR to measure tropospheric ozone, independently of stratospheric ozone. This is demonstrated using a new atmospheric observatory (named OASIS for "Observations of the Atmosphere by Solar absorption Infrared Spectroscopy", installed in Créteil (France. The capacity of the technique to separate stratospheric and tropospheric ozone is demonstrated. Daily mean tropospheric ozone columns derived from the Infrared Atmospheric Sounding Interferometer (IASI and from OASIS measurements are compared for summer 2009 and a good agreement of −5.6 (±16.1 % is observed. Also, a qualitative comparison between in-situ surface ozone measurements and OASIS data reveals OASIS's capacity to monitor seasonal tropospheric ozone variations, as well as ozone pollution episodes in summer 2009 around Paris. Two extreme pollution events are identified (on the 1 July and 6 August 2009 for which ozone partial columns from OASIS and predictions from a regional air-quality model (CHIMERE are compared following strict criteria of temporal and spatial coincidence. An average bias of 0.2%, a mean square error deviation of 7.6%, and a correlation coefficient of 0.91 is found between CHIMERE and OASIS, demonstrating the potential of a mid-resolution FTIR instrument in ground-based solar absorption geometry for tropospheric ozone monitoring.

  17. Two-colour mid-infrared absorption in an InAs/GaSb-based type II and broken-gap quantum well

    International Nuclear Information System (INIS)

    Wei, X F; Xu, W; Zeng, Z

    2007-01-01

    We examine contributions from different transition channels to optical absorption in an InAs/GaSb-based type II and broken-gap quantum well (QW). In such a structure, because both electron and hole subbands are occupied by the conducting carriers, new channels open up for electronic transition via intra- and inter-layer scattering mechanisms. We find that two absorption peaks can be observed through inter-subband transitions within the same material layer. The absorption induced by the inter-layer transition is rather weak due to a small overlap of electron and hole wavefunctions. The results suggest that InAs/GaSb-based type II and broken-gap QWs can be employed as two-colour photodetectors working at mid-infrared bandwidth at relatively high temperatures up to room-temperature

  18. Prospective time-resolved LCA of fully electric supercap vehicles in Germany.

    Science.gov (United States)

    Zimmermann, Benedikt M; Dura, Hanna; Baumann, Manuel J; Weil, Marcel R

    2015-07-01

    The ongoing transition of the German electricity supply toward a higher share of renewable and sustainable energy sources, called Energiewende in German, has led to dynamic changes in the environmental impact of electricity over the last few years. Prominent scenario studies predict that comparable dynamics will continue in the coming decades, which will further improve the environmental performance of Germany's electricity supply. Life cycle assessment (LCA) is the methodology commonly used to evaluate environmental performance. Previous LCA studies on electric vehicles have shown that the electricity supply for the vehicles' operation is responsible for the major part of their environmental impact. The core question of this study is how the prospective dynamic development of the German electricity mix will affect the impact of electric vehicles operated in Germany and how LCA can be adapted to analyze this impact in a more robust manner. The previously suggested approach of time-resolved LCA, which is located between static and dynamic LCA, is used in this study and compared with several static approaches. Furthermore, the uncertainty issue associated with scenario studies is addressed in general and in relation to time-resolved LCA. Two scenario studies relevant to policy making have been selected, but a moderate number of modifications have been necessary to adapt the data to the requirements of a life cycle inventory. A potential, fully electric vehicle powered by a supercapacitor energy storage system is used as a generic example. The results show that substantial improvements in the environmental repercussions of the electricity supply and, consequentially, of electric vehicles will be achieved between 2020 and 2031 on the basis of the energy mixes predicted in both studies. This study concludes that although scenarios might not be able to predict the future, they should nonetheless be used as data sources in prospective LCA studies, because in many cases

  19. Time-resolved methods in biophysics. 6. Time-resolved Laue crystallography as a tool to investigate photo-activated protein dynamics.

