WorldWideScience

Sample records for time soil chemical

  1. Time-dependent effect of composted tannery sludge on the chemical and microbial properties of soil.

    Science.gov (United States)

    de Sousa, Ricardo Silva; Santos, Vilma Maria; de Melo, Wanderley Jose; Nunes, Luis Alfredo Pinheiro Leal; van den Brink, Paul J; Araújo, Ademir Sérgio Ferreira

    2017-12-01

    Composting has been suggested as an efficient method for tannery sludge recycling before its application to the soil. However, the application of composted tannery sludge (CTS) should be monitored to evaluate its effect on the chemical and microbial properties of soil. This study evaluated the time-dependent effect of CTS on the chemical and microbial properties of soil. CTS was applied at 0, 2.5, 5, 10, and 20 Mg ha -1 and the soil chemical and microbial properties were evaluated at 0, 45, 75, 150, and 180 days. Increased CTS rates increased the levels of Ca, Cr, and Mg. While Soil pH, organic C, and P increased with the CTS rates initially, this effect decreased over time. Soil microbial biomass, respiration, metabolic quotient, and dehydrogenase increased with the application of CTS, but decreased over time. Analysis of the Principal Response Curve showed a significant effect of CTS rate on the chemical and microbial properties of the soil over time. The weight of each variable indicated that all soil properties, except β-glucosidase, dehydrogenase and microbial quotient, increased due to the CTS application. However, the highest weights were found for Cr, pH, Ca, P, phosphatase and total organic C. The application of CTS in the soil changed the chemical and microbial properties over time, indicating Cr, pH, Ca, phosphatase, and soil respiration as the more responsive chemical and microbial variables by CTS application.

  2. Monitoring of soil chemical characteristics with time as affected by irrigation with saline water

    International Nuclear Information System (INIS)

    Mostafa, A. Z.; Galal, Y.G.M.; Lotfy, S.M.

    2012-01-01

    A lysimeter study was conducted to investigate the effect of irrigation with saline water on soil chemical characteristics at two depth (0-20) and (20-40 cm).Both fertilized (60, 120 KgN/ha) and unfertilized (0) soil were simulated in a total of 84 lysimeter. Data indicated that the electric conductivity (EC) values tended to increase with time intervals also EC-values as affected by soil depth after 105 days were high in 20 cm depth as compared to 40 cm depth. Chloride concentration did not reflect great variations as affected by time of nitrogen application where the values were nearly closed to each other. At the end of the experiment, much of Cl - content was occurred in the second layer of soil depth (20-40) as compared to depth of 0-20 cm. This was the case under all salinity levels. The irrigation with fresh water did not reflect any significant different in EC values between 120 KgN/ha , 60 KgN/ha or soil depth, however, it tend to increase with increasing water salinity levels. There were no much differences between the nitrogen application time (T1, T2 and T3). In contrast with Cl - , sodium was remained in the upper layer of 0-20 cm soil depth but still increase with increasing water salinity levels.

  3. Time-dependent effect of composted tannery sludge on the chemical and microbial properties of soil

    NARCIS (Netherlands)

    Sousa, de Ricardo Silva; Santos, Vilma Maria; Melo, de Wanderley Jose; Nunes, Luis Alfredo Pinheiro Leal; Brink, van den Paul J.; Araújo, Ademir Sérgio Ferreira

    2017-01-01

    Composting has been suggested as an efficient method for tannery sludge recycling before its application to the soil. However, the application of composted tannery sludge (CTS) should be monitored to evaluate its effect on the chemical and microbial properties of soil. This study evaluated the

  4. Chemical fluxes in time through forest ecosystems in the UK - Soil response to pollution recovery

    International Nuclear Information System (INIS)

    Vanguelova, E.I.; Benham, S.; Pitman, R.; Moffat, A.J.; Broadmeadow, M.; Nisbet, T.; Durrant, D.; Barsoum, N.; Wilkinson, M.; Bochereau, F.; Hutchings, T.; Broadmeadow, S.; Crow, P.; Taylor, P.; Durrant Houston, T.

    2010-01-01

    Long term trend analysis of bulk precipitation, throughfall and soil solution elemental fluxes from 12 years monitoring at 10 ICP Level II forest sites in the UK reveal coherent national chemical trends indicating recovery from sulphur deposition and acidification. Soil solution pH increased and sulphate and aluminium decreased at most sites. Trends in nitrogen were variable and dependant on its form. Dissolved organic nitrogen increased in bulk precipitation, throughfall and soil solution at most sites. Nitrate in soil solution declined at sites receiving high nitrogen deposition. Increase in soil dissolved organic carbon was detected - a response to pollution recovery, changes in soil temperature and/or increased microbial activity. An increase of sodium and chloride was evident - a possible result of more frequent storm events at exposed sites. The intensive and integrated nature of monitoring enables the relationships between climate/pollutant exposure and chemical/biological response in forestry to be explored. - Forest soils are recovering from acid and sulphur pollution in the UK, but soil responses to nitrogen deposition and climatic changes are still uncertain.

  5. Chemical fluxes in time through forest ecosystems in the UK - Soil response to pollution recovery

    Energy Technology Data Exchange (ETDEWEB)

    Vanguelova, E.I., E-mail: elena.vanguelova@forestry.gsi.gov.u [Centre of Forestry and Climate Change, Forest Research, Alice Holt Lodge, Farnham, Surrey GU10 4LH (United Kingdom); Benham, S.; Pitman, R.; Moffat, A.J. [Centre of Forestry and Climate Change, Forest Research, Alice Holt Lodge, Farnham, Surrey GU10 4LH (United Kingdom); Broadmeadow, M. [Forestry Commission, England, Alice Holt, Farnham, Surrey GU10 4LH (United Kingdom); Nisbet, T.; Durrant, D.; Barsoum, N.; Wilkinson, M.; Bochereau, F.; Hutchings, T.; Broadmeadow, S.; Crow, P.; Taylor, P. [Centre of Forestry and Climate Change, Forest Research, Alice Holt Lodge, Farnham, Surrey GU10 4LH (United Kingdom); Durrant Houston, T. [DG Joint Research Centre - European Commission, Institute for Environment and Sustainability, Land Management and Natural Hazards Unit - TP 261, Ispra, I-21027 (Italy)

    2010-05-15

    Long term trend analysis of bulk precipitation, throughfall and soil solution elemental fluxes from 12 years monitoring at 10 ICP Level II forest sites in the UK reveal coherent national chemical trends indicating recovery from sulphur deposition and acidification. Soil solution pH increased and sulphate and aluminium decreased at most sites. Trends in nitrogen were variable and dependant on its form. Dissolved organic nitrogen increased in bulk precipitation, throughfall and soil solution at most sites. Nitrate in soil solution declined at sites receiving high nitrogen deposition. Increase in soil dissolved organic carbon was detected - a response to pollution recovery, changes in soil temperature and/or increased microbial activity. An increase of sodium and chloride was evident - a possible result of more frequent storm events at exposed sites. The intensive and integrated nature of monitoring enables the relationships between climate/pollutant exposure and chemical/biological response in forestry to be explored. - Forest soils are recovering from acid and sulphur pollution in the UK, but soil responses to nitrogen deposition and climatic changes are still uncertain.

  6. Chemically stabilized soils.

    Science.gov (United States)

    2009-12-01

    The objective of this study was to conduct laboratory evaluations to quantify the effects of compaction and moisture conditions on the strength of chemically treated soils typical utilized in pavement construction in Mississippi.

  7. Physical and Chemical Properties of Soils under Contrasting Land ...

    African Journals Online (AJOL)

    Physical and Chemical Properties of Soils under Contrasting Land Use ... the aim of understanding the response of the soil to different management practices over time. ... The soil chemical properties studied were soil pH, organic carbon, total ...

  8. Relationships between respiration, chemical and microbial properties of afforested mine soils with different soil texture and tree species: Does the time of incubation matter

    Czech Academy of Sciences Publication Activity Database

    Józefowska, A.; Pietrzykowski, M.; Woś, B.; Cajthaml, T.; Frouz, Jan

    2017-01-01

    Roč. 80, May (2017), s. 102-109 ISSN 1164-5563 Institutional support: RVO:60077344 Keywords : afforested mine soils * soil texture * tree species * chemical properties * microbial properties Subject RIV: DF - Soil Science OBOR OECD: Soil science Impact factor: 2.445, year: 2016

  9. Soils, time, and primate paleoenvironments

    Science.gov (United States)

    Bown, T.M.; Kraus, M.J.

    1993-01-01

    Soils are the skin of the earth. From both poles to the equator, wherever rocks or sediment are exposed at the surface, soils are forming through the physical and chemical action of climate and living organisms. The physical attributes (color, texture, thickness) and chemical makeup of soils vary considerably, depending on the composition of the parent material and other variables: temperature, rainfall and soil moisture, vegetation, soil fauna, and the length of time that soil-forming processes have been at work. United States soil scientists1 have classified modern soils into ten major groups and numerous subgroups, each reflecting the composition and architecture of the soils and, to some extent, the processes that led to their formation. The physical and chemical processes of soil formation have been active throughout geologic time; the organic processes have been active at least since the Ordovician.2 Consequently, nearly all sedimentary rocks that were deposited in nonmarine settings and exposed to the elements contain a record of ancient, buried soils or paleosols. A sequence of these rocks, such as most ancient fluvial (stream) deposits, provides a record of soil paleoenvironments through time. Paleosols are also repositories of the fossils of organisms (body fossils) and the traces of those organisms burrowing, food-seeking, and dwelling activities (ichnofossils). Indeed, most fossil primates are found in paleosols. Careful study of ancient soils gives new, valuable insights into the correct temporal reconstruction of the primate fossil record and the nature of primate paleoenvironments. ?? 1993 Wiley-Liss, Inc.

  10. Modelling soil and soil to plant transfer processes of radionuclides and toxic chemicals at long time scales for performance assessment of Radwaste disposal

    Science.gov (United States)

    Albrecht, Achim; Miquel, Stephan

    2015-04-01

    Performance assessments for surface nuclear waste disposal facilities require simulation of transfer processes from the waste canisters to a reference group living near-by. Such simulations need to be extended over several hundred to hundred thousand years, depending on waste type, restraining possibilities to represent short term system complexity and variability. Related modelling can be simplified as long as processes are represented conservatively with assessment endpoints estimated larger compared to more realistic modelling approaches. The indicators are doses for radionuclides (RN) and risk factors for toxic chemicals (TC, i.e. heavy metals, nitrate). We discuss a new simulation tool (SCM-Andra-multilayer-model, SAMM) that, among others, allows to model situations where RN/TC move through a soil profile characterised by temporal undersaturation and root growth (soil-plant subsystem of the biosphere model compared to the adjacent saturated geosphere). SAMM describes all relevant transfer and reaction processes (advection, diffusion, root transport, radioactive decay, chemical reactions incl. sorption - desorption) using well known differential equations solved numerically within MATLAB with scenario description and parameterisation defined in Excel sheets. With this conservative approach in mind, we apply global parameters for which the solid-solution (Kd) or soil-to-plant (TF) distribution coefficients are the most relevant. Empirical data are available for homogeneous situations, such as one compartment pot experiments, but rare for entire soil profiles. Similarly soil hydrology, in particular upward and downward advective fluxes are modelled using an empirical approach solely based on key soil hydrological parameters (precipitation, evapotranspiration, irrigation, water table level) and the soil porosity. Variability of soil hydrology in space and time, likely to change drastically even on hourly bases (i.e. intense precipitation event) or within a single

  11. Effect of Irrigation Timing on Root Zone Soil Temperature, Root Growth and Grain Yield and Chemical Composition in Corn

    Directory of Open Access Journals (Sweden)

    Xuejun Dong

    2016-05-01

    Full Text Available High air temperatures during the crop growing season can reduce harvestable yields in major agronomic crops worldwide. Repeated and prolonged high night air temperature stress may compromise plant growth and yield. Crop varieties with improved heat tolerance traits as well as crop management strategies at the farm scale are thus needed for climate change mitigation. Crop yield is especially sensitive to night-time warming trends. Current studies are mostly directed to the elevated night-time air temperature and its impact on crop growth and yield, but less attention is given to the understanding of night-time soil temperature management. Delivering irrigation water through drip early evening may reduce soil temperature and thus improve plant growth. In addition, corn growers typically use high-stature varieties that inevitably incur excessive respiratory carbon loss from roots and transpiration water loss under high night temperature conditions. The main objective of this study was to see if root-zone soil temperature can be reduced through drip irrigation applied at night-time, vs. daytime, using three corn hybrids of different above-ground architecture in Uvalde, TX where day and night temperatures during corn growing season are above U.S. averages. The experiment was conducted in 2014. Our results suggested that delivering well-water at night-time through drip irrigation reduced root-zone soil temperature by 0.6 °C, increase root length five folds, plant height 2%, and marginally increased grain yield by 10%. However, irrigation timing did not significantly affect leaf chlorophyll level and kernel crude protein, phosphorous, fat and starch concentrations. Different from our hypothesis, the shorter, more compact corn hybrid did not exhibit a higher yield and growth as compared with taller hybrids. As adjusting irrigation timing would not incur an extra cost for farmers, the finding reported here had immediate practical implications for farm

  12. Carbon stock, chemical and physical properties of soils under management systems with different deployment times in western region of Paraná, Brazil

    Directory of Open Access Journals (Sweden)

    Jean Sérgio Rosset

    2014-12-01

    Full Text Available The objective of this study was evaluate the organic carbon stock and chemical and physical properties of soils in management systems with different deployment times under clayey Red Latosol in western region of Paraná, Brazil. Five managed areas and a reference area (native forest without anthropic action were analyzed in completely randomized design with five repetitions. Management systems include three areas with different time of first adoption of no-till: 6 years – NT6 (transition phase, 14 years – NT14 (consolidation phase and 22 years – NT22 (maintenance phase; 16 years of no-till, and in the last four years with integration of maize and ruzigrass (Brachiaria ruziziensis – (NT+B and an area of permanent and continuous extensive cattle pasture of coast-cross (Cynodon dactylon – (P. Physical and chemical properties, total soil organic carbon (TOC stock and carbon stratification index (SI of soils were evaluated in depths of 0-0.05; 0.05-0.10; 0.10-0.20 and 0.20-0.40 m. The macroporosity (MA was higher in the area of native forest, ranging from 0.23 to 0.30 m3 m-3 and the microporosity (MI was higher in cultivated areas. The areas of NT+B and P presented lower ratio macroporosity/total pore volume (MA/TPV. For soil bulk density (BD and soil penetration resistance (SPR, the managed areas show higher values, suggesting the occurrence of compacted subsurface layers. Native forest area showed the highest TOC levels in the depths of 0-0.05 and 0.05-0.10 m, reaching 30.5 g kg-1 in the 0–0.05 m soil layer. There was negative change on TOC stocks in the managed areas in relation to forest area, being more evident in the more superficial soil layers. The SI was greater than one, however there is a reduction in function of adoption time of no-till. There was higher soil compaction in the managed areas, and the NT in soybean/maize succession system does not contribute effectively to the increase of TOC stocks.

  13. Impact of reduction dose, time and method of application of chemical fertilizer on mung bean under old alluvial soil, West Bengal, India

    Directory of Open Access Journals (Sweden)

    Naba Kumar Mondal

    2014-08-01

    Full Text Available Field experiments were conducted with mung bean (Vigna radiata L. Wilczek consecutively for three years (2009, 2010, and 2011 in the Crop Research and Seed Multiplication Farm, Burdwan University, West Bengal, India. In the first two years, varietals screening of mung bean under recommended dose of chemical fertilizer (20:40:20 were performed with five varieties with a local variety of mung bean during February to May of 2009. In the second year, one experiment was conducted with six different reduced dose of chemical fertilizer. In the third year, five different method and time of application of biofertilizer were applied to study the effects on agronomic traits and growth attributes of mung bean. The variety PDM-54 a significant higher seed yield along with other yield contributing factors, which was found to be superior to other varieties. In 2010, seed yield was found to be the best for 30% less nitrogenous and 25% less phosphate fertilizer along with recommended dose of chemical fertilizer. In 2011, the best yield was given by the treatment of basal @ 0.75 kg ha-1 + 1.5 kg ha-1 soil application after 21 days + 0.75 kg ha-1 as soil application + best dose of previous year.

  14. Chemical denudation of the soil

    Energy Technology Data Exchange (ETDEWEB)

    Arrhenius, O

    1952-01-01

    The chemical denudation plays a greater role in our climate than the mechanical erosion. The Swedish well waters contain 3-4 times more soluble salts than those rivers which are fed by them. The chemical denudation therefore must be much greater than formerly calculated. A map shows the salt concentration of the well waters of Sweden. The amount of nitrogen accumulated per annum in a district of central Sweden seems to amount to 3-6 kg n per har.

  15. Influence of Different soil Management Effects on Chemical Parameters and Soil Enzyme Activities in a Long-Time Viticultural Trial. Part I: The Lanes

    Directory of Open Access Journals (Sweden)

    Klaus Schaller

    2016-11-01

    Biological activity was determined with enzyme assays. Glucosidases are significantly higher in grassed plots and extensive tilling; same is true for phosphatases. Urease is also highest in grassed plots and extensive tilling. A strong and significant stratification with soil depth could be demonstrated for all analyzed parameters.

  16. Determination of solute organic concentration in contaminated soils using a chemical-equilibrium soil column system

    DEFF Research Database (Denmark)

    Gamst, Jesper; Kjeldsen, Peter; Christensen, Thomas Højlund

    2007-01-01

    using two soils with different content of organic carbon (f(oc) of 1.5 and 6.5%, respectively). A quadruple blind test of the ER-V system using glass beads in stead of soil showed an acceptable recovery (65-85%) of all of the 11 VOCs tested. Only for the most volatile compound (heptane, K-H similar...... to 80) an unacceptable recovery was found (9%). The contact time needed for obtaining chemical equilibrium was tested in the ER-H system by performing five test with different duration (1, 2, 4, 7 and 19 days) using the low organic carbon soil. Seven days of contact time appeared sufficient...... for determination of solute concentration in a contaminated soil were developed; (1) a chemical Equilibrium and Recirculation column test for Volatile organic chemicals (ER-V) and (2) a chemical Equilibrium and Recirculation column test for Hydrophobic organic chemicals (ER-H). The two test systems were evaluated...

  17. Soil chemical sensor and precision agricultural chemical delivery system and method

    Science.gov (United States)

    Colburn, Jr., John W.

    1991-01-01

    A real time soil chemical sensor and precision agricultural chemical delivery system includes a plurality of ground-engaging tools in association with individual soil sensors which measure soil chemical levels. The system includes the addition of a solvent which rapidly saturates the soil/tool interface to form a conductive solution of chemicals leached from the soil. A multivalent electrode, positioned within a multivalent frame of the ground-engaging tool, applies a voltage or impresses a current between the electrode and the tool frame. A real-time soil chemical sensor and controller senses the electrochemical reaction resulting from the application of the voltage or current to the leachate, measures it by resistivity methods, and compares it against pre-set resistivity levels for substances leached by the solvent. Still greater precision is obtained by calibrating for the secondary current impressed through solvent-less soil. The appropriate concentration is then found and the servo-controlled delivery system applies the appropriate amount of fertilizer or agricultural chemicals substantially in the location from which the soil measurement was taken.

  18. Electrical Conductivity and Chemical Composition of Soil Solution: Comparison of Solution Samplers in Tropical Soils

    Directory of Open Access Journals (Sweden)

    Davi Lopes do Carmo

    2016-01-01

    Full Text Available ABSTRACT Soil solution samplers may have the same working principle, but they differ in relation to chemical and physical characteristics, cost and handling, and these aspects exert influence on the chemical composition of the soil solution obtained. This study was carried out to evaluate, over time, the chemical composition of solutions extracted by Suolo Acqua, with the hydrophilic membrane (HM as a standard, using soils with contrasting characteristics, and to determine the relationship between electrical conductivity (EC and concentration of ions and pH of soil solution samples. This study was carried out under laboratory conditions, using three soils samples with different clay and organic matter (OM contents. Soil solution contents of F−, Cl−, NO−3, Br−, SO42−, Na+, NH4+, K+, Mg2+, Ca2+, were analyzed, as well as inorganic, organic, and total C contents, pH, and EC, in four successive sampling times. Soil solution chemical composition extracted by the Suolo Acqua sampler is similar to that collected by the HM, but the Suolo Acqua extracted more Na+ and soluble organic C than the HM solution. Solution EC, cation and anion concentrations, and soluble C levels are higher in the soil with greater clay and OM contents (Latossolo and Cambissolo in this case. Soil solution composition varied over time, with considerable changes in pH, EC, and nutrient concentrations, especially associated with soil OM. Thus, single and isolated sampling of the soil solution must be avoided, otherwise composition of the soil solution may not be correctly evaluated. Soil solution EC was regulated by pH, as well as the sum of cation and anion concentrations, and the C contents determined in the soil liquid phase.

  19. Improvement of Expansive Soils Using Chemical Stabilizers

    Science.gov (United States)

    Ikizler, S. B.; Senol, A.; Khosrowshahi, S. K.; Hatipoğlu, M.

    2014-12-01

    The aim of this study is to investigate the effect of two chemical stabilizers on the swelling potential of expansive soil. A high plasticity sodium bentonite was used as the expansive soil. The additive materials including fly ash (FA) and lime (L) were evaluated as potential stabilizers to decrease the swelling pressure of bentonite. Depending on the type of additive materials, they were blended with bentonite in different percentages to assess the optimum state and approch the maximum swell pressure reduction. According to the results of swell pressure test, both fly ash and lime reduce the swelling potential of bentonite but the maximum improvement occurs using bentonite-lime mixture while the swelling pressure reduction approaches to 49%. The results reveal a significant reduction of swelling potential of expansive soil using chemical stabilizers. Keywords: Expansive soil; swell pressure; chemical stabilization; fly ash; lime

  20. WEED CONTROL EFFECTS ON SOIL CHEMICAL CHARACTERISTICS

    Directory of Open Access Journals (Sweden)

    Paulo Sérgio Lima e Silva

    2008-01-01

    Full Text Available The weed control procedures are known to affect the soil physical attributes and the nutrient amount taken up by weed roots. This work hypothesis is that weed control methods might also affect soil chemical attributes. Four experiments were carried out, three with maize (E-1, E-2 and E-3 and one with cotton (E-4, in randomized complete blocks design arranged in split-plots, with five replications. In E-1 experiment, the plots consisted of two weed control treatments: no-weed control and weed shovel-digging at 20 and 40 days after sowing; and the subplots consisted of six maize cultivars. In the three other experiments, the plots consisted of plant cultivars: four maize cultivars (E-2 and E-3 and four cotton cultivars (E-4. And, the subplots consisted of three weed control treatments: (1 no-weed control; (2 weed shovel-digging at 20 and 40 days after sowing; and (3 intercropping with cowpea (E-2 or Gliricidia sepium (Jacq. Walp. (E-3 and E-4. In all experiments, after harvest, eight soil samples were collected from each subplot (0-20 cm depth and composed in one sample. Soil chemical analysis results indicated that the weed control by shovel-digging or intercropping may increase or decrease some soil element concentrations and the alterations depend on the element and experiment considered. In E-2, the weed shovel-dug plots showed intermediate soil pH, lower S (sum of bases values and higher soil P concentrations than the other plots. In E-4, soil K and Na concentrations in plots without weed control did not differ from plots with intercropping, and in both, K and Na values were higher than in weed shovel-dug plots. Maize and cotton cultivars did not affect soil chemical characteristics.

  1. Chemical control of flowering time

    DEFF Research Database (Denmark)

    Ionescu, Irina Alexandra; Møller, Birger Lindberg; Sánchez Pérez, Raquel

    2017-01-01

    Flowering at the right time is of great importance; it secures seed production and therefore species survival and crop yield. In addition to the genetic network controlling flowering time, there are a number of much less studied metabolites and exogenously applied chemicals that may influence...... on the genetic aspects of flowering time regulation in annuals, but less so in perennials. An alternative to plant breeding approaches is to engineer flowering time chemically via the external application of flower-inducing compounds. This review discusses a variety of exogenously applied compounds used in fruit...

  2. THE BNL ASTD FIELD LAB - NEAR - REAL - TIME CHARACTERIZATION OF BNL STOCKPILED SOILS TO ACCELERATE COMPLETION OF THE EM CHEMICAL HOLES PROJECT

    International Nuclear Information System (INIS)

    BOWERMAN, B.S.; ADAMS, J.W.; HEISER, J.; KALB, P.D.; LOCKWOOD, A.

    2003-01-01

    As of October 2001, approximately 7,000 yd 3 of stockpiled soil remained at Brookhaven National Laboratory (BNL) after the remediation of the BNL Chemical/Animal/Glass Pits disposal area. The soils were originally contaminated with radioactive materials and heavy metals, depending on what materials had been interred in the pits, and how the pits were excavated. During the 1997 removal action, the more hazardous/radioactive materials were segregated, along with, chemical liquids and solids, animal carcasses, intact gas cylinders, and a large quantity of metal and glass debris. Nearly all of these materials have been disposed of. In order to ensure that all debris was removed and to characterize the large quantity of heterogeneous soil, BNL initiated an extended sorting, segregation, and characterization project directed at the remaining soil stockpiles. The project was co-funded by the Department of Energy Environmental Management Office (DOE EM) through the BNL Environmental Restoration program and through the DOE EM Office of Science and Technology Accelerated Site Technology Deployment (ASTD) program. The focus was to remove any non-conforming items, and to assure that mercury and radioactive contaminant levels were within acceptable limits for disposal as low-level radioactive waste. Soils with mercury concentrations above allowable levels would be separated for disposal as mixed waste. Sorting and segregation were conducted simultaneously. Large stockpiles (ranging from 150 to 1,200 yd 3 ) were subdivided into manageable 20 yd 3 units after powered vibratory screening. The 1/2-inch screen removed almost all non-conforming items (plus some gravel). Non-conforming items were separated for further characterization. Soil that passed through the screen was also visually inspected before being moved to a 20 yd 3 ''subpile.'' Eight samples from each subpile were collected after establishing a grid of four quadrants: north, east, south and west, and two layers: top and

  3. Physical and chemical factors influencing radionuclide behaviour in arable soils

    International Nuclear Information System (INIS)

    Rauret, G.; Vidal, M.; Alexakhin, R.M.; Kruglov, S.V.; Cremers, A.; Wauters, J.; Valcke, E.; Ivanov, Y.

    1996-01-01

    Soil-to-plant transfer of radionuclides integrates plant physiological and soil chemical aspects. Therefore, it is necessary to study the factors affecting the equilibrium of the radionuclides between solid and soil solution phases. Desorption and adsorption studies were applied to the podsolic and peat soils considered in the ECP-2 project. In the desorption approach, both sequential extraction and 'infinite bath' techniques were used. In the adsorption approach, efforts were directed at predicting Cs and Sr-K D on the basis of soil properties and soil solution composition. Desorption approach predicts time-dynamics of transfer with time but it is un sufficient for comparatively predicting transfer. Adsorption studies informs about which are the key factors affecting radionuclide transfer. For Sr, availability depends on the CEC and on the concentration of the Ca + Mg in the soil solution. For Cs, availability is mainly dependent on the partitioning between FES -frayed edge sites-, which are highly specific and REC -regular exchange complex-, with low selectivity for Cs. Moreover, availability depends on the K and NH 4 , levels in the soil solution and fixation properties of the soil. Considering these factors, the calculation of the in situ K D values helps to predict the relative transfer of radionuclides. The calculation of the K D of the materials that could be used as countermeasures could permit the prediction of its suitability to decrease transfer and therefore to help in producing cleaner agricultural products

  4. Chemical Continuous Time Random Walks

    Science.gov (United States)

    Aquino, T.; Dentz, M.

    2017-12-01

    Traditional methods for modeling solute transport through heterogeneous media employ Eulerian schemes to solve for solute concentration. More recently, Lagrangian methods have removed the need for spatial discretization through the use of Monte Carlo implementations of Langevin equations for solute particle motions. While there have been recent advances in modeling chemically reactive transport with recourse to Lagrangian methods, these remain less developed than their Eulerian counterparts, and many open problems such as efficient convergence and reconstruction of the concentration field remain. We explore a different avenue and consider the question: In heterogeneous chemically reactive systems, is it possible to describe the evolution of macroscopic reactant concentrations without explicitly resolving the spatial transport? Traditional Kinetic Monte Carlo methods, such as the Gillespie algorithm, model chemical reactions as random walks in particle number space, without the introduction of spatial coordinates. The inter-reaction times are exponentially distributed under the assumption that the system is well mixed. In real systems, transport limitations lead to incomplete mixing and decreased reaction efficiency. We introduce an arbitrary inter-reaction time distribution, which may account for the impact of incomplete mixing. This process defines an inhomogeneous continuous time random walk in particle number space, from which we derive a generalized chemical Master equation and formulate a generalized Gillespie algorithm. We then determine the modified chemical rate laws for different inter-reaction time distributions. We trace Michaelis-Menten-type kinetics back to finite-mean delay times, and predict time-nonlocal macroscopic reaction kinetics as a consequence of broadly distributed delays. Non-Markovian kinetics exhibit weak ergodicity breaking and show key features of reactions under local non-equilibrium.

  5. LOSS OF ORGANIC CHEMICALS IN SOIL: PURE COMPOUND TREATABILITY STUDIES

    Science.gov (United States)

    Comprehensive screening data on the treatability of 32 organic chemicals in soil were developed. Of the evaluated chemicals, 22 were phenolic compounds. Aerobic batch laboratory microcosm experiments were conducted using two soils: an acidic clay soil with <1% organic matter and ...

  6. How soil organic matter composition controls hexachlorobenzene-soil-interactions: adsorption isotherms and quantum chemical modeling.

    Science.gov (United States)

    Ahmed, Ashour A; Kühn, Oliver; Aziz, Saadullah G; Hilal, Rifaat H; Leinweber, Peter

    2014-04-01

    Hazardous persistent organic pollutants (POPs) interact in soil with the soil organic matter (SOM) but this interaction is insufficiently understood at the molecular level. We investigated the adsorption of hexachlorobenzene (HCB) on soil samples with systematically modified SOM. These samples included the original soil, the soil modified by adding a hot water extract (HWE) fraction (soil+3 HWE and soil+6 HWE), and the pyrolyzed soil. The SOM contents increased in the order pyrolyzed soilsoilsoil+3 HWEsoil+6 HWE. For the latter three samples this order was also valid for the HCB adsorption. The pyrolyzed soil adsorbed more HCB than the other samples at low initial concentrations, but at higher concentrations the HCB adsorption became weaker than in the samples with HWE addition. This adsorption combined with the differences in the chemical composition between the soil samples suggested that alkylated aromatic, phenol, and lignin monomer compounds contributed most to the HCB adsorption. To obtain a molecular level understanding, a test set has been developed on the basis of elemental analysis which comprises 32 representative soil constituents. The calculated binding energy for HCB with each representative system shows that HCB binds to SOM stronger than to soil minerals. For SOM, HCB binds to alkylated aromatic, phenols, lignin monomers, and hydrophobic aliphatic compounds stronger than to polar aliphatic compounds confirming the above adsorption isotherms. Moreover, quantitative structure-activity relationship (QSAR) of the binding energy with independent physical properties of the test set systems for the first time indicated that the polarizability, the partial charge on the carbon atoms, and the molar volume are the most important properties controlling HCB-SOM interactions. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Soil microbial activities and its relationship with soil chemical ...

    African Journals Online (AJOL)

    The fields assessed are organically managed Soils (OMS), Inorganically Managed Soils (IMS) and an Uncultivated Land having grass coverage (ULS). Soil Microbial Respiration (SMR), Microbial Biomass Carbon (MBC), Microbial Biomass Nitrogen (MBN) and Microbial Biomass Phosphorus (MBP) were analyzed.

  8. Linkages between aggregate formation, porosity and soil chemical properties

    NARCIS (Netherlands)

    Regelink, I.C.; Stoof, C.R.; Rousseva, S.; Weng, L.; Lair, G.J.; Kram, P.; Nikolaidis, N.P.; Kercheva, M.; Banwart, S.; Comans, R.N.J.

    2015-01-01

    Linkages between soil structure and physical–chemical soil properties are still poorly understood due to the wide size-range at which aggregation occurs and the variety of aggregation factors involved. To improve understanding of these processes, we collected data on aggregate fractions, soil

  9. Determination of chemical availability of cadmium and zinc in soils using inert soil moisture samplers.

    Science.gov (United States)

    Knight, B P; Chaudri, A M; McGrath, S P; Giller, K E

    1998-01-01

    A rapid method for extracting soil solutions using porous plastic soil-moisture samplers was combined with a cation resin equilibration based speciation technique to look at the chemical availability of metals in soil. Industrially polluted, metal sulphate amended and sewage sludge treated soils were used in our study. Cadmium sulphate amended and industrially contaminated soils all had > 65% of the total soil solution Cd present as free Cd2+. However, increasing total soil Cd concentrations by adding CdSO4 resulted in smaller total soil solution Cd. Consequently, the free Cd2+ concentrations in soil solutions extracted from these soils were smaller than in the same soil contaminated by sewage sludge addition. Amendment with ZnSO4 gave much greater concentrations of free Zn2+ in soil solutions compared with the same soil after long-term Zn contamination via sewage sludge additions. Our results demonstrate the difficulty in comparing total soil solution and free metal ion concentrations for soils from different areas with different physiochemical properties and sources of contamination. However, when comparing the same Woburn soil, Cd was much less available as Cd2+ in soil solution from the CdSO4 amended soils compared with soil contaminated by about 36 years of sewage sludge additions. In contrast, much more Zn was available in soil solution as free Zn2+ in the ZnSO4 amended soils compared with the sewage sludge treated soils.

  10. Effect of Applying Chemical Fertilizers on Concentration of Cd, Pb and Zn in Agricultural Soils

    Directory of Open Access Journals (Sweden)

    Hossein Pourmoghadas

    2017-03-01

    Full Text Available Background &Objective:  Nowadays uncontrolled uses of chemical fertilizers which have many heavy metals such as Cadmium, Lead and Zinc in addition have economic problems, cause to serious damages in the environment. Therefore uncontrolled application of fertilizers can cause accumulation contaminants in soil, water sources and increasing in plants and human & animals’ food chain. The main objective of this research was to investigate the effects of chemical fertilizers application to increase heavy metals in agricultural soils at directions to prevent contamination in water sources, agricultural products and the best uses of chemical fertilizers. Methods: In this study, 20 soil samples and 5 useful chemical fertilizer samples were collected and investigated. After fertilizer and soil samples were prepared, digested and filtered, heavy metals were determined with using atomic absorption. Results: The results of this study showed that, Cd in Diammonum phosphate  fertilizer 1.25 times, Super phosphate triple 1.7 times and in Macro granular fertilizer 1.5 times were as much as maximum acceptable concentration in chemical fertilizers. Cadmium concentration in all of the Jarghoye (Isfahan agricultural soil samples 3 to 7 times and in the Mobarake village (Najaf abad agricultural soil samples 10 to 35 times were as much as maximum acceptable concentration in agricultural soils. But Pb and Zn concentration in all of the agricultural soil samples was less than the amount of maximum acceptable concentration. Conclusion: Phosphate chemical fertilizers were positive effects to increase concentration of Pb and Zn in agricultural soils. Therefore, application of the fertilizer must be more attention because of increasing heavy metals in the agriculture soils and probably increasing heavy metals in food chain.  

  11. Chemical composition and Zn bioavailability of the soil solution extracted from Zn amended variable charge soils.

    Science.gov (United States)

    Zampella, Mariavittoria; Adamo, Paola

    2010-01-01

    A study on variable charge soils (volcanic Italian and podzolic Scottish soils) was performed to investigate the influence of soil properties on the chemical composition of soil solution. Zinc speciation, bioavailability and toxicity in the soil solution were examined. The soils were spiked with increasing amounts of Zn (0, 100, 200, 400 and 1000 mg/kg) and the soil solutions were extracted using rhizon soil moisture samplers. The pH, total organic carbon (TOC), base cations, anions, total Zn and free Zn2+ in soil solution were analysed. A rapid bioassay with the luminescent bacterium Escherichia coli HB101 pUCD607 was performed to assess Zn toxicity. The influence of soil type and Zn treatments on the chemical composition of soil solution and on Zn toxicity was considered and discussed. Different trends of total and free Zn concentrations, base cations desorption and luminescence of E. coli HB101 pUCD607 were observed. The soil solution extracted from the volcanic soils had very low total and free Zn concentrations and showed specific Zn2+/Ca2+ exchange. The soil solution from the podzolic soil had much higher total and free Zn concentrations and showed no evidence of specific Zn2+/Ca2+ exchange. In comparison with the subalkaline volcanic soils, the acidic podzol showed enhanced levels of toxic free Zn2+ and consequently stronger effects on E. coli viability.

  12. CHEMICAL AND MICROBIOLOGICAL ATTRIBUTES UNDER DIFFERENT SOIL COVER

    Directory of Open Access Journals (Sweden)

    Elaine Novak

    2017-03-01

    Full Text Available A challenge for the environmental recovery of degraded areas is the search for soil data. In this process, the microbiological parameters and soil chemicals are potential indicators of soil quality. This study aimed to evaluate soil quality based on microbiological and chemical soil attributes in different areas involving environmental recovery, sugarcane cultivation and remnants of native vegetation located in a rural private property farm in State of Mato Grosso do Sul, Brazil, in Hapludox Eutrophic soil. The microbiological (microbial biomass carbon, basal respiration, microbial quotient and metabolic quotient and chemical parameters (organic matter, carbon, pH, cationic exchange capacity, sum of bases, potassium, phosphorus, magnesium, calcium, saturation base and potential acidity were assessed. Data were assessed by variance and multivariate analysis (Principal Component Analysis and cluster analysis. Overall, the results showed highest alteration in the chemical and microbiological characteristics of the soil in sugarcane cultivation area in comparison with other areas. Considering the studied recovery areas, REC1, REC5 and REC7 show chemical and microbiological conditions with most similarity to native vegetation. Despite the short period of the resilience enhancement of environmental recovery areas, the development of vegetation cover and establishment of the microbial community were determined to be important factors for improving soil quality and environmental recovery in several of the areas studied.

  13. X-ray Microspectroscopy and Chemical Reactions in Soil Microsites

    Energy Technology Data Exchange (ETDEWEB)

    D Hesterberg; M Duff; J Dixon; M Vepraskas

    2011-12-31

    Soils provide long-term storage of environmental contaminants, which helps to protect water and air quality and diminishes negative impacts of contaminants on human and ecosystem health. Characterizing solid-phase chemical species in highly complex matrices is essential for developing principles that can be broadly applied to the wide range of notoriously heterogeneous soils occurring at the earth's surface. In the context of historical developments in soil analytical techniques, we describe applications of bulk-sample and spatially resolved synchrotron X-ray absorption spectroscopy (XAS) for characterizing chemical species of contaminants in soils, and for determining the uniqueness of trace-element reactivity in different soil microsites. Spatially resolved X-ray techniques provide opportunities for following chemical changes within soil microsites that serve as highly localized chemical micro- (or nano-)reactors of unique composition. An example of this microreactor concept is shown for micro-X-ray absorption near edge structure analysis of metal sulfide oxidation in a contaminated soil. One research challenge is to use information and principles developed from microscale soil chemistry for predicting macroscale and field-scale behavior of soil contaminants.

  14. Chemical characterization of local and stratospheric plutonium in Ohio soils

    International Nuclear Information System (INIS)

    Muller, R.N.

    1978-01-01

    The chemical nature of plutonium derived from stratospheric fallout and industrial sources was studied in three agricultural soils. The majority of the soil plutonium was associated with a reductant-soluble, hydrous oxide phase that, under most conditions of terrestrial ecosystems, remains essentially immobile. The proportion of plutonium associated with organic matter (0.1N NaOH-extractable) varied among soils, and increased with decreasing particle size in the same soil. In a soil containing 238 Pu from a local fabrication facility and 239 , 240 Pu from stratospheric fallout, isotopic ratios between the NaOH-extractable and residual phases were essentially constant, indicating that, in these soils, plutonium from both sources behaves similarly. The distribution of soil plutonium with particle size appears to be most directly related to the mass of the soil particle

  15. Validation of predicted exponential concentration profiles of chemicals in soils

    International Nuclear Information System (INIS)

    Hollander, Anne; Baijens, Iris; Ragas, Ad; Huijbregts, Mark; Meent, Dik van de

    2007-01-01

    Multimedia mass balance models assume well-mixed homogeneous compartments. Particularly for soils, this does not correspond to reality, which results in potentially large uncertainties in estimates of transport fluxes from soils. A theoretically expected exponential decrease model of chemical concentrations with depth has been proposed, but hardly tested against empirical data. In this paper, we explored the correspondence between theoretically predicted soil concentration profiles and 84 field measured profiles. In most cases, chemical concentrations in soils appear to decline exponentially with depth, and values for the chemical specific soil penetration depth (d p ) are predicted within one order of magnitude. Over all, the reliability of multimedia models will improve when they account for depth-dependent soil concentrations, so we recommend to take into account the described theoretical exponential decrease model of chemical concentrations with depth in chemical fate studies. In this model the d p -values should estimated be either based on local conditions or on a fixed d p -value, which we recommend to be 10 cm for chemicals with a log K ow > 3. - Multimedia mass model predictions will improve when taking into account depth dependent soil concentrations

  16. Methods of soil resampling to monitor changes in the chemical concentrations of forest soils

    Science.gov (United States)

    Gregory B. Lawrence; Ivan J. Fernandez; Paul W. Hazlett; Scott W. Bailey; Donald S. Ross; Thomas R. Villars; Angelica Quintana; Rock Ouimet; Michael R. McHale; Chris E. Johnson; Russell D. Briggs; Robert A. Colter; Jason Siemion; Olivia L. Bartlett; Olga Vargas; Michael R. Antidormi; Mary M. Koppers

    2016-01-01

    Recent soils research has shown that important chemical soil characteristics can change in less than a decade, often the result of broad environmental changes. Repeated sampling to monitor these changes in forest soils is a relatively new practice that is not well documented in the literature and has only recently been broadly embraced by the scientific community. The...

  17. Evaluation of physico-chemical parameters of agricultural soils ...

    African Journals Online (AJOL)

    Evaluation of physico-chemical parameters of agricultural soils irrigated by the waters of the hydrolic basin of Sebou River and their influences on the transfer of trace elements into sugar crops (the case of sugar cane)

  18. Chemical Modification of Uniform Soils and Soils with High/Low Plasticity Index

    OpenAIRE

    Li, Xuanchi; Tao, Fei; Bobet, Antonio

    2015-01-01

    Lime and/or cement are used to treat weak subgrade soils during construction of highways. These chemicals are mixed with the soil to improve its workability, compactability and engineering properties. INDOT (Indiana Department of Transportation) has been using chemical modification of native soils for the past 20 years. In fact, 90% of current subgrade is treated, typically with quick lime, lime byproducts or cement. For pavement design, it is customary to not include any improvement of the s...

  19. Chemical Degradation of PCBs in Alaskan Soils

    Science.gov (United States)

    2011-04-01

    concentrations in a contaminated feed soil from a Superfund site from 28.2 ppm to 0.043 ppm. This process sprays the contaminated soils with diesel ...modified Fenton’s chemistry. In Proceedings of Battelle Bioremediation Conference. Payne, J., F. Boelsing, A. Habekost, G. Hirschfeld, and V. Birke

  20. Effect of Phosphorus Fertilizer Application on Some Soil Chemical ...

    African Journals Online (AJOL)

    Research was conducted during the 2004, 2005 and 2006 cropping seasons to study the effect of phosphorus fertilizer on some soil chemical properties and nitrogen fixation of legumes at Bauchi, northeastern Nigeria. Composite soil samples were collected from sites before planting and after harvesting at the depths of ...

  1. Chemical Compositions of Soils in Parts of Edo State, Southwest ...

    African Journals Online (AJOL)

    MICHAEL HORSFALL

    www.bioline.org.br/ja. Chemical Compositions of Soils in Parts of Edo State, Southwest Nigeria and their ... the soil in agriculture and engineering (Imasuen et al. 1989b). Clay mineral ..... Unpublished Ph.D. Thesis, The. University of Western ...

  2. Effect of biosolids application on soil chemical properties and uptake ...

    African Journals Online (AJOL)

    Effect of biosolids application on soil chemical properties and uptake of some heavy metals by Cercis siliquastrum. ... and municipal solid waste compost (50% CM + 50% MC) at three levels of 0, 2.5 and 5 kg/shrub and three replicates in calcareous sandy loam soil at the botanical garden of Mobarekeh steel company.

  3. Space-time modeling of soil moisture

    Science.gov (United States)

    Chen, Zijuan; Mohanty, Binayak P.; Rodriguez-Iturbe, Ignacio

    2017-11-01

    A physically derived space-time mathematical representation of the soil moisture field is carried out via the soil moisture balance equation driven by stochastic rainfall forcing. The model incorporates spatial diffusion and in its original version, it is shown to be unable to reproduce the relative fast decay in the spatial correlation functions observed in empirical data. This decay resulting from variations in local topography as well as in local soil and vegetation conditions is well reproduced via a jitter process acting multiplicatively over the space-time soil moisture field. The jitter is a multiplicative noise acting on the soil moisture dynamics with the objective to deflate its correlation structure at small spatial scales which are not embedded in the probabilistic structure of the rainfall process that drives the dynamics. These scales of order of several meters to several hundred meters are of great importance in ecohydrologic dynamics. Properties of space-time correlation functions and spectral densities of the model with jitter are explored analytically, and the influence of the jitter parameters, reflecting variabilities of soil moisture at different spatial and temporal scales, is investigated. A case study fitting the derived model to a soil moisture dataset is presented in detail.

  4. Effective soil hydraulic properties in space and time: some field data analysis and modeling concepts

    Science.gov (United States)

    Soil hydraulic properties, which control surface fluxes and storage of water and chemicals in the soil profile, vary in space and time. Spatial variability above the measurement scale (e.g., soil area of 0.07 m2 or support volume of 14 L) must be upscaled appropriately to determine “effective” hydr...

  5. Developing ecotoxicological testing procedures for chemicals in soils

    International Nuclear Information System (INIS)

    Scheunert, I.; Doerfler, U.; Quast, I.; Schroll, R.; Topp, E.; Wolf, E.; Korte, F.

    1989-01-01

    The work deals with the determination of adsorption coefficients of volatile environmental chemicals, of volatilization rates (example: Lindane), biomineralization rates, total balances, and uptake into higher plants, further with the correlation of the uptake of chemicals by plants with physico-chemical and structural mass characteristics, and field experiments with lysimeters using labelled carbon 14 compounds for validation of the results obtained under laboratory conditions. - The devices for determination of adsorption coefficients and of volatilization rates of chemicals from soil and plant surfaces, as well as the closed experimental setup with controlled air throughput for billing labelled carbon 14 chemicals in the soil/plant system are described. The mass balance of the adsorption of volatile labelled carbon 14 chemicals in an alfisol, the volatilization of Lindane from the surface of a sandy soil, the concentration of hexachlorbenzene in different parts of plants, the uptake pathways of organic chemicals in higher plants and their corelation with mass properties, as well as the correlation between bioconcentration factors of chemicals in barley after application into the soil and physico-chemical and structural mass parameters are investigated and indicated in the form of tables and diagrams. (HK) [de

  6. Predicting radiocaesium sorption characteristics with soil chemical properties for Japanese soils.

    Science.gov (United States)

    Uematsu, Shinichiro; Smolders, Erik; Sweeck, Lieve; Wannijn, Jean; Van Hees, May; Vandenhove, Hildegarde

    2015-08-15

    The high variability of the soil-to-plant transfer factor of radiocaesium (RCs) compels a detailed analysis of the radiocaesium interception potential (RIP) of soil, which is one of the specific factors ruling the RCs transfer. The range of the RIP values for agricultural soils in the Fukushima accident affected area has not yet been fully surveyed. Here, the RIP and other major soil chemical properties were characterised for 51 representative topsoils collected in the vicinity of the Fukushima contaminated area. The RIP ranged a factor of 50 among the soils and RIP values were lower for Andosols compared to other soils, suggesting a role of soil mineralogy. Correlation analysis revealed that the RIP was most strongly and negatively correlated to soil organic matter content and oxalate extractable aluminium. The RIP correlated weakly but positively to soil clay content. The slope of the correlation between RIP and clay content showed that the RIP per unit clay was only 4.8 mmol g(-1) clay, about threefold lower than that for clays of European soils, suggesting more amorphous minerals and less micaceous minerals in the clay fraction of Japanese soils. The negative correlation between RIP and soil organic matter may indicate that organic matter can mask highly selective sorption sites to RCs. Multiple regression analysis with soil organic matter and cation exchange capacity explained the soil RIP (R(2)=0.64), allowing us to map soil RIP based on existing soil map information. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Toxic Chemicals in the Soil Environment. Volume 2. Interactions of Some Toxic Chemicals/Chemical Warfare Agents and Soils

    Science.gov (United States)

    1985-06-01

    K., S. Barik , and N. Sethunathan. 1981. Stability of commercial formulations of fenitrothion, methyl parathion, and parathion in anaero- bic soils. J ...34 D(Cl - C2 )L where; J - rate of flow or flWx, or the 4mount of solute (chemical) diffuisiguuit ti= across a unit crossý-ectional area, D difffuoion...surfaces (coatentrations C, aud C2) varies vith the concentration gradient, tlus’: 3 - -D(dC/dx) Where: J * the flux in grams or moles in cm%1s- acroeas a

  8. Impact of Rangeland Degradation on Soil Physical, Chemical

    African Journals Online (AJOL)

    major threats to enhance a sustainable pastoral-livestock production in Ethiopia. ... overall negative impact on the soil physical and chemical characteristics, demanding ... chemical properties (Gemedo et al., 2006) as well as the rangeland .... parameters such as life forms (annuals and perennials), plant forms (woody plant,.

  9. The bioavailability of chemicals in soil for earthworms

    Science.gov (United States)

    Lanno, R.; Wells, J.; Conder, Jason M.; Bradham, K.; Basta, N.

    2004-01-01

    The bioavailability of chemicals to earthworms can be modified dramatically by soil physical/chemical characteristics, yet expressing exposure as total chemical concentrations does not address this problem. In order to understand the effects of modifying factors on bioavailability, one must measure and express chemical bioavailability to earthworms in a consistent, logical manner. This can be accomplished by direct biological measures of bioavailability (e.g., bioaccumulation, critical body residues), indirect biological measures of bioavailability (e.g., biomarkers, reproduction), or indirect chemical measures of bioavailability (e.g., chemical or solid-phase extracts of soil). If indirect chemical measures of bioavailability are to be used, they must be correlated with some biological response. Bioavailability can be incorporated into ecological risk assessment during risk analysis, primarily in the estimation of exposure. However, in order to be used in the site-specific ecological risk assessment of chemicals, effects concentrations must be developed from laboratory toxicity tests based on exposure estimates utilizing techniques that measure the bioavailable fraction of chemicals in soil, not total chemical concentrations. ?? 2003 Elsevier Inc. All rights reserved.

  10. Chemical fingerprinting of hydrocarbon-contamination in soil

    DEFF Research Database (Denmark)

    Boll, Esther Sørensen; Nejrup, Jens; Jensen, Julie K.

    2015-01-01

    Chemical fingerprinting analyses of 29 hydrocarbon-contaminated soils were performed to assess the soil quality and determine the main contaminant sources. The results were compared to an assessment based on concentrations of the 16 priority polycyclic aromatic hydrocarbons pointed out by the U...... and in assessing weathering trends of hydrocarbon contamination in the soils. Multivariate data analysis of sum-normalized concentrations could as a stand-alone tool distinguish between hydrocarbon sources of petrogenic and pyrogenic origin, differentiate within petrogenic sources, and detect weathering trends....... Diagnostic ratios of PACs were not successful for source identification of the heavily weathered hydrocarbon sources in the soils. The fingerprinting of contaminated soils revealed an underestimation of PACs in petrogenic contaminated soils when the assessment was based solely on EPAPAH16. As alkyl...

  11. Verrucomicrobial community structure and abundance as indicators for changes in chemical factors linked to soil fertility.

    Science.gov (United States)

    Navarrete, Acacio Aparecido; Soares, Tielle; Rossetto, Raffaella; van Veen, Johannes Antonie; Tsai, Siu Mui; Kuramae, Eiko Eurya

    2015-09-01

    Here we show that verrucomicrobial community structure and abundance are extremely sensitive to changes in chemical factors linked to soil fertility. Terminal restriction fragment length polymorphism fingerprint and real-time quantitative PCR assay were used to analyze changes in verrucomicrobial communities associated with contrasting soil nutrient conditions in tropical regions. In case study Model I ("Slash-and-burn deforestation") the verrucomicrobial community structures revealed disparate patterns in nutrient-enriched soils after slash-and-burn deforestation and natural nutrient-poor soils under an adjacent primary forest in the Amazonia (R = 0.819, P = 0.002). The relative proportion of Verrucomicrobia declined in response to increased soil fertility after slash-and-burn deforestation, accounting on average, for 4 and 2 % of the total bacterial signal, in natural nutrient-poor forest soils and nutrient-enriched deforested soils, respectively. In case study Model II ("Management practices for sugarcane") disparate patterns were revealed in sugarcane rhizosphere sampled on optimal and deficient soil fertility for sugarcane (R = 0.786, P = 0.002). Verrucomicrobial community abundance in sugarcane rhizosphere was negatively correlated with soil fertility, accounting for 2 and 5 % of the total bacterial signal, under optimal and deficient soil fertility conditions for sugarcane, respectively. In nutrient-enriched soils, verrucomicrobial community structures were related to soil factors linked to soil fertility, such as total nitrogen, phosphorus, potassium and sum of bases, i.e., the sum of calcium, magnesium and potassium contents. We conclude that community structure and abundance represent important ecological aspects in soil verrucomicrobial communities for tracking the changes in chemical factors linked to soil fertility under tropical environmental conditions.

  12. Chemical weathering and loess inputs to soils in New Zealand's Wairarapa region

    Science.gov (United States)

    Lukens, C. E.; Norton, K. P.

    2017-12-01

    Geochemical mass-balance approaches are commonly used in soils to evaluate patterns in chemical weathering. In conjuction with cosmogenic nuclide measurements of total denudation or soil production, mass-balance approaches have been used to constrain rates of chemical weathering across a variety of landscapes. Here we present geochemical data from a series of soil pits in the Wairarapa region of New Zealand's North Island, where rates of soil production equal rates of total denudation measured using 10Be at sites nearby (i.e., the landscape is in steady state). Soil density increases with depth, consistent with steady weathering over the average soil residence time. However, soil geochemistry indicates very little chemical weathering has occurred, and immobile elements (Zr, Ti, and V) are depleted in soils relative to bedrock. This is contrary to the expected observation, wherein immobile elements should be enriched in soils relative to parent bedrock as weathered mobile solutes are progressively removed from soil. Our geochemical measurements suggest contributions from an exernal source, which has a different chemical composition than the underlying bedrock. We hypothesize that loess constitutes a substantial influx of additional material, and use a mixing model to predict geochemical patterns within soil columns. We evaluate the relative contributions of several likely loess sources, including tephra from the nearby Taupo Volcanic Center, local loess deposits formed during glacial-interglacial transitions, and far-travelling Australian dust. Using an established mass-balance approach with multiple immobile elements, we calculate the fraction of mass in soils contributed by loess to be as much as 25%. Combined with 10Be-derived estimates of soil production, we calculate average loess fluxes up to 320 t/km2/yr, which are consistent with previous estimates of loess acculumation over the late Holocene. Accounting for loess input, we find that chemical weathering

  13. Effects of pig slurry application on soil physical and chemical properties and glyphosate mobility

    Directory of Open Access Journals (Sweden)

    Daniela Aparecida de Oliveira

    2014-10-01

    Full Text Available Pig slurry applied to soil at different rates may affect soil properties and the mobility of chemical compounds within the soil. The purpose of this study was to evaluate the effects of rates of pig slurry application in agricultural areas on soil physical and chemical properties and on the mobility of glyphosate through the soil profile. The study was carried out in the 12th year of an experiment with pig slurry applied at rates of 0 (control, 50, 100 and 200 m³ ha-1 yr-1 on a Latossolo Vermelho distrófico (Hapludox soil. In the control, the quantities of P and K removed by harvested grains were replaced in the next crop cycle. Soil physical properties (bulk density, porosity, texture, and saturated hydraulic conductivity and chemical properties (organic matter, pH, extractable P, and exchangeable K were measured. Soil solution samples were collected at depths of 20, 40 and 80 cm using suction lysimeters, and glyphosate concentrations were measured over a 60-day period after slurry application. Soil physical and chemical properties were little affected by the pig slurry applications, but soil pH was reduced and P levels increased in the surface layers. In turn, K levels were increased in sub-surface layers. Glyphosate concentrations tended to decrease over time but were not affected by pig slurry application. The concentrations of glyphosate found in different depths show that the pratice of this application in agricultural soils has the potential for contamination of groundwater, especially when the water table is the surface and heavy rains occur immediately after application.

  14. Application of Chemically Accelerated Biotreatment to Reduce Risk in Oil-Impacted Soils

    Energy Technology Data Exchange (ETDEWEB)

    Paterek, J.R.; Bogan, W.W.; Sirivedhin; Tanita

    2003-03-06

    Research was conducted in six major focus areas: (1) Evaluation of the process using 6 test soils with full chemical and physical characteristics to determine controlling factors for biodegradation and chemical oxidation; (2) Determination of the sequestration time on chemical treatment suspectability; (3) Risk factors, i.e. toxicity after chemical and biological treatment; (4) Impact of chemical treatment (Fenton's Reagent) on the agents of biodegradation; (5) Description of a new genus and its type species that degrades hydrocarbons; and (6) Intermediates generate from Fenton's reagent treatment of various polynuclear aromatic hydrocarbons.

  15. Chemical fingerprinting of hydrocarbon-contamination in soil.

    Science.gov (United States)

    Boll, Esther S; Nejrup, Jens; Jensen, Julie K; Christensen, Jan H

    2015-03-01

    Chemical fingerprinting analyses of 29 hydrocarbon-contaminated soils were performed to assess the soil quality and determine the main contaminant sources. The results were compared to an assessment based on concentrations of the 16 priority polycyclic aromatic hydrocarbons pointed out by the U.S. Environmental Protection Agency (EPAPAH16) and total petroleum hydrocarbon (TPH). The chemical fingerprinting strategy proposed in this study included four tiers: (i) qualitative analysis of GC-FID chromatograms, (ii) comparison of the chemical composition of both un-substituted and alkyl-substituted polycyclic aromatic compounds (PACs), (iii) diagnostic ratios of selected PACs, and (iv) multivariate data analysis of sum-normalized PAC concentrations. The assessment criteria included quantitative analysis of 19 PACs and C1-C4 alkyl-substituted homologues of naphthalene, fluorene, dibenzothiophene, phenanthrene, pyrene, and chrysene; and 13 oxygenated polycyclic aromatic compounds (O-PACs). The chemical composition of un-substituted and alkyl-substituted PACs and visual interpretation of GC-FID chromatograms were in combination successful in differentiating pyrogenic and petrogenic hydrocarbon sources and in assessing weathering trends of hydrocarbon contamination in the soils. Multivariate data analysis of sum-normalized concentrations could as a stand-alone tool distinguish between hydrocarbon sources of petrogenic and pyrogenic origin, differentiate within petrogenic sources, and detect weathering trends. Diagnostic ratios of PACs were not successful for source identification of the heavily weathered hydrocarbon sources in the soils. The fingerprinting of contaminated soils revealed an underestimation of PACs in petrogenic contaminated soils when the assessment was based solely on EPAPAH16. As alkyl-substituted PACs are dominant in petrogenic sources, the evaluation of the total load of PACs based on EPAPAH16 was not representative. Likewise, the O-PACs are not

  16. Where do organic chemicals found in soil systems come from

    International Nuclear Information System (INIS)

    Dragun, J.; Mason, S.A.; Barkach, J.H.

    1991-01-01

    Today's regulatory climate encourages the private sector to assess the environmental condition of their facilities. An environmental assessment often includes the collection of soil samples. Despite the trend to obtain reams of numbers to show the presence of chemicals, many misconceptions exist among environmental scientists and engineers regarding the interpretation of those numbers. The presence of organic chemicals in soil may or may not be problematic. This depends primarily upon the source. If an industrial point source is responsible for the spill or bulk release, then remedial activity usually ensues. However, if the source is not an industrial release, then remedial activity may not be required. This paper will briefly discuss the sources, other than industrial point sources, responsible for the presence of organic chemicals in soil systems

  17. Research Regarding The Impact Of Chemical Fertilizers Upon The Soil

    Directory of Open Access Journals (Sweden)

    Daniel Călugăr

    2010-06-01

    Full Text Available Chemical fertilizers need to be used according to the natural fertility of the soil, to the ecological conditions and the cultivation requirements for nourishing elements. Keeping this in mind, they will not have any negative effects over the surrounding environment. But if the optimal doses are not respected the soil will be polluted. Regarding this matter a study has been made that showed that if the correct dosage is not respected this could lead to the acidification of the soil to such a level that it won’t be suitable for agricultural purposes. Even if excess usage of fertilizers does not cause any changes in the soils texture, it can still contribute to its pure quality. If the correct dosage and the period of administration is respected than the soil will be improved with nourishing elements, this leading to a better agricultural production.

  18. Short-Term Changes in Physical and Chemical Properties of Soil Charcoal Support Enhanced Landscape Mobility

    Science.gov (United States)

    Pyle, Lacey A.; Magee, Kate L.; Gallagher, Morgan E.; Hockaday, William C.; Masiello, Caroline A.

    2017-11-01

    Charcoal is a major component of the stable soil organic carbon reservoir, and the physical and chemical properties of charcoal can sometimes significantly alter bulk soil properties (e.g., by increasing soil water holding capacity). However, our understanding of the residence time of soil charcoal remains uncertain, with old measured soil charcoal ages in apparent conflict with relatively short modeled and measured residence times. These discrepancies may exist because the fate of charcoal on the landscape is a function not just of its resistance to biological decomposition but also its physical mobility. Mobility may be important in controlling charcoal landscape residence time and may artificially inflate estimates of its degradability, but few studies have examined charcoal vulnerability to physical redistribution. Charcoal landscape redistribution is likely higher than other organic carbon fractions owing to charcoal's low bulk density, typically less than 1.0 g/cm3. Here we examine both the physical and chemical properties of soil and charcoal over a period of two years following a 2011 wildfire in Texas. We find little change in properties with time; however, we find evidence of enhanced mobility of charcoal relative to other forms of soil organic matter. These data add to a growing body of evidence that charcoal is preferentially eroded, offering another explanation for variations observed in its environmental residence times.

  19. Spatial variability of chemical properties of soil under pasture

    Directory of Open Access Journals (Sweden)

    Samuel Ferreira da Silva

    2016-04-01

    Full Text Available The objective of this study was to analyze the spatial variability of soil chemical attributes under pasture, as well as lime and fertilizer recommendations based on the interpretation of soil chemical analysis from two sampling methods: conventional and systematic depths of 0 to 10 and 10 to 20 cm. The study was conducted at IFES-campus Alegre-ES. Data analysis was performed using descriptive statistics and geostatistics. Results indicate that the spatial method enabled the identification of deficit areas and excessive liming and fertilization, which could not be defined by the conventional method.

  20. Plant absorption of trace elements in sludge amended soils and correlation with soil chemical speciation

    Energy Technology Data Exchange (ETDEWEB)

    Torri, Silvana, E-mail: torri@agro.uba.ar [Catedra de Fertilidad y Fertilizantes, Facultad de Agronomia, UBA, Avda San Martin 4453, Buenos Aires (C1417 DSE) (Argentina); Lavado, Raul [Catedra de Fertilidad y Fertilizantes, Facultad de Agronomia, UBA, Avda San Martin 4453, Buenos Aires (C1417 DSE) (Argentina)

    2009-07-30

    The aim of the present study was to investigate the relationship between Lolium perenne L. uptake of Cd, Cu, Pb, and Zn in sludge amended soils and soil availability of these elements assessed by soil sequential extraction. A greenhouse experiment was set with three representative soils of the Pampas Region, Argentina, amended with sewage sludge and sewage sludge enriched with its own incinerated ash. After the stabilization period of 60 days, half of the pots were sampled for soil analysis; the rest of the pots were sown with L. perenne and harvested 8, 12, 16 and 20 weeks after sowing, by cutting just above the soil surface. Cadmium and Pb concentrations in aerial tissues of L. perenne were below detection limits, in good agreement with the soil fractionation study. Copper and Zn concentration in the first harvest were significantly higher in the coarse textured soil compared to the fine textured soil, in contrast with soil chemical speciation. In the third harvest, there was a positive correlation between Cu and Zn concentration in aerial biomass and soil fractions usually considered of low availability. We conclude that the most available fractions obtained by soil sequential extraction did not provide the best indicator of Cu and Zn availability to L. perenne.

  1. Plant absorption of trace elements in sludge amended soils and correlation with soil chemical speciation

    International Nuclear Information System (INIS)

    Torri, Silvana; Lavado, Raul

    2009-01-01

    The aim of the present study was to investigate the relationship between Lolium perenne L. uptake of Cd, Cu, Pb, and Zn in sludge amended soils and soil availability of these elements assessed by soil sequential extraction. A greenhouse experiment was set with three representative soils of the Pampas Region, Argentina, amended with sewage sludge and sewage sludge enriched with its own incinerated ash. After the stabilization period of 60 days, half of the pots were sampled for soil analysis; the rest of the pots were sown with L. perenne and harvested 8, 12, 16 and 20 weeks after sowing, by cutting just above the soil surface. Cadmium and Pb concentrations in aerial tissues of L. perenne were below detection limits, in good agreement with the soil fractionation study. Copper and Zn concentration in the first harvest were significantly higher in the coarse textured soil compared to the fine textured soil, in contrast with soil chemical speciation. In the third harvest, there was a positive correlation between Cu and Zn concentration in aerial biomass and soil fractions usually considered of low availability. We conclude that the most available fractions obtained by soil sequential extraction did not provide the best indicator of Cu and Zn availability to L. perenne.

  2. 3.4. Chemical additives and granulometric composition influence on soils armed by cement

    International Nuclear Information System (INIS)

    Saidov, D.Kh.

    2011-01-01

    Purpose of this work was to evaluate an influence of various chemical additives on soils armed by portland cement. Experimental research of kinetics of soil cements structure formation after adding the chemicals was carried out. According to the investigations it was determined that structure formation process of soil cements depended on granulometric composition of armed soil, cement quantity, type and quantity of chemical additives.

  3. Influence of physical and chemical properties of different soil types on optimal soil moisture for tillage

    Directory of Open Access Journals (Sweden)

    Vladimir Zebec

    2017-01-01

    Full Text Available Soil plasticity is the area of soil consistency, i.e. it represents a change in soil condition due to different soil moisture influenced by external forces activity. Consistency determines soil resistance in tillage, therefore, the aim of the research was to determine the optimum soil moisture condition for tillage and the influence of the chemical and physical properties of the arable land horizons on the soil plasticity on three different types of soil (fluvisol, luvisol and humic glaysol. Statistically significant differences were found between all examined soil types, such as the content of clay particles, the density of packaging and the actual and substitution acidity, the cation exchange capacity and the content of calcium. There were also statistically significant differences between the examined types of soil for the plasticity limit, liquid limit and the plasticity index. The average established value of plasticity limit as an important element for determining the optimal moment of soil tillage was 18.9% mass on fluvisol, 24.0% mass on luvisol and 28.6% mass on humic glaysol. Very significant positive direction correlation with plasticity limits was shown by organic matter, clay, fine silt, magnesium, sodium and calcium, while very significant negative direction correlation was shown by hydrolytic acidity, coarse sand, fine sand and coarse silt. Created regression models can estimate the optimal soil moisture condition for soil cultivation based on the basic soil properties. The model precision is significantly increased by introducing a greater number of agrochemical and agrophysical soil properties, and the additional precision of the model can be increased by soil type data.

  4. Transport and Fate of Volatile Organic Chemical in Soils

    DEFF Research Database (Denmark)

    Petersen, Lis Wollesen

    Recently much attention has been paid to the behavior of volatile organic chemicals (VOCs) in the environment. This is due to the fact that the environmental pollution with these hazardous chemicals has drastically increased during the last decades. The present study is limited to consider...... the transport and fate of VOCs in the gaseous phase, thus contributing to the overall understanding of VOCs behavior in soil, which eventually will facilitate future cleanup....

