WorldWideScience

Sample records for time integration method

  1. Mixed time integration methods for transient thermal analysis of structures

    Science.gov (United States)

    Liu, W. K.

    1983-01-01

    The computational methods used to predict and optimize the thermal-structural behavior of aerospace vehicle structures are reviewed. In general, two classes of algorithms, implicit and explicit, are used in transient thermal analysis of structures. Each of these two methods has its own merits. Due to the different time scales of the mechanical and thermal responses, the selection of a time integration method can be a difficult yet critical factor in the efficient solution of such problems. Therefore mixed time integration methods for transient thermal analysis of structures are being developed. The computer implementation aspects and numerical evaluation of these mixed time implicit-explicit algorithms in thermal analysis of structures are presented. A computationally-useful method of estimating the critical time step for linear quadrilateral element is also given. Numerical tests confirm the stability criterion and accuracy characteristics of the methods. The superiority of these mixed time methods to the fully implicit method or the fully explicit method is also demonstrated.

  2. On the solution of high order stable time integration methods

    Czech Academy of Sciences Publication Activity Database

    Axelsson, Owe; Blaheta, Radim; Sysala, Stanislav; Ahmad, B.

    2013-01-01

    Roč. 108, č. 1 (2013), s. 1-22 ISSN 1687-2770 Institutional support: RVO:68145535 Keywords : evolution equations * preconditioners for quadratic matrix polynomials * a stiffly stable time integration method Subject RIV: BA - General Mathematics Impact factor: 0.836, year: 2013 http://www.boundaryvalueproblems.com/content/2013/1/108

  3. Evaluation of the filtered leapfrog-trapezoidal time integration method

    International Nuclear Information System (INIS)

    Roache, P.J.; Dietrich, D.E.

    1988-01-01

    An analysis and evaluation are presented for a new method of time integration for fluid dynamic proposed by Dietrich. The method, called the filtered leapfrog-trapezoidal (FLT) scheme, is analyzed for the one-dimensional constant-coefficient advection equation and is shown to have some advantages for quasi-steady flows. A modification (FLTW) using a weighted combination of FLT and leapfrog is developed which retains the advantages for steady flows, increases accuracy for time-dependent flows, and involves little coding effort. Merits and applicability are discussed

  4. A discontinous Galerkin finite element method with an efficient time integration scheme for accurate simulations

    KAUST Repository

    Liu, Meilin

    2011-07-01

    A discontinuous Galerkin finite element method (DG-FEM) with a highly-accurate time integration scheme is presented. The scheme achieves its high accuracy using numerically constructed predictor-corrector integration coefficients. Numerical results show that this new time integration scheme uses considerably larger time steps than the fourth-order Runge-Kutta method when combined with a DG-FEM using higher-order spatial discretization/basis functions for high accuracy. © 2011 IEEE.

  5. Evaluation of time integration methods for transient response analysis of nonlinear structures

    International Nuclear Information System (INIS)

    Park, K.C.

    1975-01-01

    Recent developments in the evaluation of direct time integration methods for the transient response analysis of nonlinear structures are presented. These developments, which are based on local stability considerations of an integrator, show that the interaction between temporal step size and nonlinearities of structural systems has a pronounced effect on both accuracy and stability of a given time integration method. The resulting evaluation technique is applied to a model nonlinear problem, in order to: 1) demonstrate that it eliminates the present costly process of evaluating time integrator for nonlinear structural systems via extensive numerical experiments; 2) identify the desirable characteristics of time integration methods for nonlinear structural problems; 3) develop improved stiffly-stable methods for application to nonlinear structures. Extension of the methodology for examination of the interaction between a time integrator and the approximate treatment of nonlinearities (such as due to pseudo-force or incremental solution procedures) is also discussed. (Auth.)

  6. Comparison of a Local Linearization Algorithm with Standard Numerical Integration Methods for Real-Time Simulation

    DEFF Research Database (Denmark)

    Cook, Gerald; Lin, Ching-Fang

    1980-01-01

    The local linearization algorithm is presented as a possible numerical integration scheme to be used in real-time simulation. A second-order nonlinear example problem is solved using different methods. The local linearization approach is shown to require less computing time and give significant...... improvement in accuracy over the classical second-order integration methods....

  7. An integration time adaptive control method for atmospheric composition detection of occultation

    Science.gov (United States)

    Ding, Lin; Hou, Shuai; Yu, Fei; Liu, Cheng; Li, Chao; Zhe, Lin

    2018-01-01

    When sun is used as the light source for atmospheric composition detection, it is necessary to image sun for accurate identification and stable tracking. In the course of 180 second of the occultation, the magnitude of sun light intensity through the atmosphere changes greatly. It is nearly 1100 times illumination change between the maximum atmospheric and the minimum atmospheric. And the process of light change is so severe that 2.9 times per second of light change can be reached. Therefore, it is difficult to control the integration time of sun image camera. In this paper, a novel adaptive integration time control method for occultation is presented. In this method, with the distribution of gray value in the image as the reference variable, and the concepts of speed integral PID control, the integration time adaptive control problem of high frequency imaging. The large dynamic range integration time automatic control in the occultation can be achieved.

  8. Mixed time integration methods for transient thermal analysis of structures, appendix 5

    Science.gov (United States)

    Liu, W. K.

    1982-01-01

    Mixed time integration methods for transient thermal analysis of structures are studied. An efficient solution procedure for predicting the thermal behavior of aerospace vehicle structures was developed. A 2D finite element computer program incorporating these methodologies is being implemented. The performance of these mixed time finite element algorithms can then be evaluated employing the proposed example problem.

  9. A revised method to calculate the concentration time integral of atmospheric pollutants

    International Nuclear Information System (INIS)

    Voelz, E.; Schultz, H.

    1980-01-01

    It is possible to calculate the spreading of a plume in the atmosphere under nonstationary and nonhomogeneous conditions by introducing the ''particle-in-cell'' method (PIC). This is a numerical method by which the transport of and the diffusion in the plume is reproduced in such a way, that particles representing the concentration are moved time step-wise in restricted regions (cells) and separately with the advection velocity and the diffusion velocity. This has a systematical advantage over the steady state Gaussian plume model usually used. The fixed-point concentration time integral is calculated directly instead of being substituted by the locally integrated concentration at a constant time as is done in the Gaussian model. In this way inaccuracies due to the above mentioned computational techniques may be avoided for short-time emissions, as may be seen by the fact that both integrals do not lead to the same results. Also the PIC method enables one to consider the height-dependent wind speed and its variations while the Gaussian model can be used only with averaged wind data. The concentration time integral calculated by the PIC method results in higher maximum values in shorter distances to the source. This is an effect often observed in measurements. (author)

  10. Time-integration methods for finite element discretisations of the second-order Maxwell equation

    NARCIS (Netherlands)

    Sarmany, D.; Bochev, Mikhail A.; van der Vegt, Jacobus J.W.

    This article deals with time integration for the second-order Maxwell equations with possibly non-zero conductivity in the context of the discontinuous Galerkin finite element method (DG-FEM) and the H(curl)-conforming FEM. For the spatial discretisation, hierarchic H(curl)-conforming basis

  11. Time-integration methods for finite element discretisations of the second-order Maxwell equation

    NARCIS (Netherlands)

    Sarmany, D.; Bochev, Mikhail A.; van der Vegt, Jacobus J.W.

    This article deals with time integration for the second-order Maxwell equations with possibly non-zero conductivity in the context of the discontinuous Galerkin finite element method DG-FEM) and the $H(\\mathrm{curl})$-conforming FEM. For the spatial discretisation, hierarchic

  12. Integration of image exposure time into a modified laser speckle imaging method

    Energy Technology Data Exchange (ETDEWEB)

    RamIrez-San-Juan, J C; Salazar-Hermenegildo, N; Ramos-Garcia, R; Munoz-Lopez, J [Optics Department, INAOE, Puebla (Mexico); Huang, Y C [Department of Electrical Engineering and Computer Science, University of California, Irvine, CA (United States); Choi, B, E-mail: jcram@inaoep.m [Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA (United States)

    2010-11-21

    Speckle-based methods have been developed to characterize tissue blood flow and perfusion. One such method, called modified laser speckle imaging (mLSI), enables computation of blood flow maps with relatively high spatial resolution. Although it is known that the sensitivity and noise in LSI measurements depend on image exposure time, a fundamental disadvantage of mLSI is that it does not take into account this parameter. In this work, we integrate the exposure time into the mLSI method and provide experimental support of our approach with measurements from an in vitro flow phantom.

  13. A new family of time integration methods for heat conduction problems using numerical green's functions

    Science.gov (United States)

    Loureiro, F. S.; Mansur, Webe Joao

    2009-09-01

    This paper is concerned with the formulation and numerical implementation of a new class of time integration schemes applied to linear heat conduction problems. The temperature field at any time level is calculated in terms of the numerical Green’s function matrix of the model problem by considering an analytical time integral equation. After spatial discretization by the finite element method, the Green’s function matrix which transfers solution from t to t + Δ t is explicitly computed in nodal coordinates using efficient implicit and explicit Runge-Kutta methods. It is shown that the stability and the accuracy of the proposed method are highly improved when a sub-step procedure is used to calculate recursively the Green’s function matrix at the end of the first time step. As a result, with a suitable choice of the number of sub-steps, large time steps can be used without degenerating the numerical solution. Finally, the effectiveness of the present methodology is demonstrated by analyzing two numerical examples.

  14. A discontinuous galerkin time domain-boundary integral method for analyzing transient electromagnetic scattering

    KAUST Repository

    Li, Ping

    2014-07-01

    This paper presents an algorithm hybridizing discontinuous Galerkin time domain (DGTD) method and time domain boundary integral (BI) algorithm for 3-D open region electromagnetic scattering analysis. The computational domain of DGTD is rigorously truncated by analytically evaluating the incoming numerical flux from the outside of the truncation boundary through BI method based on the Huygens\\' principle. The advantages of the proposed method are that it allows the truncation boundary to be conformal to arbitrary (convex/ concave) scattering objects, well-separated scatters can be truncated by their local meshes without losing the physics (such as coupling/multiple scattering) of the problem, thus reducing the total mesh elements. Furthermore, low frequency waves can be efficiently absorbed, and the field outside the truncation domain can be conveniently calculated using the same BI formulation. Numerical examples are benchmarked to demonstrate the accuracy and versatility of the proposed method.

  15. EVALUATION OF THE POUNDING FORCES DURING EARTHQUAKE USING EXPLICIT DYNAMIC TIME INTEGRATION METHOD

    Directory of Open Access Journals (Sweden)

    Nica George Bogdan

    2017-09-01

    Full Text Available Pounding effects during earthquake is a subject of high significance for structural engineers performing in the urban areas. In this paper, two ways to account for structural pounding are used in a MATLAB code, namely classical stereomechanics approach and nonlinear viscoelastic impact element. The numerical study is performed on SDOF structures acted by ELCentro recording. While most of the studies available in the literature are related to Newmark implicit time integration method, in this study the equations of motion are numerical integrated using central finite difference method, an explicit method, having the main advantage that in the displacement at the ith+1 step is calculated based on the loads from the ith step. Thus, the collision is checked and the pounding forces are taken into account into the equation of motion in an easier manner than in an implicit integration method. First, a comparison is done using available data in the literature. Both linear and nonlinear behavior of the structures during earthquake is further investigated. Several layout scenarios are also investigated, in which one or more weak buildings are adjacent to a stiffer building. One of the main findings in this paper is related to the behavior of a weak structure located between two stiff structures.

  16. A hybrid time-domain discontinuous galerkin-boundary integral method for electromagnetic scattering analysis

    KAUST Repository

    Li, Ping

    2014-05-01

    A scheme hybridizing discontinuous Galerkin time-domain (DGTD) and time-domain boundary integral (TDBI) methods for accurately analyzing transient electromagnetic scattering is proposed. Radiation condition is enforced using the numerical flux on the truncation boundary. The fields required by the flux are computed using the TDBI from equivalent currents introduced on a Huygens\\' surface enclosing the scatterer. The hybrid DGTDBI ensures that the radiation condition is mathematically exact and the resulting computation domain is as small as possible since the truncation boundary conforms to scatterer\\'s shape and is located very close to its surface. Locally truncated domains can also be defined around each disconnected scatterer additionally reducing the size of the overall computation domain. Numerical examples demonstrating the accuracy and versatility of the proposed method are presented. © 2014 IEEE.

  17. Kinetic Analysis of Parallel-Consecutive First-Order Reactions with a Reversible Step: Concentration-Time Integrals Method

    Science.gov (United States)

    Mucientes, A. E.; de la Pena, M. A.

    2009-01-01

    The concentration-time integrals method has been used to solve kinetic equations of parallel-consecutive first-order reactions with a reversible step. This method involves the determination of the area under the curve for the concentration of a given species against time. Computer techniques are used to integrate experimental curves and the method…

  18. A time-domain finite element boundary integration method for ultrasonic nondestructive evaluation.

    Science.gov (United States)

    Shi, Fan; Choi, Wonjae; Skelton, Elizabeth A; Lowe, Michael J S; Craster, Richard V

    2014-12-01

    A 2-D and 3-D numerical modeling approach for calculating the elastic wave scattering signals from complex stress-free defects is evaluated. In this method, efficient boundary integration across the complex boundary of the defect is coupled with a time-domain finite element (FE) solver. The model is designed to simulate time-domain ultrasonic nondestructive evaluation in bulk media. This approach makes use of the hybrid concept of linking a local numerical model to compute the near-field scattering behavior and theoretical mathematical formulas for postprocessing to calculate the received signals. It minimizes the number of monitoring signals from the FE calculation so that the computation effort in postprocessing decreases significantly. In addition, by neglecting the conventional regular monitoring box, the region for FE calculation can be made smaller. In this paper, the boundary integral method is implemented in a commercial FE code, and it is validated by comparing the scattering signals with results from corresponding full FE models. The coupled method is then implemented in real inspection scenarios in both 2-D and 3-D, and the accuracy and the efficiency are demonstrated. The limitations of the proposed model and future works are also discussed.

  19. A hybrid method combining the FDTD and a time domain boundary-integral equation marching-on-in-time algorithm

    Science.gov (United States)

    Becker, A.; Hansen, V.

    2003-05-01

    In this paper a hybrid method combining the FDTD/FIT with a Time Domain Boundary-Integral Marching-on-in-Time Algorithm (TD-BIM) is presented. Inhomogeneous regions are modelled with the FIT-method, an alternative formulation of the FDTD. Homogeneous regions (which is in the presented numerical example the open space) are modelled using a TD-BIM with equivalent electric and magnetic currents flowing on the boundary between the inhomogeneous and the homogeneous regions. The regions are coupled by the tangential magnetic fields just outside the inhomogeneous regions. These fields are calculated by making use of a Mixed Potential Integral Formulation for the magnetic field. The latter consists of equivalent electric and magnetic currents on the boundary plane between the homogeneous and the inhomogeneous region. The magnetic currents result directly from the electric fields of the Yee lattice. Electric currents in the same plane are calculated by making use of the TD-BIM and using the electric field of the Yee lattice as boundary condition. The presented hybrid method only needs the interpolations inherent in FIT and no additional interpolation. A numerical result is compared to a calculation that models both regions with FDTD.

  20. A hybrid method combining the FDTD and a time domain boundary-integral equation marching-on-in-time algorithm

    Directory of Open Access Journals (Sweden)

    A. Becker

    2003-01-01

    Full Text Available In this paper a hybrid method combining the FDTD/FIT with a Time Domain Boundary-Integral Marching-on-in-Time Algorithm (TD-BIM is presented. Inhomogeneous regions are modelled with the FIT-method, an alternative formulation of the FDTD. Homogeneous regions (which is in the presented numerical example the open space are modelled using a TD-BIM with equivalent electric and magnetic currents flowing on the boundary between the inhomogeneous and the homogeneous regions. The regions are coupled by the tangential magnetic fields just outside the inhomogeneous regions. These fields are calculated by making use of a Mixed Potential Integral Formulation for the magnetic field. The latter consists of equivalent electric and magnetic currents on the boundary plane between the homogeneous and the inhomogeneous region. The magnetic currents result directly from the electric fields of the Yee lattice. Electric currents in the same plane are calculated by making use of the TD-BIM and using the electric field of the Yee lattice as boundary condition. The presented hybrid method only needs the interpolations inherent in FIT and no additional interpolation. A numerical result is compared to a calculation that models both regions with FDTD.

  1. analysis of large electromagnetic pulse simulators using the electric field integral equation method in time domain

    International Nuclear Information System (INIS)

    Jamali, J.; Aghajafari, R.; Moini, R.; Sadeghi, H.

    2002-01-01

    A time-domain approach is presented to calculate electromagnetic fields inside a large Electromagnetic Pulse (EMP) simulator. This type of EMP simulator is used for studying the effect of electromagnetic pulses on electrical apparatus in various structures such as vehicles, a reoplanes, etc. The simulator consists of three planar transmission lines. To solve the problem, we first model the metallic structure of the simulator as a grid of conducting wires. The numerical solution of the governing electric field integral equation is then obtained using the method of moments in time domain. To demonstrate the accuracy of the model, we consider a typical EMP simulator. The comparison of our results with those obtained experimentally in the literature validates the model introduced in this paper

  2. Practical method of calculating time-integrated concentrations at medium and large distances

    International Nuclear Information System (INIS)

    Cagnetti, P.; Ferrara, V.

    1980-01-01

    Previous reports have covered the possibility of calculating time-integrated concentrations (TICs) for a prolonged release, based on concentration estimates for a brief release. This study proposes a simple method of evaluating concentrations in the air at medium and large distances, for a brief release. It is known that the stability of the atmospheric layers close to ground level influence diffusion only over short distances. Beyond some tens of kilometers, as the pollutant cloud progressively reaches higher layers, diffusion is affected by factors other than the stability at ground level, such as wind shear for intermediate distances and the divergence and rotational motion of air masses towards the upper limit of the mesoscale and on the synoptic scale. Using the data available in the literature, expressions for sigmasub(y) and sigmasub(z) are proposed for transfer times corresponding to those for up to distances of several thousand kilometres, for two initial diffusion situations (up to distances of 10 - 20 km), those characterized by stable and neutral conditions respectively. Using this method simple hand calculations can be made for any problem relating to the diffusion of radioactive pollutants over long distances

  3. A Scalable, Timing-Safe, Network-on-Chip Architecture with an Integrated Clock Distribution Method

    DEFF Research Database (Denmark)

    Bjerregaard, Tobias; Stensgaard, Mikkel Bystrup; Sparsø, Jens

    2007-01-01

    regions concerns the possibility of data corruption caused by metastability. This paper presents an integrated communication and mesochronous clocking strategy, which avoids timing related errors while maintaining a globally synchronous system perspective. The architecture is scalable as timing integrity......Growing system sizes together with increasing performance variability are making globally synchronous operation hard to realize. Mesochronous clocking constitutes a possible solution to the problems faced. The most fundamental of problems faced when communicating between mesochronously clocked...... is based purely on local observations. It is demonstrated with a 90 nm CMOS standard cell network-on-chip design which implements completely timing-safe, global communication in a modular system...

  4. Expansion methods for solving integral equations with multiple time lags using Bernstein polynomial of the second kind

    Directory of Open Access Journals (Sweden)

    Mahmoud Paripour

    2014-08-01

    Full Text Available In this paper, the Bernstein polynomials are used to approximatethe solutions of linear integral equations with multiple time lags (IEMTL through expansion methods (collocation method, partition method, Galerkin method. The method is discussed in detail and illustrated by solving some numerical examples. Comparison between the exact and approximated results obtained from these methods is carried out

  5. Numerical Time Integration Methods for a Point Absorber Wave Energy Converter

    DEFF Research Database (Denmark)

    Zurkinden, Andrew Stephen; Kramer, Morten

    2012-01-01

    function of the radiation force and the unknown body velocity due to an external force. The convolution integral can be seen as a memory effect where the system response in the past affects the response in the future. Two different time-domain models will be presented. The first one is based...

  6. Evolution equation of Lie-type for finite deformations, time-discrete integration, and incremental methods

    Czech Academy of Sciences Publication Activity Database

    Fiala, Zdeněk

    2015-01-01

    Roč. 226, č. 1 (2015), s. 17-35 ISSN 0001-5970 R&D Projects: GA ČR(CZ) GA103/09/2101 Institutional support: RVO:68378297 Keywords : solid mechanics * finite deformations * evolution equation of Lie-type * time-discrete integration Subject RIV: BA - General Mathematics OBOR OECD: Statistics and probability Impact factor: 1.694, year: 2015 http://link.springer.com/article/10.1007%2Fs00707-014-1162-9#page-1

  7. An integrative time-varying frequency detection and channel sounding method for dynamic plasma sheath

    Science.gov (United States)

    Shi, Lei; Yao, Bo; Zhao, Lei; Liu, Xiaotong; Yang, Min; Liu, Yanming

    2018-01-01

    The plasma sheath-surrounded hypersonic vehicle is a dynamic and time-varying medium and it is almost impossible to calculate time-varying physical parameters directly. The in-fight detection of the time-varying degree is important to understand the dynamic nature of the physical parameters and their effect on re-entry communication. In this paper, a constant envelope zero autocorrelation (CAZAC) sequence based on time-varying frequency detection and channel sounding method is proposed to detect the plasma sheath electronic density time-varying property and wireless channel characteristic. The proposed method utilizes the CAZAC sequence, which has excellent autocorrelation and spread gain characteristics, to realize dynamic time-varying detection/channel sounding under low signal-to-noise ratio in the plasma sheath environment. Theoretical simulation under a typical time-varying radio channel shows that the proposed method is capable of detecting time-variation frequency up to 200 kHz and can trace the channel amplitude and phase in the time domain well under -10 dB. Experimental results conducted in the RF modulation discharge plasma device verified the time variation detection ability in practical dynamic plasma sheath. Meanwhile, nonlinear phenomenon of dynamic plasma sheath on communication signal is observed thorough channel sounding result.

  8. A method to evaluate process performance by integrating time and resources

    Science.gov (United States)

    Wang, Yu; Wei, Qingjie; Jin, Shuang

    2017-06-01

    The purpose of process mining is to improve the existing process of the enterprise, so how to measure the performance of the process is particularly important. However, the current research on the performance evaluation method is still insufficient. The main methods of evaluation are mainly using time or resource. These basic statistics cannot evaluate process performance very well. In this paper, a method of evaluating the performance of the process based on time dimension and resource dimension is proposed. This method can be used to measure the utilization and redundancy of resources in the process. This paper will introduce the design principle and formula of the evaluation algorithm. Then, the design and the implementation of the evaluation method will be introduced. Finally, we will use the evaluating method to analyse the event log from a telephone maintenance process and propose an optimization plan.

  9. Pure radiation in space-time models that admit integration of the eikonal equation by the separation of variables method

    Science.gov (United States)

    Osetrin, Evgeny; Osetrin, Konstantin

    2017-11-01

    We consider space-time models with pure radiation, which admit integration of the eikonal equation by the method of separation of variables. For all types of these models, the equations of the energy-momentum conservation law are integrated. The resulting form of metric, energy density, and wave vectors of radiation as functions of metric for all types of spaces under consideration is presented. The solutions obtained can be used for any metric theories of gravitation.

  10. Death time estimation in case work. II. Integration of different methods.

    Science.gov (United States)

    Henssge, C; Madea, B; Gallenkemper, E

    1988-10-01

    The mean value of the time of death is not reliable because of the great variability of the time-dependent criteria of dead bodies. However, it is possible to narrow down a reliable time period for a stated death by means of the lower and upper limits of error of different criteria. The external data of lividity, rigor, mechanical and electrical excitability of facial muscles and the chemical excitability of the iris have all been gathered from literature, chronologically arranged and clearly presented. After rectal temperature measurement and a corresponding nomogram reading, it is simple to choose other suitable criteria and to integrate them with the aid of a chart thus producing a rational and practical procedure for use at a scene of crime.

  11. Time transformations and Cowell's method. [for numerical integration of satellite motion equations

    Science.gov (United States)

    Velez, C. E.; Hilinski, S.

    1978-01-01

    The precise numerical integration of Cowell's equations of satellite motion is frequently performed with an independent variable s defined by an equation of the form dt = cr to the n-th power ds, where t represents time, r the radial distance from the center of attraction, c is a constant, and n is a parameter. This has been primarily motivated by the 'uniformizing' effects of such a transformation resulting in desirable 'analytic' stepsize control for elliptical orbits. This report discusses the 'proper' choice of the parameter n defining the independent variable s for various types of orbits and perturbation models, and develops a criterion for its selection.

  12. Experiences with a compound method for estimating the time since death. II. Integration of non-temperature-based methods.

    Science.gov (United States)

    Henssge, C; Althaus, L; Bolt, J; Freislederer, A; Haffner, H T; Henssge, C A; Hoppe, B; Schneider, V

    2000-01-01

    The period since death was estimated at the scene in 72 consecutive cases using the temperature-based nomogram method as the primary method and supplemented by examination of criteria such as lividity, rigor mortis, mechanical and electrical excitability of skeletal muscle and chemical excitability of the iris. A case-oriented, computer-assisted selection of the non-temperature-based methods and integration of the results into a common result of the compound method was made following a special logistic. The limits of the period since death as estimated by the nomogram were improved in 49 cases by including the non-temperature-based methods and also provided results in 4 cases where the temperature method could not be used. In a further 6 cases the non-temperature-based methods confirmed the limits estimated by the temperature method but in 14 cases a useful result could not be obtained. In only one of the cases investigated was the upper limit of the period since death, as estimated by the criterion re-establishment of rigor (8 h post-mortem), in contradiction with the period determined by the police investigations (9.4 h post-mortem).

  13. Time-splitting combined with exponential wave integrator fourier pseudospectral method for Schrödinger-Boussinesq system

    Science.gov (United States)

    Liao, Feng; Zhang, Luming; Wang, Shanshan

    2018-02-01

    In this article, we formulate an efficient and accurate numerical method for approximations of the coupled Schrödinger-Boussinesq (SBq) system. The main features of our method are based on: (i) the applications of a time-splitting Fourier spectral method for Schrödinger-like equation in SBq system, (ii) the utilizations of exponential wave integrator Fourier pseudospectral for spatial derivatives in the Boussinesq-like equation. The scheme is fully explicit and efficient due to fast Fourier transform. The numerical examples are presented to show the efficiency and accuracy of our method.

  14. An analytical method for PID controller tuning with specified gain and phase margins for integral plus time delay processes.

    Science.gov (United States)

    Hu, Wuhua; Xiao, Gaoxi; Li, Xiumin

    2011-04-01

    In this paper, an analytical method is proposed for proportional-integral/proportional-derivative/proportional-integral-derivative (PI/PD/PID) controller tuning with specified gain and phase margins (GPMs) for integral plus time delay (IPTD) processes. Explicit formulas are also obtained for estimating the GPMs resulting from given PI/PD/PID controllers. The proposed method indicates a general form of the PID parameters and unifies a large number of existing rules as PI/PD/PID controller tuning with various GPM specifications. The GPMs realized by existing PID tuning rules are computed and documented as a reference for control engineers to tune the PID controllers. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Lagrangian Finite Element Method for 3D time-dependent viscoelastic flow computation using integral constitutive models

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz

    2000-01-01

    A new technique for the numerical 3D simulation of time dependent flow of viscoelastic fluid is presented. The technique is based on a Lagrangian kinematics description of the fluid flow. The fluid is described by the Rivlin Sawyer integral constitutive equation. The method (referred to as the 3D...... Lagrangian Integral Method) is a finite element method where Galerkons method is used for solving the governing equation in rectangular coordinates numerically. In the present implementation the velocity and pressure fields are approximated with tri-linear and constant shape functions, respectivly.The 3D LIM......) and polymeric solutions. Secondly, the 3D-LIM has also been applied to calculate the inflation of a thick sheet of a polymeric melt into a elliptic cylinder. These problems all include free surfaces. As the governing equations are solved for the particle positions, the motion of surfaces can be followed easily...

  16. A new integrated dual time-point amyloid PET/MRI data analysis method

    Energy Technology Data Exchange (ETDEWEB)

    Cecchin, Diego; Zucchetta, Pietro; Turco, Paolo; Bui, Franco [University Hospital of Padua, Nuclear Medicine Unit, Department of Medicine - DIMED, Padua (Italy); Barthel, Henryk; Tiepolt, Solveig; Sabri, Osama [Leipzig University, Department of Nuclear Medicine, Leipzig (Germany); Poggiali, Davide; Cagnin, Annachiara; Gallo, Paolo [University Hospital of Padua, Neurology, Department of Neurosciences (DNS), Padua (Italy); Frigo, Anna Chiara [University Hospital of Padua, Biostatistics, Epidemiology and Public Health Unit, Department of Cardiac, Thoracic and Vascular Sciences, Padua (Italy)

    2017-11-15

    In the initial evaluation of patients with suspected dementia and Alzheimer's disease, there is no consensus on how to perform semiquantification of amyloid in such a way that it: (1) facilitates visual qualitative interpretation, (2) takes the kinetic behaviour of the tracer into consideration particularly with regard to at least partially correcting for blood flow dependence, (3) analyses the amyloid load based on accurate parcellation of cortical and subcortical areas, (4) includes partial volume effect correction (PVEC), (5) includes MRI-derived topographical indexes, (6) enables application to PET/MRI images and PET/CT images with separately acquired MR images, and (7) allows automation. A method with all of these characteristics was retrospectively tested in 86 subjects who underwent amyloid ({sup 18}F-florbetaben) PET/MRI in a clinical setting (using images acquired 90-110 min after injection, 53 were classified visually as amyloid-negative and 33 as amyloid-positive). Early images after tracer administration were acquired between 0 and 10 min after injection, and later images were acquired between 90 and 110 min after injection. PVEC of the PET data was carried out using the geometric transfer matrix method. Parametric images and some regional output parameters, including two innovative ''dual time-point'' indexes, were obtained. Subjects classified visually as amyloid-positive showed a sparse tracer uptake in the primary sensory, motor and visual areas in accordance with the isocortical stage of the topographic distribution of the amyloid plaque (Braak stages V/VI). In patients classified visually as amyloid-negative, the method revealed detectable levels of tracer uptake in the basal portions of the frontal and temporal lobes, areas that are known to be sites of early deposition of amyloid plaques that probably represented early accumulation (Braak stage A) that is typical of normal ageing. There was a strong correlation between

  17. [Determination of the time of death--integration of various partial methods].

    Science.gov (United States)

    Henssge, C; Madea, B; Gallenkemper, E

    1985-01-01

    The criteria for estimating time of death, lividity and rigor mortis according to data worked out by Mallach, together with data concerning the mechanical excitability of skeletal muscles (Prokop), the electrical excitability of face muscles and pharmacologic excitability of the iris (Klein and Klein) were combined with a nomogram of the rectal/brain temperature at time of death to make a rational and practical method of estimating time of death that would be suitable for use at a scene of crime. In each actual case, only a few additional criteria can be used to verify the upper and lower limits of the nomogram readings and to reduce these defined limits. For this reason the outer data from Mallach's tables and Klein's results were separated into upper and lower limits, chronologically arranged and clearly presented. After rectal temperature measurement and corresponding nomogram reading, it is easy to recognize which further criteria must be examined. Analysis of the test results is extremely simple with the aid of the proposed chart.

  18. A variable timestep generalized Runge-Kutta method for the numerical integration of the space-time diffusion equations

    International Nuclear Information System (INIS)

    Aviles, B.N.; Sutton, T.M.; Kelly, D.J. III.

    1991-09-01

    A generalized Runge-Kutta method has been employed in the numerical integration of the stiff space-time diffusion equations. The method is fourth-order accurate, using an embedded third-order solution to arrive at an estimate of the truncation error for automatic timestep control. The efficiency of the Runge-Kutta method is enhanced by a block-factorization technique that exploits the sparse structure of the matrix system resulting from the space and energy discretized form of the time-dependent neutron diffusion equations. Preliminary numerical evaluation using a one-dimensional finite difference code shows the sparse matrix implementation of the generalized Runge-Kutta method to be highly accurate and efficient when compared to an optimized iterative theta method. 12 refs., 5 figs., 4 tabs

  19. A variable-order time-dependent neutron transport method for nuclear reactor kinetics using analytically-integrated space-time characteristics

    International Nuclear Information System (INIS)

    Hoffman, A. J.; Lee, J. C.

    2013-01-01

    A new time-dependent neutron transport method based on the method of characteristics (MOC) has been developed. Whereas most spatial kinetics methods treat time dependence through temporal discretization, this new method treats time dependence by defining the characteristics to span space and time. In this implementation regions are defined in space-time where the thickness of the region in time fulfills an analogous role to the time step in discretized methods. The time dependence of the local source is approximated using a truncated Taylor series expansion with high order derivatives approximated using backward differences, permitting the solution of the resulting space-time characteristic equation. To avoid a drastic increase in computational expense and memory requirements due to solving many discrete characteristics in the space-time planes, the temporal variation of the boundary source is similarly approximated. This allows the characteristics in the space-time plane to be represented analytically rather than discretely, resulting in an algorithm comparable in implementation and expense to one that arises from conventional time integration techniques. Furthermore, by defining the boundary flux time derivative in terms of the preceding local source time derivative and boundary flux time derivative, the need to store angularly-dependent data is avoided without approximating the angular dependence of the angular flux time derivative. The accuracy of this method is assessed through implementation in the neutron transport code DeCART. The method is employed with variable-order local source representation to model a TWIGL transient. The results demonstrate that this method is accurate and more efficient than the discretized method. (authors)

  20. An implicit fast Fourier transform method for integration of the time dependent Schrodinger or diffusion equation

    International Nuclear Information System (INIS)

    Ritchie, A.B.; Riley, M.E.

    1997-06-01

    The authors have found that the conventional exponentiated split operator procedure is subject to difficulties in energy conservation when solving the time-dependent Schrodinger equation for Coulombic systems. By rearranging the kinetic and potential energy terms in the temporal propagator of the finite difference equations, one can find a propagation algorithm for three dimensions that looks much like the Crank-Nicholson and alternating direction implicit methods for one- and two-space-dimensional partial differential equations. They report comparisons of this novel implicit split operator procedure with the conventional exponentiated split operator procedure on hydrogen atom solutions. The results look promising for a purely numerical approach to certain electron quantum mechanical problems

  1. Analytical derivation of charge relaxation time distribution in transistor from current noise spectrum using inverse integral transformation method

    Science.gov (United States)

    Yatabe, Zenji; Inoue, Shinya; Asubar, Joel T.; Kasai, Seiya

    2018-03-01

    An analytical technique is proposed to reveal the relaxation time distribution of dynamic charge events using the current noise spectrum of a transistor, by applying an inverse integral transformation to the McWhorter model. In the proposed method, the continuous relaxation-time distribution function G(τ) can be analytically derived from the noise spectra S(ω) without a spectrum deconvolution. The feasibility of the proposed method is demonstrated by characterizing the charge dynamics of tetraphenylporphyrin molecules dispersed on the surface of a GaAs-based nanowire field-effect transistor. Our analysis successfully verified the time constant of the molecule-related dynamic charge events and effects of photo-excitation.

  2. Long Pulse Integrator of Variable Integral Time Constant

    International Nuclear Information System (INIS)

    Wang Yong; Ji Zhenshan; Du Xiaoying; Wu Yichun; Li Shi; Luo Jiarong

    2010-01-01

    A kind of new long pulse integrator was designed based on the method of variable integral time constant and deducting integral drift by drift slope. The integral time constant can be changed by choosing different integral resistors, in order to improve the signal-to-noise ratio, and avoid output saturation; the slope of integral drift of a certain period of time can be calculated by digital signal processing, which can be used to deduct the drift of original integral signal in real time to reduce the integral drift. The tests show that this kind of long pulse integrator is good at reducing integral drift, which also can eliminate the effects of changing integral time constant. According to experiments, the integral time constant can be changed by remote control and manual adjustment of integral drift is avoided, which can improve the experiment efficiency greatly and can be used for electromagnetic measurement in Tokamak experiment. (authors)

  3. Stability, Accuracy, and Robustness of the Time Domain Integral Equation Method for Radar Scattering Analysis

    NARCIS (Netherlands)

    Van 't Wout, E.

    2013-01-01

    The aim of this thesis is to design a computational method that can be used in modern stealth technology. In particular, the computational method should be capable to simulate scattering of ultra-wideband radar signals for military aircraft constructed with ferromagnetic radar absorbent materials. A

  4. The mathematical theory of time-harmonic Maxwell's equations expansion-, integral-, and variational methods

    CERN Document Server

    Kirsch, Andreas

    2015-01-01

    This book gives a concise introduction to the basic techniques needed for the theoretical analysis of the Maxwell Equations, and filters in an elegant way the essential parts, e.g., concerning the various function spaces needed to rigorously investigate the boundary integral equations and variational equations. The book arose from lectures taught by the authors over many years and can be helpful in designing graduate courses for mathematically orientated students on electromagnetic wave propagation problems. The students should have some knowledge on vector analysis (curves, surfaces, divergence theorem) and functional analysis (normed spaces, Hilbert spaces, linear and bounded operators, dual space). Written in an accessible manner, topics are first approached with simpler scale Helmholtz Equations before turning to Maxwell Equations. There are examples and exercises throughout the book. It will be useful for graduate students and researchers in applied mathematics and engineers working in the theoretical ap...

  5. Lagrangian Finite Element Method for 3D Time-Dependent Viscoelastic Flow Computations using Integral Models

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz

    2000-01-01

    The 3D-LIM has as yet been used to simulate the following two three-dimensional problems. First, the method has been used to simulete for viscoelastic end-plate instability that occurs under certain conditions in the transient filament stretching apparatus for pressure sensitive adhesives...... (polymeric melts) and polymeric solutions. Secondly, the 3D-LIM has also been applied to calculate the inflation of a thick sheet of a polymer melt into an elliptic cylinder. These problems all include free surfaces. As the governing equations are solved for the particle positions, the motion of surfaces can...... be followed easily even in 3D viscoelastic flow....

  6. Filtering of high modal frequencies for stable real-time explicit integration of deformable objects using the Finite Element Method.

    Science.gov (United States)

    Aguinaga, Iker; Fierz, Basil; Spillmann, Jonas; Harders, Matthias

    2010-12-01

    The behavior, performance, and run-time of mechanical simulations in interactive virtual surgery depend heavily on the type of numerical differential equation solver used to integrate in time the dynamic equations obtained from simulation methods, such as the Finite Element Method. Explicit solvers are fast but only conditionally stable. The condition number of the stiffness matrix limits the highest possible time step. This limit is related to the geometrical properties of the underlying mesh, such as element shape and size. In fact, it can be governed by a small set of ill-shaped elements. For many applications this issue can be solved a priori by a careful meshing. However, when meshes are cut during interactive surgery simulation, it is difficult and computationally expensive to control the quality of the resulting elements. As an alternative, we propose to modify the elemental stiffness matrices directly in order to ensure stability. In this context, we first investigate the behavior of the eigenmodes of the elemental stiffness matrix in a Finite Element Method. We then propose a simple filter to reduce high model frequencies and thus allow larger time steps, while maintaining the general mechanical behavior. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Off-Policy Integral Reinforcement Learning Method to Solve Nonlinear Continuous-Time Multiplayer Nonzero-Sum Games.

    Science.gov (United States)

    Song, Ruizhuo; Lewis, Frank L; Wei, Qinglai

    2017-03-01

    This paper establishes an off-policy integral reinforcement learning (IRL) method to solve nonlinear continuous-time (CT) nonzero-sum (NZS) games with unknown system dynamics. The IRL algorithm is presented to obtain the iterative control and off-policy learning is used to allow the dynamics to be completely unknown. Off-policy IRL is designed to do policy evaluation and policy improvement in the policy iteration algorithm. Critic and action networks are used to obtain the performance index and control for each player. The gradient descent algorithm makes the update of critic and action weights simultaneously. The convergence analysis of the weights is given. The asymptotic stability of the closed-loop system and the existence of Nash equilibrium are proved. The simulation study demonstrates the effectiveness of the developed method for nonlinear CT NZS games with unknown system dynamics.

  8. Parallel time integration software

    Energy Technology Data Exchange (ETDEWEB)

    2014-07-01

    This package implements an optimal-scaling multigrid solver for the (non) linear systems that arise from the discretization of problems with evolutionary behavior. Typically, solution algorithms for evolution equations are based on a time-marching approach, solving sequentially for one time step after the other. Parallelism in these traditional time-integrarion techniques is limited to spatial parallelism. However, current trends in computer architectures are leading twards system with more, but not faster. processors. Therefore, faster compute speeds must come from greater parallelism. One approach to achieve parallelism in time is with multigrid, but extending classical multigrid methods for elliptic poerators to this setting is a significant achievement. In this software, we implement a non-intrusive, optimal-scaling time-parallel method based on multigrid reduction techniques. The examples in the package demonstrate optimality of our multigrid-reduction-in-time algorithm (MGRIT) for solving a variety of parabolic equations in two and three sparial dimensions. These examples can also be used to show that MGRIT can achieve significant speedup in comparison to sequential time marching on modern architectures.

  9. A decomposition-integration risk analysis method for real-time operation of a complex flood control system

    Science.gov (United States)

    Chen, Juan; Zhong, Ping-An; Zhang, Yu; Navar, David; Yeh, William W.-G.

    2017-03-01

    Risk analysis plays an important role in decision making for real-time flood control operation of complex flood control systems. A typical flood control system consists of reservoirs, river channels, and downstream control points. The system generally is characterized by nonlinearity and large scale. Additionally, the input variables are mostly stochastic. Because of the dimensionality problem, generally, it would not be possible to carry out risk analysis without decomposition. In this paper, we propose a decomposition-integration approach whereby the original complex flood control system is decomposed into a number of independent subsystems. We conduct risk analysis for each subsystem and then integrate the results by means of combination theory of stochastic processes. We evaluate the propagation of uncertainties through the complex flood control system and calculate the risk of reservoir overtopping, as well as the risk of flooding at selected downstream control points. We apply the proposed methodology to a flood control system in the middle reaches of the Huaihe River basin in China. The results show that the proposed method is practical and provides a way to estimate the risks in real-time flood control operation of a complex flood control system.

  10. In times of Integration

    DEFF Research Database (Denmark)

    Val, Maria Rosa Rovira; Lehmann, Martin; Zinenko, Anna

    dramatically with many of the world’s economies facing downturn and a looming possible recession; and the global economic and political balance changing; (ii) most larger companies and quite a few SMEs now have a mature knowledge of these standards; and (iii) some standards are advocating for integration...... procedures, such as cases of for example ISO integrated management systems, mutual equivalences recognition of Global Compact-GRI-ISO26000, or the case of IIRC initiative to develop integrated reporting on an organization’s Financial, Environmental, Social and Governance performance. This paper focuses...

  11. Time-dependent finite-element method for the simulation of three-dimensional viscoelastic flow with integral models

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz

    2000-01-01

    convected Maxwell fluid to a fluid described by an integral constitutive equation of the Rivlin-Sawyers type. This includes the K-BKZ model. The convergence of the method is demonstrated on the axisymmetric problem of the inflation of a polymeric membrane only restricted by a clamping ring....

  12. SNS Diagnostics Timing Integration

    CERN Document Server

    Long, Cary D; Murphy, Darryl J; Pogge, James; Purcell, John D; Sundaram, Madhan

    2005-01-01

    The Spallation Neutron Source (SNS) accelerator systems will deliver a 1.0 GeV, 1.4 MW proton beam to a liquid mercury target for neutron scattering research. The accelerator complex consists of a 1 GeV linear accelerator, an accumulator ring and associated transport lines. The SNS diagnostics platform is PC-based running Windows XP Embedded for its OS and LabVIEW as its programming language. Coordinating timing among the various diagnostics instruments with the generation of the beam pulse is a challenging task that we have chosen to divide into three phases. First, timing was derived from VME based systems. In the second phase, described in this paper, timing pulses are generated by an in house designed PCI timing card installed in ten diagnostics PCs. Using fan-out modules, enough triggers were generated for all instruments. This paper describes how the Timing NAD (Network Attached Device) was rapidly developed using our NAD template, LabVIEW's PCI driver wizard, and LabVIEW Channel Access library. The NAD...

  13. Rapid detection of Salmonella in pet food: design and evaluation of integrated methods based on real-time PCR detection.

    Science.gov (United States)

    Balachandran, Priya; Friberg, Maria; Vanlandingham, V; Kozak, K; Manolis, Amanda; Brevnov, Maxim; Crowley, Erin; Bird, Patrick; Goins, David; Furtado, Manohar R; Petrauskene, Olga V; Tebbs, Robert S; Charbonneau, Duane

    2012-02-01

    Reducing the risk of Salmonella contamination in pet food is critical for both companion animals and humans, and its importance is reflected by the substantial increase in the demand for pathogen testing. Accurate and rapid detection of foodborne pathogens improves food safety, protects the public health, and benefits food producers by assuring product quality while facilitating product release in a timely manner. Traditional culture-based methods for Salmonella screening are laborious and can take 5 to 7 days to obtain definitive results. In this study, we developed two methods for the detection of low levels of Salmonella in pet food using real-time PCR: (i) detection of Salmonella in 25 g of dried pet food in less than 14 h with an automated magnetic bead-based nucleic acid extraction method and (ii) detection of Salmonella in 375 g of composite dry pet food matrix in less than 24 h with a manual centrifugation-based nucleic acid preparation method. Both methods included a preclarification step using a novel protocol that removes food matrix-associated debris and PCR inhibitors and improves the sensitivity of detection. Validation studies revealed no significant differences between the two real-time PCR methods and the standard U.S. Food and Drug Administration Bacteriological Analytical Manual (chapter 5) culture confirmation method.

  14. Time-symmetric integration in astrophysics

    Science.gov (United States)

    Hernandez, David M.; Bertschinger, Edmund

    2018-04-01

    Calculating the long-term solution of ordinary differential equations, such as those of the N-body problem, is central to understanding a wide range of dynamics in astrophysics, from galaxy formation to planetary chaos. Because generally no analytic solution exists to these equations, researchers rely on numerical methods that are prone to various errors. In an effort to mitigate these errors, powerful symplectic integrators have been employed. But symplectic integrators can be severely limited because they are not compatible with adaptive stepping and thus they have difficulty in accommodating changing time and length scales. A promising alternative is time-reversible integration, which can handle adaptive time-stepping, but the errors due to time-reversible integration in astrophysics are less understood. The goal of this work is to study analytically and numerically the errors caused by time-reversible integration, with and without adaptive stepping. We derive the modified differential equations of these integrators to perform the error analysis. As an example, we consider the trapezoidal rule, a reversible non-symplectic integrator, and show that it gives secular energy error increase for a pendulum problem and for a Hénon-Heiles orbit. We conclude that using reversible integration does not guarantee good energy conservation and that, when possible, use of symplectic integrators is favoured. We also show that time-symmetry and time-reversibility are properties that are distinct for an integrator.

  15. Time-symmetric integration in astrophysics

    Science.gov (United States)

    Hernandez, David M.; Bertschinger, Edmund

    2018-01-01

    Calculating the long term solution of ordinary differential equations, such as those of the N-body problem, is central to understanding a wide range of dynamics in astrophysics, from galaxy formation to planetary chaos. Because generally no analytic solution exists to these equations, researchers rely on numerical methods which are prone to various errors. In an effort to mitigate these errors, powerful symplectic integrators have been employed. But symplectic integrators can be severely limited because they are not compatible with adaptive stepping and thus they have difficulty accommodating changing time and length scales. A promising alternative is time-reversible integration, which can handle adaptive time stepping, but the errors due to time-reversible integration in astrophysics are less understood. The goal of this work is to study analytically and numerically the errors caused by time-reversible integration, with and without adaptive stepping. We derive the modified differential equations of these integrators to perform the error analysis. As an example, we consider the trapezoidal rule, a reversible non-symplectic integrator, and show it gives secular energy error increase for a pendulum problem and for a Hénon-Heiles orbit. We conclude that using reversible integration does not guarantee good energy conservation and that, when possible, use of symplectic integrators is favored. We also show that time-symmetry and time-reversibility are properties that are distinct for an integrator.

  16. A non-invasive method to relate the timing of neural activity to white matter microstructural integrity.

    Science.gov (United States)

    Stufflebeam, Steven M; Witzel, Thomas; Mikulski, Szymon; Hämäläinen, Matti S; Temereanca, Simona; Barton, Jason J S; Tuch, David S; Manoach, Dara S

    2008-08-15

    The neurophysiological basis of variability in the latency of evoked neural responses has been of interest for decades. We describe a method to identify white matter pathways that may contribute to inter-individual variability in the timing of neural activity. We investigated the relation of the latency of peak visual responses in occipital cortex as measured by magnetoencephalography (MEG) to fractional anisotropy (FA) in the entire brain as measured with diffusion tensor imaging (DTI) in eight healthy young adults. This method makes no assumptions about the anatomy of white matter connections. Visual responses were evoked during a saccadic paradigm and were time-locked to arrival at a saccadic goal. The latency of the peak visual response was inversely related to FA in bilateral parietal and right lateral frontal white matter adjacent to cortical regions that modulate early visual responses. These relations suggest that biophysical properties of white matter affect the timing of early visual responses. This preliminary report demonstrates a non-invasive, unbiased method to relate the timing information from evoked-response experiments to the biophysical properties of white matter measured with DTI.

  17. Application of Linear Viscoelastic Properties in Semianalytical Finite Element Method with Recursive Time Integration to Analyze Asphalt Pavement Structure

    Directory of Open Access Journals (Sweden)

    Pengfei Liu

    2018-01-01

    Full Text Available Traditionally, asphalt pavements are considered as linear elastic materials in finite element (FE method to save computational time for engineering design. However, asphalt mixture exhibits linear viscoelasticity at small strain and low temperature. Therefore, the results derived from the elastic analysis will inevitably lead to discrepancies from reality. Currently, several FE programs have already adopted viscoelasticity, but the high hardware demands and long execution times render them suitable primarily for research purposes. Semianalytical finite element method (SAFEM was proposed to solve the abovementioned problem. The SAFEM is a three-dimensional FE algorithm that only requires a two-dimensional mesh by incorporating the Fourier series in the third dimension, which can significantly reduce the computational time. This paper describes the development of SAFEM to capture the viscoelastic property of asphalt pavements by using a recursive formulation. The formulation is verified by comparison with the commercial FE software ABAQUS. An application example is presented for simulations of creep deformation of the asphalt pavement. The investigation shows that the SAFEM is an efficient tool for pavement engineers to fast and reliably predict asphalt pavement responses; furthermore, the SAFEM provides a flexible, robust platform for the future development in the numerical simulation of asphalt pavements.

  18. Symplectic integrators with adaptive time steps

    Science.gov (United States)

    Richardson, A. S.; Finn, J. M.

    2012-01-01

    In recent decades, there have been many attempts to construct symplectic integrators with variable time steps, with rather disappointing results. In this paper, we identify the causes for this lack of performance, and find that they fall into two categories. In the first, the time step is considered a function of time alone, Δ = Δ(t). In this case, backward error analysis shows that while the algorithms remain symplectic, parametric instabilities may arise because of resonance between oscillations of Δ(t) and the orbital motion. In the second category the time step is a function of phase space variables Δ = Δ(q, p). In this case, the system of equations to be solved is analyzed by introducing a new time variable τ with dt = Δ(q, p) dτ. The transformed equations are no longer in Hamiltonian form, and thus do not benefit from integration methods which would be symplectic for Hamiltonian systems. We analyze two methods for integrating the transformed equations which do, however, preserve the structure of the original equations. The first is an extended phase space method, which has been successfully used in previous studies of adaptive time step symplectic integrators. The second, novel, method is based on a non-canonical mixed-variable generating function. Numerical trials for both of these methods show good results, without parametric instabilities or spurious growth or damping. It is then shown how to adapt the time step to an error estimate found by backward error analysis, in order to optimize the time-stepping scheme. Numerical results are obtained using this formulation and compared with other time-stepping schemes for the extended phase space symplectic method.

  19. Integral equation methods for electromagnetics

    CERN Document Server

    Volakis, John

    2012-01-01

    This text/reference is a detailed look at the development and use of integral equation methods for electromagnetic analysis, specifically for antennas and radar scattering. Developers and practitioners will appreciate the broad-based approach to understanding and utilizing integral equation methods and the unique coverage of historical developments that led to the current state-of-the-art. In contrast to existing books, Integral Equation Methods for Electromagnetics lays the groundwork in the initial chapters so students and basic users can solve simple problems and work their way up to the mo

  20. Steffensen's Integral Inequality on Time Scales

    Directory of Open Access Journals (Sweden)

    Ozkan Umut Mutlu

    2007-01-01

    Full Text Available We establish generalizations of Steffensen's integral inequality on time scales via the diamond- dynamic integral, which is defined as a linear combination of the delta and nabla integrals.

  1. Path integral density matrix dynamics: a method for calculating time-dependent properties in thermal adiabatic and non-adiabatic systems.

    Science.gov (United States)

    Habershon, Scott

    2013-09-14

    We introduce a new approach for calculating quantum time-correlation functions and time-dependent expectation values in many-body thermal systems; both electronically adiabatic and non-adiabatic cases can be treated. Our approach uses a path integral simulation to sample an initial thermal density matrix; subsequent evolution of this density matrix is equivalent to solution of the time-dependent Schrödinger equation, which we perform using a linear expansion of Gaussian wavepacket basis functions which evolve according to simple classical-like trajectories. Overall, this methodology represents a formally exact approach for calculating time-dependent quantum properties; by introducing approximations into both the imaginary-time and real-time propagations, this approach can be adapted for complex many-particle systems interacting through arbitrary potentials. We demonstrate this method for the spin Boson model, where we find good agreement with numerically exact calculations. We also discuss future directions of improvement for our approach with a view to improving accuracy and efficiency.

  2. Efficient orbit integration by manifold correction methods.

    Science.gov (United States)

    Fukushima, Toshio

    2005-12-01

    Triggered by a desire to investigate, numerically, the planetary precession through a long-term numerical integration of the solar system, we developed a new formulation of numerical integration of orbital motion named manifold correct on methods. The main trick is to rigorously retain the consistency of physical relations, such as the orbital energy, the orbital angular momentum, or the Laplace integral, of a binary subsystem. This maintenance is done by applying a correction to the integrated variables at each integration step. Typical methods of correction are certain geometric transformations, such as spatial scaling and spatial rotation, which are commonly used in the comparison of reference frames, or mathematically reasonable operations, such as modularization of angle variables into the standard domain [-pi, pi). The form of the manifold correction methods finally evolved are the orbital longitude methods, which enable us to conduct an extremely precise integration of orbital motions. In unperturbed orbits, the integration errors are suppressed at the machine epsilon level for an indefinitely long period. In perturbed cases, on the other hand, the errors initially grow in proportion to the square root of time and then increase more rapidly, the onset of which depends on the type and magnitude of the perturbations. This feature is also realized for highly eccentric orbits by applying the same idea as used in KS-regularization. In particular, the introduction of time elements greatly enhances the performance of numerical integration of KS-regularized orbits, whether the scaling is applied or not.

  3. Expectation of ground motion in Earthquake Early Waning using real time monitoring of wavefield : a method based on Kirchhoff-Fresnel integral without information of hypocenter and magnitude

    Science.gov (United States)

    Hoshiba, M.

    2011-12-01

    In this presentation, I propose a new method for expectation of ground motion in Earthquake Early Waning (EEW), based on Kirchhoff Fresnel integral using real time monitoring of seismic wavefield. EEW of Japan Meteorological Agency (JMA) basically adopts a network method, in which hypocenter and magnitude (source parameters) are determined quickly, and then the ground motions are expected, and warnings are issued depending on the strength of the expected ground motion. In this network method, though we can expect ground motions using a few parameters (location of hypocenter, magnitude, site factors) at any points, it is necessary to determine the hypocenter and magnitude at first for the warning, and error of the source parameters leads directly to the error of the expectation, and it is not easy to take the effects of rupture directivity and source extent into account. For the 2011 of the Pacific coast Tohoku earthquake (Mw9.0) , JMA EEW was earlier than the S wave arrival and more than 15 s earlier than the strong ground motion everywhere in the Tohoku district. However, in the Tokyo region (approximately 400km from the epicenter), expected intensity was smaller than the actual observation. The underestimation can be attributed to the large extent of the later fault rupture. For several weeks after the mainshock, when earthquakes sometimes occurred simultaneously over the wide source region, the system became confused, and did not always determine the location and magnitude correctly, which leaded to many false alarms. To solve above problems, I propose a method for expectation of ground motion based on Kirchhoff integral method (representation theorem) or Kirchhoff (Huygens) Fresnel integral method for high frequency approximation. The ground motion is expected from real observation of ground motions at stations in the direction of the waves coming from. In this method, real time monitoring of wavefield and propagation direction of the waves are important, but

  4. The Crank Nicolson Time Integrator for EMPHASIS.

    Energy Technology Data Exchange (ETDEWEB)

    McGregor, Duncan Alisdair Odum; Love, Edward; Kramer, Richard Michael Jack

    2018-03-01

    We investigate the use of implicit time integrators for finite element time domain approxi- mations of Maxwell's equations in vacuum. We discretize Maxwell's equations in time using Crank-Nicolson and in 3D space using compatible finite elements. We solve the system by taking a single step of Newton's method and inverting the Eddy-Current Schur complement allowing for the use of standard preconditioning techniques. This approach also generalizes to more complex material models that can include the Unsplit PML. We present verification results and demonstrate performance at CFL numbers up to 1000.