    Science.gov (United States)

    Bourgeois, Dominique; Schotte, Friedrich; Brunori, Maurizio; Vallone, Beatrice

    2007-10-01

    When polychromatic X-rays are shined onto crystalline material, they generate a Laue diffraction pattern. At third generation synchrotron radiation sources, a single X-ray pulse of approximately 100 ps duration is enough to produce interpretable Laue data from biomolecular crystals. Thus, by initiating biological turnover in a crystalline protein, structural changes along the reaction pathway may be filmed by ultra-fast Laue diffraction. Using laser-light as a trigger, transient species in photosensitive macromolecules can be captured at near atomic resolution with sub-nanosecond time-resolution. Such pump-probe Laue experiments have now reached an outstanding level of sophistication and have found a domain of excellence in the investigation of light-sensitive proteins undergoing cyclic photo-reactions and producing stiff crystals. The main theoretical concepts of Laue diffraction and the challenges associated with time-resolved experiments on biological crystals are recalled. The recent advances in the design of experiments are presented in terms of instrumental choices, data collection strategy and data processing, and some of the inherent difficulties of the method are highlighted. The discussion is based on the example of myoglobin, a protein that has traversed the whole history of pump-probe Laue diffraction, and for which a massive amount of data have provided considerable insight into the understanding of protein dynamics.

  20. Time-resolved photoluminescence study of CdSe/CdMnS/CdS core/multi-shell nanoplatelets

    International Nuclear Information System (INIS)

    Murphy, J. R.; Delikanli, S.; Demir, H. V.; Scrace, T.; Zhang, P.; Norden, T.; Petrou, A.; Thomay, T.; Cartwright, A. N.

    2016-01-01

    We used photoluminescence spectroscopy to resolve two emission features in CdSe/CdMnS/CdS and CdSe/CdS core/multi-shell nanoplatelet heterostructures. The photoluminescence from the magnetic sample has a positive circular polarization with a maximum centered at the position of the lower energy feature. The higher energy feature has a corresponding signature in the absorption spectrum; this is not the case for the low-energy feature. We have also studied the temporal evolution of these features using a pulsed-excitation/time-resolved photoluminescence technique to investigate their corresponding recombination channels. A model was used to analyze the temporal dynamics of the photoluminescence which yielded two distinct timescales associated with these recombination channels. The above results indicate that the low-energy feature is associated with recombination of electrons with holes localized at the core/shell interfaces; the high-energy feature, on the other hand, is excitonic in nature with the holes confined within the CdSe cores.

  1. Direct measurements of multi-photon induced nonlinear lattice dynamics in semiconductors via time-resolved x-ray scattering.

    Science.gov (United States)

    Williams, G Jackson; Lee, Sooheyong; Walko, Donald A; Watson, Michael A; Jo, Wonhuyk; Lee, Dong Ryeol; Landahl, Eric C

    2016-12-22

    Nonlinear optical phenomena in semiconductors present several fundamental problems in modern optics that are of great importance for the development of optoelectronic devices. In particular, the details of photo-induced lattice dynamics at early time-scales prior to carrier recombination remain poorly understood. We demonstrate the first integrated measurements of both optical and structural, material-dependent quantities while also inferring the bulk impulsive strain profile by using high spatial-resolution time-resolved x-ray scattering (TRXS) on bulk crystalline gallium arsenide. Our findings reveal distinctive laser-fluence dependent crystal lattice responses, which are not described by previous TRXS experiments or models. The initial linear expansion of the crystal upon laser excitation stagnates at a laser fluence corresponding to the saturation of the free carrier density before resuming expansion in a third regime at higher fluences where two-photon absorption becomes dominant. Our interpretations of the lattice dynamics as nonlinear optical effects are confirmed by numerical simulations and by additional measurements in an n-type semiconductor that allows higher-order nonlinear optical processes to be directly observed as modulations of x-ray diffraction lineshapes.

  2. Steady state and time-resolved fluorescence spectroscopy of quinine sulfate dication bound to sodium dodecylsulfate micelles: Fluorescent complex formation

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Sunita; Pant, Debi D., E-mail: ddpant@pilani.bits-pilani.ac.in