  5. The influence of physico-chemical properties of soils on the bioavailability of 65Zn

    Science.gov (United States)

    Kochetkov, Ilia; Anisimov, Vyacheslav

    2014-05-01

    Stability of soils to the effects of man-made origin pollutants is determined by their buffer capaci-ty (the ability to inactivate pollutants in a soil - soil solution - plant system). Soils are character-ized by the same types of stability as the ecosystem as a whole. Increased migration activity of pollutants is a symptom of ecological trouble, due to the soil transformation in an unstable state. Thus, the problem of the stability of soil is one of the fundamental problems of modern science. The aim of the study was to estimate the buffering capacity of soil as a key factor of their ecological and geochemical stability with respect to a relatively long-lived radionuclides 65Zn (T1/2 = 224 days), representing the radiological hazard in the location of nuclear facilities. There was proposed a method for scoring the buffering capacity of soils as for 65Zn contamination. It's based on dependence between the main physico-chemical soil properties and accumulation of the radionuclide in the aboveground plant parts (barley kind of "Zazersky-85"). The role of the considered indicators of soil health in the accumulation of radiozinc by plants was defined. The essence of this technique was to assess the contribution of individual characteristics of the soil condition, which play the most important role in the regulation of mobility (and bioavailability) of radionuclides, using the method of stepwise multiple regression analysis. For this aim representative sampling was compiled (from 20 soil types and varieties belonging to different climatic zones of the European part of the Russian Federation), thus providing a wide range of variation of the studied physical and chemical parameters, and also vegetation model experiments using 65Zn were held. On the basis of the conducted statistical analysis was revealed that the dominant contribution to the variation of the effective trait (accumulation coefficient of 65Zn) make: CaCO3 content, mobile iron (Tamm extract) and pH. As a

  6. Relationships between some soil physical and chemical properties with magnetic properties in different soil moisture regimes in Golestan province

    Directory of Open Access Journals (Sweden)

    M. Valaee

    2016-09-01

    Full Text Available Introduction: Soil moisture regime refers to the presence or absence either of ground water or of water held at a tension of less than 1500 kPa in the soil or in specific horizons during periods of the year. It is the most important factor in soil formation, soil evolution and fertility affecting on crop production and management. Also, it widely is practical in soil classification and soil mapping. The soil moisture regime depends on the soil properties, climatic and weather conditions, characteristics of natural plant formations and, in cultivated soils, is affected by the characteristics of crops grown, as well as the cultivation practices. Determination of soil moisture regime within a landscape scale requires high information and data about moisture balance of soil profile during some years according to Soil Survey Manual (2010. This approach is very expensive, labor, time and cost consuming. Therefore, achievement to an alternative approach is seems essential to overcome these problems. The main hypothesis of this study was to use capability of magnetic susceptibility as a cheap and rapid technique could determine the soil moisture regimes. Magnetic properties of soils reflect the impacts of soil mineral composition, particularly the quantity of ferrimagnetic minerals such as maghemite and magnetite. Magnetic susceptibility measurements can serve a variety of applications including the changes in soil forming processes and ecological services, understanding of lithological effects, insight of sedimentation processes and soil drainage. Materials and Methods: This study was conducted in an area located between 36°46َ 10˝ and 37° 2’ 28˝ N latitudes, and 54° 29’ 31˝ and 55° 12’ 47˝ E longitudes in Golestan province, northern Iran. In the study region mean annual temperature varies from 12.4 to 19.4 °C. The average annual rainfall and evapotranspiration varies from 230 mm and 2335 mm in Inchebrun district (Aridic regime, to 732

  7. Chemical Speciation and Mobility of Some Heavy Metals in Soils ...

    African Journals Online (AJOL)

    The mobility of some heavy metals (Fe, Co, Ni and Mn) in soils around automobile waste dumpsites in Northern part of Niger Delta was assessed using Tessier et al. five syteps sequential chemical extraction procedure. The results showed that majority of iron and manganese were associated with the residual fraction with ...

  8. Chemical oxidation of cable insulating oil contaminated soil

    NARCIS (Netherlands)

    Jinlan Xu,; Pancras, T.; Grotenhuis, J.T.C.

    2011-01-01

    Leaking cable insulating oil is a common source of soil contamination of high-voltage underground electricity cables in many European countries. In situ remediation of these contaminations is very difficult, due to the nature of the contamination and the high concentrations present. Chemical

  9. Effect of vegetation switch on soil chemical properties

    Czech Academy of Sciences Publication Activity Database

    Iwashima, N.; Masunaga, T.; Fujimaki, R.; Toyota, Ayu; Tayasu, I.; Hiura, T.; Kaneko, N.

    2012-01-01

    Roč. 58, č. 6 (2012), s. 783-792 ISSN 0038-0768 Institutional support: RVO:60077344 Keywords : earthworm * litter * nutrient cycling * soil chemical properties * vegetation switch Subject RIV: EH - Ecology, Behaviour Impact factor: 0.889, year: 2012

  10. Assessment of chemical properties of tropical peatland soil in ...

    African Journals Online (AJOL)

    The chemical assessment of the peatland in oil palm plantation in South Selangor Peatland Swamp in Malaysia were evaluated in this study. Soil samples were obtained from fifteen (15) different locations within the study area at three different depths of 0.5m, 1.5 m, and 2.5 m in three replicates at each depth, using peat ...

  11. Some physico-chemical and biological characteristics of soil and ...

    African Journals Online (AJOL)

    Environmental conditions that influence biocorrosion in the Niger Delta area of Nigeria are investigated experimentally by analysing the physico-chemical and biological characteristics of four (4) soil samples and water samples taken from ten (10) selected river bodies in the region. Measured properties of the water ...

  12. Chemical speciation and behaviour of cyanide in contaminated soils

    NARCIS (Netherlands)

    Meeussen, J.C.L.

    1992-01-01

    Cyanide is present as a contaminant of the soil on several hundred (former) industrial sites in the Netherlands. The risk for the occurrence of adverse effects on human health and the environment strongly depends on the chemical form in which cyanide is present and on the behaviour of this

  13. Application of Chemically Accelerated Biotreatment to Reduce Risk in Oil-Impacted Soils

    Energy Technology Data Exchange (ETDEWEB)

    Paterek, J.R.; Bogan, W.W.; Lahner, L.M.; Trbovic, V.

    2003-03-06

    Conducted research in the following major focus areas: (1) Development of mild extraction approaches to estimate bioavailable fraction of crude oil residues in contaminated soils; (2) Application of these methods to understand decreases in toxicity and increases in sequestration of hydrocarbons over time, as well as the influence of soil properties on these processes; (3) Measurements of the abilities of various bacteria (PAH-degraders and others more representative of typical soil bacteria) to withstand oxidative treatments (i.e. Fenton's reaction) which would occur in CBT; and (4) Experiments into the biochemical/genetic inducibility of PAH degradation by compounds formed by the chemical oxidation of PAH.

  14. Chemical and Physical Soil Restoration in Mining Areas

    Science.gov (United States)

    Teresinha Gonçalves Bizuti, Denise; de Marchi Soares, Thaís; Roberti Alves de Almeida, Danilo; Sartorio, Simone Daniela; Casagrande, José Carlos; Santin Brancalion, Pedro Henrique

    2017-04-01

    The current trend of ecological restoration is to address the recovery of degraded areas by ecosystemic way, overcoming the rehabilitation process. In this sense, the topsoil and other complementary techniques in mining areas plays an important role in soil recovery. The aim of this study was to contextualize the soil improvement, with the use of topsoil through chemical and physical attributes, relative to secondary succession areas in restoration, as well as in reference ecosystems (natural forest). Eighteen areas were evaluated, six in forest restoration process, six native forests and six just mining areas. The areas were sampled in the depths of 0-5, 5-10, 10-20, 20-40 and 40-60 cm. Chemical indicators measured were parameters of soil fertility and texture, macroporosity, microporosity, density and total porosity as physical parameters. The forest restoration using topsoil was effective in triggering a process of soil recovery, promoting, in seven years, chemical and physical characteristics similar to those of the reference ecosystem.

  15. CHANGES IN SOIL CHEMICAL PROPERTIES OF ORGANIC PADDY FIELD WITH AZOLLA APPLICATION

    Directory of Open Access Journals (Sweden)

    Jauhari Syamsiyah

    2016-12-01

    Full Text Available The use of organic fertilizer is a way to improve soil fertility. Azolla can be used as organic fertilizer. This study aims to determine the effect of Azolla (Azolla mycrophylla. L on some soil chemical properties on organic paddy field. The field experiments used factorial complete randomized block design of three factors, namely Azolla (0 and 2 tons/ha, Manure (0 and 10 tons/ha and Rice Varieties (Mira1, Mentik Wangi and Merah Putih, with three times replication. Using Azolla on an organic paddy field does not significantly increase the levels of soil N, organic C, Cation Exchange Capacity and soil pH. However Azolla’s influence on soil available P is significant.

  16. EFFECT OF ALTERNATIVE MULTINUTRIENT SOURCES ON SOIL CHEMICAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    Vanessa Martins

    2015-02-01

    Full Text Available The current high price of potassium chloride and the dependence of Brazil on imported materials to supply the domestic demand call for studies evaluating the efficiency of alternative sources of nutrients. The aim of this work was to evaluate the effect of silicate rock powder and a manganese mining by-product, and secondary materials originated from these two materials, on soil chemical properties and on brachiaria production. This greenhouse experiment was conducted in pots with 5 kg of soil (Latossolo Vermelho-Amarelo distrófico - Oxisol. The alternative nutrient sources were: verdete, verdete treated with NH4OH, phonolite, ultramafic rock, mining waste and the proportion of 75 % of these K fertilizers and 25 % lime. Mixtures containing 25 % of lime were heated at 800 ºC for 1 h. These sources were applied at rates of 0, 150, 300, 450 and 600 kg ha-1 K2O, and incubated for 45 days. The mixtures of heated silicate rocks with lime promoted higher increases in soil pH in decreasing order: ultramafic rock>verdete>phonolite>mining waste. Applying the mining waste-lime mixture increased soil exchangeable K, and available P when ultramafic rock was incorporated. When ultramafic rock was applied, the release of Ca2+ increased significantly. Mining subproduct released the highest amount of Zn2+ and Mn2+ to the soil. The application of alternative sources of K, with variable chemical composition, altered the nutrient availability and soil chemical properties, improving mainly plant development and K plant uptake, and are important nutrient sources.

  17. Remediation of cadmium contamination in paddy soils by washing with chemicals: Selection of washing chemicals

    International Nuclear Information System (INIS)

    Makino, Tomoyuki; Sugahara, Kazuo; Sakurai, Yasuhiro; Takano, Hiroyuki; Kamiya, Takashi; Sasaki, Kouta; Itou, Tadashi; Sekiya, Naoki

    2006-01-01

    The efficiencies of neutral salts, strong acids, and chelates were tested for extracting cadmium (Cd) from three paddy soils. The higher the selectivity of the cations of the added neutral salts toward soil adsorption sites, the lower the pH in the extracts and the more soil Cd could be extracted. In addition, soil carbon and nitrogen contents and mineral composition were closely associated with the amount of Cd extracted. Calcium chloride and iron(III) chloride were selected as wash chemicals to restore Cd-contaminated paddy soils in situ. Washing with calcium chloride led to the formation of Cd chloride complexes, enhancing Cd extraction from the soils. The washing also substantially decreased soil levels of exchangeable and acid-soluble Cd, which are the major forms of bioavailable Cd for rice (Oryza sativa L.). The optimum conditions for in situ soil washing were also determined for calcium chloride. - Calcium chloride and iron(III) chloride were useful for the in situ washing of Cd-contaminated paddy soils

  18. Acidification-induced chemical changes in coniferous forest soils in southern Sweden 1988-1999

    Energy Technology Data Exchange (ETDEWEB)

    Joensson, U.; Rosengren, U.; Thelin, G.; Nihlgaard, B

    2003-05-01

    Acidification of south-Swedish coniferous forest soils continues and soil nutrient status is no longer sustainable in a long-term perspective. - Thirty-two Norway spruce [Picea abies (L.) Karst.] and Scots pine (Pinus sylvestris L.) stands in southern Sweden were studied for a period of 12 years to evaluate acidification-induced chemical changes in the soil. Soil, at 20-30 cm depth in the mineral layer, was sampled three times during this period (1988, 1993 and 1999). The results show that pH(BaCl{sub 2}) in mineral soil decreased by, on average, 0.17 units between 1988 and 1999, accompanied by an increase in aluminium (Al) concentration and a decrease in base saturation in the soil. In 1999, the base saturation was below 5% in 58% of the 32 sites compared with 16% in 1988 and 7% in 1993. Concentrations of calcium (Ca), potassium (K) and magnesium (Mg) are low and decreasing. Based on C/N ratios in humus, 45% of the sites may be subjected to leaching of considerable amounts of nitrate. The results show that the acidification of coniferous forest soils in southern Sweden is continuing, and that the negative effects on the nutrient status in soil are extensive. The results are compared with reference values for productive, long-term sustainably managed boreal coniferous or mixed forest soils and implications for long-term sustainability are discussed.

  19. Organic Acids Regulation of Chemical-Microbial Phosphorus Transformations in Soils.

    Science.gov (United States)

    Menezes-Blackburn, Daniel; Paredes, Cecilia; Zhang, Hao; Giles, Courtney D; Darch, Tegan; Stutter, Marc; George, Timothy S; Shand, Charles; Lumsdon, David; Cooper, Patricia; Wendler, Renate; Brown, Lawrie; Blackwell, Martin; Wearing, Catherine; Haygarth, Philip M

    2016-11-01

    We have used an integrated approach to study the mobility of inorganic phosphorus (P) from soil solid phase as well as the microbial biomass P and respiration at increasing doses of citric and oxalic acid in two different soils with contrasting agronomic P status. Citric or oxalic acids significantly increased soil solution P concentrations for doses over 2 mmol kg -1 . However, low organic acid doses (<2 mmol kg -1 ) were associated with a steep increase in microbial biomass P, which was not seen for higher doses. In both soils, treatment with the tribasic citric acid led to a greater increase in soil solution P than the dibasic oxalic acid, likely due to the rapid degrading of oxalic acids in soils. After equilibration of soils with citric or oxalic acids, the adsorbed-to-solution distribution coefficient (K d ) and desorption rate constants (k -1 ) decreased whereas an increase in the response time of solution P equilibration (T c ) was observed. The extent of this effect was shown to be both soil and organic acid specific. Our results illustrate the critical thresholds of organic acid concentration necessary to mobilize sorbed and precipitated P, bringing new insight on how the exudation of organic acids regulate chemical-microbial soil phosphorus transformations.

  20. Chemically enhanced mixed region vapor stripping of TCE-contaminated saturated peat and silty clay soils

    International Nuclear Information System (INIS)

    West, O.R.; Cameron, P.A.; Lucero, A.J.; Koran, L.J. Jr.

    1996-01-01

    The objective of this study was to conduct further testing of MRVS, chemically enhanced with calcium oxide conditioning, on field- contaminated soils collected from beneath the NASA Michoud Rinsewater Impoundment. In this study, residual soil VOC levels as a function of vapor stripping time were measured to quantify VOC removal rates. Physical and chemical soil parameters expected to affect MRVS efficiency were measures. The effects of varying the calcium oxide loadings as well as varying the vapor stripping flow rates on VOC removal were also evaluated. The results of this study will be used to determine whether acceptable removals can be achieved within reasonable treatment times, remediation costs being directly proportional to the latter. The purpose of this report is to document the experimental results of this study, as well as to address issues that were raised after completion of the previous Michoud treatability work

  1. The measurement of the chemically mobile fraction of lead in soil using isotopic dilution analysis

    International Nuclear Information System (INIS)

    Kirchhoff, J.; Brand, J.; Schuettelkopf, H.

    1992-12-01

    The chemically available fraction of lead in eight soils measured by isotopic dilution analysis using 212 Pb ranged from 7 to 16% of the total content of lead in soil. The soluble fractions achieved values up to 63% of the total content in 1 M NH 4 NO 3 , 1 M MgCl 2 and 0.05 M DTPA solutions. Increasing the contact time between water and soil, the water-soil ratio from 1:1 to 5:1 and increasing the temperature of the soil-water suspension raised the chemically available fraction in soil. Comparing various soil parameters and the mobile fraction of lead, only pH shows a significant correlation. The amphoteric character of lead causes a minimum of mobility about pH 6; pH-values below are responsible for the higher mobility of lead as Pb 2+ , at pH-values above 6 soluble hydroxy and humic acid complexes are formed. (orig.) [de

  2. Effects of a Wildfire on Selected Physical, Chemical and Biochemical Soil Properties in a Pinus massoniana Forest in South China

    Directory of Open Access Journals (Sweden)

    Li Xue

    2014-11-01

    Full Text Available Pinus massoniana forests bordering South China are often affected by wildfires. Fires cause major changes in soil properties in many forest types but little is known about the effects of fire on soil properties in these P. massoniana forests. Such knowledge is important for providing a comprehensive understanding of wildfire effects on soil patterns and for planning appropriate long-term forest management in these forests. Changes in soil physical properties, carbon, nutrients, and enzymes were investigated in a P. massoniana forest along a wildfire-induced time span consisting of an unburned soil, and soils 0, one, four, and seven years post-fire. Soil (0–10 cm was collected from burned and unburned sites immediately and one, four, and seven years after a wildfire. The wildfire effects on soil physical and chemical properties and enzyme activities were significantly different among treatment variation, time variation, and treatment-by-time interaction. Significant short-term effects on soil physical, chemical, and biological properties were found, which resulted in a deterioration of soil physical properties by increasing soil bulk density and decreasing macropores and capillary moisture. Soil pH increased significantly in the soil one-year post-fire. Carbon, total nitrogen (N and phosphorus (P, and available N and P increased significantly immediately and one year after the wildfire and decreased progressively to concentrations lower than in the unburned soil. Total potassium (K and exchangeable K increased immediately after the wildfire and then continuously decreased along the burned time-span. Urease, acid phosphatase, and catalase activities significantly decreased compared to those in the unburned soil. In fire-prone P. massoniana forests, wildfires may significantly influence soil physical properties, carbon, nutrients, and enzyme activity.

  3. Soil adsorption of various chemical forms of radioiodine

    International Nuclear Information System (INIS)

    Szabova, T.; Palagyi, S.

    1976-01-01

    The adsorption was studied of radioiodate and radioiodide by the soil in an experiment aimed at testing the behaviour of these two chemical forms of radioiodine. 131 IO 3 - was used in the experiment, prepared by the oxidation of carrier-free Na 131 I with NaClO in an acid medium. Thin-layer chromatography showed that the stability of radioiodate depended on the solution pH value. The highest stability was found at pH 7 to 11. When pH=7 was maintained, only a slow reduction was found of radioiodate to radioiodide. A significant difference was found in the adsorption of radioiodate and radioiodide. The iodide was sorbed faster and to a higher degree, especially by chernozem (due to the high content of organic mass in the soil) as against retzina. It is believed that soil contamination is primarily due to radioiodide. (L.O.)

  4. Cover Crops Effects on Soil Chemical Properties and Onion Yield

    Directory of Open Access Journals (Sweden)

    Rodolfo Assis de Oliveira

    2016-01-01

    Full Text Available ABSTRACT Cover crops contribute to nutrient cycling and may improve soil chemical properties and, consequently, increase crop yield. The aim of this study was to evaluate cover crop residue decomposition and nutrient release, and the effects of these plants on soil chemical properties and on onion (Allium cepa L. yield in a no-tillage system. The experiment was carried out in an Inceptisol in southern Brazil, where cover crops were sown in April 2012 and 2013. In July 2013, shoots of weeds (WD, black oats (BO, rye (RY, oilseed radish (RD, oilseed radish + black oats (RD + BO, and oilseed radish + rye (RD + RY were cut at ground level and part of these material from each treatment was placed in litter bags. The litter bags were distributed on the soil surface and were collected at 0, 30, 45, 60, 75, and 90 days after distribution (DAD. The residues in the litter bags were dried, weighed, and ground, and then analyzed to quantify lignin, cellulose, non-structural biomass, total organic carbon (TOC, N, P, K, Ca, and Mg. In November 2012 and 2013, onion crops were harvested to quantify yield, and bulbs were classified according to diameter, and the number of rotted and flowering bulbs was determined. Soil in the 0.00-0.10 m layer was collected for chemical analysis before transplanting and after harvesting onion in December 2012 and 2013. The rye plant residues presented the highest half-life and they released less nutrients until 90 DAD. The great permanence of rye residue was considered a protection to soil surface, the opposite was observed with spontaneous vegetation. The cultivation and addition of dry residue of cover crops increased the onion yield at 2.5 Mg ha-1.

  5. Designing chemical soil characterization programs for mixed waste sites

    International Nuclear Information System (INIS)

    Meyers, K.A. Jr.

    1989-01-01

    The Weldon Spring Site Remedial Action Project is a remedial action effort funded by the U.S. Department of Energy. The Weldon Spring Site, a former uranium processing facility, is located in east-central Missouri on a portion of a former ordnance works facility which produced trinitrotoluene during World War II. As a result of both uranium and ordnance production, the soils have become both radiologically and chemically contaminated. As a part of site characterization efforts in support of the environmental documentation process, a chemical soil characterization program was developed. This program consisted of biased and unbiased sampling program which maximized areal coverage, provided a statistically sound data base and maintained cost effectiveness. This paper discusses how the general rationale and processes used at the Weldon Spring Site can be applied to other mixed and hazardous waste sites

  6. Bioaccumulation and chemical modification of Tc by soil bacteria

    International Nuclear Information System (INIS)

    Henrot, J.

    1989-01-01

    Bioaccumulation and chemical modification of pertechnetate (TcO 4 -) by aerobically and anaerobically grown soil bacteria and by pure cultures of sulfate-reducing bacteria (Desulfovibrio sp.) were studied to gain insight on the possible mechanisms by which bacteria can affect the solubility of Tc in soil. Aerobically grown bacteria had no apparent effect on TcO 4 -; they did not accumulate Tc nor modify its chemical form. Anaerobically grown bacteria exhibited high bioaccumulation and reduced TcO 4 -, enabling its association with organics of the growth medium. Reduction was a metabolic process and not merely the result of reducing conditions in the growth medium. Association of Tc with bacterial polysaccharides was observed only in cultures of anaerobic bacteria. Sulfate-reducing bacteria efficiently removed Tc from solution and promoted its association with organics. Up to 70% of the total Tc in the growth medium was bioaccumulated and/or precipitated. The remaining Tc in soluble form was entirely associated with organics. Pertechnetate was not reduced by the same mechanism as dissimilatory sulfate reduction, but rather by some reducing agent released in the growth medium. A calculation of the amount of Tc that could be associated with the bacterial biomass present in soil demonstrates that high concentration ratios in cultures do not necessarily imply that bioaccumulation is an important mechanism for long-term retention of Tc in soil

  7. Spatial Variability of Soil Morphorlogical and Physico-Chemical ...

    African Journals Online (AJOL)

    Spatial Variability of Soil Morphorlogical and Physico-Chemical Properties in Ladoke Akintola University of Technology Cashew Plantation, Ogbomoso. ... Colour (AP, B1 B2 and B3), structure (B2 and B3), stoniness (B1, B2 and B3), concretion (AP B1, B2 and B3) and boundary forms (B1, B2 and B3) have extremely ...

  8. Mitigating the Expansive Behavior of Chemically Treated Soils

    OpenAIRE

    Jung, Sochan; Santagata, Maria Caterina

    2009-01-01

    Sulfate-induced heave, resulting from the chemical treatment of sulfate rich soils, has been known to cause significant damage to pavements and other structures particularly in the south-western United States. This research addressed the problem of sulfate-induced heave in coal mine spoils, formed as a result of shallow strip coal mining, after treatment with calcium-based stabilizers. These spoils occur in areas of Indiana in which substantial infrastructure development is taking place and w...

  9. AN ANALYTICAL METHOD FOR CHEMICAL SPECIATION OF SELENIUM IN SOIL

    Directory of Open Access Journals (Sweden)

    Constantin Luca

    2010-10-01

    Full Text Available Selenium is an essential microelement, sometimes redoubtable, through its beneficial role - risk depending on its concentration in the food chain, at low dose is an important nutrient in the life of humans and animals, contrary at high doses, it becomes toxic. Selenium may be find itself in the environment (soil, sediment, water in many forms (oxidized, reduced, organometallic which determine their mobility and toxicity. Determination of chemical speciation (identification of different chemical forms provides much more complete information for a better understanding of the behavior and the potential impact on the environment. In this work we present the results of methodological research on the extraction of sequential forms of selenium in the soil and the coupling of analytical methods capable of identifying very small amounts of selenium in soils An efficient scheme of sequential extractions forms of selenium (SES consisting in atomic absorption spectrometry coupled with hydride generation (HGAAS has been developed into five experimental steps, detailed in the paper. This operational scheme has been applied to the analysis of chemical speciation in the following areas: the Bărăgan Plain and Central Dobrogea of Romania.

  10. Responses of soil physical and chemical properties to karst rocky desertification evolution in typical karst valley area

    Science.gov (United States)

    Chen, Fei; Zhou, Dequan; Bai, Xiaoyong; zeng, Cheng; Xiao, Jianyong; Qian, Qinghuan; Luo, Guangjie

    2018-01-01

    In order to reveal the differences of soil physical and chemical properties and their response mechanism to the evolution of KRD. The characteristics of soil physical and chemical properties of different grades of KRD were studied by field sampling method to research different types of KRD in the typical karst valley of southern China. Instead of using space of time, to explore the response and the mechanisms of the soil physical and chemical properties at the different evolution process. The results showed that: (1) There were significant differences in organic matter, pH, total nitrogen, total phosphorus, total potassium, sediment concentration, clay content and AWHC in different levels of KRD environment. However, these indicators are not with increasing desertification degree has been degraded, but improved after a first degradation trends; (2) The correlation analysis showed that soil organic matter, acid, alkali, total nitrogen, total phosphorus, total potassium and clay contents were significantly correlated with other physical and chemical factors. They are the key factors of soil physical and chemical properties, play a key role in improving soil physical and chemical properties and promoting nutrient cycling; (3) The principal component analysis showed that the cumulative contribution rate of organic matter, pH, total nitrogen, total phosphorus, total potassium and sediment concentration was 80.26%, which was the key index to evaluate rocky desertification degree based on soil physical and chemical properties. The results have important theoretical and practical significance for the protection and restoration of rocky desertification ecosystem in southwest China.

  11. Long-Term Coffee Monoculture Alters Soil Chemical Properties and Microbial Communities.

    Science.gov (United States)

    Zhao, Qingyun; Xiong, Wu; Xing, Yizhang; Sun, Yan; Lin, Xingjun; Dong, Yunping

    2018-04-17

    Long-term monoculture severely inhibits coffee plant growth, decreases its yield and results in serious economic losses in China. Here, we selected four replanted coffee fields with 4, 18, 26 and 57 years of monoculture history in Hainan China to investigate the influence of continuous cropping on soil chemical properties and microbial communities. Results showed long-term monoculture decreased soil pH and organic matter content and increased soil EC. Soil bacterial and fungal richness decreased with continuous coffee cropping. Principal coordinate analysis suggested monoculture time was a major determinant of bacterial and fungal community structures. Relative abundances of bacterial Proteobacteria, Bacteroidetes and Nitrospira and fungal Ascomycota phyla decreased over time. At genus level, potentially beneficial microbes such as Nitrospira and Trichoderma, significantly declined over time and showed positive relationships with coffee plant growth in pots. In conclusion, continuous coffee cropping decreased soil pH, organic matter content, potentially beneficial microbes and increased soil EC, which might lead to the poor growth of coffee plants in pots and decline of coffee yields in fields. Thus, developing sustainable agriculture to improve soil pH, organic matter content, microbial activity and reduce the salt stress under continuous cropping system is important for coffee production in China.

  12. Interpretation of soil-to-plant transfer on the basis of soil solution chemical composition

    International Nuclear Information System (INIS)

    Lembrechts, J.F.; Van Loon, L.R.; Van Ginkel, J.H.; Desmet, G.M.

    1988-01-01

    Soil-to-plant translocation of a radionuclide depends on its availability on the one hand and on the efficiency of the uptake process on the other. Criticism on the use of transfer coefficients for the description of translocation mainly concerns the fact that the complex variety of processes, a.o. dependent on plant characteristics and soil type and treatment, is integrated in a single ratio. For the interpretation of the effect of counter-measures the static transfer coefficient proved to be hard to handle and knowledge of the separate underlying processes and their time dependence showed to be indispensible. Based upon translocation experiments with technetium, cobalt, strontium and zinc transfer was shown to be primarily related to the concentration of the plant available fraction in the soil solution as well as to the soil solution chemistry in general. The transfer factor of the first three elements expressed in the basis of soil solution activity (ml/g), was observed to decrease when the nutrient content of the soil solution -- reflected by its conductivity -- increased. The characteristics of the soil matrix (solid phase) furthermore showed to be of secondary importance for the explanation of the observed accumulation. Since the interstitial soil liquid phase mediates between solid phase and plant root, reliable interpretations of soil-to-plant transfer might as a rule be based on a separate study of the effect of soil properties on availability on the one hand of the uptake from nutrient solutions on the other

  13. PREDICTION OF CHEMICAL AND PHYSICAL PROPERTIES OF RORAIMA SOILS BY NEAR INFRARED SPECTROSCOPY

    Directory of Open Access Journals (Sweden)

    Edmilson E. Silva

    2017-06-01

    Full Text Available Soils testing are time consuming and costly to operate, and can generate as high toxicity residues for the people or environment. Near Infrared Spectroscopy is one good alternative to replace conventional techniques, because it is fast – 60 seconds by sample, without producing residues and applicable to all soil properties, like physics and chemical properties. The objective of this study was to evaluate the NIR technique in quantifying various Roraima soil properties. Eighty-four soil samples collected in XI RCC soil profiles were analyzed for K and Na available, organic carbon, total nitrogen, Si, Fe and Al oxides and sand and clay contents by conventional and NIR techniques. NIR spectra were obtained in the range of 10000 cm-1 to 4000 cm-1, with spectral resolution of 4 cm-1. With the all bands were adjusted by calibration and validation models submitted to pre-treatments with the purpose of reducing the noise effect and the absence of linearity. Except in relation to the available K, calibration models had R2 values for calibration and validation above 80% for all other soil properties tested. It is concluded that the NIR technique had good predictive capacity of the soil properties tested, and can be used for any variable whose interpretation is obtained based on continuous value intervals. Keywords: soil testing; green chemistry; Amazon.

  14. Effects of soil management in vineyard on soil physical and chemical characteristics

    Directory of Open Access Journals (Sweden)

    Linares Rubén

    2014-01-01

    Full Text Available Cover crops in Mediterranean vineyards are scarcely used due to water competition between the cover crop and the grapevine; however, bare soil management through tillage or herbicides tends to have negative effects on the soil over time (organic matter decrease, soil structure and soil fertility degradation, compaction, etc. The objective of this study was to understand how soil management affects soil fertility, compaction and infiltration over time. To this end, two bare soil techniques were compared, tillage (TT and total herbicide (HT with two cover crops; annual cereal (CT and annual grass (AGT, established for 8 years. CT treatment showed the highest organic matter content, having the biggest amount of biomass incorporated into the soil. The annual adventitious vegetation in TT treatment (568 kg dry matter ha-1 that was incorporated into the soil, kept the organic matter content higher than HT levels and close to AGT level, in spite of the greater aboveground annual biomass production of this treatment (3632 kg dry matter ha-1 whereas only its roots were incorporated into the soil. TT presented the highest bulk density under the tractor track lines and a greatest resistance to penetration (at 0.2 m depth. AGT presented bulk density values (upper 0.4 m lower than TT and penetration resistance in CT lower (at 0.20 m depth than TT too. The HT decreased water infiltration due to a superficial crust generated for this treatment. These results indicate that the use of annual grass cover can be a good choice of soil management in Mediterranean climate due to soil quality improvement, with low competition and simple management.

  15. The Influence of Soil Chemical Factors on In Situ Bioremediation of Soil Contamination

    Energy Technology Data Exchange (ETDEWEB)

    Breedveld, Gijs D.

    1997-12-31

    Mineral oil is the major energy source in Western society. Production, transport and distribution of oil and oil products cause serious contamination problems of water, air and soil. The present thesis studies the natural biodegradation processes in the soil environment which can remove contamination by oil products and creosote. The main physical/chemical processes determining the distribution of organic contaminants between the soil solid, aqueous and vapour phase are discussed. Then a short introduction to soil microbiology and environmental factors important for biodegradation is given. There is a discussion of engineered and natural bioremediation methods and the problems related to scaling up laboratory experiments to field scale remediation. Bioremediation will seldom remove the contaminants completely; a residue remains. Factors affecting the level of residual contamination and the consequences for contaminant availability are discussed. Finally, the main findings of the work are summarized and recommendations for further research are given. 111 refs., 41 figs., 19 tabs.

  16. Methods of soil resampling to monitor changes in the chemical concentrations of forest soils

    Science.gov (United States)

    Lawrence, Gregory B.; Fernandez, Ivan J.; Hazlett, Paul W.; Bailey, Scott W.; Ross, Donald S.; Villars, Thomas R.; Quintana, Angelica; Ouimet, Rock; McHale, Michael; Johnson, Chris E.; Briggs, Russell D.; Colter, Robert A.; Siemion, Jason; Bartlett, Olivia L.; Vargas, Olga; Antidormi, Michael; Koppers, Mary Margaret

    2016-01-01

    Recent soils research has shown that important chemical soil characteristics can change in less than a decade, often the result of broad environmental changes. Repeated sampling to monitor these changes in forest soils is a relatively new practice that is not well documented in the literature and has only recently been broadly embraced by the scientific community. The objective of this protocol is therefore to synthesize the latest information on methods of soil resampling in a format that can be used to design and implement a soil monitoring program. Successful monitoring of forest soils requires that a study unit be defined within an area of forested land that can be characterized with replicate sampling locations. A resampling interval of 5 years is recommended, but if monitoring is done to evaluate a specific environmental driver, the rate of change expected in that driver should be taken into consideration. Here, we show that the sampling of the profile can be done by horizon where boundaries can be clearly identified and horizons are sufficiently thick to remove soil without contamination from horizons above or below. Otherwise, sampling can be done by depth interval. Archiving of sample for future reanalysis is a key step in avoiding analytical bias and providing the opportunity for additional analyses as new questions arise.

  17. Methods of Soil Resampling to Monitor Changes in the Chemical Concentrations of Forest Soils.

    Science.gov (United States)

    Lawrence, Gregory B; Fernandez, Ivan J; Hazlett, Paul W; Bailey, Scott W; Ross, Donald S; Villars, Thomas R; Quintana, Angelica; Ouimet, Rock; McHale, Michael R; Johnson, Chris E; Briggs, Russell D; Colter, Robert A; Siemion, Jason; Bartlett, Olivia L; Vargas, Olga; Antidormi, Michael R; Koppers, Mary M

    2016-11-25

    Recent soils research has shown that important chemical soil characteristics can change in less than a decade, often the result of broad environmental changes. Repeated sampling to monitor these changes in forest soils is a relatively new practice that is not well documented in the literature and has only recently been broadly embraced by the scientific community. The objective of this protocol is therefore to synthesize the latest information on methods of soil resampling in a format that can be used to design and implement a soil monitoring program. Successful monitoring of forest soils requires that a study unit be defined within an area of forested land that can be characterized with replicate sampling locations. A resampling interval of 5 years is recommended, but if monitoring is done to evaluate a specific environmental driver, the rate of change expected in that driver should be taken into consideration. Here, we show that the sampling of the profile can be done by horizon where boundaries can be clearly identified and horizons are sufficiently thick to remove soil without contamination from horizons above or below. Otherwise, sampling can be done by depth interval. Archiving of sample for future reanalysis is a key step in avoiding analytical bias and providing the opportunity for additional analyses as new questions arise.

  18. Biological and chemical tests of contaminated soils to determine bioavailability and environmentally acceptable endpoints (EAE)

    International Nuclear Information System (INIS)

    Montgomery, C.R.; Menzie, C.A.; Pauwells, S.J.

    1995-01-01

    The understanding of the concept of bioavailability of soil contaminants to receptors and its use in supporting the development of EAE is growing but still incomplete. Nonetheless, there is increased awareness of the importance of such data to determine acceptable cleanup levels and achieve timely site closures. This presentation discusses a framework for biological and chemical testing of contaminated soils developed as part of a Gas Research Institute (GRI) project entitled ''Environmentally Acceptable Endpoints in Soil Using a Risk Based Approach to Contaminated Site Management Based on Bioavailability of Chemicals in Soil.'' The presentation reviews the GRI program, and summarizes the findings of the biological and chemical testing section published in the GRI report. The three primary components of the presentation are: (1) defining the concept of bioavailability within the existing risk assessment paradigm, (2) assessing the usefulness of the existing tests to measure bioavailability and test frameworks used to interpret these measurements, and (3) suggesting how a small selection of relevant tests could be incorporated into a flexible testing scheme for soils to address this issue

  19. Application of nanoparticle of rock phosphate and biofertilizer in increasing some soil chemical characteristics of variable charge soil

    Science.gov (United States)

    Devnita, Rina; Joy, Benny; Arifin, Mahfud; Hudaya, Ridha; Oktaviani, Nurul

    2018-02-01

    Soils in Indonesia are dominated by variable charge soils where the technology like fertilization did not give the same result as the soils with permanent charge. The objectives of this research is to increase some chemical characteristic of variable charge soils by using the high negative charge ameliorations like rock phosphate in nanoparticle combined with biofertilizer. The research used a complete randomized experimental design in factorial with two factors. The first factor was nanoparticle of rock phosphate consists of four doses on soil weight percentage (0%, 2.5%, 5.0% and 7.5%). The second factor was biofertilizer consisted of two doses (without biofertilizer and 1 g.kg-1 soil biofertilizer). The combination treatments replicated three times. Variable charge soil used was Andisol. Andisol and the treatments were incubated for 4 months. Soil samples were taken after one and four months during incubation period to be analyzed for P-retention, available P and potential P. The result showed that all combinations of rock phosphate and biofertilizer decreased the P-retention to 75-77% after one month. Independently, application of 7.5% of rock phosphate decreased P-retention to 87.22% after four months, increased available P (245.37 and 19.12 mg.kg-1) and potential P (1354.78 and 3000.99 mg/100) after one and four months. Independently, biofertilizer increased the P-retention to 91.66% after four months, decreased available P to 121.55 mg.kg-1 after one month but increased to 12.55 mg.kg-1 after four months, decreased potential P to 635.30 after one month but increased to 1810.40 mg.100 g-1 after four months.

  20. The role of soil weathering and hydrology in regulating chemical fluxes from catchments (Invited)

    Science.gov (United States)

    Maher, K.; Chamberlain, C. P.

    2010-12-01

    Catchment-scale chemical fluxes have been linked to a number of different parameters that describe the conditions at the Earth’s surface, including runoff, temperature, rock type, vegetation, and the rate of tectonic uplift. However, many of the relationships relating chemical denudation to surface processes and conditions, while based on established theoretical principles, are largely empirical and derived solely from modern observations. Thus, an enhanced mechanistic basis for linking global solute fluxes to both surface processes and climate may improve our confidence in extrapolating modern solute fluxes to past and future conditions. One approach is to link observations from detailed soil-based studies with catchment-scale properties. For example, a number of recent studies of chemical weathering at the soil-profile scale have reinforced the importance of hydrologic processes in controlling chemical weathering rates. An analysis of data from granitic soils shows that weathering rates decrease with increasing fluid residence times and decreasing flow rates—over moderate fluid residence times, from 5 days to 10 years, transport-controlled weathering explains the orders of magnitude variation in weathering rates to a better extent than soil age. However, the importance of transport-controlled weathering is difficult to discern at the catchment scale because of the range of flow rates and fluid residence times captured by a single discharge or solute flux measurement. To assess the importance of transport-controlled weathering on catchment scale chemical fluxes, we present a model that links the chemical flux to the extent of reaction between the soil waters and the solids, or the fluid residence time. Different approaches for describing the distribution of fluid residence times within a catchment are then compared with the observed Si fluxes for a limited number of catchments. This model predicts high solute fluxes in regions with high run-off, relief, and

  1. Absorption of technetium by plants in relation to soil type contamination level and time

    Energy Technology Data Exchange (ETDEWEB)

    Mousny, J.M.; Myttenaere, C. (Louvain Univ. (Belgium). Lab. de Physiologie Vegetale)

    1981-01-01

    Plants of Pisum sativum (var. Merveille de Kelvedon) were grown on seven typical european soils contaminated with different levels of /sup 99/Tc(0.17; 1.7 and 17 ..mu..Ci/kg). Added initially as pertechnetate, the technetium absorption has been studied for three successive cultures. The translocation of technetium from soil to plant leaves is high, but its transfer is reduced in soils rich in organic matter (Fen) or poorly drained (Braunerde). Aging reduces the technetium transfer and modify its relative distribution in plant (relatively more technetium is found in fruits); these results let suppose some modification of the technetium chemical form in soils with time.

  2. Biological and chemical assessments of zinc ageing in field soils

    International Nuclear Information System (INIS)

    Donner, Erica; Broos, Kris; Heemsbergen, Diane; Warne, Michael St. J.; McLaughlin, Mike J.; Hodson, Mark E.; Nortcliff, Stephen

    2010-01-01

    As zinc (Zn) is both an essential trace element and potential toxicant, the effects of Zn fixation in soil are of practical significance. Soil samples from four field sites amended with ZnSO 4 were used to investigate ageing of soluble Zn under field conditions over a 2-year period. Lability of Zn measured using 65 Zn radioisotope dilution showed a significant decrease over time and hence evidence of Zn fixation in three of the four soils. However, 0.01 M CaCl 2 extractions and toxicity measurements using a genetically modified lux-marked bacterial biosensor did not indicate a decrease in soluble/bioavailable Zn over time. This was attributed to the strong regulatory effect of abiotic properties such as pH on these latter measurements. These results also showed that Zn ageing occurred immediately after Zn spiking, emphasising the need to incubate freshly spiked soils before ecotoxicity assessments. - Ageing effects were detected in Zn-amended field soils using 65 Zn isotopic dilution as a measure of lability, but not with either CaCl 2 extractions or a lux-marked bacterial biosensor.

  3. Efficiency of modified chemical remediation techniques for soil contaminated by organochlorine pesticides

    Science.gov (United States)

    Correa-Torres, S. N.; Kopytko, M.; Avila, S.

    2016-07-01

    This study reports the optimization of innovation chemical techniques in order to improve the remediation of soils contaminated with organochloride pesticides. The techniques used for remediation were dehalogenation and chemical oxidation in soil contaminated by pesticides. These techniques were applied sequentially and combined to evaluate the design optimize the concentration and contact time variables. The soil of this study was collect in cotton crop zone in Agustin Codazzi municipality, Colombia, and its physical properties was measure. The modified dehalogenation technique of EPA was applied on the contaminated soil by adding Sodium Bicarbonate solution at different concentrations and rates during 4, 7 and 14 days, subsequently oxidation technique was implemented by applying a solution of KMnO4 at different concentration and reaction times. Organochlorine were detected by Gas Chromatography analysis coupled Mass Spectrometry and its removals were between 85.4- 90.0% of compounds such as 4, 4’-DDT, 4,4’-DDD, 4,4-DDE, trans-Clordane y Endrin. These results demonstrate that the technique of dehalogenation with oxidation chemistry can be used for remediation soils contaminated by organochloride pesticides.

  4. Assessment of soil stabilization by chemical extraction and bioaccumulation using earthworm, Eisenia fetida

    Science.gov (United States)

    Lee, Byung-Tae; Abd Aziz, Azilah; Han, Heop Jo; Kim, Kyoung-Woong

    2014-05-01

    Soil stabilization does not remove heavy metals from contaminated soil, but lowers their exposures to ecosystem. Thus, it should be evaluated by measuring the fractions of heavy metals which are mobile and/or bioavailable in soils. The study compared several chemical extractions which intended to quantify the mobile or bioaccessible fractions with uptake and bioaccumulation by earthworm, Eisenia fetida. Soil samples were taken from the abandoned mine area contaminated with As, Cd, Cu, Pb and/or Zn. To stabilize heavy metals, the soils were amended with limestone and steel slag at 5% and 2% (w/w), respectively. All chemical extractions and earthworm tests were applied to both the contaminated and the stabilized soils with triplicates. The chemical extractions consisted of six single extractions which were 0.01M CaCl2 (unbufferred), EDTA or DTPA (chelating), TCLP (acidic), Mehlich 3 (mixture), and aqua regia (peudo-total). Sequential extractions were also applied to fractionate heavy metals in soils. In earthworm tests, worms were exposed to the soils for uptake of heavy metals. After 28 days of exposure to soils, worms were transferred to clean soils for elimination. During the tests, three worms were randomly collected at proper sampling events. Worms were rinsed with DI water and placed on moist filter paper for 48 h for depuration. Filter paper was renewed at 24 h to prevent coprophagy. The worms were killed with liquid nitrogen, dried in the oven, and digested with aqua regia for ICP-MS analysis. In addition to the bioaccumulation, several toxicity endpoints were observed such as burrowing time, mortality, cocoon production, and body weight changes. Toxicokinetics was applied to determine the uptake and elimination heavy metals by the earthworms. Bioaccumulation factor (BAF) was estimated using total metal concentrations and body burdens. Pearson correlation and simple linear regression were applied to evaluate the relationship between metal fractions by single

  5. Chelating impact assessment of biological ad chemical chelates on metal extraction from contaminated soils

    International Nuclear Information System (INIS)

    Manwar, S.; Iram, S.

    2014-01-01

    Soil contamination is the result of uncontrolled waste dumping and poor practices by humans. Of all the pollutants heavy metals are of particular concern due to their atmospheric deposition, leaching capacity and non-biodegradability. Heavy metal containing effluent is discharged into the agricultural fields and water bodies. This results in the accumulation of heavy metals in soil and the crops grown on that soil. Studies have revealed detrimental impacts on soil fertility and the poor health of animals and humans. Phytoextraction is widely researched for remediation of heavy metal contaminated soil. To enhance the effect of phytoextraction heavy metals have to be available to the plants in soluble form. In this study the potential of different chelating agents was assessed in solubilizing the heavy metals making easy for plants to uptake them. For this purpose efficient chemical and biological chelating agent had to be identified. Along with that an optimum dose and application time for chemical chelating agent was determined. Ethylenediamine tetraacetic acid (EDTA), Diethylene triamine pentaacetic acid (DTPA), Nitriloacetic acid (NTA) were applied to the soil, containing Pb, Cr, Cu and Cd, at different concentrations and application time. Aspergillus niger and Aspergillus flavus were incubated in soil for different time periods. In correspondence with findings of the study, Pb and Cr were best solubilized by 5mM EDTA. For Cd and Cu 5mM DTPA carried out efficient chelation. NTA showed relatively inadequate solubilisation, although for Cr it performed equal to EDTA. A. niger and A. flavus instead of solubilizing adsorbed the metals in their biomass. Adsorption was mainly carried out by A. niger. (author)

  6. The energetic and chemical signatures of persistent soil organic matter

    DEFF Research Database (Denmark)

    Barré, Pierre; Plante, Alain F.; Cecillon, Lauric

    2016-01-01

    A large fraction of soil organic matter (OM) resists decomposition over decades to centuries as indicated by long radiocarbon residence times, but the mechanisms responsible for the long-term (multi-decadal) persistence are debated. The current lack of mechanistic understanding limits our ability...

  7. Soil moisture memory at sub-monthly time scales

    Science.gov (United States)

    Mccoll, K. A.; Entekhabi, D.

    2017-12-01

    For soil moisture-climate feedbacks to occur, the soil moisture storage must have `memory' of past atmospheric anomalies. Quantifying soil moisture memory is, therefore, essential for mapping and characterizing land-atmosphere interactions globally. Most previous studies estimate soil moisture memory using metrics based on the autocorrelation function of the soil moisture time series (e.g., the e-folding autocorrelation time scale). This approach was first justified by Delworth and Manabe (1988) on the assumption that monthly soil moisture time series can be modelled as red noise. While this is a reasonable model for monthly soil moisture averages, at sub-monthly scales, the model is insufficient due to the highly non-Gaussian behavior of the precipitation forcing. Recent studies have shown that significant soil moisture-climate feedbacks appear to occur at sub-monthly time scales. Therefore, alternative metrics are required for defining and estimating soil moisture memory at these shorter time scales. In this study, we introduce metrics, based on the positive and negative increments of the soil moisture time series, that can be used to estimate soil moisture memory at sub-monthly time scales. The positive increments metric corresponds to a rapid drainage time scale. The negative increments metric represents a slower drying time scale that is most relevant to the study of land-atmosphere interactions. We show that autocorrelation-based metrics mix the two time scales, confounding physical interpretation. The new metrics are used to estimate soil moisture memory at sub-monthly scales from in-situ and satellite observations of soil moisture. Reference: Delworth, Thomas L., and Syukuro Manabe. "The Influence of Potential Evaporation on the Variabilities of Simulated Soil Wetness and Climate." Journal of Climate 1, no. 5 (May 1, 1988): 523-47. doi:10.1175/1520-0442(1988)0012.0.CO;2.

  8. Effect of land use on some soil chemical properties and P fractions ...

    African Journals Online (AJOL)

    Land use directly or indirectly affects the soil chemical properties and phosphorus fractions. Two different land use types were studied. Soil chemical analysis and phosphorus fractionation of the soils was then done and the results were highly significant (p<0.001). Total C, N and P were low under the arable land use as ...

  9. Chemical speciation of heavy metals in sandy soils in relation to availability and mobility

    NARCIS (Netherlands)

    Temminghoff, E.J.M.

    1998-01-01

    The environmental risk of heavy metals which are present in soil at a certain total content is highly dependent on soil properties. Chemical speciation is a comprehensive term for the distribution of heavy metals over all possible chemical forms (species) in soil solution and in the solid

  10. Impact of acid atmospheric deposition on soils : quantification of chemical and hydrologic processes

    NARCIS (Netherlands)

    Grinsven, van J.J.M.

    1988-01-01

    Atmospheric deposition of SO x , NOx and NHx will cause major changes in the chemical composition of solutions in acid soils, which may affect the biological functions of the soil. This thesis deals with quantification of soil acidification by means of chemical

  11. Occurrence of non extractable pesticide residues in physical and chemical fractions of two soils

    Science.gov (United States)

    Andreou, Kostas; Semple, Kirk; Jones, Kevin

    2010-05-01

    Soils are considered to be a significant sink for organic contaminants, including pesticides, in the environment. Understanding the distribution and localisation of aged pesticide residues in soil is of great importance for assessing the mobility and availability of these chemicals in the environment. This study aimed to characterise the distribution of radiolabeled herbicide isoproturon and the radiolabeled insecticides diazinon and cypermethrin in two organically managed soils. The soils were spiked and aged under laboratory conditions for 17 months. The labile fraction of the pesticides residues was recovered in CaCl2 (0.01M) and then subjected to physical size fractionation using sedimentation and centrifugation steps, with >20μm, 20-2μm and 2-0.1μm soil factions collected. Further, the distribution of the pesticide residues in the organic matter of the fractionated soil was investigated using a sequential alkaline extraction (0.1N NaOH) into humic and fulvic acid and humin. Soil fractions of 20-2μm and 2-0.1μm had the largest burden of the 14C-residues. Different soil constituents have different capacities to form non-extractable residues. Soil solid fractions of 20-2 µm and 20 µm). Fulvic acid showed to play a vital role in the formation and stabilisation of non-extractable 14C-pesticide residues in most cases.Assessment of the likelihood of the pesticide residues to become available to soil biota requires an understanding of the structure of the SOM matrix and the definition of the kinetics of the pesticide residues in different SOM pools as a function of the time.

  12. Crystal-Chemical Analysis of Soil at Rocknest, Gale Crater

    Science.gov (United States)

    Morrison, S. M.; Downs, R. T.; Blake, D. F.; Bish, D. L.; Ming, D. W.; Morris, R. V.; Yen, A. S.; Chipera, S. J.; Treiman, A. H.; Vaniman, D. T.; hide

    2013-01-01

    The CheMin instrument on the Mars Science Laboratory rover Curiosity performed X-ray diffraction analysis on Martian soil [1] at Rocknest in Gale Crater. In particular, crystalline phases from scoop 5 were identified and analyzed with the Rietveld method [2]. Refined unit-cell parameters are reported in Table 1. Comparing these unit-cell parameters with those in the literature provides an estimate of the chemical composition of the crystalline phases. For instance, Fig. 1 shows the Mg-content of Fa-Fo olivine as a function of the b unit-cell parameter using literature data. Our refined b parameter is indicated by the black triangle.

  13. Impact of TiO2 on the chemical and biological transformation of formulated chiral-metalaxyl in agricultural soils.

    Science.gov (United States)

    Huang, Junxing; Zhang, Xu; Liang, Chuanzhou; Hu, Jun

    2018-04-15

    The impacts of TiO 2 on the chemical and biological transformation of racemic metalaxyl wettable powder (rac-metalaxyl WP) in agricultural soils, and soil microorganisms were investigated. Under simulated solar irradiation, TiO 2 highly promoted the transformation of rac-metalaxyl WP without changing the enantiomer fraction, with the promotion amplitude (60-1280%) being dependent on TiO 2 characteristics. TiO 2 characteristics showed different influence on the transformation of rac-metalaxyl WP in soils and aqueous solutions because their characteristics changed differently in soils. The impact of the mancozeb and other co-constituents on the transformation of rac-metalaxyl WP was smaller in soil media than in aqueous solution. Autoclave sterilization changed soil properties and subsequently weakened the promotion effects of TiO 2 on the chemical transformations of rac-metalaxyl WP to 0-233%. Microorganism biomass and bacterial community were not statistically significant changed by TiO 2 exposure regardless of rac-metalaxyl WP, suggesting that the promotional effects occurred mainly through chemical processes. The results also showed TiO 2 -soil interactions may be strengthened with TiO 2 (Degussa P25) aging time in soils, which decreased its promotion amplitude from 1060% (without aging) to 880% (aging for 20 days). Intermediate formed in soil biological transformation process was different from that in TiO 2 photocatalysis process. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Remediation of electronic waste polluted soil using a combination of persulfate oxidation and chemical washing.

    Science.gov (United States)

    Chen, Fu; Luo, Zhanbin; Liu, Gangjun; Yang, Yongjun; Zhang, Shaoliang; Ma, Jing

    2017-12-15

    Laboratory experiments were conducted to investigate the efficiency of a simultaneous chemical extraction and oxidation for removing persistent organic pollutants (POPs) and toxic metals from an actual soil polluted by the recycling activity of electronic waste. Various chemicals, including hydroxypropyl-β-cyclodextrin (HPCD), citric acid (CA) and sodium persulfate (SP) were applied synchronously with Fe 2+ activated oxidation to enhance the co-removal of both types of pollutants. It is found that the addition of HPCD can enhance POPs removal through solubilization of POPs and iron chelation; while the CA-chelated Fe 2+ activation process is effective for extracting metals and degrading residual POPs. Under the optimized reagent conditions, 69.4% Cu, 78.1% Pb, 74.6% Ni, 97.1% polychlorinated biphenyls, 93.8% polycyclic aromatic hydrocarbons, and 96.4% polybrominated diphenylethers were removed after the sequential application of SP-HPCD-Fe 2+ and SP-CA-Fe 2+ processes with a duration of 180 and 240 min, respectively. A high dehalogenation efficiency (84.8% bromine and 86.2% chlorine) is observed, suggesting the low accumulation of halogen-containing organic intermediates. The remediated soil can satisfy the national soil quality standard of China. Collectively, co-contaminated soil can be remediated with reasonable time and capital costs through simultaneous application of persulfate oxidation and chemical extraction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Effects on soil quality of biochar and straw amendment in conjunction with chemical fertilizers

    Institute of Scientific and Technical Information of China (English)

    HE Li-li; ZHONG Zhe-ke; YANG Hui-min

    2017-01-01

    The objective of this study was to evaluate the effects on chemical and microbiological properties of paddy soil of short-term biochar,straw,and chemical fertilizers compared with chemical fertilization alone.Five soil fertilization treatments were evaluated:regular chemical fertilizers (RF),straw+regular chemical fertilizers (SRF),straw biochar+regular chemical fertilizers (SCRF),bamboo biochar (BC)+regular chemical fertilizers (BCRF),and straw biochar+70% regular chemical fertilizers (SC+70%RF).Their effects were investigated after approximately 1.5 years.The soil pH and cation exchange capacity (CEC) were significantly higher in biochar-treated soils.The soil phosphorous (P) and potassium (K) contents increased with biochar application.The soil Colwell P content was significantly increased with the addition of straw biochar in the treatments of SCRF and SC+70%RF.The oxygen (O):carbon (C) ratio doubled in BC picked from the soil.This indicated that BC underwent a significant oxidation process in the soil.The denaturing gradient gel electrophoresis (DGGE) fingerprints of microbial communities differed among the treatments.Soils with added biochar had higher Shannon diversity and species richness indices than soils without biochars.The results suggest that biochar can improve soil fertility.

  16. Soil Contamination, Advanced integrated characterisation and time-lapse Monitoring, SoilCAM project highlights

    Science.gov (United States)

    French, H. K.; Van Der Zee, S. E.; Wehrer, M.; Godio, A.; Pedersen, L. B.; Tsocano, G.

    2013-12-01

    The SoilCAM project (2008- 2012, EU-FP7-212663) aimed at improving methods for monitoring subsurace contaminant distribution and biodegradation. Two test sites were chosen, Oslo airport Gardermoen, Norway where de-icing agents infiltrate the soil during snowmelt and the Trecate site in Italy where an inland crude oil spill occurred in 1994. A number of geophysical investigation techniques were combined with soil and water sampling techniques. Data obtained from time-lapse measurements were further analysed by numerical modelling of flow and transport at different scales in order to characterise transport processes in the unsaturated and saturated zones. Laboratory experiments provided physical and biogeochemical data for model parameterisation and to select remediation methods. The geophysical techniques were used to map geological heterogeneities and to conduct time-lapse measurements of processes in the unsaturated zone. Both cross borehole and surface electrodes were used for electrical resistivity and induced polarisation surveys. Results showed clear indications of areas highly affected by de-icing chemicals along the runway at Oslo airport. The time lapse measurements along the runway at the airport showed infiltration patterns during snowmelt and were used to validate 2D unsaturated flow and transport simulations using SUTRA. The simulations illustrate the effect of layering geological structures and membranes, buried parallel to the runway, on the flow pattern. Complex interaction between bio-geo-chemical processes in a 1D vertical profile along the runway were described with the ORCHESTRA model. Smaller scale field site measurements revealed increase of iron and manganese during degradation of de-icing chemicals. At the Trecate site a combination of georadar, electrical resistivity and radio magneto telluric provided a broad outline of the geology down to 50 m. Anomalies in the Induced polarisation and electrical resistivity data from the cross borehole

  17. Microbial and chemical markers: runoff transfer in animal manure-amended soils.

    Science.gov (United States)

    Jaffrezic, Anne; Jardé, Emilie; Pourcher, Anne-Marie; Gourmelon, Michèle; Caprais, Marie-Paule; Heddadj, Djilali; Cottinet, Patrice; Bilal, Muhamad; Derrien, Morgane; Marti, Romain; Mieszkin, Sophie

    2011-01-01

    Fecal contamination of water resources is evaluated by the enumeration of the fecal coliforms and Enterococci. However, the enumeration of these indicators does not allow us to differentiate between the sources of fecal contamination. Therefore, it is important to use alternative indicators of fecal contamination to identify livestock contamination in surface waters. The concentration of fecal indicators (, enteroccoci, and F-specific bacteriophages), microbiological markers (Rum-2-bac, Pig-2-bac, and ), and chemical fingerprints (sterols and stanols and other chemical compounds analyzed by 3D-fluorescence excitation-matrix spectroscopy) were determined in runoff waters generated by an artificial rainfall simulator. Three replicate plot experiments were conducted with swine slurry and cattle manure at agronomic nitrogen application rates. Low amounts of bacterial indicators (1.9-4.7%) are released in runoff water from swine-slurry-amended soils, whereas greater amounts (1.1-28.3%) of these indicators are released in runoff water from cattle-manure-amended soils. Microbial and chemical markers from animal manure were transferred to runoff water, allowing discrimination between swine and cattle fecal contamination in the environment via runoff after manure spreading. Host-specific bacterial and chemical markers were quantified for the first time in runoff waters samples after the experimental spreading of swine slurry or cattle manure. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

  18. Physicochemical and biological quality of soil in hexavalent chromium-contaminated soils as affected by chemical and microbial remediation.

    Science.gov (United States)

    Liao, Yingping; Min, Xiaobo; Yang, Zhihui; Chai, Liyuan; Zhang, Shujuan; Wang, Yangyang

    2014-01-01

    Chemical and microbial methods are the main remediation technologies for chromium-contaminated soil. These technologies have progressed rapidly in recent years; however, there is still a lack of methods for evaluating the chemical and biological quality of soil after different remediation technologies have been applied. In this paper, microbial remediation with indigenous bacteria and chemical remediation with ferrous sulphate were used for the remediation of soils contaminated with Cr(VI) at two levels (80 and 1,276 mg kg(-1)) through a column leaching experiment. After microbial remediation with indigenous bacteria, the average concentration of water-soluble Cr(VI) in the soils was reduced to less than 5.0 mg kg(-1). Soil quality was evaluated based on 11 soil properties and the fuzzy comprehensive assessment method, including fuzzy mathematics and correlative analysis. The chemical fertility quality index was improved by one grade using microbial remediation with indigenous bacteria, and the biological fertility quality index increased by at least a factor of 6. Chemical remediation with ferrous sulphate, however, resulted in lower levels of available phosphorus, dehydrogenase, catalase and polyphenol oxidase. The result showed that microbial remediation with indigenous bacteria was more effective for remedying Cr(VI)-contaminated soils with high pH value than chemical remediation with ferrous sulphate. In addition, the fuzzy comprehensive evaluation method was proven to be a useful tool for monitoring the quality change in chromium-contaminated soils.

  19. Impact of the post fire management in some soil chemical properties. First results.

    Science.gov (United States)

    Francos, Marcos; Pereira, Paulo; Alcañiz, Meritxell; Úbeda, Xavi

    2016-04-01

    Post-fire management after severe wildfires has impact on soil properties. In Mediterranean environments management of fire affected areas is a common practice. This intervention may change soil chemical properties of the soil such as major cations. The aim of this work is to study the impact of different types of forest management in soil extractable calcium, magnesium, sodium and potassium after a severe wildfire. The study area is located in Ódena (Catalonia, Spain). The wildfire occurred at July 27th of 2015 and burned 1235 ha. After the fire an experimental plot was designed 9 plots with 2x2 meters (4 square meters). The different managements were: a) clear-cuted area and wood removed, b) no treatment); and c) clear-cutted. The results of the first sampling showed significant differences among all treatments in extractable calcium, sodium and potassium. The amount of these extractable elements was high in clear-cutted treatment in comparison to the others. No differences were identified in extractable magnesium. Overall, in the immediate period after the fire, burned area management, changed the studied soil properties. We are currently studying the evolution of this soil properties in these plots with the time

  20. Assessment Bioremediation of Contaminated Soils to Petroleum Compounds and Role of Chemical Fertilizers in the Decomposition Process

    Directory of Open Access Journals (Sweden)

    H. Parvizi Mosaed

    2013-06-01

    Full Text Available Today oil removal from contaminated soil by new methods such as bioremediation is necessary.  In this paper, the effect of chemical fertilizers and aeration on bioremediation of oil-contaminated soil has been investigated. Also the control group, (bioremediation of petroleum hydrocarbons in contaminated soil without treatment by chemical fertilizers and aeration treatment was examined. The condition of experiment is as following: those were treated 70 days in glass columns (30×30×30cm dimensions, ambient temperature (25-30 0C, relative humidity 70%, aeration operation with flow 0.7 lit/min.  The total number of heterotrophic bacteria of break down oil and the total of petroleum hydrocarbons were analyzed using gas chromatography analysis. all experiments were replicated three times. The microbial population results for control soil, treated soil by aeration and treated soil by aeration and chemical fertilizers columns are 2.3×105, 1.04×1010, and 1.14×1011 CFU/gr, respectively. The concentrations of total petroleum hydrocarbons of remaining are 46965, 38124, and 22187 mg kg-1respectively. The obtained results show that the aeration operation and chemical fertilizers have effective role on degradation of petroleum hydrocarbon by oil degrading bacteria from soil.

  1. Influence of density and chemical composition of soils in the neutrons probes answer

    International Nuclear Information System (INIS)

    Crispino, Marcos Luiz; Antonino, Antonio Celso Dantas; Dall'Olio, Attilio; Oliveira Lira, Carlos Alberto Brayner de; Carneiro, Clemente J. Gusmao

    1996-08-01

    The determination of soil humidity with neutron probes is based in the measure of the thermal neutron flux intensity and its behavior with the soil depend: soil's chemical composition; soils physical parameters; neutrons' energetic spectrum and neutron-source detector geometry.The objective of this paper is to apply the multigroup function theory to calculate a neutron probe calibration curve utilizing representatives parameters and coefficients of soils horizons in a experimental station in Zona da Mata, Pernambuco, Brazil

  2. Effect of amendments on chemical immobilization of heavy metals in sugar mill contaminated soils

    Directory of Open Access Journals (Sweden)

    Mohammad Jamal Khan, Muhammad Tahir Azeem and Sajida Perveen1

    2012-05-01

    Full Text Available A bulk soil sample collected from the vicinity of PSM (Premier Sugar Mill Mardan was amended with diammonium phosphate (DAP, triple super phosphate (TSP, Farm Yard Manure (FYM and poultry manure (PM in 1.5 kg soil in a 2 L plastic pot. Both DAP and TSP were added at 230 mg kg 1 (460 kg ha 1 soil whereas the organic amendments (FYM and PM were added at the rate of 10% by weight of soil. The air dried samples in pots were brought to field moisture content (0.33 bar water content by the addition of either HIE (Hayatabad Industrial Estate or PSM in two separate sets of experiments. The experimental pots were arranged in randomized complete design with three replicates under laboratory conditions during March to May (Temperature varying between 25 to 30 °C. Treated and control pots were incubated for 90 days al 0.33 bar ca 25% moisture and the moisture deficit during the incubation time was adjusted by adding PSM and HIE effluents in their respective set of experimental pots. Soil samples were collected after 15, 30, 45 and 90 d to determine the effect of amendments on AB-DTPA extractable metals. The results showed that AB-DTPA extractable Cd, Or, Cu, Ni and Cd increased significantly with lime and the maximum values were noted after 90 days incubation whereas the Fe, Mn and Zn content in soil increased with time but the increase was not significant. It was further noted that the increase over time in metal was not pronounced when supplied with amendments indicating their ability to chemically stabilize it compared to unamended soils. Higher values of all the heavy metals were noted in unamended soil. By comparing the different amendments, it was observed that FYM was effective in reducing the extractability/phytoavailability of all the metals under study except Pb whereby DAP was most effective as a stabilizing agent in the soil. It was concluded that in calcareous soil, FYM and DAP can be used to reduce the risk of phytotoxicity of heavy metals in

  3. Solid waste disposal in the soil: effects on the physical, chemical, and organic properties of soil

    Directory of Open Access Journals (Sweden)

    Vanessa Regina Lasaro Mangieri

    2015-04-01

    Full Text Available Currently, there is growing concern over the final destination of the solid waste generated by society. Landfills should not be considered the endpoint for substances contained or generated in solid waste. The sustainable use of natural resources, especially soil and water, has become relevant, given the increase in anthropogenic activities. Agricultural use is an alternative to solid waste (leachate, biosolid disposal, considering the hypothesis that the agricultural use of waste is promising for reducing waste treatment costs, promoting nutrient reuse and improving the physical and chemical conditions of soil. Thus, this literature review, based on previously published data, seeks to confirm or disprove the hypothesis regarding the promising use of solid waste in agriculture to decrease the environmental liability that challenges public administrators in the development of efficient management. The text below addresses the following subtopics after the introduction: current solid waste disposal and environmental issues, the use of solid waste in agriculture, and the effect on the physical and chemical properties of soil and on organic matter, ending with final considerations.

  4. Ptaquiloside in Pteridium aquilinum subsp. aquilinum and corresponding soils from the South of Italy: influence of physical and chemical features of soils on its occurrence.

    Science.gov (United States)

    Zaccone, Claudio; Cavoski, Ivana; Costi, Roberta; Sarais, Giorgia; Caboni, Pierluigi; Traversa, Andreina; Miano, Teodoro M

    2014-10-15

    The bracken fern Pteridium aquilinum (L.) Kuhn, one of the most common plant species on Earth, produces a wide range of secondary metabolites including the norsesquiterpene glucoside ptaquiloside (PTA). Several studies are present in literature about eco-toxicological aspects related to PTA, whereas results about the effect of growth conditions and soil properties on the production and mobility of PTA are sometimes conflicting and further investigations are needed. The aim of the present work is to investigate the occurrence and possible fate of PTA in soils showing different physical and chemical features, and collected in several areas of the South of Italy. The PTA content was determined in both soil and fern samples by GC-MS; both the extraction protocol and recovery were previously tested through incubation studies. Soils samples were also characterized from the physical and chemical points of view in order to correlate the possible influence of soil parameters on PTA production and occurrence. PTA concentration in P. aquilinum fern seemed to be significantly affected by the availability of nutrients (mainly P) and soil pH. At the same time, PTA concentration in soil samples was always undetectable, independent of the PTA concentration in the corresponding Pteridium samples and pedo-climatic conditions. This seems to suggest the degradation of the PTA by indigenous soil microbial community, whereas incubation studies underlined a certain affinity of PTA for both organic colloids and clay/silt particles. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Change of physical and chemical composition of soil washing out during vegetation season from differently used fields

    Science.gov (United States)

    Baryła, A.; Pierzgalski, E.; Karczmarczyk, A.

    2009-04-01

    oil losses due to water erosion not only decrease of soil fertility but also influence on pollution of water bodies. One of the method for limitation of water erosion process is protected soil management and choose suitable plants which requires knowledge about effect and mechanism of erosion under different environmental conditions. The results of measurements of quantity and quality of soil losses from three experimental plots are given in the article. Plots were located in Experimental Agricultural Station Puczniew in central part of Poland. Surface soil layer on the plots had mechanical composition of medium loam soil. On two plots grass and barley were planted. Third plot was used as fallow and tilled land. Measurements were carried out four times in the period May-October 2007. Physical and chemical composition of washed soil material was analyzed.