  5. A comparison of monthly precipitation point estimates at 6 locations in Iran using integration of soft computing methods and GARCH time series model

    Science.gov (United States)

    Mehdizadeh, Saeid; Behmanesh, Javad; Khalili, Keivan

    2017-11-01

    Precipitation plays an important role in determining the climate of a region. Precise estimation of precipitation is required to manage and plan water resources, as well as other related applications such as hydrology, climatology, meteorology and agriculture. Time series of hydrologic variables such as precipitation are composed of deterministic and stochastic parts. Despite this fact, the stochastic part of the precipitation data is not usually considered in modeling of precipitation process. As an innovation, the present study introduces three new hybrid models by integrating soft computing methods including multivariate adaptive regression splines (MARS), Bayesian networks (BN) and gene expression programming (GEP) with a time series model, namely generalized autoregressive conditional heteroscedasticity (GARCH) for modeling of the monthly precipitation. For this purpose, the deterministic (obtained by soft computing methods) and stochastic (obtained by GARCH time series model) parts are combined with each other. To carry out this research, monthly precipitation data of Babolsar, Bandar Anzali, Gorgan, Ramsar, Tehran and Urmia stations with different climates in Iran were used during the period of 1965-2014. Root mean square error (RMSE), relative root mean square error (RRMSE), mean absolute error (MAE) and determination coefficient (R2) were employed to evaluate the performance of conventional/single MARS, BN and GEP, as well as the proposed MARS-GARCH, BN-GARCH and GEP-GARCH hybrid models. It was found that the proposed novel models are more precise than single MARS, BN and GEP models. Overall, MARS-GARCH and BN-GARCH models yielded better accuracy than GEP-GARCH. The results of the present study confirmed the suitability of proposed methodology for precise modeling of precipitation.

  6. Optimal integration time in OCT imaging

    Science.gov (United States)

    Martin, Lorenz; Gräub, Stephan; Meier, Christoph

    2015-07-01

    When measuring static objects with 3D OCT, two opposing trends occur: If the integration time is too short, the measurement is noisy resulting in granulated textures on measured objects. If the integration time is too long, drifts e.g. due to thermal effects or unstable laser sources lead to blurred images. The Allan variance is a scheme to find the optimal integration time in terms of reducing noise without picking up signal drift. A long-term measurement with short integration time of a reference target under realistic conditions is needed to obtain the database for the calculation of the Allan variance. Longer integration times are simulated by taking averages of subsequent samples. The Allan variance being the mean of the squared differences between two consecutive averages is calculated for different integration times. The optimal integration time is achieved for minimal Allan variance. First, the scheme is explained and discussed with simulated data. Then, reference measurements of layers of adhesive tape made with a 3D OCT device are analysed to find the optimal integration time of the device. Finally, the findings are applied to the detection of water inclusions in calcite. With too short integration time the water inclusions appear with a stained surface. With the integration time increased towards the optimal time, the surfaces of the water inclusions get smoother and easier to discriminate from the background. Ready-to-use Octave code for the computation of the Allan variance is provided.

  7. New method of suspended sediment flux collection in the estuarine environment using bi-directional time-integrated mass-flux samplers (TIMs)

    Science.gov (United States)

    Monbureau, E.; Elliott, E. A.; Walters, G.; McKee, B. A.; Rodriguez, A. B.

    2014-12-01

    Understanding the source and abundance of sediment transported within tidal creeks is essential for studying the connectivity between coastal watersheds and estuaries under conditions of changing land use, storminess and sea-level rise. Furthermore, analysis of the fine grained suspended sediment load (SSL) carried through the system is critical in our understanding of nutrient and contaminant transport, human-induced change, and the effects of climate. Unfortunately traditional methods of SSL collection, including instantaneous measurements and automatic samplers, can be labor intensive, expensive and are often inadequate for geochemical analysis. In estuaries this issue is even more pronounced, due to tidal bi-directional flow. This study tests the efficacy of a modification to an established uni-directional time-integrated sediment sampler (TIMs) design. Our new bi-directional TIMs design utilizes a 'L' shaped outflow tube to collect sediment uniquely in each direction of tidal flow. Laboratory flume experiments using dye and particle image velocimetry (PIV) are used to characterize the flow within the collector, specifically, to quantify the settling velocities and identify the stagnation points. Further laboratory tests of chemically dispersed sediment indicate that bi-directional TIMs capture nearly all incoming particles greater than 4 μm across a range of flow velocities. Field trials were employed in two distinct sampling locations within the tidal zone. Samples of single time point SSL were collected over a four day period and compared to sediment collected by the bi-directional TIMs over the same time frame. Particle size composition from the bi-directional TIMs were representative of the array of single time point samples, but yielded greater mass and proved to be more representative of the overall tidal flux. This work proves the efficacy of the modified bi-directional TIMs design, offering a novel tool for collection of SSL in the tidally dominated

  8. A novel method for sampling the suspended sediment load in the tidal environment using bi-directional time-integrated mass-flux sediment (TIMS) samplers

    Science.gov (United States)

    Elliott, Emily A.; Monbureau, Elaine; Walters, Glenn W.; Elliott, Mark A.; McKee, Brent A.; Rodriguez, Antonio B.

    2017-12-01

    Identifying the source and abundance of sediment transported within tidal creeks is essential for studying the connectivity between coastal watersheds and estuaries. The fine-grained suspended sediment load (SSL) makes up a substantial portion of the total sediment load carried within an estuarine system and efficient sampling of the SSL is critical to our understanding of nutrient and contaminant transport, anthropogenic influence, and the effects of climate. Unfortunately, traditional methods of sampling the SSL, including instantaneous measurements and automatic samplers, can be labor intensive, expensive and often yield insufficient mass for comprehensive geochemical analysis. In estuaries this issue is even more pronounced due to bi-directional tidal flow. This study tests the efficacy of a time-integrated mass sediment sampler (TIMS) design, originally developed for uni-directional flow within the fluvial environment, modified in this work for implementation the tidal environment under bi-directional flow conditions. Our new TIMS design utilizes an 'L' shaped outflow tube to prevent backflow, and when deployed in mirrored pairs, each sampler collects sediment uniquely in one direction of tidal flow. Laboratory flume experiments using dye and particle image velocimetry (PIV) were used to characterize the flow within the sampler, specifically, to quantify the settling velocities and identify stagnation points. Further laboratory tests of sediment indicate that bidirectional TIMS capture up to 96% of incoming SSL across a range of flow velocities (0.3-0.6 m s-1). The modified TIMS design was tested in the field at two distinct sampling locations within the tidal zone. Single-time point suspended sediment samples were collected at high and low tide and compared to time-integrated suspended sediment samples collected by the bi-directional TIMS over the same four-day period. Particle-size composition from the bi-directional TIMS were representative of the array of

  9. ASPECTS OF INTEGRATION MANAGEMENT METHODS

    Directory of Open Access Journals (Sweden)

    Artemy Varshapetian

    2015-10-01

    Full Text Available For manufacturing companies to succeed in today's unstable economic environment, it is necessary to restructure the main components of its activities: designing innovative product, production using modern reconfigurable manufacturing systems, a business model that takes into account the global strategy and management methods using modern management models and tools. The first three components are discussed in numerous publications, for example, (Koren, 2010 and is therefore not considered in the article. A large number of publications devoted to the methods and tools of production management, for example (Halevi, 2007. On the basis of what was said in the article discusses the possibility of the integration of only three methods have received in recent years, the most widely used, namely: Six Sigma method - SS (George et al., 2005 and supplements its-Design for six sigm? - DFSS (Taguchi, 2003; Lean production transformed with the development to the "Lean management" and further to the "Lean thinking" - Lean (Hirano et al., 2006; Theory of Constraints, developed E.Goldratt - TOC (Dettmer, 2001. The article investigates some aspects of this integration: applications in diverse fields, positive features, changes in management structure, etc.

  10. An integrating factor matrix method to find first integrals

    International Nuclear Information System (INIS)

    Saputra, K V I; Quispel, G R W; Van Veen, L

    2010-01-01

    In this paper we develop an integrating factor matrix method to derive conditions for the existence of first integrals. We use this novel method to obtain first integrals, along with the conditions for their existence, for two- and three-dimensional Lotka-Volterra systems with constant terms. The results are compared to previous results obtained by other methods.

  11. Indirect methods for wake potential integration

    International Nuclear Information System (INIS)

    Zagorodnov, I.

    2006-05-01

    The development of the modern accelerator and free-electron laser projects requires to consider wake fields of very short bunches in arbitrary three dimensional structures. To obtain the wake numerically by direct integration is difficult, since it takes a long time for the scattered fields to catch up to the bunch. On the other hand no general algorithm for indirect wake field integration is available in the literature so far. In this paper we review the know indirect methods to compute wake potentials in rotationally symmetric and cavity-like three dimensional structures. For arbitrary three dimensional geometries we introduce several new techniques and test them numerically. (Orig.)

  12. Multiple time scale methods in tokamak magnetohydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Jardin, S.C.

    1984-01-01

    Several methods are discussed for integrating the magnetohydrodynamic (MHD) equations in tokamak systems on other than the fastest time scale. The dynamical grid method for simulating ideal MHD instabilities utilizes a natural nonorthogonal time-dependent coordinate transformation based on the magnetic field lines. The coordinate transformation is chosen to be free of the fast time scale motion itself, and to yield a relatively simple scalar equation for the total pressure, P = p + B/sup 2//2..mu../sub 0/, which can be integrated implicitly to average over the fast time scale oscillations. Two methods are described for the resistive time scale. The zero-mass method uses a reduced set of two-fluid transport equations obtained by expanding in the inverse magnetic Reynolds number, and in the small ratio of perpendicular to parallel mobilities and thermal conductivities. The momentum equation becomes a constraint equation that forces the pressure and magnetic fields and currents to remain in force balance equilibrium as they evolve. The large mass method artificially scales up the ion mass and viscosity, thereby reducing the severe time scale disparity between wavelike and diffusionlike phenomena, but not changing the resistive time scale behavior. Other methods addressing the intermediate time scales are discussed.

  13. Multi-time-step domain coupling method with energy control

    DEFF Research Database (Denmark)

    Mahjoubi, N.; Krenk, Steen

    2010-01-01

    A multi-time-step integration method is proposed for solving structural dynamics problems on multiple domains. The method generalizes earlier state-space integration algorithms by introducing displacement constraints via Lagrange multipliers, representing the time-integrated constraint forces over...

  14. Numerical time integration for air pollution models

    NARCIS (Netherlands)

    J.G. Verwer (Jan); W. Hundsdorfer (Willem); J.G. Blom (Joke)

    1998-01-01

    textabstractDue to the large number of chemical species and the three space dimensions, off-the-shelf stiff ODE integrators are not feasible for the numerical time integration of stiff systems of advection-diffusion-reaction equations [ fracpar{c{t + nabla cdot left( vu{u c right) = nabla cdot left(

  15. Monolithic Time Delay Integrated APD Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall goal of the proposed program by Epitaxial Technologies is to develop monolithic time delay integrated avalanche photodiode (APD) arrays with sensitivity...

  16. Integral methods in low-frequency electromagnetics

    CERN Document Server

    Solin, Pavel; Karban, Pavel; Ulrych, Bohus

    2009-01-01

    A modern presentation of integral methods in low-frequency electromagnetics This book provides state-of-the-art knowledge on integral methods in low-frequency electromagnetics. Blending theory with numerous examples, it introduces key aspects of the integral methods used in engineering as a powerful alternative to PDE-based models. Readers will get complete coverage of: The electromagnetic field and its basic characteristics An overview of solution methods Solutions of electromagnetic fields by integral expressions Integral and integrodifferential methods

  17. [Etnography as an Integrative Method].

    Science.gov (United States)

    Gómez, Ángela Viviana Pérez

    2012-06-01

    Ethnography is understood from three perspectives: approach, methodology and text. In the health field, ethnography can be used not only from the standpoint of the research process, but also from the very instances of medical consultation, diagnose and treatment. The pacient appreciates the fact of being heard and understood as a subject who has her/his own story and is involved in a particular culture related to her/his own status and to the effectsa caused by life experiences. Analysis of the literature related to ethnography, participanting observation and an relationship between health and qualitative research. There is a diversity of opinions and attitudes about ethnography, its validity and usefulness as well as in considerations related to its method and the techniques that nourish it. Ethnography is an integrative approach that may resorty to multiple tools for collecting, analyzing and interpreting the data. Therefore, ethnography constitutes an option for the physician when performing individual assessment. Ethnography provides an opportunity to approach the reality of an individual or group of individuals in order to obtain information about the matter under investigation, its understanding and interpretation. Copyright © 2012 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  18. Towards time symmetric N-body integration

    Science.gov (United States)

    Dehnen, Walter

    2017-11-01

    Computational efficiency demands discretized, hierarchically organized and individually adaptive time-step sizes (known as the block-step scheme) for the time integration of N-body models. However, most existing N-body codes adapt individual step sizes in a way that violates time symmetry (and symplecticity), resulting in artificial secular dissipation (and often secular growth of energy errors). Using single-orbit integrations, I investigate various possibilities to reduce or eliminate irreversibility from the time-stepping scheme. Significant improvements over the standard approach are possible at little extra effort. However, in order to reduce irreversible step-size changes to negligible amounts, such as suitable for long-term integrations of planetary systems, more computational effort is needed, while exact time reversibility appears elusive for discretized individual step sizes.

  19. Path integral solution for some time-dependent potential

    International Nuclear Information System (INIS)

    Storchak, S.N.

    1989-12-01

    The quantum-mechanical problem with a time-dependent potential is solved by the path integral method. The solution is obtained by the application of the previously derived general formula for rheonomic homogeneous point transformation and reparametrization in the path integral. (author). 4 refs

  20. Some aspects of integral transport method for deep penetration problem

    International Nuclear Information System (INIS)

    Takahashi, H.

    1982-01-01

    An analytical expression of the integral transport method for an experimental hole in fission reactors has been developed. This analytical method might still be useful for designing a fusion reactor without using large computer machine time

  1. Improving Music Genre Classification by Short-Time Feature Integration

    DEFF Research Database (Denmark)

    Meng, Anders; Ahrendt, Peter; Larsen, Jan

    2005-01-01

    Many different short-time features, using time windows in the size of 10-30 ms, have been proposed for music segmentation, retrieval and genre classification. However, often the available time frame of the music to make the actual decision or comparison (the decision time horizon) is in the range...... of seconds instead of milliseconds. The problem of making new features on the larger time scale from the short-time features (feature integration) has only received little attention. This paper investigates different methods for feature integration and late information fusion for music genre classification...

  2. GENERIC Integrators: Structure Preserving Time Integration for Thermodynamic Systems

    Science.gov (United States)

    Öttinger, Hans Christian

    2018-04-01

    Thermodynamically admissible evolution equations for non-equilibrium systems are known to possess a distinct mathematical structure. Within the GENERIC (general equation for the non-equilibrium reversible-irreversible coupling) framework of non-equilibrium thermodynamics, which is based on continuous time evolution, we investigate the possibility of preserving all the structural elements in time-discretized equations. Our approach, which follows Moser's [1] construction of symplectic integrators for Hamiltonian systems, is illustrated for the damped harmonic oscillator. Alternative approaches are sketched.

  3. Feasibility of real-time calculation of correlation integral derived statistics applied to EEG time series

    NARCIS (Netherlands)

    Broek, P.L.C. van den; Egmond, J. van; Rijn, C.M. van; Takens, F.; Coenen, A.M.L.; Booij, L.H.D.J.

    2005-01-01

    This study assessed the feasibility of online calculation of the correlation integral (C(r)) aiming to apply C(r)-derived statistics. For real-time application it is important to reduce calculation time. It is shown how our method works for EEG time series. Methods: To achieve online calculation of

  4. Feasibility of real-time calculation of correlation integral derived statistics applied to EGG time series

    NARCIS (Netherlands)

    van den Broek, PLC; van Egmond, J; van Rijn, CM; Takens, F; Coenen, AML; Booij, LHDJ

    2005-01-01

    Background: This study assessed the feasibility of online calculation of the correlation integral (C(r)) aiming to apply C(r)derived statistics. For real-time application it is important to reduce calculation time. It is shown how our method works for EEG time series. Methods: To achieve online

  5. Analytic methods to generate integrable mappings

    Indian Academy of Sciences (India)

    2015-10-22

    Oct 22, 2015 ... Systematic analytic methods of deriving integrable mappings from integrable nonlinear ordinary differential, differential-difference and lattice equations are presented. More specifically, we explain how to derive integrable mappings through four different techniques namely,. dis-cretization technique,; Lax ...

  6. Automatic numerical integration methods for Feynman integrals through 3-loop

    International Nuclear Information System (INIS)

    De Doncker, E; Olagbemi, O; Yuasa, F; Ishikawa, T; Kato, K

    2015-01-01

    We give numerical integration results for Feynman loop diagrams through 3-loop such as those covered by Laporta [1]. The methods are based on automatic adaptive integration, using iterated integration and extrapolation with programs from the QUADPACK package, or multivariate techniques from the ParInt package. The Dqags algorithm from QuadPack accommodates boundary singularities of fairly general types. PARINT is a package for multivariate integration layered over MPI (Message Passing Interface), which runs on clusters and incorporates advanced parallel/distributed techniques such as load balancing among processes that may be distributed over a network of nodes. Results are included for 3-loop self-energy diagrams without IR (infra-red) or UV (ultra-violet) singularities. A procedure based on iterated integration and extrapolation yields a novel method of numerical regularization for integrals with UV terms, and is applied to a set of 2-loop self-energy diagrams with UV singularities. (paper)

  7. Precise digital integration in wide time range: theory and realization

    International Nuclear Information System (INIS)

    Batrakov, A.M.; Pavlenko, A.V.

    2017-01-01

    The digital integration method based on using high-speed precision analog-to-digital converters (ADC) has become widely used over the recent years. The paper analyzes the limitations of this method that are caused by the signal properties, ADC sampling rate and noise spectral density of the ADC signal path. This analysis allowed creating digital integrators with accurate synchronization and achieving an integration error of less than 10 −5 in the time range from microseconds to tens of seconds. The structure of the integrator is described and its basic parameters are presented. The possibilities of different ADC chips in terms of their applicability to digital integrators are discussed. A comparison with other integrating devices is presented.

  8. Some Nonlinear Integral Inequalities on Time Scales

    Directory of Open Access Journals (Sweden)

    Li Wei Nian

    2007-01-01

    Full Text Available The purpose of this paper is to investigate some nonlinear integral inequalities on time scales. Our results unify and extend some continuous inequalities and their corresponding discrete analogues. The theoretical results are illustrated by a simple example at the end of this paper.

  9. Energy drift in reversible time integration

    International Nuclear Information System (INIS)

    McLachlan, R I; Perlmutter, M

    2004-01-01

    Energy drift is commonly observed in reversible integrations of systems of molecular dynamics. We show that this drift can be modelled as a diffusion and that the typical energy error after time T is O(√T). (letter to the editor)

  10. Integrated Methods: Applications in Quantum Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Irle, Stephen; Morokuma, Keiji

    2004-03-31

    Authors introduce quantum chemical methods applicable to extended molecular systems or parts of them, describe in short the theory behind integrated methods, and discuss their applications to the most recognizable areas of nanochemistry (fullerenes, nanotubes, and silica- based nanosystems).

  11. Hippocampal “Time Cells”: Time versus Path Integration

    Science.gov (United States)

    Kraus, Benjamin J.; Robinson, Robert J.; White, John A.; Eichenbaum, Howard; Hasselmo, Michael E.

    2014-01-01

    SUMMARY Recent studies have reported the existence of hippocampal “time cells,” neurons that fire at particular moments during periods when behavior and location are relatively constant. However, an alternative explanation of apparent time coding is that hippocampal neurons “path integrate” to encode the distance an animal has traveled. Here, we examined hippocampal neuronal firing patterns as rats ran in place on a treadmill, thus “clamping” behavior and location, while we varied the treadmill speed to distinguish time elapsed from distance traveled. Hippocampal neurons were strongly influenced by time and distance, and less so by minor variations in location. Furthermore, the activity of different neurons reflected integration over time and distance to varying extents, with most neurons strongly influenced by both factors and some significantly influenced by only time or distance. Thus, hippocampal neuronal networks captured both the organization of time and distance in a situation where these dimensions dominated an ongoing experience. PMID:23707613

  12. Integrated Logistics Support Analysis of the International Space Station Alpha: An Overview of the Maintenance Time Dependent Parameter Prediction Methods Enhancement

    Science.gov (United States)

    Sepehry-Fard, F.; Coulthard, Maurice H.

    1995-01-01

    The objective of this publication is to introduce the enhancement methods for the overall reliability and maintainability methods of assessment on the International Space Station. It is essential that the process to predict the values of the maintenance time dependent variable parameters such as mean time between failure (MTBF) over time do not in themselves generate uncontrolled deviation in the results of the ILS analysis such as life cycle costs, spares calculation, etc. Furthermore, the very acute problems of micrometeorite, Cosmic rays, flares, atomic oxygen, ionization effects, orbital plumes and all the other factors that differentiate maintainable space operations from non-maintainable space operations and/or ground operations must be accounted for. Therefore, these parameters need be subjected to a special and complex process. Since reliability and maintainability strongly depend on the operating conditions that are encountered during the entire life of the International Space Station, it is important that such conditions are accurately identified at the beginning of the logistics support requirements process. Environmental conditions which exert a strong influence on International Space Station will be discussed in this report. Concurrent (combined) space environments may be more detrimental to the reliability and maintainability of the International Space Station than the effects of a single environment. In characterizing the logistics support requirements process, the developed design/test criteria must consider both the single and/or combined environments in anticipation of providing hardware capability to withstand the hazards of the International Space Station profile. The effects of the combined environments (typical) in a matrix relationship on the International Space Station will be shown. The combinations of the environments where the total effect is more damaging than the cumulative effects of the environments acting singly, may include a

  13. Parallel Jacobi EVD Methods on Integrated Circuits

    Directory of Open Access Journals (Sweden)

    Chi-Chia Sun

    2014-01-01

    Full Text Available Design strategies for parallel iterative algorithms are presented. In order to further study different tradeoff strategies in design criteria for integrated circuits, A 10 × 10 Jacobi Brent-Luk-EVD array with the simplified μ-CORDIC processor is used as an example. The experimental results show that using the μ-CORDIC processor is beneficial for the design criteria as it yields a smaller area, faster overall computation time, and less energy consumption than the regular CORDIC processor. It is worth to notice that the proposed parallel EVD method can be applied to real-time and low-power array signal processing algorithms performing beamforming or DOA estimation.

  14. Integrated control system and method

    Science.gov (United States)

    Wang, Paul Sai Keat; Baldwin, Darryl; Kim, Myoungjin

    2013-10-29

    An integrated control system for use with an engine connected to a generator providing electrical power to a switchgear is disclosed. The engine receives gas produced by a gasifier. The control system includes an electronic controller associated with the gasifier, engine, generator, and switchgear. A gas flow sensor monitors a gas flow from the gasifier to the engine through an engine gas control valve and provides a gas flow signal to the electronic controller. A gas oversupply sensor monitors a gas oversupply from the gasifier and provides an oversupply signal indicative of gas not provided to the engine. A power output sensor monitors a power output of the switchgear and provide a power output signal. The electronic controller changes gas production of the gasifier and the power output rating of the switchgear based on the gas flow signal, the oversupply signal, and the power output signal.

  15. Adaptive Integral Method for Higher Order Method of Moments

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Meincke, Peter

    2008-01-01

    The adaptive integral method (AIM) is combined with the higher order method of moments (MoM) to solve integral equations. The technique takes advantage of the low computational complexity and memory requirements of the AIM and the reduced number of unknowns and higher order convergence of higher...

  16. Just methods in revolting times.

    Science.gov (United States)

    Fine, Michelle

    2016-10-01

    This article takes up the challenge of critical methods in "revolting times," as we conduct qualitative research on (in)justice festering within repulsive inequality gaps, and yet surrounded by the thrill of radical social movements dotting the globe. I introduce a call for "critical bifocality," a term coined by Lois Weis and myself, to argue for research designs that interrogate how history, structures, and lives shape, reveal, and refract the conditions we study. Borrowing from critical researchers long gone, W. E. B. Du Bois in his text The Philadelphia Negro and Marie Jahoda in her stunning case study Marienthal , I offer up a set of epistemological muddles and methodological experiments, hoping to incite a conversation about our responsibilities as critical psychologists in deeply contentious times, refusing downstream analyses and resurrecting instead what Edward Said called "lost causes."

  17. Aspects for Run-time Component Integration

    DEFF Research Database (Denmark)

    Truyen, Eddy; Jørgensen, Bo Nørregaard; Joosen, Wouter

    2000-01-01

    Component framework technology has become the cornerstone of building a family of systems and applications. A component framework defines a generic architecture into which specialized components can be plugged. As such, the component framework leverages the glue that connects the different inserted...... to dynamically integrate into the architecture of middleware systems new services that support non-functional aspects such as security, transactions, real-time....

  18. A Time Series Forecasting Method

    Directory of Open Access Journals (Sweden)

    Wang Zhao-Yu

    2017-01-01

    Full Text Available This paper proposes a novel time series forecasting method based on a weighted self-constructing clustering technique. The weighted self-constructing clustering processes all the data patterns incrementally. If a data pattern is not similar enough to an existing cluster, it forms a new cluster of its own. However, if a data pattern is similar enough to an existing cluster, it is removed from the cluster it currently belongs to and added to the most similar cluster. During the clustering process, weights are learned for each cluster. Given a series of time-stamped data up to time t, we divide it into a set of training patterns. By using the weighted self-constructing clustering, the training patterns are grouped into a set of clusters. To estimate the value at time t + 1, we find the k nearest neighbors of the input pattern and use these k neighbors to decide the estimation. Experimental results are shown to demonstrate the effectiveness of the proposed approach.

  19. A numerical method for resonance integral calculations

    International Nuclear Information System (INIS)

    Tanbay, Tayfun; Ozgener, Bilge

    2013-01-01

    A numerical method has been proposed for resonance integral calculations and a cubic fit based on least squares approximation to compute the optimum Bell factor is given. The numerical method is based on the discretization of the neutron slowing down equation. The scattering integral is approximated by taking into account the location of the upper limit in energy domain. The accuracy of the method has been tested by performing computations of resonance integrals for uranium dioxide isolated rods and comparing the results with empirical values. (orig.)

  20. Research on integrated navigation method for AUV

    Science.gov (United States)

    Guo, Zhen; Sun, Feng

    2005-06-01

    The principles of the SINS/DVL integrated navigation system are introduced, and the compass status accuracy is compared. When the heading is changed, the dead reckoning algorithm using the heading information of the SINS (Strapdown inertial navigation systems) and DVL (doppler velocity log) is adopted to substitute the SINS/DVL integrated system. The simulation results show that the method can improve the accuracy of integrated navigation system when AUV (autonomous underwater vehicle) is in motion.

  1. Time-Lapse Measurement of Wellbore Integrity

    Science.gov (United States)

    Duguid, A.

    2017-12-01

    Well integrity is becoming more important as wells are used longer or repurposed. For CO2, shale gas, and other projects it has become apparent that wells represent the most likely unintended migration pathway for fluids out of the reservoir. Comprehensive logging programs have been employed to determine the condition of legacy wells in North America. These studies provide examples of assessment technologies. Logging programs have included pulsed neutron logging, ultrasonic well mapping, and cement bond logging. While these studies provide examples of what can be measured, they have only conducted a single round of logging and cannot show if the well has changed over time. Recent experience with time-lapse logging of three monitoring wells at a US Department of Energy sponsored CO2 project has shown the full value of similar tools. Time-lapse logging has shown that well integrity changes over time can be identified. It has also shown that the inclusion of and location of monitoring technologies in the well and the choice of construction materials must be carefully considered. Two of the wells were approximately eight years old at the time of study; they were constructed with steel and fiberglass casing sections and had lines on the outside of the casing running to the surface. The third well was 68 years old when it was studied and was originally constructed as a production well. Repeat logs were collected six or eight years after initial logging. Time-lapse logging showed the evolution of the wells. The results identified locations where cement degraded over time and locations that showed little change. The ultrasonic well maps show clearly that the lines used to connect the monitoring technology to the surface are visible and have a local effect on cement isolation. Testing and sampling was conducted along with logging. It provided insight into changes identified in the time-lapse log results. Point permeability testing was used to provide an in-situ point

  2. Temporal Characterization of Hydrates System Dynamics beneath Seafloor Mounds. Integrating Time-Lapse Electrical Resistivity Methods and In Situ Observations of Multiple Oceanographic Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Lutken, Carol [Univ. of Mississippi, Oxford, MS (United States); Macelloni, Leonardo [Univ. of Mississippi, Oxford, MS (United States); D' Emidio, Marco [Univ. of Mississippi, Oxford, MS (United States); Dunbar, John [Univ. of Mississippi, Oxford, MS (United States); Higley, Paul [Univ. of Mississippi, Oxford, MS (United States)

    2015-01-31

    detect short-term changes within the hydrates system, identify relationships/impacts of local oceanographic parameters on the hydrates system, and improve our understanding of how seafloor instability is affected by hydrates-driven changes. A 2009 DCR survey of MC118 demonstrated that we could image resistivity anomalies to a depth of 75m below the seafloor in water depths of 1km. We reconfigured this system to operate autonomously on the seafloor in a pre-programmed mode, for periods of months. We designed and built a novel seafloor lander and deployment capability that would allow us to investigate the seafloor at potential deployment sites and deploy instruments only when conditions met our criteria. This lander held the DCR system, controlling computers, and battery power supply, as well as instruments to record oceanographic parameters. During the first of two cruises to the study site, we conducted resistivity surveying, selected a monitoring site, and deployed the instrumented lander and DCR, centered on what appeared to be the most active locations within the site, programmed to collect a DCR profile, weekly. After a 4.5-month residence on the seafloor, the team recovered all equipment. Unfortunately, several equipment failures occurred prior to recovery of the instrument packages. Prior to the failures, however, two resistivity profiles were collected together with oceanographic data. Results show, unequivocally, that significant changes can occur in both hydrate volume and distribution during time periods as brief as one week. Occurrences appear to be controlled by both deep and near-surface structure. Results have been integrated with seismic data from the area and show correspondence in space of hydrate and structures, including faults and gas chimneys.

  3. Invited Article: A novel calibration method for the JET real-time far infrared polarimeter and integration of polarimetry-based line-integrated density measurements for machine protection of a fusion plant.

    Science.gov (United States)

    Boboc, A; Bieg, B; Felton, R; Dalley, S; Kravtsov, Yu

    2015-09-01

    In this paper, we present the work in the implementation of a new calibration for the JET real-time polarimeter based on the complex amplitude ratio technique and a new self-validation mechanism of data. This allowed easy integration of the polarimetry measurements into the JET plasma density control (gas feedback control) and as well as machine protection systems (neutral beam injection heating safety interlocks). The new addition was used successfully during 2014 JET Campaign and is envisaged that will operate routinely from 2015 campaign onwards in any plasma condition (including ITER relevant scenarios). This mode of operation elevated the importance of the polarimetry as a diagnostic tool in the view of future fusion experiments.

  4. Invited Article: A novel calibration method for the JET real-time far infrared polarimeter and integration of polarimetry-based line-integrated density measurements for machine protection of a fusion plant

    International Nuclear Information System (INIS)

    Boboc, A.; Felton, R.; Dalley, S.; Bieg, B.; Kravtsov, Yu.

    2015-01-01

    In this paper, we present the work in the implementation of a new calibration for the JET real-time polarimeter based on the complex amplitude ratio technique and a new self-validation mechanism of data. This allowed easy integration of the polarimetry measurements into the JET plasma density control (gas feedback control) and as well as machine protection systems (neutral beam injection heating safety interlocks). The new addition was used successfully during 2014 JET Campaign and is envisaged that will operate routinely from 2015 campaign onwards in any plasma condition (including ITER relevant scenarios). This mode of operation elevated the importance of the polarimetry as a diagnostic tool in the view of future fusion experiments

  5. Integrating data from multiple time-location measurement methods for use in exposure assessment: the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air).

    Science.gov (United States)

    Hazlehurst, Marnie F; Spalt, Elizabeth W; Curl, Cynthia L; Davey, Mark E; Vedal, Sverre; Burke, Gregory L; Kaufman, Joel D

    2017-11-01

    Tools to assess time-location patterns related to environmental exposures have expanded from reliance on time-location diaries (TLDs) and questionnaires to use of geospatial location devices such as data-logging Global Positioning System (GPS) equipment. The Multi-Ethnic Study of Atherosclerosis and Air Pollution obtained typical time-location patterns via questionnaire for 6424 adults in six US cities. At a later time (mean 4.6 years after questionnaire), a subset (n=128) participated in high-resolution data collection for specific 2-week periods resulting in concurrent GPS and detailed TLD data, which were aggregated to estimate time spent in various microenvironments. During these 2-week periods, participants were observed to spend the most time at home indoors (mean of 78%) and a small proportion of time in-vehicle (mean of 4%). Similar overall patterns were reported by these participants on the prior questionnaire (mean home indoors: 75%; mean in-vehicle: 4%). However, individual micro-environmental time estimates measured over specific 2-week periods were not highly correlated with an individual's questionnaire report of typical behavior (Spearman's ρ of 0.43 for home indoors and 0.39 for in-vehicle). Although questionnaire data about typical time-location patterns can inform interpretation of long-term epidemiological analyses and risk assessment, they may not reliably represent an individual's short-term experience.

  6. A New time Integration Scheme for Cahn-hilliard Equations

    KAUST Repository

    Schaefer, R.

    2015-06-01

    In this paper we present a new integration scheme that can be applied to solving difficult non-stationary non-linear problems. It is obtained by a successive linearization of the Crank- Nicolson scheme, that is unconditionally stable, but requires solving non-linear equation at each time step. We applied our linearized scheme for the time integration of the challenging Cahn-Hilliard equation, modeling the phase separation in fluids. At each time step the resulting variational equation is solved using higher-order isogeometric finite element method, with B- spline basis functions. The method was implemented in the PETIGA framework interfaced via the PETSc toolkit. The GMRES iterative solver was utilized for the solution of a resulting linear system at every time step. We also apply a simple adaptivity rule, which increases the time step size when the number of GMRES iterations is lower than 30. We compared our method with a non-linear, two stage predictor-multicorrector scheme, utilizing a sophisticated step length adaptivity. We controlled the stability of our simulations by monitoring the Ginzburg-Landau free energy functional. The proposed integration scheme outperforms the two-stage competitor in terms of the execution time, at the same time having a similar evolution of the free energy functional.

  7. Path integral methods for stochastic differential equations.

    Science.gov (United States)

    Chow, Carson C; Buice, Michael A

    2015-01-01

    Stochastic differential equations (SDEs) have multiple applications in mathematical neuroscience and are notoriously difficult. Here, we give a self-contained pedagogical review of perturbative field theoretic and path integral methods to calculate moments of the probability density function of SDEs. The methods can be extended to high dimensional systems such as networks of coupled neurons and even deterministic systems with quenched disorder.

  8. Classification Method in Integrated Information Network Using Vector Image Comparison

    Directory of Open Access Journals (Sweden)

    Zhou Yuan

    2014-05-01

    Full Text Available Wireless Integrated Information Network (WMN consists of integrated information that can get data from its surrounding, such as image, voice. To transmit information, large resource is required which decreases the service time of the network. In this paper we present a Classification Approach based on Vector Image Comparison (VIC for WMN that improve the service time of the network. The available methods for sub-region selection and conversion are also proposed.

  9. Efficient integration method for fictitious domain approaches

    Science.gov (United States)

    Duczek, Sascha; Gabbert, Ulrich

    2015-10-01

    In the current article, we present an efficient and accurate numerical method for the integration of the system matrices in fictitious domain approaches such as the finite cell method (FCM). In the framework of the FCM, the physical domain is embedded in a geometrically larger domain of simple shape which is discretized using a regular Cartesian grid of cells. Therefore, a spacetree-based adaptive quadrature technique is normally deployed to resolve the geometry of the structure. Depending on the complexity of the structure under investigation this method accounts for most of the computational effort. To reduce the computational costs for computing the system matrices an efficient quadrature scheme based on the divergence theorem (Gauß-Ostrogradsky theorem) is proposed. Using this theorem the dimension of the integral is reduced by one, i.e. instead of solving the integral for the whole domain only its contour needs to be considered. In the current paper, we present the general principles of the integration method and its implementation. The results to several two-dimensional benchmark problems highlight its properties. The efficiency of the proposed method is compared to conventional spacetree-based integration techniques.

  10. Integral Methods in Science and Engineering

    CERN Document Server

    Constanda, Christian

    2011-01-01

    An enormous array of problems encountered by scientists and engineers are based on the design of mathematical models using many different types of ordinary differential, partial differential, integral, and integro-differential equations. Accordingly, the solutions of these equations are of great interest to practitioners and to science in general. Presenting a wealth of cutting-edge research by a diverse group of experts in the field, Integral Methods in Science and Engineering: Computational and Analytic Aspects gives a vivid picture of both the development of theoretical integral techniques

  11. An Energy Storage System Sizing Method for Wind Power Integration

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2013-07-01

    Full Text Available Combining an energy storage system (ESS with a wind farm is an effective way to increase the penetration rate of wind power. ESS sizing is an important part in wind farm planning nowadays. In this paper, a basic method for determining the optimal capacity of an ESS integrated with a wind power generator to meet the requirements of grid integration is presented. With the proposed method, the necessary ESS capacity which can provide the best benefits between the regulation effects and energy storage size was calculated. The segmentation method and automatic segmentation method are proposed to improve the performance of the basic method. Further work on expanding the method to determine the necessary capacity of ESS for real-time control is studied. The time window method is used to enable the proposed method available under all working conditions. The simulation results verify the effectiveness of the proposed method.

  12. On Tuning PI Controllers for Integrating Plus Time Delay Systems

    Directory of Open Access Journals (Sweden)

    David Di Ruscio

    2010-10-01

    Full Text Available Some analytical results concerning PI controller tuning based on integrator plus time delay models are worked out and presented. A method for obtaining PI controller parameters, Kp=alpha/(k*tau, and, Ti=beta*tau, which ensures a given prescribed maximum time delay error, dtau_max, to time delay, tau, ratio parameter delta=dau_max/tau, is presented. The corner stone in this method, is a method product parameter, c=alpha*beta. Analytical relations between the PI controller parameters, Ti, and, Kp, and the time delay error parameter, delta, is presented, and we propose the setting, beta=c/a*(delta+1, and, alpha=a/(delta+1, which gives, Ti=c/a*(delta+1*tau, and Kp=a/((delta+1*k*tau, where the parameter, a, is constant in the method product parameter, c=alpha*beta. It also turns out that the integral time, Ti, is linear in, delta, and the proportional gain, Kp, inversely proportional to, delta+1. For the original Ziegler Nichols (ZN method this parameter is approximately, c=2.38, and the presented method may e.g., be used to obtain new modified ZN parameters with increased robustness margins, also documented in the paper.

  13. Ecotoxicology and macroecology--time for integration.

    Science.gov (United States)

    Beketov, Mikhail A; Liess, Matthias

    2012-03-01

    Despite considerable progress in ecotoxicology, it has become clear that this discipline cannot answer its central questions, such as, "What are the effects of toxicants on biodiversity?" and "How the ecosystem functions and services are affected by the toxicants?". We argue that if such questions are to be answered, a paradigm shift is needed. The current bottom-up approach of ecotoxicology that implies the use of small-scale experiments to predict effects on the entire ecosystems and landscapes should be merged with a top-down macroecological approach that is directly focused on ecological effects at large spatial scales and consider ecological systems as integral entities. Analysis of the existing methods in ecotoxicology, ecology, and environmental chemistry shows that such integration is currently possible. Therefore, we conclude that to tackle the current pressing challenges, ecotoxicology has to progress using both the bottom-up and top-down approaches, similar to digging a tunnel from both ends at once. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Stability analysis of neutral type neural networks with mixed time-varying delays using triple-integral and delay-partitioning methods.

    Science.gov (United States)

    Shi, Kaibo; Zhu, Hong; Zhong, Shouming; Zeng, Yong; Zhang, Yuping; Wang, Wenqin

    2015-09-01

    This paper investigates the asymptotical stability problem for a class of neutral type neural networks with mixed time-varying delays. The system not only has time-varying discrete delay, but also distributed delay, which has never been discussed in the previous literature. Firstly, improved stability criteria are derived by employing the more general delay partitioning approach and generalizing the famous Jensen inequality. Secondly, by constructing a newly augmented Lyapunov-Krasovskii functionals, some less conservative stability criteria are established in terms of linear matrix inequalities (LMIs). Finally, four numerical examples are given to illustrate the effectiveness and the advantage of the proposed main results. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  15. New Approaches to Aluminum Integral Foam Production with Casting Methods

    Directory of Open Access Journals (Sweden)

    Ahmet Güner

    2015-08-01

    Full Text Available Integral foam has been used in the production of polymer materials for a long time. Metal integral foam casting systems are obtained by transferring and adapting polymer injection technology. Metal integral foam produced by casting has a solid skin at the surface and a foam core. Producing near-net shape reduces production expenses. Insurance companies nowadays want the automotive industry to use metallic foam parts because of their higher impact energy absorption properties. In this paper, manufacturing processes of aluminum integral foam with casting methods will be discussed.

  16. Mining method selection by integrated AHP and PROMETHEE method.

    Science.gov (United States)

    Bogdanovic, Dejan; Nikolic, Djordje; Ilic, Ivana

    2012-03-01

    Selecting the best mining method among many alternatives is a multicriteria decision making problem. The aim of this paper is to demonstrate the implementation of an integrated approach that employs AHP and PROMETHEE together for selecting the most suitable mining method for the "Coka Marin" underground mine in Serbia. The related problem includes five possible mining methods and eleven criteria to evaluate them. Criteria are accurately chosen in order to cover the most important parameters that impact on the mining method selection, such as geological and geotechnical properties, economic parameters and geographical factors. The AHP is used to analyze the structure of the mining method selection problem and to determine weights of the criteria, and PROMETHEE method is used to obtain the final ranking and to make a sensitivity analysis by changing the weights. The results have shown that the proposed integrated method can be successfully used in solving mining engineering problems.

  17. METHODS OF INTEGRATED OPTIMIZATION MAGLEV TRANSPORT SYSTEMS

    Directory of Open Access Journals (Sweden)

    A. Lasher

    2013-09-01

    Full Text Available Purpose. To demonstrate feasibility of the proposed integrated optimization of various MTS parameters to reduce capital investments as well as decrease any operational and maintenance expense. This will make use of MTS reasonable. At present, the Maglev Transport Systems (MTS for High-Speed Ground Transportation (HSGT almost do not apply. Significant capital investments, high operational and maintenance costs are the main reasons why Maglev Transport Systems (MTS are hardly currently used for the High-Speed Ground Transportation (HSGT. Therefore, this article justifies use of Theory of Complex Optimization of Transport (TCOT, developed by one of the co-authors, to reduce MTS costs. Methodology. According to TCOT, authors developed an abstract model of the generalized transport system (AMSTG. This model mathematically determines the optimal balance between all components of the system and thus provides the ultimate adaptation of any transport systems to the conditions of its application. To identify areas for effective use of MTS, by TCOT, the authors developed a dynamic model of distribution and expansion of spheres of effective use of transport systems (DMRRSEPTS. Based on this model, the most efficient transport system was selected for each individual track. The main estimated criterion at determination of efficiency of application of MTS is the size of the specific transportation tariff received from calculation of payback of total given expenses to a standard payback period or term of granting the credit. Findings. The completed multiple calculations of four types of MTS: TRANSRAPID, MLX01, TRANSMAG and TRANSPROGRESS demonstrated efficiency of the integrated optimization of the parameters of such systems. This research made possible expending the scope of effective usage of MTS in about 2 times. The achieved results were presented at many international conferences in Germany, Switzerland, United States, China, Ukraine, etc. Using MTS as an

  18. Rigorous time slicing approach to Feynman path integrals

    CERN Document Server

    Fujiwara, Daisuke

    2017-01-01

    This book proves that Feynman's original definition of the path integral actually converges to the fundamental solution of the Schrödinger equation at least in the short term if the potential is differentiable sufficiently many times and its derivatives of order equal to or higher than two are bounded. The semi-classical asymptotic formula up to the second term of the fundamental solution is also proved by a method different from that of Birkhoff. A bound of the remainder term is also proved. The Feynman path integral is a method of quantization using the Lagrangian function, whereas Schrödinger's quantization uses the Hamiltonian function. These two methods are believed to be equivalent. But equivalence is not fully proved mathematically, because, compared with Schrödinger's method, there is still much to be done concerning rigorous mathematical treatment of Feynman's method. Feynman himself defined a path integral as the limit of a sequence of integrals over finite-dimensional spaces which is obtained by...

  19. Integrating Orthographic Information Across Time and Space.

    Science.gov (United States)

    Snell, Joshua; Bertrand, Daisy; Meeter, Martijn; Grainger, Jonathan

    2018-01-01

    Research has suggested that the word recognition process is influenced by the integration of orthographic information across words. The precise nature of this integration process may vary, however, depending on whether words are in temporal or spatial proximity. Here we present a lexical decision experiment, designed to compare temporal and spatial integration processes more directly. Masked priming was used to reveal effects of temporal integration, while the flanker paradigm was used to reveal effects of spatial integration. Primes/flankers were high-frequency orthographic neighbors of the target (blue-blur) or unrelated control words (head-blur). We replicated prior observations of inhibition in trials where the neighbor was used as a masked prime, while facilitation was observed in trials where the neighbor was presented as flanker. We conclude that sub-lexical orthographic information is integrated both temporally and spatially, but that spatial information is used to segregate lexical representations activated by spatially distinct sources.

  20. State Space Methods for Timed Petri Nets

    DEFF Research Database (Denmark)

    Christensen, Søren; Jensen, Kurt; Mailund, Thomas

    2001-01-01

    We present two recently developed state space methods for timed Petri nets. The two methods reconciles state space methods and time concepts based on the introduction of a global clock and associating time stamps to tokens. The first method is based on an equivalence relation on states which makes...

  1. An introduction to phase-integral methods

    CERN Document Server

    Heading, John

    2013-01-01

    The phase-integral method in mathematics, also known as the Wentzel-Kramers-Brillouin (WKB) method, is the focus of this introductory treatment. Author John Heading successfully steers a course between simplistic and rigorous approaches to provide a concise overview for advanced undergraduates and graduate students in mathematics and physics. Since the number of applications is vast, the text considers only a brief selection of topics and emphasizes the method itself rather than detailed applications. The process, once derived, is shown to be one of essential simplicity that involves merely t

  2. Permutation statistical methods an integrated approach

    CERN Document Server

    Berry, Kenneth J; Johnston, Janis E

    2016-01-01

    This research monograph provides a synthesis of a number of statistical tests and measures, which, at first consideration, appear disjoint and unrelated. Numerous comparisons of permutation and classical statistical methods are presented, and the two methods are compared via probability values and, where appropriate, measures of effect size. Permutation statistical methods, compared to classical statistical methods, do not rely on theoretical distributions, avoid the usual assumptions of normality and homogeneity of variance, and depend only on the data at hand. This text takes a unique approach to explaining statistics by integrating a large variety of statistical methods, and establishing the rigor of a topic that to many may seem to be a nascent field in statistics. This topic is new in that it took modern computing power to make permutation methods available to people working in the mainstream of research. This research monograph addresses a statistically-informed audience, and can also easily serve as a ...

  3. First integral method for an oscillator system

    Directory of Open Access Journals (Sweden)

    Xiaoqian Gong

    2013-04-01

    Full Text Available In this article, we consider the nonlinear Duffing-van der Pol-type oscillator system by means of the first integral method. This system has physical relevance as a model in certain flow-induced structural vibration problems, which includes the van der Pol oscillator and the damped Duffing oscillator etc as particular cases. Firstly, we apply the Division Theorem for two variables in the complex domain, which is based on the ring theory of commutative algebra, to explore a quasi-polynomial first integral to an equivalent autonomous system. Then, through solving an algebraic system we derive the first integral of the Duffing-van der Pol-type oscillator system under certain parametric condition.

  4. Assessing Backwards Integration as a Method of KBO Family Finding

    Science.gov (United States)

    Benfell, Nathan; Ragozzine, Darin

    2018-04-01

    The age of young asteroid collisional families can sometimes be determined by using backwards n-body integrations of the solar system. This method is not used for discovering young asteroid families and is limited by the unpredictable influence of the Yarkovsky effect on individual specific asteroids over time. Since these limitations are not as important for objects in the Kuiper belt, Marcus et al. 2011 suggested that backwards integration could be used to discover and characterize collisional families in the outer solar system. But various challenges present themselves when running precise and accurate 4+ Gyr integrations of Kuiper Belt objects. We have created simulated families of Kuiper Belt Objects with identical starting locations and velocity distributions, based on the Haumea Family. We then ran several long-term test integrations to observe the effect of various simulation parameters on integration results. These integrations were then used to investigate which parameters are of enough significance to require inclusion in the integration. Thereby we determined how to construct long-term integrations that both yield significant results and require manageable processing power. Additionally, we have tested the use of backwards integration as a method of discovery of potential young families in the Kuiper Belt.

  5. A higher order space-time Galerkin scheme for time domain integral equations

    KAUST Repository

    Pray, Andrew J.

    2014-12-01

    Stability of time domain integral equation (TDIE) solvers has remained an elusive goal formany years. Advancement of this research has largely progressed on four fronts: 1) Exact integration, 2) Lubich quadrature, 3) smooth temporal basis functions, and 4) space-time separation of convolutions with the retarded potential. The latter method\\'s efficacy in stabilizing solutions to the time domain electric field integral equation (TD-EFIE) was previously reported for first-order surface descriptions (flat elements) and zeroth-order functions as the temporal basis. In this work, we develop the methodology necessary to extend the scheme to higher order surface descriptions as well as to enable its use with higher order basis functions in both space and time. These basis functions are then used in a space-time Galerkin framework. A number of results are presented that demonstrate convergence in time. The viability of the space-time separation method in producing stable results is demonstrated experimentally for these examples.

  6. Energy conservation in Newmark based time integration algorithms

    DEFF Research Database (Denmark)

    Krenk, Steen

    2006-01-01

    Energy balance equations are established for the Newmark time integration algorithm, and for the derived algorithms with algorithmic damping introduced via averaging, the so-called a-methods. The energy balance equations form a sequence applicable to: Newmark integration of the undamped equations...... by the algorithm. The magnitude and character of these terms as well as the associated damping terms are discussed in relation to energy conservation and stability of the algorithms. It is demonstrated that the additional terms in the energy lead to periodic fluctuations of the mechanical energy and are the cause......, and that energy fluctuations take place for integration intervals close to the stability limit. (c) 2006 Elsevier B.V. All rights reserved....

  7. Method for Determining the Time Parameter

    Directory of Open Access Journals (Sweden)

    K. P. Baslyk

    2014-01-01

    values of multipliers and parameter of penalty. The solving problem of the optimization without constraints is one step of the optimization problem with constraints.The proposed method was realized as a computational Pascal-language program. There is the multiple call of Runge-Kutta method procedure for integration of motion equations. To reduce operation-use time, normalization of motion equations is used, and the 4-th order RungeKutta method time step accuracy control is also applied.The program test results were compared with the solution, which was obtained using the existing software for the one stage missile design.The general results obtained in this paper are following: numerical determination method of the attack angle time parameter and maximum allowed value of the attack angle amplitude as functions of the projected and ballistic parameters; software implementation of this method. Deviation of angle trajectory value at the end of active trajectory leg as a function of the error of the time parameter was obtained as well. This paper can be used in the courses of learning such as “Introduction to rocketry” and “Launch vehicle design”.

  8. Integration of Real-Time Data Into Building Automation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Mark J. Stunder; Perry Sebastian; Brenda A. Chube; Michael D. Koontz

    2003-04-16

    The project goal was to investigate the possibility of using predictive real-time information from the Internet as an input to building management system algorithms. The objectives were to identify the types of information most valuable to commercial and residential building owners, managers, and system designers. To comprehensively investigate and document currently available electronic real-time information suitable for use in building management systems. Verify the reliability of the information and recommend accreditation methods for data and providers. Assess methodologies to automatically retrieve and utilize the information. Characterize equipment required to implement automated integration. Demonstrate the feasibility and benefits of using the information in building management systems. Identify evolutionary control strategies.

  9. Adaptive time-stepping Monte Carlo integration of Coulomb collisions

    Science.gov (United States)

    Särkimäki, K.; Hirvijoki, E.; Terävä, J.

    2018-01-01

    We report an accessible and robust tool for evaluating the effects of Coulomb collisions on a test particle in a plasma that obeys Maxwell-Jüttner statistics. The implementation is based on the Beliaev-Budker collision integral which allows both the test particle and the background plasma to be relativistic. The integration method supports adaptive time stepping, which is shown to greatly improve the computational efficiency. The Monte Carlo method is implemented for both the three-dimensional particle momentum space and the five-dimensional guiding center phase space. Detailed description is provided for both the physics and implementation of the operator. The focus is in adaptive integration of stochastic differential equations, which is an overlooked aspect among existing Monte Carlo implementations of Coulomb collision operators. We verify that our operator converges to known analytical results and demonstrate that careless implementation of the adaptive time step can lead to severely erroneous results. The operator is provided as a self-contained Fortran 95 module and can be included into existing orbit-following tools that trace either the full Larmor motion or the guiding center dynamics. The adaptive time-stepping algorithm is expected to be useful in situations where the collision frequencies vary greatly over the course of a simulation. Examples include the slowing-down of fusion products or other fast ions, and the Dreicer generation of runaway electrons as well as the generation of fast ions or electrons with ion or electron cyclotron resonance heating.

  10. Methods for determining time of death.

    Science.gov (United States)

    Madea, Burkhard

    2016-12-01

    Medicolegal death time estimation must estimate the time since death reliably. Reliability can only be provided empirically by statistical analysis of errors in field studies. Determining the time since death requires the calculation of measurable data along a time-dependent curve back to the starting point. Various methods are used to estimate the time since death. The current gold standard for death time estimation is a previously established nomogram method based on the two-exponential model of body cooling. Great experimental and practical achievements have been realized using this nomogram method. To reduce the margin of error of the nomogram method, a compound method was developed based on electrical and mechanical excitability of skeletal muscle, pharmacological excitability of the iris, rigor mortis, and postmortem lividity. Further increasing the accuracy of death time estimation involves the development of conditional probability distributions for death time estimation based on the compound method. Although many studies have evaluated chemical methods of death time estimation, such methods play a marginal role in daily forensic practice. However, increased precision of death time estimation has recently been achieved by considering various influencing factors (i.e., preexisting diseases, duration of terminal episode, and ambient temperature). Putrefactive changes may be used for death time estimation in water-immersed bodies. Furthermore, recently developed technologies, such as H magnetic resonance spectroscopy, can be used to quantitatively study decompositional changes. This review addresses the gold standard method of death time estimation in forensic practice and promising technological and scientific developments in the field.

