WorldWideScience

Sample records for tiber-ii reactor study

  1. A cryogenic system for TIBER II [Tokamak Ignition/Burn Experimental Reactor

    International Nuclear Information System (INIS)

    Slack, D.S.; Kerns, J.A.

    1987-01-01

    Phase II of the Tokamak Ignition/Burn Experimental Reactor (TIBER II) study describes one option for a small, economical, next-generation tokamak [1,2]. Because of its small size, minimum shielding is used between the plasma and the toroidal-field (TF) coils. Consequently, a large cryogenic system (approximately 70 kW at 4.5 K) capable of delivering forced-flow helium is required. This paper describes a cryogenic system that meets this requirement and includes TIBER-II requirements. 3 refs

  2. Facilities design for TIBER II

    International Nuclear Information System (INIS)

    Thomson, S.L.; Blevins, J.D.

    1987-01-01

    This paper describes the conceptual design of the reactor building and reactor maintenance building for the TIBER II tokamak. These buildings are strongly influenced by the reactor configuration, and their characterization allows a better understanding of the economic and technical implications of the reactor design. Key features of TIBER II that affect the facilities design are the small size and compact arrangement, the use of an external vacuum vessel, and the complete reliance on remote maintenance. The building design incorporates requirements for equipment layout, maintenance operations and equipment, safety, and contamination control. 4 figs

  3. TIBER (Tokamak Ignition/Burn Experimental Reactor) II as a precursor to an international thermonuclear experimental reactor

    International Nuclear Information System (INIS)

    Henning, C.D.; Gilleland, J.R.

    1988-01-01

    The Tokamak Ignition/Burn Experimental Reactor (TIBER) was pursued in the US as one option for an International Thermonuclear Experimental Reactor (ITER). This concept evolved from earlier work on the Tokamak Fusion Core Experiment (TFCX) to develop a small, ignited tokamak. While the copper-coil versions of TFCX became the short-pulsed, 1.23-m radius, Compact Ignition Tokamak (CIT), the superconducting TIBER with long pulse or steady state and a 2.6-m radius was considered for international collaboration. Recently the design was updated to TIBER II, to accommodate more conservative confinement scaling, double-poloidal divertors for impurity control, steady-state current drive, and nuclear testing. 18 refs., 1 fig

  4. Safety and environmental requirements and design targets for TIBER-II

    International Nuclear Information System (INIS)

    Piet, S.J.

    1987-09-01

    A consistent set of safety and environmental requirements and design targets was proposed and adopted for the TIBER-II (Tokamak Ignition/Burn Experimental Reactor) design effort. TIBER-II is the most recent US version of a fusion experimental test reactor (ETR). These safety and environmental design targets were one contribution of the Fusion Safety Program in the TIBER-II design effort. The other contribution, safety analyses, is documented in the TIBER-II design report. The TIBER-II approach, described here, concentrated on logical development of, first, a complete and consistent set of safety and environmental requirements that are likely appropriate for an ETR, and, second, an initial set of design targets to guide TIBER-II. Because of limited time in the TIBER-II design effort, the iterative process only included one iteration - one set of targets and one design. Future ETR design efforts should therefore build on these design targets and the associated safety analyses. 29 refs., 5 figs., 3 tabs

  5. TIBER II/ETR [Engineering Test Reactor] nuclear shielding and optional tritium breeding system: An overview

    International Nuclear Information System (INIS)

    Lee, J.D.; Sawan, M.

    1987-01-01

    TIBER II, the Tokamak Ignition/Burn Experimental Reactor II, is a design concept developed as the US candidate for an International Engineering Test Reactor (ETR). An important objective of this design is to minimize cost by minimizing major radius while providing a wall loading greater than 1.0 MW/m2 and a total fluence greater than 3.0 MWY/m2 needed for blanket module testing. The shielding required for the superconducting TF coils is an important element in setting TIBER II's 3.0m major radius. 6 refs., 1 fig., 1 tab

  6. TIBER II: an upgraded tokamak igntion/burn experimental reactor

    International Nuclear Information System (INIS)

    Henning, C.D.; Logan, B.G.; Perkins, L.J.

    1986-01-01

    We are disIgning a minimum-size Tokamak ignition/Burn Reactor (TIBER II). This design incorporates physics requirements, neutron wall loading and fluence parameters that will make it compatible with a nuclear testing mission. Reactor relevant physics will be tested by using current drive and steady-state operation. Although the design accommodates several current drive options, including neutral beams, the base case uses a combination of lower hybrid and electron-cyclotron radio frequency power. Minimum neutron shielding, compact structures, high magnet-current densities, and remotely maintainable vacuum seals, all contribute to the compact size

  7. Overview of the TIBER II design

    International Nuclear Information System (INIS)

    Henning, C.D.; Logan, B.G.

    1987-01-01

    The TIBER II Tokamak Ignition/Burn Experimental Reactor design is the result of efforts by numerous people and institutions, including many fusion laboratories, universities, and industries. This overview attempts to place the work in perspective. Major features of the design are compact size, low cost, and steady-state operation. These are achieved through plasma shaping and innovative features such as radiation tolerant magnets and optimized shielding. While TIBER II can operate in a pulsed mode, steady-state is preferred for nuclear testing. Current drive is achieved by a combination of lower hybrid and neutral beams. In addition to 10 MW of ECR is added for disruption control and current drive profiling

  8. Physics analysis of the TIBER-II engineering test reactor

    International Nuclear Information System (INIS)

    Uckan, N.A.; Houlberg, W.A.; Attenberger, S.E.; Dory, R.A.; Spong, D.A.; Tolliver, J.S.; Sheffield, J.

    1987-11-01

    Confinement capability, burn characteristics, heating and fueling requirements, and fast alpha particle effects are assessed for the TIBER-II engineering test reactor (ETR/ITER). Confinement predictions for a wide variety of empirical scaling laws show that ignition in TIBER-II (or similar ETR-like devices) is marginal at 10 MA, whereas the design goal to achieve noninductively driven, steady-state burn with Q > 5 can easily be attained. Operation at the higher plasma currents being discussed for ITER or the attainment of higher density limits and/or favorable H-mode scalings improves the ignition capability. Pellet penetration calculations indicate that density profile control with pellets may not be feasible even for pellet velocities up to about 50 km/s, however, density peaking could result from inward pinch effects, as frequently inferred from experiments. The fast alpha contribution to pressure is substantial (10 to 30%) at TIBER (or any ETR/ITER) burn temperatures (8 to 20 keV). A relatively low level of fast alpha radial diffusion or a modest level of thermal alpha buildup significantly influences the ignition and steady-state burn capability. The fast alpha population can also modify the background plasma ballooning mode stability boundaries, lowering the beta limit β/sub crit/ - in particular, operation at the high electron temperatures needed for efficient current drive can exacerbate this effect. The use of high-energy neutral beams offers the promise of two important improvements in projected performance: an effective method for noninductive current drive and a means for controlling the current density profile deep within the plasma, as required for stable operation at high beta levels. 14 refs., 10 figs., 1 tab

  9. Physics analysis of the TIBER-II engineering test reactor

    International Nuclear Information System (INIS)

    Uckan, N.A.; Houlberg, W.A.; Attenberger, S.E.; Dory, R.A.; Spong, D.A.; Tolliver, J.S.; Sheffield, J.

    1987-01-01

    Confinement capability, burn characteristics, heating and fueling requirements, and fast-alpha particle effects are assessed for the TIBER-II engineering test reactor (ETR/ITER). Confinement predictions for a wide variety of empirical scaling laws show that ignition on TIBER-II (or similar ETR-like devices) is marginal at 10 MA, whereas the design goal to achieve noninductively driven, steady-state burn with Q > 5 can easily be attained. Operation at the higher plasma currents being discussed for ITER or the attainment of higher density limits and/or favorable H-mode scalings improves the ignition capability. Pellet penetration calculations indicate that density profile control with pellets may not be feasible even for pellet velocities up to bout 50 km/s; however, density peaking could result from inward pinch effects, as frequently inferred from experiments. The fast alpha contribution to pressure is substantial (10-30%) at TIBER (or any ETR/ITER) burn temperatures (8-20 keV). A relatively low level of fast alpha radial diffusion or a modest level of thermal alpha buildup significantly influences the ignition and steady-state burn capability. The fast alpha population can also modify the background plasma ballooning mode stability boundaries, lowering the beta limit β/sub crit/ - in particular, operation at the high electron temperatures needed for efficient current drive can exacerbate this effect. The use of high-energy neutral beams offers the promise of two important improvements in projected performance: an effective method for noninductive current drive and a means for controlling the current density profile deep within the plasma, as required for stable operation at high beta levels

  10. TIBER II/ETR final design report: Volume 2, 3.0 Engineering

    International Nuclear Information System (INIS)

    Lee, J.D.

    1987-09-01

    This paper discusses the design of the TIBER II Tokamak. This particular volume discusses: mechanical systems; electrical systems; shield nuclear analysis and tritium issues; reactor building facilities; and tritium systems

  11. TIBER II/ETR final design report: Volume 1, 1.0 Introduction; 2.0 plasma engineering

    International Nuclear Information System (INIS)

    Lee, J.D.

    1987-09-01

    This paper discusses the design of the TIBER II tokamak test reactor. Specific topics discussed are the physics objectives for Tiber, magnetics, baseline operating point, pulsed inductive operation, edge physics and impurity control, fueling, disruption control, vertical stability and impurity flow reversal

  12. TIBER II/ETR final design report: Volume 1, 1. 0 Introduction; 2. 0 plasma engineering

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.D. (ed.)

    1987-09-01

    This paper discusses the design of the TIBER II tokamak test reactor. Specific topics discussed are the physics objectives for Tiber, magnetics, baseline operating point, pulsed inductive operation, edge physics and impurity control, fueling, disruption control, vertical stability and impurity flow reversal. (LSP)

  13. LOFA [loss of flow accident] and LOCA [loss of coolant accident] in the TIBER-II engineering test reactor: Appendix A-4

    International Nuclear Information System (INIS)

    Sviatoslavsky, I.N.; Attaya, H.M.; Corradini, M.L.; Lomperski, S.

    1987-01-01

    This paper describes the preliminary analysis of LOFA (loss of flow accident) and LOCA (loss of coolant accident) in the TIBER-II engineering test reactor breeding shield. TIBER-II is a compact reactor with a major radius of 3 m and thus requires a thin, high efficiency shield on the inboard side. The use of tungsten in the inboard shield implies a rather high rate of afterheat upon plasma shutdown, which must be dissipated in a controlled manner to avoid the possibility of radioactivity release or threatening the investment. Because the shield is cooled with an aqueous solution, LOFA does not pose a problem as long as natural convection can be established. LOCA, however, has more serious consequences, particularly on the inboard side. Circulation of air by natural convection is proposed as a means for dissipating the inboard shield decay heat. The safety and environmental implications of such a scheme are evaluated. It is shown that the inboard shield temperature never exceeds 510 0 C following LOCA posing no hazard to reactor personnel and not threatening the investment. 7 refs., 6 figs

  14. Liquid metal blanket module testing and design for ITER/TIBER II

    International Nuclear Information System (INIS)

    Mattas, R.F.; Cha, Y.; Finn, P.A.; Majumdar, S.; Picologlou, B.; Stevens, H.; Turner, L.

    1988-05-01

    A major goal for ITER is the testing of nuclear components to demonstrate the integrated performance of the most attractive concepts that can lead to a commercial fusion reactor. As part of the ITER/TIBER II study, the test program and design of test models were examined for a number of blanket concepts. The work at Argonne National Laboratory focused on self-cooled liquid metal blankets. A test program for liquid metal blankets was developed based upon the ITER/TIBER II operating schedule and the specific data needs to resolve the key issues for liquid metals. Testing can begin early in reactor operation with liquid metal MHD tests to confirm predictive capability. Combined heat transfer/MHD tests can be performed during initial plasma operation. After acceptable heat transfer performance is verified, tests to determine the integrated high temperature performance in a neutron environment can begin. During the high availability phase operation, long term performance and reliability tests will be performed. It is envisioned that a companion test program will be conducted outside ITER to determine behavior under severe accident conditions and upper performance limits. A detailed design of a liquid metal test module and auxiliary equipment was also developed. The module followed the design of the TPSS blanket. Detailed analysis of the heat transfer and tritium systems were performed, and the overall layout of the systems was determined. In general, the blanket module appears to be capable of addressing most of the testing needs. 8 refs., 27 figs., 11 tabs

  15. TIBER-II TF [toroidal-field] winding pack design

    International Nuclear Information System (INIS)

    Kerns, J.A.; Miller, J.R.; Slack, D.S.; Summers, L.T.

    1987-01-01

    The superconducting, toroidal-field (TF) coils in the Tokamak Ignition/Burn Engineering Reactor (TIBER II) are designed with cable-in-conduit conductor (CICC) using Nb 3 Sn composite strands. To design the CICC winding pack, we used an optimization technique that maximizes the conductor stability without violating the constraints imposed by the structure, electrical insulation, quench protection, and fabrication technique. Detailed helium-properties codes calculate the heat removal along a flow path, and detailed field calculations determine the temperature, current, and stability margins. The conductor sheath is designed as distributed structure to partially support the combined in-plane and out-of-plane loads generated within the winding pack. Pancakes of the coil are wound, reacted, and insulated before being potted in the case. This design is aggressive but fully consistent with good engineering practice. 5 refs., 4 figs., 2 tabs

  16. Plasma parameters for alternate operating modes of TIBER-II

    International Nuclear Information System (INIS)

    Fenstermacher, M.E.; Devoto, R.S.; Logan, B.G.; Perkins, L.J.

    1987-01-01

    Parameters for operating points of TIBER-II, different from the baseline steady-state operation, are presented. These results have been generated with the MUMAK tokamak power balance code. Pulsed ignited and high performance steady-state operating points are described. 20 refs

  17. High performance inboard shield design for the compact TIBER-II test reactor: Appendix A-2

    International Nuclear Information System (INIS)

    El-Guebaly, L.A.; Sviatoslavsky, I.N.

    1987-01-01

    The compactness of the TIBER-II reactor has placed a premium on the design of a high performance inboard shield to protect the inner legs of the toroidal field (TF) coils. The available space for shield is constrained to 48 cm and the use of tungsten is mandatory to protect the magnet against the 1.53 MW/m 2 neutron wall loading. The primary requirement for the shield is to limit the fast neutron fluence to 10 19 n/cm 2 . In an optimization study, the performance of various candidate materials for protecting the magnet was examined. The optimum shield consists of a 40 cm thick W layer, followed by an 8 cm thick H 2 O/LiNO 3 layer. The mechanical design of the shield calls for tungsten blocks within SS stiffened panels. All the coolant channels are vertical with more of them in the front where there is a high heat load. The coolant pressure is 0.2 MPa and the maximum structural surface temperature is 0 C. The effects of the detailed mechanical design of the shield and the assembly gaps between the shield sectors on the damage in the magnet were analyzed and peaking factors of ∼2 were found at the hot spots. 2 refs., 6 figs., 2 tabs

  18. Modeling of thermal effects on TIBER II [Tokamak Ignition/Burn Experimental Reactor] divertor during plasma disruption

    International Nuclear Information System (INIS)

    Bruhn, M.L.; Perkins, L.J.

    1987-01-01

    Mapping the disruption power flow from the mid-plane of the TIBER Engineering Test Reactor to its divertor and calculating the resulting thermal effects are accomplished through the modification and coupling of three presently existing computer codes. The resulting computer code TADDPAK (Thermal Analysis Divertor during Disruption PAcKage) provides three-dimensional graphic presentations of time and positional dependent thermal effects on a poloidal cross section of the double-null-divertor configured reactor. These thermal effects include incident heat flux, surface temperature, vaporization rate, total vaporization, and melting depth. The dependence of these thermal effects on material choice, disruption pulse shape, and the characteristic thickness of the plasma scrape-off layer is determined through parametric analysis with TADDPAK. This computer code is designed to be a convenient, rapid, and user-friendly modeling tool which can be easily adapted to most tokamak double-null-divertor reactor designs. 14 refs

  19. TIBER engineering test reactor (ETR) startup scenarios

    International Nuclear Information System (INIS)

    Blackfield, D.T.; Perkins, L.J.

    1987-01-01

    A time-dependent Tokamak Systems Code (TTSC) has been developed and used to examine various inductively driven startup scenarios for the TIBER reactor. Radially averaged particle and energy balance equations are solved. In addition, time varying currents in the PF and OH coils are determined from MHD equilibrium and volt-seconds considerations. Less than 20 MW of auxiliary power deposited in the electrons is required to obtain steady-state operations. For this scenario, less than 10% of the total volt-seconds capability is consumed during startup and the currents in the PF and OH coils do not appear to exceed stress limits. For every volt-second saved during startup, the burn time can be extended 14 seconds. 4 refs., 6 figs., 3 tabs

  20. TIBER II/ETR: Nuclear Performance Analysis Group Report

    International Nuclear Information System (INIS)

    1987-09-01

    A Nuclear Performance Analysis Group was formed to develop the nuclear technology mission of TIBER-II under the leadership of Argonne National Laboratory reporting to LLNL with major participation by the University of California - Los Angeles (test requirements, R and D needs, water-cooled test modules, neutronic tests). Additional key support was provided by GA Technologies (helium-cooled test modules), Hanford Engineering Development Laboratory (material-irradiation tests), Sandia National Laboratory - Albuquerque (high-heat-flux component tests), and the Idaho National Engineering Laboratory (safety tests). Support also was provided by Rennselaer Polytechnic Institute, Grumman Aerospace Corporation, and the Canadian Fusion Fuels Technology Program. This report discusses these areas and provides a schedule for their completion

  1. Modeling of thermal effects on TIBER II divertor during plasma disruptions

    International Nuclear Information System (INIS)

    Bruhn, M.L.; Perkins, L.J.

    1987-01-01

    Mapping the disruption power flow from the mid-plane of the TIBER Engineering Test Reactor to its divertor and calculating the resulting thermal effects are accomplished through the modification and coupling of three presently existing computer codes. The resulting computer code TADDPAK (Thermal Analysis Divertor during Disruption PAcKage) provides three-dimensional graphic presentations of time and positional dependent thermal effects on a poloidal cross section of the double-null-divertor configured reactor. These thermal effects include incident heat flux, surface temperature, vaporization rate, total vaporization, and melting depth. The dependence of these thermal effects on material choice, disruption pulse shape, and the characteristic thickness of the plasma scrape-off layer is determined through parametric analysis with TADDPAK. This computer code is designed to be a convenient, rapid, and user-friendly modeling tool which can be easily adapted to most tokamak double-null-divertor reactor designs

  2. Tiber Personal Rapid Transit

    Directory of Open Access Journals (Sweden)

    Diego Carlo D'agostino

    2011-02-01

    Full Text Available The project “Tiber Personal Rapid Transit” have been presented by the author at the Rome City Vision Competition1 2010, an ideas competition, which challenges architects, engineers, designers, students and creatives individuals to develop visionary urban proposals with the intention of stimulating and supporting the contemporary city, in this case Rome. The Tiber PRT proposal tries to answer the competition questions with the definition of a provocative idea: a Personal Rapid transit System on the Tiber river banks. The project is located in the central section of the Tiber river and aims at the renewal of the river banks with the insertion of a Personal Rapid Transit infrastructure. The project area include the riverbank of Tiber from Rome Transtevere RFI station to Piazza del Popolo, an area where main touristic and leisure attractions are located. The intervention area is actually no used by the city users and residents and constitute itself a strong barrier in the heart of the historic city.

  3. TIBER II/ETR final design report: Volume 3, 5.0 Radiation safety and environment; 6.0 Physics and technology R and D needs

    International Nuclear Information System (INIS)

    Lee, J.D.

    1987-09-01

    This paper discusses the design of the TIBER II Tokamak. This particular volume discusses: safety and environmental requirements and design targets; accident analyses; personnel safety and maintenance exposure; effluent control; waste management and decommissioning; safety considerations in building design; and safety and environmental conclusions and recommendations

  4. Mechanical design of the TIBER breeding shield

    Energy Technology Data Exchange (ETDEWEB)

    Rathke, J.; Deutsch, L. (Grumman Corp., Bethpage, NY (USA). Space Systems Div.)

    1989-04-01

    TIBER features a segmented shield assembly that provides the nuclear shielding for the superconducting toroidal field coils. In addition to its primary function, the shield also provides tritium breeding through the use of water coolant that contains 16 wt% dissolved lithium nitrate. Because the TIBER reactor need not provide electrical power, the coolant is maintained at low pressure (0.2 MPa) and low temperature (75/sup 0/C). The shield is made in several segments to facilitate assembly and allow for replacement of high heat flux components (divertor blades). The segments are designated as inboard, outboard, upper, lower, and divertor modules. In total, there are 96 separate modules in the machine, consisting of six different types. The design features of the different modules vary primarily depending on the thickness of the shield in a given location. The very thick outboard shield has a breeding zone in the inboard portion of the module, with a shielding zone behind it. The breeding zone consists of a stainless steel casing filled with beryllium spheres. The shielding zone consists of the same casing filled with steel spheres. Both of these zones have lithiated water circulated throughout to provide cooling and breeding. In zones with minimal thickness, tungsten alloys are used to achieve the required shielding. These alloys are incoprorated in subassemblies utilizing stainless steel casings surrounding blocks of tungsten heavy metal alloy. These are infiltrated with lead on final assembly to form a thermally continuous panel. Several of these panels are then assembled into an outer stainless steel case to form an inboard module. These modules also use the lithiated coolant. The details of the design are presented and discussed. (orig.).

  5. Rome in its setting. Post-glacial aggradation history of the Tiber River alluvial deposits and tectonic origin of the Tiber Island

    Science.gov (United States)

    Motta, Laura; Brock, Andrea L.; Macrì, Patrizia; Florindo, Fabio; Sadori, Laura; Terrenato, Nicola

    2018-01-01

    The Tiber valley is a prominent feature in the landscape of ancient Rome and an important element for understanding its urban development. However, little is known about the city’s original setting. Our research provides new data on the Holocene sedimentary history and human-environment interactions in the Forum Boarium, the location of the earliest harbor of the city. Since the Last Glacial Maximum, when the fluvial valley was incised to a depth of tens of meters below the present sea level, 14C and ceramic ages coupled with paleomagnetic analysis show the occurrence of three distinct aggradational phases until the establishment of a relatively stable alluvial plain at 6–8 m a.s.l. during the late 3rd century BCE. Moreover, we report evidence of a sudden and anomalous increase in sedimentation rate around 2600 yr BP, leading to the deposition of a 4-6m thick package of alluvial deposits in approximately one century. We discuss this datum in the light of possible tectonic activity along a morpho-structural lineament, revealed by the digital elevation model of this area, crossing the Forum Boarium and aligned with the Tiber Island. We formulate the hypothesis that fault displacement along this structural lineament may be responsible for the sudden collapse of the investigated area, which provided new space for the observed unusually large accumulation of sediments. We also posit that, as a consequence of the diversion of the Tiber course and the loss in capacity of transport by the river, this faulting activity triggered the origin of the Tiber Island. PMID:29590208

  6. Conceptual design study on inertial confinement reactor ''SENRI-II''

    International Nuclear Information System (INIS)

    Nakamura, N.; Ouura, H.

    1983-01-01

    Design features of a laser fusion reactor concept SENRI-II are reviewed and discussed. A conceptual design study of the ICF reactor SENRI-II (an advanced design of SENRI-I) has been carried out over 2 years in the Research Committee of ICF Reactors, Institute of Laser Engineering, Osaka University. While the ICF reactor SENRI-I utilized a magnetic field to guide and control an inner liquid lithium flow, SENRI-II is designed to use porous metal as the liquid lithium flow guide. In the design of SENRI-II, a metal porous lithium blanket serves as the protection of a wall against fusion products and as wall per se. Because of the separation of these two functions, a high power density can be attained

  7. Modelling of heterogenous neutron leakages in a nuclear reactor

    International Nuclear Information System (INIS)

    Wohleber, X.

    1997-01-01

    The TIBERE Model is a neutron leakage method based on B 1 heterogeneous transport equation resolution. In this work, we have studied the influence of the reflection mode at the boundary of the assembly. In particular the White boundary condition has been implemented in the APOLLO2 neutron transport code. We have compared the two TIBERE kinds of boundary conditions (specular and white) with the classical B 1 homogeneous leakage method in the modelling of some reactors. We have remarked the better capability of the TIBERE Model to compute voided assemblies. The white boundary condition is also able to compute a completely voided assembly and, besides, wins a factor 10 in CPU time in comparison with the specular boundary condition. These two heterogenous leakage formalisms have been tested on a partially voided experiment and have shown that the TIBERE Model can compute this kind of situation with a greater precision than the classical B 1 homogeneous leakage method, and with a shorter computational time. (author)

  8. Application of a two fluid theoretical plasma transport model on current tokamak reactor designs

    International Nuclear Information System (INIS)

    Ibrahim, E.; Fowler, T.K.

    1987-06-01

    In this work, the new theoretical transport models to TIBER II design calculations are described and the results are compared with recent experimental data in large tokamaks (TFTR, JET). Tang's method is extended to a two-fluid model treating ions and electrons separately. This allows for different ion and electron temperatures, as in recent low-density experiments in TFTR, and in the TIBER II design itself. The discussion is divided into two parts: (1) Development of the theoretical transport model and (2) calibration against experiments and application to TIBER II

  9. The Virtual Museum of the Tiber Valley Project

    Directory of Open Access Journals (Sweden)

    Antonia Arnoldus Huyzendveld

    2012-11-01

    Full Text Available The aim of the Virtual Museum of the Tiber Valley project is the creation of an integrated digital system for the knowledge, valorisation and communication of the cultural landscape, archaeological and naturalistic sites along the Tiber Valley, in the Sabina area between Monte Soratte and the ancient city of Lucus Feroniae (Capena. Virtual reality applications, multimedia contents, together with a web site, are under construction and they will be accessed inside the museums of the territory and in a central museum in Rome. The different stages of work will cover the building of a geo-spatial archaeological database, the reconstruction of the ancient potential landscape and the creation of virtual models of the major archaeological sites. This paper will focus on the methodologies used and on present and future results.

  10. Sawtooth effects in INTOR and TIBER

    International Nuclear Information System (INIS)

    Stotler, D.P.; Post, D.; Bateman, G.

    1987-08-01

    Transport simulations of the present designs for the INTOR and TIBER ignition devices predict that broad sawtooth oscillations will appear in these experiments. As was noted previously in studies of the Compact Ignition Tokamak, the primary effect of the oscillations is to reduce fusion power production on the average through profile flattening. Due to the disparate time scales for energy and current diffusion between sawtooth crashes, the simulations also produce peaked pressure profiles over a large low shear region inside the q = 1 surface (q is the safety factor). Pressure-driven modes will likely be unstable in this case. 5 figs., 2 tabs

  11. Cryogenic magnet case and distributed structural materials for high-field superconducting magnets

    International Nuclear Information System (INIS)

    Summers, L.T.; Miller, J.R.; Kerns, J.A.; Myall, J.O.

    1987-01-01

    The superconducting magnets of the Tokamak Ignition/Burn Experimental Reactor (TIBER II) will generate high magnetic fields over large bores. The resulting electromagnetic forces require the use of large volumes of distributed steel and thick magnet case for structural support. Here we review the design allowables, calculated loads and forces, and structural materials selection for TIBER II. 7 refs., 2 figs., 3 tabs

  12. Tritium module for ITER/Tiber system code

    International Nuclear Information System (INIS)

    Finn, P.A.; Willms, S.; Busigin, A.; Kalyanam, K.M.

    1988-01-01

    A tritium module was developed for the ITER/Tiber system code to provide information on capital costs, tritium inventory, power requirements and building volumes for these systems. In the tritium module, the main tritium subsystems/emdash/plasma processing, atmospheric cleanup, water cleanup, blanket processing/emdash/are each represented by simple scaleable algorithms. 6 refs., 2 tabs

  13. Reconstruction of the solid transport of the river Tiber by a stochastic model

    International Nuclear Information System (INIS)

    Grimaldi, S.; Magnaldi, S.; Margaritora, G.

    1999-01-01

    The chronological series of cumulative suspended solids transport observed at Ripetta station in river Tiber (Rome, Italy) is reconstructed on the base of the correlation with the chronological series of liquid discharge, using a TFN (Transfer Function Noise) stochastic model with SARIMA noise. The results are compared with those similar reconstructions based on linear correlation that can be found in literature. Finally, the importance of floods intensity and frequency decrease observed after 1950 at Ripetta station is shown as not negligible aggravation for the decrease solid transport in river Tiber [it

  14. High current density magnets for INTOR and TIBER

    International Nuclear Information System (INIS)

    Miller, J.R.; Henning, C.D.; Kerns, J.A.; Slack, D.S.; Summers, L.T.; Zbasnik, J.P.

    1986-12-01

    The adoption of high current density, high field, superconducting magnets for INTOR and TIBER would prove beneficial. When combined with improved radiation tolerance of the magnets to minimize the inner leg shielding, a substantial reduction in machine dimensions and capital costs can be achieved. Fortunately, cable-in-conduit conductors (CICC) which are capable of the desired enhancements are being developed. Because conductor stability in a CICC depends more on the trapped helium enthalpy, rather than the copper resistivity, higher current densities of the order of 40 A/mm 2 at 12 T are possible. Radiation damage to the copper stabilizer is less important because the growth in resistance is a second-order effect on stability. Such CICC conductors lend themselves naturally to niobium-tin utilization, with the benefits of the high current-sharing temperature of this material being taken to advantage in absorbing radiation heating. When the helium coolant is injected at near the critical pressure, Joule-Thompson expansion in the flow path tends to stabilize the fluid temperature at under 6 K. Thus, higher fields, as well as higher current densities, can be considered for INTOR or TIBER

  15. High field, low current operation of engineering test reactors

    International Nuclear Information System (INIS)

    Schwartz, J.; Cohn, D.R.; Bromberg, L.; Williams, J.E.C.

    1987-06-01

    Steady state engineering test reactors with high field, low current operation are investigated and compared to high current, lower field concepts. Illustrative high field ETR parameters are R = 3 m, α ∼ 0.5 m, B ∼ 10 T, β = 2.2% and I = 4 MA. For similar wall loading the fusion power of an illustrative high field, low current concept could be about 50% that of a lower field device like TIBER II. This reduction could lead to a 50% decrease in tritium consumption, resulting in a substantial decrease in operating cost. Furthermore, high field operation could lead to substantially reduced current drive requirements and cost. A reduction in current drive source power on the order of 40 to 50 MW may be attainable relative to a lower field, high current design like TIBER II implying a possible cost savings on the order of $200 M. If current drive is less efficient than assumed, the savings could be even greater. Through larger β/sub p/ and aspect ratio, greater prospects for bootstrap current operation also exist. Further savings would be obtained from the reduced size of the first wall/blanket/shield system. The effects of high fields on magnet costs are very dependent on technological assumptions. Further improvements in the future may lie with advances in superconducting and structural materials

  16. Experimental studies of U-Pu-Zr fast reactor fuel pins in EBR-II [Experimental Breeder Reactor

    International Nuclear Information System (INIS)

    Pahl, R.G.; Porter, D.L.; Lahm, C.E.; Hofman, G.L.

    1988-01-01

    The Integral Fast Reactor (IFR) is a generic reactor concept under development by Argonne National Laboratory. Much of the technology for the IFR is being demonstrated at the Experimental Breeder Reactor II (EBR-II) on the Department of Energy site near Idaho Falls, Idaho. The IFR concept relies on four technical features to achieve breakthroughs in nuclear power economics and safety: (1) a pool-type reactor configuration, (2) liquid sodium cooling, (3) metallic fuel, and (4) an integral fuel cycle with on-site reprocessing. The purpose of this paper will be to summarize our latest results of irradiation testing uranium-plutonium-zirconium (U-Pu-Zr) fuel in the EBR-II. 10 refs., 13 figs., 2 tabs

  17. Advances in fusion reactor design

    International Nuclear Information System (INIS)

    Baker, C.C.

    1987-01-01

    The author addresses the tokamak as a power reactor. Contrary to popular opinion, there are still a few people that think a tokamak might make a good fusion power reactor. In thinking about advances in fusion reactor design, in the U.S., at least, that generally means advances relevant to the Starfire design. He reviews some of the features of Starfire. Starfire is the last major study done of the tokamak as a reactor in this country. It is now over eight years old in the sense that eight years ago was really the time in which major decisions were made as to its features. Starfire was a tokamak with a major radius of seven meters, about twice the linear dimensions of a machine like TIBER

  18. Accident analysis for PRC-II reactor

    International Nuclear Information System (INIS)

    Wei Yongren; Tang Gang; Wu Qing; Lu Yili; Liu Zhifeng

    1997-12-01

    The computer codes, calculation models, transient results, sensitivity research, design improvement, and safety evaluation used in accident analysis for PRC-II Reactor (The Second Pulsed Reactor in China) are introduced. PRC-II Reactor is built in big populous city, so the public pay close attention to reactor safety. Consequently, Some hypothetical accidents are analyzed. They include an uncontrolled control rod withdrawal at rated power, a pulse rod ejection at rated power, and loss of coolant accident. Calculation model which completely depict the principle and process for each accident is established and the relevant analysis code is developed. This work also includes comprehensive computing and analyzing transients for each accident of PRC-II Reactor; the influences in the reactor safety of all kind of sensitive parameters; evaluating the function of engineered safety feature. The measures to alleviate the consequence of accident are suggested and taken in the construction design of PRC-II Reactor. The properties of reactor safety are comprehensively evaluated. A new advanced calculation model (True Core Uncovered Model) of LOCA of PRC-II Reactor and the relevant code (MCRLOCA) are first put forward

  19. Modelling of heterogenous neutron leakages in a nuclear reactor; Modelisation des fuites heterogenes de neutrons dans un reacteur nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Wohleber, X

    1997-11-17

    The TIBERE Model is a neutron leakage method based on B{sub 1} heterogeneous transport equation resolution. In this work, we have studied the influence of the reflection mode at the boundary of the assembly. In particular the White boundary condition has been implemented in the APOLLO2 neutron transport code. We have compared the two TIBERE kinds of boundary conditions (specular and white) with the classical B{sub 1} homogeneous leakage method in the modelling of some reactors. We have remarked the better capability of the TIBERE Model to compute voided assemblies. The white boundary condition is also able to compute a completely voided assembly and, besides, wins a factor 10 in CPU time in comparison with the specular boundary condition. These two heterogenous leakage formalisms have been tested on a partially voided experiment and have shown that the TIBERE Model can compute this kind of situation with a greater precision than the classical B{sub 1} homogeneous leakage method, and with a shorter computational time. (author)

  20. Reactor physics studies in the GCFR phase-II critical assembly

    International Nuclear Information System (INIS)

    Pond, R.B.

    1976-09-01

    The reactor physics studies performed in the gas cooled fast reactor (GCFR) mockup on ZPR-9 are covered. This critical assembly, designated Phase II in the GCFR program, had a single zone PuO 2 -UO 2 core composition and UO 2 radial and axial blankets. The assembly was built both with and without radial and axial stainless steel reflectors. The program included the following measurements: small-sample reactivity worths of reactor constituent materials (including helium); 238 U Doppler effect; uranium and plutonium reaction rate distributions; thorium, uranium, and plutonium α and reactor kinetics. Analysis of the measurements used ENDF/B-IV nuclear data; anisotropic diffusion coefficients were used to account for neutron streaming effects. Comparison of measurements and calculations to GCFR Phase I are also made

  1. The computerized reactor period measurement system for China fast burst reactor-II

    International Nuclear Information System (INIS)

    Zhao Wuwen; Jiang Zhiguo

    1996-01-01

    The article simply introduces the hardware, principle, and software of the computerized reactor period measurement system for China Fast Burst Reactor-II (CFBR-II). It also gives the relation between fission yield and pre-reactivity of CFBR-II reactor system of bared reactor with decoupled-component and system of bared reactor with multiple light-material. The computerized measurement system makes the reactor period measurement into automatical and intelligent and also improves the speed and precision of period data on-line process

  2. Computer measurement system of reactor period for China fast burst reactor-II

    International Nuclear Information System (INIS)

    Zhao Wuwen; Jiang Zhiguo

    1997-01-01

    The author simply introduces the hardware, principle, and software of the reactor period computer measure system for China Fast Burst Reactor-II (CFBR-II). It also gives the relation between Fission yield and Pre-reactivity of CFBR-II reactor system of bared reactor with decoupled-component and system of bared reactor with multiple light-material. The computer measure system makes the reactor period measurement into automation and intellectualization and also improves the speed and precision of period data process on-line

  3. TIBER: Tokamak Ignition/Burn Experimental Research. Final design report

    International Nuclear Information System (INIS)

    Henning, C.D.; Logan, B.G.; Barr, W.L.

    1985-01-01

    The Tokamak Ignition/Burn Experimental Research (TIBER) device is the smallest superconductivity tokamak designed to date. In the design plasma shaping is used to achieve a high plasma beta. Neutron shielding is minimized to achieve the desired small device size, but the superconducting magnets must be shielded sufficiently to reduce the neutron heat load and the gamma-ray dose to various components of the device. Specifications of the plasma-shaping coil, the shielding, coaling, requirements, and heating modes are given. 61 refs., 92 figs., 30 tabs

  4. Current status of experimental breeder reactor-II [EBR-II] shutdown planning

    International Nuclear Information System (INIS)

    McDermott, M. D.; Griffin, C. D.; Michelbacher, J. A.; Earle, O. K.

    2000-01-01

    The Experimental Breeder Reactor--II (EBR-II) at Argonne National Laboratory--West (ANL-W) in Idaho, was shutdown in September, 1994 as mandated by the US Department of Energy. This sodium cooled reactor had been in service since 1964, and was to be placed in an industrially and radiologically safe condition for ultimate decommissioning. The deactivation of a liquid metal reactor presents unique concerns. The first major task associated with the project was the removal of all fueled assemblies. In addition, sodium must be drained from systems and processed for ultimate disposal. Residual quantities of sodium remaining in systems must be deactivated or inerted to preclude future hazards associated with pyrophoricity and generation of potentially explosive hydrogen gas. A Sodium Process Facility was designed and constructed to react the elemental sodium from the EBR-II primary and secondary systems to sodium hydroxide for disposal. This facility has a design capacity to allow the reaction of the complete inventory of sodium at ANL-W in less than two years. Additional quantities of sodium from the Fermi-1 reactor are also being treated at the Sodium Process Facility. The sodium environment and the EBR-II configuration, combined with the radiation and contamination associated with thirty years of reactor operation, posed problems specific to liquid metal reactor deactivation. The methods being developed and implemented at EBR-II can be applied to other similar situations in the US and abroad

  5. Evaluation of TRIGA Mark II reactor in Turkey

    International Nuclear Information System (INIS)

    Bilge, Ali Nezihi

    1990-01-01

    There are two research reactors in Turkey and one of them is the university Triga Mark II reactor which was in service since 1979 both for education and industrial application purposes. The main aim of this paper is to evaluate the spectrum of the services carried by Turkish Triga Mark II reactor. In this work, statistical distribution of the graduate works and applications, by using Triga Mark II reactor is examined and evaluated. In addition to this, technical and scientific uses of this above mentioned reactor are also investigated. It was already showed that the uses and benefits of this reactor can not be limited. If the sufficient work and service is given, NDT and industrial applications can also be carried economically. (orig.)

  6. EBR-II Reactor Physics Benchmark Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    Pope, Chad L. [Idaho State Univ., Pocatello, ID (United States); Lum, Edward S [Idaho State Univ., Pocatello, ID (United States); Stewart, Ryan [Idaho State Univ., Pocatello, ID (United States); Byambadorj, Bilguun [Idaho State Univ., Pocatello, ID (United States); Beaulieu, Quinton [Idaho State Univ., Pocatello, ID (United States)

    2017-12-28

    This report provides a reactor physics benchmark evaluation with associated uncertainty quantification for the critical configuration of the April 1986 Experimental Breeder Reactor II Run 138B core configuration.

  7. The ARIES-II and ARIES-IV second-stability tokamak reactors

    International Nuclear Information System (INIS)

    Najmabadi, F.; Conn, R.W.; Hasan, M.Z.; Mau, T.-K.; Sharafat, S.; Baxi, C.B.; Leuer, J.A.; McQuillan, B.W.; Puhn, F.A.; Schultz, K.R.; Wong, C.P.C.; Brooks, J.; Ehst, D.A.; Hassanein, A.; Hua, T.; Hull, A.; Mattis, R.; Picologlou, B.; Sze, D.-K.; Dolan, T.J.; Herring, J.S.; Bathke, C.G.; Krakowski, R.A.; Werley, K.A.; Bromberg, L.; Schultz, J.; Davis, F.; Holmes, J.A.; Lousteau, D.C.; Strickler, D.J.; Jardin, S.C.; Kessel, C.; Snead, L.; Steiner, D.; Valenti, M.; El-Guebaly, L.A.; Emmert, G.A.; Khater, H.Y.; Santarius, J.F.; Sawan, M.; Sviatoslavsky, I.N.; Cheng, E.T.

    1992-01-01

    The ARIES research program is a multi-institutional effort to develop several visions of tokamak reactors with enhanced economic, safety, and environmental features. Four ARIES visions are currently planned for the ARIES program. The ARIES-I design is a DT-burning reactor based on modest extrapolations from the present tokamak physics database and relies on either existing technology or technology for which trends are already in place, often in programs outside fusion. The ARIES-III study focuses on the potential of tokamaks to operate with D- 3 He fuel system as an alternative to deuterium and tritium. The ARIES-II and ARIES-IV designs have the same fusion plasma but different fusion-power-core designs. The ARIES-II reactor uses liquid lithium as the coolant and tritium breeder and vanadium alloy as the structural material in order to study the potential of low-activation metallic blankets. The ARIES-IV reactor uses helium as the coolant, a solid tritium-breeding material, and silicon carbide composite as the structural material in order to achieve the safety and environmental characteristic of fusion. In this paper the authors describe the trade-off leading to the optimum regime of operation for the ARIES-II and ARIES-IV second-stability reactors and review the engineering design of the fusion power cores

  8. EBR-II [Experimental Breeder Reactor-II] system surveillance using pattern recognition software

    International Nuclear Information System (INIS)

    Mott, J.E.; Radtke, W.H.; King, R.W.

    1986-02-01

    The problem of most accurately determining the Experimental Breeder Reactor-II (EBR-II) reactor outlet temperature from currently available plant signals is investigated. Historically, the reactor outlet pipe was originally instrumented with 8 temperature sensors but, during 22 years of operation, all these instruments have failed except for one remaining thermocouple, and its output had recently become suspect. Using pattern recognition methods to compare values of 129 plant signals for similarities over a 7 month period spanning reconfiguration of the core and recalibration of many plant signals, it was determined that the remaining reactor outlet pipe thermocouple is still useful as an indicator of true mixed mean reactor outlet temperature. Application of this methodology to investigate one specific signal has automatically validated the vast majority of the 129 signals used for pattern recognition and also highlighted a few inconsistent signals for further investigation

  9. Liquid metal reactor deactivation as applied to the experimental breeder reactor - II

    International Nuclear Information System (INIS)

    Earle, O. K.; Michelbacher, J. A.; Pfannenstiel, D. F.; Wells, P. B.

    1999-01-01

    The Experimental Breeder Reactor-II (EBR-II) at Argonne National Laboratory-West (ANL-W) was shutdown in September, 1994. This sodium cooled reactor had been in service since 1964, and by the US Department of Energy (DOE) mandate, was to be placed in an industrially and radiologically safe condition for ultimate decommissioning. The deactivation of a liquid metal reactor presents unique concerns. The first major task associated with the project was the removal of all fueled assemblies. In addition, sodium must be drained from systems and processed for ultimate disposal. Residual quantities of sodium remaining in systems must be deactivated or inerted to preclude future hazards associated with pyrophoricity and generation of potentially explosive hydrogen gas. A Sodium Process Facility (SPF) was designed and constructed to react the elemental sodium from the EBR-II primary and secondary systems to sodium hydroxide for disposal. This facility has a design capacity to allow the reaction of the complete inventory of sodium at ANL-W in less than two years. Additional quantities of sodium from the Fermi-1 reactor are also being treated at the SPF

  10. U-233 fuelled low critical mass solution reactor experiment PURNIMA II

    International Nuclear Information System (INIS)

    Srinivasan, M.; Chandramoleshwar, K.; Pasupathy, C.S.; Rasheed, K.K.; Subba Rao, K.

    1987-01-01

    A homogeneous U-233 uranyl nitrate solution fuelled BeO reflected, low critical mass reactor has been built at the Bhabha Atomic Research Centre, India. Christened PURNIMA II, the reactor was used for the study of the variation of critical mass as a function of fuel solution concentration to determine the minimum critical mass achievable for this geometry. Other experiments performed include the determination of temperature coefficient of reactivity, study of time behaviour of photoneutrons produced due to interaction between decaying U-233 fission product gammas and the beryllium reflector and reactor noise measurements. Besides being the only operational U-233 fuelled reactor at present, PURNIMA II also has the distinction of having attained the lowest critical mass of 397 g of fissile fuel for any operating reactor at the current time. The paper briefly describes the facility and gives an account of the experiments performed and results achieved. (author)

  11. Data handling at EBR-II [Experimental Breeder Reactor II] for advanced diagnostics and control work

    International Nuclear Information System (INIS)

    Lindsay, R.W.; Schorzman, L.W.

    1988-01-01

    Improved control and diagnostics systems are being developed for nuclear and other applications. The Experimental Breeder Reactor II (EBR-II) Division of Argonne National Laboratory has embarked on a project to upgrade the EBR-II control and data handling systems. The nature of the work at EBR-II requires that reactor plant data be readily available for experimenters, and that the plant control systems be flexible to accommodate testing and development needs. In addition, operational concerns require that improved operator interfaces and computerized diagnostics be included in the reactor plant control system. The EBR-II systems have been upgraded to incorporate new data handling computers, new digital plant process controllers, and new displays and diagnostics are being developed and tested for permanent use. In addition, improved engineering surveillance will be possible with the new systems

  12. Feasibility study on commercialized fast reactor cycle systems. Phase II final report

    International Nuclear Information System (INIS)

    Ieda, Yoshiaki; Uchikawa, Sadao; Okubo, Tsutomu; Ono, Kiyoshi; Kato, Atsushi; Kurisaka, Kenichi; Sakamoto, Yoshihiko; Sato, Kazujiro; Sato, Koji; Chikazawa, Yoshitaka; Nakai, Ryodai; Nakabayashi, Hiroki; Nakamura, Hirofumi; Namekawa, Takashi; Niwa, Hajime; Nomura, Kazunori; Hayashi, Hideyuki; Hayafune, Hiroki; Hirao, Kazunori; Mizuno, Tomoyasu; Muramatsu, Toshiharu; Ando, Masato; Ono, Katsumi; Ogata, Takanari; Kubo, Shigenobu; Kotake, Shoji; Sagayama, Yutaka; Takakuma, Katsuyuki; Tanaka, Toshihiko; Namba, Takashi; Fujii, Sumio; Muramatsu, Kazuyoshi

    2006-06-01

    A joint project team of Japan Atomic Energy Agency and the Japan Atomic Power Company (as the representative of the electric utilities) started the feasibility study on commercialized fast reactor cycle systems (F/S) in July 1999 in cooperation with Central Research Institute of Electric Power Industry and vendors. On the major premise of safety assurance, F/S aims to present an appropriate picture of commercialization of fast reactor (FR) cycle system which has economic competitiveness with light water reactor cycle systems and other electricity base load systems, and to establish FR cycle technologies for the future major energy supply. In the period from Japanese fiscal year (JFY) 1999 to 2000, the phase-I of F/S was carried out to screen our representative FR, reprocessing and fuel fabrication technologies. In the phase-II (JFY 2001-2005), the design study of FR cycle concepts, the development of significant technologies necessary for the feasibility evaluation, and the confirmation of key technical issues were performed to clarify the promising candidate concepts toward the commercialization. In this final phase-II report clarified the most promising concept, the R and D plan until around 2015, and the key issues for the commercialization. Based on the comprehensive evaluation in F/S, the combination of the sodium-cooled FR with MOX fuel core, the advanced-aqueous reprocessing process and the simplified-pelletizing fuel fabrication process was recommended as the mainline choice for the most promising concept. The concept exceeds in technical advancement, and the conformity to the development targets was higher compared with that of the others. Alternative technologies are prepared to be decrease the development risk of innovative technologies in the mainline choice. (author)

  13. The edge plasma and divertor in TIBER

    Energy Technology Data Exchange (ETDEWEB)

    Barr, W.L.

    1987-10-16

    An open divertor configuration has been adopted for TIBER. Most recent designs, including DIII-D, NET and CIT use open configurations and rely on a dense edge plasma to shield the plasma from the gas produced at the neutralizer plate. Experiments on ASDEX, PDX, D-III, and recently on DIII-D have shown that a dense edge plasma can be produced by re-ionizing most of the gas produced at the plate. This high recycling mode allows a large flux of particles to carry the heat to the plate, so that the mean energy per particle can be low. Erosion of the plate can be greatly reduced if the average impact energy of the ions at the plate can be reduced to near or below the threshold for sputtering of the plate material. The present configuration allows part of the flux of edge plasma ions to be neutralized at the entrance to the pumping duct so that helium is pumped as well as hydrogen. 7 refs., 3 figs.

  14. The edge plasma and divertor in TIBER

    International Nuclear Information System (INIS)

    Barr, W.L.

    1987-01-01

    An open divertor configuration has been adopted for TIBER. Most recent designs, including DIII-D, NET and CIT use open configurations and rely on a dense edge plasma to shield the plasma from the gas produced at the neutralizer plate. Experiments on ASDEX, PDX, D-III, and recently on DIII-D have shown that a dense edge plasma can be produced by re-ionizing most of the gas produced at the plate. This high recycling mode allows a large flux of particles to carry the heat to the plate, so that the mean energy per particle can be low. Erosion of the plate can be greatly reduced if the average impact energy of the ions at the plate can be reduced to near or below the threshold for sputtering of the plate material. The present configuration allows part of the flux of edge plasma ions to be neutralized at the entrance to the pumping duct so that helium is pumped as well as hydrogen. 7 refs., 3 figs

  15. Technical specifications: Tower Shielding Reactor II

    International Nuclear Information System (INIS)

    1979-02-01

    The technical specifications define the key limitations that must be observed for safe operation of the Tower Shielding Reactor II (TSR-II) and an envelope of operation within which there is reasonable assurance that these limits cannot be exceeded. The specifications were written to satisfy the requirements of the Department of Energy (DOE) Manual Chapter 0540, September 1, 1972

  16. Scram reliability under seismic conditions at the Experimental Breeder Reactor II

    International Nuclear Information System (INIS)

    Roglans, J.; Wang, C.Y.; Hill, D.J.

    1993-01-01

    A Probabilistic Risk Assessment of the Experimental Breeder Reactor II has recently been completed. Seismic events are among the external initiating events included in the assessment. As part of the seismic PRA a detailed study has been performed of the ability to shutdown the reactor under seismic conditions. A comprehensive finite element model of the EBR-II control rod drive system has been used to analyze the control rod system response when subjected to input seismic accelerators. The results indicate the control rod drive system has a high seismic capacity. The estimated seismic fragility for the overall reactor shutdown system is dominated by the primary tank failure

  17. The optimal control of ITU TRIGA Mark II Reactor

    International Nuclear Information System (INIS)

    Can, Burhanettin

    2008-01-01

    In this study, optimal control of ITU TRIGA Mark-II Reactor is discussed. A new controller has been designed for ITU TRIGA Mark-II Reactor. The controller consists of main and auxiliary controllers. The form is based on Pontragyn's Maximum Principle and the latter is based on PID approach. For the desired power program, a cubic function is chosen. Integral Performance Index includes the mean square of error function and the effect of selected period on the power variation. YAVCAN2 Neutronic - Thermal -Hydraulic code is used to solve the equations, namely 11 equations, dealing with neutronic - thermal - hydraulic behavior of the reactor. For the controller design, a new code, KONTCAN, is written. In the application of the code, it is seen that the controller controls the reactor power to follow the desired power program. The overshoot value alters between 100 W and 500 W depending on the selected period. There is no undershoot. The controller rapidly increases reactivity, then decreases, after that increases it until the effect of temperature feedback is compensated. Error function varies between 0-1 kW. (author)

  18. The roles of EBR-II and TREAT [Transient Reactor Test] in establishing liquid metal reactor safety

    International Nuclear Information System (INIS)

    Sackett, J.I.; Lehto, W.K.; Solbrig, C.W.

    1990-01-01

    This paper examines the role of the Experimental Breeder Reactor II (EBR-II) and Transient Reactor Test (TREAT) facilities in contributing to the understanding and resolution of key safety issues in liquid metal reactor safety during the decade of the 80's. Fuels and materials testing has been carried out to address questions on fuels behavior during steady-state and upset conditions. In addition, EBR-II has conducted plant tests to demonstrate passive response to ATWS events and to develop control and diagnostic strategies for safe operation of advanced LMRs. TREAT and EBR-II complement each other and between them provide a transient testing capability that covers the whole range of concerns during overpower conditions. EBR-II, with use of the special Automatic Control Rod Drive System, can generate power change rates that overlap the lower end of the TREAT capability. 21 refs

  19. Fish community of the river Tiber basin (Umbria-Italy: temporal changes and possible threats to native biodiversity

    Directory of Open Access Journals (Sweden)

    Carosi A.

    2015-01-01

    Full Text Available The introduction of exotic fish species in the river Tiber basin has probably caused a serious alteration of original faunal composition. The purpose of this research was to assess the changes occurred over time in the state of the fish communities with particular reference to the reduction of local communities of endemic species. The study area comprised 68 watercourses of the Umbrian portion of the River Tiber basin; the analyses were carried out using the data of the Regional Fish Map of 1st and 2nd level and the 1st update, respectively collected during the periods between the 1990–1996, 2000–2006 and 2007–2014, in 125 sampling stations. The results show a progressive alteration of the fish communities’ structure, as confirmed by the appearance in recent times of new alien species. A total of 40 species was found, only 14 native. The qualitative change of the fish communities appear to be closely related to the longitudinal gradient of the river. The results shows that particularly in the downstream reaches, the combined action of pollution and introduction of exotic species resulted in a gradual decrease in the indigenous component of fish communities. The information collected are the indispensable premise for taking the necessary strategies for conservation of endangered species.

  20. Characterization of the TRIGA Mark II reactor full-power steady state

    Energy Technology Data Exchange (ETDEWEB)

    Cammi, Antonio, E-mail: antonio.cammi@polimi.it [Politecnico di Milano – Department of Energy, CeSNEF (Enrico Fermi Center for Nuclear Studies), via La Masa 34, 20156 Milano (Italy); Zanetti, Matteo [Politecnico di Milano – Department of Energy, CeSNEF (Enrico Fermi Center for Nuclear Studies), via La Masa 34, 20156 Milano (Italy); Chiesa, Davide; Clemenza, Massimiliano; Pozzi, Stefano; Previtali, Ezio; Sisti, Monica [University of Milano-Bicocca, Physics Department “G. Occhialini” and INFN Section, Piazza dell’Ateneo Nuovo, 20126 Milan (Italy); Magrotti, Giovanni; Prata, Michele; Salvini, Andrea [University of Pavia, Applied Nuclear Energy Laboratory (L.E.N.A.), Via Gaspare Aselli 41, 27100 Pavia (Italy)

    2016-04-15

    Highlights: • Full-power steady state characterization of the TRIGA Mark II reactor. • Monte Carlo and Multiphysics simulation of the TRIGA Mark II reactor. • Sub-cooled boiling effects in the TRIGA Mark II reactor. • Thermal feedback effects in the TRIGA Mark II reactor. • Experimental data based validation. - Abstract: In this paper, the characterization of the full-power steady state of the TRIGA Mark II nuclear reactor at the University of Pavia is achieved by coupling the Monte Carlo (MC) simulation for neutronics with the “Multiphysics” model for thermal-hydraulics. Neutronic analyses have been carried out with a MCNP5 based MC model of the entire reactor system, already validated in fresh fuel and zero-power configurations (in which thermal effects are negligible) and using all available experimental data as a benchmark. In order to describe the full-power reactor configuration, the temperature distribution in the core must be established. To evaluate this, a thermal-hydraulic model has been developed, using the power distribution results from the MC simulation as input. The thermal-hydraulic model is focused on the core active region and takes into account sub-cooled boiling effects present at full reactor power. The obtained temperature distribution is then entered into the MC model and a benchmark analysis is carried out to validate the model in fresh fuel and full-power configurations. An acceptable correspondence between experimental data and simulation results concerning full-power reactor criticality proves the reliability of the adopted methodology of analysis, both from the perspective of neutronics and thermal-hydraulics.

  1. UWMAK-II: a conceptual tokamak reactor design

    International Nuclear Information System (INIS)

    1975-10-01

    This report describes the conceptual design of a Tokamak fusion power reactor, UWMAK-II. The aim of this study is to perform a self consistent and thorough analysis of a probable future fusion power reactor in order to assess the technological problems posed by such a system and to examine feasible solutions. UWMAK-II is a conceptual Tokamak fusion reactor designed to deliver 1716 MWe continuously and to generate 5000 MW(th) during the plasma burn. The structural material is 316 stainless steel and the primary coolant is helium. UWMAK-II is a low aspect ratio, low field design and includes a double null, axisymmetric poloidal field divertor for impurity control. In addition, a carbon curtain, made of two dimensional woven carbon fiber, is mounted on the first vacuum chamber wall to protect the plasma from high Z impurities and to protect the first wall from erosion by charged particle bombardment. The blanket is designed to minimize the inventory of both tritium and lithium while achieving a breeding ratio greater than one. This has led to a blanket design based on the use of a solid breeding material (LiAlO 2 ) with beryllium as a neutron multiplier. The lithium is enriched to 90 percent 6 Li and the blanket coolant is helium at a maximum pressure of 750 psia (5.2 x 10 6 N/m 2 ). A cell of the UWMAK-II blanket design is shown. The breeding ratio is between 1.11 and 1.19 based on one-dimensional discrete ordinates transport calculations, depending on the method of homogenization. Detailed Monte Carlo calculations, which take into account the more complicated geometry, give a breeding ratio of 1.06. The total energy per fusion is 21.56 MeV, which is fairly high

  2. TIBER II: Tokamak Ignition/Burn Experimental Reactor: 1986 status report

    International Nuclear Information System (INIS)

    Henning, C.D.; Logan, B.G.