  6. Impact of chemical leaching on permeability and cadmium removal from fine-grained soils.

    Science.gov (United States)

    Lin, Zhongbing; Zhang, Renduo; Huang, Shuang; Wang, Kang

    2017-08-01

    The aim of this study was to investigate the influence of chemical leaching on permeability and Cd removal from fine-grained polluted soils. Column leaching experiments were conducted using two types of soils (i.e., artificially Cd-polluted loam and historically polluted silty loam). Chemical agents of CaCl 2 , FeCl 3 , citric acid, EDTA, rhamnolipid, and deionized water were used to leach Cd from the soils. Results showed that organic agents reduced permeability of both soils, and FeCl 3 reduced permeability of loam soil, compared with inorganic agents and deionized water. Entrapment and deposition of colloids generated from the organic agents and FeCl 3 treatments reduced the soil permeability. The peak Cd effluence from the artificially polluted loam columns was retarded. For the artificially polluted soils treated with EDTA and the historically polluted soils with FeCl 3 , Cd precipitates were observed at the bottom after chemical leaching. When Cd was associated with large colloid particles, the reduction of soil permeability caused Cd accumulation in deeper soil. In addition, the slow process of disintegration of soil clay during chemical leaching might result in the retardation of peak Cd effluence. These results suggest the need for caution when using chemical-leaching agents for Cd removal in fine-grained soils.

  7. PREDICTING SOIL SORPTION COEFFICIENTS OF ORGANIC CHEMICALS USING A NEURAL NETWORK MODEL

    Science.gov (United States)

    The soil/sediment adsorption partition coefficient normalized to organic carbon (Koc) is extensively used to assess the fate of organic chemicals in hazardous waste sites. Several attempts have been made to estimate the value of Koc from chemical structure ...

  8. Impact of no-till and conventional tillage practices on soil chemical properties

    International Nuclear Information System (INIS)

    Aziz, A.; Bangash, N.

    2015-01-01

    There is a global concern about progressive increase in the emission of greenhouse gases especially atmosphere CO/sub 2/. An increasing awareness about environmental pollution by CO/sub 2/ emission has led to recognition of the need to enhance soil C sequestration through sustainable agricultural management practices. Conservation management systems such as no-till (NT) with appropriate crop rotation have been reported to increase soil organic C content by creating less disturbed environment. The present study was conducted on Vanmeter farm of The Ohio State University South Centers at Piketon Ohio, USA to estimate the effect of different tillage practices with different cropping system on soil chemical properties. Tillage treatments were comprised of conventional tillage (CT) and No-till (NT).These treatments were applied under continuous corn (CC), corn-soybean (CS) and corn soybean-wheat-cowpea (CSW) cropping system following randomized complete block design. No-till treatment showed significant increase in total C (30%), active C (10%), and passive salt extractable (18%) and microwave extractable C (8%) and total nitrogen (15%) compared to conventional tillage practices. Total nitrogen increased significantly 23 % in NT over time. Maximum effect of no-till was observed under corn-soybean-wheat-cowpea crop rotation. These findings illustrated that no-till practice could be useful for improving soil chemical properties. (author)

  9. Bio-chemical properties of sandy calcareous soil treated with rice straw-based hydrogels

    Directory of Open Access Journals (Sweden)

    Houssni El-Saied

    2016-06-01

    The results obtained show that, application of the investigated hydrogels positively affects bio-chemical properties of the soil. These effects are assembled in the following: (a slightly decreasing soil pH, (b increasing cation exchange capacity (CEC of the soil indicating improvement in activating chemical reactions in the soil, (c increasing organic matter (OM, organic carbon, total nitrogen percent in the soil. Because the increase in organic nitrogen surpassed that in organic carbon, a narrower CN ratio of treated soils was obtained. This indicated the mineralization of nitrogen compounds and hence the possibility to save and provide available forms of N to growing plants, (d increasing available N, P and K in treated soil, and (e improving biological activity of the soil expressed as total count of bacteria and counts of Azotobacter sp., phosphate dissolving bacteria (PDB, fungi and actinomycetes/g soil as well as the activity of both dehydrogenase and phosphatase.

  10. Time trends & mechanism of soil acidification

    NARCIS (Netherlands)

    Wesselink, L.G.

    1994-01-01

    The effects of acid atmospheric deposition on forest ecosystems have been studied intensively in the past two decades. Measurements of element budgets in forested ecosystems throughout the world have shown that acid deposition may deplete stores of exchangeable base cations in the soil,

  11. Chemical and geotechnical analyses of soil samples from Olkiluoto for studies on sorption in soils

    International Nuclear Information System (INIS)

    Lusa, M.; Aemmaelae, K.; Hakanen, M.; Lehto, J.; Lahdenperae, A.-M.

    2009-05-01

    The safety assessment of disposal of spent nuclear fuel will include an estimate on the behavior of nuclear waste nuclides in the biosphere. As a part of this estimate also the transfer of nuclear waste nuclides in the soil and sediments is to be considered. In this study soil samples were collected from three excavator pits in Olkiluoto and the geotechnical and chemical characteristics of the samples were determined. In later stage these results will be used in sorption tests. Aim of these tests is to determine the Kd-values for Cs, Tc and I and later for Mo, Nb and Cl. Results of these sorption tests will be reported later. The geotechnical characteristics studied included dry weight and organic matter content as well as grain size distribution and mineralogy analyses. Selective extractions were carried out to study the sorption of cations into different mineral types. The extractions included five steps in which the cations bound to exchangeable, carbonate, oxides of Fe and Mn, organic matter and residual fractions were determined. For all fractions ICPMS analyses were carried out. In these analyses Li, Na, Mg, K, Ca, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Sr, Mo, Cd, Cs and Pb were determined. In addition six profiles were taken from the surroundings of two excavator pits for the 137 Cs determination. Besides the samples taken for the characterization of soil, supplement samples were taken from the same layers for the separation of soil water. From the soil water pH, DOC, anions (F, Cl, NO 3 , SO 4 ) and cations (Na, Mg, K, Ca, Al, Cr, Mn, Fe, Ni, Cu, Zn, As, S, Cd, Cs, Pb, U) were determined. (orig.)

  12. The influence of vertical sorbed phase transport on the fate of organic chemicals in surface soils.

    Science.gov (United States)

    McLachlan, Michael S; Czub, Gertje; Wania, Frank

    2002-11-15

    Gaseous exchange between surface soil and the atmosphere is an important process in the environmental fate of many chemicals. It was hypothesized that this process is influenced by vertical transport of chemicals sorbed to soil particles. Vertical sorbed phase transport in surface soils occurs by many processes such as bioturbation, cryoturbation, and erosion into cracks formed by soil drying. The solution of the advection/diffusion equation proposed by Jury et al. to describe organic chemical fate in a uniformly contaminated surface soil was modified to include vertical sorbed phase transport This process was modeled using a sorbed phase diffusion coefficient, the value of which was derived from soil carbon mass balances in the literature. The effective diffusivity of the chemical in a typical soil was greater in the modified model than in the model without sorbed phase transport for compounds with log K(OW) > 2 and log K(OA) > 6. Within this chemical partitioning space, the rate of volatilization from the surface soil was larger in the modified model than in the original model by up to a factor of 65. The volatilization rate was insensitive to the value of the sorbed phase diffusion coefficient throughout much of this chemical partitioning space, indicating that the surface soil layer was essentially well-mixed and that the mass transfer coefficient was determined by diffusion through the atmospheric boundary layer only. When this process was included in a non-steady-state regional multimedia chemical fate model running with a generic emissions scenario to air, the predicted soil concentrations increased by upto a factor of 25,whilethe air concentrations decreased by as much as a factor of approximately 3. Vertical sorbed phase transport in the soil thus has a major impact on predicted air and soil concentrations, the state of equilibrium, and the direction and magnitude of the chemical flux between air and soil. It is a key process influencing the environmental

  13. About petroleum-chemical soil pollution and their ecological consequences

    International Nuclear Information System (INIS)

    Faizov, K.Sh; Asanbaev, I.K.

    1997-01-01

    It is reported, that in Kazakhstan 20-25 million t of petroleum have mined every year, 90 % of them are in desert areas of Atyrau and Mangistau regions. There are 160 petroleum and gas deposits on different rate of mastering. In near-time outlook the mastering of richest petroleum stocks in the Caspian Sea shelf zone (3.5 billion t) and the Perm oils is planned, area of petroleum-gas regions will be increased up to 1,7 million km 2 , petroleum production will be increased to up 70 million t in 2010. Influence of pollution by petroleum on genetic properties of soils and its ecological consequences as well as issues of rehabilitation of polluted soils with help carbon-oxidation microorganisms are considered. It is reported, that there are cultures of microbes-destructors for hydrocarbon raw materials are able effectively to utilize raw petroleum, gasoline and diesel fuel (up 94-98 %) recommended by Kazakhstan microbiologists. The Munajbak microbe preparation for water and soil purification is able to utilize petroleum on 31-36 %

  14. Evaluation of Time-Dependent Behavior of Soils

    DEFF Research Database (Denmark)

    Augustesen, Anders; Liingaard, Morten; Lade, Poul V.

    2004-01-01

    The time-dependent behavior of soils has been investigated extensively through one-dimensional and triaxial test conditions. Most of the observations in literature have focused on the determination of the time-dependent behavior of clayey soils, whereas the reported experimental studies of granular...... situation for soils. That is whether the time-dependent behavior can be characterized as isotach or nonisotach. It seems that the isotach behavior is adequate for describing the time effects in clays in most situations. But for sand, the isotach description is inadequate. Further, the phenomenon...

  15. Passive soil venting at the Chemical Waste Landfill Site at Sandia National Laboratories, Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    Phelan, J.M.; Reavis, B.; Cheng, W.C.

    1995-05-01

    Passive Soil Vapor Extraction was tested at the Chemical Waste Landfill (CWL) site at Sandia National Laboratories, New Mexico (SNLIW). Data collected included ambient pressures, differential pressures between soil gas and ambient air, gas flow rates into and out of the soil and concentrations of volatile organic compounds (VOCS) in vented soil gas. From the differential pressure and flow rate data, estimates of permeability were arrived at and compared with estimates from other studies. Flow, differential pressure, and ambient pressure data were collected for nearly 30 days. VOC data were collected for two six-hour periods during this time. Total VOC emissions were calculated and found to be under the limit set by the Resource Conservation and Recovery Act (RCRA). Although a complete process evaluation is not possible with the data gathered, some of the necessary information for designing a passive venting process was determined and the important parameters for designing the process were indicated. More study is required to evaluate long-term VOC removal using passive venting and to establish total remediation costs when passive venting is used as a polishing process following active soil vapor extraction

  16. Arsenic stability and mobilization in soil at an amenity grassland overlying chemical waste (St. Helens, UK)

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, William [School of Biological and Earth Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF (United Kingdom)], E-mail: w.hartley@ljmu.ac.uk; Dickinson, Nicholas M. [School of Biological and Earth Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF (United Kingdom); Clemente, Rafael [Department of Soil and Water Conservation and Organic Waste Management, Centro de Edafologia y Biologia Aplicada del Segura, CSIC, Apartado 4195, 30080 Murcia (Spain); French, Christopher [School of Biological and Earth Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF (United Kingdom); Piearce, Trevor G. [Biological Sciences Division, Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Sparke, Shaun; Lepp, Nicholas W. [School of Biological and Earth Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF (United Kingdom)

    2009-03-15

    A 6.6 ha grassland, established on a former chemical waste site adjacent to a residential area, contains arsenic (As) in surface soil at concentrations 200 times higher than UK Soil Guideline Values. The site is not recognized as statutory contaminated land, partly on the assumption that mobility of the metalloid presents a negligible threat to human health, groundwater and ecological receptors. Evidence for this is evaluated, based on studies of the effect of organic (green waste compost) and inorganic (iron oxides, lime and phosphate) amendments on As fractionation, mobility, plant uptake and earthworm communities. Arsenic mobility in soil was low but significantly related to dissolved organic matter and phosphate, with immobilization associated with iron oxides. Plant uptake was low and there was little apparent impact on earthworms. The existing vegetation cover reduces re-entrainment of dust-blown particulates and pathways of As exposure via this route. Minimizing risks to receptors requires avoidance of soil exposure, and no compost or phosphate application. - Stabilization of alkali industry waste requires careful management to minimise soil arsenic mobilization and dispersal to the wider environment.

  17. Chemical composition of the humus layer, mineral soil and soil solution of 200 forest stands in the Netherlands in 1995

    NARCIS (Netherlands)

    Leeters, E.E.J.M.; Vries, de W.

    2001-01-01

    A nationwide assessment of the chemical composition of the soil solid phase and the soil solution in the humus layer and two mineral layers (0-10 cm and 10-30 cm) was made for 200 forest stands in the year 1995. The stands were part of the national forest inventory on vitality, included seven tree

  18. Chemical trends in a perhumid soil catena on the Turrialba volcano (Costa Rica)

    NARCIS (Netherlands)

    Meijer, E.L.; Buurman, P.

    2003-01-01

    The variation in chemical composition of soil samples (XRFS data) from a soil catena of 14 soil profiles on the northern slope and foot slope of the andesitic Turrialba volcano (3300 m) has been analysed to test the two hypotheses, which underlie our interpretation that this catena is a weathering

  19. Chemical and physical analyses of selected plants and soils from Puerto Rico (1981-2000)

    Science.gov (United States)

    M.J. Sanchez; E. Lopez; A.E. Lugo

    2015-01-01

    This report contains the results of analyses conducted at the chemistry laboratory of the International Institute of Tropical Forestry in Puerto Rico from 1981 to 2000. The data set includes 109,177 plant analyses and 70,729 soil analyses. We report vegetation chemical data by plant part, species, life zone, soil order, geology, or parent material. Soil data are...

  20. Effects of organic versus conventional management on chemical and biological parameters in agricultural soils

    NARCIS (Netherlands)

    Diepeningen, van A.D.; Vos, de O.J.; Korthals, G.W.; Bruggen, van A.H.C.

    2006-01-01

    A comparative study of organic and conventional arable farming systems was conducted in The Netherlands to determine the effect of management practices on chemical and biological soil properties and soil health. Soils from thirteen accredited organic farms and conventionally managed neighboring

  1. Chemical equilibrium and reaction modeling of arsenic and selenium in soils

    Science.gov (United States)

    The chemical processes and soil factors that affect the concentrations of As and Se in soil solution were discussed. Both elements occur in two redox states differing in toxicity and reactivity. Methylation and volatilization reactions occur in soils and can act as detoxification pathways. Precip...

  2. Evaluation of the effects of enzyme-based liquid chemical stabilizers on subgrade soils

    CSIR Research Space (South Africa)

    Mgangira, Martin B

    2009-07-01

    Full Text Available The purpose of this study was to asses the strength of enzyme treated soil material. Thus the aim of the paper is to present laboratory results on the effects of two enzyme-based liquid chemicals as soil stabilizers. Soil samples were prepared...

  3. A method for assessing residual NAPL based on organic chemical concentrations in soil samples

    International Nuclear Information System (INIS)

    Feenstra, S.; Mackay, D.M.; Cherry, J.A.

    1991-01-01

    Ground water contamination by non-aqueous phase liquid (NAPL) chemicals is a serious concern at many industrial facilities and waste disposal sites. NAPL in the form of immobile residual contamination, or pools of mobile or potentially mobile NAPL, can represent continuing sources of ground water contamination. In order to develop rational and cost-effective plans for remediation of soil and ground water contamination at such sites, it is essential to determine if non-aqueous phase liquid (NAPL) chemicals are present in the subsurface and delineate the zones of NAPL contamination. Qualitatively, soil analyses that exhibit chemical concentrations in the percent range or >10,000 mg/kg would generally be considered to indicate the presence of NAPL. However, the results of soil analyses are seldom used in a quantitative manner to assess the possible presence of residual NAPL contamination when chemical concentrations are lower and the presence of NAPL is not obvious. The assessment of the presence of NAPL in soil samples is possible using the results of chemical and physical analyses of the soil, and the fundamental principles of chemical partitioning in unsaturated or saturated soil. The method requires information on the soil of the type typically considered in ground water contamination studies and provides a simple tool for the investigators of chemical spill and waste disposal sites to assess whether soil chemical analyses indicate the presence of residual NAPL in the subsurface

  4. Changes in soil toxicity by phosphate-aided soil washing: effect of soil characteristics, chemical forms of arsenic, and cations in washing solutions.

    Science.gov (United States)

    Jho, Eun Hea; Im, Jinwoo; Yang, Kyung; Kim, Young-Jin; Nam, Kyoungphile

    2015-01-01

    This study was set to investigate the changes in the toxicity of arsenic (As)-contaminated soils after washing with phosphate solutions. The soil samples collected from two locations (A: rice paddy and B: forest land) of a former smelter site were contaminated with a similar level of As. Soil washing (0.5 M phosphate solution for 2 h) removed 24.5% As, on average, in soil from both locations. Regardless of soil washing, Location A soil toxicities, determined using Microtox, were greater than that of Location B and this could be largely attributed to different soil particle size distribution. With soils from both locations, the changes in As chemical forms resulted in either similar or greater toxicities after washing. This emphasizes the importance of considering ecotoxicological aspects, which are likely to differ depending on soil particle size distribution and changes in As chemical forms, in addition to the total concentration based remedial goals, in producing ecotoxicologically-sound soils for reuse. In addition, calcium phosphate used as the washing solution seemed to contribute more on the toxic effects of the washed soils than potassium phosphate and ammonium phosphate. Therefore, it would be more appropriate to use potassium or ammonium phosphate than calcium phosphate for phosphate-aided soil washing of the As-contaminated soils. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Aging of nickel added to soils as predicted by soil pH and time.

    Science.gov (United States)

    Ma, Yibing; Lombi, Enzo; McLaughlin, Mike J; Oliver, Ian W; Nolan, Annette L; Oorts, Koen; Smolders, Erik

    2013-08-01

    Although aging processes are important in risk assessment for metals in soils, the aging of Ni added to soils has not been studied in detail. In this study, after addition of water soluble Ni to soils, the changes over time in isotopic exchangeability, total concentrations and free Ni(2+) activity in soil pore water, were investigated in 16 European soils incubated outdoors for 18 months. The results showed that after Ni addition, concentrations of Ni in soil pore water and isotopic exchangeability of Ni in soils initially decreased rapidly. This phase was followed by further decreases in the parameters measured but these occurred at slower rates. Increasing soil pH increased the rate and extent of aging reactions. Semi-mechanistic models, based on Ni precipitation/nucleation on soil surfaces and micropore diffusion, were developed and calibrated. The initial fast processes, which were attributed to precipitation/nucleation, occurred over a short time (e.g. 1h), afterwards the slow processes were most likely controlled by micropore diffusion processes. The models were validated by comparing predicted and measured Ni aging in three additional, widely differing soils aged outdoors for periods up to 15 months in different conditions. These models could be used to scale ecotoxicological data generated in short-term studies to longer aging times. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Assessment of the biological and chemical availability of the freshly spiked and aged DDE in soil

    International Nuclear Information System (INIS)

    Škulcová, L.; Neuwirthová, N.; Hofman, J.; Bielská, L.

    2016-01-01

    The study compared the ability of various chemical methods (XAD, β-hydroxypropylcyclodextrin - HPCD) and solid phase micro-extraction (SPME)) to mimic earthworm uptake from two similar soils containing either spiked or aged p,p´-DDE, thus representing two extreme scenarios with regard to the length of pollutant-soil contact time and the way of contamination. The extent of bioaccumulation was assessed at fixed exposure periods (10 and 21 days) and at equilibrium derived from uptake curves by multiple-point comparison or kinetic modeling. The decision on the best chemical predictor of biological uptake differed. The degree of bioaccumulation at equilibrium was best predicted by XAD while HPCD rather reflected the extent of accumulation derived after 21 days when, however, steady-state was not reached for spiked p,p´-DDE. SPME seemed to underestimate the uptake of aged p,p´-DDE, probably of the fraction taken up via soil particles. Thus, the degree of predictability seems to be associated with the capability of the chemical method to mimic the complex earthworm uptake via skin and intestinal tract as well as with the quality of biological data where the insufficient length of exposure period appears to be the major concern. - Highlights: • The uptake kinetics of spiked and aged p,p´-DDE to earthworms/samplers was measured. • Three chemical methods were used to predict earthworm uptake. • Equilibrium was not reached within the OECD recommended 21 days for spiked p,p´-DDE. • SPME seems to underestimate the uptake of aged p,p´-DDE. • The best predictor of earthworm uptake seems to be the XAD method. - Capsule: The poor prediction of biological uptake by chemical methods may result from the absence of kinetic measurements and application of short exposure periods.

  7. Space, time, and chemical risk assessment

    Science.gov (United States)

    Exposure to manufactured chemicals is a fact of contemporary life for both humans and wildlife. In many cases, these exposures occur at safe environmental concentrations. However, spectacular exceptions have occurred (e.g., DDT and eggshell thinning, monocrotophos and Swainson&r...

  8. Soil erosion under multiple time-varying rainfall events

    Science.gov (United States)

    Heng, B. C. Peter; Barry, D. Andrew; Jomaa, Seifeddine; Sander, Graham C.

    2010-05-01

    Soil erosion is a function of many factors and process interactions. An erosion event produces changes in surface soil properties such as texture and hydraulic conductivity. These changes in turn alter the erosion response to subsequent events. Laboratory-scale soil erosion studies have typically focused on single independent rainfall events with constant rainfall intensities. This study investigates the effect of multiple time-varying rainfall events on soil erosion using the EPFL erosion flume. The rainfall simulator comprises ten Veejet nozzles mounted on oscillating bars 3 m above a 6 m × 2 m flume. Spray from the nozzles is applied onto the soil surface in sweeps; rainfall intensity is thus controlled by varying the sweeping frequency. Freshly-prepared soil with a uniform slope was subjected to five rainfall events at daily intervals. In each 3-h event, rainfall intensity was ramped up linearly to a maximum of 60 mm/h and then stepped down to zero. Runoff samples were collected and analysed for particle size distribution (PSD) as well as total sediment concentration. We investigate whether there is a hysteretic relationship between sediment concentration and discharge within each event and how this relationship changes from event to event. Trends in the PSD of the eroded sediment are discussed and correlated with changes in sediment concentration. Close-up imagery of the soil surface following each event highlight changes in surface soil structure with time. This study enhances our understanding of erosion processes in the field, with corresponding implications for soil erosion modelling.

  9. Monitoring changes in soil water content on adjustable soil slopes of a soil column using time domain reflectometry (TDR) techniques

    International Nuclear Information System (INIS)

    Wan Zakaria Wan Muhd Tahir; Lakam Anak Mejus; Johari Abdul Latif

    2004-01-01

    Time Domain Reflectometry (TDR) is one of non-destructive methods and widely used in hydrology and soil science for accurate and flexible measurement of soil water content The TDR technique is based on measuring the dielectric constant of soil from the propagation of an electromagnetic pulse traveling along installed probe rods (parallel wire transmission line). An adjustable soil column i.e., 80 cm (L) x 35 cm (H) x 44 cm (W) instrumented with six pairs of vertically installed CS615 reflectometer probes (TDR rods) was developed and wetted under a laboratory simulated rainfall and their sub-surface moisture variations as the slope changes were monitored using TDR method Soil samples for gravimetric determination of water content, converted to a volume basis were taken at selected times and locations after the final TDR reading for every slope change made of the soil column Comparisons of water contents by TDR with those from grawmetric samples at different slopes of soil column were examined. The accuracy was found to be comparable and to some extent dependent upon the variability of the soil. This study also suggests that the response of slope (above 20 degrees) to the gradual increase in water content profile may cause soil saturation faster and increased overland flow (runoff especially on weak soil conditions

  10. Soil chemical attributes in function of vinasse doses and application time = Atributos químicos de um Neossolo Regolítico distrófico em função das doses e tempos de aplicação de vinhaça

    Directory of Open Access Journals (Sweden)

    Renato Paiva de Lima

    2013-12-01

    Full Text Available The vinasse, generated from alcohol distillation, is an organic matter and nutrients rich residue widely used for fertigation in sugarcane plantings. However, if such effluent is applied in excessively high doses, it can unbalance the soil sorption complex, causing serious risks to the environment if disposed indiscriminately on soil. Thus, the objective of this study was to evaluate the effect of increasing doses of vinasse (0; 59; 119; 237e 474 m3 ha-1 and different incubation times (30 and 60 days in the soil chemical proprieties. During the study, characterization of soil chemical attributes based on electrical conductivity of soil saturation extract (CEes, pH and exchangeable cations (K+ and Na+ levels. At the end of the study, it was concluded that the incubation time of vinasse in the soil affected the variables was studied. The contents of K+ and Na+ in the soil were significantly influenced by the application of vinasse increasing doses, however pH and CEes were little affected independent of the utilized doses. Application of water depths caused greater leaching of K+ in the soil than Na+ , which can cause sodicity of soil due to the application of high doses of vinasse. = A vinhaça é um resíduo proveniente do processo de destilação do álcool, rico em matéria orgânica e nutrientes e, por isso, é muito utilizado para fertirrigação nos próprios canaviais. Entretanto, se aplicado em doses excessivamente altas pode desequilibrar o complexo sortivo do solo e, se descartado indiscriminadamente no solo, pode trazer sérios riscos ao ambiente. Objetivou-se avaliar o efeito de doses crescentes de vinhaça (0; 59; 119; 237 e 474 m3 ha-1 e diferentes tempos de incubação (30 e 60 dias nos atributos químicos de um Neossolo Regolítico distrófico. Durante o estudo, foram avaliadas as seguintes variáveis: condutividade elétrica do extrato de saturação do solo (CEes, pH e teores de K+ e Na+ trocáveis do solo. Ao final do estudo

  11. Predicting soil formation on the basis of transport-limited chemical weathering

    Science.gov (United States)

    Yu, Fang; Hunt, Allen Gerhard

    2018-01-01

    Soil production is closely related to chemical weathering. It has been shown that, under the assumption that chemical weathering is limited by solute transport, the process of soil production is predictable. However, solute transport in soil cannot be described by Gaussian transport. In this paper, we propose an approach based on percolation theory describing non-Gaussian transport of solute to predict soil formation (the net production of soil) by considering both soil production from chemical weathering and removal of soil from erosion. Our prediction shows agreement with observed soil depths in the field. Theoretical soil formation rates are also compared with published rates predicted using soil age-profile thickness (SAST) method. Our formulation can be incorporated directly into landscape evolution models on a point-to-point basis as long as such models account for surface water routing associated with overland flow. Further, our treatment can be scaled-up to address complications associated with continental-scale applications, including those from climate change, such as changes in vegetation, or surface flow organization. The ability to predict soil formation rates has implications for understanding Earth's climate system on account of the relationship to chemical weathering of silicate minerals with the associated drawdown of atmospheric carbon, but it is also important in geomorphology for understanding landscape evolution, including for example, the shapes of hillslopes, and the net transport of sediments to sedimentary basins.

  12. Principal chemical properties of artificial soil composed of fly ash and furfural residue

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Y.J.; Li, F.; Wang, X.L.; Liu, X.M.; Zhang, L.N. [Shandong Agricultural University, Tai An (China). College of Resources & Environments

    2006-10-15

    To solve soil shortage in reclaiming subsided land of coal mines, the principal chemical properties of artificial soil formed by mixing organic furfural residue and inorganic fly ash were examined. The results indicated that the artificial soil was suitable for agriculture use after irrigation and desalination, the available nutrients in the artificial soil could satisfy the growth demand of plants, and the pH tended to the neutrality.

  13. Restoration of Soil Physical and Chemical Properties of Abandoned Tin- Mining in Bangka Belitung Islands

    OpenAIRE

    Ishak Yuarsah; Etik Puji Handayani; Rakhmiati; Yatmin

    2017-01-01

    The practices of tin mining that remove all soil layers on top of the mineral deposit layers have caused serious environmental problems, i.e. degradation of soil physical and chemical properties and disappearance of vegetation, flora and fauna in ecosystems, which further can change the local microclimate. The tailing area of tin mining have unstable soil structure and low organic matter content, so it is vulnerable to land slides and erosion. The characteristics of the soils in the tailing a...

  14. Fauna-associated changes in chemical and biochemical properties of soil.

    Science.gov (United States)

    Tripathi, G; Sharma, B M

    2006-12-01

    To study the impacts of abundance of woodlice, termites, and mites on some functional aspects of soil in order to elucidate the specific role of soil fauna in improving soil fertility in desert. Fauna-rich sites were selected as experimental sites and adjacent areas were taken as control. Soil samples were collected from both sites. Soil respiration was measured at both sites. The soil samples were sent to laboratory, their chemical and biochemical properties were analyzed. Woodlice showed 25% decrease in organic carbon and organic matter as compared to control site. Whereas termites and mites showed 58% and 16% decrease in organic carbon and organic matter. In contrast, available nitrogen (nitrate and ammonical both) and phosphorus exhibited 2-fold and 1.2-fold increase, respectively. Soil respiration and dehydrogenase activity at the sites rich in woodlice, termites and mites produced 2.5-, 3.5- and 2-fold increases, respectively as compared to their control values. Fauna-associated increase in these biological parameters clearly reflected fauna-induced microbial activity in soil. Maximum decrease in organic carbon and increase in nitrate-nitrogen and ammonical-nitrogen, available phosphorus, soil respiration and dehydrogenase activity were produced by termites and minimum by mites reflecting termite as an efficient soil improver in desert environment. The soil fauna-associated changes in chemical (organic carbon, nitrate-nitrogen, ammonical-nitrogen, phosphorus) and biochemical (soil respiration, dehydrogenase activity) properties of soil improve soil health and help in conservation of desert pedoecosystem.

  15. Organic and inorganic amendment application on mercury-polluted soils: effects on soil chemical and biochemical properties.

    Science.gov (United States)

    García-Sánchez, Mercedes; Klouza, Martin; Holečková, Zlata; Tlustoš, Pavel; Száková, Jiřina

    2016-07-01

    On the basis of a previous study performed in our laboratory, the use of organic and inorganic amendments can significantly modify the Hg mobility in soil. We have compared the effectiveness of organic and inorganic amendments such as digestate and fly ash, respectively, reducing the Hg mobility in Chernozem and Luvisol soils differing in their physicochemical properties. Hence, the aim of this work was to compare the impact of digestate and fly ash application on the chemical and biochemical parameters in these two mercury-contaminated soils in a model batch experiment. Chernozem and Luvisol soils were artificially contaminated with Hg and then incubated under controlled conditions for 21 days. Digestate and fly ash were applied to both soils in a dose of 10 and 1.5 %, respectively, and soil samples were collected after 1, 7, 14, and 21 days of incubation. The presence of Hg in both soils negatively affected to processes such as nitrification, provoked a decline in the soil microbial biomass C (soil microbial biomass C (MBC)), and the microbial activities (arylsulfatase, and β-glucosaminidase) in both soils. Meanwhile, the digestate addition to Chernozem and Luvisol soils contaminated with Hg improved the soil chemical properties (pH, dissolved organic carbon (DOC), N (Ntot), inorganic-N forms (N-NH4 (+) and N-NO3 (-))), as consequence of high content in C and N contained in digestate. Likewise, the soil MBC and soil microbial activities (dehydrogenase, arylsulfatase, and β-glucosaminidase) were greatly enhanced by the digestate application in both soils. In contrast, fly ash application did not have a remarkable positive effect when compared to digestate in Chernozem and Luvisol soil contaminated with mercury. These results may indicate that the use of organic amendments such as digestate considerably improved the soil health in Chernozem and Luvisol compared with fly ash, alleviating the detrimental impact of Hg. Probably, the chemical properties present in

  16. Effect of soil type and soil management on soil physical, chemical and biological properties in commercial organic olive orchards in Southern Spain

    Science.gov (United States)

    Gomez, Jose Alfonso; Auxiliadora Soriano, Maria; Montes-Borrego, Miguel; Navas, Juan Antonio; Landa, Blanca B.

    2014-05-01

    One of the objectives of organic agriculture is to maintain and improve soil quality, while simultaneously producing an adequate yield. A key element in organic olive production is soil management, which properly implemented can optimize the use of rainfall water enhancing infiltration rates and controlling competition for soil water by weeds. There are different soil management strategies: eg. weed mowing (M), green manure with surface tillage in spring (T), or combination with animal grazing among the trees (G). That variability in soil management combined with the large variability in soil types on which organic olive trees are grown in Southern Spain, difficult the evaluation of the impact of different soil management on soil properties, and yield as well as its interpretation in terms of improvement of soil quality. This communications presents the results and analysis of soil physical, chemical and biological properties on 58 soils in Southern Spain during 2005 and 2006, and analyzed and evaluated in different studies since them. Those 58 soils were sampled in 46 certified commercial organic olive orchards with four soil types as well as 12 undisturbed areas with natural vegetation near the olive orchards. The four soil types considered were Eutric Regosol (RGeu, n= 16), Eutric Cambisol (CMeu, n=16), Calcaric Regosol (RGca, n=13 soils sampled) and Calcic Cambisol (CMcc), and the soil management systems (SMS) include were 10 light tillage (LT), 16 sheep grazing (G), 10 tillage (T), 10 mechanical mowing (M), and 12 undisturbed areas covered by natural vegetation (NV-C and NV-S). Our results indicate that soil management had a significant effect on olive yield as well as on key soil properties. Among these soil properties are physical ones, such as infiltration rate or bulk density, chemical ones, especially organic carbon concentration, and biological ones such as soil microbial respiration and bacterial community composition. Superimpose to that soil

  17. Spatial patterns and controls of soil chemical weathering rates along a transient hillslope

    Science.gov (United States)

    Yoo, K.; Mudd, S.M.; Sanderman, J.; Amundson, Ronald; Blum, A.

    2009-01-01

    Hillslopes have been intensively studied by both geomorphologists and soil scientists. Whereas geomorphologists have focused on the physical soil production and transport on hillslopes, soil scientists have been concerned with the topographic variation of soil geochemical properties. We combined these differing approaches and quantified soil chemical weathering rates along a grass covered hillslope in Coastal California. The hillslope is comprised of both erosional and depositional sections. In the upper eroding section, soil production is balanced by physical erosion and chemical weathering. The hillslope then transitions to a depositional slope where soil accumulates due to a historical reduction of channel incision at the hillslope's base. Measurements of hillslope morphology and soil thickness were combined with the elemental composition of the soil and saprolite, and interpreted through a process-based model that accounts for both chemical weathering and sediment transport. Chemical weathering of the minerals as they moved downslope via sediment transport imparted spatial variation in the geochemical properties of the soil. Inverse modeling of the field and laboratory data revealed that the long-term soil chemical weathering rates peak at 5 g m- 2 yr- 1 at the downslope end of the eroding section and decrease to 1.5 g m- 2 yr- 1 within the depositional section. In the eroding section, soil chemical weathering rates appear to be primarily controlled by the rate of mineral supply via colluvial input from upslope. In the depositional slope, geochemical equilibrium between soil water and minerals appeared to limit the chemical weathering rate. Soil chemical weathering was responsible for removing 6% of the soil production in the eroding section and 5% of colluvial influx in the depositional slope. These were among the lowest weathering rates reported for actively eroding watersheds, which was attributed to the parent material with low amount of weatherable

  18. Experimental study on soluble chemical transfer to surface runoff from soil.

    Science.gov (United States)

    Tong, Juxiu; Yang, Jinzhong; Hu, Bill X; Sun, Huaiwei

    2016-10-01

    Prevention of chemical transfer from soil to surface runoff, under condition of irrigation and subsurface drainage, would improve surface water quality. In this paper, a series of laboratory experiments were conducted to assess the effects of various soil and hydraulic factors on chemical transfer from soil to surface runoff. The factors include maximum depth of ponding water on soil surface, initial volumetric water content of soil, depth of soil with low porosity, type or texture of soil and condition of drainage. In the experiments, two soils, sand and loam, mixed with different quantities of soluble KCl were filled in the sandboxes and prepared under different initial saturated conditions. Simulated rainfall induced surface runoff are operated in the soils, and various ponding water depths on soil surface are simulated. Flow rates and KCl concentration of surface runoff are measured during the experiments. The following conclusions are made from the study results: (1) KCl concentration in surface runoff water would decrease with the increase of the maximum depth of ponding water on soil surface; (2) KCl concentration in surface runoff water would increase with the increase of initial volumetric water content in the soil; (3) smaller depth of soil with less porosity or deeper depth of soil with larger porosity leads to less KCl transfer to surface runoff; (4) the soil with finer texture, such as loam, could keep more fertilizer in soil, which will result in more KCl concentration in surface runoff; and (5) good subsurface drainage condition will increase the infiltration and drainage rates during rainfall event and will decrease KCl concentration in surface runoff. Therefore, it is necessary to reuse drained fertile water effectively during rainfall, without polluting groundwater. These study results should be considered in agriculture management to reduce soluble chemical transfer from soil to surface runoff for reducing non-point sources pollution.

  19. Wet-etch sequence optimisation incorporating time dependent chemical maintenance

    NARCIS (Netherlands)

    Kruif, B.J. de

    2015-01-01

    Wafer fabrication is the major cost contributor in semiconductor manufacturing. One of the steps in the fabrication is the removal of exposed layers in an automatic wet-etch station with chemicals. In time, these chemicals get polluted and their effectiveness decreases. Therefore, the chemicals in

  20. Genetic interpretations of elemental and chemical differences in a soil chronosequence, California

    Science.gov (United States)

    Harden, J.W.

    1988-01-01

    Soils developed on fluvial terraces in central California have similar parent materials, climatic settings, vegetation cover and slopes but range in age from 40,000 to 3,000,000 years. The soils have chemical compositions that change systematically with increasing age. Such chemical differentiation is most likely the result of long-term weathering and mineralogical transformations that occurred since deposition of terrace fills and stabilization of the geomorphic surfaces. The changes in composition with time closely mimic other studies on mineral weathering, in which alkali and alkali-earth elements are lost more rapidly than transitional elements. The relative rates of element loss were determined by changes in element ratios over time. Net losses and gains of elements in different size fractions were monitored by their concentrations relative to Zr, the most stable constituent. Both sand and finer size fractions have lost considerable amounts of Ca, Mg, Na and K. Aluminum appears to have been lost from the sand fraction and gained in the fine fraction over a 3-million-year-time-span. Although there is no evidence for losses of Fe and Ti from sands, there is a net influx of Fe and Ti into finer fractions, probably gained from undetectable yet significant weathering of sand grains. Etching of sand grains, clay mineralogy, and microprobe analyses also indicate that the soils have undergone these chemical transformations during their formation. Mineralogical analyses also mimic other studies on mineral weathering, in which the pyroxenes weather more rapidly than hornblende, which weathers more rapidly than sphene or zircon. ?? 1988.

  1. White poplar (Populus alba L. - Litter impact on chemical and biochemical parameters related to nitrogen cycle in contaminated soils

    Directory of Open Access Journals (Sweden)

    Paula Madejon

    2014-04-01

    Full Text Available Aim of study: The aim of this study was to determine the effect of litter from Populus alba on chemical and biochemical properties related to the N cycle in soils with different pH values and trace element contents. We hypothesized that this litter would influence several parameters related to the N cycle and consequently to soil health.Area of study: we collected two reforested contaminated soils of different pH values (AZ pH 7.23 and DO pH = 2.66 and a non-contaminated soil (RHU pH 7.19.Materials and methods: Soil samples were placed in 2,000 cm3 microcosms and were incubated for 40 weeks in controlled conditions. Each soil was mixed with its corresponding litter, and soils without litter were also tested for comparison. Ammonium (NH4+-N and nitrate (NO3–-N content, potential nitrification rate (PNR, microbial biomass nitrogen (MBN, protease activity, and several chemical properties such as pH, available trace element concentrations (extracted with 0.01 M CaCl2 were determined at different times of incubation.Main results: Values of available trace elements did not vary during the incubation and were always higher in acid soil. In neutral soils litter presence increased values of Kjeldahl-N, NO3–-N content, potential nitrification rate (PNR, microbial biomass nitrogen (MBN and protease activity. Presence of trace elements in neutral soils did not alter the parameters studied. However, acidic pH and high content of available trace elements strongly affected NH4+-N andNO3–-N, microbial biomass N and protease activity.Research highlights: Our results showed the negative effect of the acidity and trace element availability in parameters related with the N-cycle.Key words: microbial biomass N; protease activity; soil pH; N mineralization; nitrification; phytoremediation.

  2. Wildfire Ash: Chemical Composition, Ash-Soil Interactions and Environmental Impacts

    Science.gov (United States)

    Brook, Anna; Hamzi, Seham; Wittenberg, Lea

    2015-04-01

    Of the five classical factors of soil formation, climate, parent material, topography, time, organisms, and recently recognized human activity, it is the latter factor which discretely includes fire and post-burn impact. However, it is considered that soil undergoing fire just experience a temporary removal of the top organic horizon, thus slightly modified and often labeled as 'temporarily disturbed' soil or soil 'under restoration/rehabilitation'. In fact the suggested seventh factor, post-burned produced ash, can act both dependently and independently of the other soil forming factors (Levin et al., 2013; Certini 2013). They are interdependent in cases where ash influences occur on time scales similar to 'natural' soil formation (Keesstra et ai., 2014) such as changes in vegetation. On the other hand, in post-fire areas a strong dependency is expected between soil-water retention mechanism, climate and topography. Wild-land fires exert many changes on the physical, chemical, mineralogical, biological, and morphological properties of soil that, in turn, affect the soil's hydrology and nutrient flux, modifying its ability to support vegetation and resist erosion. The ash produced by forest fires is a complex mixture composed of organic and inorganic particles characterized by vary physical-chemical and morphological properties. The importance of this study is straightforwardly related to the frequency and large-scales wildfires in Mediterranean region. In fact, wildfires are major environmental and land management concern in the world, where the number and severity of wildfires has increased during the past decades (Bodi, 2013). Certini (2013) assumed that cumulatively all of the vegetated land is burned in about 31 years annually affecting 330-430 Mha (over 3% of the Earth's surface) and wide range of land cover types worldwide including forests, peatlands, shrublands and grasslands. Whereas, the fire is identified as an important factor in soil formation, the

  3. Impact of aging on the solid phase chemical fractionation of uranium in soil

    International Nuclear Information System (INIS)

    Rout, Sabyasachi; Ajay Kumar; Ravi, P.M.; Tripathi, R.M.

    2015-01-01

    A distinction should be made between persistence of total uranium (U) in soil and persistence of its bioavailable forms. As U age in soil, there is a change in bioavailability. The aging process is partially reversible if environmental parameters change, although a portion of the U ion will be securely entrapped in the soil particle lattice and not available to be re-solubilized. A study was carried out to reveals the impact of aging on chemical fractionation of U in amended soils from three different origin (Soil A: Metamorphic; Soil B: Sedimentary and Soil C: Ingenious basalt). For the study, 5g from each soil were amended with the 50 ml of water containing 100.0 mg/L of U in a falcon tube. After 7 days the supernatant was removed by centrifugation and the soil was allowed to air dry at room temperature

  4. Spatial Variability of Soil Morphorlogical and Physico- Chemical ...

    African Journals Online (AJOL)

    user

    The available moisture of soil was very low thus water holding capacity (WHC) and wilting point (WP) of the soil was ... with spatial distribution of soil properties and its effect on ... Pore size and root .... nutrient and have better stability. Thus.

  5. Yield performance of crops and soil chemical changes under ...

    African Journals Online (AJOL)

    USER

    2010-06-28

    Jun 28, 2010 ... of top soil, degradation in soil physical condition, dete- rioration of nutrient status and changes in the number and composition of soil organisms (Ayoub, .... Karate ® (Lambda – cyhalothrin) at the rate of 800 ml/ha. Spraying was commenced 5 weeks after planting at 1 week interval until full pod formation.

  6. Specific character of bacterial biodegradation of polyhydroxyalkanoates with different chemical structure in soil.

    Science.gov (United States)

    Prudnikova, S V; Vinogradova, O N; Trusova, M Y

    2017-03-01

    The study addresses the influence of the physicochemical properties of the reserve cellular macromolecules (polyhydroxyalkanoates, PHA) with different chemical composition on their biodegradation in the agro-transformed field soil of the Siberian region (Krasnoyarsk Territory, Russia). It was shown that the degradation of the PHA samples depends on the degree of polymer crystallinity (C x ). For the first time, it was shown that the range of PHA-degrading microorganisms differs for each of PHA types. The study defines the primary degraders specific to each PHA type and common to all types of examined polymers.

  7. Effect of Sewage Sludge on Some Macronutrients Concentration and Soil Chemical Properties

    Directory of Open Access Journals (Sweden)

    Sakine Vaseghi

    2005-03-01

    Full Text Available Sewage sludge as an organic fertilizer has economic benefits. Land application of sewage sludge improves some soil chemical and physical properties. The objective of this study was to evaluate the effect of sewage sludge on soil chemical properties and macronutrient concentration in acid and calcareous soils. The study was carried out in a greenhouse using factorial experiment design as completely randomized with three replications. Treatments included : four levels of 0 or control, 50, and 100, 200 ton ha-1 sludge and one level of chemical fertilizer (F consisting of 250 kg ha-1 diammonium phosphate and 250 kg ha-1 urea, and soil including soils of Langroud, Lahijan, Rasht, and Isfahan. As a major vegetable , crop spinach (Spinacea oleracea was grown in the treated soils. Soils samples were analyzed for their chemical properties after crop narvesting. Application of sewage sludge significantly increased plant available k, P, total N, organic matter, electrical conductivity and cation exchange in the soils. Soils pH significantly decreased as a result sewage sludge application. The effect of sewage sludge on plant yield was significant. Overall, the results indicated that sewage sludge is potentially a valuable fertilizer. However, the sludge effect on soil EC and heavy metals should be taken into consideration before its widespread use on cropland.

  8. Monitoring soil chemical and physical parameters under Douglas fir in the Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Konsten, C.J.M.; Tiktak, A.; Bouten, W.

    1987-01-01

    In march 1987 a monitoring program started in two Douglas fir stands of different vitality in the Netherlands. Aim of the study is to provide insight in the chemical and physical rooting conditions of the vegetation and to quantify the contributions of atmospheric deposition to soil acidification. The hydrological part of the monitoring progam consists of automated measurements of precipitation, throughfall, soil water pressure head and soil water content; in addition soil water content is determined by neutron sonde measurements and gravimetry. These data are used as input data for simulation models which calculate water fluxes through the vegetation and soil. For the soil chemical part of the program precipitation (bulk and wet-only), throughfall and litter fall are sampled. The soil solution is sampled by suction from porous cups and from porous plates by a new, continous technique. Combination of soil chemical and soil physical data will result in chemical fluxes through the vegetation and through various soil compartments. Element budgets for the ecosystem will also be calculated. The program forms part of an interdisciplinary monitoring project within the Dutch Priority Programme on Acidification. 2 figs., 1 tab., 19 refs.

  9. Effects of chemical oxidation on sorption and desorption of PAHs in typical Chinese soils

    International Nuclear Information System (INIS)

    Chen Wei; Hou Lei; Luo Xiaoli; Zhu Lingyan

    2009-01-01

    In situ chemical oxidation is a commonly applied soil and groundwater remediation technology, but can have significant effects on soil properties, which in turn might affect fate and transport of organic contaminants. In this study, it was found that oxidation treatment resulted mainly in breakdown of soil organic matter (SOM) components. Sorption of naphthalene and phenanthrene to the original soils and the KMnO 4 -treated soils was linear, indicating that hydrophobic partitioning to SOM was the predominant mechanism for sorption. Desorption from the original and treated soils was highly resistant, and was well modeled with a biphasic desorption model. Desorption of residual naphthalene after treating naphthalene-contaminated soils with different doses of KMnO 4 also followed the biphasic desorption model very well. It appears that neither changes of soil properties caused by chemical oxidation nor direct chemical oxidation of contaminated soils had a noticeable effect on the nature of PAH-SOM interactions. - Chemical oxidation of soils had little effect on the mechanisms controlling sorption and desorption of PAHs.

  10. Effects of Chemical Applications to Metal Polluted Soils on Cadmium Uptake by Rice Plant

    Directory of Open Access Journals (Sweden)

    Yoo J. H.

    2013-04-01

    Full Text Available Pot experiment using metal polluted soils was conducted to investigate the effects of lime, iron and sulfur on changes in Cd availability and uptake by rice plant. Drainage and irrigation of water were performed to develop redox changes like field cultivation. Iron chloride and sodium sulfate solutions were applied to the pots in the middle of growth period of rice plant. Reactive metal pool in heavily polluted soils was slightly decreased after treatments with lime, iron chloride, sodium sulfate and combination of these chemicals. However, cadmium uptake by rice plant was significantly different across the treatments and the extent of Cd pollution. For highly polluted soils, more Cd reduction was observed in iron chloride treatments. Cd content in polished rice for iron chloride and (iron chloride+organic matter treatments was only 16-23% and 25-37% compared to control and liming, respectively. Treatment of (iron chloride+sulfate rather increased Cd content in rice. For moderately polluted soils, Cd reduction rate was the order of (OM+iron chloride > iron chloride > lime. Other treatments including sulfate rather increased Cd content in rice maximum 3 times than control. It was proposed to determine the optimum application rate of iron for minimizing hazardous effect on rice plant.

  11. Effects of de-icing chemicals sodium chloride and potassium formate on cadmium solubility in a coarse mineral soil

    Energy Technology Data Exchange (ETDEWEB)

    Rasa, Kimmo [Department of Applied Chemistry and Microbiology, University of Helsinki, P.O. Box 27, FIN-00014, University of Helsinki (Finland)]. E-mail: kimmo.rasa@helsinki.fi; Peltovuori, Tommi [Department of Applied Chemistry and Microbiology, University of Helsinki, P.O. Box 27, FIN-00014, University of Helsinki (Finland); Hartikainen, Helinae [Department of Applied Chemistry and Microbiology, University of Helsinki, P.O. Box 27, FIN-00014, University of Helsinki (Finland)

    2006-08-01

    Excessive use of sodium chloride (NaCl) as de-icing chemical causes environmental problems, such as elevated chloride concentrations in groundwater. On vulnerable sites, this can be avoided by using alternative organic de-icing chemicals, such as potassium formate (KHCOO). The environmental impacts of KCHOO are, however, not well known. This study reports the potential effects of NaCl and KCHOO on mechanisms controlling the mobility of cadmium (Cd) in roadside soils as a result of vehicular traffic. Changes in the solubility of Cd in a coarse mineral soil treated with these two de-icing chemicals were studied in a 50-day incubation experiment under four different moisture and temperature combinations and an initial soil Cd concentration of 3 mg kg{sup -1}. After incubation, the distribution of soil Cd into different fractions was analyzed using a sequential extraction method. Soil pH and soil redox potential were recorded and the occurrence of Cd-Cl complexes in the soil was estimated using published stability constants. During incubation, KCHOO lowered the soil redox potential, but this was not accompanied by a decrease in the sorption capacity of oxides and the release of oxide-bound Cd into soil solution. On the other hand, elevated pH (from 4.3 to 6.7-8.5) in the formate treatments increased the sorption of Cd onto the oxide surfaces (up to 80% of total sorbed Cd). In the NaCl treatments, cation competition and formation of Cd-Cl complexes increased the water-soluble Cd fraction. Consequently, the amount of bioavailable Cd was 3.5 times smaller in the KCHOO than in the NaCl treatments.

  12. CHEMICAL SOIL ATTRIBUTES AS AFFECTED BY LIME AND GYPSUM SURFACE APPLICATION

    Directory of Open Access Journals (Sweden)

    A. Mantovani

    2017-10-01

    Full Text Available The gypsum is a soil condition end it has to function contribute to the elimination or reduction of aluminum in the soil in depth. Still, it can contribute to the distribution of nutrients in the soil profile more uniformly and thus increasing the productivity of crops. This study aimed to evaluate the influence of gypsum application, with and without lime, on soil chemical properties and soybean yield, in a no-till system. The experiment was carried in Campos Novos, Santa Catarina State, Brazil, with a randomized block design and split plot design with four replications, the main portion was distributed gypsum doses (1000, 2000, 4000 and 6000 kg ha-1 without incorporation, and the split plot (with and without lime and the liming was 2,000 kg ha-1. We evaluated the performance of components and productivity of soybeans. It was also analyzed the soil pH and Ca, Mg, S and Al at 0-20 and 20-40 cm. The application of gypsum at the rates tested surface with and without lime did not affect the yield components and soybean productivity. At 0-20 cm soil depth lime application increased soil pH by 0.3 units on the average rates of gypsum, but in the 20-40 cm layer was not found effect of lime and gypsum in pH ground due to the short time between application and evaluation. In areas with and without lime contents of Ca and S in the two layers evaluated increased with increasing rates of gypsum, since Mg has difference with the lime application on a 0-20 cm to dose 4000 kg ha-1 and the lime in the gypsum rates and Al decreased with increasing dose gypsum average in the 20-40 cm layer depth. The application of gypsum and limestone softened the negative effects of soil acidity and the increase mainly of calcium and sulfur at 0-20 cm, with less efficient effects in the 20-40 cm layer due to the soil is clayey and the period between the implementation and evaluation be 120 days.

  13. Regulation of strontium migration and translocation in chemical reclamation of acid soils

    International Nuclear Information System (INIS)

    Velichko, V.A.; Okonskij, A.I.; Shestakov, E.I.; Panov, N.P.

    1993-01-01

    Results of chemical testing are presented of the local reclamants (ashes of various deposits and ferrochromium plant slags) to study the possibilities of their use for chemical soil reclamation. Attention was paid to the investigation of pollutant (strontium) behaviour in the reclamant-acid soil-plant-ground water system. Tracer method was used, 85 Sr was applied as a label. Prospects of zeolite application to control the strontium behaviour following the reclamant introduction into soil were considered. It was shown that zeolite application permitted to regulate strontium behaviour in the reclamant-soil-plant-ground water system. At that the modified zeolites possessing high Sr selectivity are recommended for application

  14. Kinetics of heterogeneous chemical reactions: a theoretical model for the accumulation of pesticides in soil.

    Science.gov (United States)

    Lin, S H; Sahai, R; Eyring, H

    1971-04-01

    A theoretical model for the accumulation of pesticides in soil has been proposed and discussed from the viewpoint of heterogeneous reaction kinetics with a basic aim to understand the complex nature of soil processes relating to the environmental pollution. In the bulk of soil, the pesticide disappears by diffusion and a chemical reaction; the rate processes considered on the surface of soil are diffusion, chemical reaction, vaporization, and regular pesticide application. The differential equations involved have been solved analytically by the Laplace-transform method.

  15. Visualising the equilibrium distribution and mobility of organic contaminants in soil using the chemical partitioning space.

    Science.gov (United States)

    Wong, Fiona; Wania, Frank

    2011-06-01

    Assessing the behaviour of organic chemicals in soil is a complex task as it is governed by the physical chemical properties of the chemicals, the characteristics of the soil as well as the ambient conditions of the environment. The chemical partitioning space, defined by the air-water partition coefficient (K(AW)) and the soil organic carbon-water partition coefficient (K(OC)), was employed to visualize the equilibrium distribution of organic contaminants between the air-filled pores, the pore water and the solid phases of the bulk soil and the relative importance of the three transport processes removing contaminants from soil (evaporation, leaching and particle erosion). The partitioning properties of twenty neutral organic chemicals (i.e. herbicides, pharmaceuticals, polychlorinated biphenyls and volatile chemicals) were estimated using poly-parameter linear free energy relationships and superimposed onto these maps. This allows instantaneous estimation of the equilibrium phase distribution and mobility of neutral organic chemicals in soil. Although there is a link between the major phase and the dominant transport process, such that chemicals found in air-filled pore space are subject to evaporation, those in water-filled pore space undergo leaching and those in the sorbed phase are associated with particle erosion, the partitioning coefficient thresholds for distribution and mobility can often deviate by many orders of magnitude. In particular, even a small fraction of chemical in pore water or pore air allows for evaporation and leaching to dominate over solid phase transport. Multiple maps that represent soils that differ in the amount and type of soil organic matter, water saturation, temperature, depth of surface soil horizon, and mineral matters were evaluated.

  16. Chemical and mineralogical characterization of iron concretions of some Brazilian soils

    International Nuclear Information System (INIS)

    Soares, M.F.

    1980-01-01

    Chemical and physical analyses of concretionary materials were carried out, with the purpose of getting chemical and mineralogical characteristics of concretions found in some Brazilian soils in different ecosystems spectrophotometry was used for the chemical characterization, and x-ray diffraction and Moessbauer spectroscopy for the mineralogical characterization of the materials studied. (A.R.H.) [pt

  17. White popular (Populus alba L.) - Litter impact on chemical and biochemical parameters related to nitrogen cycle in contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Ciadamidaro, L.; Madejon, P.; Cabrera, F.; Madejon, E.

    2014-06-01

    Aim of study: The aim of this study was to determine the effect of litter from Populus alba on chemical and biochemical properties related to the N cycle in soils with different pH values and trace element contents. We hypothesized that this litter would influence several parameters related to the N cycle and consequently to soil health. Area of study: we collected two reforested contaminated soils of different pH values (AZ pH 7.23 and DO pH 2.66) and a non-contaminated soil (RHU pH 7.19). Materials and methods: Soil samples were placed in 2,000 cm{sup 3} microcosms and were incubated for 40 weeks in controlled conditions. Each soil was mixed with its corresponding litter, and soils without litter were also tested for comparison. Ammonium (NH{sub 4}{sup 4}+-N) and nitrate (NO{sub 3}{sup -} -N) content, potential nitrification rate (PNR), microbial biomass nitrogen (MBN), protease activity, and several chemical properties such as pH, available trace element concentrations (extracted with 0.01 M CaCl{sub 2}) were determined at different times of incubation. Main results: Values of available trace elements did not vary during the incubation and were always higher in acid soil. In neutral soils litter presence increased values of Kjeldahl-N, NO{sub 3} –-N content, potential nitrification rate (PNR), microbial biomass nitrogen (MBN) and protease activity. Presence of trace elements in neutral soils did not alter the parameters studied. However, acidic pH and high content of available trace elements strongly affected NH{sub 4}{sup +}-N and NO{sub 3}{sup -} -N, microbial biomass N and protease activity. Research highlights: Our results showed the negative effect of the acidity and trace element availability in parameters related with the N-cycle. (Author)

  18. Changes in soil chemical properties as affected by pyrogenic organic matter amendment with different intensity and frequency

    NARCIS (Netherlands)

    Wang, Ruzhen; Zhang, Yulan; Cerda Bolinches, Artemio; Cao, Mingming; Zhang, Yongyong; Yin, Jinfei; Jiang, Yong; Chen, Lijun

    2017-01-01

    Pyrogenic organic matter (PyOM) has long been used as a soil amendment to improve soil physicochemical properties. However, few studies simultaneously investigated both intensities and frequencies of PyOM addition on soil chemical properties of soil base cations, soil pH buffering capacity (pHBC),

  19. METHOD FOR THE ESTIMATION OF SOIL VULNERABILITY AT THE CHEMICAL AGENTS IMPACT

    Directory of Open Access Journals (Sweden)

    Radu Lacatusu

    2006-10-01

    Full Text Available The negative effect induced to the soil by any impact, commonly chemical impact, defining the soil vulnerability to this impulse. To put in equation this soil characteristic, were chosen these physical and chemical indicators which determining the phenomenon intensity and its evolution direction, as: texture, pH (soil reaction, organic matter content, carbonates content and ion exchange capacity. Each of these indicators was divided into five classes, depending on the content in elements and/or chemical substances that defining any indicator, the specific indicator size, and on the direction and intensity of process generated by impact. Every of these five classes have been got marks from one to five according to soil capacity to putting up resistance to modification induced by impact. One mark reflecting the lowest impact resistance and five mark the highest ones. By summing of characteristic marks for each class resulted a scale from 5 to 25. According to this scale we could have very high soil vulnerability with only 5 points, and an invulnerable soil with 25 points. Analytical data of all these five physics and chemical indicators, determined for a specific territory, could be framing in vulnerability scale according to the presented methodology. This methodology permit to realize maps of the specific territories for soils vulnerability to impact of any nature chemical agents.

  20. Chemical and biological attributes of a lowland soil affected by land leveling

    Directory of Open Access Journals (Sweden)

    José Maria Barbat Parfitt

    2013-11-01

    Full Text Available The objective of this work was to evaluate the relationship between soil chemical and biological attributes and the magnitude of cuts and fills after the land leveling process of a lowland soil. Soil samples were collected from the 0 - 0.20 m layer, before and after leveling, on a 100 point grid established in the experimental area, to evaluate chemical attributes and soil microbial biomass carbon (MBC. Leveling operations altered the magnitude of soil chemical and biological attributes. Values of Ca, Mg, S, cation exchange capacity, Mn, P, Zn, and soil organic matter (SOM decreased in the soil profile, whereas Al, K, and MBC increased after leveling. Land leveling decreased in 20% SOM average content in the 0 - 0.20 m layer. The great majority of the chemical attributes did not show relations between their values and the magnitude of cuts and fills. The relation was quadratic for SOM, P, and total N, and was linear for K, showing a positive slope and indicating increase in the magnitude of these attributes in cut areas and stability in fill areas. The relationships between these chemical attributes and the magnitude of cuts and fills indicate that the land leveling map may be a useful tool for degraded soil recuperation through amendments and organic fertilizers.

  1. Chemical extraction to assess the bioavailability of chlorobenzenes in soil with different aging periods

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yang; Wang, Fang; Yang, Xinglun; Liu, Cuiying; Jin, Xin; Jiang, Xin [Chinese Academy of Sciences, Nanjing (China). State Key Lab. of Soil and Sustainable Agriculture; Kengara, Fredrick Orori [Maseno Univ. (Kenya). Dept. of Chemistry

    2011-12-15

    Bioavailability is mainly influenced by aging and desorption of contaminants in soil. The purpose of this study was to investigate the desorption kinetics of chlorobenzenes (CBs) in soil and to investigate whether chemical extractions are suitable for the bioavailability assessment of CBs in soil. A soil spiked with CBs and aged for different periods was extracted with Tenax, hydroxypropyl-{beta}-cyclodextrin (HPCD), and butanol to assess the bioavailability of CBs in soil, respectively. Earthworm (Eisenia foetida) accumulation was used as bioassay in parallel experiments to evaluate the chemical extractions. The results showed that desorption of CBs from soil with consecutive Tenax extraction fitted into triphasic kinetics model. Different chemical methods extracted different amounts of CBs over different aging periods. For hexachlorobenzene (HCB), the extraction efficiency was in the order of butanol > Tenax-6h > HPCD extraction, while the order of butanol > HPCD > Tenax-6h extraction for pentachlorobenzene (PeCB). The bioaccumulation by earthworm decreased with increasing aging period and was significantly higher for HCB than for PeCB (p < 0.05). Earthworm accumulated CBs correlated well with all the three chemical extracted CBs. However, HPCD extraction showed the converse extraction tendency with earthworm uptake of CBs. Chemical extraction could be used to assess the bioavailability of contaminants in soil; however, they were method and compound specific. Tenax and butanol extractions were more reliable than HPCD extraction for bioavailability assessment of the tested CBs and the soil used since they showed the consistent extraction tendency with earthworm uptake of CBs.

  2. Leachability of 226Ra from spiked soil as a function of time

    International Nuclear Information System (INIS)

    Deming, E.J.

    1983-01-01

    The bioavailability of 226 Ra for plant uptake may be dependent on its solubility from the soil components. Solubility of radium from soil may change with time due to chemical and physical binding. A laboratory study was designed to provide data on the water leachable fraction of 226 Ra from spiked soil as a function of time. A decreasing trend in the percent leachable fraction was observed over time. The data was modeled by non-linear regression to be a decreasing exponential to a constant value. This information may be helpful in providing an understanding of a similar trend observed in plant uptake studies. The value for the available amount of radium determined in this investigation may help to provide a more meaningful measurement of concentration ratios in plants. 22 references, 3 figures, 5 tables

  3. Theory study of global density influence and soils chemical composition at neutron probes response

    International Nuclear Information System (INIS)

    Crispino, M.L.

    1980-06-01

    Three energy group diffusion theory is applied to calculate the thermal neutron flux through a soil-water mixture at the neutron source. The soils studies are taken from two horizons of different composition, of a representative soil of the Litoral-Mata Zone of Pernambuco State. The thermal flux is obtained taking into consideration increasing values of the water volume percent, H, and the bulk density of the soil. The cross-sections of the mixture are calculated from the chemical composition of the soils. (author)

  4. [Heidaigou Opencast Coal Mine: Soil Enzyme Activities and Soil Physical and Chemical Properties Under Different Vegetation Restoration].

    Science.gov (United States)

    Fang, Ying; Ma, Ren-tian; An, Shao-shan; Zhao, Jun-feng; Xiao, Li

    2016-03-15

    Choosing the soils under different vegetation recovery of Heidaigou dump as the research objects, we mainly analyzed their basic physical and chemical properties and enzyme activities with the method of Analysis of Variance as well as their relations using Pearson correlation analysis and path analysis hoping to uncover the driving factors of the differences between soil enzyme activities under different vegetation restoration, and provide scientific suggestions for the plant selection as well as make a better evaluation to the reclamation effect. The results showed that: (1) Although the artificial vegetation restoration improved the basic physical and chemical properties of the soils while increasing their enzyme activities to a certain extent, the soil conditions still did not reach the level of the natural grassland; (2) Contents of soil organic carbon (SOC) and soil total nitrogen (TN) of the seabuckthorns were the nearest to those of the grassland, which reached 54. 22% and 70. 00% of those of the grassland. In addition, the soil bulk density of the seabuckthorns stand was 17. 09% lower than the maximum value of the amorpha fruitcosa land. The SOC and TN contents as well as the bulk density showed that seabuckthorns had advantages as the species for land reclamation of this dump; Compared with the seabuckthorn, the pure poplar forest had lower contents of SOC and TN respectively by 35.64% and 32.14% and displayed a 16.79% higher value of soil bulk density; (3) The activities of alkaline phosphotase under different types of vegetation rehabilitation had little variation. But soil urease activities was more sensitive to reflect the effects of vegetation restoration on soil properties; (4) Elevation of the SOC and TN turned out to be the main cause for soil fertility restoration and increased biological activities of the dump.

  5. Comparison of the effectiveness of soil heating prior or during in situ chemical oxidation (ISCO) of aged PAH-contaminated soils.

    Science.gov (United States)

    Ranc, Bérénice; Faure, Pierre; Croze, Véronique; Lorgeoux, Catherine; Simonnot, Marie-Odile

    2017-04-01

    Thermal treatments prior or during chemical oxidation of aged polycyclic aromatic hydrocarbon (PAH)-contaminated soils have already shown their ability to increase oxidation effectiveness. However, they were never compared on the same soil. Furthermore, oxygenated polycyclic aromatic hydrocarbons (O-PACs), by-products of PAH oxidation which may be more toxic and mobile than the parent PAHs, were very little monitored. In this study, two aged PAH-contaminated soils were heated prior (60 or 90 °C under Ar for 1 week) or during oxidation (60 °C for 1 week) with permanganate and persulfate, and 11 O-PACs were monitored in addition to the 16 US Environmental Protection Agency (US EPA) PAHs. Oxidant doses were based on the stoichiometric oxidant demand of the extractable organic fraction of soils by using organic solvents, which is more representative of the actual contamination than only the 16 US EPA PAHs. Higher temperatures actually resulted in more pollutant degradation. Two treatments were about three times more effective than the others: soil heating to 60 °C during persulfate oxidation and soil preheating to 90 °C followed by permanganate oxidation. The results of this study showed that persulfate effectiveness was largely due to its thermal activation, whereas permanganate was more sensitive to PAH availability than persulfate. The technical feasibility of these two treatments will soon be field-tested in the unsaturated zone of one of the studied aged PAH-contaminated soils.

  6. Chemical and bioanalytical characterisation of PAHs in risk assessment of remediated PAH-contaminated soils.

    Science.gov (United States)

    Larsson, Maria; Hagberg, Jessika; Rotander, Anna; van Bavel, Bert; Engwall, Magnus

    2013-12-01

    Polycyclic aromatic hydrocarbons (PAHs) are common contaminants in soil at former industrial areas; and in Sweden, some of the most contaminated sites are being remediated. Generic guideline values for soil use after so-called successful remediation actions of PAH-contaminated soil are based on the 16 EPA priority pollutants, which only constitute a small part of the complex cocktail of toxicants in many contaminated soils. The aim of the study was to elucidate if the actual toxicological risks of soil samples from successful remediation projects could be reflected by chemical determination of these PAHs. We compared chemical analysis (GC-MS) and bioassay analysis (H4IIE-luc) of a number of remediated PAH-contaminated soils. The H4IIE-luc bioassay is an aryl hydrocarbon (Ah) receptor-based assay that detects compounds that activate the Ah receptor, one important mechanism for PAH toxicity. Comparison of the results showed that the bioassay-determined toxicity in the remediated soil samples could only be explained to a minor extent by the concentrations of the 16 priority PAHs. The current risk assessment method for PAH-contaminated soil in use in Sweden along with other countries, based on chemical analysis of selected PAHs, is missing toxicologically relevant PAHs and other similar substances. It is therefore reasonable to include bioassays in risk assessment and in the classification of remediated PAH-contaminated soils. This could minimise environmental and human health risks and enable greater safety in subsequent reuse of remediated soils.

  7. Soil Carbon in the Time of Climate Change

    Science.gov (United States)

    Amundson, R.