  11. Improved integration time estimation of endogenous retroviruses with phylogenetic data.

    Directory of Open Access Journals (Sweden)

    Hugo Martins

    2011-03-01

    Full Text Available Endogenous retroviruses (ERVs are genetic fossils of ancient retroviral integrations that remain in the genome of many organisms. Most loci are rendered non-functional by mutations, but several intact retroviral genes are known in mammalian genomes. Some have been adopted by the host species, while the beneficial roles of others remain unclear. Besides the obvious possible immunogenic impact from transcribing intact viral genes, endogenous retroviruses have also become an interesting and useful tool to study phylogenetic relationships. The determination of the integration time of these viruses has been based upon the assumption that both 5' and 3' Long Terminal Repeats (LTRs sequences are identical at the time of integration, but evolve separately afterwards. Similar approaches have been using either a constant evolutionary rate or a range of rates for these viral loci, and only single species data. Here we show the advantages of using different approaches.We show that there are strong advantages in using multiple species data and state-of-the-art phylogenetic analysis. We incorporate both simple phylogenetic information and Monte Carlo Markov Chain (MCMC methods to date the integrations of these viruses based on a relaxed molecular clock approach over a Bayesian phylogeny model and applied them to several selected ERV sequences in primates. These methods treat each ERV locus as having a distinct evolutionary rate for each LTR, and make use of consensual speciation time intervals between primates to calibrate the relaxed molecular clocks.The use of a fixed rate produces results that vary considerably with ERV family and the actual evolutionary rate of the sequence, and should be avoided whenever multi-species phylogenetic data are available. For genome-wide studies, the simple phylogenetic approach constitutes a better alternative, while still being computationally feasible.

  12. Integration of the time-dependent heat equation in the fuel rod performance program IAMBUS

    International Nuclear Information System (INIS)

    West, G.

    1982-01-01

    An iterative numerical method for integration of the time-dependent heat equation is described. No presuppositions are made for the dependency of the thermal conductivity and heat capacity on space, time and temperature. (orig.) [de

  13. Comparison of accelerometry stride time calculation methods.

    Science.gov (United States)

    Norris, Michelle; Kenny, Ian C; Anderson, Ross

    2016-09-06

    Inertial sensors such as accelerometers and gyroscopes can provide a multitude of information on running gait. Running parameters such as stride time and ground contact time can all be identified within tibial accelerometry data. Within this, stride time is a popular parameter of interest, possibly due to its role in running economy. However, there are multiple methods utilised to derive stride time from tibial accelerometry data, some of which may offer complications when implemented on larger data files. Therefore, the purpose of this study was to compare previously utilised methods of stride time derivation to an original proposed method, utilising medio-lateral tibial acceleration data filtered at 2Hz, allowing for greater efficiency in stride time output. Tibial accelerometry data from six participants training for a half marathon were utilised. One right leg run was randomly selected for each participant, in which five consecutive running stride times were calculated. Four calculation methods were employed to derive stride time. A repeated measures analysis of variance (ANOVA) identified no significant difference in stride time between stride time calculation methods (p=1.00), whilst intra-class coefficient values (all >0.95) and coefficient of variance values (all method possibly offers a simplified technique for stride time output during running gait analysis. This method may be less influenced by "double peak" error and minor fluctuations within the data, allowing for accurate and efficient automated data output in both real time and post processing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Collaborative teaching of an integrated methods course

    Directory of Open Access Journals (Sweden)

    George Zhou

    2011-03-01

    Full Text Available With an increasing diversity in American schools, teachers need to be able to collaborate in teaching. University courses are widely considered as a stage to demonstrate or model the ways of collaboration. To respond to this call, three authors team taught an integrated methods course at an urban public university in the city of New York. Following a qualitative research design, this study explored both instructors‟ and pre-service teachers‟ experiences with this course. Study findings indicate that collaborative teaching of an integrated methods course is feasible and beneficial to both instructors and pre-service teachers. For instructors, this collaborative teaching was a reciprocal learning process where they were engaged in thinking about teaching in a broader and innovative way. For pre-service teachers, this collaborative course not only helped them understand how three different subjects could be related to each other, but also provided opportunities for them to actually see how collaboration could take place in teaching. Their understanding of collaborative teaching was enhanced after the course.

  15. Scattering of surface waves modelled by the integral equation method

    Science.gov (United States)

    Lu, Laiyu; Maupin, Valerie; Zeng, Rongsheng; Ding, Zhifeng

    2008-09-01

    The integral equation method is used to model the propagation of surface waves in 3-D structures. The wavefield is represented by the Fredholm integral equation, and the scattered surface waves are calculated by solving the integral equation numerically. The integration of the Green's function elements is given analytically by treating the singularity of the Hankel function at R = 0, based on the proper expression of the Green's function and the addition theorem of the Hankel function. No far-field and Born approximation is made. We investigate the scattering of surface waves propagating in layered reference models imbedding a heterogeneity with different density, as well as Lamé constant contrasts, both in frequency and time domains, for incident plane waves and point sources.

  16. Signal integral for optimizing the timing of defibrillation.

    Science.gov (United States)

    Wu, Xiaobo; Bisera, Joe; Tang, Wanchun

    2013-12-01

    The possibility of successful defibrillation decreases with an increased duration of ventricular fibrillation (VF). Futile electrical shocks are inversely correlated with myocardial contractile function and long-term survival. Previous studies have demonstrated that various ECG waveform analyses predict the success of defibrillation. This study investigated whether the absolute amplitude of pre-shock VF waveform is likely to predict the success of defibrillation. ECG recordings of 350 out-of-hospital cardiac arrest (OOHCA) patients were obtained from the automated external defibrillator (AED) and analyzed by the method of signal integral. Successful defibrillation was defined as organized rhythm with heart rate ≥40beat/min commencing within one min of post-shock period and persisting for a minimum of 30s. Signal integral was significantly greater in successful defibrillation than unsuccessful defibrillation (81.76±32.3mV vs. 34.9±15.33mV, pdefibrillation were 90%, 86%, 80% and 93%, respectively. The receiver operator curve further revealed that signal integral predicted the likelihood of successful defibrillation (area under the curve=0.949). Signal integral predicted successful electrical shocks on patients with ventricular fibrillation and have potential to optimize the timing of defibrillation and reduce the number of electrical shocks. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. Systolic Time Intervals and New Measurement Methods.

    Science.gov (United States)

    Tavakolian, Kouhyar

    2016-06-01

    Systolic time intervals have been used to detect and quantify the directional changes of left ventricular function. New methods of recording these cardiac timings, which are less cumbersome, have been recently developed and this has created a renewed interest and novel applications for these cardiac timings. This manuscript reviews these new methods and addresses the potential for the application of these cardiac timings for the diagnosis and prognosis of different cardiac diseases.

  18. Global integration in times of crisis

    DEFF Research Database (Denmark)

    Jensen, Camilla

    Past research suggests that a financial crisis event has a dual and ambiguous effect on the exporting strategy of subsidiaries of multinational firms in a value chain and offshoring perspective. From a total volume perspective exports are expected to contract due to a decline in demand (demand...... to reconcile these findings by testing a number of hypothesis about global integration strategies in the context of the global financial crisis and how it affected exporting among multinational subsidiaries operating out of Turkey. Controlling for the impact that depreciations and exchange rate volatility has...... on firm-level exports the study shows that the particular global event studied only had a positive effect (if any) on individual firms' exports. Since multinational subsidiaries are insulated from these effects as documented in this study they are able to expand rather than contract their global...

  19. Time-efficient multidimensional threshold tracking method

    DEFF Research Database (Denmark)

    Fereczkowski, Michal; Kowalewski, Borys; Dau, Torsten

    2015-01-01

    Traditionally, adaptive methods have been used to reduce the time it takes to estimate psychoacoustic thresholds. However, even with adaptive methods, there are many cases where the testing time is too long to be clinically feasible, particularly when estimating thresholds as a function of anothe...

  20. Linear Time Invariant Models for Integrated Flight and Rotor Control

    Science.gov (United States)

    Olcer, Fahri Ersel

    2011-12-01

    Recent developments on individual blade control (IBC) and physics based reduced order models of various on-blade control (OBC) actuation concepts are opening up opportunities to explore innovative rotor control strategies for improved rotor aerodynamic performance, reduced vibration and BVI noise, and improved rotor stability, etc. Further, recent developments in computationally efficient algorithms for the extraction of Linear Time Invariant (LTI) models are providing a convenient framework for exploring integrated flight and rotor control, while accounting for the important couplings that exist between body and low frequency rotor response and high frequency rotor response. Formulation of linear time invariant (LTI) models of a nonlinear system about a periodic equilibrium using the harmonic domain representation of LTI model states has been studied in the literature. This thesis presents an alternative method and a computationally efficient scheme for implementation of the developed method for extraction of linear time invariant (LTI) models from a helicopter nonlinear model in forward flight. The fidelity of the extracted LTI models is evaluated using response comparisons between the extracted LTI models and the nonlinear model in both time and frequency domains. Moreover, the fidelity of stability properties is studied through the eigenvalue and eigenvector comparisons between LTI and LTP models by making use of the Floquet Transition Matrix. For time domain evaluations, individual blade control (IBC) and On-Blade Control (OBC) inputs that have been tried in the literature for vibration and noise control studies are used. For frequency domain evaluations, frequency sweep inputs are used to obtain frequency responses of fixed system hub loads to a single blade IBC input. The evaluation results demonstrate the fidelity of the extracted LTI models, and thus, establish the validity of the LTI model extraction process for use in integrated flight and rotor control

  1. A time-domain method to generate artificial time history from a given reference response spectrum

    International Nuclear Information System (INIS)

    Shin, Gang Sik; Song, Oh Seop

    2016-01-01

    Seismic qualification by test is widely used as a way to show the integrity and functionality of equipment that is related to the overall safety of nuclear power plants. Another means of seismic qualification is by direct integration analysis. Both approaches require a series of time histories as an input. However, in most cases, the possibility of using real earthquake data is limited. Thus, artificial time histories are widely used instead. In many cases, however, response spectra are given. Thus, most of the artificial time histories are generated from the given response spectra. Obtaining the response spectrum from a given time history is straightforward. However, the procedure for generating artificial time histories from a given response spectrum is difficult and complex to understand. Thus, this paper presents a simple time-domain method for generating a time history from a given response spectrum; the method was shown to satisfy conditions derived from nuclear regulatory guidance

  2. Ubiquitous time variability of integrated stellar populations

    Science.gov (United States)

    Conroy, Charlie; van Dokkum, Pieter G.; Choi, Jieun

    2015-11-01

    Long-period variable stars arise in the final stages of the asymptotic giant branch phase of stellar evolution. They have periods of up to about 1,000 days and amplitudes that can exceed a factor of three in the I-band flux. These stars pulsate predominantly in their fundamental mode, which is a function of mass and radius, and so the pulsation periods are sensitive to the age of the underlying stellar population. The overall number of long-period variables in a population is directly related to their lifetimes, which is difficult to predict from first principles because of uncertainties associated with stellar mass-loss and convective mixing. The time variability of these stars has not previously been taken into account when modelling the spectral energy distributions of galaxies. Here we construct time-dependent stellar population models that include the effects of long-period variable stars, and report the ubiquitous detection of this expected ‘pixel shimmer’ in the massive metal-rich galaxy M87. The pixel light curves display a variety of behaviours. The observed variation of 0.1 to 1 per cent is very well matched to the predictions of our models. The data provide a strong constraint on the properties of variable stars in an old and metal-rich stellar population, and we infer that the lifetime of long-period variables in M87 is shorter by approximately 30 per cent compared to predictions from the latest stellar evolution models.

  3. Time-dependent problems and difference methods

    CERN Document Server

    Gustafsson, Bertil; Oliger, Joseph

    2013-01-01

    Praise for the First Edition "". . . fills a considerable gap in the numerical analysis literature by providing a self-contained treatment . . . this is an important work written in a clear style . . . warmly recommended to any graduate student or researcher in the field of the numerical solution of partial differential equations."" -SIAM Review Time-Dependent Problems and Difference Methods, Second Edition continues to provide guidance for the analysis of difference methods for computing approximate solutions to partial differential equations for time-de

  4. Integrative real-time geographic visualization of energy resources

    International Nuclear Information System (INIS)

    Sorokine, A.; Shankar, M.; Stovall, J.; Bhaduri, B.; King, T.; Fernandez, S.; Datar, N.; Omitaomu, O.

    2009-01-01

    'Full text:' Several models forecast that climatic changes will increase the frequency of disastrous events like droughts, hurricanes, and snow storms. Responding to these events and also to power outages caused by system errors such as the 2003 North American blackout require an interconnect-wide real-time monitoring system for various energy resources. Such a system should be capable of providing situational awareness to its users in the government and energy utilities by dynamically visualizing the status of the elements of the energy grid infrastructure and supply chain in geographic contexts. We demonstrate an approach that relies on Google Earth and similar standard-based platforms as client-side geographic viewers with a data-dependent server component. The users of the system can view status information in spatial and temporal contexts. These data can be integrated with a wide range of geographic sources including all standard Google Earth layers and a large number of energy and environmental data feeds. In addition, we show a real-time spatio-temporal data sharing capability across the users of the system, novel methods for visualizing dynamic network data, and a fine-grain access to very large multi-resolution geographic datasets for faster delivery of the data. The system can be extended to integrate contingency analysis results and other grid models to assess recovery and repair scenarios in the case of major disruption. (author)

  5. Integral ceramic superstructure evaluation using time domain optical coherence tomography

    Science.gov (United States)

    Sinescu, Cosmin; Bradu, Adrian; Topala, Florin I.; Negrutiu, Meda Lavinia; Duma, Virgil-Florin; Podoleanu, Adrian G.

    2014-02-01

    Optical Coherence Tomography (OCT) is a non-invasive low coherence interferometry technique that includes several technologies (and the corresponding devices and components), such as illumination and detection, interferometry, scanning, adaptive optics, microscopy and endoscopy. From its large area of applications, we consider in this paper a critical aspect in dentistry - to be investigated with a Time Domain (TD) OCT system. The clinical situation of an edentulous mandible is considered; it can be solved by inserting 2 to 6 implants. On these implants a mesostructure will be manufactured and on it a superstructure is needed. This superstructure can be integral ceramic; in this case materials defects could be trapped inside the ceramic layers and those defects could lead to fractures of the entire superstructure. In this paper we demonstrate that a TD-OCT imaging system has the potential to properly evaluate the presence of the defects inside the ceramic layers and those defects can be fixed before inserting the prosthesis inside the oral cavity. Three integral ceramic superstructures were developed by using a CAD/CAM technology. After the milling, the ceramic layers were applied on the core. All the three samples were evaluated by a TD-OCT system working at 1300 nm. For two of the superstructures evaluated, no defects were found in the most stressed areas. The third superstructure presented four ceramic defects in the mentioned areas. Because of those defects the superstructure may fracture. The integral ceramic prosthesis was send back to the dental laboratory to fix the problems related to the material defects found. Thus, TD-OCT proved to be a valuable method for diagnosing the ceramic defects inside the integral ceramic superstructures in order to prevent fractures at this level.

  6. Parareal algorithms with local time-integrators for time fractional differential equations

    Science.gov (United States)

    Wu, Shu-Lin; Zhou, Tao

    2018-04-01

    It is challenge work to design parareal algorithms for time-fractional differential equations due to the historical effect of the fractional operator. A direct extension of the classical parareal method to such equations will lead to unbalance computational time in each process. In this work, we present an efficient parareal iteration scheme to overcome this issue, by adopting two recently developed local time-integrators for time fractional operators. In both approaches, one introduces auxiliary variables to localized the fractional operator. To this end, we propose a new strategy to perform the coarse grid correction so that the auxiliary variables and the solution variable are corrected separately in a mixed pattern. It is shown that the proposed parareal algorithm admits robust rate of convergence. Numerical examples are presented to support our conclusions.

  7. Time relative single-photon (photoelectron) method

    International Nuclear Information System (INIS)

    Luo Binqiao

    1988-01-01

    A single-photon (photoelectron) measuring system is designed. It researches various problems in single-photon (photoelectron) method. The electronic resolving time is less than 25 ps. The resolving time of single-photon (photoelectron) measuring system is 25 to 65 ps

  8. Boundary integral methods for unsaturated flow

    International Nuclear Information System (INIS)

    Martinez, M.J.; McTigue, D.F.

    1990-01-01

    Many large simulations may be required to assess the performance of Yucca Mountain as a possible site for the nations first high level nuclear waste repository. A boundary integral equation method (BIEM) is described for numerical analysis of quasilinear steady unsaturated flow in homogeneous material. The applicability of the exponential model for the dependence of hydraulic conductivity on pressure head is discussed briefly. This constitutive assumption is at the heart of the quasilinear transformation. Materials which display a wide distribution in pore-size are described reasonably well by the exponential. For materials with a narrow range in pore-size, the exponential is suitable over more limited ranges in pressure head. The numerical implementation of the BIEM is used to investigate the infiltration from a strip source to a water table. The net infiltration of moisture into a finite-depth layer is well-described by results for a semi-infinite layer if αD > 4, where α is the sorptive number and D is the depth to the water table. the distribution of moisture exhibits a similar dependence on αD. 11 refs., 4 figs.,

  9. The imaginary-time path integral and non-time-reversal-invariant saddle points of the Euclidean action

    International Nuclear Information System (INIS)

    Dasgupta, I.

    1998-01-01

    We discuss new bounce-like (but non-time-reversal-invariant) solutions to Euclidean equations of motion, which we dub boomerons. In the Euclidean path integral approach to quantum theories, boomerons make an imaginary contribution to the vacuum energy. The fake vacuum instability can be removed by cancelling boomeron contributions against contributions from time reversed boomerons (anti-boomerons). The cancellation rests on a sign choice whose significance is not completely understood in the path integral method. (orig.)

  10. Integral Equation Methods for Electromagnetic and Elastic Waves

    CERN Document Server

    Chew, Weng; Hu, Bin

    2008-01-01

    Integral Equation Methods for Electromagnetic and Elastic Waves is an outgrowth of several years of work. There have been no recent books on integral equation methods. There are books written on integral equations, but either they have been around for a while, or they were written by mathematicians. Much of the knowledge in integral equation methods still resides in journal papers. With this book, important relevant knowledge for integral equations are consolidated in one place and researchers need only read the pertinent chapters in this book to gain important knowledge needed for integral eq

  11. Time Scale in Least Square Method

    Directory of Open Access Journals (Sweden)

    Özgür Yeniay

    2014-01-01

    Full Text Available Study of dynamic equations in time scale is a new area in mathematics. Time scale tries to build a bridge between real numbers and integers. Two derivatives in time scale have been introduced and called as delta and nabla derivative. Delta derivative concept is defined as forward direction, and nabla derivative concept is defined as backward direction. Within the scope of this study, we consider the method of obtaining parameters of regression equation of integer values through time scale. Therefore, we implemented least squares method according to derivative definition of time scale and obtained coefficients related to the model. Here, there exist two coefficients originating from forward and backward jump operators relevant to the same model, which are different from each other. Occurrence of such a situation is equal to total number of values of vertical deviation between regression equations and observation values of forward and backward jump operators divided by two. We also estimated coefficients for the model using ordinary least squares method. As a result, we made an introduction to least squares method on time scale. We think that time scale theory would be a new vision in least square especially when assumptions of linear regression are violated.

  12. Time resolved spectroscopy of GRB 030501 using INTEGRAL

    DEFF Research Database (Denmark)

    Beckmann, V.; Borkowski, J.; Courvoisier, T.J.L.

    2003-01-01

    The gamma-ray instruments on-board INTEGRAL offer an unique opportunity to perform time resolved analysis on GRBs. The imager IBIS allows accurate positioning of GRBs and broad band spectral analysis, while SPI provides high resolution spectroscopy. GRB 030501 was discovered by the INTEGRAL Burst...... the Ulysses and RHESSI experiments....

  13. Time Varying Market Integration and Expected Rteurns in Emerging Markets

    NARCIS (Netherlands)

    de Jong, F.C.J.M.; de Roon, F.A.

    2001-01-01

    We use a simple model in which the expected returns in emerging markets depend on their systematic risk as measured by their beta relative to the world portfolio as well as on the level of integration in that market.The level of integration is a time-varying variable that depends on the market value

  14. Space-time transformations in radial path integrals

    International Nuclear Information System (INIS)

    Steiner, F.

    1984-09-01

    Nonlinear space-time transformations in the radial path integral are discussed. A transformation formula is derived, which relates the original path integral to the Green's function of a new quantum system with an effective potential containing an observable quantum correction proportional(h/2π) 2 . As an example the formula is applied to spherical Brownian motion. (orig.)

  15. Analytic methods to generate integrable mappings

    Indian Academy of Sciences (India)

    richer and more transparent than their continuous counterparts which led to the birth of discrete integrable systems [6,8,11–17]. In the literature only a handful of discrete nonlin- ear integrable systems governed by higher order or coupled mappings or lattice equations exist. The main objective of this article is to present brief ...

  16. Methods comparison by time series analysis

    International Nuclear Information System (INIS)

    Giovino, J.

    1986-01-01

    One role of the U.S. Environmental Protection Agency (EPA) is that of monitor for laboratories under contract to perform chemical analyses. In general this program involves periodic analyses and reporting of unknown radionuclides in water. This radiochemistry data for the years 1980-1984, has been summarized. It represents several radionuclides and various methods used by numerous laboratories. Any series of measurements taken at successive time points is a time series, and is thus candidate for time series analysis. The purpose of such an analysis is to see what changes take place over time in the event being observed, to see if the performance is better or worse than it was expected to be, and to predict future behavior. To illustrate the step-by-step process of a time series analysis, the radionuclide /sup 226/Ra was selected. The available data were generated by two methods; total radium alpha and /sup 222/Rn emanation. The results of analysis are presented

  17. Fast-timing methods for semiconductor detectors

    International Nuclear Information System (INIS)

    Spieler, H.

    1982-03-01

    The basic parameters are discussed which determine the accuracy of timing measurements and their effect in a practical application, specifically timing with thin-surface barrier detectors. The discussion focusses on properties of the detector, low-noise amplifiers, trigger circuits and time converters. New material presented in this paper includes bipolar transistor input stages with noise performance superior to currently available FETs, noiseless input terminations in sub-nanosecond preamplifiers and methods using transmission lines to couple the detector to remotely mounted preamplifiers. Trigger circuits are characterized in terms of effective rise time, equivalent input noise and residual jitter

  18. Fast timing methods for semiconductor detectors. Revision

    International Nuclear Information System (INIS)

    Spieler, H.

    1984-10-01

    This tutorial paper discusses the basic parameters which determine the accuracy of timing measurements and their effect in a practical application, specifically timing with thin-surface barrier detectors. The discussion focusses on properties of the detector, low-noise amplifiers, trigger circuits and time converters. New material presented in this paper includes bipolar transistor input stages with noise performance superior to currently available FETs, noiseless input terminations in sub-nanosecond preamplifiers and methods using transmission lines to couple the detector to remotely mounted preamplifiers. Trigger circuits are characterized in terms of effective rise time, equivalent input noise and residual jitter

  19. An extended Halanay inequality of integral type on time scales

    Directory of Open Access Journals (Sweden)

    Boqun Ou

    2015-07-01

    Full Text Available In this paper, we obtain a Halanay-type inequality of integral type on time scales which improves and extends some earlier results for both the continuous and discrete cases. Several illustrative examples are also given.

  20. Statistics of Extreme Time-Integrated Geomagnetic Activity

    Science.gov (United States)

    Mourenas, D.; Artemyev, A. V.; Zhang, X.-J.

    2018-01-01

    A statistical analysis of the time-integrated Dst index is performed over 1958-2007. The tail of the probability distribution of extreme time-integrated Dst events, which occur during strong geomagnetic storms, can be precisely fitted by a power law function with upper cutoff, apparently not exceeded even by the 1859 Carrington event. This time-integrated Dst is expected to be a reasonable proxy for maximum densities of MeV electrons in the heart of the outer radiation belt, which are known to pose a serious threat to satellites. During such strong events, a correlation is found between the time-integrated levels of various physical quantities, such as interplanetary magnetic field Bz, particle energy fluxes measured during injections in the magnetotail, geosynchronous ULF wave index, and geomagnetic activity in the inner magnetosphere, suggesting cumulative effects from successive disturbances.

  1. Stochastic ship roll motion via path integral method

    Directory of Open Access Journals (Sweden)

    G. Cottone

    2010-09-01

    Full Text Available The response of ship roll oscillation under random ice impulsive loads modeled by Poisson arrival process is very important in studying the safety of ships navigation in cold regions. Under both external and parametric random excitations the evolution of the probability density function of roll motion is evaluated using the path integral (PI approach. The PI method relies on the Chapman-Kolmogorov equation, which governs the response transition probability density functions at two close intervals of time. Once the response probability density function at an early close time is specified, its value at later close time can be evaluated. The PI method is first demonstrated via simple dynamical models and then applied for ship roll dynamics under random impulsive white noise excitation.

  2. Stochastic ship roll motion via path integral method

    Science.gov (United States)

    Cottone, G.; Di Paola, M.; Ibrahim, R.; Pirrotta, A.; Santoro, R.

    2010-09-01

    The response of ship roll oscillation under random ice impulsive loads modeled by Poisson arrival process is very important in studying the safety of ships navigation in cold regions. Under both external and parametric random excitations the evolution of the probability density function of roll motion is evaluated using the path integral (PI) approach. The PI method relies on the Chapman-Kolmogorov equation, which governs the response transition probability density functions at two close intervals of time. Once the response probability density function at an early close time is specified, its value at later close time can be evaluated. The PI method is first demonstrated via simple dynamical models and then applied for ship roll dynamics under random impulsive white noise excitation

  3. Multigrid method for integral equations and automatic programs

    Science.gov (United States)

    Lee, Hosae

    1993-01-01

    Several iterative algorithms based on multigrid methods are introduced for solving linear Fredholm integral equations of the second kind. Automatic programs based on these algorithms are introduced using Simpson's rule and the piecewise Gaussian rule for numerical integration.

  4. Multiple Shooting and Time Domain Decomposition Methods

    CERN Document Server

    Geiger, Michael; Körkel, Stefan; Rannacher, Rolf

    2015-01-01

    This book offers a comprehensive collection of the most advanced numerical techniques for the efficient and effective solution of simulation and optimization problems governed by systems of time-dependent differential equations. The contributions present various approaches to time domain decomposition, focusing on multiple shooting and parareal algorithms.  The range of topics covers theoretical analysis of the methods, as well as their algorithmic formulation and guidelines for practical implementation. Selected examples show that the discussed approaches are mandatory for the solution of challenging practical problems. The practicability and efficiency of the presented methods is illustrated by several case studies from fluid dynamics, data compression, image processing and computational biology, giving rise to possible new research topics.  This volume, resulting from the workshop Multiple Shooting and Time Domain Decomposition Methods, held in Heidelberg in May 2013, will be of great interest to applied...

  5. Two ways to get an Integral Theory: Ken Wilber's method of integration

    Directory of Open Access Journals (Sweden)

    Claus Tirel

    2012-01-01

    Full Text Available Ken Wilber is at times deemed to be one of the most prominent and intellectual integral thinkers of our time. His so-called ‘Integral Theory’ shows up with no minor claims: it alleges to have succeeded in integrating most of the insights elaborated by contemporary natural sciences such as biology and physics, together with those of the social sciences and humanities, especially with the deep truths found in religion as well as in philosophy from the ancient Greeks until today. Wilber started developing his theory in the late 1970s. Today, he presents his theory as a framework that claims to provide no less than a place for everything that exists, including the various scientific disciplines and approaches. The theory seems to provide a proper place for everything. That place is defined first of all by its level of development and its specific perspective, from which it perceives and describes the world. This makes Wilber praise his theory as a downright ‘theory of everything’, being able to provide the long needed integration of the manifold and fragmented bodies of knowledge in our post-modern world. From his holistic theory Wilber derives prac­tical suggestions for a more integral life, an integral practice which consists of meditation, physical exercises and social commitment. In this article the author examines in particular the method that Wilber applies in making up his theory. The main focus lays on the question how it realises the integration, that became the core concept and main label under which his theory is traded today.

  6. Analytic methods to generate integrable mappings

    Indian Academy of Sciences (India)

    coefficients, the quadratic equation in xn+N has real and distinct roots which in turn lead to the derivation of O E with integrals [12,15,20,21,36]. We explain the above for a specific example say, 2-coupled second-order O E given in (14). For clarity of pre- sentation, we consider an integral I (n) = I (xn,yn,xn+1,yn+1) expressed ...

  7. The 3D Lagrangian Integral Method. Henrik Koblitz Rasmussen

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz

    2003-01-01

    The numerical simulation of 3D time-dependent viscoelastic flow is of interest in connection with plastic moulding operations. In a large range of polymer processing methods, the most important issue is to find the temporal development of the free surface (or interface) of the plastic....... This are processes such as thermo-forming, gas-assisted injection moulding and all kind of simultaneous multi-component polymer processing operations. Though, in all polymer processing operations free surfaces (or interfaces) are present and the dynamic of these surfaces are of interest. In the "3D Lagrangian...... with a second order Runge-Kutta integration method. In any development of a numerical method for viscoelastic flow it is important to focus on the constitutive equation associated to the method. For instance the K-BKZ model is not adequate to describe both shear and extensional flow using the same constitutive...

  8. [A new measurement method of time-resolved spectrum].

    Science.gov (United States)

    Shi, Zhi-gang; Huang, Shi-hua; Liang, Chun-jun; Lei, Quan-sheng

    2007-02-01

    A new method for measuring time-resolved spectrum (TRS) is brought forward. Programming with assemble language controlled the micro-control-processor (AT89C51), and a kind of peripheral circuit constituted the drive circuit, which drived the stepping motor to run the monochromator. So the light of different kinds of expected wavelength could be obtained. The optical signal was transformed to electrical signal by optical-to-electrical transform with the help of photomultiplier tube (Hamamatsu 1P28). The electrical signal of spectrum data was transmitted to the oscillograph. Connecting the two serial interfaces of RS232 between the oscillograph and computer, the electrical signal of spectrum data could be transmitted to computer for programming to draw the attenuation curve and time-resolved spectrum (TRS) of the swatch. The method for measuring time-resolved spectrum (TRS) features parallel measurement in time scale but serial measurement in wavelength scale. Time-resolved spectrum (TRS) and integrated emission spectrum of Tb3+ in swatch Tb(o-BBA)3 phen were measured using this method. Compared with the real time-resolved spectrum (TRS). It was validated to be feasible, credible and convenient. The 3D spectra of fluorescence intensity-wavelength-time, and the integrated spectrum of the swatch Tb(o-BBA)3 phen are given.

  9. An integrated modeling method for wind turbines

    Science.gov (United States)

    Fadaeinedjad, Roohollah

    To study the interaction of the electrical, mechanical, and aerodynamic aspects of a wind turbine, a detailed model that considers all these aspects must be used. A drawback of many studies in the area of wind turbine simulation is that either a very simple mechanical model is used with a detailed electrical model, or vice versa. Hence the interactions between electrical and mechanical aspects of wind turbine operation are not accurately taken into account. In this research, it will be shown that a combination of different simulation packages, namely TurbSim, FAST, and Simulink can be used to model the aerodynamic, mechanical, and electrical aspects of a wind turbine in detail. In this thesis, after a review of some wind turbine concepts and software tools, a simulation structure is proposed for studying wind turbines that integrates the mechanical and electrical components of a wind energy conversion device. Based on the simulation structure, a comprehensive model for a three-bladed variable speed wind turbine with doubly-fed induction generator is developed. Using the model, the impact of a voltage sag on the wind turbine tower vibration is investigated under various operating conditions such as power system short circuit level, mechanical parameters, and wind turbine operating conditions. It is shown how an electrical disturbance can cause more sustainable tower vibrations under high speed and turbulent wind conditions, which may disrupt the operation of pitch control system. A similar simulation structure is used to model a two-bladed fixed speed wind turbine with an induction generator. An extension of the concept is introduced by adding a diesel generator system. The model is utilized to study the impact of the aeroelastic aspects of wind turbine (i.e. tower shadow, wind shears, yaw error, turbulence, and mechanical vibrations) on the power quality of a stand-alone wind-diesel system. Furthermore, an IEEE standard flickermeter model is implemented in a

  10. Optimal distribution of integration time for intensity measurements in degree of linear polarization polarimetry.

    Science.gov (United States)

    Li, Xiaobo; Hu, Haofeng; Liu, Tiegen; Huang, Bingjing; Song, Zhanjie

    2016-04-04

    We consider the degree of linear polarization (DOLP) polarimetry system, which performs two intensity measurements at orthogonal polarization states to estimate DOLP. We show that if the total integration time of intensity measurements is fixed, the variance of the DOLP estimator depends on the distribution of integration time for two intensity measurements. Therefore, by optimizing the distribution of integration time, the variance of the DOLP estimator can be decreased. In this paper, we obtain the closed-form solution of the optimal distribution of integration time in an approximate way by employing Delta method and Lagrange multiplier method. According to the theoretical analyses and real-world experiments, it is shown that the variance of the DOLP estimator can be decreased for any value of DOLP. The method proposed in this paper can effectively decrease the measurement variance and thus statistically improve the measurement accuracy of the polarimetry system.

  11. Reparametrization in the path integral over finite dimensional manifold with a time-dependent metric

    International Nuclear Information System (INIS)

    Storchak, S.N.

    1988-01-01

    The path reparametrization procedure in the path integral is considered using the methods of stochastic processes for diffusion on finite dimensional manifold with a time-dependent metric. the reparametrization Jacobian has been obtained. The formulas of reparametrization for a symbolic presentation of the path integral have been derived

  12. Adaptive Integral Method for Higher-Order Hierarchical Method of Moments

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Meincke, Peter

    2006-01-01

    The Adaptive Integral Method (AIM) is applied to solve the volume integral equation in conjunction with the higher-order Method of Moments (MoM). The classical AIM is modified for larger discretization cells to take advantage of higher-order MoM. The technique combines the low computational...... complexity and memory requirements of AIM with the reduced number of unknowns and higher-order convergence of higher-order hierarchical Legendre basis functions. Numerical examples given show the advantages of the proposed technique over AIM based on low-order basis functions in terms of memory...... and computational time. Several preconditioning techniques applied to AIM for volume integral equations are considered....

  13. Improved parallel solution techniques for the integral transport matrix method

    International Nuclear Information System (INIS)

    Zerr, R. Joseph; Azmy, Yousry Y.

    2011-01-01

    Alternative solution strategies to the parallel block Jacobi (PBJ) method for the solution of the global problem with the integral transport matrix method operators have been designed and tested. The most straightforward improvement to the Jacobi iterative method is the Gauss-Seidel alternative. The parallel red-black Gauss-Seidel (PGS) algorithm can improve on the number of iterations and reduce work per iteration by applying an alternating red-black color-set to the subdomains and assigning multiple sub-domains per processor. A parallel GMRES(m) method was implemented as an alternative to stationary iterations. Computational results show that the PGS method can improve on the PBJ method execution time by up to 10´ when eight sub-domains per processor are used. However, compared to traditional source iterations with diffusion synthetic acceleration, it is still approximately an order of magnitude slower. The best-performing cases are optically thick because sub-domains decouple, yielding faster convergence. Further tests revealed that 64 sub-domains per processor was the best performing level of sub-domain division. An acceleration technique that improves the convergence rate would greatly improve the ITMM. The GMRES(m) method with a diagonal block pre conditioner consumes approximately the same time as the PBJ solver but could be improved by an as yet undeveloped, more efficient pre conditioner. (author)

  14. On the initial condition problem of the time domain PMCHWT surface integral equation

    KAUST Repository

    Uysal, Ismail Enes

    2017-05-13

    Non-physical, linearly increasing and constant current components are induced in marching on-in-time solution of time domain surface integral equations when initial conditions on time derivatives of (unknown) equivalent currents are not enforced properly. This problem can be remedied by solving the time integral of the surface integral for auxiliary currents that are defined to be the time derivatives of the equivalent currents. Then the equivalent currents are obtained by numerically differentiating the auxiliary ones. In this work, this approach is applied to the marching on-in-time solution of the time domain Poggio-Miller-Chan-Harrington-Wu-Tsai surface integral equation enforced on dispersive/plasmonic scatterers. Accuracy of the proposed method is demonstrated by a numerical example.

  15. Selective Integration in the Material-Point Method

    DEFF Research Database (Denmark)

    Andersen, Lars; Andersen, Søren; Damkilde, Lars

    2009-01-01

    The paper deals with stress integration in the material-point method. In order to avoid parasitic shear in bending, a formulation is proposed, based on selective integration in the background grid that is used to solve the governing equations. The suggested integration scheme is compared...

  16. A method for coincidence timing resolution enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Ermis, E. E., E-mail: elermis@hotmail.com; Celiktas, C. [Faculty of Science, Physics Department, Ege University, 35100 Bornova, Izmir (Turkey); Pilicer, E. [Faculty of Arts and Science, Physics Department, Uludag University, Gorukle, Bursa (Turkey)

    2016-05-15

    A method including the coincidence time resolution improvement for a TOF/positron emission tomography system was suggested. The spectrometer for this aim was composed of two NaI(Tl) and two plastic scintillation detectors. Experimental results were supported by FLUKA Monte Carlo simulation program by constructing the detector setup in software medium. Present experimental results verified our previous results and conclusions obtained from the suggested method. It was concluded that better resolutions would help the improvement not only on the TOF gain but also on the spatial resolution, leading to better images and helping the Physician in his/her diagnosis and treatment.

  17. Method of rotations for bilinear singular integrals

    Czech Academy of Sciences Publication Activity Database

    Diestel, G.; Grafakos, L.; Honzík, Petr; Zengyan, S.; Terwilleger, E.

    2011-01-01

    Roč. 3, - (2011), s. 99-107 ISSN 1938-9787. [Analysis, Mathematical Physics and Applications. Ixtapa, 01.03.2010-05.03.2010] R&D Projects: GA AV ČR KJB100190901 Institutional research plan: CEZ:AV0Z10190503 Keywords : bilinear singular integrals * bilinear Hilbert transform * Fourier multipliers Subject RIV: BA - General Mathematics http://projecteuclid.org/DPubS?verb=Display&version=1.0&service=UI&handle=euclid.cma/1298670006&page=record

  18. Adaptive integral equation methods in transport theory

    International Nuclear Information System (INIS)

    Kelley, C.T.

    1992-01-01

    In this paper, an adaptive multilevel algorithm for integral equations is described that has been developed with the Chandrasekhar H equation and its generalizations in mind. The algorithm maintains good performance when the Frechet derivative of the nonlinear map is singular at the solution, as happens in radiative transfer with conservative scattering and in critical neutron transport. Numerical examples that demonstrate the algorithm's effectiveness are presented

  19. Optimal distribution of integration time for intensity measurements in Stokes polarimetry.

    Science.gov (United States)

    Li, Xiaobo; Liu, Tiegen; Huang, Bingjing; Song, Zhanjie; Hu, Haofeng

    2015-10-19

    We consider the typical Stokes polarimetry system, which performs four intensity measurements to estimate a Stokes vector. We show that if the total integration time of intensity measurements is fixed, the variance of the Stokes vector estimator depends on the distribution of the integration time at four intensity measurements. Therefore, by optimizing the distribution of integration time, the variance of the Stokes vector estimator can be decreased. In this paper, we obtain the closed-form solution of the optimal distribution of integration time by employing Lagrange multiplier method. According to the theoretical analysis and real-world experiment, it is shown that the total variance of the Stokes vector estimator can be significantly decreased about 40% in the case discussed in this paper. The method proposed in this paper can effectively decrease the measurement variance and thus statistically improves the measurement accuracy of the polarimetric system.

  20. Palmprint Verification Using Time Series Method

    Directory of Open Access Journals (Sweden)

    A. A. Ketut Agung Cahyawan Wiranatha

    2013-11-01

    Full Text Available The use of biometrics as an automatic recognition system is growing rapidly in solving security problems, palmprint is one of biometric system which often used. This paper used two steps in center of mass moment method for region of interest (ROI segmentation and apply the time series method combined with block window method as feature representation. Normalized Euclidean Distance is used to measure the similarity degrees of two feature vectors of palmprint. System testing is done using 500 samples palms, with 4 samples as the reference image and the 6 samples as test images. Experiment results show that this system can achieve a high performance with success rate about 97.33% (FNMR=1.67%, FMR=1.00 %, T=0.036.

  1. Explicit solution of Calderon preconditioned time domain integral equations

    KAUST Repository

    Ulku, Huseyin Arda

    2013-07-01

    An explicit marching on-in-time (MOT) scheme for solving Calderon-preconditioned time domain integral equations is proposed. The scheme uses Rao-Wilton-Glisson and Buffa-Christiansen functions to discretize the domain and range of the integral operators and a PE(CE)m type linear multistep to march on in time. Unlike its implicit counterpart, the proposed explicit solver requires the solution of an MOT system with a Gram matrix that is sparse and well-conditioned independent of the time step size. Numerical results demonstrate that the explicit solver maintains its accuracy and stability even when the time step size is chosen as large as that typically used by an implicit solver. © 2013 IEEE.

  2. Nonlinear structural analysis using integrated force method

    Indian Academy of Sciences (India)

    Force method in the pre-computer era was the popular analysis tool for civil, mechanical and aerospace engineering structures. This popularity can be attributed to its ability to determine accurate estimates of forces in the structure. During the formulative period of structural analysis by matrix methods, earnest research was ...

  3. Nonlinear structural analysis using integrated force method

    Indian Academy of Sciences (India)

    During the formulative period of structural analysis by matrix methods, earnest research was directed to automate the force ... (1973) for the analysis of discrete and continuous systems. IFM is a force method of .... (Nagabhushanam & Patnaik 1989) are being developed, which helps the use of efficient solution techniques for ...

  4. Integrating methods for ecosystem service assessment

    NARCIS (Netherlands)

    Dunford, Rob; Harrison, Paula; Smith, Alison; Dick, Jan; Barton, David N.; Martin-Lopez, Berta; Kelemen, Ezsther; Jacobs, Sander; Saarikoski, Heli; Turkelboom, Francis; Verheyden, Wim; Hauck, Jennifer; Antunes, Paula; Aszalós, Réka; Badea, Ovidu; Baró, Francesc; Berry, Pam; Carvalho, Laurence; Conte, Giulio; Czúcz, Bálint; Garcia Blanco, Gemma; Howard, Dave; Giuca, Relu; Gomez-Baggethun, Erik; Grizetti, Bruna; Izakovicova, Zita; Kopperoinen, Leena; Langemeyer, Johannes; Luque, Sandra; Lapola, David M.; Martinez-Pastur, Guillermo; Mukhopadhyay, Raktima; Roy, S.B.; Niemelä, Jari; Norton, Lisa; Ochieng, John; Odee, David; Palomo, Ignacio; Pinho, Patricia; Priess, Joerg; Rusch, Graciella; Saarela, Sanna Riikka; Santos, Rui; Wal, van der Jan Tjalling; Vadineanu, Angheluta; Vári, Ágnes; Woods, Helen; Yli-Pelkonen, Vesa

    2018-01-01

    The Ecosystem Services (ES) concept highlights the varied contributions the environment provides to humans and there are a wide range of methods/tools available to assess ES. However, in real-world decision contexts a single tool is rarely sufficient and methods must be combined to meet practitioner

  5. Contour Integration over Time: Psychophysical and fMRI Evidence.

    Science.gov (United States)

    Kuai, Shu-Guang; Li, Wu; Yu, Cong; Kourtzi, Zoe

    2017-05-01

    The brain integrates discrete but collinear stimuli to perceive global contours. Previous contour integration (CI) studies mainly focus on integration over space, and CI is attributed to either V1 long-range connections or contour processing in high-visual areas that top-down modulate V1 responses. Here, we show that CI also occurs over time in a design that minimizes the roles of V1 long-range interactions. We use tilted contours embedded in random orientation noise and moving horizontally behind a fixed vertical slit. Individual contour elements traveling up/down within the slit would be encoded over time by parallel, rather than aligned, V1 neurons. However, we find robust contour detection even when the slit permits only one viewable contour element. Similar to CI over space, CI over time also obeys the rule of collinearity. fMRI evidence shows that while CI over space engages visual areas as early as V1, CI over time mainly engages higher dorsal and ventral visual areas involved in shape processing, as well as posterior parietal regions involved in visual memory that can represent the orientation of temporally integrated contours. These results suggest at least partially dissociable mechanisms for implementing the Gestalt rule of continuity in CI over space and time. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Development of a precise long-time digital integrator for magnetic measurements in a tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Kurihara, Kenichi; Kawamata, Youichi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1997-10-01

    Long-time D-T burning operation in a tokamak requires that a magnetic sensor must work in an environment of 14-MeV intense neutron field, and that the measurement system must output precise magnetic field values. A method of time-integration of voltage produced in a simple pick-up coil seems to have preferable features of good time response, easy maintenance, and resistance to neutron irradiation. However, an inevitably-produced signal drift makes it difficult to apply the method to the long-time integral operation. To solve this problem, we have developed a new digital integrator (a voltage-to-frequency converter and an up-down counter) with testing the trial boards in the JT-60 magnetic measurements. This reports all of the problems and their measures through the development steps in details, and shows how to apply this method to the ITER operation. (author)

  7. Numerical counting ratemeter with variable time constant and integrated circuits

    International Nuclear Information System (INIS)

    Kaiser, J.; Fuan, J.

    1967-01-01

    We present here the prototype of a numerical counting ratemeter which is a special version of variable time-constant frequency meter (1). The originality of this work lies in the fact that the change in the time constant is carried out automatically. Since the criterion for this change is the accuracy in the annunciated result, the integration time is varied as a function of the frequency. For the prototype described in this report, the time constant varies from 1 sec to 1 millisec. for frequencies in the range 10 Hz to 10 MHz. This prototype is built entirely of MECL-type integrated circuits from Motorola and is thus contained in two relatively small boxes. (authors) [fr

  8. Momentum integral network method for thermal-hydraulic transient analysis

    International Nuclear Information System (INIS)

    Van Tuyle, G.J.

    1983-01-01

    A new momentum integral network method has been developed, and tested in the MINET computer code. The method was developed in order to facilitate the transient analysis of complex fluid flow and heat transfer networks, such as those found in the balance of plant of power generating facilities. The method employed in the MINET code is a major extension of a momentum integral method reported by Meyer. Meyer integrated the momentum equation over several linked nodes, called a segment, and used a segment average pressure, evaluated from the pressures at both ends. Nodal mass and energy conservation determined nodal flows and enthalpies, accounting for fluid compression and thermal expansion

  9. Assessment of welded joints by the J-integral method

    International Nuclear Information System (INIS)

    Kraemer, D.; Eckert, W.; Roos, E.; Krolop, S.

    1987-01-01

    In ductile fracture mechanics, the J-integral is an important parameter for the integrity assessment of components. The fact that and how an area- or path-independent J-integral can also be applied to inhomogeneous materials is demonstrated along with the actual method of applications. An especially important engineering aspect is, for example, welded joints, where it is also shown that for such inhomogeneous material characteristics, a path-independent J-integral or respective area-independent J tilde-integral exists, which is equal to the energy releasing rate. The results of finite-element calculations verify the theoretically derived conclusions. (orig./DG) [de

  10. Efficiency analysis of numerical integrations for finite element substructure in real-time hybrid simulation

    Science.gov (United States)

    Wang, Jinting; Lu, Liqiao; Zhu, Fei

    2018-01-01

    Finite element (FE) is a powerful tool and has been applied by investigators to real-time hybrid simulations (RTHSs). This study focuses on the computational efficiency, including the computational time and accuracy, of numerical integrations in solving FE numerical substructure in RTHSs. First, sparse matrix storage schemes are adopted to decrease the computational time of FE numerical substructure. In this way, the task execution time (TET) decreases such that the scale of the numerical substructure model increases. Subsequently, several commonly used explicit numerical integration algorithms, including the central difference method (CDM), the Newmark explicit method, the Chang method and the Gui-λ method, are comprehensively compared to evaluate their computational time in solving FE numerical substructure. CDM is better than the other explicit integration algorithms when the damping matrix is diagonal, while the Gui-λ (λ = 4) method is advantageous when the damping matrix is non-diagonal. Finally, the effect of time delay on the computational accuracy of RTHSs is investigated by simulating structure-foundation systems. Simulation results show that the influences of time delay on the displacement response become obvious with the mass ratio increasing, and delay compensation methods may reduce the relative error of the displacement peak value to less than 5% even under the large time-step and large time delay.

  11. Change of time methods in quantitative finance

    CERN Document Server

    Swishchuk, Anatoliy

    2016-01-01

    This book is devoted to the history of Change of Time Methods (CTM), the connections of CTM to stochastic volatilities and finance, fundamental aspects of the theory of CTM, basic concepts, and its properties. An emphasis is given on many applications of CTM in financial and energy markets, and the presented numerical examples are based on real data. The change of time method is applied to derive the well-known Black-Scholes formula for European call options, and to derive an explicit option pricing formula for a European call option for a mean-reverting model for commodity prices. Explicit formulas are also derived for variance and volatility swaps for financial markets with a stochastic volatility following a classical and delayed Heston model. The CTM is applied to price financial and energy derivatives for one-factor and multi-factor alpha-stable Levy-based models. Readers should have a basic knowledge of probability and statistics, and some familiarity with stochastic processes, such as Brownian motion, ...

  12. Achieving Integration in Mixed Methods Designs—Principles and Practices

    OpenAIRE

    Fetters, Michael D; Curry, Leslie A; Creswell, John W

    2013-01-01

    Mixed methods research offers powerful tools for investigating complex processes and systems in health and health care. This article describes integration principles and practices at three levels in mixed methods research and provides illustrative examples. Integration at the study design level occurs through three basic mixed method designs—exploratory sequential, explanatory sequential, and convergent—and through four advanced frameworks—multistage, intervention, case study, and participato...

  13. Optimal Real-time Dispatch for Integrated Energy Systems

    DEFF Research Database (Denmark)

    Anvari-Moghaddam, Amjad; Guerrero, Josep M.; Rahimi-Kian, Ashkan

    2016-01-01

    into a cohesive, networked package that fully utilizes smart energy-efficient end-use devices, advanced building control/automation systems, and integrated communications architectures, it is possible to efficiently manage energy and comfort at the end-use location. In this paper, an ontology-driven multi......-agent control system with intelligent optimizers is proposed for optimal real-time dispatch of an integrated building and microgrid system considering coordinated demand response (DR) and DERs management. The optimal dispatch problem is formulated as a mixed integer nonlinear programing problem (MINLP...

  14. PBO Integrated Real-Time Observing Sites at Volcanic Sites

    Science.gov (United States)

    Mencin, D.; Jackson, M.; Borsa, A.; Feaux, K.; Smith, S.

    2009-05-01

    The Plate Boundary Observatory, an element of NSF's EarthScope program, has six integrated observatories in Yellowstone and four on Mt St Helens. These observatories consist of some combination of borehole strainmeters, borehole seismometers, GPS, tiltmeters, pore pressure, thermal measurements and meteorological data. Data from all these instruments have highly variable data rates and formats, all synchronized to GPS time which can cause significant congestion of precious communication resources. PBO has been experimenting with integrating these data streams to both maximize efficiency and minimize latency through the use of software that combines the streams, like Antelope, and VPN technologies.

  15. Acoustic 3D modeling by the method of integral equations

    Science.gov (United States)

    Malovichko, M.; Khokhlov, N.; Yavich, N.; Zhdanov, M.

    2018-02-01

    This paper presents a parallel algorithm for frequency-domain acoustic modeling by the method of integral equations (IE). The algorithm is applied to seismic simulation. The IE method reduces the size of the problem but leads to a dense system matrix. A tolerable memory consumption and numerical complexity were achieved by applying an iterative solver, accompanied by an effective matrix-vector multiplication operation, based on the fast Fourier transform (FFT). We demonstrate that, the IE system matrix is better conditioned than that of the finite-difference (FD) method, and discuss its relation to a specially preconditioned FD matrix. We considered several methods of matrix-vector multiplication for the free-space and layered host models. The developed algorithm and computer code were benchmarked against the FD time-domain solution. It was demonstrated that, the method could accurately calculate the seismic field for the models with sharp material boundaries and a point source and receiver located close to the free surface. We used OpenMP to speed up the matrix-vector multiplication, while MPI was used to speed up the solution of the system equations, and also for parallelizing across multiple sources. The practical examples and efficiency tests are presented as well.

  16. Hierarchical Matrices Method and Its Application in Electromagnetic Integral Equations

    Directory of Open Access Journals (Sweden)

    Han Guo

    2012-01-01

    Full Text Available Hierarchical (H- matrices method is a general mathematical framework providing a highly compact representation and efficient numerical arithmetic. When applied in integral-equation- (IE- based computational electromagnetics, H-matrices can be regarded as a fast algorithm; therefore, both the CPU time and memory requirement are reduced significantly. Its kernel independent feature also makes it suitable for any kind of integral equation. To solve H-matrices system, Krylov iteration methods can be employed with appropriate preconditioners, and direct solvers based on the hierarchical structure of H-matrices are also available along with high efficiency and accuracy, which is a unique advantage compared to other fast algorithms. In this paper, a novel sparse approximate inverse (SAI preconditioner in multilevel fashion is proposed to accelerate the convergence rate of Krylov iterations for solving H-matrices system in electromagnetic applications, and a group of parallel fast direct solvers are developed for dealing with multiple right-hand-side cases. Finally, numerical experiments are given to demonstrate the advantages of the proposed multilevel preconditioner compared to conventional “single level” preconditioners and the practicability of the fast direct solvers for arbitrary complex structures.

  17. Multisensory integration: the case of a time window of gesture-speech integration.

    Science.gov (United States)

    Obermeier, Christian; Gunter, Thomas C

    2015-02-01

    This experiment investigates the integration of gesture and speech from a multisensory perspective. In a disambiguation paradigm, participants were presented with short videos of an actress uttering sentences like "She was impressed by the BALL, because the GAME/DANCE...." The ambiguous noun (BALL) was accompanied by an iconic gesture fragment containing information to disambiguate the noun toward its dominant or subordinate meaning. We used four different temporal alignments between noun and gesture fragment: the identification point (IP) of the noun was either prior to (+120 msec), synchronous with (0 msec), or lagging behind the end of the gesture fragment (-200 and -600 msec). ERPs triggered to the IP of the noun showed significant differences for the integration of dominant and subordinate gesture fragments in the -200, 0, and +120 msec conditions. The outcome of this integration was revealed at the target words. These data suggest a time window for direct semantic gesture-speech integration ranging from at least -200 up to +120 msec. Although the -600 msec condition did not show any signs of direct integration at the homonym, significant disambiguation was found at the target word. An explorative analysis suggested that gesture information was directly integrated at the verb, indicating that there are multiple positions in a sentence where direct gesture-speech integration takes place. Ultimately, this would implicate that in natural communication, where a gesture lasts for some time, several aspects of that gesture will have their specific and possibly distinct impact on different positions in an utterance.

  18. Time-integrated directional detection of dark matter

    Science.gov (United States)

    O'Hare, Ciaran A. J.; Kavanagh, Bradley J.; Green, Anne M.

    2017-10-01

    The analysis of signals in directional dark matter (DM) detectors typically assumes that the directions of nuclear recoils can be measured in the Galactic rest frame. However, this is not possible with all directional detection technologies. In nuclear emulsions, for example, the recoil events must be detected and measured after the exposure time of the experiment. Unless the entire detector is mounted and rotated with the sidereal day, the recoils cannot be reoriented in the Galactic rest frame. We examine the effect of this "time integration" on the primary goals of directional detection, namely: (1) confirming that the recoils are anisotropic; (2) measuring the median recoil direction to confirm their Galactic origin; and (3) probing below the neutrino floor. We show that after time integration the DM recoil distribution retains a preferred direction and is distinct from that of Solar neutrino-induced recoils. Many of the advantages of directional detection are therefore preserved and it is not crucial to mount and rotate the detector. Rejecting isotropic backgrounds requires a factor of 2 more signal events compared with an experiment with event time information, whereas a factor of 1.5-3 more events are needed to measure a median direction in agreement with the expectation for DM. We also find that there is still effectively no neutrino floor in a time-integrated directional experiment. However to reach a cross section an order of magnitude below the floor, a factor of ˜8 larger exposure is required than with a conventional directional experiment. We also examine how the sensitivity is affected for detectors with only 2D recoil track readout, and/or no head-tail measurement. As for non-time-integrated experiments, 2D readout is not a major disadvantage, though a lack of head-tail sensitivity is.

  19. Integral-Value Models for Outcomes over Continuous Time

    DEFF Research Database (Denmark)

    Harvey, Charles M.; Østerdal, Lars Peter

    Models of preferences between outcomes over continuous time are important for individual, corporate, and social decision making, e.g., medical treatment, infrastructure development, and environmental regulation. This paper presents a foundation for such models. It shows that conditions on prefere...... on preferences between real- or vector-valued outcomes over continuous time are satisfied if and only if the preferences are represented by a value function having an integral form......Models of preferences between outcomes over continuous time are important for individual, corporate, and social decision making, e.g., medical treatment, infrastructure development, and environmental regulation. This paper presents a foundation for such models. It shows that conditions...