    2014-01-15

    Interaction of quinine sulfate dication (QSD) with anionic, sodium dodecylsulphate (SDS) surfactant has been studied at different premicellar, micellar and postmicellar concentrations in aqueous phase using steady state, time-resolved fluorescence and fluorescence anisotropy techniques. At premicellar concentrations of SDS, the decrease in absorbance, appearance of an extra fluorescence band at lower wavelengths and tri-exponential decay behavior of fluorescence, are attributed to complex formation between QSD molecules and surfactant monomers. At postmicellar concentrations the red shift in fluorescence spectrum, increase in quantum yield and increase in fluorescence lifetimes are attributed to incorporation of solute molecules to micelles. At lower concentrations of SDS, a large shift in fluorescence is observed on excitation at the red edge of absorption spectrum and this is explained in terms of distribution of ion pairs of different energies in the ground state and the observed fluorescence lifetime behavior corroborates with this model. The temporal fluorescence anisotropy decay of QSD in SDS micelles allowed determination of restriction on the motion of the fluorophore. All the different techniques used in this study reveal that the photophysics of QSD is very sensitive to the microenvironments of SDS micelles and QSD molecules reside at the water-micelle interface. -- Highlights: • Probe molecule is very sensitive to microenvironment of micelles. • Highly fluorescent ion-pair formation has been observed. • Modulated photophysics of probe molecule in micellar solutions has been observed. • Probe molecules strongly bind with micelles and reside at probe–micelle interface.

  3. Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions

    International Nuclear Information System (INIS)

    Taroni, Paola; Torricelli, Alessandro; Spinelli, Lorenzo; Pifferi, Antonio; Arpaia, Francesco; Danesini, Gianmaria; Cubeddu, Rinaldo

    2005-01-01

    The first time-resolved optical mammograph operating beyond 900 nm was tested in a retrospective clinical study involving 194 patients with malignant and benign lesions, to investigate the diagnostic potential for the detection and characterization of breast lesions. For the first part of the study (101 patients with 114 lesions), the system was operated at 683, 785, 913 and 975 nm. Subsequently, to improve the spectral content of optical images, the number of wavelengths was increased (up to 7) and the spectral range was extended (637-985 nm). Late gated intensity and scattering images provide sensitivity to tissue composition (oxy- and deoxyhaemoglobin, water and lipids) and physiology (total haemoglobin content and oxygen saturation), as well as to structural changes. Tumours are typically identified because of the strong blood absorption at short wavelengths (637-685 nm), while cysts are characterized by low scattering, leading to a detection rate of approximately 80% for both lesion types, when detection is required in both cranio-caudal and oblique views. The detection rate for other benign lesions, such as fibroadenomas, is presently much lower (<40%). The effectiveness of the technique in localizing and identifying different lesion types was analysed as a function of various parameters (lesion size, compressed breast thickness, age, body mass index, breast parenchymal pattern). The possibility that physiologic changes due to the development of a malignant lesion could affect the entire breast was investigated. The capacity to assess the density of breast based on the average scattering properties was also tested

  4. A new method for obtaining time resolved optical spectra of transients produced by a single pulse of electrons

    International Nuclear Information System (INIS)

    Gordon, S.; Schmidt, K.H.; Martin, J.E.

    1975-01-01

    The essential features of the kinetic spectroscopic method and the kinetic spectrophotometric method are summarized. It is stated that the new method embodies some of the advantages of both. A diagram of the apparatus is shown. This is essentially a version of a conventional pulse radiolysis experimental arrangement with the modification that the usual monochromator is replaced by a spectrograph equipped with a horizontal and a vertical slit and the usual photomultiplier-amplifier detector is replaced by a streak camera (TRW) incorporating an image converter tube (ICT) and a TV camera interfaced to a 2000 channel Biomation transient recorder. The time resolved absorption spectrum (or emission spectrum) is displayed on the P-11 phosphor of the ICT. This image is focussed on the photoelements of the TV tube. The TV camera scans the image of the spectrum stored on these elements and the output of this scan is stored in the Biomation. This recorder is in turn interfaced to a Sigma 5 computer. Results are presented for several experiments, from which it is concluded that with the present equipment absorbances down to 0.02 can be measured, and a time resolution of 1ns can be achieved. It is stated that with improved equipment it should be possible to extend the time resolution of the method to less than 50 picoseconds. (U.K.)