    1986-01-01

    Several chapters are presented that cover the following areas: (1) physics basis; (2) current drive; (3) compact divertors; (4) neutron shielding; (5) high-current density, radiation-tolerant magnets; and (6) costs

  3. TIBER II: Tokamak Ignition/Burn Experimental Reactor: 1986 status report

    Energy Technology Data Exchange (ETDEWEB)

    Henning, C.D.; Logan, B.G.

    1986-10-23

    Several chapters are presented that cover the following areas: (1) physics basis; (2) current drive; (3) compact divertors; (4) neutron shielding; (5) high-current density, radiation-tolerant magnets; and (6) costs. (MOW)

  4. Over Twenty Years Of Experience In ITU TRIGA MARK-II Reactor

    International Nuclear Information System (INIS)

    Yavuz, Hasbi

    2008-01-01

    I.T.U. TRIGA MARK-II Training and Research Reactor, rated at 250 kW steady-state and 1200 MW pulsing power is the only research and training reactor owned and operated by a university in Turkey. Reactor has been operating since March 11, 1979; therefore the reactor has been operating successfully for more than twenty years. Over the twenty years of operation: - The tangential beam tube was equipped with a neutron radiography facility, which consists of a divergent collimator and exposure room; - A computerized data acquisition system was designed and installed such that all parameters of the reactor, which are observed from the console, could be monitored both in normal and pulse operations; - An electrical power calibration system was built for the thermal power calibration of the reactor; - Publications related with I.T.U. TRIGA MARK-II Training and Research Reactor are listed in Appendix; - Two majors undesired shutdown occurred; - The I.T.U. TRIGA MARK-II Training and Research Reactor is still in operation at the moment. (authors)

  5. Archaeometric studies by using neutron radiography in ITU TRIGA Mark-II reactor

    International Nuclear Information System (INIS)

    Tugrul, A. Beril

    2008-01-01

    Archaeometric many studies have been done by using neutron radiography in ITU TRIGA Mark-II Training and Research Reactor for over 15 years. Tangential beam tube has been arranged for using neutron radiography. Generally, transfer technique has been preferred with using dysprosium screen, but indium screen also is used. Some studies are described which are all on the Anatolian artefacts. The first study from 13th century AD deals with Seljukian period from south-east Anatolia. It investigated a plate from Great Mosque door in Cizre. With means of the neutron radiography painting traces are investigated on the plates. Organic dye traces are noticed on some of plates, which have generally animal figures. Other studies from Urartu period at the first millennium B.C, investigates artefacts found at the vicinity of Van on east Anatolia. An important one is a sword that was found in a grave. It has some corrosion defects. The neutron radiography was applied and shown that wooden parts are there. Other studies referred to samples from the Ikiztepe Excavation site on north Anatolia. Many artefacts were examined by neutron radiography. Some of them evidenced animal parts are recognised as covering parts. An interesting result was obtained to a sword and its sheath that were corroded together. After the neutron radiography applications, it was noticed that there are a cloth between the sword and its sheath. Hence, it was the cause of corrosion of the artefact. By using neutron radiography, many interesting and detailed results were observed by means of the neutron beam from the ITU TRIGA Mark-II Training and Research Reactor. Some of them could not be evidenced by means of any other technique

  6. Study of a new automatic reactor power control for the TRIGA Mark II reactor at University of Pavia

    Energy Technology Data Exchange (ETDEWEB)

    Borio Di Tigliole, A.; Magrotti, G. [Laboratorio Energia Nucleare Applicata (L.E.N.A.), University of Pavia, Via Aselli 41, 27100 (Italy); Cammi, A.; Memoli, V. [Politecnico di Milano, Department of Energy, Nuclear Engineering Division (CeSNEF), Via Ponzio 34/3, 20133 Milano (Italy); Gadan, M. A. [Instrumentation and Control Department, National Atomic Energy Comission of Argentina, University of Pavia (Italy)

    2009-07-01

    The installation of a new Instrumentation and Control (IC) system for the TRIGA Mark-II reactor at University of Pavia has recently been completed in order to assure a safe and continuous reactor operation for the future. The intervention involved nearly the whole IC system and required a channel-by-channel component substitution. One of the most sensitive part of the intervention concerned the Automatic Reactor Power Controller (ARPC) which permits to keep the reactor at an operator-selected power level acting on the control rod devoted to the fine regulation of system reactivity. This controller installed can be set up using different control logics: currently the system is working in relay mode. The main goal of the work presented in this paper is to set up a Proportional-Integral-Derivative (PID) configuration of the new controller installed on the TRIGA reactor of Pavia so as to optimize the response to system perturbations. The analysis have shown that a continuous PID offers generally better results than the relay mode which causes power oscillations with an amplitude of 3% of the nominal power

  7. Decommissioning of TRIGA Mark II type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dooseong; Jeong, Gyeonghwan; Moon, Jeikwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-10-15

    The first research reactor in Korea, KRR 1, is a TRIGA Mark II type with open pool and fixed core. Its power was 100 kWth at its construction and it was upgraded to 250 kWth. Its construction was started in 1957. The first criticality was reached in 1962 and it had been operated for 36,000 hours. The second reactor, KRR 2, is a TRIGA Mark III type with open pool and movable core. These reactors were shut down in 1995, and the decision was made to decommission both reactors. The aim of the decommissioning activities is to decommission the KRR 2 reactor and decontaminate the residual building structures and site, and to release them as unrestricted areas. The KRR 1 reactor was decided to be preserve as a historical monument. A project was launched for the decommissioning of these reactors in 1997, and approved by the regulatory body in 2000. A total budget for the project was 20.0 million US dollars. It was anticipated that this project would be completed and the site turned over to KEPCO by 2010. However, it was discovered that the pool water of the KRR 1 reactor was leaked into the environment in 2009. As a result, preservation of the KRR 1 reactor as a monument had to be reviewed, and it was decided to fully decommission the KRR 1 reactor. Dismantling of the KRR 1 reactor takes place from 2011 to 2014 with a budget of 3.25 million US dollars. The scope of the work includes licensing of the decommissioning plan change, removal of pool internals including the reactor core, removal of the thermal and thermalizing columns, removal of beam port tubes and the aluminum liner in the reactor tank, removal of the radioactive concrete (the entire concrete structure will not be demolished), sorting the radioactive waste (concrete and soil) and conditioning the radioactive waste for final disposal, and final statuses of the survey and free release of the site and building, and turning over the site to KEPCO. In this paper, the current status of the TRIGA Mark-II type reactor

  8. IAEA fast reactor knowledge preservation initiative. Project focus: KNK-II reactor, Karlsruhe, Germany

    International Nuclear Information System (INIS)

    2004-08-01

    This Working Material (including the attached CD-ROM) documents progress made in the IAEA's initiative to preserve knowledge in the fast reactor domain. The brochure describes briefly the context of the initiative and gives an introduction to the contents of the CD-ROM. In 2003/2004 a first focus of activity was concentrated on the preservation of knowledge related to the KNK-II experimental fast reactor in Karlsruhe, Germany. The urgency of this project was given by the impending physical destruction of the installation, including the office buildings. Important KNK-II documentation was brought to safety and preserved just in time. The CD-ROM contains the full texts of 264 technical and scientific documents describing research, development and operating experience gained with the KNK-II installation over a period of time from 1965 to 2002, extending through initial investigations, 17 years of rich operating experience, and final shutdown and decommissioning. The index to the documents on the CD-ROM is printed at the end of this booklet in chronological order and is accessible on the CD by subject index and chronological index. The CD-ROM contains in its root directory also the document 'fr c lassification.pdf' which describes the classification system used for the present collection of documents on the fast reactor KNK-II

  9. Analysis of Topaz-II reactor performance using MCNP and TFEHX

    International Nuclear Information System (INIS)

    Lee, H.H.; Klein, A.C.

    1993-01-01

    Data reported by Russian scientist and engineers for the TOPAZ-II Space Nuclear Power is compared with analytical results calculated using the Monte Carlo Neutron and Photon (MCNP) and TFEHX computer codes. The results of these comparisons show good agreement with the TOPAZ-II neutronics, thermionic and thermal hydraulics performance. A detailed description of the TOPAZ-II reactor and of the TFE should enhance the performance of the both codes in modeling the reactor and TFE performances

  10. Preliminary neutronic design of TRIGA Mark II Reactor

    International Nuclear Information System (INIS)

    Sarikaya, B.; Tombakoglu, M.; Cecen, Y.; Kadiroglu, O. K.

    2001-01-01

    It is very important to analyse the behaviour of the research reactors, since, they play a key role in developing the power reactor technology and radiation applications such as isotope generation for medical treatments. In this study, the neutronic behaviour of the TRIGA MARK II reactor, owned and operated by Istanbul Technical University is analysed by using the SCALE code system. In the analysis, in order to overcome the disadvantages of special TRIGA codes, such as TRIGAP, the SCALE code system is chosen to perform the calculations. TRIGAP and similar codes have limited geometrical (one-dimensional geometry) and cross sectional options (two-group calculations), however, SCALE has the capability of wider range of geometrical modelling capability (three-dimensional modelling is possible) and multi-group calculations are possible

  11. The physics design of EBR-II; Physique du reacteur EBR-II; Fizicheskij raschet ehksperimental'nogo reaktora - razmnozhitelya EVR-II; Aspectos fisicos del reactor EBR-II

    Energy Technology Data Exchange (ETDEWEB)

    Loewenstein, W. B. [Argonne National Laboratory, Argonne, IL (United States)

    1962-03-15

    The physics design oi EBR-II. Calculations of the static, dynamic and long-term reactivity behaviour of EBR-II are reported together with results and analysis of EBR-II dry critical and ZPR-III mock-up experiments. Particular emphasis is given to reactor-physics design problems which arise after the conceptual design is established and before the reactor is built or placed into operation. Reactor-safety analyses and hazards-evaluation considerations are described with their influence on the reactor design. The manner of utilizing the EBR-II mock-up on ZPR-III data and the EBR-II dry critical data is described. These experiments, their analysis and theoretical predictions are the basis for predetermining the physics behaviour of the reactor system. The limitations inherent in applying the experimental data to the performance of the power-reactor system are explored in some detail. This includes the specification of reactor core size and/or fuel-alloy enrichment, provisions for adequate operating and shut-down reactivity, determination of operative temperature and power coefficients of reactivity, and details of power- and flux-distribution as a function of position within the reactor structure. The overall problem of transferring information from simple idealized analytical or experimental geometry to actual hexagonal reactor geometry is described. Nuclear performance, including breeding, of the actual reactor system is compared with that of the idealized conceptual system. The long-term reactivity and power behaviour of the reactor blanket is described within the framework of the proposed cycling of the fuel and blanket alloy. Safety considerations, including normal and abnormal rates of reactivity-insertion, the implication of postulated reactivity effects based on the physical behaviour of the fuel alloy and reactor structure as well as extrapolation of TREAT experiments to the EBR-II system are analysed. The EBR-II core melt-down problem is reviewed. (author

  12. Design guide for category II reactors light and heavy water cooled reactors

    International Nuclear Information System (INIS)

    Brynda, W.J.; Lobner, P.R.; Powell, R.W.; Straker, E.A.

    1978-05-01

    The Department of Energy (DOE), in the ERDA Manual, requires that all DOE-owned reactors be sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that gives adequate consideration to health and safety factors. Specific guidance pertinent to the safety of DOE-owned reactors is found in Chapter 0540 of the ERDA Manual. The purpose of this Design Guide is to provide additional guidance to aid the DOE facility contractor in meeting the requirement that the siting, design, construction, modification operation, maintainance, and decommissioning of DOW-owned reactors be in accordance with generally uniform standards, guide and codes which are comparable to those applied to similar reactors licensed by the Nuclear Regulatory Commission (NRC). This Design Guide deals principally with the design and functional requirements of Category II reactor structure, components, and systems

  13. Utilization of Slovenian TRIGA Mark II reactor

    International Nuclear Information System (INIS)

    Snoj, L.; Smodis, B.

    2010-01-01

    TRIGA Mark II research reactor at the Jozef Stefan Institute [JSI] is extensively used for various applications, such as: irradiation of various samples, training and education, verification and validation of nuclear data and computer codes, testing and development of experimental equipment used for core physics tests at a nuclear power plant. The paper briefly describes the aforementioned activities and shows that even such small reactors are still indispensable in nuclear science and technology. (author)

  14. Culham Conceptual Tokamak Mark II. Design study of the layout of a twin-reactor fusion power station

    International Nuclear Information System (INIS)

    Guthrie, J.A.S.; Harding, N.H.

    1981-07-01

    This report describes the building layout and outline design for the nuclear complex of a fusion reactor power station incorporating two Culham Conceptual Tokamak Reactors Mk.II. The design incorporates equipment for steam generation, process services for the fusion reactors and all facilities for routine and non-routine servicing of the nuclear complex. The design includes provision of temporary facilities for on site construction of the major reactor components and shows that these facilities may be used for disassembly of the reactors either for major repair and/or decommissioning. Preliminary estimates are included, which indicate the cost benefits to be obtained from incorporating two reactors in one nuclear complex and from increased wall loading. (author)

  15. HYLIFE-II reactor chamber design refinements

    International Nuclear Information System (INIS)

    House, P.A.

    1994-06-01

    Mechanical design features of the reactor chamber for the HYLIFE-II inertial confinement fusion power plant are presented. A combination of oscillating and steady, molten salt streams (Li 2 BeF 4 ) are used for shielding and blast protection of the chamber walls. The system is designed for a 6 Hz repetition rate. Beam path clearing, between shots, is accomplished with the oscillating flow. The mechanism for generating the oscillating streams is described. A design configuration of the vessel wall allows adequate cooling and provides extra shielding to reduce thermal stresses to tolerable levels. The bottom portion of the reactor chamber is designed to minimize splash back of the high velocity (>12 m/s) salt streams and also recover up to half of the dynamic head. Cost estimates for a 1 GWe and 2 GWe reactor chamber are presented

  16. Transforming criticality control methods for EBR-II fuel handling during reactor decommissioning

    International Nuclear Information System (INIS)

    Eberle, C.S.; Dean, E.M.; Angelo, P.L.

    1995-01-01

    A review of the Department of Energy (DOE) request to decommission the Experimental Breeder Reactor-II (EBR-II) was conducted in order to develop a scope of work and analysis method for performing the safety review of the facility. Evaluation of the current national standards, DOE orders, EBR-II nuclear safeguards and criticality control practices showed that a decommissioning policy for maintaining criticality safety during a long term fuel transfer process did not exist. The purpose of this research was to provide a technical basis for transforming the reactor from an instrumentation and measurement controlled system to a system that provides both physical constraint and administrative controls to prevent criticality accidents. Essentially, this was done by modifying the reactor core configuration, reactor operations procedures and system instrumentation to meet the safety practices of ANS-8.1-1983. Subcritical limits were determined by applying established liquid metal reactor methods for both the experimental and computational validations

  17. Corrosion problem in the CRENK Triga Mark II research reactor

    International Nuclear Information System (INIS)

    Kalenga, M.

    1990-01-01

    In August 1987, a routine underwater optical inspection of the aluminum tank housing the core of the CRENK Triga Mark II reactor, carried out to update safety condition of the reactor, revealed pitting corrosion attacks on the 8 mm thick aluminum tank bottom. The paper discuss the work carried out by the reactor staff to dismantle the reactor in order to allow a more precise investigation of the corrosion problem, to repair the aluminum tank bottom, and to enhance the reactor overall safety condition

  18. Decontamination of TRIGA Mark II reactor, Indonesia

    International Nuclear Information System (INIS)

    Suseno, H.; Daryoko, M.; Goeritno, A.

    2002-01-01

    The TRIGA Mark II Reactor in the Centre for Research and Development Nuclear Technique Bandung has been partially decommissioned as part of an upgrading project. The upgrading project was carried out from 1995 to 2000 and is being commissioned in 2001. The decommissioning portion of the project included disassembly of some components of the reactor core, producing contaminated material. This contaminated material (grid plate, reflector, thermal column, heat exchanger and pipe) will be sent to the Decontamination Facility at the Radioactive Waste Management Development Centre. (author)

  19. ITER [International Thermonuclear Experimental Reactor] shield and blanket work package report

    International Nuclear Information System (INIS)

    1988-06-01

    This report summarizes nuclear-related work in support of the US effort for the International Thermonuclear Experimental Reactor (ITER) Study. The purpose of this work was to prepare for the first international ITER workshop devoted to defining a basic ITER concept that will serve as a basis for an indepth conceptual design activity over the next 2-1/2 years. Primary tasks carried out during the past year included: design improvements of the inboard shield developed for the TIBER concept, scoping studies of a variety of tritium breeding blanket options, development of necessary design guidelines and evaluation criteria for the blanket options, further safety considerations related to nuclear components and issues regarding structural materials for an ITER device. 44 refs., 31 figs., 29 tabs

  20. Adaptive robust control of the EBR-II reactor

    International Nuclear Information System (INIS)

    Power, M.A.; Edwards, R.M.

    1996-01-01

    Simulation results are presented for an adaptive H ∞ controller, a fixed H ∞ controller, and a classical controller. The controllers are applied to a simulation of the Experimental Breeder Reactor II primary system. The controllers are tested for the best robustness and performance by step-changing the demanded reactor power and by varying the combined uncertainty in initial reactor power and control rod worth. The adaptive H ∞ controller shows the fastest settling time, fastest rise time and smallest peak overshoot when compared to the fixed H ∞ and classical controllers. This makes for a superior and more robust controller

  1. Interaction of CREDO [Centralized Reliability Data Organization] with the EBR-II [Experimental Breeder Reactor II] PRA [probabilistic risk assessment] development

    International Nuclear Information System (INIS)

    Smith, M.S.; Ragland, W.A.

    1989-01-01

    The National Academy of Sciences review of US Department of Energy (DOE) class 1 reactors recommended that the Experimental Breeder Reactor II (EBR-II), operated by Argonne National Laboratory (ANL), develop a level 1 probabilistic risk assessment (PRA) and make provisions for level 2 and level 3 PRAs based on the results of the level 1 PRA. The PRA analysis group at ANL will utilize the Centralized Reliability Data Organization (CREDO) at Oak Ridge National Laboratory to support the PRA data needs. CREDO contains many years of empirical liquid-metal reactor component data from EBR-II. CREDO is a mutual data- and cost-sharing system sponsored by DOE and the Power Reactor and Nuclear Fuels Development Corporation of Japan. CREDO is a component based data system; data are collected on components that are liquid-metal specific, associated with a liquid-metal environment, contained in systems that interface with liquid-metal environments, or are safety related for use in reliability/availability/maintainability (RAM) analyses of advanced reactors. The links between the EBR-II PRA development effort and the CREDO data collection at EBR-II extend beyond the sharing of data. The PRA provides a measure of the relative contribution to risk of the various components. This information can be used to prioritize future CREDO data collection activities at EBR-II and other sites

  2. Seventeen years of LMFBR experience: Experimental Breeder Reactor II (EBR-II)

    International Nuclear Information System (INIS)

    Perry, W.H.; Lentz, G.L.; Richardson, W.J.; Wolz, G.C.

    1982-01-01

    Operating experience at EBR-II over the past 17 years has shown that a sodium-cooled pool-type reactor can be safely and efficiently operated and maintained. The reactor has performed predictably and benignly during normal operation and during both unplanned and planned plant upsets. The duplex-tube evaporators and superheaters have never experienced a sodium/water leak, and the rest of the steam-generating system has operated without incident. There has been no noticeable degradation of the heat transfer efficiency of the evaporators and superheaters, except for the one superheater replaced in 1981. There has been no need to perform any chemical cleaning of steam-system components

  3. Method of power self-regulation of CFBR-II reactor based on DSP

    International Nuclear Information System (INIS)

    Bai Zhongxiong; Zhou Wenxiang

    2007-01-01

    To the control system of Power Self-regulation of CFBR-II Reactor, a new digital control scheme based on DSP has been brought forward. The TMS320F2812 DSP chip is adopted as the core controller to realize Power self-regulation of CFBR-II Reactor. In this paper, the successful program of DSP control system is introduced in both hardware and software technology in detail. (authors)

  4. Irradiation devices at the upgraded research reactor BER II

    International Nuclear Information System (INIS)

    Gawlik, D.; Robertson, T.

    1992-06-01

    An overview is given of those properties of the BER II research reactor which are important for carrying out irradiation experiments. The subsequent section describes the irradiation devices currently installed in the reactor, or which are under construction, and some of the experiments which can be conducted using them. The field of application of these experiments extends from the study of the metabolism of trace elements in man, employing a highly sensitive element analysis, via radiation damage of high-tech materials, to the identification of paintings of the old masters. The report concludes with a review of the technical details of the irradiation devices, giving information of interest for potential users. (orig.)

  5. Experience with automatic reactor control at EBR-II

    International Nuclear Information System (INIS)

    Lehto, W.K.; Larson, H.A.; Christensen, L.J.

    1985-01-01

    Satisfactory operation of the ACRDS has extended the capabilities of EBR-II to a transient test facility, achieving automatic transient control. Test assemblies can now be irradiated in transient conditions overlapping the slower transient capability of the TREAT reactor

  6. Evaluation of Fe(II) oxidation at an acid mine drainage site using laboratory-scale reactors

    Science.gov (United States)

    Brown, Juliana; Burgos, William

    2010-05-01

    Acid mine drainage (AMD) is a severe environmental threat to the Appalachian region of the Eastern United States. The Susquehanna and Potomac River basins of Pennsylvania drain to the Chesapeake Bay, which is heavily polluted by acidity and metals from AMD. This study attempted to unravel the complex relationships between AMD geochemistry, microbial communities, hydrodynamic conditions, and the mineral precipitates for low-pH Fe mounds formed downstream of deep mine discharges, such as Lower Red Eyes in Somerset County, PA, USA. This site is contaminated with high concentrations of Fe (550 mg/L), Mn (115 mg/L), and other trace metals. At the site 95% of dissolved Fe(II) and 56% of total dissolved Fe is removed without treatment, across the mound, but there is no change in the concentration of trace metals. Fe(III) oxides were collected across the Red Eyes Fe mound and precipitates were analyzed by X-ray diffraction, electron microscopy and elemental analysis. Schwertmannite was the dominant mineral phase with traces of goethite. The precipitates also contained minor amounts of Al2O3, MgO,and P2O5. Laboratory flow-through reactors were constructed to quantify Fe(II) oxidation and Fe removal over time at terrace and pool depositional facies. Conditions such as residence time, number of reactors in sequence and water column height were varied to determine optimal conditions for Fe removal. Reactors with sediments collected from an upstream terrace oxidized more than 50% of dissolved Fe(II) at a ten hour residence time, while upstream pool sediments only oxidized 40% of dissolved Fe(II). Downstream terrace and pool sediments were only capable of oxidizing 25% and 20% of Fe(II), respectively. Fe(II) oxidation rates measured in the reactors were determined to be between 3.99 x 10-8and 1.94 x 10-7mol L-1s-1. The sediments were not as efficient for total dissolved Fe removal and only 25% was removed under optimal conditions. The removal efficiency for all sediments

  7. The control equipment of the Melusine II reactor

    International Nuclear Information System (INIS)

    Cordelle, M.; Delcroix, V.; Denis, P.; Gariod, R.

    1963-01-01

    Melusine II, low-power reactor, used for the study of Siloe core has diverged at the CEA Grenoble, the 23. May 1962; its monitoring board studied and carried out in this center is the first in France to be entirely transistorized. The first months of running have justified the hope put in the new electronics to improve the stability and the safety of running. The article describes the design of the control and gives the main characteristics of the measurement chains and of the actions on reactivity. (O.M.) [fr

  8. Control console conceptual design for sheet type fuels of Triga Mark-II reactor

    International Nuclear Information System (INIS)

    Eko Priyono; Kurnia Wibowo; Anang Susanto

    2016-01-01

    The control console conceptual design for sheet type fuel of TRIGA Mark-II reactor has been made. The control console conceptual design was made with refer study result of instrument and control system which is used in BATAN'S reactor i.e TRIGA-2000 Bandung, TRIGA Yogyakarta and MPR-30 Serpong. The control console conceptual design was made by using AutoCad software. The control console conceptual design reactor for sheet type fuel of TRIGA Mark-II reactor consist of 5 segments that is 3 segments for placing the computer monitors, 1 segment for placing bargraph displays and recorders and 1 segment for placing panel meters. There are the door on front and back position at each segment for enter and out devices in the console. The control console conceptual design is also equipped by the table along in front of console for placing reactor panel control and for writing, 3 drawers for 3 keyboards. The dimension of console will refer control room size and the components will be placed on console which will be detailed in detail design if this conceptual design has been approved. (author)

  9. HYLIFE-II reactor chamber mechanical design: Update

    International Nuclear Information System (INIS)

    House, P.A.

    1992-01-01

    Mechanical design features of the reactor chamber for the HYLIFE-II inertial confinement fusion power plant are presented. A combination of oscillating and steady, molten salt streams (Li 2 BeF 4 ) are used for shielding and blast protection of the chamber walls. The system is designed for a 6 Hz repetition rate. Beam path clearing, between shots, is accomplished with the oscillating flow. The mechanism for generating the oscillating streams is described. A design configuration of the vessel wall allows adequate cooling and provides extra shielding to reduce thermal stresses to tolerable levels. The bottom portion of the reactor chamber is designed to minimize splash back of the high velocity (17 m/s) salt streams and also recover up to half of the dynamic head. Cost estimates for a 1 GW e and 2 GW e reactor chamber are presented

  10. Reactor physics studies in the steam flooded GCFR-Phase II critical assembly

    International Nuclear Information System (INIS)

    Bhattacharyya, S.K.

    1978-08-01

    A possible accident scenario in a Gas-Cooled Fast Reactor (GCFR) is the leakage of secondary steam into the core. Considerable analytical effort has gone into the study of the effects of such an accidental steam entry. The work described represents the first full scale experimental study of the steam-entry phenomenon in GCFRs. The reference GCFR model used for the study was the benchmark GCFR Phase II assembly, and polyethylene foam was used to provide a very homogeneous steam simulation. The reactivity worth of steam entry was measured for three different steam densities. In addition, a set of integral physics parameters were measured in the largest steam density (0.008 g/cm 3 ) configuration. The corresponding parameters were also measured in dry reference GCFR critical assembly for comparison. The experiments were analyzed using ENDF/B-IV data and two-dimensional diffusion theory methods. As in earlier GCFR critical experiments analysis, the Benoist method was used to treat the problem of neutron streaming

  11. Directions for attractive tokamak reactors: The ARIES-II and ARIES-IV second-stability designs

    International Nuclear Information System (INIS)

    Najmabadi, F.; Conn, R.W.

    1993-01-01

    ARIES is a research program to develop several visions of tokamak reactors with enhanced economic, safety, and environmental features. The ARIES study has developed four visions for tokamaks. All four designs are steady-state, 1000-MWe (net) power reactors. The ARIES-II and ARIES-IV designs assume potential advances in plasma physics (such as second-stability operation) predicted by theory but not yet established experimentally. The two designs have the same fusion plasma but different fusion-power-core. There are only minor differences between the ARIES-II and ARIES-IV plasma parameters. ARIES-IV is a 1000-MWe reactor with an average neutron wall loading of 3 MW/m 2 , and a mass power density of about 120 kWe/tonne of fusion power core. The reactor major radius is 6.1 m, the plasma minor radius is 1.5 m and the plasma elongation is 2, and the plasma triangularity is 0.67. The plasma current is low (6.8 MA), B on-axis is 7.7 T (corresponding to a maximum field at the coil of 16T), and the toroidal beta is 3.4% (Troyon coefficient = 6). The operating regime is optimized such that most of the plasma current (∼ 90%) is provided by the bootstrap current. ARIES-II uses liquid lithium as the coolant and tritium breeder. V-5Cr-5Ti is used as the structural material so that the potential of low-activation metallic blankets can be studied. ARIES-IV uses helium as the coolant, a solid tritium-breeding material (Li 2 O), and silicon carbide composite as structural material. The waste produced by neutron activation in both designs is found to meet the criteria allowing shallow-land burial under U.S. regulations. The cost of electricity for the ARIES-II-IV class of reactors is estimated to be about 20% lower than comparable, steady-state first-stability reactors (e.g. ARIES-I). 25 refs, 2 figs, 1 tab

  12. Reactor costs and maintenance, with reference to the Culham Mark II conceptual tokamak reactor design

    International Nuclear Information System (INIS)

    Hancox, R.; Mitchell, J.T.D.

    1977-01-01

    Published designs of tokamak reactors have proposed conceptual solutions for most of the technological problems encountered. Two areas which remain uncertain, however, are the capital cost of the reactor and the practicability of reactor maintenance. A cost estimate for the Culham Conceptual Tokamak Reactor (Mk I) is presented. The capital cost of a power station incorporating this reactor would be significantly higher than that of an equivalent fast breeder fission power station, mainly because of the low power density of the fusion reactor which affects both the reactor and building costs. To reduce the fusion station capital costs a new conceptual design is proposed (Mk II) which incorporates a shaped plasma cross-section to give a higher plasma pressure ratio, βsub(t) approximately 0.1. Since the higher power density implies more severe radiation damage of the blanket structure, the question of reactor maintenance assumes greater importance. With the proposed scheme for regular replacement of the blanket, a fusion power station availability around 0.9 should be achievable. (author)

  13. Reactor costs and maintenance, with reference to the Culham Mark II conceptual Tokamak reactor design

    International Nuclear Information System (INIS)

    Hancox, R.; Mitchell, J.T.D.

    1976-01-01

    Published designs of tokamak reactors have proposed conceptual solutions for most of the technological problems encountered. Two areas which remain uncertain, however, are capital cost of the reactor and the practicability of reactor maintenance. A cost estimate for the Culham Conceptual Tokamak Reactor (Mk I) is presented. The capital cost of a power station incorporating this reactor would be significantly higher than that of an equivalent fast breeder fission power station, due mainly to the low power density of the fusion reactor which affects both the reactor and building costs. In order to reduce the fusion station capital costs a new conceptual design is proposed (Mk II) which incorporates a shaped plasma cross-section to give a higher plasma pressure ratio, βsub(t) approximately 0.1. Since the higher power density implies more severe radiation damage of the blanket structure, the question of reactor maintenance assumes greater importance. With the proposed scheme for regular replacement of the blanket, a fusion power station availability around 0.9 should be achievable. (orig.) [de

  14. Thermal-structural response of EBR-II major components under reactor operational transients

    International Nuclear Information System (INIS)

    Chang, L.K.; Lee, M.J.

    1983-01-01

    Until recently, the LMFBR safety research has been focused primarily on severe but highly unlikely accident, such as hypothetical-core-disruptive accidents (HCDA's), and not enough attention has been given to accident prevention, which is less severe but more likely sequence. The objective of the EBR-II operational reliability testing (ORT) is to demonstrate that the reactor can be designed and operated to prevent accident. A series of mild duty cycles and overpower transients were designed for accident prevention tests. An assessment of the EBR-II major plant components has been performed to assure structural integrity of the reactor plant for the ORT program. In this paper, the thermal-structural response and structural evaluation of the reactor vessel, the reactor-vessel cover, the intermediate heat exchanger (IHX) and the superheater are presented

  15. Computer code for the thermal-hydraulic analysis of ITU TRIGA Mark-II reactor

    International Nuclear Information System (INIS)

    Ustun, G.; Durmayaz, A.

    2002-01-01

    Istanbul Technical University (ITU) TRIGA Mark-II reactor core consists of ninety vertical cylindrical elements located in five rings. Sixty-nine of them are fuel elements. The reactor is operated and cooled with natural convection by pool water, which is also cooled and purified in external coolant circuits by forced convection. This characteristic leads to consider both the natural and forced convection heat transfer in a 'porous-medium analysis'. The safety analysis of the reactor requires a thermal-hydraulic model of the reactor to determine the thermal-hydraulic parameters in each mode of operation. In this study, a computer code cooled TRIGA-PM (TRIGA - Porous Medium) for the thermal-hydraulic analysis of ITU is considered. TRIGA Mark-II reactor code has been developed to obtain velocity, pressure and temperature distributions in the reactor pool as a function of core design parameters and pool configuration. The code is a transient, thermal-hydraulic code and requires geometric and physical modelling parameters. In the model, although the reactor is considered as only porous medium, the other part of the reactor pool is considered partly as continuum and partly as porous medium. COMMIX-1C code is used for the benchmark purpose of TRIGA-PM code. For the normal operating conditions of the reactor, estimations of TRIGA-PM are in good agreement with those of COMMIX-1C. After some more improvements, this code will be employed for the estimation of LOCA scenario, which can not be analyses by COMMIX-1C and the other multi-purpose codes, considering a break at one of the beam tubes of the reactor

  16. Neutronics and thermohydraulics of the reactor C.E.N.E. Part II; Analisis neutronico y termohidraulico del reactor C.E.N.E. Parte II

    Energy Technology Data Exchange (ETDEWEB)

    Caro, R

    1976-07-01

    In this report the analysis of neutronics thermohydraulics and shielding of the 10 HWt swimming pool reactor C.E.N.E is included. In each of these chapters is given a short description of the theoretical model used, along with the theoretical versus experimental checking carried out, whenever possible, with the reactors JEN-I and JEN-II of Junta de Energia Nuclear. (Author) 11 refs.

  17. Operating experience of TRIGA MK-II Research Reactor in Bangladesh

    International Nuclear Information System (INIS)

    Mannan, M.A.; Ahmed, K.

    1992-01-01

    A 3 MW TRIGA MK II Research Reactor was installed in Bangladesh in 1986. The reactor is being utilized for research, training and for production of radioisotopes. Recently two faults were detected, one in the Emergency Core Cooling System and the other in the Primary Coolant Loop, which hindered the operation of the reactor partially. The faults were investigated by a team of local experts. Results of analyses of possible initiating events of the faults and the remedial steps are briefly discussed in the paper. (author)

  18. Fuel burnup analysis of the TRIGA Mark II reactor at the University of Pavia

    International Nuclear Information System (INIS)

    Chiesa, Davide; Clemenza, Massimiliano; Pozzi, Stefano; Previtali, Ezio; Sisti, Monica; Alloni, Daniele; Magrotti, Giovanni; Manera, Sergio; Prata, Michele; Salvini, Andrea; Cammi, Antonio; Zanetti, Matteo; Sartori, Alberto

    2016-01-01

    Highlights: • A fuel evolution model for a TRIGA Mark II reactor has been developed. • Reproduction of nearly 50 years of reactor operation. • The model was used to predict the best reactor reconfiguration. • Reactor life was extended without adding fresh fuel elements. - Abstract: A time evolution model was developed to study fuel burnup for the TRIGA Mark II reactor at the University of Pavia. The results were used to predict the effects of a complete core reconfiguration and the accuracy of this prediction was tested experimentally. We used the Monte Carlo code MCNP5 to reproduce system neutronics in different operating conditions and to analyze neutron fluxes in the reactor core. The software that took care of time evolution, completely designed in-house, used the neutron fluxes obtained by MCNP5 to evaluate fuel consumption. This software was developed specifically to keep into account some features that differentiate low power experimental reactors from those used for power production, such as the daily ON/OFF cycle and the long fuel lifetime. These effects can not be neglected to properly account for neutron poison accumulation. We evaluated the effect of 48 years of reactor operation and predicted a possible new configuration for the reactor core: the objective was to remove some of the fuel elements from the core and to obtain a substantial increase in the Core Excess reactivity value. The evaluation of fuel burnup and the reconfiguration results are presented in this paper.

  19. Conceptual design of ICF reactor SENRI, Part II. Advances in design and pellet gain scaling

    International Nuclear Information System (INIS)

    Ido, S.; Mima, K.; Nakai, S.; Tsuji, R.; Yamanaka, C.

    1984-01-01

    This chapter reviews the recent design studies on reactor concepts with magnetically guided lithium flow, SENRI-I, SENRI-IA and SENRI-II. The routes from the present status to power reactors and an advanced fuel pellet concept is also discussed. Topics covered include pellet design, magnetohydrodynamic design of liquid lithium flow; reactor cavity concepts with magnetically guided lithium flow, a thermo-hydraulic analysis, a tritium recovery system; and an advanced fuel pellet concept for an inertial confinement fusion (ICF) reactor without a tritium breeding blanket. An advanced fuel pellet for an ICF reactor without a T breeder was studied in the model calculations, which showed sufficiently high values of pellet gain. Includes a table and 8 diagrams

  20. STARFIRE-II studies. Summary

    International Nuclear Information System (INIS)

    Baker, C.C.; Brooks, J.N.; Ehst, D.A.; Smith, D.L.; Sze, D.K.

    1985-01-01

    The US Department of Energy's Office of Fusion Energy has initiated several studies during FY-1985 called Tokamak Power System Studies (TPSS). The TPSS is being carried out by several laboratories, universities and industry with the general objective of developing innovative physics and technology concepts to improve the commercial attractiveness of tokamak power reactors. The effort of Argonne National Laboratory, entitled STARFIRE-II, is an effort to update and improve STARFIRE, which was the last comprehensive conceptual design study in the US of a commercial tokamak power plant. The STARFIRE-II effort has developed a number of goals in order to improve fusion commercial power plants based in part on several recent studies. The primary goals for STARFIRE-II are listed

  1. The research reactor BER II at the Helmholtz-Center Berlin

    Energy Technology Data Exchange (ETDEWEB)

    Krohn, Herbert [Helmholtz-Zentrum Berlin (HZB), Berlin (Germany)

    2012-10-15

    For basic and application-oriented research assignments the Helmholtz-Center Berlin (Helmholtz Zentrum Berlin - HZB) runs a research reactor that operates as a source of neutron beams for a wide range of scientific investigations. At the end of the 1980{sup th} the BER II was completed renewed and fitted with new experimental facilities. The BER II is a light water cooled and moderated swimming pool type reactor to be operated at 10 MW thermal power. Six neutron guides deliver cold neutrons from the cold moderator cell to a neutron guide hall adjacent to the experiment hall. With its 24 experimental stations, experimenters at HZB have practically all neutron scattering or neutron radiography techniques at their disposal. (orig.)

  2. The research reactor BER II at the Helmholtz-Center Berlin

    International Nuclear Information System (INIS)

    Krohn, Herbert

    2012-01-01

    For basic and application-oriented research assignments the Helmholtz-Center Berlin (Helmholtz Zentrum Berlin - HZB) runs a research reactor that operates as a source of neutron beams for a wide range of scientific investigations. At the end of the 1980 th the BER II was completed renewed and fitted with new experimental facilities. The BER II is a light water cooled and moderated swimming pool type reactor to be operated at 10 MW thermal power. Six neutron guides deliver cold neutrons from the cold moderator cell to a neutron guide hall adjacent to the experiment hall. With its 24 experimental stations, experimenters at HZB have practically all neutron scattering or neutron radiography techniques at their disposal. (orig.)

  3. Modernization design of neutron radiography of ITU TRIGA Mark-II reactor

    International Nuclear Information System (INIS)

    Tugrul, B.; Bilge, A.N.

    1988-01-01

    ITU TRIGA MARK-II Research and Training Reactor has a power of 250 KW and has three beam tubes. One of them is tangential beam tube used for neutron radiography. In this study, the neutron radiography set in the tangential beam tube is described with its problems for ITU TRIGA Reactor. After that modernization of the system is designed and the applicability of the direct and indirect methods is evaluated. Improving the ratio of length to diameter for the beam tube, elimination the fogging on the film and constructive design for practice and secure application of the technique is developed. (author)

  4. The neutron utilization and promotion program of TRR-II research reactor project in Taiwan

    International Nuclear Information System (INIS)

    Gone, J.K.; Huang, Y.H.

    2001-01-01

    The objective of the Taiwan research reactor system improvement and utilization promotion project is to reconstruct the old Taiwan research reactor (TRR), which was operated by the Institute of Nuclear Energy Research (INER) between 1973 and 1988, into a multi-purpose medium flux research reactor (TRR-II). The project started in 1998, and the new reactor is scheduled to have its first critical in June of 2006. The estimated maximum unperturbed thermal neutron flux (E 14 n/cm 2 sec, and it is about one order of magnitude higher than other operating research reactors in Taiwan. The new reactor will equip with secondary neutron sources to provide neutrons with different energies, which will be an essential tool for advanced material researches in Taiwan. One of the major tasks of TRR-II project is to promote domestic utilization of neutrons generated at TRR-II. The traditional uses of neutrons in fuel/material research, trace element analysis, and isotope production has been carried out at INER for many years. On the other hand, it is obvious that promotions of neutron spectrometric technique will be a major challenge for the project team. The limited neutron flux from operating research reactors had discouraged domestic users in developing neutron spectrometric technique for many years, and only few researchers in Taiwan are experienced in using spectrometers. It is important for the project team to encourage domestic researchers to use neutron spectrometers provided by TRR-II as a tool for their future researches in various fields. This paper describes the current status of TRR-II neutron utilization and promotion program. The current status and future plans for important issues such as staff recruiting, personnel training, international collaboration, and promotion strategy will be described. (orig.)

  5. Computational analysis of neutronic parameters of CENM TRIGA Mark II research reactor

    International Nuclear Information System (INIS)

    El Younoussi, C.; El Bakkari, B.; Boulaich, Y.; Riyach, D.; Otmani, S.; Marrhich, I.; Badri, H.; Htet, A.; Nacir, B.; El Bardouni, T.; Boukhal, H.; Zoubair, M.; Ossama, M.; Chakir, E.

    2010-01-01

    The CENM TRIGA MARK II reactor is part of the National Center for Energy, Sciences and Nuclear Techniques (CNESTEN). It's a standard design 2MW, natural-convection-cooled reactor with a graphite reflector containing 4 beam tubes and a thermal column. The reactor has several applications in different fields as industry, agriculture, medicine, training and education. In the present work a computational study has been carried out in the framework of neutronic parameters studies of the reactor. A detailed MCNP model that include all elements of the core and surrounding structures has been developed to calculate different parameters of the core (The effective multiplication factor, reactivity experiments comprising control rods worth, excess reactivity and shutdown margin). Further calculations have been carried out to calculate the neutron flux profiles at different locations of the reactor core. The cross sections used are processed from the library provided with MCNP5 and based on the ENDF/B-VII with continuous dependence in energy and special treatment of thermal neutrons in lightweight materials. (author)

  6. Multifrequency tests in the EBR-II reactor plant

    International Nuclear Information System (INIS)

    Feldman, E.E.; Mohr, D.; Gross, K.C.

    1989-01-01

    A series of eight multifrequency tests was conducted on the Experimental Breeder Reactor II. In half of the tests a control rod was oscillated and in the other half the controller input voltage to the intermediate-loop-sodium pump was perturbed. In each test the input disturbance consisted of several superimposed single-frequency sinusoidal harmonics of the same fundamental. The tests are described along with the theoretical and practical aspects of their development and design. Samples of measured frequency responses are also provided for both the reactor and the power plant. 22 refs., 5 figs., 2 tabs

  7. Perturbation analysis of the TRIGA Mark II reactor Vienna

    Energy Technology Data Exchange (ETDEWEB)

    Khan, R. [Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad (Pakistan); Villa, M.; Stummer, T.; Boeck, H. [Vienna Univ. of Technology (Austria). Atominstitut; Saeedbadshah [International Islamic Univ., Islamabad (Pakistan)

    2013-04-15

    The safety design of a nuclear reactor needs to maintain the steady state operation at desired power level. The safe and reliable reactor operation demands the complete knowledge of the core multiplication and its changes during the reactor operation. Therefore it is frequently of interest to compute the changes in core multiplication caused by small disturbances in the field of reactor physics. These disturbances can be created either by geometry or composition changes of the core. Fortunately if these changes (or perturbations) are very small, one does not have to repeat the reactivity calculations. This article focuses the study of small perturbations created in the Central Irradiation Channel (CIC) of the TRIGA mark II core to investigate their reactivity influences on the core reactivity. For this purpose, 3 different kinds of perturbations are created by inserting 3 different samples in the CIC. The cylindrical void (air), heavy water (D2O) and Cadmium (Cd) samples are inserted into the CIC separately to determine their neutronics behavior along the length of the core. The Monte Carlo N-Particle radiation transport code (MCNP) is applied to simulate these perturbations in the CIC. The MCNP theoretical predictions are verified by the experiments performed on the current reactor core. The behavior of void in the whole core and its dependence on position and water fraction is also presented in this article. (orig.)

  8. Neutron flux measurement in the thermal column of the Malaysian TRIGA mark II reactor with MCNP verification

    International Nuclear Information System (INIS)

    Abdel Munem, E.; Shukri, A.; Tajuddin, A.A.

    2006-01-01

    A study of the thermal column of the Malaysian TRIGA Mark II reactor, forming part of a feasibility study for BNCT was proposed in 2001. In the current study, pure metals were used to measure the neutron flux at selected points in the thermal column and the neutron flux determined using SAND-II. Monte Carlo simulation of the thermal column was also carried out. The reactor core was homogenized and calculations of the neutron flux through the graphite stringers performed using MCNP5. The results show good agreement between the measured flux and the MCNP calculated flux. An obvious extension from this is that the MCNP neutron flux output can be utilized as an input spectrum for SAND-II for the flux iteration. (author)

  9. Study of advanced fission power reactor development for the United States. Volume II

    International Nuclear Information System (INIS)

    1976-01-01

    This report presents the results of a multi-phase research study which had as its objective the comparative study of various advanced fission reactors and evaluation of alternate strategies for their development in the USA through the year 2020. By direction from NSF, ''advanced'' reactors were defined as those which met the dual requirements of (1) offering a significant improvement in fissile fuel utilization as compared to light-water reactors and (2) currently receiving U.S. Government funding. (A detailed study of the LMFBR was specifically excluded, but cursory baseline data were obtained from ERDA sources.) Included initially were the High-Temperature Gas-Cooled Reactor (HTGR), Gas-Cooled Fast Reactor (GCFR), Molten Salt Reactor (MSR), and Light-Water Breeder Reactor (LWBR). Subsequently, the CANDU Heavy Water Reactor (HWR) was included for comparison due to increased interest in its potential. This volume presents the reasoning process and analytical methods utilized to arrive at the conclusions for the overall study

  10. ETR/ITER systems code

    Energy Technology Data Exchange (ETDEWEB)

    Barr, W.L.; Bathke, C.G.; Brooks, J.N.; Bulmer, R.H.; Busigin, A.; DuBois, P.F.; Fenstermacher, M.E.; Fink, J.; Finn, P.A.; Galambos, J.D.; Gohar, Y.; Gorker, G.E.; Haines, J.R.; Hassanein, A.M.; Hicks, D.R.; Ho, S.K.; Kalsi, S.S.; Kalyanam, K.M.; Kerns, J.A.; Lee, J.D.; Miller, J.R.; Miller, R.L.; Myall, J.O.; Peng, Y-K.M.; Perkins, L.J.; Spampinato, P.T.; Strickler, D.J.; Thomson, S.L.; Wagner, C.E.; Willms, R.S.; Reid, R.L. (ed.)

    1988-04-01

    A tokamak systems code capable of modeling experimental test reactors has been developed and is described in this document. The code, named TETRA (for Tokamak Engineering Test Reactor Analysis), consists of a series of modules, each describing a tokamak system or component, controlled by an optimizer/driver. This code development was a national effort in that the modules were contributed by members of the fusion community and integrated into a code by the Fusion Engineering Design Center. The code has been checked out on the Cray computers at the National Magnetic Fusion Energy Computing Center and has satisfactorily simulated the Tokamak Ignition/Burn Experimental Reactor II (TIBER) design. A feature of this code is the ability to perform optimization studies through the use of a numerical software package, which iterates prescribed variables to satisfy a set of prescribed equations or constraints. This code will be used to perform sensitivity studies for the proposed International Thermonuclear Experimental Reactor (ITER). 22 figs., 29 tabs.

  11. ETR/ITER systems code

    International Nuclear Information System (INIS)

    Barr, W.L.; Bathke, C.G.; Brooks, J.N.

    1988-04-01

    A tokamak systems code capable of modeling experimental test reactors has been developed and is described in this document. The code, named TETRA (for Tokamak Engineering Test Reactor Analysis), consists of a series of modules, each describing a tokamak system or component, controlled by an optimizer/driver. This code development was a national effort in that the modules were contributed by members of the fusion community and integrated into a code by the Fusion Engineering Design Center. The code has been checked out on the Cray computers at the National Magnetic Fusion Energy Computing Center and has satisfactorily simulated the Tokamak Ignition/Burn Experimental Reactor II (TIBER) design. A feature of this code is the ability to perform optimization studies through the use of a numerical software package, which iterates prescribed variables to satisfy a set of prescribed equations or constraints. This code will be used to perform sensitivity studies for the proposed International Thermonuclear Experimental Reactor (ITER). 22 figs., 29 tabs

  12. Data base formation for important components of reactor TRIGA MARK II

    International Nuclear Information System (INIS)

    Jordan, R.; Mavko, B.; Kozuh, M.

    1992-01-01

    The paper represents specific data base formation for reactor TRIGA MARK II in Podgorica. Reactor operation data from year 1985 to 1990 were collected. Two groups of collected data were formed. The first group includes components data and the second group covers data of reactor scrams. Time related and demand related models were used for data evaluation. Parameters were estimated by classical method. Similar data bases are useful everywhere where components unavailabilities may have severe drawback. (author) [sl

  13. Risk of the research reactor BER II in Berlin

    International Nuclear Information System (INIS)

    Paulitz, Henrik; Hoevener, Barbara; Rosen, Alex

    2015-01-01

    The research reactor BER II is sited at the periphery of Berlin in the neighborhood of residential areas. The operational license is limited until December 31, 2019. The reactor is funded by the Federal Government (90%) and the city of Berlin (10%). The stress test has shown that the reactor is not secured against an aircraft crash (airliner or fast flying military jet), meltdown with remarkable radiological consequences to the public would be the consequence. Further hazards result from the radioactive waste transport, explosions and fires. The emergency measures cannot be considered to be sufficient. The city of Berlin would not be able to fulfill the required measures in case of a radiation accident.

  14. Criticality calculation in TRIGA MARK II PUSPATI Reactor using Monte Carlo code

    International Nuclear Information System (INIS)

    Rafhayudi Jamro; Redzuwan Yahaya; Abdul Aziz Mohamed; Eid Abdel-Munem; Megat Harun Al-Rashid; Julia Abdul Karim; Ikki Kurniawan; Hafizal Yazid; Azraf Azman; Shukri Mohd

    2008-01-01

    A Monte Carlo simulation of the Malaysian nuclear reactor has been performed using MCNP Version 5 code. The purpose of the work is the determination of the multiplication factor (k e ff) for the TRIGA Mark II research reactor in Malaysia based on Monte Carlo method. This work has been performed to calculate the value of k e ff for two cases, which are the control rod either fully withdrawn or fully inserted to construct a complete model of the TRIGA Mark II PUSPATI Reactor (RTP). The RTP core was modeled as close as possible to the real core and the results of k e ff from MCNP5 were obtained when the control fuel rods were fully inserted, the k e ff value indicates the RTP reactor was in the subcritical condition with a value of 0.98370±0.00054. When the control fuel rods were fully withdrawn the value of k e ff value indicates the RTP reactor is in the supercritical condition, that is 1.10773±0.00083. (Author)

  15. Neutron scattering-instrumentation at the upgraded research reactor BER II

    International Nuclear Information System (INIS)

    1991-01-01

    The Berlin Neutron Scattering Centre (BENSC) is a newly created special department of the Hahn-Meitner-Institut, in the framework of which the BER II neutron beam reactor is made available to external users. BENSC is devoted to development, continuous modernisation and maintenance of the scientific instrumets at the BER II and to the support of their users. (orig./HSI)

  16. Study on Reactor Performance of Online Power Monitoring in PUSPATI TRIGA Reactor (RTP)

    International Nuclear Information System (INIS)

    Zareen Khan Abdul Jalil Khan; Ridzuan Abdul Mutalib; Mohd Sabri Minhat

    2014-01-01

    The Reactor TRIGA PUSPATI (RTP) at Malaysia Nuclear Agency is a TRIGA Mark II type reactor and pool type cooled by natural circulation of light water. This paper describe on reactor performance of online power monitoring based on various parameter of reactor such as log power, linear power, period, Fuel and coolant temperature and reactivity parameter with using neutronic and other instrumentation system of reactor. Methodology of online power estimation and monitoring is to evaluate and analysis of reactor power which is important of reactor safety and control. Neutronic instrumentation system will use to estimate power measurement, differential of log and linear power and period during reactor operation .This study also focus on noise fluctuation from fission chamber during reactor operation .This work will present result of online power monitoring from RTP which indicated the safety parameter identification and initiate safety action on crossing the threshold set point trip. Conclude that optimization of online power monitoring will improved the reactor control and safety parameter of reactor during operation. (author)

  17. Ageing Management in the CENM Triga Mark II Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    El Younoussi, C.; Nacir, B.; El Bakkari, B.; Boulaich, Y. [Centre for Nuclear Studies of Maâmora (CENM), National Centre of Energy Sciences and Nuclear Techniques (CNESTEN), Rabat (Morocco)

    2014-08-15

    Physical ageing is one of the most important factors that may reduce the safety margins calculated in the design of safety system components of a research reactor. In this context, special efforts are necessary for ensuring the safety of research reactors through appropriate ageing management actions. The paper deals with the overall aspects of the ageing management system of the Moroccan TRIGA Mark II research reactor. The management system covers among others, management of structures, critical components inspections, the control command system and nuclear instrumentation verification. The paper presents also how maintenance and periodic testing are organized and managed in the reactor module. Practical examples of ageing management actions of some systems and components during recent years are presented. (author)

  18. Self-shielding characteristics of aqueous self-cooled blankets for next generation fusion devices

    International Nuclear Information System (INIS)

    Pelloni, S.; Cheng, E.T.; Embrechts, M.J.

    1987-11-01

    The present study examines self-shielding characteristics for two aqueous self-cooled tritium producing driver blankets for next generation fusion devices. The aqueous Self-Cooled Blanket concept (ASCB) is a very simple blanket concept that relies on just structural material and coolant. Lithium compounds are dissolved in water to provide for tritium production. An ASCB driver blanket would provide a low technology and low temperature environment for blanket test modules in a next generation fusion reactor. The primary functions of such a blanket would be shielding, energy removal and tritium production. One driver blanket considered in this study concept relates to the one proposed for the Next European Torus (NET), while the second concept is indicative for the inboard shield design for the Engineering Test Reactor proposed by the USA (TIBER II/ETR). The driver blanket for NET is based on stainless steel for the structural material and aqueous solution, while the inboard shielding blanket for TIBER II/ETR is based on a tungsten/aqueous solution combination. The purpose of this study is to investigate self-shielding and heterogeneity effects in aqueous self-cooled blankets. It is found that no significant gains in tritium breeding can be achieved in the stainless steel blanket if spatial and energy self-shielding effects are considered, and the heterogeneity effects are also insignificant. The tungsten blanket shows a 5 percent increase in tritium production in the shielding blanket when energy and spatial self-shielding effects are accounted for. However, the tungsten blanket shows a drastic increase in the tritium breeding ratio due to heterogeneity effects. (author) 17 refs., 9 figs., 9 tabs

  19. Risk of the research reactor BER II in Berlin; Risiken des Berliner Experimentierreaktors BER II

    Energy Technology Data Exchange (ETDEWEB)

    Paulitz, Henrik; Hoevener, Barbara; Rosen, Alex

    2015-04-20

    The research reactor BER II is sited at the periphery of Berlin in the neighborhood of residential areas. The operational license is limited until December 31, 2019. The reactor is funded by the Federal Government (90%) and the city of Berlin (10%). The stress test has shown that the reactor is not secured against an aircraft crash (airliner or fast flying military jet), meltdown with remarkable radiological consequences to the public would be the consequence. Further hazards result from the radioactive waste transport, explosions and fires. The emergency measures cannot be considered to be sufficient. The city of Berlin would not be able to fulfill the required measures in case of a radiation accident.

  20. Final project report: TA-35 Los Alamos Power Reactor Experiment No. II (LAPRE II) decommissioning project

    International Nuclear Information System (INIS)

    Montoya, G.M.

    1993-02-01

    This final report addresses the decommissioning of the LAPRE II Reactor, safety enclosure, fuel reservoir tanks, emergency fuel recovery system, primary pump pit, secondary loop, associated piping, and the post-remediation activities. Post-remedial action measurements are also included. The cost of the project including, Phase I assessment and Phase II remediation was approximately $496K. The decommissioning operation produced 533 M 3 of mixed waste

  1. Experience with EBR-II [Experimental Breeder Reactor] driver fuel

    International Nuclear Information System (INIS)

    Seidel, B.R.; Porter, D.L.; Walters, L.C.; Hofman, G.L.

    1986-01-01

    The exceptional performance of Experimental Breeder Reactor-II (EBR-II) metallic driver fuel has been demonstrated by the irradiation of a large number of elements under steady-state, transient overpower, and loss-of-flow conditions. High burnup with high reliability has been achieved by a close coupling of element design and materials selection. Quantification of reliability has allowed full utilization of element lifetime. Improved design and duct materials currently under test are expected to increase the burnup from 8 to 14 at.%

  2. Safety and environmental aspects of the HYLIFE-II and ARIES fusion reactor designs

    International Nuclear Information System (INIS)

    Dolan, T.J.; Longhurst, G.R.; Herring, J.S.