    2017-12-01

    The Earth is in the midst of human induced climate change driven by the emission of greenhouse gases largely through fossil fuels and land conversion. Drastically and rapidly reducing the net emissions are critical to avoid societally disruptive climate changes by the end of the Century. In the midst of this change are soils, that have a vast store of C and for a given change in conditions, can either rapidly add or remove C from the atmosphere. Mainstream soil and agricultural science has focused on the former for nearly two decades, conducting research and estimates of the potential global C sequestration potential of soils due to changed land management. This has culminated with the French 4 per mille initiative. While it is possible that in some countries, at some times, economic or political forces may drive farming practices one way or another, the estimated requirement that 30 to 70% of all farms on Earth adopt the best practices needed to achieve this goal is simply unrealistic. In addition, it diverts attention and resources from much more viable alternatives, and is clouding the growing need for climate adaption strategies that soil and environmental science will need to provide. Soil C sequestration will never be a significant "bridge" to C-free energy during the next few decades, which is the time frame of critical importance. Most likely, soil will be part of the CO2 sources. Few agricultural sequestration studies explicitly consider the positive feedback between soil C and temperature, and on-going loss of soil C to the atmosphere. Truly comprehensive studies of the combined management vs. climate feedback effects on soil C are few, but tend to conclude that even managed soils will continue to be a net source of CO2 this century. Only by reducing fossil fuel C emissions will we successfully, and in a time frame required by the Earth's climate system, contend with the greenhouse gas issue. Better soil C management is unlikely to slow or hold off

  8. Chemical dynamics of acidity and heavy metals in a mine water-polluted soil during decontamination using clean water.

    Science.gov (United States)

    Chen, A; Lin, C; Lu, W; Ma, Y; Bai, Y; Chen, H; Li, J

    2010-03-15

    A column leaching experiment was conducted to investigate the chemical dynamics of the percolating water and washed soil during decontamination of an acidic mine water-polluted soil. The results show that leaching of the contaminated soil with clean water rapidly reduced soluble acidity and ion concentrations in the soils. However, only soil column was eliminated after 30 leaching cycles. It is likely that the stored acidity continues to be released to the percolating water over a long period of time. During the column leaching, dissolved Cu and Pb were rapidly leached out, followed by mobilization of colloidal Cu and Pb from the exchangeable and the oxide-bound fractions as a result of reduced ionic strength in the soil solution. The soluble Fe contained in the soil was rare, probably because the soil pH was not sufficiently low; marked mobility of colloidal Fe took place after the ionic strength of the percolating water was weakened and the mobilized Fe was mainly derived from iron oxides. In contrast with Cu, Pb and Fe, the concentration of leachate Zn and Mn showed a continuously decreasing trend during the entire period of the experiment. (c) 2009 Elsevier B.V. All rights reserved.

  9. Do chemical gradients within soil aggregates reflect plant/soil interactions?

    Science.gov (United States)

    Krüger, Jaane; Hallas, Till; Kinsch, Lena; Stahr, Simon; Prietzel, Jörg; Lang, Friederike

    2016-04-01

    As roots and hyphae often accumulate at the surface of soil aggregates, their formation and turnover might be related to the bioavailability especially of immobile nutrients like phosphorus. Several methods have been developed to obtain specific samples from aggregate surfaces and aggregate cores and thus to investigate differences between aggregate shell and core. However, these methods are often complex and time-consuming; therefore most common methods of soil analysis neglect the distribution of nutrients within aggregates and yield bulk soil concentrations. We developed a new sequential aggregate peeling method to analyze the distribution of different nutrients within soil aggregates (4-20 mm) from four forest sites (Germany) differing in concentrations of easily available mineral P. Aggregates from three soil depths (Ah, BwAh, Bw) were isolated, air-dried, and peeled with a sieving machine performing four sieving levels with increasing sieving intensity. This procedure was repeated in quadruplicate, and fractions of the same sample and sieving level were pooled. Carbon and N concentration, citric acid-extractable PO4 and P, as well as total element concentrations (P, K, Mg, Ca, Al, Fe) were analyzed. Additionally, synchrotron-based P K-edge XANES spectroscopy was applied on selected samples to detect P speciation changes within the aggregates. The results reveal for most samples a significantly higher C and N concentration at the surface compared to the interior of the aggregates. Carbon and N gradients get more pronounced with increasing soil depth and decreasing P status of study sites. This might be explained by lower aggregate turnover rates of subsoil horizons and intense bioturbation on P-rich sites. This assumption is also confirmed by concentrations of citric acid-extractable PO4 and P: gradients within aggregates are getting more pronounced with increasing soil depth and decreasing P status. However, the direction of these gradients is site

  10. Soil, land use time, and sustainable intensification of agriculture in the Brazilian Cerrado region.

    Science.gov (United States)

    Trabaquini, Kleber; Galvão, Lênio Soares; Formaggio, Antonio Roberto; de Aragão, Luiz Eduardo Oliveira E Cruz

    2017-02-01

    The Brazilian Cerrado area is in rapid decline because of the expansion of modern agriculture. In this study, we used extensive field data and a 30-year chronosequence of Landsat images (1980-2010) to assess the effects of time since conversion of Cerrado into agriculture upon soil chemical attributes and soybean/corn yield in the Alto do Rio Verde watershed. We determined the rates of vegetation conversion into agriculture, the agricultural land use time since conversion, and the temporal changes in topsoil (0-20 cm soil depth) and subsurface (20-40 cm) chemical attributes of the soils. In addition, we investigated possible associations between fertilization/over-fertilization and land use history detected from the satellites. The results showed that 61.8% of the native vegetation in the Alto do Rio Verde watershed was already converted into agriculture with 31% of soils being used in agriculture for more than 30 years. While other fertilizers in cultivated soils (e.g., Ca +2 , Mg +2 , and P) have been compensated over time by soil management practices to keep crop yield high, large reductions in C org (38%) and N tot (29%) were observed in old cultivated areas. Furthermore, soybean and cornfields having more than 10 years of farming presented higher values of P and Mg +2 than the ideal levels necessary for plant development. Therefore, increased risks of over-fertilization of the soils and environmental contamination with these macronutrients were associated with soybean and cornfields having more than 10 years of farming, especially those with more than 30 years of agricultural land use.

  11. Estimation of Corn Yield and Soil Nitrogen via Soil Electrical Conductivity Measurement Treated with Organic, Chemical and Biological Fertilizers

    Directory of Open Access Journals (Sweden)

    H. Khalilzade

    2016-02-01

    Full Text Available Introduction Around the world maize is the second crop with the most cultivated areas and amount of production, so as the most important strategic crop, have a special situation in policies, decision making, resources and inputs allocation. On the other side, negative environmental consequences of intensive consumption of agrochemicals resulted to change view concerning food production. One of the most important visions is sustainable production of enough food plus attention to social, economic and environmental aspects. Many researchers stated that the first step to achieve this goal is optimization and improvement of resources use efficiencies. According to little knowledge on relation between soil electrical conductivity and yield of maize, beside the environmental concerns about nitrogen consumption and need to replace chemical nitrogen by ecological inputs, this study designed and aimed to evaluate agroecological characteristics of corn and some soil characteristics as affected by application of organic and biological fertilizers under field conditions. Materials and Methods In order to probing the possibility of grain yield and soil nitrogen estimation via measurement of soil properties, a field experiment was conducted during growing season 2010 at Research Station, Ferdowsi University of Mashhad, Iran. A randomized complete block design (RCBD with three replications was used. Treatments included: 1- manure (30 ton ha-1, 2-vermicompost (10 ton ha-1, 3- nitroxin (containing Azotobacter sp. and Azospirillum sp., inoculation was done according to Kennedy et al., 4- nitrogen as urea (400 kg ha-1 and 5- control (without fertilizer. Studied traits were soil pH, soil EC, soil respiration rate, N content of soil and maize yield. Soil respiration rate was measured using equation 1: CO2= (V0- V× N×22 Equation 1 In which V0 is the volume of consumed acid for control treatment titration, V is of the volume of consumed acid for sample treatment

  12. Chemical Alterations of Pb using Flue Gas Desulfurization Gypsum (FGDG) in two contaminated soils

    Data.gov (United States)

    U.S. Environmental Protection Agency — The data include chemical composition of Pb contaminated soils by adding FGDG as an amendment. The data shows the changes in Pb speciation to sulfur based minerals....

  13. Short term recovery of soil physical, chemical, micro- and mesobiological functions in a new vineyard under organic farming

    Science.gov (United States)

    Costantini, E. A. C.; Agnelli, A. E.; Fabiani, A.; Gagnarli, E.; Mocali, S.; Priori, S.; Simoni, S.; Valboa, G.

    2014-12-01

    Deep earthwork activities carried out before vineyard plantation can severely upset soil profile properties. As a result, soil features in the root environment are often much more similar to those of the underlying substratum than those of the original profile. The time needed to recover the original soil functions is ecologically relevant and may strongly affect vine phenology and grape yield, particularly under organic viticulture. The general aim of this work was to investigate soil resilience after vineyard pre-planting earthworks. In particular, an old and a new vineyard, established on the same soil type, were compared over a five year period for soil chemical, physical, micro and mesobiological properties. The investigated vineyards (Vitis vinifera L., cv. Sangiovese) were located in the Chianti Classico district (Central Italy), on stony and calcareous soils and were not irrigated. The older vineyard was planted in 2000, after slope reshaping by bulldozing and back hoe ploughing down to about 0.8-1.0 m. The new vineyard was planted in 2011, after equivalent earthwork practices carried out in the summer of 2009. Both vineyards were organically managed and fertilized only with compost every autumn (1000 kg ha-1 per year). The new vineyard was cultivated by periodic tillage, while the old vineyard was managed with alternating grass-covered and tilled inter-rows. Soil samples were collected at 0-15 cm depth from the same plots of the new and old vineyards, during the springtime from 2010 to 2014. The old vineyard was sampled in both the tilled and the grass-covered swaths. According to the results from physical and chemical analyses, the new vineyard, during the whole 2010-2014 period, showed lower TOC, N, C/N and EC values, along with higher silt and total CaCO3 contents than the old vineyard, suggesting still evolving equilibrium conditions. The microarthropod analysis showed significantly different abundances and communities' structures, in relation to both

  14. Some Sensitivity Studies of Chemical Transport Simulated in Models of the Soil-Plant-Litter System

    Energy Technology Data Exchange (ETDEWEB)

    Begovich, C.L.

    2002-10-28

    Fifteen parameters in a set of five coupled models describing carbon, water, and chemical dynamics in the soil-plant-litter system were varied in a sensitivity analysis of model response. Results are presented for chemical distribution in the components of soil, plants, and litter along with selected responses of biomass, internal chemical transport (xylem and phloem pathways), and chemical uptake. Response and sensitivity coefficients are presented for up to 102 model outputs in an appendix. Two soil properties (chemical distribution coefficient and chemical solubility) and three plant properties (leaf chemical permeability, cuticle thickness, and root chemical conductivity) had the greatest influence on chemical transport in the soil-plant-litter system under the conditions examined. Pollutant gas uptake (SO{sub 2}) increased with change in plant properties that increased plant growth. Heavy metal dynamics in litter responded to plant properties (phloem resistance, respiration characteristics) which induced changes in the chemical cycling to the litter system. Some of the SO{sub 2} and heavy metal responses were not expected but became apparent through the modeling analysis.

  15. Topographic imprint on chemical weathering in deeply weathered soil-mantled landscapes (southern Brazil)

    Science.gov (United States)

    Vanacker, Veerle; Schoonejans, Jerome; Ameijeiras-Marino, Yolanda; Opfergelt, Sophie; Minella, Jean

    2017-04-01

    The regolith mantle is defined as the thin layer of unconsolidated material overlaying bedrock that contributes to shape the Earth's surface. The development of the regolith mantle in a landscape is the result of in-situ weathering, atmospheric input and downhill transport of weathering products. Bedrock weathering - the physical and chemical transformations of rock to soil - contributes to the vertical development of the regolith layer through downward propagation of the weathering front. Lateral transport of soil particles, aggregates and solutes by diffusive and concentrated particle and solute fluxes result in lateral redistribution of weathering products over the hillslope. In this study, we aim to expand the empirical basis on long-term soil evolution at the landscape scale through a detailed study of soil weathering in subtropical soils. Spatial variability in chemical mass fluxes and weathering intensity were studied along two toposequences with similar climate, lithology and vegetation but different slope morphology. This allowed us to isolate the topographic imprint on chemical weathering and soil development. The toposequences have convexo-concave slope morphology, and eight regolith profiles were analysed involving the flat upslope, steep midslope and flat toeslope part. Our data show a clear topographic imprint on soil development. Along hillslope, the chemical weathering intensity of the regolith profiles increases with distance from the crest. In contrast to the upslope positions, the soils in the basal concavities develop on in-situ and transported regolith. While the chemical weathering extent on the slope convexities (the upslope profiles) is similar for the steep and gentle toposequence, there is a clear difference in the rate of increase of the chemical weathering extent with distance from the crest. The increase of chemical weathering extent along hillslope is highest for the steep toposequence, suggesting that topography enhances soil particle

  16. Effect of animal manures on selected soil chemical properties (1 ...

    African Journals Online (AJOL)

    The effects of animal manures on selected soil properties were studied in the laboratory. Manures of Rabbit (RBM), Swine (SWM), Poultry (POM), Goat, (GTM) and Cow (COM) were added at 10, 20, 30 and 40 t/ha to an acidic Ultisol. The amended soils were incubated at 70% water holding capacity for 3 weeks.

  17. evaluation of physico-chemical parameters of agricultural soils

    African Journals Online (AJOL)

    Benlkhoubi N, Saber S, Lebkiri A, Rifi El and Fahime El

    2016-05-01

    May 1, 2016 ... analysis of source plasma emission (ICP) has identified eight trace elements ... that the interaction between the different physicochemical .... mineral soil), following the low organic matter of the studied soils where .... Copper, Zinc, Arsenic, Lead, Cadmium and Nickel ) developed at the media, were read in.

  18. Chemical, physical and biological characteristics of urban soils. Chapter 7

    Science.gov (United States)

    Richard V. Pouyat; Katalin Szlavecz; Ian D. Yesilonis; Peter M. Groffman; Kirsten. Schwarz

    2010-01-01

    Urban soils provide an array of ecosystem services to inhabitants of cities and towns. Urbanization affects soils and their capacity to provide ecosystem services directly through disturbance and management (e.g., irrigation) and indirectly through changes in the environment (e.g., heat island effect and pollution). Both direct and indirect effects contribute to form a...

  19. Analysis of soil chemical parameters of an uncleaned crude oil spill ...

    African Journals Online (AJOL)

    Analysis of soil chemical parameters of an uncleaned crude oil spill site at Biara was carried out. Soil samples were collected at 0 -15 cm and 15 – 30 cm soil depths from both polluted and unpolluted sites for analysis. Significant increase in high total hydrocarbon content (1015±80.5 – 1150±90.1 mg/kg) in polluted site was ...

  20. Soil physical and chemical properties of cacao farms in the south western region of cameroon

    Science.gov (United States)

    The low macro nutrient content (K, Ca and Mg) in soils under cacao is one of the major causes of the poor cacao (Theobroma cacao L) yields. Efforts were made to assess the major physical and chemical properties of soils from some important cacao zones of the South West Region of Cameroon in order t...

  1. Chemical indicators of cryoturbation and microbial processing throughout an alaskan permafrost soil depth profile

    Science.gov (United States)

    Although permafrost soils contain vast stores of carbon, we know relatively little about the chemical composition of their constituent organic matter. Soil organic matter chemistry is an important predictor of decomposition rates, especially in the initial stages of decomposition. Permafrost, organi...

  2. The Effect of Rubber Effluent on some Chemical Properties of Soil ...

    African Journals Online (AJOL)

    A preliminary pot trial was conducted in a greenhouse to determine the effects of rubber effluent on some soil chemical properties as well as early growth and nutrient uptake by maize plant. The levels of rubber effluent used were 0, 50, 100, 150, 200, 250 ml per 2 kg soil. The trial was arranged in a completely randomized ...

  3. The Effects of Rubber Effluent on Some Chemical Properties of Soil ...

    African Journals Online (AJOL)

    A preliminary pot trial was conducted in a greenhouse to determine the effects of rubber effluent on some soil chemical properties as well as growth and nutrient uptake by maize plant. The levels of rubber effluent used were 0, 50, 100, 150, 200, 250 ml per 2 kg soil. The trial was organized in a completely randomized ...

  4. Validation and refinement of chemical stabilization procedures for pavement subgrade soils in Oklahoma : volume I.

    Science.gov (United States)

    2011-07-01

    Additions of byproduct chemicals, such as fly ash or cement kiln dust, have been shown to increase the unconfined compression strength (UCS) of soils. To be considered effective, the soil must exhibit a strength increase of at least 50 psi. Many curr...

  5. Chemical and microbial properties in contaminated soils around a magnesite mine in northeast China

    Science.gov (United States)

    D Yang; D-H Zeng; J Zhang; L-J Li; R. Mao

    2012-01-01

    We measured soil chemical and microbial properties at a depth of 0–20 cm among mine tailings, abandoned mined land, contaminated cropland, and uncontaminated cropland around a magnesite mine near Haicheng City, Liaoning Province, China. The objective was to clarify the impact of Mg on the soils. We found that soluble Mg2+ concentration and pH...

  6. Soil chemical properties and legume-cereal rotation benefits in an ...

    African Journals Online (AJOL)

    This research was conducted at the Department of Soil Science, University of Nigeria Teaching and Research Farm in 2008 and 2009 growing seasons. The objective was to evaluate the effects of edible grain legumes (cowpea and soybean) and velvet-bean/maize rotations on soil chemical properties and the contribution ...

  7. Soil chemical and physical properties that differentiate urban land-use and cover types

    Science.gov (United States)

    R.V. Pouyat; I.D. Yesilonis; J. Russell-Anelli; N.K. Neerchal

    2007-01-01

    We investigated the effects of land use and cover and surface geology on soil properties in Baltimore, MD, with the objectives to: (i) measure the physical and chemical properties of surface soils (0?10 cm) by land use and cover; and (ii) ascertain whether land use and cover explain differences in these properties relative to surface geology. Mean and median values of...

  8. Chemical and physical soil attributes in integrated crop-livestock system under no-tillage

    OpenAIRE

    Silva,Hernani Alves da; Moraes,Anibal de; Carvalho,Paulo César de Faccio; Fonseca,Adriel Ferreira da; Caires,Eduardo Fávero; Dias,Carlos Tadeu dos Santos

    2014-01-01

    Although integrated crop-livestock system (ICLS) under no-tillage (NT) is an attractive practice for intensify agricultural production, little regional information is available on the effects of animal grazing and trampling, particularly dairy heifers, on the soil chemical and physical attributes. The objective of this study was to evaluate the effects of animal grazing on the chemical and physical attributes of the soil after 21 months of ICLS under NT in a succession of annual winter pastur...

  9. Impacts of fire, fire-fighting chemicals and post-fire stabilization techniques on the soil-plant system

    OpenAIRE

    Fernández Fernández, María

    2017-01-01

    Forest fires, as well as fire-fighting chemicals, greatly affect the soil-plant system causing vegetation loss, alterations of soil properties and nutrient losses through volatilization, leaching and erosion. Soil recovery after fires depends on the regeneration of the vegetation cover, which protects the soil and prevents erosion. Fire-fighting chemicals contain compounds potentially toxic for plants and soil organisms, and thus their use might hamper the regeneration of burnt ecosystems. In...

  10. PHYSICAL AND CHEMICAL DEGRADATION OF AGRICULTURAL SOILS AT SAN PEDRO LAGUNILLAS, NAYARIT

    Directory of Open Access Journals (Sweden)

    Gelacio Alejo Santiago

    2012-08-01

    Full Text Available The objective of this study was to evaluate the degradation to propose strategies for remediation and recovery of agricultural soils of San Pedro Lagunillas, Nayarit, Mexico; considering physical and chemical properties. Soils maintained with natural vegetation but slightly grazed and agricultural soils used for more than 20 years for the production of several crops, were compared. Eight sites were studied (four cultivated and four uncultivated, each agricultural lands (cultivated was located at a distance of 30 to 80 m from its counterpart or soil with natural vegetation (uncultivated. Samples were obtained from the following layers: 0 to 10, 10 to 20 and 20 to 30 cm. The variables evaluated were: particles smaller than 2 mm, pH, organic matter, extractable phosphorus, exchangeable potassium, calcium and magnesium; soil texture and water infiltration rate. An analysis of variance and Tukey means test (α = 0.05 was applied. It was concluded that traditional farming practices led to adverse changes in soil chemical properties, in the upper 20 cm soil layer. Physical properties were also affected because infiltration film and water infiltration rate decreased about 50% in cultivated soils. The overall results in this work evident the need to take appropriate measures to prevent the physical and chemical degradation of cultivated soils in order to preserve this resource and maintain their productivity.

  11. Selection of reference soils for chemicals testing in the European Community

    International Nuclear Information System (INIS)

    Kuhnt, G.; Hertling, T.; Schmotz, W.; Vetter, L.; Fraenzle, M.; Geissler, S.; Knabe, I.; Maass, R.; Struckmeyer, A.; Heinrich, U.

    1991-01-01

    Based on an multivariate statistical evaluation of binary and metric data relating to the soil cover of the European Community five regionally representative reference soils (EURO-Soils) have been identified for chemicals testing in the EC. The soil material sampled at representative localities in Italy, Greece, Great Britain, France and Germany was treated and prepared according to OECD Test Guideline 106 and analysed in detail. The homogenised specimens were subject to an EC-wide ring test to evaluate the feasibility of the modified guideline and to validate the physical-chemical amenability of the reference soils for sorption tests. The results proved the validity of the soils selected for assessing the potential behaviour of new chemicals in soil on the basis of a comparative evaluation of the individual test results obtained. In the light of this parametric assessment potential test soils were subsequently identified in the individual EC Member States which correspond as far as possible to the above reference soils in terms of both taxonomy and sorption-relevant properties. (orig.). 164 refs., 30 tabs., 24 figs [de

  12. Improved exposure estimation in soil screening and cleanup criteria for volatile organic chemicals.

    Science.gov (United States)

    DeVaull, George E

    2017-09-01

    Soil cleanup criteria define acceptable concentrations of organic chemical constituents for exposed humans. These criteria sum the estimated soil exposure over multiple pathways. Assumptions for ingestion, dermal contact, and dust exposure generally presume a chemical persists in surface soils at a constant concentration level for the entire exposure duration. For volatile chemicals, this is an unrealistic assumption. A calculation method is presented for surficial soil criteria that include volatile depletion of chemical for these uptake pathways. The depletion estimates compare favorably with measured concentration profiles and with field measurements of soil concentration. Corresponding volatilization estimates compare favorably with measured data for a wide range of volatile and semivolatile chemicals, including instances with and without the presence of a mixed-chemical residual phase. Selected examples show application of the revised factors in estimating screening levels for benzene in surficial soils. Integr Environ Assess Manag 2017;13:861-869. © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC). © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

  13. Chemical changes in the soil and production of oat fertilized with treated wastewater

    Directory of Open Access Journals (Sweden)

    Paulo Fortes Neto

    2013-12-01

    Full Text Available The purpose of this project was to ensure the quality and impact of the application of treated sewage wastewater on the chemical properties of Dystrophic Yellow Argisol and on biomass and grain production of white oat (Avena sativa, L. After the wastewater was chemically characterized, it was applied to the soil in concentrations of 0, 30, 60 and 90 m3 ha-1 in plots of 200 m2. Doses of water were compared with mineral fertilizer doses recommended for oat. The experimental design was a split plot with four randomized blocks. The wastewater had chemical qualities useful for grain cultivation. The values of calcium, CTC, V, pH increased and acidity potential decreased in the soil after the wastewater was applied. Doses of the wastewater provided increments in biomass production and oat grains similar to that obtained with chemical fertilizers. We conclude that wastewater can be used to correct soil acidity and replace or supplement chemical fertilizers.

  14. Time influence in chemical treatment of Brazilian raw materials type

    International Nuclear Information System (INIS)

    Argolo, F.; Dias, C.; Machado, A.; Volzone, C.; Ortiga, J.; Valenzuela Diaz, F.

    2012-01-01

    Clays are part of raw materials in different industries. The mineralogical composition and purity greatly influence the application thereof. Chemical treatments applied, such as acid attack, modify their properties and thus their possible uses. Taking in to account that, clay minerals, may differ by more or less resistance to chemical attacks, two types of clay were studied with different mineralogical composition to assess the degree of resistance to chemical attack treatment such as acid. Acid treatments that were applied, differ mainly in the contact time between the solid and the liquid. The solids were studied by X-ray diffraction analysis, chemical analysis and infrared analysis

  15. Soil Monitor: an open source web application for real-time soil sealing monitoring and assessment

    Science.gov (United States)

    Langella, Giuliano; Basile, Angelo; Giannecchini, Simone; Iamarino, Michela; Munafò, Michele; Terribile, Fabio

    2016-04-01

    Soil sealing is one of the most important causes of land degradation and desertification. In Europe, soil covered by impermeable materials has increased by about 80% from the Second World War till nowadays, while population has only grown by one third. There is an increasing concern at the high political levels about the need to attenuate imperviousness itself and its effects on soil functions. European Commission promulgated a roadmap (COM(2011) 571) by which the net land take would be zero by 2050. Furthermore, European Commission also published a report in 2011 providing best practices and guidelines for limiting soil sealing and imperviousness. In this scenario, we developed an open source and an open source based Soil Sealing Geospatial Cyber Infrastructure (SS-GCI) named as "Soil Monitor". This tool merges a webGIS with parallel geospatial computation in a fast and dynamic fashion in order to provide real-time assessments of soil sealing at high spatial resolution (20 meters and below) over the whole Italy. Common open source webGIS packages are used to implement both the data management and visualization infrastructures, such as GeoServer and MapStore. The high-speed geospatial computation is ensured by a GPU parallelism using the CUDA (Computing Unified Device Architecture) framework by NVIDIA®. This kind of parallelism required the writing - from scratch - all codes needed to fulfil the geospatial computation built behind the soil sealing toolbox. The combination of GPU computing with webGIS infrastructures is relatively novel and required particular attention at the Java-CUDA programming interface. As a result, Soil Monitor is smart because it can perform very high time-consuming calculations (querying for instance an Italian administrative region as area of interest) in less than one minute. The web application is embedded in a web browser and nothing must be installed before using it. Potentially everybody can use it, but the main targets are the

  16. Microbiological and chemical attributes of a Hapludalf soil with swine manure fertilization

    Directory of Open Access Journals (Sweden)

    Rafael da Rosa Couto

    2013-07-01

    Full Text Available The objective of this work was to evaluate the microbiological and chemical attributes of a soil with a seven‑year history of urea and swine manure application. In the period from October 2008 to October 2009, soil samples were collected in the 0-10 cm layer and were subjected to the treatments: control, without application of urea or manure; and with the application of urea, pig slurry, and deep pig litter in two doses, in order to supply one or two times the recommended N doses for the maize (Zea mays/black oat (Avena strigosa crop succession. The carbon of the microbial biomass (MB‑C and the basal respiration (C‑CO2 were analyzed, and the metabolic (qCO2 and microbial quotient (qmic were calculated with the obtained data. Organic matter, pH in water, available P and K, and exchangeable Ca and Mg were also determined. The application of twice the dose of deep pig litter increases the MB‑C and C‑CO2 values. The qmic and qCO2 are little affected by the application of swine manure. The application of twice the dose of deep pig litter increases the values of pH in water and the contents of available P and of exchangeable Ca and Mg in the soil.

  17. Soil features in rookeries of Antarctic penguins reveal sea to land biotransport of chemical pollutants

    Science.gov (United States)

    Santamans, Anna C.; Boluda, Rafael; Picazo, Antonio; Gil, Carlos; Ramos-Miras, Joaquín; Tejedo, Pablo; Pertierra, Luis R.; Benayas, Javier

    2017-01-01

    The main soil physical-chemical features, the concentrations of a set of pollutants, and the soil microbiota linked to penguin rookeries have been studied in 10 selected sites located at the South Shetland Islands and the Antarctic Peninsula (Maritime Antarctica). This study aims to test the hypothesis that biotransport by penguins increases the concentration of pollutants, especially heavy metals, in Antarctic soils, and alters its microbiota. Our results show that penguins do transport certain chemical elements and thus cause accumulation in land areas through their excreta. Overall, a higher penguin activity is associated with higher organic carbon content and with higher concentrations of certain pollutants in soils, especially cadmium, cooper and arsenic, as well as zinc and selenium. In contrast, in soils that are less affected by penguins’ faecal depositions, the concentrations of elements of geochemical origin, such as iron and cobalt, increase their relative weighted contribution, whereas the above-mentioned pollutants maintain very low levels. The concentrations of pollutants are far higher in those penguin rookeries that are more exposed to ship traffic. In addition, the soil microbiota of penguin-influenced soils was studied by molecular methods. Heavily penguin-affected soils have a massive presence of enteric bacteria, whose relative dominance can be taken as an indicator of penguin influence. Faecal bacteria are present in addition to typical soil taxa, the former becoming dominant in the microbiota of penguin-affected soils, whereas typical soil bacteria, such as Actinomycetales, co-dominate the microbiota of less affected soils. Results indicate that the continuous supply by penguin faeces, and not the selectivity by increased pollutant concentrations is the main factor shaping the soil bacterial community. Overall, massive penguin influence results in increased concentrations of certain pollutants and in a strong change in taxa dominance in the

  18. Soil features in rookeries of Antarctic penguins reveal sea to land biotransport of chemical pollutants.

    Directory of Open Access Journals (Sweden)

    Anna C Santamans

    Full Text Available The main soil physical-chemical features, the concentrations of a set of pollutants, and the soil microbiota linked to penguin rookeries have been studied in 10 selected sites located at the South Shetland Islands and the Antarctic Peninsula (Maritime Antarctica. This study aims to test the hypothesis that biotransport by penguins increases the concentration of pollutants, especially heavy metals, in Antarctic soils, and alters its microbiota. Our results show that penguins do transport certain chemical elements and thus cause accumulation in land areas through their excreta. Overall, a higher penguin activity is associated with higher organic carbon content and with higher concentrations of certain pollutants in soils, especially cadmium, cooper and arsenic, as well as zinc and selenium. In contrast, in soils that are less affected by penguins' faecal depositions, the concentrations of elements of geochemical origin, such as iron and cobalt, increase their relative weighted contribution, whereas the above-mentioned pollutants maintain very low levels. The concentrations of pollutants are far higher in those penguin rookeries that are more exposed to ship traffic. In addition, the soil microbiota of penguin-influenced soils was studied by molecular methods. Heavily penguin-affected soils have a massive presence of enteric bacteria, whose relative dominance can be taken as an indicator of penguin influence. Faecal bacteria are present in addition to typical soil taxa, the former becoming dominant in the microbiota of penguin-affected soils, whereas typical soil bacteria, such as Actinomycetales, co-dominate the microbiota of less affected soils. Results indicate that the continuous supply by penguin faeces, and not the selectivity by increased pollutant concentrations is the main factor shaping the soil bacterial community. Overall, massive penguin influence results in increased concentrations of certain pollutants and in a strong change in taxa

  19. Soil physico-chemical characterization in the different soil layers of National Maize Research Program, Rampur, Chitwan, Nepal

    Directory of Open Access Journals (Sweden)

    Dinesh Khadka

    2017-12-01

    Full Text Available Soil pit digging and their precise study is a decision making tool to assess history and future of soil management of a particular area. Thus, the present study was carried out to differentiate soil physico-chemical properties in the different layers of excavated pit of the National Maize Research Program, Rampur, Chitwan, Nepal. Eight pits were dug randomly from three blocks at a depth of 0 to 100 cm. The soil parameters were determined in-situ, and in laboratory for texture, pH, OM, N, P (as P2O5, K (as K2O, Ca, Mg, S, B, Fe, Zn, Cu and Mn of collected soils samples of different layers following standard analytical methods at Soil Science Division, Khumaltar. The result revealed that soil structure was sub-angular in majority of the layers, whereas bottom layer was single grained. The value and chrome of colour was increasing in order from surface to bottom in the majority pits. Similarly, the texture was sandy loam in majority layers of the pits. Moreover, four types of consistence (loose to firm were observed. Furthermore, mottles and gravels were absent in the majority layers. Likewise, soil was very to moderately acidic in observed layers of majority pits, except bottom layer of agronomy block was slightly acidic. Regarding fertility parameters (OM, macro and micronutrients, some were increasing and vice-versa, while others were intermittent also. Therefore, a single layer is not dominant for particular soil physico-chemical parameters in the farm. In overall, surface layer is more fertile than rest of the layers in all the pits.

  20. Biogeochemical features technogenic pollution of soils under the influence chemical industry

    Directory of Open Access Journals (Sweden)

    Kuraeva I.V.

    2015-09-01

    Full Text Available The physico-chemical properties of soil (pH, organic matter content, cation exchange capacity. The regularities of the distribution of total and mobile forms of heavy metals in soil sediments in the territory of Shostka Sumy region under the influence of the chemical industry and in the background areas. Biogeochemical indicators obtained content of microscopic fungi and their species, the most characteristic of the study of soils, which can be used as an additional criterion for ecological and geochemical studies.

  1. Soil uses during the sugarcane fallow period: influence on soil chemical and physical properties and on sugarcane productivity

    Directory of Open Access Journals (Sweden)

    Roniram Pereira da Silva

    2014-04-01

    Full Text Available The planting of diversified crops during the sugarcane fallow period can improve the chemical and physical properties and increase the production potential of the soil for the next sugarcane cycle. The primary purpose of this study was to assess the influence of various soil uses during the sugarcane fallow period on soil chemical and physical properties and productivity after the first sugarcane harvest. The experiment was conducted in two areas located in Jaboticabal, São Paulo State, Brazil (21º 14' 05'' S, 48º 17' 09'' W with two different soil types, namely: an eutroferric Red Latosol (RLe with high-clay texture (clay content = 680 g kg-1 and an acric Red Latosol (RLa with clayey texture (clay content = 440 g kg-1. A randomized block design with five replications and four treatments (crop sequences was used. The crop sequences during the sugarcane fallow period were soybean/millet/soybean, soybean/sunn hemp/soybean, soybean/fallow/soybean, and soybean. Soil use was found not to affect chemical properties and sugarcane productivity of RLe or RLa. The soybean/millet/soybean sequence improved aggregation in the acric Latosol.

  2. Short-term effects of different organic amendments on soil chemical, biochemical and biological indicators

    Science.gov (United States)

    Mondelli, Donato; Aly, Adel; Yirga Dagnachew, Ababu; Piscitelli, Lea; Dumontet, Stefano; Miano, Teodoro

    2014-05-01

    The limited availability of animal manure and the high cost of good quality compost lead to difficult soil quality management under organic agriculture. Therefore, it is important to find out alternative organic soil amendments and more flexible strategies that are able to sustain crop productivity and maintain and enhance soil quality. A three years study was carried out in the experimental fields of the Mediterranean Agronomic Institute of Bari located in Valenzano, Italy. The main objective of this research is to investigate the effects of different fertility management strategies on soil quality in order to estimate the role of innovative matrices for their use in organic farming. The experiment consists of seven treatments applied to a common crop rotation. The treatments include alternative organic amendments (1- olive mill wastewater OMW, 2- residues of mushroom cultivation MUS, 3- coffee chaff COF), common soil amendments (4- compost COM, 5- faba bean intercropping LEG, 6- cow manure - MAN) and as a reference treatment (7- mineral fertilizer COV). The soil quality was assessed before and after the application of the treatments, through biological (microbial biomass carbon and nitrogen, soil respiration and metabolic quotient), biochemical (soil enzymatic activities: β-glucosidase, alkaline phospatase, urease, fluorescein diacetate (FDA) hydrolysis), and chemical (pH, soil organic carbon, soil organic matter, total nitrogen, available phosphorous, exchangeable potassium, dissolved organic carbon and total dissolved nitrogen) indicators. Based on the results obtained after the second year, all treatments were able to improve various soil chemical parameters as compared to mineral fertilizer. The incorporation of COF and OMW seemed to be more effective in improving soil total N and exchangeable K, while MAN significantly increased available P. All the amendments enhance dissolved organic C, soil respiration, microbial biomass and metabolic quotient as

  3. Crop rotations and poultry litter impact dynamic soil chemical properties and soil biota long-term

    Science.gov (United States)

    Dynamic soil physiochemical interactions with conservation agricultural practices and soil biota are largely unknown. Therefore, this study aims to quantify long-term (12-yr) impacts of cover crops, poultry litter, crop rotations, and conservation tillage and their interactions on soil physiochemica...

  4. Temporal changes of soil physic-chemical properties at different soil depths during larch afforestation by multivariate analysis of covariance.

    Science.gov (United States)

    Wang, Hui-Mei; Wang, Wen-Jie; Chen, Huanfeng; Zhang, Zhonghua; Mao, Zijun; Zu, Yuan-Gang

    2014-04-01

    Soil physic-chemical properties differ at different depths; however, differences in afforestation-induced temporal changes at different soil depths are seldom reported. By examining 19 parameters, the temporal changes and their interactions with soil depth in a large chronosequence dataset (159 plots; 636 profiles; 2544 samples) of larch plantations were checked by multivariate analysis of covariance (MANCOVA). No linear temporal changes were found in 9 parameters (N, K, N:P, available forms of N, P, K and ratios of N: available N, P: available P and K: available K), while marked linear changes were found in the rest 10 parameters. Four of them showed divergent temporal changes between surface and deep soils. At surface soils, changing rates were 262.1 g·kg(-1)·year(-1) for SOM, 438.9 mg·g(-1)·year(-1) for C:P, 5.3 mg·g(-1)·year(-1) for C:K, and -3.23 mg·cm(-3)·year(-1) for bulk density, while contrary tendencies were found in deeper soils. These divergences resulted in much moderated or no changes in the overall 80-cm soil profile. The other six parameters showed significant temporal changes for overall 0-80-cm soil profile (P: -4.10 mg·kg(-1)·year(-1); pH: -0.0061 unit·year(-1); C:N: 167.1 mg·g(-1)·year(-1); K:P: 371.5 mg·g(-1) year(-1); N:K: -0.242 mg·g(-1)·year(-1); EC: 0.169 μS·cm(-1)·year(-1)), but without significant differences at different soil depths (P > 0.05). Our findings highlight the importance of deep soils in studying physic-chemical changes of soil properties, and the temporal changes occurred in both surface and deep soils should be fully considered for forest management and soil nutrient balance.

  5. Spatial distribution of the chemical properties of the soil and of soybean yield in the field

    Directory of Open Access Journals (Sweden)

    Alexandre Gazolla-Neto

    2016-06-01

    Full Text Available ABSTRACT The aim of this study was to evaluate the spatial dependence between chemical properties of the soil and yield components in the soybean using precision farming techniques. Samples of the soil and plants were taken from georeferenced points to determine the chemical properties of the soil and the yield components. The results were submitted to Pearson correlation analysis, descriptive statistics and geostatistics. The coefficient of variation showed a wide range of distribution for the chemical attributes of the soil, with the highest indices being found for the levels of available phosphorus (102% and potassium (72.65%. Soil pH and organic matter showed a coefficient of variation of 5.96 and 15.93% respectively. Semivariogram analysis of the yield components (productivity, 1,000-seed weight and number of seeds and the chemical properties of the soil (organic matter, pH, phosphorus, potassium, calcium, magnesium, boron, manganese and zinc fitted the spherical model with moderate spatial dependence, with values ranging from 200 to 700 m. Spatial distribution by means of map interpolation was efficient in evaluating spatial variability, allowing the identification and quantification of regions of low and high productivity in the production area, together with the distribution of soil attributes and their respective levels of availability to the soybean plants.

  6. Chemical composition of the humus layer, mineral soil and soil solution of 150 forest stands in the Netherlands in 1990

    NARCIS (Netherlands)

    Vries, de W.; Leeters, E.E.J.M.

    2001-01-01

    A nationwide assessment of the chemical composition of the humus layer, mineral topsoil (0-30 cm) and soil solution in both topsoil and subsoil (60-100 cm) was made for 150 forest stands in the year 1990. The stands, which were part of the national forest inventory on vitality, included seven tree

  7. Potential of plant growth promoting rhizobacteria and chemical fertilizers on soil enzymes and plant growth

    International Nuclear Information System (INIS)

    Nosheen, A.; Bano, A.

    2014-01-01

    The present investigation deals with the role of Plant Growth Promoting Rhizobacteria and chemical fertilizers alone or in combination on urease, invertase and phosphatase activities of rhizospheric soil and also on general impact on growth of safflower cvv. Thori and Saif-32. The PGPR (Azospirillum brasilense and Azotobacter vinelandii) were applied at 10/sup 6/ cells/mL as seed inoculation prior to sowing. Chemical fertilizers were applied at full (Urea 60 Kg ha/sup -1/ and Diammonium phosphate (DAP) 30 Kg ha/sup -1/), half (Urea 30 Kg ha/sup -1/ and DAP 15 Kg ha/sup -1/) and quarter doses (Urea 15 Kg ha-1 and DAP 7.5 Kg ha/sup -1/) during sowing. The chemical fertilizers and PGPR enhanced urease and invertase activities of soil. Presence of PGPR in combination with quarter and half doses of chemical fertilizers further augmented their effect on soil enzymes activities. The soil phosphatase activity was greater in Azospirillum and Azotobacter in combination with half dose of chemical fertilizers. Maximum increase in leaf melondialdehyde content was recorded in full dose of chemical fertilizers whereas coinoculation treatment exhibited significant reduction in cv. Thori. Half and quarter dose of chemical fertilizers increased the shoot length of safflower whereas maximum increase in leaf protein was recorded in Azotobacter in combination with full dose of chemical fertilizers. Root length was improved by Azospirillum and Azotobacter in combination with quarter dose of chemical fertilizers. Leaf area and chlorophyll contents were significantly improved by Azotobacter in combination with half dose of chemical fertilizers. It is inferred that PGPR can supplement 50 % chemical fertilizers for better plant growth and soil health. (author)

  8. Soil Physical and Chemical Properties in Epigeal Termite Mounds in Pastures

    Directory of Open Access Journals (Sweden)

    Sandra Santana de Lima

    2018-03-01

    Full Text Available ABSTRACT We characterized soil physical and chemical properties and soil organic matter in epigeal termite mounds in pastures to evaluate the changes promoted by termites in comparison to an adjacent area. We selected seven active epigeal termite mounds in the municipality of Seropédica, state of Rio de Janeiro, Brazil. Soil samples were collected from top, center and base positions of each mound, at 0.50 and 1.50 m distance from the base of the mound. We identified individuals of the genus Embiratermes, Velocitermes, and Orthognathotermes. The humin fraction predominated over the humic and fulvic acid fractions both in mounds and adjacent soil. The amount of organic matter and the mineral fractions (mineral-associated organic carbon - MOC varied among builder species. The studied chemical attributes point to a higher concentration of nutrients in the mounds than in the adjacent soil.

  9. Soil-leaf transfer of chemical elements for the Atlantic Forest

    International Nuclear Information System (INIS)

    Joacir De Franca, E.; De Nadai Fernandes, E.A.; Bacchi, M.A.; Tagliaferro, F.S.

    2007-01-01

    Soil analysis could improve environmental studies since soil is the main source of chemical elements for plants. In this study, soil samples collected at 0-10 cm depth under tree crown projection were analyzed by INAA. Using the chemical composition of the leaf previously determined, the leaf-soil transfer factors of chemical elements could be estimated for the Atlantic Forest. Despite the variability of the intra-species, the transfer factors were specific for some plant species due to their element accumulation in the leaves. Similar Br-Zn combined transfer factors were obtained for the species grouped according to habitats in relation to their position (understory or dominant species) in the forest canopy. (author)

  10. Inter-laboratory variation in the chemical analysis of acidic forest soil reference samples from eastern North America

    Science.gov (United States)

    Ross, Donald S.; Bailiey, Scott W; Briggs, Russell D; Curry, Johanna; Fernandez, Ivan J.; Fredriksen, Guinevere; Goodale, Christine L.; Hazlett, Paul W.; Heine, Paul R; Johnson, Chris E.; Larson, John T; Lawrence, Gregory B.; Kolka, Randy K; Ouimet, Rock; Pare, D; Richter, Daniel D.; Shirmer, Charles D; Warby, Richard A.F.

    2015-01-01

    Long-term forest soil monitoring and research often requires a comparison of laboratory data generated at different times and in different laboratories. Quantifying the uncertainty associated with these analyses is necessary to assess temporal changes in soil properties. Forest soil chemical properties, and methods to measure these properties, often differ from agronomic and horticultural soils. Soil proficiency programs do not generally include forest soil samples that are highly acidic, high in extractable Al, low in extractable Ca and often high in carbon. To determine the uncertainty associated with specific analytical methods for forest soils, we collected and distributed samples from two soil horizons (Oa and Bs) to 15 laboratories in the eastern United States and Canada. Soil properties measured included total organic carbon and nitrogen, pH and exchangeable cations. Overall, results were consistent despite some differences in methodology. We calculated the median absolute deviation (MAD) for each measurement and considered the acceptable range to be the median 6 2.5 3 MAD. Variability among laboratories was usually as low as the typical variability within a laboratory. A few areas of concern include a lack of consistency in the measurement and expression of results on a dry weight basis, relatively high variability in the C/N ratio in the Bs horizon, challenges associated with determining exchangeable cations at concentrations near the lower reporting range of some laboratories and the operationally defined nature of aluminum extractability. Recommendations include a continuation of reference forest soil exchange programs to quantify the uncertainty associated with these analyses in conjunction with ongoing efforts to review and standardize laboratory methods.

  11. Chemical treatments of soil to decrease radiostrontium leachability

    International Nuclear Information System (INIS)

    Spalding, B.P.

    1980-01-01

    The ready leachability of radiostrontium from radioactive waste is one of the most salient problems with shallow-land burial as a disposal method. The continuous leaching of buried waste at the Oak Ridge National Laboratory, for periods up to thirty years, has led to contamination of significant volumes of soil with 90 Sr. The goal of the present investigation was to evaluate methods to effect the in situ fixation or decrease the leachability of 90 Sr from soil. Small columns of three soils, collected from the solid waste disposal areas at ORNL, were labelled with 85 Sr as a convenient tracer for 90 Sr. After this labelling but prior to leaching, the soil columns were percolated with equivalent amounts of sodium salt solutions of hydroxide, fluoride, carbonate, phosphate, silicate, or aluminate. Leaching was then initiated with 0.1 N CaCl 2 (calcium chloride), and fractions of the leachate were analyzed for 85 Sr. The CaCl 2 solution was selected to qualitatively simulate groundwater which contains Ca as the dominant dissolved cation. With two soils which were high in indigenous exchangeable Ca, only 30 to 35% of the 85 Sr could be leached from the carbonate-treated columns. Presumably, the 85 Sr was coprecipitated with the nascent CaCO 3 formed during this treatment. In contrast, greater than 98% of the 85 Sr was readily leached from all untreated soils. Other anions fixed variable but generally less 85 Sr than the carbonate treatment. Thus, sodium carbonate appears to have potential application to immobilize 90 Sr in situ in contaminated soil

  12. Soil parameters are key factors to predict metal bioavailability to snails based on chemical extractant data

    International Nuclear Information System (INIS)

    Pauget, B.; Gimbert, F.; Scheifler, R.; Coeurdassier, M.; Vaufleury, A. de

    2012-01-01

    Although soil characteristics modulate metal mobility and bioavailability to organisms, they are often ignored in the risk assessment of metal transfer. This paper aims to determine the ability of chemical methods to assess and predict cadmium (Cd), lead (Pb) and zinc (Zn) environmental bioavailability to the land snail Cantareus aspersus. Snails were exposed in the laboratory for 28 days to 17 soils from around a former smelter. The soils were selected for their range of pH, organic matter, clay content, and Cd, Pb and Zn concentrations. The influence of soil properties on environmental availability (estimated using HF-HClO 4 , EDTA, CaCl 2 , NH 4 NO 3 , NaNO 3 , free ion activity and total dissolved metal concentration in soil solution) and on environmental bioavailability (modelled using accumulation kinetics) was identified. Among the seven chemical methods, only the EDTA and the total soil concentration can be used to assess Cd and Pb environmental bioavailability to snails (r² adj = 0.67 and 0.77, respectively). For Zn, none of the chemical methods were suitable. Taking into account the influence of the soil characteristics (pH and CEC) allows a better prediction of Cd and Pb environmental bioavailability (r² adj = 0.82 and 0.83, respectively). Even though alone none of the chemical methods tested could assess Zn environmental bioavailability to snails, the addition of pH, iron and aluminium oxides allowed the variation of assimilation fluxes to be predicted. A conceptual and practical method to use soil characteristics for risk assessment is proposed based on these results. We conclude that as yet there is no universal chemical method to predict metal environmental bioavailability to snails, and that the soil factors having the greatest impact depend on the metal considered. - Highlights: ► New approach to identify chemical methods able to predict metal bioavailability to snails. ► Bioavailability of cadmium, lead and zinc to snails was determined by

  13. Soil parameters are key factors to predict metal bioavailability to snails based on chemical extractant data

    Energy Technology Data Exchange (ETDEWEB)

    Pauget, B.; Gimbert, F., E-mail: frederic.gimbert@univ-fcomte.fr; Scheifler, R.; Coeurdassier, M.; Vaufleury, A. de

    2012-08-01

    Although soil characteristics modulate metal mobility and bioavailability to organisms, they are often ignored in the risk assessment of metal transfer. This paper aims to determine the ability of chemical methods to assess and predict cadmium (Cd), lead (Pb) and zinc (Zn) environmental bioavailability to the land snail Cantareus aspersus. Snails were exposed in the laboratory for 28 days to 17 soils from around a former smelter. The soils were selected for their range of pH, organic matter, clay content, and Cd, Pb and Zn concentrations. The influence of soil properties on environmental availability (estimated using HF-HClO{sub 4}, EDTA, CaCl{sub 2}, NH{sub 4}NO{sub 3}, NaNO{sub 3}, free ion activity and total dissolved metal concentration in soil solution) and on environmental bioavailability (modelled using accumulation kinetics) was identified. Among the seven chemical methods, only the EDTA and the total soil concentration can be used to assess Cd and Pb environmental bioavailability to snails (r Superscript-Two {sub adj} = 0.67 and 0.77, respectively). For Zn, none of the chemical methods were suitable. Taking into account the influence of the soil characteristics (pH and CEC) allows a better prediction of Cd and Pb environmental bioavailability (r Superscript-Two {sub adj} = 0.82 and 0.83, respectively). Even though alone none of the chemical methods tested could assess Zn environmental bioavailability to snails, the addition of pH, iron and aluminium oxides allowed the variation of assimilation fluxes to be predicted. A conceptual and practical method to use soil characteristics for risk assessment is proposed based on these results. We conclude that as yet there is no universal chemical method to predict metal environmental bioavailability to snails, and that the soil factors having the greatest impact depend on the metal considered. - Highlights: Black-Right-Pointing-Pointer New approach to identify chemical methods able to predict metal bioavailability

  14. Chemical speciation of technetium in soil and plants: impact on soil-plant-animal transfer

    International Nuclear Information System (INIS)

    Vandecasteele, C.M.; Bruwaene, R. van; Janssens, J.; Kirchmann, R.; Myttenaere, C.

    1986-01-01

    Considerable uncertainties are associated with the environmental behaviour of technetium-99 and its transfer from soil to plants and then to animals and man. For this reason, most of the mathematical models built to simulate the environmental transport of Tc and to calculate the dose to man are associated with conservative simplifications and produce overestimates of the calculated dose. In order to follow the new ICRP recommendations, transfer models are needed that estimate as accurately as possible the dose to the population; this implies a better knowledge of the behaviour of Tc in the environment, especially concerning its long-term behaviour. At this time, most of the available data deal with the short-term and only scanty results have been obtained regarding the plant-animal transfer, especially in the case of polygastric mammals. (author)

  15. Chemical speciation of technetium in soil and plants: Impact on soil-plant-animal transfer

    International Nuclear Information System (INIS)

    Vandecasteele, C.M.; Garten, C.T. Jr.; Van Bruwaene, R.; Janssens, J.; Kirchmann, R.; Myttenaere, C.

    1985-01-01

    Considerable uncertainties are associated with the environmental behaviour of technetium-99 and its transfer from soil to plants and then to animals and man. For this reason, most of the mathematical models built to simulate the environmental transport of Tc and to calculate the dose to man are associated with conservative simplifications and produce overestimates of the calculated dose. In order to follow the new ICRP recommendations, transfer models are needed that estimate as accurately as possible the dose to the population; this implies a better knowledge of the behaviour of Tc in the environment, especially concerning its long-term behaviour. At this time, most of the available data deals with the short-term and only scanty results have been obtained regarding the plant-animal transfer, especially in the case of polygastric mammals

  16. Carbon sequestration and fertility after centennial time scale incorporation of charcoal into soil.

    Directory of Open Access Journals (Sweden)

    Irene Criscuoli

    Full Text Available The addition of pyrogenic carbon (C in the soil is considered a potential strategy to achieve direct C sequestration and potential reduction of non-CO2 greenhouse gas emissions. In this paper, we investigated the long term effects of charcoal addition on C sequestration and soil physico-chemical properties by studying a series of abandoned charcoal hearths in the Eastern Alps of Italy established in the XIX century. This natural setting can be seen as an analogue of a deliberate experiment with replications. Carbon sequestration was assessed indirectly by comparing the amount of pyrogenic C present in the hearths (23.3±4.7 kg C m(-2 with the estimated amount of charcoal that was left on the soil after the carbonization (29.3±5.1 kg C m(-2. After taking into account uncertainty associated with parameters' estimation, we were able to conclude that 80±21% of the C originally added to the soil via charcoal can still be found there and that charcoal has an overall Mean Residence Time of 650±139 years, thus supporting the view that charcoal incorporation is an effective way to sequester atmospheric CO2. We also observed an overall change in the physical properties (hydrophobicity and bulk density of charcoal hearth soils and an accumulation of nutrients compared to the adjacent soil without charcoal. We caution, however, that our site-specific results should not be generalized without further study.

  17. Avoidance test with Enchytraeus albidus (Enchytraeidae): Effects of different exposure time and soil properties

    International Nuclear Information System (INIS)

    Amorim, Monica J.B.; Novais, Sara; Roembke, Joerg; Soares, Amadeu M.V.M.

    2008-01-01

    Enchytraeids are ecologically relevant soil species and are commonly used in standardized toxicity tests. Their rapid reaction to a chemical exposure can be used as a toxicological measurement endpoint that assesses the avoidance behavior. The objectives of this investigation were to determine the effects of soil properties on the avoidance behavior of Enchytraeus albidus and to optimize the duration of avoidance test. The avoidance tests included (1) exposures in OECD artificial soil with standard or modified properties (pH, clay or peat content), and (2) exposures to copper chloride, cadmium chloride, and to the organic pesticides dimethoate and phenmedipham for different time periods. Results showed that alteration of OECD soil constituents significantly affected the avoidance behavior of enchytraeids, and that the 48-h exposure was the optimal duration of the test. Consideration of soil properties is important for selecting appropriate experimental design and interpreting the results of the enchytraeid avoidance test. - Optimal duration of the avoidance tests with potworm Enchytraeus albidus is 48 h; soil properties can affect performance of the test species

  18. Carbon sequestration and fertility after centennial time scale incorporation of charcoal into soil.

    Science.gov (United States)

    Criscuoli, Irene; Alberti, Giorgio; Baronti, Silvia; Favilli, Filippo; Martinez, Cristina; Calzolari, Costanza; Pusceddu, Emanuela; Rumpel, Cornelia; Viola, Roberto; Miglietta, Franco

    2014-01-01

    The addition of pyrogenic carbon (C) in the soil is considered a potential strategy to achieve direct C sequestration and potential reduction of non-CO2 greenhouse gas emissions. In this paper, we investigated the long term effects of charcoal addition on C sequestration and soil physico-chemical properties by studying a series of abandoned charcoal hearths in the Eastern Alps of Italy established in the XIX century. This natural setting can be seen as an analogue of a deliberate experiment with replications. Carbon sequestration was assessed indirectly by comparing the amount of pyrogenic C present in the hearths (23.3±4.7 kg C m(-2)) with the estimated amount of charcoal that was left on the soil after the carbonization (29.3±5.1 kg C m(-2)). After taking into account uncertainty associated with parameters' estimation, we were able to conclude that 80±21% of the C originally added to the soil via charcoal can still be found there and that charcoal has an overall Mean Residence Time of 650±139 years, thus supporting the view that charcoal incorporation is an effective way to sequester atmospheric CO2. We also observed an overall change in the physical properties (hydrophobicity and bulk density) of charcoal hearth soils and an accumulation of nutrients compared to the adjacent soil without charcoal. We caution, however, that our site-specific results should not be generalized without further study.

  19. Physical, chemical and mineralogical characteristics of some selected gardud soils of kordofan region

    International Nuclear Information System (INIS)

    Elgubshawi, Abdelmoneim Ahmed Ismail

    1995-05-01

    Recently much of the attention is given to gardud soil as the main alternative for the depleted marginal sandy soils. A lack of exact knowledge regarding these soils are evident. For studying gardud soil four sites were chosen according to the annual rainfall. Two pits were excavated in each site to represent the concaved and convexed locations plus composite samples to cover the area between two pits. Morphological, physical, chemical and mineralogical investigations were made. The results showed that the gardud soils were relatively differed within and between sites due to the climate and the topography. The dominant clay minerals are kaolinite, montmorillonite and illte. The chemical and physical characteristics were poor. Some of the restrictions limiting the use of these soils such as erosion, hardness, fertility, stoniness, drought and acidity. According to the American system of soil classification, the soils studied were given the following classification: (1) Bardab soil: (A) Kanhablic rhodustalf-fine clay, kaolinite, isohyperthermic (concaved). (B) Kandic paleustalf-very fine clay, kaolinite, isohyperthermic (convexed). (2) Sodari: (A) Typic comborthid-coarse loamy, mixed hyperthermic (concave). (B) Typic comborthid-coarse loamy, mixed hyperthermic (convexed). (3) Nihud (Rahad Elsilk): (A) Rhodic paleustalf-fine loamy, kaolinite isohyperthermic (concaved). (B) Aridic paleustalf-fine loamy kaolinite isohyperthermic (convexed). (4) Umgamalla: (A) Ustic hapustalf-fine loamy kaolinite isohyperthermic (concaved). (B)Ustic hapustalf-fine loamy kaolinite isohyperthermic (convexed). (Author)

  20. Physical, chemical and mineralogical characteristics of some selected gardud soils of kordofan region

    Energy Technology Data Exchange (ETDEWEB)

    Elgubshawi, Abdelmoneim Ahmed Ismail [Department of Biochemistry and Soil Science, Faculty of agriculture, University of Khartoum, Khartoum (Sudan)

    1995-05-01

    Recently much of the attention is given to gardud soil as the main alternative for the depleted marginal sandy soils. A lack of exact knowledge regarding these soils are evident. For studying gardud soil four sites were chosen according to the annual rainfall. Two pits were excavated in each site to represent the concaved and convexed locations plus composite samples to cover the area between two pits. Morphological, physical, chemical and mineralogical investigations were made. The results showed that the gardud soils were relatively differed within and between sites due to the climate and the topography. The dominant clay minerals are kaolinite, montmorillonite and illte. The chemical and physical characteristics were poor. Some of the restrictions limiting the use of these soils such as erosion, hardness, fertility, stoniness, drought and acidity. According to the American system of soil classification, the soils studied were given the following classification: (1) Bardab soil: (A) Kanhablic rhodustalf-fine clay, kaolinite, isohyperthermic (concaved). (B) Kandic paleustalf-very fine clay, kaolinite, isohyperthermic (convexed). (2) Sodari: (A) Typic comborthid-coarse loamy, mixed hyperthermic (concave). (B) Typic comborthid-coarse loamy, mixed hyperthermic (convexed). (3) Nihud (Rahad Elsilk): (A) Rhodic paleustalf-fine loamy, kaolinite isohyperthermic (concaved). (B) Aridic paleustalf-fine loamy kaolinite isohyperthermic (convexed). (4) Umgamalla: (A) Ustic hapustalf-fine loamy kaolinite isohyperthermic (concaved). (B)Ustic hapustalf-fine loamy kaolinite isohyperthermic (convexed). (Author) 39 refs. , 8 tabs. , 35 figs.

  1. Soil components that influence the chemical behavior of 239Pu

    International Nuclear Information System (INIS)

    Nishita, H.; Hamilton, M.

    1978-08-01

    Soil components that influence the extractability of 239 Pu from an artificially contaminated kaolinitic soil in relation to pH have been examined. This was done by using an equilibrium batch technique with CH 3 COOH--NH 4 OH and HNO 3 --NaOH extracting systems. Soil organic matter and free iron oxides had an appreciable effect depending on the pH and the extracting system. The free silica and alumina and amorphous alumino-silicates had lesser influence. With the untreated soil (control), the CH 3 COOH--NH 4 OH system generally extracted more 239 Pu than did the HNO 3 --NaOH system in the acidic pH range, whereas the latter system extracted markedly greater amounts of it in the alkaline pH range. With the soil from which the organic matter was removed, the CH 3 COOH--NH 4 OH system extracted appreciably greater amounts of 239 Pu than the HNO 3 --NaOH system in the acidic pH range, but there was only little, if any, difference between the two extracting systems in the alkaline pH range. The causes and the implications of these results are discussed

  2. Exploring functional relationships between post-fire soil water repellency, soil structure and physico-chemical properties

    Science.gov (United States)

    Quarfeld, Jamie; Brook, Anna; Keestra, Saskia; Wittenberg, Lea

    2016-04-01

    composition in determining wettability rather than quantity, as evidenced both by the high variation observed in the field and the strong presence of aliphatic functional groups in the absence of WR; and (ii) commonly proposed mechanisms affecting soil aggregate properties - albeit with differing temperature thresholds and longer exposure times employed in this study. Namely, these mechanisms tend to involve: (i) soil OM and WR reduction at low to moderate temperatures, and (ii) thermal fusion of particles within moderate to high temperatures. Overall, results suggest a positive influence of management on soil properties as well as high soil resilience to moderate severity fire disturbance in the studied areas. However, the specific changes in soil OM and mineral composition that are responsible for destruction of WR and subsequent changes in AS remain poorly understood. Based on these results, a key next step within this study will entail a closer examination of OC ratios and their potential links with certain mineral species known to influence soil aggregation and soil WR. Noting the importance of soil OM-mineralogical interactions on run-off and erosion processes, results may contribute to better prediction of post-fire responses in the future and improve the ability to fine-tune site specific management approaches accordingly.

  3. 137Cs in soil and fallout around Zagreb (Croatia) at the time of the Fukushima accident.

    Science.gov (United States)

    Šoštarić, Marko; Petrinec, Branko; Babić, Dinko

    2013-12-01

    This paper addresses the noticeable increase of 137Cs activity concentrations in soil and fallout in the area surrounding Zagreb (Croatia) that occurred at the time of the 2011 Fukushima accident. This topic is important for public health as 137Cs is highly toxic due to its long half-life of radioactive decay and chemical similarity to potassium. 137Cs concentrations in fallout were much greater than in soil, but remained present longer in the latter. While being detectable in our measurements, 137Cs did not spread through the food chain in amounts exceeding the maximum allowed level of radioactive food contamination. However, more thorough and consistent measurements need to be done in order to establish the precise activity trends of 137Cs in Zagreb soil and fallout.

  4. A multi-technique approach to assess chemical speciation of phosphate in soils

    Science.gov (United States)

    Belchior Abdala, Dalton; Rodrigues, Marcos; Herrera, Wilfrand; Pavinato, Paulo Sergio

    2017-04-01

    Soil scientists see chemical characterization of phosphorus (e.g., chemical speciation) as a winning strategy to increase phosphorus use efficiency in agriculture, to understand the fate of applied P fertilizer in soils and to devise strategies to minimize P losses to the environment. Phosphorus (P) is majorly presented in soils as phosphate, bound to mineral components of soils such as Al-, Ca- and Fe-(hydr)oxides or associated with organic molecules, being thus generally referred to as organic phosphates. In addition, because of the turnover of P between plants and microbes, it delivers P back to soils as a mixture of species with high spatial and chemical heterogeneity, adding complexity to the determination of the P species contained in environmental samples. Therefore, due to the variety of forms that phosphate can present in soils, its precise chemical characterization can only be achieved using a set of analytical techniques. Although established methodologies (e. g., soil test P, sequential chemical fractionation, P isotherms) have been useful to subsidize information for the establishment of policies and guidelines for soil management and P fertilizers use, they have failed to provide detailed information on P chemistry and reactivity in soils in a more satisfactory manner, which are critical to predict P bioavailability to plants and loss potential to the environment. More recently, the association of wet chemistry analysis with spectroscopy and microscopy techniques has arguably represented the most successful means to chemically speciate phosphate in soils. This is because using qualitative (chemical speciation), quantitative (chemical fractionation) and spatial (microscopy) data allows for triangulation of information, thereby reducing bias and increasing validity of the results. The analysis framework that we propose in this study includes the use of (i) sequential chemical fractionation of soil P to determine the partitioning of P within the

  5. Payback time for soil carbon and sugar-cane ethanol

    Science.gov (United States)

    Mello, Francisco F. C.; Cerri, Carlos E. P.; Davies, Christian A.; Holbrook, N. Michele; Paustian, Keith; Maia, Stoécio M. F.; Galdos, Marcelo V.; Bernoux, Martial; Cerri, Carlos C.

    2014-07-01

    The effects of land-use change (LUC) on soil carbon (C) balance has to be taken into account in calculating the CO2 savings attributed to bioenergy crops. There have been few direct field measurements that quantify the effects of LUC on soil C for the most common land-use transitions into sugar cane in Brazil, the world's largest producer . We quantified the C balance for LUC as a net loss (carbon debt) or net gain (carbon credit) in soil C for sugar-cane expansion in Brazil. We sampled 135 field sites to 1 m depth, representing three major LUC scenarios. Our results demonstrate that soil C stocks decrease following LUC from native vegetation and pastures, and increase where cropland is converted to sugar cane. The payback time for the soil C debt was eight years for native vegetation and two to three years for pastures. With an increasing need for biofuels and the potential for Brazil to help meet global demand, our results will be invaluable for guiding expansion policies of sugar-cane production towards greater sustainability.

  6. Consequences of using different soil texture determination methodologies for soil physical quality and unsaturated zone time lag estimates.

    Science.gov (United States)

    Fenton, O; Vero, S; Ibrahim, T G; Murphy, P N C; Sherriff, S C; Ó hUallacháin, D

    2015-11-01

    Elucidation of when the loss of pollutants, below the rooting zone in agricultural landscapes, affects water quality is important when assessing the efficacy of mitigation measures. Investigation of this inherent time lag (t(T)) is divided into unsaturated (t(u)) and saturated (t(s)) components. The duration of these components relative to each other differs depending on soil characteristics and the landscape position. The present field study focuses on tu estimation in a scenario where the saturated zone is likely to constitute a higher proportion of t(T). In such instances, or where only initial breakthrough (IBT) or centre of mass (COM) is of interest, utilisation of site and depth specific "simple" textural class or actual sand-silt-clay percentages to generate soil water characteristic curves with associated soil hydraulic parameters is acceptable. With the same data it is also possible to estimate a soil physical quality (S) parameter for each soil layer which can be used to infer many other physical, chemical and biological quality indicators. In this study, hand texturing in the field was used to determine textural classes of a soil profile. Laboratory methods, including hydrometer, pipette and laser diffraction methods were used to determine actual sand-silt-clay percentages of sections of the same soil profile. Results showed that in terms of S, hand texturing resulted in a lower index value (inferring a degraded soil) than that of pipette, hydrometer and laser equivalents. There was no difference between S index values determined using the pipette, hydrometer and laser diffraction methods. The difference between the three laboratory methods on both the IBT and COM stages of t(u) were negligible, and in this instance were unlikely to affect either groundwater monitoring decisions, or to be of consequence from a policy perspective. When t(u) estimates are made over the full depth of the vadose zone, which may extend to several metres, errors resulting from

  7. Consequences of using different soil texture determination methodologies for soil physical quality and unsaturated zone time lag estimates

    Science.gov (United States)

    Fenton, O.; Vero, S.; Ibrahim, T. G.; Murphy, P. N. C.; Sherriff, S. C.; Ó hUallacháin, D.