  5. Time-Resolved K-shell Photoabsorption Edge Measurement in a Strongly Coupled Matter Driven by Laser-converted Radiation

    Science.gov (United States)

    Zhao, Yang; Yang, Jia-Min; Zhang, Ji-Yan; Yang, Guo-Hong; Xiong, Gang; Wei, Min-Xi; Song, Tian-Ming; Zhang, Zhi-Yu

    2013-06-01

    A time-resolved K edge absorption measurement of warm dense KCl was performed on Shenguang II laser facility. The x-ray radiation driven shocks were adopted to take colliding shocks compression. By using Dog bone hohlraum the CH/KCl/CH sample was shielded from the laser hitting point to suppress the M band preheating and enhance the compressibility. Thus, an unexplored and extreme region of the plasma state with the maximum 5 times solid density and temperature lower than 3 eV (with coupling constant Γii around 100) was first obtained. The photoabsorption spectra of chlorine near the K-shell edge have been measured with a crystal spectrometer using a short x-ray backlighter. The K edge red shift up to 11.7 eV and broadening of 15.2 eV were obtained for the maximum compression. The electron temperature, inferred by Fermi-Dirac fit of the measured K-edge broadening, was consistent with the hydrodynamic predictions. The comparison of the K edge shift with a plasma model, in which the ionization effect, continuum lowering and partial degeneracy are considered, shows that more improvements are desired to describe in details the variation of K edge shift. This work might extend future study of WDM in extreme conditions of high compression.

  6. Time-resolved photoluminescence study of CdSe/CdMnS/CdS core/multi-shell nanoplatelets

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, J. R. [Department of Electrical Engineering, State University of New York, University at Buffalo, Buffalo, New York 14260 (United States); Department of Physics, State University of New York, University at Buffalo, Buffalo, New York 14260 (United States); Delikanli, S.; Demir, H. V., E-mail: volkan@bilkent.edu.tr [LUMINOUS Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Materials Sciences, Nanyang Technological University, Singapore 639798 (Singapore); Department of Electrical and Electronics Engineering, Department of Physics, UNAM−Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800 (Turkey); Scrace, T.; Zhang, P.; Norden, T.; Petrou, A., E-mail: petrou@buffalo.edu [Department of Physics, State University of New York, University at Buffalo, Buffalo, New York 14260 (United States); Thomay, T.; Cartwright, A. N. [Department of Electrical Engineering, State University of New York, University at Buffalo, Buffalo, New York 14260 (United States)

    2016-06-13

    We used photoluminescence spectroscopy to resolve two emission features in CdSe/CdMnS/CdS and CdSe/CdS core/multi-shell nanoplatelet heterostructures. The photoluminescence from the magnetic sample has a positive circular polarization with a maximum centered at the position of the lower energy feature. The higher energy feature has a corresponding signature in the absorption spectrum; this is not the case for the low-energy feature. We have also studied the temporal evolution of these features using a pulsed-excitation/time-resolved photoluminescence technique to investigate their corresponding recombination channels. A model was used to analyze the temporal dynamics of the photoluminescence which yielded two distinct timescales associated with these recombination channels. The above results indicate that the low-energy feature is associated with recombination of electrons with holes localized at the core/shell interfaces; the high-energy feature, on the other hand, is excitonic in nature with the holes confined within the CdSe cores.

  7. Band engineering of amorphous silicon ruthenium thin film and its near-infrared absorption enhancement combined with nano-holes pattern on back surface of silicon substrate

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Anran; Zhong, Hao [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Li, Wei, E-mail: wli@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Gu, Deen; Jiang, Xiangdong [School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054 (China); Jiang, Yadong [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2016-10-30

    Highlights: • The increase of Ru concentration leads to a narrower bandgap of a-Si{sub 1-x}Ru{sub x} thin film. • The absorption coefficient of a-Si{sub 1-x}Ru{sub x} is higher than that of SiGe. • A double-layer absorber comprising of a-Si{sub 1-x}Ru{sub x} film and Si nano-holes layer is achieved. - Abstract: Silicon is widely used in semiconductor industry but has poor performance in near-infrared photoelectronic devices because of its bandgap limit. In this study, a narrow bandgap silicon rich semiconductor is achieved by introducing ruthenium (Ru) into amorphous silicon (a-Si) to form amorphous silicon ruthenium (a-Si{sub 1-x}Ru{sub x}) thin films through co-sputtering. The increase of Ru concentration leads to an enhancement of light absorption and a narrower bandgap. Meanwhile, a specific light trapping technique is employed to realize high absorption of a-Si{sub 1-x}Ru{sub x} thin film in a finite thickness to avoid unnecessary carrier recombination. A double-layer absorber comprising of a-Si{sub 1-x}Ru{sub x} thin film and silicon random nano-holes layer is formed on the back surface of silicon substrates, and significantly improves near-infrared absorption while the leaky light intensity is less than 5%. This novel absorber, combining narrow bandgap thin film with light trapping structure, may have a potential application in near-infrared photoelectronic devices.