    1993-01-01

    The HYLIFE-II inertial confinement fusion reactor design uses jets of Flibe molten salt to protect the blast chamber walls and to breed tritium. It has a low tritium inventory and effective tritium removal. The issue with this design is not one of safety but of economics. The ARIES reactor designs have safety concerns associated with fires. These reactors designs are described

  3. The ARIES tokamak reactor study

    International Nuclear Information System (INIS)

    1989-10-01

    The ARIES study is a community effort to develop several visions of tokamaks as fusion power reactors. The aims are to determine the potential economics, safety, and environmental features of a range of possible tokamak reactors, and to identify physics and technology areas with the highest leverage for achieving the best tokamak reactor. Three ARIES visions are planned, each having a different degree of extrapolation from the present data base in physics and technology. The ARIES-I design assumes a minimum extrapolation from current tokamak physics (e.g., 1st stability) and incorporates technological advances that can be available in the next 20 to 30 years. ARIES-II is a DT-burning tokamak which would operate at a higher beta in the 2nd MHD stability regime. It employs both potential advances in the physics and expected advances in technology and engineering. ARIES-II will examine the potential of the tokamak and the D 3 He fuel cycle. This report is a collection of 14 papers on the results of the ARIES study which were presented at the IEEE 13th Symposium on Fusion Engineering (October 2-6, 1989, Knoxville, TN). This collection describes the ARIES research effort, with emphasis on the ARIES-I design, summarizing the major results, the key technical issues, and the central conclusions

  4. Study and application of ANISN and DOT-II nuclear cores in reactor physics problems

    International Nuclear Information System (INIS)

    Dias, Artur Flavio

    1980-01-01

    To solve time-independent neutrons and/or gamma rays transport problems in nuclear reactors, two codes available at IPEN were studied and applied to solve benchmark problems. The ANISN code solves the one-dimensional Boltzmann transport equation for neutrons or gamma rays, in plane, spherical, or cylindrical geometries. The DOT-II code solves the same equation in two-dimensional space for plane, cylindrical and circular geometries. General anisotropic scattering allowed in both codes. Moreover, pointwise convergence criteria, and alternate step function difference equations are also used in order to remove the oscillating flux distributions, sometimes found in discrete ordinates solutions. Basic theories and numerical techniques used in these codes are studied and summarized. Benchmark problems have been solved using these codes. Comparisons of the results show that both codes can be used with confidence in the analysis of nuclear problems. (author)

  5. Source term derivation and radiological safety analysis for the TRICO II research reactor in Kinshasa

    International Nuclear Information System (INIS)

    Muswema, J.L.; Ekoko, G.B.; Lukanda, V.M.; Lobo, J.K.-K.; Darko, E.O.; Boafo, E.K.

    2015-01-01

    Highlights: • Atmospheric dispersion modeling for two credible accidents of the TRIGA Mark II research reactor in Kinshasa (TRICO II) was performed. • Radiological safety analysis after the postulated initiating events (PIE) was also carried out. • The Karlsruhe KORIGEN and the HotSpot Health Physics codes were used to achieve the objectives of this study. • All the values of effective dose obtained following the accident scenarios were below the regulatory limits for reactor staff members and the public, respectively. - Abstract: The source term from the 1 MW TRIGA Mark II research reactor core of the Democratic Republic of the Congo was derived in this study. An atmospheric dispersion modeling followed by radiation dose calculation were performed based on two possible postulated accident scenarios. This derivation was made from an inventory of peak radioisotope activities released in the core by using the Karlsruhe version of isotope generation code KORIGEN. The atmospheric dispersion modeling was performed with HotSpot code, and its application yielded to radiation dose profile around the site using meteorological parameters specific to the area under study. The two accident scenarios were picked from possible accident analyses for TRIGA and TRIGA-fueled reactors, involving the case of destruction of the fuel element with highest activity release and a plane crash on the reactor building as the worst case scenario. Deterministic effects of these scenarios are used to update the Safety Analysis Report (SAR) of the reactor, and for its current version, these scenarios are not yet incorporated. Site-specific meteorological conditions were collected from two meteorological stations: one installed within the Atomic Energy Commission and another at the National Meteorological Agency (METTELSAT), which is not far from the site. Results show that in both accident scenarios, radiation doses remain within the limits, far below the recommended maximum effective

  6. Source term derivation and radiological safety analysis for the TRICO II research reactor in Kinshasa

    Energy Technology Data Exchange (ETDEWEB)

    Muswema, J.L., E-mail: jeremie.muswem@unikin.ac.cd [Faculty of Science, University of Kinshasa, P.O. Box 190, KIN XI (Congo, The Democratic Republic of the); Ekoko, G.B. [Faculty of Science, University of Kinshasa, P.O. Box 190, KIN XI (Congo, The Democratic Republic of the); Lukanda, V.M. [Faculty of Science, University of Kinshasa, P.O. Box 190, KIN XI (Congo, The Democratic Republic of the); Democratic Republic of the Congo' s General Atomic Energy Commission, P.O. Box AE1 (Congo, The Democratic Republic of the); Lobo, J.K.-K. [Faculty of Science, University of Kinshasa, P.O. Box 190, KIN XI (Congo, The Democratic Republic of the); Darko, E.O. [Radiation Protection Institute, Ghana Atomic Energy Commission, P.O. Box LG 80, Legon, Accra (Ghana); Boafo, E.K. [University of Ontario Institute of Technology, 2000 Simcoe St. North, Oshawa, ONL1 H7K4 (Canada)

    2015-01-15

    Highlights: • Atmospheric dispersion modeling for two credible accidents of the TRIGA Mark II research reactor in Kinshasa (TRICO II) was performed. • Radiological safety analysis after the postulated initiating events (PIE) was also carried out. • The Karlsruhe KORIGEN and the HotSpot Health Physics codes were used to achieve the objectives of this study. • All the values of effective dose obtained following the accident scenarios were below the regulatory limits for reactor staff members and the public, respectively. - Abstract: The source term from the 1 MW TRIGA Mark II research reactor core of the Democratic Republic of the Congo was derived in this study. An atmospheric dispersion modeling followed by radiation dose calculation were performed based on two possible postulated accident scenarios. This derivation was made from an inventory of peak radioisotope activities released in the core by using the Karlsruhe version of isotope generation code KORIGEN. The atmospheric dispersion modeling was performed with HotSpot code, and its application yielded to radiation dose profile around the site using meteorological parameters specific to the area under study. The two accident scenarios were picked from possible accident analyses for TRIGA and TRIGA-fueled reactors, involving the case of destruction of the fuel element with highest activity release and a plane crash on the reactor building as the worst case scenario. Deterministic effects of these scenarios are used to update the Safety Analysis Report (SAR) of the reactor, and for its current version, these scenarios are not yet incorporated. Site-specific meteorological conditions were collected from two meteorological stations: one installed within the Atomic Energy Commission and another at the National Meteorological Agency (METTELSAT), which is not far from the site. Results show that in both accident scenarios, radiation doses remain within the limits, far below the recommended maximum effective

  7. Performances on nuclear activation analysis by TRIGA Mark II reactor

    International Nuclear Information System (INIS)

    Capannesi, G.; Rosada, A.

    1986-01-01

    Progresses in methodological research and connected applications in the field of activation analysis are introduced. Some peculiar characteristics on the TRIGA MARK II reactor have enabled the possibility of obtaining interesting results. The particular, the rotating radiation device Lazy Susan, with a capability of 40 positionings, permits homogeneity in neutron flux and energy spectrum stability within 15%. High level of precision and accuracy are obtained in analytic. Applications of major interest have been: - reference material certification; - forensic applications; - electrolytic cell productivity evaluation. The TRIGA MARK II reactor is equipped with a thermal column throughout a D 2 O diaphragm with a thickness of 70 cm. The available neutron flux has no fast and epithermal components. Via this facility a method has been tested for the instrumental determination of Al in Si metal of solar and electronic degree. (author)

  8. Monte Carlo analysis of Musashi TRIGA mark II reactor core

    International Nuclear Information System (INIS)

    Matsumoto, Tetsuo

    1999-01-01

    The analysis of the TRIGA-II core at the Musashi Institute of Technology Research Reactor (Musashi reactor, 100 kW) was performed by the three-dimensional continuous-energy Monte Carlo code (MCNP4A). Effective multiplication factors (k eff ) for the several fuel-loading patterns including the initial core criticality experiment, the fuel element and control rod reactivity worth as well as the neutron flux measurements were used in the validation process of the physical model and neutron cross section data from the ENDF/B-V evaluation. The calculated k eff overestimated the experimental data by about 1.0%Δk/k for both the initial core and the several fuel-loading arrangements. The calculated reactivity worths of control rod and fuel element agree well the measured ones within the uncertainties. The comparison of neutron flux distribution was consistent with the experimental ones which were measured by activation methods at the sample irradiation tubes. All in all, the agreement between the MCNP predictions and the experimentally determined values is good, which indicated that the Monte Carlo model is enough to simulate the Musashi TRIGA-II reactor core. (author)

  9. A digital data acquisition and display system for ITU TRIGA Mark II reactor

    International Nuclear Information System (INIS)

    Can, B.; Omuz, S.

    2008-01-01

    Full text: In this study, a digital data acquisition and display system realized for ITU TRIGA Mark-II Reactor is described. This system is realized in order to help the reactor operator and to increase reactor console capacity. The system consists of two main units, which are host computers and RTI-815F, analog devices, data acquisition card. RTI-815F is multi-function analog/digital input/output board that plugs into one of the available long expansion slots in the IBM-PC, PC/XT, PC/AT, or equivalent personal computers. It has 16 analog input channels for single-ended input signals or 8 analog input channels for differential input signals. But its channel capacity can be increased to 32 input channels for single-ended input signals or 16 input channels for differential input signals. RTI-815F board contains 2 analog output channels, 8 digital input channels and 8 digital output channels. In the ITD TRIGA Mark-II Reactor, 6 fuel temperature channels, 3 water temperature channels, 3 control rod position channels and 4 power channels are chosen as analog input signals for RTI-815F. Its digital outputs are assigned to cooling tower fan, primary and secondary pump reactor scram, control rod rundown. During operation, data are automatically archived to disk and displayed on screen. The channel selection time and sampling time can be adjusted. The simulated movement and position of control rods in the reactor core can be noted and displayed. The changes of power, fuel temperature and water temperature can be displayed on the screen as a graphic. In this system both period and reactivity are calculated and displayed on the screen. (authors)

  10. Power and power-to-flow reactivity transfer functions in EBR-II [Experimental Breeder Reactor II] fuel

    International Nuclear Information System (INIS)

    Grimm, K.N.; Meneghetti, D.

    1989-01-01

    Reactivity transfer functions are important in determining the reactivity history during a power transient. Overall nodal transfer functions have been calculated for different subassembly types in the Experimental Breeder Reactor II (EBR-II). Steady-state calculations for temperature changes and, hence, reactivities for power changes have been separated into power and power-to-flow-dependent terms. Axial nodal transfer functions separated into power and power-to-flow-dependent components are reported in this paper for a typical EBR-II fuel pin. This provides an improved understanding of the time dependence of these components in transient situations

  11. Proceedings of the 1984 DOE nuclear reactor and facility safety conference. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    This report is a collection of papers on reactor safety. The report takes the form of proceedings from the 1984 DOE Nuclear Reactor and Facility Safety Conference, Volume II of two. These proceedings cover Safety, Accidents, Training, Task/Job Analysis, Robotics and the Engineering Aspects of Man/Safety interfaces.

  12. Proceedings of the 1984 DOE nuclear reactor and facility safety conference. Volume II

    International Nuclear Information System (INIS)

    1984-01-01

    This report is a collection of papers on reactor safety. The report takes the form of proceedings from the 1984 DOE Nuclear Reactor and Facility Safety Conference, Volume II of two. These proceedings cover Safety, Accidents, Training, Task/Job Analysis, Robotics and the Engineering Aspects of Man/Safety interfaces

  13. Data base formation for important components of reactor TRIGA MARK II

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, R; Mavko, B; Kozuh, M [Inst. Jozef Stefan, Ljubljana (Slovenia)

    1992-07-01

    The paper represents specific data base formation for reactor TRIGA MARK II in Podgorica. Reactor operation data from year 1985 to 1990 were collected. Two groups of collected data were formed. The first group includes components data and the second group covers data of reactor scrams. Time related and demand related models were used for data evaluation. Parameters were estimated by classical method. Similar data bases are useful everywhere where components unavailabilities may have severe drawback. (author) [Slovenian] V referatu smo prikazali raziskavo, v okviru katere smo za raziskovalni reaktor TRIGA MARK II v Podgorici izoblikovali specificno bazo podatkov. Zbrali smo podatke obratovanja reaktorja od leta 1985 do 1990. Rezultate raziskave dogodkov smo razdelili v dve glavni skupini. V prvo spadajo obratovalni podatki o komponentah, v drugo skupino pa spadajo zagoni oz. zaustavitve reaktorja. Podatke smo ovrednotili z modelom v casovnem prostoru in z modelom na zahtevo. Parametre modelov smo dolocili s klasicno metodo. Opisane baze podatkov so uporabne povsod, kjer so lahko posledice nezanesljivega delovanja sistemov velike. [author].

  14. Present Services at the TRIGA Mark II Reactor of the JSI

    International Nuclear Information System (INIS)

    Smodiš, B.; Snoj, L.

    2013-01-01

    The TRIGA Mark II research reactor of the Jožef Stefan Institute has been continuously operating since the year 1966. The currently offered services include: (1) Neutron activation analysis in both instrumental and radiochemical modes; (2) neutron irradiation of various kinds of materials intended to be used for research and applicative purposes; (3) training and education of university students as well as on-job training of staff working in public and private institutions, (4) verification of computer codes and nuclear data, comprising primarily criticality calculations and neutron flux distribution studies and (5) testing and development of a digital reactivity meter. The paper briefly describes the aforementioned activities and shows that even such small reactors are still indispensable in nuclear science and technology. (author)

  15. Final project report, TA-35 Los Alamos Power Reactor Experiment No. II (LAPRE II) decommissioning project

    International Nuclear Information System (INIS)

    Montoya, G.M.

    1992-01-01

    This final report addresses the decommissioning of the LAPRE II Reactor, safety enclosure, fuel reservoir tanks, emergency fuel recovery system, primary pump pit, secondary loop, associated piping, and the post-remediation activities. Post-remedial action measurements are also included. The cost of the project, including Phase I assessment and Phase II remediation was approximately $496K. The decommissioning operation produced 533 m 3 of low-level solid radioactive waste and 5 m 3 of mixed waste

  16. Geochemical study of travertines along middle-lower Tiber valley (central Italy): genesis, palaeo-environmental and tectonic implications

    Science.gov (United States)

    Giustini, Francesca; Brilli, Mauro; Mancini, Marco

    2017-09-01

    Several travertine deposits dating to the Pleistocene outcrop along the Tiber valley between Orte and Rome. Mineralogically, they are mainly composed of calcite; various lithofacies (stromatolitic, phytoclastic, and massive) were identified and relatively wide ranges of carbon (δ13C -8.11 to +11.42‰ vs. VPDB) and oxygen (δ18O +22.74 to +27.71‰ vs. VSMOW) isotope compositions were measured. The isotope and chemical compositions of water and free gases, in some cases associated with the travertines, were also measured. Carbon isotope data show that several samples fall in the typical range of thermogenic travertine, i.e., linked to the addition of deep inorganic CO2. The oxygen isotope composition of the springs associated with the travertine deposits points to travertine precipitation by slightly thermal water of meteoric origin. In general, these travertines are in association with, or close to, mineralised groundwaters (with slightly acidic pH, low thermalism, and enrichment in sulphates or sodium chloride) and rich CO2 gas emissions, the origin of which may be linked to decarbonation reactions. The travertine bodies are locally connected with crustal structural lineaments favouring the circulation of ascending deep CO2-rich fluids. Conversely, some samples show isotopic connotations of meteogenic deposits, representing travertines formed mainly from soil biogenic or atmospheric carbon dioxide generally present in shallow groundwater or surface water. According to their morphology and isotope data, these travertines may be attributed to the sedimentary environment of waterfalls. These new geochemical and morphological data are integrated with those already available in the literature regarding the study area and contribute to shedding light on palaeo-environmental conditions in western-central Italy during the Quaternary.

  17. Investigation/evaluation of water cooled fast reactor in the feasibility study on commercialized fast reactor cycle systems. Intermediate evaluation of phase-II study

    International Nuclear Information System (INIS)

    Kotake, Syoji; Nishikawa, Akira

    2005-01-01

    Feasibility study on commercialized fast reactor cycle systems aims at investigation and evaluation of FBR design requirement's attainability, operation and maintenance, and technical feasibility of the candidate system. Development targets are 1) ensuring safety, 2) economic competitiveness, 3) efficient utilization of resources, 4) reduction of environmental load and 5) enhancement of nuclear non-proliferation. Based on the selection of the promising concepts in the first phase, conceptual design for the plant system has proceeded with the following plant system: a) sodium cooled reactors at large size and medium size module reactors, b) a lead-bismuth cooled medium size reactor, c) a helium gas cooled large size reactor and d) a BWR type large size FBR. Technical development and feasibility has been assessed and the study considers the need of respective key technology development for the confirmation of the feasibility study. (T. Tanaka)

  18. Reactor physics tests of TRIGA Mark-II Reactor in Ljubljana

    International Nuclear Information System (INIS)

    Ravnik, M.; Mele, I.; Trkov, A.; Rant, J.; Glumac, B.; Dimic, V.

    2008-01-01

    TRIGA Mark-II Reactor in Ljubljana was recently reconstructed. The reconstruction consisted mainly of replacing the grid plates, the control rod mechanisms and the control unit. The standard type control rods were replaced by the fuelled follower type, the central grid location (A ring) was adapted for fuel element insertion, the triangular cutouts were introduced in the upper plate design. However, the main novelty in reactor physics and operational features of the reactor was the installation of a pulse rod. Having no previous operational experience in pulsing, a detailed and systematic sequence of tests was defined in order to check the predicted design parameters of the reactor with measurements. The following experiments are treated in this paper: initial criticality, excess reactivity measurements, control rod worth measurement, fuel temperature distribution, fuel temperature reactivity coefficient, pulse parameters measurement (peak power, prompt energy, peak temperature). Flux distributions in steady state and pulse mode were measured as well, however, they are treated only briefly due to the volume of the results. The experiments were performed with completely fresh fuel of 12 w% enriched Standard Stainless Steel type. The core configuration was uniform (one fuel element type, including fuelled followers) and compact (no irradiation channels or gaps), as such being particularly convenient for testing the computer codes for TRIGA reactor calculations. Comparison of analytical predictions, obtained with WIMS, SLXTUS, TRIGAP and PULSTRI codes to measured values showed agreement within the error of the measurement and calculation. The paper has the following contents: 1. Introduction; 2. Steady State Experiments; 2.1. Core loading and critical experiment; 2.2. Flux range determination for tests at zero power; 2.3. Digital reactivity meter checkout; 2.4. Control rod worth measurements; 2.5. Excess reactivity measurement; 2.6. Thermal power calibration; 2

  19. Sodium fast reactor safety and licensing research plan - Volume II

    International Nuclear Information System (INIS)

    Ludewig, H.; Powers, D.A.; Hewson, John C.; LaChance, Jeffrey L.; Wright, A.; Phillips, J.; Zeyen, R.; Clement, B.; Garner, Frank; Walters, Leon; Wright, Steve; Ott, Larry J.; Suo-Anttila, Ahti Jorma; Denning, Richard; Ohshima, Hiroyuki; Ohno, S.; Miyhara, S.; Yacout, Abdellatif; Farmer, M.; Wade, D.; Grandy, C.; Schmidt, R.; Cahalen, J.; Olivier, Tara Jean; Budnitz, R.; Tobita, Yoshiharu; Serre, Frederic; Natesan, Ken; Carbajo, Juan J.; Jeong, Hae-Yong; Wigeland, Roald; Corradini, Michael; Thomas, Justin; Wei, Tom; Sofu, Tanju; Flanagan, George F.; Bari, R.; Porter D.

    2012-01-01

    Expert panels comprised of subject matter experts identified at the U.S. National Laboratories (SNL, ANL, INL, ORNL, LBL, and BNL), universities (University of Wisconsin and Ohio State University), international agencies (IRSN, CEA, JAEA, KAERI, and JRC-IE) and private consultation companies (Radiation Effects Consulting) were assembled to perform a gap analysis for sodium fast reactor licensing. Expert-opinion elicitation was performed to qualitatively assess the current state of sodium fast reactor technologies. Five independent gap analyses were performed resulting in the following topical reports: (1) Accident Initiators and Sequences (i.e., Initiators/Sequences Technology Gap Analysis), (2) Sodium Technology Phenomena (i.e., Advanced Burner Reactor Sodium Technology Gap Analysis), (3) Fuels and Materials (i.e., Sodium Fast Reactor Fuels and Materials: Research Needs), (4) Source Term Characterization (i.e., Advanced Sodium Fast Reactor Accident Source Terms: Research Needs), and (5) Computer Codes and Models (i.e., Sodium Fast Reactor Gaps Analysis of Computer Codes and Models for Accident Analysis and Reactor Safety). Volume II of the Sodium Research Plan consolidates the five gap analysis reports produced by each expert panel, wherein the importance of the identified phenomena and necessities of further experimental research and code development were addressed. The findings from these five reports comprised the basis for the analysis in Sodium Fast Reactor Research Plan Volume I.

  20. Sodium fast reactor safety and licensing research plan. Volume II.

    Energy Technology Data Exchange (ETDEWEB)

    Ludewig, H. (Brokhaven National Laboratory, Upton, NY); Powers, D. A.; Hewson, John C.; LaChance, Jeffrey L.; Wright, A. (Argonne National Laboratory, Argonne, IL); Phillips, J.; Zeyen, R. (Institute for Energy Petten, Saint-Paul-lez-Durance, France); Clement, B. (IRSN/DPAM.SEMIC Bt 702, Saint-Paul-lez-Durance, France); Garner, Frank (Radiation Effects Consulting, Richland, WA); Walters, Leon (Advanced Reactor Concepts, Los Alamos, NM); Wright, Steve; Ott, Larry J. (Oak Ridge National Laboratory, Oak Ridge, TN); Suo-Anttila, Ahti Jorma; Denning, Richard (Ohio State University, Columbus, OH); Ohshima, Hiroyuki (Japan Atomic Energy Agency, Ibaraki, Japan); Ohno, S. (Japan Atomic Energy Agency, Ibaraki, Japan); Miyhara, S. (Japan Atomic Energy Agency, Ibaraki, Japan); Yacout, Abdellatif (Argonne National Laboratory, Argonne, IL); Farmer, M. (Argonne National Laboratory, Argonne, IL); Wade, D. (Argonne National Laboratory, Argonne, IL); Grandy, C. (Argonne National Laboratory, Argonne, IL); Schmidt, R.; Cahalen, J. (Argonne National Laboratory, Argonne, IL); Olivier, Tara Jean; Budnitz, R. (Lawrence Berkeley National Laboratory, Berkeley, CA); Tobita, Yoshiharu (Japan Atomic Energy Agency, Ibaraki, Japan); Serre, Frederic (Centre d' %C3%94etudes nucl%C3%94eaires de Cadarache, Cea, France); Natesan, Ken (Argonne National Laboratory, Argonne, IL); Carbajo, Juan J. (Oak Ridge National Laboratory, Oak Ridge, TN); Jeong, Hae-Yong (Korea Atomic Energy Research Institute, Daejeon, Korea); Wigeland, Roald (Idaho National Laboratory, Idaho Falls, ID); Corradini, Michael (University of Wisconsin-Madison, Madison, WI); Thomas, Justin (Argonne National Laboratory, Argonne, IL); Wei, Tom (Argonne National Laboratory, Argonne, IL); Sofu, Tanju (Argonne National Laboratory, Argonne, IL); Flanagan, George F. (Oak Ridge National Laboratory, Oak Ridge, TN); Bari, R. (Brokhaven National Laboratory, Upton, NY); Porter D. (Idaho National Laboratory, Idaho Falls, ID); Lambert, J. (Argonne National Laboratory, Argonne, IL); Hayes, S. (Idaho National Laboratory, Idaho Falls, ID); Sackett, J. (Idaho National Laboratory, Idaho Falls, ID); Denman, Matthew R.

    2012-05-01

    Expert panels comprised of subject matter experts identified at the U.S. National Laboratories (SNL, ANL, INL, ORNL, LBL, and BNL), universities (University of Wisconsin and Ohio State University), international agencies (IRSN, CEA, JAEA, KAERI, and JRC-IE) and private consultation companies (Radiation Effects Consulting) were assembled to perform a gap analysis for sodium fast reactor licensing. Expert-opinion elicitation was performed to qualitatively assess the current state of sodium fast reactor technologies. Five independent gap analyses were performed resulting in the following topical reports: (1) Accident Initiators and Sequences (i.e., Initiators/Sequences Technology Gap Analysis), (2) Sodium Technology Phenomena (i.e., Advanced Burner Reactor Sodium Technology Gap Analysis), (3) Fuels and Materials (i.e., Sodium Fast Reactor Fuels and Materials: Research Needs), (4) Source Term Characterization (i.e., Advanced Sodium Fast Reactor Accident Source Terms: Research Needs), and (5) Computer Codes and Models (i.e., Sodium Fast Reactor Gaps Analysis of Computer Codes and Models for Accident Analysis and Reactor Safety). Volume II of the Sodium Research Plan consolidates the five gap analysis reports produced by each expert panel, wherein the importance of the identified phenomena and necessities of further experimental research and code development were addressed. The findings from these five reports comprised the basis for the analysis in Sodium Fast Reactor Research Plan Volume I.

  1. In-reactor cladding breach of EBR-II driver-fuel elements

    International Nuclear Information System (INIS)

    Seidel, B.R.; Einziger, R.E.

    1977-01-01

    Knowledge of performance and minimum useful element lifetime of Mark-II driver-fuel elements is required to maintain a high plant operating capacity factor with maximum fuel utilization. To obtain such knowledge, intentional cladding breach has been obtained in four run-to-cladding-breach Mark-II experimental driver-fuel subassemblies operating under normal conditions in EBR-II. Breach and subsequent fission-product release proved benign to reactor operations. The breaches originated on the outer surface of the cladding in the root of the restrainer dimples and were intergranular. The Weibull distribution of lifetime accurately predicts the observed minimum useful element lifetime of 10 at.% burnup, with breach ensuing shortly thereafter

  2. Tritium handling, breeding, and containment in two conceptual fusion reactor designs: UWMAK-II and UWMAK-III

    International Nuclear Information System (INIS)

    Clemmer, R.G.; Larsen, E.M.

    1976-01-01

    Tritium is an essential component of near-term controlled thermonuclear reactor systems. Since tritium is not likely to be available on a large scale at a modest cost, fusion reactor designs must incorporate blanket systems which will be capable of breeding tritium. Because of the radiological activity and capability of assimilation into living tissues, tritium release to the environment must be strictly controlled. The University of Wisconsin has completed three conceptual designs of fusion reactors, UWMAK-I, UWMAK-II, and UWMAK-III. This report discusses the tritium systems for UWMAK-II, a reactor design with a helium cooled solid breeder blanket, and UWMAK-III, a reactor design with a high-temperature liquid breeder blanket. Tritium systems for fueling and recycling, breeding and recovery, and plant containment and control are discussed. (Auth.)

  3. Neutronics and thermohydraulics of the reactor C.E.N.E. Part II

    International Nuclear Information System (INIS)

    Caro, R.

    1976-01-01

    In this report the analysis of neutronics thermohydraulics and shielding of the 10 HWt swimming pool reactor C.E.N.E is included. In each of these chapters is given a short description of the theoretical model used, along with the theoretical versus experimental checking carried out, whenever possible, with the reactors JEN-I and JEN-II of Junta de Energia Nuclear. (Author) 11 refs

  4. Tritium system design for the mirror reactors FPD-I, FPD-II, and FPD-III

    International Nuclear Information System (INIS)

    Finn, P.A.

    1985-01-01

    The tritium system design for the Fusion Power Demonstration Reactor (FPD-I, II, and III) is described. The device operates at 25% availability. For FPD-II, an engineering mode using tritium neutral beams is part of the design

  5. Study on the decommissioning of research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Doo Hwan; Jun, Kwan Sik; Choi, Yoon Dong; Lee, Tae Yung; Kwon, Sang Woon; Lee, Jong Il [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-01-01

    Currently, KAERI operates TRIGA Mark-II and TRIGA Mark-III research reactors as a general purpose research and training facility. As these are, however, situated at Seoul office site of KAERI which is scheduled to be transferred to KEPCO as well as 30 MW HANARO research reactor which is expected to reach the first criticality in 1995 is under construction at head site of KAERI, decommissioning of TRIGA reactors has become an important topic. The objective of this study is to prepare and present TRIGA facility decontamination and decommissioning plan. Estimation of the radioactive inventory in TRIGA research reactor was carried out by the use of computational method. In addition, summarized in particular were the methodologies associated with decontamination, segmenting processes for activated metallic components, disposition of wastes. Particular consideration in this study was focused available technology applicable to decommissioning of TRIGA research reactor. State-of-the-art summaries of the available technology for decommissioning presented here will serve a useful document for preparations for decommissioning in the future. 6 figs, 41 tabs, 30 refs. (Author).

  6. The study of time-dependent neutronics parameters of the 2MW TRIGA Mark II Moroccan research reactor using BUCAL1 computer code

    International Nuclear Information System (INIS)

    Bakkari, B. El; Nacir, B.; El Younoussi, C.; Boulaich, Y.; Riyach, I.; Otmani, S.; Marcih, I.; Elbadri, H.; El Bardouni, T; Merroun, O.; Boukhal, H.; Zoubair, M.; Htet, A.; Chakir, M.

    2010-01-01

    The 2-MW TRIGA MARK II research reactor at Centre National de l'Energie, des Sciences et des Techniques Nucleaires (CNESTEN) achieved initial criticality on May 2, 2007 with 71 fuel elements. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower and training and production of radioisotopes for their use in agriculture, industry and medicine. This work aims to study the time-dependent neutronics parameters of the TRIGA reactor for elaborating and planning of an in-core fuel management strategy to maximize the utilization of the TRIGA fluxes, using a new elaborated burnup computer code called 'BUCAL1'. The code can be used to aid in analysis, prediction, and optimization of fuel burnup performance in a nuclear reactor. It was developed to incorporate the neutron absorption tally/reaction information generated directly by MCNP5 code in the calculation of fissioned or neutron-transmuted isotopes for multi-fueled regions. The use of Monte Carlo method and punctual cross section data characterizing the MCNP code allows an accurate simulation of neutron life cycle in the reactor, and the integration of data on the entire energy spectrum, thus a more accurate estimation of results than deterministic code can do. Also, for the purpose of this study, a full-model of the TRIGA reactor was developed using the MCNP5 code. The validation of the MCNP model of the TRIGA reactor was made by benchmarking the reactivity experiments. (author)

  7. Probabilistic Safety Assessment Of It TRIGA Mark-II Reactor

    International Nuclear Information System (INIS)

    Ergun, E; Kadiroglu, O.S.

    1999-01-01

    The probabilistic safety assessment for Istanbul Technical University (ITU) TRIGA Mark-II reactor is performed. Qualitative analysis, which includes fault and event trees and quantitative analysis which includes the collection of data for basic events, determination of minimal cut sets, calculation of quantitative values of top events, sensitivity analysis and importance measures, uncertainty analysis and radiation release from fuel elements are considered

  8. Considerations for advanced reactor design based on EBR-II experience

    International Nuclear Information System (INIS)

    King, R. W.

    1999-01-01

    The long-term success of the Experimental Breeder Reactor-II (EBR-II) provides several insights into fundamental characteristics and design features of a nuclear generating station that enhance safety, operability, and maintainability. Some of these same characteristics, together with other features, offer the potential for operational lifetimes well beyond the current licensing time frame, and improved reliability that could potentially reduce amortized capital costs as well as overall operation and maintenance costs if incorporated into advanced plant designs. These features and characteristics are described and the associated benefits are discussed

  9. Experimental studies of U-Pu-Zr fast reactor fuel pins in the Experimental Breeder Reactor 2

    International Nuclear Information System (INIS)

    Pahl, R.G.; Porter, D.L.; Lahm, C.E.; Hofman, G.L.

    1990-01-01

    Argonne National Laboratory's Integral Fast Reactor (IFR) concept has been under demonstration in the Experimental Breeder Reactor II (EBR-II) since February 1985. Irradiation tests of U-Zr and U-Pu-Zr fuel pins to >15 at. pct burnup have demonstrated their viability as driver fuel prototypes in innovative design liquid metal reactors. A number of technically challenging irradiation effects have been observed and are now under study. Microstructural changes in the fuel are dominated early in exposure by grain boundary cavitation and fission gas bubble growth, producing large amounts of swelling. Irradiation creep and swelling of the austenitic (D9) and martensitic (HT-9) candidate cladding alloys have been measured and correlate well with property modeling efforts. Chemical interaction between the fuel and cladding alloys has been characterized to assess the magnitude of cladding wastage during steady-state irradiation. Significant interdiffusion of the uranium and zirconium occurs producing metallurgically distinct zones in the fuel

  10. Importance of reduced sulfur for the equilibrium chemistry and kinetics of Fe(II), Co(II) and Ni(II) supplemented to semi-continuous stirred tank biogas reactors fed with stillage

    Energy Technology Data Exchange (ETDEWEB)

    Shakeri Yekta, Sepehr, E-mail: sepehr.shakeri.yekta@liu.se [Department of Thematic Studies – Water and Environmental Studies, Linköping University, SE-581 83 Linköping (Sweden); Lindmark, Amanda [Department of Thematic Studies – Water and Environmental Studies, Linköping University, SE-581 83 Linköping (Sweden); Skyllberg, Ulf [Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83 Umeå (Sweden); Danielsson, Åsa; Svensson, Bo H. [Department of Thematic Studies – Water and Environmental Studies, Linköping University, SE-581 83 Linköping (Sweden)

    2014-03-01

    Highlights: • Thermodynamics and kinetics of Fe, Co and Ni added to biogas reactors were studied. • Formation of Fe-sulfide and Fe-thiol aqueous complexes controlled the Fe solubility. • Cobalt solubility was controlled by processes independent of Co-sulfide interaction. • Iron added to the biogas reactors effected the Ni speciation and solubility. - Abstract: The objective of the present study was to assess major chemical reactions and chemical forms contributing to solubility and speciation of Fe(II), Co(II), and Ni(II) during anaerobic digestion of sulfur (S)-rich stillage in semi-continuous stirred tank biogas reactors (SCSTR). These metals are essential supplements for efficient and stable performance of stillage-fed SCSTR. In particular, the influence of reduced inorganic and organic S species on kinetics and thermodynamics of the metals and their partitioning between aqueous and solid phases were investigated. Solid phase S speciation was determined by use of S K-edge X-ray absorption near-edge spectroscopy. Results demonstrated that the solubility and speciation of supplemented Fe were controlled by precipitation of FeS(s) and formation of the aqueous complexes of Fe-sulfide and Fe-thiol. The relatively high solubility of Co (∼20% of total Co content) was attributed to the formation of compounds other than Co-sulfide and Co-thiol, presumably of microbial origin. Nickel had lower solubility than Co and its speciation was regulated by interactions with FeS(s) (e.g. co-precipitation, adsorption, and ion substitution) in addition to precipitation/dissolution of discrete NiS(s) phase and formation of aqueous Ni-sulfide complexes.

  11. Importance of reduced sulfur for the equilibrium chemistry and kinetics of Fe(II), Co(II) and Ni(II) supplemented to semi-continuous stirred tank biogas reactors fed with stillage

    International Nuclear Information System (INIS)

    Shakeri Yekta, Sepehr; Lindmark, Amanda; Skyllberg, Ulf; Danielsson, Åsa; Svensson, Bo H.

    2014-01-01

    Highlights: • Thermodynamics and kinetics of Fe, Co and Ni added to biogas reactors were studied. • Formation of Fe-sulfide and Fe-thiol aqueous complexes controlled the Fe solubility. • Cobalt solubility was controlled by processes independent of Co-sulfide interaction. • Iron added to the biogas reactors effected the Ni speciation and solubility. - Abstract: The objective of the present study was to assess major chemical reactions and chemical forms contributing to solubility and speciation of Fe(II), Co(II), and Ni(II) during anaerobic digestion of sulfur (S)-rich stillage in semi-continuous stirred tank biogas reactors (SCSTR). These metals are essential supplements for efficient and stable performance of stillage-fed SCSTR. In particular, the influence of reduced inorganic and organic S species on kinetics and thermodynamics of the metals and their partitioning between aqueous and solid phases were investigated. Solid phase S speciation was determined by use of S K-edge X-ray absorption near-edge spectroscopy. Results demonstrated that the solubility and speciation of supplemented Fe were controlled by precipitation of FeS(s) and formation of the aqueous complexes of Fe-sulfide and Fe-thiol. The relatively high solubility of Co (∼20% of total Co content) was attributed to the formation of compounds other than Co-sulfide and Co-thiol, presumably of microbial origin. Nickel had lower solubility than Co and its speciation was regulated by interactions with FeS(s) (e.g. co-precipitation, adsorption, and ion substitution) in addition to precipitation/dissolution of discrete NiS(s) phase and formation of aqueous Ni-sulfide complexes

  12. Operating experience and maintenance at the TRIGA Mark II LENA reactor

    International Nuclear Information System (INIS)

    Cingoli, F.; Altieri, S.; Lana, F.; Rosti, G.; Alloni, L.; Meloni, S.

    1988-01-01

    The last two years at the Trigs Mark II LENA plant were characterized by the running of the n-n-bar oscillation NADIR experiment. Consequently reactor operation was positively affected and the running hours rose again above 1000 hours per year. The LENA team was also deeply involved in the procedures for the renewal of the reactor operation license. The new requirements set by the Nuclear Energy Licensing Authority (ENEA for Italy) most of which concerning radiation protection and environmental impact, have been already fulfilled. In some cases the installation of new apparatus is underway

  13. Damage analysis of TRIGA MARK II Bandung reactor tank material structure

    International Nuclear Information System (INIS)

    Soedardjo; Sumijanto

    2000-01-01

    Damage of Triga Mark II Bandung reactor tank material structure has been analyzed. The analysis carried out was based on ultrasonic inspection result in 1996 and the monthly reports of reactor operation by random data during 1988 up to 1995. Ultrasonic test data had shown that thinning processes on south and west region of reactor out side wall at upper part of water level had happened. Reactor operation data had shown the demineralized water should be added monthly to the reactor and bulk shielding water tank. Both reactor and bulk shielding tank are shielded by concrete of Portland type I cement consisting of CaO content about 58-68 %. The analysis result shows that the reaction between CaO and seepage water from bulk shielding wall had taken place and consequently the reactor out sidewall surroundings became alkaline. Based on Pourbaix diagram, the aluminum reactor tank made of aluminum alloy 6061 T6 would be corroded easily at pH equal an greater than 8.6. The passive layer AI 2 O 3 aluminum metal surface would be broken due to water reaction taken place continuously at high pH and produces hydrogen gas. The light hydrogen gas would expand the concrete cement and its expanding power would open the passive layer of aluminum metal upper tank. The water sea pages from adding water into reactor tank could indicate the upper water level tank corrosion is worse than the lower water level tank. (author)

  14. Neutronics analysis of TRIGA Mark II research reactor

    Directory of Open Access Journals (Sweden)

    Haseebur Rehman

    2018-02-01

    Full Text Available This article presents clean core criticality calculations and control rod worth calculations for TRIGA (Training, Research, Isotope production-General Atomics Mark II research reactor benchmark cores using Winfrith Improved Multi-group Scheme-D/4 (WIMS-D/4 and Program for Reactor In-core Analysis using Diffusion Equation (PRIDE codes. Cores 133 and 134 were analyzed in 2-D (r, θ and 3-D (r, θ, z, using WIMS-D/4 and PRIDE codes. Moreover, the influence of cross-section data was also studied using various libraries based on Evaluated Nuclear Data File (ENDF/B-VI.8 and VII.0, Joint Evaluated Fission and Fusion File (JEFF-3.1, Japanese Evaluated Nuclear Data Library (JENDL-3.2, and Joint Evaluated File (JEF-2.2 nuclear data. The simulation results showed that the multiplication factor calculated for all these data libraries is within 1% of the experimental results. The reactivity worth of the control rods of core 134 was also calculated with different homogenization approaches. A comparison was made with experimental and reported Monte Carlo results, and it was found that, using proper homogenization of absorber regions and surrounding fuel regions, the results obtained with PRIDE code are significantly improved.

  15. The TITAN Reversed-Field Pinch fusion reactor study

    International Nuclear Information System (INIS)

    1988-03-01

    The TITAN Reversed-Field Pinch (RFP) fusion reactor study is a multi-institutional research effort to determine the technical feasibility and key developmental issues of an RFP fusion reactor, especially at high power density, and to determine the potential economics, operations, safety, and environmental features of high-mass-power-density fusion systems. The TITAN conceptual designs are DT burning, 1000 MWe power reactors based on the RFP confinement concept. The designs are compact, have a high neutron wall loading of 18 MW/m 2 and a mass power density of 700 kWe/tonne. The inherent characteristics of the RFP confinement concept make fusion reactors with such a high mass power density possible. Two different detailed designs have emerged: the TITAN-I lithium-vanadium design, incorporating the integrated-blanket-coil concept; and the TITAN-II aqueous loop-in-pool design with ferritic steel structure. This report contains a collection of 16 papers on the results of the TITAN study which were presented at the International Symposium on Fusion Nuclear Technology. This collection describes the TITAN research effort, and specifically the TITAN-I and TITAN-II designs, summarizing the major results, the key technical issues, and the central conclusions and recommendations. Overall, the basic conclusions are that high-mass power-density fusion reactors appear to be technically feasible even with neutron wall loadings up to 20 MW/m 2 ; that single-piece maintenance of the FPC is possible and advantageous; that the economics of the reactor is enhanced by its compactness; and the safety and environmental features need not to be sacrificed in high-power-density designs. The fact that two design approaches have emerged, and others may also be possible, in some sense indicates the robustness of the general findings

  16. Cable-in-conduit conductor optimization for fusion magnet applications

    International Nuclear Information System (INIS)

    Miller, J.R.; Kerns, J.A.

    1987-01-01

    Careful design of the toroidal-field (TF) and poloidal-field (PF) coils in a tokamak machine using cable-in-conduit conductors (CICC) can result in quite high overall winding-pack current densities - even with the high nuclear heat loads that may be imposed in operating a fusion reactor - and thereby help reduce the overall machine size. In our design process, we systematically examined the operational environment of a magnet, e.g., mechanical stresses, current, field, heat load, coolant temperature, and cooldown stresses, to determine the optimum amounts of copper, superconductor, helium, and sheath material for the CICC. This process is being used to design the superconducting magnet systems that comprise the Tokamak Ignition/Burn Experimental Reactor (TIBER II). 13 refs., 2 figs

  17. Reliability analysis for Atucha II reactor protection system signals

    International Nuclear Information System (INIS)

    Roca, Jose Luis

    1996-01-01

    Atucha II is a 745 MW Argentine Power Nuclear Reactor constructed by ENACE SA, Nuclear Argentine Company for Electrical Power Generation and SIEMENS AG KWU, Erlangen, Germany. A preliminary modular logic analysis of RPS (Reactor Protection System) signals was performed by means of the well known Swedish professional risk and reliability software named Risk-Spectrum taking as a basis a reference signal coded as JR17ER003 which command the two moderator loops valves. From the reliability and behavior knowledge for this reference signal follows an estimation of the reliability for the other 97 RPS signals. Because the preliminary character of this analysis Main Important Measures are not performed at this stage. Reliability is by the statistic value named unavailability predicted. The scope of this analysis is restricted from the measurement elements to the RPS buffer outputs. In the present context only one redundancy is analyzed so in the Instrumentation and Control area there no CCF (Common Cause Failures) present for signals. Finally those unavailability values could be introduced in the failure domain for the posterior complete Atucha II reliability analysis which includes all mechanical and electromechanical features. Also an estimation of the spurious frequency of RPS signals defined as faulty by no trip is performed

  18. Reliability analysis for Atucha II reactor protection system signals

    International Nuclear Information System (INIS)

    Roca, Jose L.

    2000-01-01

    Atucha II is a 745 MW Argentine power nuclear reactor constructed by Nuclear Argentine Company for Electric Power Generation S.A. (ENACE S.A.) and SIEMENS AG KWU, Erlangen, Germany. A preliminary modular logic analysis of RPS (Reactor Protection System) signals was performed by means of the well known Swedish professional risk and reliability software named Risk-Spectrum taking as a basis a reference signal coded as JR17ER003 which command the two moderator loops valves. From the reliability and behavior knowledge for this reference signal follows an estimation of the reliability for the other 97 RPS signals. Because the preliminary character of this analysis Main Important Measures are not performed at this stage. Reliability is by the statistic value named unavailability predicted. The scope of this analysis is restricted from the measurement elements to the RPS buffer outputs. In the present context only one redundancy is analyzed so in the Instrumentation and Control area there no CCF (Common Cause Failures) present for signals. Finally those unavailability values could be introduced in the failure domain for the posterior complete Atucha II reliability analysis which includes all mechanical and electromechanical features. Also an estimation of the spurious frequency of RPS signals defined as faulty by no trip is performed. (author)

  19. Synchrotron radiation losses in Engineering Test Reactors (ETRs)

    International Nuclear Information System (INIS)

    Uckan, N.A.

    1987-11-01

    In next-generation Engineering Test Reactors (ETRs), one major objective is envisioned to be a long-pulse or steady-state burn using noninductive current drive. At the high temperatures needed for efficient current drive, synchrotron radiation could represent a large power loss, especially if wall reflectivity (R) is very low. Many INTOR-class ETR designs [Fusion Engineering Reactor (FER), Next European Torus (NET), OTR, Tokamak Ignition/Burn Engineering Reactor (TIBER), etc.] call for carbon-covered surfaces for which wall reflectivity is uncertain. Global radiation losses are estimated for these devices using empirical expressions given by Trubnikov (and others). Various operating scenarios are evaluated under the assumption that the plasma performance is limited by either the density limit (typical of the ignition phase) or the beta limit (typical of the current drive phase). For a case with ≥90% wall reflectivity, synchrotron radiation is not a significant contribution to the overall energy balance (the ratio of synchrotron to alpha power is less than 10 to 20%, even at ∼ 30 keV) and thus should not adversely alter performance in these devices. In extreme cases with 0% wall reflectivity, the ratio of synchrotron radiation to alpha power may approach 30 to 60% (depending on the device and limiting operating scenario), adversely affecting the performance characteristics. 12 refs., 7 tabs

  20. Experimental fusion power reactor conceptual design study. Final report. Volume II

    International Nuclear Information System (INIS)

    Baker, C.C.

    1976-12-01

    This document is the final report which describes the work carried out by General Atomic Company for the Electric Power Research Institute on a conceptual design study of a fusion experimental power reactor (EPR) and an overall EPR facility. The primary objective of the two-year program was to develop a conceptual design of an EPR that operates at ignition and produces continuous net power. A conceptual design was developed for a Doublet configuration based on indications that a noncircular tokamak offers the best potential of achieving a sufficiently high effective fuel containment to provide a viable reactor concept at reasonable cost. Other objectives included the development of a planning cost estimate and schedule for the plant and the identification of critical R and D programs required to support the physics development and engineering and construction of the EPR. This volume contains the following sections: (1) reactor components, (2) auxiliary systems, (3) operations, (4) facility design, (5) program considerations, and (6) conclusions and recommendations

  1. Partial oxidation of Raffinate II and other mixtures of n-Butane and n-Butenes to maleic anhydride in a fixed-bed reactor

    OpenAIRE

    Brandstädter, Willi Michael

    2008-01-01

    The utilisation of the C4 streams of steamcrackers by converting raffinate II to maleic anhydride was studied. The oxidation reactions were investigated in a laboratory-scale fixed-bed reactor to determine reaction kinetics. The effects of pore diffusional resistance were investigated and explained. A two-dimensional pseudo-homogeneous reactor model was used for the simulation of a production-scale fixed-bed reactor. A flow scheme of the reactor section including a recycle was proposed.

  2. An analysis of water reactor burnup data with the METHUSELAH II code

    International Nuclear Information System (INIS)

    Floyd, M.; Hicks, D.

    1964-10-01

    The METHUSELAH II code has been used to predict long term reactivity and isotopic changes in the YANKEE, Dresden and NRX reactors. In general it is shown that there is a satisfactory measure of agreement and the first core lives of YANKEE and Dresden appear well predicted. However there are discrepancies in the isotopic composition of the plutonium formed which appear to be correlated with the degree of hardness of the reactor spectrum. It is demonstrated that plausible changes in nuclear data could reduce the discrepancies. (author)

  3. The control equipment of the Melusine II reactor; L'equipement de controle du reacteur Melusine II

    Energy Technology Data Exchange (ETDEWEB)

    Cordelle, M; Delcroix, V; Denis, P; Gariod, R

    1963-07-01

    Melusine II, low-power reactor, used for the study of Siloe core has diverged at the CEA Grenoble, the 23. May 1962; its monitoring board studied and carried out in this center is the first in France to be entirely transistorized. The first months of running have justified the hope put in the new electronics to improve the stability and the safety of running. The article describes the design of the control and gives the main characteristics of the measurement chains and of the actions on reactivity. (O.M.) [French] Melusine II, reacteur de faible puissance destine a l'etude du coeur de Siloe a diverge au Centre d'Etudes Nucleaires de Grenoble, le 23 mai 1962, son tableau de controle etudie et realise dans ce Centre est le premier en France a etre entierement transistorise. Les premiers mois de fonctionnement ont justifie l'espoir mis dans la nouvelle electronique pour ameliorer la stabilite et la surete de fonctionnement. L'article decrit la conception du controle et donne les principales caracteristiques des chaines de mesure et des actions sur la reactivite. (auteurs)

  4. Transient behavior during reactivity insertion in the Moroccan TRIGA Mark II reactor using the PARET/ANL code

    International Nuclear Information System (INIS)

    Boulaich, Y.; Nacir, B.; El Bardouni, T.; Boukhal, H.; Chakir, E.; El Bakkari, B.; El Younoussi, C.

    2015-01-01

    Highlights: • PARET model for the Moroccan TRIGA MARK II reactor has been developed. • Transient behavior under reactivity insertion has been studied based on PARET code. • Power factors required by PARET code have been calculated by using MCNP5 code. • The dependence on time of the main thermal-hydraulic parameters was calculated. • Results are largely far to compromise the thermal design limits. - Abstract: A three dimensional model for the Moroccan 2 MW TRIGA MARK II reactor has been developed for thermal-hydraulic and safety analysis by using the PARET/ANL and MCNP5 codes. This reactor is located at the nuclear studies center of Mâamora (CENM), Morocco. The model has been validated through temperature measurements inside two instrumented fuel elements located near the center of the core, at various power levels, and also through the power and fuel temperature evolution after the reactor shutdown (SCRAM). The axial distributions of power factors required by the PARET code have been calculated in each fuel element rod by using MCNP5 code. Based on this thermal-hydraulic model, a safety analysis under the reactivity insertion phenomenon has been carried out and the dependence on time of the main thermal-hydraulic parameters was calculated. Results were compared to the thermal design limits imposed to maintain the integrity of the clad

  5. An analytical approach to the positive reactivity void coefficient of TRIGA Mark-II reactor

    International Nuclear Information System (INIS)

    Edgue, Erdinc; Yarman, Tolga

    1988-01-01

    Previous calculations of reactivity void coefficient of I.T.U. TRIGA Mark-II Reactor was done by the second author et al. The theoretical predictions were afterwards, checked in this reactor experimentally. In this work an analytical approach is developed to evaluate rather quickly the reactivity void coefficient of I.T.U. TRIGA Mark-II, versus the size of the void inserted into the reactor. It is thus assumed that the reactor is a cylindrical, bare nuclear system. Next a belt of water of 2πrΔrH is introduced axially at a distance r from the center line of the system. r here, is the thickness of the belt, and H is the height of the reactor. The void is described by decreasing the water density in the belt region. A two group diffusion theory is adopted to determine the criticality of our configuration. The space dependency of the group fluxes are, thereby, assumed to be J 0 (2.405 r / R) cos (π Z / H), the same as that associated with the original bare reactor uniformly loaded prior to the change. A perturbation type of approach, thence, furnishes the effect of introducing a void in the belt region. The reactivity void coefficient can, rather surprisingly, be indeed positive. To our knowledge, this fact had not been established, by the supplier. The agreement of our predictions with the experimental results is good. (author)

  6. Feasibility study on commercialized fast reactor cycle systems. (1) Current status of the phase-II study

    International Nuclear Information System (INIS)

    Sagayama, Yutaka

    2005-01-01

    A feasibility study on commercialized fast reactors including related nuclear fuel cycle systems has been started from Japanese fiscal year 1999 by a Japanese joint project team of Japan Nuclear Cycle Development Institute and the Japan Atomic Power Company. This project aims at elucidating prominent fast reactor cycle systems that will respond to various needs of society in the future, together with economic competitiveness as future electricity supply systems. Challenging technology goals for the fast reactor cycle systems were defined in five targets: safety, economic competitiveness, reduction of environmental burden, efficient utilization of nuclear fuel resources and enhancement of nuclear non-proliferation. As the results of the feasibility study up to now, it is confirmed as the interim results that the combination of sodium-cooled fast reactors with oxide fuels, advanced aqueous reprocessing and simplified pellet fuel fabrication is highly suited to the development targets. The cost would be highly reduced by the adoption of innovative technologies, which feasibility is relatively clear and some R and D issues are now under progress. (author)

  7. Operational Experience with the TRIGA Mark II Reactor of the University of Pavia

    Energy Technology Data Exchange (ETDEWEB)

    Tigliole, A. Borio Di; Alloni, D.; Cagnazzo, M.; Coniglio, M.; Lana, F.; Losi, A.; Magrotti, G.; Manera, S.; Marchetti, F.; Pappalardo, P.; Prata, M.; Provasi, M.C.; Salvini, A.; Scian, G.; Vinciguerra, G. [University of Pavia, Laboratory of Applied Nuclear Energy (L.E.N.A), Via Aselli 41, 27100 Pavia (Italy)

    2011-07-01

    The Laboratory of Applied Nuclear Energy (LENA) is an Interdepartmental Research Centre of the University of Pavia which operates a 250 kW TRIGA Mark II Research Nuclear Reactor, a Cyclotron for the production of radioisotopes and other irradiation facilities. The reactor is in operation since 1965 and many home-made upgrading were realized in the past years in order to assure a continuous operation of the reactor for the future. The annual reactor operational time at nominal power is in the range of 300 - 400 hours depending upon the time schedule of some experiments and research activities. The reactor is mainly used for NAA activities, BNCT research, samples irradiation and training. In specific, few tens of hours of reactor operation per year are dedicated to training courses for University students and for professionals. Besides, the LENA Centre hosts every year more than one thousand high school students in visit. Lately, LENA was certified ISO 9001:2008 for the ''operation and maintenance of the reactor'' and for the ''design and delivery of the irradiation service''. Nowadays the reactor shows a good technical state and, at the moment, there are no political or economical reason to consider the reactor shut-down. (author)

  8. Visual examination program of the TRIGA Mark II reactor Vienna with the nuclear underwater telescope

    International Nuclear Information System (INIS)

    Boeck, H.; Hammer, J.; Varga, K.

    1985-12-01

    The visual inspection programm carried out during a three month shut-period at the TRIGA Mark II reactor Vienna is described. Optical inspection of all welds inside the reactor tank was carried out with an underwater telescope developed by the Central Research Institute of Physics, Budapest, Hungary. It is shown that even after 23 years of reactor operation all tank internals were found to be in good condition and minor defects can be easily repaired by remote handling tools. (Author)

  9. Nine years of operation of ITU-TRR TRIGA Mark-II reactor

    International Nuclear Information System (INIS)

    Yavuz, H.; Bayuelken, A.R.; Yavuz, M.A.

    1988-01-01

    ITU-TRR TRIGA Mark-II reactor in Istanbul with a steady state power of 250 kW and a pulsing capability up to 1200 MW has been operating since March 11,1979 with an energy release of 107.5 MWh and a total of 72 pulses. During this nearly nine years, the reactor was in operation without any major undesired shut down. One of the major problems was faced when the instrumented fuel element in position 9 of the F ring went totally out of order. Secondly, the cooling tower of the secondary cooling system could not be operated properly during the hot summer days, and also we had a tar leakage problem with the radial beam port connection to the tank. During the regular maintenance work in this summer, the measurements of changes in nuclear and physical parameters of the reactor fuel and dummy elements have also proceeded. (author)

  10. MOTHER MK II: An advanced direct cycle high temperature gas reactor

    International Nuclear Information System (INIS)

    Hart, R.S.; Kendall, J.M.; Marsden, B.J.

    2003-01-01

    -power refueling feature of the Pebble Bed reactor core concept is attractive in many situations, the MOTHER MK II conceptual design adopts a Pebble Bed core configuration. The power conversion systems of MOTHER MKI are utilized. In an effort to overcome the disadvantages of current graphite pebble annular Pebble Bed core designs, MOTHER MK II introduces a novel split core configuration. The MOTHER concepts were developed with an objective of minimizing technical risk and the need for technology development. A principal purpose of this paper is to inform other designers currently working on direct cycle HTGR concepts of the work undertaken in defining the designs for the MOTHER nuclear power plants, and of the many novel technical features adopted. (author)

  11. Implications of rf current drive theory for next step steady-state tokamak design

    International Nuclear Information System (INIS)

    Schultz, J.H.