  20. A path-integral approach to the problem of time

    Science.gov (United States)

    Amaral, M. M.; Bojowald, Martin

    2018-01-01

    Quantum transition amplitudes are formulated for model systems with local internal time, using intuition from path integrals. The amplitudes are shown to be more regular near a turning point of internal time than could be expected based on existing canonical treatments. In particular, a successful transition through a turning point is provided in the model systems, together with a new definition of such a transition in general terms. Some of the results rely on a fruitful relation between the problem of time and general Gribov problems.

  1. A new heterogeneous asynchronous explicit-implicit time integrator for nonsmooth dynamics

    Science.gov (United States)

    Fekak, Fatima-Ezzahra; Brun, Michael; Gravouil, Anthony; Depale, Bruno

    2017-07-01

    In computational structural dynamics, particularly in the presence of nonsmooth behavior, the choice of the time-step and the time integrator has a critical impact on the feasibility of the simulation. Furthermore, in some cases, as in the case of a bridge crane under seismic loading, multiple time-scales coexist in the same problem. In that case, the use of multi-time scale methods is suitable. Here, we propose a new explicit-implicit heterogeneous asynchronous time integrator (HATI) for nonsmooth transient dynamics with frictionless unilateral contacts and impacts. Furthermore, we present a new explicit time integrator for contact/impact problems where the contact constraints are enforced using a Lagrange multiplier method. In other words, the aim of this paper consists in using an explicit time integrator with a fine time scale in the contact area for reproducing high frequency phenomena, while an implicit time integrator is adopted in the other parts in order to reproduce much low frequency phenomena and to optimize the CPU time. In a first step, the explicit time integrator is tested on a one-dimensional example and compared to Moreau-Jean's event-capturing schemes. The explicit algorithm is found to be very accurate and the scheme has generally a higher order of convergence than Moreau-Jean's schemes and provides also an excellent energy behavior. Then, the two time scales explicit-implicit HATI is applied to the numerical example of a bridge crane under seismic loading. The results are validated in comparison to a fine scale full explicit computation. The energy dissipated in the implicit-explicit interface is well controlled and the computational time is lower than a full-explicit simulation.

  2. A Digitally Programmable Differential Integrator with Enlarged Time Constant

    Directory of Open Access Journals (Sweden)

    S. K. Debroy

    1994-12-01

    Full Text Available A new Operational Amplifier (OA-RC integrator network is described. The novelties of the design are used of single grounded capacitor, ideal integration function realization with dual-input capability and design flexibility for extremely large time constant involving an enlargement factor (K using product of resistor ratios. The aspect of the digital control of K through a programmable resistor array (PRA controlled by a microprocessor has also been implemented. The effect of the OA-poles has been analyzed which indicates degradation of the integrator-Q at higher frequencies. An appropriate Q-compensation design scheme exhibiting 1 : |A|2 order of Q-improvement has been proposed with supporting experimental observations.

  3. An integrated approach for facilities planning by ELECTRE method

    Science.gov (United States)

    Elbishari, E. M. Y.; Hazza, M. H. F. Al; Adesta, E. Y. T.; Rahman, Nur Salihah Binti Abdul

    2018-01-01

    Facility planning is concerned with the design, layout, and accommodation of people, machines and activities of a system. Most of the researchers try to investigate the production area layout and the related facilities. However, few of them try to investigate the relationship between the production space and its relationship with service departments. The aim of this research to is to integrate different approaches in order to evaluate, analyse and select the best facilities planning method that able to explain the relationship between the production area and other supporting departments and its effect on human efforts. To achieve the objective of this research two different approaches have been integrated: Apple’s layout procedure as one of the effective tools in planning factories, ELECTRE method as one of the Multi Criteria Decision Making methods (MCDM) to minimize the risk of getting poor facilities planning. Dalia industries have been selected as a case study to implement our integration the factory have been divided two main different area: the whole facility (layout A), and the manufacturing area (layout B). This article will be concerned with the manufacturing area layout (Layout B). After analysing the data gathered, the manufacturing area was divided into 10 activities. There are five factors that the alternative were compared upon which are: Inter department satisfactory level, total distance travelled for workers, total distance travelled for the product, total time travelled for the workers, and total time travelled for the product. Three different layout alternatives have been developed in addition to the original layouts. Apple’s layout procedure was used to study and evaluate the different alternatives layouts, the study and evaluation of the layouts was done by calculating scores for each of the factors. After obtaining the scores from evaluating the layouts, ELECTRE method was used to compare the proposed alternatives with each other and with

  4. Connection between Feynman integrals having different values of the space-time dimension

    International Nuclear Information System (INIS)

    Tarasov, O.V.

    1996-05-01

    A systematic algorithm for obtaining recurrence relations for dimensionally regularized Feynman integrals w.r.t. the space-time dimension d is proposed. The relation between d and d-2 dimensional integrals is given in terms of a differential operator for which an explicit formula can be obtained for each Feynman diagram. We show how the method works for one-, two- and three-loop integrals. The new recurrence relations w.r.t. d are complementary to the recurrence relations which derive from the method of integration by parts. We find that the problem of the irreducible numerators in Feynman integrals can be naturally solved in the framework of the proposed generalized recurrence relations. (orig.)

  5. Application of Monte Carlo methods for dead time calculations for counting measurements

    International Nuclear Information System (INIS)

    Henniger, Juergen; Jakobi, Christoph

    2015-01-01

    From a mathematical point of view Monte Carlo methods are the numerical solution of certain integrals and integral equations using a random experiment. There are several advantages compared to the classical stepwise integration. The time required for computing increases for multi-dimensional problems only moderately with increasing dimension. The only requirements for the integral kernel are its capability of being integrated in the considered integration area and the possibility of an algorithmic representation. These are the important properties of Monte Carlo methods that allow the application in every scientific area. Besides that Monte Carlo algorithms are often more intuitive than conventional numerical integration methods. The contribution demonstrates these facts using the example of dead time corrections for counting measurements.

  6. APPLICATION OF BOUNDARY INTEGRAL EQUATION METHOD FOR THERMOELASTICITY PROBLEMS

    Directory of Open Access Journals (Sweden)

    Vorona Yu.V.

    2015-12-01

    Full Text Available Boundary Integral Equation Method is used for solving analytically the problems of coupled thermoelastic spherical wave propagation. The resulting mathematical expressions coincide with the solutions obtained in a conventional manner.

  7. Time integration algorithms for the two-dimensional Euler equations on unstructured meshes

    Science.gov (United States)

    Slack, David C.; Whitaker, D. L.; Walters, Robert W.

    1994-01-01

    Explicit and implicit time integration algorithms for the two-dimensional Euler equations on unstructured grids are presented. Both cell-centered and cell-vertex finite volume upwind schemes utilizing Roe's approximate Riemann solver are developed. For the cell-vertex scheme, a four-stage Runge-Kutta time integration, a fourstage Runge-Kutta time integration with implicit residual averaging, a point Jacobi method, a symmetric point Gauss-Seidel method and two methods utilizing preconditioned sparse matrix solvers are presented. For the cell-centered scheme, a Runge-Kutta scheme, an implicit tridiagonal relaxation scheme modeled after line Gauss-Seidel, a fully implicit lower-upper (LU) decomposition, and a hybrid scheme utilizing both Runge-Kutta and LU methods are presented. A reverse Cuthill-McKee renumbering scheme is employed for the direct solver to decrease CPU time by reducing the fill of the Jacobian matrix. A comparison of the various time integration schemes is made for both first-order and higher order accurate solutions using several mesh sizes, higher order accuracy is achieved by using multidimensional monotone linear reconstruction procedures. The results obtained for a transonic flow over a circular arc suggest that the preconditioned sparse matrix solvers perform better than the other methods as the number of elements in the mesh increases.

  8. Marching on-in-time solution of the time domain magnetic field integral equation using a predictor-corrector scheme

    KAUST Repository

    Ulku, Huseyin Arda

    2013-08-01

    An explicit marching on-in-time (MOT) scheme for solving the time-domain magnetic field integral equation (TD-MFIE) is presented. The proposed MOT-TD-MFIE solver uses Rao-Wilton-Glisson basis functions for spatial discretization and a PE(CE)m-type linear multistep method for time marching. Unlike previous explicit MOT-TD-MFIE solvers, the time step size can be chosen as large as that of the implicit MOT-TD-MFIE solvers without adversely affecting accuracy or stability. An algebraic stability analysis demonstrates the stability of the proposed explicit solver; its accuracy and efficiency are established via numerical examples. © 1963-2012 IEEE.

  9. Asymptotic Solutions of Time-Space Fractional Coupled Systems by Residual Power Series Method

    Directory of Open Access Journals (Sweden)

    Wenjin Li

    2017-01-01

    Full Text Available This paper focuses on the asymptotic solutions to time-space fractional coupled systems, where the fractional derivative and integral are described in the sense of Caputo derivative and Riemann-Liouville integral. We introduce the Residual Power Series (for short RPS method to construct the desired asymptotic solutions. Furthermore, we apply this method to some time-space fractional coupled systems. The simplicity and efficiency of RPS method are shown by the application.

  10. Computational electrodynamics the finite-difference time-domain method

    CERN Document Server

    Taflove, Allen

    2005-01-01

    This extensively revised and expanded third edition of the Artech House bestseller, Computational Electrodynamics: The Finite-Difference Time-Domain Method, offers engineers the most up-to-date and definitive resource on this critical method for solving Maxwell's equations. The method helps practitioners design antennas, wireless communications devices, high-speed digital and microwave circuits, and integrated optical devices with unsurpassed efficiency. There has been considerable advancement in FDTD computational technology over the past few years, and the third edition brings professionals the very latest details with entirely new chapters on important techniques, major updates on key topics, and new discussions on emerging areas such as nanophotonics. What's more, to supplement the third edition, the authors have created a Web site with solutions to problems, downloadable graphics and videos, and updates, making this new edition the ideal textbook on the subject as well.

  11. Space Time Adaptive Processing and Clutter Classification Integration and Evaluation

    National Research Council Canada - National Science Library

    Jensen, Nathan

    2002-01-01

    .... Current radar technologies suffer from jamming and clutter limitations. STAP is a statistical method to remove this noise, however it is extremely computationally intensive, and presents several real time processing hurdles...

  12. Time-independent integral equation for Maxwell's system. Application of radar cross section computation

    International Nuclear Information System (INIS)

    Pujols, Agnes

    1991-01-01

    We prove that the scattering operator for the wave equation in the exterior of an non-homogeneous obstacle exists. Its distribution kernel is represented by a time-dependent boundary integral equation. A space-time integral variational formulation is developed for determining the current induced by the scattering of an electromagnetic wave by an homogeneous object. The discrete approximation of the variational problem using a finite element method in both space and time leads to stable convergent schemes, giving a numerical code for perfectly conducting cylinders. (author) [fr

  13. Review of singular potential integrals for method of moments solutions of surface integral equations

    Directory of Open Access Journals (Sweden)

    A. Tzoulis

    2004-01-01

    Full Text Available Accurate evaluation of singular potential integrals is essential for successful method of moments (MoM solutions of surface integral equations. In mixed potential formulations for metallic and dielectric scatterers, kernels with 1/R and r1/R singularities must be considered. Several techniques for the treatment of these singularities will be reviewed. The most common approach solves the MoM source integrals analytically for specific observation points, thus regularizing the integral. However, in the case of r1/R a logarithmic singularity remains for which numerical evaluation of the testing integral is still difficult. A recently by Yl¨a-Oijala and Taskinen proposed remedy to this issue is discussed and evaluated within a hybrid finite element – boundary integral technique. Convergence results for the MoM coupling integrals are presented where also higher-order singularity extraction is considered.

  14. Explicit solution of the time domain magnetic field integral equation using a predictor-corrector scheme

    KAUST Repository

    Ulku, Huseyin Arda

    2012-09-01

    An explicit yet stable marching-on-in-time (MOT) scheme for solving the time domain magnetic field integral equation (TD-MFIE) is presented. The stability of the explicit scheme is achieved via (i) accurate evaluation of the MOT matrix elements using closed form expressions and (ii) a PE(CE) m type linear multistep method for time marching. Numerical results demonstrate the accuracy and stability of the proposed explicit MOT-TD-MFIE solver. © 2012 IEEE.

  15. A dynamic integrated fault diagnosis method for power transformers.

    Science.gov (United States)

    Gao, Wensheng; Bai, Cuifen; Liu, Tong

    2015-01-01

    In order to diagnose transformer fault efficiently and accurately, a dynamic integrated fault diagnosis method based on Bayesian network is proposed in this paper. First, an integrated fault diagnosis model is established based on the causal relationship among abnormal working conditions, failure modes, and failure symptoms of transformers, aimed at obtaining the most possible failure mode. And then considering the evidence input into the diagnosis model is gradually acquired and the fault diagnosis process in reality is multistep, a dynamic fault diagnosis mechanism is proposed based on the integrated fault diagnosis model. Different from the existing one-step diagnosis mechanism, it includes a multistep evidence-selection process, which gives the most effective diagnostic test to be performed in next step. Therefore, it can reduce unnecessary diagnostic tests and improve the accuracy and efficiency of diagnosis. Finally, the dynamic integrated fault diagnosis method is applied to actual cases, and the validity of this method is verified.

  16. Review of Statistical Learning Methods in Integrated Omics Studies (An Integrated Information Science).

    Science.gov (United States)

    Zeng, Irene Sui Lan; Lumley, Thomas

    2018-01-01

    Integrated omics is becoming a new channel for investigating the complex molecular system in modern biological science and sets a foundation for systematic learning for precision medicine. The statistical/machine learning methods that have emerged in the past decade for integrated omics are not only innovative but also multidisciplinary with integrated knowledge in biology, medicine, statistics, machine learning, and artificial intelligence. Here, we review the nontrivial classes of learning methods from the statistical aspects and streamline these learning methods within the statistical learning framework. The intriguing findings from the review are that the methods used are generalizable to other disciplines with complex systematic structure, and the integrated omics is part of an integrated information science which has collated and integrated different types of information for inferences and decision making. We review the statistical learning methods of exploratory and supervised learning from 42 publications. We also discuss the strengths and limitations of the extended principal component analysis, cluster analysis, network analysis, and regression methods. Statistical techniques such as penalization for sparsity induction when there are fewer observations than the number of features and using Bayesian approach when there are prior knowledge to be integrated are also included in the commentary. For the completeness of the review, a table of currently available software and packages from 23 publications for omics are summarized in the appendix.

  17. Achieving integration in mixed methods designs-principles and practices.

    Science.gov (United States)

    Fetters, Michael D; Curry, Leslie A; Creswell, John W

    2013-12-01

    Mixed methods research offers powerful tools for investigating complex processes and systems in health and health care. This article describes integration principles and practices at three levels in mixed methods research and provides illustrative examples. Integration at the study design level occurs through three basic mixed method designs-exploratory sequential, explanatory sequential, and convergent-and through four advanced frameworks-multistage, intervention, case study, and participatory. Integration at the methods level occurs through four approaches. In connecting, one database links to the other through sampling. With building, one database informs the data collection approach of the other. When merging, the two databases are brought together for analysis. With embedding, data collection and analysis link at multiple points. Integration at the interpretation and reporting level occurs through narrative, data transformation, and joint display. The fit of integration describes the extent the qualitative and quantitative findings cohere. Understanding these principles and practices of integration can help health services researchers leverage the strengths of mixed methods. © Health Research and Educational Trust.

  18. Achieving Integration in Mixed Methods Designs—Principles and Practices

    Science.gov (United States)

    Fetters, Michael D; Curry, Leslie A; Creswell, John W

    2013-01-01

    Mixed methods research offers powerful tools for investigating complex processes and systems in health and health care. This article describes integration principles and practices at three levels in mixed methods research and provides illustrative examples. Integration at the study design level occurs through three basic mixed method designs—exploratory sequential, explanatory sequential, and convergent—and through four advanced frameworks—multistage, intervention, case study, and participatory. Integration at the methods level occurs through four approaches. In connecting, one database links to the other through sampling. With building, one database informs the data collection approach of the other. When merging, the two databases are brought together for analysis. With embedding, data collection and analysis link at multiple points. Integration at the interpretation and reporting level occurs through narrative, data transformation, and joint display. The fit of integration describes the extent the qualitative and quantitative findings cohere. Understanding these principles and practices of integration can help health services researchers leverage the strengths of mixed methods. PMID:24279835

  19. A modified precise integration method for transient dynamic analysis in structural systems with multiple damping models

    Science.gov (United States)

    Ding, Zhe; Li, Li; Hu, Yujin

    2018-01-01

    Sophisticated engineering systems are usually assembled by subcomponents with significantly different levels of energy dissipation. Therefore, these damping systems often contain multiple damping models and lead to great difficulties in analyzing. This paper aims at developing a time integration method for structural systems with multiple damping models. The dynamical system is first represented by a generally damped model. Based on this, a new extended state-space method for the damped system is derived. A modified precise integration method with Gauss-Legendre quadrature is then proposed. The numerical stability and accuracy of the proposed integration method are discussed in detail. It is verified that the method is conditionally stable and has inherent algorithmic damping, period error and amplitude decay. Numerical examples are provided to assess the performance of the proposed method compared with other methods. It is demonstrated that the method is more accurate than other methods with rather good efficiency and the stable condition is easy to be satisfied in practice.

  20. Computation of rectangular source integral by rational parameter polynomial method

    International Nuclear Information System (INIS)

    Prabha, Hem

    2001-01-01

    Hubbell et al. (J. Res. Nat Bureau Standards 64C, (1960) 121) have obtained a series expansion for the calculation of the radiation field generated by a plane isotropic rectangular source (plaque), in which leading term is the integral H(a,b). In this paper another integral I(a,b), which is related with the integral H(a,b) has been solved by the rational parameter polynomial method. From I(a,b), we compute H(a,b). Using this method the integral I(a,b) is expressed in the form of a polynomial of a rational parameter. Generally, a function f (x) is expressed in terms of x. In this method this is expressed in terms of x/(1+x). In this way, the accuracy of the expression is good over a wide range of x as compared to the earlier approach. The results for I(a,b) and H(a,b) are given for a sixth degree polynomial and are found to be in good agreement with the results obtained by numerically integrating the integral. Accuracy could be increased either by increasing the degree of the polynomial or by dividing the range of integration. The results of H(a,b) and I(a,b) are given for values of b and a up to 2.0 and 20.0, respectively

  1. Development of visuo-auditory integration in space and time.

    Science.gov (United States)

    Gori, Monica; Sandini, Giulio; Burr, David

    2012-01-01

    Adults integrate multisensory information optimally (e.g., Ernst and Banks, 2002) while children do not integrate multisensory visual-haptic cues until 8-10 years of age (e.g., Gori et al., 2008). Before that age strong unisensory dominance occurs for size and orientation visual-haptic judgments, possibly reflecting a process of cross-sensory calibration between modalities. It is widely recognized that audition dominates time perception, while vision dominates space perception. Within the framework of the cross-sensory calibration hypothesis, we investigate visual-auditory integration in both space and time with child-friendly spatial and temporal bisection tasks. Unimodal and bimodal (conflictual and not) audio-visual thresholds and PSEs were measured and compared with the Bayesian predictions. In the temporal domain, we found that both in children and adults, audition dominates the bimodal visuo-auditory task both in perceived time and precision thresholds. On the contrary, in the visual-auditory spatial task, children younger than 12 years of age show clear visual dominance (for PSEs), and bimodal thresholds higher than the Bayesian prediction. Only in the adult group did bimodal thresholds become optimal. In agreement with previous studies, our results suggest that also visual-auditory adult-like behavior develops late. We suggest that the visual dominance for space and the auditory dominance for time could reflect a cross-sensory comparison of vision in the spatial visuo-audio task and a cross-sensory comparison of audition in the temporal visuo-audio task.

  2. Long linear arrays with time delay integration and element deselection

    Science.gov (United States)

    Arthurs, C. P.

    1997-08-01

    GEC-Marconi infra-red has developed a sensor technology based on lateral collection CdHgTe photodiode arrays mounted on custom designed CMOS multiplexer integrated circuits. The availability of submicron silicon processes has enabled a very high degree of functionality to be integrated within the detector thereby simplifying the overall system design. This paper describes a generic architecture that finds particular application for advanced infrared search-and-track, surveillance and high performance imaging applications. These applications require the highest possible performance and are therefore based on time-delay and integration (TDI) to enhance the signal-to-noise ratio, and detector element redundancy with defective element deselection (DED) to give resultant arrays with no dropouts. The detectors have fully variable integration period control, selectable integration capacitors, and a signal-to-noise enhancement capability at low infrared flux levels. The overall power consumption is low rendering the detectors suitable for engine cooling. The architecture is based on a number of unit cell designs and is readily adaptable to a wide range of configurations. The unit capacitor sizes within the design being rescaled to accommodate the required signal levels. In this way the numbers of elements in TDI and the number of TDI channels can be matched to the end application requirements. The architecture is applicable to both long and medium wave detectors. TDI channels are typically composed of 8 or 10 elements and in excess of 700 channels have been demonstrated. The results obtained from a number of prototype detectors are presented.

  3. Integral Time and the Varieties of Post-Mortem Survival

    Directory of Open Access Journals (Sweden)

    Sean M. Kelly

    2008-06-01

    Full Text Available While the question of survival of bodily death is usually approached by focusing on the mind/body relation (and often with the idea of the soul as a special kind of substance, this paper explores the issue in the context of our understanding of time. The argument of the paper is woven around the central intuition of time as an “ever-living present.” The development of this intuition allows for a more integral or “complex-holistic” theory of time, the soul, and the question of survival. Following the introductory matter, the first section proposes a re-interpretation of Nietzsche’s doctrine of eternal recurrence in terms of moments and lives as “eternally occurring.” The next section is a treatment of Julian Barbour’s neo-Machian model of instants of time as configurations in the n-dimensional phase-space he calls “Platonia.” While rejecting his claim to have done away with time, I do find his model suggestive of the idea of moments and lives as eternally occurring. The following section begins with Fechner’s visionary ideas of the nature of the soul and its survival of bodily death, with particular attention to the notion of holonic inclusion and the central analogy of the transition from perception to memory. I turn next to Whitehead’s equally holonic notions of prehension and the concrescence of actual occasions. From his epochal theory of time and certain ambiguities in his reflections on the “divine antinomies,” we are brought to the threshold of a potentially more integral or “complex-holistic” theory of time and survival, which is treated in the last section. This section draws from my earlier work on Hegel, Jung, and Edgar Morin, as well as from key insights of Jean Gebser, for an interpretation of Sri Aurobindo’s inspired but cryptic description of the “Supramental Time Vision.” This interpretation leads to an alternative understanding of reincarnation—and to the possibility of its reconciliation

  4. Integral Time and the Varieties of Post-Mortem Survival

    Directory of Open Access Journals (Sweden)

    Sean M. Kelly

    2008-06-01

    Full Text Available While the question of survival of bodily death is usually approached byfocusing on the mind/body relation (and often with the idea of the soul as a special kindof substance, this paper explores the issue in the context of our understanding of time.The argument of the paper is woven around the central intuition of time as an “everlivingpresent.” The development of this intuition allows for a more integral or “complexholistic”theory of time, the soul, and the question of survival. Following the introductorymatter, the first section proposes a re-interpretation of Nietzsche’s doctrine of eternalrecurrence in terms of moments and lives as “eternally occurring.” The next section is atreatment of Julian Barbour’s neo-Machian model of instants of time as configurations inthe n-dimensional phase-space he calls “Platonia.” While rejecting his claim to have doneaway with time, I do find his model suggestive of the idea of moments and lives aseternally occurring. The following section begins with Fechner’s visionary ideas of thenature of the soul and its survival of bodily death, with particular attention to the notionof holonic inclusion and the central analogy of the transition from perception to memory.I turn next to Whitehead’s equally holonic notions of prehension and the concrescence ofactual occasions. From his epochal theory of time and certain ambiguities in hisreflections on the “divine antinomies,” we are brought to the threshold of a potentiallymore integral or “complex-holistic” theory of time and survival, which is treated in thelast section. This section draws from my earlier work on Hegel, Jung, and Edgar Morin,as well as from key insights of Jean Gebser, for an interpretation of Sri Aurobindo’sinspired but cryptic description of the “Supramental Time Vision.” This interpretationleads to an alternative understanding of reincarnation—and to the possibility of itsreconciliation with the once-only view

  5. An integration weighting method to evaluate extremum coordinates

    International Nuclear Information System (INIS)

    Ilyushchenko, V.I.

    1990-01-01

    The numerical version of the Laplace asymptotics has been used to evaluate the coordinates of extrema of multivariate continuous and discontinuous test functions. The performed computer experiments demonstrate the high efficiency of the integration method proposed. The saturating dependence of extremum coordinates on such parameters as a number of integration subregions and that of K going /theoretically/ to infinity has been studied in detail for the limitand being a ratio of two Laplace integrals with exponentiated K. The given method is an integral equivalent of that of weighted means. As opposed to the standard optimization methods of the zero, first and second order the proposed method can be successfully applied to optimize discontinuous objective functions, too. There are possibilities of applying the integration method in the cases, when the conventional techniques fail due to poor analytical properties of the objective functions near extremal points. The proposed method is efficient in searching for both local and global extrema of multimodal objective functions. 12 refs.; 4 tabs

  6. Exact subthreshold integration with continuous spike times in discrete-time neural network simulations.

    Science.gov (United States)

    Morrison, Abigail; Straube, Sirko; Plesser, Hans Ekkehard; Diesmann, Markus

    2007-01-01

    Very large networks of spiking neurons can be simulated efficiently in parallel under the constraint that spike times are bound to an equidistant time grid. Within this scheme, the subthreshold dynamics of a wide class of integrate-and-fire-type neuron models can be integrated exactly from one grid point to the next. However, the loss in accuracy caused by restricting spike times to the grid can have undesirable consequences, which has led to interest in interpolating spike times between the grid points to retrieve an adequate representation of network dynamics. We demonstrate that the exact integration scheme can be combined naturally with off-grid spike events found by interpolation. We show that by exploiting the existence of a minimal synaptic propagation delay, the need for a central event queue is removed, so that the precision of event-driven simulation on the level of single neurons is combined with the efficiency of time-driven global scheduling. Further, for neuron models with linear subthreshold dynamics, even local event queuing can be avoided, resulting in much greater efficiency on the single-neuron level. These ideas are exemplified by two implementations of a widely used neuron model. We present a measure for the efficiency of network simulations in terms of their integration error and show that for a wide range of input spike rates, the novel techniques we present are both more accurate and faster than standard techniques.

  7. Integrated project delivery methods for energy renovation of social housing

    Directory of Open Access Journals (Sweden)

    Tadeo Baldiri Salcedo Rahola

    2015-11-01

    Full Text Available Optimised project delivery methods forsocial housing energy renovations European Social Housing Organisations (SHOs are currently facing challenging times. The ageing of their housing stock and the economic crisis, which has affected both their finances and the finances of their tenants, are testing their capacity to stick to their aim of providing decent and affordable housing. Housing renovation projects offer the possibility of upgrading the health and comfort levels of their old housing stock to current standards and improve energy efficiency, and this solution also addresses the fuel poverty problems suffered by some tenants. Unfortunately, the limited financial capacity of SHOs is hampering the scale of housing renovation projects and the energy savings achieved.  At the same time, the renovation of the existing housing stock is seen as one of the most promising alternative routes to achieving the ambitious CO2 emissions reduction targets set by European authorities – namely, to reduce EU CO2 emissions to 20% below their 1990 levels by 2020. The synergy between European targets and the aims of SHOs has been addressed by the energy policies of the member states, which focus on the potential energy savings achievable by renovating social housing. In fact, the European initiatives have prioritised energy savings in social housing renovations to such an extent that these are referred to as ‘energy renovations’. Energy renovation is therefore a renovation project with higher energy savings target than a regular renovation project. In total, European SHOs own 21.5 million dwellings representing around 9.4% of the total housing stock. Each SHO owns a large number of dwellings, which means there are fewer people to convince of the need to make energy savings through building renovations, maximising the potentially high impact of decisions. Moreover, SHOs are responsible for maintaining and upgrading their properties in order to continue

  8. Approximating Sievert Integrals to Monte Carlo Methods to calculate ...

    African Journals Online (AJOL)

    Radiation dose rates along the transverse axis of a miniature P192PIr source were calculated using Sievert Integral (considered simple and inaccurate), and by the sophisticated and accurate Monte Carlo method. Using data obt-ained by the Monte Carlo method as benchmark and applying least squares regression curve ...

  9. Integrative health care method based on combined complementary ...

    African Journals Online (AJOL)

    The article presents a systemic approach to health care with complementary medicines such as rehabilitative acupuncture, homeopathy and chiropractic through the application of a method of holistic care and integrated approach. Materials and Methods: There was a participatory action research in January 2012 to January ...

  10. Method for integrating a train of fast, nanosecond wide pulses

    International Nuclear Information System (INIS)

    Rose, C.R.

    1987-01-01

    This paper describes a method used to integrate a train of fast, nanosecond wide pulses. The pulses come from current transformers in a RF LINAC beamline. Because they are ac signals and have no dc component, true mathematical integration would yield zero over the pulse train period or an equally erroneous value because of a dc baseline shift. The circuit used to integrate the pulse train first stretches the pulses to 35 ns FWHM. The signals are then fed into a high-speed, precision rectifier which restores a true dc baseline for the following stage - a fast, gated integrator. The rectifier is linear over 55dB in excess of 25 MHz, and the gated integrator is linear over a 60 dB range with input pulse widths as short as 16 ns. The assembled system is linear over 30 dB with a 6 MHz input signal

  11. A study of compositional verification based IMA integration method

    Science.gov (United States)

    Huang, Hui; Zhang, Guoquan; Xu, Wanmeng

    2018-03-01

    The rapid development of avionics systems is driving the application of integrated modular avionics (IMA) systems. But meanwhile it is improving avionics system integration, complexity of system test. Then we need simplify the method of IMA system test. The IMA system supports a module platform that runs multiple applications, and shares processing resources. Compared with federated avionics system, IMA system is difficult to isolate failure. Therefore, IMA system verification will face the critical problem is how to test shared resources of multiple application. For a simple avionics system, traditional test methods are easily realizing to test a whole system. But for a complex system, it is hard completed to totally test a huge and integrated avionics system. Then this paper provides using compositional-verification theory in IMA system test, so that reducing processes of test and improving efficiency, consequently economizing costs of IMA system integration.

  12. Development of visuo-auditory integration in space and time

    Directory of Open Access Journals (Sweden)

    Monica eGori

    2012-09-01

    Full Text Available Adults integrate multisensory information optimally (e.g. Ernst & Banks, 2002 while children are not able to integrate multisensory visual haptic cues until 8-10 years of age (e.g. Gori, Del Viva, Sandini, & Burr, 2008. Before that age strong unisensory dominance is present for size and orientation visual-haptic judgments maybe reflecting a process of cross-sensory calibration between modalities. It is widely recognized that audition dominates time perception, while vision dominates space perception. If the cross sensory calibration process is necessary for development, then the auditory modality should calibrate vision in a bimodal temporal task, and the visual modality should calibrate audition in a bimodal spatial task. Here we measured visual-auditory integration in both the temporal and the spatial domains reproducing for the spatial task a child-friendly version of the ventriloquist stimuli used by Alais and Burr (2004 and for the temporal task a child-friendly version of the stimulus used by Burr, Banks and Morrone (2009. Unimodal and bimodal (conflictual or not conflictual audio-visual thresholds and PSEs were measured and compared with the Bayesian predictions. In the temporal domain, we found that both in children and adults, audition dominates the bimodal visuo-auditory task both in perceived time and precision thresholds. Contrarily, in the visual-auditory spatial task, children younger than 12 years of age show clear visual dominance (on PSEs and bimodal thresholds higher than the Bayesian prediction. Only in the adult group bimodal thresholds become optimal. In agreement with previous studies, our results suggest that also visual-auditory adult-like behaviour develops late. Interestingly, the visual dominance for space and the auditory dominance for time that we found might suggest a cross-sensory comparison of vision in a spatial visuo-audio task and a cross-sensory comparison of audition in a temporal visuo-audio task.

  13. Time series analysis time series analysis methods and applications

    CERN Document Server

    Rao, Tata Subba; Rao, C R

    2012-01-01

    The field of statistics not only affects all areas of scientific activity, but also many other matters such as public policy. It is branching rapidly into so many different subjects that a series of handbooks is the only way of comprehensively presenting the various aspects of statistical methodology, applications, and recent developments. The Handbook of Statistics is a series of self-contained reference books. Each volume is devoted to a particular topic in statistics, with Volume 30 dealing with time series. The series is addressed to the entire community of statisticians and scientists in various disciplines who use statistical methodology in their work. At the same time, special emphasis is placed on applications-oriented techniques, with the applied statistician in mind as the primary audience. Comprehensively presents the various aspects of statistical methodology Discusses a wide variety of diverse applications and recent developments Contributors are internationally renowened experts in their respect...

  14. Fully implicit solution of large-scale non-equilibrium radiation diffusion with high order time integration

    International Nuclear Information System (INIS)

    Brown, Peter N.; Shumaker, Dana E.; Woodward, Carol S.

    2005-01-01

    We present a solution method for fully implicit radiation diffusion problems discretized on meshes having millions of spatial zones. This solution method makes use of high order in time integration techniques, inexact Newton-Krylov nonlinear solvers, and multigrid preconditioners. We explore the advantages and disadvantages of high order time integration methods for the fully implicit formulation on both two- and three-dimensional problems with tabulated opacities and highly nonlinear fusion source terms

  15. Algorithmic properties of the midpoint predictor-corrector time integrator.

    Energy Technology Data Exchange (ETDEWEB)

    Rider, William J.; Love, Edward; Scovazzi, Guglielmo

    2009-03-01

    Algorithmic properties of the midpoint predictor-corrector time integration algorithm are examined. In the case of a finite number of iterations, the errors in angular momentum conservation and incremental objectivity are controlled by the number of iterations performed. Exact angular momentum conservation and exact incremental objectivity are achieved in the limit of an infinite number of iterations. A complete stability and dispersion analysis of the linearized algorithm is detailed. The main observation is that stability depends critically on the number of iterations performed.

  16. Integration methods for enhanced trapping and spectroscopy in optofluidics

    OpenAIRE

    Ashok, Praveen Cheriyan

    2011-01-01

    “Lab on a Chip” technologies have revolutionized the field of bio-chemical analytics. The crucial role of optical techniques in this revolution resulted in the emergence of a field by itself, which is popularly termed as “optofluidics”. The miniaturization and integration of the optical parts in the majority of optofluidic devices however still remains a technical challenge. The works described in this thesis focuses on developing integration methods to combine various optical techniques with...

  17. User's guide to Monte Carlo methods for evaluating path integrals

    Science.gov (United States)

    Westbroek, Marise J. E.; King, Peter R.; Vvedensky, Dimitri D.; Dürr, Stephan

    2018-04-01

    We give an introduction to the calculation of path integrals on a lattice, with the quantum harmonic oscillator as an example. In addition to providing an explicit computational setup and corresponding pseudocode, we pay particular attention to the existence of autocorrelations and the calculation of reliable errors. The over-relaxation technique is presented as a way to counter strong autocorrelations. The simulation methods can be extended to compute observables for path integrals in other settings.

  18. Timing, methods and prospective in citizenship training

    Directory of Open Access Journals (Sweden)

    Alessia Carta

    2010-07-01

    Full Text Available The current models of development are changing the balance between human activity and Nature on a local ands global level and the urgent need to establish a new relationship between Man and the environment is increasingly apparent. The move towards a more caring approach to the planet introducing concepts such as limits, impact on future generations, regeneration of resources, social and environmental justice and the right to citizenship should make us consider (aside from international undertakings by governments exactly how we can promote a culture of sustainability in schools in terms of methods, time scales, and location. Schools are directly involved in these processes of change however it is necessary to plan carefully and establish situations that will result in greater attention being paid to the interaction between man and the environment, and highlighting the lifestyles and attitudes that are currently incompatible with a sustainable future. These solutions, although based on technical-scientific knowledge, cannot be brought about without the involvement of the individual and local agencies working together. However we have chosen to concentrate on the links between educational policies and local areas interpreting declarations made by international bodies such as UNESCO and suggestions aimed at bringing sustainability to the centre of specific policies. Bringing about these aims requires great educational effort that goes well beyond simple environmental education since it requires a permanent process for educating adults. Looking at stages of the history of the theories regarding the development and education of adults shows how the topic of sustainability made its entry into the debate about permanent education and how in the last ten years it has taken on an unrivalled importance as a point of reference for educational policies and pedagogical reflection. The origin of the concept of sustainability, although belonging to natural

  19. Integrated real time bowel sound detector for artificial pancreas systems

    Directory of Open Access Journals (Sweden)

    Khandaker A. Al Mamun

    2016-03-01

    Full Text Available This paper reports an ultra-low power real time bowel sound detector with integrated feature extractor for physiologic measure of meal instances in artificial pancreas devices. The system can aid in improving long term diabetic patient care and consists of a front end detector and signal processing unit. The front end detector transduces the initial bowel sound recorded from a piezoelectric sensor into a voltage signal. The signal processor uses a feature extractor to determine whether a bowel sound is detected. The feature extractor consists of a low noise, low power signal front-end, peak and trough locator, signal slope and width detector, digitizer, and bowel pulse locator. The system was fabricated in a standard 0.18 μm CMOS process, and the bowel sound detection system was characterized and verified with experimentally recorded bowel sounds. The integrated instrument consumes 53 μW of power from a 1 V supply in a 0.96 mm2 area, and is suitable for integration with portable devices. Keywords: Bowel sound, Artificial pancreas, Glucose monitoring, Feature extractor, Charge amplifier, Piezoelectric sensor

  20. Methods of assessing total doses integrated across pathways

    Energy Technology Data Exchange (ETDEWEB)

    Grzechnik, M.; Camplin, W.; Clyne, F. [Centre for Environment, Fisheries and Aquaculture Science, Lowestoft (United Kingdom); Allott, R. [Environment Agency, London (United Kingdom); Webbe-Wood, D. [Food Standards Agency, London (United Kingdom)

    2006-07-01

    Calculated doses for comparison with limits resulting from discharges into the environment should be summed across all relevant pathways and food groups to ensure adequate protection. Current methodology for assessments used in the radioactivity in Food and the Environment (R.I.F.E.) reports separate doses from pathways related to liquid discharges of radioactivity to the environment from those due to gaseous releases. Surveys of local inhabitant food consumption and occupancy rates are conducted in the vicinity of nuclear sites. Information has been recorded in an integrated way, such that the data for eachividual is recorded for all pathways of interest. These can include consumption of foods, such as fish, crustaceans, molluscs, fruit and vegetables, milk and meats. Occupancy times over beach sediments and time spent in close proximity to the site is also recorded for inclusion of external and inhalation radiation dose pathways. The integrated habits survey data may be combined with monitored environmental radionuclide concentrations to calculate total dose. The criteria for successful adoption of a method for this calculation were: Reproducibility can others easily use the approach and reassess doses? Rigour and realism how good is the match with reality?Transparency a measure of the ease with which others can understand how the calculations are performed and what they mean. Homogeneity is the group receiving the dose relatively homogeneous with respect to age, diet and those aspects that affect the dose received? Five methods of total dose calculation were compared and ranked according to their suitability. Each method was labelled (A to E) and given a short, relevant name for identification. The methods are described below; A) Individual doses to individuals are calculated and critical group selection is dependent on dose received. B) Individual Plus As in A, but consumption and occupancy rates for high dose is used to derive rates for application in future

  1. Three-dimensional viscoelastic time-domain finite-difference seismic modelling using the staggered Adams-Bashforth time integrator

    Science.gov (United States)

    Bohlen, Thomas; Wittkamp, Florian

    2016-03-01

    We analyse the performance of a higher order accurate staggered viscoelastic time-domain finite-difference method, in which the staggered Adams-Bashforth (ABS) third-order and fourth-order accurate time integrators are used for temporal discretization. ABS is a multistep method that uses previously calculated wavefields to increase the order of accuracy in time. The analysis shows that the numerical dispersion is much lower than that of the widely used second-order leapfrog method. Numerical dissipation is introduced by the ABS method which is significantly smaller for fourth-order than third-order accuracy. In 1-D and 3-D simulation experiments, we verify the convincing improvements of simulation accuracy of the fourth-order ABS method. In a realistic elastic 3-D scenario, the computing time reduces by a factor of approximately 2.4, whereas the memory requirements increase by approximately a factor of 2.2. The ABS method thus provides an alternative strategy to increase the simulation accuracy in time by investing computer memory instead of computing time.

  2. Knowledge Representation and Management, It's Time to Integrate!

    Science.gov (United States)

    Dhombres, F; Charlet, J

    2017-08-01

    Objectives: To select, present, and summarize the best papers published in 2016 in the field of Knowledge Representation and Management (KRM). Methods: A comprehensive and standardized review of the medical informatics literature was performed based on a PubMed query. Results: Among the 1,421 retrieved papers, the review process resulted in the selection of four best papers focused on the integration of heterogeneous data via the development and the alignment of terminological resources. In the first article, the authors provide a curated and standardized version of the publicly available US FDA Adverse Event Reporting System. Such a resource will improve the quality of the underlying data, and enable standardized analyses using common vocabularies. The second article describes a project developed in order to facilitate heterogeneous data integration in the i2b2 framework. The originality is to allow users integrate the data described in different terminologies and to build a new repository, with a unique model able to support the representation of the various data. The third paper is dedicated to model the association between multiple phenotypic traits described within the Human Phenotype Ontology (HPO) and the corresponding genotype in the specific context of rare diseases (rare variants). Finally, the fourth paper presents solutions to annotation-ontology mapping in genome-scale data. Of particular interest in this work is the Experimental Factor Ontology (EFO) and its generic association model, the Ontology of Biomedical AssociatioN (OBAN). Conclusion: Ontologies have started to show their efficiency to integrate medical data for various tasks in medical informatics: electronic health records data management, clinical research, and knowledge-based systems development. Georg Thieme Verlag KG Stuttgart.

  3. Unconditionally Energy Stable Implicit Time Integration: Application to Multibody System Analysis and Design

    DEFF Research Database (Denmark)

    Chen, Shanshin; Tortorelli, Daniel A.; Hansen, John Michael

    1999-01-01

    Advances in computer hardware and improved algorithms for multibody dynamics over the past decade have generated widespread interest in real-time simulations of multibody mechanics systems. At the heart of the widely used algorithms for multibody dynamics are a choice of coordinates which define...... the kinmatics of the system, and a choice of time integrations algorithms. The current approach uses a non-dissipative implict Newmark method to integrate the equations of motion defined in terms of the independent joint coordinates of the system. The reduction of the equations of motion to a minimal set...... of ordinary diffferential equations is employed to avoid the instabilities associated with the direct integrations of differential-algebraic equations. To extend the unconditional stability of the implicit Newmark method to nonlinear dynamic systems, a discrete energy balance is enforced. This constraint...

  4. A comparison of the efficiency of numerical methods for integrating chemical kinetic rate equations

    Science.gov (United States)

    Radhakrishnan, K.

    1984-01-01

    The efficiency of several algorithms used for numerical integration of stiff ordinary differential equations was compared. The methods examined included two general purpose codes EPISODE and LSODE and three codes (CHEMEQ, CREK1D and GCKP84) developed specifically to integrate chemical kinetic rate equations. The codes were applied to two test problems drawn from combustion kinetics. The comparisons show that LSODE is the fastest code available for the integration of combustion kinetic rate equations. It is shown that an iterative solution of the algebraic energy conservation equation to compute the temperature can be more efficient then evaluating the temperature by integrating its time-derivative.

  5. MCMC methods for financial time series

    OpenAIRE

    Tritová, Hana

    2016-01-01

    This thesis focuses on estimating parameters of appropriate model for daily returns using the Markov Chain Monte Carlo method (MCMC) and Bayesian statistics. We describe MCMC methods, such as Gibbs sampling and Metropolis- Hastings algorithm and their basic properties. After that, we introduce different financial models. Particularly we focus on the lognormal autoregressive model. Later we theoretically apply Gibbs sampling to lognormal autoregressive model using principles of Bayesian statis...

  6. High resolution time integration for Sn radiation transport

    International Nuclear Information System (INIS)

    Thoreson, Greg; McClarren, Ryan G.; Chang, Jae H.

    2008-01-01

    First order, second order and high resolution time discretization schemes are implemented and studied for the S n equations. The high resolution method employs a rate of convergence better than first order, but also suppresses artificial oscillations introduced by second order schemes in hyperbolic differential equations. All three methods were compared for accuracy and convergence rates. For non-absorbing problems, both second order and high resolution converged to the same solution as the first order with better convergence rates. High resolution is more accurate than first order and matches or exceeds the second order method. (authors)

  7. Explicit solution of the time domain volume integral equation using a stable predictor-corrector scheme

    KAUST Repository

    Al Jarro, Ahmed

    2012-11-01

    An explicit marching-on-in-time (MOT) scheme for solving the time domain volume integral equation is presented. The proposed method achieves its stability by employing, at each time step, a corrector scheme, which updates/corrects fields computed by the explicit predictor scheme. The proposedmethod is computationally more efficient when compared to the existing filtering techniques used for the stabilization of explicit MOT schemes. Numerical results presented in this paper demonstrate that the proposed method maintains its stability even when applied to the analysis of electromagnetic wave interactions with electrically large structures meshed using approximately half a million discretization elements.

  8. The integrating factor method for solving the steady heat transfer problems in fractal media

    Directory of Open Access Journals (Sweden)

    Chen Shan-Xiong

    2016-01-01

    Full Text Available In this paper, we propose the integrating factor method via local fractional derivative for the first time. We use the proposed method to handle the steady heat-transfer equations in fractal media with the constant coefficients. Finally, we discuss the non-differentiable behaviors of fractal heat-transfer problems.

  9. Conservative multi-implicit integral deferred correction methods with adaptive mesh refinement

    International Nuclear Information System (INIS)

    Layton, A.T.

    2004-01-01

    In most models of reacting gas dynamics, the characteristic time scales of chemical reactions are much shorter than the hydrodynamic and diffusive time scales, rendering the reaction part of the model equations stiff. Moreover, nonlinear forcings may introduce into the solutions sharp gradients or shocks, the robust behavior and correct propagation of which require the use of specialized spatial discretization procedures. This study presents high-order conservative methods for the temporal integration of model equations of reacting flows. By means of a method of lines discretization on the flux difference form of the equations, these methods compute approximations to the cell-averaged or finite-volume solution. The temporal discretization is based on a multi-implicit generalization of integral deferred correction methods. The advection term is integrated explicitly, and the diffusion and reaction terms are treated implicitly but independently, with the splitting errors present in traditional operator splitting methods reduced via the integral deferred correction procedure. To reduce computational cost, time steps used to integrate processes with widely-differing time scales may differ in size. (author)

  10. On the internal resonant modes in marching-on-in-time solution of the time domain electric field integral equation

    KAUST Repository

    Shi, Yifei

    2013-08-01

    Internal resonant modes are always observed in the marching-on-in-time (MOT) solution of the time domain electric field integral equation (EFIE), although \\'relaxed initial conditions,\\' which are enforced at the beginning of time marching, should in theory prevent these spurious modes from appearing. It has been conjectured that, numerical errors built up during time marching establish the necessary initial conditions and induce the internal resonant modes. However, this conjecture has never been proved by systematic numerical experiments. Our numerical results in this communication demonstrate that, the internal resonant modes\\' amplitudes are indeed dictated by the numerical errors. Additionally, it is shown that in a few cases, the internal resonant modes can be made \\'invisible\\' by significantly suppressing the numerical errors. These tests prove the conjecture that the internal resonant modes are induced by numerical errors when the time domain EFIE is solved by the MOT method. © 2013 IEEE.

  11. Relaxation time measurements by an electronic method.

    Science.gov (United States)

    Brousseau, R.; Vanier, J.

    1973-01-01

    Description of a simple electronic system that permits the direct measurement of time constants of decaying signals. The system was used in connection with relaxation experiments on hydrogen and rubidium masers and was found to operate well. The use of a computing counter in the systems gives the possibility of making averages on several experiments and obtaining the standard deviation of the results from the mean. The program for the computing counter is given.

  12. Singularity Preserving Numerical Methods for Boundary Integral Equations

    Science.gov (United States)

    Kaneko, Hideaki (Principal Investigator)

    1996-01-01

    In the past twelve months (May 8, 1995 - May 8, 1996), under the cooperative agreement with Division of Multidisciplinary Optimization at NASA Langley, we have accomplished the following five projects: a note on the finite element method with singular basis functions; numerical quadrature for weakly singular integrals; superconvergence of degenerate kernel method; superconvergence of the iterated collocation method for Hammersteion equations; and singularity preserving Galerkin method for Hammerstein equations with logarithmic kernel. This final report consists of five papers describing these projects. Each project is preceeded by a brief abstract.

  13. High-integrity software, computation and the scientific method

    International Nuclear Information System (INIS)

    Hatton, L.

    2012-01-01

    Computation rightly occupies a central role in modern science. Datasets are enormous and the processing implications of some algorithms are equally staggering. With the continuing difficulties in quantifying the results of complex computations, it is of increasing importance to understand its role in the essentially Popperian scientific method. In this paper, some of the problems with computation, for example the long-term unquantifiable presence of undiscovered defect, problems with programming languages and process issues will be explored with numerous examples. One of the aims of the paper is to understand the implications of trying to produce high-integrity software and the limitations which still exist. Unfortunately Computer Science itself suffers from an inability to be suitably critical of its practices and has operated in a largely measurement-free vacuum since its earliest days. Within computer science itself, this has not been so damaging in that it simply leads to unconstrained creativity and a rapid turnover of new technologies. In the applied sciences however which have to depend on computational results, such unquantifiability significantly undermines trust. It is time this particular demon was put to rest. (author)

  14. An approximation method for nonlinear integral equations of Hammerstein type

    International Nuclear Information System (INIS)

    Chidume, C.E.; Moore, C.

    1989-05-01

    The solution of a nonlinear integral equation of Hammerstein type in Hilbert spaces is approximated by means of a fixed point iteration method. Explicit error estimates are given and, in some cases, convergence is shown to be at least as fast as a geometric progression. (author). 25 refs

  15. Integral methods in science and engineering theoretical and practical aspects

    CERN Document Server

    Constanda, C; Rollins, D

    2006-01-01

    Presents a series of analytic and numerical methods of solution constructed for important problems arising in science and engineering, based on the powerful operation of integration. This volume is meant for researchers and practitioners in applied mathematics, physics, and mechanical and electrical engineering, as well as graduate students.

  16. The philosophy and method of integrative humanism and religious ...

    African Journals Online (AJOL)

    This paper titled “Philosophy and Method of Integrative Humanism and Religious Crises in Nigeria: Picking the Essentials”, acknowledges the damaging effects of religious bigotry, fanaticism and creed differences on the social, political and economic development of the country. The need for the cessation of religious ...

  17. An Integrated Approach to Research Methods and Capstone

    Science.gov (United States)

    Postic, Robert; McCandless, Ray; Stewart, Beth

    2014-01-01

    In 1991, the AACU issued a report on improving undergraduate education suggesting, in part, that a curriculum should be both comprehensive and cohesive. Since 2008, we have systematically integrated our research methods course with our capstone course in an attempt to accomplish the twin goals of comprehensiveness and cohesion. By taking this…

  18. Piloting a method to evaluate the implementation of integrated water ...

    African Journals Online (AJOL)

    ISSN 1816-7950 (On-line) = Water SA Vol. 41 No. 5 October 2015. Published under a Creative Commons Attribution Licence. Piloting a method to evaluate the implementation of integrated water resource management in the Inkomati River Basin. Melanie J Wilkinson1, Thandi K Magagula1* and Rashid M Hassan2.

  19. A Five-Year Journey: Integrating Teacher Education Methods Courses.

    Science.gov (United States)

    Wright, Eileen; And Others

    1996-01-01

    Describes one college's program requiring preservice elementary educators to take their methods courses in an integrated block during one semester before student teaching, noting pitfalls of and advantages to this network of classes and reporting data collected from cooperating classroom teachers who subsequently had these student teachers in…

  20. Integrability: mathematical methods for studying solitary waves theory

    Science.gov (United States)

    Wazwaz, Abdul-Majid

    2014-03-01

    In recent decades, substantial experimental research efforts have been devoted to linear and nonlinear physical phenomena. In particular, studies of integrable nonlinear equations in solitary waves theory have attracted intensive interest from mathematicians, with the principal goal of fostering the development of new methods, and physicists, who are seeking solutions that represent physical phenomena and to form a bridge between mathematical results and scientific structures. The aim for both groups is to build up our current understanding and facilitate future developments, develop more creative results and create new trends in the rapidly developing field of solitary waves. The notion of the integrability of certain partial differential equations occupies an important role in current and future trends, but a unified rigorous definition of the integrability of differential equations still does not exist. For example, an integrable model in the Painlevé sense may not be integrable in the Lax sense. The Painlevé sense indicates that the solution can be represented as a Laurent series in powers of some function that vanishes on an arbitrary surface with the possibility of truncating the Laurent series at finite powers of this function. The concept of Lax pairs introduces another meaning of the notion of integrability. The Lax pair formulates the integrability of nonlinear equation as the compatibility condition of two linear equations. However, it was shown by many researchers that the necessary integrability conditions are the existence of an infinite series of generalized symmetries or conservation laws for the given equation. The existence of multiple soliton solutions often indicates the integrability of the equation but other tests, such as the Painlevé test or the Lax pair, are necessary to confirm the integrability for any equation. In the context of completely integrable equations, studies are flourishing because these equations are able to describe the

  1. The TIME Model: Time to Make a Change to Integrate Technology

    Directory of Open Access Journals (Sweden)

    Debby Mitchell

    2004-06-01

    Full Text Available The purpose of this article is to report the successful creation and implementation of an instructional model designed to assist educators in infusing technology into the curriculum while at the same time create opportunities for faculty to learn, become more proficient,and successful at integrating technology into their own classroom curriculum.The model was successfully tested and implemented with faculty, inservice and preservice teachers at the University of Central Florida (UCF. Faculty, inservice, and preservice teachers were successfully trained to integrate technology using a theme based curriculum with an instructional model called the TIME model which consists of twelve elements that include: Vision, Incentives, Personalization, Awareness, Learning Communities, Action Plan, Research, Development of Modules, Skills, Implementation, Evidence of Change, and Evaluation/Reflection.

  2. Time series Analysis of Integrateds Building System Variables

    Science.gov (United States)

    Georgiev, Tz.; Jonkov, T.; Yonchev, E.

    2010-10-01

    This article deals with time series analysis of indoor and outdoor variables of the integrated building system. The kernel of these systems is heating, ventilation and air conditioning (HVAC) problems. Important outdoor and indoor variables are: air temperature, global and diffuse radiations, wind speed and direction, temperature, relative humidity, mean radiant temperature, and so on. The aim of this article is TO select the structure and investigation of a linear auto—regressive (AR) and auto—regressive with external inputs (ARX) models. The investigation of obtained models is based on real—live data. All researches are derived in MATLAB environment. The further research will focus on synthesis of robust energy saving control algorithms.

  3. Orthogonally referenced integrated ensemble for navigation and timing

    Science.gov (United States)

    Smith, Stephen Fulton; Moore, James Anthony

    2014-04-01

    An orthogonally referenced integrated ensemble for navigation and timing includes a dual-polyhedral oscillator array, including an outer sensing array of oscillators and an inner clock array of oscillators situated inside the outer sensing array. The outer sensing array includes a first pair of sensing oscillators situated along a first axis of the outer sensing array, a second pair of sensing oscillators situated along a second axis of the outer sensing array, and a third pair of sensing oscillators situated along a third axis of the outer sensing array. The inner clock array of oscillators includes a first pair of clock oscillators situated along a first axis of the inner clock array, a second pair of clock oscillators situated along a second axis of the inner clock array, and a third pair of clock oscillators situated along a third axis of the inner clock array.

  4. Global Format for Conservative Time Integration in Nonlinear Dynamics

    DEFF Research Database (Denmark)

    Krenk, Steen

    2014-01-01

    in the new generation of energy conserving algorithms developed over the last two decades. However, the conservative algorithms typically rely on the special structure of the problem to be solved and require intermediate calculations using a mean state. This seems to have limited their use outside academia......The widely used classic collocation-based time integration procedures like Newmark, Generalized-alpha etc. generally work well within a framework of linear problems, but typically may encounter problems, when used in connection with essentially nonlinear structures. These problems are overcome...... equivalent static load steps, easily implemented in existing computer codes. The paper considers two aspects: representation of nonlinear internal forces in a form that implies energy conservation, and the option of an algorithmic damping with the purpose of extracting energy from undesirable high...