  8. Time-resolved luminescence from quartz: An overview of contemporary developments and applications

    Energy Technology Data Exchange (ETDEWEB)

    Chithambo, M.L., E-mail: m.chithambo@ru.ac.za [Department of Physics and Electronics, Rhodes University, PO BOX 94, Grahamstown 6140 (South Africa); Ankjærgaard, C. [Soil Geography and Landscape Group, Wageningen University Netherlands Centre for Luminescence Dating, Droevendaalsesteeg 3, 6708 PB Wageningen, The Netherlands (Netherlands); Pagonis, V. [McDaniel College, Physics Department, Westminster, MD 21157 (United States)

    2016-01-15

    Time-resolved optical stimulation of luminescence has become established as a key method for measurement of optically stimulated luminescence from quartz, feldspar and α-Al{sub 2}O{sub 3}:C, all materials of interest in dosimetry. The aim of time-resolved optical stimulation is to separate in time the stimulation and emission of luminescence. The luminescence is stimulated from a sample using a brief light pulse and the emission monitored during stimulation in the presence of scattered stimulating light or after pulsing, over photomultiplier noise only. Although the use of the method in retrospective dosimetry has been somewhat limited, the technique has been successfully applied to study mechanisms in the processes leading up to luminescence emission. The main means for this has been the temperature dependence of the luminescence intensity as well as the luminescence lifetimes determined from time-resolved luminescence spectra. In this paper we review some key developments in theory and applications to quartz including methods of evaluating lifetimes, techniques of evaluating kinetic parameters using both the dependence of luminescence intensity and lifetime on measurement temperature, and of lifetimes on annealing temperature. We then provide an overview of some notable applications such as separation of quartz signals from a quartz–feldspar admixture and the utility of the dynamic throughput, a measure of luminescence measured as a function of the pulse width. The paper concludes with some suggestions of areas where further exploration would advance understanding of dynamics of luminescence in quartz and help address some outstanding problems in its application.

  9. Whole-head functional brain imaging of neonates at cot-side using time-resolved diffuse optical tomography

    Science.gov (United States)

    Dempsey, Laura A.; Cooper, Robert J.; Powell, Samuel; Edwards, Andrea; Lee, Chuen-Wai; Brigadoi, Sabrina; Everdell, Nick; Arridge, Simon; Gibson, Adam P.; Austin, Topun; Hebden, Jeremy C.

    2015-07-01

    We present a method for acquiring whole-head images of changes in blood volume and oxygenation from the infant brain at cot-side using time-resolved diffuse optical tomography (TR-DOT). At UCL, we have built a portable TR-DOT device, known as MONSTIR II, which is capable of obtaining a whole-head (1024 channels) image sequence in 75 seconds. Datatypes extracted from the temporal point spread functions acquired by the system allow us to determine changes in absorption and reduced scattering coefficients within the interrogated tissue. This information can then be used to define clinically relevant measures, such as oxygen saturation, as well as to reconstruct images of relative changes in tissue chromophore concentration, notably those of oxy- and deoxyhaemoglobin. Additionally, the effective temporal resolution of our system is improved with spatio-temporal regularisation implemented through a Kalman filtering approach, allowing us to image transient haemodynamic changes. By using this filtering technique with intensity and mean time-of-flight datatypes, we have reconstructed images of changes in absorption and reduced scattering coefficients in a dynamic 2D phantom. These results demonstrate that MONSTIR II is capable of resolving slow changes in tissue optical properties within volumes that are comparable to the preterm head. Following this verification study, we are progressing to imaging a 3D dynamic phantom as well as the neonatal brain at cot-side. Our current study involves scanning healthy babies to demonstrate the quality of recordings we are able to achieve in this challenging patient population, with the eventual goal of imaging functional activation and seizures.

  10. Photophysical characterization and time-resolved spectroscopy of a anthradithiophene dimer: exploring the role of conformation in singlet fission

    KAUST Repository

    Dean, Jacob C.