    1985-06-01

    Two missions have been identified for a next-step tokamak experiment in the United States. The more ambitious Mission II device would be a superconducting tokamak, capable of doing long-pulse ignition demonstrations, and hopefully capable of also being able to achieve steady-state burn. A few interesting lines of approach have been identified, using a combination of logical design criteria and parametric system scans [SC85]. These include: (1) TIBER: A point-design suggested by Lawrence Livermore, that proposes a machine with the capability of demonstrating ignition, high beta (10%) and high Q (=10), using high frequency, fast-wave current drive. The TIBER topology uses moderate aspect ratio and high triangularity to achieve high beta. (2) JET Scale-up. (3) Magic5: It is argued here that an aspect ratio of 5 is a magic number for a good steady-state current drive experiment. A moderately-sized machine that achieves ignition and is capable of high Q, using either fast wave or slow wave current drive is described. (4) ET-II: The concept of a highly elongated tokamak (ET) was first proposed as a low-cost approach to Mission I, because of the possibility of achieving ohmic ignition with low-stress copper magnets. We propose that its best application is really for commercial tokamaks, using fast-wave current drive, and suggest a Mission II experiment that would be prototypical of such a reactor

  12. Neutron radiography applications in I.T.U. TRIGA Mark-II reactor

    International Nuclear Information System (INIS)

    Tugrul, A. B.

    2002-01-01

    Neutron radiography is an important radiographic technique which is supplied different and advanced information according to the X or gamma ray radiography. However, it has a trouble for supplying the convenient neutron sources. Tangential beam tube of Istanbul Technical University (ITU) TRIGA Mark-II Training and Research Reactor has been arranged for using neutron radiography. The neutron radiography set defined as detailed for the application of the technique. Two different techniques for neutron radiography are defined as namely, transfer method and direct method. For the transfer method dysprosium and indium screens are used in the study. But, dysprosium generally was preferred in many studies in the point of view nuclear safety. Gadolinium was used for direct method. Two techniques are compared and explained the preferring of the transfer technique. Firstly, reference composition is prepared for seeing the differences between neutron and X-ray or gamma radiography. In addition of it, some radiograph samples are given neutron and X-ray radiography which shows the different image characters. Lastly, some examples are given from archaeometric studies. One of them the brass plates of Great Mosque door in Cizre. After the neutron radiography application, organic dye traces are noticed. Other study is on a sword that belong to Urartu period at the first millennium B.C. It is seen that some wooden part on it. Some different artefacts are examined with neutron radiography from the Ikiztepe excavation site, then some animal post parts are recognized on them. One of them is sword and sheath which are corroded together. After the neutron radiography application, it can be noticed that there are a cloth between the sword and its sheath. By using neutron radiography, many interesting and detailed results are observed in ITU TRIGA Mark-II Training and Research Reactor. Some of them shouldn't be recognised by using any other technique

  13. Neutronic study of nuclear reactors. Complete calculation of TRIGA MARKII reactor and calculations of fuel temperature coefficients. (Qualification of WIMS code)

    International Nuclear Information System (INIS)

    Benmansour, L.

    1992-01-01

    The present work shows a group of results, obtained by a neutronic study, concerning the TRIGA MARK II reactor and LIGHT WATER reactors. These studies aim to make cell and diffusion calculations. WIMS D-4 with extended library and DIXY programs are used and tested for those purposes. We also have proceeded to a qualification of WIMS code based on the fuel temperature coefficient calculations. 33 refs.; 23 figs.; 30 tabs. (author)

  14. KNK II, Compact Sodium-Cooled Reactor in the Nuclear Research Center Karlsruhe

    International Nuclear Information System (INIS)

    1978-01-01

    The report gives an overview of the project of the sodium-cooled fast reactor KNK II in the nuclear research center KfK in Karlsruhe. This test reactor was the preparatory stage of the prototype plant SNR 300 and had several goals: to train operating personal, to practice the licensing procedures in Germany, to get experience with the sodium technology and to serve as a test bed for fast breeder core components. The report contains contributions of KfK as the owner and project managing organization, of INTERATOM as the design and construction company and of the KBG as the plant operating organization. Experience with and results of relevant aspects of the project are tackled: project management, reactor core and component design, safety questions and licensing, plant design and test programs [de

  15. Tokamak reactor studies

    International Nuclear Information System (INIS)

    Baker, C.C.

    1981-01-01

    This paper presents an overview of tokamak reactor studies with particular attention to commercial reactor concepts developed within the last three years. Emphasis is placed on DT fueled reactors for electricity production. A brief history of tokamak reactor studies is presented. The STARFIRE, NUWMAK, and HFCTR studies are highlighted. Recent developments that have increased the commercial attractiveness of tokamak reactor designs are discussed. These developments include smaller plant sizes, higher first wall loadings, improved maintenance concepts, steady-state operation, non-divertor particle control, and improved reactor safety features

  16. Independent Safety Assessment of the TOPAZ-II space nuclear reactor power system (Revised)

    International Nuclear Information System (INIS)

    1993-09-01

    The Independent Safety Assessment described in this study report was performed to assess the safety of the design and launch plans anticipated by the U.S. Department of Defense (DOD) in 1993 for a Russian-built, U.S.-modified, TOPAZ-II space nuclear reactor power system. Its conclusions, and the bases for them, were intended to provide guidance for the U.S. Department of Energy (DOE) management in the event that the DOD requested authorization under section 91b. of the Atomic Energy Act of 1954, as amended, for possession and use (including ground testing and launch) of a nuclear-fueled, modified TOPAZ-II. The scientists and engineers who were engaged to perform this assessment are nationally-known nuclear safety experts in various disciplines. They met with participants in the TOPAZ-II program during the spring and summer of 1993 and produced a report based on their analysis of the proposed TOPAZ-II mission. Their conclusions were confined to the potential impact on public safety and did not include budgetary, reliability, or risk-benefit analyses

  17. Time constants and feedback transfer functions of EBR-II [Experimental Breeder Reactor] subassembly types

    International Nuclear Information System (INIS)

    Grimm, K.N.; Meneghetti, D.

    1986-09-01

    Time constants, feedback reactivity transfer functions and power coefficients are calculated for stereotypical subassemblies in the EBR-II reactor. These quantities are calculated from nodal reactivities obtained from a reactor kinetic code analysis for a step change in power. Due to the multiplicity of eigenvalues, there are several time constants for each nodal position in a subassembly. Compared with these calculated values are analytically derived values for the initial node of a given channel

  18. Expert's statement on the research reactor Munich II (FRM-II); Gutachterliche Stellungnahme zum Forschungsreaktor Muenchen II (FRM-II)

    Energy Technology Data Exchange (ETDEWEB)

    Liebert, Wolfgang; Friess, Friederike; Gufler, Klaus; Arnold, Nikolaus [Univ. fuer Bodenkultur (BOKU), Wien (Austria). Inst. fuer Sicherheits- und Risikowissenschaften (ISR)

    2017-12-15

    The Expert's statement on the research reactor FRM-II covers the following issues: The situation in Germany with respect to HEU (highly enriched uranium) fuel elements, the proliferation problems related to HEU fuel and the generated high-level radioactive wastes, possible safety hazards of an interim storage of HEU containing wastes, for instance in the interim storage facility Ahaus, possible safety hazards of final disposal of HEU containing radioactive wastes, possibilities to avoid the use of HEU fuel in order to prevent further production of these wastes, requirement of processing spent HEU containing fuel elements for final disposal.

  19. Real-time dynamic simulator for the Topaz II reactor power system

    International Nuclear Information System (INIS)

    Kwok, K.S.

    1994-01-01

    A dynamic simulator of the TOPAZ II reactor system has been developed for the Nuclear Electric Propulsion Space Test Program. The simulator is a self-contained IBM-PC compatible based system that executes at a speed faster than real-time. The simulator combines first-principle modeling and empirical correlations in its algorithm to attain the modeling accuracy and computational through-put that are required for real-time execution. The overall execution time of the simulator for each time step is 15 ms when no data is written to the disk, and 18 ms when nine double precision data points are written to the disk once in every time step. The simulation program has been tested and it is able to handle a step decrease of $8 worth of reactivity. It also provides simulation of fuel, emitter, collector, stainless steel, and ZrH moderator failures. Presented in this paper are the models used in the calculations, a sample simulation session, and a discussion of the performance and limitations of the simulator. The simulator has been found to provide realistic real-time dynamic response of the TOPAZ II reactor system under both normal and causality conditions

  20. Parametric analysis of the thermal effects on the divertor in tokamaks during plasma disruptions

    International Nuclear Information System (INIS)

    Bruhn, M.L.

    1988-04-01

    Plasma disruptions are an ever present danger to the plasma-facing components in today's tokamak fusion reactors. This threat results from our lack of understanding and limited ability to control this complex phenomenon. In particular, severe energy deposition occurs on the divertor component of the double-null configured tokamak reactor during such disruptions. A hybrid computational model developed to estimate and graphically illustrate global thermal effects of disruptions on the divertor plates is described in detail. The quasi-two-dimensional computer code, TADDPAK (Thermal Analysis Divertor during Disruptions PAcKage), is used to conduct parametric analysis for the TIBER II Tokamak Engineering Test Reactor Design. The dependence of these thermal effects on divertor material choice, disruption pulse length, disruption pulse shape, and the characteristic thickness of the plasma scrape-off layer is investigated for this reactor design. Results and conclusions from this analysis are presented. Improvements to this model and issues that require further investigation are discussed. Cursory analysis for ITER (International Thermonuclear Experimental Reactor) is also presented in the appendix. 75 refs., 49 figs., 10 tabs

  1. Studies related to emergency decay heat removal in EBR-II

    International Nuclear Information System (INIS)

    Singer, R.M.; Gillette, J.L.; Mohr, D.; Tokar, J.V.; Sullivan, J.E.; Dean, E.M.

    1979-01-01

    Experimental and analytical studies related to emergency decay heat removal by natural circulation in the EBR-II heat transport circuits are described. Three general categories of natural circulation plant transients are discussed and the resultant reactor flow and temperature response to these events are presented. these categories include the following: (1) loss of forced flow from decay power and low initial flow rates; (2) reactor scram with a delayed loss of forced flow; and (3) loss of forced flow with a plant protective system activated scram. In all cases, the transition from forced to natural convective flow was smooth and the peak in-core temperature rises were small to moderate. Comparisons between experimental measurements in EBR-II and analytical predictions of the NATDEMO code are included

  2. Design of the shield door and transporter for the Culham Conceptual Tokamak Reactor Mark II

    International Nuclear Information System (INIS)

    Guthrie, J.A.S.

    1980-04-01

    In the Culham Conceptual Tokamak Reactor MK II access to the interior for blanket maintenance is through large openings in the fixed shield structure closed by removable shield doors when the reactor is operational. This report describes the design of the 200 tonne doors and the associated special-purpose remote operating transporter manipulator. The design, which has not been optimised, generally uses available commercial equipment and state-of-the-art techniques. (U.K.)

  3. Experimental Breeder Reactor-II automatic control-rod-drive system

    International Nuclear Information System (INIS)

    Christensen, L.J.

    1983-01-01

    A computer-controlled automatic control rod drive system (ACRDS) was designed and operated in EBR-II during reactor runs 121 and 122. The ACRDS was operated in a checkout mode during run 121 using a low worth control rod. During run 122 a high worth control rod was used to perform overpower transient tests as part of the LMFBR oxide fuels transient testing program. The testing program required an increase in power of 4 MW/s, a hold time of 12 minutes and a power decrease of 4 MW/s. During run 122, 13 power transients were performed

  4. Persistent organic pollutants (POPs in fish collected from the urban tract of the river Tiber in Rome (Italy

    Directory of Open Access Journals (Sweden)

    Roberto Miniero

    2011-01-01

    Full Text Available European eel and chub samples were analyzed to determine the levels of non-dioxin-like polychlorobiphenyls (NDL-PCBs, polychlorodibenzodioxins (PCDDs and polychlorodibenzofurans (PCDFs, dioxin-like PCBs (DL-PCBs, and brominated polybromodiphenyl ethers (PBDEs in order to evaluate the extent of contamination of the river Tiber along the urban tract through the city of Rome (Italy. All samples presented detectable levels of the chemicals analyzed, and exhibited species-specific differences in terms of congener composition and total concentrations. On average the European eel presented the highest values. In this species the dioxin-like compound sums (WHO-TEQs exceeded the pertinent maximum levels (MLs. Non-ortho PCBs constituted approximately 80% of WHO-TEQ toxicological potential whereas NDL-PCB and PBDE concentrations appeared to match values determined in other polluted aquatic ecosystems where non-point contamination sources were present. The contamination patterns determined in fish tissues seemed to reflect the impact of generic contamination source(s.

  5. The ARIES tokamak fusion reactor study

    International Nuclear Information System (INIS)

    Bartlit, J.R.; Bathke, C.G.; Krakowski, R.A.; Miller, R.L.; Beecraft, W.R.; Hogan, J.T.; Peng, Y.K.M.; Reid, R.L.; Strickler, D.J.; Whitson, J.C.; Blanchard, J.P.; Emmert, G.A.; Santarius, J.F.; Sviatoslavsky, I.N.; Wittenberg, L.J.

    1989-01-01

    The ARIES study is a community effort to develop several visions of the tokamak as fusion power reactors. The aims are to determine their potential economics, safety, and environmental features and to identify physics and technology areas with the highest leverage for achieving the best tokamak reactor. Three ARIES visions are planned, each having a different degree of extrapolation from the present data base in physics and technology. The ARIES-I design assumes a minimum extrapolation from current tokamak physics (e.g., 1st stability) and incorporates technological advances that can be available in the next 20 to 30 years. ARIES-II is a DT-burning tokamak in 2nd stability regime and employs both potential advances in the physics and expected advances in technology and engineering; and ARIES-III is a conceptual D 3 He reactor. This paper focuses on the ARIES-I design. Parametric systems studies show that the optimum 1st stability tokamak has relatively low plasma current (∼ 12 MA), high plasma aspect ratio (∼ 4-6), and high magnetic field (∼ 24 T at the coil). ARIES-I is 1,000 MWe (net) reactor with a plasma major radius of 6.5 m, a minor radius of 1.4 m, a neutron wall loading of about 2.8 MW/m 2 , and a mass power density of about 90 kWe/ton. The ARIES-I reactor operates at steady state using ICRF fast waves to drive current in the plasma core and lower-hybrid waves for edge-plasma current drive. The current-drive system supplements a significant (∼ 57%) bootstrap current contribution. The impurity control system is based on high-recycling poloidal divertors. Because of the high field and large Lorentz forces in the toroidal-field magnets, innovative approaches with high-strength materials and support structures are used. 24 refs., 4 figs., 1 tab

  6. Fluid-structure-interaction analyses of reactor vessel using improved hybrid Lagrangian Eulerian code ALICE-II

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.Y.

    1993-06-01

    This paper describes fluid-structure-interaction and structure response analyses of a reactor vessel subjected to loadings associated with postulated accidents, using the hybrid Lagrangian-Eulerian code ALICE-II. This code has been improved recently to accommodate many features associated with innovative designs of reactor vessels. Calculational capabilities have been developed to treat water in the reactor cavity outside the vessel, internal shield structures and internal thin shells. The objective of the present analyses is to study the cover response and potential for missile generation in response to a fuel-coolant interaction in the core region. Three calculations were performed using the cover weight as a parameter. To study the effect of the cavity water, vessel response calculations for both wet- and dry-cavity designs are compared. Results indicate that for all cases studied and for the design parameters assumed, the calculated cover displacements are all smaller than the bolts` ultimate displacement and no missile generation of the closure head is predicted. Also, solutions reveal that the cavity water of the wet-cavity design plays an important role of restraining the downward displacement of the bottom head. Based on these studies, the analyses predict that the structure integrity is maintained throughout the postulated accident for the wet-cavity design.

  7. Fluid-structure-interaction analyses of reactor vessel using improved hybrid Lagrangian Eulerian code ALICE-II

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.Y.

    1993-01-01

    This paper describes fluid-structure-interaction and structure response analyses of a reactor vessel subjected to loadings associated with postulated accidents, using the hybrid Lagrangian-Eulerian code ALICE-II. This code has been improved recently to accommodate many features associated with innovative designs of reactor vessels. Calculational capabilities have been developed to treat water in the reactor cavity outside the vessel, internal shield structures and internal thin shells. The objective of the present analyses is to study the cover response and potential for missile generation in response to a fuel-coolant interaction in the core region. Three calculations were performed using the cover weight as a parameter. To study the effect of the cavity water, vessel response calculations for both wet- and dry-cavity designs are compared. Results indicate that for all cases studied and for the design parameters assumed, the calculated cover displacements are all smaller than the bolts' ultimate displacement and no missile generation of the closure head is predicted. Also, solutions reveal that the cavity water of the wet-cavity design plays an important role of restraining the downward displacement of the bottom head. Based on these studies, the analyses predict that the structure integrity is maintained throughout the postulated accident for the wet-cavity design.

  8. Implementation of strength pareto evolutionary algorithm II in the multiobjective burnable poison placement optimization of KWU pressurized water reactor

    International Nuclear Information System (INIS)

    Gharari, Rahman; Poursalehi, Navid; Abbasi, Mohmmadreza; Aghale, Mahdi

    2016-01-01

    In this research, for the first time, a new optimization method, i.e., strength Pareto evolutionary algorithm II (SPEA-II), is developed for the burnable poison placement (BPP) optimization of a nuclear reactor core. In the BPP problem, an optimized placement map of fuel assemblies with burnable poison is searched for a given core loading pattern according to defined objectives. In this work, SPEA-II coupled with a nodal expansion code is used for solving the BPP problem of Kraftwerk Union AG (KWU) pressurized water reactor. Our optimization goal for the BPP is to achieve a greater multiplication factor (K-e-f-f) for gaining possible longer operation cycles along with more flattening of fuel assembly relative power distribution, considering a safety constraint on the radial power peaking factor. For appraising the proposed methodology, the basic approach, i.e., SPEA, is also developed in order to compare obtained results. In general, results reveal the acceptance performance and high strength of SPEA, particularly its new version, i.e., SPEA-II, in achieving a semioptimized loading pattern for the BPP optimization of KWU pressurized water reactor

  9. Implementation of strength pareto evolutionary algorithm II in the multiobjective burnable poison placement optimization of KWU pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gharari, Rahman [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of); Poursalehi, Navid; Abbasi, Mohmmadreza; Aghale, Mahdi [Nuclear Engineering Dept, Shahid Beheshti University, Tehran (Iran, Islamic Republic of)

    2016-10-15

    In this research, for the first time, a new optimization method, i.e., strength Pareto evolutionary algorithm II (SPEA-II), is developed for the burnable poison placement (BPP) optimization of a nuclear reactor core. In the BPP problem, an optimized placement map of fuel assemblies with burnable poison is searched for a given core loading pattern according to defined objectives. In this work, SPEA-II coupled with a nodal expansion code is used for solving the BPP problem of Kraftwerk Union AG (KWU) pressurized water reactor. Our optimization goal for the BPP is to achieve a greater multiplication factor (K-e-f-f) for gaining possible longer operation cycles along with more flattening of fuel assembly relative power distribution, considering a safety constraint on the radial power peaking factor. For appraising the proposed methodology, the basic approach, i.e., SPEA, is also developed in order to compare obtained results. In general, results reveal the acceptance performance and high strength of SPEA, particularly its new version, i.e., SPEA-II, in achieving a semioptimized loading pattern for the BPP optimization of KWU pressurized water reactor.

  10. Identification of nuclear reactor characteristics by the reactor noise analysis

    International Nuclear Information System (INIS)

    Yashima, Hideyuki

    1980-01-01

    Reactor noise analysis method was applied to TRIGA II Research Reactor (Atomic Research Laboratory, Musashi Institute of Technology) and computed power spectral density (PSD) from the CIC current record. PSD has provided many valuable informations regarding to the reactor kinetics, including the effect of control rods vibration. Another information of neutron physics parameters were obtained and this result was compared with the parameter which was formerly measured by the Feynman-α experiment. Through these experiments we could find overall frequency characteristics of TRIGA II Reactor. (author)

  11. Twenty years of operation of Ljubljana's TRIGA Mark II reactor

    International Nuclear Information System (INIS)

    Dimic, V.

    1986-01-01

    Twenty years have now passed since the start of the TRIGA Mark II reactor in Ljubljana. The reactor was critical on May 31, 1966. The total energy produced until the end of May 1986 was 14.048 MWh or 585 MWd. For the first 14 years (until 1981) the yearly energy produced was about 600 MWh, since 1981 the yearly energy produced was 1000 MWh when a routine radioactive isotopes production started for medical use as well as other industrial applications, such as doping and irradiation with fast neutrons of silicon monocrystals, production of level indicators (irradiated cobalt wire), production of radioactive iridium for gamma-radiography, leak detection in pipes by sodium, etc. Besides these, applied research around the reactor is being conducted in the following main fields, where- many unique methods have been developed or have found their way into the local industry or hospitals: neutron radiography, neutron induced auto-radiography using solid state nuclear track detectors, nondestructive methods for assessment of nuclear burn-up, neutron dosimetry, calculation of core burn-up for the optimal in-core fuel management strategy. The solvent extraction method was developed for the everyday production of 99m Tc, which is the most widely used radionuclide in diagnostic nuclear medicine. The methods were developed for the production of the following isotopes: 18 F, 85m Kr, 24 Na, 82 Br, 64 Zn, 125 I. Neutron activation analysis represents one of the major usages for the TRIGA reactor. Basic research is being conducted in the following main fields: solid state physics (elastic and inelastic scattering of the neutrons), neutron dosimetry, neutron radiography, reactor physics and neutron activation analysis. The reactor is used very extensively as a main instrument in the Reactor Training Centre in Ljubljana where manpower training for our nuclear power plant and other organisations has been performed. Although the reactor was designed very carefully in order to be used for

  12. Implementation of MOAS II diagnosis system at the OECD Halden Reactor project

    International Nuclear Information System (INIS)

    Kim, I.S.; Grini, R.E.; Nilsen, S.

    1995-01-01

    MOAS II is a surveillance and diagnosis system that uses several techniques for knowledge acquisition and diagnostic reasoning, e.g., goal tree-success tree, simplified directed graphs, diagnosis trees, and detailed knowledge of the process, such as mass or energy balance. This new approach was used at the Halden Man-Machine Laboratory of the OECD Halden Reactor Project. The performance of MOAS II, developed in G2 real-time expert system shell for the high-pressure preheaters of the NORS process, was tested against a variety of transient scenarios, including failures of control valves and sensors, and leakage of tubes of the preheaters. These tests showed that MOAS II successfully carried out its intended functions, i.e., quickly recognizing an occurring disturbance, correctly diagnosing its cause, and presenting advice on its control to the operator. The insights gained during the implementation are discussed

  13. Investigation of the transition from forced to natural convection in the research reactor Munich II

    International Nuclear Information System (INIS)

    Skreba, S.; Adamek, J.; Unger, H.

    1999-01-01

    The new research reactor Munich II (FRM-II), which is under construction at the Technical University Munich, Germany, makes use of a newly developed compact reactor core consisting of a single fuel element, which is assembled of two concentric pipes. Between the fuel element's inner and outer pipe 113 involutely bent fuel plates are placed rotationally symmetric, forming 113 cooling channels of a constant width of 2.2 mm. After a shut down of the reactor, battery supported cooling pumps are started by the reactor safety system in order to remove the decay heat by a downwards directed forced flow. Three hours after they have been started, the cooling pumps are shut down and so-called 'natural convection flaps' are opened by their own weight. Through a flow path, which is provided by the opening of the natural convection flaps, the decay heat is given off to the water in the reactor pool after the direction of the flow has changed and an upwards directed natural convection flow has developed. At the Department for Nuclear and New Energy Systems of the Ruhr-University Bochum, Germany, a test facility has been built in order to confirm the concept of the decay heat removal in the FRM-II, to acquire data of single and two phase natural convection flows and to detect the dry out in a narrow channel. The thermohydraulics of the FRM-II are simulated by an electrically heated test section, which represents one cooling channel of the fuel element. At first experiments have been performed, which simulated the transition from forced to natural convection in the core of the FRM-II, both at normal operation and at a complete loss of the decay heat removal pumps. In case of normal operation, the transition from forced to natural convection takes place single phased. If a complete loss of the active decay heat removal system occurs, the decay heat removal is ensured by a quasi-steady two phase flow. In a second test series minimum heat flux densities leading to pressure pulsations

  14. H Reactor

    Data.gov (United States)

    Federal Laboratory Consortium — The H Reactor was the first reactor to be built at Hanford after World War II.It became operational in October of 1949, and represented the fourth nuclear reactor on...

  15. Plans for the utilization of a new research reactor FRM II

    International Nuclear Information System (INIS)

    Glaeser, W.

    1999-01-01

    The construction of the new research reactor FRM II is close to completion. The start of nuclear operation is planned for the year 2001. After a short description of the concept and figures of merit of the facility, the scientific instrumentation and user installations for basic and applied research (worked out largely by the German user community) being under construction will be summarized. Besides the introduction of several new techniques considerable progress in the performance of standard neutron techniques is envisaged. (author)

  16. System design study of small lead-bismuth cooled reactor

    International Nuclear Information System (INIS)

    Chikazawa, Yoshitaka; Hori, Toru; Konomura, Mamoru

    2003-07-01

    In phase II of the feasibility study of JNC, we will make a concept of a dispersion power source reactor with various requirements, such as economical competitiveness and safety. In the study of a small lead-bismuth cooled reactor, a concept whose features are long life core, inherent safety, natural convection of cooling system and steam generators in the reactor vessel has been designed since 2000. The investigations which have been done in 2002 are shown as follows; Safety analysis of UTOP considering uncertainty of reactivity. Possibility of reduction of number of control rods. Estimation of construction cost. Transient analyses of UTOP have been done in considering uncertainty of reactivity in order to show the inherent safety in the probabilistic method. And the inherent safety in UTOP is realized under the condition of considering uncertainty. Transient analyses of UTOP with various numbers of control rods have been done and it is suggested that there is possibility of reduction of the number of control rods considering accident managements. The method of cost estimation is a little modified. The cost of reactor vessel is estimated from that of medium sized lead-bismuth cooled reactor and the estimation of a purity control system is by coolant volume flow rate. The construction cost is estimated 850,000yen/kWe. (author)

  17. Adaptive control method for core power control in TRIGA Mark II reactor

    Science.gov (United States)

    Sabri Minhat, Mohd; Selamat, Hazlina; Subha, Nurul Adilla Mohd

    2018-01-01

    The 1MWth Reactor TRIGA PUSPATI (RTP) Mark II type has undergone more than 35 years of operation. The existing core power control uses feedback control algorithm (FCA). It is challenging to keep the core power stable at the desired value within acceptable error bands to meet the safety demand of RTP due to the sensitivity of nuclear research reactor operation. Currently, the system is not satisfied with power tracking performance and can be improved. Therefore, a new design core power control is very important to improve the current performance in tracking and regulate reactor power by control the movement of control rods. In this paper, the adaptive controller and focus on Model Reference Adaptive Control (MRAC) and Self-Tuning Control (STC) were applied to the control of the core power. The model for core power control was based on mathematical models of the reactor core, adaptive controller model, and control rods selection programming. The mathematical models of the reactor core were based on point kinetics model, thermal hydraulic models, and reactivity models. The adaptive control model was presented using Lyapunov method to ensure stable close loop system and STC Generalised Minimum Variance (GMV) Controller was not necessary to know the exact plant transfer function in designing the core power control. The performance between proposed adaptive control and FCA will be compared via computer simulation and analysed the simulation results manifest the effectiveness and the good performance of the proposed control method for core power control.

  18. Evaluation of the computerized procedures Manual II (COPMA II)

    International Nuclear Information System (INIS)

    Converse, S.A.

    1995-11-01

    The purpose of this study was to evaluate the effects of a computerized procedure system, the Computerized Procedure Manual II (COPMA-II), on the performance and mental workload of licensed reactor operators. To evaluate COPMA-II, eight teams of two operators were trained to operate a scaled pressurized water reactor facility (SPWRF) with traditional paper procedures and with COPMA-II. Following training, each team operated the SPWRF under normal operating conditions with both paper procedures and COPMA-II. The teams then performed one of two accident scenarios with paper procedures, but performed the remaining accident scenario with COPMA-II. Performance measures and subjective estimates of mental workload were recorded for each performance trial. The most important finding of the study was that the operators committed only half as many errors during the accident scenarios with COPMA-II as they committed with paper procedures. However, time to initiate a procedure was fastest for paper procedures for accident scenario trials. For performance under normal operating conditions, there was no difference in time to initiate or to complete a procedure, or in the number of errors committed with paper procedures and with COPMA-II. There were no consistent differences in the mental workload ratings operators recorded for trials with paper procedures and COPMA-II

  19. Steady-state thermal-hydraulic analysis of the Moroccan TRIGA MARK II reactor by using PARET/ANL and COOLOD-N2 codes

    International Nuclear Information System (INIS)

    Boulaich, Y.; Nacir, B.; El Bardouni, T.; Zoubair, M.; El Bakkari, B.; Merroun, O.; El Younoussi, C.; Htet, A.; Boukhal, H.; Chakir, E.

    2011-01-01

    Research highlights: → The COOLOD/N2 and PARET/ANL codes were used for a steady-state thermal-hydraulic and safety analysis of the 2 MW TRIGA MARK II reactor located at the Nuclear Studies Center of Maamora (CENM), Morocco. → The main objective of this study is to ensure the safety margins of different safety related parameters by steady-state calculations at full power level (2 MW). → The most important conclusion is that all obtained values of DNBR, fuel center and surface temperature, cladding surface temperature and coolant temperature across the hottest channel are largely far to compromise safety of the reactor. - Abstract: The COOLOD/N2 and PARET/ANL codes were used for a steady-state thermal-hydraulic and safety analysis of the 2 MW TRIGA MARK II reactor located at the Nuclear Studies Center of Maamora (CENM), Morocco. In order to validate our PARET/ANL and COOLOD-N2 models, the fuel center temperature as function of core power was calculated and compared with the corresponding experimental values. The comparison indicates that the calculated values are in satisfactory agreement with the measurement. The main objective of this study is to ensure the safety margins of different safety related parameters by steady-state calculations at full power level (2 MW). Therefore, we have calculated the departure from nucleate boiling ratio (DNBR), fuel center and surface temperature, cladding surface temperature and coolant temperature profiles across the hottest channel. The most important conclusion is that all obtained values are largely far to compromise safety of the reactor.

  20. Different microprocessor controlled devices for ITU TRIGA Mark II reactor

    International Nuclear Information System (INIS)

    Can, B.; Omuz, S.; Uzun, S.; Apan, H.

    1990-01-01

    In this paper the design of a period meter and multichannel thermometer, which are controlled by a microprocessor, in order to be used at ITU TRIGA Mark-II Reactor is presented. The system works as a simple microcomputer, which includes a CPU, a EPROM, a RAM, a CTC, a PIO, a PIA a keyboard and displays, using the assembly language. The period meter can work either with pulse signal or with analog signal depending on demand of the user. The period is calculated by software and its range is -99,9 sec, to +2.1 sec. When the period drops +3 sec, the system gives alarm illuminating a LED. The multichannel thermometer has eight temperature channels. Temperature channels can manually or automatically be selected. The channel selection time can be adjusted. The thermometer gives alarm illuminating a LED, when the temperature rises to 600 C. Temperature data is stored in the RAM and is shown on a display. This system provides us to use four spare thermocouples in the reactor. (orig.)

  1. Globally linearized control on diabatic continuous stirred tank reactor: a case study.

    Science.gov (United States)

    Jana, Amiya Kumar; Samanta, Amar Nath; Ganguly, Saibal

    2005-07-01

    This paper focuses on the promise of globally linearized control (GLC) structure in the realm of strongly nonlinear reactor system control. The proposed nonlinear control strategy is comprised of: (i) an input-output linearizing state feedback law (transformer), (ii) a state observer, and (iii) an external linear controller. The synthesis of discrete-time GLC controller for single-input single-output diabatic continuous stirred tank reactor (DCSTR) has been studied first, followed by the synthesis of feedforward/feedback controller for the same reactor having dead time in process as well as in disturbance. Subsequently, the multivariable GLC structure has been designed and then applied on multi-input multi-output DCSTR system. The simulation study shows high quality performance of the derived nonlinear controllers. The better-performed GLC in conjunction with reduced-order observer has been compared with the conventional proportional integral controller on the example reactor and superior performance has been achieved by the proposed GLC control scheme.

  2. NSGA-II Algorithm with a Local Search Strategy for Multiobjective Optimal Design of Dry-Type Air-Core Reactor

    Directory of Open Access Journals (Sweden)

    Chengfen Zhang

    2015-01-01

    Full Text Available Dry-type air-core reactor is now widely applied in electrical power distribution systems, for which the optimization design is a crucial issue. In the optimization design problem of dry-type air-core reactor, the objectives of minimizing the production cost and minimizing the operation cost are both important. In this paper, a multiobjective optimal model is established considering simultaneously the two objectives of minimizing the production cost and minimizing the operation cost. To solve the multi-objective optimization problem, a memetic evolutionary algorithm is proposed, which combines elitist nondominated sorting genetic algorithm version II (NSGA-II with a local search strategy based on the covariance matrix adaptation evolution strategy (CMA-ES. NSGA-II can provide decision maker with flexible choices among the different trade-off solutions, while the local-search strategy, which is applied to nondominated individuals randomly selected from the current population in a given generation and quantity, can accelerate the convergence speed. Furthermore, another modification is that an external archive is set in the proposed algorithm for increasing the evolutionary efficiency. The proposed algorithm is tested on a dry-type air-core reactor made of rectangular cross-section litz-wire. Simulation results show that the proposed algorithm has high efficiency and it converges to a better Pareto front.

  3. Safety analysis and optimization of the core fuel reloading for the Moroccan TRIGA Mark-II reactor

    International Nuclear Information System (INIS)

    Nacir, B.; Boulaich, Y.; Chakir, E.; El Bardouni, T.; El Bakkari, B.; El Younoussi, C.

    2014-01-01

    Highlights: • Additional fresh fuel elements must be added to the reactor core. • TRIGA reactor could safely operate around 2 MW power with 12% fuel elements. • Thermal–hydraulic parameters were calculated and the safety margins are respected. • The 12% fuel elements will have no influence on the safety of the reactor. - Abstract: The Moroccan TRIGA MARK II reactor core is loaded with 8.5% in weight of uranium standard fuel elements. Additional fresh fuel elements must periodically be added to the core in order to remedy the observed low power and to return to the initial reactivity excess at the End Of Cycle. 12%-uranium fuel elements are available to relatively improve the short fuel lifetime associated with standard TRIGA elements. These elements have the same dimensions as standards elements, but with different uranium weight. The objective in this study is to demonstrate that the Moroccan TRIGA reactor could safely operate, around 2 MW power, with new configurations containing these 12% fuel elements. For this purpose, different safety related thermal–hydraulic parameters have been calculated in order to ensure that the safety margins are largely respected. Therefore, the PARET model for this TRIGA reactor that was previously developed and combined with the MCNP transport code in order to calculate the 3-D temperature distribution in the core and all the most important parameters like the axial distribution of DNBR (Departure from Nucleate Boiling Ratio) across the hottest channel. The most important conclusion is that the 12% fuel elements utilization will have no influence on the safety of the reactor while working around 2 MW power especially for configurations based on insertions in C and D-rings

  4. Exxon nuclear power distribution control for pressurized water reactors: Phase II

    International Nuclear Information System (INIS)

    Holm, J.S.; Burnside, R.J.

    1978-01-01

    The power distribution control procedure, denoted PDC-II, described in this report enables nuclear plants to manage core power distributions such that Technical Specification Limits on F/sub Q//sup T/ are not violated during normal operation and limits on MDNBR are not violated during steady-state, load-follow, and anticipated transients. The PDC-II data base described provides the means for predicting the maximum F/sub Q//sup T/(z) distribution anticipated during operation under the PDC-II procedure taking into account the incore measured equilibrium power distribution data for the reactor in question. A comparison of this distribution with the Technical Specification limit curve determines whether the Technical Specification limit can be protected by PDC-II procedure. If such protection can be confirmed for a given operating cycle interval, APDMS monitoring is not necessary over this interval and the excore monitored constant axial offset limits will protect the Technical Specification F/sub Q//sup T/ limits. This document describes the maximum possible variation in F/sub Q//sup T/(z) which can occur during operation when following the PDC-II procedures. This bounding variation in F/sub Q//sup T/(z) is referred to as V(z). This V(z) distribution represents the maximun variation in F/sub Q//sup T/(z) when the axial offset is maintained within the range defined in this report [+- 5% at full power condition

  5. Ecological traits of Squalius lucumonis (Actinopterygii, Cyprinidae and main differences with those of Squalius squalus in the Tiber River Basin (Italy

    Directory of Open Access Journals (Sweden)

    Giannetto D.

    2013-06-01

    Full Text Available Squalius lucumonis (Bianco, 1983 is an endemic species restricted to three river basins in central Italy and listed as endangered according to IUCN Red List. The aim of this research was to increase the information on ecological preferences of this species and to focus on its differences with S. squalus (Bonaparte, 1837. Data collected in 86 different watercourses throughout Tiber River basin were analysed in the research. For each of the 368 river sectors examined, the main environmental parameters and the fish community were considered. The information were analysed by means of the Canonical Correspondence Analysis (CCA while the differences in ecological traits between S. lucumonis and S. squalus were compared by ANOVA. The results of the study showed significant differences in the ecological preferences of the two species: the S. lucumonis showed predilection for smaller watercourses characterised by a lower number of species and a higher degree of integrity of fish community than S. squalus This information allowed to increase the basic knowledge on population biology and ecology of S. lucumonis that could be very useful for the management and conservation of this Italian endemic species.

  6. Human action contribution to ET-RR-II reactor systems unstems unavailability

    International Nuclear Information System (INIS)

    Sabek, M.G.

    2001-01-01

    This paper gives a study on the human action contribution to the systems unavailability of ET-RR-II reactor as a result of the test and maintenance procedures. The human contribution is expressed in terms of Fussel-Vesely importance which is defined by the probability that event is contributing to system failure (unavailability). The human error basic events contribution was analyzed for all initiating events and systems fault trees. The calculations result shows a high contribution value (61%) for the human error to systems unavailability. This means that the operator and the maintenance people should be highly qualified trained. Moreover, there should be programs for continuous training. Also, the procedures of tests and maintenance should be in a simple way and clear in order to minimize the contribution of the human errors. The calculations were done using the IRRAS cods

  7. MASS TRANSPORT PROPERTIES OF A FLOW-THROUGH ELECTROLYTIC REACTOR USING A POROUS ELECTRODE: PERFORMANCE AND FIGURES OF MERIT FOR Pb(II REMOVAL

    Directory of Open Access Journals (Sweden)

    Bertazzoli R.

    1998-01-01

    Full Text Available The removal of lead from an acid borate-nitrate solution containing Pb(II was used to characterize the mass transport properties of an electrolytic reactor with reticulated vitreous carbon cathodes, operated in the flow-through mode. Current potential curves recorded at a rotating vitreous carbon disc electrode were used to determine the diffusion coefficient for Pb(II under the conditions of the experiments. The performance and figures of merit of the electrolytic reactor were investigated by using different flowrates and cathode porosities. Dimensionless Sherwood and Reynolds numbers were correlated to characterize the mass transport properties of the reactor, and they were fitted to the equation Sh=24Re0.32Sc0.33.

  8. Annual report on activities 1986-1987

    International Nuclear Information System (INIS)

    1987-01-01

    More than 60 contracts valued at $2.3 million were committed in 1986-87. This brought the program for the period 1982-87 to an end on budget at a total expenditure of $16.5 million. Agreements was reached between AECL and Ontario Hydro for the continuation of Canadian Fusion Fuels Technology Project (CFFTP) for the period 1987-1992 with a total budget of $22 million. Irradiation tests of candidate solid breeder materials have commenced at the Nuclear Reactor Universal (NRU) research reactor at Chalk River Nuclear Laboratories (CRNL). CFFTP intends to develop the low-risk aqueous lithium salt blanket approach for application in the Engineering Test Reactor (ETR) class of next-step machines. An innovative concept for the detection of low energy beta particles could prove to be the heart of a compact, rugged yet sensitive alarming portable personal tritium dosimeter. The gas chromatography isotope separation process, which was successfully tested last year in the laboratory, continued to be one of the program's more exciting developments. CFFTP staff participated in design studies such as the Tokamak Ignition/Burn Experimental Reactor-USA (TIBER-II) and international fusion projects such as the Joint European Torus (JET), the Joint Research Commission (JRC) Ispra, The Next European Torus (NET), the Fusion Engineering Design Centre (FEDC), the Idaho National Engineering Laboratory (INEL) and the Tokamak Fusion Test Reactor (TFTR)

  9. Operation experience with the 3 MW TRIGA Mark-II research reactor of Bangladesh

    International Nuclear Information System (INIS)

    Islam, M.S.; Haque, M.M.; Salam, M.A.; Rahman, M.M.; Khandokar, M.R.I.; Sardar, M.A.; Saha, P.K.; Haque, A.; Malek Sonar, M.A.; Uddin, M.M.; Hossain, S.M.S.; Zulquarnain, M.A.

    2004-01-01

    The 3 MW TRIGA Mark-II research reactor of Bangladesh Atomic Energy Commission (BAEC) has been operating since September 14, 1986. The reactor is used for radioisotope production ( 131 I, 99m Tc, 46 Sc), various R and D activities and manpower training. The reactor has been operated successfully since it's commissioning with the exception of a few reportable incidents. Of these, the decay tank leakage incident of 1997 is considered to be the most significant one. As a result of this incident, reactor operation at full power under forced-convection mode remained suspended for about 4 years. During that time, the reactor was operated at a power level of 250 kW so as to carry out experiments that require lower neutron flux. This was made possible by establishing a temporary by pass connection across the decay tank using local technology. The other incident was the contamination of the Dry Central Thimble (DCT) that took place in March 2002 when a pyrex vial containing 50 g of TeO 2 powder got melted inside the DCT. The vial was melted due to high heat generation on its surface while the reactor was operated for 8 hours at 3 MW for trial production of Iodine-131 ( 131 I). A Wet Central Thimble (WCT) was used to replace the damaged DCT in June 2002 such that the reactor operation could be resumed. The WCT was again replaced by a new DCT in June 2003 such that radioisotope production could be continued. A total of 873 irradiation requests (IRs) have been catered for different reactor uses. Out of these, 114 IRs were for radioisotope (RI) production and 759 IRs for different experiments. The total amount of RI produced stands at about 2100 GBq. The total amount of burn-up-fuel is about 6158 MWh. Efforts are on to undertake an ADP project so as to convert the analog console and I and C system of the reactor into digital one. The paper summarizes the reactor operation experiences focusing on troubleshooting, rectification, modification, RI production, various R and D

  10. Reactor building design of nuclear power plant ATUCHA II, Argentina

    International Nuclear Information System (INIS)

    Rufino, R.E.; Hermann, E.R.; Richter, E.

    1984-01-01

    It is presented the civil engineering project carried out by the joint venture Hochtief - Techint-Bignoli (HTB) for the reactor building at the Atucha II power plant (PHWR of 745 MWe) in Buenos Aires. All the other civil projects at Atucha II are also being carried out by HTB. This building has the same general characteristics of the PWR plants developed by KWU in Germany, known for the spherical steel containment 56m in diameter. Nevertheless, it differs from those principally in the equipment lay-out and the remarkable foundation depth. From the basic engineering provided by ENACE, the joint venture has had to face the challenge of designing a tridimensional structure of large size. This has necessitated using simplified models which had to be superimposed, since the use of only one spatial mode would be highly inadequate, lacking the flexibility necessary to absorb the numerous modifications that this type of project undergoes during construction. In addition, this procedure has eliminated resorting to numerous and costly computer processings. (Author) [pt

  11. Operator reliability study for Probabilistic Safety Analysis of an operating research reactor

    International Nuclear Information System (INIS)

    Mohamed, F.; Hassan, A.; Yahaya, R.; Rahman, I.; Maskin, M.; Praktom, P.; Charlie, F.

    2015-01-01

    Highlights: • Human Reliability Analysis (HRA) for Level 1 Probabilistic Safety Analysis (PSA) is performed on research nuclear reactor. • Implemented qualitative HRA framework is addressed. • Human Failure Events of significant impact to the reactor safety are derived. - Abstract: A Level 1 Probabilistic Safety Analysis (PSA) for the TRIGA Mark II research reactor of Malaysian Nuclear Agency has been developed to evaluate the potential risk in its operation. In conjunction to this PSA development, Human Reliability Analysis (HRA) is performed in order to determine human contribution to the risk. The aim of this study is to qualitatively analyze human actions (HAs) involved in the operation of this reactor according to the qualitative part of the HRA framework for PSA which is namely the identification, qualitative screening and modeling of HAs. By performing this framework, Human Failure Events (HFEs) of significant impact to the reactor safety are systematically analyzed and incorporated into the PSA structure. A part of the findings in this study will become the input for the subsequent quantitative part of the HRA framework, i.e. the Human Error Probability (HEP) quantification

  12. Rebuilding the Brookhaven high flux beam reactor: A feasibility study

    International Nuclear Information System (INIS)

    Brynda, W.J.; Passell, L.; Rorer, D.C.

    1995-01-01

    After nearly thirty years of operation, Brookhaven's High Flux Beam Reactor (HFBR) is still one of the world's premier steady-state neutron sources. A major center for condensed matter studies, it currently supports fifteen separate beamlines conducting research in fields as diverse as crystallography, solid-state, nuclear and surface physics, polymer physics and structural biology and will very likely be able to do so for perhaps another decade. But beyond that point the HFBR will be running on borrowed time. Unless appropriate remedial action is taken, progressive radiation-induced embrittlement problems will eventually shut it down. Recognizing the HFBR's value as a national scientific resource, members of the Laboratory's scientific and reactor operations staffs began earlier this year to consider what could be done both to extend its useful life and to assure that it continues to provide state-of-the-art research facilities for the scientific community. This report summarizes the findings of that study. It addresses two basic issues: (i) identification and replacement of lifetime-limiting components and (ii) modifications and additions that could expand and enhance the reactor's research capabilities

  13. EBR-II: summary of operating experience

    International Nuclear Information System (INIS)

    Perry, W.H.; Leman, J.D.; Lentz, G.L.; Longua, K.J.; Olson, W.H.; Shields, J.A.; Wolz, G.C.

    1978-01-01

    Experimental Breeder Reactor II (EBR-II) is an unmoderated, sodium-cooled reactor with a design power of 62.5 MWt. The primary cooling system is a submerged-pool type. The early operation of the reactor successfully demonstrated the feasibility of a sodium-cooled fast breeder reactor operating as an integrated reactor, power plant, and fuel-processing facility. In 1967, the role of EBR-II was reoriented from a demonstration plant to an irradiation facility. Many changes have been made and are continuing to be made to increase the usefulness of EBR-II for irradiation and safety tests. A review of EBR-II's operating history reveals a plant that has demonstrated high availability, stable and safe operating characteristics, and excellent performance of sodium components. Levels of radiation exposure to the operating and maintenance workers have been low; and fission-gas releases to the atmosphere have been minimal. Driver-fuel performance has been excellent. The repairability of radioactive sodium components has been successfully demonstrated a number of times. Recent highlights include installation and successful operation of (1) the hydrogen-meter leak detectors for the steam generators, (2) the cover-gas-cleanup system and (3) the cesium trap in the primary sodium. Irradiations now being conducted in EBR-II include the run-beyond-cladding breach fuel tests for mixed-oxide and carbide elements. Studies are in progress to determine EBR-II's capability for conducting important ''operational safety'' tests. These tests would extend the need and usefulness of EBR-II into the 1980's

  14. Estimating the potential impacts of a nuclear reactor accident: methodology and case studies

    International Nuclear Information System (INIS)

    Cartwright, J.V.; Beemiller, R.M.; Trott, E.A. Jr.; Younger, J.M.

    1982-04-01

    This monograph describes an industrial impact model that can be used to estimate the regional industry-specific impacts of disasters. Special attention is given to the impacts of possible nuclear reactor accidents. The monograph also presents three applications of the model. The impacts estimated in the case studies are based on (1) general information and reactor-specific data, supplied by the US Nuclear Regulatory Commission (NRC), (2) regional economic models derived from the Regional Input-Output Modeling System (RIMS II) developed at the Bureau of Economic Analysis (BEA), and (3) additional methodology developed especially for taking into account the unique characteristics of a nuclear reactor accident with respect to regional industrial activity

  15. DIissolution of low enriched uranium from the experimental breeder reactor-II fuel stored at the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Rudisill, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Almond, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); O' Rourke, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-06-28

    The Idaho National Laboratory (INL) is actively engaged in the development of electrochemical processing technology for the treatment of fast reactor fuels using irradiated fuel from the Experimental Breeder Reactor-II (EBR-II) as the primary test material. The research and development (R&D) activities generate a low enriched uranium (LEU) metal product from the electrorefining of the EBR-II fuel and the subsequent consolidation and removal of chloride salts by the cathode processor. The LEU metal ingots from past R&D activities are currently stored at INL awaiting disposition. One potential disposition pathway is the shipment of the ingots to the Savannah River Site (SRS) for dissolution in H-Canyon. Carbon steel cans containing the LEU metal would be loaded into reusable charging bundles in the H-Canyon Crane Maintenance Area and charged to the 6.4D or 6.1D dissolver. The LEU dissolution would be accomplished as the final charge in a dissolver batch (following the dissolution of multiple charges of spent nuclear fuel (SNF)). The solution would then be purified and the 235U enrichment downblended to allow use of the U in commercial reactor fuel. To support this potential disposition path, the Savannah River National Laboratory (SRNL) developed a dissolution flowsheet for the LEU using samples of the material received from INL.

  16. Analytical modelling and study of the stability characteristics of the Advanced Heavy Water Reactor

    International Nuclear Information System (INIS)

    Nayak, A.K.; Vijayan, P.K.; Saha, D.

    2000-04-01

    An analytical model has been developed to study the thermohydraulic and neutronic-coupled density-wave instability in the Indian Advanced Heavy Water Reactor (AHWR) which is a natural circulation pressure tube type boiling water reactor. The model considers a point kinetics model for the neutron dynamics and a lumped parameter model for the fuel thermal dynamics along with the conservation equations of mass, momentum and energy and equation of state for the coolant. In addition, to study the effect of neutron interactions between different parts of the core, the model considers a coupled multipoint kinetics equation in place of simple point kinetics equation. Linear stability theory was applied to reveal the instability of in-phase and out-of-phase modes in the boiling channels of the AHWR. The results indicate that the design configuration considered may experience both Ledinegg and Type I and Type II density-wave instabilities depending on the operating condition. Some methods of suppressing these instabilities were found out. In addition, it was found that the stability behavior of the reactor is greatly influenced by the void reactivity coefficient, fuel time constant, radial power distribution and channel inlet orificing. The delayed neutrons were found to have strong influence on the Type I and Type II instabilities. Decay ratio maps were predicted considering various operating parameters of the reactor, which are useful for its design. (author)

  17. A study of core melting phenomena in reactor severe accident of PWR

    Energy Technology Data Exchange (ETDEWEB)

    Jeun, Gyoo Dong; Park, Shane; Kim, Jong Sun; Kim, Sung Joong [Hanyang Univ., Seoul (Korea, Republic of); Kim, Jin Man [Korea Maritime Univ., Busan (Korea, Republic of)

    2001-03-15

    In the 4th year, SCDAP/RELAP5 best estimate input data obtained from the TMI-2 accident analysis were applied to the analysis of domestic nuclear power plant. Ulchin nuclear power plant unit 3, 4 were selected as reference plant and steam generator tube rupture, station blackout SCDAP/RELAP5 calculation were performed to verify the adequacy of the best estimate input parameters and the adequacy of related models. Also, System 80+ EVSE simulation was executed to study steam explosion phenomena in the reactor cavity and EVSE load test was performed on the simplified reactor cavity geometry using TRACER-II code.

  18. Validation study of the reactor physics lattice transport code WIMSD-5B by TRX and BAPL critical experiments of light water reactors

    International Nuclear Information System (INIS)

    Khan, M.J.H.; Alam, A.B.M.K.; Ahsan, M.H.; Mamun, K.A.A.; Islam, S.M.A.

    2015-01-01

    Highlights: • To validate the reactor physics lattice code WIMSD-5B by this analysis. • To model TRX and BAPL critical experiments using WIMSD-5B. • To compare the calculated results with experiment and MCNP results. • To rely on WIMSD-5B code for TRIGA calculations. - Abstract: The aim of this analysis is to validate the reactor physics lattice transport code WIMSD-5B by TRX (thermal reactor-one region lattice) and BAPL (Bettis Atomic Power Laboratory-one region lattice) critical experiments of light water reactors for neutronics analysis of 3 MW TRIGA Mark-II research reactor at AERE, Dhaka, Bangladesh. This analysis is achieved through the analysis of integral parameters of five light water reactor critical experiments TRX-1, TRX-2, BAPL-UO 2 -1, BAPL-UO 2 -2 and BAPL-UO 2 -3 based on evaluated nuclear data libraries JEFF-3.1 and ENDF/B-VII.1. In integral measurements, these experiments are considered as standard benchmark lattices for validating the reactor physics lattice transport code WIMSD-5B as well as evaluated nuclear data libraries. The integral parameters of the said critical experiments are calculated using the reactor physics lattice transport code WIMSD-5B. The calculated integral parameters are compared to the measured values as well as the earlier published MCNP results based on the Chinese evaluated nuclear data library CENDL-3.0 for assessment of deterministic calculation. It was found that the calculated integral parameters give mostly reasonable and globally consistent results with the experiment and the MCNP results. Besides, the group constants in WIMS format for the isotopes U-235 and U-238 between two data files have been compared using WIMS library utility code WILLIE and it was found that the group constants are well consistent with each other. Therefore, this analysis reveals the validation study of the reactor physics lattice transport code WIMSD-5B based on JEFF-3.1 and ENDF/B-VII.1 libraries and can also be essential to

  19. The combined removal of methyl mercaptan and hydrogen sulfide via an electro-reactor process using a low concentration of continuously regenerable Ag(II) active catalyst

    International Nuclear Information System (INIS)

    Muthuraman, Govindan; Chung, Sang Joon; Moon, Il Shik

    2011-01-01

    Highlights: → Simultaneous removal of H 2 S and CH 3 SH was achieved at electro-reactor. → Active catalyst Ag(II) perpetually regenerated in HNO 3 medium by electrochemical cell. → CH 3 SH destruction follows two reaction pathways. → H 2 S induced destruction of CH 3 SH has identified. → Low concentration of active Ag(II) (12.5 x 10 -4 mol L -1 ) is enough for complete destruction. - Abstract: In this study, an electrocatalytic wet scrubbing process was developed for the simultaneous removal of synthetic odorous gases namely, methyl mercaptan (CH 3 SH) and hydrogen sulfide (H 2 S). The initial process consists of the absorption of CH 3 SH and H 2 S gases by an absorbing solution, followed by their mediated electrochemical oxidation using a low concentration of active Ag(II) in 6 M HNO 3 . Experiments were conducted under different reaction conditions, such as CH 3 SH and H 2 S loadings, active Ag(II) concentrations and molar flow rates. The cyclic voltammetry for the oxidation of CH 3 SH corroborated the electro-reactor results, in that the silver in the 6 M HNO 3 reaction solution significantly influences the oxidation of CH 3 SH. At a low active Ag(II) concentration of 0.0012 M, the CH 3 SH removal experiments demonstrated that the CH 3 SH degradation was steady, with 100% removal at a CH 3 SH loading of 5 g m -3 h -1 . The electro-reactor and cyclic voltammetry results indicated that the removal of H 2 S (100%) follows a mediated electrocatalytic oxidation reaction. The simultaneous removal of 100% of the CH 3 SH and H 2 S was achieved, even with a very low active Ag(II) concentration (0.0012 M), as a result of the high efficiency of the Ag(II). The parallel cyclic voltammetry results demonstrated that a process of simultaneous destruction of both CH 3 SH and H 2 S follows an H 2 S influenced mediated electrocatalytic oxidation. The use of a very low concentration of the Ag(II) mediator during the electro-reactor process is promising for the complete

  20. The physics design of EBR-II

    International Nuclear Information System (INIS)

    Loewenstein, W.B.

    1962-01-01

    The physics design oi EBR-II. Calculations of the static, dynamic and long-term reactivity behaviour of EBR-II are reported together with results and analysis of EBR-II dry critical and ZPR-III mock-up experiments. Particular emphasis is given to reactor-physics design problems which arise after the conceptual design is established and before the reactor is built or placed into operation. Reactor-safety analyses and hazards-evaluation considerations are described with their influence on the reactor design. The manner of utilizing the EBR-II mock-up on ZPR-III data and the EBR-II dry critical data is described. These experiments, their analysis and theoretical predictions are the basis for predetermining the physics behaviour of the reactor system. The limitations inherent in applying the experimental data to the performance of the power-reactor system are explored in some detail. This includes the specification of reactor core size and/or fuel-alloy enrichment, provisions for adequate operating and shut-down reactivity, determination of operative temperature and power coefficients of reactivity, and details of power- and flux-distribution as a function of position within the reactor structure. The overall problem of transferring information from simple idealized analytical or experimental geometry to actual hexagonal reactor geometry is described. Nuclear performance, including breeding, of the actual reactor system is compared with that of the idealized conceptual system. The long-term reactivity and power behaviour of the reactor blanket is described within the framework of the proposed cycling of the fuel and blanket alloy. Safety considerations, including normal and abnormal rates of reactivity-insertion, the implication of postulated reactivity effects based on the physical behaviour of the fuel alloy and reactor structure as well as extrapolation of TREAT experiments to the EBR-II system are analysed. The EBR-II core melt-down problem is reviewed. (author

  1. Design considerations for ITER [International Thermonuclear Experimental Reactor] toroidal field coils

    International Nuclear Information System (INIS)

    Kalsi, S.S.; Lousteau, D.C.; Miller, J.R.