  5. Pneumatic oscillator circuits for timing and control of integrated microfluidics.

    Science.gov (United States)

    Duncan, Philip N; Nguyen, Transon V; Hui, Elliot E

    2013-11-05

    Frequency references are fundamental to most digital systems, providing the basis for process synchronization, timing of outputs, and waveform synthesis. Recently, there has been growing interest in digital logic systems that are constructed out of microfluidics rather than electronics, as a possible means toward fully integrated laboratory-on-a-chip systems that do not require any external control apparatus. However, the full realization of this goal has not been possible due to the lack of on-chip frequency references, thus requiring timing signals to be provided from off-chip. Although microfluidic oscillators have been demonstrated, there have been no reported efforts to characterize, model, or optimize timing accuracy, which is the fundamental metric of a clock. Here, we report pneumatic ring oscillator circuits built from microfluidic valves and channels. Further, we present a compressible-flow analysis that differs fundamentally from conventional circuit theory, and we show the utility of this physically based model for the optimization of oscillator stability. Finally, we leverage microfluidic clocks to demonstrate circuits for the generation of phase-shifted waveforms, self-driving peristaltic pumps, and frequency division. Thus, pneumatic oscillators can serve as on-chip frequency references for microfluidic digital logic circuits. On-chip clocks and pumps both constitute critical building blocks on the path toward achieving autonomous laboratory-on-a-chip devices.

  6. Systematization of simplified J-integral evaluation method for flaw evaluation at high temperature

    International Nuclear Information System (INIS)

    Miura, Naoki; Takahashi, Yukio; Nakayama, Yasunari; Shimakawa, Takashi

    2000-01-01

    J-integral is an effective inelastic fracture parameter for the flaw evaluation of cracked components at high temperature. The evaluation of J-integral for an arbitrary crack configuration and an arbitrary loading condition can be generally accomplished by detailed numerical analysis such as finite element analysis, however, it is time-consuming and requires a high degree of expertise for its implementation. Therefore, it is important to develop simplified J-integral estimation techniques from the viewpoint of industrial requirements. In this study, a simplified J-integral evaluation method is proposed to estimate two types of J-integral parameters. One is the fatigue J-integral range to describe fatigue crack propagation behavior, and the other is the creep J-integral to describe creep crack propagation behavior. This paper presents the systematization of the simplified J-integral evaluation method incorporated with the reference stress method and the concept of elastic follow-up, and proposes a comprehensive evaluation procedure. The verification of the proposed method is presented in Part II of this paper. (author)

  7. Tuning of IMC based PID controllers for integrating systems with time delay.

    Science.gov (United States)

    Kumar, D B Santosh; Padma Sree, R

    2016-07-01

    Design of Proportional Integral and Derivative (PID) controllers based on IMC principles for various types of integrating systems with time delay is proposed. PID parameters are given in terms of process model parameters and a tuning parameter. The tuning parameter is IMC filter time constant. In the present work, the IMC filter (Q) is chosen in such a manner that the order of the denominator of IMC controller is one less than the order of the numerator. The IMC filter time constant (λ) is tuned in such a way that a good compromise is made between performance and robustness for both servo and regulatory problems. To improve servo response of the controller a set point filter is designed such that the closed loop response is similar to that of first order plus time delay system. The proposed controller design method is applied to various transfer function models and to the non-linear model equations of jacketed CSTR to demonstrate its applicability and effectiveness. The performance of the proposed controller is compared with the recently reported methods in terms of IAE and ITAE. The smooth functioning of the controller is determined in terms of total variation and compared with recently reported methods. Simulation studies are carried out on various integrating systems with time delay to show the effectiveness and superiority of the proposed controllers. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  8. New methods for the numerical integration of ordinary differential equations and their application to the equations of motion of spacecraft

    Science.gov (United States)

    Banyukevich, A.; Ziolkovski, K.

    1975-01-01

    A number of hybrid methods for solving Cauchy problems are described on the basis of an evaluation of advantages of single and multiple-point numerical integration methods. The selection criterion is the principle of minimizing computer time. The methods discussed include the Nordsieck method, the Bulirsch-Stoer extrapolation method, and the method of recursive Taylor-Steffensen power series.

  9. Integrating Real-time Earthquakes into Natural Hazard Courses

    Science.gov (United States)

    Furlong, K. P.; Benz, H. M.; Whitlock, J. S.; Bittenbinder, A. N.; Bogaert, B. B.

    2001-12-01

    Natural hazard courses are playing an increasingly important role in college and university earth science curricula. Students' intrinsic curiosity about the subject and the potential to make the course relevant to the interests of both science and non-science students make natural hazards courses popular additions to a department's offerings. However, one vital aspect of "real-life" natural hazard management that has not translated well into the classroom is the real-time nature of both events and response. The lack of a way to entrain students into the event/response mode has made implementing such real-time activities into classroom activities problematic. Although a variety of web sites provide near real-time postings of natural hazards, students essentially learn of the event after the fact. This is particularly true for earthquakes and other events with few precursors. As a result, the "time factor" and personal responsibility associated with natural hazard response is lost to the students. We have integrated the real-time aspects of earthquake response into two natural hazard courses at Penn State (a 'general education' course for non-science majors, and an upper-level course for science majors) by implementing a modification of the USGS Earthworm system. The Earthworm Database Management System (E-DBMS) catalogs current global seismic activity. It provides earthquake professionals with real-time email/cell phone alerts of global seismic activity and access to the data for review/revision purposes. We have modified this system so that real-time response can be used to address specific scientific, policy, and social questions in our classes. As a prototype of using the E-DBMS in courses, we have established an Earthworm server at Penn State. This server receives national and global seismic network data and, in turn, transmits the tailored alerts to "on-duty" students (e-mail, pager/cell phone notification). These students are responsible to react to the alarm

  10. An Accurate Integral Method for Vibration Signal Based on Feature Information Extraction

    Directory of Open Access Journals (Sweden)

    Yong Zhu

    2015-01-01

    Full Text Available After summarizing the advantages and disadvantages of current integral methods, a novel vibration signal integral method based on feature information extraction was proposed. This method took full advantage of the self-adaptive filter characteristic and waveform correction feature of ensemble empirical mode decomposition in dealing with nonlinear and nonstationary signals. This research merged the superiorities of kurtosis, mean square error, energy, and singular value decomposition on signal feature extraction. The values of the four indexes aforementioned were combined into a feature vector. Then, the connotative characteristic components in vibration signal were accurately extracted by Euclidean distance search, and the desired integral signals were precisely reconstructed. With this method, the interference problem of invalid signal such as trend item and noise which plague traditional methods is commendably solved. The great cumulative error from the traditional time-domain integral is effectively overcome. Moreover, the large low-frequency error from the traditional frequency-domain integral is successfully avoided. Comparing with the traditional integral methods, this method is outstanding at removing noise and retaining useful feature information and shows higher accuracy and superiority.

  11. Further results on stabilization for interval time-delay systems via new integral inequality approach.

    Science.gov (United States)

    Li, Zhichen; Bai, Yan; Huang, Congzhi; Yan, Huaicheng

    2017-05-01

    This paper investigates the stability and stabilization problems for interval time-delay systems. By introducing a new delay partitioning approach, various Lyapunov-Krasovskii functionals with triple-integral terms are established to make full use of system information. In order to reduce the conservatism, improved integral inequalities are developed for estimation of double integrals, which show remarkable outperformance over the Jensen and Wirtinger ones. Particularly, the relationship between the time-delay and each subinterval is taken into consideration. The resulting stability criteria are less conservative than some recent methods. Based on the derived condition, the state-feedback controller design approach is also given. Finally, the numerical examples and the application to inverted pendulum system are provided to illustrate the effectiveness of the proposed approaches. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Optimization of the integration time of pulse shape analysis for dual-layer GSO detector with different amount of Ce

    International Nuclear Information System (INIS)

    Yamamoto, Seiichi

    2008-01-01

    For a multi-layer depth-of-interaction (DOI) detector using different decay times, pulse shape analysis based on two different integration times is often used to distinguish scintillators in DOI direction. This method measures a partial integration and a full integration, and calculates the ratio of these two to obtain the pulse shape distribution. The full integration time is usually set to integrate full width of the scintillation pulse. However, the optimum partial integration time is not obvious for obtaining the best separation of the pulse shape distribution. To make it clear, a theoretical analysis and experiments were conducted for pulse shape analysis by changing the partial integration time using a scintillation detector of GSOs with different amount of Ce. A scintillation detector with 1-in. round photomultiplier tube (PMT) optically coupled GSO of 1.5 mol% (decay time: 35 ns) and that of 0.5 mol% (decay time: 60 ns) was used for the experiments. The signal from PMT was digitally integrated with partial (50-150 ns) and full (160 ns) integration times and ratio of these two was calculated to obtain the pulse shape distribution. In the theoretical analysis, partial integration time of 50 ns showed largest distance between two peaks of the pulse shape distribution. In the experiments, it showed maximum at 70-80 ns of partial integration time. The peak to valley ratio showed the maximum at 120-130 ns. Because the separation of two peaks is determined by the peak to valley ratio, we conclude the optimum partial integration time for these combinations of GSOs is around 120-130 ns, relatively longer than the expected value

  13. Entropic sampling in the path integral Monte Carlo method

    International Nuclear Information System (INIS)

    Vorontsov-Velyaminov, P N; Lyubartsev, A P

    2003-01-01

    We have extended the entropic sampling Monte Carlo method to the case of path integral representation of a quantum system. A two-dimensional density of states is introduced into path integral form of the quantum canonical partition function. Entropic sampling technique within the algorithm suggested recently by Wang and Landau (Wang F and Landau D P 2001 Phys. Rev. Lett. 86 2050) is then applied to calculate the corresponding entropy distribution. A three-dimensional quantum oscillator is considered as an example. Canonical distributions for a wide range of temperatures are obtained in a single simulation run, and exact data for the energy are reproduced

  14. Theory of model Hamiltonians and method of functional integration

    International Nuclear Information System (INIS)

    Popov, V.N.

    1990-01-01

    Results on application of functional integration method to statistical physics systems with model Hamiltonians Dicke and Bardeen-Cooper-Schrieffer (BCS) are presented. Representations of statistical sums of these functional integration models are obtained. Asymptotic formulae (in N → ∞ thermodynamic range) for statistical sums of various modifications of the Dicke model as well as for the Green functions and Bose-excitations collective spectrum are exactly proved. Analogous results without exact substantiation are obtained for statistical sums and spectrum of Bose-excitations of the BCS model. 21 refs

  15. Dhage Iteration Method for Generalized Quadratic Functional Integral Equations

    Directory of Open Access Journals (Sweden)

    Bapurao C. Dhage

    2015-01-01

    Full Text Available In this paper we prove the existence as well as approximations of the solutions for a certain nonlinear generalized quadratic functional integral equation. An algorithm for the solutions is developed and it is shown that the sequence of successive approximations starting at a lower or upper solution converges monotonically to the solutions of related quadratic functional integral equation under some suitable mixed hybrid conditions. We rely our main result on Dhage iteration method embodied in a recent hybrid fixed point theorem of Dhage (2014 in partially ordered normed linear spaces. An example is also provided to illustrate the abstract theory developed in the paper.

  16. Application of modified integration rule to time-domain finite-element acoustic simulation of rooms.

    Science.gov (United States)

    Okuzono, Takeshi; Otsuru, Toru; Tomiku, Reiji; Okamoto, Noriko

    2012-08-01

    The applicability of the modified integration rule for time-domain finite-element analysis is tested in sound field analysis of rooms involving rectangular elements, distorted elements, and finite impedance boundary conditions. Dispersion error analysis in three dimensions is conducted to evaluate the dispersion error in time-domain finite-element analysis using eight-node hexahedral elements. The results of analysis confirmed that fourth-order accuracy with respect to dispersion error is obtainable using the Fox-Goodwin method (FG) with a modified integration rule, even for rectangular elements. The stability condition in three-dimensional analysis using the modified integration rule is also presented. Numerical experiments demonstrate that FG with a modified integration rule performs much better than FG with the conventional integration rule for problems with rectangular elements, distorted elements, and with finite impedance boundary conditions. Further, as another advantage, numerical results revealed that the use of modified integration rule engenders faster convergence of the iterative solver than a conventional rule for problems with the same degrees of freedom.

  17. A comparison of response spectrum and direct integration analysis methods as applied to a nuclear component support structure

    International Nuclear Information System (INIS)

    Bryan, B.J.; Flanders, H.E. Jr.

    1992-01-01

    Seismic qualification of Class I nuclear components is accomplished using a variety of analytical methods. This paper compares the results of time history dynamic analyses of a heat exchanger support structure using response spectrum and time history direct integration analysis methods. Dynamic analysis is performed on the detailed component models using the two methods. A nonlinear elastic model is used for both the response spectrum and direct integration methods. A nonlinear model which includes friction and nonlinear springs, is analyzed using time history input by direct integration. The loads from the three cases are compared

  18. Complex integrated method of improvement of sports ballroom dance performance

    Directory of Open Access Journals (Sweden)

    V.I. Omelyanenko

    2014-12-01

    Full Text Available Purpose: to elaborate complex integrated method of psychological influence upon sport ballroom dancers for their quick response to assumed mistakes by executing other steps in training mode in place of given compositions. Material: 20 senior sport ballroom dancers: 10 - experimental group, 10 - control group. At the I stage dancers for participation in the experimental group with regard to their hypnosis ability for facilitation teaching dynamic meditation were selected. Sportsmen with the 2 nd -3 rd stage of hypnosis were enrolled to the experimental group. At the II stage the experimental group was trained in the method of dynamic meditation. For this, the static meditation was performed first, after this the test persons opened their eyes and without leaving the achieved result with help of the static state of meditation, practiced in dynamic meditation. At the III stage training in sports ballroom dances with introduction new steps changing the composition program sequence to composition was held. The coach evaluated response of the test persons in the state of the dynamic meditation. Results: at the II stage of the research on training in dynamic meditation the dancers of the experimental group needed 3-7 repetitions. At the III stage of the research 8 test persons had trained to response adequately to changes in the compositions within 10-15 repetitions. In the control group if a partner changed steps during performance of the composition it led to stop of the dancing couple. For 8 test persons in the experimental group steps replacement didn’t affect adversely the quality of the dance. The senior group of dancers studied new steps with great difficulty, their motion stereotype was formed badly, they preferred to dance compositions trained earlier. The seniors having insufficient technical background (2 persons showed low abilities, they had bad memory, they spent 3 months for mastering new compositions. Conclusions: The methods

  19. Teaching Integrated Scope-Cost Methods with Model-based Tools

    OpenAIRE

    Peterson, Forest; Fischer, Martin; Wingate, Thomas; Seppänen, Olli; Tutti, Tomi; See, Richard

    2009-01-01

    The purpose of this paper is to outline teaching integrated scope-cost methods in a course on fabrication and construction planning using model-based tools. Through project-based active discovery using project documents students create an integrated takeoff, schedule and cost estimate. The goal is to illustrate the processes and interrelation between professions required to effectively obtain the scope, schedule and cost of a proposed project. Students who are provided with a scope-time-cost ...

  20. Nuclear methods - an integral part of the NBS certification program

    International Nuclear Information System (INIS)

    Gills, T.E.

    1984-01-01

    Within the past twenty years, new techniques and methods have emerged in response to new technologies that are based upon the performance of high-purity and well-characterized materials. The National Bureau of Standards, through its Standard Reference Materials (SRM's) Program, provides standards in the form of many of these materials to ensure accuracy and the compatibility of measurements throughout the US and the world. These standards, defined by the National Bureau of Standards as Standard Reference Materials (SRMs), are developed by using state-of-the-art methods and procedures for both preparation and analysis. Nuclear methods-activation analysis constitute an integral part of that analysis process

  1. An alternative integral-balance solutions to transient diffusion of heat (mass by time-fractional semi-derivatives and semi-integrals: Fixed boundary conditions

    Directory of Open Access Journals (Sweden)

    Hristov Jordan

    2016-01-01

    Full Text Available A new approach to integral-balance solutions of the diffusion equation of heat (mass with constant transport properties by applying time-fractional semi-derivatives and semi-integrals of Riemann-Liouville sense has been developed. The time-fractional semiderivatives and semiintegrals replace the surface gradient (temperature which in the classical Heat-balance integral method (HBIM of Goodman and the Double-integration method (DIM should be expressed through the assumed profile. The application of semiderivatives and semiintegrals reduces the approximation errors to levels less than the ones exhibited by the classical HBIM and DIM. The method is exemplified by solutions of Dirichlet and Neumann boundary condition problems.

  2. Iterated real-time path integral evaluation using a distributed approximating functional propagator and average-case complexity integration

    International Nuclear Information System (INIS)

    Kouri, D.J.; Huang, Y.; Hoffman, D.K.

    1995-01-01

    The distributed approximating functional-path integral is formulated as an iterated sequence of d-dimensional integrals, where d is the intrinsic number of degrees of freedom for the system under consideration. This is made practical for larger values of d by evaluating these integrals using average-case complexity integration techniques, based on deterministic ''low discrepancy sequences,'' as opposed to products of one-dimensional quadratures or basis functions. The integration converges as (logP) d-1 /P, where P is the number of sample points used, and the dimensionality of the integral does not increase with the number of time slices required

  3. Ephemeral clonal integration in Calathea marantifolia (Marantaceae): Evidence of diminished integration over time.

    Science.gov (United States)

    Matlaga, David P; da S L Sternberg, Leonel

    2009-02-01

    A major advantage of clonal growth forms is the intergenerational transfer of resources through vascular connections (clonal integration). Connections linking ramets can be persistent or ephemeral. For species with ephemeral connections, whether the extent of clonal integration changes over time is unclear. To address this issue, we tracked water movement using an isotopic label and assessed the demographic performance of parent and offspring ramets over time in a severing experiment. Our study system was the understory herb Calathea marantifolia, which has parent ramets that produce vegetative bulbils (clonal offspring) that pass through distinct pre- and post-rooting stages. Little water was transported between parents and offspring, and the direction of movement was primarily from parent to pre-rooting offspring. Anatomical observations of inter-ramet connections showed that vascular bundles were twice as abundant in parent stems compared to inter-ramet connections. Severing inter-ramet connections reduced the growth of offspring ramets but not parents. Survival of pre-rooting offspring was reduced by 10% due to severing, but post-rooting offspring were not affected. Our results suggest that offspring ramets of C. marantifolia are weaned from their parent as they progress from pre- to post-rooting stages.

  4. Direct integration multiple collision integral transport analysis method for high energy fusion neutronics

    International Nuclear Information System (INIS)

    Koch, K.R.

    1985-01-01

    A new analysis method specially suited for the inherent difficulties of fusion neutronics was developed to provide detailed studies of the fusion neutron transport physics. These studies should provide a better understanding of the limitations and accuracies of typical fusion neutronics calculations. The new analysis method is based on the direct integration of the integral form of the neutron transport equation and employs a continuous energy formulation with the exact treatment of the energy angle kinematics of the scattering process. In addition, the overall solution is analyzed in terms of uncollided, once-collided, and multi-collided solution components based on a multiple collision treatment. Furthermore, the numerical evaluations of integrals use quadrature schemes that are based on the actual dependencies exhibited in the integrands. The new DITRAN computer code was developed on the Cyber 205 vector supercomputer to implement this direct integration multiple-collision fusion neutronics analysis. Three representative fusion reactor models were devised and the solutions to these problems were studied to provide suitable choices for the numerical quadrature orders as well as the discretized solution grid and to understand the limitations of the new analysis method. As further verification and as a first step in assessing the accuracy of existing fusion-neutronics calculations, solutions obtained using the new analysis method were compared to typical multigroup discrete ordinates calculations

  5. Cavity RF mode analysis using a boundary-integral method

    International Nuclear Information System (INIS)

    Jong, M.S. de; Adams, F.P.

    1993-01-01

    A 3-dimensional boundary-integral method has been developed for rf cavity mode analysis. A frequency-dependent, homogeneous linear matrix equation is generated from a variant of the magnetic field integral equation (MFIE) where the domain of integration is a closed surface specifying the rf envelope of the cavity. Frequencies at which the MFIE has non-zero solutions are mode frequencies of the cavity, and the solutions are the corresponding surface magnetic field distributions. The MFIE can then be used to calculate the electric and magnetic field at any other point inside the cavity. Forward iteration is used to find the largest complex eigenvalue of the matrix at a specific frequency. This eigenvalue is 1 when the frequency corresponds to a cavity rf resonance. The matrix equivalent of the MFIE is produced by approximating the cavity surface by a set of perfectly conducting surface elements, and assuming that the surface magnetic field has constant amplitude on each element. The method can handle cavities with complex symmetries, and be easily integrated with finite-element heat-transfer and stress analysis codes

  6. Damped time advance methods for particles and EM fields

    International Nuclear Information System (INIS)

    Friedman, A.; Ambrosiano, J.J.; Boyd, J.K.; Brandon, S.T.; Nielsen, D.E. Jr.; Rambo, P.W.

    1990-01-01

    Recent developments in the application of damped time advance methods to plasma simulations include the synthesis of implicit and explicit ''adjustably damped'' second order accurate methods for particle motion and electromagnetic field propagation. This paper discusses this method

  7. Advanced applications of boundary-integral equation methods

    International Nuclear Information System (INIS)

    Cruse, T.A.; Wilson, R.B.

    1978-01-01

    Numerical analysis has become the basic tool for both design and research problems in solid mechanics. The need for accuracy and detail, plus the availablity of the high speed computer has led to the development of many new modeling methods ranging from general purpose structural analysis finite element programs to special purpose research programs. The boundary-integral equation (BIE) method is based on classical mathematical techniques but is finding new life as a basic stress analysis tool for engineering applications. The paper summarizes some advanced elastic applications of fracture mechanics and three-dimensional stress analysis, while referencing some of the much broader developmental effort. Future emphasis is needed to exploit the BIE method in conjunction with other techniques such as the finite element method through the creation of hybrid stress analysis methods. (Auth.)

  8. Methods in Entrepreneurship Education Research: A Review and Integrative Framework

    DEFF Research Database (Denmark)

    Blenker, Per; Trolle Elmholdt, Stine; Frederiksen, Signe Hedeboe

    2014-01-01

    collection and analysis techniques. From the analysis of the reviewed literature, a conceptual discussion of the advantages and drawbacks of various methods is undertaken, and an integrated approach to entrepreneurship education research is proposed. Findings Research in entrepreneurship education...... is fragmented both conceptually and methodologically. Findings suggest that the methods applied in entrepreneurship education research cluster in two groups: 1. quantitative studies of the extent and effect of entrepreneurship education, and 2. qualitative single case studies of different courses and programmes....... It integrates qualitative and quantitative techniques, the use of research teams consisting of insiders (teachers studying their own teaching) and outsiders (research collaborators studying the education) as well as multiple types of data. To gain both in-depth and analytically generalizable studies...

  9. Methods for Developing Emissions Scenarios for Integrated Assessment Models

    Energy Technology Data Exchange (ETDEWEB)

    Prinn, Ronald [MIT; Webster, Mort [MIT

    2007-08-20

    The overall objective of this research was to contribute data and methods to support the future development of new emissions scenarios for integrated assessment of climate change. Specifically, this research had two main objectives: 1. Use historical data on economic growth and energy efficiency changes, and develop probability density functions (PDFs) for the appropriate parameters for two or three commonly used integrated assessment models. 2. Using the parameter distributions developed through the first task and previous work, we will develop methods of designing multi-gas emission scenarios that usefully span the joint uncertainty space in a small number of scenarios. Results on the autonomous energy efficiency improvement (AEEI) parameter are summarized, an uncertainty analysis of elasticities of substitution is described, and the probabilistic emissions scenario approach is presented.

  10. On the first-passage time of integrated Brownian motion

    Directory of Open Access Journals (Sweden)

    Christian H. Hesse

    2005-01-01

    Full Text Available Let (Bt;t≥0 be a Brownian motion process starting from B0=ν and define Xν(t=∫0tBsds. For a≥0, set τa,ν:=inf{t:Xν(t=a} (with inf φ=∞. We study the conditional moments of τa,ν given τa,ν<∞. Using martingale methods, stopping-time arguments, as well as the method of dominant balance, we obtain, in particular, an asymptotic expansion for the conditional mean E(τa,ν|τa,ν<∞ as ν→∞. Through a series of simulations, it is shown that a truncation of this expansion after the first few terms provides an accurate approximation to the unknown true conditional mean even for small ν.

  11. Diagrammatical methods within the path integral representation for quantum systems

    International Nuclear Information System (INIS)

    Alastuey, A

    2014-01-01

    The path integral representation has been successfully applied to the study of equilibrium properties of quantum systems for a long time. In particular, such a representation allowed Ginibre to prove the convergence of the low-fugacity expansions for systems with short-range interactions. First, I will show that the crucial trick underlying Ginibre's proof is the introduction of an equivalent classical system made with loops. Within the Feynman-Kac formula for the density matrix, such loops naturally emerge by collecting together the paths followed by particles exchanged in a given cyclic permutation. Two loops interact via an average of two- body genuine interactions between particles belonging to different loops, while the interactions between particles inside a given loop are accounted for in a loop fugacity. It turns out that the grand-partition function of the genuine quantum system exactly reduces to its classical counterpart for the gas of loops. The corresponding so-called magic formula can be combined with standard Mayer diagrammatics for the classical gas of loops. This provides low-density representations for the quantum correlations or thermodynamical functions, which are quite useful when collective effects must be taken into account properly. Indeed, resummations and or reorganizations of Mayer graphs can be performed by exploiting their remarkable topological and combinatorial properties, while statistical weights and bonds are purely c-numbers. The interest of that method will be illustrated through a brief description of its application to two long-standing problems, namely recombination in Coulomb systems and condensation in the interacting Bose gas.

  12. System integrational and migrational concepts and methods within healthcare

    DEFF Research Database (Denmark)

    Endsleff, F; Loubjerg, P

    1997-01-01

    In this paper an overview and comparison of the basic concepts and methods behind different system integrational implementations is given, including the DHE, which is based on the coming Healthcare Information Systems Architecture pre-standard HISA, developed by CEN TC251. This standard and the DHE...... (Distributed Healthcare Environment) not only provides highly relevant standards, but also provides an efficient and well structured platform for Healthcare IT Systems....

  13. INTEGRATED APPLICATION OF OPTICAL DIAGNOSTIC METHODS IN ULCERATIVE COLITIS

    Directory of Open Access Journals (Sweden)

    E. V. Velikanov

    2013-01-01

    Full Text Available Abstract. Our results suggest that the combined use of optical coherent tomography (OCT and fluorescence diagnosis helps to refine the nature and boundaries of the pathological process in the tissue of the colon in ulcerative colitis. Studies have shown that an integrated optical diagnostics allows us to differentiate lesions respectively to histology and to decide on the need for biopsy and venue. This method is most appropriate in cases difficult for diagnosis. 

  14. Investigation of the Adaptability of Transient Stability Assessment Methods to Real-Time Operation

    DEFF Research Database (Denmark)

    Weckesser, Johannes Tilman Gabriel; Jóhannsson, Hjörtur; Sommer, Stefan

    2012-01-01

    In this paper, an investigation of the adaptability of available transient stability assessment methods to real-time operation and their real-time performance is carried out. Two approaches based on Lyapunov’s method and the equal area criterion are analyzed. The results allow to determine...... the runtime of each method with respect to the number of inputs. Furthermore, it allows to identify, which method is preferable in case of changes in the power system such as the integration of distributed power resources (DER). A comparison of the performance of the analyzed methods leads to the suggestion...... that matrix reduction and time domain simulation are the most critical operations....

  15. Classifying terrestrial surface water systems using integrated residence time

    Science.gov (United States)

    Jones, Allan; Hodges, Ben; McClelland, James; Hardison, Amber; Moffett, Kevan

    2017-04-01

    Linkages between ecology and hydrology in terrestrial surface water often invoke a discussion of lentic (reservoir) vs. lotic (riverine) system behaviors. However, the literature shows a wide range of thresholds separating lentic/lotic regimes and little agreement on a quantitative, repeatable classification metric that can be broadly and reliably applied across a range of systems hosting various flow regimes and suspended/benthic taxa. We propose an integrated Residence Time (iTR) metric as part of a new Freshwater Continuum Classification (FCC) to address this issue. The iTR is computed as the transit time of a water parcel across a system given observed temporal variations in discharge and volume, which creates a temporally-varying metric applicable across a defined system length. This approach avoids problems associated with instantaneous residence times or average residence times that can lead to misleading characterizations in seasonally- or episodically-dynamic systems. The iTR can be directly related to critical flow thresholds and timescales of ecology (e.g., zooplankton growth). The FCC approach considers lentic and lotic to be opposing end-members of a classification continuum and also defines intermediate regimes that blur the line between the two ends of the spectrum due to more complex hydrological system dynamics. We also discover the potential for "oscillic" behavior, where a system switches between lentic and lotic classifications either episodically or regularly (e.g., seasonally). Oscillic behavior is difficult to diagnose with prior lentic/lotic classification schemes, but can be readily identified using iTR. The FCC approach was used to analyze 15 tidally-influenced river segments along the Texas (USA) coast of the Gulf of Mexico. The results agreed with lentic/lotic designations using prior approaches, but also identified more nuanced intermediate and oscillic regimes. Within this set of systems, the oscillic nature of some of the river

  16. Investigation of Optimal Integrated Circuit Raster Image Vectorization Method

    Directory of Open Access Journals (Sweden)

    Leonas Jasevičius

    2011-03-01

    Full Text Available Visual analysis of integrated circuit layer requires raster image vectorization stage to extract layer topology data to CAD tools. In this paper vectorization problems of raster IC layer images are presented. Various line extraction from raster images algorithms and their properties are discussed. Optimal raster image vectorization method was developed which allows utilization of common vectorization algorithms to achieve the best possible extracted vector data match with perfect manual vectorization results. To develop the optimal method, vectorized data quality dependence on initial raster image skeleton filter selection was assessed.Article in Lithuanian

  17. Higher-Order Integral Equation Methods in Computational Electromagnetics

    DEFF Research Database (Denmark)

    Jørgensen, Erik; Meincke, Peter

    Higher-order integral equation methods have been investigated. The study has focused on improving the accuracy and efficiency of the Method of Moments (MoM) applied to electromagnetic problems. A new set of hierarchical Legendre basis functions of arbitrary order is developed. The new basis...... by a factor of 10 in comparison to the existing technique. The hybrid technique includes the coupling between the MoM and PO regions and numerical results are presented to illustrate the accuracy. The hierarchical feature of the new higher-order Legendre basis functions allows a flexible selection...

  18. Multi-off-grid methods in multi-step integration of ordinary differential equations

    Science.gov (United States)

    Beaudet, P. R.

    1974-01-01

    Description of methods of solving first- and second-order systems of differential equations in which all derivatives are evaluated at off-grid locations in order to circumvent the Dahlquist stability limitation on the order of on-grid methods. The proposed multi-off-grid methods require off-grid state predictors for the evaluation of the n derivatives at each step. Progressing forward in time, the off-grid states are predicted using a linear combination of back on-grid state values and off-grid derivative evaluations. A comparison is made between the proposed multi-off-grid methods and the corresponding Adams and Cowell on-grid integration techniques in integrating systems of ordinary differential equations, showing a significant reduction in the error at larger step sizes in the case of the multi-off-grid integrator.

  19. New adaptive time step symplectic integrator: an application to the elliptic restricted three-body problem

    Science.gov (United States)

    Ni, Xiao-Ting; Wu, Xin

    2014-10-01

    The time-transformed leapfrog scheme of Mikkola & Aarseth was specifically designed for a second-order differential equation with two individually separable forms of positions and velocities. It can have good numerical accuracy for extremely close two-body encounters in gravitating few-body systems with large mass ratios, but the non-time-transformed one does not work well. Following this idea, we develop a new explicit symplectic integrator with an adaptive time step that can be applied to a time-dependent Hamiltonian. Our method relies on a time step function having two distinct but equivalent forms and on the inclusion of two pairs of new canonical conjugate variables in the extended phase space. In addition, the Hamiltonian must be modified to be a new time-transformed Hamiltonian with three integrable parts. When this method is applied to the elliptic restricted three-body problem, its numerical precision is explicitly higher by several orders of magnitude than the nonadaptive one's, and its numerical stability is also better. In particular, it can eliminate the overestimation of Lyapunov exponents and suppress the spurious rapid growth of fast Lyapunov indicators for high-eccentricity orbits of a massless third body. The present technique will be useful for conservative systems including N-body problems in the Jacobian coordinates in the the field of solar system dynamics, and nonconservative systems such as a time-dependent barred galaxy model in a rotating coordinate system.

  20. A Comparative Analysis of Short Time Series Processing Methods

    OpenAIRE

    Kiršners, A; Borisovs, A

    2012-01-01

    This article analyzes the traditional time series processing methods that are used to perform the task of short time series analysis in demand forecasting. The main aim of this paper is to scrutinize the ability of these methods to be used when analyzing short time series. The analyzed methods include exponential smoothing, exponential smoothing with the development trend and moving average method. The paper gives the description of the structure and main operating princi...

  1. Reduction method for dimensionally regulatedone-loop N-point Feynman integrals

    Science.gov (United States)

    Duplančić, G.; Nižić, B.

    2004-06-01

    We present a systematic method for reducing an arbitrary one-loop N-point massless Feynman integral with generic 4-dimensional momenta to a set comprised of eight fundamental scalar integrals: six box integrals in D = 6, a triangle integral in D = 4, and a general two-point integral in D space-time dimensions. All the divergences present in the original integral are contained in the general two-point integral and associated coefficients. The problem of vanishing of the kinematic determinants has been solved in an elegant and transparent manner. Being derived with no restrictions regarding the external momenta, the method is completely general and applicable for arbitrary kinematics. In particular, it applies to the integrals in which the set of external momenta contains subsets comprised of two or more collinear momenta, which are unavoidable when calculating one-loop contributions to the hard-scattering amplitude for exclusive hadronic processes at large-momentum transfer in PQCD. The iterative structure makes it easy to implement the formalism in an algebraic computer program.

  2. Development of a Physiologically Based Pharmacokinetic Model for Sinogliatin, a First-in-Class Glucokinase Activator, by Integrating Allometric Scaling, In Vitro to In Vivo Exploration and Steady-State Concentration-Mean Residence Time Methods: Mechanistic Understanding of its Pharmacokinetics.

    Science.gov (United States)

    Song, Ling; Zhang, Yi; Jiang, Ji; Ren, Shuang; Chen, Li; Liu, Dongyang; Chen, Xijing; Hu, Pei

    2018-04-06

    The objective of this study was to develop a physiologically based pharmacokinetic (PBPK) model for sinogliatin (HMS-5552, dorzagliatin) by integrating allometric scaling (AS), in vitro to in vivo exploration (IVIVE), and steady-state concentration-mean residence time (C ss -MRT) methods and to provide mechanistic insight into its pharmacokinetic properties in humans. Human major pharmacokinetic parameters were analyzed using AS, IVIVE, and C ss -MRT methods with available preclinical in vitro and in vivo data to understand sinogliatin drug metabolism and pharmacokinetic (DMPK) characteristics and underlying mechanisms. On this basis, an initial mechanistic PBPK model of sinogliatin was developed. The initial PBPK model was verified using observed data from a single ascending dose (SAD) study and further optimized with various strategies. The final model was validated by simulating sinogliatin pharmacokinetics under a fed condition. The validated model was applied to support a clinical drug-drug interaction (DDI) study design and to evaluate the effects of intrinsic (hepatic cirrhosis, genetic) factors on drug exposure. The two-species scaling method using rat and dog data (TS- rat,dog ) was the best AS method in predicting human systemic clearance in the central compartment (CL). The IVIVE method confirmed that sinogliatin was predominantly metabolized by cytochrome P450 (CYP) 3A4. The C ss -MRT method suggested dog pharmacokinetic profiles were more similar to human pharmacokinetic profiles. The estimated CL using the AS and IVIVE approaches was within 1.5-fold of that observed. The C ss -MRT method in dogs also provided acceptable prediction of human pharmacokinetic characteristics. For the PBPK approach, the 90% confidence intervals (CIs) of the simulated maximum concentration (C max ), CL, and area under the plasma concentration-time curve (AUC) of sinogliatin were within those observed and the 90% CI of simulated time to C max (t max ) was closed to that

  3. Numerical method for solving integral equations of neutron transport. II

    International Nuclear Information System (INIS)

    Loyalka, S.K.; Tsai, R.W.

    1975-01-01

    In a recent paper it was pointed out that the weakly singular integral equations of neutron transport can be quite conveniently solved by a method based on subtraction of singularity. This previous paper was devoted entirely to the consideration of simple one-dimensional isotropic-scattering and one-group problems. The present paper constitutes interesting extensions of the previous work in that in addition to a typical two-group anisotropic-scattering albedo problem in the slab geometry, the method is also applied to an isotropic-scattering problem in the x-y geometry. These results are compared with discrete S/sub N/ (ANISN or TWOTRAN-II) results, and for the problems considered here, the proposed method is found to be quite effective. Thus, the method appears to hold considerable potential for future applications. (auth)

  4. Optimal Real-time Dispatch for Integrated Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Firestone, Ryan Michael [Univ. of California, Berkeley, CA (United States)

    2007-05-31

    This report describes the development and application of a dispatch optimization algorithm for integrated energy systems (IES) comprised of on-site cogeneration of heat and electricity, energy storage devices, and demand response opportunities. This work is intended to aid commercial and industrial sites in making use of modern computing power and optimization algorithms to make informed, near-optimal decisions under significant uncertainty and complex objective functions. The optimization algorithm uses a finite set of randomly generated future scenarios to approximate the true, stochastic future; constraints are included that prevent solutions to this approximate problem from deviating from solutions to the actual problem. The algorithm is then expressed as a mixed integer linear program, to which a powerful commercial solver is applied. A case study of United States Postal Service Processing and Distribution Centers (P&DC) in four cities and under three different electricity tariff structures is conducted to (1) determine the added value of optimal control to a cogeneration system over current, heuristic control strategies; (2) determine the value of limited electric load curtailment opportunities, with and without cogeneration; and (3) determine the trade-off between least-cost and least-carbon operations of a cogeneration system. Key results for the P&DC sites studied include (1) in locations where the average electricity and natural gas prices suggest a marginally profitable cogeneration system, optimal control can add up to 67% to the value of the cogeneration system; optimal control adds less value in locations where cogeneration is more clearly profitable; (2) optimal control under real-time pricing is (a) more complicated than under typical time-of-use tariffs and (b) at times necessary to make cogeneration economic at all; (3) limited electric load curtailment opportunities can be more valuable as a compliment to the cogeneration system than alone; and

  5. Calculation of the Feynman integrals by means of the Monte Carlo method

    International Nuclear Information System (INIS)

    Filinov, V.S.

    1986-01-01

    The Monte Carlo method (the Metropolis algorithm), which is employed extensively in lattice gauge theories and quantum mechanics, was applicable only to the euclidean version of the Feynman path integrals, i.e. it was valid for evaluating the integrals of real functions. In the present work the Monte Carlo method is extended to the evaluation of the integrals of complex-valued functions. The Feynman path integrals representing the time-dependent Green function of the one-dimensional non-stationary Schroedinger equation have been calculated for the harmonic oscillator and the particle motion in barrier- and well-type potential fields. The numerical results are in reasonable agreement with the analytical estimates, in spite of the presence of singularities in the Green functions. (orig.)

  6. A modified Gaussian integration method for thermal reaction rate calculation in U- and Pu-isotopes

    International Nuclear Information System (INIS)

    Bosevski, T.; Fredin, B.

    1966-01-01

    An advanced multi-group cell calculations a lot of data information is very often necessary, and hence the data administration will be elaborate, and the spectrum calculation will be time consuming. We think it is possible to reduce the necessary data information by using an effective reaction rate integration method well suited for U- and Pu-absorptions (author)

  7. Method and device for signal time of arrival determination

    NARCIS (Netherlands)

    Bellusci, G.; Janssen, G.J.M.

    2010-01-01

    A method for determining a time-of-arrival of an input signal, includes receiving the input signal; generating a first time dependent signal with a first time dependence from the received 5 input signal; generating a second time dependent signal with a second time dependence from the received input

  8. An arbitrary-order staggered time integrator for the linear acoustic wave equation

    Science.gov (United States)

    Lee, Jaejoon; Park, Hyunseo; Park, Yoonseo; Shin, Changsoo

    2018-02-01

    We suggest a staggered time integrator whose order of accuracy can arbitrarily be extended to solve the linear acoustic wave equation. A strategy to select the appropriate order of accuracy is also proposed based on the error analysis that quantitatively predicts the truncation error of the numerical solution. This strategy not only reduces the computational cost several times, but also allows us to flexibly set the modelling parameters such as the time step length, grid interval and P-wave speed. It is demonstrated that the proposed method can almost eliminate temporal dispersive errors during long term simulations regardless of the heterogeneity of the media and time step lengths. The method can also be successfully applied to the source problem with an absorbing boundary condition, which is frequently encountered in the practical usage for the imaging algorithms or the inverse problems.

  9. Recent advances in marching-on-in-time schemes for solving time domain volume integral equations

    KAUST Repository

    Sayed, Sadeed Bin

    2015-05-16

    Transient electromagnetic field interactions on inhomogeneous penetrable scatterers can be analyzed by solving time domain volume integral equations (TDVIEs). TDVIEs are constructed by setting the summation of the incident and scattered field intensities to the total field intensity on the volumetric support of the scatterer. The unknown can be the field intensity or flux/current density. Representing the total field intensity in terms of the unknown using the relevant constitutive relation and the scattered field intensity in terms of the spatiotemporal convolution of the unknown with the Green function yield the final form of the TDVIE. The unknown is expanded in terms of local spatial and temporal basis functions. Inserting this expansion into the TDVIE and testing the resulting equation at discrete times yield a system of equations that is solved by the marching on-in-time (MOT) scheme. At each time step, a smaller system of equations, termed MOT system is solved for the coefficients of the expansion. The right-hand side of this system consists of the tested incident field and discretized spatio-temporal convolution of the unknown samples computed at the previous time steps with the Green function.

  10. Methods and systems for integrating fluid dispensing technology with stereolithography

    Science.gov (United States)

    Medina, Francisco; Wicker, Ryan; Palmer, Jeremy A.; Davis, Don W.; Chavez, Bart D.; Gallegos, Phillip L.

    2010-02-09

    An integrated system and method of integrating fluid dispensing technologies (e.g., direct-write (DW)) with rapid prototyping (RP) technologies (e.g., stereolithography (SL)) without part registration comprising: an SL apparatus and a fluid dispensing apparatus further comprising a translation mechanism adapted to translate the fluid dispensing apparatus along the Z-, Y- and Z-axes. The fluid dispensing apparatus comprises: a pressurized fluid container; a valve mechanism adapted to control the flow of fluid from the pressurized fluid container; and a dispensing nozzle adapted to deposit the fluid in a desired location. To aid in calibration, the integrated system includes a laser sensor and a mechanical switch. The method further comprises building a second part layer on top of the fluid deposits and optionally accommodating multi-layered circuitry by incorporating a connector trace. Thus, the present invention is capable of efficiently building single and multi-material SL fabricated parts embedded with complex three-dimensional circuitry using DW.

  11. Neuromuscular fatigue following isometric contractions with similar torque time integral.

    Science.gov (United States)

    Rozand, V; Cattagni, T; Theurel, J; Martin, A; Lepers, R

    2015-01-01

    Torque time integral (TTI) is the combination of intensity and duration of a contraction. The aim of this study was to compare neuromuscular alterations following different isometric sub-maximal contractions of the knee extensor muscles but with similar TTI. Sixteen participants performed 3 sustained contractions at different intensities (25%, 50%, and 75% of Maximal Voluntary Contraction (MVC) torque) with different durations (68.5±33.4 s, 35.1±16.8 s and 24.8±12.9 s, respectively) but similar TTI value. MVC torque, maximal voluntary activation level (VAL), M-wave characteristics and potentiated doublet amplitude were assessed before and immediately after the sustained contractions. EMG activity of the vastus lateralis (VL) and -rectus femoris (RF) muscles was recorded during the sustained contractions. MVC torque reduction was similar in the 3 conditions after the exercise (-23.4±2.7%). VAL decreased significantly in a similar extent (-3.1±1.3%) after the 3 sustained contractions. Potentiated doublet amplitude was similarly reduced in the 3 conditions (-19.7±1.5%), but VL and RF M-wave amplitudes remained unchanged. EMG activity of VL and RF muscles increased in the same extent during the 3 contractions (VL: 54.5±40.4%; RF: 53.1±48.7%). These results suggest that central and peripheral alterations accounting for muscle fatigue are similar following isometric contractions with similar TTI. TTI should be considered in the exploration of muscle fatigue during sustained isometric contractions. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Integrated Force Method Solution to Indeterminate Structural Mechanics Problems

    Science.gov (United States)

    Patnaik, Surya N.; Hopkins, Dale A.; Halford, Gary R.

    2004-01-01

    Strength of materials problems have been classified into determinate and indeterminate problems. Determinate analysis primarily based on the equilibrium concept is well understood. Solutions of indeterminate problems required additional compatibility conditions, and its comprehension was not exclusive. A solution to indeterminate problem is generated by manipulating the equilibrium concept, either by rewriting in the displacement variables or through the cutting and closing gap technique of the redundant force method. Compatibility improvisation has made analysis cumbersome. The authors have researched and understood the compatibility theory. Solutions can be generated with equal emphasis on the equilibrium and compatibility concepts. This technique is called the Integrated Force Method (IFM). Forces are the primary unknowns of IFM. Displacements are back-calculated from forces. IFM equations are manipulated to obtain the Dual Integrated Force Method (IFMD). Displacement is the primary variable of IFMD and force is back-calculated. The subject is introduced through response variables: force, deformation, displacement; and underlying concepts: equilibrium equation, force deformation relation, deformation displacement relation, and compatibility condition. Mechanical load, temperature variation, and support settling are equally emphasized. The basic theory is discussed. A set of examples illustrate the new concepts. IFM and IFMD based finite element methods are introduced for simple problems.

  13. New design for photonic temporal integration with combined high processing speed and long operation time window.

    Science.gov (United States)

    Asghari, Mohammad H; Park, Yongwoo; Azaña, José

    2011-01-17

    We propose and experimentally prove a novel design for implementing photonic temporal integrators simultaneously offering a high processing bandwidth and a long operation time window, namely a large time-bandwidth product. The proposed scheme is based on concatenating in series a time-limited ultrafast photonic temporal integrator, e.g. implemented using a fiber Bragg grating (FBG), with a discrete-time (bandwidth limited) optical integrator, e.g. implemented using an optical resonant cavity. This design combines the advantages of these two previously demonstrated photonic integrator solutions, providing a processing speed as high as that of the time-limited ultrafast integrator and an operation time window fixed by the discrete-time integrator. Proof-of-concept experiments are reported using a uniform fiber Bragg grating (as the original time-limited integrator) connected in series with a bulk-optics coherent interferometers' system (as a passive 4-points discrete-time photonic temporal integrator). Using this setup, we demonstrate accurate temporal integration of complex-field optical signals with time-features as fast as ~6 ps, only limited by the processing bandwidth of the FBG integrator, over time durations as long as ~200 ps, which represents a 4-fold improvement over the operation time window (~50 ps) of the original FBG integrator.

  14. An integrative view of phylogenetic comparative methods: connections to population genetics, community ecology, and paleobiology.

    Science.gov (United States)

    Pennell, Matthew W; Harmon, Luke J

    2013-06-01

    Recent innovations in phylogenetic comparative methods (PCMs) have spurred a renaissance of research into the causes and consequences of large-scale patterns of biodiversity. In this paper, we review these advances. We also highlight the potential of comparative methods to integrate across fields and focus on three examples where such integration might be particularly valuable: quantitative genetics, community ecology, and paleobiology. We argue that PCMs will continue to be a key set of tools in evolutionary biology, shedding new light on how evolutionary processes have shaped patterns of biodiversity through deep time. © 2013 New York Academy of Sciences.

  15. Real-time functional integral approach to the quantum disordered spin systems

    International Nuclear Information System (INIS)

    Kopec, T.K.

    1989-01-01

    In this paper the effect of randomness and frustration in the quantum Ising spin glass in a transverse field is studied by using the thermofield dynamics (TFD), the real time, finite temperature quantum field theory. It is shown that the method can be conveniently used for the averaging of the free energy of the system by completely avoiding the use of the n-replica trick. The effective dynamic Lagrangian for the disorder averaged causal, correlations and response Green functions is derived by functional integral approach. Furthermore, the properties of this Lagrangian are analyzed by the saddle point method which leads to the self-consistent equation for the spin glass order parameter

  16. Integrated response and transit time distributions of watersheds by combining hydrograph separation and long-term transit time modeling

    Directory of Open Access Journals (Sweden)

    M. C. Roa-García

    2010-08-01

    Full Text Available We present a new modeling approach analyzing and predicting the Transit Time Distribution (TTD and the Response Time Distribution (RTD from hourly to annual time scales as two distinct hydrological processes. The model integrates Isotope Hydrograph Separation (IHS and the Instantaneous Unit Hydrograph (IUH approach as a tool to provide a more realistic description of transit and response time of water in catchments. Individual event simulations and parameterizations were combined with long-term baseflow simulation and parameterizations; this provides a comprehensive picture of the catchment response for a long time span for the hydraulic and isotopic processes. The proposed method was tested in three Andean headwater catchments to compare the effects of land use on hydrological response and solute transport. Results show that the characteristics of events and antecedent conditions have a significant influence on TTD and RTD, but in general the RTD of the grassland dominated catchment is concentrated in the shorter time spans and has a higher cumulative TTD, while the forest dominated catchment has a relatively higher response distribution and lower cumulative TTD. The catchment where wetlands concentrate shows a flashier response, but wetlands also appear to prolong transit time.

  17. Enhanced IMC based PID controller design for non-minimum phase (NMP) integrating processes with time delays.

    Science.gov (United States)

    Ghousiya Begum, K; Seshagiri Rao, A; Radhakrishnan, T K

    2017-05-01

    Internal model control (IMC) with optimal H 2 minimization framework is proposed in this paper for design of proportional-integral-derivative (PID) controllers. The controller design is addressed for integrating and double integrating time delay processes with right half plane (RHP) zeros. Blaschke product is used to derive the optimal controller. There is a single adjustable closed loop tuning parameter for controller design. Systematic guidelines are provided for selection of this tuning parameter based on maximum sensitivity. Simulation studies have been carried out on various integrating time delay processes to show the advantages of the proposed method. The proposed controller provides enhanced closed loop performances when compared to recently reported methods in the literature. Quantitative comparative analysis has been carried out using the performance indices, Integral Absolute Error (IAE) and Total Variation (TV). Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Comparison of four stable numerical methods for Abel's integral equation

    Science.gov (United States)

    Murio, Diego A.; Mejia, Carlos E.

    1991-01-01

    The 3-D image reconstruction from cone-beam projections in computerized tomography leads naturally, in the case of radial symmetry, to the study of Abel-type integral equations. If the experimental information is obtained from measured data, on a discrete set of points, special methods are needed in order to restore continuity with respect to the data. A new combined Regularized-Adjoint-Conjugate Gradient algorithm, together with two different implementations of the Mollification Method (one based on a data filtering technique and the other on the mollification of the kernal function) and a regularization by truncation method (initially proposed for 2-D ray sample schemes and more recently extended to 3-D cone-beam image reconstruction) are extensively tested and compared for accuracy and numerical stability as functions of the level of noise in the data.

  19. Method and apparatus for in-system redundant array repair on integrated circuits

    Science.gov (United States)

    Bright, Arthur A [Croton-on-Hudson, NY; Crumley, Paul G [Yorktown Heights, NY; Dombrowa, Marc B [Bronx, NY; Douskey, Steven M [Rochester, MN; Haring, Rudolf A [Cortlandt Manor, NY; Oakland, Steven F [Colchester, VT; Ouellette, Michael R [Westford, VT; Strissel, Scott A [Byron, MN

    2008-07-08

    Disclosed is a method of repairing an integrated circuit of the type comprising of a multitude of memory arrays and a fuse box holding control data for controlling redundancy logic of the arrays. The method comprises the steps of providing the integrated circuit with a control data selector for passing the control data from the fuse box to the memory arrays; providing a source of alternate control data, external of the integrated circuit; and connecting the source of alternate control data to the control data selector. The method comprises the further step of, at a given time, passing the alternate control data from the source thereof, through the control data selector and to the memory arrays to control the redundancy logic of the memory arrays.

  20. Tuning of PID controllers for integrating systems using direct synthesis method.

    Science.gov (United States)

    Anil, Ch; Padma Sree, R

    2015-07-01

    A PID controller is designed for various forms of integrating systems with time delay using direct synthesis method. The method is based on comparing the characteristic equation of the integrating system and PID controller with a filter with the desired characteristic equation. The desired characteristic equation comprises of multiple poles which are placed at the same desired location. The tuning parameter is adjusted so as to achieve the desired robustness. Tuning rules in terms of process parameters are given for various forms of integrating systems. The tuning parameter can be selected for the desired robustness by specifying Ms value. The proposed controller design method is applied to various transfer function models and to the nonlinear model equations of jacketed CSTR to show its effectiveness and applicability. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Retarded potentials and time domain boundary integral equations a road map

    CERN Document Server

    Sayas, Francisco-Javier

    2016-01-01

    This book offers a thorough and self-contained exposition of the mathematics of time-domain boundary integral equations associated to the wave equation, including applications to scattering of acoustic and elastic waves. The book offers two different approaches for the analysis of these integral equations, including a systematic treatment of their numerical discretization using Galerkin (Boundary Element) methods in the space variables and Convolution Quadrature in the time variable. The first approach follows classical work started in the late eighties, based on Laplace transforms estimates. This approach has been refined and made more accessible by tailoring the necessary mathematical tools, avoiding an excess of generality. A second approach contains a novel point of view that the author and some of his collaborators have been developing in recent years, using the semigroup theory of evolution equations to obtain improved results. The extension to electromagnetic waves is explained in one of the appendices...

  2. Development of an integrated method for long-term water quality prediction using seasonal climate forecast

    Directory of Open Access Journals (Sweden)

    J. Cho

    2016-10-01

    Full Text Available The APEC Climate Center (APCC produces climate prediction information utilizing a multi-climate model ensemble (MME technique. In this study, four different downscaling methods, in accordance with the degree of utilizing the seasonal climate prediction information, were developed in order to improve predictability and to refine the spatial scale. These methods include: (1 the Simple Bias Correction (SBC method, which directly uses APCC's dynamic prediction data with a 3 to 6 month lead time; (2 the Moving Window Regression (MWR method, which indirectly utilizes dynamic prediction data; (3 the Climate Index Regression (CIR method, which predominantly uses observation-based climate indices; and (4 the Integrated Time Regression (ITR method, which uses predictors selected from both CIR and MWR. Then, a sampling-based temporal downscaling was conducted using the Mahalanobis distance method in order to create daily weather inputs to the Soil and Water Assessment Tool (SWAT model. Long-term predictability of water quality within the Wecheon watershed of the Nakdong River Basin was evaluated. According to the Korean Ministry of Environment's Provisions of Water Quality Prediction and Response Measures, modeling-based predictability was evaluated by using 3-month lead prediction data issued in February, May, August, and November as model input of SWAT. Finally, an integrated approach, which takes into account various climate information and downscaling methods for water quality prediction, was presented. This integrated approach can be used to prevent potential problems caused by extreme climate in advance.

  3. Krylov implicit integration factor methods for spatial discretization on high dimensional unstructured meshes: Application to discontinuous Galerkin methods

    Science.gov (United States)

    Chen, Shanqin; Zhang, Yong-Tao

    2011-05-01

    Integration factor methods are a class of "exactly linear part" time discretization methods. In [Q. Nie, Y.-T. Zhang, R. Zhao, Efficient semi-implicit schemes for stiff systems, Journal of Computational Physics, 214 (2006) 521-537], a class of efficient implicit integration factor (IIF) methods were developed for solving systems with both stiff linear and nonlinear terms, arising from spatial discretization of time-dependent partial differential equations (PDEs) with linear high order terms and stiff lower order nonlinear terms. The tremendous challenge in applying IIF temporal discretization for PDEs on high spatial dimensions is how to evaluate the matrix exponential operator efficiently. For spatial discretization on unstructured meshes to solve PDEs on complex geometrical domains, how to efficiently apply the IIF temporal discretization was open. In this paper, we solve this problem by applying the Krylov subspace approximations to the matrix exponential operator. Then we apply this novel time discretization technique to discontinuous Galerkin (DG) methods on unstructured meshes for solving reaction-diffusion equations. Numerical examples are shown to demonstrate the accuracy, efficiency and robustness of the method in resolving the stiffness of the DG spatial operator for reaction-diffusion PDEs. Application of the method to a mathematical model in pattern formation during zebrafish embryo development shall be shown.