    2017-08-18

    Quantitative singlet fission has been observed for a variety of acene derivatives such as tetracene and pentacene, and efforts to extend the library of singlet fission compounds is of current interest. Preliminary calculations suggest anthradithiophenes exhibit significant exothermicity between the first optically-allowed singlet state, S1, and 2 × T1 with an energy difference of >5000 cm−1. Given the fulfillment of this ingredient for singlet fission, here we investigate the singlet fission capability of a difluorinated anthradithiophene dimer (2ADT) covalently linked by a (dimethylsilyl)ethane bridge and derivatized by triisobutylsilylethynyl (TIBS) groups. Photophysical characterization of 2ADT and the single functionalized ADT monomer were carried out in toluene and acetone solution via absorption and fluorescence spectroscopy, and their photo-initiated dynamics were investigated with time-resolved fluorescence (TRF) and transient absorption (TA) spectroscopy. In accordance with computational predictions, two conformers of 2ADT were observed via fluorescence spectroscopy and were assigned to structures with the ADT cores trans or cis to one another about the covalent bridge. The two conformers exhibited markedly different excited state deactivation mechanisms, with the minor trans population being representative of the ADT monomer showing primarily radiative decay, while the dominant cis population underwent relaxation into an excimer geometry before internally converting to the ground state. The excimer formation kinetics were found to be solvent dependent, yielding time constants of ∼1.75 ns in toluene, and ∼600 ps in acetone. While the difference in rates elicits a role for the solvent in stabilizing the excimer structure, the rate is still decidedly long compared to most singlet fission rates of analogous dimers, suggesting that the excimer is neither a kinetic nor a thermodynamic trap, yet singlet fission was still not observed. The result

  11. Time-resolved magnetization dynamics of cross-tie domain walls in permalloy microstructures

    International Nuclear Information System (INIS)

    Miguel, J; Kurde, J; Piantek, M; Kuch, W; Sanchez-Barriga, J; Heitkamp, B; Kronast, F; Duerr, H A; Bayer, D; Aeschlimann, M

    2009-01-01

    We report on a picosecond time-resolved x-ray magnetic circular dichroic-photoelectron emission microscopy study of the evolution of the magnetization components of a microstructured permalloy platelet comprising three cross-tie domain walls. A laser-excited photoswitch has been used to apply a triangular 80 Oe, 160 ps magnetic pulse. Micromagnetic calculations agree well with the experimental results, both in time and frequency, illustrating the large angle precession in the magnetic domains with magnetization perpendicular to the applied pulse, and showing how the magnetic vortices revert their core magnetization while the antivortices remain unaffected.

  12. A time resolving data acquisition system for multiple high-resolution position sensitive detectors

    International Nuclear Information System (INIS)

    Dimmler, D.G.

    1988-01-01

    An advanced time resolving data collection system for use in neutron and x-ray spectrometry has been implemented and put into routine operation. The system collects data from high-resolution position-sensitive area detectors with a maximum cumulative rate of 10/sup 6/ events per second. The events are sorted, in real-time, into many time-slice arrays. A programmable timing control unit allows for a wide choice of time sequences and time-slice array sizes. The shortest dwell time on a slice may be below 1 ms and the delay to switch between slices is zero

  13. CMOS Time-Resolved, Contact, and Multispectral Fluorescence Imaging for DNA Molecular Diagnostics

    Directory of Open Access Journals (Sweden)

    Nan Guo

    2014-10-01

    Full Text Available Instrumental limitations such as bulkiness and high cost prevent the fluorescence technique from becoming ubiquitous for point-of-care deoxyribonucleic acid (DNA detection and other in-field molecular diagnostics applications. The complimentary metal-oxide-semiconductor (CMOS technology, as benefited from process scaling, provides several advanced capabilities such as high integration density, high-resolution signal processing, and low power consumption, enabling sensitive, integrated, and low-cost fluorescence analytical platforms. In this paper, CMOS time-resolved, contact, and multispectral imaging are reviewed. Recently reported CMOS fluorescence analysis microsystem prototypes are surveyed to highlight the present state of the art.

  14. Hole emission from Ge/Si quantum dots studied by time-resolved capacitance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kapteyn, C.M.A.; Lion, M.; Heitz, R.; Bimberg, D. [Technische Univ. Berlin (Germany). Inst. fuer Festkoerperphysik; Miesner, C.; Asperger, T.; Brunner, K.; Abstreiter, G. [Technische Univ. Muenchen, Garching (Germany). Walter-Schottky-Inst. fuer Physikalische Grundlagen der Halbleiterelektronik

    2001-03-01

    Emission of holes from self-organized Ge quantum dots (QDs) embedded in Si Schottky diodes is studied by time-resolved capacitance spectroscopy (DLTS). The DLTS signal is rather broad and depends strongly on the filling and detection bias conditions. The observed dependence is interpreted in terms of carrier emission from many-hole states of the QDs. The activation energies obtained from the DLTS measurements are a function of the amount of stored charge and the position of the Fermi level in the QDs. (orig.)