    1987-01-01

    The International Thermonuclear Experimental Reactor (ITER) is a new tokamak design project with joint participation from Europe, Japan, the Union of Soviet Socialist Republics (USSR), and the United States. This paper describes a magnetic and mechanical design methodology for toroidal field (TF) coils that employs Nb/sub 3/Sn superconductor technology. Coil winding is sized by using conductor concepts developed for the US TIBER concept. The nuclear heating generated during operation is removed from the windings by helium flowing through the conductor. The heat in the coil case is removed through a separate cooling circuit operating at approximately 20 K. Manifold concepts are presented for the complete coil cooling system. Also included are concepts for the coil structural arrangement. The effects of in-plane and out-of-plane loads are included in the design considerations for the windings and case. Concepts are presented for reacting these loads with a minimum amount of additional structural material. Concepts discussed in this paper could be considered for the ITER TF coils. 6 refs., 5 figs., 1 tab

  2. Collimator and shielding design for boron neutron capture therapy (BNCT) facility at TRIGA MARK II reactor

    International Nuclear Information System (INIS)

    Mohd Rafi Mohd Solleh; Abdul Aziz Tajuddin; Abdul Aziz Mohamed; Eid Mahmoud Eid Abdel Munem; Mohamad Hairie Rabir; Julia Abdul Karim; Yoshiaki, Kiyanagi

    2011-01-01

    The geometry of reactor core, thermal column, collimator and shielding system for BNCT application of TRIGA MARK II Reactor were simulated with MCNP5 code. Neutron particle lethargy and dose were calculated with MCNPX code. Neutron flux in a sample located at the end of collimator after normalized to measured value (Eid Mahmoud Eid Abdel Munem, 2007) at 1 MW power was 1.06 x 10 8 n/ cm 2 / s. According to IAEA (2001) flux of 1.00 x 10 9 n/ cm 2 / s requires three hours of treatment. Few modifications were needed to get higher flux. (Author)

  3. International Working Group on Fast Reactors Thirteenth Annual Meeting. Summary Report. Part II

    International Nuclear Information System (INIS)

    1980-10-01

    The Thirteenth Annual Meeting of the IAEA International Working Group on Fast Reactors was held at the IAEA Headquarters, Vienna, Austria from 9 to 11 April 1980. The Summary Report (Part I) contains the Minutes of the Meeting. The Summary Report (Part II) contains the papers which review the national programme in the field of LMFBRs and other presentations at the Meeting. The Summary Report (Part III) contains the discussions on the review of the national programmes

  4. Review of the SIMMER-II analyses of liquid-metal-cooled fast breeder reactor core-disruptive accident fuel escape

    International Nuclear Information System (INIS)

    DeVault, G.P.; Bell, C.R.

    1985-01-01

    Early fuel removal from the active core of a liquid-metal-cooled fast breeder reactor undergoing a core-disruptive accident may reduce the potential for large energetics resulting from recriticalities. This paper presents a review of analyses with the SIMMER-II computer program of the effectiveness of possible fuel escape paths. Where possible, how SIMMER-II compares with or is validated against experiments that simulated the escape paths also is discussed

  5. Mirror reactor studies

    International Nuclear Information System (INIS)

    Moir, R.W.; Barr, W.L.; Bender, D.J.

    1977-01-01

    Design studies of a fusion mirror reactor, a fusion-fission mirror reactor, and two small mirror reactors are summarized. The fusion reactor uses 150-keV neutral-beam injectors based on the acceleration of negative ions. The injectors provide over 1 GW of continuous power at an efficiency greater than 80%. The fusion reactor has three-stage, modularized, Venetian blind, plasma direct converter with a predicted efficiency of 59% and a new concept for removal of the lune-shaped blanket: a crane is brought between the two halves of the Yin-Yang magnet, which are separated by a float. The design has desirable features such as steady-state operation, minimal impurity problems, and low first-wall thermal stress. The major disadvantage is low Q resulting in high re-circulating power and hence high cost of electrical power. However, the direct capital cost per unit of gross electrical power is reasonable [$1000/kW(e)]. By contrast, the fusion-fission reactor design is not penalized by re-circulating power and uses relatively near-term fusion technology being developed for the fusion power program. New results are presented on the Th- 233 U and the U- 239 Pu fuel cycles. The purpose of this hybrid is fuel production, with projected costs at $55/g of Pu or $127/g of 233 U. Blanket and cooling system designs, including an emergency cooling system, by General Atomic Company, lead us to the opinion that the reactor can meet expected safety standards for licensing. The smallest mirror reactor having only a shield between the plasma and the coil is the 4.2-m long fusion engineering research facility (FERF) designed for material irradiation. The smallest mirror reactor having both a blanket and shield is the 7.5-m long experimental power reactor (EPR), which has both a fusion and a fusion-fission version. (author)

  6. Analysis of energy released from core disruptive accident of sodium cooled fast reactor using CDA-ER and VENUS-II codes

    Energy Technology Data Exchange (ETDEWEB)

    Kang, S. H.; Ha, K. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    The fast reactor has a unique feature in that rearranged core materials can produce a large increase in reactivity and recriticality. If such a rearrangement of core materials should occur rapidly, there would be a high rate of reactivity increase producing power excursions. The released energy from such an energetic recriticality might challenge the reactor vessel integrity. An analysis of the hypothetical excursions that result in the disassembly of the reactor plays an important role in a liquid metal fast reactor (LMFR) safety analysis. The analysis of such excursions generally consists of three phases (initial or pre-disassembly phase, disassembly phase, energy-work conversion phase). The first step is referred to as the 'accident initiation' or 'pre-disassembly' phase. In this phase, the accident is traced from some initiating event, such as a coolant pump failure or control rod ejection, up to a prompt critical condition where high temperatures and pressures rapidly develop in the core. Such complex processes as fuel pin failure, sodium voiding, and fuel slumping are treated in this phase. Several computer programs are available for this type of calculation, including SAS4A, MELT-II and FREADM. A number of models have been developed for this type of analysis, including the REXCO and SOCOOL-II computer programs. VENUS-II deals with the second phase (disassembly analysis). Most of the models used in the code have been based on the original work of Bethe and Tait. The disassembly motion is calculated using a set of two-dimensional hydrodynamics equations in the VENUS code. The density changes can be explicitly calculated, which in turn allows the use of a more accurate density dependent equation of state. The main functional parts of the computational model can be summarized as follows: Power and energy (point kinetics), Temperature (energy balance), Internal pressure (equation of state), Material displacement (hydrodynamics), Reactivity

  7. Analysis of energy released from core disruptive accident of sodium cooled fast reactor using CDA-ER and VENUS-II codes

    International Nuclear Information System (INIS)

    Kang, S. H.; Ha, K. S.

    2013-01-01

    The fast reactor has a unique feature in that rearranged core materials can produce a large increase in reactivity and recriticality. If such a rearrangement of core materials should occur rapidly, there would be a high rate of reactivity increase producing power excursions. The released energy from such an energetic recriticality might challenge the reactor vessel integrity. An analysis of the hypothetical excursions that result in the disassembly of the reactor plays an important role in a liquid metal fast reactor (LMFR) safety analysis. The analysis of such excursions generally consists of three phases (initial or pre-disassembly phase, disassembly phase, energy-work conversion phase). The first step is referred to as the 'accident initiation' or 'pre-disassembly' phase. In this phase, the accident is traced from some initiating event, such as a coolant pump failure or control rod ejection, up to a prompt critical condition where high temperatures and pressures rapidly develop in the core. Such complex processes as fuel pin failure, sodium voiding, and fuel slumping are treated in this phase. Several computer programs are available for this type of calculation, including SAS4A, MELT-II and FREADM. A number of models have been developed for this type of analysis, including the REXCO and SOCOOL-II computer programs. VENUS-II deals with the second phase (disassembly analysis). Most of the models used in the code have been based on the original work of Bethe and Tait. The disassembly motion is calculated using a set of two-dimensional hydrodynamics equations in the VENUS code. The density changes can be explicitly calculated, which in turn allows the use of a more accurate density dependent equation of state. The main functional parts of the computational model can be summarized as follows: Power and energy (point kinetics), Temperature (energy balance), Internal pressure (equation of state), Material displacement (hydrodynamics), Reactivity feedback (Doppler and

  8. Mirror reactor studies

    International Nuclear Information System (INIS)

    Moir, R.W.; Barr, W.L.; Bender, D.J.

    1976-01-01

    Design studies of a fusion mirror reactor, a fusion-fission mirror reactor, and two small mirror reactors are summarized. The fusion reactor uses 150-keV neutral-beam injectors based on the acceleration of negative ions. The injectors provide over 1 GW of continuous power at an efficiency greater than 80 percent. The fusion reactor has three-stage, modularized, Venetian blind, plasma direct converter with a predicted efficiency of 59 percent and a new concept for removal of the lune-shaped blanket: a crane is brought between the two halves of the Yin-Yang magnet, which are separated by a float. The design has desirable features such as steady-state operation, minimal impurity problems, and low first-wall thermal stress. The major disadvantage is low Q resulting in high recirculating power and hence high cost of electrical power. However, the direct capital cost per unit of gross electrical power is reasonable [$1000/kW(e)

  9. Advanced Safeguards Approaches for New Fast Reactors

    International Nuclear Information System (INIS)

    Durst, Philip C.; Therios, Ike; Bean, Robert; Dougan, A.; Boyer, Brian; Wallace, Rick L.; Ehinger, Michael H.; Kovacic, Don N.; Tolk, K.

    2007-01-01

    This third report in the series reviews possible safeguards approaches for new fast reactors in general, and the ABR in particular. Fast-neutron spectrum reactors have been used since the early 1960s on an experimental and developmental level, generally with fertile blanket fuels to 'breed' nuclear fuel such as plutonium. Whether the reactor is designed to breed plutonium, or transmute and 'burn' actinides depends mainly on the design of the reactor neutron reflector and the whether the blanket fuel is 'fertile' or suitable for transmutation. However, the safeguards issues are very similar, since they pertain mainly to the receipt, shipment and storage of fresh and spent plutonium and actinide-bearing 'TRU'-fuel. For these reasons, the design of existing fast reactors and details concerning how they have been safeguarded were studied in developing advanced safeguards approaches for the new fast reactors. In this regard, the design of the Experimental Breeder Reactor-II 'EBR-II' at the Idaho National Laboratory (INL) was of interest, because it was designed as a collocated fast reactor with a pyrometallurgical reprocessing and fuel fabrication line--a design option being considered for the ABR. Similarly, the design of the Fast Flux Facility (FFTF) on the Hanford Site was studied, because it was a successful prototype fast reactor that ran for two decades to evaluate fuels and the design for commercial-scale fast reactors

  10. Operation and maintenance of the RA reactor in 1964, I-II, Part II; Pogon i odrzavanje reaktora RA u 1964. godini, I-II, II Deo

    Energy Technology Data Exchange (ETDEWEB)

    Pavicevic, M [Institute of Nuclear Sciences Boris Kidric, Reaktor RA, Vinca, Beograd (Serbia and Montenegro)

    1964-12-15

    This volume of the report contains the following 15 Annexes: Improvement of the fuel cycle economy (record No. 37009803 in INIS DB); Analysis of neutron flux increase in horizontal experimental channels of the RA reactor record No. 37005698 in INIS DB); Application of the critical system for determining the thermal neutron flux in a research reactor with central horizontal reflector ( record No. 37055005 in INIS DB); Determining the capacity of the RA reactor heat exchanger dependent on the coolant water temperature and flow; Operation of the RA reactor in forced regime; Analysis of the CEN-132 heavy water pumps failures at the RA reactor from decontamination till present; Modifications in the vacuum loop of the distillation system; Report on decontamination of the evaporator and cleaning of the condenser of the distillation system; Operation of reactor at nominal power with reduced D{sub 2}O circulation; Cooling of the RA reactor with reduced flow rate in the heavy water loop; Measurement of the heavy water level in the fuel channels of the RA reactor; Conclusions of the experts group of the RA reactor at the meeting held on November 2 and 3 1964; Conclusions of the experts group at the meeting held on November 23 1964; After heat and the cooling problem after RA reactor shut-down; Measurement of noise and vibrations on the Ra reactor heavy water system; Calculation and measurement of the uranium temperature during irradiation in the experimental channel in the reflector of the RA reactor; Temperature measurement of the reactor materials samples irradiated in the fuel channels of the RA reactor; Study of the modifications in the synchronous generators, heavy water pumps and condenser batteries of the RA reactor.

  11. First Study of Helium Gas Purification System as Primary Coolant of Co-Generation Reactor

    International Nuclear Information System (INIS)

    Piping Supriatna

    2009-01-01

    The technological progress of NPP Generation-I on 1950’s, Generation-II, Generation-III recently on going, and Generation-IV which will be implemented on next year 2025, concept of nuclear power technology implementation not only for generate electrical energy, but also for other application which called cogeneration reactor. Commonly the type of this reactor is High Temperature Reactor (HTR), which have other capabilities like Hydrogen production, desalination, Enhanced Oil Recovery (EOR), etc. The cogeneration reactor (HTR) produce thermal output higher than commonly Nuclear Power Plant, and need special Heat Exchanger with helium gas as coolant. In order to preserve heat transfer with high efficiency, constant purity of the gas must be maintained as well as possible, especially contamination from its impurities. In this report has been done study for design concept of HTR primary coolant gas purification system, including methodology by sampling He gas from Primary Coolant and purification by using Physical Helium Splitting Membrane. The examination has been designed in physical simulator by using heater as reactor core. The result of study show that the of Primary Coolant Gas Purification System is enable to be implemented on cogeneration reactor. (author)

  12. Core map generation for the ITU TRIGA Mark II research reactor using Genetic Algorithm coupled with Monte Carlo method

    Energy Technology Data Exchange (ETDEWEB)

    Türkmen, Mehmet, E-mail: tm@hacettepe.edu.tr [Nuclear Engineering Department, Hacettepe University, Beytepe Campus, Ankara (Turkey); Çolak, Üner [Energy Institute, Istanbul Technical University, Ayazağa Campus, Maslak, Istanbul (Turkey); Ergün, Şule [Nuclear Engineering Department, Hacettepe University, Beytepe Campus, Ankara (Turkey)

    2015-12-15

    Highlights: • Optimum core maps were generated for the ITU TRIGA Mark II Research Reactor. • Calculations were performed using a Monte Carlo based reactor physics code, MCNP. • Single-Objective and Multi-Objective Genetic Algorithms were used for the optimization. • k{sub eff} and ppf{sub max} were considered as the optimization objectives. • The generated core maps were compared with the fresh core map. - Abstract: The main purpose of this study is to present the results of Core Map (CM) generation calculations for the İstanbul Technical University TRIGA Mark II Research Reactor by using Genetic Algorithms (GA) coupled with a Monte Carlo (MC) based-particle transport code. Optimization problems under consideration are: (i) maximization of the core excess reactivity (ρ{sub ex}) using Single-Objective GA when the burned fuel elements with no fresh fuel elements are used, (ii) maximization of the ρ{sub ex} and minimization of maximum power peaking factor (ppf{sub max}) using Multi-Objective GA when the burned fuels with fresh fuels are used. The results were obtained when all the control rods are fully withdrawn. ρ{sub ex} and ppf{sub max} values of the produced best CMs were provided. Core-averaged neutron spectrum, and variation of neutron fluxes with respect to radial distance were presented for the best CMs. The results show that it is possible to find an optimum CM with an excess reactivity of 1.17 when the burned fuels are used. In the case of a mix of burned fuels and fresh fuels, the best pattern has an excess reactivity of 1.19 with a maximum peaking factor of 1.4843. In addition, when compared with the fresh CM, the thermal fluxes of the generated CMs decrease by about 2% while change in the fast fluxes is about 1%.Classification: J. Core physics.

  13. Tower Shielding Reactor II design and operation report. Vol. 3. Assembling and testing of the control mechanism assembly

    International Nuclear Information System (INIS)

    Ward, D.R.; Holland, L.B.

    1979-09-01

    The mechanisms that are operated to control the reactivity of the Tower Shielding Reactor II(TSR-II) are mounted on a Control Mechanism Housing (CMH) that is centered inside the reactor core. The information required to procure, fabricate, inspect, and assemble a CMH is contained in the ORNL engineering drawings listed in the appropriate sections. The components are fabricated and inspected from these drawings in accordance with a Quality Assurance Plan and a Manufacturing Plan. The material in this report describes the acceptance and performance tests of CMH subassemblies used ty the Tower Shielding Facility (TSF) staff but it can also be used by personnel fabricating the components. This information which was developed and used before the advent of the formalized QA Program and Manufacturing Plans evolved during the fabrication and testing of the first five CMHs

  14. Reactor physics aspects of CANDU reactors

    International Nuclear Information System (INIS)

    Critoph, E.

    1980-01-01

    These four lectures are being given at the Winter Course on Nuclear Physics at Trieste during 1978 February. They constitute part of the third week's lectures in Part II: Reactor Theory and Power Reactors. A physical description of CANDU reactors is given, followed by an overview of CANDU characteristics and some of the design options. Basic lattice physics is discussed in terms of zero energy lattice experiments, irradiation effects and analytical methods. Start-up and commissioning experiments in CANDU reactors are reviewed, and some of the more interesting aspects of operation discussed - fuel management, flux mapping and control of the power distribution. Finally, some of the characteristics of advanced fuel cycles that have been proposed for CANDU reactors are summarized. (author)

  15. Refurbishment, Modernization and Ageing Management Program of The 3MW TRIGA Mark-II Research Reactor of Bangladesh

    International Nuclear Information System (INIS)

    Salam, M. A.

    2013-01-01

    The 3 MW TRIGA MK-II research reactor of Bangladesh Atomic Energy Commission (BAEC) achieved its first criticality on 14 September 1986. The reactor has been used for manpower training, radioisotope production and various R and D activities in the field of neutron activation analysis, neutron radiography and neutron scattering. Reactor Operation and Maintenance Unit (ROMU) is responsible for operation and maintenance of the research reactor. During the past twenty seven years ROMU carried out several refurbishments, replacement, modification and modernization activities in the reactor facility. The major tasks carried out under refurbishment program were replacement of the corrosion damaged N-16 decay tank by a new one, replacement of the fouled shell and tube type heat exchanger by a plate type one, modification of the shielding arrangements around the N-16 decay tank and ECCS system and solving the radial beam port-1 leakage problem. All of these refurbishment activities were performed under an annual development project (ADP) funded by Bangladesh government. BAEC research reactor (RR) was operated by analogue console system from its commissioning to July, 2011. Old analog based console has been replaced by digital console on June, 2012. Modernization program for the reactor control console due to obsolescence and unavailability of spare parts of I and C system was vital to restore the safe operation of the reactor. Considering these facts, installation of a digital control console and I and C system based on the state-of-the-art digital technology became necessary. Reactor digital console system installation tasks were performed under another ADP funded project by Bangladesh government. Now the reactor is operating with the digital control system. Besides this, the Neutron Radiography (NR) facility has been modernized by the addition of a digital neutron radiography set-up at the tangential beam port. The Neutron Scattering (NS) facility also has been upgraded

  16. Refurbishment, Modernization and Ageing Management Program of The 3MW TRIGA Mark-II Research Reactor of Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Salam, M. A. [Atomic Energy Research Establishment, Dhaka (Bangladesh)

    2013-07-01

    The 3 MW TRIGA MK-II research reactor of Bangladesh Atomic Energy Commission (BAEC) achieved its first criticality on 14 September 1986. The reactor has been used for manpower training, radioisotope production and various R and D activities in the field of neutron activation analysis, neutron radiography and neutron scattering. Reactor Operation and Maintenance Unit (ROMU) is responsible for operation and maintenance of the research reactor. During the past twenty seven years ROMU carried out several refurbishments, replacement, modification and modernization activities in the reactor facility. The major tasks carried out under refurbishment program were replacement of the corrosion damaged N-16 decay tank by a new one, replacement of the fouled shell and tube type heat exchanger by a plate type one, modification of the shielding arrangements around the N-16 decay tank and ECCS system and solving the radial beam port-1 leakage problem. All of these refurbishment activities were performed under an annual development project (ADP) funded by Bangladesh government. BAEC research reactor (RR) was operated by analogue console system from its commissioning to July, 2011. Old analog based console has been replaced by digital console on June, 2012. Modernization program for the reactor control console due to obsolescence and unavailability of spare parts of I and C system was vital to restore the safe operation of the reactor. Considering these facts, installation of a digital control console and I and C system based on the state-of-the-art digital technology became necessary. Reactor digital console system installation tasks were performed under another ADP funded project by Bangladesh government. Now the reactor is operating with the digital control system. Besides this, the Neutron Radiography (NR) facility has been modernized by the addition of a digital neutron radiography set-up at the tangential beam port. The Neutron Scattering (NS) facility also has been upgraded

  17. Mirror hybrid reactor studies

    International Nuclear Information System (INIS)

    Bender, D.J.

    1978-01-01

    The hybrid reactor studies are reviewed. The optimization of the point design and work on a reference design are described. The status of the nuclear analysis of fast spectrum blankets, systems studies for fissile fuel producing hybrid reactor, and the mechanical design of the machine are reviewed

  18. Chernobyl reactor transient simulation study

    International Nuclear Information System (INIS)

    Gaber, F.A.; El Messiry, A.M.

    1988-01-01

    This paper deals with the Chernobyl nuclear power station transient simulation study. The Chernobyl (RBMK) reactor is a graphite moderated pressure tube type reactor. It is cooled by circulating light water that boils in the upper parts of vertical pressure tubes to produce steam. At equilibrium fuel irradiation, the RBMK reactor has a positive void reactivity coefficient. However, the fuel temperature coefficient is negative and the net effect of a power change depends upon the power level. Under normal operating conditions the net effect (power coefficient) is negative at full power and becomes positive under certain transient conditions. A series of dynamic performance transient analysis for RBMK reactor, pressurized water reactor (PWR) and fast breeder reactor (FBR) have been performed using digital simulator codes, the purpose of this transient study is to show that an accident of Chernobyl's severity does not occur in PWR or FBR nuclear power reactors. This appears from the study of the inherent, stability of RBMK, PWR and FBR under certain transient conditions. This inherent stability is related to the effect of the feed back reactivity. The power distribution stability in the graphite RBMK reactor is difficult to maintain throughout its entire life, so the reactor has an inherent instability. PWR has larger negative temperature coefficient of reactivity, therefore, the PWR by itself has a large amount of natural stability, so PWR is inherently safe. FBR has positive sodium expansion coefficient, therefore it has insufficient stability it has been concluded that PWR has safe operation than FBR and RBMK reactors

  19. Experience in operation and maintenance of the TRIGA Mark II reactor at the University of Pavia in the time period July 1974 - June 1976

    International Nuclear Information System (INIS)

    Cambieri, A.; Cingoli, F.; Genova, N.; Meloni, S.; Perlini, G.

    1976-01-01

    The operation of the 250 kW steady state/250 MW pulsed TRIGA Mark II Reactor of the University of Pavia over the past two years is presented and discussed. Reactor maintenance activity is presented as well. Data for reactor utilization and a summary of the health physics procedures are also given. Since the third European Conference of TRIGA Reactor Users in 1974, reactor operation took place smoothly without major troubles. Because of the core excess decrease due to reactor operation and consequent burn-up, ten new stainless steel clad fuel elements were bought from General Atomic. Reactor operation license expired at the end of 1975 and it is now under way the bureaucratic work to get its renewal. The aging of the electronic equipment raises minor problems and the predicted switching to a new solid state equipment started by changing the old electromechanical rod position indicators with new digital ones. The installation of the Euracos II facility (Enriched Uranium Converter Source), described at the last TRIGA Users Conference, began at the end of 1975 and it is still under way. The first operation of the facility will take place at reduced power so that the removal of the graphite blocks from thermal column was not accomplished. The installation of the facility is described and the procedures of its operation in connection with reactor operation are presented as well. (author)

  20. Reactor Primary Coolant System Pipe Rupture Study. Progress report No. 32, July--December 1974

    International Nuclear Information System (INIS)

    1975-03-01

    The pipe rupture study is designed to extend the understanding of failure-causing mechanisms and to provide improved capability for evaluating reactor piping systems to minimize the probability of failures. Following a detailed review to determine the effort most needed to improve nuclear system piping (Phase I), analytical and experimental efforts (Phase II) were started in 1965. This progress report summarizes the recent accomplishments of a broad program in (a) basic fatigue studies focused on Elastic/Plastic ASME Code Design Rules, (b) at-reactor tests of the effect of primary coolant environment on the fatigue behavior of piping steels, and (c) studies directed at quantifying weld sensitization in T-304 stainless steel. (auth)

  1. Review of fusion DEMO reactor study

    International Nuclear Information System (INIS)

    Seki, Yasushi

    1996-01-01

    Fusion DEMO Reactor is defined and the Steady State Tokamak Reactor (SSTR) concept is introduced as a typical example of a DEMO reactor. Recent DEMO reactor studies in Japan and abroad are introduced. The DREAM Reactor concept is introduced as an ultimate target of fusion research. (author)

  2. A report on the second specialists' meeting on reactor noise (SMORN II) Gatlinburg, Tennessee, September 19th-23rd 1977

    International Nuclear Information System (INIS)

    Greef, C.P.

    1978-03-01

    The current state of power reactor noise analysis as presented at the Second Specialists' Meeting on Reactor Noise (SMORN II) is reviewed. Practical successes include the analysis of PWR core support barrel motions and BWR instrument tube vibrations, leading to better understanding of the Physical processes involved. Future applications to LMFBRs are being actively pursued, but more information is required, notably on background noise sources in operating reactors. Theoretical understanding is improving in a number of specific areas, but general fundamental progress is hampered by the multiplicity of potential noise sources in a reactor. Past attempts to automate noise analysis so that simplified information may be presented to the reactor operator have not been totally successful. This has resulted from an over-hasty application of the techniques before all of the factors involved in physical phenomena were fully appreciated. (author)

  3. Reentry safety for the Topaz II Space Reactor: Issues and analyses

    International Nuclear Information System (INIS)

    Connell, L.W.; Trost, L.C.

    1994-03-01

    This report documents the reentry safety analyses conducted for the TOPAZ II Nuclear Electric Propulsion Space Test Program (NEPSTP). Scoping calculations were performed on the reentry aerothermal breakup and ground footprint of reactor core debris. The calculations were used to assess the risks associated with radiologically cold reentry accidents and to determine if constraints should be placed on the core configuration for such accidents. Three risk factors were considered: inadvertent criticality upon reentry impact, atmospheric dispersal of U-235 fuel, and the Special Nuclear Material Safeguards risks. Results indicate that the risks associated with cold reentry are very low regardless of the core configuration. Core configuration constraints were therefore not established for radiologically cold reentry accidents

  4. Mirror reactor surface study

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, A. L.; Damm, C. C.; Futch, A. H.; Hiskes, J. R.; Meisenheimer, R. G.; Moir, R. W.; Simonen, T. C.; Stallard, B. W.; Taylor, C. E.

    1976-09-01

    A general survey is presented of surface-related phenomena associated with the following mirror reactor elements: plasma first wall, ion sources, neutral beams, director converters, vacuum systems, and plasma diagnostics. A discussion of surface phenomena in possible abnormal reactor operation is included. Several studies which appear to merit immediate attention and which are essential to the development of mirror reactors are abstracted from the list of recommended areas for surface work. The appendix contains a discussion of the fundamentals of particle/surface interactions. The interactions surveyed are backscattering, thermal desorption, sputtering, diffusion, particle ranges in solids, and surface spectroscopic methods. A bibliography lists references in a number of categories pertinent to mirror reactors. Several complete published and unpublished reports on surface aspects of current mirror plasma experiments and reactor developments are also included.

  5. Mirror reactor surface study

    International Nuclear Information System (INIS)

    Hunt, A.L.; Damm, C.C.; Futch, A.H.; Hiskes, J.R.; Meisenheimer, R.G.; Moir, R.W.; Simonen, T.C.; Stallard, B.W.; Taylor, C.E.

    1976-01-01

    A general survey is presented of surface-related phenomena associated with the following mirror reactor elements: plasma first wall, ion sources, neutral beams, director converters, vacuum systems, and plasma diagnostics. A discussion of surface phenomena in possible abnormal reactor operation is included. Several studies which appear to merit immediate attention and which are essential to the development of mirror reactors are abstracted from the list of recommended areas for surface work. The appendix contains a discussion of the fundamentals of particle/surface interactions. The interactions surveyed are backscattering, thermal desorption, sputtering, diffusion, particle ranges in solids, and surface spectroscopic methods. A bibliography lists references in a number of categories pertinent to mirror reactors. Several complete published and unpublished reports on surface aspects of current mirror plasma experiments and reactor developments are also included

  6. Study of essential safety features of a three-loop 1,000 MWe light water reactor (PWR) and a corresponding heavy water reactor (HWR) on the basis of the IAEA nuclear safety standards

    International Nuclear Information System (INIS)

    1989-02-01

    Based on the IAEA Standards, essential safety aspects of a three-loop pressurized water reactor (1,000 MWe) and a corresponding heavy water reactor were studied by the TUeV Baden e.V. in cooperation with the Gabinete de Proteccao e Seguranca Nuclear, a department of the Ministry which is responsible for Nuclear power plants in Portugal. As the fundamental principles of this study the design data for the light water reactor and the heavy water reactor provided in the safety analysis reports (KWU-SSAR for the 1,000 MWe PWR, KWU-PSAR Nuclear Power Plant ATUCHA II) are used. The assessment of the two different reactor types based on the IAEA Nuclear Safety Standards shows that the reactor plants designed according to the data given in the safety analysis reports of the plant manufacturer meet the design requirements laid down in the pertinent IAEA Standards. (orig.) [de

  7. Status of advanced technology and design for water cooled reactors: Heavy water reactors

    International Nuclear Information System (INIS)

    1989-07-01

    In 1987 the IAEA established the International Working Group on Advanced Technologies for Water-Cooled Reactors (IWGATWR). Within the framework of the IWGATWR the IAEA Technical Report on Status of Advanced Technology and Design for Water Cooled Reactors, Part I: Light Water Reactors and Part II: Heavy Water Reactors, has been undertaken to document the major current activities and trends of technological improvement and development for future water reactors. Part I of the report dealing with Light Water Reactors (LWRs) was published in 1988 (IAEA-TECDOC-479). Part II of the report covers Heavy Water Reactors (HWRs) and has now been prepared. This report is based largely upon submissions from Member States. It has been supplemented by material from the presentations at the IAEA Technical Committee and Workshop on Progress in Heavy Water Reactor Design and Technology held in Montreal, Canada, December 6-9, 1988. It is hoped that this part of the report, containing the status of advanced heavy water reactor technology up to 1988 and ongoing development programmes will aid in disseminating information to Member States and in stimulating international cooperation. Refs, figs and tabs

  8. Studies on the properties of hard-spectrum, actinide fissioning reactors. Final report

    International Nuclear Information System (INIS)

    Nelson, J.B.; Prichard, A.W.; Schofield, P.E.; Robinson, A.H.; Spinrad, B.I.

    1980-01-01

    It is technically feasible to construct an operable (e.g., safe and stable) reactor to burn waste actinides rapidly. The heart of the concept is a driver core of EBR-II type, with a central radial target zone in which fuel elements, made entirely of waste actinides are exposed. This target fuel undergoes fission, as a result of which actinides are rapidly destroyed. Although the same result could be achieved in more conventionally designed LWR or LMFBR systems, the fast spectrum reactor does a much more efficient job, by virtue of the fact that in both LWR and LMFBR reactors, actinide fission is preceded by several captures before a fissile nuclide is formed. In the fast spectrum reactor that is called ABR (actinide burning reactor), these neutron captures are short-circuited

  9. Mirror Advanced Reactor Study (MARS)

    International Nuclear Information System (INIS)

    Logan, B.G.

    1983-01-01

    Progress in a two year study of a 1200 MWe commercial tandem mirror reactor (MARS - Mirror Advanced Reactor Study) has reached the point where major reactor system technologies are identified. New design features of the magnets, blankets, plug heating systems and direct converter are described. With the innovation of radial drift pumping to maintain low plug density, reactor recirculating power fraction is reduced to 20%. Dominance of radial ion and impurity losses into the halo permits gridless, circular direct converters to be dramatically reduced in size. Comparisons of MARS with the Starfire tokamak design are made

  10. Chemical surveillance of commercial fast breeder reactors

    International Nuclear Information System (INIS)

    Stamm, H.H.; Stade, K.Ch.

    1988-01-01

    After BN-600 (USSR) and SUPERPHENIX (France) were started succesfully, the international development of LMFBRs is standing at the doorstep of commercial use. For commercial use of LMFBRs cost reductions for construction and operation are highly desirable and necessary. Several nations developing breeder reactors have joined in a common effort in order to reach this aim by standardization and harmonization. On the base of more than 20 years of operation experience of experimental reactors (EBR-II, FFTF, RAPSODIE, DFR, BR-5/BR-10, BOR-60, JOYO, KNK-II) and demonstration plants (PHENIX, PFR, BN-350), possibilities for standardization in chemical surveillance of commercial breeder reactors without any loss of availability, reliability and reactor safety will be discussed in the following chapters. Loop-type reactors will be considered as well as pool-type reactors, although all commercial plants under consideration so far (SUPERPHENIX II, BN-800, BN-1600, CFBR, SNR-2, EFR) include pool-type reactors only. Table 1 gives a comparison of the Na inventories of test reactors, prototype plants and commercial LMFBRs

  11. The new area monitoring system and the fuel database of the TRIGA Mark II reactor in Vienna

    International Nuclear Information System (INIS)

    Villa, M.; Boeck, H.; Hofbauer, M.; Schwarz, V.

    2004-01-01

    The 250 kW TRIGA Mark-II reactor operates since March 1962 at the Atominstitut, Vienna, Austria. Its main tasks are nuclear education and training in the fields of neutron- and solid state physics, nuclear technology, reactor safety, radiochemistry, radiation protection and dosimetry, and low temperature physics and fusion research. Academic research is carried out by students in the above mentioned fields coordinated and supervised by about 70 staff members with the aim of a masters- or PhD degree in one of the above mentioned areas. After 25 years of successful operation, it was necessary to exchange the old area monitoring system with a new digital one. The purpose of the new system is the permanent control of the reactor hall, the primary and secondary cooling system and the monitoring of the ventilation system. The paper describes the development and implementation of the new area monitoring system. The second topic in this paper describes the development of the new fuel database. Since March 7th, 1962, the TRIGA Mark II reactor Vienna operates with an average of 263 MWh per year, which corresponds to a uranium burn-up of 13.7 g per year. Presently we have 81 TRIGA fuel elements in the core, 55 of them are old aluminium clad elements from the initial criticality while the rest are stainless steel clad elements which had been added later to compensate the uranium consumption. Because 67 % of the elements are older than 40 years, it was necessary to put the history of every element in a database, to get an easy access to all the relevant data for every element in our facility. (author)

  12. The decommissioning of a small nuclear reactor

    International Nuclear Information System (INIS)

    Neset, K.; Christensen, G.C.; Lundby, J.E.; Roenneberg, G.A.

    1990-02-01

    The JEEP II reactor at Kjeller, Norway has been used as a model for a study of the decommissioning of a small research reactor. A radiological survey is given and a plan for volume reducing, packaging, certifying, classifying and shipping of the radioactive waste is described. 23 refs., 4 figs

  13. PUSPATI TRIGA Reactor

    International Nuclear Information System (INIS)

    Masood, Z.

    2016-01-01

    The PUSPATI TRIGA Reactor is the only research reactor in Malaysia. This 1 MW TRIGA Mk II reactor first reached criticality on 28 June 1982 and is located at the Malaysian Nuclear Agency premise in Bangi, Malaysia. This reactor has been mainly utilised for research, training and education and isotope production. Over the years several systems have been refurbished or modernised to overcome ageing and obsolescence problems. Major achievements and milestones will also be elaborated in this paper. (author)

  14. EBR-II Data Digitization

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Su-Jong [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sackett, John [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-08-01

    1. Objectives To produce a validation database out of those recorded signals it will be necessary also to identify the documents need to reconstruct the status of reactor at the time of the beginning of the recordings. This should comprehends the core loading specification (assemblies type and location and burn-up) along with this data the assemblies drawings and the core drawings will be identified. The first task of the project will be identify the location of the sensors, with respect the reactor plant layout, and the physical quantities recorded by the Experimental Breeder Reactor-II (EBR-II) data acquisition system. This first task will allow guiding and prioritizing the selection of drawings needed to numerically reproduce those signals. 1.1 Scopes and Deliverables The deliverables of this project are the list of sensors in EBR-II system, the identification of storing location of those sensors, identification of a core isotopic composition at the moment of the start of system recording. Information of the sensors in EBR-II reactor system was summarized from the EBR-II system design descriptions listed in Section 1.2.

  15. Research reactor`s role in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Choi, C-O [Korea Atomic Energy Research Inst., Taejon (Korea, Republic of)

    1996-12-31

    After a TRIGA MARK-II was constructed in 1962, new research activity of a general nature, utilizing neutrons, prevailed in Korea. Radioisotopes produced from the MARK-II played a good role in the 1960`s in educating people as to what could be achieved by a neutron source. Because the research reactor had implanted neutron science in the country, another TRIGA MARK-III had to be constructed within 10 years after importing the first reactor, due to increased neutron demand from the nuclear community. With the sudden growth of nuclear power, however, the emphasis of research changed. For a while research activities were almost all oriented to nuclear power plant technology. However, the specifics of nuclear power plant technology created a need for a more highly capable research reactor like HANARO 30MWt. HANARO will perform well with irradiation testing and other nuclear programs in the future, including: production of key radioisotopes, doping of silicon by transmutation, neutron activation analysis, neutron beam experiments, cold neutron source. 3 tabs., 2 figs.

  16. Biological Tests for Boron Neutron Capture Therapy Research at the TRIGA Mark II Reactor in Pavia

    Energy Technology Data Exchange (ETDEWEB)

    Protti, N.; Ballarini, F.; Bortolussi, S.; De Bari, A.; Stella, S.; Altieri, S. [Department of Nuclear and Theoretical Physics, University of Pavia, Pavia (Italy); Nuclear Physics National Institute (INFN), Pavia (Italy); Bruschi, P. [Department of Nuclear and Theoretical Physics, University of Pavia, Pavia (Italy); Bakeine, J.G.; Cansolino, L.; Clerici, A.M. [Laboratory of Experimental Surgery, Department of Surgery, University of Pavia, Pavia (Italy)

    2011-07-01

    The thermal column of the TRIGA Mark II reactor of the Pavia University is used as an irradiation facility to perform biological tests and irradiations of living systems for Boron Neutron Capture Therapy (BNCT) research. The suitability of the facility has been ensured by studying the neutron flux and the photon background in the irradiation chamber inside the thermal column. This characterization has been realized both by flux and dose measurements as well as by Monte Carlo simulations. The routine irradiations concern in vitro cells cultures and different tumor animal models to test the efficacy of the BNCT treatment. Some results about these experiments will be described. (author)

  17. Neutronic Analysis of the 3 MW TRIGA MARK II Research Reactor, Part I: Monte Carlo Simulation

    International Nuclear Information System (INIS)

    Huda, M.Q.; Chakrobortty, T.K.; Rahman, M.; Sarker, M.M.; Mahmood, M.S.

    2003-05-01

    This study deals with the neutronic analysis of the current core configuration of a 3 MW TRIGA MARK II research reactor at Atomic Energy Research Establishment (AERE), Savar, Dhaka, Bangladesh and validation of the results by benchmarking with the experimental, operational and available Final Safety Analysis Report (FSAR) values. The three-dimensional continuous-energy Monte Carlo code MCNP4C was used to develop a versatile and accurate full-core model of the TRIGA core. The model represents in detail all components of the core with literally no physical approximation. All fresh fuel and control elements as well as the vicinity of the core were precisely described. Continuous energy cross-section data from ENDF/B-VI and S(α, β) scattering functions from the ENDF/B-V library were used. The validation of the model against benchmark experimental results is presented. The MCNP predictions and the experimentally determined values are found to be in very good agreement, which indicates that the Monte Carlo model is correctly simulating the TRIGA reactor. (author)

  18. Technical Information on the Carbonation of the EBR-II Reactor, Summary Report Part 1: Laboratory Experiments and Application to EBR-II Secondary Sodium System

    Energy Technology Data Exchange (ETDEWEB)

    Steven R. Sherman

    2005-04-01

    Residual sodium is defined as sodium metal that remains behind in pipes, vessels, and tanks after the bulk sodium metal has been melted and drained from such components. The residual sodium has the same chemical properties as bulk sodium, and differs from bulk sodium only in the thickness of the sodium deposit. Typically, sodium is considered residual when the thickness of the deposit is less than 5-6 cm. This residual sodium must be removed or deactivated when a pipe, vessel, system, or entire reactor is permanently taken out of service, in order to make the component or system safer and/or to comply with decommissioning regulations. As an alternative to the established residual sodium deactivation techniques (steam-and-nitrogen, wet vapor nitrogen, etc.), a technique involving the use of moisture and carbon dioxide has been developed. With this technique, sodium metal is converted into sodium bicarbonate by reacting it with humid carbon dioxide. Hydrogen is emitted as a by-product. This technique was first developed in the laboratory by exposing sodium samples to humidified carbon dioxide under controlled conditions, and then demonstrated on a larger scale by treating residual sodium within the Experimental Breeder Reactor II (EBR-II) secondary cooling system, followed by the primary cooling system, respectively. The EBR-II facility is located at the Idaho National Laboratory (INL) in southeastern Idaho, U.S.A. This report is Part 1 of a two-part report. It is divided into three sections. The first section describes the chemistry of carbon dioxide-water-sodium reactions. The second section covers the laboratory experiments that were conducted in order to develop the residual sodium deactivation process. The third section discusses the application of the deactivation process to the treatment of residual sodium within the EBR-II secondary sodium cooling system. Part 2 of the report, under separate cover, describes the application of the technique to residual sodium

  19. METHUSELAH II - A Fortran program and nuclear data library for the physics assessment of liquid-moderated reactors

    International Nuclear Information System (INIS)

    Brinkworth, M.J.; Griffiths, J.A.

    1966-03-01

    METHUSELAH II is a Fortran program with a nuclear data library, used to calculate cell reactivity and burn-up in liquid-moderated reactors. It has been developed from METHUSELAH I by revising the nuclear data library, and by introducing into the program improvements relating to nuclear data, improvements in efficiency and accuracy, and additional facilities which include a neutron balance edit, specialised outputs, fuel cycling, and fuel costing. These developments are described and information is given on the coding and usage of versions of METHUSELAH II for the IBM 7030 (STRETCH), IBM 7090, and KDF9 computers. (author)

  20. Analysis of JSI TRIGA MARK II reactor physical parameters calculated with TRIPOLI and MCNP.

    Science.gov (United States)

    Henry, R; Tiselj, I; Snoj, L

    2015-03-01

    New computational model of the JSI TRIGA Mark II research reactor was built for TRIPOLI computer code and compared with existing MCNP code model. The same modelling assumptions were used in order to check the differences of the mathematical models of both Monte Carlo codes. Differences between the TRIPOLI and MCNP predictions of keff were up to 100pcm. Further validation was performed with analyses of the normalized reaction rates and computations of kinetic parameters for various core configurations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. A numerical study of boiling flow instability of a reactor thermosyphon system

    International Nuclear Information System (INIS)

    Nayak, A.K.; Lathouwers, D.; Hagen, T.H.J.J. van der; Schrauwen, Frans; Molenaar, Peter; Rogers, Andrew

    2006-01-01

    A numerical study has been carried out to investigate the boiling flow instability of a reactor thermosyphon system. The numerical model solves the conservation equations of mass, momentum and energy applicable to a two-fluid and three-field steam-water system using a finite difference technique. The computer code MONA was used for this purpose. The code was applied to the thermosyphon system of an EO (ethylene oxide) chemical reactor in which the heat released by a catalytic reaction is carried by boiling water under natural circulation conditions. The steady-state characteristics of the reactor thermosyphon system were predicted using the MONA code and conventional two-phase flow models in order to understand the model applicability for this type of thermosyphon system. The two-fluid model was found to predict the flow closest to the measured value of the plant. The stability behaviour of the thermosyphon system was investigated for a wide range of operating conditions. The effects of power, subcooling, riser length and riser diameter on the boiling flow instability were determined. The system was found to be unstable at higher power conditions which is typical for a Type II instability. However, with an increase in riser diameter, oscillations at low power were observed as well. These are classified as Type I instabilities. Stability maps were predicted for both Type I and Type II instabilities. Methods of improving the stability of the system are discussed

  2. A numerical study of boiling flow instability of a reactor thermosyphon system

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, A.K.; Lathouwers, D.; Hagen, T.H.J.J. van der [Interfaculty Reactor Institute, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands); Schrauwen, Frans; Molenaar, Peter; Rogers, Andrew [Shell Research and Technology Centre, Badhuisweg 3, 1031 CM Amsterdam (Netherlands)

    2006-04-01

    A numerical study has been carried out to investigate the boiling flow instability of a reactor thermosyphon system. The numerical model solves the conservation equations of mass, momentum and energy applicable to a two-fluid and three-field steam-water system using a finite difference technique. The computer code MONA was used for this purpose. The code was applied to the thermosyphon system of an EO (ethylene oxide) chemical reactor in which the heat released by a catalytic reaction is carried by boiling water under natural circulation conditions. The steady-state characteristics of the reactor thermosyphon system were predicted using the MONA code and conventional two-phase flow models in order to understand the model applicability for this type of thermosyphon system. The two-fluid model was found to predict the flow closest to the measured value of the plant. The stability behaviour of the thermosyphon system was investigated for a wide range of operating conditions. The effects of power, subcooling, riser length and riser diameter on the boiling flow instability were determined. The system was found to be unstable at higher power conditions which is typical for a Type II instability. However, with an increase in riser diameter, oscillations at low power were observed as well. These are classified as Type I instabilities. Stability maps were predicted for both Type I and Type II instabilities. Methods of improving the stability of the system are discussed. [Author].

  3. Importance of reduced sulfur for the equilibrium chemistry and kinetics of Fe(II), Co(II) and Ni(II) supplemented to semi-continuous stirred tank biogas reactors fed with stillage.

    Science.gov (United States)

    Shakeri Yekta, Sepehr; Lindmark, Amanda; Skyllberg, Ulf; Danielsson, Asa; Svensson, Bo H

    2014-03-30

    The objective of the present study was to assess major chemical reactions and chemical forms contributing to solubility and speciation of Fe(II), Co(II), and Ni(II) during anaerobic digestion of sulfur (S)-rich stillage in semi-continuous stirred tank biogas reactors (SCSTR). These metals are essential supplements for efficient and stable performance of stillage-fed SCSTR. In particular, the influence of reduced inorganic and organic S species on kinetics and thermodynamics of the metals and their partitioning between aqueous and solid phases were investigated. Solid phase S speciation was determined by use of S K-edge X-ray absorption near-edge spectroscopy. Results demonstrated that the solubility and speciation of supplemented Fe were controlled by precipitation of FeS(s) and formation of the aqueous complexes of Fe-sulfide and Fe-thiol. The relatively high solubility of Co (∼ 20% of total Co content) was attributed to the formation of compounds other than Co-sulfide and Co-thiol, presumably of microbial origin. Nickel had lower solubility than Co and its speciation was regulated by interactions with FeS(s) (e.g. co-precipitation, adsorption, and ion substitution) in addition to precipitation/dissolution of discrete NiS(s) phase and formation of aqueous Ni-sulfide complexes. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Computational Analysis of Nuclear Safety Parameters of 3 MW TRIGA Mark-II Research Reactor Based on Evaluated Nuclear Data Libraries JENDL-3.3 and ENDF/B-VII.0

    International Nuclear Information System (INIS)

    Khan, Jahirul Haque

    2013-01-01

    The objective of this study is to explain the main nuclear safety parameters of 3 MW TRIGA Mark-II Research Reactor at AERE, Savar, Dhaka, Bangladesh from the viewpoint of reactor safety and also reactor operator. The most important nuclear reactor physics safety parameters are power distribution, power peaking factors, shutdown margin, control rod worth, excess reactivity and fuel temperature reactivity coefficient. These parameters are calculated using the chain of the computer codes the SRAC-PIJ for cell calculation based on neutron transport theory and the SRAC-CITATION for core calculation based on neutron diffusion equation. To achieve this objective the TRIGA model is developed by the 3-D diffusion code SRAC-CITATION based on the group constants that come from the collision probability transport code SRAC-PIJ. In this study the evaluated nuclear data libraries JENDL-3.3 and ENDF/B-VII.0 are used. The calculated most important reactor physics parameters are compared to the safety analysis report (SAR) values as well as earlier published MCNP results (numerically benchmark). It was found that the calculated results show a good agreement between the said libraries. Besides, in most cases the calculated results reveal a reasonable agreement with the SAR values (by General Atomic) as well as the MCNP results. In addition, this analysis can be used as the inputs for thermal-hydraulic calculations of the TRIGA fresh core in the steady state and pulse mode operation. Because of power peaking factors, power distributions and temperature reactivity coefficients are the most important reactor safety parameters for normal operation and transient safety analysis in research as well as in power reactors. They form the basis for technical specifications and limitations for reactor operation such as loading pattern limitations for pulse operation (in TRIGA). Therefore, this analysis will be very important to develop the nuclear safety parameters data of 3 MW TRIGA Mark-II

  5. Fabrication and testing of a 4-node micro-pocket fission detector array for the Kansas State University TRIGA Mk. II research nuclear reactor

    Science.gov (United States)

    Reichenberger, Michael A.; Nichols, Daniel M.; Stevenson, Sarah R.; Swope, Tanner M.; Hilger, Caden W.; Unruh, Troy C.; McGregor, Douglas S.; Roberts, Jeremy A.

    2017-08-01

    Advancements in nuclear reactor core modeling and computational capability have encouraged further development of in-core neutron sensors. Micro-Pocket Fission Detectors (MPFDs) have been fabricated and tested previously, but successful testing of these prior detectors was limited to single-node operation with specialized designs. Described in this work is a modular, four-node MPFD array fabricated and tested at Kansas State University (KSU). The four sensor nodes were equally spaced to span the length of the fuel-region of the KSU TRIGA Mk. II research nuclear reactor core. The encapsulated array was filled with argon gas, serving as an ionization medium in the small cavities of the MPFDs. The unified design improved device ruggedness and simplified construction over previous designs. A 0.315-in. (8-mm) penetration in the upper grid plate of the KSU TRIGA Mk. II research nuclear reactor was used to deploy the array between fuel elements in the core. The MPFD array was coupled to an electronic support system which has been developed to support pulse-mode operation. Neutron-induced pulses were observed on all four sensor channels. Stable device operation was confirmed by testing under steady-state reactor conditions. Each of the four sensors in the array responded to changes in reactor power between 10 kWth and full power (750 kWth). Reactor power transients were observed in real-time including positive transients with periods of 5, 15, and 30 s. Finally, manual reactor power oscillations were observed in real-time.

  6. Reactor protection system. Revision 1

    International Nuclear Information System (INIS)

    Fairbrother, D.B.; Vincent, D.R.; Lesniak, L.M.

    1975-04-01

    The reactor protection system-II (RPS-II) designed for use on Babcock and Wilcox 145- and 205-fuel assembly pressurized water reactors is described. In this system, relays in the trip logic have been replaced by solid state devices. A calculating module for the low DNBR, pump status, and offset trip functions has replaced the overpower trip (based on flow and imbalance), the power/RC pump trip, and the variable low pressure trip. Included is a description of the changes from the present Oconee-type reactor protection system (RPS-I), a functional and hardware description of the calculating module, and a discussion of the qualification program conducted to ensure that the degree of protection provided by RPS-II is not less than that provided by previously licensed systems supplied by B and W. (U.S.)

  7. Data Quality Objective Summary Report for Phase II of the 105-F and DR Reactor Buildings

    International Nuclear Information System (INIS)

    Bauer, R.G.

    1998-01-01

    This data quality objective (DQO) process is to support planning and decision-making activities of Phase II decontamination and decommissioning (D and D) activities for the 105-F and 105-DR Reactor Buildings.The objective of this DQO is to determine the survey and characterization requirements for these rooms to provide the necessary information for worker safety, waste designation, recycle, reuse, and clean landfill disposal decisions during D and D

  8. Computational analysis of neutronic parameters for TRIGA Mark-II research reactor using evaluated nuclear data libraries

    International Nuclear Information System (INIS)

    Uddin, M.N.; Sarker, M.M.; Khan, M.J.H.; Islam, S.M.A.

    2010-01-01

    The aim of this study is to analyze the neutronic parameters of TRIGA Mark-II research reactor using the chain of NJOY-WIMS-CITATION computer codes based on evaluated nuclear data libraries CENDL-2.2 and JEFF-3.1.1. The nuclear data processing code NJOY99.0 has been employed to generate the 69 group WIMS library for the isotopes of TRIGA core. The cell code WIMSD-5B was used to generate the cross sections in CITATION format and then 3-dimensional diffusion code CITTATION was used to calculate the neutronic parameters of the TRIGA Mark-II research reactor. All the analyses were performed using the 7-group macroscopic cross section library. The CITATION test-runs using different cross section sets based on different models applied in WIMS calculations have shown a strong influence of those models on the final integral parameters. Some of the cells were specially treated with PRIZE options available in WIMSD-5B to take into account the fine structure of the flux gradient in the fuel-reflector interface region. It was observed that two basic parameters, the effective multiplication factor, k eff and the thermal neutron flux, were in good agreement among the calculated results with each other as well as the measured values. The maximum power densities at the hot spot were 1.0446E02 W/cc and 1.0426E02 W/cc for the libraries CENDL-2.2 and JEFF-3.1.1 respectively. The calculated total peaking factors 5.793 and 5.745 were compared to the original SAR value of 5.6325 as well as MCNP result. Consequently, this analysis will be helpful to enhance the neutronic calculations and also be used for the further thermal-hydraulics study of the TRIGA core.

  9. Generation of an activation map for decommissioning planning of the Berlin Experimental Reactor-II

    Science.gov (United States)

    Lapins, Janis; Guilliard, Nicole; Bernnat, Wolfgang

    2017-09-01

    The BER-II is an experimental facility with 10 MW that was operated since 1974. Its planned operation will end in 2019. To support the decommissioning planning, a map with the overall distribution of relevant radionuclides has to be created according to the state of the art. In this paper, a procedure to create these 3-d maps using a combination of MCNP and deterministic methods is presented. With this approach, an activation analysis is performed for the whole reactor geometry including the most remote parts of the concrete shielding.

  10. Description of the Triton reactor

    International Nuclear Information System (INIS)

    1967-09-01

    The Triton reactor is an enriched uranium pool type reactor. It began operation in 1959, after a divergence made on the June 30 the same year. Devoted to studies of radiation protection, its core can be displaced in the longitudinal direction. The pool can be separated in two unequal compartments by a wall. The Triton core is placed in a small compartment, the Nereide core in the big compartment. A third compartment without water is called Naiade II, is separated by a concrete wall in which is made a window closed by an aluminium plate (2.50 m x 2.70 m). The Naiade II hole is useful for protection experiments using the Nereide core. After a complete refitting, the power of the triton reactor that reached progressively from 1.2 MW to 2 MW, then 3 MW has reached in August 1965 6.5 MW. The reactor has been specialized in irradiations in fix position, the core become fix, the nereide core has been hung mobile. Since it has been used for structure materials irradiation, for radioelements fabrication and fundamental research. The following descriptions are valid for the period after August 1965 [fr

  11. Release procedure according to paragraph 29 StrlSchv on example of the nuclear research reactor TRIGA Heidelberg II; Durchfuehrung von Freigabeverfahren nach paragraph 29 am Beispiel des TRIGA Heidelberg II

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, J. [Siempelkamp Nukleartechnik GmbH (SNT) (Germany); Sold, A. [Deutsches Krebsforschungszentrum Heidelberg (DKFZ) (Germany)

    2005-07-01

    The aim of this lecture is to show the schedule of a release procedure according to paragraph 29 StrlSchV on the example of the decommissioning of the nuclear research reactor TRIGA Heidelberg II. It is shown on the effort done by the radiation protection representative of this plant. Considering this example, starting with planning, application, survey and execution, the complex context of the release procedure is becomes apparent. Thereby the new applied measuring techniques that require a certain practice and the responsibility of the radiation protection representative in the radiation protection law play a relevant role. In such small facilities as the TRIGA Heidelberg II, the radiation protection staff are employed according to the plant's size and work is focussed on radiation protection research and laboratories. The decommissioning process with its wide range of radiation protection requirements represents new challenges which have to be coordinated with the present duties of the radiation protection representative. The supervision and the responsibility for the release procedure according to paragraph 29 are the largest and the most sensitive part of decommissioning of the nuclear research reactor TRIGA Heidelberg II. (orig.)