    2015-11-01

    Elucidation of when the loss of pollutants, below the rooting zone in agricultural landscapes, affects water quality is important when assessing the efficacy of mitigation measures. Investigation of this inherent time lag (tT) is divided into unsaturated (tu) and saturated (ts) components. The duration of these components relative to each other differs depending on soil characteristics and the landscape position. The present field study focuses on tu estimation in a scenario where the saturated zone is likely to constitute a higher proportion of tT. In such instances, or where only initial breakthrough (IBT) or centre of mass (COM) is of interest, utilisation of site and depth specific "simple" textural class or actual sand-silt-clay percentages to generate soil water characteristic curves with associated soil hydraulic parameters is acceptable. With the same data it is also possible to estimate a soil physical quality (S) parameter for each soil layer which can be used to infer many other physical, chemical and biological quality indicators. In this study, hand texturing in the field was used to determine textural classes of a soil profile. Laboratory methods, including hydrometer, pipette and laser diffraction methods were used to determine actual sand-silt-clay percentages of sections of the same soil profile. Results showed that in terms of S, hand texturing resulted in a lower index value (inferring a degraded soil) than that of pipette, hydrometer and laser equivalents. There was no difference between S index values determined using the pipette, hydrometer and laser diffraction methods. The difference between the three laboratory methods on both the IBT and COM stages of tu were negligible, and in this instance were unlikely to affect either groundwater monitoring decisions, or to be of consequence from a policy perspective. When tu estimates are made over the full depth of the vadose zone, which may extend to several metres, errors resulting from the use of

  8. In Situ Earthworm Breeding to Improve Soil Aggregation, Chemical Properties, and Enzyme Activity in Papayas

    Directory of Open Access Journals (Sweden)

    Huimin Xiang

    2018-04-01

    Full Text Available The long-term use of mineral fertilizers has decreased the soil fertility in papaya (Carica papaya L. orchards in South China. In situ earthworm breeding is a new sustainable practice for improving soil fertility. A field experiment was conducted to compare the effects of four treatments consisting of the control (C, chemical fertilizer (F, compost (O, and in situ earthworm breeding (E on soil physico-chemical properties and soil enzyme activity in a papaya orchard. The results showed that soil chemical properties, such as pH, soil organic matter (SOM, total nitrogen (TN, available nitrogen (AN, and total phosphorus (TP were significantly improved with the E treatment but declined with the F treatment. On 31 October 2008, the SOM and TN with the O and E treatments were increased by 26.3% and 15.1%, respectively, and by 32.5% and 20.6% compared with the F treatment. Furthermore, the O and E treatments significantly increased the activity of soil urease and sucrase. Over the whole growing season, soil urease activity was 34.4%~40.4% and 51.1%~58.7% higher with the O and E treatments, respectively, than that with the C treatment. Additionally, the activity of soil sucrase with the E treatment was always the greatest of the four treatments, whereas the F treatment decreased soil catalase activity. On 11 June 2008 and 3 July 2008, the activity of soil catalase with the F treatment was decreased by 19.4% and 32.0% compared with C. Soil bulk density with the four treatments was in the order of O ≤ E < F < C. The O- and E-treated soil bulk density was significantly lower than that of the F-treated soil. Soil porosity was in the order of C < F < E < O. Soil porosity with the O and E treatments was 6.0% and 4.7% higher, respectively, than that with the F treatment. Meanwhile, the chemical fertilizer applications significantly influenced the mean weight diameter (MWD of the aggregate and proportion of different size aggregate fractions. The E treatment

  9. Effects of Land Use Changes on Some Soil Chemical Properties in Khoy, West Azerbaijan Province

    Directory of Open Access Journals (Sweden)

    Arezoo Taghipour

    2016-02-01

    Full Text Available Introduction: Intensified agriculture over a long-term is an important factor in soil change phenomena that can cause some unwanted effects on soil properties. To examine this hypothesis, chemical properties of the soils under sunflower cultivation over five decades and adjoining virgin lands were investigated in order to monitor changes caused by long-term cropping. The studied soils are influenced by continuous sunflower cultivation along with flooding irrigation and using chemical fertilizers for over five decades Materials and Methods: This research was undertaken at Khoy area (38o 10′ to 38o 40′ N latitude and 44o 15′ to 45o 10′ E latitude as the northern part of western-Azarbaijan province in the north-west Iran. The Khoy area is characterized by a semi-arid climate (mean annual rainfall of 300 mm linked with soil moisture and temperature regimes of xeric and mesic, respectively. Agriculturally, the studied area is cropped continuously by sunflower-wheat or barley rotations for over five decades and has received irrigation water from rainfall, groundwater, or seasonal river water. Forty soil surface samples (0-30 cm belonging to 10 soil series from the cultivated soils and the adjoining uncultivated soils were samplied and analyzed for the different chemical properties. In each soil serie, the samples (cultivated soil and adjacent virgin land were selected in similar slope, aspect, drainage condition, and parent materials. Soil analyses were involved soil pH and electrical conductivity (EC, soil organic carbon (SOC, Calcium carbonate equivalent (CCE, cation exchange capacity (CEC, total N, soluble K, exchangeable K, and available K. Potassium absorption ration (PAR was calculated by the concentration of solution K, Ca, Mg and exchangeable potassium percentage (EPP was calculated by exchangeable Na and CEC values Results and Discussion: This study illustrate that long-term continuous sunflower cropping had considerable effects on

  10. Review and evaluation of the effects of xenobiotic chemicals on microorganisms in soil. [139 references

    Energy Technology Data Exchange (ETDEWEB)

    Hicks, R.J.; Van Voris, P.

    1988-02-01

    The primary objective was to review and evaluate the relevance and quality of existing xenobiotic data bases and test methods for evaluating direct and indirect effects (both adverse and beneficial) of xenobiotics on the soil microbial community; direct and indirect effects of the soil microbial community on xenobiotics; and adequacy of test methods used to evaluate these effects and interactions. Xenobiotic chemicals are defined here as those compounds, both organic and inorganic, produced by man and introduced into the environment at concentrations that cause undesirable effects. Because soil serves as the main repository for many of these chemicals, it therefore has a major role in determining their ultimate fate. Once released, the distribution of xenobiotics between environmental compartments depends on the chemodynamic properties of the compounds, the physicochemical properties of the soils, and the transfer between soil-water and soil-air interfaces and across biological membranes. Abiotic and biotic processes can transform the chemical compound, thus altering its chemical state and, subsequently, its toxicity and reactivity. Ideally, the conversion is to carbon dioxide, water, and mineral elements, or at least, to some harmless substance. However, intermediate transformation products, which can become toxic pollutants in their own right, can sometimes be formed. 139 refs., 6 figs., 11 tabs.

  11. Chemical Attributes of Soil Fertilized with Cassava Mill Wastewater and Cultivated with Sunflower

    Directory of Open Access Journals (Sweden)

    Mara Suyane Marques Dantas

    2014-01-01

    Full Text Available The use of waste arising from agroindustrial activities, such as cassava wastewater, has been steadily implemented in order to reduce environmental pollution and nutrient utilization. The aim of this study is that the changes in chemical properties of dystrophic red-yellow latosol (oxisol were evaluated at different sampling times after reuse of cassava wastewater as an alternative to mineral fertilizer in the cultivation of sunflower, hybrid Helio 250. The experiment was conducted at the Experimental Station of the Agricultural Research Company of Pernambuco (IPA, located in Vitória de Santo Antão. The experimental design was randomized blocks with 6×5 subplots; six doses of cassava wastewater (0; 8.5; 17.0; 34.0; 68.0; and 136 m3 ha−1; and five sampling times (21, 42, 63, 84, and 105 days after applying the cassava wastewater, with four replications. Concentrations of available phosphorus and exchangeable potassium, calcium, magnesium and sodium, pH, and electrical conductivity of the soil saturation extract were evaluated. Results indicate that cassava wastewater is an efficient provider of nutrients to the soil and thus to the plants, making it an alternative to mineral fertilizers.

  12. Effects of some physical and chemical characteristics of soil on ...

    African Journals Online (AJOL)

    ELO

    components (number of seeds per pod, number of pod per plant, grain yield, pod yield and weight of. 1000 seeds) ... INTRODUCTION. Legumes are ... Nigeria accounting for over 70% of the total world pro- ... complexes between metal ions associated with large clay ... Enhancement and maintenance of soil productivity.

  13. Changes in soil chemical and microbiological properties during 4 years of application of various organic residues.

    Science.gov (United States)

    Odlare, M; Pell, M; Svensson, K

    2008-01-01

    A 4-year field trial was established in eastern Sweden to evaluate the effects of organic waste on soil chemical and microbiological variables. A simple crop rotation with barley and oats was treated with either compost from household waste, biogas residue from household waste, anaerobically treated sewage sludge, pig manure, cow manure or mineral fertilizer. All fertilizers were amended in rates corresponding to 100kgNha(-1)year(-1). The effects of the different types of organic waste were evaluated by subjecting soil samples, taken each autumn 4 weeks after harvest, to an extensive set of soil chemical (pH, Org-C, Tot-N, Tot-P, Tot-S, P-AL, P-Olsen, K-AL, and some metals) and microbiological (B-resp, SIR, microSIR active and dormant microorganisms, PDA, microPDA, PAO, Alk-P and N-min) analyses. Results show that compost increased pH, and that compost as well as sewage sludge increased plant available phosphorus; however, the chemical analysis showed few clear trends over the 4 years and few clear relations to plant yield or soil quality. Biogas residues increased substrate induced respiration (SIR) and, compared to the untreated control amendment of biogas residues as well as compost, led to a higher proportion of active microorganisms. In addition, biogas residues increased potential ammonia oxidation rate (PAO), nitrogen mineralization capacity (N-min) as well as the specific growth rate constant of denitrifiers (microPDA). Despite rather large concentrations of heavy metals in some of the waste products, no negative effects could be seen on either chemical or microbiological soil properties. Changes in soil microbial properties appeared to occur more rapidly than most chemical properties. This suggests that soil microbial processes can function as more sensitive indicators of short-term changes in soil properties due to amendment of organic wastes.

  14. Correlation between soil chemical characteristics and soil-borne mycoflora in cucumber tunnels

    International Nuclear Information System (INIS)

    Qudsia, H.; Javaid, A.; Mahmood, R.; Akhtar, N.

    2017-01-01

    Twelve soil samples were collected from fields of cucumber (Cucumis sativus L.) tunnels from various localities of Lahore and Shekhupura districts, Pakistan. Soil samples were analyzed for various characteristics viz. pH, EC/sub e/, organic matter, nitrogen (N), phosphorus (P) and potassium (K). Soil mycoflora was isolated using dilution plate method. Soil pH, EC/sub e/, organic matter, N, P and K were in the range of 7.42-8.13, 107-2520 (meu S cm-1), 0.98-1.40%, 0.039-0.070%, 7-357 mg kg/sup -1/ and 88-946 mg kg/sup -1/ in different soil samples, respectively. A total of 18 fungal species belonging to 10 genera viz. Aspergillus, Alternaria, Cladosporium, Drechslera, Emericella, Fusarium, Mortierella, Mucor, Penicillium and Sclerotium were isolated from various soil samples. Saprophytic fungi were more prevalent than pathogenic ones. Number of colonies of saprophytic fungi ranged from 360-2754 g/sup -1/ soil in different samples. In contrast, number of pathogenic fungal colonies were limited to 1-234 g/sup -1/ soil. Number of colonies of pathogenic fungi were positively and significantly correlated with soil organic matter and nitrogen contents. This study concludes that high nitrogen and organic matter in cucumber tunnels favour population of pathogenic fungi. (author)

  15. Restoration of Soil Physical and Chemical Properties of Abandoned Tin- Mining in Bangka Belitung Islands

    Directory of Open Access Journals (Sweden)

    Ishak Yuarsah

    2017-01-01

    Full Text Available The practices of tin mining that remove all soil layers on top of the mineral deposit layers have caused serious environmental problems, i.e. degradation of soil physical and chemical properties and disappearance of vegetation, flora and fauna in ecosystems, which further can change the local microclimate. The tailing area of tin mining have unstable soil structure and low organic matter content, so it is vulnerable to land slides and erosion. The characteristics of the soils in the tailing area that are very acidic, low nutrient availability, low water holding capacity and high soil temperature challange the restoration and improvement processes of this area. The aim of the research was to develop appropriate restoration techniques to improve the soil properties of post tin mining land that have been degraded due to mining activities. Appropriate plant species and specific location technology were determined based on the characterization and evaluation of potential land resources. Annual crop cultivation, cultivation of legume cover crops (Mucuna sp., Calopogonium sp., Pueraria javanica and management of top soil and organic matter should be applied in order to improve soil structure, maintain soil moisture, as well as to reduce nutrient loss in coarse sandy soils.

  16. PREDICTING EVAPORATION RATES AND TIMES FOR SPILLS OF CHEMICAL MIXTURES

    Science.gov (United States)

    Spreadsheet and short-cut methods have been developed for predicting evaporation rates and evaporation times for spills (and constrained baths) of chemical mixtures. Steady-state and time-varying predictions of evaporation rates can be made for six-component mixtures, includ...

  17. Agricultural management impact on physical and chemical functions of European peat soils.

    Science.gov (United States)

    Piayda, Arndt; Tiemeyer, Bärbel; Dettmann, Ullrich; Bechtold, Michel; Buschmann, Christoph

    2017-04-01

    Peat soils offer numerous functions from the global to the local scale: they constitute the biggest terrestrial carbon storage on the globe, form important nutrient filters for catchments and provide hydrological buffer capacities for local ecosystems. Peat soils represent a large share of soils suitable for agriculture in temperate and boreal Europe, pressurized by increasing demands for production. Cultivated peat soils, however, show extreme mineralization rates of the organic substance and turn into hotspots for green house gas emissions, are highly vulnerable to land surface subsidence, soil and water quality deterioration and thus crop failure. The aim of this study is to analyse the impact of past agricultural management on soil physical and chemical functions of peat soils in six European countries. We conducted standardized soil mapping, soil physical/chemical analysis, ground water table monitoring and farm business surveys across 7 to 10 sites in Germany, The Netherlands, Denmark, Estonia, Finland and Sweden. The results show a strong impact of past agricultural management on peat soil functions across Europe. Peat soil under intensive arable land use consistently offer lowest bearing capacities in the upper 10 cm compared to extensive and intensive grassland use, which is a major limiting factor for successful agricultural practice on peat soils. The difference can be explained by root mat stabilization solely, since soil compaction in the upper 25cm is highest under arable land use. A strong decrease of available water capacity and saturated hydraulic conductivity is consequently observed under arable land use, further intensifying hydrological problems like ponding, drought stress and reductions of hydrological buffer capacities frequently present on cultivated peat soils. Soil carbon stocks clearly decrease with increasing land use intensity, showing highest carbon stocks on extensive grassland. This is supported by the degree of decomposition, which

  18. Land cover changes affect soil chemical attributes in the Brazilian Amazon

    Directory of Open Access Journals (Sweden)

    Murilo Rezende Machado

    2017-05-01

    Full Text Available Forest plantations may minimize the effects of deforestation in the Amazon. However, there are differences among species in terms of their influences on soil recovery. The effects of monospecific plantations of Acacia mangium, Dipteryx odorata, Jacaranda copaia, Parkia decussata,and Swietenia macrophylla, and areas of pasture and native forest on the chemical soil attributes of the Brazilian Amazon were evaluated. One bulked soil sample was collected per plot (0.00-0.05, 0.05-0.10, and 0.10-0.30 m; three plots of 128 m2 in each area. No significant differences in most of the soil attributes were observed among the forest plantations. However, soil K+ and P were higher in the Swietenia macrophylla plantations, while higher values of Ca2+, sum of bases, and pH occurred in Jacaranda copaia plantations. In the native forest, the pH, and P content were lower, whereas the soil organic matter (SOM content, soil organic carbon (SOC content, cation exchange capacity (CEC, N content, H+Al content, and Al3+ content were higher than in the plantations. The lowest values of SOM, SOC, CEC, K+, Mg2+, N, H+Al, and Al3+ occurred in the pasture. None of the forest species led to the return of the original soil chemical attributes of the native forest. However, S. macrophylla and J. copaia plantations presented the highest positive edaphic influences.

  19. Changing the physical and chemical composition of the soil in the area of man-made impact in urban areas

    Directory of Open Access Journals (Sweden)

    N.V. Zuievska

    2017-04-01

    Full Text Available The research analyzes the application of method of horizontal directional drilling (HDD for the construction of engineering communication for Kyiv’s dense urban development. The main advantages of this modern technology of laying pipes of different diameter in complicated hydrogeological conditions are high accuracy and constant control of the trajectory, the possibility of work regardless of the season and work in a confined space without disturbing the surface structures that already exist. The most common depth of HDD in urban areas is about 2–3 m. As a result of intensive anthropogenic and technological impact in urban soils negative processes are developing that impair their strength characteristics. Soil decompression, violations of water-air and thermal balance, chemical and biological contamination lead to the surface deformations in the field of application of horizontal drilling. The negative aspect is that after filling of soil and repair of surface subsidence, these processes do not stop over time and continue to fracture surface. The aim of the research is to establish the causes of the continuation of active deformation processes of soil environment after the construction of engineering communication using the method of horizontal directional drilling. Most of sewage networks are within the impact zone of roads, so the research was conducted for soil near their proximity, samples were taken at various depths to allow man-made human impact on the deformation properties of soil foundations. For the qualitative and quantitative analysis of substances in soils, roentgen spectral analysis was used. It is a non-destructive method for determining element composition. To determine the oil content we used nuclear magnetic resonance spectroscopy.The study was conducted to determine the salt content of soils and their elemental composition depending on the depth and determination of petroleum products, which may reduce the carrying

  20. National inventory of alkylphenol ethoxylate compounds in U.S. sewage sludges and chemical fate in outdoor soil mesocosms

    International Nuclear Information System (INIS)

    Venkatesan, Arjun K.; Halden, Rolf U.

    2013-01-01

    We determined the first nationwide inventories of alkylphenol surfactants in U.S. sewage sludges (SS) using samples from the U.S. Environmental Protection Agency's 2001 national SS survey. Additionally, analysis of archived 3-year outdoor mesocosm samples served to determine chemical fates in SS-amended soil. Nonylphenol (NP) was the most abundant analyte (534 ± 192 mg/kg) in SS composites, followed by its mono- and di-ethoxylates (62.1 ± 28 and 59.5 ± 52 mg/kg, respectively). The mean annual load of NP and its ethoxylates in SS was estimated at 2408–7149 metric tonnes, of which 1204–4289 is applied on U.S. land. NP compounds showed observable loss from SS/soil mixtures (1:2), with mean half-lives ranging from 301 to 495 days. Surfactant levels in U.S. SS ten-times in excess of European regulations, substantial releases to U.S. soils, and prolonged half-lives found under field conditions, all argue for the U.S. to follow Europe's move from 20 years ago to regulate these chemicals. -- Highlights: ► First national survey of alkylphenol surfactants in U.S. sewage sludges. ► Nonylphenol (NP) and its ethoxylates were consistently detected in all samples. ► Levels of NP in U.S. biosolids exceed regulatory limit set by European Union. ► Significant surfactant releases to U.S. soils via biosolids land application. ► Half-lives >300 days for NP and its ethoxylates observed in outdoor soil mesocosms. -- First study providing national inventories of alkylphenol surfactants in U.S. sewage sludges (SS), shows significant release of chemicals to U.S. soils through SS land application

  1. Chemical elements in soils of riverside areas of the Piracicaba river basin, São Paulo, Brazil

    International Nuclear Information System (INIS)

    França, Elvis J.; Lira, Marcelo B.G.; Paiva, José D.S.; Fernandes, Elisabete A. de N.; Fonseca, Felipe Y.; Rodrigues, Vanessa S.; Cavalca, Isabel P.O.; Camilli, Leandro

    2017-01-01

    The monitoring of the soil quality of the Piracicaba River Basin, located in the State of São Paulo, is of extreme environmental importance, as it ensures the functionality of the basin ecosystems and environmental protection. However, there are few studies focused on the concentration of chemical elements in soils of environmental protection zones of highly populated riverside regions. In view of the above, this work aims to determine the concentration of chemical elements in the soils located on the banks of the Piracicaba River by the Instrumental Neutronic Activation Analysis - INAA. Soil samples were collected in the 0-5 cm, 5-10 cm and 10-15 cm profiles. Subsequently, the samples were dried in an oven at 80 deg C and comminuted with the aid of mortar and pistil. 250 mg portions were transferred to polyethylene capsules and irradiated in 10 13 cm -2 .s -1 neutron flux for 4 hours at the IEA-R1 Nuclear Research Reactor of the Nuclear and Energy Research Institute -IPEN / SP, Brazil. The determination of the chemical elements was conducted by the k0-INAA method from the Quantu program. Comparing the results obtained with the soil values of an untouched area of Atlantic Forest - Carlos Botelho State Park, the maximum values obtained of As (29 mg / kg) and Zn (185 mg / kg) were about 5 times greater. However, concentrations of terrigenous elements such as Fe and Sc were also high in some cases, indicating that there is also a contribution of the source material (rocks) to the high concentrations observed in the riverside soils

  2. Nonlinear Time Domain Seismic Soil-Structure Interaction (SSI) Deep Soil Site Methodology Development

    International Nuclear Information System (INIS)

    Spears, Robert Edward; Coleman, Justin Leigh

    2015-01-01

    Currently the Department of Energy (DOE) and the nuclear industry perform seismic soil-structure interaction (SSI) analysis using equivalent linear numerical analysis tools. For lower levels of ground motion, these tools should produce reasonable in-structure response values for evaluation of existing and new facilities. For larger levels of ground motion these tools likely overestimate the in-structure response (and therefore structural demand) since they do not consider geometric nonlinearities (such as gaping and sliding between the soil and structure) and are limited in the ability to model nonlinear soil behavior. The current equivalent linear SSI (SASSI) analysis approach either joins the soil and structure together in both tension and compression or releases the soil from the structure for both tension and compression. It also makes linear approximations for material nonlinearities and generalizes energy absorption with viscous damping. This produces the potential for inaccurately establishing where the structural concerns exist and/or inaccurately establishing the amplitude of the in-structure responses. Seismic hazard curves at nuclear facilities have continued to increase over the years as more information has been developed on seismic sources (i.e. faults), additional information gathered on seismic events, and additional research performed to determine local site effects. Seismic hazard curves are used to develop design basis earthquakes (DBE) that are used to evaluate nuclear facility response. As the seismic hazard curves increase, the input ground motions (DBE's) used to numerically evaluation nuclear facility response increase causing larger in-structure response. As ground motions increase so does the importance of including nonlinear effects in numerical SSI models. To include material nonlinearity in the soil and geometric nonlinearity using contact (gaping and sliding) it is necessary to develop a nonlinear time domain methodology. This

  3. Chemical and plant extractability of metals and plant growth on soils amended with sludge

    Energy Technology Data Exchange (ETDEWEB)

    Gaynor, J.D.; Halstead, R.L.

    1976-02-01

    The addition of sludge to a Fox sandy loam (sl), Granby sl and Rideau clay (c) soil increased soil pH, total C, NaHCO3 extractable P, cation exchange capacity and exchangeable Ca. Sludge application increased DTPA-extractable Cd 2 to 5 times, Pb 2 to 3 times, Cu 3 to 7 times and Zn 7 to 31 times. Metal extractability in Granby and Fox sl soils was not greatly changed after 11 mo incubation but extractable Zn, Cu, Pb and Cd were reduced in the clay soil following incubation. Cropping to lettuce reduced the quantity of metal extracted from Fox sl soil and to a lesser extent from Rideau c soil but not from Granby sl soil. Lettuce (Lactuca sativa L.) yields were significantly reduced for the first crop grown on sludge + fertilizer-treated Rideau c and Granby sl soils and for all three harvests from similarly treated Fox s 1 soil compared to harvests from soils treated with fertilizer only. Yield reduction for the first crop was attributed to a salt effect, as subsequent yields on Rideau c and Granby sl soils were similar to harvests from fertilized treatments. Saturation extract conductivities for all sludge treatments were higher for incubated than for cropped soils. Generally Zn, Cu and Pb tissue concentrations in lettuce harvested from sludge + fertilizer-treated Fox and Granby sl soils were significantly increased but total uptake was only increased for Zn. Metal uptake and tissue concentrations for lettuce grown on similarly treated Rideau c soil were equal to or less than those found in lettuce harvested from the fertilizer-only treatment. To a lesser extent similar trends were observed with the tomato (Lycospersicon esculentum Mill.) crop. 27 references, 3 tables.

  4. Highlights from the SoilCAM project: Soil Contamination, Advanced integrated characterisation and time-lapse Monitoring

    Science.gov (United States)

    French, H. K.; van der Zee, S. E. A. T. M.; Wehrer, M.; Godio, A.; Pedersen, L. B.; Toscano, G.

    2012-04-01

    The SoilCAM project (Soil Contamination, Advanced integrated characterisation and time-lapse Monitoring 2008-2012, EU-FP7-212663) is aimed at improving current methods for monitoring contaminant distribution and biodegradation in the subsurface. At two test sites, Oslo airport Gardermoen in Norway and the Trecate site in Italy, a number of geophysical techniques, lysimeter and other soil and water sampling techniques as well as numerical flow and transport modelling have been combined at different scales in order to characterise flow transport processes in the unsaturated and saturated zones. Laboratory experiments have provided data on physical and bio-geo-chemical parameters for use in models and to select remediation methods. The geophysical techniques were used to map geological heterogeneities and also conduct time-lapse measurements of processes in the unsaturated zone. Both cross borehole and surface electrodes were used for electrical resistivity and induced polarisation surveys. The geophysical surveys showed clear indications of areas highly affected by de-icing chemicals along the runway at Oslo airport. The time lapse measurements along the runway at the airport show infiltration patterns during snowmelt and are used to validate 2D unsaturated flow and transport simulations using SUTRA. The Orchestra model is used to describe the complex interaction between bio-geo-chemical processes in a 1D profile along the runway. The presence of installations such as a membrane along the runway highly affects the flow pattern and challenges the capacity of the numerical code. Smaller scale field site measurements have revealed the increase of iron and manganese during degradation of de-icing chemicals. The use of Nitrate to increase red-ox potential was tested, but results have not been analysed yet. So far it cannot be concluded that degradation process can be quantified indirectly by geophysical monitoring. At the Trecate site a combination of georadar, electrical

  5. Using deuterated PAH amendments to validate chemical extraction methods to predict PAH bioavailability in soils

    International Nuclear Information System (INIS)

    Gomez-Eyles, Jose L.; Collins, Chris D.; Hodson, Mark E.

    2011-01-01

    Validating chemical methods to predict bioavailable fractions of polycyclic aromatic hydrocarbons (PAHs) by comparison with accumulation bioassays is problematic. Concentrations accumulated in soil organisms not only depend on the bioavailable fraction but also on contaminant properties. A historically contaminated soil was freshly spiked with deuterated PAHs (dPAHs). dPAHs have a similar fate to their respective undeuterated analogues, so chemical methods that give good indications of bioavailability should extract the fresh more readily available dPAHs and historic more recalcitrant PAHs in similar proportions to those in which they are accumulated in the tissues of test organisms. Cyclodextrin and butanol extractions predicted the bioavailable fraction for earthworms (Eisenia fetida) and plants (Lolium multiflorum) better than the exhaustive extraction. The PAHs accumulated by earthworms had a larger dPAH:PAH ratio than that predicted by chemical methods. The isotope ratio method described here provides an effective way of evaluating other chemical methods to predict bioavailability. - Research highlights: → Isotope ratios can be used to evaluate chemical methods to predict bioavailability. → Chemical methods predicted bioavailability better than exhaustive extractions. → Bioavailability to earthworms was still far from that predicted by chemical methods. - A novel method using isotope ratios to assess the ability of chemical methods to predict PAH bioavailability to soil biota.

  6. Using deuterated PAH amendments to validate chemical extraction methods to predict PAH bioavailability in soils

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Eyles, Jose L., E-mail: j.l.gomezeyles@reading.ac.uk [University of Reading, School of Human and Environmental Sciences, Soil Research Centre, Reading, RG6 6DW Berkshire (United Kingdom); Collins, Chris D.; Hodson, Mark E. [University of Reading, School of Human and Environmental Sciences, Soil Research Centre, Reading, RG6 6DW Berkshire (United Kingdom)

    2011-04-15

    Validating chemical methods to predict bioavailable fractions of polycyclic aromatic hydrocarbons (PAHs) by comparison with accumulation bioassays is problematic. Concentrations accumulated in soil organisms not only depend on the bioavailable fraction but also on contaminant properties. A historically contaminated soil was freshly spiked with deuterated PAHs (dPAHs). dPAHs have a similar fate to their respective undeuterated analogues, so chemical methods that give good indications of bioavailability should extract the fresh more readily available dPAHs and historic more recalcitrant PAHs in similar proportions to those in which they are accumulated in the tissues of test organisms. Cyclodextrin and butanol extractions predicted the bioavailable fraction for earthworms (Eisenia fetida) and plants (Lolium multiflorum) better than the exhaustive extraction. The PAHs accumulated by earthworms had a larger dPAH:PAH ratio than that predicted by chemical methods. The isotope ratio method described here provides an effective way of evaluating other chemical methods to predict bioavailability. - Research highlights: > Isotope ratios can be used to evaluate chemical methods to predict bioavailability. > Chemical methods predicted bioavailability better than exhaustive extractions. > Bioavailability to earthworms was still far from that predicted by chemical methods. - A novel method using isotope ratios to assess the ability of chemical methods to predict PAH bioavailability to soil biota.

  7. Assessing soil fertility decline in the tropics using soil chemical data

    NARCIS (Netherlands)

    Hartemink, A.E.

    2006-01-01

    Soil fertility decline is perceived to be widespread in the upland soils of the tropics, particularly in sub-Saharan Africa. Most studies have used nutrient balances to assess the degree and extent of nutrient depletion; these have created awareness but suffer methodological problems as several of

  8. Visualization of physico-chemical properties and microbial distribution in soil and root microenvironments

    Science.gov (United States)

    Eickhorst, Thilo; Schmidt, Hannes

    2016-04-01

    Plant root development is influenced by soil properties and environmental factors. In turn plant roots can also change the physico-chemical conditions in soil resulting in gradients between roots and the root-free bulk soil. By releasing a variety of substances roots facilitate microbial activities in their direct vicinity, the rhizosphere. The related microorganisms are relevant for various ecosystem functions in the root-soil interface such as nutrient cycling. It is therefore important to study the impact and dynamics of microorganisms associated to different compartments in root-soil interfaces on a biologically meaningful micro-scale. The analysis of microorganisms in their habitats requires microscopic observations of the respective microenvironment. This can be obtained by preserving the complex soil structure including the root system by resin impregnation resulting in high quality thin sections. The observation of such sections via fluorescence microscopy, SEM-EDS, and Nano-SIMS will be highlighted in this presentation. In addition, we will discuss the combination of this methodological approach with other imaging techniques such as planar optodes or non-invasive 3D X-ray CT to reveal the entire spatial structure and arrangement of soil particles and roots. When combining the preservation of soil structure via resin impregnation with 16S rRNA targeted fluorescence in situ hybridization (FISH) single microbial cells can be visualized, localized, and quantified in the undisturbed soil matrix including the root-soil interfaces. The simultaneous use of multiple oligonucleotide probes thereby provides information on the spatial distribution of microorganisms belonging to different phylogenetic groups. Results will be shown for paddy soils, where management induced physico-chemical dynamics (flooding and drying) as well as resulting microbial dynamics were visualized via correlative microscopy in resin impregnated samples.

  9. Effects of inorganic and organic amendment on soil chemical properties, enzyme activities, microbial community and soil quality in yellow clayey soil.

    Directory of Open Access Journals (Sweden)

    Zhanjun Liu

    Full Text Available Understanding the effects of external organic and inorganic components on soil fertility and quality is essential for improving low-yielding soils. We conducted a field study over two consecutive rice growing seasons to investigate the effect of applying chemical fertilizer (NPK, NPK plus green manure (NPKG, NPK plus pig manure (NPKM, and NPK plus straw (NPKS on the soil nutrient status, enzyme activities involved in C, N, P, and S cycling, microbial community and rice yields of yellow clayey soil. Results showed that the fertilized treatments significantly improved rice yields over the first three experimental seasons. Compared with the NPK treatment, organic amendments produced more favorable effects on soil productivity. Notably, the NPKM treatment exhibited the highest levels of nutrient availability, microbial biomass carbon (MBC, activities of most enzymes and the microbial community. This resulted in the highest soil quality index (SQI and rice yield, indicating better soil fertility and quality. Significant differences in enzyme activities and the microbial community were observed among the treatments, and redundancy analysis showed that MBC and available N were the key determinants affecting the soil enzyme activities and microbial community. The SQI score of the non-fertilized control (0.72 was comparable to that of the NPK (0.77, NPKG (0.81 and NPKS (0.79 treatments but significantly lower compared with NPKM (0.85. The significant correlation between rice yield and SQI suggests that SQI can be a useful to quantify soil quality changes caused by different agricultural management practices. The results indicate that application of NPK plus pig manure is the preferred option to enhance SOC accumulation, improve soil fertility and quality, and increase rice yield in yellow clayey soil.

  10. Food and soil-borne Penicillia in Arctic environments: Chemical diversity

    DEFF Research Database (Denmark)

    Frisvad, Jens Christian

    Penicillia are very common inhabitants of cold environments, including arctic soil, plants, animals, and foods. We have investigated the mycobiota of Greenland inland ice and soil, and found a very unique and pronounced diversity among the Penicillia. Nearly all species were new to science....... The species found in inland ice were both of the soil-borne type, and Penicillia that grow and sporulate well at 25°C. The latter group of Penicillia have been found earlier in refrigerated foods, including P. nordicum, and in glacier ice and melting water from Svalbard (se Sonjak et al., this conference......). This “food-borne group” of arctic fungi also contained some new species, but not as many as in arctic soil. The chemical diversity of the Penicillium species was remarkably high and in most cases even larger than the chemical diversity of Penicillia in the tropics. Several new secondary metabolites were...

  11. Improved Understanding of In Situ Chemical Oxidation Soil Reactivity

    Science.gov (United States)

    2007-12-01

    followed by a mixture of nitric and perchloric acids . This sequence uses precise heat ramping and holding cycles which takes the sample to dryness...release different kinds of products (e.g., benzenepolycarboxylic acids , phenolic acids , and fatty acids ) with varying resistance to the attack of... oxalate might be the only organic product in the oxidation of humic and non-humic soils by permanganate or even hydrogen peroxide (Harada and Inoko

  12. Time-dependent sorption of two novel fungicides in soils within a regulatory framework.

    Science.gov (United States)

    Gulkowska, Anna; Buerge, Ignaz J; Poiger, Thomas; Kasteel, Roy

    2016-12-01

    Convincing experimental evidence suggests increased sorption of pesticides on soil over time, which, so far, has not been considered in the regulatory assessment of leaching to groundwater. Recently, Beulke and van Beinum (2012) proposed a guidance on how to conduct, analyse and use time-dependent sorption studies in pesticide registration. The applicability of the recommended experimental set-up and fitting procedure was examined for two fungicides, penflufen and fluxapyroxad, in four soils during a 170 day incubation experiment. The apparent distribution coefficient increased by a factor of 2.5-4.5 for penflufen and by a factor of 2.5-2.8 for fluxapyroxad. The recommended two-site, one-rate sorption model adequately described measurements of total mass and liquid phase concentration in the calcium chloride suspension and the calculated apparent distribution coefficient, passing all prescribed quality criteria for model fit and parameter reliability. The guidance is technically mature regarding the experimental set-up and parameterisation of the sorption model for the two moderately mobile and relatively persistent fungicides under investigation. These parameters can be used for transport modelling in soil, thereby recognising the existence of the experimentally observed, but in the regulatory leaching assessment of pesticides not yet routinely considered phenomenon of time-dependent sorption. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  13. Chemical aspects of uranium behavior in soils: A review

    Science.gov (United States)

    Vodyanitskii, Yu. N.

    2011-08-01

    Uranium has varying degrees of oxidation (+4 and +6) and is responsive to changes in the redox potential of the environment. It is deposited at the reduction barrier with the participation of biota and at the sorption barrier under oxidative conditions. Iron (hydr)oxides are the strongest sorbents of uranium. Uranium, being an element of medium biological absorption, can accumulate (relative to thorium) in the humus horizons of some soils. The high content of uranium in uncontaminated soils is most frequently inherited from the parent rocks in the regions of positive U anomalies: in the soils developed on oil shales and in the marginal zone of bogs at the reduction barrier. The development of nuclear and coal-fired power engineering resulted in the environmental contamination with uranium. The immobilization of anthropogenic uranium at artificial geochemical barriers is based on two preconditions: the stimulation of on-site metal-reducing bacteria or the introduction of strong mineral reducers, e.g., Fe at low degrees of oxidation.

  14. Dynamic chemical characteristics of soil solution after pig manure application: a column study.

    Science.gov (United States)

    Hao, Xiuzhen; Zhou, Dongmei; Sun, Lei; Li, Lianzhen; Zhang, Hailin

    2008-06-01

    When manures from intensive livestock operations are applied to agricultural or vegetable fields at a high rate, large amounts of salts and metals will be introduced into soils. Using a column leaching experiment, this study assessed the leaching potential of the downward movement of Cu and Zn as well as some salt ions after an intensive farm pig manure at rates of 0%, 5% and 10% (w/w) were applied to the top 20 cm of two different textured soils (G soil -sandy loam soil; H soil-silty clay loam soil), and investigated the growth of amaranth and Cu and Zn transfer from soil to amaranth (Amaranthus tricolor). Soil solutions were obtained at 20, 40 and 60 cm depth of the packed column and analyzed for pH, electrical conductivity (EC), dissolved organic matter (DOC) and Cu and Zn concentrations. The results indicated that application of pig manure containing Cu and Zn to sandy loam soil might cause higher leaching and uptake risk than silty clay loam soil, especially at high application rates. And manure amendment at 5% and 10% significantly decreased the biomass of amaranth, in which the salt impact rather than Cu and Zn toxicity from manures played more important role in amaranth growth. Thus the farmer should avoid application the high rate of pig manure containing metal and salt to soil at a time, especially in sandy soil.

  15. Tree species traits influence soil physical, chemical, and biological properties in high elevation forests.

    Directory of Open Access Journals (Sweden)

    Edward Ayres

    Full Text Available BACKGROUND: Previous studies have shown that plants often have species-specific effects on soil properties. In high elevation forests in the Southern Rocky Mountains, North America, areas that are dominated by a single tree species are often adjacent to areas dominated by another tree species. Here, we assessed soil properties beneath adjacent stands of trembling aspen, lodgepole pine, and Engelmann spruce, which are dominant tree species in this region and are distributed widely in North America. We hypothesized that soil properties would differ among stands dominated by different tree species and expected that aspen stands would have higher soil temperatures due to their open structure, which, combined with higher quality litter, would result in increased soil respiration rates, nitrogen availability, and microbial biomass, and differences in soil faunal community composition. METHODOLOGY/PRINCIPAL FINDINGS: We assessed soil physical, chemical, and biological properties at four sites where stands of aspen, pine, and spruce occurred in close proximity to one-another in the San Juan Mountains, Colorado. Leaf litter quality differed among the tree species, with the highest nitrogen (N concentration and lowest lignin:N in aspen litter. Nitrogen concentration was similar in pine and spruce litter, but lignin:N was highest in pine litter. Soil temperature and moisture were highest in aspen stands, which, in combination with higher litter quality, probably contributed to faster soil respiration rates from stands of aspen. Soil carbon and N content, ammonium concentration, and microbial biomass did not differ among tree species, but nitrate concentration was highest in aspen soil and lowest in spruce soil. In addition, soil fungal, bacterial, and nematode community composition and rotifer, collembolan, and mesostigmatid mite abundance differed among the tree species, while the total abundance of nematodes, tardigrades, oribatid mites, and prostigmatid

  16. Characterization of Models for Time-Dependent Behavior of Soils

    DEFF Research Database (Denmark)

    Liingaard, Morten; Augustesen, Anders; Lade, Poul V.

    2004-01-01

      Different classes of constitutive models have been developed to capture the time-dependent viscous phenomena ~ creep, stress relaxation, and rate effects ! observed in soils. Models based on empirical, rheological, and general stress-strain-time concepts have been studied. The first part....... Special attention is paid to elastoviscoplastic models that combine inviscid elastic and time-dependent plastic behavior. Various general elastoviscoplastic models can roughly be divided into two categories: Models based on the concept of overstress and models based on nonstationary flow surface theory...

  17. Near infrared spectroscopy for determination of various physical, chemical and biochemical properties in Mediterranean soils.

    Science.gov (United States)

    Zornoza, R; Guerrero, C; Mataix-Solera, J; Scow, K M; Arcenegui, V; Mataix-Beneyto, J

    2008-07-01

    The potential of near infrared (NIR) reflectance spectroscopy to predict various physical, chemical and biochemical properties in Mediterranean soils from SE Spain was evaluated. Soil samples (n=393) were obtained by sampling thirteen locations during three years (2003-2005 period). These samples had a wide range of soil characteristics due to variations in land use, vegetation cover and specific climatic conditions. Biochemical properties also included microbial biomarkers based on phospholipid fatty acids (PLFA). Partial least squares (PLS) regression with cross validation was used to establish relationships between the NIR spectra and the reference data from physical, chemical and biochemical analyses. Based on the values of coefficient of determination (r(2)) and the ratio of standard deviation of validation set to root mean square error of cross validation (RPD), predicted results were evaluated as excellent (r(2)>0.90 and RPD>3) for soil organic carbon, Kjeldahl nitrogen, soil moisture, cation exchange capacity, microbial biomass carbon, basal soil respiration, acid phosphatase activity, β-glucosidase activity and PLFA biomarkers for total bacteria, Gram positive bacteria, actinomycetes, vesicular-arbuscular mycorrhizal fungi and total PLFA biomass. Good predictions (0.81fungi were not accurate enough to satisfactorily estimate these variables, only permitting approximate predictions (0.66chemical and biochemical soil properties for Mediterranean soils, including variables related to the composition of the soil microbial community composition.

  18. Degradation of hydrocarbons in soil samples analyzed within accepted analytical holding times

    International Nuclear Information System (INIS)

    Jackson, J.; Thomey, N.; Dietlein, L.F.

    1992-01-01

    Samples which are collected in conjunction with subsurface investigations at leaking petroleum storage tank sites and petroleum refineries are routinely analyzed for benzene, toluene, ethylbenzene, xylenes (BTEX), and total petroleum hydrocarbons (TPH). Water samples are preserved by the addition of hydrochloric acid and maintained at four degrees centigrade prior to analysis. This is done to prevent bacterial degradation of hydrocarbons. Chemical preservation is not presently performed on soil samples. Instead, the samples are cooled and maintained at four degrees centigrade. This study was done to measure the degree of degradation of hydrocarbons in soil samples which are analyzed within accepted holding times. Soil samples were collected and representative subsamples were prepared from the initial sample. Subsamples were analyzed in triplicate for BTEX and TPH throughout the length of the approved holding times to measure the extent of sample constituent degradation prior to analysis. Findings imply that for sandy soils, BTEX and TPH concentrations can be highly dependent upon the length of time which elapses between sample collection and analysis

  19. Soils of Sub-Antarctic tundras: diversity and basic chemical characteristics

    Science.gov (United States)

    Abakumov, Evgeny; Vlasov, Dmitry; Mukhametova, Nadezhda

    2014-05-01

    Antarctic peninsula is known as specific part of Antarctica, which is characterizes by humid and relatively warm climate of so-called sub Antarctic (maritime) zone. Annual precipitation and long above zero period provides the possibility of sustainable tundra's ecosystem formation. Therefore, the soil diversity of these tundra landscapes is maximal in the whole Antarctic. Moreover, the thickness of parent material debris's is also highest and achieves a 1 or 2 meters as highest. The presence of higher vascular plants Deshampsia antarctica which is considered as one of the main edificators provides the development of humus accumulation in upper solum. Penguins activity provides an intensive soil fertilization and development of plant communities with increased density. All these factors leads to formation of specific and quite diverse soil cover in sub Antarctic tundra's. These ecosystems are presented by following permafrost affected soils: Leptosols, Lithoosols, Crysols, Gleysols, Peats and Ornhitosols. Also the post Ornhitosols are widely spreaded in subantarcic ecosystems, they forms on the penguin rockeries during the plant succession development, leaching of nutrients and organic matter mineralization. "Amphibious" soils are specific for seasonal lakes, which evaporates in the end if Australian summer. These soils have specific features of bio sediments and soils as well. Soil chemical characteristic as well as organic matter features discussed in comparison with Antacrtic continental soil in presentation.

  20. Assessment of changes of some functions of Ukrainian acid soils after chemical amelioration

    Directory of Open Access Journals (Sweden)

    Zapko Yurij

    2014-09-01

    Full Text Available The objective of the article was to determine the effectiveness of lime of different origin for chemical amelioration of soils and examine its impact on soil functions such as productivity, habitat, regulation of water quality, and the protective buffer biogeocenotic screen. Limy ameliorants were applied in small local field experiment on Luvic Chernozem, and experiment with lysimeter columns was carried out on Albic Luvisol. The number of the main groups of microflora and enzymatic activity of soil was determined in soil samples taken for the analysis from the root zone. Research concerning the influence of natural and industrial origin ameliorants on soil as habitat showed the correlation of sugar beets productivity with soil biogenic. The increase of biomultiplicity of soil microbiota after addition of a cement dust and negative influence of red sludge on soil as habitat for living organisms was observed. Research involving the influence of ameliorants on soil by lime as the protective buffer biogeocenotic screen was carried out using lysimeter columns. It was stated that the addition of limy ameliorants reduces mobility of heavy metals.

  1. Uptake of gaseous formaldehyde by soil surfaces: a combination of adsorption/desorption equilibrium and chemical reactions

    Directory of Open Access Journals (Sweden)

    G. Li

    2016-08-01

    Full Text Available Gaseous formaldehyde (HCHO is an important precursor of OH radicals and a key intermediate molecule in the oxidation of atmospheric volatile organic compounds (VOCs. Budget analyses reveal large discrepancies between modeled and observed HCHO concentrations in the atmosphere. Here, we investigate the interactions of gaseous HCHO with soil surfaces through coated-wall flow tube experiments applying atmospherically relevant HCHO concentrations of  ∼  10 to 40 ppbv. For the determination of uptake coefficients (γ, we provide a Matlab code to account for the diffusion correction under laminar flow conditions. Under dry conditions (relative humidity  =  0 %, an initial γ of (1.1 ± 0.05  ×  10−4 is determined, which gradually drops to (5.5 ± 0.4  ×  10−5 after 8 h experiments. Experiments under wet conditions show a smaller γ that drops faster over time until reaching a plateau. The drop of γ with increasing relative humidity as well as the drop over time can be explained by the adsorption theory in which high surface coverage leads to a reduced uptake rate. The fact that γ stabilizes at a non-zero plateau suggests the involvement of irreversible chemical reactions. Further back-flushing experiments show that two-thirds of the adsorbed HCHO can be re-emitted into the gas phase while the residual is retained by the soil. This partial reversibility confirms that HCHO uptake by soil is a complex process involving both adsorption/desorption and chemical reactions which must be considered in trace gas exchange (emission or deposition at the atmosphere–soil interface. Our results suggest that soil and soil-derived airborne particles can either act as a source or a sink for HCHO, depending on ambient conditions and HCHO concentrations.

  2. Uptake of gaseous formaldehyde by soil surfaces: a combination of adsorption/desorption equilibrium and chemical reactions

    Science.gov (United States)

    Li, Guo; Su, Hang; Li, Xin; Kuhn, Uwe; Meusel, Hannah; Hoffmann, Thorsten; Ammann, Markus; Pöschl, Ulrich; Shao, Min; Cheng, Yafang

    2016-08-01

    Gaseous formaldehyde (HCHO) is an important precursor of OH radicals and a key intermediate molecule in the oxidation of atmospheric volatile organic compounds (VOCs). Budget analyses reveal large discrepancies between modeled and observed HCHO concentrations in the atmosphere. Here, we investigate the interactions of gaseous HCHO with soil surfaces through coated-wall flow tube experiments applying atmospherically relevant HCHO concentrations of ˜ 10 to 40 ppbv. For the determination of uptake coefficients (γ), we provide a Matlab code to account for the diffusion correction under laminar flow conditions. Under dry conditions (relative humidity = 0 %), an initial γ of (1.1 ± 0.05) × 10-4 is determined, which gradually drops to (5.5 ± 0.4) × 10-5 after 8 h experiments. Experiments under wet conditions show a smaller γ that drops faster over time until reaching a plateau. The drop of γ with increasing relative humidity as well as the drop over time can be explained by the adsorption theory in which high surface coverage leads to a reduced uptake rate. The fact that γ stabilizes at a non-zero plateau suggests the involvement of irreversible chemical reactions. Further back-flushing experiments show that two-thirds of the adsorbed HCHO can be re-emitted into the gas phase while the residual is retained by the soil. This partial reversibility confirms that HCHO uptake by soil is a complex process involving both adsorption/desorption and chemical reactions which must be considered in trace gas exchange (emission or deposition) at the atmosphere-soil interface. Our results suggest that soil and soil-derived airborne particles can either act as a source or a sink for HCHO, depending on ambient conditions and HCHO concentrations.

  3. Metal-contaminated soil remediation by means of paper mill sludges addition: chemical and ecotoxicological evaluation

    International Nuclear Information System (INIS)

    Calace, N.; Campisi, T.; Iacondini, A.; Leoni, M.; Petronio, B.M.; Pietroletti, M.

    2005-01-01

    Metal pollution of soils is a great environmental problem. The major risks due to metal pollution of soil consist of leaching to groundwater and potential toxicity to plants and/or animals. The objective of this study is to evaluate by means of chemical and ecotoxicological approach the effects of paper mill sludge addition on the mobile metal fraction of polluted metal soils. The study was carried out on acidic soil derived from mining activities and thus polluted with heavy metals, and on two paper mill sludges having different chemical features. The results obtained by leaching experiments showed that the addition of a paper mill sludge, consisting mainly of carbonates, silicates and organic matter, to a heavy-metal polluted soil produces a decrease of available metal forms. The carbonate content seems to play a key role in the chemical stabilisation of metals and consequently in a decrease of toxicity of soil. The leached solutions have a non-toxic effect. The mild remediation by addition of sludge has moreover a lasting effect. - Paper mill sludge decreased available metals

  4. Quantification of chemical transport processes from the soil to surface runoff.

    Science.gov (United States)

    Tian, Kun; Huang, Chi-Hua; Wang, Guang-Qian; Fu, Xu-Dong; Parker, Gary

    2013-01-01

    There is a good conceptual understanding of the processes that govern chemical transport from the soil to surface runoff, but few studies have actually quantified these processes separately. Thus, we designed a laboratory flow cell and experimental procedures to quantify the chemical transport from soil to runoff water in the following individual processes: (i) convection with a vertical hydraulic gradient, (ii) convection via surface flow or the Bernoulli effect, (iii) diffusion, and (iv) soil loss. We applied different vertical hydraulic gradients by setting the flow cell to generate different seepage or drainage conditions. Our data confirmed the general form of the convection-diffusion equation. However, we now have additional quantitative data that describe the contribution of each individual chemical loading process in different surface runoff and soil hydrological conditions. The results of this study will be useful for enhancing our understanding of different geochemical processes in the surface soil mixing zone. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  5. Arsenic Accumulation by Pteris vittata L. in Two Chemically Variant Soils Treated with Arsenical Pesticides - Greenhouse Study

    Science.gov (United States)

    Therapong, C.; Datta, R.; Sarkar, D.; Pachanoor, D.

    2006-05-01

    Arsenic (As) is one of the most toxic elements present in the environment. Over the years, arsenic has found its way to the environment due to its extensive use in agriculture and in industrial practices as pesticides, fertilizers, wood preservatives, smelter wastes and coal combustion ash, all of which are of great environmental concern. Arsenic contamination affects biological activities because it is a carcinogen and a mutagen, which has detrimental effects on the immune system of animals. Remediation of arsenic-contaminated soils has become a major environmental issue in the recent years. Several physical and chemical treatment methods, such as soil washing, co-precipitation, and excavation, have used to remediate As, but all of these methods are rather expensive and can disturb soil physiology and ecology. Phytoremediation, a plant based technology for the removal of toxic contaminants from soil and water is an attractive approach. Of late, this technology has received a high degree of attention from the scientific community because it is environment-friendly and also because of its tremendous cost efficiency compared to the conventional methods. Chinese Brake Fern (Pteris vittata L.) is a known arsenic hyperaccumulator that is being used extensively at present to remove As from soils. However, the degree of efficiency of this plant in accumulating As is likely to be a function of the soil properties. The objective of the reported study was to investigate arsenic uptake by Chinese Brake Fern in As-contaminated soils from the Immokalee (acid sand with minimal As-retention potential) and Millhopper series (sandy loam with high Fe/Al content, hence, high As-retention potential). A greenhouse experiment was designed to evaluate the effects on As uptake by Chinese Brake Fern at two pesticide application rates: 225 mg/kg and 500 mg/kg As in two chemical forms, namely sodium arsenate (AsV) and dimethylarsinic acid (DMA). Each treatment was replicated three times in

  6. Relationship between soil 137Cs inventories and chemical properties in a small intensively cropped watershed

    International Nuclear Information System (INIS)

    Mabit, L.

    1998-01-01

    After estimating and spatializing the erosion risks in a small agricultural watershed in northeastern France in a previous study, the authors investigate the quality of eroding soils. Soil erosion is a selective process, exporting the finest particles, and associated chemical elements, in a preferential way. Consequently, the spatial redistribution of soil should translate into the depletion of soil in eroding areas and its enrichment in deposition sectors. Of the fifteen elements considered in this study, only organic matter confirms this hypothesis. A significant correlation was found between the soil 137 Cs (indicative of the severity of erosion) and organic matter contents. This result suggests that erosion is a redistribution process that may influence the productivity of agricultural systems on the mid/long term. (authors)

  7. Chemical profile of size-fractionated soils collected in a semiarid industrial area of Argentina

    Science.gov (United States)

    Morales Del Mastro, Anabella; Pereyra, Marcelo; Londonio, Agustín; Pereyra, Victoria; Rebagliati, Raúl Jiménez; Dawidowski, Laura; Gómez, Darío; Smichowski, Patricia

    2014-12-01

    A study was undertaken to assess the chemical profile of soil collected in Bahía Blanca (Argentina). In this industrial city, semiarid soils are affected by different industrial and agricultural activities, the presence of a saltpeter extraction facility, traffic and increasing urbanization. Sixteen soil samples (superficial and sub-superficial) were collected. Samples were sieved in two fractions (A plasma optical emission spectrometry (ICP OES). Anions (Cl-, F-, SO42-) and cations (K+, Na+ and NH4+) were determined by high performance liquid chromatography (HPLC) after an aqueous extraction. As expected, crustal elements namely, Al, Ca, Fe, Mg and Ti exhibited the highest concentrations. Mean elemental concentration ranged from Na+ ≅ SO42- > K+ > NO3-. Three indicators, namely, (i) coefficient of variation, (ii) coefficient of divergence and (iii) ratio of elemental concentration with respect to Ca were used to assess chemical, spatial and inter-profile variability. Chloride > Ca > Na+ > Mo > SO42-, dominated the variability indicating that these are key chemical markers for future assessment of crustal contribution to airborne particles in the area. The ratios Xi/Ca allowed discriminating the soil of the semi-arid region surrounding Bahía Blanca. The chemical profiles obtained in this study, particularly those of topsoil, will be a key input to characterize soil resuspension and its contribution to airborne particulate matter in a forthcoming receptor model analysis.

  8. About chemical and biological stimulation of bioleaching of 90Sr from different types of soil

    International Nuclear Information System (INIS)

    Buravlev, E.P.; Trishin, V.V.; Svyatun, O.V.; Berlizov, A.N.; Kim, In.S.; Ivanov, V.N.

    2000-01-01

    The results of investigation carried out in the frame of international cooperation between the NASU and KOSEF on the creation of effective methods of purification of radioactively polluted soil were performed. The influence of methanogenic, surface-reducing, nitrifying and thiobacilli and also their joint activity with different chemical ingredients on bioleaching of 90 Sr from typical South Korea red soil,artificially radioactively polluted by 90 Sr, and technogenically polluted by the radionuclides from influenced zone of ChNPP was studied, The presence of the largest effect of thiobacilli on soil was shown

  9. Soil Chemical Weathering and Nutrient Budgets along an Earthworm Invasion Chronosequence in a Northern Minnesota Forest

    Science.gov (United States)

    Resner, K. E.; Yoo, K.; Sebestyen, S. D.; Aufdenkampe, A. K.; Lyttle, A.; Weinman, B. A.; Blum, A.; Hale, C. M.

    2011-12-01

    We are investigating the impact of exotic earthworms on the rate of nutrient and ion release from soil chemical weathering along an ~200 m invasion chronosequence in a northern Minnesota sugar maple forest. The earthworms belong to three ecological groups that represent different feeding and burrowing behaviors, all of which were introduced from Europe to the previously earthworm-free Great Lakes Region through fishing and agricultural activities. As earthworms digest and mix the soil, we hypothesize that they significantly alter chemical weathering processes by incorporating mineral surfaces to new geochemical environments in their intestines and at different soil depths. The effect of mixing on soil morphology is dramatic, but biogeochemical changes remain largely unknown and therefore are poorly coupled to the current and potential changes in forest ecosystems under the threat of exotic earthworms. We analyze the activities of short-lived isotopes 137-Cs and 210-Pb along with the inorganic chemistry of soil, water, and leaf litter across an invasion transect and link these measurements to the biomass and species composition of exotic earthworms. Earthworms vertically relocate minerals and organic matter largely within the top ~10 cm, which is reflected in the depth profiles of the short-lived isotopes. Among the inorganic nutrients analyzed, Ca is of particular interest due to sugar maple's aptitude for recycling Ca. Fractional mass loss values (tau) of Ca, relative to the soil's parent material, show an enrichment factor of 14 in the least invaded A horizon soils. However, such a high enrichment factor declines dramatically in the heavily invaded soils, suggesting that earthworm activities contribute to leaching Ca. In contrast, the enrichment factor of Fe increases with greater degrees of earthworm invasion, which is consistent with the extraction chemistry data showing greater quantities of pedogenic crystalline iron oxides and greater mineral specific

  10. Remote sensing of soybean stress as an indicator of chemical concentration of biosolid amended surface soils

    Science.gov (United States)

    Sridhar, B. B. Maruthi; Vincent, Robert K.; Roberts, Sheila J.; Czajkowski, Kevin

    2011-08-01

    The accumulation of heavy metals in the biosolid amended soils and the risk of their uptake into different plant parts is a topic of great concern. This study examines the accumulation of several heavy metals and nutrients in soybeans grown on biosolid applied soils and the use of remote sensing to monitor the metal uptake and plant stress. Field and greenhouse studies were conducted with soybeans grown on soils applied with biosolids at varying rates. The plant growth was monitored using Landsat TM imagery and handheld spectroradiometer in field and greenhouse studies, respectively. Soil and plant samples were collected and then analyzed for several elemental concentrations. The chemical concentrations in soils and roots increased significantly with increase in applied biosolid concentrations. Copper (Cu) and Molybdenum (Mo) accumulated significantly in the shoots of the metal-treated plants. Our spectral and Landsat TM image analysis revealed that the Normalized Difference Vegetative Index (NDVI) can be used to distinguish the metal stressed plants. The NDVI showed significant negative correlation with increase in soil Cu concentrations followed by other elements. This study suggests the use of remote sensing to monitor soybean stress patterns and thus indirectly assess soil chemical characteristics.

  11. Study of chemical-mineralogical properties of modified soils with polymers addition

    Directory of Open Access Journals (Sweden)

    Patricio Jonny

    2016-01-01

    Full Text Available On highways, the soil is considered a supported material and compound pavements layers. For this, they must have such characteristics that confer stability and mechanical resistance to traffic internal forces during the pavement life. When soils do not have required characteristics by the project can be used stabilization techniques that make the natural soil adequately to roads requirement. Based on this assumption, this study aimed to evaluate the efficacy of polymer association in soil stabilization for use in roads pavements. Were evaluated chemical and mineralogical properties on two (2 different soils with sample of pure soil and with the addition of the polymer association. Based on the obtained results, polymer association changes was observed on X-ray fluorescent spectrometry (XRF; X-ray diffraction (XRD; scanning electron microscopy (SEM and Methylene blue. In general, the polymeric association studied in this research was effective in chemical and mineralogical analyzes for use on stabilized soils, making this technique efficient for use in layers of road pavements.

  12. The taste of soil: chemical investigation of soil, grape and wine in the Sopron wine region (Hungary)

    Science.gov (United States)

    Hofmann, Tomás; Horvàth, Imre; Bidló, András; Hofmann, Eszther

    2015-04-01

    The taste of soil: chemical investigation of soil, grape and wine in the Sopron wine region (Hungary) The Sopron wine region is one of the most significant and historical wine-producing regions of Hungary. 1800 hectares out of the total area of 4300 hectares of the wine region are used for grape cultivation. Kékfrankos (Blue Frankish) is the most frequent grape variety (60%) nevertheless other varieties are also grown here (including Zweigelt, Merlot, Cabernet Franc, Portugieser and Sauvignon Blanc). In this study preliminary results of the chemical analyses involving soil, grape and wine are presented, which could provide a future basis for a comprehensive terroir research in the wine region. As soil is the premanent home of grapevine, its quality is highly influencing for the growth of the plants and grape berries, and also determines future organoleptic characteristics of the wines. The investigated basic soil parameters included humus content, transition, soil structure, compactness, roots, skeletal percent, color, physical assortment, concretion, soil defects. Laboratory measurements involved the determination of pH, carbonated lime content, humus content, ammonium lactate-acetic acid soluble P and K content, KCl soluble Ca and Mg content, EDTA and DTPA soluble Cu, Fe, Mn and Zn content. Soil samples were also investigated for heavy metal contents using ICP-OES method (Thermo Scientific iCAP 7000 Series). By the use of thermoanalytical measurements (Mettler Toledo TGA/DSC 1 type thermogravimeter, 5°C/min, air atmosphere, 25-1000°C) the mineral composition of the soils was evaluated. Regarding major aroma compounds in grape berries and wine, the concentrations of organic acids (tartaric-, acetic-, succinic-, malic-, lactic acid), methanol, ethanol, glycerine, glucose and fructose were determined by high performance liquid chromatography (Shimadzu LC-20 HPLC equipment with DAD and RID detection). The density, titratable acidity, pH and total extractive

  13. Characterization of soil chemical properties of strawberry fields using principal component analysis

    Directory of Open Access Journals (Sweden)

    Gláucia Oliveira Islabão

    2013-02-01

    Full Text Available One of the largest strawberry-producing municipalities of Rio Grande do Sul (RS is Turuçu, in the South of the State. The strawberry production system adopted by farmers is similar to that used in other regions in Brazil and in the world. The main difference is related to the soil management, which can change the soil chemical properties during the strawberry cycle. This study had the objective of assessing the spatial and temporal distribution of soil fertility parameters using principal component analysis (PCA. Soil sampling was based on topography, dividing the field in three thirds: upper, middle and lower. From each of these thirds, five soil samples were randomly collected in the 0-0.20 m layer, to form a composite sample for each third. Four samples were taken during the strawberry cycle and the following properties were determined: soil organic matter (OM, soil total nitrogen (N, available phosphorus (P and potassium (K, exchangeable calcium (Ca and magnesium (Mg, soil pH (pH, cation exchange capacity (CEC at pH 7.0, soil base (V% and soil aluminum saturation(m%. No spatial variation was observed for any of the studied soil fertility parameters in the strawberry fields and temporal variation was only detected for available K. Phosphorus and K contents were always high or very high from the beginning of the strawberry cycle, while pH values ranged from very low to very high. Principal component analysis allowed the clustering of all strawberry fields based on variables related to soil acidity and organic matter content.

  14. Physical-chemical and microbiological changes in Cerrado Soil under differing sugarcane harvest management systems

    Science.gov (United States)

    2012-01-01

    Background Sugarcane cultivation plays an important role in Brazilian economy, and it is expanding fast, mainly due to the increasing demand for ethanol production. In order to understand the impact of sugarcane cultivation and management, we studied sugarcane under different management regimes (pre-harvest burn and mechanical, unburnt harvest, or green cane), next to a control treatment with native vegetation. The soil bacterial community structure (including an evaluation of the diversity of the ammonia oxidizing (amoA) and denitrifying (nirK) genes), greenhouse gas flow and several soil physicochemical properties were evaluated. Results Our results indicate that sugarcane cultivation in this region resulted in changes in several soil properties. Moreover, such changes are reflected in the soil microbiota. No significant influence of soil management on greenhouse gas fluxes was found. However, we did find a relationship between the biological changes and the dynamics of soil nutrients. In particular, the burnt cane and green cane treatments had distinct modifications. There were significant differences in the structure of the total bacterial, the ammonia oxidizing and the denitrifying bacterial communities, being that these groups responded differently to the changes in the soil. A combination of physical and chemical factors was correlated to the changes in the structures of the total bacterial communities of the soil. The changes in the structures of the functional groups follow a different pattern than the physicochemical variables. The latter might indicate a strong influence of interactions among different bacterial groups in the N cycle, emphasizing the importance of biological factors in the structuring of these communities. Conclusion Sugarcane land use significantly impacted the structure of total selected soil bacterial communities and ammonia oxidizing and denitrifier gene diversities in a Cerrado field site in Central Brazil. A high impact of land use

  15. Chemical-Structural Changes of Organic Matter in a Semi-Arid Soil After Organic Amendment

    Institute of Scientific and Technical Information of China (English)

    C.NICOL(A)S; G.MASCIANDARO; T.HERN(A)NDEZ; C.GARCIA

    2012-01-01

    A 9-month incubation experiment using composted and non-composted amendments derived from vine pruning waste and sewage sludge was carried out to study the effects of the nature and stability of organic amendments on the structural composition of organic matter (OM) in a semi-arid soil. The changes of soil OM,both in the whole soil and in the extractable carbon with pyrophosphate,were evaluated by pyrolysis-gas chromatography and chemical analyses.By the end of the experiment,the soils amended with pruning waste exhibited less organic carbon loss than those receiving sewage sludge.The non-composted residues increased the aliphatic-pyrolytic products of the OM,both in the whole soil and also in the pyrophosphate extract,with the products derived from peptides and proteins being significantly higher.After 9 months,in the soils amended with pruning waste the relative abundance of phenolic-pyrolytic products derived from phenolic compounds,lignin and proteins in the whole soil tended to increase more than those in the soils amended with sewage sludge.However,the extractable OM with pyrophosphate in the soils amended with composted residues tended to have higher contents of these phenolic-pyrolytic products than that in non-composted ones.Thus,despite the stability of pruning waste,the composting of this material promoted the incorporation of phenolic compounds to the soil OM.The pyrolytic indices (furfural/pyrrole and aliphatic/aromatic ratios) showed the diminution of aliphatic compounds and the increase of aromatic compounds,indicating the stabilization of the OM in the amended soils after 9 months.In conclusion,the changes of soil OM depend on the nature and stability of the organic amendments,with composted vine pruning waste favouring humification.

  16. Physical-chemical and microbiological changes in Cerrado Soil under differing sugarcane harvest management systems.

    Science.gov (United States)

    Rachid, Caio T C C; Piccolo, Marisa C; Leite, Deborah Catharine A; Balieiro, Fabiano C; Coutinho, Heitor Luiz C; van Elsas, Jan Dirk; Peixoto, Raquel S; Rosado, Alexandre S

    2012-08-08

    Sugarcane cultivation plays an important role in Brazilian economy, and it is expanding fast, mainly due to the increasing demand for ethanol production. In order to understand the impact of sugarcane cultivation and management, we studied sugarcane under different management regimes (pre-harvest burn and mechanical, unburnt harvest, or green cane), next to a control treatment with native vegetation. The soil bacterial community structure (including an evaluation of the diversity of the ammonia oxidizing (amoA) and denitrifying (nirK) genes), greenhouse gas flow and several soil physicochemical properties were evaluated. Our results indicate that sugarcane cultivation in this region resulted in changes in several soil properties. Moreover, such changes are reflected in the soil microbiota. No significant influence of soil management on greenhouse gas fluxes was found. However, we did find a relationship between the biological changes and the dynamics of soil nutrients. In particular, the burnt cane and green cane treatments had distinct modifications. There were significant differences in the structure of the total bacterial, the ammonia oxidizing and the denitrifying bacterial communities, being that these groups responded differently to the changes in the soil. A combination of physical and chemical factors was correlated to the changes in the structures of the total bacterial communities of the soil. The changes in the structures of the functional groups follow a different pattern than the physicochemical variables. The latter might indicate a strong influence of interactions among different bacterial groups in the N cycle, emphasizing the importance of biological factors in the structuring of these communities. Sugarcane land use significantly impacted the structure of total selected soil bacterial communities and ammonia oxidizing and denitrifier gene diversities in a Cerrado field site in Central Brazil. A high impact of land use was observed in soil under

  17. Physical-chemical and microbiological changes in Cerrado Soil under differing sugarcane harvest management systems

    Directory of Open Access Journals (Sweden)

    Rachid Caio TCC

    2012-08-01

    Full Text Available Abstract Background Sugarcane cultivation plays an important role in Brazilian economy, and it is expanding fast, mainly due to the increasing demand for ethanol production. In order to understand the impact of sugarcane cultivation and management, we studied sugarcane under different management regimes (pre-harvest burn and mechanical, unburnt harvest, or green cane, next to a control treatment with native vegetation. The soil bacterial community structure (including an evaluation of the diversity of the ammonia oxidizing (amoA and denitrifying (nirK genes, greenhouse gas flow and several soil physicochemical properties were evaluated. Results Our results indicate that sugarcane cultivation in this region resulted in changes in several soil properties. Moreover, such changes are reflected in the soil microbiota. No significant influence of soil management on greenhouse gas fluxes was found. However, we did find a relationship between the biological changes and the dynamics of soil nutrients. In particular, the burnt cane and green cane treatments had distinct modifications. There were significant differences in the structure of the total bacterial, the ammonia oxidizing and the denitrifying bacterial communities, being that these groups responded differently to the changes in the soil. A combination of physical and chemical factors was correlated to the changes in the structures of the total bacterial communities of the soil. The changes in the structures of the functional groups follow a different pattern than the physicochemical variables. The latter might indicate a strong influence of interactions among different bacterial groups in the N cycle, emphasizing the importance of biological factors in the structuring of these communities. Conclusion Sugarcane land use significantly impacted the structure of total selected soil bacterial communities and ammonia oxidizing and denitrifier gene diversities in a Cerrado field site in Central Brazil

  18. Crossed optical and chemical evaluations of modern glass soiling in various European urban environments

    Science.gov (United States)

    Favez, Olivier; Cachier, Hélène; Chabas, Anne; Ausset, Patrick; Lefevre, Roger

    As part of the MULTI-ASSESS and VIDRIO EC projects, the soiling of modern glass is characterised in various European urban atmospheres. Our original methodology relies on crossed chemical measurements of the deposit (evaluation of the ion, elemental and organic carbon contents, and subsequent "mass closure") and exhaustive measurements of glass optical properties (light reflectance, transmittance and absorption). Samples were exposed sheltered from rain in Athens, Krakow, London, Montelibretti (Italy), Prague and Troyes (France), during increasing exposure durations, up to more than two years. Although a slowing down of the deposition rate is observed for some species at some sites, no obvious saturation phenomenon seems to occur for the particle deposition. The chemical composition of the deposit is shown to reflect the atmospheric environment of the exposure site. Some post-deposit evolutions, such as the disappearance of ammonium and possibly of particulate organic matter, are found to occur. For thin deposits, the glass optical properties (e.g. light absorption and diffuse transmittance) are found to evolve quasi-linearly with species concentrations (EC and ions, respectively). However, for conditions creating heavier deposits such as long time exposures in rather polluted environments, a saturation phenomenon is observed. Using a simple model, light absorption, which is primarily due to EC particles, is shown to reach the saturation level ( S) for A≈16% and the concentration for which the semi-saturation level is reached (C 1/2) is found to be about 15 μgC of EC/cm 2. For diffuse transmittance, due to scattering species, these parameters are found to be about 30% and 65 μg of ions/cm 2, respectively. These values may be considered as representative of the soiling in Europe.