  15. Watching proteins function with time-resolved x-ray crystallography

    International Nuclear Information System (INIS)

    Šrajer, Vukica; Schmidt, Marius

    2017-01-01

    Macromolecular crystallography was immensely successful in the last two decades. To a large degree this success resulted from use of powerful third generation synchrotron x-ray sources. An expansive database of more than 100 000 protein structures, of which many were determined at resolution better than 2 Å, is available today. With this achievement, the spotlight in structural biology is shifting from determination of static structures to elucidating dynamic aspects of protein function. A powerful tool for addressing these aspects is time-resolved crystallography, where a genuine biological function is triggered in the crystal with a goal of capturing molecules in action and determining protein kinetics and structures of intermediates (Schmidt et al 2005a Methods Mol. Biol . 305 115–54, Schmidt 2008 Ultrashort Laser Pulses in Biology and Medicine (Berlin: Springer) pp 201–41, Neutze and Moffat 2012 Curr. Opin. Struct. Biol . 22 651–9, Šrajer 2014 The Future of Dynamic Structural Science (Berlin: Springer) pp 237–51). In this approach, short and intense x-ray pulses are used to probe intermediates in real time and at room temperature, in an ongoing reaction that is initiated synchronously and rapidly in the crystal. Time-resolved macromolecular crystallography with 100 ps time resolution at synchrotron x-ray sources is in its mature phase today, particularly for studies of reversible, light-initiated reactions. The advent of the new free electron lasers for hard x-rays (XFELs; 5–20 keV), which provide exceptionally intense, femtosecond x-ray pulses, marks a new frontier for time-resolved crystallography. The exploration of ultra-fast events becomes possible in high-resolution structural detail, on sub-picosecond time scales (Tenboer et al 2014 Science 346 1242–6, Barends et al 2015 Science 350 445–50, Pande et al 2016 Science 352 725–9). We review here state-of-the-art time-resolved crystallographic experiments both at synchrotrons and XFELs

  16. Watching proteins function with time-resolved x-ray crystallography

    Science.gov (United States)

    Šrajer, Vukica; Schmidt, Marius

    2017-09-01

    Macromolecular crystallography was immensely successful in the last two decades. To a large degree this success resulted from use of powerful third generation synchrotron x-ray sources. An expansive database of more than 100 000 protein structures, of which many were determined at resolution better than 2 Å, is available today. With this achievement, the spotlight in structural biology is shifting from determination of static structures to elucidating dynamic aspects of protein function. A powerful tool for addressing these aspects is time-resolved crystallography, where a genuine biological function is triggered in the crystal with a goal of capturing molecules in action and determining protein kinetics and structures of intermediates (Schmidt et al 2005a Methods Mol. Biol. 305 115-54, Schmidt 2008 Ultrashort Laser Pulses in Biology and Medicine (Berlin: Springer) pp 201-41, Neutze and Moffat 2012 Curr. Opin. Struct. Biol. 22 651-9, Šrajer 2014 The Future of Dynamic Structural Science (Berlin: Springer) pp 237-51). In this approach, short and intense x-ray pulses are used to probe intermediates in real time and at room temperature, in an ongoing reaction that is initiated synchronously and rapidly in the crystal. Time-resolved macromolecular crystallography with 100 ps time resolution at synchrotron x-ray sources is in its mature phase today, particularly for studies of reversible, light-initiated reactions. The advent of the new free electron lasers for hard x-rays (XFELs; 5-20 keV), which provide exceptionally intense, femtosecond x-ray pulses, marks a new frontier for time-resolved crystallography. The exploration of ultra-fast events becomes possible in high-resolution structural detail, on sub-picosecond time scales (Tenboer et al 2014 Science 346 1242-6, Barends et al 2015 Science 350 445-50, Pande et al 2016 Science 352 725-9). We review here state-of-the-art time-resolved crystallographic experiments both at synchrotrons and XFELs. We also outline

  17. Time-resolved fluorescence quenching studies of sodium lauryl ether sulfate micelles

    OpenAIRE

    Friedrich, Leidi C.; Silva, Volnir O.; Moreira Jr, Paulo F.; Tcacenco, Celize M.; Quina, Frank H.