  12. Feasibility study on commercialization of fast breeder reactor cycle systems interim report of phase II. Technical study report for nuclear fuel cycle systems

    International Nuclear Information System (INIS)

    Sato, Koji; Amamoto, Ippei; Inoue, Akira

    2004-06-01

    As a part of the feasibility study on commercialization of fast breeder reactor cycle systems, the plant concept concerning the fuel cycle systems (combination of the reprocessing and the fuel fabrication) has been constructed to reduce their total cost by the introduction of various innovative techniques and to apply their utmost superior efficiency from such standpoints of a decrease in the environmental burden, better resource utilization and proliferation resistance improvement by the low decontamination transuranium element (TRU) recycle. This interim report of Phase II describes the results of an on-going study which will cover a five-year period. For oxide fuels, the system which combines the use of the advanced aqueous reprocessing using three main methods such as the crystallization method, the simplified solvent extraction method, and the extraction chromatography method for minor actinide (MA) recovery, as well as the simplified pelletizing fuel fabrication which rationalized a powder mixing process etc., has abundant current results and a high technical feasibility for the basic process. Though this system faces difficulties in the technical development of control technology of the extraction chromatography and the fabrication technology of low decontamination TRU fuel etc., its expected practical use is possible at an early stage. As for the super-critical direct extraction reprocessing, it is necessary to fulfill more basic data although further economical improvement of an advanced aqueous reprocessing is expected. The system which combines the advanced aqueous reprocessing and the gelation sphere packing fuel fabrication has the advantage of lesser dispersion of the fine powder due to the use of solution and granule in the fuel fabrication process. However, this system will shoulder additional cost for the reagent recovery process and the waste liquid treatment process due to need to dispose of a large bulk of process waste liquid. The system which

  13. Study of the boron homogenizing process employing an experimental low-pressure bench simulating the IRIS reactor pressurizer – Part II

    International Nuclear Information System (INIS)

    Bezerra, Jair de Lima; Lira, Carlos Alberto Brayner de Oliveira; Barroso, Antonio Carlos de Oliveira; Lima, Fernando Roberto de Andrade; Silva, Mário Augusto Bezerra da

    2013-01-01

    Highlights: • Experimental bench with test section made of transparent acrylic, simulating the pressurizer reactor IRIS. • Workbench used to study the process of homogenization of boron in the pressurizer IRIS nuclear reactor. • Results were obtained through videos and digital photos of the test section. - Abstract: The reactivity control of a nuclear reactor to pressurized water is made by means of controlling bars or by boron dilution in the water from the coolant of a primary circuit. The control with boron dilution has great importance, despite inserting small variations in the reactivity in the reactor, as it does not significantly affect the distribution of the neutron flux. A simplified experimental bench with a test section manufactured in transparent acrylic, was built in reduced scale as to be used in a boron homogenizing process, simulating an IRIS reactor pressurizer (International Reactor Innovative and Secure). The bench was assembled in the Centro Regional de Ciências Nucleares do Nordeste (CRCN-NE), an entity linked to the Comissão Nacional de Energia Nuclear (CNEN), Recife–PE

  14. IGORR 1: Proceedings of the 1. meeting of the International Group On Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    West, C D [comp.

    1990-05-01

    Descriptions of the ongoing projects presented at this Meeting were concerned with: New Research Reactor FRM-II at Munich; MITR-II reactor; The Advanced. Neutron Source (ANS) Project; The high Flux Reactor Petten, Status and Prospects; The High Flux Beam Reactor Instrumentation Upgrade; BER-II Upgrade; The BR2 Materials Testing Reactor Past, Ongoing and Under-Study Upgrades; The ORPHEE, Reactor Current Status and Proposed Enhancement of Experimental Variabilities; Construction of the Upgraded JRR-3; Status of the University of Missouri-Columbia Research Reactor Upgrade; the Reactor and Cold Neutron Facility at NIST; Upgrade of Materials Irradiation Facilities in HFIR; Backfitting of the FRG Reactors; University Research Reactors in the United States; and Organization of the ITER Project - Sharing of Informational Procurements. Topics of interest were: Thermal-hydraulic tests and correlations, Corrosion tests and analytical models , Multidimensional kinetic analysis for small cores, Fuel plates fabrication, Fuel plates stability, Fuel irradiation, Burnable poison irradiation, Structural materials irradiation, Neutron guides irradiation, Cold Source materials irradiation, Cold Source LN{sub 2} test, Source LH2-H{sub 2}O reaction (H or D), Instrumentation upgrading and digital control system, Man-machine interface.

  15. IGORR 1: Proceedings of the 1. meeting of the International Group On Research Reactors

    International Nuclear Information System (INIS)

    West, C.D.

    1990-05-01

    Descriptions of the ongoing projects presented at this Meeting were concerned with: New Research Reactor FRM-II at Munich; MITR-II reactor; The Advanced. Neutron Source (ANS) Project; The high Flux Reactor Petten, Status and Prospects; The High Flux Beam Reactor Instrumentation Upgrade; BER-II Upgrade; The BR2 Materials Testing Reactor Past, Ongoing and Under-Study Upgrades; The ORPHEE, Reactor Current Status and Proposed Enhancement of Experimental Variabilities; Construction of the Upgraded JRR-3; Status of the University of Missouri-Columbia Research Reactor Upgrade; the Reactor and Cold Neutron Facility at NIST; Upgrade of Materials Irradiation Facilities in HFIR; Backfitting of the FRG Reactors; University Research Reactors in the United States; and Organization of the ITER Project - Sharing of Informational Procurements. Topics of interest were: Thermal-hydraulic tests and correlations, Corrosion tests and analytical models , Multidimensional kinetic analysis for small cores, Fuel plates fabrication, Fuel plates stability, Fuel irradiation, Burnable poison irradiation, Structural materials irradiation, Neutron guides irradiation, Cold Source materials irradiation, Cold Source LN 2 test, Source LH2-H 2 O reaction (H or D), Instrumentation upgrading and digital control system, Man-machine interface

  16. Study on effects of development of reactor constant in fast reactor analysis

    International Nuclear Information System (INIS)

    Chiba, Gou

    2002-12-01

    Evaluation was carried out about an effect of development of the new generation reactor constant system that substitutes for the JFS library in fast reactor analysis. Analyzed cores were ZPPR in JUPITER critical experiment and several power reactor cores that were designed in the feasibility study. In the JUPITER analysis, large effects, over 10%, were observed in sodium void reactivity and sample Doppler reactivity. The former resulted from several factors, while the latter was due to an accurate of a resonance interaction effect between Doppler sample and core fuel. In the previous study, the effect had been evaluated in power reactor cores. The effect included an effect of corrosion of weighting spectrum because JFS-3-J3.2, which had been made with the incorrect weighting spectrum, was used in the evaluation. In the present study, JFS-3-J3.2R, which had been made with the correct weighting spectrum, was used. It was confirmed that the effect of development of reactor constant in power reactor was not as large as that in critical assembly. (author)

  17. Using TRIGA Mark II research reactor for irradiation with thermal neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Kolšek, Aljaž, E-mail: aljaz.kolsek@gmail.com; Radulović, Vladimir, E-mail: vladimir.radulovic@ijs.si; Trkov, Andrej, E-mail: andrej.trkov@ijs.si; Snoj, Luka, E-mail: luka.snoj@ijs.si

    2015-03-15

    Highlights: • Monte Carlo N-Particle Transport Code was used to design and perform calculations. • Characterization of the TRIGA Mark II ex-core irradiation facilities was performed. • The irradiation device was designed in the TRIGA irradiation channel. • The use of the device improves the fraction of thermal neutron flux by 390%. - Abstract: Recently a series of test irradiations was performed at the JSI TRIGA Mark II reactor for the Fission Track-Thermoionization Mass Spectrometry (FT-TIMS) method, which requires a well thermalized neutron spectrum for sample irradiation. For this purpose the Monte Carlo N-Particle Transport Code (MCNP5) was used to computationally support the design of an irradiation device inside the TRIGA model and to support the actual measurements by calculating the neutron fluxes inside the major ex-core irradiation facilities. The irradiation device, filled with heavy water, was designed and optimized inside the Thermal Column and the additional moderation was placed inside the Elevated Piercing Port. The use of the device improves the ratio of thermal neutron flux to the sum of epithermal and fast neutron flux inside the Thermal Column Port by 390% and achieves the desired thermal neutron fluence of 10{sup 15} neutrons/cm{sup 2} in irradiation time of 20 h.

  18. HYLIFE-II reactor chamber mechanical design

    International Nuclear Information System (INIS)

    House, P.A.

    1992-01-01

    Mechanical design features of the reactor chamber for the HYLIFE-11 inertial confinement fusion power plant are presented. A combination of oscillating and steady, molten salt streams are used for shielding and blast protection. The system is designed for an 8 Hz repetition rate. Beam path clearing, between shots, is accomplished with the oscillating flow. The mechanism for generating the oscillating streams is described. A design configuration of the vessel wall allows adequate cooling and provides extra shielding to reduce thermal stresses to tolerable levels. The bottom portion of the reactor chamber is designed to minimize splash back of the high velocity (20 m/s) salt streams and also recover up to half of the dynamic head

  19. RA Research nuclear reactor, Part II: radiation protection at the RA reactor in 1987

    International Nuclear Information System (INIS)

    Ninkovic, M.; Ajdacic, N.; Zaric, M.; Vukovic, Z.

    1987-01-01

    Radiation protection tasks which enable safe operation of the RA reactor, and are defined according the the legal regulations and IAEA safety recommendations are sorted into four categories in this report: (1) Control of the working environment, dosimetry at the RA reactor and radiation protection; (2) Radioactivity control in the vicinity of the reactor and meteorology measurements; (3) Decontamination and relevant actions, collecting and treatment of fluid effluents; and and solid radioactive wastes [sr

  20. The KNK II instrumentation for global and local supervision of the reactor core

    International Nuclear Information System (INIS)

    Steiger, W.O.

    1990-01-01

    After an introduction into the KNK plant itself, their historical development and their present situation, the instrumentation of the global and local supervision of the KNK II-core as well as the main safety-related i- and c-systems are described. Special emphasis is laid on the instrumentation of the reactor protection systems and the shutdown systems. After that some practices are reported about instrumentation behavior and lessons learned from the operation and maintenance of the above mentioned systems. At last follows a short description of the special instrumentation for the detection of failed fuel subassemblies and of the plant data processing system. (orig.)

  1. The KNK II instrumentation for global and local supervision of the reactor core

    International Nuclear Information System (INIS)

    Steiger, W.O.

    1991-01-01

    After an introduction into the KNK plant itself, their historical development and their present situation, the instrumentation of the global and local supervision of the KNK II-core as well as the main safety-related instrumentation and control systems is described. Special emphasis is laid on the instrumentation of the reactor protection systems and the shut down systems. After that some practices are reported about instrumentation behavior and lessons learned from the operation and maintenance of the above mentioned systems. At last follows a short description of the special instrumentation for the detection of failed fuel subassemblies and of the plant data processing system. (author). 4 refs, 18 tabs

  2. Whole-Pin Furnace system: An experimental facility for studying irradiated fuel pin behavior under potential reactor accident conditions

    International Nuclear Information System (INIS)

    Liu, Y.Y.; Tsai, H.C.; Donahue, D.A.; Pushis, D.O.; Savoie, F.E.; Holland, J.W.; Wright, A.E.; August, C.; Bailey, J.L.; Patterson, D.R.

    1990-05-01

    The whole-pin furnace system is a new in-cell experimental facility constructed to investigate how irradiated fuel pins may fail under potential reactor accident conditions. Extensive checkouts have demonstrated excellent performance in remote operation, temperature control, pin breach detection, and fission gas handling. The system is currently being used in testing of EBIR-II-irradiated Integral Fast Reactor (IFR) metal fuel pins; future testing will include EBR-II-irradiated mixed-oxide fuel pins. 7 refs., 4 figs

  3. Study of reactivity of fluidized bed nuclear reactor

    International Nuclear Information System (INIS)

    Rammsy, J.E.M.

    1985-01-01

    The reactor physics calculations of a 19 module Fluidized Bed Nuclear Reactor using Leopard and Odog codes are performed. The behaviour of the reactor was studied by calculating the reactivity of the reactor as a function of the parameters governing the operational and accidental conditions of the reactor. The effects of temperature, pressure, and vapor generation in the core on the reactivity are calculated. Also the start up behaviour of the reactor is analyzed. For the purpose of the study of a prototype research reactor, the calculations on a one module reactor have been performed. (Author) [pt

  4. Non-destructive material investigation with thermal neutrons at the TRIGA Mark II reactor in Vienna

    International Nuclear Information System (INIS)

    Bastuerk, M.; Boeck, H.; Zamani, B.; Zawisky, M.; Rauch, H.

    2004-01-01

    Neutron tomography providing 3D information about interior of an object is a very efficient tool to visualize inner defects of the materials, non-destructively. In this study, some applications of neutron tomography in different fields such as geology, aerospace, civil engineering and archaeology were presented. Distribution of minerals in pumice and rock samples, visualization of inner defects within a new developed titan aluminum turbine blade, and distribution of silica gel as an important impregnating agent in construction and restoration of buildings were investigated. The measurements of tomography projections taken in the 0 to 180 o angle were performed with a thermal neutron flux of 10 5 at the TRIGA Mark II research reactor in Vienna, and the common filtered back projection method was used for the 3D image reconstruction. (author)

  5. Gas dynamics in the central cavity of HYLIFE-II reactor

    International Nuclear Information System (INIS)

    Chen, X.M.; Schrock, V.E.; Peterson, P.F.; Colella, P.

    1992-01-01

    In a HYLIFE-II ICF reactor, the microfusion of the D-T capsule in the center of the chamber produces X-rays that can ablate a thin layer off the liquid blanket which protects the first structural wall Thisablated material will implode toward the center line of the central cavity due to the initial vacuum and cylindrical geometry, and then rebound back to the liquid blanket vent through it and exert a pressure ''impulse'' onto the structural wall. The initial ablation occurs in a very short period with very small characteristic length and the implosion and rebounding processes feature very high pressures and temperatures. The proper design of the chamber relies on the reasonably accurate analysis of the gas dynamics in the central cavity and the gas-liquid interaction. In this paper, a second order Godunov numerical method is used to solve the compressible flow equations in the central cavity. The rarefaction and shock phenomena are very well captured by the numerical calculation. The equation of state for Flibe vapor is used in the calculation along with the parameters for the HYLIFE-II design. Since the radiation transport has not yet been included in the current calculations, the vapor possesses higher energy and therefore temperature. The total mass vaporized will also be underestimated in the later time of the calculation. The incorporation of a radiation calculation into this code is our next goal

  6. Tritium management in fusion reactors

    International Nuclear Information System (INIS)

    Galloway, T.R.

    1978-05-01

    This is a review paper covering the key environmental and safety issues and how they have been handled in the various magnetic and inertial confinement concepts and reference designs. The issues treated include: tritium accident analyses, tritium process control, occupational safety, HTO formation rate from the gas-phase, disposal of tritium contaminated wastes, and environmental impact--each covering the Joint European Tokamak (J.E.T. experiment), Tokamak Fusion Test Reactor (TFTR), Russian T-20, The Next Step (TNS) designs by Westinghouse/ORNL and General Atomic/ANL, the ANL and ORNL EPR's, the G.A. Doublet Demonstration Reactor, the Italian Fintor-D and the ORNL Demo Studies. There are also the following full scale plant reference designs: UWMAK-III, LASL's Theta Pinch Reactor Design (RTPR), Mirror Fusion Reactor (MFR), Tandem Mirror Reactor (TMR), and the Mirror Hybrid Reactor (MHR). There are four laser device breakeven experiments, SHIVA-NOVA, LLL reference designs, ORNL Laser Fusion power plant, the German ''Saturn,'' and LLL's Laser Fusion EPR I and II

  7. Simulation development for TRIGA reactor

    International Nuclear Information System (INIS)

    Handoyo, D.

    1997-01-01

    A simulator of the dynamic of TRIGA reactor has been made. this simulator is meant to study the reactor kinetic behavior and for operator training to more assure the safety and the reliability of the real operation of TRIGA reactor. the simulator consists of PC (Personal Computer) for processing the calculation of reactivity, neutron flux, period, ect and control panel for regulating the input data such as the change of power range, control rod position as well as cooling flow rate. the result will be displayed on screen monitor of personal computer as given in the real control room of TRIGA reactor. the output of simulator will be verified by comparing with measurement result in the real TRIGA MARK II reactor of Musashi institute of technology. for the change of reactivity of 0.3, 0.5 and 0.7 the reactor power and fuel temperature between the simulator and measurements are comparable

  8. Status report of Indonesian research reactors

    International Nuclear Information System (INIS)

    Arbie, B.; Supadi, S.

    1995-01-01

    A general description of the three Indonesia research reactors, their irradiation facilities and future prospect are given. The 250 kW Triga Mark II in Bandung has been in operation since 1965 and in 1972 its designed power was increased to 1000 kW. The core grid from the previous 250 kW Triga Mark II was then used by Batan for designing and constructing the Kartini reactor in Yogyakarta. This reactor commenced its operation in 1979. Both Triga reactors have served a wide spectrum of utilization such as for manpower training in nuclear engineering, radiochemistry, isotope production, and beam research in solid state physics. The Triga reactor management in Bandung has a strong cooperation with the Bandung Institute of Technology and the one in Yogyakarta with the Gadjah Mada University which has a Nuclear Engineering Department at its Faculty of Engineering. In 1976 there emerged an idea to have a high flux reactor appropriate for Indonesia's intention to prepare an infrastructure for both nuclear energy and non-energy industry era. Such an idea was then realized with the achievement of the first criticality of the RSG-GAS reactor at the Serpong area. It is now expected that by early 1992 the reactor will reach its full 30 MW power level and by the end of 1992 the irradiation facilities be utilizable fully for future scientific and engineering work. As a part of the national LEU fuel development program a study has been underway since early 1989 to convert the RSG-GAS reactor core from using oxide fuel to using higher loading silicide fuel. (author)

  9. Safety studies concerning nuclear power reactors

    International Nuclear Information System (INIS)

    Bailly, Jean; Pelce, Jacques

    1980-01-01

    The safety of nuclear installations poses different technical problems, whether concerning pressurized water reactors or fast reactors. But investigating methods are closely related and concern, on the one hand, the behavior of shields placed between fuel and outside and, on the other, analysis of accidents. The article is therefore in two parts based on the same plan. Concerning light water reactors, the programme of studies undertaken in France accounts for the research carried out in countries where collaboration agreements exist. Concerning fast reactors, France has the initiative of their studies owing to her technical advance, which explains the great importance of the programmes under way [fr

  10. Lessons learned from Gen II NPP staffing approaches applicable to new reactors - 15003

    International Nuclear Information System (INIS)

    Goodnight, C.

    2015-01-01

    This paper discusses lessons learned from the operation of the Gen II fleet of existing nuclear power plants (NPPs), in terms of staffing, that can be applied to the final design, deployment, and operation of new reactor designs. The most significant of these lessons is the need to appropriately staff the facility, having the right number of people with the required skills and experience. This begs the question of how to identify those personnel requirements. For NPPs, there are five key factors that ultimately will determine the effectiveness and costs of operating nuclear power plants (NPPs): 1) The Nuclear Steam Supply System (NSSS) and the layout of the plant site; 2) The processes which the operating organization applies; 3) The organizational structure of the operating organization; 4) The organizational culture of the operating organization, and 5) The regulatory framework under which the licensee must operate. In summary, this paper identifies opportunities to minimize staffing and costs learned from Gen II NPPs that may be applicable for new nuclear plants. (author)

  11. Maintenance procedures for the TITAN-I and TITAN-II reversed field pinch reactors

    International Nuclear Information System (INIS)

    Grotz, S.P.; Duggan, W.; Krakowski, R.; Najmabadi, F.; Wong, C.P.C.

    1989-01-01

    The TITAN reactor is a compact, high-power-density (neutron wall loading 18 MW/m 2 ) machine, based on the reversed-field-pinch (RFP) confinement concept. Two designs for the fusion power core have been examined: TITAN-I is based on a self-cooled lithium loop with a vanadium-alloy structure for the first wall, blanket and shield; and TITAN-II is based on an aqueous loop-in-pool design with a LiNO 3 solution as the coolant and breeder. The compact design of the TITAN fusion power core, (FPC) reduces the system to a few small and relatively low mass components, making toroidal segmentation of the FPC unnecessary. A single-piece maintenance procedure is possible. The potential advantages of single-piece maintenance procedures are: (1) Short period of down time; (2) improved reliability; (3) no adverse effects resulting from unequal levels of irradiation; and (4) ability to continually modify the FPC design. Increased availability can be expected from a fully pre-tested, single-piece FPC. Pre-testing of the FPC throughout the assembly process and prior to installation into the reactor vault is discussed. (orig.)

  12. Research reactors in Austria - Present situation

    International Nuclear Information System (INIS)

    Boeck, H.; Musilek, A.; Villa, M.

    2005-01-01

    In the past decades Austria operated three research reactors, the 10 MW ASTRA reactor at Seibersdorf, the 250 kW TRIGA reactor at the Atominstitut and the 1 kW Argonaut reactor at the Technical University in Graz. Since the shut down of the ASTRA on July 31th, 1999 and its immediate decommissioning reactor and the shut down of the Argonaut reactor in Graz on August 31st, 2004 only one reactor remains operational for keeping nuclear competence in Austria which is the 250 kW TRIGA Mark II reactor. (author)

  13. L-Reactor Habitat Mitigation Study

    International Nuclear Information System (INIS)

    1988-02-01

    The L-Reactor Fish and Wildlife Resource Mitigation Study was conducted to quantify the effects on habitat of the L-Reactor restart and to identify the appropriate mitigation for these impacts. The completed project evaluated in this study includes construction of a 1000 acre reactor cooling reservoir formed by damming Steel Creek. Habitat impacts identified include a loss of approximately 3,700 average annual habitat units. This report presents a mitigation plan, Plan A, to offset these habitat losses. Plan A will offset losses for all species studied, except whitetailed deer. The South Carolina Wildlife and Marine Resources Department strongly recommends creation of a game management area to provide realistic mitigation for loss of deer habitats. 10 refs., 5 figs., 3 tabs

  14. Safety analysis of the experimental multi-purpose high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Mitake, Susumu; Ezaki, Masahiro; Suzuki, Katsuo; Takaya, Junichi; Shimazu, Akira

    1976-02-01

    Safety features of the experimental multi-purpose high-temperature gas-cooled reactor being developed in JAERI were studied or the basis of its preliminary conceptual design of the reactor plant. Covered are control of the plant in transients, plant behaviour in accidents, and functions of engineered safeguards, and also dynamics of the uprant and frequencies of the accidents. These studies have shown, (i) the reactor plant can be operated both in plant slave to reactor and reactor slave to plant control, (ii) stable control of

  15. Utilization of a typical 250 kW TRIGA Mark II reactor at a University

    International Nuclear Information System (INIS)

    Villa, M.; Boeck, H.; Musilek, A.

    2007-01-01

    The 250 kW TRIGA Mark-II reactor operates since March 1962 at the Atominstitut Vienna/Austria. Its main tasks are nuclear education and training in the fields of neutron- and solid state physics, nuclear technology, reactor safety, radiochemistry, radiation protection and dosimetry, and low temperature physics and fusion research. Academic research is carried out by students in the above mentioned fields coordinated and supervised by about 70 staff members with the aim of a masters- or PhD degree in one of the above mentioned areas. During the past 15 years about 580 students graduated through the Atominstitut. In addition, the Atominstitut co-operates closely with the nearby located IAEA in research projects, coordinated research programs (CRP) and supplying expert services. Regular training courses are carried out for the IAEA for Safeguard Trainees, fellowship places are offered for scientists from developing countries and staff members carry out expert missions to research centres in Africa, Asia and South America. Special Nuclear Material (SNM) is stored for calibration purposes at the Atominstitut belonging to the IAEA. (author)

  16. Vibrations measurement in fast and PWR reactor study

    International Nuclear Information System (INIS)

    Tigeot, Y.; Epstein, A.; Hareux, F.

    1975-01-01

    In the past severe damages have occured in several nuclear reactors, by structural vibrations induced by the primary cooling flow. To avoid this kind of troubles, the SEMT makes studies for two different types of reactors. For the light pressurized water reactors, some tests have been made on the SAFRAN test loop which is a three loop 1/8 scale internal model of a 900 MWe reactor. This study is actually undertaken jointly with Framatome. Elsewhere, measurements have been made on the Phenix fast breeder sodium reactor, and studies are planned for the Super Phenix reactor [fr

  17. Reactor protection system

    International Nuclear Information System (INIS)

    Fairbrother, D.B.; Lesniak, L.M.; Orgera, E.G.

    1977-10-01

    The report describes the reactor protection system (RPS-II) designed for use on Babcock and Wilcox 145-, later 177-, and 205-fuel assembly pressurized water reactors. In this system, relays in the trip logic have been replaced by solid state devices. A calculating module for the low DNBR, pump status, and offset trip functions has replaced the overpower trip (based on flow and imbalance), the power/RC pump trip, and the variable low-pressure trip. Included is a description of the changes from the present Oconee-type reactor protection system (RPS-I), a functional and hardware description of the calculating module, a description of the software programmed in the calculating module, and a discussion of the qualification program conducted to ensure that the degree of protection provided by RPS-II is not less than that provided by previously licensed systems supplied by B and W

  18. Operation experience and maintenance at the TRIGA Mark II L.E.N.A. reactor

    International Nuclear Information System (INIS)

    Gngoli, F.; Berzero, A.; Lana, F.; Rosti, G.; Meloni, S.

    2008-01-01

    The TRIGA Mark II reactor of the University of Pavia was operated in the last two years on a routine basis, mostly for neutron activation analysis purposes. Moreover the reactor was completely shutdown in the first six months of this year to allow the dismantling of the NADIR experimental setup. The paper presents: - Reactor operation from July 1990 to June 1992; - Reactor users in the time period January 1990 - December 1991; - Specific activities of some radionuclides in the filling materials; - Specific activity of some radionuclides in thermal column materials. Operations related to dismantling of NADIR experimental facility are described. Finally the new thermal column configuration is presented. Starting from the end inside the reactor tank, a graphite layer (35 cm thick) was positioned, followed by a bismuth layer (10 cm thick) to reduce gamma-ray intensity. The old graphite rods were then positioned leaving in the central part, on the equatorial plane of the thermal column, a cavity whose vertical section has 40 cm width and 20 cm height. The bottom of the cavity, towards to the reactor tank, has been lined with additional layers of graphite (10 cm), bismuth (10 cm) and again graphite (1 cm). The new configuration allowed new experiments to be performed. The cavity in the central part has been created to allow the irradiation of large biological samples such as experimental animal and human livers. This is a peculiar step in a neutron capture boron therapy project to be carried out at the University of Pavia. In order to avoid an implemented 41 Ar production in the void space between shutters and the thermal column outer end, the external surface of the thermal column has been coated with boral sheets. The neutron flux profile, both thermal and epithermal, and cadmium ratio for gold are shown. The flux distribution appears to be adequate to proceed with the neutron capture boron therapy experiment. The LENA Health Physics Service has checked all phases of

  19. What have fusion reactor studies done for you today?

    International Nuclear Information System (INIS)

    Kulchinski, G.L.

    1985-01-01

    The University of Wisconsin examines the fusion program and puts into perspective what return is being made on investments in fusion reactor studies. Illustations show financial support for fusion research from the four major programs, FY'82 expenditures on fusion research, and the total expenditures on fusion research since 1951. Topics discussed include the estimated number of scientists conducting fusion research, the conceptual design study of a fusion reactor, scoping study of a reactor, the chronology of fusion reactor design studies, published fusion reactor studies 1967-1983, conceptual fusion reactor design studies, STARFIRE reference design, MARS central cell, HYLIFE reaction chamber, and selected contributions of reactor design studies to base programs

  20. Irradiated graphite studies prior to decommissioning of G1, G2 and G3 reactors

    International Nuclear Information System (INIS)

    Bonal, J.P.; Vistoli, J.Ph.; Combes, C.

    2005-01-01

    G1 (46 MW th ), G2 (250 MW th ) and G3 (250 MW th ) are the first French plutonium production reactors owned by CEA (Commissariat a l'Energie Atomique). They started to be operated in 1956 (G1), 1959 (G2) and 1960 (G3); their final shutdown occurred in 1968, 1980 and 1984 respectively. Each reactor used about 1200 tons of graphite as moderator, moreover in G2 and G3, a 95 tons graphite wall is used to shield the rear side concrete from neutron irradiation. G1 is an air cooled reactor operated at a graphite temperature ranging from 30 C to 230 C; G2 and G3 are CO 2 cooled reactors and during operation the graphite temperature is higher (140 C to 400 C). These reactors are now partly decommissioned, but the graphite stacks are still inside the reactors. The graphite core radioactivity has decreased enough so that a full decommissioning stage may be considered. Conceming this decommissioning, the studies reported here are: (i) stored energy in graphite, (ii) graphite radioactivity measurements, (iii) leaching of radionuclide ( 14 C, 36 Cl, 63 Ni, 60 Co, 3 H) from graphite, (iv) chlorine diffusion through graphite. (authors)

  1. Feasibility study for fast reactor and related fuel cycle. Preliminary studies in 1998

    International Nuclear Information System (INIS)

    Hayafune, Hiroki; Enuma, Yasuhiro; Kubota, Kenichi; Yoshida, Masashi; Uno, Osamu; Ishikawa, Hiroyasu; Kobayashi, Jun; Umetsu, Youichiro; Ichimiya, Masakazu

    1999-10-01

    Prior to the feasibility study for fast reactors (FRs) starting from the 1999 fiscal year, planned in the medium and long-term program of JNC, preliminarily studies were performed on 'FR systems except sodium cooled MOX fueled reactors'. Small scale or module type reactors, heavy metal (Pb or Pb-Bi) cooled reactors, gas cooled reactors, light water cooled reactors, and molten salt reactors were studied on the basis of literature. They were evaluated from the viewpoint of the technical possibility (the structure integrity, earthquake resistance, safety, productivity, operability, maintenance repair, difficulty of the development), the long-term targets (market competitiveness as an energy system, utilization of uranium resources, reduction of radioactive waste, security of the non-proliferation), and developmental risk. As the result, the following concepts should be studied for future commercialized FRs. Small scale and module type reactor: Middle-sized reactor with an excellent economical efficiency. Small power reactor with a multipurpose design concept. Gas cooled reactor: CO2 gas cooled reactor, He gas cooled reactor. Heavy metal cooled reactor: Russian type lead cooled reactor. Light water cooled reactor: Light water cooled high converter reactor and super critical pressure light water cooled reactor. Molten salt reactor: Trichloride molten salt reactor which matches the U-Pu cycle. (author)

  2. Proposed fuel cycle for the Integral Fast Reactor

    International Nuclear Information System (INIS)

    Burris, L.; Walters, L.C.

    1985-01-01

    One of the key features of ANL's Integral Fast Reactor (IFR) concept is a close-coupled fuel cycle. The proposed fuel cycle is similar to that demonstrated over the first five to six years of operation of EBR-II, when a fuel cycle facility adjacent to EBR-II was operated to reprocess and refabricate rapidly fuel discharged from the EBR-II. Locating the IFR and its fuel cycle facility on the same site makes the IFR a self-contained system. Because the reactor fuel and the uranium blanket are metals, pyrometallurgical processes (shortned to ''pyroprocesses'') have been chosen. The objectives of the IFR processes for the reactor fuel and blanket materials are to (1) recover fissionable materials in high yield; (2) remove fission products adequately from the reactor fuel, e.g., a decontamination factor of 10 to 100; and (3) upgrade the concentration of plutonium in uranium sufficiently to replenish the fissile-material content of the reactor fuel. After the fuel has been reconstituted, new fuel elements will be fabricated for recycle to the reactor

  3. Studies on reactor physics

    International Nuclear Information System (INIS)

    1960-01-01

    Most of the peaceful applications of atomic energy are inherently dependent on advances in the science and technology of nuclear reactors, and aspects of this development are part of a major programme of the International Atomic Energy Agency. The most useful role that the Agency can play is as a co-ordinating body or central forum where the trends can be reviewed and the results assessed. Some of the basic studies are carried out by members of the Agency's own scientific staff. The Agency also convenes groups of experts from different countries to examine a particular problem in detail and make any necessary recommendations. Some of the important subjects are discussed at international scientific meetings held by the Agency. One of the subjects covered by such studies is the physics of nuclear reactors and a specific topic recently discussed was Codes for Reactor Computations, on which a seminar was held in Vienna in April this year. Another The members of the Panel described the development of heavy water reactors, the equipment and methods of research currently used, and plans for further development in their respective countries meeting of Panel of Experts on Heavy Water Lattices was held in Vienna in August 1959

  4. Activation and waste disposal of the TITAN RFP [reversed-field-pinch] reactors

    International Nuclear Information System (INIS)

    Cheng, E.T.; Conn, R.W.

    1988-01-01

    The TITAN-I lithium self-cooled and TITAN-II aqueous lithium nitrate solution-cooled fusion reactors are based on the reversed-field-pinch (RFP) toroidal confinement concept and operate at high power density with an 18.1 MW/m 2 neutron wall loading. These designs were analyzed to study the activation and waste disposal aspects of such high-power density reactors. It was found that because of the use of V-3Ti-1Si (TITAN-I) and reduced activation ferritic steel (TITAN-II) as structural alloys for the first wall, blanket, reflector, and shield components, all the TITAN components except the divertor collector plates can be classified as shallow-land burial (10CFR61 Class C or better) nuclear waste for disposal, provided that the impurity elements, niobium and molybdenum, can be controlled below about 1 and 0.3 appm levels, respectively. The average annual disposal masses were estimated to be 150 and 96 tonnes, respectively, for the 1,000 MW TITAN-I and TITAN-II reactors. This corresponds to about 11% of the total mass in the fusion power core of both reactors. The divertor collector plates are fabricated with tungsten because of its low particle sputtering properties. These divertor collector plates in the TITAN-I reactor will be qualified as Class C waste after 18.1 MW-y/m 2 operation. The waste disposal rating of the divertor collector plates in the TITAN-II reactor, however, is estimated to be a factor of 4 higher than allowed for Class C disposal, because of the soft neutron spectrum in the beryllium environment. The annual disposal mass of this non-Class C waste is 0.35 tons, about 0.04% of the average annual discharge mass for the TITAN-II reactor. An additional 74 m 3 annual discharge of Class C waste containing 14 C may be needed for the TITAN-II reactor because of the use of nitrate salt in the aqueous coolant as the tritium breeder. 13 refs., 6 tabs

  5. EBR-II: twenty years of operating experience

    International Nuclear Information System (INIS)

    Lentz, G.L.; Buschman, H.W.; Smith, R.N.

    1985-01-01

    Experimental Breeder Reactor No. 2 (EBR-II) is an unmoderated, sodium-cooled reactor with a design power of 62.5 MWt. For the last 20 years EBR-II has operated safely, has demonstrated stable operating characteristics, has shown excellent performance of its sodium components, and has had an excellent plant factor. These years of operating experience provide a valuable resource to the nuclear community for the development and design of future liquid metal fast reactors. This report provides a brief description of the EBR-II plant and its early operating experience, describes some recent problems of interest to the nuclear community, and also mentions some of the significant operating achievements of EBR-II. Finally, a few words and speculations on EBR-II's future are offered. 4 figs., 1 tab

  6. MARS: Mirror Advanced Reactor Study

    International Nuclear Information System (INIS)

    Logan, B.G.

    1984-01-01

    A recently completed two-year study of a commercial tandem mirror reactor design [Mirror Advanced Reactor Study (MARS)] is briefly reviewed. The end plugs are designed for trapped particle stability, MHD ballooning, balanced geodesic curvature, and small radial electric fields in the central cell. New technologies such as lithium-lead blankets, 24T hybrid coils, gridless direct converters and plasma halo vacuum pumps are highlighted

  7. The evaluation of research reactor TRIGA MARK II safety

    International Nuclear Information System (INIS)

    Jordan, R.; Kozuh, M.; Mavko, B.

    1994-01-01

    In the paper the Probabilistic Safety Analysis (PSA) of a research reactor is described. Five different initiating events were selected and analyzed with the use of event trees. Seven reactor systems were modeled with fault trees. Three groups of radiation releases were introduced - Success, Reactor-Hall, Environment - and their frequencies were estimated. The importance factors of initiating events, human errors and basic events were calculated regarding the consequence groups. (author)

  8. TRIGA reactor as an experimental tool

    Energy Technology Data Exchange (ETDEWEB)

    Nahrul Khair bin Alang Mohammad Rashid (PUSPATI, Selangor (Malaysia))

    1981-01-01

    Article reviewed on the general features, operation and capabilities, and utilization of a research reactor, PUSPATI TRIGA MARK II. The paper also described the arrangements for the use of the PUSPATI reactor.

  9. Triga reactor as an experimental tool

    International Nuclear Information System (INIS)

    Nahrul Khair bin Alang Mohammad Rashid

    1981-01-01

    Article reviewed on the general features, operation and capabilities, and utilization of a research reactor, PUSPATI TRIGA MARK II. The paper also described the arrangements for the use of the PUSPATI reactor

  10. Experimental study of radiation dose rate at different strategic points of the BAEC TRIGA Research Reactor.

    Science.gov (United States)

    Ajijul Hoq, M; Malek Soner, M A; Salam, M A; Haque, M M; Khanom, Salma; Fahad, S M

    2017-12-01

    The 3MW TRIGA Mark-II Research Reactor of Bangladesh Atomic Energy Commission (BAEC) has been under operation for about thirty years since its commissioning at 1986. In accordance with the demand of fundamental nuclear research works, the reactor has to operate at different power levels by utilizing a number of experimental facilities. Regarding the enquiry for safety of reactor operating personnel and radiation workers, it is necessary to know the radiation level at different strategic points of the reactor where they are often worked. In the present study, neutron, beta and gamma radiation dose rate at different strategic points of the reactor facility with reactor power level of 2.4MW was measured to estimate the rising level of radiation due to its operational activities. From the obtained results high radiation dose is observed at the measurement position of the piercing beam port which is caused by neutron leakage and accordingly, dose rate at the stated position with different reactor power levels was measured. This study also deals with the gamma dose rate measurements at a fixed position of the reactor pool top surface for different reactor power levels under both Natural Convection Cooling Mode (NCCM) and Forced Convection Cooling Mode (FCCM). Results show that, radiation dose rate is higher for NCCM in compared with FCCM and increasing with the increase of reactor power. Thus, concerning the radiological safety issues for working personnel and the general public, the radiation dose level monitoring and the experimental analysis performed within this paper is so much effective and the result of this work can be utilized for base line data and code verification of the nuclear reactor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Long-distance transport of Hg, Sb, and As from a mined area, conversion of Hg to methyl-Hg, and uptake of Hg by fish on the Tiber River basin, west-central Italy

    Science.gov (United States)

    Gray, John E.; Rimondi, Valentina; Costagliola, Pilario; Vaselli, Orlando; Lattanzi, Pierfranco

    2014-01-01

    Stream sediment, stream water, and fish were collected from a broad region to evaluate downstream transport and dispersion of mercury (Hg) from inactive mines in the Monte Amiata Hg District (MAMD), Tuscany, Italy. Stream sediment samples ranged in Hg concentration from 20 to 1,900 ng/g, and only 5 of the 17 collected samples exceeded the probable effect concentration for Hg of 1,060 ng/g, above which harmful effects are likely to be observed in sediment-dwelling organisms. Concentrations of methyl-Hg in Tiber River sediment varied from 0.12 to 0.52 ng/g, and although there is no established guideline for sediment methyl-Hg, these concentrations exceeded methyl-Hg in a regional baseline site (water varied from 1.2 to 320 ng/L, all of which were below the 1,000 ng/L Italian drinking water Hg guideline and the 770 ng/L U.S. Environmental Protection Agency (USEPA) guideline recommended to protect against chronic effects to aquatic wildlife. Methyl-Hg concentrations in stream water varied from water samples contained concentrations of As (drinking water guidelines to protect human health (10 μg/L for As and 20 μg/L for Sb) and for protection against chronic effects to aquatic wildlife (150 μg/L for As and 5.6 μg/L for Sb). Concentrations of Hg in freshwater fish muscle ranged from 0.052–0.56 μg/g (wet weight), mean of 0.17 μg/g, but only 17 % (9 of 54) exceeded the 0.30 μg/g (wet weight) USEPA fish muscle guideline recommended to protect human health. Concentrations of Hg in freshwater fish in this region generally decreased with increasing distance from the MAMD, where fish with the highest Hg concentrations were collected more proximal to the MAMD, whereas all fish collected most distal from Hg mines contained Hg below the 0.30 μg/g fish muscle guideline. Data in this study indicate some conversion of inorganic Hg to methyl-Hg and uptake of Hg in fish on the Paglia River, but less methylation of Hg and Hg uptake by freshwater fish in the larger Tiber River.

  12. Reactor protection system design using micro-computers

    International Nuclear Information System (INIS)

    Fairbrother, D.B.

    1977-01-01

    Reactor Protection Systems for Nuclear Power Plants have traditionally been built using analog hardware. This hardware works quite well for single parameter trip functions; however, optimum protection against DNBR and KW/ft limits requires more complex trip functions than can easily be handled with analog hardware. For this reason, Babcock and Wilcox has introduced a Reactor Protection System, called the RPS-II, that utilizes a micro-computer to handle the more complex trip functions. This paper describes the design of the RPS-II and the operation of the micro-computer within the Reactor Protection System

  13. Reactor protection system design using micro-computers

    International Nuclear Information System (INIS)

    Fairbrother, D.B.

    1976-01-01

    Reactor protection systems for nuclear power plants have traditionally been built using analog hardware. This hardware works quite well for single parameter trip functions; however, optimum protection against DNBR and KW/ft limits requires more complex trip functions than can easily be handled with analog hardware. For this reason, Babcock and Wilcox has introduced a Reactor Protection System, called the RPS-II, that utilizes a micro-computer to handle the more complex trip functions. The paper describes the design of the RPS-II and the operation of the micro-computer within the Reactor Protection System

  14. Nordic studies in reactor safety

    International Nuclear Information System (INIS)

    Pershagen, N.

    1993-01-01

    The Nordic Nuclear Safety Research Programme SIK programme in reactor safety is part of a major joint Nordic research effort in nuclear safety. The report summarizes the achievements of the SIK programme, which was carried out during 1990-1993 in collaboration between Nordic nuclear utilities, safety authorities, and research institutes. Three main projects were successfully completed dealing with: 1) development and application of a living PSA concept for monitoring the risk of core damage, and of safety indicators for early warning of possible safety problems; 2) review and intercomparison of severe accident codes, case studies of potential core melt accidents in nordic reactors, development of chemical models for the MAAP code, and outline of a system for computerized accident management support; 3) compilation of information about design and safety features of neighbouring reactors in Germany, Lithuania and Russia, and for naval reactors and nuclear submarines. The report reviews the state-of-the-art in each subject matter as an introduction to the individual project summaries. The main findings of each project are highlighted. The report also contains an overview of reactor safety research in the Nordic countries and a summary of fundamental reactor safety principles. (au) (69 refs.)

  15. Design studies of Tokamak power reactor in JAERI

    International Nuclear Information System (INIS)

    Tone, T.; Nishikawa, M.; Tanaka, Y.

    1985-01-01

    Recent design studies of tokamak power reactor and related activities conducted in JAERI are presented. A design study of the SPTR (Swimming-Pool Type Reactor) concept was carried out in FY81 and FY82. The reactor design studies in the last two years focus on nuclear components, heat transport and energy conversion systems. In parallel of design studies, tokamak systems analysis code is under development to evaluate reactor performances, cost and net energy balance

  16. Parametric studies of tandem mirror reactors

    International Nuclear Information System (INIS)

    Carlson, G.A.; Boghosian, B.M.; Fink, J.H.; Myall, J.O.; Neef, W.S. Jr.

    1979-01-01

    This report, along with its companion, An Improved Tandem Mirror Reactor, discusses the recent progress and present status of our tandem mirror reactor studies. This report presents the detailed results of parametric studies up to, but not including, the very new ideas involving thermal barriers

  17. ITER [International Thermonuclear Experimental Reactor] reactor building design study

    International Nuclear Information System (INIS)

    Thomson, S.L.; Blevins, J.D.; Delisle, M.W.

    1989-01-01

    The International Thermonuclear Experimental Reactor (ITER) is at the midpoint of a two-year conceptual design. The ITER reactor building is a reinforced concrete structure that houses the tokamak and associated equipment and systems and forms a barrier between the tokamak and the external environment. It provides radiation shielding and controls the release of radioactive materials to the environment during both routine operations and accidents. The building protects the tokamak from external events, such as earthquakes or aircraft strikes. The reactor building requirements have been developed from the component designs and the preliminary safety analysis. The equipment requirements, tritium confinement, and biological shielding have been studied. The building design in progress requires continuous iteraction with the component and system designs and with the safety analysis. 8 figs

  18. Overview of the US stellarator reactor study

    International Nuclear Information System (INIS)

    Lyon, J.F.; Gulec, K.; Miller, R.L.; El-Guebaly, L.

    1993-01-01

    This study, which uses a cost-minimization code that incorporates the ARIES costing and reactor component models with a I-D energy transport calculation, shows that a torsatron reactor could be competitive with a tokamak reactor

  19. Modeling the PUSPATI TRIGA Reactor using MCNP code

    International Nuclear Information System (INIS)

    Mohamad Hairie Rabir; Mark Dennis Usang; Naim Syauqi Hamzah; Julia Abdul Karim; Mohd Amin Sharifuldin Salleh

    2012-01-01

    The 1 MW TRIGA MARK II research reactor at Malaysian Nuclear Agency achieved initial criticality on June 28, 1982. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes. This paper describes the reactor parameters calculation for the PUSPATI TRIGA REACTOR (RTP); focusing on the application of the developed reactor 3D model for criticality calculation, analysis of power and neutron flux distribution and depletion study of TRIGA fuel. The 3D continuous energy Monte Carlo code MCNP was used to develop a versatile and accurate full model of the TRIGA reactor. The model represents in detailed all important components of the core and shielding with literally no physical approximation. (author)

  20. Studies of conceptual spheromak fusion reactors

    International Nuclear Information System (INIS)

    Katsurai, M.; Yamada, M.

    1982-01-01

    Preliminary design studies are carried out for a spheromak fusion reactor. Simplified circuit theory is applied to obtain the characteristic relations among various parameters of the spheromak configuration for an aspect ratio of A >or approx. 1.6. These relations are used to calculate the parameters for the conceptual designs of three types of fusion reactor: (1) the DT reactor with two-component-type operation, (2) the ignited DT reactor, and (3) the ignited catalysed-type DD reactor. With a total wall loading of approx. 4 MW.m -2 , it is found that edge magnetic fields of only approx. 4 T (DT) and approx. 9 T (Cat. DD) are required for ignited reactors of 1 m plasma (minor) radius with output powers in the gigawatt range. An assessment of various schemes of generation, compression and translation of spheromak plasmas is presented. (author)

  1. Fusion reactor control study. Volume 3. Tandem mirror reactors. Final report

    International Nuclear Information System (INIS)

    Chang, F.R.; DeCanio, F.; Fisher, J.L.; Madden, P.A.

    1982-03-01

    A study of the control requirements of the Tandem Mirror Reactor concept is reported. The study describes the development of a control simulator that is based upon a spatially averaged physics code of the reactor concept. The simulator portrays the evolution of the plasma through the complete reactor operating cycle; it includes models of the control and measurement system, thus allowing the exploration of various strategies for reactor control. Startup, shutdown, and control during the quasi-steady-state power producing phase were explored. Configurations are described which use a variety of control effectors including modulation of the refueling rate, beam current, and electron cyclotron resonance heating. Multivariable design techniques were used to design the control laws and compensators for the feedback controllers and presume the practical measurement of only a subset of the plasma and machine variables. Performance of the various controllers is explored using the nonlinear control simulator. Derivative control strategies using new or developed sensors and effectors appropriate to a power reactor environment are postulated, based upon the results of the control configurations tested. Research and development requirements for these controls are delineated

  2. U-target irradiation at FRM II aiming the production of Mo-99 - A feasibility study

    International Nuclear Information System (INIS)

    Gerstenberg, H.; Mueller, C.; Neuhaus, I.; Roehrmoser, A.

    2010-01-01

    Following the shortage in radioisotope availability the Technische Unversitaet Muenchen and the Belgian Institut National des Radioelements conducted a common study on the suitability of the FRM II reactor for the generation of Mo-99 as a fission product. A suitable irradiation channel was determined and neutronic calculations resulted in sufficiently high neutron flux densities to make FRM II a promising candidate for Mo-99 production. In addition the feasibility study provides thermohydraulic calculations as input for the design and integration of the additional cooling circuit into the existing heat removal systems of FRM II. The required in-house processes for a regular uranium target irradiation programme have been defined and necessary upgrades identified. Finally the required investment cost was estimated and a possible time schedule was given. (author)

  3. Visualization of neutron flux and power distributions in TRIGA Mark II reactor as an educational tool

    International Nuclear Information System (INIS)

    Snoj, Luka; Ravnik, Matjaz; Lengar, Igor

    2008-01-01

    Modern Monte Carlo computer codes (e.g. MCNP) for neutron transport allow calculation of detailed neutron flux and power distribution in complex geometries with resolution of ∼1 mm. Moreover they enable the calculation of individual particle tracks, scattering and absorption events. With the use of advanced software for 3D visualization (e.g. Amira, Voxler, etc.) one can create and present neutron flux and power distribution in a 'user friendly' way convenient for educational purposes. One can view axial, radial or any other spatial distribution of the neutron flux and power distribution in a nuclear reactor from various perspectives and in various modalities of presentation. By visualizing the distribution of scattering and absorption events and individual particle tracks one can visualize neutron transport parameters (mean free path, diffusion length, macroscopic cross section, up-scattering, thermalization, etc.) from elementary point of view. Most of the people remember better, if they visualize the processes. Therefore the representation of the reactor and neutron transport parameters is a convenient modern educational tool for the (nuclear power plant) operators, nuclear engineers, students and specialists involved in reactor operation and design. The visualization of neutron flux and power distributions in Jozef Stefan Institute TRIGA Mark II research reactor is treated in the paper. The distributions are calculated with MCNP computer code and presented using Amira and Voxler software. The results in the form of figures are presented in the paper together with comments qualitatively explaining the figures. (authors)

  4. Neutronics comparative analysis between MNSR and slowpoke-II reactors

    International Nuclear Information System (INIS)

    Khamis, I.; Khattab, K.

    1999-01-01

    Neutronics analysis of both MNSR and Slowpoke reactors were made. Calculations including flux distribution, power estimation, excess and shutdown reactivity margins, flooding effects of irradiation sites, and initial investigation of fuel conversion from high to low enriched uranium were discussed. A neutronic 3-D model, dedicated mainly for the MNSR, has been developed to perform such neutronic calculations for both reactors. Well-known cell and core calculation codes such as WIMSD4 and CITATIONS have been used. It was found out that it is possible to lower the fuel enrichment of the Miniature Neutron Source Reactor (MNSR) to 20% using U O 2 as fuel instead of U Al 4 . The number of fuel elements required for the new core is 199. The use of double thickness of the bottom reflector in Slowpoke reactor made it possible to load the reactor with lower enriched fuel compared to MNSR. Values of reactivity flooding effects for single or combination of inner irradiation sites were obtained accurately. Results show good agreement with reported data for MNSR. (author)

  5. Tightly coupled transient analysis of EBR-II

    International Nuclear Information System (INIS)

    Makowitz, H.; Lehto, W.K.; Sackett, J.I.

    1988-01-01

    A Tightly Coupled transient analysis system for the Experimental Breeder Reactor-II (EBR-II) is currently being tested. The system consists of a faster than real time high fidelity reactor simulation, advanced graphics displays, expert system coupling, and real time data coupling via the EBR-II data acquisition system to and from the plant and the control system. The base, first generation software has been developed and is presently being tested. Various subsystem couplings and the total system integration are being checked out. This system should enhance the diagnostic and prognostic capability of EBR-II in the near term and provide automatic control during startup and power maneuvering in the future, as well as serve as a testbed for new control system development for advanced reactors

  6. Nordic study on reactor waste

    International Nuclear Information System (INIS)

    1981-08-01

    In 1981, 14 nuclear power reactors are in operation and 2 under construction in the Nordic countries. So far, the reactor waste originating from day-to-day operation of these plants has been stored in solidified form at the reactor sites. Within a few years a satisfactory disposal procedure needs to be established. While the main R and D effects in the waste field have earlier been devoted to the question of irradiated fuel and waste from reprocessing, there is therefore now an increased interest in reactor waste with its much lower radioactivity but somewhat larger volumes. Since 1977, efforts have been made in a joint Nordic study to examine which facts need to be known in order to perform a comprehensive safety assessment of a reactor waste management system. In the present study a Reference system related to the waste generated over 30 years from six 500 MW-reactors is examined. The dominating radionuclides during storage and transportation accident scenarios are Cs-134, Cs-137 and Co-60. For most of the release scenarios from repositories Cs-137 and Sr-90 are dominating. Some scenarios are, however, dominated by the very longlived nuclides I-129 and C-14. A closer examination of the concentration in the waste of these nuclides and of their leaching properties indicates that their small - but significant - influence, as calculated, is probably grossly overestimated. The mechanical stability obtained in routine solidification processes of reactor waste products in conjunction with the outer container (steel drum, transport container, etc.) turns out to be sufficient. Difficulties were encountered in applying ICRP methodology and available dose calculation methods to calculation of population doses due to small activity releases, and effects extending into the far future. (EG)

  7. Power level control of the TRIGA Mark-II research reactor using the multifeedback layer neural network and the particle swarm optimization

    International Nuclear Information System (INIS)

    Coban, Ramazan

    2014-01-01

    Highlights: • A multifeedback-layer neural network controller is presented for a research reactor. • Off-line learning of the MFLNN is accomplished by the PSO algorithm. • The results revealed that the MFLNN–PSO controller has a remarkable performance. - Abstract: In this paper, an artificial neural network controller is presented using the Multifeedback-Layer Neural Network (MFLNN), which is a recently proposed recurrent neural network, for neutronic power level control of a nuclear research reactor. Off-line learning of the MFLNN is accomplished by the Particle Swarm Optimization (PSO) algorithm. The MFLNN-PSO controller design is based on a nonlinear model of the TRIGA Mark-II research reactor. The learning and the test processes are implemented by means of a computer program at different power levels. The simulation results obtained reveal that the MFLNN-PSO controller has a remarkable performance on the neutronic power level control of the reactor for tracking the step reference power trajectories

  8. Feasibility of processing the experimental breeder reactor-II driver fuel from the Idaho National Laboratory through Savannah River Site's H-Canyon facility

    Energy Technology Data Exchange (ETDEWEB)

    Magoulas, V. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-07-28

    Savannah River National Laboratory (SRNL) was requested to evaluate the potential to receive and process the Idaho National Laboratory (INL) uranium (U) recovered from the Experimental Breeder Reactor II (EBR-II) driver fuel through the Savannah River Site’s (SRS) H-Canyon as a way to disposition the material. INL recovers the uranium from the sodium bonded metallic fuel irradiated in the EBR-II reactor using an electrorefining process. There were two compositions of EBR-II driver fuel. The early generation fuel was U-5Fs, which consisted of 95% U metal alloyed with 5% noble metal elements “fissium” (2.5% molybdenum, 2.0% ruthenium, 0.3% rhodium, 0.1% palladium, and 0.1% zirconium), while the later generation was U-10Zr which was 90% U metal alloyed with 10% zirconium. A potential concern during the H-Canyon nitric acid dissolution process of the U metal containing zirconium (Zr) is the explosive behavior that has been reported for alloys of these materials. For this reason, this evaluation was focused on the ability to process the lower Zr content materials, the U-5Fs material.

  9. The nuclear reactor systems

    International Nuclear Information System (INIS)

    Bacher, P.

    2008-01-01

    This paper describes the various nuclear reactor systems, starting with the Generation II, then the present development of the Generation III and the stakes and challenges of the future Generation IV. Some have found appropriate to oppose reactor systems or generations one to another, especially by minimizing the enhancements of generation III compared to generation II or by expecting the earth from generation IV (meaning that generation III is already obsolete). In the first part of the document (chapter 2), some keys are given to the reader to develop its proper opinion. Chapter 3 describes more precisely the various reactor systems and generations. Chapter 4 discusses the large industrial manoeuvres around the generation III, and the last chapter gives some economical references, taking into account, for the various means of power generation, the impediments linked to climate protection

  10. Reliability and extended-life potential of EBR-II

    International Nuclear Information System (INIS)

    King, R.W.

    1985-01-01

    Although the longlife potential of liquid-metal-cooled reactors (LMRs) has been only partially demonstrated, many factors point to the potential for exceptionally long life. EBR-II has the opportunity to become the first LMR to achieve an operational lifetime of 30 years or more. In 1984 a study of the extended-life potential of EBR-II identified the factors that contribute to the continued successful operation of EBR-II as a power reactor and experimental facility. Also identified were factors that could cause disruptions in the useful life of the facility. Although no factors were found that would inherently limit the life of EBR-II, measures were identified that could help ensure continued plant availability. These measures include the implementation of more effective surveillance, diagnostic, and control systems to complement the inherent safety and reliability features of EBR-II. An operating lifetime of well beyond 30 years is certainly feasible

  11. LMFBR operational safety: the EBR-II experience

    International Nuclear Information System (INIS)

    Sackett, J.I.; Allen, N.L.; Dean, E.M.; Fryer, R.M.; Larson, H.A.; Lehto, W.K.

    1978-01-01

    The mission of the Experimental Breeder Reactor II (EBR-II) has evolved from that of a small LMFBR demonstration plant to a major irradiation-test facility. Because of that evolution, many operational-safety issues have been encountered. The paper describes the EBR-II operational-safety experience in four areas: protection-system design, safety-document preparation, tests of off-normal reactor conditions, and tests of elements with breached cladding

  12. Thermal Hydraulics Analysis for the 3MW TRIGA MARK-II Research Reactor Under Transient Condition

    International Nuclear Information System (INIS)

    Huda, M.Q.; Bhuiyan, S.I.; Mondal, M.A.W.