  19. Soil science basis and the effect of oil contamination on chemical properties of soils

    International Nuclear Information System (INIS)

    Wagner, A.; Miehlich, G.

    1993-01-01

    The changes in soil chemistry properties due to oil contamination and decontamination are examined. One main point of the work is the determination of the effect of oil on the availability of nutrients in the soil. Nutrients are not only present dissolved in the soil solution, but are for the most part reversibly adsorbed by exchangers on loaded surfaces. The clay minerals, the organic substance and iron and manganese oxide act as exchangers. Knowledge on surface structure and reactions in soils contaminated by oil is to be obtained via examination of the exchange behaviour of different bio-elements. The results supply the basis for the cleaning up technique, the judgement of cleaned materials and their reusability. (orig.) [de

  20. USE OF SCALED SEMIVARIOGRAMS IN THE PLANNING SAMPLE OF SOIL CHEMICAL PROPERTIES IN SOUTHERN AMAZONAS, BRAZIL

    Directory of Open Access Journals (Sweden)

    Ivanildo Amorim de Oliveira

    2015-02-01

    Full Text Available The lack of information concerning the variability of soil properties has been a major concern of researchers in the Amazon region. Thus, the aim of this study was to evaluate the spatial variability of soil chemical properties and determine minimal sampling density to characterize the variability of these properties in five environments located in the south of the State of Amazonas, Brazil. The five environments were archaeological dark earth (ADE, forest, pasture land, agroforestry operation, and sugarcane crop. Regular 70 × 70 m mesh grids were set up in these areas, with 64 sample points spaced at 10 m distance. Soil samples were collected at the 0.0-0.1 m depth. The chemical properties of pH in water, OM, P, K, Ca, Mg, H+Al, SB, CEC, and V were determined at these points. Data were analyzed by descriptive and geostatistical analyses. A large part of the data analyzed showed spatial dependence. Chemical properties were best fitted to the spherical model in almost all the environments evaluated, except for the sugarcane field with a better fit to the exponential model. ADE and sugarcane areas had greater heterogeneity of soil chemical properties, showing a greater range and higher sampling density; however, forest and agroforestry areas had less variability of chemical properties.

  1. Organochlorine pesticides in soils and air of southern Mexico: Chemical profiles and potential for soil emissions

    Science.gov (United States)

    Wong, Fiona; Alegria, Henry A.; Jantunen, Liisa M.; Bidleman, Terry F.; Salvador-Figueroa, Miguel; Gold-Bouchot, Gerardo; Ceja-Moreno, Victor; Waliszewski, Stefan M.; Infanzon, Raul

    The extent of organochlorine pesticides (OCs) contamination in southern Mexico was investigated in this study. Biweekly air samplings were carried out in two sites in the state of Chiapas (during 2002-2003), and one in each state of Veracruz and Tabasco (during 2003-2004). Corresponding to the air sampling locations, soil samples were also collected to gauge the soil-air exchange of OCs in the region. ∑DDTs in soils ranged from 0.057 to 360 ng g -1 whereas those in air ranged from 240 to 2400 pg m -3. DDT and metabolite DDE were expressed as fractional values, FDDTe = p, p'-DDT/( p, p'-DDT + p, p'-DDE) and FDDTo = p,p'-DDT/( p,p'-DDT + o,p'-DDT). FDDTe in soils ranged from 0.30 to 0.69 while those in air ranged from 0.45 to 0.84. FDDTe in air at a farm in Chiapas (0.84) was closer to that of technical DDT (0.95) which is suggestive of fresh DDT input. Enantiomer fractions (EF) of o,p'-DDT in air were racemic at all locations (0.500-0.504). However, nonracemic o,p'-DDT was seen in the soils (EFs = 0.456-0.647). Fugacities of OCs in soil ( fs) and air ( fa) were calculated, and the fugacity fraction, ff = fs/( fs + fa) of DDTs ranged from 0.013 to 0.97 which indicated a mix of net deposition ( ff 0.5) from soil among the sites. It is suggested that DDTs in Mexico air are due to a combination of ongoing regional usage and re-emission of old DDT residues from soils. Total toxaphene in soils ranged from 0.066 to 69 ng g -1 while levels in air ranged from 6.2 to 230 pg m -3. Chromatographic profiles of toxaphenes in both air and soil showed depletion of Parlar congeners 39 and 42. Fugacity fractions of toxaphene were within the equilibrium range or above the upper equilibrium threshold boundary. These findings suggested that soil emission of old residues is the main source of toxaphenes to the atmosphere. Results from this study provide baseline data for establishing a long-term OC monitoring program in Mexico.

  2. Changes in soil physical and chemical properties in long term improved natural and traditional agroforestry management systems of cacao genotypes in Peruvian Amazon.

    Science.gov (United States)

    Arévalo-Gardini, Enrique; Canto, Manuel; Alegre, Julio; Loli, Oscar; Julca, Alberto; Baligar, Virupax

    2015-01-01

    Growing cacao (Theobroma cacao L.) in an agroforestry system generates a productive use of the land, preserves the best conditions for physical, chemical and biological properties of tropical soils, and plays an important role in improving cacao production and fertility of degraded tropical soils. The aim of this study was to evaluate the impact of two long term agroforestry systems of cacao management on soil physical and chemical properties in an area originally inhabited by 30 years old native secondary forest (SF). The two agroforestry systems adapted were: improved natural agroforestry system (INAS) where trees without economic value were selectively removed to provide 50% shade and improved traditional agroforestry system (ITAS) where all native trees were cut and burnt in the location. For evaluation of the changes of soil physical and chemical properties with time due to the imposed cacao management systems, plots of 10 cacao genotypes (ICS95, UF613, CCN51, ICT1112, ICT1026, ICT2162, ICT2171, ICT2142, H35, U30) and one plot with a spontaneous hybrid were selected. Soil samples were taken at 0-20, 20-40 and 40-60 cm depths before the installation of the management systems (2004), and then followed at two years intervals. Bulk density, porosity, field capacity and wilting point varied significantly during the years of assessment in the different soil depths and under the systems assessed. Soil pH, CEC, exchangeable Mg and sum of the bases were higher in the INAS than the ITAS. In both systems, SOM, Ext. P, K and Fe, exch. K, Mg and Al+H decreased with years of cultivation; these changes were more evident in the 0-20 cm soil depth. Overall improvement of SOM and soil nutrient status was much higher in the ITAS than INAS. The levels of physical and chemical properties of soil under cacao genotypes showed a marked difference in both systems.

  3. Understanding the solid phase chemical fractionation of uranium in soil and effect of ageing

    Energy Technology Data Exchange (ETDEWEB)

    Rout, Sabyasachi, E-mail: srout.barc@gmail.com [Health Physics Division, Bhabha Atomic Research Centre, Mumbai (India); Kumar, Ajay [Health Physics Division, Bhabha Atomic Research Centre, Mumbai (India); Ravi, P.M.; Tripathi, R.M. [Homi Bhabha National Institute Anushaktinagar, Mumbai (India)

    2016-11-05

    Highlights: • Apart of U(VI) converted to U(IV) during adsorption to soil. • Ageing leads to rearrangement of chemical fractionation of U in soil. • Organic matter and carbonate minerals responsible for Surface enrichment of U. • There occurs Occlusion of U-Fe-Oxides (Hydroxide) in to silica. - Abstract: The aim of the present work is to understand the solid phase chemical fractionation of Uranium (U) in soil and the mechanism involved. This study integrated batch experiments of U(VI) adsorption to soil, study of U in different soil fractions, ageing impact on fractionation of U and spectroscopic investigation of adsorbed U(VI) using X-ray Photoelectron Spectroscopy (XPS). For the study three soils, pedogenically different (S1: Igneous, S2: Sedimentary and S3: Metamorphic) were amended with U(VI) and chemical fractionation of U was studied by sequential extraction after an interval of one month and 12 months. It was found that there occurs a significant rearrangement of U in different fractions with ageing and no correlation was observed between the U content in different fractions and the adsorbents of respective fractions such as soil organic matter (SOM), Fe/Mn oxides (hydroxides) carbonates, soil cation exchange capacity (CEC). XPS study revealed that surface enrichment of U mainly governed by the carbonate minerals and SOM, whereas bulk concentration was controlled by the oxides (hydroxides) of Si and Al. Occlusion of U-Fe-oxides (hydroxides) on silica was identified as an important mechanism for bulk enrichment (Increase in residual fraction) and depletion of U concentration in reducible fraction.

  4. Chemical factors of soil polution in Taganrog as population health risk factors

    Directory of Open Access Journals (Sweden)

    G.T. Aydinov

    2017-03-01

    Full Text Available Our research goal was to perform a hygienic assessment of soil pollution with chemicals on areas aimed for housing and recreation zones in Taganrog, Rostov region. Due to the fact that surface layer of city soils is an open dynamic system which is tightly connected to atmosphere and hydrosphere we treated pollutants content in soils as indicators of territory anthropogenic transformation and technogenic load on population. We used atomic-adsorption spectrophotometry to detect heavy metals and highly efficient liquid chromatography to detect 3,4-benzpyrene content. The results comprise 660 examined soil samples taken from 19 monitoring points; they were examined to detect 7 pollutants content (lead, zinc, copper, nickel, cadmium, chromium, and mercury over 2008–2015; 144 samples were examined to detect 3,4-benzpyrene content over 2013–2015. We determined that priority pollutants among detected metals were zinc and lead; their content in city soils amounted up to 5.91 and 1.95 maximum permissible concentration. Complex indicator of city soils contamination varied from 1.61 to 2.02, long-term average annual value being 1.83. 3,4-benzpyrene was confirmed to be a substantial risk factor for population health as its concentrations exceeded maximum allowable values in 65.28 % of examined soil samples at average and maximum concentrations (2.45 and 38.05 MPC correspondingly. We recommend to include this chemical into systematic environmental quality monitoring. We detected regional peculiarities of soil pollution with chemicals on city territories aimed for housing, territories of pre-school children facilities, and recreation zones.

  5. Chemical and physical soil attributes in integrated crop-livestock system under no-tillage

    Directory of Open Access Journals (Sweden)

    Hernani Alves da Silva

    Full Text Available Although integrated crop-livestock system (ICLS under no-tillage (NT is an attractive practice for intensify agricultural production, little regional information is available on the effects of animal grazing and trampling, particularly dairy heifers, on the soil chemical and physical attributes. The objective of this study was to evaluate the effects of animal grazing on the chemical and physical attributes of the soil after 21 months of ICLS under NT in a succession of annual winter pastures (2008, soybeans (2008/2009, annual winter pastures (2009, and maize (2009/10. The experiment was performed in the municipality of Castro (PR in a dystrophic Humic Rhodic Hapludox with a clay texture. The treatments included a combination of two pasture (annual ryegrass monoculture and multicropping - annual ryegrass, black oat, white clover and red clover with animal grazing during the fall-winter period with two animal weight categories (light and heavy, in a completely randomized block experimental design with 12 replications. After the maize harvest (21 months after beginning, soil samples were collected at 0-10 and 10-20 cm layers to measure soil chemical and physical attributes. The different combinations of pasture and animal weight did not alter the total organic carbon and nitrogen in the soil, but they influence the attributes of soil acidity and exchangeable cations. The monoculture pasture of ryegrass showed greater soil acidification process compared to the multicropping pasture. When using heavier animals, the multicropping pasture showed lesser increase in soil bulk density and greater macroporosity.

  6. Occurrence of pesticide non extractable residues in physical and chemical fractions from two natural soils.

    Science.gov (United States)

    Andreou, K.; Jones, K.; Semple, K.

    2009-04-01

    Distribution of pesticide non extractable residues resulted from the incubation of two natural soils with each of the isoproturon, diazinon and cypermethrin pesticide was assessed in this study. Pesticide non extractable residues distribution in soil physical and chemical fractions is known to ultimately affect their fate. This study aimed to address the fate and behaviour of the non extractable residues in the context of their association with soil physical and chemical fractions with varying properties and characteristics. Non extractable residues were formed from incubation of each pesticide in the two natural soils over a period of 24 months. Soils containing the non extractable residues were fractionated into three solid phase fractions using a physical fractionation procedure as follows: Sediment (SED, >20 μm), (II) Microaggregate (MA, 20-2 μm) and (III) Colloid phase (COL, 2-0.05 μm). Each soil fraction was then fractionated into organic carbon chemical fractionations as follows: Fulvic acid (FA), Humic acid (HA) and Humin (HM). Significant amount of the pesticides was lost during the incubation period. Enrichment factors for the organic carbon and the 14C-pesticide residues were higher in the MA and COL fraction rather than the SED fraction. Greater association and enrichment of the fulvic acid fraction of the organic carbon in the soil was observed. Non extractable residues at the FA fraction showed to diminish while in the HA fraction were increased with decreasing the fraction size. An appreciable amount of non extractable residues were located in the HM fraction but this was less than the amount recovered in the humic substances. Long term fate of pesticide non extractable residues in the soil structural components is important in order to assess any risk associated with them.

  7. Understanding the solid phase chemical fractionation of uranium in soil and effect of ageing

    International Nuclear Information System (INIS)

    Rout, Sabyasachi; Kumar, Ajay; Ravi, P.M.; Tripathi, R.M.

    2016-01-01

    Highlights: • Apart of U(VI) converted to U(IV) during adsorption to soil. • Ageing leads to rearrangement of chemical fractionation of U in soil. • Organic matter and carbonate minerals responsible for Surface enrichment of U. • There occurs Occlusion of U-Fe-Oxides (Hydroxide) in to silica. - Abstract: The aim of the present work is to understand the solid phase chemical fractionation of Uranium (U) in soil and the mechanism involved. This study integrated batch experiments of U(VI) adsorption to soil, study of U in different soil fractions, ageing impact on fractionation of U and spectroscopic investigation of adsorbed U(VI) using X-ray Photoelectron Spectroscopy (XPS). For the study three soils, pedogenically different (S1: Igneous, S2: Sedimentary and S3: Metamorphic) were amended with U(VI) and chemical fractionation of U was studied by sequential extraction after an interval of one month and 12 months. It was found that there occurs a significant rearrangement of U in different fractions with ageing and no correlation was observed between the U content in different fractions and the adsorbents of respective fractions such as soil organic matter (SOM), Fe/Mn oxides (hydroxides) carbonates, soil cation exchange capacity (CEC). XPS study revealed that surface enrichment of U mainly governed by the carbonate minerals and SOM, whereas bulk concentration was controlled by the oxides (hydroxides) of Si and Al. Occlusion of U-Fe-oxides (hydroxides) on silica was identified as an important mechanism for bulk enrichment (Increase in residual fraction) and depletion of U concentration in reducible fraction.

  8. Finite element modeling of contaminant transport in soils including the effect of chemical reactions.

    Science.gov (United States)

    Javadi, A A; Al-Najjar, M M

    2007-05-17

    The movement of chemicals through soils to the groundwater is a major cause of degradation of water resources. In many cases, serious human and stock health implications are associated with this form of pollution. Recent studies have shown that the current models and methods are not able to adequately describe the leaching of nutrients through soils, often underestimating the risk of groundwater contamination by surface-applied chemicals, and overestimating the concentration of resident solutes. Furthermore, the effect of chemical reactions on the fate and transport of contaminants is not included in many of the existing numerical models for contaminant transport. In this paper a numerical model is presented for simulation of the flow of water and air and contaminant transport through unsaturated soils with the main focus being on the effects of chemical reactions. The governing equations of miscible contaminant transport including advection, dispersion-diffusion and adsorption effects together with the effect of chemical reactions are presented. The mathematical framework and the numerical implementation of the model are described in detail. The model is validated by application to a number of test cases from the literature and is then applied to the simulation of a physical model test involving transport of contaminants in a block of soil with particular reference to the effects of chemical reactions. Comparison of the results of the numerical model with the experimental results shows that the model is capable of predicting the effects of chemical reactions with very high accuracy. The importance of consideration of the effects of chemical reactions is highlighted.

  9. Physical and chemical properties of artificial potting soils; Jinko jiban ryokuka baiyodo no butsuri kagakuteki seishitsu

    Energy Technology Data Exchange (ETDEWEB)

    Kudo, T. [Kajima Corp., Tokyo (Japan)

    1999-09-30

    Artificial potting soils are developed mostly for roof garden, and a lot of products are now on the market. However, these products have the merits and demerits. Therefore, Kajima Corporation developed 'Kei-soil' and 'Souka-meijin' to make up defects of the existing artificial potting soils, and 'Eco-eco K' using waste at a rate of 100% with consideration for environment. The paper considered what kinds of quality these artificial potting soil products developed have from physical/chemical viewpoints. As a result, the following were made clear: (1) the artificial potting soil has more excellent physical property than chernozem; (2) Since 'Aqua-soil,' '{alpha}-base 2,' 'Viva-soil' and 'Soilen G' do not include fertilizer content very much, the manuring practice in planting is important; (3) 'Kei-soil,' 'Souka-meijin' and 'Eco-eco K' include fertilizer content. (translated by NEDO)

  10. On-matrix derivatization extraction of chemical weapons convention relevant alcohols from soil.

    Science.gov (United States)

    Chinthakindi, Sridhar; Purohit, Ajay; Singh, Varoon; Dubey, D K; Pardasani, Deepak

    2013-10-11

    Present study deals with the on-matrix derivatization-extraction of aminoalcohols and thiodiglycols, which are important precursors and/or degradation products of VX analogues and vesicants class of chemical warfare agents (CWAs). The method involved hexamethyldisilazane (HMDS) mediated in situ silylation of analytes on the soil. Subsequent extraction and gas chromatography-mass spectrometry analysis of derivatized analytes offered better recoveries in comparison to the procedure recommended by the Organization for the Prohibition of Chemical Weapons (OPCW). Various experimental conditions such as extraction solvent, reagent and catalyst amount, reaction time and temperature were optimized. Best recoveries of analytes ranging from 45% to 103% were obtained with DCM solvent containing 5%, v/v HMDS and 0.01%, w/v iodine as catalyst. The limits of detection (LOD) and limit of quantification (LOQ) with selected analytes ranged from 8 to 277 and 21 to 665ngmL(-1), respectively, in selected ion monitoring mode. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Chemical Characterization of the Degradation of Necromass from Four Ascomycota Fungi: Implications for Soil Organic Carbon Turnover and Storage

    Science.gov (United States)

    Bruner, V. J.; Schreiner, K. M.; Blair, N. E.; Egerton, L.

    2016-12-01

    Terrestrial soils store vast amounts of organic carbon, approximately twice as much carbon as is currently in the atmospheric CO2 pool. Despite its importance in the global carbon cycle, much is still unknown about the source, turnover, and stability of this soil organic carbon (SOC) pool. For example, fungi are known to play an important role in shaping the chemistry of SOC by degrading common biopolymers, and fungal biomass has been found to be a significant portion of living microbial SOC, dominating over bacteria in some soils by as much as 90%. And yet, despite growing evidence that microbial necromass may be larger contributors to SOC than previously thought, very little is known about the specific degradation patterns of fungal necromass and subsequently its potential chemical contributions to long-lived SOC pools. This study addresses these knowledge gaps through a time-series analysis of the degradation patterns of fungal tissue from four different saprotrophic Ascomyota species in temperate restored prairie soils. Fungal tissue was buried in soils both within a temperature- and light-controlled laboratory environment, and in a field environment, and harvested at intervals from 1 day to two months. After harvest, chemical analysis of the dried tissue by thermochemolysis pyrolysis-GCMS was used for relative quantitation of a variety of common biomolecules and biopolymers within the fungal tissue that may be long lived in soils, including chitin, glucan, mannan, ergosterol, and melanin. The degradation of these specific molecules, bulk fungal tissue, and bulk C and N within the tissue, is modeled to (1) show that a small portion of fungal necromass persists in the environment even after the period of the experiment and could serve as a contributor to long-lived SOC, and (2) provide quantitative information on the contribution of fungal tissue to global SOC pools.

  12. Field study of time-dependent selenium partitioning in soils using isotopically enriched stable selenite tracer

    International Nuclear Information System (INIS)

    Di Tullo, Pamela; Pannier, Florence; Thiry, Yves; Le Hécho, Isabelle; Bueno, Maïté

    2016-01-01

    A better understanding of selenium fate in soils at both short and long time scales is mandatory to consolidate risk assessment models relevant for managing both contamination and soil fertilization issues. The purpose of this study was thus to investigate Se retention processes and their kinetics by monitoring time-dependent distribution/speciation changes of both ambient and freshly added Se, in the form of stable enriched selenite-77, over a 2-years field experiment. This study clearly illustrates the complex reactivity of selenium in soil considering three methodologically defined fractions (i.e. soluble, exchangeable, organic). Time-dependent redistribution of Se-77 within solid-phases having different reactivity could be described as a combination of chemical and diffusion controlled processes leading to its stronger retention. Experimental data and their kinetic modeling evidenced that transfer towards less labile bearing phases are controlled by slow processes limiting the overall sorption of Se in soils. These results were used to estimate time needed for "7"7Se to reach the distribution of naturally present selenium which may extend up to several decades. Ambient Se speciation accounted for 60% to 100% of unidentified species as function of soil type whereas "7"7Se(IV) remained the more abundant species after 2-years field experiment. Modeling Se in the long-term without taking account these slow sorption kinetics would thus result in underestimation of Se retention. When using models based on K_d distribution coefficient, they should be at least reliant on ambient Se which is supposed to be at equilibrium.

  13. Field study of time-dependent selenium partitioning in soils using isotopically enriched stable selenite tracer

    Energy Technology Data Exchange (ETDEWEB)

    Di Tullo, Pamela, E-mail: pamela.ditullo@univ-pau.fr [Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE), Université de Pau et des Pays de l' Adour/CNRS, UMR 5254, IPREM, Hélioparc, 2 Avenue du Président Angot, 64053 Pau Cedex 9 (France); Andra, Research and Development Division, Parc de la Croix Blanche, 1-7 rue Jean Monnet, 92298 Châtenay-Malabry Cedex (France); Pannier, Florence, E-mail: florence.pannier@univ-pau.fr [Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE), Université de Pau et des Pays de l' Adour/CNRS, UMR 5254, IPREM, Hélioparc, 2 Avenue du Président Angot, 64053 Pau Cedex 9 (France); Thiry, Yves, E-mail: yves.thiry@andra.fr [Andra, Research and Development Division, Parc de la Croix Blanche, 1-7 rue Jean Monnet, 92298 Châtenay-Malabry Cedex (France); Le Hécho, Isabelle, E-mail: isabelle.lehecho@univ-pau.fr [Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE), Université de Pau et des Pays de l' Adour/CNRS, UMR 5254, IPREM, Hélioparc, 2 Avenue du Président Angot, 64053 Pau Cedex 9 (France); Bueno, Maïté, E-mail: maite.bueno@univ-pau.fr [Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE), Université de Pau et des Pays de l' Adour/CNRS, UMR 5254, IPREM, Hélioparc, 2 Avenue du Président Angot, 64053 Pau Cedex 9 (France)

    2016-08-15

    A better understanding of selenium fate in soils at both short and long time scales is mandatory to consolidate risk assessment models relevant for managing both contamination and soil fertilization issues. The purpose of this study was thus to investigate Se retention processes and their kinetics by monitoring time-dependent distribution/speciation changes of both ambient and freshly added Se, in the form of stable enriched selenite-77, over a 2-years field experiment. This study clearly illustrates the complex reactivity of selenium in soil considering three methodologically defined fractions (i.e. soluble, exchangeable, organic). Time-dependent redistribution of Se-77 within solid-phases having different reactivity could be described as a combination of chemical and diffusion controlled processes leading to its stronger retention. Experimental data and their kinetic modeling evidenced that transfer towards less labile bearing phases are controlled by slow processes limiting the overall sorption of Se in soils. These results were used to estimate time needed for {sup 77}Se to reach the distribution of naturally present selenium which may extend up to several decades. Ambient Se speciation accounted for 60% to 100% of unidentified species as function of soil type whereas {sup 77}Se(IV) remained the more abundant species after 2-years field experiment. Modeling Se in the long-term without taking account these slow sorption kinetics would thus result in underestimation of Se retention. When using models based on K{sub d} distribution coefficient, they should be at least reliant on ambient Se which is supposed to be at equilibrium.

  14. Comparison of Chemical Extraction Methods for Determination of Soil Potassium in Different Soil Types

    Science.gov (United States)

    Zebec, V.; Rastija, D.; Lončarić, Z.; Bensa, A.; Popović, B.; Ivezić, V.

    2017-12-01

    Determining potassium supply of soil plays an important role in intensive crop production, since it is the basis for balancing nutrients and issuing fertilizer recommendations for achieving high and stable yields within economic feasibility. The aim of this study was to compare the different extraction methods of soil potassium from arable horizon of different types of soils with ammonium lactate method (KAL), which is frequently used as analytical method for determining the accessibility of nutrients and it is a common method used for issuing fertilizer recommendations in many Europe countries. In addition to the ammonium lactate method (KAL, pH 3.75), potassium was extracted with ammonium acetate (KAA, pH 7), ammonium acetate ethylenediaminetetraacetic acid (KAAEDTA, pH 4.6), Bray (KBRAY, pH 2.6) and with barium chloride (K_{BaCl_2 }, pH 8.1). The analyzed soils were extremely heterogeneous with a wide range of determined values. Soil pH reaction ( {pH_{H_2 O} } ) ranged from 4.77 to 8.75, organic matter content ranged from 1.87 to 4.94% and clay content from 8.03 to 37.07%. In relation to KAL method as the standard method, K_{BaCl_2 } method extracts 12.9% more on average of soil potassium, while in relation to standard method, on average KAA extracts 5.3%, KAAEDTA 10.3%, and KBRAY 27.5% less of potassium. Comparison of analyzed extraction methods of potassium from the soil is of high precision, and most reliable comparison was KAL method with KAAEDTA, followed by a: KAA, K_{BaCl_2 } and KBRAY method. Extremely significant statistical correlation between different extractive methods for determining potassium in the soil indicates that any of the methods can be used to accurately predict the concentration of potassium in the soil, and that carried out research can be used to create prediction model for concentration of potassium based on different methods of extraction.

  15. REMOVAL OF MERCURY FROM CONTAMINATED SOILS AT THE PAVLODAR CHEMICAL PLANT.

    Energy Technology Data Exchange (ETDEWEB)

    KHRAPUNOV, V. YE.; ISAKOVA, R.A.; LEVINTOV, B.L.; KALB, P.D.; KAMBEROV, I.M.; TREBUKHOV, A.

    2004-09-25

    Soils beneath and adjacent to the Pavlodar Chemical Plant in Kazakhstan have been contaminated with elemental mercury as a result of chlor alkali processing using mercury cathode cell technology. The work described in this paper was conducted in preparation for a demonstration of a technology to remove the mercury from the contaminated soils using a vacuum assisted thermal distillation process. The process can operate at temperatures from 250-500 C and pressures of 0.13kPa-1.33kPa. Following vaporization, the mercury vapor is cooled, condensed and concentrated back to liquid elemental mercury. It will then be treated using the Sulfur Polymer Stabilization/Solidification process developed at Brookhaven National Laboratory as described in a companion paper at this conference. The overall project objectives include chemical and physical characterization of the contaminated soils, study of the influence of the soil's physical-chemical and hydro dynamical characteristics on process parameters, and laboratory testing to optimize the mercury sublimation rate when heating in vacuum. Based on these laboratory and pilot-scale data, a full-scale production process will be designed for testing. This paper describes the soil characterization. This work is being sponsored by the International Science and Technology Center.

  16. Comparison of point-source pollutant loadings to soil and groundwater for 72 chemical substances.

    Science.gov (United States)

    Yu, Soonyoung; Hwang, Sang-Il; Yun, Seong-Taek; Chae, Gitak; Lee, Dongsu; Kim, Ki-Eun

    2017-11-01

    Fate and transport of 72 chemicals in soil and groundwater were assessed by using a multiphase compositional model (CompFlow Bio) because some of the chemicals are non-aqueous phase liquids or solids in the original form. One metric ton of chemicals were assumed to leak in a stylized facility. Scenarios of both surface spills and subsurface leaks were considered. Simulation results showed that the fate and transport of chemicals above the water table affected the fate and transport of chemicals below the water table, and vice versa. Surface spill scenarios caused much less concentrations than subsurface leak scenarios because leaching amounts into the subsurface environment were small (at most 6% of the 1 t spill for methylamine). Then, simulation results were applied to assess point-source pollutant loadings to soil and groundwater above and below the water table, respectively, by multiplying concentrations, impact areas, and durations. These three components correspond to the intensity of contamination, mobility, and persistency in the assessment of pollutant loading, respectively. Assessment results showed that the pollutant loadings in soil and groundwater were linearly related (r 2  = 0.64). The pollutant loadings were negatively related with zero-order and first-order decay rates in both soil (r = - 0.5 and - 0.6, respectively) and groundwater (- 1.0 and - 0.8, respectively). In addition, this study scientifically defended that the soil partitioning coefficient (K d ) significantly affected the pollutant loadings in soil (r = 0.6) and the maximum masses in groundwater (r = - 0.9). However, K d was not a representative factor for chemical transportability unlike the expectation in chemical ranking systems of soil and groundwater pollutants. The pollutant loadings estimated using a physics-based hydrogeological model provided a more rational ranking for exposure assessment, compared to the summation of persistency and transportability scores in

  17. Invasive scotch broom alters soil chemical properties in Douglas-fir forests of the Pacific Northwest, USA

    Science.gov (United States)

    Robert A. Slesak; Timothy B. Harrington; Anthony W. D′Amato

    2016-01-01

    Backgrounds and aims Scotch broom is an N-fixing invasive species that has high potential to alter soil properties. We compared soil from areas of Scotch broom invasion with nearby areas that had no evidence of invasion to assess the influence of broom on soil P fractions and other chemical properties. Methods The study was...

  18. Physico-chemical findings related to the resilience of different soils ...

    African Journals Online (AJOL)

    As part of an interdisciplinary study on Sustainable Agriculture in semiarid Areas (SASA) in south-central Tanzania, soils from five different locations were investigated for their mineralogical composition and physico-chemical characteristics in order to determine their resilience in relation to land use. The results of the ...

  19. Effect on stone lines on soil chemical characteristics under continuous sorghum cropping in semiarid Burkina Faso

    NARCIS (Netherlands)

    Zougmore, R.; Gnankambary, Z.; Guillobez, L.S.; Stroosnijder, L.

    2002-01-01

    In the semiarid Sahel, farmers commonly lay stone lines in fields to disperse runoff. This study was conducted in northern Burkina Faso to assess the chemical fertility of soil under a permanent, non-fertilised sorghum crop, which is the main production system in this area, 5 years after laying

  20. PHYSICOCHEMICAL PROPERTIES AS PREDICTORS OF ORGANIC CHEMICAL EFFECTS ON SOIL MICROBIAL RESPIRATION

    Science.gov (United States)

    Structure-activity analysis was used to evaluate the effects of 19 hazardous organic chemicals on microbial respiration in two slightly acidic soils (a Captina silt loam from Roane County Tennessee, and a McLaurin sandy loam from Stone County, Mississippi), both low in organic ca...

  1. Influence of shrubs on soil chemical properties in Alxa desert steppe, China

    Science.gov (United States)

    Hua Fu; Shifang Pei; Yaming Chen; Changgui Wan

    2007-01-01

    Alxa desert steppe is one of severely the degraded rangelands in the Northwest China. Shrubs, as the dominant life form in the desert steppe, play an important role in protecting this region from further desertification. Chemical properties of three soil layers (0 to 10, 10 to 20 and 20 to 30 cm) at three locations (the clump center [A], in the periphery of shrub...

  2. the effect of rubber effluent on some chemical properties of soil and ...

    African Journals Online (AJOL)

    DR. AMINU

    levels of rubber effluent used were 0, 50, 100, 150, 200, 250 ml per 2 kg soil. The trial was arranged ... addition to traces of various processing chemicals. The amount of ... The aim of this trial was to examine the influence of rubber effluent on ...

  3. The Effects of Time on Soil Behaviour and Pile Capacity

    DEFF Research Database (Denmark)

    Augustesen, Anders

    When designing pile foundations, static design equations, pile driving formulae, static loading tests or stress wave analyses can be employed to estimate the axial capacity of single piles. Both laboratory and field tests show that soil exhibits time-dependent behaviour. An important result...... based on a set of static loading tests. In the literature it is suggested that the pile capacity increases with the logarithm to time after installation which is confirmed in this thesis. In continuation of this, it is analysed whether the magnitude of the set-up is related to the properties of the clay...... circumstances (e.g. load specifications, length of pile, pile material). In order to evaluate the design methods for piles in clay, it is necessary to correct for time between pile driving and pile testing. Results of testing the calculation procedures against the available data by employing different time...

  4. Short-term recovery of soil physical, chemical, micro- and mesobiological functions in a new vineyard under organic farming

    Science.gov (United States)

    Costantini, E. A. C.; Agnelli, A. E.; Fabiani, A.; Gagnarli, E.; Mocali, S.; Priori, S.; Simoni, S.; Valboa, G.

    2015-06-01

    Deep earthwork activities carried out before vineyard plantation can severely affect soil profile properties. As a result, soil features in the root environment are often much more similar to those of the underlying substratum than those of the original profile. The time needed to recover the original soil functions is ecologically relevant and may strongly affect vine phenology and grape yield, particularly under organic viticulture. The general aim of this work was to investigate soil resilience after vineyard pre-planting earthworks. In particular, an old and a new vineyard, established on the same soil type, were compared over a 5-year period for soil chemical, physical, micro- and mesobiological properties. The investigated vineyards (Vitis vinifera L., cv. Sangiovese) were located in the Chianti Classico district (central Italy), on stony and calcareous soils, and were not irrigated. The older vineyard was planted in 2000, after slope reshaping by bulldozing and back-hoe ploughing down to about 0.8-1.0 m. The new vineyard was planted in 2011, after equivalent earthwork practices carried out in the summer of 2009. Both vineyards were organically managed, and they were fertilized with compost only every autumn (1000 kg ha-1 per year). The new vineyard was cultivated by periodic tillage, while the old vineyard was managed with alternating grass-covered and tilled inter-rows. Soil samples were collected at 0-15 cm depth from fixed locations in each vineyard every spring from 2010 to 2014. The old vineyard was sampled in both tilled and grass-covered inter-rows. According to the results from physical and chemical analyses, the new vineyard, during the whole 2010-2014 period, showed lower total organic carbon, total nitrogen, carbon to nitrogen ratio and electrical conductivity, along with higher silt and total CaCO3 contents than the old vineyard, suggesting still-evolving equilibrium conditions. The microarthropod analysis showed significantly different

  5. In situ chemical fixation of arsenic-contaminated soils: Anexperimental study

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Li; Donahoe, Rona J.; Redwine, James C.

    2007-03-27

    This paper reports the results of an experimentalstudytesting a low-cost in situ chemical fixation method designed to reclaimarsenic-contaminated subsurface soils. Subsurface soils from severalindustrial sites in southeastern U.S. were contaminated with arsenicthrough heavy application of herbicide containing arsenic trioxide. Themean concentrations of environmentally available arsenic in soilscollected from the two study sites, FW and BH, are 325 mg/kg and 900mg/kg, respectively. The soils are sandy loams with varying mineralogicaland organic contents. The previous study [Yang L, Donahoe RJ. The form,distribution and mobility of arsenic in soils contaminated by arsenictrioxide, at sites in Southeast USA. Appl Geochem 2007;22:320 341]indicated that a large portion of the arsenic in both soils is associatedwith amorphous aluminum and iron oxyhydroxides and shows very slowrelease against leaching by synthetic precipitation. The soil's amorphousaluminum and iron oxyhydroxides content was found to have the mostsignificant effect on its ability to retain arsenic.Based on thisobservation, contaminated soils were reacted with different treatmentsolutions in an effort to promote the formation of insolublearsenic-bearing phases and thereby decrease the leachability of arsenic.Ferrous sulfate, potassium permanganate and calcium carbonate were usedas the reagents for the chemical fixation solutions evaluated in threesets of batch experiments: (1) FeSO4; (2) FeSO4 and KMnO4; (3) FeSO4,KMnO4 and CaCO3. The optimum treatment solutions for each soil wereidentified based on the mobility of arsenic during sequential leaching oftreated and untreated soils using the fluids described in EPA Method 1311[USEPA. Method 1311: toxicity characteristic leaching procedure. Testmethods for evaluating solid waste, physical/chemical methods. 3rd ed.Washington, DC: U.S. Environmental Protection Agency, Office of SolidWaste. U.S. Government Printing Office; 1992]toxic characteristicsleaching

  6. Coupled Metagenomic and Chemical Analyses of Degrading Fungal Necromass and Implications for Fungal contributions to Stable Soil Organic Carbon

    Science.gov (United States)

    Egerton-Warburton, L. M.; Schreiner, K. M.; Morgan, B. S. T.; Schultz, J.; Blair, N. E.

    2016-12-01

    Fungi comprise a significant portion of total soil biomass, the turnover of which must represent a dominant flux within the soil carbon cycle. Fungal organic carbon (OC) can turn over on time scales of days to months, but this process is poorly understood. Here, we examined temporal changes in the chemical and microbial community composition of fungal necromass during a 2-month decomposition experiment in which Fusarium avenaceum (a common saprophyte) was exposed to a natural soil microbial community. Over the course of the experiment, residual fungal necromass was harvested and analyzed using FTIR and thermochemolysis-GCMS to examine chemical changes in the tissue. In addition, genomic DNA was extracted from tissues, amplified with barcoded ITS primers, and sequenced using the high-throughput Illumina platform to examine changes in microbial community composition. Up to 80% of the fungal necromass turned over in the first week. This rapid degradation phase corresponded to colonization of the necromass by known chitinolytic soil fungi including Mortierella species. Members of the Zygomycota and Ascomycota were among the dominant fungal groups involved in degradation with very small contributions from Basidiomycota. At the end of the 2-month degradation, only 15% of the original necromass remained. The residual material was rich in amide and C-O moieties which is consistent with previous work predicting that peptidoglycans are the main residual product from microbial tissue degradation. Straight-chain fatty acids exhibited varying degradation profiles, with some fatty acids (e.g. C16, C18:1) degrading more rapidly than bulk tissue while others maintained steady concentrations relative to bulk OC (C18) or increased in concentration throughout the degradation sequence (C24). These results indicate that the turnover of fungal necromass has the potential to rapidly and significantly influence a variety of soil OC properties including C/N ratios, lipid biomarker

  7. Coupled Metagenomic and Chemical Analyses of Degrading Fungal Necromass and Implications for Microbial Contributions to Stable Soil OC

    Science.gov (United States)

    Schreiner, K. M.; Morgan, B. S. T.; Schultz, J.; Blair, N. E.; Egerton-Warburton, L. M.

    2014-12-01

    Fungi comprise a significant portion of total soil biomass, the turnover of which must represent a dominant flux within the soil carbon cycle. Fungal OC can turn over on time scales of days to months, but this process is poorly understood. Here, we examined temporal changes in the chemical and microbial community composition of fungal necromass during a 2 month decomposition experiment in which Fusarium avenaceum (a common saprophyte) was exposed to a natural soil microbial community. Over the course of the experiment, residual fungal necromass was harvested and analyzed using FTIR and thermochemolysis-GCMS to examine chemical changes in the tissue. Additionally, genomic DNA was extracted from tissues, amplified with barcoded ITS primers, and sequenced using the high-throughput Illumina platform to examine changes in microbial community composition. Up to 80% of the fungal necromass turned over in the first week. This rapid degradation phase corresponded to colonization of the necromass by known chitinolytic soil fungi including Mortierella species. Zygomycetes and Ascomycetes were among the dominant fungal species involved in degradation with very small contributions from Basidiomycetes. At the end of the 2 month degradation, only 15% of the original necromass remained. The residual material was rich in amide and C-O moieties which is consistent with previous work predicting that peptidoglycans are the main residual product from microbial tissue degradation. Straight-chain fatty acids exhibit varying degradation profiles, with some fatty acids (e.g. C16 and C18:1) degrading more rapidly than bulk tissue, others maintaining steady concentrations relative to bulk OC (e.g. C18), and some increasing in concentration throughout the degradation (e.g. C24). These results indicate that the turnover of fungal necromass has the potential to significantly influence a variety of soil OC properties, including C/N ratios, lipid biomarker distributions, and OC turnover times.

  8. [Aging Law of PAHs in Contaminated Soil and Their Enrichment in Earthworms Characterized by Chemical Extraction Techniques].

    Science.gov (United States)

    Zhang, Ya-nan; Yang, Xing-lun; Bian, Yong-rong; Gu, Cheng-gang; Liu, Zong-tang; Li, Jiao; Wang, Dai-zhang; Jiang, Xin

    2015-12-01

    To evaluate the effect of aging on the availability of PAHs, chemical extraction by exhaustive ( ASE extraction) and nonexhaustive techniques (Tenax-TA extraction, hydroxypropyl-p-cyclodextrin ( HPCD ) extraction, n-butyl alcohol ( BuOH) extraction) as well as PAHs accumulation in earthworms (Eisenia fetida) were conducted in yellow soil from Baguazhou, Nanjing, China, and red soil from Hainan, China, spiked with phenanthrene, pryene and benzo(a) pyrene and aged 0, 7, 15, 30 and 60 days. The results showed that the concentration of PAHs extracted by ASE and three nonexhaustive techniques and accumulated by earthworms significantly decreased with aging time, except the ASE extracted concentration between 30-and 60-day aging time. Furthermore, the relationships were studied in this experiment between chemical extracted PAHs concentration and accumulated concentration in earthworms. PAHs accumulated concentration in earthworms was not significantly correlated with the exhaustive extracted concentration of PAHs in soil (R² 0.44-0.56), which indicated that ASE extraction techniques could not predict PAHs bioavailability to earthworms because it overestimated the risk of PAHs. However, the PAHs accumulated concentration in earthworms was significantly correlated with the three nonexhaustive extracted concentrations of PAHs in soil, which indicated that all the three nonexhaustive techniques could predict PAHs bioavailability to earthworm to some extent, among which, HPCD extraction (R² 0.94-0.99) was better than Tenax-TA extraction (R² 0.62-0.87) and BuOH extraction (R² 0.69-0.94). So HPCD extraction was a more appropriate and reliable technique to predict bioavailability of PAHs in soil.

  9. Characterization and nutrient release from silicate rocks and influence on chemical changes in soil

    Directory of Open Access Journals (Sweden)

    Douglas Ramos Guelfi Silva

    2012-06-01

    Full Text Available The expansion of Brazilian agriculture has led to a heavy dependence on imported fertilizers to ensure the supply of the growing food demand. This fact has contributed to a growing interest in alternative nutrient sources, such as ground silicate rocks. It is necessary, however, to know the potential of nutrient release and changes these materials can cause in soils. The purpose of this study was to characterize six silicate rocks and evaluate their effects on the chemical properties of treated soil, assessed by chemical extractants after greenhouse incubation. The experimental design consisted of completely randomized plots, in a 3 x 6 factorial scheme, with four replications. The factors were potassium levels (0-control: without silicate rock application; 200; 400; 600 kg ha-1 of K2O, supplied as six silicate rock types (breccia, biotite schist, ultramafic rock, phlogopite schist and two types of mining waste. The chemical, physical and mineralogical properties of the alternative rock fertilizers were characterized. Treatments were applied to a dystrophic Red-Yellow Oxisol (Ferralsol, which was incubated for 100 days, at 70 % (w/w moisture in 3.7 kg/pots. The soil was evaluated for pH; calcium and magnesium were extracted with KCl 1 mol L-1; potassium, phosphorus and sodium by Mehlich 1; nickel, copper and zinc with DTPA; and the saturation of the cation exchange capacity was calculated for aluminum, calcium, magnesium, potassium, and sodium, and overall base saturation. The alternative fertilizers affected soil chemical properties. Ultramafic rock and Chapada mining byproduct (CMB were the silicate rocks that most influenced soil pH, while the mining byproduct (MB led to high K levels. Zinc availability was highest in the treatments with mining byproduct and Cu in soil fertilized with Chapada and mining byproduct.

  10. On the theory of time dilation in chemical kinetics

    Science.gov (United States)

    Baig, Mirza Wasif

    2017-10-01

    The rates of chemical reactions are not absolute but their magnitude depends upon the relative speeds of the moving observers. This has been proved by unifying basic theories of chemical kinetics, which are transition state theory, collision theory, RRKM and Marcus theory, with the special theory of relativity. Boltzmann constant and energy spacing between permitted quantum levels of molecules are quantum mechanically proved to be Lorentz variant. The relativistic statistical thermodynamics has been developed to explain quasi-equilibrium existing between reactants and activated complex. The newly formulated Lorentz transformation of the rate constant from Arrhenius equation, of the collision frequency and of the Eyring and Marcus equations renders the rate of reaction to be Lorentz variant. For a moving observer moving at fractions of the speed of light along the reaction coordinate, the transition state possess less kinetic energy to sweep translation over it. This results in the slower transformation of reactants into products and in a stretched time frame for the chemical reaction to complete. Lorentz transformation of the half-life equation explains time dilation of the half-life period of chemical reactions and proves special theory of relativity and presents theory in accord with each other. To demonstrate the effectiveness of the present theory, the enzymatic reaction of methylamine dehydrogenase and radioactive disintegration of Astatine into Bismuth are considered as numerical examples.

  11. [Accumulation Characteristics and Evaluation of Heavy Metals in Soil-Crop System Affected by Wastewater Irrigation Around a Chemical Factory in Shenmu County].

    Science.gov (United States)

    Qi, Yan-bing; Chu, Wan-lin; Pu, Jie; Liu, Meng-yun; Chang, Qing-rui

    2015-04-01

    Soil heavy metals Cu, Pb, Zn, and Cd, are regarded as "chemical time bombs" because of their propensity for accumulation in the soil and uptake by crops. This ultimately causes human toxicity in both the short and long-term, making farmland ecosystems dangerous to health. In this paper, accumulation and spatial variability of Cu, Zn, Pb and Cd in soil-crop system affected by wastewater irrigation around a chemical factor in northern Shaanxi province were analyzed. Results showed that wastewater irrigation around the chemical factory induced significant accumulation in soils compared with control areas. The average concentrations of available Cu and total Cu were 4.32 mg x kg(-1) and 38.4 mg x kg(-1), which were twice and 1.35 times higher than those of the control area, respectively. Soil Zn and Pb were slightly accumulated. Whereas soil Cd was significantly accumulated and was higher than the critical level of soil environmental quality (II), the available and total Cd concentrations were 0.248 mg x kg(-1) and 1.21 mg x kg(-1), which were 10 and 6.1 times higher than those of the control areas. No significant correlations were found between available and total heavy metals except between available Cd and total Cd. All the heavy metals were mainly accumulated in the top layer (0-10 cm). Spatially, soils and plants high in heavy metal concentration were distributed within the radius of about 100 m from the waste water outlet for Cu, Zn and Cd and about 200 m for Pb, and decreased exponentially with the distance from the factory. Affected by wastewater irrigation, contents of Cu, Pb and Cd in maize were 4.74, 0.129 and 0.036 mg x kg(-1) which were slightly higher than those in the control area. The content of Zn was similar to that in the control area. Affected by the vehicle exhaust, the over standard rate of Pb was 5.7% in maize. All the heavy metals did not show significant correlation between soil and crop, except Cd. The square correlation coefficients were 0

  12. APPLICATION OF CHEMICALLY ACCELERATED BIOTREATMENT TO REDUCE RISKIN OIL-IMPACTED SOILS

    Energy Technology Data Exchange (ETDEWEB)

    J.R. Paterek; W.W.Bogan; V. Trbovic; W. Sullivan

    2003-01-07

    The drilling and operation of gas/petroleum exploratory wells and the operations of natural gas and petroleum production wells generate a number of waste materials that are usually stored and/or processed at the drilling/operations site. Contaminated soils result from drilling operations, production operations, and pipeline breaks or leaks where crude oil and petroleum products are released into the surrounding soil or sediments. In many cases, intrinsic biochemical remediation of these contaminated soils is either not effective or is too slow to be an acceptable approach. This project targeted petroleum-impacted soil and other wastes, such as soil contaminated by: accidental release of petroleum and natural gas-associated organic wastes from pipelines or during transport of crude oil or natural gas; production wastes (such as produced waters, and/or fuels or product gas). Our research evaluated the process designated Chemically-Accelerated Biotreatment (CAB) that can be applied to remediate contaminated matrices, either on-site or in situ. The Gas Technology Institute (GTI) had previously developed a form of CAB for the remediation of hydrocarbons and metals at Manufactured Gas Plant (MGP) sites and this research project expanded its application into Exploration and Production (E&P) sites. The CAB treatment was developed in this project using risk-based endpoints, a.k.a. environmentally acceptable endpoints (EAE) as the treatment goal. This goal was evaluated, compared, and correlated to traditional analytical methods (Gas Chromatography (GC), High Precision Liquid Chromatography (HPLC), or Gas Chromatography-Mass Spectrometry (CGMS)). This project proved that CAB can be applied to remediate E&P contaminated soils to EAE, i.e. those concentrations of chemical contaminants in soil below which there is no adverse affect to human health or the environment. Conventional approaches to risk assessment to determine ''how clean is clean'' for soils

  13. Evaluating effects of sewage sludge and household compost on soil physical, chemical and microbiological properties

    DEFF Research Database (Denmark)

    Debosz, K.; Petersen, S.O.; Kure, L.K.

    2002-01-01

    Recycling of organic wastes within agriculture may help maintain soil fertility via effects on physical, chemical and biological properties. Efficient use, however, requires an individual assessment of waste products, and effects should be compared with natural variations due to climate and soil......C, as well as in the field. The following properties were monitored: wet-stability of soil aggregates, clay dispersibility, hot-water extractable carbohydrates, resin-extractable P-i, inorganic N, biomass C and N, PLFA profiles, FDA hydrolysis activity, beta-glucosidase activity and CO2 evolution. In general...... amendment on the fraction of soil in wet-stable aggregates, or on the microbiological properties tested, which supported the observation from the incubation study that effects of organic wastes were transient. (C) 2002 Elsevier Science B.V. All rights reserved....

  14. Influence of soil pH on the sorption of ionizable chemicals

    DEFF Research Database (Denmark)

    Franco, Antonio; Fu, Wenjing; Trapp, Stefan

    2009-01-01

    , the optimal pH to model dissociation was lower than the bulk soil pH. The knowledge of the soil pH allows calculation of the fractions of neutral and ionic molecules in the system, thus improving the existing regression for acids. The same approach was not successful with bases, for which the impact of p......The soil-water distribution coefficient of ionizable chemicals (K-d) depends on the soil acidity, mainly because the pH governs speciation. Using pH-specific K-d values normalized to organic carbon (K-OC) from the literature, a method was developed to estimate the K-OC of monovalent organic acids...

  15. Assessment Bioremediation of Contaminated Soils to Petroleum Compounds and Role of Chemical Fertilizers in the Decomposition Process

    OpenAIRE

    H. Parvizi Mosaed; S. Sobhan Ardakani; M. Cheraghi

    2013-01-01

    Today oil removal from contaminated soil by new methods such as bioremediation is necessary.  In this paper, the effect of chemical fertilizers and aeration on bioremediation of oil-contaminated soil has been investigated. Also the control group, (bioremediation of petroleum hydrocarbons in contaminated soil without treatment by chemical fertilizers and aeration treatment was examined. The condition of experiment is as following: those were treated 70 days in glass columns (30×30×30cm dimensi...

  16. Soil heat flux and day time surface energy balance closure

    Indian Academy of Sciences (India)

    Soil heat flux; surface energy balance; Bowen's ratio; sensible and latent ... The energy storage term for the soil layer 0–0.05 m is calculated and the ground heat ... When a new method that accounts for both soil thermal conduction and soil ...

  17. Chemical soil attributes after wheat cropping under nitrogen fertilization and inoculation with Azospirillum brasilense

    Directory of Open Access Journals (Sweden)

    Fernando Shintate Galindo

    2017-05-01

    Full Text Available Azospirillum brasilense plays an important role in biological nitrogen fixation (BNF in grasses. However, further studies are needed to define how much mineral N can be applied while simultaneously maintaining BNF contribution and maximizing crop yield and to determine the impact of these practices on soil fertility. Thus, we aimed to investigate the effect of inoculation with A. brasilense, in conjunction with varying N doses and sources in a Cerrado soil, on soil chemical attributes after two years of irrigated wheat production. The experiment was initiated in Selvíria - MS under no-tillage production in an Oxisol in 2014 and 2015. The experimental design was a randomized block design with four replications, and treatments were arranged in a 2 x 5 x 2 factorial arrangement as follows: two N sources (urea and Super N - urea with inhibitor of the enzyme urease NBPT (N - (n-butyl thiophosphoric triamide, five N rates (0, 50, 100, 150 and 200 kg ha-1, and with or without seed inoculation with A. brasilense. The increase in N rates did not influence the chemical soil attributes. Super N acidified the soil more compared to urea. A. brasilense inoculation reduced the effect of soil acidification in intensive irrigated wheat cultivation; however, the base extraction was higher, resulting in a lower soil CEC after cultivation with inoculation. Therefore, the cultivation of wheat inoculated with A. brasilense was not harmful to soil fertility because it did not reduce the base saturation and organic matter content (P, K, Ca, Mg, and S.

  18. Recovery of microbial diversity and activity during bioremediation following chemical oxidation of diesel contaminated soils.

    Science.gov (United States)

    Sutton, Nora B; Langenhoff, Alette A M; Lasso, Daniel Hidalgo; van der Zaan, Bas; van Gaans, Pauline; Maphosa, Farai; Smidt, Hauke; Grotenhuis, Tim; Rijnaarts, Huub H M

    2014-03-01

    To improve the coupling of in situ chemical oxidation and in situ bioremediation, a systematic analysis was performed of the effect of chemical oxidation with Fenton's reagent, modified Fenton's reagent, permanganate, or persulfate, on microbial diversity and activity during 8 weeks of incubation in two diesel-contaminated soils (peat and fill). Chemical oxidant and soil type affected the microbial community diversity and biodegradation activity; however, this was only observed following treatment with Fenton's reagent and modified Fenton's reagent, and in the biotic control without oxidation. Differences in the highest overall removal efficiencies of 69 % for peat (biotic control) and 59 % for fill (Fenton's reagent) were partially explained by changes in contaminant soil properties upon oxidation. Molecular analysis of 16S rRNA and alkane monooxygenase (alkB) gene abundances indicated that oxidation with Fenton's reagent and modified Fenton's reagent negatively affected microbial abundance. However, regeneration occurred, and final relative alkB abundances were 1-2 orders of magnitude higher in chemically treated microcosms than in the biotic control. 16S rRNA gene fragment fingerprinting with DGGE and prominent band sequencing illuminated microbial community composition and diversity differences between treatments and identified a variety of phylotypes within Alpha-, Beta-, and Gammaproteobacteria. Understanding microbial community dynamics during coupled chemical oxidation and bioremediation is integral to improved biphasic field application.

  19. Chemical stabilization of subgrade soil for the strategic expeditionary landing field

    Science.gov (United States)

    Conaway, M. H.

    1983-06-01

    The Strategic Expeditionary Landing Field (SELF) is a military expeditionary-type airfield with an aluminum matted surface that is designed for sustained tactical and cargo airlift operations in an amphibious objective area. Because of the operational traffic parameters such as loads of the various types of aircraft, tire pressures and volume of traffic, a base layer must be constructed over subgrade soil support conditions which may be only marginal. The base layer could be constructed with conventional soil construction techniques (compaction) and yield the required strength. It would be difficult, however, to maintain this strength for the required one-year service life under many climatic conditions due to the degrading effects of water on the support capacity of many soils. Chemical soil stabilization with lime, portland cement and asphalt stabilizing agents could be used to treat the soil. These additives, when properly mixed with certain types of soils, initiate reactions which will increase soil support strength and enhance durability (resistance to the degrading effects of water). Technically, this procedure is quite viable but logistically, it may not be feasible.

  20. Soil, Groundwater, Surface Water, and Sediments of Kennedy Space Center, Florida: Background Chemical and Physical Characteristics

    Science.gov (United States)

    Shmalzer, Paul A.; Hensley, Melissa A.; Mota, Mario; Hall, Carlton R.; Dunlevy, Colleen A.

    2000-01-01

    This study documented background chemical composition of soils, groundwater, surface; water, and sediments of Kennedy Space Center. Two hundred soil samples were collected, 20 each in 10 soil classes. Fifty-one groundwater wells were installed in 4 subaquifers of the Surficial Aquifer and sampled; there were 24 shallow, 16 intermediate, and 11 deep wells. Forty surface water and sediment samples were collected in major watershed basins. All samples were away from sites of known contamination. Samples were analyzed for organochlorine pesticides, aroclors, chlorinated herbicides, polycyclic aromatic hydrocarbons (PAH), total metals, and other parameters. All aroclors (6) were below detection in all media. Some organochlorine pesticides were detected at very low frequencies in soil, sediment, and surface water. Chlorinated herbicides were detected at very low frequencies in soil and sediments. PAH occurred in low frequencies in soiL, shallow groundwater, surface water, and sediments. Concentrations of some metals differed among soil classes, with subaquifers and depths, and among watershed basins for surface water but not sediments. Most of the variation in metal concentrations was natural, but agriculture had increased Cr, Cu, Mn, and Zn.

  1. Chemically assisted phytoextraction: a review of potential soil amendments for increasing plant uptake of heavy metals.

    Science.gov (United States)

    Meers, E; Tack, F M G; Van Slycken, S; Ruttens, A; Du Laing, G; Vangronsveld, J; Verloo, M G

    2008-01-01

    The contamination of soils by trace metals has been an unfortunate sideeffect of industrialization. Some of these contaminants can interfere with vulnerable enduses of soil, such as agriculture or nature, already at relatively low levels of contamination. Reversely, conventional civil-technical soil-remediation techniques are too expensive to remediate extended areas of moderately contaminated soil. Phytoextraction has been proposed as a more economic complementary approach to deal with this specific niche of soil contamination. However, phytoextraction has been shown to be a slow-working process due to the low amounts of metals that can be annually removed from the soil under normal agronomic conditions. Therefore, extensive research has been conducted on process optimization by means of chemically improving plant availability and the uptake of heavy metals. A wide range of potential amendments has been proposed in the literature, with considerable attention being spent on aminopolycarboxylic acids such as ethylenediaminetetraacetic acid (EDTA). However, these compounds have received increasing criticism due to their environmental persistence and associated risks for leaching. This review presents an overview of potential soil amendments that can be employed for enhancing metal uptake by phytoextraction crops, with a distinct focus on more degradable alternatives to persistent compounds such as EDTA.

  2. Effects of 1-Alkyl-3-Methylimidazolium Nitrate on Soil Physical and Chemical Properties and Microbial Biomass.

    Science.gov (United States)

    Zhou, Tongtong; Wang, Jun; Ma, Zhiqiang; Du, Zhongkun; Zhang, Cheng; Zhu, Lusheng; Wang, Jinhua

    2018-05-01

    Ionic liquids (ILs), also called room temperature ILs, are widely applied in many fields on the basis of their unique physical and chemical properties. However, numerous ILs may be released into and gradually accumulate in the environment due to their extensive use and absolute solubility. The effects of 1-alkyl-3-methylimidazolium nitrate ([C n mim]NO 3 , n = 4, 6, 8) on soil pH, conductivity, cation exchange capacity, microbial biomass carbon, and microbial biomass nitrogen were examined at the doses of 1, 10, and 100 mg/kg on days 10, 20, 30, and 40. The results demonstrated that the soil pH decreased and the conductivity increased with increasing IL doses. No significant differences were observed in the soil cation-exchange capacity. All three of the tested ILs decreased the soil microbial biomass carbon and nitrogen. Additionally, there were few differences among the ILs with different alkyl chain lengths on the tested indicators except for the microbial biomass nitrogen. The present study addressed a gap in the literature regarding the effects of the aforementioned ILs with different alkyl side chains on the physicochemical properties of soil, and the results could provide the basic data for future studies on their toxicity to soil organisms, such as earthworms and soil microbes.

  3. Influence of plants on the chemical extractability and biodegradability of 2,4-dichlorophenol in soil

    International Nuclear Information System (INIS)

    Boucard, Tatiana K.; Bardgett, Richard D.; Jones, Kevin C.; Semple, Kirk

    2005-01-01

    This study investigated the fate and behaviour of [UL- 14 C] 2,4-dichlorophenol (DCP) in planted (Lolium perenne L.) and unplanted soils over 57 days. Extractability of [UL- 14 C] 2,4-DCP associated activity was measured using calcium chloride (CaCl 2 ), acetonitrile-water and dichloromethane (DCM) extractions. Biodegradability of [UL- 14 C] 2,4-DCP associated activity was assessed through measurement of 14 CO 2 production by a degrader inoculum (Burkholderia sp.). Although extractability and mineralisation of [UL- 14 C] 2,4-DCP associated activity decreased significantly in both planted and unplanted soils, plants appeared to enhance the sequestration process. After 57 days, in unplanted soil, 27% of the remaining [UL- 14 C] 2,4-DCP associated activity was mineralised by Burkholderia sp., and 13%, 48%, and 38% of 14 C-activity were extracted by CaCl 2 , acetonitrile-water and DCM, respectively. However, after 57 days, in planted soils, only 10% of the [UL- 14 C] 2,4-DCP associated activity was available for mineralisation, whilst extractability was reduced to 2% by CaCl 2 , 17% by acetonitrile-water and 11% by DCM. This may be due to the effect of plants on soil moisture conditions, which leads to modification of the soil structure and trapping of the compound. However, the influence of plants on soil biological and chemical properties may also play a role in the ageing process

  4. Thermodynamics in finite time: A chemically driven engine

    International Nuclear Information System (INIS)

    Ondrechen, M.J.; Berry, R.S.; Andresen, B.

    1980-01-01

    The methods of finite time thermodynamics are applied to processes whose relaxation parameters are chemical rate coefficients within the working fluid. The direct optimization formalism used previously for heat engines with friction and finite heat transfer rates: termed the tricycle method: is extended to heat engines driven by exothermic reactions. The model is a flow reactor coupled by a heat exchanger to an engine. Conditions are established for the achievement of maximum power from such a system. Emphasis is on how the chemical kinetics control the finite-time thermodynamic extrema; first order, first order reversible, and second order reaction kinetics are analyzed. For the types of reactions considered here, there is always a finite positive flow rate in the reactor that yields maximum engine power. Maximum fuel efficiency is always attained in these systems at the uninteresting limit of zero flow rate

  5. Sorption and Transport of Pharmaceutical chemicals in Organic- and Mineral-rich Soils

    Science.gov (United States)

    Vulava, V. M.; Schwindaman, J.; Murphey, V.; Kuzma, S.; Cory, W.

    2011-12-01

    OC, again indicating that these PhACs preferentially partition into the soil OM. Such a correlation was absent for cetirizine. Breakthrough curves of PhACs measured in homogeneous packed soil columns indicated that PhAC transport was affected by chemical nonequilibrium processes depending on the soil and PhAC chemistry. The shape of the breakthrough curves indicated that there were two distinct sorption sites - OM and clay minerals - which influence nonequilibrium transport of these compounds. The retardation factor estimated using the distribution coefficient, Kd, measured from the sorption experiments was very similar to the measured value. While the sorption and transport data do not provide mechanistic information regarding the nature of PhAC interaction with chemical reactive components within geological materials, they do provide important information regarding potential fate of such compounds in the environment. The results also show the role that soil OM and mineral surfaces play in sequestering or transporting these chemicals. These insights have implications to the quality of the water resources in our communities.

  6. Real time material accountability in a chemical reprocessing unit

    International Nuclear Information System (INIS)

    Morrison, G.W.; Blakeman, E.D.

    1979-01-01

    Real time material accountability for a pulse column in a chemical reprocessing plant has been investigated using a simple two state Kalman Filter. Operation of the pulse column was simulated by the SEPHIS-MOD4 code. Noisy measurements of the column inventory were obtained from two neutron detectors with various simulated counting errors. Various loss scenarios were simulated and analyzed by the Kalman Filter. In all cases considered the Kalman Filter was a superior estimator of material loss

  7. Soil-biological, soil-chemical and soil-physical parameters along a pollutant gradient on grassland sites in the vicinity o Brixlegg (Tyrol) - a pilot project

    International Nuclear Information System (INIS)

    Pohla, H.; Palzenberger, M.; Krassnigg, F.; Kandeler, E.; Schwarz, S.; Kasperowski, E.

    1992-01-01

    It was the main aim of this pilot project to check the indicator value of soil organisms by means of distinct pollutant gradients - heavy metals, organic compounds (PCB, dioxins) -. On the basis of available results (1/2/3/), 4 grassland sites at increasing distances from a local emission source (copper production from scrap metal) were selected. Physical and chemical analyses as well as the quantification of habitat structures were used for the characterization of the sites. The following analyses were carried out accompanyingly: The performances of soil microorganisms under pollutant load, the accumulation of pollutants, and the structures of plants and animal communities (macro, meso and microfauna). The investigation area and the examined parameters are introduced, as well as first result on soil chemistry and enzymatics as well as for the accumulation of heavy metals in an earthworm species are introduced. (orig.) [de

  8. Time-dependent performance of soil mix technology stabilized/solidified contaminated site soils.

    Science.gov (United States)

    Wang, Fei; Wang, Hailing; Al-Tabbaa, Abir

    2015-04-09

    This paper presents the strength and leaching performance of stabilized/solidified organic and inorganic contaminated site soil as a function of time and the effectiveness of modified clays applied in this project. Field trials of deep soil mixing application of stabilization/solidification (S/S) were performed at a site in Castleford in 2011. A number of binders and addictives were applied in this project including Portland cement (PC), ground granulated blastfurnace slag (GGBS), pulverised fuel ash (PFA), MgO and modified clays. Field trial samples were subjected to unconfined compressive strength (UCS), BS CN 12457 batch leaching test and the extraction of total organics at 28 days and 1.5 years after treatment. The results of UCS test show that the average strength values of mixes increased from 0-3250 kPa at 28 days to 250-4250 kPa at 1.5 years curing time. The BS EN 12457 leachate concentrations of all metals were well below their drinking water standard, except Ni in some mixes exceed its drinking water standard at 0.02 mg/l, suggesting that due to varied nature of binders, not all of them have the same efficiency in treating contaminated soil. The average leachate concentrations of total organics were in the range of 20-160 mg/l at 28 days after treatment and reduced to 18-140 mg/l at 1.5 years. In addition, organo clay (OC)/inorgano-organo clay (IOC) slurries used in this field trial were found to have a negative effect on the strength development, but were very effective in immobilizing heavy metals. The study also illustrates that the surfactants used to modify bentonite in this field trail were not suitable for the major organic pollutants exist in the site soil in this project. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Chemical dynamics in the gas phase: Time-dependent quantum mechanics of chemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Gray, S.K. [Argonne National Laboratory, IL (United States)

    1993-12-01

    A major goal of this research is to obtain an understanding of the molecular reaction dynamics of three and four atom chemical reactions using numerically accurate quantum dynamics. This work involves: (i) the development and/or improvement of accurate quantum mechanical methods for the calculation and analysis of the properties of chemical reactions (e.g., rate constants and product distributions), and (ii) the determination of accurate dynamical results for selected chemical systems, which allow one to compare directly with experiment, determine the reliability of the underlying potential energy surfaces, and test the validity of approximate theories. This research emphasizes the use of recently developed time-dependent quantum mechanical methods, i.e. wave packet methods.