    2013-01-01

    Aggregation numbers (N Ag) of micelles of the commercial anionic detergent sodium lauryl ether sulfate (SLES), with an average of two ethylene oxide subunits, were determined at 30 and 40º C by the time-resolved fluorescence quenching method with pyrene as the fluorescent probe and the N-hexadecylpyridinium ion as the quencher. The added-salt dependent growth of SLES micelles (γ = 0.11-0.15, where γ is the slope of a plot of log aggregation number vs. log [Yaq] and [Yaq] is the sodium counter...

  18. Optical Coherence Tomography (OCT for Time-Resolved Imaging of Alveolar Dynamics in Mechanically Ventilated Rats

    Directory of Open Access Journals (Sweden)

    Christian Schnabel

    2017-03-01

    Full Text Available Though artificial ventilation is an essential life-saving treatment, the mechanical behavior of lung tissue at the alveolar level is still unknown. Therefore, we need to understand the tissue response during artificial ventilation at this microscale in order to develop new and more protective ventilation methods. Optical coherence tomography (OCT combined with intravital microscopy (IVM is a promising tool for visualizing lung tissue dynamics with a high spatial and temporal resolution in uninterruptedly ventilated rats. We present a measurement setup using a custom-made animal ventilator and a gating technique for data acquisition of time-resolved sequences.

  19. Watching proteins function with time-resolved x-ray crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Šrajer, Vukica; Schmidt, Marius

    2017-08-22

    Macromolecular crystallography was immensely successful in the last two decades. To a large degree this success resulted from use of powerful third generation synchrotron x-ray sources. An expansive database of more than 100 000 protein structures, of which many were determined at resolution better than 2 Å, is available today. With this achievement, the spotlight in structural biology is shifting from determination of static structures to elucidating dynamic aspects of protein function. A powerful tool for addressing these aspects is time-resolved crystallography, where a genuine biological function is triggered in the crystal with a goal of capturing molecules in action and determining protein kinetics and structures of intermediates (Schmidt et al 2005a Methods Mol. Biol. 305 115–54, Schmidt 2008 Ultrashort Laser Pulses in Biology and Medicine (Berlin: Springer) pp 201–41, Neutze and Moffat 2012 Curr. Opin. Struct. Biol. 22 651–9, Šrajer 2014 The Future of Dynamic Structural Science (Berlin: Springer) pp 237–51). In this approach, short and intense x-ray pulses are used to probe intermediates in real time and at room temperature, in an ongoing reaction that is initiated synchronously and rapidly in the crystal. Time-resolved macromolecular crystallography with 100 ps time resolution at synchrotron x-ray sources is in its mature phase today, particularly for studies of reversible, light-initiated reactions. The advent of the new free electron lasers for hard x-rays (XFELs; 5–20 keV), which provide exceptionally intense, femtosecond x-ray pulses, marks a new frontier for time-resolved crystallography. The exploration of ultra-fast events becomes possible in high-resolution structural detail, on sub-picosecond time scales (Tenboer et al 2014 Science 346 1242–6, Barends et al 2015 Science 350 445–50, Pande et al 2016 Science 352 725–9). We review here state-of-the-art time-resolved crystallographic experiments both at synchrotrons and XFELs. We

  20. Atomic motion of resonantly vibrating quartz crystal visualized by time-resolved X-ray diffraction

    International Nuclear Information System (INIS)

    Aoyagi, Shinobu; Osawa, Hitoshi; Sugimoto, Kunihisa; Fujiwara, Akihiko; Takeda, Shoichi; Moriyoshi, Chikako; Kuroiwa, Yoshihiro

    2015-01-01

    Transient atomic displacements during a resonant thickness-shear vibration of AT-cut α-quartz are revealed by time-resolved X-ray diffraction under an alternating electric field. The lattice strain resonantly amplified by the alternating electric field is ∼10 4 times larger than that induced by a static electric field. The resonantly amplified lattice strain is achieved by fast displacements of oxygen anions and collateral resilient deformation of Si−O−Si angles bridging rigid SiO 4 tetrahedra, which efficiently transduce electric energy into elastic energy