    1996-12-01

    Some important thermal hydraulic parameters of the 3 MW TRIGA MARK-II research reactor operating under transient condition were investigated using two computer codes PULTRI and TEMPUL. Major transient parameters, such as, peak power and prompt energy released after pulse, maximum fuel and coolant temperature, surface heat flux, time and radial distribution of temperature within fuel element after pulse, fuel, fuel-cladding gap width variation, etc. were computer and compared with the experimental and operational values as reported in the safety Analysis Report (SAR). It was observed that pulsing of the reactor inserting an excess reactivity of $2.00 shoots the reactor power level to 854.353 MW compared to an experimental value of 852 MW; the maximum fuel temperature corresponding to this peak power was found to be 846.76 o C which is much less than the limiting maximum value of fuel temperature of 1150 0 C as reported in SAR. During a pulse if the film boiling occurs for a peak adiabatic fuel temperature of 1000 o C, the calculated outer cladding wall temperature was observed to be 702.39 0 C compared to a value of 760 o C reported in SAR under the same condition. The investigated other results were also found to be in good agreement with the values reported in the SAR. 16 refs., 22 figs. (author)

  13. Proceedings on the Second Autumn School on Reactor Physics EROEFI II

    Energy Technology Data Exchange (ETDEWEB)

    Racz, A [ed.

    1996-12-31

    The main topics of the Reactor Physics School were neutron and reactor physical calculations, reactor safety, systems theory, simulation of accidents, reactor monitoring system, computer codes and procedures for solving specific problems in the field of nuclear reactors (especially safety). A special attention was paid to the AGNES project. Papers falling in the INIS scope have been abstracted and indexed individually for the INIS database. (K.A.).

  14. Proceedings on the Second Autumn School on Reactor Physics EROEFI II

    International Nuclear Information System (INIS)

    Racz, A.

    1995-01-01

    The main topics of the Reactor Physics School were neutron and reactor physical calculations, reactor safety, systems theory, simulation of accidents, reactor monitoring system, computer codes and procedures for solving specific problems in the field of nuclear reactors (especially safety). A special attention was paid to the AGNES project. Papers falling in the INIS scope have been abstracted and indexed individually for the INIS database. (K.A.)

  15. US DOE Idaho national laboratory reactor decommissioning

    International Nuclear Information System (INIS)

    Szilagyi, Andrew

    2012-01-01

    The United States Department of Energy (DOE) primary contractor, CH2M-WG Idaho was awarded the cleanup and deactivation and decommissioning contract in May 2005 for the Idaho National Lab (INL). The scope of this work included dispositioning over 200 Facilities and 3 Reactors Complexes (Engineering Test Reactor (ETR), Materials Test Reactor (MTR) and Power Burst Facility (PBF) Reactor). Two additional reactors were added to the scope of the contract during the period of performance. The Zero Power Physics Reactor (ZPPR) disposition was added under a separate subcontractor with the INL lab contractor and the Experimental Breeder Reactor II (EBR-II) disposition was added through American Recovery and Reinvestment Act (ARRA) Funding. All of the reactors have been removed and disposed of with the exception of EBR-II which is scheduled for disposition approximately March of 2012. A brief synopsis of the 5 reactors is provided. For the purpose of this paper the ZPPR reactor due to its unique design as compared to the other four reactors, and the fact that is was relatively lightly contaminated and irradiated will not be discussed with the other four reactors. The ZPPR reactor was readily accessible and was a relatively non-complex removal as compared to the other reactors. Additionally the EBR-II reactor is currently undergoing D and D and will have limited mention in this paper. Prior to decommissioning the reactors, a risk based closure model was applied. This model exercised through the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), Non-Time Critical Removal Action (NTCRA) Process which evaluated several options. The options included; No further action - maintain as is, long term stewardship and monitoring (mothball), entombment in place and reactor removal. Prior to commencing full scale D and D, hazardous constituents were removed including cadmium, beryllium, sodium (passivated and elemental), PCB oils and electrical components, lead

  16. Investigation of the basic reactor physics characteristics of the Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Huy, Ngo Quang [Centre for Nuclear Technique Application, Ho Chi Minh City (Viet Nam); Thong, Ha Van; Khang, Ngo Phu [Nuclear Research Inst., Da Lat (Viet Nam)

    1994-10-01

    The Dalat nuclear research reactor was reconstructed from TRIGA MARK II reactor, built in 1963 with nominal power of 250 KW, and reached its planned nominal power of 500 kW for the first time in Feb. 1984. The Dalat reactor has some characteristics distinct from the former TRIGA reactor. Investigation of its characteristics is carried out by the determination of the reactor physics parameters. This paper represents the experimental results obtained for the effective fraction of the delayed photoneutrons, the extraneous neutron source left after the reactor is shut down, the lowest power levels of reactor critical states, the relative axial and radial distributions of thermal neutrons, the safe positive reactivity inserted into the reactor at deep subcritical state, the reactivity temperature coefficient of water, the temperature on the surface of the fuel elements, etc. (author). 10 refs., 10 figs., 2 tabs.

  17. ARIES tokamak reactor study

    International Nuclear Information System (INIS)

    Steiner, D.; Embrechts, M.

    1990-07-01

    This is a status report on technical progress relative to the tasks identified for the fifth year of Grant No. FG02-85-ER52118. The ARIES tokamak reactor study is a multi-institutional effort to develop several visions of the tokamak as an attractive fusion reactor with enhanced economic, safety, and environmental features. The ARIES study is being coordinated by UCLA and involves a number of institutions, including RPI. The RPI group has been pursuing the following areas of research in the context of the ARIES-I design effort: MHD equilibrium and stability analyses; plasma-edge modeling and blanket materials issues. Progress in these areas is summarized herein

  18. Instrumentation and control improvements at Experimental Breeder Reactor II

    International Nuclear Information System (INIS)

    Christensen, L.J.; Planchon, H.P.

    1993-01-01

    The purpose of this paper is to describe instrumentation and control (I ampersand C) system improvements at Experimental Breeder Reactor 11 (EBR-11). The improvements are focused on three objectives; to keep the reactor and balance of plant (BOP) I ampersand C systems at a high level of reliability, to provide diagnostic systems that can provide accurate information needed for analysis of fuel performance, and to provide systems that will be prototypic of I ampersand C systems of the next generation of liquid metal reactor (LMR) plants

  19. Feasibility study of the university of Utah TRIGA reactor power upgrade - part II: Thermohydraulics and heat transfer study in respect to cooling system requirements and design

    Directory of Open Access Journals (Sweden)

    Babitz Philip

    2013-01-01

    Full Text Available The thermodynamic conditions of the University of Utah's TRIGA Reactor were simulated using SolidWorks Flow Simulation, Ansys, Fluent and PARET-ANL. The models are developed for the reactor's currently maximum operating power of 90 kW, and a few higher power levels to analyze thermohydraulics and heat transfer aspects in determining a design basis for higher power including the cost estimate. It was found that the natural convection current becomes much more pronounced at higher power levels with vortex shedding also occurring. A departure from nucleate boiling analysis showed that while nucleate boiling begins near 210 kW it remains in this state and does not approach the critical heat flux at powers up to 500 kW. Based on these studies, two upgrades are proposed for extended operation and possibly higher reactor power level. Together with the findings from Part I studies, we conclude that increase of the reactor power is highly feasible yet dependable on its purpose and associated investments.

  20. Safety evaluation for instrumentation and control system upgrading project of Malaysian TRIGA MARK II PUSPATI Research reactor

    International Nuclear Information System (INIS)

    Ridha Roslan; Nik Mohd Faiz Khairuddin

    2013-01-01

    Full-text: Malaysian TRIGA MARK II research reactor has been in safe operation since its first criticality in 1982. The reactor is licensed to be operated by Malaysian Nuclear Agency to perform training and research development related activities. Due to its extensive operation since last three decades, the option of modifications for safety and safety-related item and component become a necessary to replace the outdated equipment to a stat-of-art, reliable technologies. This paper will present the current regulatory activities performed by Atomic Energy Licensing Board (AELB) to ensure the upgrading of analogue to digital instrumentation and control system is implemented in safe manner. The review activity includes documentation review, manufacturer quality audit and on-site inspection for commissioning. The review performed by AELB is based on The International Atomic Energy Agency (IAEA) Safety Requirements NS-R-4, entitled Safety of Research Reactors. During this endeavour, AELB seeks technical cooperation from Korea Institute of Nuclear Safety (KINS), the nuclear experts organization of the country of origin of the instrumentation and control technology. The regulatory activity is still on-going and is expected to be completed by issuance of Authorization for Restart on December 2013. (author)

  1. Evolution of thermal-hydraulics testing in EBR-II

    International Nuclear Information System (INIS)

    Golden, G.H.; Planchon, H.P.; Sackett, J.I.; Singer, R.M.

    1987-01-01

    A thermal-hydraulics testing and modeling program has been underway at the Experimental Breeder Reactor-II (EBR-II) for 12 years. This work culminated in two tests of historical importance to commercial nuclear power, a loss of flow without scram and a loss of heat sink wihout scram, both from 100% initial power. These tests showed that natural processes will shut EBR-II down and maintain cooling without automatic control rod action or operator intervention. Supporting analyses indicate that these results are characteristic of a range of sizes of liquid metal cooled reactors (LMRs), if these reactors use metal driver fuel. This type of fuel is being developed as part of the Integral Fast Reactor Program at Argonne National Laboratory. Work is now underway at EBR-II to exploit the inherent safety of metal-fueled LMRs with regard to development of improved plant control strategies. (orig.)

  2. Guidelines for nuclear reactor equipments safety-analysis

    International Nuclear Information System (INIS)

    1978-01-01

    The safety analysis in approving the applications for nuclear reactor constructions (or alterations) is performed by the Committee on Examination of Reactor Safety in accordance with various guidelines prescribed by the Atomic Energy Commission. In addition, the above Committee set forth its own regulations for the safety analysis on common problems among various types of nuclear reactors. This book has collected and edited those guidelines and regulations. It has two parts: Part I includes the guidelines issued to date by the Atomic Energy Commission: and Part II - regulations of the Committee. Part I has collected 8 categories of guidelines which relate to following matters: nuclear reactor sites analysis guidelines and standards for their applications; standard exposure dose of plutonium; nuclear ship operation guidelines; safety design analysis guidelines for light-water type, electricity generating nuclear reactor equipments; safety evaluation guidelines for emergency reactor core cooling system of light-water type power reactors; guidelines for exposure dose target values around light-water type electricity generating nuclear reactor equipments, and guidelines for evaluation of above target values; and meteorological guidelines for the safety analysis of electricity generating nuclear reactor equipments. Part II includes regulations of the Committee concerning - the fuel assembly used in boiling-water type and in pressurized-water type reactors; techniques of reactor core heat designs, etc. in boiling-water reactors; and others

  3. Criticality and safety parameter studies for upgrading 3 MW TRIGA MARK II research reactor and validation of generated cross section library and computational method

    International Nuclear Information System (INIS)

    Bhuiyan, S.I.; Mondal, M.A.W.; Sarker, M.M.; Rahman, M.; Shahdatullah, M.S.; Huda, M.Q.; Chakrroborty, T.K.; Khan, M.J.H.

    2000-01-01

    This study deals with the neutronic and thermal hydraulic analysis of the 3MW TRIGA MARK II research reactor to upgrade it to a higher flux. The upgrading will need a major reshuffling and reconfiguration of the current core. To reshuffle the current core configuration, the chain of NJOY94.10 - WIMSD-5A - CITATION - PARET - MCNP4B2 codes has been used for the overall analysis. The computational methods, tools and techniques, customisation of cross section libraries, various models for cells and super cells, and a lot of associated utilities have been standardised and established/validated for the overall core analysis. Analyses using the 4-group and 7-group libraries of macroscopic cross sections generated from the 69-group WIMSD-5 library showed that a 7-group structure is more suitable for TRIGA calculations considering its LEU fuel composition. The MCNP calculations established that the CITATION calculations and the generated cross section library are reasonably good for neutronic analysis of TRIGA reactors. Results obtained from PARET demonstrated that the flux upgrade will not cause the temperature limit on the fuel to be exceeded. Also, the maximum power density remains, by a substantial margin below the level at which the departure from nucleate boiling could occur. A possible core with two additional irradiation channels around the CT is projected where almost identical thermal fluxes as in the CT are obtained. The reconfigured core also shows 7.25% thermal flux increase in the Lazy Susan. (author)

  4. UCLA program in reactor studies: The ARIES tokamak reactor study

    International Nuclear Information System (INIS)

    1991-01-01

    The ARIES research program is a multi-institutional effort to develop several visions of tokamak reactors with enhanced economic, safety, and environmental features. The aims are to determine the potential economics, safety, and environmental features of a range of possible tokamak reactors, and to identify physics and technology areas with the highest leverage for achieving the best tokamak reactor. Four ARIES visions are currently planned for the ARIES program. The ARIES-1 design is a DT-burning reactor based on ''modest'' extrapolations from the present tokamak physics database and relies on either existing technology or technology for which trends are already in place, often in programs outside fusion. ARIES-2 and ARIES-4 are DT-burning reactors which will employ potential advances in physics. The ARIES-2 and ARIES-4 designs employ the same plasma core but have two distinct fusion power core designs; ARIES-2 utilize the lithium as the coolant and breeder and vanadium alloys as the structural material while ARIES-4 utilizes helium is the coolant, solid tritium breeders, and SiC composite as the structural material. Lastly, the ARIES-3 is a conceptual D- 3 He reactor. During the period Dec. 1, 1990 to Nov. 31, 1991, most of the ARIES activity has been directed toward completing the technical work for the ARIES-3 design and documenting the results and findings. We have also completed the documentation for the ARIES-1 design and presented the results in various meetings and conferences. During the last quarter, we have initiated the scoping phase for ARIES-2 and ARIES-4 designs

  5. A study of reactor neutrino monitoring at the experimental fast reactor JOYO

    International Nuclear Information System (INIS)

    Furuta, H.; Fukuda, Y.; Hara, T.; Haruna, T.; Ishihara, N.; Ishitsuka, M.; Ito, C.; Katsumata, M.; Kawasaki, T.; Konno, T.; Kuze, M.; Maeda, J.; Matsubara, T.; Miyata, H.; Nagasaka, Y.; Nitta, K.; Sakamoto, Y.; Suekane, F.; Sumiyoshi, T.; Tabata, H.

    2012-01-01

    We carried out a study of neutrino detection at the experimental fast reactor JOYO using a 0.76 tons gadolinium loaded liquid scintillator detector. The detector was set up on the ground level at 24.3 m from the JOYO reactor core of 140 MW thermal power. The measured neutrino event rate from reactor on-off comparison was 1.11±1.24(stat.)±0.46(syst.) events/day. Although the statistical significance of the measurement was not enough, backgrounds in such a compact detector at the ground level were studied in detail and MC simulations were found to describe the data well. A study for improvement of the detector for future such experiments is also shown.

  6. Preparation, Characterization and Adsorption Evaluation of old Newspaper Fibres using Basket Reactor (Nickel Removal by Adsorption)

    International Nuclear Information System (INIS)

    Ossman, M. E.; Abdelfatah, M.; Kiros, Y.

    2016-01-01

    In this work, old newspaper fibers bleached with H 2 O 2 , treated with KOH and treated with NaOCl were investigated as potential adsorbents. The characterization of the produced fibers using FTIR, SEM and particle size distribution have been carried out and tested for the removal of Ni (II) from aqueous solutions. The results indicated that the fibers treated with KOH give the highest %removal of Ni (II) with 88%. Two different reactor designs (batch and basket reactor) with different variables were studied. The results indicated that the equilibrium time was 30 min. and the removal of Ni (II) increased significantly as the p H increased from 2.0 to 6.0 and decreased at p H range of 6.5–8.0. The adsorption of Ni (II) onto old newspaper fibers treated with KOH using batch and basket reactors follows the Langmuir isotherm. The pseudo second order kinetic model provided good correlation for the adsorption of Ni (II) onto old newspaper fibers treated with KOH for both batch and basket reactors.

  7. Zn(II Removal from Wastewater by Electrocoagulation/Flotation Method using New Configuration of a Split-Plate Airlift Electrochemical Reactor

    Directory of Open Access Journals (Sweden)

    Saad H. Ammar

    2018-01-01

    Full Text Available In this paper, split-plate airlift electrochemical reactor as an apparatus with new configuration for wastewater treatment was provided. Two aluminum plates were fixed inside the reactor and present two functions; first it works as split plates for internal loop generation of the airlift system (the zone between the two plates acts as riser while the other two zones act as downcomer and second it works as two electrodes for electrocoagulation process. Simulated wastewater contaminated with zinc ions was used to test the performance of this apparatus for zinc removal by studying the effect of different experimental variables such as initial concentration of zinc (50-800 ppm, electrical current density (2.67-21.4 mA/cm2, initial pH (3-11, air flowrate (12-50 LPH, and implicitly the electrocoagulation time. The results have shown the applicability of this split-plate airlift reactor as electrocoagulation cell in the treatment of wastewater such as wastewater containing Zink ions. The Zink removal percent was shown to increase upon increasing the current density and the electrolysis time. Also best removal percent was achieved in the initial pH range between 7 and 9. The minimum electrocoagulation time required for removal of ≥ 90% of Zn(II decreases from 90 to 22 min when operating current density increases from 2.67 to 21.4 mA/cm2.

  8. Irradiation positions for fission-track dating in the University of Pavia TRIGA Mark II nuclear reactor

    International Nuclear Information System (INIS)

    Oddone, Massimo; Meloni, Sandro; Balestrieri, Maria Laura; Bigazzi, Giulio

    2002-01-01

    An irradiation position arranged is described in the present paper for fission-track dating in the Triga Mark II reactor of the University of Pavia. Fluence values determined using the NIST glass standard SRM 962a for fission-track dating and the traditional metal foils are compared. Relatively good neutron thermalization (φ th /φ f = 0.956) and lack of significant fluence spatial gradients are good factors for fission-track dating. Finally, international age standards (or putative age standards) irradiated in this new position yielded results consistent with independent reference ages. (author)

  9. Advanced Demonstration and Test Reactor Options Study

    Energy Technology Data Exchange (ETDEWEB)

    Petti, David Andrew [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hill, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Gehin, J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gougar, Hans David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Strydom, Gerhard [Idaho National Lab. (INL), Idaho Falls, ID (United States); Heidet, F. [Argonne National Lab. (ANL), Argonne, IL (United States); Kinsey, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Grandy, Christopher [Argonne National Lab. (ANL), Argonne, IL (United States); Qualls, A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brown, Nicholas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hoffman, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Croson, D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-01-01

    Global efforts to address climate change will require large-scale decarbonization of energy production in the United States and elsewhere. Nuclear power already provides 20% of electricity production in the United States (U.S.) and is increasing in countries undergoing rapid growth around the world. Because reliable, grid-stabilizing, low emission electricity generation, energy security, and energy resource diversity will be increasingly valued, nuclear power’s share of electricity production has a potential to grow. In addition, there are non electricity applications (e.g., process heat, desalination, hydrogen production) that could be better served by advanced nuclear systems. Thus, the timely development, demonstration, and commercialization of advanced nuclear reactors could diversify the nuclear technologies available and offer attractive technology options to expand the impact of nuclear energy for electricity generation and non-electricity missions. The purpose of this planning study is to provide transparent and defensible technology options for a test and/or demonstration reactor(s) to be built to support public policy, innovation and long term commercialization within the context of the Department of Energy’s (DOE’s) broader commitment to pursuing an “all of the above” clean energy strategy and associated time lines. This planning study includes identification of the key features and timing needed for advanced test or demonstration reactors to support research, development, and technology demonstration leading to the commercialization of power plants built upon these advanced reactor platforms. This planning study is consistent with the Congressional language contained within the fiscal year 2015 appropriation that directed the DOE to conduct a planning study to evaluate “advanced reactor technology options, capabilities, and requirements within the context of national needs and public policy to support innovation in nuclear energy

  10. Advanced Demonstration and Test Reactor Options Study

    International Nuclear Information System (INIS)

    Petti, David Andrew; Hill, R.; Gehin, J.; Gougar, Hans David; Strydom, Gerhard; Heidet, F.; Kinsey, J.; Grandy, Christopher; Qualls, A.; Brown, Nicholas; Powers, J.; Hoffman, E.; Croson, D.

    2017-01-01

    Global efforts to address climate change will require large-scale decarbonization of energy production in the United States and elsewhere. Nuclear power already provides 20% of electricity production in the United States (U.S.) and is increasing in countries undergoing rapid growth around the world. Because reliable, grid-stabilizing, low emission electricity generation, energy security, and energy resource diversity will be increasingly valued, nuclear power's share of electricity production has a potential to grow. In addition, there are non electricity applications (e.g., process heat, desalination, hydrogen production) that could be better served by advanced nuclear systems. Thus, the timely development, demonstration, and commercialization of advanced nuclear reactors could diversify the nuclear technologies available and offer attractive technology options to expand the impact of nuclear energy for electricity generation and non-electricity missions. The purpose of this planning study is to provide transparent and defensible technology options for a test and/or demonstration reactor(s) to be built to support public policy, innovation and long term commercialization within the context of the Department of Energy's (DOE's) broader commitment to pursuing an 'all of the above' clean energy strategy and associated time lines. This planning study includes identification of the key features and timing needed for advanced test or demonstration reactors to support research, development, and technology demonstration leading to the commercialization of power plants built upon these advanced reactor platforms. This planning study is consistent with the Congressional language contained within the fiscal year 2015 appropriation that directed the DOE to conduct a planning study to evaluate 'advanced reactor technology options, capabilities, and requirements within the context of national needs and public policy to support innovation in nuclear energy'. Advanced reactors are

  11. SPLOSH II: A dynamics programme for nuclear - thermal - hydrodynamic behaviour of water-cooled reactors

    International Nuclear Information System (INIS)

    Moxon, D.

    1966-01-01

    A dynamics code is described that solves the two-group neutron diffusion equations simultaneously with the thermal and the hydraulic equations for an average channel of a water-cooled reactor. Other reactor channels can be represented as 'slaves', which have no feedback to the average channel. The fission power at any axial station in a slave channel is related to that in the average by prescribed time-dependent factors, and the hydraulic flow is determined from pressure-drop requirements dictated by the performance of the average channel. A finite difference model of the fuel element and can represents the behaviour of the fuel temperatures and surface heat flux. The representation of the hydraulic circuit has been made sufficiently general that the code is applicable to B.W.R., P.W.R. and pressure tube reactor designs. The code can be used to study transients resulting from imposed time variations in coolant flow, inlet enthalpy, system pressure, electrical torque supplied to the circulating pumps, (or alternatively, the angular velocity of the pump rotors,) moderator height, frictional resistances simulating blockages and control rod and fuel element insertions. The harmonic response can be obtained by injecting sinusoidal time variations until the starting transient has been damped out. Output includes axial distributions of the neutron fluxes, heat flux, coolant density and temperature, burn-but margin, and the fuel and can temperatures in both the average and the slave channels. The code was originally written in FORTRAN II for use on the IBM 7090. Computing times vary greatly with the problem and the desired accuracy but experience has shown that a computing time which is slower than real time by a factor thirty is adequate for a wide range of cases. The code has recently been converted to S2 and EGTRAN for use on the IBM 7030 and the English Electric Leo Marconi KDF 9 computers. (author)

  12. Extrap conceptual fusion reactor design study

    International Nuclear Information System (INIS)

    Eninger, J.E; Lehnert, B.

    1987-12-01

    A study has recently been initiated to asses the fusion reactor potential of the Extrap concept. A reactor model is defined that fulfills certain economic and environmental criteria. This model is applied to Extrap and a reference reactor is outlined. The design is optimized by varying parameters subject to both physics and engineering constraints. Several design options are examined and key engineering issues are identified and addressed. Some preliminary results and conclusions of this work are summarized. (authors)

  13. The safety designs for the TITAN reversed-field pinch reactor study

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Cheng, E.T.; Creedon, R.L.; Hoot, C.G.; Schultz, K.R.; Grotz, S.P.; Blanchard, J.; Sharafat, S.; Najmabadi, F.

    1989-01-01

    TITAN is a study to investigate the potential of the reversed-field pinch concept as a compact, high-power density energy system. Two reactor concepts were developed, a self-cooled lithium design with vanadium structure and an aqueous solution loop-in-pool design, both operating at 18 MW/m 2 . The key safety features of the TITAN-I lithium-vanadium blanket design are in material selection, fusion power core configuration selection, lithium piping connections, and passive lithium drain tank system. Based on these safety features and results from accident evaluation, TITAN-I can at least be rated at a level 3 of safety assurance. For the TITAN-II aqueous loop-in-pool design, the key passive feature is the complete submersion of the fusion power core and the corresponding primary coolant loop system into a pool of low temperature water. Based on this key safety design feature, the TITAN-II design can be rated at a level 2 of safety assurance. (orig.)

  14. The safety designs for the TITAN reversed-field pinch reactor study

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Cheng, E.T.; Creedon, R.L.; Hoot, C.G.; Schultz, K.R.; Grotz, S.P.; Blanchard, J.P.; Sharafat, S.; Najmabadi, F.

    1988-01-01

    TITAN is a study to investigate the potential of the reversed-field pinch concept as a compact, high-power density energy system. Two reactor concepts were developed, a self-cooled lithium design with vanadium structure and an aqueous solution loop-in-pool design, both operating at 18 MW/m 2 . The key safety features of the TITAN-I lithium-vanadium blanket design are in material selection, fusion power core configuration selection, lithium piping connections and passive lithium drain tank system. Based on these safety features and results from accident evaluation, TITAN-I can at least be rated as level 3 of safety assurance. For the TITAN-II aqueous loop-in-pool design, the key passive feature is the complete submersion of the fusion power core and the corresponding primary coolant loop system into a pool of low temperature water. Based on this key safety design feature, the TITAN-II design can be rated as level 2 of safety assurance. 7 refs., 2 figs

  15. Physics of Fast and Intermediate Reactors. V. I. Proceedings of the Seminar on the Physics of Fast and Intermediate Reactors. V. I

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1962-03-15

    in all cases that of heir presentation during the Seminar. Changes have been made where it was considered that these would enhance the usefulness of these volumes as reference books. The subject grouping adopted is given below. Volume I - I. Neutron Physics: I.1. Data requirements, I.2. Cross-section measurements, I.3. Fission properties, I.4. Nuclear theory, I.5. Multi-group cross-sections; II. Integral Experiments: II.1. Critical experiments, II.2. Other integral experiments, II.3. Theoretical correlations; Volume II - III. Reactor Theory: III.1. Calculation methods, III.2. Effects of cross-section errors, III.3. Reactivity effects, III.4. Long-term effects, III.5. Reactor concept studies; Volume III - IV. Reactor Dynamics: IV.1. Kinetics, IV.2. Stability, IV.3. Doppler effect, IV.4. Safety problems; V. Physics of Specific Reactors.

  16. Fast reactor physics - an overview

    International Nuclear Information System (INIS)

    Lee, S.M.

    2004-01-01

    An introduction to the basic features of fast neutron reactors is made, highlighting the differences from the more conventional thermal neutron reactors. A discussion of important feedback reactivity mechanisms is given. Then an overview is presented of the methods of fast reactor physics, which play an important role in the successful design and operation of fast reactors. The methods are based on three main elements, namely (i) nuclear data bases, (ii) numerical methods and computer codes, and (iii) critical experiments. These elements are reviewed and the present status and future trends are summarized. (author)

  17. Use of EBR-II as a principal fast breeder reactor irradiation test facility in the U.S

    International Nuclear Information System (INIS)

    Staker, R.G.; Seim, O.S.; Beck, W.N.; Golden, G.H.; Walters, L.C.

    1975-01-01

    The EBR-II as originally designed and operated by the Argonne National Laboratory was successful in demonstrating the operation of a sodium-cooled fast breeder power plant with a closed fuel reprocessing cycle. Subsequent operation has been as an experimental facility where thousands of irradiation tests have been performed. Conversion to this application entailed the design and fabrication of special irradiation subassemblies for in-core irradiations, additions to existing facilities for out-of-core irradiations, and additions to existing facilities for out-of-core experiments. Experimental subassemblies now constitute about one third of the core, and changes in the core configuration occur about monthly, requiring neutronic and thermal-hydraulics analyses and monitoring of the reactor dynamic behavior. The surveillance programs provided a wealth of information on irradiation induced swelling and creep, in-reactor fracture behavior, and the compatibility of materials with liquid sodium. (U.S.)

  18. EBR-II: search for the lost subassembly

    International Nuclear Information System (INIS)

    King, R.W.; Buschman, H.W.; Poloncsik, J.; Remsburg, J.S.; Sine, H.W.

    1983-01-01

    Experimental Breeder Reactor II (EBR-II) has been operating for nearly 20 years as part of the foundation of the US Department of Energy's LMFBR development program. During that time, the EBR-II fuel-handling system has performed extremely well, especially considering the conditions under which much of the system operates and the reliability required to maintain the high plant factor routinely demonstrated by EBR-II. Since EBR-II is a pool-type reactor, much of the fuel handling is done remotely within the sodium-filled primary tank at 371 0 C. Activities involved in locating a misplaced fuel subassembly in the primary tank are described

  19. OKLO: Fossil nuclear reactors. Physical study

    International Nuclear Information System (INIS)

    Naudet, R.

    1991-04-01

    This book presents a study of Oklo reactors, based essentially on physics and particularly neutronics but reviewing also all what is known on this topic, regrouping observations, measurement results and interpretative calculations. A remarkable characteristic of the study is the use of sophisticated reactor calculation methods for analysis of what happened two billion years ago in a uranium deposit. 200 refs [fr

  20. Theoretical analysis of nuclear reactors (Phase II), I-V, Part III, Reactor poisoning; Razrada metoda teorijske analize nuklearnih reaktora (II faza) I-V, III Deo, Zatrovanje reaktora, II faza

    Energy Technology Data Exchange (ETDEWEB)

    Pop-Jordanov, J [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1962-10-15

    This phase is dealing with influence of all the fission products except Xe{sup 135} on the reactivity of a reactor, usually named as reactor poisoning. The first part of the report is a review of methods for calculation of reactor poisoning. The second part shows the most frequently used method for calculation of cross sections and yields of pseudo products (for thermal neutrons). The system of equations was adopted dependent on the conditions of the available computer system. It is described in part three. Detailed method for their application is described in part four and results obtained are presented in part five.

  1. Preliminary Study of 20 MWth Experiment Power Reactor based on Pebble Bed Reactor

    Science.gov (United States)

    Irwanto, Dwi; Permana, Sidik; Pramuditya, Syeilendra

    2017-07-01

    In this study, preliminary design calculations for experimental small power reactor (20 MWt) based on Pebble Bed Reactor (PBR) are performed. PBR technology chosen due to its advantages in neutronic and safety aspects. Several important parameters, such as fissile enrichment, number of fuel passes, burnup and effective multiplication factor are taken into account in the calculation to find neutronic characteristics of the present reactor design.

  2. Systematical investigations of the emission of carbon 14 from a TRIGA-Mark-II reactor - methods and results

    International Nuclear Information System (INIS)

    Pfeiffer, K.J.

    1981-01-01

    Almost no information is available about the extent of the carbon-14 releases from a research reactor. For this reason this report is dealing with the emission of C-14 from the Vienna TRIGA-Mark-II reactor. In addition the resulting radiation exposure is estimated. Due to the low activity concentrations of C-14 in research reactor effluents special requirements are necessary for sampling and measuring. A technique providing both sufficient lower limit of detection and little effort of sample preparation was developed. Carbon dioxide was trapped by bubbling air taken from the stack through washing bottles containing an aqueous solution of sodium hydroxide. After sampling a precipitate of CaCO 3 was formed and about 8 g of calcium carbonate were counted as a gel suspension by liquid scintillation counting. The formation of the gel was provided by mixing water with a scintillation cocktail originally developed for uptake of high quantities of aqueous solutions. The resulting lower limit of detection was about 50 Bq/kg carbon being equivalent to 9mBq/m 3 air. Concluding the measurements, which were carried out by weekly counting and a period of some 14 months, a normalized release rate of about 280 Bq (7, 1μCi) was found. This release rate is somewhat higher than the reported values for power reactors, because the main activity is produced by activation of air in experimental equipments. (author)

  3. Safety evaluation of the Dalat research reactor operation

    International Nuclear Information System (INIS)

    Long, V.H.; Lam, P.V.; An, T.K.

    1989-01-01

    After an introduction presenting the essential characteristics of the Dalat Nuclear Research Reactor, the document presents i) The safety assurance condition of the reactor, ii) Its safety behaviour after 5 years of operation, iii) Safety research being realized on the reactor. Following is questionnaire of safety evaluation and a list of attachments, which concern the reactor

  4. Overview of the fast reactors fuels program

    International Nuclear Information System (INIS)

    Evans, E.A.; Cox, C.M.; Hayward, B.R.; Rice, L.H.; Yoshikawa, H.H.

    1980-04-01

    Each nation involved in LMFBR development has its unique energy strategies which consider energy growth projections, uranium resources, capital costs, and plant operational requirements. Common to all of these strategies is a history of fast reactor experience which dates back to the days of the Manhatten Project and includes the CLEMENTINE Reactor, which generated a few watts, LAMPRE, EBR-I, EBR-II, FERMI, SEFOR, FFTF, BR-1, -2, -5, -10, BOR-60, BN-350, BN-600, JOYO, RAPSODIE, Phenix, KNK-II, DFR, and PFR. Fast reactors under design or construction include PEC, CRBR, SuperPhenix, SNR-300, MONJU, and Madras (India). The parallel fuels and materials evolution has fully supported this reactor development. It has involved cermets, molten plutonium alloy, plutonium oxide, uranium metal or alloy, uranium oxide, and mixed uranium-plutonium oxides and carbides

  5. Design study on sodium-cooled large-scale reactor

    International Nuclear Information System (INIS)

    Shimakawa, Yoshio; Nibe, Nobuaki; Hori, Toru

    2002-05-01

    In Phase 1 of the 'Feasibility Study on Commercialized Fast Reactor Cycle Systems (F/S)', an advanced loop type reactor has been selected as a promising concept of sodium-cooled large-scale reactor, which has a possibility to fulfill the design requirements of the F/S. In Phase 2 of the F/S, it is planed to precede a preliminary conceptual design of a sodium-cooled large-scale reactor based on the design of the advanced loop type reactor. Through the design study, it is intended to construct such a plant concept that can show its attraction and competitiveness as a commercialized reactor. This report summarizes the results of the design study on the sodium-cooled large-scale reactor performed in JFY2001, which is the first year of Phase 2. In the JFY2001 design study, a plant concept has been constructed based on the design of the advanced loop type reactor, and fundamental specifications of main systems and components have been set. Furthermore, critical subjects related to safety, structural integrity, thermal hydraulics, operability, maintainability and economy have been examined and evaluated. As a result of this study, the plant concept of the sodium-cooled large-scale reactor has been constructed, which has a prospect to satisfy the economic goal (construction cost: less than 200,000yens/kWe, etc.) and has a prospect to solve the critical subjects. From now on, reflecting the results of elemental experiments, the preliminary conceptual design of this plant will be preceded toward the selection for narrowing down candidate concepts at the end of Phase 2. (author)

  6. A program for the a priori evaluation of detection limits in instrumental neutron activation analysis using a SLOWPOKE II reactor

    International Nuclear Information System (INIS)

    Galinier, J.L.; Zikovsky, L.

    1982-01-01

    A program that permits the a priori calculation of detection limits in monoelemental matrices, adapted to instrumental neutron activation analysis using a SLOWPOKE II reactor, is described. A simplified model of the gamma spectra is proposed. Products of (n,p) and (n,α) reactions induced by the fast components of the neutron flux that accompanies the thermal flux at the level of internal irradiation sites in the reactor have been included in the list of interfering radionuclides. The program calculates in a systematic way the detection limits of 66 elements in an equal number of matrices using 153 intermediary radionuclides. Experimental checks carried out with silicon (for short lifetimes) and aluminum and magnesium (for intermediate lifetimes) show satisfactory agreement with the calculations. These results show in particular the importance of the contribution of the (n,p) and (n,α) reactions in the a priori evaluation of detection limits with a SLOWPOKE type reactor [fr

  7. A transient overpower experiment in EBR-II

    International Nuclear Information System (INIS)

    Herzog, J.P.; Tsai, H.; Dean, E.M.; Aoyama, T.; Yamamoto, K.

    1994-01-01

    The TOPI-IE test was a transient overpower test on irradiate mixed-oxide fuel pins in the Experimental Breeder Reactor-II (EBR-II). The test, the fifth in a series, was part of a cooperative program between the US Department of Energy and the Power Reactor and Nuclear Fuel Development Corporation of Japan to conduct operational transient testing on mixed-oxide fuel pins in the metal-fueled EBR-II. The principle objective of the TOPI-1E test was to assess breaching margins for irradiated mixed-oxide fuel pins over the Plant Protection System (PPS) thresholds during a slow, extended overpower transient. This paper describes the effect of the TOPI-1E experiment on reactor components and the impact of the experiment on the long-term operability of the reactor. The paper discusses the role that SASSYS played in the pre-test safety analysis of the experiment. The ability of SASSYS to model transient overpower events is detailed by comparisons of data from the experiment with computed reactor variables from a SASSYS post-test simulation of the experiment

  8. Photocatalytic reactors for treating water pollution with solar illumination. II: a simplified analysis for flow reactors

    Energy Technology Data Exchange (ETDEWEB)

    Sagawe, G.; Bahnemann, D. [Inst. fuer Technische Chemie, Univ. Hannover, Hannover (Germany); Brandi, R.J.; Cassano, A.E. [INTEC (Univ. Nacional del Litoral and CONICET), Santa Fe (Argentina)

    2003-07-01

    Very frequently outgoing streams of real wastewaters do not have a definite and constant composition. Additionally, when the degradation process makes use of solar irradiation, the photon flux is hardly constant. These two factors strongly militate against the use of very elaborate, exact models for analyzing the performance of the employed reactors. In these cases, approximate methods may be the most practical approach. One possible way is presented in this paper. The observed photonic efficiency concept developed in a previous contribution (sagawe et al., 2002a) is applied to continuous reactors for both steady state and transient operations of photocatalytic reactions applied to wastewaters decontamination processes. For this reactor the local observed photonic efficiency, defined at each reactor longitudinal position, is the convenient property to express the concentration spatial evolution. It is also shown that the description of the reactor performance employing a mass balance can be done in a rather simple way introducing a mass-moving coordinate transformation that remodel the mass inventory and permits working with simpler ordinary differential equations. (orig.)

  9. Upgrading program of the experimental fast reactor Joyo

    International Nuclear Information System (INIS)

    Yoshida, A.; Yogo, S.

    2001-01-01

    The experimental fast reactor Joyo finished its operation as an irradiation core in June, 2000. Throughout the operation of MK-I (breeder core) and MK-II (irradiation core), the net operation time has exceeded 60,000 hours. During these operations there were no fuel failures or serious plant problems. The MK-III modification program will improve irradiation capability to demonstrate advanced technologies for commercial Fast Breeder Reactor (FBR). When the MK-III core is started, it will support irradiation tests in feasibility studies for fast reactor and related fuel cycle research and development in Japan. (authors)

  10. Neutronic study of fusion reactor blanket

    International Nuclear Information System (INIS)

    Barre, F.

    1984-02-01

    The problem of effective regeneration is a crucial issue for the fusion reactor, specially for the power reactor because of the conflicting requirements of heat removal and tritium breeding. For that, calculations are performed to evaluate blanket materials. Precise techniques are herein developed to improve the accuracy of the tritium production and the neutron and gamma transport calculations. Many configurations are studied with realistic breeder, structure, and coolant proportions. Accuracy of the results are evaluated from the sensitivity theory and uncertainty study using covariance matricies. At the end of this work, we presented the needs of nuclear data for fusion reactors and we give some advices for improving our knowledge of these data [fr

  11. Neutronic study of fusion reactor blanket

    International Nuclear Information System (INIS)

    Barre, F.

    1983-06-01

    The problem of effective regeneration is a crucial issue for the fusion reactor, specially for the power reactor because of the conflicting requirements of heat removal and tritium breeding. For that, calculations are performed to evaluate blanket materials. Precise techniques are herein developed to improve the accuracy of the tritium production and the neutron and gamma transport calculations. Many configurations are studied with realistic breeder, structure, and coolant proportions. Accuracy of the results are evaluated from the sensitivity theory and uncertainty study using covariance matrices. At the end of this work, we presented the needs of nuclear data for fusion reactors and we give some advices for improving our knowledge of these data [fr

  12. Operating experiences and utilization programmes of the BAEC 3 MW TRIGA Mark-II research reactor of Bangladesh

    International Nuclear Information System (INIS)

    Haque, M.M.; Soner, M.A.M.; Saha, P.K.; Salam, M.A.; Zulquarnain, M.A.

    2008-01-01

    The 3 MW TRIGA Mark-II research reactor of Bangladesh Atomic Energy Commission (BAEC) has been operating since September 14, 1986. The reactor is used for radioisotope production ( 131 I, 99m Tc, 46 Sc), various R and D activities, manpower training and education. The reactor has been operated successfully since its commissioning with the exception of a few reportable incidents. Of these, the decay tank leakage incident of 1997 is considered to be the most significant one. As a result of this incident, reactor operation at full power remained suspended for about 4 years. However, the reactor operation was continued during this period at a power level of 250 kW to cater the needs of various R and D groups, which required lower neutron flux for their experiments. This was made possible by establishing a temporary by pass connection across the decay tank using local technology. The reactor was made operational again at full power after successful replacement of the damaged decay tank in August 2001. At that time, several modifications of the reactor cooling system along with its associated structures were also implemented and then necessary testing and commissioning of the newly installed component/equipment were carried out. The other incident was the contamination of the Dry Central Thimble (DCT) that took place in March 2002 when a pyrex vial containing 50g of TeO 2 powder got melted inside the DCT. The vial was melted due to high heat generation on its surface while the reactor was operated for 8 hours at 3 MW for trial production of Iodine-131 ( 131 I). A Wet Central Thimble (WCT) was used to replace the damaged DCT in June 2002 such that the reactor operation could be resumed. The WCT was again replaced by a new DCT in June 2003 such that radioisotope production could be continued. The facility has so far been used to train up a total of 27 personnel including several foreign nationals to the level of Senior Reactor Operator (SRO) and Reactor Operator (RO). The

  13. Demonstration of passive safety features in EBR-II

    International Nuclear Information System (INIS)

    Planchon, H.P. Jr.; Golden, G.H.; Sackett, J.I.

    1987-01-01

    Two tests of great importance to the design of future commercial nuclear power plants were carried out in the Experimental Breeder Reactor-II on April 3, 1986. These tests, (viewed by about 60 visitors, including 13 foreign LMR specialists) were a loss of flow without scram and a loss of heat sink without scram, both from 100% initial power. In these tests, inherent feedback shut the reactor down without damage to the fuel or other reactor components. This resulted primarily from advantageous characteristics of the metal driver fuel used in EBR-II. Work is currently underway at EBR-II to develop a control strategy that promotes inherent safety characteristics, including survivability of transient overpower accidents. In parallel, work is underway at EBR-II on the development of state-of-the-art plant diagnostic techniques

  14. Performance Evaluation of Monolith Based Immobilized Acetylcholinesterase Flow-Through Reactor for Copper(II Determination with Spectrophotometric Detection

    Directory of Open Access Journals (Sweden)

    Parawee Rattanakit

    2014-01-01

    Full Text Available A monolith based immobilized acetylcholinesterase (AChE flow-through reactor has been developed for the determination of copper(II using flow injection spectrophotometric system. The bioreactor was prepared inside a microcapillary column by in situ polymerization of butyl methacrylate, ethylene dimethacrylate, and 2,2-dimethoxy-1,2-diphynyletane-1-one in the presence of 1-decanol, followed by vinyl azlactone functionalization and AChE immobilization. The behavior of AChE before and after being immobilized on the monolith was evaluated by kinetic parameters from Lineweaver and Burk equation. The detection was based on measuring inhibition effect on the enzymatic activity of AChE by copper(II using Ellman’s reaction with spectrophotometric detection at 410 nm. The linear range of the calibration graph was obtained over the range of 0.02–3.00 mg L−1. The detection limit, defined as 10% inhibition (I10, was found to be 0.04 mg L−1. The repeatability was 3.35 % (n=5 for 1.00 mg L−1 of copper(II. The proposed method was applied to the determination of copper(II in natural water samples with sampling rate of 4 h−1.

  15. Study on secondary shutdown systems in Tehran research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jalali, H.R.; Fadaei, A.H., E-mail: Fadaei_amir@aut.ac.ir; Gharib, M.

    2015-09-15

    Highlights: • A study was undertaken to summarize the techniques for secondary shutdown systems (SSS). • Neutronic calculation performed for proposed systems as SSS. • Dumping the heavy water stored in the reflector vessel is capable to shut down reactor. • Neutronic and transient calculation was done for validating the selected SSS. • All calculation shown that this system has advantages in safety and neutron economy. - Abstract: One important safety aspect of any research reactor is the ability to shut down the reactor. Usually, research reactors, currently in operation, have a single shutdown system based on the simultaneous insertion of the all control rods into the reactor core through gravity. Nevertheless, the International Atomic Energy Agency currently recommends use of two shutdown systems which are fully independent from each other to guarantee secure shutdown when one of them fails. This work presents an investigative study into secondary shutdown systems, which will be an important safety component in the research reactor and will provide another alternative way to shut down the reactor emergently. As part of this project, a study was undertaken to summarize the techniques that are currently used at world-wide research reactors for recognizing available techniques to consider in research reactors. Removal of the reflector, removal of the fuels, change in critical shape of reactor core and insertion of neutron absorber between the core and reflector are selected as possible techniques in mentioned function. In the next step, a comparison is performed for these methods from neutronic aspects. Then, chosen method is studied from the transient behavior point of view. Tehran research reactor which is a 5 MW open-pool reactor selected as a case study and all calculations are carried out for it. It has 5 control rods which serve the purpose of both reactivity control and shutdown of reactor under abnormal condition. Results indicated that heavy

  16. Alternate form and placement of short lived reactor waste and associated fuel hardware for decommissioning of EBR-II

    Energy Technology Data Exchange (ETDEWEB)

    Planchon, H.P.; Singleterry, R.C. Jr.

    1995-12-01

    Upon the termination of EBR-II operation in 1994, the mission has progressed to decommissioning and waste cleanup of the facility. The simplest method to achieve this goal is to bury the raw fuel and activated steel in an approved burial ground or deep geologic repository. While this might be simple, it could be very expensive, consume much needed burial space for other materials, and leave large amounts of fissile easily available to future generations. Also, as with any operation, an associated risk to personnel and the public from the buried waste exists. To try and reduce these costs and risks, alternatives to burial are sought. One alternative explored here for EBR-II is to condition the fuel and store the fission products and steel either permanently or temporarily in the sealed primary boundary of the decommissioned reactor. The first problem is to identify which subassemblies are going to be conditioned and their current composition and decay time. The next problem is to identify the conditioning process and determine the composition and form of the waste streams. The volume, mass, heat, and curie load of the waste streams needs to be determined so a waste-assembly can be designed. The reactor vessel and internals need to be analyzed to determine if they can handle these loads. If permanent storage is the goal, then mechanisms for placing the waste-assembly in the reactor vessel and sealing the vessel are needed. If temporary storage is the goal, then mechanisms for waste-assembly placement and retrieval are needed. This paper answers the technical questions of volume, mass, heat, and curie loads while just addressing the other questions found in a safety analysis. The final conclusion will compare estimated risks from the burial option and this option.

  17. Compatibility analysis of DUPIC fuel (Part II) - Reactor physics design and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Chang Joon; Choi, Hang Bok; Rhee, Bo Wook; Roh, Gyu Hong; Kim, Do Hun [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-03-01

    The compatibility analysis of the DUPIC fuel in a CANDU reactor has been assessed. This study includes the fuel composition adjustment, comparison of lattice properties, performance analysis of reactivity devices, determination of regional over-power (ROP) trip setpoint, and uncertainty estimation of core performance parameters. For the DUPIC fuel composition adjustment, three options have been proposed, which can produce uniform neutronic characteristics of the DUPIC fuel. The lattice analysis has shown that the characteristics of the DUPIC fuel is compatible with those of natural uranium fuel. The reactivity devices of the CANDU-6 reactor maintain their functional requirements even for the DUPIC fuel system. The ROP analysis has shown that the trip setpoint is not sacrificed for the DUPIC fuel system owing to the power shape that enhances more thermal margin. The uncertainty analysis of the core performance parameter has shown that the uncertainty associated with the fuel composition variation is reduced appreciably, which is primarily due to the fuel composition adjustment and secondly the on-power refueling feature and spatial control function of the CANDU reactor. The reactor physics calculation has also shown that it is feasible to use spent PWR fuel directly in CANDU reactors without deteriorating the CANDU-6 core physics design requirements. 29 refs., 67 figs., 60 tabs. (Author)

  18. Synthesis and spectroscopic studies of biologically active tetraazamacrocyclic complexes of Mn(II, Co(II, Ni(II, Pd(II and Pt(II

    Directory of Open Access Journals (Sweden)

    Monika Tyagi

    2014-01-01

    Full Text Available Complexes of Mn(II, Co(II, Ni(II, Pd(II and Pt(II were synthesized with the macrocyclic ligand, i.e., 2,3,9,10-tetraketo-1,4,8,11-tetraazacycoletradecane. The ligand was prepared by the [2 + 2] condensation of diethyloxalate and 1,3-diamino propane and characterized by elemental analysis, mass, IR and 1H NMR spectral studies. All the complexes were characterized by elemental analysis, molar conductance, magnetic susceptibility measurements, IR, electronic and electron paramagnetic resonance spectral studies. The molar conductance measurements of Mn(II, Co(II and Ni(II complexes in DMF correspond to non electrolyte nature, whereas Pd(II and Pt(II complexes are 1:2 electrolyte. On the basis of spectral studies an octahedral geometry has been assigned for Mn(II, Co(II and Ni(II complexes, whereas square planar geometry assigned for Pd(II and Pt(II. In vitro the ligand and its metal complexes were evaluated against plant pathogenic fungi (Fusarium odum, Aspergillus niger and Rhizoctonia bataticola and some compounds found to be more active as commercially available fungicide like Chlorothalonil.

  19. Australian research reactor studies

    International Nuclear Information System (INIS)

    McCulloch, D.B.

    1978-01-01

    The Australian AEC has two research reactors at the Lucas Heights Research Establishment, a 10 HW DIDO class materials testing reactor, HIFAR, and a smaller 100kW reactor MOATA, which was recently upgraded from 10kW power level. Because of the HIFAR being some 20 years old, major renewal and repair programmes are necessary to keep it operational. To enable meeting projected increases in demand for radioisotopes, plans for a new reactor to replace the HIFAR have been made and the design criteria are described in the paper. (author)

  20. HIBALL-II - an improved conceptual heavy ion beam driven fusion reactor study

    International Nuclear Information System (INIS)

    Badger, B.; Corradini, M.; El-Guebaly, L.; Engelstad, R.; Henderson, D.; Klein, A.; Kulcinski, G.; Larsen, E.; Lovell, E.; Moses, G.; Peterson, R.; Pong, L.; Sawan, M.; Sviatoslavsky, I.; Symon, K.; Vogelsang, W.; White, A.; Wittenberg, L.; Beckert, K.; Bock, R.; Boehne, D.; Hofmann, I.; Keller, R.; Mueller, R.; Bozsik, I.; Jahnke, A.; Brezina, J.; Nestle, H.; Wendel, W.; Wollnik, H.; Lessmann, E.; Froehlich, R.; Goel, B.; Hoebel, W.; Kessler, G.; Moellendorff, U. von; Moritz, N.; Plute, K.; Schretzmann, K.; Sze, D.

    1985-07-01

    An improved design of the HIBALL inertial-confinement fusion power station is presented. The new RF-linac based heavy ion driver has improved concepts for beam stacking, bunching and final focusing. The new target design takes into account radiation transport effects in a coarse approximation. The system of four reactors with a net total output of 3.8 GW electric is essentially the same as described earlier, however, progress in the analysis has enhanced its credibility and self-consistency. Considerations of environmental and safety aspects and cost estimates are given. (orig.) [de

  1. Design study of 'HIBLIC-I' reactor cavity

    International Nuclear Information System (INIS)

    Fujiie, Y.

    1984-01-01

    A preliminary conceptual design of a reactor cavity for HIBLIC-1, a heavy ion fusion reactor system, was carried out. Design efforts have been concentrated mainly on the feasibility study of the physical scenario adopted and also on the system integration of the structures and components into a compact reactor cavity. The design features of the reactor are a compact reactor cavity, maximum coolant temperature up to 500 deg C, the protection of the sacrificial wall and cavity wall from radiation, the protection of the sacrificial wall from the pressure transient due to rapid heating, the selection of a ferritic steel HT-9 as the structural material and impurity control, and tritium breeding and recovery. The purpose of this paper is to describe the outline of the reactor cavity design of HIBLIC-1. The objectives of the preliminary conceptual design were to propose the idea and concept in order to constitute the physical scenario without contradiction and to find out the critical and fundamental problems to be studied in future. The cavity configuration and dynamics, tritium breeding and radiation damage, the behavior of a structural material in liquid lithium and tritium recovery are reported. (Kako, I.)

  2. Deactivation of the EBR-II complex

    International Nuclear Information System (INIS)

    Michelbacher, J.A.; Earle, O.K.; Henslee, S.P.; Wells, P.B.; Zahn, T.P.

    1996-01-01

    In January of 1994, the Department of Energy mandated the termination of the Integral Fast Reactor (IFR) Program, effective October 1, 1994. To comply with this decision, Argonne National Laboratory-West (ANL-W) prepared a plan providing detailed requirements to place the Experimental Breeder Reactor-II (EBR-II) in a radiologically and industrially safe condition, including removal of all irradiated fuel assemblies from the reactor plant, and removal and stabilization of the primary and secondary sodium, a liquid metal used to transfer heat within the reactor plant. The ultimate goal of the deactivation process is to place the EBR-II complex in a stable condition until a decontamination and decommissioning (D and D) plan can be prepared, thereby minimizing requirements for maintenance and surveillance and maximizing the amount of time for radioactive decay. The final closure state will be achieved in full compliance with federal, state and local environmental, safety, and health regulations and requirements. The decision to delay the development of a detailed D and D plan has necessitated this current action

  3. Deactivation of the EBR-II complex

    Energy Technology Data Exchange (ETDEWEB)

    Michelbacher, J A; Earle, O K; Henslee, S P; Wells, P B; Zahn, T P

    1996-01-01

    In January of 1994, the Department of Energy mandated the termination of the Integral Fast Reactor (IFR) Program, effective October 1, 1994. To comply with this decision, Argonne National Laboratory-West (ANL-W) prepared a plan providing detailed requirements to place the Experimental Breeder Reactor-II (EBR-II) in a radiologically and industrially safe condition, including removal of all irradiated fuel assemblies from the reactor plant, and removal and stabilization of the primary and secondary sodium, a liquid metal used to transfer heat within the reactor plant. The ultimate goal of the deactivation process is to place the EBR-II complex in a stable condition until a decontamination and decommissioning (D and D) plan can be prepared, thereby minimizing requirements for maintenance and surveillance and maximizing the amount of time for radioactive decay. The final closure state will be achieved in full compliance with federal, state and local environmental, safety, and health regulations and requirements. The decision to delay the development of a detailed D and D plan has necessitated this current action.

  4. Neutron beam utilization at the TRIGA Mark II reactor Vienna

    International Nuclear Information System (INIS)

    Villa, M.; Boeck, H.; Ismail, S.; Koerner, S.; Baron, M.; Hainbuchner, M.; Badurek, G.; Buchelt, R.J.

    1999-01-01

    A review is given about the research activities around the 250 kw TRIGA reactor Vienna, which are adequate to other neutron sources of comparable or bigger size. The topics selected for presentation range from neutron radiography, materials irradiation, neutron small-angle scattering, neutron activation analysis, neutron polarization to neutron interferometry. It is the aim of this presentation to stimulate programs for more efficient use around TRIGA research reactors with neutron flux densities of 1013 cm-2a-1 at the center of the reactor core. We briefly describe the experimental facilities installed at the 250 kw TRIGA reactor of the Austrian Universities in Vienna and present a great part of the current research activities performed with them. We believe that most of the techniques and experiments presented here are adequate for implementation to other reactors of similar or even higher power. Those technologies which require extremely specialized know-how not generally available at every research Inst.e will not be treated here or are just mentioned without any further details.(author)

  5. Preliminary study on lithium-salt aqueous solution blanket

    International Nuclear Information System (INIS)

    Yoshida, Hiroshi; Naruse, Yuji; Yamaoka, Mitsuaki; Ohara, Atsushi; Ono, Kiyoshi; Kobayashi, Shigetada.