  10. Decoupling the deep: crop rotations, fertilization and soil physico-chemical properties down the profile

    Science.gov (United States)

    Hobley, Eleanor; Honermeier, Bernd; Don, Axel; Amelung, Wulf; Kögel-Knabner, Ingrid

    2017-04-01

    Crop fertilization provides vital plant nutrients (e.g. NPK) to ensure yield security but is also associated with negative environmental impacts. In particular, inorganic, mineral nitrogen (Nmin) fertilization leads to emissions during its energy intensive production as well as Nmin leaching to receiving waters. Incorporating legumes into crop rotations can provide organic N to the soil and subsequent crops, reducing the need for mineral N fertilizer and its negative environmental impacts. An added bonus is the potential to enhance soil organic carbon stocks, thereby reducing atmospheric CO2 concentrations. In this study we assessed the effects of legumes in rotation and fertilization regimes on the depth distribution - down to 1 m - of total soil nitrogen (Ntot), soil organic carbon (SOC) as well as isotopic composition (δ13C, δ15N), electrical conductivity and bulk density as well as agricultural yields at a long-term field experiment in Gießen, Germany. Fertilization had significant but small impacts on the soil chemical environment, most particularly the salt content of the soil, with PK fertilization increasing electrical conductivity throughout the soil profile. Similarly, fertilization resulted in a small reduction of soil pH throughout the soil profile. N fertilization, in particular, significantly increased yields, whereas PK fertilizer had only marginal yield effects, indicating that these systems are N limited. This N limitation was confirmed by significant yield benefits with leguminous crops in rotation, even in combination with mineral N fertilizer. The soil was physically and chemically influenced by the choice of crop rotation. Adding clover as a green mulch crop once every 4 years resulted in an enrichment of total N and SOC at the surface compared with fava beans and maize, but only in combination with PK fertilization. In contrast, fava beans and to a lesser extent maize in rotation lowered bulk densities in the subsoil compared with clover

  11. Chemical attributes of a Hapludox soil after nine years of pig slurry application

    Directory of Open Access Journals (Sweden)

    Milton da Veiga

    2012-12-01

    Full Text Available The objective of this study was to evaluate the pig slurry application effects on chemical attributes of a Hapludox soil managed under no-tillage system. Treatments consisted of 50, 100 and 200 m³ ha-1 per year of pig slurry application, and a control with replacement of P and K exported through harvested grains. Attributes related to soil chemical reaction, exchange complex, and nutrient contents were determined in soil samples collected in the ninth year of experimentation from 0 - 0.025, 0.025 - 0.05, 0.05 - 0.10, 0.10 - 0.20, 0.20 - 0.40 and 0.40 - 0.60 m soil depths. The continuous application of high doses of pig slurry on the Oxisol surface under no-tillage acidifies the soil and increases Al, P, Cu, and Zn contents down to 0.2-m depth, and K levels down to 0.6-m depth.

  12. Physical and chemical properties of the Martian soil: Review of resources

    Science.gov (United States)

    Stoker, C. R.; Gooding, James L.; Banin, A.; Clark, Benton C.; Roush, Ted

    1991-01-01

    The chemical and physical properties of Martian surface materials are reviewed from the perspective of using these resources to support human settlement. The resource potential of Martian sediments and soils can only be inferred from limited analyses performed by the Viking Landers (VL), from information derived from remote sensing, and from analysis of the SNC meteorites thought to be from Mars. Bulk elemental compositions by the VL inorganic chemical (x ray fluorescence) analysis experiments have been interpreted as evidence for clay minerals (possibly smectites) or mineraloids (palagonite) admixed with sulfate and chloride salts. The materials contained minerals bearing Fe, Ti, Al, Mg and Si. Martian surface materials may be used in many ways. Martian soil, with appropriate preconditioning, can probably be used as a plant growth medium, supplying mechanical support, nutrient elements, and water at optimal conditions to the plants. Loose Martian soils could be used to cover structures and provide radiation shielding for surface habitats. Martian soil could be wetted and formed into abode bricks used for construction. Duricrete bricks, with strength comparable to concrete, can probably be formed using compressed muds made from martian soil.

  13. The Changes of Earthworm Population and Chemical Properties of Tropical Soils under Different Land Use Systems

    Directory of Open Access Journals (Sweden)

    Sri Yusnaini

    2008-05-01

    Full Text Available Hilly area Sumberjaya, West Lampung Province, South Sumatra, Indonesia, is one of the Province where deforestation increasing in the past 30 years as a result of the implementation of agricultural systems, especially coffee plantation. it is important to study the soil fauna in these natural relicts. Six sites (3 naturals and 3 managed systems were studied in order to identify earthworm species communities, using the hand sorting method and soil chemical parameters (pH, avail-P, org-C., tot-N, and cation exchange capacity (CEC. Two species were found (Pheretima sp. and Pontoscolex sp.. All land use systems had very similar soil chemical characteristics, there can be characterised as acidic (pH between 3.6 and 5.0. A high content of organic carbon was in natural sites (bush 4.0% and primary forest 3.9%, and a low content was in managed sites (coffee plantation 2.1%. Total nitrogen (0.37% and CEC (21.84 Cmol-c kg-1 was in primary forest. However, the earthworm densities were significantly lower under primary forest than in the other sites. The acidity component explained mainly the lowest earthworm population at the primary forest (soil pH 3.6. The use of succession forest (bush and mix farming showed a positive effect on soil fertility.

  14. Chemical composition of overland flow produced on soils covered with vegetative ash

    Directory of Open Access Journals (Sweden)

    M.B. Bodí

    2013-05-01

    Full Text Available The objective of this study was to ascertain the differences between the soluble elements of ash obtained under laboratory conditions and the dissolved in overland flow from soils covered with a layer of ash. The overland flow was obtained during series of rainfall simulations over soils covered with two different types of ash. This study indicates that the soluble elements released from ash can modify water quality increasing its pH, electrical conductivity and especially cation content. The nutrients solubilised are not necessarily the same as the elemental composition of ash itself. Runoff composition depends on the volume of water produced, on the solubility of the ash components and on the chemical interactions with water from rainfall and soil. After the first intense rain event, most of the elements are solubilised and lixiviated or washed out, however, some of them may increase in the runoff or soil water some weeks later due to chemical interactions with water from rainfall and soil nutrients.

  15. Morphological, sediment and soil chemical characteristics of dry tropical shallow reservoirs in the Southern Mexican Highlands

    Directory of Open Access Journals (Sweden)

    José Luis ARREDONDO-FIGUEROA

    2011-02-01

    Full Text Available The morphometry, sediment and soil chemical characteristics of eleven dry tropical shallow reservoirs situated in Southern Mexican Highlands were studied. The reservoirs are located at 1104 to 1183 meters above sea level in a sedimentary area. Seventeen morphometric and eight sediment and soil chemical parameters were measured. The results of the morphometric parameters showed that these reservoirs presented a soft and roughness bottom, with an ellipsoid form and a concave depression that permit the mix up of water and sediments, causing turbidity and broken thermal gradients; their slight slopes allowed the colonization of submerged macrophyte and halophyte plants and improved the incidence of sunlight on water surface increasing evaporation and primary productivity. Dry tropical shallow reservoirs have fluctuations in area, and volume according to the amount of rainfall, the effect of evaporation, temperature, lost volume for irrigation, and other causes. The sand-clay was the most important sediment texture and their values fluctuated with the flooded periods. The concentration-dilution cycle showed a direct relationship in the percentage of organic matter in the soil as well as with pH, soil nitrogen and phosphorus. El Tilzate, El Candelero and El Movil were related by the shore development and high concentrations of organic matter and nitrogen in the soil. Finally, we emphasize the importance of this study, in relation to possible future changes in morphometrical parameters as a consequence of human impact.

  16. Enhanced Soil Chemical Properties and Rice Yield in Acid Sulphate Soil by Application of Rice Straw

    Directory of Open Access Journals (Sweden)

    Siti Nurzakiah

    2012-01-01

    Full Text Available Swampland development such as acid sulphate soil for agricultural cultivation has various problem, including highsoil acidity, fluctuated and unpredictable water flooding and the presence of toxic elements such as Fe whichresulting in low crop yields. The research was conducted at the experimental station Belandean, Barito Kualaregency in dry season 2007. The objective of research was to study the effect of rice straw on the dynamic of soilpH, the concentration of iron and sulphate and yield on tidal land acid sulphate soil at two different water inletchannel. This research was designed in RCBD (Randomized Completely Block Design with five treatments (0, 2.5,5.0, 7.5 and 10 Mg ha-1 and four replications. Dolomite as much as 1 Mg ha-1 was also applied. This research wasdivided into two sub-units experiment i.e. two conditions of different water inlet channel. The first water channelswere placed with limestone and the second inlet was planted with Eleocharis dulcis. The results showed that (i ricestraw application did not affect the dynamic of soil pH, concentration of iron and sulphate, and (ii the highest yieldwas obtained with 7.5 Mg ha-1 of rice straw.

  17. Assessment of soil degradation and chemical compositions in Rwandan tea-growing areas

    Directory of Open Access Journals (Sweden)

    Jean de la Paix Mupenzi

    2011-10-01

    Full Text Available This study has focused on the processes of soil degradation and chemical element concentration in tea-growing regions of Rwanda, Africa. Soil degradation accelerated by erosion is caused not only by topography but also by human activities. This soil degradation involves both the physical loss and reduction in the amount of topsoil associated with nutrient decline. Soil samples were collected from eleven tropical zones in Rwanda and from variable depth within each collecting site. Of these, Samples from three locations in each zone were analyzed in the laboratory, with the result that the pH of all soil samples is shown to be less than 5 (pH<5 with a general average of 4.4. The elements such as iron (Fe, copper (Cu, manganese (Mn, and zinc (Zn are present in high concentration levels. In contrast calcium (Ca and sodium (Na are present at low-level concentrations and carbon (C was found in minimal concentrations. In addition, elements derived from fertilizers, such as nitrogen (N, phosphorous (P, and potassium (K which is also from minerals such as feldspar, are also present in low-level concentrations. The results indicate that the soil in certain Rwandan tea plantations is acidic and that this level of pH may help explain, in addition to natural factors, the deficiency of some elements such as Ca, Mg, P and N. The use of chemical fertilizers, land use system and the location of fields relative to household plots are also considered to help explain why tea plantation soils are typically degraded.

  18. Chemical characterization of some soils from four counties that produce Flue-cured tobacco

    Directory of Open Access Journals (Sweden)

    Marcela Rodríguez

    2012-09-01

    Full Text Available The municipalities or counties of Campoalegre and Garzón (State of Huila and Capitanejo and Enciso (State of Santander show different chemical soil characteristics when their origin is taken into account, based on their edaphogenetic environments. For the characterization of the soils from these counties, samples from 65 farms were arranged, based on the database of farmers associated with the Protabaco Company. With the soil samples taken, chemical and texture analyses were performed, codifying the results in order to analyze them, keeping in mind the ideal parameters for the tobacco crop. In the counties of Huila, the texture, pH and organic matter were found to have ideal levels, in contrast to the phosphorus, potassium, magnesium, sulfur and chloride levels which were unsuitable, but the calcium content showed levels between suitable and good. In Santander, the pH, organic matter, phosphorus, calcium, sulfur and chloride were at unsuitable levels, in contrast, the contrary occurred with the texture and potassium which were at normal levels. It is recommended, due to the difference among the chemical parameters, that a fertilization program be handled differently for the zones of Santander and Huila, bearing in mind that the chemical parameters were found to be more limited in Santander than in Huila

  19. Molybdenum and technetium cycle in the environment. Physical chemical evolution and mobility in soils and plants

    International Nuclear Information System (INIS)

    Saas, A.; Denardi, J.L.; Colle, C.; Quinault, J.M.

    1980-01-01

    Molybdenum 99 and technetium 99 from liquid discharges of base nuclear installations (reactors, reprocessing plants, UF 6 treatment, etc.) can reach the environment via irrigation waters and atmospheric deposits. The contribution to the soil by irrigation results in a physical-chemical transformation, the results of which, in the case of technetium 99, could be volatilization via microbes. The changes in the physical-chemical forms of technetium in different soils reveals the preponderant effect of the initial amount deposited. The determination of the rate of technetium and molybdenum assimilation shows a certain similarity in behaviour; yet the localization of these isotopes is not the same. The transfer of molybdenum and technetium via the root system is different in its intensity; this is mainly due to different physical-chemical forms. Finally, each isotope has an optimum assimilation threshold and a toxicity threshold. The study of the physical-chemical evolution and the mobility in the soil-plant-water table system of these two isotopes shows a new aspect with respect to certain transfer channels to the human being [fr

  20. Carbon speciation in ash, residual waste and contaminated soil by thermal and chemical analyses.

    Science.gov (United States)

    Kumpiene, Jurate; Robinson, Ryan; Brännvall, Evelina; Nordmark, Désirée; Bjurström, Henrik; Andreas, Lale; Lagerkvist, Anders; Ecke, Holger

    2011-01-01

    Carbon in waste can occur as inorganic (IC), organic (OC) and elemental carbon (EC) each having distinct chemical properties and possible environmental effects. In this study, carbon speciation was performed using thermogravimetric analysis (TGA), chemical degradation tests and the standard total organic carbon (TOC) measurement procedures in three types of waste materials (bottom ash, residual waste and contaminated soil). Over 50% of the total carbon (TC) in all studied materials (72% in ash and residual waste, and 59% in soil) was biologically non-reactive or EC as determined by thermogravimetric analyses. The speciation of TOC by chemical degradation also showed a presence of a non-degradable C fraction in all materials (60% of TOC in ash, 30% in residual waste and 13% in soil), though in smaller amounts than those determined by TGA. In principle, chemical degradation method can give an indication of the presence of potentially inert C in various waste materials, while TGA is a more precise technique for C speciation, given that waste-specific method adjustments are made. The standard TOC measurement yields exaggerated estimates of organic carbon and may therefore overestimate the potential environmental impacts (e.g. landfill gas generation) of waste materials in a landfill environment. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Chemical-assisted phytoremediation of CD-PAHs contaminated soils using Solanum nigrum L.

    Science.gov (United States)

    Yang, Chuanjie; Zhou, Qixing; Wei, Shuhe; Hu, Yahu; Bao, Yanyu

    2011-09-01

    A well-characterized cadmium (Cd) hyperaccumulating plant Solanum nigrum was grown in Cd and polycyclic aromatic hydrocarbons (PAHs) co-contaminated soil that was repeatedly amended with chemicals, including EDTA, cysteine (CY), salicylic acid (Sa), and Tween 80 (TW80), to test individual and combined treatment effects on phytoremediation of Cd-PAHs contaminated soils. Plant growth was negatively affected by exogenous chemicals except for EDTA. S. nigrum could accumulate Cd in tissues without assistant chemicals, while there was no visible effect on the degradation of PAHs. Cysteine had significant effects on phytoextraction of Cd and the highest metal extraction ratio (1.27%) was observed in 0.9 mmol/kg CY treatment. Both salicylic acid and Tween 80 had stimulative effects on the degradation of PAHs and there was the maximal degradation rate (52.6%) of total PAHs while 0.9 mmol/kg Sa was applied. Furthermore, the combined treatment T(0.1EDTA+0.9CY+0.5TW80) and T(0.5EDTA+0.9CY+03Sa) could not only increase the accumulation of Cd in plant tissues, but also promote the degradation of PAHs. These results indicated that S. nigrum might be effective in phytoextracting Cd and enhancing the biodegradation of PAHs in the co-contaminated soils with assistant chemicals.

  2. MICHIGAN SOIL VAPOR EXTRACTION REMEDIATION (MISER) MODEL: A COMPUTER PROGRAM TO MODEL SOIL VAPOR EXTRACTION AND BIOVENTING OF ORGANIC CHEMICALS IN UNSATURATED GEOLOGICAL MATERIAL

    Science.gov (United States)

    Soil vapor extraction (SVE) and bioventing (BV) are proven strategies for remediation of unsaturated zone soils. Mathematical models are powerful tools that can be used to integrate and quantify the interaction of physical, chemical, and biological processes occurring in field sc...

  3. Soil chemical factors and grassland species density in Emas National Park (central Brazil).

    Science.gov (United States)

    Amorim, P K; Batalha, M A

    2008-05-01

    Studies of grasslands on specific soil types suggest that different nutrients can limit biomass production and, hence, species composition and number. The Brazilian cerrado is the major savanna region in America and once covered about 2 million km(2), mainly in the Brazilian Central Plateau, under seasonal climate, with wet summer and dry winter. In view of the importance of soil chemical factors in the distribution of the vegetation forms within the Cerrado domain and which may influence the number of species, we analyzed some soil characteristics in three herbaceous vegetation forms -- hyperseasonal cerrado, seasonal cerrado, and wet grassland -- in Emas National Park, a core cerrado site, to investigate the relationship between number of species and soil characteristics. We collected vegetation and soil samples in these three vegetation forms and submitted the obtained data to multiple linear regression. We found out that aluminum and pH were the best predictors of species density, the former positively related to species density and the latter negatively related. Since the predictable variation in species density is important in determining areas of conservation, we can postulate that these two soil factors are indicators of high species density areas in tropical grasslands, which could be used in selecting priority sites for conservation.

  4. Impact of vetch cover crop on runoff, soil loss, soil chemical properties and yield of chickpea in North Gondar, Ethiopia

    Science.gov (United States)

    Demelash, Nigus; Klik, Andreas; Holzmann, Hubert; Ziadat, Feras; Strohmeier, Stefan; Bayu, Wondimu; Zucca, Claudio; Abera, Atikilt

    2016-04-01

    Cover crops improve the sustainability and quality of both natural system and agro ecosystem. In Gumara-Maksegnit watershed which is located in Lake Tana basin, farmers usually use fallow during the rainy season for the preceding chickpea production system. The fallowing period can lead to soil erosion and nutrient losses. A field experiment was conducted during growing seasons 2014 and 2015 to evaluate the effect of cover crops on runoff, soil loss, soil chemical properties and yield of chickpea in North Gondar, Ethiopia. The plot experiment contained four treatments arranged in Randomized Complete Block Design with three replications: 1) Control plot (Farmers' practice: fallowing- without cover crop), 2) Chickpea planted with Di-ammonium phosphate (DAP) fertilizer with 46 k ha-1 P2O5 and 23 k ha-1 nitrogen after harvesting vetch cover crop, 3) Chick pea planted with vetch cover crop incorporated with the soil as green manure without fertilizer, 4) Chick pea planted with vetch cover crop and incorporated with the soil as green manure and with 23 k ha-1 P2O5 and 12.5 k ha-1 nitrogen. Each plot with an area of 36 m² was equipped with a runoff monitoring system. Vetch (Vicia sativa L.) was planted as cover crop at the onset of the rain in June and used as green manure. The results of the experiment showed statistically significant (P plant, above ground biomass and grain yield of chick pea. However, there was no statistically significant difference (P > 0.05) on average plant height, average number of branches and hundred seed weight. Similarly, the results indicated that cover crop has a clear impact on runoff volume and sediment loss. Plots with vetch cover crop reduce the average runoff by 65% and the average soil loss decreased from 15.7 in the bare land plot to 8.6 t ha-1 with plots covered by vetch. In general, this result reveales that the cover crops, especially vetch, can be used to improve chickpea grain yield in addition to reduce soil erosion in the

  5. Effect of thermal pre-treatment on the availability of PAHs for successive chemical oxidation in contaminated soils.

    Science.gov (United States)

    Usman, M; Chaudhary, A; Biache, C; Faure, P; Hanna, K

    2016-01-01

    This is the premier study designed to evaluate the impact of thermal pre-treatment on the availability of polycyclic aromatic hydrocarbons (PAHs) for successive removal by chemical oxidation. Experiments were conducted in two soils having different PAH distribution originating from former coking plant sites (Homécourt, H, and Neuves Maisons, NM) located in northeast of France. Soil samples were pre-heated at 60, 100, and 150 °C for 1 week under inert atmosphere (N2). Pre-heating resulted in slight removal of PAHs (soil samples were subjected to Fenton-like oxidation (H2O2 and magnetite) at room temperature. Chemical oxidation in soil without any pre-treatment showed almost no PAH degradation underscoring the unavailability of PAHs. However, chemical oxidation in pre-heated soils showed significant PAH degradation (19, 29, and 43% in NM soil and 31, 36, and 47% in H soil pre-treated at 60, 100, and 150 °C, respectively). No preferential removal of PAHs was observed after chemical oxidation in both soils. These results indicated the significant impact of pre-heating temperature on the availability of PAHs in contaminated soils and therefore may have strong implications in the remediation of contaminated soils especially where pollutant availability is a limiting factor.

  6. Impact of organic carbon and nutrients mobilized during chemical oxidation on subsequent bioremediation of a diesel-contaminated soil.

    Science.gov (United States)

    Sutton, Nora B; Grotenhuis, Tim; Rijnaarts, Huub H M

    2014-02-01

    Remediation with in situ chemical oxidation (ISCO) impacts soil organic matter (SOM) and the microbial community, with deleterious effects on the latter being a major hurdle to coupling ISCO with in situ bioremediation (ISB). We investigate treatment of a diesel-contaminated soil with Fenton's reagent and modified Fenton's reagent coupled with a subsequent bioremediation phase of 187d, both with and without nutrient amendment. Chemical oxidation mobilized SOM into the liquid phase, producing dissolved organic carbon (DOC) concentrations 8-16 times higher than the untreated field sample. Higher aqueous concentrations of nitrogen and phosphorous species were also observed following oxidation; NH4(+) increased 14-172 times. During the bioremediation phase, dissolved carbon and nutrient species were utilized for microbial growth-yielding DOC concentrations similar to field sample levels within 56d of incubation. In the absence of nutrient amendment, the highest microbial respiration rates were correlated with higher availability of nitrogen and phosphorus species mobilized by oxidation. Significant diesel degradation was only observed following nutrient amendment, implying that nutrients mobilized by chemical oxidation can increase microbial activity but are insufficient for bioremediation. While all bioremediation occurred in the first 28d of incubation in the biotic control microcosm with nutrient amendment, biodegradation continued throughout 187d of incubation following chemical oxidation, suggesting that chemical treatment also affects the desorption of organic contaminants from SOM. Overall, results indicate that biodegradation of DOC, as an alternative substrate to diesel, and biological utilization of mobilized nutrients have implications for the success of coupled ISCO and ISB treatments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Chemical Speciation and Quantitative Evaluation of Heavy Metal Pollution Hazards in Two Army Shooting Range Backstop Soils.

    Science.gov (United States)

    Islam, Mohammad Nazrul; Nguyen, Xuan Phuc; Jung, Ho-Young; Park, Jeong-Hun

    2016-02-01

    The chemical speciation and ecological risk assessment of heavy metals in two shooting range backstop soils in Korea were studied. Both soils were highly contaminated with Cd, Cu, Pb, and Sb. The chemical speciation of heavy metals reflected the present status of contamination, which could help in promoting management practices. We-rye soil had a higher proportion of exchangeable and carbonate bound metals and water-extractable Cd and Sb than the Cho-do soil. Bioavailable Pb represented 42 % of the total Pb content in both soils. A significant amount of Sb was found in the two most bioavailable fractions, amounting to ~32 % in the soil samples, in good agreement with the batch leaching test using water. Based on the values of ecological risk indices, both soils showed extremely high potential risk and may represent serious environmental problems.

  8. Approximate method for stochastic chemical kinetics with two-time scales by chemical Langevin equations

    International Nuclear Information System (INIS)

    Wu, Fuke; Tian, Tianhai; Rawlings, James B.; Yin, George

    2016-01-01

    The frequently used reduction technique is based on the chemical master equation for stochastic chemical kinetics with two-time scales, which yields the modified stochastic simulation algorithm (SSA). For the chemical reaction processes involving a large number of molecular species and reactions, the collection of slow reactions may still include a large number of molecular species and reactions. Consequently, the SSA is still computationally expensive. Because the chemical Langevin equations (CLEs) can effectively work for a large number of molecular species and reactions, this paper develops a reduction method based on the CLE by the stochastic averaging principle developed in the work of Khasminskii and Yin [SIAM J. Appl. Math. 56, 1766–1793 (1996); ibid. 56, 1794–1819 (1996)] to average out the fast-reacting variables. This reduction method leads to a limit averaging system, which is an approximation of the slow reactions. Because in the stochastic chemical kinetics, the CLE is seen as the approximation of the SSA, the limit averaging system can be treated as the approximation of the slow reactions. As an application, we examine the reduction of computation complexity for the gene regulatory networks with two-time scales driven by intrinsic noise. For linear and nonlinear protein production functions, the simulations show that the sample average (expectation) of the limit averaging system is close to that of the slow-reaction process based on the SSA. It demonstrates that the limit averaging system is an efficient approximation of the slow-reaction process in the sense of the weak convergence.

  9. PHYSICAL AND CHEMICAL PROPERTIES IN RELATION WITH SOIL PERMEABILITY IN THE AREA OF VELIKA GORICA WELL FIELD

    Directory of Open Access Journals (Sweden)

    Zoran Kovač

    2018-01-01

    Full Text Available Hydraulic parameters affects behaviour of various ions in soils. The goal of this paper was to get better understanding of relationship between physical and chemical properties and soil permeability at the location of case study profile Velika Gorica, based on the physical and chemical data. Soil profile is situated in the Eutric Cambisol of the Zagreb aquifer, Croatia. Zagreb aquifer represents the only source of potable water for inhabitants of the City of Zagreb and Zagreb County. Based on the data obtained from particle size analysis, soil hydraulic parameters and measured water content, unsaturated hydraulic conductivity values were calculated for the estimation of soil profile permeability. Soil water retention curves and unsaturated hydraulic conductivities are very similar for all depths because soil content does not change significantly through the depth. Determination of anions and cations on soil samples was performed using the method of ion chromatography. Results showed decrease of ions concentrations after 0.6 m depth. SAR distribution in the soil profile shows that SAR values are not significantly changing at the soil profile. The highest CEC and EC values are determined in horizon Bw developed in 0.6 m depth which is consistent with highest SAR value and ions concentrations. All results suggest that physical and chemical properties of investigated profile are in relationship with soil permeability.

  10. Chemical stabilisation of lead in shooting range soils with phosphate and magnesium oxide: Synchrotron investigation

    International Nuclear Information System (INIS)

    Sanderson, Peter; Naidu, Ravi; Bolan, Nanthi; Lim, Jung Eun; Ok, Yong Sik

    2015-01-01

    Highlights: • Quantitative speciation of Pb by XAS as a result of Phosphate and MgO treatment revealed Pb converted to pyromorphite was limited. • Subsequent MgO addition increased pyromorphite formation. • Pb was precipitated on the surface of MgO as PbO. • Bioaccessibility of Pb decreased with P treatments, but not with MgO only. - Abstract: Three Australian shooting range soils were treated with phosphate and magnesium oxide, or a combination of both to chemically stabilize Pb. Lead speciation was determined after 1 month ageing by X-ray absorption spectroscopy combined with linear combination fitting in control and treated soils. The predominant Pb species in untreated soils were iron oxide bound Pb, humic acid bound Pb and the mineral litharge. Treatment with phosphate resulted in substantial pyromorphite formation in two of the soils (TV and PE), accounting for up to 38% of Pb species present, despite the addition of excess phosphate. In MgO treated soils only, up to 43% of Pb was associated with MgO. Litharge and Pb hydroxide also formed as a result of MgO addition in the soils. Application of MgO after P treatment increased hydroxypyromorphite/pyromorphite formation relative to soils teated with phosphate only. X-ray diffraction and Scanning electron microscopy revealed PbO precipitate on the surface of MgO. Soil pH, (5.3–9.3) was an important parameter, as was the solubility of existing Pb species. The use of direct means of determination of the stabilisation of metals such as by X-ray absorption spectroscopy is desirable, particularly in relation to understanding long term stability of the immobilised contaminants.

  11. Chemical stabilisation of lead in shooting range soils with phosphate and magnesium oxide: Synchrotron investigation

    Energy Technology Data Exchange (ETDEWEB)

    Sanderson, Peter [Centre for Environmental Risk Assessment and Remediation and CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), University of South Australia, University Parade, 5095 Mawson Lakes (Australia); Naidu, Ravi, E-mail: ravi.naidu@crccare.com [Centre for Environmental Risk Assessment and Remediation and CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), University of South Australia, University Parade, 5095 Mawson Lakes (Australia); Bolan, Nanthi [Centre for Environmental Risk Assessment and Remediation and CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), University of South Australia, University Parade, 5095 Mawson Lakes (Australia); Lim, Jung Eun; Ok, Yong Sik [Korea Biochar Research Center & Department of Biological Environment, Kangwon National University, Chuncheon 200-701 (Korea, Republic of)

    2015-12-15

    Highlights: • Quantitative speciation of Pb by XAS as a result of Phosphate and MgO treatment revealed Pb converted to pyromorphite was limited. • Subsequent MgO addition increased pyromorphite formation. • Pb was precipitated on the surface of MgO as PbO. • Bioaccessibility of Pb decreased with P treatments, but not with MgO only. - Abstract: Three Australian shooting range soils were treated with phosphate and magnesium oxide, or a combination of both to chemically stabilize Pb. Lead speciation was determined after 1 month ageing by X-ray absorption spectroscopy combined with linear combination fitting in control and treated soils. The predominant Pb species in untreated soils were iron oxide bound Pb, humic acid bound Pb and the mineral litharge. Treatment with phosphate resulted in substantial pyromorphite formation in two of the soils (TV and PE), accounting for up to 38% of Pb species present, despite the addition of excess phosphate. In MgO treated soils only, up to 43% of Pb was associated with MgO. Litharge and Pb hydroxide also formed as a result of MgO addition in the soils. Application of MgO after P treatment increased hydroxypyromorphite/pyromorphite formation relative to soils teated with phosphate only. X-ray diffraction and Scanning electron microscopy revealed PbO precipitate on the surface of MgO. Soil pH, (5.3–9.3) was an important parameter, as was the solubility of existing Pb species. The use of direct means of determination of the stabilisation of metals such as by X-ray absorption spectroscopy is desirable, particularly in relation to understanding long term stability of the immobilised contaminants.

  12. Influence of agricultural management on chemical quality of a clay soil of semi-arid Morocco

    Science.gov (United States)

    Ibno Namr, Khalid; Mrabet, Rachid

    2004-06-01

    Morocco's semi-arid lands are characterized by unique challenges. The most important obstacles to the development of durable agriculture are (1) limited and unpredictable supply of soil moisture and (2) low soil quality. Intensive use of soil throughout history has led to depletion in soil quality, leading in return to reduced yields because of the consequent reduced organic matter. Recognizing the need to recover soil quality and production decline, INRA scientists began, in the early 1980s, research on the effects of crop rotations, tillage and residue management on the productivity and quality of cropped soils. The present study concerns the short-term effect of rotation, tillage and residue management on selected quality indices of a calcixeroll (organic matter, nitrogen, particulate organic carbon (Cpom), particulate organic nitrogen (Npom) and pH). Hence, three rotations (wheat-wheat, WW; fallow-wheat, FW; and fallow-wheat-barley, FWB), two tillage systems (conventional offset disking, CT and no-tillage, NT), and three levels of residue in the NT system (NT 0 = no-residue cover, NT 50 = half surface residue cover, NT 100 = full surface residue cover) were selected. Three surface horizons were sampled (0-2.5, 2.5-7 and 7-20 cm). The study results showed an improvement of measured soil chemical properties under NT compared to CT, at the surface layer. No-tillage system helped sequestration of carbon and nitrogen, build-up of particulate organic carbon and nitrogen and sensible reduction of pH only at the surface layer. Continuous wheat permitted a slight improvement of soil quality, mainly at the 0-2.5 cm depth. Effects of rotation, tillage and residue level were reduced with depth of measurements.

  13. Soil Physico-Bio-Chemical Properties under Poplar + Indian Mustard Inter Cropping System

    Directory of Open Access Journals (Sweden)

    Tara Bahadur Ghimire

    2015-12-01

    Full Text Available A field experiment was conducted during the winter seasons of 2008-10 at Agroforestry Research Centre, Pantnagar, India with aim to examine the effect of different levels of recommended Nitrogen (N: Phosphorus (P: Potassium (K (NPK on soil physico-bio-chemical properties under varying poplar tree densities with mustard introcropping. Lower soil bulk density was recorded under 1000 trees/ha density compared to sole crop in both the year. Soil bulk density (BD decreased underneath trees. However, soil pH, available N and K were not influenced by tree density in both the years. Electrical conductivity (EC and soil organic carbon (SOC increased underneath trees of either tree density compared to sole crop in both the years. Significantly (P<0.05 higher available P was recorded under 1000 trees/ha density compared to 250 and 500 trees/ha densities including sole crop in 2008-09. Similarly, soil microbial biomass carbon (SMBC increased with increasing the tree density and significantly (P<0.01 higher value was recorded under 1000 trees/ha density compared to sole crop and sparse density both the years except 2009-10, where 500 and 1000 trees/ha densities remain statistically at par. On the other hand, dehydrogenase activity (DA was maximum under 500 trees/ha density compared to sole crop and 1000 trees/ha density in both the years. Among the fertility levels, the maximum SOC and available N were recorded with 75% compared to 50, 100 and 125% of recommended NPK in 2008-09, except available N with 100% of recommended NPK. But, available P was more with 100% of recommended NPK in 2008-09. Similarly, maximum SMBC were recorded with 75 % compared to higher doses of recommended NPK in both the years. Similarly, BD, EC, SOC, available N, P and K were recorded maximum and soil pH minimum in 0-15 cm soil layers compared deeper layers.

  14. Permafrost conditions in peatlands regulate magnitude, timing, and chemical composition of catchment dissolved organic carbon export.

    Science.gov (United States)

    Olefeldt, David; Roulet, Nigel T

    2014-10-01

    Permafrost thaw in peatlands has the potential to alter catchment export of dissolved organic carbon (DOC) and thus influence downstream aquatic C cycling. Subarctic peatlands are often mosaics of different peatland types, where permafrost conditions regulate the hydrological setting of each type. We show that hydrological setting is key to observed differences in magnitude, timing, and chemical composition of DOC export between permafrost and nonpermafrost peatland types, and that these differences influence the export of DOC of larger catchments even when peatlands are minor catchment components. In many aspects, DOC export from a studied peatland permafrost plateau was similar to that of a forested upland catchment. Similarities included low annual export (2-3 g C m(-2) ) dominated by the snow melt period (~70%), and how substantial DOC export following storms required wet antecedent conditions. Conversely, nonpermafrost fens had higher DOC export (7 g C m(-2) ), resulting from sustained hydrological connectivity during summer. Chemical composition of catchment DOC export arose from the mixing of highly aromatic DOC from organic soils from permafrost plateau soil water and upland forest surface horizons with nonaromatic DOC from mineral soil groundwater, but was further modulated by fens. Increasing aromaticity from fen inflow to outlet was substantial and depended on both water residence time and water temperature. The role of fens as catchment biogeochemical hotspots was further emphasized by their capacity for sulfate retention. As a result of fen characteristics, a 4% fen cover in a mixed catchment was responsible for 34% higher DOC export, 50% higher DOC concentrations and ~10% higher DOC aromaticity at the catchment outlet during summer compared to a nonpeatland upland catchment. Expansion of fens due to thaw thus has potential to influence landscape C cycling by increasing fen capacity to act as biogeochemical hotspots, amplifying aquatic C cycling, and

  15. Evaluation of Integrated Time-Temperature Effect in Pyrolysis Process of Historically Contaminated Soils with Cadmium (Cd and Lead (Pb

    Directory of Open Access Journals (Sweden)

    Bulmău C

    2013-04-01

    Full Text Available It is already known that heavy metals pollution causes important concern to human and ecosystem health. Heavy metals in soils at the European level represents 37.3% between main contaminates affecting soils (EEA, 2007. This paper illustrates results obtained in the framework of laboratory experiments concerning the evaluation of integrated time-temperature effect in pyrolysis process applied to contaminated soil by two different ways: it is about heavy metals historically contaminated soil from one of the most polluted areas within Romania, and artificially contaminated with PCB-containing transformer oil. In particular, the authors focused on a recent evaluation of pyrolysis efficiency on removing lead (Pb and cadmium (Cd from the contaminated soil. The experimental study evaluated two important parameters related to the studied remediation methodology: thermal process temperature and the retention time in reactor of the contaminated soils. The remediation treatments were performed in a rotary kiln reactor, taking into account three process temperatures (400°C, 600°C and 800°C and two retention times: 30 min. and 60 min. Completed analyses have focused on pyrolysis solids and gas products. Consequently, both ash and gas obtained after pyrolysis process were subjected to chemical analyses.

  16. Bio solids Application on Banana Production: Soil Chemical Properties and Plant Nutrition

    International Nuclear Information System (INIS)

    Teixeira, L.A.J; Berton, R.S.B; Coscione, A.R; Saes, L.A

    2011-01-01

    Bio solids are relatively rich in N, P, and S and could be used to substitute mineral fertilization for banana crop. A field experiment was carried out in a Yellow Oxisol to investigate the effects of bio solids application on soil chemical properties and on banana leaf's nutrient concentration during the first cropping cycle. Soil analysis (ph, organic matter, resin P, exchangeable Ca and K, available B, DTPA-extracted micro nutrients, and heavy metals) and index-leaf analysis (B, Cu, Fe, Mn, Zn, Cd, Cr, Ni, and Pb) were evaluated. Bio solids can completely substitute mineral N and P fertilizer to banana growth. Soil exchangeable K and leaf-K concentration must be monitored in order to avoid K deficiency in banana plants. No risk of heavy metal (Cr, Ni, Pb, and Cd) concentration increase in the index leaf was observed when bio solids were applied at the recommended N rate.

  17. The Use of Phosphate Amendments for Chemical Immobilization of Uranium in Contaminated Soil.

    Science.gov (United States)

    Baker, M.; Coutelot, F.; Seaman, J. C.

    2017-12-01

    Past Department of Energy (DOE) production of nuclear materials has resulted in uranium (U) contaminated soil and groundwater posing a significant risk to the environment and human health. In situ remediation strategies are typically less expensive and rely on the introduction of chemical additives in order to reduce contaminant migration and ultimately the associated exposure hazard. Phosphate addition to U-contaminated subsurface environments has been proposed as a U remediation strategy. Saturated and unsaturated batch experiments were performed to investigate the ability of three different phosphate source treatments: hydroxyapatite (HA), phytic acid (IP6) and sodium tripolyphosphate (TPP) to chemically immobilize U in contaminated Savannah River Site (SRS) soil (2,040 mg U/kg soil). Amendment treatments ranged from 925 to 4620 mg P /kg soil. Unsaturated test samples were equilibrated for 3 weeks at 60% of the soil's field capacity, followed by pore-water extraction by centrifugation to provide an indication of the remaining mobile U fraction. Saturated batch experiments were equilibrated on an orbital shaker for 30 days under both oxic and anoxic conditions, with aliquots taken at specific intervals for chemical analysis. In the saturated microcosms, HA decreased the mobile U concentration by 98% in both redox environments and at all treatment levels. IP6 and TPP were able to decrease the soluble U concentration at low treatment levels, but tended to release U at higher treatment levels compared to the control. Unsaturated microcosms also showed HA to be the most effective treatment for immobilizing U, but IP6 and TPP were as effective as HA at the lowest treatment level. The limited contaminant immobilization following TPP and IP6 amendments correlated with the dispersion of organic matter and organo-mineral colloids. For both experiment types, TPP and IP6 samples showed a very limited ortho-phosphate (PO4-) in the solution, indicating the slow mineralization

  18. Laboratory evaluation of the in situ chemical treatment approach to soil and groundwater remediation

    International Nuclear Information System (INIS)

    Thorton, E.C.; Trader, D.E.

    1993-10-01

    Results of initial proof of principle laboratory testing activities successfully demonstrated the viability of the in situ chemical treatment approach for remediation of soil and groundwater contaminated by hexavalent chromium. Testing activities currently in progress further indicate that soils contaminated with hexavalent chromium and uranium at concentrations of several hundred parts per million can be successfully treated with 100 ppM hydrogen sulfide gas mixtures. Greater than 90% immobilization of hexavalent chromium and 50% immobilization of uranium have been achieved in these tests after a treatment period of one day. Activities associated with further development and implementation of the in situ chemical treatment approach include conducting additional bench scale tests with contaminated geomedia, and undertaking scale-up laboratory tests and a field demonstration. This report discusses the testing and further development of this process

  19. APPLICATION OF CHEMICALLY ACCELERATED BIOTREATMENT TO REDUCE RISK IN OIL-IMPACTED SOILS

    Energy Technology Data Exchange (ETDEWEB)

    J.R. Paterek; W.W. Bogan; L.M. Lahner; A. May

    2000-04-01

    The overall program objective is to develop and evaluate integrated biological/physical/chemical co-treatment strategies for the remediation of wastes associated with the exploration and production of fossil energy. The specific objectives of this project are: chemical accelerated biotreatment (CAB) technology development for enhanced site remediation, application of the risk based analyses to define and support the rationale for environmental acceptable endpoints (EAE) for exploration and production wastes, and evaluate both the technological technologies in conjugation for effective remediation of hydrocarbon contaminated soils from E&P sites in the USA.

  20. APPLICATION OF CHEMICALLY ACCELERATED BIOTREATMENT TO REDUCE RISK IN OIL-IMPACTED SOILS

    Energy Technology Data Exchange (ETDEWEB)

    J.R. Paterek; W.W. Bogan; L.M. Lahner; V. Trbovic; E. Korach

    2001-05-01

    The overall program objective is to develop and evaluate integrated biological/physical/chemical co-treatment strategies for the remediation of wastes associated with the exploration and production of fossil energy. The specific objectives of this project are: chemical accelerated biotreatment (CAB) technology development for enhanced site remediation, application of the risk based analyses to define and support the rationale for environmental acceptable endpoints (EAE) for exploration and production wastes, and evaluate both the technological technologies in conjugation for effective remediation of hydrocarbon contaminated soils from E&P sites in the USA.

  1. Development of a robotics system for automated chemical analysis of sediments, sludges, and soils

    International Nuclear Information System (INIS)

    McGrail, B.P.; Dodson, M.G.; Skorpik, J.R.; Strachan, D.M.; Barich, J.J.

    1989-01-01

    Adaptation and use of a high-reliability robot to conduct a standard laboratory procedure for soil chemical analysis are reported. Results from a blind comparative test were used to obtain a quantitative measure of the improvement in precision possible with the automated test method. Results from the automated chemical analysis procedure were compared with values obtained from an EPA-certified lab and with results from a more extensive interlaboratory round robin conducted by the EPA. For several elements, up to fivefold improvement in precision was obtained with the automated test method

  2. Chemically mediated group formation in soil-dwelling larvae and pupae of the beetle Trypoxylus dichotomus

    Science.gov (United States)

    Kojima, Wataru; Ishikawa, Yukio; Takanashi, Takuma

    2014-09-01

    Many insects form groups through interactions among individuals, and these are often mediated by chemical, acoustic, or visual cues and signals. In spite of the diversity of soil-dwelling insects, their aggregation behaviour has not been examined as extensively as that of aboveground species. We investigated the aggregation mechanisms of larvae of the Japanese rhinoceros beetle Trypoxylus dichotomus, which live in groups in humus soil. In two-choice laboratory tests, 2nd- and 3rd-instar larvae gathered at conspecific larvae irrespective of the kinship. The ablation of maxillae, which bear chemosensilla, abolished aggregation behaviour. Intact larvae also exhibited aggregation behaviour towards a larval homogenate. These results suggest that larval aggregation is mediated by chemical cues. We also demonstrated that the mature larvae of T. dichotomus built their pupal cells close to a mesh bag containing a conspecific pupal cell, which indicated that larvae utilize chemical cues emanating from these cells to select the pupation site. Thus, the larvae of T. dichotomus may use chemical cues from the conspecifics in two different contexts, i.e. larval aggregation and pupation site selection. Using conspecific cues, larvae may be able to choose suitable locations for foraging or building pupal cells. The results of the present study highlight the importance of chemical information in belowground ecology.

  3. Effect of byproducts of flue gas desulfurization on the soluble salts composition and chemical properties of sodic soils.

    Directory of Open Access Journals (Sweden)

    Jinman Wang

    Full Text Available The byproducts of flue gas desulfurization (BFGD are a useful external source of Ca(2+ for the reclamation of sodic soils because they are comparatively cheap, generally available and have high gypsum content. The ion solution composition of sodic soils also plays an important role in the reclamation process. The effect of BFGD on the soluble salts composition and chemical properties of sodic soils were studied in a soil column experiment. The experiment consisted of four treatments using two different sodic soils (sodic soil I and sodic soil II and two BFGD rates. After the application of BFGD and leaching, the soil soluble salts were transformed from sodic salts containing Na2CO3 and NaHCO3 to neutral salts containing NaCl and Na2SO4. The sodium adsorption ratio (SAR, pH and electrical conductivity (EC decreased at all soil depths, and more significantly in the top soil depth. At a depth of 0-40 cm in both sodic soil I and sodic soil II, the SAR, EC and pH were less than 13, 4 dS m(-1 and 8.5, respectively. The changes in the chemical properties of the sodic soils reflected the changes in the ion composition of soluble salts. Leaching played a key role in the reclamation process and the reclamation effect was positively associated with the amount of leaching. The soil salts did not accumulate in the top soil layer, but there was a slight increase in the middle and bottom soil depths. The results demonstrate that the reclamation of sodic soils using BFGD is promising.

  4. Chemical and microbiological characterization of an aged PCB-contaminated soil.

    Science.gov (United States)

    Stella, T; Covino, S; Burianová, E; Filipová, A; Křesinová, Z; Voříšková, J; Větrovský, T; Baldrian, P; Cajthaml, T

    2015-11-15

    This study was aimed at complex characterization of three soil samples (bulk soil, topsoil and rhizosphere soil) from a site historically contaminated with polychlorinated biphenyls (PCB). The bulk soil was the most highly contaminated, with a PCB concentration of 705.95 mg kg(-1), while the rhizosphere soil was the least contaminated (169.36 mg kg(-1)). PCB degradation intermediates, namely chlorobenzoic acids (CBAs), were detected in all the soil samples, suggesting the occurrence of microbial transformation processes over time. The higher content of organic carbon in the topsoil and rhizosphere soil than in the bulk soil could be linked to the reduced bioaccessibility (bioavailability) of these chlorinated pollutants. However, different proportions of the PCB congener contents and different bioaccessibility of the PCB homologues indicate microbial biotransformation of the compounds. The higher content of organic carbon probably also promoted the growth of microorganisms, as revealed by phospholipid fatty acid (PFLA) quantification. Tag-encoded pyrosequencing analysis showed that the bacterial community structure was significantly similar among the three soils and was predominated by Proteobacteria (44-48%) in all cases. Moreover, analysis at lower taxonomic levels pointed to the presence of genera (Sphingomonas, Bulkholderia, Arthrobacter, Bacillus) including members with reported PCB removal abilities. The fungal community was mostly represented by Basidiomycota and Ascomycota, which accounted for >80% of all the sequences detected in the three soils. Fungal taxa with biodegradation potential (Paxillus, Cryptococcus, Phoma, Mortierella) were also found. These results highlight the potential of the indigenous consortia present at the site as a starting point for PCB bioremediation processes. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Physico-chemical properties and fertility status of water eroded soils of Sharkul area of district Mansehra, Pakistan

    Directory of Open Access Journals (Sweden)

    Farmanullah Khan, A. Iqbal

    2011-11-01

    Full Text Available Soil degradation is the major threat to agricultural sustainability because it affects the soil productivity. Present study was conducted in 2008 to evaluate physico-chemical properties and fertility status of some eroded soil series of Sharkul area district Manshera, Hazara division, Khyber Pakhtunkhwa, Pakistan. Six soil series including slightly eroded (Dosera and Girari, moderately eroded (Nakholi and Sharkul and severely eroded (Ahl and Banser were selected. Soil samples were collected from surface (0-15 cm, subsurface (30-45 cm and substrata soil (60-75cm depths and were analyzed for various soil properties. Due to severity of erosion, bulk density increased, while total porosity, saturation percentage and organic matter decreased significantly. AB-DTPA extractable P, K, Fe, Cu, Zn, and Mn concentrations were decreased due to the severity of erosion in surface and sub surface soils, whereas in the substrata soils (60-75 cm depth, the effect of erosion was almost non significant. Sub-surface and sub-strata soils were found deficient in available P ( Zn > Fe > Mn. The physical and chemical properties of eroded soils varied significantly and the increasing severity of erosion resulted in corresponding deterioration of soil quality.

  6. Influence of soil pH on the sorption of ionizable chemicals: modeling advances.

    Science.gov (United States)

    Franco, Antonio; Fu, Wenjing; Trapp, Stefan

    2009-03-01

    The soil-water distribution coefficient of ionizable chemicals (K(d)) depends on the soil acidity, mainly because the pH governs speciation. Using pH-specific K(d) values normalized to organic carbon (K(OC)) from the literature, a method was developed to estimate the K(OC) of monovalent organic acids and bases. The regression considers pH-dependent speciation and species-specific partition coefficients, calculated from the dissociation constant (pK(a)) and the octanol-water partition coefficient of the neutral molecule (log P(n)). Probably because of the lower pH near the organic colloid-water interface, the optimal pH to model dissociation was lower than the bulk soil pH. The knowledge of the soil pH allows calculation of the fractions of neutral and ionic molecules in the system, thus improving the existing regression for acids. The same approach was not successful with bases, for which the impact of pH on the total sorption is contrasting. In fact, the shortcomings of the model assumptions affect the predictive power for acids and for bases differently. We evaluated accuracy and limitations of the regressions for their use in the environmental fate assessment of ionizable chemicals.

  7. The Effect of Soil Contamination on Chemical Composition and Quality of Aronia (Aronia melanocarpa) Fruits

    OpenAIRE

    Violina R. Angelova; Sava G. Tabakov; Aleksander B. Peltekov; Krasimir I. Ivanov

    2017-01-01

    A field study was conducted to evaluate the chemical composition and quality of the Aronia fruits, as well as the possibilities of Aronia cultivation on soils contaminated with heavy metals. The experiment was performed on an agricultural field contaminated by the Non-Ferrous-Metal Works (NFMW) near Plovdiv, Bulgaria. The study included four varieties of Aronia; Aron variety, Hugin variety, Viking variety and Nero variety. The Aronia was cultivated according to the conventional technology on ...

  8. Differential growth responses of soil bacterial taxa to carbon substrates of varying chemical recalcitrance

    Energy Technology Data Exchange (ETDEWEB)

    Goldfarb, K.C.; Karaoz, U.; Hanson, C.A.; Santee, C.A.; Bradford, M.A.; Treseder, K.K.; Wallenstein, M.D.; Brodie, E.L.

    2011-04-18

    Soils are immensely diverse microbial habitats with thousands of co-existing bacterial, archaeal, and fungal species. Across broad spatial scales, factors such as pH and soil moisture appear to determine the diversity and structure of soil bacterial communities. Within any one site however, bacterial taxon diversity is high and factors maintaining this diversity are poorly resolved. Candidate factors include organic substrate availability and chemical recalcitrance, and given that they appear to structure bacterial communities at the phylum level, we examine whether these factors might structure bacterial communities at finer levels of taxonomic resolution. Analyzing 16S rRNA gene composition of nucleotide analog-labeled DNA by PhyloChip microarrays, we compare relative growth rates on organic substrates of increasing chemical recalcitrance of >2,200 bacterial taxa across 43 divisions/phyla. Taxa that increase in relative abundance with labile organic substrates (i.e., glycine, sucrose) are numerous (>500), phylogenetically clustered, and occur predominantly in two phyla (Proteobacteria and Actinobacteria) including orders Actinomycetales, Enterobacteriales, Burkholderiales, Rhodocyclales, Alteromonadales, and Pseudomonadales. Taxa increasing in relative abundance with more chemically recalcitrant substrates (i.e., cellulose, lignin, or tannin-protein) are fewer (168) but more phylogenetically dispersed, occurring across eight phyla and including Clostridiales, Sphingomonadalaes, Desulfovibrionales. Just over 6% of detected taxa, including many Burkholderiales increase in relative abundance with both labile and chemically recalcitrant substrates. Estimates of median rRNA copy number per genome of responding taxa demonstrate that these patterns are broadly consistent with bacterial growth strategies. Taken together, these data suggest that changes in availability of intrinsically labile substrates may result in predictable shifts in soil bacterial composition.

  9. Errors in determination of soil water content using time-domain reflectometry caused by soil compaction around wave guides

    Energy Technology Data Exchange (ETDEWEB)

    Ghezzehei, T.A.

    2008-05-29

    Application of time domain reflectometry (TDR) in soil hydrology often involves the conversion of TDR-measured dielectric permittivity to water content using universal calibration equations (empirical or physically based). Deviations of soil-specific calibrations from the universal calibrations have been noted and are usually attributed to peculiar composition of soil constituents, such as high content of clay and/or organic matter. Although it is recognized that soil disturbance by TDR waveguides may have impact on measurement errors, to our knowledge, there has not been any quantification of this effect. In this paper, we introduce a method that estimates this error by combining two models: one that describes soil compaction around cylindrical objects and another that translates change in bulk density to evolution of soil water retention characteristics. Our analysis indicates that the compaction pattern depends on the mechanical properties of the soil at the time of installation. The relative error in water content measurement depends on the compaction pattern as well as the water content and water retention properties of the soil. Illustrative calculations based on measured soil mechanical and hydrologic properties from the literature indicate that the measurement errors of using a standard three-prong TDR waveguide could be up to 10%. We also show that the error scales linearly with the ratio of rod radius to the interradius spacing.

  10. Root-induced Changes in the Rhizosphere of Extreme High Yield Tropical Rice: 2. Soil Solution Chemical Properties

    Directory of Open Access Journals (Sweden)

    Mitsuru Osaki

    2012-09-01

    Full Text Available Our previous studies showed that the extreme high yield tropical rice (Padi Panjang produced 3-8 t ha-1 without fertilizers. We also found that the rice yield did not correlate with some soil properties. We thought that it may be due to ability of root in affecting soil properties in the root zone. Therefore, we studied the extent of rice root in affecting the chemical properties of soil solution surrounding the root zone. A homemade rhizobox (14x10x12 cm was used in this experiment. The rhizobox was vertically segmented 2 cm interval using nylon cloth that could be penetrated neither root nor mycorrhiza, but, soil solution was freely passing the cloth. Three soils of different origins (Kuin, Bunipah and Guntung Papuyu were used. The segment in the center was sown with 20 seeds of either Padi Panjang or IR64 rice varieties. After emerging, 10 seedlings were maintained for 5 weeks. At 4 weeks after sowing, some chemical properties of the soil solution were determined. These were ammonium (NH4+, nitrate (NO3-, phosphorus (P and iron (Fe2+ concentrations and pH, electric conductivity (EC and oxidation reduction potential (ORP. In general, the plant root changed solution chemical properties both in- and outside the soil rhizosphere. The patterns of changes were affected by the properties of soil origins. The release of exudates and change in ORP may have been responsible for the changes soil solution chemical properties.

  11. Soil water diffusivity as a function of water content and time

    International Nuclear Information System (INIS)

    Guerrini, I.A.

    1976-04-01

    The soil-water diffusivity has been studied as a function of water content and time. From the idea of studying the horizontal movement of water in swelling soils, a simple formulation has been achieved which allows for the diffusivity, water content dependency and time dependency, to be estimated, not only of this kind of soil, but for any other soil as well. It was observed that the internal rearrangement of soil particles is a more important phenomenon than swelling, being responsible for time dependency. The method 2γ is utilized, which makes it possible to simultaneously determine the water content and density, point by point, in a soil column. The diffusivity data thus obtained are compared to those obtained when time dependency is not considered. Finally, a new soil parameter, α, is introduced and the values obtained agrees with the internal rearrangment assumption and time dependency for diffusivity (Author) [pt

  12. Changes in Soil Chemical Properties and Lettuce Yield Response Following Incorporation of Biochar and Cow Dung to Highly Weathered Acidic Soils

    DEFF Research Database (Denmark)

    Agyei Frimpong, Kwame; Amoakwah, Emmanuel; Osei, Benjamin A

    2016-01-01

    imposed on two highly weathered, acidic soils from the coastal savanna and tropical rainforest agroecological zones of Ghana, respectively, to elucidate their effect on yield of lettuce. The study showed that application of biochar solely or in combination with cow dung increased soil pH, total organic...... carbon, and cation exchange capacity, and temporarily increased soil respiration and microbial biomass carbon. Further, incorporation of combined application of cow dung and biochar increased lettuce yield more than sole incorporation of either amendment. The study demonstrated that corn cob biochar can...... improve soil chemical properties and lettuce yield if applied solely or in combination with cow dung....

  13. Characterization of leached phosphorus from soil, manure, and manure-amended soil by physical and chemical fractionation and diffusive gradients in thin films (DGT)

    DEFF Research Database (Denmark)

    Glæsner, Nadia Andersen; Donner, Erica; Magid, Jakob

    2012-01-01

    We are challenged to date to fully understand mechanisms controlling phosphorus (P) mobilization in soil. In this study we evaluated physical properties, chemical reactivity, and potential bioavailability of P mobilized in soil during a leaching event and examined how the amounts and properties...... with manure. Manure particles themselves were also largely retained by the soil. Combined physical (centrifugation) and chemical (molybdate reactiveness) fractionation of leached P showed that leachates in the manure treated soils were dominated by dissolved unreactive P (DUP), mainly originating from manure...... of leached P were influenced by surface application of cattle manure. Leaching experiments on manure itself, and on intact soil columns (14.1 cm inner dia., 25 cm height) before and after manure application, were carried out at an irrigation rate of 1 mm h−1 for 48 h. High concentrations of dissolved...

  14. Pilot-scale incineration of comtaminated soils from the drake chemical superfund site. Final report

    International Nuclear Information System (INIS)

    King, C.; Lee, J.W.; Waterland, L.R.

    1993-03-01

    A series of pilot-scale incineration tests were performed at the U.S. Environmental Protection Agency's (EPA's) Incineration Research Facility to evaluate the potential of incineration as an option to treat contaminated soils from the Drake Chemical Superfund site in Lock Haven, Pennsylvania. The soils at the Drake site are reported to be contaminated to varying degrees with various organic constituents and several hazardous constituent trace metals. The purpose of the test program was to evaluate the incinerability of selected site soils in terms of the destruction of contaminant organic constituents and the fate of contaminant trace metals. All tests were conducted in the rotary kiln incineration system at the IRF. Test results show that greater than 99.995 percent principal organic hazardous constituent (POHC) destruction and removal efficiencies (DRE) can be achieved at kiln exit gas temperatures of nominally 816 C (1,500 F) and 538 C (1,000 F). Complete soil decontamination of semivolatile organics was achieved; however, kiln ash levels of three volatile organic constituents remained comparable to soil levels

  15. Remediation of soils contaminated with particulate depleted uranium by multi stage chemical extraction.

    Science.gov (United States)

    Crean, Daniel E; Livens, Francis R; Sajih, Mustafa; Stennett, Martin C; Grolimund, Daniel; Borca, Camelia N; Hyatt, Neil C

    2013-12-15

    Contamination of soils with depleted uranium (DU) from munitions firing occurs in conflict zones and at test firing sites. This study reports the development of a chemical extraction methodology for remediation of soils contaminated with particulate DU. Uranium phases in soils from two sites at a UK firing range, MOD Eskmeals, were characterised by electron microscopy and sequential extraction. Uranium rich particles with characteristic spherical morphologies were observed in soils, consistent with other instances of DU munitions contamination. Batch extraction efficiencies for aqueous ammonium bicarbonate (42-50% total DU extracted), citric acid (30-42% total DU) and sulphuric acid (13-19% total DU) were evaluated. Characterisation of residues from bicarbonate-treated soils by synchrotron microfocus X-ray diffraction and X-ray absorption spectroscopy revealed partially leached U(IV)-oxide particles and some secondary uranyl-carbonate phases. Based on these data, a multi-stage extraction scheme was developed utilising leaching in ammonium bicarbonate followed by citric acid to dissolve secondary carbonate species. Site specific U extraction was improved to 68-87% total U by the application of this methodology, potentially providing a route to efficient DU decontamination using low cost, environmentally compatible reagents. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Molecular diversity of arbuscular mycorrhizal fungi in relation to soil chemical properties and heavy metal contamination

    International Nuclear Information System (INIS)

    Zarei, Mehdi; Hempel, Stefan; Wubet, Tesfaye; Schaefer, Tina; Savaghebi, Gholamreza; Jouzani, Gholamreza Salehi; Nekouei, Mojtaba Khayam; Buscot, Francois

    2010-01-01

    Abundance and diversity of arbuscular mycorrhizal fungi (AMF) associated with dominant plant species were studied along a transect from highly lead (Pb) and zinc (Zn) polluted to non-polluted soil at the Anguran open pit mine in Iran. Using an established primer set for AMF in the internal transcribed spacer (ITS) region of rDNA, nine different AMF sequence types were distinguished after phylogenetic analyses, showing remarkable differences in their distribution patterns along the transect. With decreasing Pb and Zn concentration, the number of AMF sequence types increased, however one sequence type was only found in the highly contaminated area. Multivariate statistical analysis revealed that further factors than HM soil concentration affect the AMF community at contaminated sites. Specifically, the soils' calcium carbonate equivalent and available P proved to be of importance, which illustrates that field studies on AMF distribution should also consider important environmental factors and their possible interactions. - The molecular diversity of AMF was found to be influenced by a combination of soil heavy metal and other soil chemical parameters.

  17. Chemical, Biochemical, and Microbiological Properties of Soils from Abandoned and Extensively Cultivated Olive Orchards

    Directory of Open Access Journals (Sweden)

    A. M. Palese

    2013-01-01

    Full Text Available The abandonment of olive orchards is a phenomenon of great importance triggered mainly by economic and social causes. The aim of this study was to investigate some chemical, biochemical, and microbiological properties in a soil of a southern olive grove abandoned for 25 years. In order to define the effect of the long-term land abandonment on soil properties, an adjacent olive grove managed according to extensive practices was taken as reference (essentially minimum tillage and no fertilization. Soil organic matter, total nitrogen, and pH were significantly higher in the abandoned olive grove due to the absence of tillage and the natural inputs of organic matter at high C/N ratio which, inter alia, increased the number of cellulolytic bacteria and stimulated the activity of β-glucosidase, an indicator of a more advanced stage of soil evolution. The soil of the abandoned olive orchard showed a lower number of total bacteria and fungi and a lower microbial diversity, measured by means of the Biolog method, as a result of a sort of specialization trend towards low quality organic substrates. From this point of view, the extensive cultivation management seemed to not induce a disturbance to microbiological communities.

  18. Chemical, Biochemical, and Microbiological Properties of Soils from Abandoned and Extensively Cultivated Olive Orchards

    Science.gov (United States)

    Palese, A. M.; Magno, R.; Casacchia, T.; Curci, M.; Baronti, S.; Miglietta, F.; Crecchio, C.; Xiloyannis, C.; Sofo, A.

    2013-01-01

    The abandonment of olive orchards is a phenomenon of great importance triggered mainly by economic and social causes. The aim of this study was to investigate some chemical, biochemical, and microbiological properties in a soil of a southern olive grove abandoned for 25 years. In order to define the effect of the long-term land abandonment on soil properties, an adjacent olive grove managed according to extensive practices was taken as reference (essentially minimum tillage and no fertilization). Soil organic matter, total nitrogen, and pH were significantly higher in the abandoned olive grove due to the absence of tillage and the natural inputs of organic matter at high C/N ratio which, inter alia, increased the number of cellulolytic bacteria and stimulated the activity of β-glucosidase, an indicator of a more advanced stage of soil evolution. The soil of the abandoned olive orchard showed a lower number of total bacteria and fungi and a lower microbial diversity, measured by means of the Biolog method, as a result of a sort of specialization trend towards low quality organic substrates. From this point of view, the extensive cultivation management seemed to not induce a disturbance to microbiological communities. PMID:24348166

  19. The status of soil contamination by semivolatile organic chemicals (SVOCs) in China: A review

    Energy Technology Data Exchange (ETDEWEB)

    Cai Quanying [College of Resources and Environment, South China Agricultural University, Guangzhou 510642 (China)], E-mail: cai_quanying@yahoo.com; Mo Cehui [Department of Environmental Engineering, Jinan University, Guangzhou 510632 (China)], E-mail: tchmo@jnu.edu.cn; Wu Qitang [College of Resources and Environment, South China Agricultural University, Guangzhou 510642 (China); Katsoyiannis, Athanasios [European Commission, Joint Research Centre, Institute for Health and Consumer Protection (IHCP), Physical and Chemical Exposure Unit, Ispra (Vatican City State, Holy See,), TP-281, Via E. Fermi 1, I-21020 (Italy)], E-mail: athanasios.katsogiannis@jrc.it; Zeng Qiaoyun [College of Resources and Environment, South China Agricultural University, Guangzhou 510642 (China)

    2008-01-25

    This paper summarizes the published scientific data on the soil contamination by semivolatile organic chemicals (SVOCs) in China. Data has been found for more than 150 organic compounds which were grouped into six classes, namely, polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), polycyclic aromatic hydrocarbons (PAHs), polybrominated diphenyl ethers (PBDEs) and phthalic acid esters (PAEs). An overview of data collected from the literature is presented in this paper. The Chinese regulation and/or other maximum acceptable values for SVOCs were used for the characterization of soils. In general, the compounds that are mostly studied in Chinese soils are OCPs, PAHs and PCBs. According to the studies reviewed here, the most abundant compounds were PAEs and PAHs (up to 46 and 28 mg kg{sup -1} dry weight, respectively); PCBs and OCPs occurred generally at concentrations lower than 100 {mu}g kg{sup -1} dry weight. Nevertheless, quite high concentrations of PCDD/Fs, PCBs and PBDEs were observed in contaminated sites (e.g., the sites affected by electronic waste activities). The average concentrations of PAHs and OCPs in soils of North China were higher than those in South China. The principal component analysis demonstrated different distribution patterns for PAH, PCB and PCDD/F congeners and for the various sites/regions examined. The isomer ratios of DDTs and hexachlorocyclohexanes (HCHs) indicated different sources and residue levels in soils. Finally, this review has highlighted several areas where further research is considered necessary.

  20. Molecular diversity of arbuscular mycorrhizal fungi in relation to soil chemical properties and heavy metal contamination

    Energy Technology Data Exchange (ETDEWEB)

    Zarei, Mehdi [Department of Soil Science, College of Agriculture, University of Shiraz, Shiraz (Iran, Islamic Republic of); Hempel, Stefan, E-mail: hempel.stefan@googlemail.co [UFZ Helmholtz Centre for Environmental Research Leipzig-Halle, Department of Soil Ecology, Theodor-Lieser-Strasse 4, 06120 Halle (Germany); Freie Universitaet Berlin, Institut fuer Biologie, Okologie der Pflanzen, Altensteinstrasse 6, 14195 Berlin (Germany); Wubet, Tesfaye; Schaefer, Tina [UFZ Helmholtz Centre for Environmental Research Leipzig-Halle, Department of Soil Ecology, Theodor-Lieser-Strasse 4, 06120 Halle (Germany); Savaghebi, Gholamreza [Department of Soil Science Engineering, University College of Agriculture and Natural Resources, University of Tehran, Karaj (Iran, Islamic Republic of); Jouzani, Gholamreza Salehi; Nekouei, Mojtaba Khayam [Agricultural Biotechnology Research Institute of Iran (ABRII), P.O. Box 31535-1897, Karaj (Iran, Islamic Republic of); Buscot, Francois [UFZ Helmholtz Centre for Environmental Research Leipzig-Halle, Department of Soil Ecology, Theodor-Lieser-Strasse 4, 06120 Halle (Germany)

    2010-08-15

    Abundance and diversity of arbuscular mycorrhizal fungi (AMF) associated with dominant plant species were studied along a transect from highly lead (Pb) and zinc (Zn) polluted to non-polluted soil at the Anguran open pit mine in Iran. Using an established primer set for AMF in the internal transcribed spacer (ITS) region of rDNA, nine different AMF sequence types were distinguished after phylogenetic analyses, showing remarkable differences in their distribution patterns along the transect. With decreasing Pb and Zn concentration, the number of AMF sequence types increased, however one sequence type was only found in the highly contaminated area. Multivariate statistical analysis revealed that further factors than HM soil concentration affect the AMF community at contaminated sites. Specifically, the soils' calcium carbonate equivalent and available P proved to be of importance, which illustrates that field studies on AMF distribution should also consider important environmental factors and their possible interactions. - The molecular diversity of AMF was found to be influenced by a combination of soil heavy metal and other soil chemical parameters.

  1. Potassium fertilization for pineapple: effects on soil chemical properties and plant nutrition

    Directory of Open Access Journals (Sweden)

    Luiz Antonio Junqueira Teixeira

    2011-06-01

    Full Text Available A field experiment was carried out on an Ultisol located at the city of Agudos (22º30'S; 49º03'W, in the state of São Paulo, Brazil, in order to determine the effects of rates and sources of potassium fertilizer on nutritional status of 'Smooth Cayenne' pineapple and on some soil chemical properties. The experiment was a complete factorial design with four rates (0, 175, 350, and 700 kg ha-1 of K2O and three combinations of K sources (100% KCl, 100% K2SO4 and 40% K2SO4 + 60% KCl. Soil samples were taken from the depths 0-20 cm, 20-40 cm and 40-60 cm at planting and 14 months after. Nutritional status of pineapple plants was assessed by means of tissue analysis. Soil K availability increased with application of K fertilizer, regardless of K sources. Soil chlorine and Cl concentration in pineapple leaves increased with application of KCl or K2SO4+KCl. Plant uptake of potassium was shaped by soil K availability and by the application rates of K fertilizer, independently of K sources.

  2. Physical-chemical effects of irrigation with treated wastewater on Dusky Red Latosol soil

    Directory of Open Access Journals (Sweden)

    Vanessa Ribeiro Urbano

    2015-11-01

    Full Text Available The current water crisis underlines the importance of improving water management. The use of effluent from secondary treatment in agriculture can reduce the discharge of effluent into natural bodies and provide nutrients to crops. This study evaluated the physical and chemical properties of a Dusky Red Latosol soil that had been irrigated with treated wastewater. Conducted at the Center of Agricultural Sciences (CCA of Federal University of São Carlos (UFSCar, in Araras/São Paulo/Brazil, 18 undisturbed soil samples were collected and deposited on a constant-head permeameter in order to simulate the irrigation of five growth cycles of lettuce (Lactuca sativa L., organized in five different treatments and one control group. For each treatment 0.58 L, 1.16 L, 1.74 L, 2.32 L, and 2.90 L of treated wastewater and distilled water were applied . The treated wastewater came from a domestic waste treatment plant. After the water filtered through the soil, samples of treated wastewater were collected for analyses of electrical conductivity (EC, sodium adsorption ratio (SAR, turbidity, pH, Na, K, Mg, P and Ca and, in the soil the granulometry, complete fertility, exchangeable sodium percentage (ESP and saturated hydraulic conductivity (Ksat. The Ksat decreased, but did not alter the infiltration of water and nutrients in the soil. The concentration of nutrients in the soil increased, including Na, which raises the need for monitoring soil’s salinity. In conclusion, the application of wastewater did not cause damage to the physical properties of the soil, but resulted in a tendency towards salinization.