  4. An open-chain imaginary-time path-integral sampling approach to the calculation of approximate symmetrized quantum time correlation functions.

    Science.gov (United States)

    Cendagorta, Joseph R; Bačić, Zlatko; Tuckerman, Mark E

    2018-03-14

    We introduce a scheme for approximating quantum time correlation functions numerically within the Feynman path integral formulation. Starting with the symmetrized version of the correlation function expressed as a discretized path integral, we introduce a change of integration variables often used in the derivation of trajectory-based semiclassical methods. In particular, we transform to sum and difference variables between forward and backward complex-time propagation paths. Once the transformation is performed, the potential energy is expanded in powers of the difference variables, which allows us to perform the integrals over these variables analytically. The manner in which this procedure is carried out results in an open-chain path integral (in the remaining sum variables) with a modified potential that is evaluated using imaginary-time path-integral sampling rather than requiring the generation of a large ensemble of trajectories. Consequently, any number of path integral sampling schemes can be employed to compute the remaining path integral, including Monte Carlo, path-integral molecular dynamics, or enhanced path-integral molecular dynamics. We believe that this approach constitutes a different perspective in semiclassical-type approximations to quantum time correlation functions. Importantly, we argue that our approximation can be systematically improved within a cumulant expansion formalism. We test this approximation on a set of one-dimensional problems that are commonly used to benchmark approximate quantum dynamical schemes. We show that the method is at least as accurate as the popular ring-polymer molecular dynamics technique and linearized semiclassical initial value representation for correlation functions of linear operators in most of these examples and improves the accuracy of correlation functions of nonlinear operators.

  5. An open-chain imaginary-time path-integral sampling approach to the calculation of approximate symmetrized quantum time correlation functions

    Science.gov (United States)

    Cendagorta, Joseph R.; Bačić, Zlatko; Tuckerman, Mark E.

    2018-03-01

    We introduce a scheme for approximating quantum time correlation functions numerically within the Feynman path integral formulation. Starting with the symmetrized version of the correlation function expressed as a discretized path integral, we introduce a change of integration variables often used in the derivation of trajectory-based semiclassical methods. In particular, we transform to sum and difference variables between forward and backward complex-time propagation paths. Once the transformation is performed, the potential energy is expanded in powers of the difference variables, which allows us to perform the integrals over these variables analytically. The manner in which this procedure is carried out results in an open-chain path integral (in the remaining sum variables) with a modified potential that is evaluated using imaginary-time path-integral sampling rather than requiring the generation of a large ensemble of trajectories. Consequently, any number of path integral sampling schemes can be employed to compute the remaining path integral, including Monte Carlo, path-integral molecular dynamics, or enhanced path-integral molecular dynamics. We believe that this approach constitutes a different perspective in semiclassical-type approximations to quantum time correlation functions. Importantly, we argue that our approximation can be systematically improved within a cumulant expansion formalism. We test this approximation on a set of one-dimensional problems that are commonly used to benchmark approximate quantum dynamical schemes. We show that the method is at least as accurate as the popular ring-polymer molecular dynamics technique and linearized semiclassical initial value representation for correlation functions of linear operators in most of these examples and improves the accuracy of correlation functions of nonlinear operators.

  6. Integrated Data Collection Analysis (IDCA) Program - SSST Testing Methods

    Energy Technology Data Exchange (ETDEWEB)

    Sandstrom, Mary M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brown, Geoffrey W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Preston, Daniel N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pollard, Colin J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Warner, Kirstin F. [Naval Surface Warfare Center (NSWC), Indian Head, MD (United States). Indian Head Division; Remmers, Daniel L. [Naval Surface Warfare Center (NSWC), Indian Head, MD (United States). Indian Head Division; Sorensen, Daniel N. [Naval Surface Warfare Center (NSWC), Indian Head, MD (United States). Indian Head Division; Whinnery, LeRoy L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Phillips, Jason J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Shelley, Timothy J. [Bureau of Alcohol, Tobacco and Firearms (ATF), Huntsville, AL (United States); Reyes, Jose A. [Applied Research Associates, Tyndall AFB, FL (United States); Hsu, Peter C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Reynolds, John G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-03-25

    The Integrated Data Collection Analysis (IDCA) program is conducting a proficiency study for Small- Scale Safety and Thermal (SSST) testing of homemade explosives (HMEs). Described here are the methods used for impact, friction, electrostatic discharge, and differential scanning calorimetry analysis during the IDCA program. These methods changed throughout the Proficiency Test and the reasons for these changes are documented in this report. The most significant modifications in standard testing methods are: 1) including one specified sandpaper in impact testing among all the participants, 2) diversifying liquid test methods for selected participants, and 3) including sealed sample holders for thermal testing by at least one participant. This effort, funded by the Department of Homeland Security (DHS), is putting the issues of safe handling of these materials in perspective with standard military explosives. The study is adding SSST testing results for a broad suite of different HMEs to the literature. Ultimately the study will suggest new guidelines and methods and possibly establish the SSST testing accuracies needed to develop safe handling practices for HMEs. Each participating testing laboratory uses identical test materials and preparation methods wherever possible. The testing performers involved are Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Indian Head Division, Naval Surface Warfare Center, (NSWC IHD), Sandia National Laboratories (SNL), and Air Force Research Laboratory (AFRL/RXQL). These tests are conducted as a proficiency study in order to establish some consistency in test protocols, procedures, and experiments and to compare results when these testing variables cannot be made consistent.

  7. National Ignition Facility sub-system design requirements integrated timing system SSDR 1.5.3

    International Nuclear Information System (INIS)

    Wiedwald, J.; Van Aersau, P.; Bliss, E.

    1996-01-01

    This System Design Requirement document establishes the performance, design, development, and test requirements for the Integrated Timing System, WBS 1.5.3 which is part of the NIF Integrated Computer Control System (ICCS). The Integrated Timing System provides all temporally-critical hardware triggers to components and equipment in other NIF systems

  8. A new method of time difference measurement: The time difference method by dual phase coincidence points detection

    Science.gov (United States)

    Zhou, Wei

    1993-01-01

    In the high accurate measurement of periodic signals, the greatest common factor frequency and its characteristics have special functions. A method of time difference measurement - the time difference method by dual 'phase coincidence points' detection is described. This method utilizes the characteristics of the greatest common factor frequency to measure time or phase difference between periodic signals. It can suit a very wide frequency range. Measurement precision and potential accuracy of several picoseconds were demonstrated with this new method. The instrument based on this method is very simple, and the demand for the common oscillator is low. This method and instrument can be used widely.

  9. Time domain attenuation estimation method from ultrasonic backscattered signals.

    Science.gov (United States)

    Ghoshal, Goutam; Oelze, Michael L

    2012-07-01

    Ultrasonic attenuation is important not only as a parameter for characterizing tissue but also for compensating other parameters that are used to classify tissues. Several techniques have been explored for estimating ultrasonic attenuation from backscattered signals. In the present study, a technique is developed to estimate the local ultrasonic attenuation coefficient by analyzing the time domain backscattered signal. The proposed method incorporates an objective function that combines the diffraction pattern of the source/receiver with the attenuation slope in an integral equation. The technique was assessed through simulations and validated through experiments with a tissue mimicking phantom and fresh rabbit liver samples. The attenuation values estimated using the proposed technique were compared with the attenuation estimated using insertion loss measurements. For a data block size of 15 pulse lengths axially and 15 beamwidths laterally, the mean attenuation estimates from the tissue mimicking phantoms were within 10% of the estimates using insertion loss measurements. With a data block size of 20 pulse lengths axially and 20 beamwidths laterally, the error in the attenuation values estimated from the liver samples were within 10% of the attenuation values estimated from the insertion loss measurements.

  10. The preparation method of terahertz monolithic integrated device

    Science.gov (United States)

    Zhang, Cong; Su, Bo; He, Jingsuo; Zhang, Hongfei; Wu, Yaxiong; Zhang, Shengbo; Zhang, Cunlin

    2018-01-01

    The terahertz monolithic integrated device is to integrate the pumping area of the terahertz generation, the detection area of the terahertz receiving and the metal waveguide of terahertz transmission on the same substrate. The terahertz generation and detection device use a photoconductive antenna structure the metal waveguide use a microstrip line structure. The evanescent terahertz-bandwidth electric field extending above the terahertz transmission line interacts with, and is modified by, overlaid dielectric samples, thus enabling the characteristic vibrational absorption resonances in the sample to be probed. In this device structure, since the semiconductor substrate of the photoconductive antenna is located between the strip conductor and the dielectric layer of the microstrip line, and the semiconductor substrate cannot grow on the dielectric layer directly. So how to prepare the semiconductor substrate of the photoconductive antenna and how to bond the semiconductor substrate to the dielectric layer of the microstrip line is a key step in the terahertz monolithic integrated device. In order to solve this critical problem, the epitaxial wafer structure of the two semiconductor substrates is given and transferred to the desired substrate by two methods, respectively.

  11. The path integral method in quantum field theory

    International Nuclear Information System (INIS)

    Burden, C.J.

    1990-01-01

    Richard Feynman is reputed to have once the that in his whole life he had only ever had two really clever ideas. As it has turned out, these two ideas, the path integral formulation of quantum mechanics and the diagrammatic representation of perturbation theory have become the cornerstone of modern quantum field theory and particle physics. The path integral, first hinted at by Dirac in the thirties but developed fully by Feynman in the late 40's provides us with an alternative, though equivalent, description of quantum mechanics to canonical quantization. It was not until the seventies that it found broad application in quantum field theory (QFT), leading of gauge theories. It has also lead to the invention of non-perturbative techniques such as lattice gauge theory and has revealed an intimate connection between QFT and statistical mechanics. This paper, the author develops the basic of QFT form the path integral formalism and introduce the idea of Feynman diagrams for calculating perturbation expansions. I will concentrate mainly on the example of φ 4 theory since it is probably the simplest example of an interacting field theory, though the methods generalize readily to more sophisticated theories

  12. Dose calculation using a numerical method based on Haar wavelets integration

    Energy Technology Data Exchange (ETDEWEB)

    Belkadhi, K., E-mail: khaled.belkadhi@ult-tunisie.com [Unité de Recherche de Physique Nucléaire et des Hautes Énergies, Faculté des Sciences de Tunis, Université Tunis El-Manar (Tunisia); Manai, K. [Unité de Recherche de Physique Nucléaire et des Hautes Énergies, Faculté des Sciences de Tunis, Université Tunis El-Manar (Tunisia); College of Science and Arts, University of Bisha, Bisha (Saudi Arabia)

    2016-03-11

    This paper deals with the calculation of the absorbed dose in an irradiation cell of gamma rays. Direct measurement and simulation have shown that they are expensive and time consuming. An alternative to these two operations is numerical methods, a quick and efficient way can furnish an estimation of the absorbed dose by giving an approximation of the photon flux at a specific point of space. To validate the numerical integration method based on the Haar wavelet for absorbed dose estimation, a study with many configurations was performed. The obtained results with the Haar wavelet method showed a very good agreement with the simulation highlighting good efficacy and acceptable accuracy. - Highlights: • A numerical integration method using Haar wavelets is detailed. • Absorbed dose is estimated with Haar wavelets method. • Calculated absorbed dose using Haar wavelets and Monte Carlo simulation using Geant4 are compared.

  13. Strategy of Starting Sensorless BLDCM with Inductance Method and EMF Integration

    Directory of Open Access Journals (Sweden)

    Wang Dafang

    2013-01-01

    Full Text Available In, conventional 3-stage start-up method of sensorless brushless direct current motor (BLDCM, the rotor is likely to jitter because rotor position cannot be obtained, and the motor is apt to lose step when it starts with load. These defects limit its use in engineering applications. In order to achieve smooth start in specific direction and guarantee start-up success rate with load, a start-up method based on improved inductance method and electromotive force (EMF integration is proposed applying different voltage vectors according to rotor position interval judged by inductance method and determining integrator start-up time according to rotor initial position and the EMF. Experiments show that the method guarantees smooth acceleration and increases start-up success rate with load.

  14. A method for untriggered time-dependent searches for multiple flares from neutrino point sources

    International Nuclear Information System (INIS)

    Gora, D.; Bernardini, E.; Cruz Silva, A.H.

    2011-04-01

    A method for a time-dependent search for flaring astrophysical sources which can be potentially detected by large neutrino experiments is presented. The method uses a time-clustering algorithm combined with an unbinned likelihood procedure. By including in the likelihood function a signal term which describes the contribution of many small clusters of signal-like events, this method provides an effective way for looking for weak neutrino flares over different time-scales. The method is sensitive to an overall excess of events distributed over several flares which are not individually detectable. For standard cases (one flare) the discovery potential of the method is worse than a standard time-dependent point source analysis with unknown duration of the flare by a factor depending on the signal-to-background level. However, for flares sufficiently shorter than the total observation period, the method is more sensitive than a time-integrated analysis. (orig.)

  15. A method for untriggered time-dependent searches for multiple flares from neutrino point sources

    Energy Technology Data Exchange (ETDEWEB)

    Gora, D. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Institute of Nuclear Physics PAN, Cracow (Poland); Bernardini, E.; Cruz Silva, A.H. [Institute of Nuclear Physics PAN, Cracow (Poland)

    2011-04-15

    A method for a time-dependent search for flaring astrophysical sources which can be potentially detected by large neutrino experiments is presented. The method uses a time-clustering algorithm combined with an unbinned likelihood procedure. By including in the likelihood function a signal term which describes the contribution of many small clusters of signal-like events, this method provides an effective way for looking for weak neutrino flares over different time-scales. The method is sensitive to an overall excess of events distributed over several flares which are not individually detectable. For standard cases (one flare) the discovery potential of the method is worse than a standard time-dependent point source analysis with unknown duration of the flare by a factor depending on the signal-to-background level. However, for flares sufficiently shorter than the total observation period, the method is more sensitive than a time-integrated analysis. (orig.)

  16. Integral equation approach to time-dependent kinematic dynamos in finite domains

    International Nuclear Information System (INIS)

    Xu Mingtian; Stefani, Frank; Gerbeth, Gunter

    2004-01-01

    The homogeneous dynamo effect is at the root of cosmic magnetic field generation. With only a very few exceptions, the numerical treatment of homogeneous dynamos is carried out in the framework of the differential equation approach. The present paper tries to facilitate the use of integral equations in dynamo research. Apart from the pedagogical value to illustrate dynamo action within the well-known picture of the Biot-Savart law, the integral equation approach has a number of practical advantages. The first advantage is its proven numerical robustness and stability. The second and perhaps most important advantage is its applicability to dynamos in arbitrary geometries. The third advantage is its intimate connection to inverse problems relevant not only for dynamos but also for technical applications of magnetohydrodynamics. The paper provides the first general formulation and application of the integral equation approach to time-dependent kinematic dynamos, with stationary dynamo sources, in finite domains. The time dependence is restricted to the magnetic field, whereas the velocity or corresponding mean-field sources of dynamo action are supposed to be stationary. For the spherically symmetric α 2 dynamo model it is shown how the general formulation is reduced to a coupled system of two radial integral equations for the defining scalars of the poloidal and toroidal field components. The integral equation formulation for spherical dynamos with general stationary velocity fields is also derived. Two numerical examples - the α 2 dynamo model with radially varying α and the Bullard-Gellman model - illustrate the equivalence of the approach with the usual differential equation method. The main advantage of the method is exemplified by the treatment of an α 2 dynamo in rectangular domains

  17. On the relationship between supplier integration and time-to-market

    NARCIS (Netherlands)

    Perols, J.; Zimmermann, C.; Kortmann, S.

    2013-01-01

    Recent operations management and innovation management research emphasizes the importance of supplier integration. However, the empirical results as to the relationship between supplier integration and time-to-market are ambivalent. To understand this important relationship, we incorporate two major

  18. System and method for integrating hazard-based decision making tools and processes

    Science.gov (United States)

    Hodgin, C Reed [Westminster, CO

    2012-03-20

    A system and method for inputting, analyzing, and disseminating information necessary for identified decision-makers to respond to emergency situations. This system and method provides consistency and integration among multiple groups, and may be used for both initial consequence-based decisions and follow-on consequence-based decisions. The system and method in a preferred embodiment also provides tools for accessing and manipulating information that are appropriate for each decision-maker, in order to achieve more reasoned and timely consequence-based decisions. The invention includes processes for designing and implementing a system or method for responding to emergency situations.

  19. Integrated Phoneme Subspace Method for Speech Feature Extraction

    Directory of Open Access Journals (Sweden)

    Park Hyunsin

    2009-01-01

    Full Text Available Speech feature extraction has been a key focus in robust speech recognition research. In this work, we discuss data-driven linear feature transformations applied to feature vectors in the logarithmic mel-frequency filter bank domain. Transformations are based on principal component analysis (PCA, independent component analysis (ICA, and linear discriminant analysis (LDA. Furthermore, this paper introduces a new feature extraction technique that collects the correlation information among phoneme subspaces and reconstructs feature space for representing phonemic information efficiently. The proposed speech feature vector is generated by projecting an observed vector onto an integrated phoneme subspace (IPS based on PCA or ICA. The performance of the new feature was evaluated for isolated word speech recognition. The proposed method provided higher recognition accuracy than conventional methods in clean and reverberant environments.

  20. Limitations of backward integration method for asteroid family age estimation

    Science.gov (United States)

    Radović, Viktor

    2017-10-01

    Determining the age of an asteroid family is important as it gives us a better understanding of the dynamics, formation and collisional evolution of a family. So far, a few methods for determining the age of a family have been developed. The most accurate one is probably the backward integration method (BIM) that works very well for young families. In this paper, we try to study its characteristics and limitations in more detail using a fictional asteroid family. The analysis is performed with two numerical packages: orbfit and mercury. We studied the clustering of the secular angles Ω and ϖ and obtained linear relationship between the depth of the clustering and the age of the family. Our results suggest that the BIM could be successfully applied only to families not older than 18 Myr.

  1. An integral equation method to boundary value problems in elastostatics

    International Nuclear Information System (INIS)

    Gospodinov, G.K.

    1987-01-01

    The boundary element method (BEM) is already a well established numerical technique for solving some boundary value problems in elastostatics - Brebbia and Walker (1980). The main feature of this approach is the use of fundamental solutions which reduces the dimension of the problem by one and results in finding some unknown functions on the boundary only. So if we want to use the BEM we need: First - the fundamental solutions, and second - the boundary integral equations which are usually constructed by means of Betti's law or Green's second identity. In many cases of practical importance however, the fundamental solutions are not known, or they are so complicated that the effective implementation of the BEM is under question. On the other hand, if the thickness of the domain in the two dimensional case is not constant, or the material is orthotropic the solution with boundary element method is complicated in a similar way. (orig./GL)

  2. Integrated Detection and Prediction of Influenza Activity for Real-Time Surveillance: Algorithm Design.

    Science.gov (United States)

    Spreco, Armin; Eriksson, Olle; Dahlström, Örjan; Cowling, Benjamin John; Timpka, Toomas

    2017-06-15

    Influenza is a viral respiratory disease capable of causing epidemics that represent a threat to communities worldwide. The rapidly growing availability of electronic "big data" from diagnostic and prediagnostic sources in health care and public health settings permits advance of a new generation of methods for local detection and prediction of winter influenza seasons and influenza pandemics. The aim of this study was to present a method for integrated detection and prediction of influenza virus activity in local settings using electronically available surveillance data and to evaluate its performance by retrospective application on authentic data from a Swedish county. An integrated detection and prediction method was formally defined based on a design rationale for influenza detection and prediction methods adapted for local surveillance. The novel method was retrospectively applied on data from the winter influenza season 2008-09 in a Swedish county (population 445,000). Outcome data represented individuals who met a clinical case definition for influenza (based on International Classification of Diseases version 10 [ICD-10] codes) from an electronic health data repository. Information from calls to a telenursing service in the county was used as syndromic data source. The novel integrated detection and prediction method is based on nonmechanistic statistical models and is designed for integration in local health information systems. The method is divided into separate modules for detection and prediction of local influenza virus activity. The function of the detection module is to alert for an upcoming period of increased load of influenza cases on local health care (using influenza-diagnosis data), whereas the function of the prediction module is to predict the timing of the activity peak (using syndromic data) and its intensity (using influenza-diagnosis data). For detection modeling, exponential regression was used based on the assumption that the beginning

  3. A method for establishing integrity in software-based systems

    International Nuclear Information System (INIS)

    Staple, B.D.; Berg, R.S.; Dalton, L.J.

    1997-01-01

    In this paper, the authors present a digital system requirements specification method that has demonstrated a potential for improving the completeness of requirements while reducing ambiguity. It assists with making proper digital system design decisions, including the defense against specific digital system failures modes. It also helps define the technical rationale for all of the component and interface requirements. This approach is a procedural method that abstracts key features that are expanded in a partitioning that identifies and characterizes hazards and safety system function requirements. The key system features are subjected to a hierarchy that progressively defines their detailed characteristics and components. This process produces a set of requirements specifications for the system and all of its components. Based on application to nuclear power plants, the approach described here uses two ordered domains: plant safety followed by safety system integrity. Plant safety refers to those systems defined to meet the safety goals for the protection of the public. Safety system integrity refers to systems defined to ensure that the system can meet the safety goals. Within each domain, a systematic process is used to identify hazards and define the corresponding means of defense and mitigation. In both domains, the approach and structure are focused on the completeness of information and eliminating ambiguities in the generation of safety system requirements that will achieve the plant safety goals

  4. Analysis of electromagnetic wave interactions on nonlinear scatterers using time domain volume integral equations

    KAUST Repository

    Ulku, Huseyin Arda

    2014-07-06

    Effects of material nonlinearities on electromagnetic field interactions become dominant as field amplitudes increase. A typical example is observed in plasmonics, where highly localized fields “activate” Kerr nonlinearities. Naturally, time domain solvers are the method of choice when it comes simulating these nonlinear effects. Oftentimes, finite difference time domain (FDTD) method is used for this purpose. This is simply due to the fact that explicitness of the FDTD renders the implementation easier and the material nonlinearity can be easily accounted for using an auxiliary differential equation (J.H. Green and A. Taflove, Opt. Express, 14(18), 8305-8310, 2006). On the other hand, explicit marching on-in-time (MOT)-based time domain integral equation (TDIE) solvers have never been used for the same purpose even though they offer several advantages over FDTD (E. Michielssen, et al., ECCOMAS CFD, The Netherlands, Sep. 5-8, 2006). This is because explicit MOT solvers have never been stabilized until not so long ago. Recently an explicit but stable MOT scheme has been proposed for solving the time domain surface magnetic field integral equation (H.A. Ulku, et al., IEEE Trans. Antennas Propag., 61(8), 4120-4131, 2013) and later it has been extended for the time domain volume electric field integral equation (TDVEFIE) (S. B. Sayed, et al., Pr. Electromagn. Res. S., 378, Stockholm, 2013). This explicit MOT scheme uses predictor-corrector updates together with successive over relaxation during time marching to stabilize the solution even when time step is as large as in the implicit counterpart. In this work, an explicit MOT-TDVEFIE solver is proposed for analyzing electromagnetic wave interactions on scatterers exhibiting Kerr nonlinearity. Nonlinearity is accounted for using the constitutive relation between the electric field intensity and flux density. Then, this relation and the TDVEFIE are discretized together by expanding the intensity and flux - sing half

  5. Fully Integrated SAW-Less Discrete-Time Superheterodyne Receiver

    NARCIS (Netherlands)

    Madadi, I.

    2015-01-01

    There are nowadays strong business and technical demands to integrate radio- frequency (RF) receivers (RX) into a complete system-on-chip (SoC) realized in scaled digital processes technology. As a consequence, the RF circuitry has to function well in face of reduced power supply ( V DD ) while the

  6. An integrated computational materials engineering method for woven carbon fiber composites preforming process

    Science.gov (United States)

    Zhang, Weizhao; Ren, Huaqing; Wang, Zequn; Liu, Wing K.; Chen, Wei; Zeng, Danielle; Su, Xuming; Cao, Jian

    2016-10-01

    An integrated computational materials engineering method is proposed in this paper for analyzing the design and preforming process of woven carbon fiber composites. The goal is to reduce the cost and time needed for the mass production of structural composites. It integrates the simulation methods from the micro-scale to the macro-scale to capture the behavior of the composite material in the preforming process. In this way, the time consuming and high cost physical experiments and prototypes in the development of the manufacturing process can be circumvented. This method contains three parts: the micro-scale representative volume element (RVE) simulation to characterize the material; the metamodeling algorithm to generate the constitutive equations; and the macro-scale preforming simulation to predict the behavior of the composite material during forming. The results show the potential of this approach as a guidance to the design of composite materials and its manufacturing process.

  7. An Integrated Computational Materials Engineering Method for Woven Carbon Fiber Composites Preforming Process

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weizhao; Ren, Huaqing; Wang, Zequn; Liu, Wing K.; Chen, Wei; Zeng, Danielle; Su, Xuming; Cao, Jian

    2016-10-19

    An integrated computational materials engineering method is proposed in this paper for analyzing the design and preforming process of woven carbon fiber composites. The goal is to reduce the cost and time needed for the mass production of structural composites. It integrates the simulation methods from the micro-scale to the macro-scale to capture the behavior of the composite material in the preforming process. In this way, the time consuming and high cost physical experiments and prototypes in the development of the manufacturing process can be circumvented. This method contains three parts: the micro-scale representative volume element (RVE) simulation to characterize the material; the metamodeling algorithm to generate the constitutive equations; and the macro-scale preforming simulation to predict the behavior of the composite material during forming. The results show the potential of this approach as a guidance to the design of composite materials and its manufacturing process.

  8. A simple method to adapt time sampling of the analog signal

    International Nuclear Information System (INIS)

    Kalinin, Yu.G.; Martyanov, I.S.; Sadykov, Kh.; Zastrozhnova, N.N.

    2004-01-01

    In this paper we briefly describe the time sampling method, which is adapted to the speed of the signal change. Principally, this method is based on a simple idea--the combination of discrete integration with differentiation of the analog signal. This method can be used in nuclear electronics research into the characteristics of detectors and the shape of the pulse signal, pulse and transitive characteristics of inertial systems of processing of signals, etc

  9. 20 CFR 617.35 - Time and method of payment.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Time and method of payment. 617.35 Section 617.35 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR TRADE ADJUSTMENT ASSISTANCE FOR WORKERS UNDER THE TRADE ACT OF 1974 Job Search Allowances § 617.35 Time and method...

  10. expansion method for solving nonlinear space–time fractional ...

    Indian Academy of Sciences (India)

    2016-07-06

    Jul 6, 2016 ... -expansion method for solving fractional differential equations based on a fractional complex transform. We apply this method for solving space–time fractional Cahn–Allen equation and space–time fractional Klein–Gordon equation. The fractional derivatives are described in the sense of modified ...

  11. An energy-stable time-integrator for phase-field models

    KAUST Repository

    Vignal, Philippe

    2016-12-27

    We introduce a provably energy-stable time-integration method for general classes of phase-field models with polynomial potentials. We demonstrate how Taylor series expansions of the nonlinear terms present in the partial differential equations of these models can lead to expressions that guarantee energy-stability implicitly, which are second-order accurate in time. The spatial discretization relies on a mixed finite element formulation and isogeometric analysis. We also propose an adaptive time-stepping discretization that relies on a first-order backward approximation to give an error-estimator. This error estimator is accurate, robust, and does not require the computation of extra solutions to estimate the error. This methodology can be applied to any second-order accurate time-integration scheme. We present numerical examples in two and three spatial dimensions, which confirm the stability and robustness of the method. The implementation of the numerical schemes is done in PetIGA, a high-performance isogeometric analysis framework.

  12. Integration of neutron time-of-flight single-crystal Bragg peaks in reciprocal space

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, Arthur J [ORNL; Joergensen, Mads [ORNL; Wang, Xiaoping [ORNL; Mikkelson, Ruth L [ORNL; Mikkelson, Dennis J [ORNL; Lynch, Vickie E [ORNL; Peterson, Peter F [ORNL; Green, Mark L [ORNL; Hoffmann, Christina [ORNL

    2014-01-01

    The intensity of single crystal Bragg peaks obtained by mapping neutron time-of-flight event data into reciprocal space and integrating in various ways are compared. These include spherical integration with a fixed radius, ellipsoid fitting and integrating of the peak intensity and one-dimensional peak profile fitting. In comparison to intensities obtained by integrating in real detector histogram space, the data integrated in reciprocal space results in better agreement factors and more accurate atomic parameters. Furthermore, structure refinement using integrated intensities from one-dimensional profile fitting is demonstrated to be more accurate than simple peak-minus-background integration.

  13. Finite element method for time-space-fractional Schrodinger equation

    Directory of Open Access Journals (Sweden)

    Xiaogang Zhu

    2017-07-01

    Full Text Available In this article, we develop a fully discrete finite element method for the nonlinear Schrodinger equation (NLS with time- and space-fractional derivatives. The time-fractional derivative is described in Caputo's sense and the space-fractional derivative in Riesz's sense. Its stability is well derived; the convergent estimate is discussed by an orthogonal operator. We also extend the method to the two-dimensional time-space-fractional NLS and to avoid the iterative solvers at each time step, a linearized scheme is further conducted. Several numerical examples are implemented finally, which confirm the theoretical results as well as illustrate the accuracy of our methods.

  14. Undergraduate medical student's perception about an integrated method of teaching at a medical school in Oman

    Directory of Open Access Journals (Sweden)

    Harshal Sabane

    2015-01-01

    Full Text Available Objective In recent years, there has been a gradual but definitive shift in medical schools all over the globe to promote a more integrated way of teaching. Integration of medical disciplines promotes a holistic understanding of the medical curriculum in the students. This helps them better understand and appreciate the importance and role of each medical subject. Method The study was conducted among the 5th year Pre-clinical students. Questionnaire consisted of 4 questions on the level of integration, 5 questions on various aspects of the assessment and some questions which tested the level of awareness of the integrated method. Result Out of a total of 72 students present on the day of data collection, 65 participated in the study giving a response rate of 90.27 %. After primary data cleansing 4 questionnaires had to be omitted. Most of the students opined as “good” or “very good” for the questions on integration and its attributes. Only 27 (44 % were aware of integrated curriculum being taught in other medical schools in the gulf. Similar findings were observed regarding assessment related questions. Reduction in the number of block exams is unpopular among the students and only 6% have agreed for 3, 4, or 5 non-summative block assessments. Opinion regarding the help of integrated teaching in IFOM based OMSB entrance examination was mixed with a greater variance in the responses. 43% students have indicated that they would like to spend more time with PDCI. Conclusion The students of our institution seem to have a favourable opinion regarding the integrated system of teaching. The satisfaction with the conduct of examinations and its related variables is found to be high. A reduction in the number of block exams however is unpopular among the target group and they would appreciate a greater time allocation for subjects of PDCI and Pharmacology.

  15. Higher-order time integration schemes for the unsteady Navier-Stokes equations on unstructured meshes

    International Nuclear Information System (INIS)

    Jothiprasad, Giridhar; Mavriplis, Dimitri J.; Caughey, David A.

    2003-01-01

    The efficiency gains obtained using higher-order implicit Runge-Kutta (RK) schemes as compared with the second-order accurate backward difference schemes for the unsteady Navier-Stokes equations are investigated. Three different algorithms for solving the nonlinear system of equations arising at each time step are presented. The first algorithm (nonlinear multigrid, NMG) is a pseudo-time-stepping scheme which employs a nonlinear full approximation storage (FAS) agglomeration multigrid method to accelerate convergence. The other two algorithms are based on inexact Newton's methods. The linear system arising at each Newton step is solved using iterative/Krylov techniques and left preconditioning is used to accelerate convergence of the linear solvers. One of the methods (LMG) uses Richardson's iterative scheme for solving the linear system at each Newton step while the other (PGMRES) uses the generalized minimal residual method. Results demonstrating the relative superiority of these Newton's method based schemes are presented. Efficiency gains as high as 10 are obtained by combining the higher-order time integration schemes such as fourth-order Runge-Kutta (RK64) with the more efficient inexact Newton's method based schemes (LMG)

  16. Efficient Simulation of Compressible, Viscous Fluids using Multi-rate Time Integration

    Science.gov (United States)

    Mikida, Cory; Kloeckner, Andreas; Bodony, Daniel

    2017-11-01

    In the numerical simulation of problems of compressible, viscous fluids with single-rate time integrators, the global timestep used is limited to that of the finest mesh point or fastest physical process. This talk discusses the application of multi-rate Adams-Bashforth (MRAB) integrators to an overset mesh framework to solve compressible viscous fluid problems of varying scale with improved efficiency, with emphasis on the strategy of timescale separation and the application of the resulting numerical method to two sample problems: subsonic viscous flow over a cylinder and a viscous jet in crossflow. The results presented indicate the numerical efficacy of MRAB integrators, outline a number of outstanding code challenges, demonstrate the expected reduction in time enabled by MRAB, and emphasize the need for proper load balancing through spatial decomposition in order for parallel runs to achieve the predicted time-saving benefit. This material is based in part upon work supported by the Department of Energy, National Nuclear Security Administration, under Award Number DE-NA0002374.

  17. Space-time discontinuous Galerkin method for parabolic problems in time-dependent domains

    NARCIS (Netherlands)

    Janivita Joto Sudirham, J.J.S.; Sudirham, J.J.; van der Vegt, Jacobus J.W.; van Damme, Rudolf M.J.

    2004-01-01

    In this report a space-time discontinuous Galerkin (DG) finite element method for the solution of the advection-diffusion-reaction equation in time-dependent domains is presented and analyzed. The variational formulation is based on a combination of the space-time DG method developed by van der Vegt

  18. Real-Time Pore Pressure Detection: Indicators and Improved Methods

    OpenAIRE

    Jincai Zhang; Shangxian Yin

    2017-01-01

    High uncertainties may exist in the predrill pore pressure prediction in new prospects and deepwater subsalt wells; therefore, real-time pore pressure detection is highly needed to reduce drilling risks. The methods for pore pressure detection (the resistivity, sonic, and corrected d-exponent methods) are improved using the depth-dependent normal compaction equations to adapt to the requirements of the real-time monitoring. A new method is proposed to calculate pore pressure from the connecti...

  19. Integrated Monitoring of Mola mola Behaviour in Space and Time.

    Directory of Open Access Journals (Sweden)

    Lara L Sousa

    Full Text Available Over the last decade, ocean sunfish movements have been monitored worldwide using various satellite tracking methods. This study reports the near-real time monitoring of fine-scale (< 10 m behaviour of sunfish. The study was conducted in southern Portugal in May 2014 and involved satellite tags and underwater and surface robotic vehicles to measure both the movements and the contextual environment of the fish. A total of four individuals were tracked using custom-made GPS satellite tags providing geolocation estimates of fine-scale resolution. These accurate positions further informed sunfish areas of restricted search (ARS, which were directly correlated to steep thermal frontal zones. Simultaneously, and for two different occasions, an Autonomous Underwater Vehicle (AUV video-recorded the path of the tracked fish and detected buoyant particles in the water column. Importantly, the densities of these particles were also directly correlated to steep thermal gradients. Thus, both sunfish foraging behaviour (ARS and possibly prey densities, were found to be influenced by analogous environmental conditions. In addition, the dynamic structure of the water transited by the tracked individuals was described by a Lagrangian modelling approach. The model informed the distribution of zooplankton in the region, both horizontally and in the water column, and the resultant simulated densities positively correlated with sunfish ARS behaviour estimator (rs = 0.184, p<0.001. The model also revealed that tracked fish opportunistically displace with respect to subsurface current flow. Thus, we show how physical forcing and current structure provide a rationale for a predator's fine-scale behaviour observed over a two weeks in May 2014.

  20. A time-delayed method for controlling chaotic maps

    International Nuclear Information System (INIS)

    Chen Maoyin; Zhou Donghua; Shang Yun

    2005-01-01

    Combining the repetitive learning strategy and the optimality principle, this Letter proposes a time-delayed method to control chaotic maps. This method can effectively stabilize unstable periodic orbits within chaotic attractors in the sense of least mean square. Numerical simulations of some chaotic maps verify the effectiveness of this method

  1. Improving Music Genre Classification by Short Time Feature Integration

    DEFF Research Database (Denmark)

    Meng, Anders; Ahrendt, Peter; Larsen, Jan

    Many different short-time features (derived from 10-30ms of audio) have been proposed for music segmentation, retrieval and genre classification. Often the available time frame of the music to make a decision (the decision time horizon) is in the range of seconds instead of milliseconds...... or decisions from the classifier, e.g. majority voting) for music genre classification....

  2. Space-time discontinuous Galerkin finite element methods

    NARCIS (Netherlands)

    van der Vegt, Jacobus J.W.; Deconinck, H.; Ricchiuto, M.

    2006-01-01

    In these notes an introduction is given to space-time discontinuous Galerkin (DG) finite element methods for hyperbolic and parabolic conservation laws on time dependent domains. the space-time DG discretization is explained in detail, including the definition of the numerical fluxes and

  3. Integrating Security in Real-Time Embedded Systems

    Science.gov (United States)

    2017-04-26

    integration 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF a. REPORT b. ABSTRACT c. THIS PAGE ABSTRACT u u u SAR 18. NUMBER OF PAGES 12 19a. NAME... REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 The public reporting burden for this collection of information is estimated to average 1...Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arl ington, VA 22202-4302. Respondents should be aware that

  4. Detection of anatomical changes in lung cancer patients with 2D time-integrated, 2D time-resolved and 3D time-integrated portal dosimetry: a simulation study

    Science.gov (United States)

    Wolfs, Cecile J. A.; Brás, Mariana G.; Schyns, Lotte E. J. R.; Nijsten, Sebastiaan M. J. J. G.; van Elmpt, Wouter; Scheib, Stefan G.; Baltes, Christof; Podesta, Mark; Verhaegen, Frank

    2017-08-01

    The aim of this work is to assess the performance of 2D time-integrated (2D-TI), 2D time-resolved (2D-TR) and 3D time-integrated (3D-TI) portal dosimetry in detecting dose discrepancies between the planned and (simulated) delivered dose caused by simulated changes in the anatomy of lung cancer patients. For six lung cancer patients, tumor shift, tumor regression and pleural effusion are simulated by modifying their CT images. Based on the modified CT images, time-integrated (TI) and time-resolved (TR) portal dose images (PDIs) are simulated and 3D-TI doses are calculated. The modified and original PDIs and 3D doses are compared by a gamma analysis with various gamma criteria. Furthermore, the difference in the D 95% (ΔD 95%) of the GTV is calculated and used as a gold standard. The correlation between the gamma fail rate and the ΔD 95% is investigated, as well the sensitivity and specificity of all combinations of portal dosimetry method, gamma criteria and gamma fail rate threshold. On the individual patient level, there is a correlation between the gamma fail rate and the ΔD 95%, which cannot be found at the group level. The sensitivity and specificity analysis showed that there is not one combination of portal dosimetry method, gamma criteria and gamma fail rate threshold that can detect all simulated anatomical changes. This work shows that it will be more beneficial to relate portal dosimetry and DVH analysis on the patient level, rather than trying to quantify a relationship for a group of patients. With regards to optimizing sensitivity and specificity, different combinations of portal dosimetry method, gamma criteria and gamma fail rate should be used to optimally detect certain types of anatomical changes.

  5. Adaptive Mesh Refinement and Adaptive Time Integration for Electrical Wave Propagation on the Purkinje System.

    Science.gov (United States)

    Ying, Wenjun; Henriquez, Craig S

    2015-01-01

    A both space and time adaptive algorithm is presented for simulating electrical wave propagation in the Purkinje system of the heart. The equations governing the distribution of electric potential over the system are solved in time with the method of lines. At each timestep, by an operator splitting technique, the space-dependent but linear diffusion part and the nonlinear but space-independent reactions part in the partial differential equations are integrated separately with implicit schemes, which have better stability and allow larger timesteps than explicit ones. The linear diffusion equation on each edge of the system is spatially discretized with the continuous piecewise linear finite element method. The adaptive algorithm can automatically recognize when and where the electrical wave starts to leave or enter the computational domain due to external current/voltage stimulation, self-excitation, or local change of membrane properties. Numerical examples demonstrating efficiency and accuracy of the adaptive algorithm are presented.

  6. Adaptive Mesh Refinement and Adaptive Time Integration for Electrical Wave Propagation on the Purkinje System

    Directory of Open Access Journals (Sweden)

    Wenjun Ying

    2015-01-01

    Full Text Available A both space and time adaptive algorithm is presented for simulating electrical wave propagation in the Purkinje system of the heart. The equations governing the distribution of electric potential over the system are solved in time with the method of lines. At each timestep, by an operator splitting technique, the space-dependent but linear diffusion part and the nonlinear but space-independent reactions part in the partial differential equations are integrated separately with implicit schemes, which have better stability and allow larger timesteps than explicit ones. The linear diffusion equation on each edge of the system is spatially discretized with the continuous piecewise linear finite element method. The adaptive algorithm can automatically recognize when and where the electrical wave starts to leave or enter the computational domain due to external current/voltage stimulation, self-excitation, or local change of membrane properties. Numerical examples demonstrating efficiency and accuracy of the adaptive algorithm are presented.

  7. Simulating variable-density flows with time-consistent integration of Navier-Stokes equations

    Science.gov (United States)

    Lu, Xiaoyi; Pantano, Carlos

    2017-11-01

    In this talk, we present several features of a high-order semi-implicit variable-density low-Mach Navier-Stokes solver. A new formulation to solve pressure Poisson-like equation of variable-density flows is highlighted. With this formulation of the numerical method, we are able to solve all variables with a uniform order of accuracy in time (consistent with the time integrator being used). The solver is primarily designed to perform direct numerical simulations for turbulent premixed flames. Therefore, we also address other important elements, such as energy-stable boundary conditions, synthetic turbulence generation, and flame anchoring method. Numerical examples include classical non-reacting constant/variable-density flows, as well as turbulent premixed flames.

  8. Time-optimal control of nuclear reactor power with adaptive proportional- integral-feedforward gains

    International Nuclear Information System (INIS)

    Park, Moon Ghu; Cho, Nam Zin

    1993-01-01

    A time-optimal control method which consists of coarse and fine control stages is described here. During the coarse control stage, the maximum control effort (time-optimal) is used to direct the system toward the switching boundary which is set near the desired power level. At this boundary, the controller is switched to the fine control stage in which an adaptive proportional-integral-feedforward (PIF) controller is used to compensate for any unmodeled reactivity feedback effects. This fine control is also introduced to obtain a constructive method for determining the (adaptive) feedback gains against the sampling effect. The feedforward control term is included to suppress the over-or undershoot. The estimation and feedback of the temperature-induced reactivity is also discussed

  9. A magnetometer for the cryogen-free systems: extraction and integration method

    International Nuclear Information System (INIS)

    Tripathi, T.S.; Tewari, G.C.; Rastogi, A.K.

    2008-01-01

    We have developed a highly versatile low cost magnetometer that can be attached to the popular cryogen-free helium refrigerator systems for low temperature and high magnetic field measurements. The method of slow extraction of magnetized specimen and precise integration of voltages induced in the pickup coil assembly gives the magnetization. The drawing details of the various parts like extraction unit, pickup coil assembly, high quality integrator circuit and timing circuit will be presented and we shall demonstrate a bench top unit at the conference site. (author)

  10. Conservative fourth-order time integration of non-linear dynamic systems

    DEFF Research Database (Denmark)

    Krenk, Steen

    2015-01-01

    the resulting time integrals of the inertia and stiffness terms via integration by parts. This process introduces the time derivatives of the state space variables, and these are then substituted from the original state-space differential equations. The resulting discrete form of the state-space equations......An energy conserving time integration algorithm with fourth-order accuracy is developed for dynamic systems with nonlinear stiffness. The discrete formulation is derived by integrating the differential state-space equations of motion over the integration time increment, and then evaluating...... integration of oscillatory systems with only a few integration points per period. Three numerical examples demonstrate the high accuracy of the algorithm. (C) 2015 Elsevier B.V. All rights reserved....

  11. Phase-integral method allowing nearlying transition points

    CERN Document Server

    Fröman, Nanny

    1996-01-01

    The efficiency of the phase-integral method developed by the present au­ thors has been shown both analytically and numerically in many publica­ tions. With the inclusion of supplementary quantities, closely related to new Stokes constants and obtained with the aid of comparison equation technique, important classes of problems in which transition points may approach each other become accessible to accurate analytical treatment. The exposition in this monograph is of a mathematical nature but has important physical applications, some examples of which are found in the adjoined papers. Thus, we would like to emphasize that, although we aim at mathematical rigor, our treatment is made primarily with physical needs in mind. To introduce the reader into the background of this book, we start by de­ scribing the phase-integral approximation of arbitrary order generated from an unspecified base function. This is done in Chapter 1, which is reprinted, after minor changes, from a review article. Chapter 2 is the re...

  12. ARE METHODS USED TO INTEGRATE STANDARDIZED MANAGEMENT SYSTEMS A CONDITIONING FACTOR OF THE LEVEL OF INTEGRATION? AN EMPIRICAL STUDY

    Directory of Open Access Journals (Sweden)

    Merce Bernardo

    2011-09-01

    Full Text Available Organizations are increasingly implementing multiple Management System Standards (M SSs and considering managing the related Management Systems (MSs as a single system.The aim of this paper is to analyze if methods us ed to integrate standardized MSs condition the level of integration of those MSs. A descriptive methodology has been applied to 343 Spanish organizations registered to, at least, ISO 9001 and ISO 14001. Seven groups of these organizations using different combinations of methods have been analyzed Results show that these organizations have a high level of integration of their MSs. The most common method used, was the process map. Organizations using a combination of different methods achieve higher levels of integration than those using a single method. However, no evidence has been found to confirm the relationship between the method used and the integration level achieved.

  13. Involving stakeholders in building integrated fisheries models using Bayesian methods

    DEFF Research Database (Denmark)

    Haapasaari, Päivi Elisabet; Mäntyniemi, Samu; Kuikka, Sakari

    2013-01-01

    A participatory Bayesian approach was used to investigate how the views of stakeholders could be utilized to develop models to help understand the Central Baltic herring fishery. In task one, we applied the Bayesian belief network methodology to elicit the causal assumptions of six stakeholders...... on factors that influence natural mortality, growth, and egg survival of the herring stock in probabilistic terms. We also integrated the expressed views into a meta-model using the Bayesian model averaging (BMA) method. In task two, we used influence diagrams to study qualitatively how the stakeholders frame...... the potential of the study to contribute to the development of participatory modeling practices. It is concluded that the subjective perspective to knowledge, that is fundamental in Bayesian theory, suits participatory modeling better than a positivist paradigm that seeks the objective truth. The methodology...

  14. Integrating methods to optimize circumplex description and comparison of groups.

    Science.gov (United States)

    Wright, Aidan G C; Pincus, Aaron L; Conroy, David E; Hilsenroth, Mark J

    2009-07-01

    Using the interpersonal circumplex as an exemplar, this article serves as a methodological primer for integrating techniques of group description and comparison when employing circumplex-based assessment instruments. Circular statistics (Mardia & Jupp, 1999) and the structural summary method (Gurtman & Balakrishnan, 1998) each offer unique and incrementally useful information when applied to group-level data on circumplex measures. Circular statistics offer a set of parameters that are conceptually similar to their linear equivalents (i.e., mean, variance, and confidence intervals). In interpersonal circumplex models, these parameters each provide specific information regarding substantive theme and group homogeneity and allow for the statistical comparison of groups based on the geometry of the circular model. In a similar fashion, the structural summary method for circumplex data provides a set of parameters that complement circular statistics by offering measures of the interpersonal prototypicality of the group profile, levels of profile differentiation and elevation, and a weighted measure of substantive theme. Used in conjunction, these methods offer more information than is available using either in isolation. We provide 4 examples to demonstrate the complementary information the 2 methods provide for assessments employing interpersonal circumplex measures. These examples will allow investigators to generalize the methods to other personality assessment domains in which circumplex models are utilized, such as emotion and vocational preference. [Supplementary materials are available for this article. Go to the publisher's online edition of the Journal of Personality Assessment for the following free supplemental resources: an Excel file that calculates the circular statistics and structural summary information described in this article using manually entered octant scores from up to 500 participants.

  15. A Novel Time Synchronization Method for Dynamic Reconfigurable Bus

    Directory of Open Access Journals (Sweden)

    Zhang Weigong

    2016-01-01

    Full Text Available UM-BUS is a novel dynamically reconfigurable high-speed serial bus for embedded systems. It can achieve fault tolerance by detecting the channel status in real time and reconfigure dynamically at run-time. The bus supports direct interconnections between up to eight master nodes and multiple slave nodes. In order to solve the time synchronization problem among master nodes, this paper proposes a novel time synchronization method, which can meet the requirement of time precision in UM-BUS. In this proposed method, time is firstly broadcasted through time broadcast packets. Then, the transmission delay and time deviations via three handshakes during link self-checking and channel detection can be worked out referring to the IEEE 1588 protocol. Thereby, each node calibrates its own time according to the broadcasted time. The proposed method has been proved to meet the requirement of real-time time synchronization. The experimental results show that the synchronous precision can achieve a bias less than 20 ns.

  16. Parallel, explicit, and PWTD-enhanced time domain volume integral equation solver

    KAUST Repository

    Liu, Yang

    2013-07-01

    Time domain volume integral equations (TDVIEs) are useful for analyzing transient scattering from inhomogeneous dielectric objects in applications as varied as photonics, optoelectronics, and bioelectromagnetics. TDVIEs typically are solved by implicit marching-on-in-time (MOT) schemes [N. T. Gres et al., Radio Sci., 36, 379-386, 2001], requiring the solution of a system of equations at each and every time step. To reduce the computational cost associated with such schemes, [A. Al-Jarro et al., IEEE Trans. Antennas Propagat., 60, 5203-5215, 2012] introduced an explicit MOT-TDVIE method that uses a predictor-corrector technique to stably update field values throughout the scatterer. By leveraging memory-efficient nodal spatial discretization and scalable parallelization schemes [A. Al-Jarro et al., in 28th Int. Rev. Progress Appl. Computat. Electromagn., 2012], this solver has been successfully applied to the analysis of scattering phenomena involving 0.5 million spatial unknowns. © 2013 IEEE.

  17. Kwong-Wong-type integral equation on time scales

    Directory of Open Access Journals (Sweden)

    Baoguo Jia

    2011-09-01

    Full Text Available Consider the second-order nonlinear dynamic equation $$ [r(tx^Delta(ho(t]^Delta+p(tf(x(t=0, $$ where $p(t$ is the backward jump operator. We obtain a Kwong-Wong-type integral equation, that is: If $x(t$ is a nonoscillatory solution of the above equation on $[T_0,infty$, then the integral equation $$ frac{r^sigma(tx^Delta(t}{f(x^sigma(t} =P^sigma(t+int^infty_{sigma(t}frac{r^sigma(s [int^1_0f'(x_h(sdh][x^Delta(s]^2}{f(x(s f(x^sigma(s}Delta s $$ is satisfied for $tgeq T_0$, where $P^sigma(t=int^infty_{sigma(t}p(sDelta s$, and $x_h(s=x(s+hmu(sx^Delta(s$. As an application, we show that the superlinear dynamic equation $$ [r(tx^{Delta}(ho(t]^Delta+p(tf(x(t=0, $$ is oscillatory, under certain conditions.

  18. Optimization of integration limit in the charge comparison method based on signal shape function

    International Nuclear Information System (INIS)

    Wang, Zhonghai; Zeng, Jun; Zhu, Tonghua; Wang, Yudong; Yang, Chaowen; Zhou, Rong

    2014-01-01

    A novel method is proposed to analyze neutron and gamma-ray signal shapes in liquid scintillation detectors. Specifically, the signal shape functions for a BC501 detector were characterized and a statistical model was used to analyze the discrimination of neutrons and gamma rays. The model varied the starting points of tail integration in the charge comparison method (CCM), and an optimized starting point was determined. Experimental measurements were performed to verify the model, and the results indicated good agreement. For a BC501 scintillator with 8.07 ns and 74.63 ns decay time constants we found optimal time to start the tail integration at 24 ns past the decay maximum

  19. Time evolution of the wave equation using rapid expansion method

    KAUST Repository

    Pestana, Reynam C.

    2010-07-01

    Forward modeling of seismic data and reverse time migration are based on the time evolution of wavefields. For the case of spatially varying velocity, we have worked on two approaches to evaluate the time evolution of seismic wavefields. An exact solution for the constant-velocity acoustic wave equation can be used to simulate the pressure response at any time. For a spatially varying velocity, a one-step method can be developed where no intermediate time responses are required. Using this approach, we have solved for the pressure response at intermediate times and have developed a recursive solution. The solution has a very high degree of accuracy and can be reduced to various finite-difference time-derivative methods, depending on the approximations used. Although the two approaches are closely related, each has advantages, depending on the problem being solved. © 2010 Society of Exploration Geophysicists.

  20. Exploiting natural scale separation with efficient asynchronous numerical time integration

    Science.gov (United States)

    Rubel, Michael; Leonard, Anthony

    2002-11-01

    The systems of ordinary differential equations that arise in problems of computational fluid mechanics often exhibit time-scale separation in addition to being stiff: each solution variable acts at a small range of time scales relative to the problem as a whole. When only a small fraction of the solution variables act at the fastest scales, conventional timestepping algorithms waste a great deal of effort over-resolving the slow variables. In this talk, I will discuss numerical strategies to take advantage of time-scale separation for more efficient computing. In particular, results from the dead-reckoning algorithm will be presented.

  1. Dynamical grid method for time dependent simulations of axisymmetric instabilities in tokamaks

    International Nuclear Information System (INIS)

    Jardin, S.C.; Johnson, J.L.; Greene, J.M.; Grimm, R.C.

    1977-07-01

    A natural nonorthogonal time-dependent coordinate transformation based on the magnetic field lines is utilized for the numerical integration of the two-dimensional axisymmetric time-dependent ideal MHD equations in tokamak geometry. The finite-difference grid is treated as a dynamical variable, and its equations of motion are integrated simultaneously with those for the fluid and magnetic field. The method is applicable to tokamak systems of arbitrary pressure and cross section. It is particularly useful for the nearly incompressible ideal MHD modes which are of interest in tokamak stability studies

  2. Computational morphodynamics of plants: integrating development over space and time.

    Science.gov (United States)

    Roeder, Adrienne H K; Tarr, Paul T; Tobin, Cory; Zhang, Xiaolan; Chickarmane, Vijay; Cunha, Alexandre; Meyerowitz, Elliot M

    2011-04-01

    The emerging field of computational morphodynamics aims to understand the changes that occur in space and time during development by combining three technical strategies: live imaging to observe development as it happens; image processing and analysis to extract quantitative information; and computational modelling to express and test time-dependent hypotheses. The strength of the field comes from the iterative and combined use of these techniques, which has provided important insights into plant development.

  3. SEASONAL AUTOREGRESSIVE INTEGRATED MOVING AVERAGE MODEL FOR PRECIPITATION TIME SERIES

    OpenAIRE

    Yan Wang; Meng Gao; Xinghua Chang; Xiyong Hou

    2012-01-01

    Predicting the trend of precipitation is a difficult task in meteorology and environmental sciences. Statistical approaches from time series analysis provide an alternative way for precipitation prediction. The ARIMA model incorporating seasonal characteristics, which is referred to as seasonal ARIMA model was presented. The time series data is the monthly precipitation data in Yantai, China and the period is from 1961 to 2011. The model was denoted as SARIMA (1, 0, 1) (0, 1, 1)12 in this stu...

  4. System and method for traffic signal timing estimation

    KAUST Repository

    Dumazert, Julien

    2015-12-30

    A method and system for estimating traffic signals. The method and system can include constructing trajectories of probe vehicles from GPS data emitted by the probe vehicles, estimating traffic signal cycles, combining the estimates, and computing the traffic signal timing by maximizing a scoring function based on the estimates. Estimating traffic signal cycles can be based on transition times of the probe vehicles starting after a traffic signal turns green.