  3. Chemical evolution of leaked high-level liquid wastes in Hanford soils

    International Nuclear Information System (INIS)

    NYMAN, MAY D.; KRUMHANSL, JAMES L.; ZHANG, PENGCHU; ANDERSON, HOWARD L.; NENOFF, TINA M.

    2000-01-01

    A number of Hanford tanks have leaked high level radioactive wastes (HLW) into the surrounding unconsolidated sediments. The disequilibrium between atmospheric C0 2 or silica-rich soils and the highly caustic (pH > 13) fluids is a driving force for numerous reactions. Hazardous dissolved components such as 133 Cs, 79 Se, 99 Tc may be adsorbed or sequestered by alteration phases, or released in the vadose zone for further transport by surface water. Additionally, it is likely that precipitation and alteration reactions will change the soil permeability and consequently the fluid flow path in the sediments. In order to ascertain the location and mobility/immobility of the radionuclides from leaked solutions within the vadose zone, the authors are currently studying the chemical reactions between: (1) tank simulant solutions and Hanford soil fill minerals; and (2) tank simulant solutions and C0 2 . The authors are investigating soil-solution reactions at: (1) elevated temperatures (60--200 C) to simulate reactions which occur immediately adjacent a radiogenically heated tank; and (2) ambient temperature (25 C) to simulate reactions which take place further from the tanks. The authors studies show that reactions at elevated temperature result in dissolution of silicate minerals and precipitation of zeolitic phases. At 25 C, silicate dissolution is not significant except where smectite clays are involved. However, at this temperature CO 2 uptake by the solution results in precipitation of Al(OH) 3 (bayerite). In these studies, radionuclide analogues (Cs, Se and Re--for Tc) were partially removed from the test solutions both during high-temperature fluid-soil interactions and during room temperature bayerite precipitation. Altered soils would permanently retain a fraction of the Cs but essentially all of the Se and Re would be released once the plume was past and normal groundwater came in contact with the contaminated soil. Bayerite, however, will retain significant

  4. Chemical evolution of leaked high-level liquid wastes in Hanford soils

    Energy Technology Data Exchange (ETDEWEB)

    NYMAN,MAY D.; KRUMHANSL,JAMES L.; ZHANG,PENGCHU; ANDERSON,HOWARD L.; NENOFF,TINA M.

    2000-05-19

    A number of Hanford tanks have leaked high level radioactive wastes (HLW) into the surrounding unconsolidated sediments. The disequilibrium between atmospheric C0{sub 2} or silica-rich soils and the highly caustic (pH > 13) fluids is a driving force for numerous reactions. Hazardous dissolved components such as {sup 133}Cs, {sup 79}Se, {sup 99}Tc may be adsorbed or sequestered by alteration phases, or released in the vadose zone for further transport by surface water. Additionally, it is likely that precipitation and alteration reactions will change the soil permeability and consequently the fluid flow path in the sediments. In order to ascertain the location and mobility/immobility of the radionuclides from leaked solutions within the vadose zone, the authors are currently studying the chemical reactions between: (1) tank simulant solutions and Hanford soil fill minerals; and (2) tank simulant solutions and C0{sub 2}. The authors are investigating soil-solution reactions at: (1) elevated temperatures (60--200 C) to simulate reactions which occur immediately adjacent a radiogenically heated tank; and (2) ambient temperature (25 C) to simulate reactions which take place further from the tanks. The authors studies show that reactions at elevated temperature result in dissolution of silicate minerals and precipitation of zeolitic phases. At 25 C, silicate dissolution is not significant except where smectite clays are involved. However, at this temperature CO{sub 2} uptake by the solution results in precipitation of Al(OH){sub 3} (bayerite). In these studies, radionuclide analogues (Cs, Se and Re--for Tc) were partially removed from the test solutions both during high-temperature fluid-soil interactions and during room temperature bayerite precipitation. Altered soils would permanently retain a fraction of the Cs but essentially all of the Se and Re would be released once the plume was past and normal groundwater came in contact with the contaminated soil. Bayerite

  5. Speciation of heavy metals in garden soils. Evidences from selective and sequential chemical leaching

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Zhongqi; Lee, Leda; Dayan, Sara; Grinshtein, Michael [Brooklyn College of The City Univ. of New York, Brooklyn, NY (United States). Environmental Sciences Analytical Cnter; Shaw, Richard [USDA-NRCS NYC Soil Survey, Staten Island, NY (United States)

    2011-06-15

    Purpose: Gardening (especially food growing) in urban areas is becoming popular, but urban soils are often very contaminated for historical reasons. There is lack of sufficient information as to the bioavailability of soil heavy metals to plants and human in urban environments. This study examines the relative leachability of Cr, Ni, As, Cd, Zn, and Pb for soils with varying characteristics. The speciation and mobility of these metals can be qualitatively inferred from the leaching experiments. The goal is to use the data to shed some light on their bioavailability to plant and human, as well as the basis for soil remediation. Materials and methods: Selective and sequential chemical leaching methods were both used to evaluate the speciation of Cr, Ni, As, Cd, Zn, and Pb in soil samples collected from New York City residential and community gardens. The sequential leaching experiment followed a standard BCR four-step procedure, while selective leaching involved seven different chemical extractants. Results and discussion: The results from selective and sequential leaching methods are consistent. In general, very little of the heavy metals were found in the easily soluble or exchangeable fractions. Larger fractions of Cd and Zn can be leached out than other metals. Lead appears predominantly in the organic or carbonate fractions, of which {proportional_to} 30-60% is in the easily soluble organic fraction. Most As cannot be leached out by any of the extractants used, but it could have been complicated by the ineffective dissolution of oxides by ammonium hydroxylamine. Ni and Cr were mostly in the residual fractions but some released in the oxidizable fractions. Therefore, the leachability of metals follow the order Cd/Zn > Pb > Ni/Cr. Conclusions: Despite of the controversy and inaccuracy surrounding chemical leaching methods for the speciation of metals, chemical leaching data provide important, general, and easy-to-access information on the mobility of heavy metals

  6. Geophagy practices and the content of chemical elements in the soil eaten by pregnant women in artisanal and small scale gold mining communities in Tanzania.

    Science.gov (United States)

    Nyanza, Elias C; Joseph, Mary; Premji, Shahirose S; Thomas, Deborah Sk; Mannion, Cynthia

    2014-04-15

    Geophagy, a form of pica, is the deliberate consumption of soil and is relatively common across Sub-Saharan Africa. In Tanzania, pregnant women commonly eat soil sticks sold in the market (pemba), soil from walls of houses, termite mounds, and ground soil (kichuguu). The present study examined geophagy practices of pregnant women in a gold mining area of Geita District in northwestern Tanzania, and also examined the potential for exposure to chemical elements by testing soil samples. We conducted a cross sectional study using a convenience sample of 340 pregnant women, ranging in age from 15-49 years, who attended six government antenatal clinics in the Geita District, Tanzania. Structured interviews were conducted in June-August, 2012, to understand geophagy practices. In addition, soil samples taken from sources identified by pregnant women practicing geophagy were analysed for mineral element content. Geophagy was reported by 155 (45.6%) pregnant women with 85 (54.8%) initiating the practice in the first trimester. A total of 101 (65%) pregnant women reported eating soil 2 to 3 times per day while 20 (13%) ate soil more than 3 times per day. Of 155 pregnant women 107 (69%) bought pemba from local shops, while 48 (31%) consumed ground soil kichuguu. The estimated mean quantity of soil consumed from pemba was 62.5 grams/day. Arsenic, chromium, copper, iron, manganese, nickel and zinc levels were found in both pemba and kichuguu samples. Cadmium and mercury were found only in the kichuguu samples. Based on daily intake estimates, arsenic, copper and manganese for kichuguu and copper and manganese for pemba samples exceed the oral Minimum Risk Levels designated by the U.S. Agency for Toxic Substance and Disease Registry. Almost 50% of participants practiced geophagy in Geita District consistent with other reports from Africa. Both pemba and kichuguu contained chemical elements at varying concentration, mostly above MRLs. As such, pregnant women who eat soil in Geita

  7. Modeling operators' emergency response time for chemical processing operations.

    Science.gov (United States)

    Murray, Susan L; Harputlu, Emrah; Mentzer, Ray A; Mannan, M Sam

    2014-01-01

    Operators have a crucial role during emergencies at a variety of facilities such as chemical processing plants. When an abnormality occurs in the production process, the operator often has limited time to either take corrective actions or evacuate before the situation becomes deadly. It is crucial that system designers and safety professionals can estimate the time required for a response before procedures and facilities are designed and operations are initiated. There are existing industrial engineering techniques to establish time standards for tasks performed at a normal working pace. However, it is reasonable to expect the time required to take action in emergency situations will be different than working at a normal production pace. It is possible that in an emergency, operators will act faster compared to a normal pace. It would be useful for system designers to be able to establish a time range for operators' response times for emergency situations. This article develops a modeling approach to estimate the time standard range for operators taking corrective actions or following evacuation procedures in emergency situations. This will aid engineers and managers in establishing time requirements for operators in emergency situations. The methodology used for this study combines a well-established industrial engineering technique for determining time requirements (predetermined time standard system) and adjustment coefficients for emergency situations developed by the authors. Numerous videos of workers performing well-established tasks at a maximum pace were studied. As an example, one of the tasks analyzed was pit crew workers changing tires as quickly as they could during a race. The operations in these videos were decomposed into basic, fundamental motions (such as walking, reaching for a tool, and bending over) by studying the videos frame by frame. A comparison analysis was then performed between the emergency pace and the normal working pace operations

  8. SoilCAM: soil contamination: advanced integrated characterisation and time-lapse monitoring

    NARCIS (Netherlands)

    French, H.K.; Zee, van der S.E.A.T.M.; Meju, M.

    2009-01-01

    The SoilCAM project is aimed at improving current methods for monitoring contaminant distribution and biodegradation in the subsurface. Currently proven methods, based on invasive sampling of soil, soil water and gaseous phase, are unable to provide sufficiently accurate data with high enough

  9. Sorption, Photodegradation, and Chemical Transformation of Naproxen and Ibuprofen in Soils and Water

    Science.gov (United States)

    Vulava, V. M.; Cory, W. C.; Murphey, V.; Ulmer, C.

    2015-12-01

    Trace levels of pharmaceutically active compounds (PhACs) are increasingly being found in municipal drinking water and natural streams around the world. PhACs enter natural water systems after passing through wastewater treatment plants that have proven to be relatively inefficient at removing them. Once they are released into the environment, they can undergo (1) soil sorption, (2) photodegradation, and/or (3) chemical transformation into structurally similar compounds. The overarching goal of this study is to understand the geochemical fate of common PhACs in the environment. Here we report on our studies with naproxen (NAP) and ibuprofen (IBP) in soils and water. Both compounds are complex nonpolar (aromatic) organic molecules with polar (carboxylic acid) functional groups. The carboxylic functional groups are likely to be deprotonated at environmentally relevant pHs (~4-8). Sorption studies of both compounds were conducted in clean and relatively acidic (soil pH ~4.5-6.5) natural soils that contained varying levels of organic matter (OM), clay minerals, and Fe oxides. OM was observed to play an important role in each of the above three processes. Sorption was observed to be stronger and nonlinear in higher OM soils, while weaker but still significant in lower OM, higher clay soils; the amphiphilic nature of NAP and IBP combined with the complex charged and nonpolar surfaces available in the soil was observed to control the sorption behavior. Both NAP and IBP underwent rapid photodegradation in aqueous suspensions when exposed to simulated sunlight. The degradation rates were observed to change in the presence of humic acid or fulvic acid. During sorption and photodegradation experiments, common transformation products were observed for both NAP and IBP. The transformation products produced were indicative of chemical transformation and not biological factors. Concentrations of the transformation products were significantly higher in the photoexposed aqueous

  10. Incorporating biomarkers in ecological risk assessment of chemical contaminants of soils

    Directory of Open Access Journals (Sweden)

    A. J. Reinecke

    2007-09-01

    Full Text Available Soil is an important but complex natural resource which is increasingly used as sink for chemicals. The monitoring of soil quality and the assessment of risks posed by contaminants have become crucial. This study deals with the potential use of biomarkers in the monitoring of soils and the assessment of risk resulting from contamination. Apart from an overview of the existing literature on biomarkers, the results of various of our field experiments in South African soils are discussed. Biomarkers may have potential in the assessment of risk because they can indicate at an early stage that exposure has taken place and that a toxic response has been initiated. It is therefore expected that early biomarkers will play an increasing role as diagnostic tools for determining exposure to chemicals and the resulting effects. They may have predictive value that can assist in the prevention or minimising of risks. The aim of this study was to investigate the possibilities of using our results on biomarker responses of soil dwelling organisms to predict changes at higher organisational levels (which may have ecological implications. Our recent experimental results on the evaluation of various biomarkers in both the laboratory and the field are interpreted and placed in perspective within the broader framework of response biology. The aim was further to contribute to the development and application of biomarkers in regulatory risk assessment schemes of soils. This critical review of our own and recent literature on biomarkers in ecotoxicology leads to the conclusion that biomarkers can, under certain conditions, be useful tools in risk assessment. Clear relationships between contamination loads in soil organisms and certain biomarker responses were determined in woodlice, earthworms and terrestrial snails. Clear correlations were also established in field experiments between biomarker responses and changes at the population level. This indicated that, in

  11. Effect of Chemical Remediation of Crude-Oil-Polluted Agricultural Land on Soil Properties and Crop Performance

    Directory of Open Access Journals (Sweden)

    O. E. Essien

    2010-06-01

    Full Text Available Chemical degreaser with detergent was used to wash crude-oil-polluted agricultural soil and restore it to 83% -93% of the unpolluted soil's status for sustainable productivity. Comparison of reclaimed soil's properties with unpolluted soil sample of the significant differences (p=0.05 between their values for soil moisture content, soil pH, evapotranspiration, root elongation and soil fertility. Root elongation at 1.1 cm/day in the reclaimed soil compared with 1.29 cm/day in unpolluted soil indicated 83% recovery. Saturated hydraulic conductivity also had 83% recovery. However, infiltration rate showed a low recovery of 30%, perhaps, due to the wetness of the reclaimed soil's surface prior to the reclamation process. The soil macro/microspores were unblocked by the degreaser enabling the root pores to overcome the osmotic problem caused by oil-molecules' blockade and conduct moisture through to the phloem and leaves to sustain evapotranspiration, leaves turgidity chemical reclamation by degreaser with detergent is highly recommended for short-duration in-situ remediation of crude-oil-polluted agricultural land.

  12. Review of chemical and electrokinetic remediation of PCBs contaminated soils and sediments.

    Science.gov (United States)

    Fan, Guangping; Wang, Yu; Fang, Guodong; Zhu, Xiangdong; Zhou, Dongmei

    2016-09-14

    Polychlorinated biphenyls (PCBs) are manmade organic compounds, and pollution due to PCBs has been a global environmental problem because of their persistence, long-range atmospheric transport and bioaccumulation. Many physical, chemical and biological technologies have been utilized to remediate PCBs contaminated soils and sediments, and there are some emerging new technologies and combined methods that may provide cost-effective alternatives to the existing remediation practice. This review provides a general overview on the recent developments in chemical treatment and electrokinetic remediation (EK) technologies related to PCBs remediation. In particular, four technologies including photocatalytic degradation of PCBs combined with soil washing, Fe-based reductive dechlorination, advanced oxidation process, and EK/integrated EK technology (e.g., EK coupled with chemical oxidation, nanotechnology and bioremediation) are reviewed in detail. We focus on the fundamental principles and governing factors of chemical technologies, and EK/integrated EK technologies. Comparative analysis of these technologies including their major advantages and disadvantages is summarized. The existing problems and future prospects of these technologies regarding PCBs remediation are further highlighted.

  13. Effect of Irrigation with Wastewater on Certain Soil Physical and Chemical properties

    Directory of Open Access Journals (Sweden)

    Farzad Rohani Shahraki

    2005-03-01

    Full Text Available Depending on effluent characteristics, irrigation with wastewater plant effluent can be either beneficial or harmful. To investigate the effects of nine years of irrigation with North Isfahan Wastewater Treatment Plant effluent on physical and chemical properties of soil, a study was carried out using a randomized complete block design with three replications. Treatments included: 1 raw wastewater; 2 effluent from primary settling basin; 3 final plant effluent and 4 well water. To investigate soil physical and chemical properties, samples were taken from depths of 0-5 cm and 5-10 cm from each plot. The results showed that raw wastewater COD and SS were higher than the Iranian Standard limits for use in irrigation. So were BOD5 and turbidity of effluent from primary sedimentation tanks. From the results obtained, the raw wastewater may be considered to be of medium quality. However, regarding other parameters such as EC, SAR, Na and Pb, the quality of the raw wastewater was considerably higher than that of well water. All treatments showed medium infiltrability with respect to chloride concentration. The concentration of lead in well water was higher than in treated wastewater. It should be noted that lead concentration in all samples was less than the standard limits. The average soil bulk density and percentage of moisture in FC did not follow any specific trend. The results indicate that the soil irrigated with effluent over the nine years had a lower bulk density, a higher percentage of moisture, and a lower infiltration compared to adjacent soil not irrigated with wastewater. Analysis of variance for all results did not confirm any significant differences among treatments.

  14. Solarization soil

    International Nuclear Information System (INIS)

    Abou Ghraibe, W.

    1995-01-01

    Solar energy could be used in pest control, in soil sterilization technology. The technique consists of covering humid soils by plastic films steadily fixed to the soil. Timing must be in summer during 4-8 weeks, where soil temperature increases to degrees high enough to control pests or to produce biological and chemical changes. The technique could be applied on many pests soil, mainly fungi, bacteria, nematods, weeds and pest insects. The technique could be used in greenhouses as well as in plastic film covers or in orchards where plastic films present double benefits: soil sterilization and production of black mulch. Mechanism of soil solarization is explained. Results show that soil solarization can be used in pest control after fruit crops cultivation and could be a method for an integrated pest control. 9 refs

  15. Adsorption of mercury compounds by tropical soils. I. Adsorption in soil profiles in relation to their physical, chemical, and mineralogical properties

    Energy Technology Data Exchange (ETDEWEB)

    Semu, E.; Singh, B.R.; Selmer-Olsen, A.R.

    1986-01-01

    Mercury adsorption of HgCl/sub 2/ and 2-methoxyethylmercury chloride (Aretan) (100 mg Hg L/sup -1/) was measured for three soil profiles from Morogoro, Arusha, and Dar es Salaam in Tanzania. The adsorption was investigated for the physical, chemical, and mineralogical properties of soils. All soil samples showed greater capacity for adsorption of Aretan than for HgCl/sub 2/. In the Morogoro profile Hg adsorption decreased with depth but in the other two soils, the minimum adsorption occurred in the third horizon and increased both upwards and downwards. In the Morogoro profile, Aretan adsorption correlated well with pH. Adsorption of both Aretan and HgCl/sub 2/ correlated well with the distribution of organic C and with the cation exchange capacity of the soils. In the Arusha and Dar es Salaam profiles Hg adsorption was not significantly correlated with any of the soil properties tested.

  16. Mini Tensiometer-Time Domain Reflectometry Coil Probe for Measuring Soil Water Retention Properties

    DEFF Research Database (Denmark)

    Subedi, Shaphal; Kawamoto, Ken; Karunarathna, Anurudda Kumara

    2013-01-01

    Time domain reflectometry (TDR) is used widely for measuring soil-water content. New TDR coil probe technology facilitates the development of small, nondestructive probes for simultaneous measurement of soil-water content (θ) and soil-water potential (ψ). In this study we developed mini tensiomet...... between measured soil-water retention curves (ψ > –100 cm H2O) by the new T-TDR coil probes and independent measurements by the hanging water column method....

  17. Physical, chemical, and biological properties of soil under soybean cultivation and at an adjacent rainforest in Amazonia

    Science.gov (United States)

    T.P. Beldini; R.C. Oliveira Junior; Michael Keller; P.B. de Camargo; P.M. Crill; A. Damasceno da Silva; D. Bentes dos Santos; D. Rocha de Oliveira

    2015-01-01

    Land-use change in the Amazon basin has occurred at an accelerated pace during the last decade, and it is important that the effects induced by these changes on soil properties are better understood. This study investigated the chemical, physical, and biological properties of soil in a field under cultivation of soy and rice, and at an adjacent primary rain forest....

  18. Impact of organic carbon and nutrients mobilized during chemical oxidation on subsequent bioremediation of a diesel-contaminated soil

    NARCIS (Netherlands)

    Sutton, N.B.; Grotenhuis, J.T.C.; Rijnaarts, H.H.M.

    2014-01-01

    Remediation with in situ chemical oxidation (ISCO) impacts soil organic matter (SOM) and the microbial community, with deleterious effects on the latter being a major hurdle to coupling ISCO with in situ bioremediation (ISB). We investigate treatment of a diesel-contaminated soil with Fenton’s

  19. Measuring temperature dependence of soil respiration: importance of incubation time, soil type, moisture content and model fits

    Science.gov (United States)

    Schipper, L. A.; Robinson, J.; O'Neill, T.; Ryburn, J.; Arcus, V. L.

    2015-12-01

    Developing robust models of the temperature response and sensitivity of soil respiration is critical for determining changes carbon cycling in response to climate change and at daily to annual time scales. Currently, approaches for measuring temperature dependence of soil respiration generally use long incubation times (days to weeks and months) at a limited number of incubation temperatures. Long incubation times likely allow thermal adaptation by the microbial population so that results are poorly representative of in situ soil responses. Additionally, too few incubation temperatures allows for the fit and justification of many different predictive equations, which can lead to inaccuracies when used for carbon budgeting purposes. We have developed a method to rapidly determine the response of soil respiration rate to wide range of temperatures. An aluminium block with 44 sample slots is heated at one end and cooled at the other to give a temperature gradient from 0 to 55°C at about one degree increments. Soil respiration is measured within 5 hours to minimise the possibility of thermal adaptation. We have used this method to demonstrate the similarity of temperature sensitivity of respiration for different soils from the same location across seasons. We are currently testing whether long-term (weeks to months) incubation alter temperature response and sensitivity that occurs in situ responses. This method is also well suited for determining the most appropriate models of temperature dependence and sensitivity of soil respiration (including macromolecular rate theory MMRT). With additional testing, this method is expected to be a more reliable method of measuring soil respiration rate for soil quality and modelling of soil carbon processes.

  20. Long-term Effects of Different Irrigation Methods with Treated Wastewater on Soil Chemical Properties

    Directory of Open Access Journals (Sweden)

    P. Najafi

    2016-02-01

    Full Text Available Introduction: Reuse of wastewater for agricultural irrigation is increasing due to an increased demand for water resources in different parts of the world. Almost 70% of deviated water from rivers and pumped groundwater is used for agriculture. If wastewater is used for irrigation in agriculture, then the amount of discharged water from natural sources will be decreased and the flow of wastewater to the environment and its ensuing pollution will be prevented. Using wastewater in applications such as irrigation of agricultural lands has caused an increase of some exchangeable ions, salts and suspended solids (organic and mineral in the soil and has significantly affected physical, chemical and biological features. Therefore, paying attention to the soil health is important during use of wastewater when it is the source of irrigation water. In such cases, there will be some worries about pollution of harvested products, contact of farm workers with pathogenes and environmental issues in the farm. In these conditions, attention to irrigation methods along with consideration of environmental protection standards is important. Materials and Methods: In this study, the effects of treated wastewater (TW irrigation were tested on some chemical properties of soil for three years under five different irrigation treatments. The treatments were as follows: surface furrow irrigation (FI, surface drip irrigation (SDI, subsurface drip irrigation in 30 cm depth (SDI30, subsurface drip irrigation in 60 cm depth (SDI60 and bubbler irrigation (BI. At the end of the experiment, soil samples were collected from a depth of 0-30, 30-60 and 60-90 cm in order to measure the electrical conductivity (EC, pH, sodium adsorption ratio (SAR, organic matter (OM and calcium carbonate equivalent (CaCO3. Results and Discussion: According to the results of soil analysis, the soil became more saline than the beginning by applying the treatments. Generally, in two plots of urban and

  1. Fate of polycyclic aromatic hydrocarbons in plant-soil systems: Plant responses to a chemical stress in the root zone

    Energy Technology Data Exchange (ETDEWEB)

    Hoylman, Anne M. [Univ. of Tennessee, Knoxville, TN (United States)

    1994-01-01

    Under laboratory conditions selected to maximize root uptake, plant tissue distribution of PAH-derived 14C was largely limited to root tissue of Malilotus alba. These results suggest that plant uptake of PAHs from contaminated soil via roots, and translocation to aboveground plant tissues (stems and leaves), is a limited mechanism for transport into terrestrial food chains. However, these data also indicate that root surface sorption of PAHs may be important for plants grown in soils containing elevated concentration PAHs. Root surface sorption of PAHs may be an important route of exposure for plants in soils containing elevated concentrations of PAHS. Consequently, the root-soil interface may be the site of plant-microbial interactions in response to a chemical stress. In this study, evidence of a shift in carbon allocation to the root zone of plants exposed to phenanthrene and corresponding increases in soil respiration and heterotrophic plate counts provide evidence of a plant-microbial response to a chemical stress. The results of this study establish the importance of the root-soil interface for plants growing in PAH contaminated soil and indicate the existence of plant-microbial interactions in response to a chemical stress. These results may provide new avenues of inquiry for studies of plant toxicology, plant-microbial interactions in the rhizosphere, and environmental fates of soil contaminants. In addition, the utilization of plants to enhance the biodegradation of soil contaminants may require evaluation of plant physiological changes and plant shifts in resource allocation.

  2. Studyof Wastewater and Compost Effects on Some of Soil Physical and Chemical Characteristics

    Directory of Open Access Journals (Sweden)

    M. Shakarami

    2016-09-01

    Full Text Available Introduction: Arid and semi-arid areas are confronting increasing water shortages. In these regions of the world, planners are being forced to consider other water sources that could be used economically and effectively to promote further development. Wastewater is the only potential water source, which will increase as the population grows and the demand on freshwater increases. Composting municipal solid wastes (MSW and sewage sludge is a good way to reduce the amount of wastes generated in densely populated areas. Municipal solid waste production in Asia in 1998 was 0.76 million tons per day, with an annual growth rate of 2- 3% in developing countries and 3.2- 4.5% in developed countries. (MSW compost is increasingly used in agriculture not only as a soil conditioner but also as a fertilizer. Despite the growing interest in wastewater and compost usage, excessive application of them may have some harmful effects such as human health problems, runoff and leaching of nutrients to surface and groundwater, undesirable chemical constituents, pathogens, accumulations of heavy metals in plants and soils, negative environmental and health impacts. So, using of wastewater and compost application should be under controlled conditions that minimize health risks of agricultural products. Materials and Methods: This study was conducted in greenhouse of Bu-Ali Sina as a factorial completely randomized design to evaluate the effects of wastewater and compost on physical and chemical properties of soil. The factors included four types of watering: raw wastewater (W1, treated wastewater (W2 combined 50% of raw wastewater and fresh water (W3 and tap water (W4 and also four compost levels: 0 (C1, 40 (C2, 80 (C3 and 120 tha-1 (C4. Therefore, 16 treatments (W1C1 to W4C4 were considered for investigation. It is noted that Compost added and mixed just with top layer of the soil. 48 volumetric lysimeters were applied as Cultivation beds (26 × 30 × 30 cm. The soil

  3. Remediation of soils contaminated with particulate depleted uranium by multi stage chemical extraction

    Energy Technology Data Exchange (ETDEWEB)

    Crean, Daniel E. [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield (United Kingdom); Centre for Radiochemistry Research, School of Chemistry, The University of Manchester (United Kingdom); Livens, Francis R.; Sajih, Mustafa [Centre for Radiochemistry Research, School of Chemistry, The University of Manchester (United Kingdom); Stennett, Martin C. [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield (United Kingdom); Grolimund, Daniel; Borca, Camelia N. [Swiss Light Source, Paul Scherrer Institute, Villigen (Switzerland); Hyatt, Neil C., E-mail: n.c.hyatt@sheffield.ac.uk [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield (United Kingdom)

    2013-12-15

    Highlights: • Batch leaching was examined to remediate soils contaminated with munitions depleted uranium. • Site specific maximum extraction was 42–50% total U in single batch with NH{sub 4}HCO{sub 3}. • Analysis of residues revealed partial leaching and secondary carbonate phases. • Sequential batch leaching alternating between NH{sub 4}HCO{sub 3} and citric acid was designed. • Site specific extraction was increased to 68–87% total U in three batch steps. -- Abstract: Contamination of soils with depleted uranium (DU) from munitions firing occurs in conflict zones and at test firing sites. This study reports the development of a chemical extraction methodology for remediation of soils contaminated with particulate DU. Uranium phases in soils from two sites at a UK firing range, MOD Eskmeals, were characterised by electron microscopy and sequential extraction. Uranium rich particles with characteristic spherical morphologies were observed in soils, consistent with other instances of DU munitions contamination. Batch extraction efficiencies for aqueous ammonium bicarbonate (42–50% total DU extracted), citric acid (30–42% total DU) and sulphuric acid (13–19% total DU) were evaluated. Characterisation of residues from bicarbonate-treated soils by synchrotron microfocus X-ray diffraction and X-ray absorption spectroscopy revealed partially leached U(IV)-oxide particles and some secondary uranyl-carbonate phases. Based on these data, a multi-stage extraction scheme was developed utilising leaching in ammonium bicarbonate followed by citric acid to dissolve secondary carbonate species. Site specific U extraction was improved to 68–87% total U by the application of this methodology, potentially providing a route to efficient DU decontamination using low cost, environmentally compatible reagents.

  4. Hydrogeology and chemical quality of water and soil at Carroll Island, Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Tenbus, F.J.; Phillips, S.W.

    1996-01-01

    Carroll Island was used for open-air testing of chemical warfare agents from the late 1940's until 1971. Testing and disposal activities weresuspected of causing environmental contamination at 16 sites on the island. The hydrogeology and chemical quality of ground water, surface water, and soil at these sites were investigated with borehole logs, environmental samples, water-level measurements, and hydrologic tests. A surficial aquifer, upper confining unit, and upper confined aquifer were defined. Ground water in the surficial aquifer generally flows from the east-central part of the island toward the surface-water bodies, butgradient reversals caused by evapotranspiration can occur during dry seasons. In the confined aquifer, hydraulic gradients are low, and hydraulic head is affected by tidal loading and by seasonal pumpage from the west. Inorganic chemistry in the aquifers is affected by brackish-water intrusion from gradient reversals and by dissolution ofcarboniferous shell material in the confining unit.The concentrations of most inorganic constituents probably resulted from natural processes, but some concentrations exceeded Federal water-quality regulations and criteria. Organic compounds were detected in water and soil samples at maximum concentrations of 138 micrograms per liter (thiodiglycol in surface water) and 12 micrograms per gram (octadecanoic acid in soil).Concentrations of organic compounds in ground water exceeded Federal drinking-water regulations at two sites. The organic compounds that weredetected in environmental samples were variously attributed to natural processes, laboratory or field- sampling contamination, fallout from industrial air pollution, and historical military activities.

  5. Influence of chemical composition of precipitation on migration of radioactive caesium in natural soils

    International Nuclear Information System (INIS)

    Thørring, H.; Skuterud, L.; Steinnes, E.

    2014-01-01

    The aim of the present work was to study the impact of the chemical composition of precipitation on radiocaesium mobility in natural soil. This was done through column studies. Three types of precipitation regimes were studied, representing a natural range found in Norway: Acidic precipitation (southernmost part of the country); precipitation rich in marine cations (highly oceanic coastal areas); and low concentrations of sea salts (slightly continental inland areas). After 50 weeks and a total precipitation supply of ∼10 000 L m −2 per column, results indicate that acidic precipitation increased the mobility of 134 Cs added during the experiment. However, depth distribution of already present Chernobyl fallout 137 Cs was not significantly affected by the chemical composition of precipitation. - Highlights: • Mobility of freshly added Cs-134 was higher in soil receiving acidic precipitation. • Depth penetration of Cs-134 was higher in soil profiles with a thicker humus layer. • Depth distribution of Chernobyl Cs-137 was not affected by precipitation type

  6. Influence of wood-derived biochar on the physico-mechanical and chemical characteristics of agricultural soils

    Science.gov (United States)

    Ahmed, Ahmed S. F.; Raghavan, Vijaya

    2018-01-01

    Amendment of soil with biochar has been shown to enhance fertility and increase crop productivity, but the specific influence of biochar on soil workability remains unclear. Select physico-mechanical and chemical properties of clay loam and sandy loam soils were measured after amendment with wood-derived biochar of two particle size ranges (0.5-425 and 425-850 µm) at five dosages ranging from 0.5 to 10% dry weight. Whereas the clay loam soil workability decreased when the finer wood-derived biochar was applied at rates of 6 or 10%, soil fertility was not enhanced. The sandy loam soil, due to Proctor compaction, significantly decreased in bulk density with 6 and 10% wood-derived biochar amendments indicating higher soil resistance to compaction.

  7. Chemical changes in agricultural soils of Korea: data review and suggested countermeasures.

    Science.gov (United States)

    Jo, I S; Koh, M H

    2004-01-01

    The monitoring of chemical properties, including heavy metals, in soils is necessary if better management and remediation practices are to be established for polluted soils. The National Institute of Agricultural Science and Technology initiated a monitoring study that investigated fertility and heavy metal contents of the benchmarked soils. The study covered paddy soils, upland soils, and horticultural soils in the plastic film houses, and orchard soils throughout the Korea from 1990 to 1998. Likewise, 4047 samples of paddy and 2534 samples of plastic house in 1999 and 2000 were analyzed through the Soil Environment Conservation Act. Soil chemical properties such as pH, organic matter, available phosphate and extractable calcium, magnesium and potassium contents, and heavy metal contents such as cadmium, copper, lead, zinc, arsenic, mercury, and cobalt contents were analyzed. The study showed that the average contents of organic matter, available phosphate, and extractable potassium rapidly increased in plastic house soils than in upland or paddy soils. Two kinds of fertilizer recommendation systems were established for the study: the standard levels by national soil average data for 77 crops and the recommendation by soil test for 70 crops. Standard nitrogen fertilizer application levels for cereal crops changed from 94 kg/ha in 1960s, 99 kg/ha in 1970s, 110 kg/ha in 1980s to 90 kg/ha in 1990s. The K2O-fertilizer also changed from 67 kg/ha in 1960s, 76 kg/ha in 1970s, 92 kg/ha in 1980s, and only 44 kg/ha in 1990s. In rice paddy fields, the average contents of Cd, Cu, Pb, and Zn in surface soils (0-15 cm depth) were 0.11 mg kg(-1) (ranged from 0 to 1.01), 4.70 mg kg(-1) (0-41.59), 4.84 mg kg(-1) (0-66.44), and 4.47 mg kg(-1) (0-96.70), respectively. In the uplands, the average contents of Cd, Cu, Pb, Zn, and As in surface soils (0-15 cm depth) were 0.135 mg kg(-1) (ranged from 0 to 0.660), 2.77 mg kg(-1) (0.07-78.24), 3.47 mg kg(-1) (0-43.00), 10.70 mg kg(-1) (0

  8. The chemical reactivity of the Martian soil and implications for future missions

    Science.gov (United States)

    Zent, Aaron P.; Mckay, Christopher P.

    1994-01-01

    Possible interpretations of the results of the Viking Biology Experiments suggest that greater than 1 ppm of a thermally labile oxidant, perhaps H2O2, and about 10 ppm of a thermally stable oxidant are present in the martian soil. We reexamine these results and discuss implications for future missions, the search for organics on Mars, and the possible health and engineering effects for human exploration. We conclude that further characterization of the reactivity of the martian regolith materials is warrented-although if our present understanding is correct the oxidant does not pose a hazard to humans. There are difficulties in explaining the reactivity of the Martian soil by oxidants. Most bulk phase compounds that are capable of oxidizing H2O to O2 per the Gas Exchange Experiment (GEx) are thermally labile or unstable against reduction by atmospheric CO2. Models invoking trapped O2 or peroxynitrates (NOO2(-)) require an unlikely geologic history for the Viking Lander 2 site. Most suggested oxidants, including H2O2, are expected to decompose rapidly under martian UV. Nonetheless, we conclude that the best model for the martian soil contains oxidants produced by heterogeneous chemical reactions with a photochemically produced atmospheric oxidant. The GEx results may be due to catalytic decomposition of an unstable oxidizing material by H2O. We show that interfacial reaction sites covering less than 1% of the available soil surfaces could explain the Viking Biology Experiments results.

  9. Chemical elemental distribution and soil DNA fingerprints provide the critical evidence in murder case investigation.

    Directory of Open Access Journals (Sweden)

    Giuseppe Concheri

    Full Text Available BACKGROUND: The scientific contribution to the solution of crime cases, or throughout the consequent forensic trials, is a crucial aspect of the justice system. The possibility to extract meaningful information from trace amounts of samples, and to match and validate evidences with robust and unambiguous statistical tests, are the key points of such process. The present report is the authorized disclosure of an investigation, carried out by Attorney General appointment, on a murder case in northern Italy, which yielded the critical supporting evidence for the judicial trial. METHODOLOGY/PRINCIPAL FINDINGS: The proportional distribution of 54 chemical elements and the bacterial community DNA fingerprints were used as signature markers to prove the similarity of two soil samples. The first soil was collected on the crime scene, along a corn field, while the second was found in trace amounts on the carpet of a car impounded from the main suspect in a distant location. The matching similarity of the two soils was proven by crossing the results of two independent techniques: a elemental analysis via inductively coupled plasma mass spectrometry (ICP-MS and optical emission spectrometry (ICP-OES approaches, and b amplified ribosomal DNA restriction analysis by gel electrophoresis (ARDRA. CONCLUSIONS: Besides introducing the novel application of these methods to forensic disciplines, the highly accurate level of resolution observed, opens new possibilities also in the fields of soil typing and tracking, historical analyses, geochemical surveys and global land mapping.

  10. Availability of heavy metals in contaminated soil evidenced by chemical extractants

    Directory of Open Access Journals (Sweden)

    Maria Ligia de Souza Silva

    2012-06-01

    Full Text Available Heavy metals have been accumulating in Brazilian soils, due to natural processes, such as atmospheric deposition, or human industrial activities. For certain heavy metals, when in high concentrations in the soil, there is no specific extractant to determine the availability of these elements in the soil. The objective of the present study was to evaluate the availability of Cd, Cu, Fe, Mn, Pb and Zn for rice and soybeans, using different chemical extractants. In this study we used seven soil samples with different levels of contamination, in completely randomized experimental design with four replications. We determined the available concentrations of Cd, Cu, Fe, Mn, Pb and Zn extracted by Mehlich-1, HCl 0.1 mol L-1, DTPA, and organic acid extractants and the contents in rice and soybeans, which extracts were analyzed by ICP-OES. It was observed that Mehlich-1, HCl 0.1 mol L-1 and DTPA extractants were effective to assess the availability of Cd, Cu, Pb and Zn for rice and soybeans. However, the same was not observed for the organic acid extractant.

  11. Physico-Chemical Analysis of Groundwater and Agriculture Soil of Gambat, Khairpur District, Pakistan

    International Nuclear Information System (INIS)

    Pirzada, T.; Talpur, M.M.A.; Qazi, Y.F.; Naseem, S.

    2013-01-01

    This study was conducted to estimate the ground water as well as agriculture soil quality, nutrient status and physico-chemical characteristics of Gambat, District Khairpur, Pakistan. Assorted parameters like temperature, pH, EC, TDS, Cl-, SO/sub 4/sup 2-/, HCO/sub 3/ /sup -/, sodium, potassium, calcium, magnesium, SAR values as well as the Piper and Stiff diagrams were determined to confer a clear picture of quality parameters in ground water and agriculture soil of the area. The present investigations conclude that the maximum parameters are not at the level of pollution except major metal ions Na/sup +/ and Ca/sup 2+/. The higher concentration of Ca/sup 2+/ and Na/sup +/ could be due to the deposits of the salts of these elements into soil, which may had leached into ground water. The Piper diagram suggest that composition of water is (Na+/sup +/K/sup +/)-(Ca/sup 2+/+Mg/sup 2+/)-HCO/sub 3/ /sup -/ - (Cl/sup -/+SO/sub 4//sup 2-/)-type. The areal distribution of stiff diagram constructed for groundwater samples showed ionic balances, indicating the major ion analyses are of good quality. Therefore, both ground water and soil samples observed are satisfactory for their utilization in various purposes such as domestic, agricultural, industrial, etc. (author)

  12. Red cabbage yield, heavy metal content, water use and soil chemical characteristics under wastewater irrigation.

    Science.gov (United States)

    Tunc, Talip; Sahin, Ustun

    2016-04-01

    The objective of this 2-year field study was to evaluate the effects of drip irrigation with urban wastewaters reclaimed using primary (filtration) and secondary (filtration and aeration) processes on red cabbage growth and fresh yield, heavy metal content, water use and efficiency and soil chemical properties. Filtered wastewater (WW1), filtered and aerated wastewater (WW2), freshwater and filtered wastewater mix (1:1 by volume) (WW3) and freshwater (FW) were investigated as irrigation water treatments. Crop evapotranspiration decreased significantly, while water use efficiency increased under wastewater treatments compared to FW. WW1 treatment had the lowest value (474.2 mm), while FW treatments had the highest value (556.7 mm). The highest water use efficiency was found in the WW1 treatment as 8.41 kg m(-3), and there was a twofold increase with regard to the FW. Wastewater irrigation increased soil fertility and therefore red cabbage yield. WW2 treatment produced the highest total fresh yield (40.02 Mg ha(-1)). However, wastewater irrigation increased the heavy metal content in crops and soil. Cd content in red cabbage heads was above the safe limit, and WW1 treatment had the highest value (0.168 mg kg(-1)). WW3 treatment among wastewater treatments is less risky in terms of soil and crop heavy metal pollution and faecal coliform contamination. Therefore, WW3 wastewater irrigation for red cabbage could be recommended for higher yield and water efficiency with regard to freshwater irrigation.

  13. Chemical Speciation and Potential Mobility of Heavy Metals in the Soil of Former Tin Mining Catchment

    Directory of Open Access Journals (Sweden)

    M. A. Ashraf

    2012-01-01

    Full Text Available This study describes the chemical speciation of Pb, Zn, Cu, Cr, As, and Sn in soil of former tin mining catchment. Total five sites were selected for sampling and subsequent subsamples were collected from each site in order to create a composite sample for analysis. Samples were analysed by the sequential extraction procedure using optical emission spectrometry (ICP OES. Small amounts of Cu, Cr, and As retrieved from the exchangeable phase, the ready available for biogeochemical cycles in the ecosystem. Low quantities of Cu and As could be taken up by plants in these kind of acidic soils. Zn not detected in the bioavailable forms while Pb is only present in negligible amounts in very few samples. The absence of mobile forms of Pb eliminates the toxic risk both in the trophic chain and its migration downwards the soil profile. The results also indicate that most of the metals have high abundance in residual fraction indicating lithogenic origin and low bioavailability of the metals in the studied soil. The average potential mobility for the metals giving the following order: Sn > Cu > Zn > Pb > Cr > As.

  14. Effects of vegetation on chemical and mineralogical characteristics of soils developed on a decantation bank from a copper mine.

    Science.gov (United States)

    Cerqueira, Beatriz; Vega, Flora A; Silva, Luis F O; Andrade, Luisa

    2012-04-01

    Open cast mining has a strong impact on the environment, the intensity depending on the morphology of the deposit and on the nature of the minerals. At Touro mine (NW Spain) there is a large area covered by tailings, one of which, called the "sedimentation bank", was used to deposit sludge resulting from the extraction of copper in the flotation plant. Three zones were selected and the soils were sampled to analyse the changes brought about by vegetation on the chemical and mineralogical properties of the soils developed over the sedimentation bank and its development over time. The vegetation increased the pH, contents of organic material, nitrogen, clay and free oxides of Fe and Al, and the cationic exchange capacity of the soils. The decrease in the sulphide content, benefited by the vegetation process, led to a reduction in the total content of Cr and Cu. The vegetation also contributed towards the alteration of the primary minerals. The transformation of jarosite, the formation of nanocrystals of hematite, goethite, hydroxypolymers, and amorphous minerals that contained Cu, Cr and Pb were observed. Nevertheless the high Cu and Cr contents indicate that it is advisable to change the restoration process. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Alteration of Chemical Composition of Soil-leached Dissolved Organic Matter under Cryogenic Cycles

    Science.gov (United States)

    Zhang, X.; Bianchi, T. S.; Schuur, E.

    2016-02-01

    Arctic permafrost thawing has drawn great attention because of the large amount of organic carbon (OC) storage in Arctic soils that are susceptible to increasing global temperatures. Due to microbial activities, some of the OC pool is converted in part to greenhouse gases, like CH4 and CO2 gas, which can result in a positive feedback on global warming. In Artic soils, a portion of OC can be mobilized by precipitation, drainage, and groundwater circulation which can in some cases be transported to rivers and eventually the coastal margins. To determine some of the mechanisms associated with the mobilization of OC from soils to aquatic ecosystems, we conducted a series of laboratory soil leaching experiments. Surface soil samples collected from Healy, Alaska were eluted with artificial rain at a constant rate. Leachates were collected over time and analyzed for dissolved organic carbon (DOC) concentrations. Concentrations began from 387-705 mg/L and then dropped to asymptote states to 25-219 mg/L. High-resolution spectroscopy was used to characterize colored dissolved organic matter (CDOM) and CDOM fluorescence intensity also dropped with time. Fluorescence maximum intensity (Fmax) for peak C ranged from 0.7-4.2 RU, with Exmax/Emmax = 310/450 nm. Fmax for peak T ranged from 0.5-3.2 RU, with Exmax/Emmax = 275/325 nm. Peak C: peak T values indicated preferential leaching of humic-like components over protein-like components. After reaching asymptotic levels, samples were stored frozen and then thawed to study the cryogenic impact on OC composition. CDOM intensity and DOC concentration increased after the freeze-thaw cycle. It was likely that cryogenic processes promoted the breakdown of OC and the releases of more DOC from soils. PARAFAC of CDOM excitation and emission matrices (EEMs) will be used to analyze CDOM composition of the soil leachates.

  16. Effects of Zeolite and Vermicompost on Changes of Zn Chemical Fractionation in a Polluted Soil

    Directory of Open Access Journals (Sweden)

    Mohsen Hamidpour

    2017-02-01

    treatments were evaluated in a 3 × 3 factorial design and were arranged in a randomized block design with three replications. After incubation for 45 days, five seeds of corn were sown in each pot. After germination the seedlings were thinned to 3 per pot. Plants were grown for 2 months under control conditions. After the corn had been harvested, soil samples were air-dried, and analyzed for pH, cation exchange capacity (CEC, and electrical conductivity (EC. Chemical fractionations of Zn in soils collected after the pot trial were investigated using the procedure of Salbu et al. (1998. This procedure subdivides the heavy-metal distribution into an water-extractable+exchangeable fraction, a form bound to carbonates, a form bound to Fe and Mn oxides, a form bound to organics, and a residual form. An analysis of variance was used to test significance (P≤0.05 of treatment effects and Duncan multiple range test (P≤0.05 was used to compare the means (SAS, 2002. Results and Discussion: Soil pH gradually decreased with application of both vermicompost and zeolite amendments. This may be due to degradation of organic matter and releasing of organic and inorganic acids such as carbonic, citric and malic acids as well as H+ produced from mineralization of nitrogen in the organic matter. Electrical conductivity (EC of soils increased with increasing amounts of vermicompost and zeolite applications. The highest EC was observed in pots containing 10% w/w zeolite and 10% w/w vermicompost. Addition of zeolite significantly increased soil CEC. The overall distribution of Zn in different fractions was in the sequence residual (38.6%> Fe and Mn oxides bound (31.0 % > carbonated (21.6%> organic (4.3%≈exchangeable +water soluble (4.4 %. The application of vermicompost significantly decreased concentration of Zn in water+exchangeable fraction as compared to the control soil. Although singly zeolite amendment had not significant effect on water+exchangeable Zn concentration, this form

  17. Nitrous oxide emission and denitrifier communities in drip-irrigated calcareous soil as affected by chemical and organic fertilizers.

    Science.gov (United States)

    Tao, Rui; Wakelin, Steven A; Liang, Yongchao; Hu, Baowei; Chu, Guixin

    2018-01-15

    The effects of consecutive application of chemical fertilizer with or without organic fertilizer on soil N 2 O emissions and denitrifying community structure in a drip-irrigated field were determined. The four fertilizer treatments were (i) unfertilized, (ii) chemical fertilizer, (iii) 60% chemical fertilizer plus cattle manure, and (iv) 60% chemical fertilizer plus biofertilizer. The treatments with organic amendments (i.e. cattle manure and biofertilizer) reduced cumulative N 2 O emissions by 4.9-9.9%, reduced the N 2 O emission factor by 1.3-42%, and increased denitrifying enzyme activities by 14.3-56.2%. The nirK gene copy numbers were greatest in soil which received only chemical fertilizer. In contrast, nirS- and nosZ-copy numbers were greatest in soil amended with chemical fertilizer plus biofertilizer. Chemical fertilizer application with or without organic fertilizer significantly changed the community structure of nirK-type denitrifiers relative to the unfertilized soil. In comparison, the nirS- and nosZ-type denitrifier genotypes varied in treatments receiving organic fertilizer but not chemical fertilizer alone. The changes in the denitrifier communities were closely associated with soil organic carbon (SOC), NO 3 - , NH 4 + , water holding capacity, and soil pH. Modeling indicated that N 2 O emissions in this soil were primarily associated with the abundance of nirS type denitrifying bacteria, SOC, and NO 3 - . Overall, our findings indicate that (i) the organic fertilizers increased denitrifying enzyme activity, increased denitrifying-bacteria gene copy numbers, but reduced N 2 O emissions, and (ii) nirS- and nosZ-type denitrifiers were more sensitive than nirK-type denitrifiers to the organic fertilizers. Copyright © 2017. Published by Elsevier B.V.

  18. Impact of Poultry Litter Cake, Cleanout, and Bedding following Chemical Amendments on Soil C and N Mineralization

    Directory of Open Access Journals (Sweden)

    Dexter B. Watts

    2012-01-01

    Full Text Available Poultry litter is a great alternative N source for crop production. However, recent poultry litter management changes, and increased chemical amendment use may impact its N availability. Thus, research was initiated to evaluate the effect that broiler cake and total cleanout litter amended with chemical additives have on C and N mineralization. A 35-day incubation study was carried out on a Hartsells fine sandy loam (fine-loamy, siliceous, subactive, thermic Typic Hapludults soil common to the USA Appalachian Plateau region. Three poultry litter components (broiler cake, total cleanout, and bedding material from a broiler house were evaluated and compared to a soil control. Chemical amendments lime (CaCO3, gypsum (CaSO4, aluminum sulfate (AlSO4, and ferrous sulfate (FeSO4 were added to the poultry litter components to determine their impact on C and N mineralization. Litter component additions increased soil C mineralization in the order of broiler cake > total cleanout > bedding > soil control. Although a greater concentration of organic C was observed in the bedding, broiler cake mineralized the most C, which can be attributed to differences in the C : N ratio between treatments. Chemical amendment in addition to the manured soil also impacted C mineralization, with AlSO4 generally decreasing mineralization. Nitrogen mineralization was also significantly affected by poultry litter component applications. Broiler cake addition increased N availability followed by total cleanout compared to soil control, while the bedding resulted in net N immobilization. Chemical amendments impacted N mineralization primarily in the broiler cake amended soil where all chemical amendments decreased mineralization compared to the no chemical amendment treatment. This short-term study (35-day incubation indicates that N availability to crops may be different depending on the poultry litter component used for fertilization and chemical amendment use which could

  19. Assessing the ecological long-term impact of wastewater irrigation on soil and water based on bioassays and chemical analyses.

    Science.gov (United States)

    Richter, Elisabeth; Hecht, Fabian; Schnellbacher, Nadine; Ternes, Thomas A; Wick, Arne; Wode, Florian; Coors, Anja

    2015-11-01

    The reuse of treated wastewater for irrigation and groundwater recharge can counteract water scarcity and reduce pollution of surface waters, but assessing its environmental risk should likewise consider effects associated to the soil. The present study therefore aimed at determining the impact of wastewater irrigation on the habitat quality of water after soil passage and of soil after percolation by applying bioassays and chemical analysis. Lab-scale columns of four different soils encompassing standard European soil and three field soils of varying characteristics and pre-contamination were continuously percolated with treated wastewater to simulate long-term irrigation. Wastewater and its percolates were tested for immobilization of Daphnia magna and growth inhibition of green algae (Pseudokirchneriella subcapitata) and water lentils (Lemna minor). The observed phytotoxicity of the treated wastewater was mostly reduced by soil passage, but in some percolates also increased for green algae. Chemical analysis covering an extensive set of wastewater-born organic pollutants demonstrated that many of them were considerably reduced by soil passage, particularly through peaty soils. Taken together, these results indicated that wastewater-born phytotoxic substances may be removed by soil passage, while existing soil pollutants (e.g. metals) may leach and impair percolate quality. Soils with and without wastewater irrigation were tested for growth of plants (Avena sativa, Brassica napus) and soil bacteria (Arthrobacter globiformis) and reproduction of collembolans (Folsomia candida) and oligochaetes (Enchytraeus crypticus, Eisenia fetida). The habitat quality of the standard and two field soils appeared to be deteriorated by wastewater percolation for at least one organism (enchytraeids, plants or bacteria), while for two pre-contaminated field soils it also was improved (for plants and/or enchytraeids). Wastewater percolation did not seem to raise soil concentrations

  20. A sampling strategy for estimating plot average annual fluxes of chemical elements from forest soils

    NARCIS (Netherlands)

    Brus, D.J.; Gruijter, de J.J.; Vries, de W.

    2010-01-01

    A sampling strategy for estimating spatially averaged annual element leaching fluxes from forest soils is presented and tested in three Dutch forest monitoring plots. In this method sampling locations and times (days) are selected by probability sampling. Sampling locations were selected by

  1. Changes in chemical composition and engineering properties of gypseous soils through leaching: an example from Mashhad, Iran

    DEFF Research Database (Denmark)

    Asghari, Somaye; Ghafoori, Mohammad; Tabatabai, Salman

    2018-01-01

    on the samples and the gypsum and sulfate concentration maps were produced based on these results, combined with the previously available data from 511 boreholes drilled in the area. Seven soil samples with different gypsum concentrations were selected for further analysis in four major groups of tests...... and direct shear). Changes in the mentioned parameters were investigated through a 5-day leaching process. The results indicate that extensive dissolution of gypsum and removal of gypsum bonding between soil particles change soil chemical composition and decrease the soil compressibility and strength...

  2. Identifying Military Impacts on Archaeological Deposits Based on Differences in Soil Organic Carbon and Chemical Elements at Soil Horizon Interfaces

    Science.gov (United States)

    2012-03-01

    Robotic pH meter (AS-3000 Dual pH Analyzer, LabFit, Burswood, Australia) using a 1:1 soil / solution ratio (0.01 M CaCl2) (Kissel et al., 2009). Soil lime...displacement of elements in the soil profile, and alterations in mineralization processes which affect the leachable element concentration in soil solution . Leachable

  3. Tectonic uplift and denudation rate influence soil chemical weathering intensity in a semi-arid environment, southeast Spain: physico-chemical and mineralogical evidence

    Science.gov (United States)

    Ameijeiras-Mariño, Yolanda; Opfergelt, Sophie; Schoonejans, Jérôme; Vanacker, Veerle; Sonnet, Philippe; Delmelle, Pierre

    2015-04-01

    Tectonic uplift is known to influence denudation rates. Denudation, including chemical weathering and physical erosion, affects soil production rates and weathering intensities. At topographic steady state, weathering can be transport- or weathering-limited. In the transport-limited regime, low denudation rates should lead to comparatively high weathering intensities, while in the weathering-limited case high denudation rates are associated with lower weathering intensities. Here, we test if this relationship applies to semi-arid environments where chemical weathering is generally slow. Three catchments (EST, FIL and CAB) were studied in the Internal Zone of the Betic Cordillera in southeast Spain, spanning a range of increasing uplift rates (10-170 mm/kyr) and increasing denudation rates (20-250 mm/kyr) from EST to CAB. In each catchment, two ridgetop soil profiles were sampled down to the bedrock. The three catchments have similar vegetation and climatic conditions, with precipitation of 250- 315 mm/yr and mean annual temperature of 15-17 °C. The mineralogy of the bedrock, as determined by XRD, is similar across the three catchments and is characterized by the presence of quartz, muscovite, clinochlore, biotite and plagioclase. This primary mineral assemblage is also found in the catchment soils, indicating that the soils studied derive from the same parent material. The soil clay-size fraction is dominated by kaolinite, vermiculite and illite. However, the proportions of the soil primary and secondary minerals vary between the catchment sites. The abundance of biotite decreases from CAB (14%) to EST (4%), whereas the quartz and clay contents show an opposite tendency (from 30 to 69% and 9.9 to 14.3%, respectively). Further, the abundance of vermiculite increases from CAB to EST. The results are interpreted in terms of increasing weathering intensity from CAB to EST by weathering of biotite into vermiculite and enrichment of soils on more weathering resistant

  4. Soil chemical atributtes on brachiaria spp in integrated crop livestock system

    Directory of Open Access Journals (Sweden)

    Valdinei Tadeu Paulino

    2013-12-01

    Full Text Available Integrated crop-livestock systems have attracted more interest in the last few years due to their capacity of improving stability and sustainability of agricultural systems when compared to more specialized production ones. The crop-livestock integration is an effective technique, but complex to maintain pasture productivity and its recovery, whose efficiency depends on soil physical management and its chemical fertility. Regarding the soil fertility, the corrective practices generally begin with the liming due to the high acidity of most Brazilian soils and low levels of Ca and Mg in the exchange complex and high Al saturation. In areas of crop-livestock systems, liming corrects the surface acidity potential. However, this practice can leave the subsoil with excess aluminum and lack of calcium, which inhibit root growth and affect the absorption of water and nutrients. The application of gypsum allows the improvement of the subsoil, reducing Al saturation and increasing levels of calcium and sulfur. The aim of this study was to investigate changes in the soil chemical properties of a Haplorthox soil in integrated crop-livestock system (ICL with Brachiaria brizantha cv. Marandu and Piatã, Brachiaria ruziziensis with gypsum and liming application. This study was conducted at the Instituto de Zootecnia, Nova Odessa/SP, a pasture established on a soil with medium texture (61.4% sand, silt 14.6% and 24.0% clay. The treatment plots consisted on integration crop-livestock (ICL cultivated - maize and B. Marandu,  ICL - maize and B. ruziziensis, ICL - maize and B. Piatã and an untreated control group (control - without liming and fertilization grazed pasture throughout the year, located immediately adjacent to the ICL evaluation, which was cultivated for 25 years with B. brizantha cv. Marandu. All pastures were desiccated in October with glyphosate-based herbicide (4 liters per hectare. Then gypsum (1.2 Mg ha-1 and liming (1.2 Mg ha-1 were applied

  5. Fate of the chemical warfare agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX) on soil following accelerant-based fire and liquid decontamination.

    Science.gov (United States)

    Gravett, M R; Hopkins, F B; Self, A J; Webb, A J; Timperley, C M; Riches, J R

    2014-08-01

    In the event of alleged use of organophosphorus nerve agents, all kinds of environmental samples can be received for analysis. These might include decontaminated and charred matter collected from the site of a suspected chemical attack. In other scenarios, such matter might be sampled to confirm the site of a chemical weapon test or clandestine laboratory decontaminated and burned to prevent discovery. To provide an analytical capability for these contingencies, we present a preliminary investigation of the effect of accelerant-based fire and liquid decontamination on soil contaminated with the nerve agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX). The objectives were (a) to determine if VX or its degradation products were detectable in soil after an accelerant-based fire promoted by aviation fuel, including following decontamination with Decontamination Solution 2 (DS2) or aqueous sodium hypochlorite, (b) to develop analytical methods to support forensic analysis of accelerant-soaked, decontaminated and charred soil and (c) to inform the design of future experiments of this type to improve analytical fidelity. Our results show for the first time that modern analytical techniques can be used to identify residual VX and its degradation products in contaminated soil after an accelerant-based fire and after chemical decontamination and then fire. Comparison of the gas chromatography-mass spectrometry (GC-MS) profiles of VX and its impurities/degradation products from contaminated burnt soil, and burnt soil spiked with VX, indicated that the fire resulted in the production of diethyl methylphosphonate and O,S-diethyl methylphosphonothiolate (by an unknown mechanism). Other products identified were indicative of chemical decontamination, and some of these provided evidence of the decontaminant used, for example, ethyl 2-methoxyethyl methylphosphonate and bis(2-methoxyethyl) methylphosphonate following decontamination with DS2. Sample preparation

  6. Impact of a low intensity controlled-fire in some chemical soil properties.

    Science.gov (United States)

    Martínez-Murillo, Juan F.; Hueso-González, Paloma; Aranda-Gómez, Francisco; Damián Ruiz-Sinoga, José

    2014-05-01

    Some changes in chemical soil properties can be observed after fires of low intensities. pH and electric conductivity tend to increase, while C/N ratio decrease. In the case of organic matter, the content can increase due to the massive incorporation of necromass including, especially, plants and roots. The aim of this study is to assess the impact of low intensity and controlled fire in some soil properties in field conditions. El Pinarillo experimental area is located in South of Spain. Two set of closed plots were installed (24 m2: 12 m length x 2 m width). One of them was remained as control with the original vegetation cover (Mediterranean matorral: Rosmarinus officinalis, Cistus clusii, Lavandula stoechas, Chamaeropos humilis, Thymus baetica), and the other one was burnt in a controlled-fire in 2011. Weather conditions and water content of vegetation influenced in the intensity of fire (low). After the controlled-fire, soil surface sample (0-5 cm) were taken in both set of plots (B, burnt soil samples; C, control soil samples). Some soil chemical properties were analysed: organic matter content (OM), C/N ratio, pH and electrical conductivity (EC). Some changes were observed in B corroborating a controlled-fire of low intensity. pH remained equal after fire (B: pH=7.7±0.11; C: pH=7.7±0.04). An increment was obtained in the case of EC (B: EC=0.45 mScm-1±0.08 mScm-1; C: EC=0.35 mScm-1±0.07 mScm-1) and OM (B: OM=8.7%±3.8%; C: pH=7.3%±1.5%). Finally, C/N ratio decreased after fire respect to the control and initial conditions (B: C/N=39.0±14.6; C: C/N =46.5±10.2).

  7. Changes in physico-chemical properties of soil by adding organic amendments in a tomato crop

    International Nuclear Information System (INIS)

    Sanchez Navarro, A.; Marin Salneandro, P.; Delgado Iniesta, M. J.

    2009-01-01

    This study possible changes in the physico-chemical properties of soil under intensive cultivation of tomatoes after the addition of two different types of organic amendments: a natural as sheep manure and synthetic made. Trial plots that were designed are located in the NE of the province of Granada, in Puebla de Trial plots that were designed are located in the NE of the province of Granada, in Puebla de Don Fadrique, in the are that in recent years, change are very important in agriculture, from traditional farms extensive cultivation of rain-fed cereal crops such as intensive vegetale broccoli or tomatoes. (Author) 16 refs.

  8. Fate of Carbofuran and Interaction with Agricultural Chemicals in a Soil-Crop-Water System

    International Nuclear Information System (INIS)

    Koeppe, M.; Lichtenstein, E.P.

    1981-01-01

    Full text: The fate, movement, and metabolism of 14 C-(ring)-carbofuran and its interaction with agricultural chemicals was studied in a soil-corn-water system. Movement of carbofuran through soils occurred under both percolating and non-percolating conditions. Under percolating conditions 49.13% of applied 14 C leached through the soil into the aquaria. Thus, less 14 C-residues were recovered from percolated soils than from nonpercolated soils, 25.85 and 57.90% of applied C, respectively. The control corn contained more than twice as much 14 C-residues as the corn grown under percolating conditions, 22.16 and 10.78% of applied C, respectively. 14 C-(ring)-carbofuran residues added to aquaria containing a layer of lake mud rapidly disappeared from the water and the majority became bound to the lake mud or was metabolized by the Elodea plants to water-soluble or bound 14 C-residues. After 3 weeks incubation 14 C-residues associated with the water, lake mud, Elodea plants and guppies were 2.14, 19.17, 3.65, and 0.19% of applied 14 C, respectively. Initially, the percolated water containing 14 C-residues was toxic to both guppies and Aedes aegypti Linnaeus larvae. However, guppies and Aedes larvae introduced after 9 days incubation survived for the remainder of the experiment. This indicated that toxic 14 C-residues had either degraded to non-toxic compounds or were no longer associated with the water. (author)

  9. Species diversity and chemical properties of litter influence non-additive effects of litter mixtures on soil carbon and nitrogen cycling.

    Directory of Open Access Journals (Sweden)

    Bing Mao

    Full Text Available Decomposition of litter mixtures generally cannot be predicted from the component species incubated in isolation. Therefore, such non-additive effects of litter mixing on soil C and N dynamics remain poorly understood in terrestrial ecosystems. In this study, litters of Mongolian pine and three dominant understory species and soil were collected from a Mongolian pine plantation in Northeast China. In order to examine the effects of mixed-species litter on soil microbial biomass N, soil net N mineralization and soil respiration, four single litter species and their mixtures consisting of all possible 2-, 3- and 4-species combinations were added to soils, respectively. In most instances, species mixing produced synergistic non-additive effects on soil microbial biomass N and soil respiration, but antagonistic non-additive effects on net N mineralization. Species composition rather than species richness explained the non-additive effects of species mixing on soil microbial biomass N and net N mineralization, due to the interspecific differences in litter chemical composition. Both litter species composition and richness explained non-additive soil respiration responses to mixed-species litter, while litter chemical diversity and chemical composition did not. Our study indicated that litter mixtures promoted soil microbial biomass N and soil respiration, and inhibited net N mineralization. Soil N related processes rather than soil respiration were partly explained by litter chemical composition and chemical diversity, highlighting the importance of functional diversity of litter on soil N cycling.

  10. Species diversity and chemical properties of litter influence non-additive effects of litter mixtures on soil carbon and nitrogen cycling.

    Science.gov (United States)

    Mao, Bing; Mao, Rong; Zeng, De-Hui

    2017-01-01

    Decomposition of litter mixtures generally cannot be predicted from the component species incubated in isolation. Therefore, such non-additive effects of litter mixing on soil C and N dynamics remain poorly understood in terrestrial ecosystems. In this study, litters of Mongolian pine and three dominant understory species and soil were collected from a Mongolian pine plantation in Northeast China. In order to examine the effects of mixed-species litter on soil microbial biomass N, soil net N mineralization and soil respiration, four single litter species and their mixtures consisting of all possible 2-, 3- and 4-species combinations were added to soils, respectively. In most instances, species mixing produced synergistic non-additive effects on soil microbial biomass N and soil respiration, but antagonistic non-additive effects on net N mineralization. Species composition rather than species richness explained the non-additive effects of species mixing on soil microbial biomass N and net N mineralization, due to the interspecific differences in litter chemical composition. Both litter species composition and richness explained non-additive soil respiration responses to mixed-species litter, while litter chemical diversity and chemical composition did not. Our study indicated that litter mixtures promoted soil microbial biomass N and soil respiration, and inhibited net N mineralization. Soil N related processes rather than soil respiration were partly explained by litter chemical composition and chemical diversity, highlighting the importance of functional diversity of litter on soil N cycling.

  11. Using magnetic and chemical measurements to detect atmospherically-derived metal pollution in artificial soils and metal uptake in plants

    International Nuclear Information System (INIS)

    Sapkota, B.; Cioppa, M.T.

    2012-01-01

    Quantification of potential effects of ambient atmospheric pollution on magnetic and chemical properties of soils and plants requires precise experimental studies. A controlled growth experiment assessing magnetic and chemical parameters was conducted within (controls) and outside (exposed) a greenhouse setting. Magnetic susceptibility (MS) measurements showed that while initial MS values were similar for the sample sets, the overall MS value of exposed soil was significantly greater than in controls, suggesting an additional input of Fe-containing particles. Scanning electron microscope images of the exposed soils revealed numerous angular magnetic particles and magnetic spherules typical of vehicular exhaust and combustion processes, respectively. Similarly, chemical analysis of plant roots showed that plants grown in the exposed soil had higher concentrations of Fe and heavy (toxic) metals than controls. This evidence suggests that atmospheric deposition contributed to the MS increase in exposed soils and increased metal uptake by plants grown in this soil. - Highlights: ► Magnetic susceptibility (MS) values increased in exposed soils during the growth. ► MS values in control soils decreased from their initial values during the growth. ► Decrease in MS values due to downwards migration of Fe particles, magnetic mineral transformations and Fe uptake by plants. ► Higher metal uptake in plants grown in exposed soils than those grown in controls. ► Atmospheric particulate deposition isolated as main contributor to these effects. - Variations in atmospheric particulate levels are measurable using magnetic and chemical