  5. Integrated method for the measurement of trace nitrogenous atmospheric bases

    Directory of Open Access Journals (Sweden)

    D. Key

    2011-12-01

    Full Text Available Nitrogenous atmospheric bases are thought to play a key role in the global nitrogen cycle, but their sources, transport, and sinks remain poorly understood. Of the many methods available to measure such compounds in ambient air, few meet the current need of being applicable to the complete range of potential analytes and fewer still are convenient to implement using instrumentation that is standard to most laboratories. In this work, an integrated approach to measuring trace, atmospheric, gaseous nitrogenous bases has been developed and validated. The method uses a simple acid scrubbing step to capture and concentrate the bases as their phosphite salts, which then are derivatized and analyzed using GC/MS and/or LC/MS. The advantages of both techniques in the context of the present measurements are discussed. The approach is sensitive, selective, reproducible, as well as convenient to implement and has been validated for different sampling strategies. The limits of detection for the families of tested compounds are suitable for ambient measurement applications (e.g., methylamine, 1 pptv; ethylamine, 2 pptv; morpholine, 1 pptv; aniline, 1 pptv; hydrazine, 0.1 pptv; methylhydrazine, 2 pptv, as supported by field measurements in an urban park and in the exhaust of on-road vehicles.

  6. Stress estimation in reservoirs using an integrated inverse method

    Science.gov (United States)

    Mazuyer, Antoine; Cupillard, Paul; Giot, Richard; Conin, Marianne; Leroy, Yves; Thore, Pierre

    2018-05-01

    Estimating the stress in reservoirs and their surroundings prior to the production is a key issue for reservoir management planning. In this study, we propose an integrated inverse method to estimate such initial stress state. The 3D stress state is constructed with the displacement-based finite element method assuming linear isotropic elasticity and small perturbations in the current geometry of the geological structures. The Neumann boundary conditions are defined as piecewise linear functions of depth. The discontinuous functions are determined with the CMA-ES (Covariance Matrix Adaptation Evolution Strategy) optimization algorithm to fit wellbore stress data deduced from leak-off tests and breakouts. The disregard of the geological history and the simplified rheological assumptions mean that only the stress field, statically admissible and matching the wellbore data should be exploited. The spatial domain of validity of this statement is assessed by comparing the stress estimations for a synthetic folded structure of finite amplitude with a history constructed assuming a viscous response.

  7. Approximations to the Probability of Failure in Random Vibration by Integral Equation Methods

    DEFF Research Database (Denmark)

    Nielsen, Søren R.K.; Sørensen, John Dalsgaard

    Close approximations to the first passage probability of failure in random vibration can be obtained by integral equation methods. A simple relation exists between the first passage probability density function and the distribution function for the time interval spent below a barrier before...... passage probability density. The results of the theory agree well with simulation results for narrow banded processes dominated by a single frequency, as well as for bimodal processes with 2 dominating frequencies in the structural response....... outcrossing. An integral equation for the probability density function of the time interval is formulated, and adequate approximations for the kernel are suggested. The kernel approximation results in approximate solutions for the probability density function of the time interval, and hence for the first...

  8. A Blade Tip Timing Method Based on a Microwave Sensor

    Directory of Open Access Journals (Sweden)

    Jilong Zhang

    2017-05-01

    Full Text Available Blade tip timing is an effective method for blade vibration measurements in turbomachinery. This method is increasing in popularity because it is non-intrusive and has several advantages over the conventional strain gauge method. Different kinds of sensors have been developed for blade tip timing, including optical, eddy current and capacitance sensors. However, these sensors are unsuitable in environments with contaminants or high temperatures. Microwave sensors offer a promising potential solution to overcome these limitations. In this article, a microwave sensor-based blade tip timing measurement system is proposed. A patch antenna probe is used to transmit and receive the microwave signals. The signal model and process method is analyzed. Zero intermediate frequency structure is employed to maintain timing accuracy and dynamic performance, and the received signal can also be used to measure tip clearance. The timing method uses the rising and falling edges of the signal and an auto-gain control circuit to reduce the effect of tip clearance change. To validate the accuracy of the system, it is compared experimentally with a fiber optic tip timing system. The results show that the microwave tip timing system achieves good accuracy.

  9. Optimizing process and equipment efficiency using integrated methods

    Science.gov (United States)

    D'Elia, Michael J.; Alfonso, Ted F.

    1996-09-01

    The semiconductor manufacturing industry is continually riding the edge of technology as it tries to push toward higher design limits. Mature fabs must cut operating costs while increasing productivity to remain profitable and cannot justify large capital expenditures to improve productivity. Thus, they must push current tool production capabilities to cut manufacturing costs and remain viable. Working to continuously improve mature production methods requires innovation. Furthermore, testing and successful implementation of these ideas into modern production environments require both supporting technical data and commitment from those working with the process daily. At AMD, natural work groups (NWGs) composed of operators, technicians, engineers, and supervisors collaborate to foster innovative thinking and secure commitment. Recently, an AMD NWG improved equipment cycle time on the Genus tungsten silicide (WSi) deposition system. The team used total productive manufacturing (TPM) to identify areas for process improvement. Improved in-line equipment monitoring was achieved by constructing a real time overall equipment effectiveness (OEE) calculator which tracked equipment down, idle, qualification, and production times. In-line monitoring results indicated that qualification time associated with slow Inspex turn-around time and machine downtime associated with manual cleans contributed greatly to reduced availability. Qualification time was reduced by 75% by implementing a new Inspex monitor pre-staging technique. Downtime associated with manual cleans was reduced by implementing an in-situ plasma etch back to extend the time between manual cleans. A designed experiment was used to optimize the process. Time between 18 hour manual cleans has been improved from every 250 to every 1500 cycles. Moreover defect density realized a 3X improvement. Overall, the team achieved a 35% increase in tool availability. This paper details the above strategies and accomplishments.

  10. Time, dynamics and chaos. Integrating Poincare's "non-integrable systems"

    Energy Technology Data Exchange (ETDEWEB)

    Prigogine, I.

    1990-01-01

    This report discusses the nature of time. The author attempts to resolve the conflict between the concept of time reversibility in classical and quantum mechanics with the macroscopic world's irreversibility of time. (LSP)

  11. Time interval approach to the pulsed neutron logging method

    International Nuclear Information System (INIS)

    Zhao Jingwu; Su Weining

    1994-01-01

    The time interval of neighbouring neutrons emitted from a steady state neutron source can be treated as that from a time-dependent neutron source. In the rock space, the neutron flux is given by the neutron diffusion equation and is composed of an infinite terms. Each term s composed of two die-away curves. The delay action is discussed and used to measure the time interval with only one detector in the experiment. Nuclear reactions with the time distribution due to different types of radiations observed in the neutron well-logging methods are presented with a view to getting the rock nuclear parameters from the time interval technique

  12. A pseudospectral collocation time-domain method for diffractive optics

    DEFF Research Database (Denmark)

    Dinesen, P.G.; Hesthaven, J.S.; Lynov, Jens-Peter

    2000-01-01

    We present a pseudospectral method for the analysis of diffractive optical elements. The method computes a direct time-domain solution of Maxwell's equations and is applied to solving wave propagation in 2D diffractive optical elements. (C) 2000 IMACS. Published by Elsevier Science B.V. All rights...

  13. Dead time corrections using the backward extrapolation method

    Energy Technology Data Exchange (ETDEWEB)

    Gilad, E., E-mail: gilade@bgu.ac.il [The Unit of Nuclear Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel); Dubi, C. [Department of Physics, Nuclear Research Center NEGEV (NRCN), Beer-Sheva 84190 (Israel); Geslot, B.; Blaise, P. [DEN/CAD/DER/SPEx/LPE, CEA Cadarache, Saint-Paul-les-Durance 13108 (France); Kolin, A. [Department of Physics, Nuclear Research Center NEGEV (NRCN), Beer-Sheva 84190 (Israel)

    2017-05-11

    Dead time losses in neutron detection, caused by both the detector and the electronics dead time, is a highly nonlinear effect, known to create high biasing in physical experiments as the power grows over a certain threshold, up to total saturation of the detector system. Analytic modeling of the dead time losses is a highly complicated task due to the different nature of the dead time in the different components of the monitoring system (e.g., paralyzing vs. non paralyzing), and the stochastic nature of the fission chains. In the present study, a new technique is introduced for dead time corrections on the sampled Count Per Second (CPS), based on backward extrapolation of the losses, created by increasingly growing artificially imposed dead time on the data, back to zero. The method has been implemented on actual neutron noise measurements carried out in the MINERVE zero power reactor, demonstrating high accuracy (of 1–2%) in restoring the corrected count rate. - Highlights: • A new method for dead time corrections is introduced and experimentally validated. • The method does not depend on any prior calibration nor assumes any specific model. • Different dead times are imposed on the signal and the losses are extrapolated to zero. • The method is implemented and validated using neutron measurements from the MINERVE. • Result show very good correspondence to empirical results.

  14. Space-time discontinuous Galerkin method for compressible flow

    NARCIS (Netherlands)

    Klaij, C.M.

    2006-01-01

    The space-time discontinuous Galerkin method allows the simulation of compressible flow in complex aerodynamical applications requiring moving, deforming and locally refined meshes. This thesis contains the space-time discretization of the physical model, a fully explicit solver for the resulting

  15. Generalization of integration methods for complex inelastic constitutive equations with state variables

    Energy Technology Data Exchange (ETDEWEB)

    Youn, Sam Son; Lee, Soon Bok [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Kim, Jong Bum; Lee, Hyung Yeon; Yoo, Bong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2000-05-01

    The prediction of the inelastic behavior of the structure is an essential part of reliability assessment procedure, because most of the failures are induced by the inelastic deformation, such as creep and plastic deformation. During decades, there has been much progress in understanding of the inelastic behavior of the materials and a lot of inelastic constitutive equations have been developed. These equations consist of the definition of inelastic strain and the evolution of the state variables introduced to quantify the irreversible processes occurred in the material. With respect to the definition of the inelastic strain, the inelastic constitutive models can be categorized into elastoplastic model, unified viscoplastic model and separated viscoplastic model and the different integration methods have been applied to each category. In the present investigation, the generalized integration method applicable for various types of constitutive equations is developed and implemented into ABAQUS by means of UMAT subroutine. The solution of the non-linear system of algebraic equations arising from time discretization with the generalized midpoint rule is determined using line-search technique in combination with Newton method. The strategy to control the time increment for the improvement of the accuracy of the numerical integration is proposed. Several numerical examples are considered to demonstrate the efficiency and applicably of the present method.

  16. Immersed Boundary-Lattice Boltzmann Method Using Two Relaxation Times

    Directory of Open Access Journals (Sweden)

    Kosuke Hayashi

    2012-06-01

    Full Text Available An immersed boundary-lattice Boltzmann method (IB-LBM using a two-relaxation time model (TRT is proposed. The collision operator in the lattice Boltzmann equation is modeled using two relaxation times. One of them is used to set the fluid viscosity and the other is for numerical stability and accuracy. A direct-forcing method is utilized for treatment of immersed boundary. A multi-direct forcing method is also implemented to precisely satisfy the boundary conditions at the immersed boundary. Circular Couette flows between a stationary cylinder and a rotating cylinder are simulated for validation of the proposed method. The method is also validated through simulations of circular and spherical falling particles. Effects of the functional forms of the direct-forcing term and the smoothed-delta function, which interpolates the fluid velocity to the immersed boundary and distributes the forcing term to fixed Eulerian grid points, are also examined. As a result, the following conclusions are obtained: (1 the proposed method does not cause non-physical velocity distribution in circular Couette flows even at high relaxation times, whereas the single-relaxation time (SRT model causes a large non-physical velocity distortion at a high relaxation time, (2 the multi-direct forcing reduces the errors in the velocity profile of a circular Couette flow at a high relaxation time, (3 the two-point delta function is better than the four-point delta function at low relaxation times, but worse at high relaxation times, (4 the functional form of the direct-forcing term does not affect predictions, and (5 circular and spherical particles falling in liquids are well predicted by using the proposed method both for two-dimensional and three-dimensional cases.

  17. A finite element method for SSI time history calculations

    International Nuclear Information System (INIS)

    Ni, X.M.; Gantenbein, F.; Petit, M.

    1989-01-01

    The method which is proposed is based on a finite element modelisation for the soil and the structure and a time history calculation. It has been developed for plane and axisymmetric geometries. The principle of this method will be presented, then applications will be given, first to a linear calculation for which results will be compared to those obtained by standard methods. Then results for a non linear behavior will be described

  18. Spectral methods for time dependent partial differential equations

    Science.gov (United States)

    Gottlieb, D.; Turkel, E.

    1983-01-01

    The theory of spectral methods for time dependent partial differential equations is reviewed. When the domain is periodic Fourier methods are presented while for nonperiodic problems both Chebyshev and Legendre methods are discussed. The theory is presented for both hyperbolic and parabolic systems using both Galerkin and collocation procedures. While most of the review considers problems with constant coefficients the extension to nonlinear problems is also discussed. Some results for problems with shocks are presented.

  19. Time-resolved fluorescence methods (IUPAC Technical Report)

    OpenAIRE

    Lemmetyinen, Helge; Tkachenko, Nikolai V.; Valeur, Bernard; Hotta, Jun-ichi; AMELOOT, Marcel; Ernsting, Nikolaus P.; Gustavsson, Thomas; Boens, Noel

    2014-01-01

    This IUPAC Technical Report describes and compares the currently applied methods for measuring and analyzing time-resolved fluorescence traces using phase-modulation fluorometry as well as pulse fluorometry (direct emission decay measurements, single-photon timing, streak camera measurements, fluorescence upconversion, and optical Kerr gating). The paper starts with a brief description of the basic principles for time and frequency domain fluorescence spectroscopy. The fundamental equations a...

  20. Real-Time Integrated Re-scheduling for Tramway Operations

    NARCIS (Netherlands)

    Cheung, Kam-Fung; Kuo, Yong-Hong; Lai, S.W.; Leung, Janny M.Y.

    2018-01-01

    Our work aims to develop practical solution approaches for real-time dispatch of crews and vehicles for disruption management. The practical motivation for our research arose from the operations of a public tramway system in Hong Kong. The tram system shares the road with other vehicular traffic in

  1. Representing real time semantics for distributed application integration

    NARCIS (Netherlands)

    Poon, P.M.S.; Dillon, T.S.; Chang, E.; Feng, L.

    Traditional real time system design and development are driven by technological requirements. With the ever growing complexity of requirements and the advances in software design, the alignment of focus has gradually been shifted to the perspective of business and industrial needs. This paper

  2. Integrated Formal Analysis of Timed-Triggered Ethernet

    Science.gov (United States)

    Dutertre, Bruno; Shankar, Nstarajan; Owre, Sam

    2012-01-01

    We present new results related to the verification of the Timed-Triggered Ethernet (TTE) clock synchronization protocol. This work extends previous verification of TTE based on model checking. We identify a suboptimal design choice in a compression function used in clock synchronization, and propose an improvement. We compare the original design and the improved definition using the SAL model checker.

  3. Canonical integration and analysis of periodic maps using non-standard analysis and life methods

    Energy Technology Data Exchange (ETDEWEB)

    Forest, E.; Berz, M.

    1988-06-01

    We describe a method and a way of thinking which is ideally suited for the study of systems represented by canonical integrators. Starting with the continuous description provided by the Hamiltonians, we replace it by a succession of preferably canonical maps. The power series representation of these maps can be extracted with a computer implementation of the tools of Non-Standard Analysis and analyzed by the same tools. For a nearly integrable system, we can define a Floquet ring in a way consistent with our needs. Using the finite time maps, the Floquet ring is defined only at the locations s/sub i/ where one perturbs or observes the phase space. At most the total number of locations is equal to the total number of steps of our integrator. We can also produce pseudo-Hamiltonians which describe the motion induced by these maps. 15 refs., 1 fig.

  4. Vlasov and drift kinetic simulation methods based on the symplectic integrator

    International Nuclear Information System (INIS)

    Watanabe, T.-H.; Sugama, H.

    2004-02-01

    Vlasov and drift kinetic simulation methods based on the symplectic integrators are benchmarked for test problems on the linear and nonlinear Landau dampings and the Kelvin-Helmholtz (K-H) instability. The explicit symplectic integrator for the separable Hamiltonian straightforwardly leads to generalization of the splitting scheme for the Vlasov-Poisson system. The Nth-order version improves the total energy conservation decreasing the error as ∝ Δt N where Δt denotes the time step size. An Eulerian drift kinetic simulation scheme derived from the implicit symplectic integrator for the non-separable Hamiltonian exactly satisfies the conservation of the energy and the enstrophy in the K-H instability, and results in successful application to the plasma echo. (author)

  5. A time-dependent neutron transport method of characteristics formulation with time derivative propagation

    International Nuclear Information System (INIS)

    Hoffman, Adam J.; Lee, John C.

    2016-01-01

    A new time-dependent Method of Characteristics (MOC) formulation for nuclear reactor kinetics was developed utilizing angular flux time-derivative propagation. This method avoids the requirement of storing the angular flux at previous points in time to represent a discretized time derivative; instead, an equation for the angular flux time derivative along 1D spatial characteristics is derived and solved concurrently with the 1D transport characteristic equation. This approach allows the angular flux time derivative to be recast principally in terms of the neutron source time derivatives, which are approximated to high-order accuracy using the backward differentiation formula (BDF). This approach, called Source Derivative Propagation (SDP), drastically reduces the memory requirements of time-dependent MOC relative to methods that require storing the angular flux. An SDP method was developed for 2D and 3D applications and implemented in the computer code DeCART in 2D. DeCART was used to model two reactor transient benchmarks: a modified TWIGL problem and a C5G7 transient. The SDP method accurately and efficiently replicated the solution of the conventional time-dependent MOC method using two orders of magnitude less memory.

  6. Financial time series analysis based on information categorization method

    Science.gov (United States)

    Tian, Qiang; Shang, Pengjian; Feng, Guochen

    2014-12-01

    The paper mainly applies the information categorization method to analyze the financial time series. The method is used to examine the similarity of different sequences by calculating the distances between them. We apply this method to quantify the similarity of different stock markets. And we report the results of similarity in US and Chinese stock markets in periods 1991-1998 (before the Asian currency crisis), 1999-2006 (after the Asian currency crisis and before the global financial crisis), and 2007-2013 (during and after global financial crisis) by using this method. The results show the difference of similarity between different stock markets in different time periods and the similarity of the two stock markets become larger after these two crises. Also we acquire the results of similarity of 10 stock indices in three areas; it means the method can distinguish different areas' markets from the phylogenetic trees. The results show that we can get satisfactory information from financial markets by this method. The information categorization method can not only be used in physiologic time series, but also in financial time series.

  7. The Performance Analysis of a Real-Time Integrated INS/GPS Vehicle Navigation System with Abnormal GPS Measurement Elimination

    Science.gov (United States)

    Chiang, Kai-Wei; Duong, Thanh Trung; Liao, Jhen-Kai

    2013-01-01

    The integration of an Inertial Navigation System (INS) and the Global Positioning System (GPS) is common in mobile mapping and navigation applications to seamlessly determine the position, velocity, and orientation of the mobile platform. In most INS/GPS integrated architectures, the GPS is considered to be an accurate reference with which to correct for the systematic errors of the inertial sensors, which are composed of biases, scale factors and drift. However, the GPS receiver may produce abnormal pseudo-range errors mainly caused by ionospheric delay, tropospheric delay and the multipath effect. These errors degrade the overall position accuracy of an integrated system that uses conventional INS/GPS integration strategies such as loosely coupled (LC) and tightly coupled (TC) schemes. Conventional tightly coupled INS/GPS integration schemes apply the Klobuchar model and the Hopfield model to reduce pseudo-range delays caused by ionospheric delay and tropospheric delay, respectively, but do not address the multipath problem. However, the multipath effect (from reflected GPS signals) affects the position error far more significantly in a consumer-grade GPS receiver than in an expensive, geodetic-grade GPS receiver. To avoid this problem, a new integrated INS/GPS architecture is proposed. The proposed method is described and applied in a real-time integrated system with two integration strategies, namely, loosely coupled and tightly coupled schemes, respectively. To verify the effectiveness of the proposed method, field tests with various scenarios are conducted and the results are compared with a reliable reference system. PMID:23955434

  8. Electric vehicle integration in a real-time market

    DEFF Research Database (Denmark)

    Pedersen, Anders Bro

    with an externally simulated model of the power grid, it is be possible, in real-time, to simulate the impact of EV charging and help to identify bottlenecks in the system. In EDISON the vehicles are aggregated using an entity called a Virtual Power Plant (VPP); a central server monitoring and controlling...... the distributed energy resources registered with it, in order to make them appear as a single producer in the eyes of the market. Although the concept of a VPP is used within the EcoGrid EU project, the idea of more individual control is introduced through a new proposed real-time electricity market, where...... the consumers will have direct access to the current price. As opposed to the hourly spot-price market of today, the real-time market see price updates as often as every couple of minutes. To allow the individual resources to react to these changes, independent of each other, so called “smart controllers...

  9. Effects of Integrating and Non-Integrating Reprogramming Methods on Copy Number Variation and Genomic Stability of Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Kang, Xiangjin; Yu, Qian; Huang, Yuling; Song, Bing; Chen, Yaoyong; Gao, Xingcheng; He, Wenyin; Sun, Xiaofang; Fan, Yong

    2015-01-01

    Human-induced pluripotent stem cells (iPSCs) are derived from differentiated somatic cells using defined factors and provide a renewable source of autologous cells for cell therapy. Many reprogramming methods have been employed to generate human iPSCs, including the use of integrating vectors and non-integrating vectors. Maintenance of the genomic integrity of iPSCs is highly desirable if the cells are to be used in clinical applications. Here, using the Affymetrix Cytoscan HD array, we investigated the genomic aberration profiles of 19 human cell lines: 5 embryonic stem cell (ESC) lines, 6 iPSC lines derived using integrating vectors ("integrating iPSC lines"), 6 iPSC lines derived using non-integrating vectors ("non-integrating iPSC lines"), and the 2 parental cell lines from which the iPSCs were derived. The genome-wide copy number variation (CNV), loss of heterozygosity (LOH) and mosaicism patterns of integrating and non-integrating iPSC lines were investigated. The maximum sizes of CNVs in the genomes of the integrating iPSC lines were 20 times higher than those of the non-integrating iPSC lines. Moreover, the total number of CNVs was much higher in integrating iPSC lines than in other cell lines. The average numbers of novel CNVs with a low degree of overlap with the DGV and of likely pathogenic CNVs with a high degree of overlap with the ISCA (International Symposium on Computer Architecture) database were highest in integrating iPSC lines. Different single nucleotide polymorphisms (SNP) calls revealed that, using the parental cell genotype as a reference, integrating iPSC lines displayed more single nucleotide variations and mosaicism than did non-integrating iPSC lines. This study describes the genome stability of human iPSCs generated using either a DNA-integrating or non-integrating reprogramming method, of the corresponding somatic cells, and of hESCs. Our results highlight the importance of using a high-resolution method to monitor genomic aberrations

  10. Effects of Integrating and Non-Integrating Reprogramming Methods on Copy Number Variation and Genomic Stability of Human Induced Pluripotent Stem Cells.

    Directory of Open Access Journals (Sweden)

    Xiangjin Kang

    Full Text Available Human-induced pluripotent stem cells (iPSCs are derived from differentiated somatic cells using defined factors and provide a renewable source of autologous cells for cell therapy. Many reprogramming methods have been employed to generate human iPSCs, including the use of integrating vectors and non-integrating vectors. Maintenance of the genomic integrity of iPSCs is highly desirable if the cells are to be used in clinical applications. Here, using the Affymetrix Cytoscan HD array, we investigated the genomic aberration profiles of 19 human cell lines: 5 embryonic stem cell (ESC lines, 6 iPSC lines derived using integrating vectors ("integrating iPSC lines", 6 iPSC lines derived using non-integrating vectors ("non-integrating iPSC lines", and the 2 parental cell lines from which the iPSCs were derived. The genome-wide copy number variation (CNV, loss of heterozygosity (LOH and mosaicism patterns of integrating and non-integrating iPSC lines were investigated. The maximum sizes of CNVs in the genomes of the integrating iPSC lines were 20 times higher than those of the non-integrating iPSC lines. Moreover, the total number of CNVs was much higher in integrating iPSC lines than in other cell lines. The average numbers of novel CNVs with a low degree of overlap with the DGV and of likely pathogenic CNVs with a high degree of overlap with the ISCA (International Symposium on Computer Architecture database were highest in integrating iPSC lines. Different single nucleotide polymorphisms (SNP calls revealed that, using the parental cell genotype as a reference, integrating iPSC lines displayed more single nucleotide variations and mosaicism than did non-integrating iPSC lines. This study describes the genome stability of human iPSCs generated using either a DNA-integrating or non-integrating reprogramming method, of the corresponding somatic cells, and of hESCs. Our results highlight the importance of using a high-resolution method to monitor genomic

  11. Mathematical methods in time series analysis and digital image processing

    CERN Document Server

    Kurths, J; Maass, P; Timmer, J

    2008-01-01

    The aim of this volume is to bring together research directions in theoretical signal and imaging processing developed rather independently in electrical engineering, theoretical physics, mathematics and the computer sciences. In particular, mathematically justified algorithms and methods, the mathematical analysis of these algorithms, and methods as well as the investigation of connections between methods from time series analysis and image processing are reviewed. An interdisciplinary comparison of these methods, drawing upon common sets of test problems from medicine and geophysical/enviromental sciences, is also addressed. This volume coherently summarizes work carried out in the field of theoretical signal and image processing. It focuses on non-linear and non-parametric models for time series as well as on adaptive methods in image processing.

  12. Application of Nemerow Index Method and Integrated Water Quality Index Method in Water Quality Assessment of Zhangze Reservoir

    Science.gov (United States)

    Zhang, Qian; Feng, Minquan; Hao, Xiaoyan

    2018-03-01

    [Objective] Based on the water quality historical data from the Zhangze Reservoir from the last five years, the water quality was assessed by the integrated water quality identification index method and the Nemerow pollution index method. The results of different evaluation methods were analyzed and compared and the characteristics of each method were identified.[Methods] The suitability of the water quality assessment methods were compared and analyzed, based on these results.[Results] the water quality tended to decrease over time with 2016 being the year with the worst water quality. The sections with the worst water quality were the southern and northern sections.[Conclusion] The results produced by the traditional Nemerow index method fluctuated greatly in each section of water quality monitoring and therefore could not effectively reveal the trend of water quality at each section. The combination of qualitative and quantitative measures of the comprehensive pollution index identification method meant it could evaluate the degree of water pollution as well as determine that the river water was black and odorous. However, the evaluation results showed that the water pollution was relatively low.The results from the improved Nemerow index evaluation were better as the single indicators and evaluation results are in strong agreement; therefore the method is able to objectively reflect the water quality of each water quality monitoring section and is more suitable for the water quality evaluation of the reservoir.

  13. Neutron imaging integrated circuit and method for detecting neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Nagarkar, Vivek V.; More, Mitali J.

    2017-12-05

    The present disclosure provides a neutron imaging detector and a method for detecting neutrons. In one example, a method includes providing a neutron imaging detector including plurality of memory cells and a conversion layer on the memory cells, setting one or more of the memory cells to a first charge state, positioning the neutron imaging detector in a neutron environment for a predetermined time period, and reading a state change at one of the memory cells, and measuring a charge state change at one of the plurality of memory cells from the first charge state to a second charge state less than the first charge state, where the charge state change indicates detection of neutrons at said one of the memory cells.

  14. Semi-implicit Integration Factor Methods on Sparse Grids for High-Dimensional Systems.

    Science.gov (United States)

    Wang, Dongyong; Chen, Weitao; Nie, Qing

    2015-07-01

    Numerical methods for partial differential equations in high-dimensional spaces are often limited by the curse of dimensionality. Though the sparse grid technique, based on a one-dimensional hierarchical basis through tensor products, is popular for handling challenges such as those associated with spatial discretization, the stability conditions on time step size due to temporal discretization, such as those associated with high-order derivatives in space and stiff reactions, remain. Here, we incorporate the sparse grids with the implicit integration factor method (IIF) that is advantageous in terms of stability conditions for systems containing stiff reactions and diffusions. We combine IIF, in which the reaction is treated implicitly and the diffusion is treated explicitly and exactly, with various sparse grid techniques based on the finite element and finite difference methods and a multi-level combination approach. The overall method is found to be efficient in terms of both storage and computational time for solving a wide range of PDEs in high dimensions. In particular, the IIF with the sparse grid combination technique is flexible and effective in solving systems that may include cross-derivatives and non-constant diffusion coefficients. Extensive numerical simulations in both linear and nonlinear systems in high dimensions, along with applications of diffusive logistic equations and Fokker-Planck equations, demonstrate the accuracy, efficiency, and robustness of the new methods, indicating potential broad applications of the sparse grid-based integration factor method.

  15. Developing integrated methods to address complex resource and environmental issues

    Science.gov (United States)

    Smith, Kathleen S.; Phillips, Jeffrey D.; McCafferty, Anne E.; Clark, Roger N.

    2016-02-08

    IntroductionThis circular provides an overview of selected activities that were conducted within the U.S. Geological Survey (USGS) Integrated Methods Development Project, an interdisciplinary project designed to develop new tools and conduct innovative research requiring integration of geologic, geophysical, geochemical, and remote-sensing expertise. The project was supported by the USGS Mineral Resources Program, and its products and acquired capabilities have broad applications to missions throughout the USGS and beyond.In addressing challenges associated with understanding the location, quantity, and quality of mineral resources, and in investigating the potential environmental consequences of resource development, a number of field and laboratory capabilities and interpretative methodologies evolved from the project that have applications to traditional resource studies as well as to studies related to ecosystem health, human health, disaster and hazard assessment, and planetary science. New or improved tools and research findings developed within the project have been applied to other projects and activities. Specifically, geophysical equipment and techniques have been applied to a variety of traditional and nontraditional mineral- and energy-resource studies, military applications, environmental investigations, and applied research activities that involve climate change, mapping techniques, and monitoring capabilities. Diverse applied geochemistry activities provide a process-level understanding of the mobility, chemical speciation, and bioavailability of elements, particularly metals and metalloids, in a variety of environmental settings. Imaging spectroscopy capabilities maintained and developed within the project have been applied to traditional resource studies as well as to studies related to ecosystem health, human health, disaster assessment, and planetary science. Brief descriptions of capabilities and laboratory facilities and summaries of some

  16. Integration of rock typing methods for carbonate reservoir characterization

    International Nuclear Information System (INIS)

    Aliakbardoust, E; Rahimpour-Bonab, H

    2013-01-01

    Reservoir rock typing is the most important part of all reservoir modelling. For integrated reservoir rock typing, static and dynamic properties need to be combined, but sometimes these two are incompatible. The failure is due to the misunderstanding of the crucial parameters that control the dynamic behaviour of the reservoir rock and thus selecting inappropriate methods for defining static rock types. In this study, rock types were defined by combining the SCAL data with the rock properties, particularly rock fabric and pore types. First, air-displacing-water capillary pressure curues were classified because they are representative of fluid saturation and behaviour under capillary forces. Next the most important rock properties which control the fluid flow and saturation behaviour (rock fabric and pore types) were combined with defined classes. Corresponding petrophysical properties were also attributed to reservoir rock types and eventually, defined rock types were compared with relative permeability curves. This study focused on representing the importance of the pore system, specifically pore types in fluid saturation and entrapment in the reservoir rock. The most common tests in static rock typing, such as electrofacies analysis and porosity–permeability correlation, were carried out and the results indicate that these are not appropriate approaches for reservoir rock typing in carbonate reservoirs with a complicated pore system. (paper)

  17. Metriplectic Gyrokinetics and Discretization Methods for the Landau Collision Integral

    Science.gov (United States)

    Hirvijoki, Eero; Burby, Joshua W.; Kraus, Michael

    2017-10-01

    We present two important results for the kinetic theory and numerical simulation of warm plasmas: 1) We provide a metriplectic formulation of collisional electrostatic gyrokinetics that is fully consistent with the First and Second Laws of Thermodynamics. 2) We provide a metriplectic temporal and velocity-space discretization for the particle phase-space Landau collision integral that satisfies the conservation of energy, momentum, and particle densities to machine precision, as well as guarantees the existence of numerical H-theorem. The properties are demonstrated algebraically. These two result have important implications: 1) Numerical methods addressing the Vlasov-Maxwell-Landau system of equations, or its reduced gyrokinetic versions, should start from a metriplectic formulation to preserve the fundamental physical principles also at the discrete level. 2) The plasma physics community should search for a metriplectic reduction theory that would serve a similar purpose as the existing Lagrangian and Hamiltonian reduction theories do in gyrokinetics. The discovery of metriplectic formulation of collisional electrostatic gyrokinetics is strong evidence in favor of such theory and, if uncovered, the theory would be invaluable in constructing reduced plasma models. Supported by U.S. DOE Contract Nos. DE-AC02-09-CH11466 (EH) and DE-AC05-06OR23100 (JWB) and by European Union's Horizon 2020 research and innovation Grant No. 708124 (MK).

  18. Methods for assessing NPP containment pressure boundary integrity

    International Nuclear Information System (INIS)

    Naus, D.J.; Ellingwood, B.R.; Graves, H.L.

    2004-01-01

    Research is being conducted to address aging of the containment pressure boundary in light-water reactor plants. Objectives of this research are to (1) understand the significant factors relating to corrosion occurrence, efficacy of inspection, and structural capacity reduction of steel containments and of liners of concrete containments; (2) provide the U.S. Nuclear Regulatory Commission (USNRC) reviewers a means of establishing current structural capacity margins or estimating future residual structural capacity margins for steel containments and concrete containments as limited by liner integrity; and (3) provide recommendations, as appropriate, on information to be requested of licensees for guidance that could be utilized by USNRC reviewers in assessing the seriousness of reported incidences of containment degradation. Activities include development of a degradation assessment methodology; reviews of techniques and methods for inspection and repair of containment metallic pressure boundaries; evaluation of candidate techniques for inspection of inaccessible regions of containment metallic pressure boundaries; establishment of a methodology for reliability-based condition assessments of steel containments and liners; and fragility assessments of steel containments with localized corrosion

  19. Reliable Transition State Searches Integrated with the Growing String Method.

    Science.gov (United States)

    Zimmerman, Paul

    2013-07-09

    The growing string method (GSM) is highly useful for locating reaction paths connecting two molecular intermediates. GSM has often been used in a two-step procedure to locate exact transition states (TS), where GSM creates a quality initial structure for a local TS search. This procedure and others like it, however, do not always converge to the desired transition state because the local search is sensitive to the quality of the initial guess. This article describes an integrated technique for simultaneous reaction path and exact transition state search. This is achieved by implementing an eigenvector following optimization algorithm in internal coordinates with Hessian update techniques. After partial convergence of the string, an exact saddle point search begins under the constraint that the maximized eigenmode of the TS node Hessian has significant overlap with the string tangent near the TS. Subsequent optimization maintains connectivity of the string to the TS as well as locks in the TS direction, all but eliminating the possibility that the local search leads to the wrong TS. To verify the robustness of this approach, reaction paths and TSs are found for a benchmark set of more than 100 elementary reactions.

  20. Integral method for the calculation of Hawking radiation in dispersive media. II. Asymmetric asymptotics.

    Science.gov (United States)

    Robertson, Scott

    2014-11-01

    Analog gravity experiments make feasible the realization of black hole space-times in a laboratory setting and the observational verification of Hawking radiation. Since such analog systems are typically dominated by dispersion, efficient techniques for calculating the predicted Hawking spectrum in the presence of strong dispersion are required. In the preceding paper, an integral method in Fourier space is proposed for stationary 1+1-dimensional backgrounds which are asymptotically symmetric. Here, this method is generalized to backgrounds which are different in the asymptotic regions to the left and right of the scattering region.

  1. Multi-channel time-division integrator in HL-2A

    International Nuclear Information System (INIS)

    Yan Ji

    2008-01-01

    HL-2A is China's first Tokamak device with divertor configuration (magnetic confinement controlled nuclear fusion device). To find out the details of on-going fusion reaction at different times is of important significance in achieving controlled nuclear fusion. We developed a new type multi-channel time-division integrator for HL-2A. It has functions of automatic cutting off negative pulse of the input signals, optional integrating time division spacing 0.2-1 ms, TTL starting trigger signal, automatic regularly work 20 s, and integrating 10 channel at the same time. (authors)

  2. Integrated micro-optofluidic platform for real-time detection of airborne microorganisms

    Science.gov (United States)

    Choi, Jeongan; Kang, Miran; Jung, Jae Hee

    2015-11-01

    We demonstrate an integrated micro-optofluidic platform for real-time, continuous detection and quantification of airborne microorganisms. Measurements of the fluorescence and light scattering from single particles in a microfluidic channel are used to determine the total particle number concentration and the microorganism number concentration in real-time. The system performance is examined by evaluating standard particle measurements with various sample flow rates and the ratios of fluorescent to non-fluorescent particles. To apply this method to real-time detection of airborne microorganisms, airborne Escherichia coli, Bacillus subtilis, and Staphylococcus epidermidis cells were introduced into the micro-optofluidic platform via bioaerosol generation, and a liquid-type particle collection setup was used. We demonstrate successful discrimination of SYTO82-dyed fluorescent bacterial cells from other residue particles in a continuous and real-time manner. In comparison with traditional microscopy cell counting and colony culture methods, this micro-optofluidic platform is not only more accurate in terms of the detection efficiency for airborne microorganisms but it also provides additional information on the total particle number concentration.

  3. Integration method of 3D MR spectroscopy into treatment planning system for glioblastoma IMRT dose painting with integrated simultaneous boost

    OpenAIRE

    Ken, Sol?akh?na; Vieillevigne, Laure; Franceries, Xavier; Simon, Luc; Supper, Caroline; Lotterie, Jean-Albert; Filleron, Thomas; Lubrano, Vincent; Berry, Isabelle; Cassol, Emmanuelle; Delannes, Martine; Celsis, Pierre; Cohen-Jonathan, Elizabeth Moyal; Laprie, Anne

    2013-01-01

    Abstract Background To integrate 3D MR spectroscopy imaging (MRSI) in the treatment planning system (TPS) for glioblastoma dose painting to guide simultaneous integrated boost (SIB) in intensity-modulated radiation therapy (IMRT). Methods For sixteen glioblastoma patients, we have simulated three types of dosimetry plans, one conventional plan of 60-Gy in 3D conformational radiotherapy (3D-CRT), one 60-Gy plan in IMRT and one 72-Gy plan in SIB-IMRT. All sixteen MRSI metabolic maps were integr...

  4. Time-domain hybrid method for simulating large amplitude motions of ships advancing in waves

    Directory of Open Access Journals (Sweden)

    Shukui Liu

    2011-03-01

    Full Text Available Typical results obtained by a newly developed, nonlinear time domain hybrid method for simulating large amplitude motions of ships advancing with constant forward speed in waves are presented. The method is hybrid in the way of combining a time-domain transient Green function method and a Rankine source method. The present approach employs a simple double integration algorithm with respect to time to simulate the free-surface boundary condition. During the simulation, the diffraction and radiation forces are computed by pressure integration over the mean wetted surface, whereas the incident wave and hydrostatic restoring forces/moments are calculated on the instantaneously wetted surface of the hull. Typical numerical results of application of the method to the seakeeping performance of a standard containership, namely the ITTC S175, are herein presented. Comparisons have been made between the results from the present method, the frequency domain 3D panel method (NEWDRIFT of NTUA-SDL and available experimental data and good agreement has been observed for all studied cases between the results of the present method and comparable other data.

  5. A block-iterative nodal integral method for forced convection problems

    International Nuclear Information System (INIS)

    Decker, W.J.; Dorning, J.J.

    1992-01-01

    A new efficient iterative nodal integral method for the time-dependent two- and three-dimensional incompressible Navier-Stokes equations has been developed. Using the approach introduced by Azmy and Droning to develop nodal mehtods with high accuracy on coarse spatial grids for two-dimensional steady-state problems and extended to coarse two-dimensional space-time grids by Wilson et al. for thermal convection problems, we have developed a new iterative nodal integral method for the time-dependent Navier-Stokes equations for mechanically forced convection. A new, extremely efficient block iterative scheme is employed to invert the Jacobian within each of the Newton-Raphson iterations used to solve the final nonlinear discrete-variable equations. By taking advantage of the special structure of the Jacobian, this scheme greatly reduces memory requirements. The accuracy of the overall method is illustrated by appliying it to the time-dependent version of the classic two-dimensional driven cavity problem of computational fluid dynamics

  6. Time integration in the code Zgoubi and external usage of PTC's structures

    Energy Technology Data Exchange (ETDEWEB)

    Forest, Etienne [High Energy Accelerator Research Organization, KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Meot, F. [Service Accelerateurs, Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier / CNRS-IN2P3, 53 Avenue des Martyrs, F-38026 Grenoble (France)]|[Commissariat a l' Energie Atomique, CEA, 31-33, rue de la Federation (Paris 15e), BP 510, 75752 Paris Cedex 15 (France)

    2006-06-15

    The purpose of this note is to describe Zgoubi's integrator and to describe some pitfalls for time based integration when used in accelerators. We show why the convergence rate of an integrator can be affected by an improper treatment at the boundary when time is used as the integration variable. We also point out how the code PTC can be used as a container by other tracking engine. This work is not completed as far as incorporation of Zgoubi is concerned. (authors)

  7. Cochrane Qualitative and Implementation Methods Group guidance paper 5: methods for integrating qualitative and implementation evidence within intervention effectiveness reviews.

    Science.gov (United States)

    Harden, Angela; Thomas, James; Cargo, Margaret; Harris, Janet; Pantoja, Tomas; Flemming, Kate; Booth, Andrew; Garside, Ruth; Hannes, Karin; Noyes, Jane

    2017-12-11

    The Cochrane Qualitative and Implementation Methods Group develops and publishes guidance on the synthesis of qualitative and mixed-method evidence from process evaluations. Despite a proliferation of methods for the synthesis of qualitative research, less attention has focused on how to integrate these syntheses within intervention effectiveness reviews. In this article, we report updated guidance from the group on approaches, methods, and tools, which can be used to integrate the findings from quantitative studies evaluating intervention effectiveness with those from qualitative studies and process evaluations. We draw on conceptual analyses of mixed methods systematic review designs and the range of methods and tools that have been used in published reviews that have successfully integrated different types of evidence. We outline five key methods and tools as devices for integration which vary in terms of the levels at which integration takes place; the specialist skills and expertise required within the review team; and their appropriateness in the context of limited evidence. In situations where the requirement is the integration of qualitative and process evidence within intervention effectiveness reviews, we recommend the use of a sequential approach. Here, evidence from each tradition is synthesized separately using methods consistent with each tradition before integration takes place using a common framework. Reviews which integrate qualitative and process evaluation evidence alongside quantitative evidence on intervention effectiveness in a systematic way are rare. This guidance aims to support review teams to achieve integration and we encourage further development through reflection and formal testing. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Reduction Method for Real-Time Simulations in Hybrid Testing

    DEFF Research Database (Denmark)

    Andersen, Sebastian; Poulsen, Peter Noe

    2014-01-01

    assembling of the internal forces element by element at each equilibrium point and a strict requirement for small time steps to maintain accuracy and stability often prevents real time execution. Thus, enhanced numerical capacity is required. In the present study a basis reduction method is used...... to reformulate kinematic nonlinear equations of motion into a sum of constant matrices each multiplied by a reduced coordinate decreasing the assembling time. Furthermore the method allows for cutting off some of the higher frequency content not representing real physics decreasing the stability requirement...... of choosing a sufficient basis a composite beam and a cantilever beam including kinematic nonlinearities and exposed to harmonic loadings are analyzed. To reduce locking modes with higher order terms are included. From the analysis it is concluded that the method exhibits encouraging potential with respect...

  9. Fault detection of gearbox using time-frequency method

    Science.gov (United States)

    Widodo, A.; Satrijo, Dj.; Prahasto, T.; Haryanto, I.

    2017-04-01

    This research deals with fault detection and diagnosis of gearbox by using vibration signature. In this work, fault detection and diagnosis are approached by employing time-frequency method, and then the results are compared with cepstrum analysis. Experimental work has been conducted for data acquisition of vibration signal thru self-designed gearbox test rig. This test-rig is able to demonstrate normal and faulty gearbox i.e., wears and tooth breakage. Three accelerometers were used for vibration signal acquisition from gearbox, and optical tachometer was used for shaft rotation speed measurement. The results show that frequency domain analysis using fast-fourier transform was less sensitive to wears and tooth breakage condition. However, the method of short-time fourier transform was able to monitor the faults in gearbox. Wavelet Transform (WT) method also showed good performance in gearbox fault detection using vibration signal after employing time synchronous averaging (TSA).

  10. Towards the Real-Time Evaluation of Collaborative Activities: Integration of an Automatic Rater of Collaboration Quality in the Classroom from the Teacher's Perspective

    Science.gov (United States)

    Chounta, Irene-Angelica; Avouris, Nikolaos

    2016-01-01

    This paper presents the integration of a real time evaluation method of collaboration quality in a monitoring application that supports teachers in class orchestration. The method is implemented as an automatic rater of collaboration quality and studied in a real time scenario of use. We argue that automatic and semi-automatic methods which…

  11. Adaptive Splitting Integrators for Enhancing Sampling Efficiency of Modified Hamiltonian Monte Carlo Methods in Molecular Simulation.

    Science.gov (United States)

    Akhmatskaya, Elena; Fernández-Pendás, Mario; Radivojević, Tijana; Sanz-Serna, J M

    2017-10-24

    The modified Hamiltonian Monte Carlo (MHMC) methods, i.e., importance sampling methods that use modified Hamiltonians within a Hybrid Monte Carlo (HMC) framework, often outperform in sampling efficiency standard techniques such as molecular dynamics (MD) and HMC. The performance of MHMC may be enhanced further through the rational choice of the simulation parameters and by replacing the standard Verlet integrator with more sophisticated splitting algorithms. Unfortunately, it is not easy to identify the appropriate values of the parameters that appear in those algorithms. We propose a technique, that we call MAIA (Modified Adaptive Integration Approach), which, for a given simulation system and a given time step, automatically selects the optimal integrator within a useful family of two-stage splitting formulas. Extended MAIA (or e-MAIA) is an enhanced version of MAIA, which additionally supplies a value of the method-specific parameter that, for the problem under consideration, keeps the momentum acceptance rate at a user-desired level. The MAIA and e-MAIA algorithms have been implemented, with no computational overhead during simulations, in MultiHMC-GROMACS, a modified version of the popular software package GROMACS. Tests performed on well-known molecular models demonstrate the superiority of the suggested approaches over a range of integrators (both standard and recently developed), as well as their capacity to improve the sampling efficiency of GSHMC, a noticeable method for molecular simulation in the MHMC family. GSHMC combined with e-MAIA shows a remarkably good performance when compared to MD and HMC coupled with the appropriate adaptive integrators.

  12. High-Order Space-Time Methods for Conservation Laws

    Science.gov (United States)

    Huynh, H. T.

    2013-01-01

    Current high-order methods such as discontinuous Galerkin and/or flux reconstruction can provide effective discretization for the spatial derivatives. Together with a time discretization, such methods result in either too small a time step size in the case of an explicit scheme or a very large system in the case of an implicit one. To tackle these problems, two new high-order space-time schemes for conservation laws are introduced: the first is explicit and the second, implicit. The explicit method here, also called the moment scheme, achieves a Courant-Friedrichs-Lewy (CFL) condition of 1 for the case of one-spatial dimension regardless of the degree of the polynomial approximation. (For standard explicit methods, if the spatial approximation is of degree p, then the time step sizes are typically proportional to 1/p(exp 2)). Fourier analyses for the one and two-dimensional cases are carried out. The property of super accuracy (or super convergence) is discussed. The implicit method is a simplified but optimal version of the discontinuous Galerkin scheme applied to time. It reduces to a collocation implicit Runge-Kutta (RK) method for ordinary differential equations (ODE) called Radau IIA. The explicit and implicit schemes are closely related since they employ the same intermediate time levels, and the former can serve as a key building block in an iterative procedure for the latter. A limiting technique for the piecewise linear scheme is also discussed. The technique can suppress oscillations near a discontinuity while preserving accuracy near extrema. Preliminary numerical results are shown

  13. A prediction method based on wavelet transform and multiple models fusion for chaotic time series

    International Nuclear Information System (INIS)

    Zhongda, Tian; Shujiang, Li; Yanhong, Wang; Yi, Sha

    2017-01-01

    In order to improve the prediction accuracy of chaotic time series, a prediction method based on wavelet transform and multiple models fusion is proposed. The chaotic time series is decomposed and reconstructed by wavelet transform, and approximate components and detail components are obtained. According to different characteristics of each component, least squares support vector machine (LSSVM) is used as predictive model for approximation components. At the same time, an improved free search algorithm is utilized for predictive model parameters optimization. Auto regressive integrated moving average model (ARIMA) is used as predictive model for detail components. The multiple prediction model predictive values are fusion by Gauss–Markov algorithm, the error variance of predicted results after fusion is less than the single model, the prediction accuracy is improved. The simulation results are compared through two typical chaotic time series include Lorenz time series and Mackey–Glass time series. The simulation results show that the prediction method in this paper has a better prediction.

  14. Super-High Resolution Time Interval Measurement Method Based on Time-Space Relationships

    International Nuclear Information System (INIS)

    Bao-Qiang, Du; Wei, Zhou

    2009-01-01

    Based on the principle of quantized delay-time, a super-high resolution time interval measurement method is proposed based on time-space relationships. Using the delay-time stability that time and frequency signal travel in a specific medium, the measured time interval can be quantized. Combined with the phase coincidence detection technique, the measurement of time can be changed into the measurement of space length. The resolution and the stability of the measurement system are easily improved. Experimental results show that the measurement resolution of the measured time interval depends on the length difference of the double delay-time unit. When the length difference is set up on millimeter level or sub-millimeter level, super-high measurement resolution from hundreds of picosecond to tens of picosecond can be obtained

  15. Radiation reaction in curved space-time:. local method

    Science.gov (United States)

    Gal'Tsov, Dmitri; Spirin, Pavel; Staub, Simona

    Although consensus seems to exist about the validity of equations accounting for radiation reaction in curved space-time, their previous derivations were criticized recently as not fully satisfactory: some ambiguities were noticed in the procedure of integration of the field momentum over the tube surrounding the world-line. To avoid these problems we suggest a purely local derivation dealing with the field quantities defined only on the world-line. We consider point particle interacting with scalar, vector (electromagnetic) and linearized gravitational fields in the (generally non-vacuum) curved space-time. To properly renormalize the self-action in the gravitational case, we use a manifestly reparameterization-invariant formulation of the theory. Scalar and vector divergences are shown to cancel for a certain ratio of the corresponding charges. We also report on a modest progress in extending the results for the gravitational radiation reaction to the case of non-vacuum background.

  16. Integrated navigation method of a marine strapdown inertial navigation system using a star sensor

    International Nuclear Information System (INIS)

    Wang, Qiuying; Diao, Ming; Gao, Wei; Zhu, Minghong; Xiao, Shu

    2015-01-01

    This paper presents an integrated navigation method of the strapdown inertial navigation system (SINS) using a star sensor. According to the principle of SINS, its own navigation information contains an error that increases with time. Hence, the inertial attitude matrix from the star sensor is introduced as the reference information to correct the SINS increases error. For the integrated navigation method, the vehicle’s attitude can be obtained in two ways: one is calculated from SINS; the other, which we have called star sensor attitude, is obtained as the product between the SINS position and the inertial attitude matrix from the star sensor. Therefore, the SINS position error is introduced in the star sensor attitude error. Based on the characteristics of star sensor attitude error and the mathematical derivation, the SINS navigation errors can be obtained by the coupling calculation between the SINS attitude and the star sensor attitude. Unlike several current techniques, the navigation process of this method is non-radiating and invulnerable to jamming. The effectiveness of this approach was demonstrated by simulation and experimental study. The results show that this integrated navigation method can estimate the attitude error and the position error of SINS. Therefore, the SINS navigation accuracy is improved. (paper)

  17. Extending molecular simulation time scales: Parallel in time integrations for high-level quantum chemistry and complex force representations

    International Nuclear Information System (INIS)

    Bylaska, Eric J.; Weare, Jonathan Q.; Weare, John H.

    2013-01-01

    Parallel in time simulation algorithms are presented and applied to conventional molecular dynamics (MD) and ab initio molecular dynamics (AIMD) models of realistic complexity. Assuming that a forward time integrator, f (e.g., Verlet algorithm), is available to propagate the system from time t i (trajectory positions and velocities x i = (r i , v i )) to time t i+1 (x i+1 ) by x i+1 = f i (x i ), the dynamics problem spanning an interval from t 0 …t M can be transformed into a root finding problem, F(X) = [x i − f(x (i−1 )] i =1,M = 0, for the trajectory variables. The root finding problem is solved using a variety of root finding techniques, including quasi-Newton and preconditioned quasi-Newton schemes that are all unconditionally convergent. The algorithms are parallelized by assigning a processor to each time-step entry in the columns of F(X). The relation of this approach to other recently proposed parallel in time methods is discussed, and the effectiveness of various approaches to solving the root finding problem is tested. We demonstrate that more efficient dynamical models based on simplified interactions or coarsening time-steps provide preconditioners for the root finding problem. However, for MD and AIMD simulations, such preconditioners are not required to obtain reasonable convergence and their cost must be considered in the performance of the algorithm. The parallel in time algorithms developed are tested by applying them to MD and AIMD simulations of size and complexity similar to those encountered in present day applications. These include a 1000 Si atom MD simulation using Stillinger-Weber potentials, and a HCl + 4H 2 O AIMD simulation at the MP2 level. The maximum speedup ((serial execution time)/(parallel execution time) ) obtained by parallelizing the Stillinger-Weber MD simulation was nearly 3.0. For the AIMD MP2 simulations, the algorithms achieved speedups of up to 14.3. The parallel in time algorithms can be implemented in a

  18. Methods for external event screening quantification: Risk Methods Integration and Evaluation Program (RMIEP) methods development

    International Nuclear Information System (INIS)

    Ravindra, M.K.; Banon, H.

    1992-07-01

    In this report, the scoping quantification procedures for external events in probabilistic risk assessments of nuclear power plants are described. External event analysis in a PRA has three important goals; (1) the analysis should be complete in that all events are considered; (2) by following some selected screening criteria, the more significant events are identified for detailed analysis; (3) the selected events are analyzed in depth by taking into account the unique features of the events: hazard, fragility of structures and equipment, external-event initiated accident sequences, etc. Based on the above goals, external event analysis may be considered as a three-stage process: Stage I: Identification and Initial Screening of External Events; Stage II: Bounding Analysis; Stage III: Detailed Risk Analysis. In the present report, first, a review of published PRAs is given to focus on the significance and treatment of external events in full-scope PRAs. Except for seismic, flooding, fire, and extreme wind events, the contributions of other external events to plant risk have been found to be negligible. Second, scoping methods for external events not covered in detail in the NRC's PRA Procedures Guide are provided. For this purpose, bounding analyses for transportation accidents, extreme winds and tornadoes, aircraft impacts, turbine missiles, and chemical release are described

  19. An accurate real-time model of maglev planar motor based on compound Simpson numerical integration

    Science.gov (United States)

    Kou, Baoquan; Xing, Feng; Zhang, Lu; Zhou, Yiheng; Liu, Jiaqi

    2017-05-01

    To realize the high-speed and precise control of the maglev planar motor, a more accurate real-time electromagnetic model, which considers the influence of the coil corners, is proposed in this paper. Three coordinate systems for the stator, mover and corner coil are established. The coil is divided into two segments, the straight coil segment and the corner coil segment, in order to obtain a complete electromagnetic model. When only take the first harmonic of the flux density distribution of a Halbach magnet array into account, the integration method can be carried out towards the two segments according to Lorenz force law. The force and torque analysis formula of the straight coil segment can be derived directly from Newton-Leibniz formula, however, this is not applicable to the corner coil segment. Therefore, Compound Simpson numerical integration method is proposed in this paper to solve the corner segment. With the validation of simulation and experiment, the proposed model has high accuracy and can realize practical application easily.

  20. An accurate real-time model of maglev planar motor based on compound Simpson numerical integration

    Directory of Open Access Journals (Sweden)

    Baoquan Kou

    2017-05-01

    Full Text Available To realize the high-speed and precise control of the maglev planar motor, a more accurate real-time electromagnetic model, which considers the influence of the coil corners, is proposed in this paper. Three coordinate systems for the stator, mover and corner coil are established. The coil is divided into two segments, the straight coil segment and the corner coil segment, in order to obtain a complete electromagnetic model. When only take the first harmonic of the flux density distribution of a Halbach magnet array into account, the integration method can be carried out towards the two segments according to Lorenz force law. The force and torque analysis formula of the straight coil segment can be derived directly from Newton-Leibniz formula, however, this is not applicable to the corner coil segment. Therefore, Compound Simpson numerical integration method is proposed in this paper to solve the corner segment. With the validation of simulation and experiment, the proposed model has high accuracy and can realize practical application easily.

  1. Deep Time Data Infrastructure: Integrating Our Current Geologic and Biologic Databases

    Science.gov (United States)

    Kolankowski, S. M.; Fox, P. A.; Ma, X.; Prabhu, A.

    2016-12-01

    As our knowledge of Earth's geologic and mineralogical history grows, we require more efficient methods of sharing immense amounts of data. Databases across numerous disciplines have been utilized to offer extensive information on very specific Epochs of Earth's history up to its current state, i.e. Fossil record, rock composition, proteins, etc. These databases could be a powerful force in identifying previously unseen correlations such as relationships between minerals and proteins. Creating a unifying site that provides a portal to these databases will aid in our ability as a collaborative scientific community to utilize our findings more effectively. The Deep-Time Data Infrastructure (DTDI) is currently being defined as part of a larger effort to accomplish this goal. DTDI will not be a new database, but an integration of existing resources. Current geologic and related databases were identified, documentation of their schema was established and will be presented as a stage by stage progression. Through conceptual modeling focused around variables from their combined records, we will determine the best way to integrate these databases using common factors. The Deep-Time Data Infrastructure will allow geoscientists to bridge gaps in data and further our understanding of our Earth's history.

  2. Time-Delay Integration Imaging with ICON's Far-Ultraviolet Imager

    Science.gov (United States)

    Wilkins, Colin W.; Mende, Stephen B.; Frey, Harald U.; England, Scott L.

    2017-10-01

    A Time-Delay Integration (TDI) image acquisition and processing system has been developed to capture ICON's Far Ultraviolet (FUV) Spectrographic Imager data. The TDI system is designed to provide variable-range motion-compensated imaging of Earth's nightside ionospheric limb and sub-limb scenes viewed from Low Earth Orbit in the 135.6 nm emission of oxygen with an integration time of 12 seconds. As a pre-requisite of the motion compensation the TDI system is also designed to provide corrections for optical distortions generated by the FUV Imager's optical assembly. On the dayside the TDI system is used to process 135.6 nm and 157.0 nm wavelength altitude profiles simultaneously. We present the TDI system's design methodology and implementation as an FPGA module with an emphasis on minimization of on-board data throughput and telemetry. We also present the methods and results of testing the TDI system in simulation and with Engineering Ground Support Equipment (EGSE) to validate its performance.

  3. Time-domain Helmholtz-Kirchhoff integral for surface scattering in a refractive medium.

    Science.gov (United States)

    Choo, Youngmin; Song, H C; Seong, Woojae

    2017-03-01

    The time-domain Helmholtz-Kirchhoff (H-K) integral for surface scattering is derived for a refractive medium, which can handle shadowing effects. The starting point is the H-K integral in the frequency domain. In the high-frequency limit, the Green's function can be calculated by ray theory, while the normal derivative of the incident pressure from a point source is formulated using the ray geometry and ray-based Green's function. For a corrugated pressure-release surface, a stationary phase approximation can be applied to the H-K integral, reducing the surface integral to a line integral. Finally, a computationally-efficient, time-domain H-K integral is derived using an inverse Fourier transform. A broadband signal scattered from a sinusoidal surface in an upwardly refracting medium is evaluated with and without geometric shadow corrections, and compared to the result from a conventional ray model.

  4. Performance Evaluation of Real-Time Precise Point Positioning Method

    Science.gov (United States)

    Alcay, Salih; Turgut, Muzeyyen

    2017-12-01

    Post-Processed Precise Point Positioning (PPP) is a well-known zero-difference positioning method which provides accurate and precise results. After the experimental tests, IGS Real Time Service (RTS) officially provided real time orbit and clock products for the GNSS community that allows real-time (RT) PPP applications. Different software packages can be used for RT-PPP. In this study, in order to evaluate the performance of RT-PPP, 3 IGS stations are used. Results, obtained by using BKG Ntrip Client (BNC) Software v2.12, are examined in terms of both accuracy and precision.

  5. Real-time Feynman path integral with Picard–Lefschetz theory and its applications to quantum tunneling

    Energy Technology Data Exchange (ETDEWEB)

    Tanizaki, Yuya, E-mail: yuya.tanizaki@riken.jp [Department of Physics, The University of Tokyo, Tokyo 113-0033 (Japan); Theoretical Research Division, Nishina Center, RIKEN, Wako 351-0198 (Japan); Koike, Takayuki, E-mail: tkoike@ms.u-tokyo.ac.jp [Graduate School of Mathematical Sciences, The University of Tokyo, Tokyo 153-8914 (Japan)

    2014-12-15

    Picard–Lefschetz theory is applied to path integrals of quantum mechanics, in order to compute real-time dynamics directly. After discussing basic properties of real-time path integrals on Lefschetz thimbles, we demonstrate its computational method in a concrete way by solving three simple examples of quantum mechanics. It is applied to quantum mechanics of a double-well potential, and quantum tunneling is discussed. We identify all of the complex saddle points of the classical action, and their properties are discussed in detail. However a big theoretical difficulty turns out to appear in rewriting the original path integral into a sum of path integrals on Lefschetz thimbles. We discuss generality of that problem and mention its importance. Real-time tunneling processes are shown to be described by those complex saddle points, and thus semi-classical description of real-time quantum tunneling becomes possible on solid ground if we could solve that problem. - Highlights: • Real-time path integral is studied based on Picard–Lefschetz theory. • Lucid demonstration is given through simple examples of quantum mechanics. • This technique is applied to quantum mechanics of the double-well potential. • Difficulty for practical applications is revealed, and we discuss its generality. • Quantum tunneling is shown to be closely related to complex classical solutions.

  6. Statistical Inference Methods for Sparse Biological Time Series Data

    Directory of Open Access Journals (Sweden)

    Voit Eberhard O

    2011-04-01

    Full Text Available Abstract Background Comparing metabolic profiles under different biological perturbations has become a powerful approach to investigating the functioning of cells. The profiles can be taken as single snapshots of a system, but more information is gained if they are measured longitudinally over time. The results are short time series consisting of relatively sparse data that cannot be analyzed effectively with standard time series techniques, such as autocorrelation and frequency domain methods. In this work, we study longitudinal time series profiles of glucose consumption in the yeast Saccharomyces cerevisiae under different temperatures and preconditioning regimens, which we obtained with methods of in vivo nuclear magnetic resonance (NMR spectroscopy. For the statistical analysis we first fit several nonlinear mixed effect regression models to the longitudinal profiles and then used an ANOVA likelihood ratio method in order to test for significant differences between the profiles. Results The proposed methods are capable of distinguishing metabolic time trends resulting from different treatments and associate significance levels to these differences. Among several nonlinear mixed-effects regression models tested, a three-parameter logistic function represents the data with highest accuracy. ANOVA and likelihood ratio tests suggest that there are significant differences between the glucose consumption rate profiles for cells that had been--or had not been--preconditioned by heat during growth. Furthermore, pair-wise t-tests reveal significant differences in the longitudinal profiles for glucose consumption rates between optimal conditions and heat stress, optimal and recovery conditions, and heat stress and recovery conditions (p-values Conclusion We have developed a nonlinear mixed effects model that is appropriate for the analysis of sparse metabolic and physiological time profiles. The model permits sound statistical inference procedures

  7. Adding Timing Requirements to the CODARTS Real-Time Software Design Method

    DEFF Research Database (Denmark)

    Bach, K.R.

    The CODARTS software design method consideres how concurrent, distributed and real-time applications can be designed. Although accounting for the important issues of task and communication, the method does not provide means for expressing the timeliness of the tasks and communication directly...

  8. Multi-time Scale Joint Scheduling Method Considering the Grid of Renewable Energy

    Science.gov (United States)

    Zhijun, E.; Wang, Weichen; Cao, Jin; Wang, Xin; Kong, Xiangyu; Quan, Shuping

    2018-01-01

    Renewable new energy power generation prediction error like wind and light, brings difficulties to dispatch the power system. In this paper, a multi-time scale robust scheduling method is set to solve this problem. It reduces the impact of clean energy prediction bias to the power grid by using multi-time scale (day-ahead, intraday, real time) and coordinating the dispatching power output of various power supplies such as hydropower, thermal power, wind power, gas power and. The method adopts the robust scheduling method to ensure the robustness of the scheduling scheme. By calculating the cost of the abandon wind and the load, it transforms the robustness into the risk cost and optimizes the optimal uncertainty set for the smallest integrative costs. The validity of the method is verified by simulation.

  9. Time Triggered Ethernet System Testing Means and Method

    Science.gov (United States)

    Smithgall, William Todd (Inventor); Hall, Brendan (Inventor); Varadarajan, Srivatsan (Inventor)

    2014-01-01

    Methods and apparatus are provided for evaluating the performance of a Time Triggered Ethernet (TTE) system employing Time Triggered (TT) communication. A real TTE system under test (SUT) having real input elements communicating using TT messages with output elements via one or more first TTE switches during a first time interval schedule established for the SUT. A simulation system is also provided having input simulators that communicate using TT messages via one or more second TTE switches with the same output elements during a second time interval schedule established for the simulation system. The first and second time interval schedules are off-set slightly so that messages from the input simulators, when present, arrive at the output elements prior to messages from the analogous real inputs, thereby having priority over messages from the real inputs and causing the system to operate based on the simulated inputs when present.

  10. Integral methods for shallow free-surface flows with separation

    DEFF Research Database (Denmark)

    Watanabe, S.; Putkaradze, V.; Bohr, Tomas

    2003-01-01

    eddy and separated flow. Assuming a variable radial velocity profile as in Karman-Pohlhausen's method, we obtain a system of two ordinary differential equations for stationary states that can smoothly go through the jump. Solutions of the system are in good agreement with experiments. For the flow down...... an inclined plane we take a similar approach and derive a simple model in which the velocity profile is not restricted to a parabolic or self-similar form. Two types of solutions with large surface distortions are found: solitary, kink-like propagating fronts, obtained when the flow rate is suddenly changed......, and stationary jumps, obtained, for instance, behind a sluice gate. We then include time dependence in the model to study the stability of these waves. This allows us to distinguish between sub- and supercritical flows by calculating dispersion relations for wavelengths of the order of the width of the layer....

  11. Integral methods of solving boundary-value problems of nonstationary heat conduction and their comparative analysis

    Science.gov (United States)

    Kot, V. A.

    2017-11-01

    The modern state of approximate integral methods used in applications, where the processes of heat conduction and heat and mass transfer are of first importance, is considered. Integral methods have found a wide utility in different fields of knowledge: problems of heat conduction with different heat-exchange conditions, simulation of thermal protection, Stefantype problems, microwave heating of a substance, problems on a boundary layer, simulation of a fluid flow in a channel, thermal explosion, laser and plasma treatment of materials, simulation of the formation and melting of ice, inverse heat problems, temperature and thermal definition of nanoparticles and nanoliquids, and others. Moreover, polynomial solutions are of interest because the determination of a temperature (concentration) field is an intermediate stage in the mathematical description of any other process. The following main methods were investigated on the basis of the error norms: the Tsoi and Postol’nik methods, the method of integral relations, the Gudman integral method of heat balance, the improved Volkov integral method, the matched integral method, the modified Hristov method, the Mayer integral method, the Kudinov method of additional boundary conditions, the Fedorov boundary method, the method of weighted temperature function, the integral method of boundary characteristics. It was established that the two last-mentioned methods are characterized by high convergence and frequently give solutions whose accuracy is not worse that the accuracy of numerical solutions.

  12. New Internet search volume-based weighting method for integrating various environmental impacts

    International Nuclear Information System (INIS)

    Ji, Changyoon; Hong, Taehoon

    2016-01-01

    Weighting is one of the steps in life cycle impact assessment that integrates various characterized environmental impacts as a single index. Weighting factors should be based on the society's preferences. However, most previous studies consider only the opinion of some people. Thus, this research proposes a new weighting method that determines the weighting factors of environmental impact categories by considering public opinion on environmental impacts using the Internet search volumes for relevant terms. To validate the new weighting method, the weighting factors for six environmental impacts calculated by the new weighting method were compared with the existing weighting factors. The resulting Pearson's correlation coefficient between the new and existing weighting factors was from 0.8743 to 0.9889. It turned out that the new weighting method presents reasonable weighting factors. It also requires less time and lower cost compared to existing methods and likewise meets the main requirements of weighting methods such as simplicity, transparency, and reproducibility. The new weighting method is expected to be a good alternative for determining the weighting factor. - Highlight: • A new weighting method using Internet search volume is proposed in this research. • The new weighting method reflects the public opinion using Internet search volume. • The correlation coefficient between new and existing weighting factors is over 0.87. • The new weighting method can present the reasonable weighting factors. • The proposed method can be a good alternative for determining the weighting factors.

  13. Runge–Kutta type methods with special properties for the numerical integration of ordinary differential equations

    International Nuclear Information System (INIS)

    Kalogiratou, Z.; Monovasilis, Th.; Psihoyios, G.; Simos, T.E.

    2014-01-01

    In this work we review single step methods of the Runge–Kutta type with special properties. Among them are methods specially tuned to integrate problems that exhibit a pronounced oscillatory character and such problems arise often in celestial mechanics and quantum mechanics. Symplectic methods, exponentially and trigonometrically fitted methods, minimum phase-lag and phase-fitted methods are presented. These are Runge–Kutta, Runge–Kutta–Nyström and Partitioned Runge–Kutta methods. The theory of constructing such methods is given as well as several specific methods. In order to present the performance of the methods we have tested 58 methods from all categories. We consider the two dimensional harmonic oscillator, the two body problem, the pendulum problem and the orbital problem studied by Stiefel and Bettis. Also we have tested the methods on the computation of the eigenvalues of the one dimensional time independent Schrödinger equation with the harmonic oscillator, the doubly anharmonic oscillator and the exponential potentials

  14. A new method for critical path method with fuzzy processing time

    OpenAIRE

    N. Shahsavari Pour; M. Kheranmand; M. Fallah; S. Zeynali

    2011-01-01

    Critical path method plays an important role on managing medium to large-scale problems. It is often difficult to determine the critical path for different reasons such as the existing uncertainties in processing tasks. One alternative to handle the uncertainty associated with the processing time is to use fuzzy techniques. We present a new method to calculate the critical path method when the processing times follow trapezoidal fuzzy numbers. The proposed model of this paper does not use any...

  15. 7 CFR 784.4 - Time and method of application.

    Science.gov (United States)

    2010-01-01

    ... AGRICULTURE SPECIAL PROGRAMS 2004 EWE LAMB REPLACEMENT AND RETENTION PAYMENT PROGRAM § 784.4 Time and method of application. (a) A request for benefits under this part must be submitted on the Ewe Lamb... documents that prove the eligibility of the qualifying ewe lambs and the sheep and lamb operation. The...

  16. Space-time adaptive wavelet methods for parabolic evolution problems

    NARCIS (Netherlands)

    Schwab, C.; Stevenson, R.

    2009-01-01

    With respect to space-time tensor-product wavelet bases, parabolic initial boundary value problems are equivalently formulated as bi-infinite matrix problems. Adaptive wavelet methods are shown to yield sequences of approximate solutions which converge at the optimal rate. In case the spatial domain

  17. Time and space efficient multi-method dispatching

    DEFF Research Database (Denmark)

    Alstrup, Stephen; Brodal, Gerth Stølting; Gørtz, Inge Li

    2002-01-01

    The dispatching problem for object oriented languages is the problem of determining the most specialized method to invoke for calls at run-time. This can be a critical component of execution performance. A number of recent results, including [Muthukrishnan and Müller SODA’96, Ferragina and Muthuk...

  18. Non-linear shape functions over time in the space-time finite element method

    Directory of Open Access Journals (Sweden)

    Kacprzyk Zbigniew

    2017-01-01

    Full Text Available This work presents a generalisation of the space-time finite element method proposed by Kączkowski in his seminal of 1970’s and early 1980’s works. Kączkowski used linear shape functions in time. The recurrence formula obtained by Kączkowski was conditionally stable. In this paper, non-linear shape functions in time are proposed.

  19. Integrating Evidence Within and Across Evidence Streams Using Qualitative Methods

    Science.gov (United States)

    There is high demand in environmental health for adoption of a structured process that evaluates and integrates evidence while making decisions transparent. The Grading of Recommendations Assessment, Development and Evaluation (GRADE) framework holds promise to address this deman...

  20. Analysis of factors influencing the integrated bolus peak timing in contrast-enhanced brain computed tomographic angiography

    International Nuclear Information System (INIS)

    Son, Soon Yong; Choi, Kwan Woo; Jeong, Hoi Woun; Jang, Seo Goo; Jung, Jae Young; Yun, Jung Soo; Kim, Ki Won; Lee, Young Ah; Son, Jin Hyun; Min, Jung Whan

    2016-01-01

    The objective of this study was to analyze the factors influencing integrated bolus peak timing in contrast- enhanced computed tomographic angiography (CTA) and to determine a method of calculating personal peak time. The optimal time was calculated by performing multiple linear regression analysis, after finding the influence factors through correlation analysis between integrated peak time of contrast medium and personal measured value by monitoring CTA scans. The radiation exposure dose in CTA was 716.53 mGy·cm and the radiation exposure dose in monitoring scan was 15.52 mGy (2 - 34 mGy). The results were statistically significant (p < .01). Regression analysis revealed, a -0.160 times decrease with a one-step increase in heart rate in male, and -0.004, -0.174, and 0.006 times decrease with one-step in DBP, heart rate, and blood sugar, respectively, in female. In a consistency test of peak time by calculating measured peak time and peak time by using the regression equation, the consistency was determined to be very high for male and female. This study could prevent unnecessary dose exposure by encouraging in clinic calculation of personal integrated peak time of contrast medium prior to examination

  1. Analysis of factors influencing the integrated bolus peak timing in contrast-enhanced brain computed tomographic angiography

    Energy Technology Data Exchange (ETDEWEB)

    Son, Soon Yong [Wonkwang Health Science University, Iksan (Korea, Republic of); Choi, Kwan Woo [Asan Medical Center, Seoul (Korea, Republic of); Jeong, Hoi Woun [Baekseok Culture University College, Cheonan (Korea, Republic of); Jang, Seo Goo [Soonchunhyang University, Asan (Korea, Republic of); Jung, Jae Young [Sanggye Paik Hospital, Seoul (Korea, Republic of); Yun, Jung Soo [Samsung Medical Center, Seoul (Korea, Republic of); Kim, Ki Won [Kyung Hee University Hospital at Gang-dong, Seoul (Korea, Republic of); Lee, Young Ah; Son, Jin Hyun; Min, Jung Whan [Shingu University College, Sungnam (Korea, Republic of)

    2016-03-15

    The objective of this study was to analyze the factors influencing integrated bolus peak timing in contrast- enhanced computed tomographic angiography (CTA) and to determine a method of calculating personal peak time. The optimal time was calculated by performing multiple linear regression analysis, after finding the influence factors through correlation analysis between integrated peak time of contrast medium and personal measured value by monitoring CTA scans. The radiation exposure dose in CTA was 716.53 mGy·cm and the radiation exposure dose in monitoring scan was 15.52 mGy (2 - 34 mGy). The results were statistically significant (p < .01). Regression analysis revealed, a -0.160 times decrease with a one-step increase in heart rate in male, and -0.004, -0.174, and 0.006 times decrease with one-step in DBP, heart rate, and blood sugar, respectively, in female. In a consistency test of peak time by calculating measured peak time and peak time by using the regression equation, the consistency was determined to be very high for male and female. This study could prevent unnecessary dose exposure by encouraging in clinic calculation of personal integrated peak time of contrast medium prior to examination.

  2. Velocity time integral for right upper pulmonary vein in VLBW infants with patent ductus arteriosus.

    Science.gov (United States)

    Lista, Gianluca; Bianchi, Silvia; Mannarino, Savina; Schena, Federico; Castoldi, Francesca; Stronati, Mauro; Mosca, Fabio

    2016-10-01

    Early diagnosis of significant patent ductus arteriosus reduces the risk of clinical worsening in very low birth weight infants. Echocardiographic patent ductus arteriosus shunt flow pattern can be used to predict significant patent ductus arteriosus. Pulmonary venous flow, expressed as vein velocity time integral, is correlated to ductus arteriosus closure. The aim of this study is to investigate the relationship between significant reductions in vein velocity time integral and non-significant patent ductus arteriosus in the first week of life. A multicenter, prospective, observational study was conducted to evaluate very low birth weight infants (integral on days 1 and 4 of life. The relationship between vein velocity time integral and other parameters was studied. In total, 98 very low birth weight infants on respiratory support were studied. On day 1 of life, vein velocity time integral was similar in patients with open or closed ductus. The mean vein velocity time integral significantly reduced in the first four days of life. On the fourth day of life, there was less of a reduction in patients with patent ductus compared to those with closed patent ductus arteriosus and the difference was significant. A significant reduction in vein velocity time integral in the first days of life is associated with ductus closure. This parameter correlates well with other echocardiographic parameters and may aid in the diagnosis and management of patent ductus arteriosus.

  3. Safety analytics for integrating crash frequency and real-time risk modeling for expressways.

    Science.gov (United States)

    Wang, Ling; Abdel-Aty, Mohamed; Lee, Jaeyoung

    2017-07-01

    To find crash contributing factors, there have been numerous crash frequency and real-time safety studies, but such studies have been conducted independently. Until this point, no researcher has simultaneously analyzed crash frequency and real-time crash risk to test whether integrating them could better explain crash occurrence. Therefore, this study aims at integrating crash frequency and real-time safety analyses using expressway data. A Bayesian integrated model and a non-integrated model were built: the integrated model linked the crash frequency and the real-time models by adding the logarithm of the estimated expected crash frequency in the real-time model; the non-integrated model independently estimated the crash frequency and the real-time crash risk. The results showed that the integrated model outperformed the non-integrated model, as it provided much better model results for both the crash frequency and the real-time models. This result indicated that the added component, the logarithm of the expected crash frequency, successfully linked and provided useful information to the two models. This study uncovered few variables that are not typically included in the crash frequency analysis. For example, the average daily standard deviation of speed, which was aggregated based on speed at 1-min intervals, had a positive effect on crash frequency. In conclusion, this study suggested a methodology to improve the crash frequency and real-time models by integrating them, and it might inspire future researchers to understand crash mechanisms better. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Measuring fragmentation in dissociative identity disorder: the integration measure and relationship to switching and time in therapy

    Directory of Open Access Journals (Sweden)

    Margaret Rose Barlow

    2014-01-01

    Full Text Available Background: Some people with dissociative identity disorder (DID have very little communication or awareness among the parts of their identity, while others experience a great deal of cooperation among alternate identities. Previous research on this topic has been sparse. Currently, there is no empirical measure of integration versus fragmentation in a person with DID. In this study, we report the development of such a measure. Objective: The goal of this study was to pilot the integration measure (IM and to address its psychometric properties and relationships to other measures. The IM is the first standardized measure of integration in DID. Method: Eleven women with DID participated in an experiment that included a variety of tasks. They filled out questionnaires about trauma and dissociation as well as the IM. They also provided verbal results about switching among alternate identities during the study sessions. Results: Participants switched among identities an average of 5.8 times during the first session, and switching was highly correlated with trauma. Integration was related to switching, though this relationship may be non-linear. Integration was not related to time in psychotherapy. Conclusions: The IM provides a useful beginning to quantify and study integration and fragmentation in DID. Directions for future research are also discussed, including expanding the IM from this pilot. The IM may be useful in treatment settings to assess progress or change over time.

  5. Nonlinear stability and time step selection for the MPM method

    Science.gov (United States)

    Berzins, Martin

    2018-01-01

    The Material Point Method (MPM) has been developed from the Particle in Cell (PIC) method over the last 25 years and has proved its worth in solving many challenging problems involving large deformations. Nevertheless there are many open questions regarding the theoretical properties of MPM. For example in while Fourier methods, as applied to PIC may provide useful insight, the non-linear nature of MPM makes it necessary to use a full non-linear stability analysis to determine a stable time step for MPM. In order to begin to address this the stability analysis of Spigler and Vianello is adapted to MPM and used to derive a stable time step bound for a model problem. This bound is contrasted against traditional Speed of sound and CFL bounds and shown to be a realistic stability bound for a model problem.

  6. Seasonal adjustment methods and real time trend-cycle estimation

    CERN Document Server

    Bee Dagum, Estela

    2016-01-01

    This book explores widely used seasonal adjustment methods and recent developments in real time trend-cycle estimation. It discusses in detail the properties and limitations of X12ARIMA, TRAMO-SEATS and STAMP - the main seasonal adjustment methods used by statistical agencies. Several real-world cases illustrate each method and real data examples can be followed throughout the text. The trend-cycle estimation is presented using nonparametric techniques based on moving averages, linear filters and reproducing kernel Hilbert spaces, taking recent advances into account. The book provides a systematical treatment of results that to date have been scattered throughout the literature. Seasonal adjustment and real time trend-cycle prediction play an essential part at all levels of activity in modern economies. They are used by governments to counteract cyclical recessions, by central banks to control inflation, by decision makers for better modeling and planning and by hospitals, manufacturers, builders, transportat...

  7. Real-time earthquake monitoring using a search engine method.

    Science.gov (United States)

    Zhang, Jie; Zhang, Haijiang; Chen, Enhong; Zheng, Yi; Kuang, Wenhuan; Zhang, Xiong

    2014-12-04

    When an earthquake occurs, seismologists want to use recorded seismograms to infer its location, magnitude and source-focal mechanism as quickly as possible. If such information could be determined immediately, timely evacuations and emergency actions could be undertaken to mitigate earthquake damage. Current advanced methods can report the initial location and magnitude of an earthquake within a few seconds, but estimating the source-focal mechanism may require minutes to hours. Here we present an earthquake search engine, similar to a web search engine, that we developed by applying a computer fast search method to a large seismogram database to find waveforms that best fit the input data. Our method is several thousand times faster than an exact search. For an Mw 5.9 earthquake on 8 March 2012 in Xinjiang, China, the search engine can infer the earthquake's parameters in <1 s after receiving the long-period surface wave data.

  8. Integration of Gas Chromatography Mass Spectrometry Methods for Differentiating Ricin Preparation Methods

    Energy Technology Data Exchange (ETDEWEB)

    Wunschel, David S.; Melville, Angela M.; Ehrhardt, Christopher J.; Colburn, Heather A.; Victry, Kristin D.; Antolick, Kathryn C.; Wahl, Jon H.; Wahl, Karen L.

    2012-05-17

    The investigation of crimes involving chemical or biological agents is infrequent, but presents unique analytical challenges. The protein toxin ricin is encountered more frequently than other agents and is found in the seeds of the castor plant Ricinus communis. Typically, the toxin is extracted from castor seeds utilizing a variety of different recipes that result in varying purity of the toxin. Moreover, these various purification steps can also leave or differentially remove a variety of exogenous and endogenous residual components with the toxin that may indicate the type and number of purification steps involved. We have applied three gas chromatographic - mass spectrometric (GC-MS) based analytical methods to measure the variation in seed carbohydrates and castor oil ricinoleic acid as well as the presence of solvents used for purification. These methods were applied to the same samples prepared using four previously identified toxin preparation methods starting from four varieties of castor seeds. The individual data sets for seed carbohydrate profiles, ricinoleic acid or acetone amount each provided information capable of differentiating different types of toxin preparations across seed types. However, the integration of the data sets using multivariate factor analysis provided a clear distinction of all samples based on the preparation method and independent of the seed source. In particular the abundance of mannose, arabinose, fucose, ricinoleic acid and acetone were shown to be important differentiating factors. These complementary tools provide a more confident determination of the method of toxin preparation.

  9. Time Correlation Calculation Method Based on Delayed Coordinates

    Science.gov (United States)

    Morino, K.; Kobayashi, M. U.; Miyazaki, S.

    2009-06-01

    An approximate calculation method of time correlations by use of delayed coordinate is proposed. For a solvable piecewise linear hyperbolic chaotic map, this approximation is compared with the exact calculation, and an exponential convergence for the maximum time delay M is found. By use of this exponential convergence, the exact result for M &to ∞ is extrapolated from this approximation for the first few values of M. This extrapolation is shown to be much better than direct numerical simulations based on the definition of the time correlation function. As an application, the irregular dependence of diffusion coefficients similar to Takagi or Weierstrass functions is obtained from this approximation, which is indistinguishable from the exact result only at M = 2. The method is also applied to the dissipative Lozi and Hénon maps and the conservative standard map in order to show wide applicability.

  10. Issues in measure-preserving three dimensional flow integrators: Self-adjointness, reversibility, and non-uniform time stepping

    Energy Technology Data Exchange (ETDEWEB)

    Finn, John M., E-mail: finn@lanl.gov [T-5, Applied Mathematics and Plasma Physics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2015-03-15

    Properties of integration schemes for solenoidal fields in three dimensions are studied, with a focus on integrating magnetic field lines in a plasma using adaptive time stepping. It is shown that implicit midpoint (IM) and a scheme we call three-dimensional leapfrog (LF) can do a good job (in the sense of preserving KAM tori) of integrating fields that are reversible, or (for LF) have a “special divergence-free” (SDF) property. We review the notion of a self-adjoint scheme, showing that such schemes are at least second order accurate and can always be formed by composing an arbitrary scheme with its adjoint. We also review the concept of reversibility, showing that a reversible but not exactly volume-preserving scheme can lead to a fractal invariant measure in a chaotic region, although this property may not often be observable. We also show numerical results indicating that the IM and LF schemes can fail to preserve KAM tori when the reversibility property (and the SDF property for LF) of the field is broken. We discuss extensions to measure preserving flows, the integration of magnetic field lines in a plasma and the integration of rays for several plasma waves. The main new result of this paper relates to non-uniform time stepping for volume-preserving flows. We investigate two potential schemes, both based on the general method of Feng and Shang [Numer. Math. 71, 451 (1995)], in which the flow is integrated in split time steps, each Hamiltonian in two dimensions. The first scheme is an extension of the method of extended phase space, a well-proven method of symplectic integration with non-uniform time steps. This method is found not to work, and an explanation is given. The second method investigated is a method based on transformation to canonical variables for the two split-step Hamiltonian systems. This method, which is related to the method of non-canonical generating functions of Richardson and Finn [Plasma Phys. Controlled Fusion 54, 014004 (2012

  11. Differential amplicons (ΔAmp)-a new molecular method to assess RNA integrity.

    Science.gov (United States)

    Björkman, J; Švec, D; Lott, E; Kubista, M; Sjöback, R

    2016-01-01

    Integrity of the mRNA in clinical samples has major impact on the quality of measured expression levels. This is independent of the measurement technique being next generation sequencing (NGS), Quantitative real-time PCR (qPCR) or microarray profiling. If mRNA is highly degraded or damaged, measured data will be very unreliable and the whole study is likely a waste of time and money. It is therefore common strategy to test the quality of RNA in samples before conducting large and costly studies. Most methods today to assess the quality of RNA are ignorant to the nature of the RNA and, therefore, reflect the integrity of ribosomal RNA, which is the dominant species, rather than of mRNAs, microRNAs and long non-coding RNAs, which usually are the species of interest. Here, we present a novel molecular approach to assess the quality of the targeted RNA species by measuring the differential amplification (ΔAmp) of an Endogenous RNase Resistant (ERR) marker relative to a reference gene, optionally combined with the measurement of two amplicons of different lengths. The combination reveals any mRNA degradation caused by ribonucleases as well as physical, chemical or UV damage. ΔAmp has superior sensitivity to common microfluidic electrophoretic methods, senses the integrity of the actual targeted RNA species, and allows for a smoother and more cost efficient workflow.

  12. Differential amplicons (ΔAmp—a new molecular method to assess RNA integrity

    Directory of Open Access Journals (Sweden)

    J. Björkman

    2016-01-01

    Full Text Available Integrity of the mRNA in clinical samples has major impact on the quality of measured expression levels. This is independent of the measurement technique being next generation sequencing (NGS, Quantitative real-time PCR (qPCR or microarray profiling. If mRNA is highly degraded or damaged, measured data will be very unreliable and the whole study is likely a waste of time and money. It is therefore common strategy to test the quality of RNA in samples before conducting large and costly studies. Most methods today to assess the quality of RNA are ignorant to the nature of the RNA and, therefore, reflect the integrity of ribosomal RNA, which is the dominant species, rather than of mRNAs, microRNAs and long non-coding RNAs, which usually are the species of interest. Here, we present a novel molecular approach to assess the quality of the targeted RNA species by measuring the differential amplification (ΔAmp of an Endogenous RNase Resistant (ERR marker relative to a reference gene, optionally combined with the measurement of two amplicons of different lengths. The combination reveals any mRNA degradation caused by ribonucleases as well as physical, chemical or UV damage. ΔAmp has superior sensitivity to common microfluidic electrophoretic methods, senses the integrity of the actual targeted RNA species, and allows for a smoother and more cost efficient workflow.

  13. Method of mechanical quadratures for solving singular integral equations of various types

    Science.gov (United States)

    Sahakyan, A. V.; Amirjanyan, H. A.

    2018-04-01

    The method of mechanical quadratures is proposed as a common approach intended for solving the integral equations defined on finite intervals and containing Cauchy-type singular integrals. This method can be used to solve singular integral equations of the first and second kind, equations with generalized kernel, weakly singular equations, and integro-differential equations. The quadrature rules for several different integrals represented through the same coefficients are presented. This allows one to reduce the integral equations containing integrals of different types to a system of linear algebraic equations.

  14. Variational Symplectic Integrator for Long-Time Simulations of the Guiding-Center Motion of Charged Particles in General Magnetic Fields

    International Nuclear Information System (INIS)

    Qin, H.; Guan, X.

    2008-01-01

    A variational symplectic integrator for the guiding-center motion of charged particles in general magnetic fields is developed for long-time simulation studies of magnetized plasmas. Instead of discretizing the differential equations of the guiding-center motion, the action of the guiding-center motion is discretized and minimized to obtain the iteration rules for advancing the dynamics. The variational symplectic integrator conserves exactly a discrete Lagrangian symplectic structure, and has better numerical properties over long integration time, compared with standard integrators, such as the standard and variable time-step fourth order Runge-Kutta methods.

  15. Parametric Integral Equations Systems Method In Solving Unsteady Heat Transfer Problems For Laser Heated Materials

    Directory of Open Access Journals (Sweden)

    Sawicki Dominik

    2015-09-01

    Full Text Available One of the most popular applications of high power lasers is heating of the surface layer of a material, in order to change its properties. Numerical methods allow an easy and fast way to simulate the heating process inside of the material. The most popular numerical methods FEM and BEM, used to simulate this kind of processes have one fundamental defect, which is the necessity of discretization of the boundary or the domain. An alternative to avoid the mentioned problem are parametric integral equations systems (PIES, which do not require classical discretization of the boundary and the domain while being numerically solved. PIES method was previously used with success to solve steady-state problems, as well as transient heat transfer problems. The purpose of this paper is to test the efficacy of the PIES method with time discretization in solving problem of laser heating of a material, with different pulse shape approximation functions.

  16. Stochastic integrated vendor–buyer model with unstable lead time and setup cost

    Directory of Open Access Journals (Sweden)

    Chandra K. Jaggi

    2011-01-01

    Full Text Available This paper presents a new vendor-buyer system where there are different objectives for both sides. The proposed method of this paper is different from the other previously published works since it considers different objectives for both sides. In this paper, the vendor’s emphasis is on the crashing of the setup cost, which not only helps him compete in the market but also provides better services to his customers; and the buyer’s aim is to reduce the lead time, which not only facilitates the buyer to fulfill the customers’ demand on time but also enables him to earn a good reputation in the market or vice versa. In the light of the above stated facts, an integrated vendor-buyer stochastic inventory model is also developed. The propsed model considers two cases for demand during lead time: Case (i Complete demand information, Case (ii Partial demand information. The proposed model jointly optimizes the buyer’s ordered quantity and lead time along with vendor’s setup cost and the number of shipments. The results are demonstrated with the help of numerical examples.

  17. An equivalent domain integral method in the two-dimensional analysis of mixed mode crack problems

    Science.gov (United States)

    Raju, I. S.; Shivakumar, K. N.

    1990-01-01

    An equivalent domain integral (EDI) method for calculating J-integrals for two-dimensional cracked elastic bodies is presented. The details of the method and its implementation are presented for isoparametric elements. The EDI method gave accurate values of the J-integrals for two mode I and two mixed mode problems. Numerical studies showed that domains consisting of one layer of elements are sufficient to obtain accurate J-integral values. Two procedures for separating the individual modes from the domain integrals are presented.

  18. A Multivariate Time Series Method for Monte Carlo Reactor Analysis

    International Nuclear Information System (INIS)

    Taro Ueki

    2008-01-01

    A robust multivariate time series method has been established for the Monte Carlo calculation of neutron multiplication problems. The method is termed Coarse Mesh Projection Method (CMPM) and can be implemented using the coarse statistical bins for acquisition of nuclear fission source data. A novel aspect of CMPM is the combination of the general technical principle of projection pursuit in the signal processing discipline and the neutron multiplication eigenvalue problem in the nuclear engineering discipline. CMPM enables reactor physicists to accurately evaluate major eigenvalue separations of nuclear reactors with continuous energy Monte Carlo calculation. CMPM was incorporated in the MCNP Monte Carlo particle transport code of Los Alamos National Laboratory. The great advantage of CMPM over the traditional Fission Matrix method is demonstrated for the three space-dimensional modeling of the initial core of a pressurized water reactor

  19. Time-integrated CP violation measurements in the B mesons system at the LHCb experiment

    CERN Document Server

    Cardinale, R

    2016-01-01

    Time-integrated CP violation measurements in the B meson system provide information for testing the CKM picture of CP violation in the Standard Model. A review of recent results from the LHCb experiment is presented.

  20. Symmetric and arbitrarily high-order Birkhoff-Hermite time integrators and their long-time behaviour for solving nonlinear Klein-Gordon equations

    Science.gov (United States)

    Liu, Changying; Iserles, Arieh; Wu, Xinyuan

    2018-03-01

    The Klein-Gordon equation with nonlinear potential occurs in a wide range of application areas in science and engineering. Its computation represents a major challenge. The main theme of this paper is the construction of symmetric and arbitrarily high-order time integrators for the nonlinear Klein-Gordon equation by integrating Birkhoff-Hermite interpolation polynomials. To this end, under the assumption of periodic boundary conditions, we begin with the formulation of the nonlinear Klein-Gordon equation as an abstract second-order ordinary differential equation (ODE) and its operator-variation-of-constants formula. We then derive a symmetric and arbitrarily high-order Birkhoff-Hermite time integration formula for the nonlinear abstract ODE. Accordingly, the stability, convergence and long-time behaviour are rigorously analysed once the spatial differential operator is approximated by an appropriate positive semi-definite matrix, subject to suitable temporal and spatial smoothness. A remarkable characteristic of this new approach is that the requirement of temporal smoothness is reduced compared with the traditional numerical methods for PDEs in the literature. Numerical results demonstrate the advantage and efficiency of our time integrators in comparison with the existing numerical approaches.

  1. Analytic comparison of time- and frequency-domain electromagnetic methods

    Energy Technology Data Exchange (ETDEWEB)

    Stoyer, C.H.

    1980-01-01

    The time- and frequency-domain methods of electromagnetic geophysical prospecting are compared to determine the similarities and differences and to recommend system choices for particular field situations. Only the wire-loop configuration is considered, as this array is quite standard in geothermal prospecting. Comparisons are carried out using hardware and physical considerations, a large catalog of 3-layer model curves, 2D-3D model calculations, and by comparing Fourier transforms and layered inversions of field data from the Randsburg KGRA in California. The results generally indicate that frequency-domain methods offer better resolution and more practical hardware design for long-offset shallow applications. They also have a much better backup in terms of modelling tools for interpretation and history of experience. Transient methods are better suited for deeper probing, for both long- and short-offset applications. Frequency-domain methods are limited by the primary field, which is subject to distortion from near-surface inhomogeneites; this is also the case for early-time transients. Transient measurements in late time are limited by ambient electromagnetic noise and dynamic range of receiving equipment.

  2. Application of the heat-balance and refined integral methods to the Korteweg-de Vries equation

    Directory of Open Access Journals (Sweden)

    Myers Timothy G.

    2009-01-01

    Full Text Available In this paper we consider approximate travelling wave solutions to the Korteweg-de Vries equation. The heat-balance integral method is first applied to the problem, using two different quartic approximating functions, and then the refined integral method is investigated. We examine two types of solution, chosen by matching the wave speed to that of the exact solution and by imposing the same area. The first set of solutions is generally better with an error that is fixed in time. The second set of solutions has an error that grows with time. This is shown to be due to slight discrepancies in the wave speed.

  3. Regulatory Snapshots: integrative mining of regulatory modules from expression time series and regulatory networks.

    Directory of Open Access Journals (Sweden)

    Joana P Gonçalves

    Full Text Available Explaining regulatory mechanisms is crucial to understand complex cellular responses leading to system perturbations. Some strategies reverse engineer regulatory interactions from experimental data, while others identify functional regulatory units (modules under the assumption that biological systems yield a modular organization. Most modular studies focus on network structure and static properties, ignoring that gene regulation is largely driven by stimulus-response behavior. Expression time series are key to gain insight into dynamics, but have been insufficiently explored by current methods, which often (1 apply generic algorithms unsuited for expression analysis over time, due to inability to maintain the chronology of events or incorporate time dependency; (2 ignore local patterns, abundant in most interesting cases of transcriptional activity; (3 neglect physical binding or lack automatic association of regulators, focusing mainly on expression patterns; or (4 limit the discovery to a predefined number of modules. We propose Regulatory Snapshots, an integrative mining approach to identify regulatory modules over time by combining transcriptional control with response, while overcoming the above challenges. Temporal biclustering is first used to reveal transcriptional modules composed of genes showing coherent expression profiles over time. Personalized ranking is then applied to prioritize prominent regulators targeting the modules at each time point using a network of documented regulatory associations and the expression data. Custom graphics are finally depicted to expose the regulatory activity in a module at consecutive time points (snapshots. Regulatory Snapshots successfully unraveled modules underlying yeast response to heat shock and human epithelial-to-mesenchymal transition, based on regulations documented in the YEASTRACT and JASPAR databases, respectively, and available expression data. Regulatory players involved in

  4. A new method for critical path method with fuzzy processing time

    Directory of Open Access Journals (Sweden)

    N. Shahsavari Pour

    2011-07-01

    Full Text Available Critical path method plays an important role on managing medium to large-scale problems. It is often difficult to determine the critical path for different reasons such as the existing uncertainties in processing tasks. One alternative to handle the uncertainty associated with the processing time is to use fuzzy techniques. We present a new method to calculate the critical path method when the processing times follow trapezoidal fuzzy numbers. The proposed model of this paper does not use any defuzzification technique to find the final processing time. The implementation of the proposed model is compared with other techniques using a well-known example from the literature.

  5. Design of a semi-custom integrated circuit for the SLAC SLC timing control system

    International Nuclear Information System (INIS)

    Linstadt, E.

    1984-10-01

    A semi-custom (gate array) integrated circuit has been designed for use in the SLAC Linear Collider timing and control system. The design process and SLAC's experiences during the phases of the design cycle are described. Issues concerning the partitioning of the design into semi-custom and standard components are discussed. Functional descriptions of the semi-custom integrated circuit and the timing module in which it is used are given

  6. A Method for Determining Reactivity-Time Function of Safety Rods

    International Nuclear Information System (INIS)

    Milovanovic, S.; Pesic, M.

    1994-01-01

    For accidental analysis of HERBE fast-thermal core, an accurate reactivity-time function for reactor safety rods is necessary. The HERBE core was designed with four safety rods: two of them are the actual safety rods, and the other two are additional safety rods which include holds during motion. The reactivity-time function is determined in two steps: (1) safety rods reactivity-position function is measured using inverse method; (2) rod drop position-time function is measured using a new method. In previously proposed method, it was determined by measurement of rod drop times and assuming constant acceleration during any particular interval of a rod motion. The complex dependence of the reactivity-time function for the HERBE safety rods during reactor shutdown is determined by combining both previously obtained reactivity worth data and measurements of safety rods trajectory. Integral reactivity-time function of the safety rods, including rods interference reactivity effects, is shown. In this new method an improvement for accurate safety rod position measurement, compared to previously proposed method, is obtained. At the same time, the assumption of the constant acceleration of the safety rods in the motion intervals is validated

  7. Single photon imaging and timing array sensor apparatus and method

    Science.gov (United States)

    Smith, R. Clayton

    2003-06-24

    An apparatus and method are disclosed for generating a three-dimension image of an object or target. The apparatus is comprised of a photon source for emitting a photon at a target. The emitted photons are received by a photon receiver for receiving the photon when reflected from the target. The photon receiver determines a reflection time of the photon and further determines an arrival position of the photon on the photon receiver. An analyzer is communicatively coupled to the photon receiver, wherein the analyzer generates a three-dimensional image of the object based upon the reflection time and the arrival position.

  8. The first integral method to study the (2+1)-dimensional Jaulent ...

    Indian Academy of Sciences (India)

    In this paper, we have presented the applicability of the first integral method for constructing exact solutions of (2+1)-dimensional Jaulent–Miodek equations. The first integral method is a powerful and effective method for solving nonlinear partial differential equations which can be applied to nonintegrable as well as ...

  9. The first integral method to study the (2+1)-dimensional Jaulent ...

    Indian Academy of Sciences (India)

    Abstract. In this paper, we have presented the applicability of the first integral method for con- structing exact solutions of (2+1)-dimensional Jaulent–Miodek equations. The first integral method is a powerful and effective method for solving nonlinear partial differential equations which can be applied to nonintegrable as well ...

  10. [A simple method for assessment of RNA integrity in laser capture microdissection samples].

    Science.gov (United States)

    Tian, Ying-fang; Wei, Zhao-ming; Chen, Xin-lin; Qiu, Fen; Xiao, Xin-li; Kang, Qian-yan; Zhu, Bo-feng; Tian, Yu-mei; Zhang, Jun-feng; Liu, Yong

    2008-10-01

    To develop a simple method for assessment of RNA integrity in laser capture microdissection (LCM) samples. The total RNA were isolated from the LCM samples and the sections before and after microdissection and examined by agarose gel electrophoresis. Real-time PCR was employed to assess the RNA from LCM samples, and the quantity of RNA was theoretically estimated according to the average total RNA product in mammalian cells (10 ng/1000 cells). When the total RNA from the sections before and after microdissection was intact, the RNA from LCM samples also had good quality, and the 28S and 18S rRNAs were visualized by ethidium bromide staining. Real-time PCR also showed good RNA quality in the LCM samples. A simple method for quantitative and qualitative assessment of the RNA from LCM samples is established, which can also be applied to assessment of DNA or proteins in LCM samples.

  11. Explicit Time Integrators for Nonlinear Dynamics Derived from the Midpoint Rule

    Directory of Open Access Journals (Sweden)

    P. Krysl

    2004-01-01

    Full Text Available We address the design of time integrators for mechanical systems that are explicit in the forcing evaluations. Our starting point is the midpoint rule, either in the classical form for the vector space setting, or in the Lie form for the rotation group. By introducing discrete, concentrated impulses we can approximate the forcing impressed upon the system over the time step, and thus arrive at first-order integrators. These can then be composed to yield a second order integrator with very desirable properties: symplecticity and momentum conservation. 

  12. Numerical integration methods and layout improvements in the context of dynamic RNA visualization.

    Science.gov (United States)

    Shabash, Boris; Wiese, Kay C

    2017-05-30

    RNA visualization software tools have traditionally presented a static visualization of RNA molecules with limited ability for users to interact with the resulting image once it is complete. Only a few tools allowed for dynamic structures. One such tool is jViz.RNA. Currently, jViz.RNA employs a unique method for the creation of the RNA molecule layout by mapping the RNA nucleotides into vertexes in a graph, which we call the detailed graph, and then utilizes a Newtonian mechanics inspired system of forces to calculate a layout for the RNA molecule. The work presented here focuses on improvements to jViz.RNA that allow the drawing of RNA secondary structures according to common drawing conventions, as well as dramatic run-time performance improvements. This is done first by presenting an alternative method for mapping the RNA molecule into a graph, which we call the compressed graph, and then employing advanced numerical integration methods for the compressed graph representation. Comparing the compressed graph and detailed graph implementations, we find that the compressed graph produces results more consistent with RNA drawing conventions. However, we also find that employing the compressed graph method requires a more sophisticated initial layout to produce visualizations that would require minimal user interference. Comparing the two numerical integration methods demonstrates the higher stability of the Backward Euler method, and its resulting ability to handle much larger time steps, a high priority feature for any software which entails user interaction. The work in this manuscript presents the preferred use of compressed graphs to detailed ones, as well as the advantages of employing the Backward Euler method over the Forward Euler method. These improvements produce more stable as well as visually aesthetic representations of the RNA secondary structures. The results presented demonstrate that both the compressed graph representation, as well as the Backward

  13. Direction and Integration of Experimental Ground Test Capabilities and Computational Methods

    Science.gov (United States)

    Dunn, Steven C.

    2016-01-01

    This paper groups and summarizes the salient points and findings from two AIAA conference panels targeted at defining the direction, with associated key issues and recommendations, for the integration of experimental ground testing and computational methods. Each panel session utilized rapporteurs to capture comments from both the panel members and the audience. Additionally, a virtual panel of several experts were consulted between the two sessions and their comments were also captured. The information is organized into three time-based groupings, as well as by subject area. These panel sessions were designed to provide guidance to both researchers/developers and experimental/computational service providers in defining the future of ground testing, which will be inextricably integrated with the advancement of computational tools.

  14. Time series analysis methods and applications for flight data

    CERN Document Server

    Zhang, Jianye

    2017-01-01

    This book focuses on different facets of flight data analysis, including the basic goals, methods, and implementation techniques. As mass flight data possesses the typical characteristics of time series, the time series analysis methods and their application for flight data have been illustrated from several aspects, such as data filtering, data extension, feature optimization, similarity search, trend monitoring, fault diagnosis, and parameter prediction, etc. An intelligent information-processing platform for flight data has been established to assist in aircraft condition monitoring, training evaluation and scientific maintenance. The book will serve as a reference resource for people working in aviation management and maintenance, as well as researchers and engineers in the fields of data analysis and data mining.

  15. Massively Parallel and Scalable Implicit Time Integration Algorithms for Structural Dynamics

    Science.gov (United States)

    Farhat, Charbel

    1997-01-01

    Explicit codes are often used to simulate the nonlinear dynamics of large-scale structural systems, even for low frequency response, because the storage and CPU requirements entailed by the repeated factorizations traditionally found in implicit codes rapidly overwhelm the available computing resources. With the advent of parallel processing, this trend is accelerating because of the following additional facts: (a) explicit schemes are easier to parallelize than implicit ones, and (b) explicit schemes induce short range interprocessor communications that are relatively inexpensive, while the factorization methods used in most implicit schemes induce long range interprocessor communications that often ruin the sought-after speed-up. However, the time step restriction imposed by the Courant stability condition on all explicit schemes cannot yet be offset by the speed of the currently available parallel hardware. Therefore, it is essential to develop efficient alternatives to direct methods that are also amenable to massively parallel processing because implicit codes using unconditionally stable time-integration algorithms are computationally more efficient when simulating the low-frequency dynamics of aerospace structures.

  16. ADVANCING THE STUDY OF VIOLENCE AGAINST WOMEN USING MIXED METHODS: INTEGRATING QUALITATIVE METHODS INTO A QUANTITATIVE RESEARCH PROGRAM

    Science.gov (United States)

    Testa, Maria; Livingston, Jennifer A.; VanZile-Tamsen, Carol

    2011-01-01

    A mixed methods approach, combining quantitative with qualitative data methods and analysis, offers a promising means of advancing the study of violence. Integrating semi-structured interviews and qualitative analysis into a quantitative program of research on women’s sexual victimization has resulted in valuable scientific insight and generation of novel hypotheses for testing. This mixed methods approach is described and recommendations for integrating qualitative data into quantitative research are provided. PMID:21307032

  17. Glucocorticoid assessment in the domestic horse: The impacts of time and climatic variables on sample integrity.

    Science.gov (United States)

    Yarnell, K; Walker, S L

    2018-03-01

    Assessment of faecal glucocorticoid metabolites (FGM) offers a noninvasive method of monitoring adrenal activity in domestic horses. Samples are collected on an opportunistic basis and, if they are not fresh or have been exposed to the elements before they are identified, may not accurately reflect FGM concentrations. To explore the impact of a range of environmental conditions upon the integrity of FGM levels in equine faeces. In vitro experiment. Equine faeces were exposed to six controlled environmental conditions intended to simulate a range of weather and seasonal patterns (temperate climate, high heat, high heat and rainfall, temperate climate and rainfall, high heat/temperate climate, freeze/thaw) over a period of 5 days. FGM were quantified using an enzyme-linked immunoassay. Faecal samples exposed to room temperature and high heat demonstrated significant increases in FGM levels over time. No changes in FGM levels were observed in the remaining treatments. The study should be repeated in field conditions and with known high and low levels of FGM to further inform sampling regimes. Adrenal monitoring in the domestic horse should be performed with consideration of the impact of climate on the integrity of faecal samples in order to further inform sampling schedules and improve the reliability of results. © 2017 EVJ Ltd.

  18. An integrated runtime and compile-time approach for parallelizing structured and block structured applications

    Science.gov (United States)

    Agrawal, Gagan; Sussman, Alan; Saltz, Joel

    1993-01-01

    Scientific and engineering applications often involve structured meshes. These meshes may be nested (for multigrid codes) and/or irregularly coupled (called multiblock or irregularly coupled regular mesh problems). A combined runtime and compile-time approach for parallelizing these applications on distributed memory parallel machines in an efficient and machine-independent fashion was described. A runtime library which can be used to port these applications on distributed memory machines was designed and implemented. The library is currently implemented on several different systems. To further ease the task of application programmers, methods were developed for integrating this runtime library with compilers for HPK-like parallel programming languages. How this runtime library was integrated with the Fortran 90D compiler being developed at Syracuse University is discussed. Experimental results to demonstrate the efficacy of our approach are presented. A multiblock Navier-Stokes solver template and a multigrid code were experimented with. Our experimental results show that our primitives have low runtime communication overheads. Further, the compiler parallelized codes perform within 20 percent of the code parallelized by manually inserting calls to the runtime library.

  19. Integral method of treatment of experimental data from radiochemical solar neutrino detectors

    International Nuclear Information System (INIS)

    Gavrin, V.N.; Kopylov, A.V.; Streltsov, A.V.

    1985-01-01

    An analysis is made of the statistical errors in solar neutrino detection by radiochemical detectors at different times of exposure. It is shown that short exposures (tau/sub e/ = one-half to one half-life) give minimal one-year error. The possibility is considered of the detection of the solar neutrino flux variation due to annual changes of the Earth-Sun distance. The integral method of treatment of the experimental data is described. Results are given of the statistical treatment of computer simulated data

  20. An Operator-Integration-Factor Splitting (OIFS) method for Incompressible Flows in Moving Domains

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Saumil S. [Argonne National Lab. (ANL), Argonne, IL (United States); Fischer, Paul F. [Argonne National Lab. (ANL), Argonne, IL (United States); Univ. of Illinois, Urbana-Champaign, IL (United States); Min, Misun [Argonne National Lab. (ANL), Argonne, IL (United States); Tomboulides, Ananias G [Argonne National Lab. (ANL), Argonne, IL (United States); Aristotle Univ., Thessaloniki (Greece)

    2017-10-21

    In this paper, we present a characteristic-based numerical procedure for simulating incompressible flows in domains with moving boundaries. Our approach utilizes an operator-integration-factor splitting technique to help produce an effcient and stable numerical scheme. Using the spectral element method and an arbitrary Lagrangian-Eulerian formulation, we investigate flows where the convective acceleration effects are non-negligible. Several examples, ranging from laminar to turbulent flows, are considered. Comparisons with a standard, semi-implicit time-stepping procedure illustrate the improved performance of the scheme.