    1992-06-01

    Aqueous solution blanket using lithium salts such as LiNO 3 and LiOH have been studied in the US-TIBER program and ITER conceptual design activity. In the JAERI/LANL collaboration program for the joint operation of TSTA (Tritium Systems Test Assembly), preliminary design work of blanket tritium system for lithium ceramic blanket, aqueous solution blanket and liquid metal blanket, have been performed to investigate technical feasibility of tritium demonstration tests using the TSTA. Detail study of the aqueous solution blanket concept have not been performed in the Japanese fusion program, so that this study was carried out to investigate features of its concept and to evaluated its technical problems. The following are the major items studied in the present work: (i) Neutronics of tritium breeding ratio and shielding performance Lithium concentration, Li-60 enrichment, beryllium or lead, composition of structural material/beryllium/solution, heavy water, different lithium-salts (ii) Physicochemical properties of salts Solubility, corrosion characteristics and compatibility with structural materials, radiolysis (iii) Estimation of radiolysis in ITER aqueous solution blanket. (author)

  6. Comparative analysis of Carnaval II Library

    International Nuclear Information System (INIS)

    Santos Bastos, W. dos

    1981-01-01

    The Carnaval II cross sections library from the french fast reactor calculation system is evaluated in two ways: 1 0 ) a comparative analysis of the calculations system for fast reactors at IEN (Instituto de Engenharia Nuclear) using a 'benchmark' model is done; 2 0 ) a comparative analysis in relation to the french system itself is also done, using calculations realized with two versions of the french library: the SETR-II and the CARNAVAL IV, the first one being anterior and the second one posterior to the Carnaval II version, the one used by IEN. (Author) [pt

  7. Assessment of gold flux monitor at irradiation facilities of MINT TRIGA MK II reactor

    International Nuclear Information System (INIS)

    Wee Boon Siong; Abdul Khalik Wood; Mohd Suhaimi Hamzah; Shamsiah Abdul Rahman; Md Suhaimi Elias; Nazaratul Ashifa Abd Salim

    2005-01-01

    Neutron source of MINTs TRIGA MK II reactor has been used for activation analysis for many years and neutron flux plays important role in activation of samples at various positions. Currently, two irradiation facilities namely the pneumatic transfer system and rotary rack are available to cater for short and long lived irradiation. Neutron flux variation for both irradiation facilities have been determined using gold wire and gold solution as flux monitor. However, the use of gold wire as flux monitor is costlier if compared to gold solution. The results from analysis of certified reference materials showed that gold solution as flux monitors yield satisfactory results and proved to safe cost on the purchasing of gold wire. Further experiment on self-shielding effects of gold solution at various concentrations has been carried out. This study is crucial in providing vital information on the suitable concentration for gold solution as flux monitor. In the near future, gold solution flux monitor will be applied for routine analysis and hence to improve the capability of the laboratory on neutron activation analysis. (Author)

  8. Physical Characteristics of the Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Ngo Quang Huy

    1994-10-01

    The operation of the TRIGA MARK II reactor of nominal power 250 KW has been stopped as all the fuel elements have been dismounted and taken away in 1968. The reconstruction of the reactor was accomplished with Russian technological assistance after 1975. The nominal power of the reconstructed reactor is of 500 KW. The recent Dalat reactor is unique of its kind in the world: Russian-designed core combined with left-over infrastructure of the American-made TRIGA II. The reactor was loaded in November 1983. It has reached physical criticality on 1/11/1983 (without central neutron trap) and on 18/12/1983 (with central neutron trap). The power start up occurred in February 1984 and from 20/3/1984 the reactor began to be operated at the nominal power 500 KW. The selected reports included in the proceedings reflect the start up procedures and numerous results obtained in the Dalat Nuclear Research Institute and the Centre of Nuclear Techniques on the determination of different physical characteristics of the reactor. These characteristics are of the first importance for the safe operation of the Dalat reactor

  9. Design study of ship based nuclear power reactor

    International Nuclear Information System (INIS)

    Su'ud, Zaki; Fitriyani, Dian

    2002-01-01

    Preliminary design study of ship based nuclear power reactors has been performed. In this study the results of thermohydraulics analysis is presented especially related to behaviour of ship motion in the sea. The reactors are basically lead-bismuth cooled fast power reactors using nitride fuels to enhance neutronics and safety performance. Some design modification are performed for feasibility of operation under sea wave movement. The system use loop type with relatively large coolant pipe above reactor core. The reactors does not use IHX, so that the heat from primary coolant system directly transferred to water-steam loop through steam generator. The reactors are capable to be operated in difference power level during night and noon. The reactors however can also be used totally or partially to produce clean water through desalination of sea water. Due to the influence of sea wave movement the analysis have to be performed in three dimensional analysis. The computation time for this analysis is speeded up using Parallel Virtual Machine (PVM) Based multi processor system

  10. Green synthesis of isopropyl myristate in novel single phase medium Part II: Packed bed reactor (PBR) studies.

    Science.gov (United States)

    Vadgama, Rajeshkumar N; Odaneth, Annamma A; Lali, Arvind M

    2015-12-01

    Isopropyl myristate is a useful functional molecule responding to the requirements of numerous fields of application in cosmetic, pharmaceutical and food industry. In the present work, lipase-catalyzed production of isopropyl myristate by esterification of myristic acid with isopropyl alcohol (molar ratio of 1:15) in the homogenous reaction medium was performed on a bench-scale packed bed reactors, in order to obtain suitable reaction performance data for upscaling. An immobilized lipase B from Candida antartica was used as the biocatalyst based on our previous study. The process intensification resulted in a clean and green synthesis process comprising a series of packed bed reactors of immobilized enzyme and water dehydrant. In addition, use of the single phase reaction system facilitates efficient recovery of the product with no effluent generated and recyclability of unreacted substrates. The single phase reaction system coupled with a continuous operating bioreactor ensures a stable operational life for the enzyme.

  11. Green synthesis of isopropyl myristate in novel single phase medium Part II: Packed bed reactor (PBR studies

    Directory of Open Access Journals (Sweden)

    Rajeshkumar N. Vadgama

    2015-12-01

    Full Text Available Isopropyl myristate is a useful functional molecule responding to the requirements of numerous fields of application in cosmetic, pharmaceutical and food industry. In the present work, lipase-catalyzed production of isopropyl myristate by esterification of myristic acid with isopropyl alcohol (molar ratio of 1:15 in the homogenous reaction medium was performed on a bench-scale packed bed reactors, in order to obtain suitable reaction performance data for upscaling. An immobilized lipase B from Candida antartica was used as the biocatalyst based on our previous study. The process intensification resulted in a clean and green synthesis process comprising a series of packed bed reactors of immobilized enzyme and water dehydrant. In addition, use of the single phase reaction system facilitates efficient recovery of the product with no effluent generated and recyclability of unreacted substrates. The single phase reaction system coupled with a continuous operating bioreactor ensures a stable operational life for the enzyme.

  12. A vacuum disengager for tritium removal from HYLIFE-II Reactor Flibe

    International Nuclear Information System (INIS)

    Dolan, T.J.; Longhurst, G.R.; Garcia-Otero, E.

    1992-01-01

    We have designed a vacuum disengager system to remove tritium from the Flibe (Li 2 BeF 4 ) molten salt coolant of the HYLIFE-II fusion reactor. There is a two-stage vacuum disengager in each of three intermediate heat exchanger (IHX) loops. Each stage consists of a vacuum chamber 4 m in diameter and 7 m tall. As 0.2 mm diameter molten salt droplets fall vertically downward into the vacuum, most of the tritium diffuses out of the droplets and is pumped away. A fraction Φ ∼10 -5 of the 8.6 MCi/day tritium source (from breeding in the Flibe and from unburned fuel) remains in the Flibe as it leaves the vacuum disengagers, and about 21% of that permeates into the intermediate coolant loop, so about 20 Ci/day leak into the steam system. With Flibe primary coolant and a vacuum disengager, it appears that an intermediate coolant loop is not needed to prevent tritium from leaking into the steam system. An experiment is needed to demonstrate Flibe vacuum disengager operation

  13. Positron annihilation studies on structural materials for nuclear reactors

    International Nuclear Information System (INIS)

    Rajaraman, R.; Amarendra, G.; Sundar, C.S.

    2012-01-01

    Structural steels for nuclear reactors have renewed interest owing to the future advanced fission reactor design with increased burn-up goals as well as for fusion reactor applications. While modified austenitic steels continue to be the main cladding materials for fast breeder reactors, Ferritic/martensitic steels and oxide dispersion strengthened ferritic steels are the candidate materials for future reactors applications in India. Sensitivity and selectivity of positron annihilation spectroscopy to open volume type defects and nano clusters have been extensively utilized in studying reactor materials. We have recently reviewed the application of positron techniques to reactor structural steels. In this talk, we will present successful application of positron annihilation spectroscopy to probe various structural materials such as D9, ferritic/martensitic, oxide dispersion strengthened (ODS) steels and related model alloys, highlighting our recent studies. (author)

  14. Seismic responses of N-Reactor core. Independent review of Phase II work

    International Nuclear Information System (INIS)

    Chen, J.C.; Lo, T.; Chinn, D.J.; Murray, R.C.; Johnson, J.J.; Maslenikov, O.R.

    1985-08-01

    Seismic response of the N-Reactor core was independently analyzed to validate the results of Impell's analysis. The analysis procedure consists of two major stages: linear soil-structure interaction (SSI) analysis of the overall N-Reactor structure complex and nonlinear dynamic analysis of the reactor core. In the SSI analysis, CLASSI computer codes were used to calculate the SSI response of the structures and to generate the input motions for the nonlinear reactor core analysis. In addition, the response was compared to the response from the SASSI analysis under review. The impact of foundation modeling techniques and the effect of soil stiffness variation on SSI response were also investigated. In the core analysis, a nonlinear dynamic analysis model was developed. The stiffness representation of the model was calculated through a finite element analysis of several local core geometries. Finite element analyses were also used to study the block to block interaction characteristics. Using this nonlinear dynamic model along with the basemat time histories generated from CLASSI and SASSI, several dynamic analyses of the core were performed. A series of sensitivity studies was performed to investigate the discretization of the core, the effect of vertical acceleration, the effect of basemat rocking, and modeling assumptions. In general, our independent analysis of core response validates the order of magnitude of the displacement calculated by Impell. 11 refs., 110 figs., 12 tabs

  15. Power reactors in Member States. 1979 edition

    International Nuclear Information System (INIS)

    1979-01-01

    This is the fifth issue of a periodic computer-based listing of nuclear power reactors, presenting the situation as of 1 May 1979. The basic design data for all reactors in operation, under construction, planned and shut down have been included. The following two tables are included to give a general picture of the overall situation: Table I: Reactor types and net electrical power. Table II: Reactor units and net electrical powered by country cummulated by year

  16. A review of experiments and results from the transient reactor test (TREAT) facility

    International Nuclear Information System (INIS)

    Deitrich, L. W.

    1998-01-01

    The TREAT Facility was designed and built in the late 1950s at Argonne National Laboratory to provide a transient reactor for safety experiments on samples of reactor fuels. It first operated in 1959. Throughout its history, experiments conducted in TREAT have been important in establishing the behavior of a wide variety of reactor fuel elements under conditions predicted to occur in reactor accidents ranging from mild off normal transients to hypothetical core disruptive accidents. For much of its history, TREAT was used primarily to test liquid-metal reactor fuel elements, initially for the Experimental Breeder Reactor-II (EBR-II), then for the Fast Flux Test Facility (FFTF), the Clinch River Breeder Reactor Plant (CRBRP), the British Prototype Fast Reactor (PFR), and finally, for the Integral Fast Reactor (IFR). Both oxide and metal elements were tested in dry capsules and in flowing sodium loops. The data obtained were instrumental in establishing the behavior of the fuel under off-normal and accident conditions, a necessary part of the safety analysis of the various reactors. In addition, TREAT was used to test light-water reactor (LWR) elements in a steam environment to obtain fission-product release data under meltdown conditions. Studies are now under way on applications of TREAT to testing of the behavior of high-burnup LWR elements under reactivity-initiated accident (RIA) conditions using a high-pressure water loop

  17. Overview of the fast reactors fuels program. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Evans, E.A.; Cox, C.M.; Hayward, B.R.; Rice, L.H.; Yoshikawa, H.H.

    1980-04-01

    Each nation involved in LMFBR development has its unique energy strategies which consider energy growth projections, uranium resources, capital costs, and plant operational requirements. Common to all of these strategies is a history of fast reactor experience which dates back to the days of the Manhatten Project and includes the CLEMENTINE Reactor, which generated a few watts, LAMPRE, EBR-I, EBR-II, FERMI, SEFOR, FFTF, BR-1, -2, -5, -10, BOR-60, BN-350, BN-600, JOYO, RAPSODIE, Phenix, KNK-II, DFR, and PFR. Fast reactors under design or construction include PEC, CRBR, SuperPhenix, SNR-300, MONJU, and Madras (India). The parallel fuels and materials evolution has fully supported this reactor development. It has involved cermets, molten plutonium alloy, plutonium oxide, uranium metal or alloy, uranium oxide, and mixed uranium-plutonium oxides and carbides.

  18. Mirror hybrid reactor optimization studies

    International Nuclear Information System (INIS)

    Bender, D.J.

    1976-01-01

    A system model of the mirror hybrid reactor has been developed. The major components of the model include (1) the reactor description, (2) a capital cost analysis, (3) various fuel management schemes, and (4) an economic analysis that includes the hybrid plus its associated fission burner reactors. The results presented describe the optimization of the mirror hybrid reactor, the objective being to minimize the cost of electricity from the hybrid fission-burner reactor complex. We have examined hybrid reactors with two types of blankets, one containing natural uranium, the other thorium. The major difference between the two optimized reactors is that the uranium hybrid is a significant net electrical power producer, whereas the thorium hybrid just about breaks even on electrical power. Our projected costs for fissile fuel production are approximately 50 $/g for 239 Pu and approximately 125 $/g for 233 U

  19. Experience with lifetime limits for EBR-II core components

    International Nuclear Information System (INIS)

    Lambert, J.D.B.; Smith, R.N.; Golden, G.H.

    1987-01-01

    The Experimental Breeder Reactor No. 2 (EBR-II) is operated for the US Department of Energy by Argonne National Laboratory and is located on the Idaho National Engineering Laboratory where most types of American reactor were originally tested. EBR-II is a complete electricity-producing power plant now in its twenty-fourth year of successful operation. During this long history the reactor has had several concurrent missions, such as demonstration of a closed Liquid-Metal Reactor (LMR) fuel cycle (1964-69); as a steady-state irradiation facility for fuels and materials (1970 onwards); for investigating effects of operational transients on fuel elements (from 1981); for research into the inherent safety aspects of metal-fueled LMR's (from 1983); and, most recently, for demonstration of the Integral Fast Reactor (IFR) concept using U-Pu-Zr fuels. This paper describes experience gained at EBR-II in defining lifetime limits for LMR core components, particularly fuel elements

  20. copper(II)

    Indian Academy of Sciences (India)

    Unknown

    bis(2,2,6,6-tetramethyl-3,5-heptadionato)copper(II) ... Abstract. Equilibrium concentrations of various condensed and gaseous phases have been thermodyna- ... phere, over a wide range of substrate temperatures and total reactor pressures.

  1. Advanced Safeguards Approaches for New Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Durst, Philip C.; Therios, Ike; Bean, Robert; Dougan, A.; Boyer, Brian; Wallace, Rick L.; Ehinger, Michael H.; Kovacic, Don N.; Tolk, K.

    2007-12-15

    This third report in the series reviews possible safeguards approaches for new fast reactors in general, and the ABR in particular. Fast-neutron spectrum reactors have been used since the early 1960s on an experimental and developmental level, generally with fertile blanket fuels to “breed” nuclear fuel such as plutonium. Whether the reactor is designed to breed plutonium, or transmute and “burn” actinides depends mainly on the design of the reactor neutron reflector and the whether the blanket fuel is “fertile” or suitable for transmutation. However, the safeguards issues are very similar, since they pertain mainly to the receipt, shipment and storage of fresh and spent plutonium and actinide-bearing “TRU”-fuel. For these reasons, the design of existing fast reactors and details concerning how they have been safeguarded were studied in developing advanced safeguards approaches for the new fast reactors. In this regard, the design of the Experimental Breeder Reactor-II “EBR-II” at the Idaho National Laboratory (INL) was of interest, because it was designed as a collocated fast reactor with a pyrometallurgical reprocessing and fuel fabrication line – a design option being considered for the ABR. Similarly, the design of the Fast Flux Facility (FFTF) on the Hanford Site was studied, because it was a successful prototype fast reactor that ran for two decades to evaluate fuels and the design for commercial-scale fast reactors.

  2. Maintenance of reactor recirculation pumps [Paper No.: II-1

    International Nuclear Information System (INIS)

    Ansari, M.A.; Bhat, K.P.

    1981-01-01

    At Tarapur Atomic Power Station (TAPS), two reactor recirculation pumps are provided, one each for the two reactor units. The performance of pumps has been uniformly good; however, leakage through the cartridge type, two stage, mechanical seals which are installed on these pumps was encountered on few occasions. The paper describes the leakage problems, identification of certain design deficiencies and rectification carried out at TAPS for overcoming these problems. (author)

  3. Design study on sodium-cooled middle-scale modular reactor

    International Nuclear Information System (INIS)

    Shimakawa, Yoshio; Nibe, Nobuaki; Hori, Toru

    2002-05-01

    In Phase 1 of the 'Feasibility Study on Commercialized Fast Reactor Cycle Systems (F/S)', an advanced loop type reactor has been selected as a promising concept of sodium-cooled middle-scale modular reactor, which has a possibility to fulfill the design requirements of the F/S. In Phase 2 of the F/S, it is planed to precede a preliminary conceptual design of a sodium-cooled middle-scale modular reactor based on the design of the advanced loop type reactor. Through the design study, it is intended to construct such a plant concept that can show its attraction and competitiveness as a commercialized reactor. This report summarizes the results of the design study on the sodium-cooled middle-scale modular reactor performed in JFY2001, which is the first year of Phase 2. As the construction cost of the sodium-cooled middle-scale modular reactor, which has been constructed in Phase 1, was about 10% higher than that of the sodium-cooled large-scale reactor, a new concept of the middle-scale modular reactor, which is expected to be equal to the large-scale reactor from a viewpoint of economic competitiveness, has been re-constructed based on the design of the advanced loop type reactor. After that, fundamental specifications of main systems and components for the new concept have been set, and critical subjects related to safety, structural integrity, thermal hydraulics, operability, maintainability and economy have been examined and evaluated. As a result of this study, the plant concept of the sodium-cooled middle-scale modular reactor has been constructed, which has a prospect to satisfy the economic goal (construction cost: less than 200,000 yens/kWe, etc.) and has a prospect to solve the critical subjects. From now on, reflecting the results of elemental experiments, the preliminary conceptual design of this plant will be preceded toward the selection for narrowing down candidate concepts at the end of Phase 2. (author)

  4. Status of fast breeder reactor development in Germany

    International Nuclear Information System (INIS)

    Hueber, R.; Kathol, W.; Kempken, M.

    1991-01-01

    The KNK, the sodium cooled compact reactor is an experimental nuclear power plant of 20 MW electric power. Since 1977, it has been operated with fast reactor cores as KNK II. The KNK II/3 core was designed. The core fabrication has been largely completed. In 1990, the KNK II plant achieved a time availability of 56%. On January 8, 1991 KNK II was shut down for inspection. Since pre-nuclear commissioning was completed the Kalkar Nuclear Power Station SNR 300 has been operated in a mode similar to that of a power station. In March 1991 the financing partners decided not to prolong the standby phase because they do not think that the last construction permit and the operation permit will be issued within a definite period of time. The partners were convinced that the lack of progress in the licensing procedure was not caused by basic safety deficiencies of the project but by the way the licensing procedure was executed. The German fast breeder programme is now concentrated on contributions to the European Fast Reactor. (author)

  5. Neutronic study of the two french heavy water reactors

    International Nuclear Information System (INIS)

    Horowitz, J.

    1955-01-01

    The two french reactors - the reactor of Chatillon, named Zoe, and the reactor of Saclay - P2 - were the object of detailed neutronic studies which the main ideas are exposed in this report. These studies were mostly done by the Department of the Reactor Studies (D.E.P.). We have thus studied the distribution of neutronic fluxes; the factors influencing reactivity; the link between reactivity and divergence with the formula of Nordheim; the mean time life of neutrons; neutron spectra s of P2; the xenon effect; or the effect of the different adjustments of the plates and controls bar. (M.B.) [fr

  6. Advanced reactor design study. Assessing nonbackfittable concepts for improving uranium utilization in light water reactors

    International Nuclear Information System (INIS)

    Fleischman, R.M.; Goldsmith, S.; Newman, D.F.; Trapp, T.J.; Spinrad, B.I.

    1981-09-01

    The objective of the Advanced Reactor Design Study (ARDS) is to identify and evaluate nonbackfittable concepts for improving uranium utilization in light water reactors (LWRs). The results of this study provide a basis for selecting and demonstrating specific nonbackfittable concepts that have good potential for implementation. Lead responsibility for managing the study was assigned to the Pacific Northwest Laboratory (PNL). Nonbackfittable concepts for improving uranium utilization in LWRs on the once-through fuel cycle were selected separately for PWRs and BWRs due to basic differences in the way specific concepts apply to those plants. Nonbackfittable concepts are those that are too costly to incorporate in existing plants, and thus, could only be economically incorporated in new reactor designs or plants in very early stages of construction. Essential results of the Advanced Reactor Design Study are summarized

  7. Testing the applicability of the k 0-NAA method at the MINT's TRIGA MARK II reactor

    International Nuclear Information System (INIS)

    Siong, Wee Boon; Dung, Ho Manh; Wood, Ab. Khalik; Salim, Nazaratul Ashifa Abd.; Elias, Md. Suhaimi

    2006-01-01

    The Analytical Chemistry Laboratory at MINT is using the NAA technique since 1980s and is the only laboratory in Malaysia equipped with a research reactor, namely the TRIGA MARK II. Throughout the years the development of NAA technique has been very encouraging and was made applicable to a wide range of samples. At present, the k 0 method has become the preferred standardization method of NAA (k 0 -NAA) due to its multi-elemental analysis capability without using standards. Additionally, the k 0 method describes NAA in physically and mathematically understandable definitions and is very suitable for computer evaluation. Eventually, the k 0 -NAA method has been adopted by MINT in 2003, in collaboration with the Nuclear Research Institute (NRI), Vietnam. The reactor neutron parameters (α and f) for the pneumatic transfer system and for the rotary rack at various locations, as well as the detector efficiencies were determined. After calibration of the reactor and the detectors, the implemented k 0 method was validated by analyzing some certified reference materials (including IAEA Soil 7, NIST 1633a, NIST 1632c, NIST 1646a and IAEA 140/TM). The analysis results of the CRMs showed an average u score well below the threshold value of 2 with a precision of better than ±10% for most of the elemental concentrations obtained, validating herewith the introduction of the k 0 -NAA method at the MINT

  8. Testing the applicability of the k0-NAA method at the MINT's TRIGA MARK II reactor

    Science.gov (United States)

    Siong, Wee Boon; Dung, Ho Manh; Wood, Ab. Khalik; Salim, Nazaratul Ashifa Abd.; Elias, Md. Suhaimi

    2006-08-01

    The Analytical Chemistry Laboratory at MINT is using the NAA technique since 1980s and is the only laboratory in Malaysia equipped with a research reactor, namely the TRIGA MARK II. Throughout the years the development of NAA technique has been very encouraging and was made applicable to a wide range of samples. At present, the k0 method has become the preferred standardization method of NAA ( k0-NAA) due to its multi-elemental analysis capability without using standards. Additionally, the k0 method describes NAA in physically and mathematically understandable definitions and is very suitable for computer evaluation. Eventually, the k0-NAA method has been adopted by MINT in 2003, in collaboration with the Nuclear Research Institute (NRI), Vietnam. The reactor neutron parameters ( α and f) for the pneumatic transfer system and for the rotary rack at various locations, as well as the detector efficiencies were determined. After calibration of the reactor and the detectors, the implemented k0 method was validated by analyzing some certified reference materials (including IAEA Soil 7, NIST 1633a, NIST 1632c, NIST 1646a and IAEA 140/TM). The analysis results of the CRMs showed an average u score well below the threshold value of 2 with a precision of better than ±10% for most of the elemental concentrations obtained, validating herewith the introduction of the k0-NAA method at the MINT.

  9. International Working Group on Fast Reactors Eight Annual Meeting, Vienna, Austria, 15-18 April 1975. Summary Report. Part II

    International Nuclear Information System (INIS)

    1975-07-01

    The Eighth Annual Meeting of the IAEA International Working Group on Past Reactors was held at the IAEA Headquarters in Vienna, Austria, from 15 to 18 April 1975. The Summary Report (Part I) contains the Minutes of the Meeting. The Summary Report (Part II) contains the papers which review the national programmes in the field of LMPBR’s and other presentations at the Meeting. The Summary Report (Part III) contains the discussions on the review of the national programmes

  10. Deactivation of the EBR-II complex

    Energy Technology Data Exchange (ETDEWEB)

    Michelbacher, J.A.; Earle, O.K.; Henslee, S.P. [and others

    1997-12-31

    In January of 1994, the Department of Energy mandated the termination of the Integral Fast Reactor (IFR) Program, effective October 1, 1994. To comply with this decision, Argonne National Laboratory-West (ANL-W) prepared a plan providing detailed requirements to place the Experimental Breeder Reactor-II (EBR-II) in a radiologically and industrially safe condition, including removal of all irradiated fuel assemblies from the reactor plant, and removal and stabilization of the primary and secondary sodium, a liquid metal used to transfer heat within the reactor plant. The ultimate goal of the deactivation process is to place the EBR-II complex in a stable condition until a decontamination and decommissioning (D&D) plan can be prepared, thereby minimizing requirements for maintenance and surveillance and maximizing the amount of time for radioactive decay. The final closure state will be achieved in full compliance with federal, state and local environmental, safety, and health regulations and requirements. The decision to delay the development of a detailed D&D plan has necessitated this current action. The EBR-II is a pool-type reactor. The primary system contains approximately 87,000 gallons of sodium, while the secondary system has 13,000 gallons. In order to properly dispose of the sodium in compliance with the Resource Conservation and Recovery Act (RCRA), a facility has been built to react the sodium to a dry carbonate powder in a two stage process. Deactivation of a liquid metal fast breeder reactor (LMFBR) presents unique concerns. Residual amounts of sodium remaining in the primary and secondary systems must be either reacted or inerted to preclude future concerns with sodium-air reactions that generate explosive mixtures of hydrogen and leave corrosive compounds. Residual amounts of sodium on components will effectively {open_quotes}solder{close_quotes} components in place, making future operation or removal unfeasible.

  11. Deactivation of the EBR-II complex

    International Nuclear Information System (INIS)

    Michelbacher, J.A.; Earle, O.K.; Henslee, S.P.

    1997-01-01

    In January of 1994, the Department of Energy mandated the termination of the Integral Fast Reactor (IFR) Program, effective October 1, 1994. To comply with this decision, Argonne National Laboratory-West (ANL-W) prepared a plan providing detailed requirements to place the Experimental Breeder Reactor-II (EBR-II) in a radiologically and industrially safe condition, including removal of all irradiated fuel assemblies from the reactor plant, and removal and stabilization of the primary and secondary sodium, a liquid metal used to transfer heat within the reactor plant. The ultimate goal of the deactivation process is to place the EBR-II complex in a stable condition until a decontamination and decommissioning (D ampersand D) plan can be prepared, thereby minimizing requirements for maintenance and surveillance and maximizing the amount of time for radioactive decay. The final closure state will be achieved in full compliance with federal, state and local environmental, safety, and health regulations and requirements. The decision to delay the development of a detailed D ampersand D plan has necessitated this current action. The EBR-II is a pool-type reactor. The primary system contains approximately 87,000 gallons of sodium, while the secondary system has 13,000 gallons. In order to properly dispose of the sodium in compliance with the Resource Conservation and Recovery Act (RCRA), a facility has been built to react the sodium to a dry carbonate powder in a two stage process. Deactivation of a liquid metal fast breeder reactor (LMFBR) presents unique concerns. Residual amounts of sodium remaining in the primary and secondary systems must be either reacted or inerted to preclude future concerns with sodium-air reactions that generate explosive mixtures of hydrogen and leave corrosive compounds. Residual amounts of sodium on components will effectively open-quotes solderclose quotes components in place, making future operation or removal unfeasible

  12. Combustion of a Pb(II)-loaded olive tree pruning used as biosorbent

    Energy Technology Data Exchange (ETDEWEB)

    Ronda, A., E-mail: alirg@ugr.es [Department of Chemical Engineering, University of Granada, 18071 Granada (Spain); Della Zassa, M. [Department of Industrial Engineering, University of Padua, 35131 Padova (Italy); Martín-Lara, M.A.; Calero, M. [Department of Chemical Engineering, University of Granada, 18071 Granada (Spain); Canu, P. [Department of Industrial Engineering, University of Padua, 35131 Padova (Italy)

    2016-05-05

    Highlights: • The fate of Pb during combustion at two scales of investigation was studied. • Results from combustion in a flow reactor and in the thermobalance were consistent. • The Pb contained in the solid remained in the ashes. • The Pb does not interfere in the use of OTP as fuel. • The combustion of Pb(II)-loaded OTP does not cause environmental hazards. - Abstract: The olive tree pruning is a specific agroindustrial waste that can be successfully used as adsorbent, to remove Pb(II) from contaminated wastewater. Its final incineration has been studied in a thermobalance and in a laboratory flow reactor. The study aims at evaluating the fate of Pb during combustion, at two different scales of investigation. The flow reactor can treat samples approximately 10{sup 2} larger than the conventional TGA. A detailed characterization of the raw and Pb(II)-loaded waste, before and after combustion is presented, including analysis of gas and solids products. The Pb(II)-loaded olive tree pruning has been prepared by a previous biosorption step in a lead solution, reaching a concentration of lead of 2.3 wt%. Several characterizations of the ashes and the mass balances proved that after the combustion, all the lead presents in the waste remained in ashes. Combustion in a flow reactor produced results consistent with those obtained in the thermobalance. It is thus confirmed that the combustion of Pb(II)-loaded olive tree pruning is a viable option to use it after the biosorption process. The Pb contained in the solid remained in the ashes, preventing possible environmental hazards.

  13. Development of technologies for nuclear reactors of small and medium sized; Desarrollo de Tecnologias para Reactores Nucleares de pequeno y medio tamano

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-08-15

    This meeting include: countries presentations, themes and objectives of the training course, reactor types, design, EPR, APR1400, A P 1000, A PWR, ATMEA 1, VVER-1000, A PWR, ATMEA 1, VVER 1200, Boiling Water Reactor, A BWR, A BWR -II, ESBUR, Ke ren, AREVA, Heavy Water Reactor, Candu 6, Acr-1000, HWR, Bw, Iris, CAREM NuCcale, Smart, KLT-HOS, Westinghouse small modular Reactor, Gas Cooled Reactors, PBMR, React ores enfriados con metales liquidos, Hs, Prism,Terra Power, Hyper ion, appliance's no electric as de energia, Generation IV Reactors,VHTR, Gas Fast Reactor, Sodium Fast Reactor, Molten salt Reactor, Lfr, Water Cooled Reactor, Technology Assessment Process, Fukushima accident.

  14. Study on the management of radioactive solid wastes for the KRR-I and II dismantling activities

    International Nuclear Information System (INIS)

    Lee, D. G.; Kim, H. R.; Park, S. K.; Lee, B. J.; Jung, K. H.; Baek, S. T.; Jung, U. S.; Jung, K. J.

    2000-01-01

    KRR-1(TRIGA Mark II) and KRR-2(TRIGA Mark-III) have been operated 33 years and 23 years, respectively, and now are about to be decommissioned as they reach the end of their useful lives. In the decommissioning of the reactors, the treatment of radioactive wastes is practical issues and, therefore, the plan on it has to be essentially established prior to the actual decontamination and decommissioning activities. In the present study, the classification, radiological status, classification criteria and package on the radioactive solid wastes in the TRIGA Mark-II and III are investigated for the investigated for the purpose of the effective management plan of them

  15. Training experience at Experimental Breeder Reactor II

    International Nuclear Information System (INIS)

    Driscoll, J.W.; McCormick, R.P.; McCreery, H.I.

    1978-01-01

    The EBR-II Training Group develops, maintains,and oversees training programs and activities associated with the EBR-II Project. The group originally spent all its time on EBR-II plant-operations training, but has gradually spread its work into other areas. These other areas of training now include mechanical maintenance, fuel manufacturing facility, instrumentation and control, fissile fuel handling, and emergency activities. This report describes each of the programs and gives a statistical breakdown of the time spent by the Training Group for each program. The major training programs for the EBR-II Project are presented by multimedia methods at a pace controlled by the student. The Training Group has much experience in the use of audio-visual techniques and equipment, including video-tapes, 35 mm slides, Super 8 and 16 mm film, models, and filmstrips. The effectiveness of these techniques is evaluated in this report

  16. Implementation of multivariable control techniques with application to Experimental Breeder Reactor II

    International Nuclear Information System (INIS)

    Berkan, R.C.

    1990-06-01

    After several successful applications to aerospace industry, the modern control theory methods have recently attracted many control engineers from other engineering disciplines. For advanced nuclear reactors, the modern control theory may provide major advantages in safety, availability, and economic aspects. This report is intended to illustrate the feasibility of applying the linear quadratic Gaussian (LQG) compensator in nuclear reactor applications. The LQG design is compared with the existing classical control schemes. Both approaches are tested using the Experimental Breeder Reactor 2 (EBR-2) as the system. The experiments are performed using a mathematical model of the EBR-2 plant. Despite the fact that the controller and plant models do not include all known physical constraints, the results are encouraging. This preliminary study provides an informative, introductory picture for future considerations of using modern control theory methods in nuclear industry. 10 refs., 25 figs

  17. The US Liquid Metal Reactor Development Program

    International Nuclear Information System (INIS)

    Till, C.E.; Arnold, W.H.; Griffith, J.D.

    1988-01-01

    The US Liquid Metal Reactor Development Program has been restructured to take advantage of the opportunity today to carry out R and D on truly advanced reactor technology. The program gives particular emphasis to improvements to reactor safety. The new directions are based on the technology of the Integral Fast Reactor (IFR). Much of the basis for superior safety performance using IFR technology has been experimentally verified and aggressive programs continue in EBR-II and TREAT. Progress has been made in demonstrating both the metallic fuel and the new electrochemical processes of the IFR. The FFTF facility is converting to metallic fuel; however, FFTF also maintains a considerable US program in oxide fuels. In addition, generic programs are continuing in steam generator testing, materials development, and, with international cooperation, aqueous reprocessing. Design studies are carried out in conjunction with the IFR technology development program. In summary, the US maintains an active development program in Liquid Metal Reactor technology, and new directions in reactor safety are central to the program

  18. Conceptual design study of small lead-bismuth cooled reactor

    International Nuclear Information System (INIS)

    Chikazawa, Yoshitaka; Hori, Toru; Kida, Masanori; Konomura, Mamoru

    2004-11-01

    In phase 2 of the feasibility study of commercialized fast reactor cycle systems of JNC, we make a concept of a small sodium cooled reactor for a power source of a city with various requirements, such as, safety and economical competitiveness. various reactor concepts are surveyed and a tank type reactor whose intermediate heat exchanger and primary main pumps are arranged in series is selected. In this study, a compact long life core and a simple reactor structure designs are pursued. The core type is three regional Zr concentration with one Pu enrichment core, the reactor outlet temperature achieves 550degC and the reactor electric output increases from 150 MWe to 165 MWe. The construction cost is much higher than the economical goal in the case of FOAK. But the construction cost in the case of NOAK is estimated to be 85.6% achieving the economical goal. (author)

  19. Reversed field pinch reactor study 3

    International Nuclear Information System (INIS)

    Hollis, A.A.; Mitchell, J.T.D.

    1977-12-01

    This report, the third of a series on the Reversed Field Pinch Reactor, describes a preliminary concept of the engineering design and layout of this pulsed toroidal reactor, which uses the stable plasma behaviour first observed in ZETA. The basic parameters of the 600 MW(e) reactor are taken from a companion study by Hancox and Spears. The plasma volume is 1.75m minor radius and 16m major radius surrounded by a 1.8m blanket-shield region - with the blanket divided into 14 removable segments for servicing. The magnetic confinement system consists of 28 toroidal field coils situated just outside the blanket and inside the poloidal and vertical field coils and all coils have normal copper conductors. The requirement to incorporate a conducting shell at the front of the blanket to provide a short-time plasma stability has a marked effect on the design. It sets the size of the blanket segment and the scale of the servicing operations, limits the breeding gain and complicates the blanket cooling and its integration with the heat engine. An extensive study will be required to confirm the overall reactor potential of the concept. (author)

  20. Radioisotope tracer study in an aniline production reactor

    International Nuclear Information System (INIS)

    Pant, H.J.; Yelgoankar, V.N.; Mendhekar, G.N.

    1995-01-01

    A radioisotope tracer study was carried out in an aniline production reactor to investigate the cause of poor heat transfer from tube side to shell side in an aniline production (ANPO) reactor. The results of the study indicated that more than 50% of the shell volume was reduced due to deposition of the process material (i.e. fouling) on the shell walls and may be the cause of poor heat transfer in the reactor. (author). 2 refs., 2 figs

  1. The integral fast reactor

    International Nuclear Information System (INIS)

    Till, C.E.

    1987-01-01

    On April 3rd, 1986, two dramatic demonstrations of the inherent capability of sodium-cooled fast reactors to survive unprotected loss of cooling accidents were carried out on the experimental sodium-cooled power reactor, EBR-II, on the Idaho site of Argonne National Laboratory. Transients potentially of the most serious kind, one an unprotected loss of flow, the other an unprotected loss of heat sink, both initiated from full power. In both cases the reactor quietly shut itself down, without damage of any kind. These tests were a part of the on-going development program at Argonne to develop an advanced reactor with significant new inherent safety characteristics. Called the Integral Fast Reactor, or IFR, the basic thrust is to develop everything that is needed for a complete nuclear power system - reactor, closed fuel cycle, and waste processing - as a single optimized entity, and, for simplicity in concept, as an integral part of a single plant. The particular selection of reactor materials emphasizes inherent safety characteristics and also makes possible a simplified closed fuel cycle and waste process improvements

  2. Comparison of standardised decommissioning costing tools on pilot Vienna TRIGA MARK-II research reactor

    International Nuclear Information System (INIS)

    Hornacek, M.; Kristofova, K.; Slugen, V.; Zachar, M.; Stummer, T.

    2017-01-01

    The main purpose of the paper is to compare decommissioning costing code CERREX (Cost Estimation for Research Reactors in Excel) with advanced calculation methodology applied in eOMEGA-RR code. CERREX code was developed in line with the IAEA recommendations for decommissioning costing of research facilities and fully implements the ISDC (International Structure for Decommissioning Costing of Nuclear Installations) structure and costing methodology. In comparison with CERREX, usually applied in preliminary costing, the code eOMEGA-RR incorporates the realistic activity and material flow during decommissioning process (e.g. decontamination, dismantling and waste management). This advanced approach enables to carry out the decommissioning planning and costing more effectively. Moreover, the user-friendly interface helps to perform wide range of sensitivity analyses. In order to meet the above mentioned objectives, the model calculation costing case for TRIGA MARK-II research reactor in Vienna was developed in both calculation codes. The whole process covered four step-by-step procedures to be implemented. At first, inventory database taking into account physical as well as radiological parameters (e.g.: contamination, dose rates, nuclide vectors, limits and conditions) was developed. At second, advanced decommissioning costing case using CERREX and eOMEGA-RR code was created. At third, sensitivity analyses to estimate the impact of changing input parameters on calculated results were performed. Finally, costing results obtained from both cost calculation codes are compared and discussed. (authors)

  3. Experience in utilizing research reactors in Yugoslavia

    Energy Technology Data Exchange (ETDEWEB)

    Pop-Jordanov, J.; Raisic, N. [Boris Kidric Institute of Nuclear Sciences VINCA, Belgrade (Yugoslavia); Copic, M.; Gabrovsek, Z. [Jozef Stefan Institute Ljubljana (Yugoslavia)

    1972-07-01

    The nuclear institutes in Yugoslavia possess three research reactors. Since 1958, two heavy-water reactors have been in operation at the 'Boris Kidric' Institute, a zero-power reactor RB and a 6. 5-MW reactor RA. At the Jozef Stefan Institute, a 250-kW TRIGA Mark II reactor has been operating since 1966. All reactors are equipped with the necessary experimental facilities. The main activities based on these reactors are: (1) fundamental research in solid-state and nuclear physics; (2) R and D activities related to nuclear power program; and (3) radioisotope production. In fundamental physics, inelastic neutron scattering and diffraction phenomena are studied by means of the neutron beam tubes and applied to investigations of the structures of solids and liquids. Valuable results are also obtained in n - γ reaction studies. Experiments connected with the fuel -element development program, owing to the characteristics of the existing reactors, are limited to determination of the fuel element parameters, to studies on the purity of uranium, and to a small number of capsule irradiations. All three reactors are also used for the verification of different methods applied in the analysis of power reactors, particularly concerning neutron flux distributions, the optimization of reactor core configurations and the shielding effects. An appreciable irradiation space in the reactors is reserved for isotope production. Fruitful international co-operation has been established in all these activities, on the basis of either bilateral or multilateral arrangements. The paper gives a critical analysis of the utilization of research reactors in a developing country such as Yugoslavia. The investments in and the operational costs of research reactors are compared with the benefits obtained in different areas of reactor application. The impact on the general scientific, technological and educational level in the country is also considered. In particular, an attempt is made ro

  4. Experience in utilizing research reactors in Yugoslavia

    International Nuclear Information System (INIS)

    Pop-Jordanov, J.; Raisic, N.; Copic, M.; Gabrovsek, Z.

    1972-01-01

    The nuclear institutes in Yugoslavia possess three research reactors. Since 1958, two heavy-water reactors have been in operation at the 'Boris Kidric' Institute, a zero-power reactor RB and a 6. 5-MW reactor RA. At the Jozef Stefan Institute, a 250-kW TRIGA Mark II reactor has been operating since 1966. All reactors are equipped with the necessary experimental facilities. The main activities based on these reactors are: (1) fundamental research in solid-state and nuclear physics; (2) R and D activities related to nuclear power program; and (3) radioisotope production. In fundamental physics, inelastic neutron scattering and diffraction phenomena are studied by means of the neutron beam tubes and applied to investigations of the structures of solids and liquids. Valuable results are also obtained in n - γ reaction studies. Experiments connected with the fuel -element development program, owing to the characteristics of the existing reactors, are limited to determination of the fuel element parameters, to studies on the purity of uranium, and to a small number of capsule irradiations. All three reactors are also used for the verification of different methods applied in the analysis of power reactors, particularly concerning neutron flux distributions, the optimization of reactor core configurations and the shielding effects. An appreciable irradiation space in the reactors is reserved for isotope production. Fruitful international co-operation has been established in all these activities, on the basis of either bilateral or multilateral arrangements. The paper gives a critical analysis of the utilization of research reactors in a developing country such as Yugoslavia. The investments in and the operational costs of research reactors are compared with the benefits obtained in different areas of reactor application. The impact on the general scientific, technological and educational level in the country is also considered. In particular, an attempt is made ro

  5. Evaluation for the status of the IAEA inspection at Hanaro and TRIGA Mark II and III reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Sook; Lee, Byung Doo

    2007-11-15

    Safeguards implementation of nuclear material was carried out at facility level in an effect to support the peaceful nuclear activities in KAERI. Safeguards implementation is to fulfill the obligations associated with international agreements such as IAEA comprehensive safeguards agreement and additional protocol. IAEA inspection is the most important and basic factor of the safeguards implementation for the purpose of verifying whether all source or special fissionable material is diverted to nuclear weapons or other nuclear explosive devices. The status of the IAEA inspection at Hanaro and TRIGA Mark II and III reactor during 2001-2006 is evaluated in this report.

  6. Evaluation for the status of the IAEA inspection at Hanaro and TRIGA Mark II and III reactor

    International Nuclear Information System (INIS)

    Kim, Hyun Sook; Lee, Byung Doo

    2007-11-01

    Safeguards implementation of nuclear material was carried out at facility level in an effect to support the peaceful nuclear activities in KAERI. Safeguards implementation is to fulfill the obligations associated with international agreements such as IAEA comprehensive safeguards agreement and additional protocol. IAEA inspection is the most important and basic factor of the safeguards implementation for the purpose of verifying whether all source or special fissionable material is diverted to nuclear weapons or other nuclear explosive devices. The status of the IAEA inspection at Hanaro and TRIGA Mark II and III reactor during 2001-2006 is evaluated in this report

  7. Safety assessments relating to the use of new fuels in research reactors: application to the case of FRM 2 reactor fuel

    International Nuclear Information System (INIS)

    Abou Yehia, H.; Bars, G.; Tran Dai

    2001-01-01

    After giving a brief reminder of the procedure applied in France for the licensing of the use of a new fuel type or design in a research reactor, we outline the main safety aspects associated with such a modification. Finally, by way of an example, we focus on the safety assessment relating to the IRIS irradiation device used in SILOE reactor, in particular for the qualification of the fuel dedicated to FRM II reactor of the Technical University of Munich. This qualification was carried out on a U 3 Si 2 fuel plate enriched to about 90 % in weight of 235 U and containing 1.5 g of uranium per cm 3 . The evaluation performed by the IPSN for GRS did not call into question the choice of U 3 Si 2 fuel plates for the FRM-II reactor. (authors)

  8. Irradiation of microphones in the EBR-II core

    International Nuclear Information System (INIS)

    Gavin, A.P.; Anderson, T.T.; Bobis, J.P.

    1976-06-01

    Six ANL developed high temperature microphone (acoustic detectors) have been exposed in flowing sodium in the In-Core Instrument Test Facility (INCOT) in the Experimental Breeder Reactor-II (EBR-II) for seven months without any indications of serious degradation of signal output due to the exposure. The YY05 experiment (EBR-II INCOT experiment designation) was performed to obtain data which would be useful in evaluating the ability of the microphones whose active elements are lithium niobate to serve as sensors for acoustic surveillance of fast breeder reactors. The reactor was at full power for 136 days of the experiment exposure period. The microphone temperatures varied from 371 0 C (700 0 F) to 621 0 C (1150 0 F). Neutron exposure varied from 2.64 x 10 22 nvt for the microphone at the elevation of the bottom of the EBR-II core to 0.24 x 10 22 nvt for the microphone at the elevation of the top of an EBR-II fuel assembly. The maximum gamma dose was 5 x 10 12 rads

  9. Modernization of reactor instrumentation for research reactors at Trombay

    International Nuclear Information System (INIS)

    Darbhe, M.D.; Chaudhuri, H.

    1989-01-01

    The three research reactors at Trombay, viz., Apsara, Cirus and Zerlina were commissioned in 1956, 1960 and 1961 respectively. The nuclear instrumentation designs were based on the vacuum tube technology, which was prevalent during those days. The effect of component obsolescence of critical components like vacuum tubes, magnetic amplifiers and sensitrol meter relays was strongly felt since early 1970s. Also, the failure rates of the units were observed to show an increasing trend due to ageing and lack of good quality indigenous spares. Hence it was proposed to replace the nuclear instrumentation units for the three reactors, with those employing modern, state of the art solid state devices, keeping indigenous content as high as practicable. The work started in 1977 with the preparations of specifications and the project was scheduled to be completed in 1981. The project was divided into two phases. The Phase I comprising of nuclear channels common to all reactors and Phase II consisting exclusively of regulating system units of Cirus. The salient stages of project progress and completion were: (i) Fabrication and testing of final design prototypes was completed by end of 1982. (ii) Commissioning of new units at Apsara was completed in January 1984. (iii) Commissioning of new units at Cirus was completed in September 1984. An account of experience in all these stages and problems encountered is given. (author). 6 figs

  10. Fast Breeder Reactor studies

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

    1980-07-01

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts

  11. Fast Breeder Reactor studies

    Energy Technology Data Exchange (ETDEWEB)

    Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

    1980-07-01

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts.

  12. Operation and maintenance of the 250 kW TRIGA Mark II reactor at the J. Stefan Institute

    International Nuclear Information System (INIS)

    Dimic, V.

    1982-01-01

    Over the last two years the TRIGA Mark II reactor in Ljubljana has been operated at an energy release of about 2250 MWh or about 4200 hours per year. In this period, about 2000 samples were irradiated. Since the last TRIGA Owners' Conference there has been an increase in all operational data because of a very extensive programme of irradiation of molybdenum for the everyday production of technetium-99 m by a solvent extraction method. Because of its age and absolencence replacement of the console electronics was considered some time ago. Therefore, partly new instrumentation was installed this year. A new console is under construction. Furthermore, a new core configuration was established after 7 fresh FLIP fuel elements were delivered by GA. At this time it was noticed that 2 dummy elements are stuck in the upper grid plate. They will be exchanged during the regular maintenance work in August this year. During the last two years the reactor has been operated without any longer shut-down due to technical difficulties. (author)

  13. Measurements of neutron flux distributions in the core of the Ljubljana TRIGA Mark II Reactor

    International Nuclear Information System (INIS)

    Rant, J.; Ravnik, M.; Mele, I.; Dimic, V.

    2008-01-01

    Recently the Ljubljana TRIGA Mark II Reactor has been refurbished and upgraded to pulsed operation. To verify the core design calculations using TRIGAP and PULSTR1 codes and to obtain necessary data for future irradiation and neutron beam experiments, an extensive experimental program of neutron flux mapping and neutron field characterization was carried out. Using the existing neutron measuring thimbles complete axial and radial distributions in two radial directions were determined for two different core configurations. For one core configuration the measurements were also carried out in the pulsed mode. For flux distributions thin Cu (relative measurements) and diluted Au wires (absolute values) were used. For each radial position the cadmium ratio was determined in two axial levels. The core configuration was rather uniform, well defined (fresh fuel of a single type, including fuelled followers) and compact (no irradiation channels or gaps), offering unique opportunity to test the computer codes for TRIGA reactor calculations. The neutron flux measuring procedures and techniques are described and the experimental results are presented. The agreement between the predicted and measured power peaking factors are within the error limits of the measurements (<±5%) and calculations (±10%). Power peaking occurs in the B ring, and in the A ring (centre) there is a significant flux depression. (authors)

  14. Current status for TRR-II Cold Neutron Source

    International Nuclear Information System (INIS)

    Lee, C.H.; Guung, T.C.; Lan, K.C.; Wang, C.H.; Chan, Y.K.; Shieh, D.J.

    2001-01-01

    The Taiwan Research Reactor (TRR) project (TRR-II) is carrying out at Institute of Nuclear Energy Research (INER) from October 1998 to December 2006. The purpose of Cold Neutron Source (CNS) project is to build entire CNS facility to generate cold neutrons within TRR-II reactor. The objective of CNS design is to install CNS facility with a competitive brightness of cold neutron beam to other facilities in the world. Based on the TRR-II CNS project schedule, the conceptual design for TRR-II CNS facility has been completed and the mock-up test facility for full-scale hydrogen loop has been designed. (author)

  15. Microchannel Methanation Reactors Using Nanofabricated Catalysts, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Makel Engineering, Inc. (MEI) and the Pennsylvania State University (Penn State) propose to develop and demonstrate a microchannel methanation reactor based on...

  16. A review of fast reactor program in Japan - April 1983

    International Nuclear Information System (INIS)

    Matsuno, Y.

    1983-01-01

    The fast breeder reactor development project in Japan has been in progress during the past twelve months and will be continued in the next fiscal year, from April 1983 through March 1984, at a similar scale of effort both in budget and personnel to those of the fiscal year of 1982. Concerning the experimental fast reactor, JOYO, all the scheduled testings and operations were completed by the end of 1981 and from the beginning of 1982 the change-out work from Mark-I core to Mark-II core has been continued for 11 months. The initial criticality on the Mark-II core was achieved on 22 Nov. 1982 and after 3 months low power physics tests the reactor power was raised up to 100% (100 MWt) in the middle of March 1983. With respect to the prototype reactor MONJU, progress toward construction has been made and the licensing of the second step will be completed in the first half of 1983. Preliminary design studies of large LMFBR are being made by PNC and also by utilities. A design study being conducted by PNC is on a 1000 MWe plant of loop type by extrapolating the technology to be developed by the time of commissioning of MONJU. A group of utilities is conducting a similar study, but covering somewhat wider range of parameters and options of design. Close contact between the group and PNC has been kept. In the future, those design efforts will be combined as a single design effort, when a major effort for developing a large demonstration reactor will be initiated at around the commencement of construction of the prototype reactor MONJU

  17. Experimental study of the transition from forced to natural circulation in EBR-II at low power and flow

    International Nuclear Information System (INIS)

    Gillette, J.L.; Singer, R.M.; Tokar, J.V.; Sullivan, J.E.

    1979-01-01

    A series of tests have been conducted in EBR-II which studied the dynamics of the transition from forced to natural circulation flow in a liquid-metal-cooled fast breeder reactor (LMFBR). Each test was initiated by abruptly tripping an electromagnetic pump which supplies 5 to 6% of the normal full operational primary flow rate. The ensuing flow coast-down reached a minimum value after which the flow increased as natural circulation was established. The effects of secondary system flow through the intermediate heat exchanger and reactor decay power level on the minimum in-core flow rates and maximum in-core temperatures were examined

  18. Actinide behavior in the integral fast reactor

    International Nuclear Information System (INIS)

    Courtney, J.C.

    1993-05-01

    Goal of this project is to determine the consumption of Np-237, Pu-240, Am-241, and Am-243 in the Integral Fast Reactor (IFR) fuel cycle. These four actinides set the long term waste management criteria for spent nuclear fuel; if it can be demonstrated that they can be efficiently consumed in the IFR, then requirements for nuclear waste repositories can be much less demanding. Irradiations in the Experimental Breeder Reactor II (EBR-II) at Argonne National Laboratory's site near Idaho Falls, Idaho, will be conducted to determine fission and transmutation rates for the four nuclides. The experimental effort involves target package design, fabrication, quality assurance, and irradiation. Post irradiation analyses are required to determine the fission rates and neutron spectra in the EBR-II core

  19. PODESY program for flux mapping of CNA II reactor:

    International Nuclear Information System (INIS)

    Ribeiro Guevara, Sergio

    1988-01-01

    The PODESY program, developed by KWU, calculates the spatial flux distribution of CNA II reactor through a three-dimensional expansion of 90 incore detector measurements. The calculation is made in three steps: a) short-term calculation which considers the control rod positions and it has to be done each time the flux mapping is calculated; b) medium-term calculation which includes local burn-up dependent calculation made by diffusion methods in macro-cell configurations (seven channels in hexagonal distribution), and c) long-term calculation, or macroscopic flux determination, that is a fitting and expansion of measured fluxes, previously corrected by local effects, using the eigen functions of the modified diffusion equation. The paper outlines development of step (c) of the calculation. The incore detectors have been located in the central zone of the core. In order to obtain low errors in the expansion procedure it is necessary to include additional points, whose flux values are assumed to be equivalent to detector measurements. These flux values are calculated with detector measurements and a spatial flux distribution calculated by a PUMA code. This PUMA calculation employs a smooth burn-up distribution (local burn-up variations are considered in step (b) of the whole calculation) representing the state of core evolution at the calculation time. The core evolution referred to ends when the equilibrium core condition is reached. Additionally, a calculation method to be employed in the plant in case of incore detector failures, is proposed. (Author) [es

  20. Specificities of micro-structured reactors for hydrogen production and purification

    Energy Technology Data Exchange (ETDEWEB)

    Dupont, N.; Germani, G.; Van Veen, A.C.; Schuurman, Y.; Mirodatos, C. [Institut de Recherches sur la Catalyse - CNRS, 2, Avenue Albert Einstein, 69626 Villeurbanne Cedex (France); Schaefer, G. [Atotech Deutschland GmbH, PO Box 210780, 10507 Berlin (Germany)

    2007-07-15

    This paper presents the specificities of micro-structured reactors as compared to conventional fixed-bed reactors through two case studies devoted to (i) hydrogen production by methanol steam reforming, (ii) hydrogen purification by water-gas shift (WGS). Key features like catalyst coating stability, temperature and pressure management, effects of operating conditions (residence time, pressure drops, etc.) are well identified as controlling the micro-reactor performances for methanol reforming. These devices are also shown to be excellent tools for fast access to reaction kinetics as exemplified for the WGS reaction, subject to operating conditions carefully chosen to ensure proper hydrodynamics, in order to use conventional plug flow reactor models for extracting rate constants. (author)

  1. FIX-II/3025, BWR FIX-II Pump Trip Experiment 3025, Immediate Split Size Break

    International Nuclear Information System (INIS)

    NILSSON, Lars; GUSTAFSSON, Per-Ake; GUSTAFSON, Lennart; JANCZAK, Rajmund; OESTERLUNDH, Ingrid

    1992-01-01

    1 - Description of test facility: The FIX-II facility is a volume scaled 1:777 representation of a Swedish BWR with external pumps. The pressure vessel contains a 36 rod full length bundle and a spray condenser at the top to allow steady state operation. The downcomer, bypass channels and guide tube volumes are represented by external piping. The intact loop represents three of the four external reactor loops. The broken loop is constructed such that both guillotine breaks and split breaks may be simulated. The facility is equipped with ADS-simulation, but no ECCS injection are included. The FIX-II loop is also suited to investigate response of pump trips and MSIV closures in internal pump reactors. 2 - Description of test: Test 3025 simulates an intermediate size split break in one of the four main recirculation lines. The break area was 31 per cent of the scaled down pipe area of the reactor. The initial power of the 36-rod bundle was 3.38 MW, corresponding to the hot channel power of the reactor

  2. Seismic and cask drop excitation evaluation of the tower shielding reactor

    International Nuclear Information System (INIS)

    Harris, S.P.; Stover, R.L.; Johnson, J.J.; Sumodobila, B.N.

    1989-01-01

    During the current shutdown of the Tower Shielding Reactor II (TSR-II), analyses were performed to determine the effect of nearby cask drops on the structural and mechanical integrity of the reactor. This evaluation was then extended to include the effects of earthquakes. Several analytic models were developed to simulate the effects of earthquake and cask drop excitation. A coupled soil-structure model was developed. As a result of the analyses, several hardware modifications and enhancements were implemented to ensure reactor integrity during future operations. 6 figs

  3. Seismic and cask drop excitation evaluation of the Tower Shielding Reactor

    International Nuclear Information System (INIS)

    Stover, R.L.; Harris, S.P.; Johnson, J.J.; Sumodobila, B.N.

    1989-01-01

    During the current shutdown of the Tower Shielding Reactor II (TSR-II), analyses were performed to determine the effect of nearby cask drops on the structural and mechanical integrity of the reactor. This evaluation was then extended to include the effects of earthquakes. Several analytic models were developed to simulate the effects of earthquake and cask drop excitation. A coupled soil-structure model was developed. As a result of the analyses, several hardware modifications and enhancements were implemented to ensure reactor integrity during future operations

  4. Verification of MCNP simulation of neutron flux parameters at TRIGA MK II reactor of Malaysia.

    Science.gov (United States)

    Yavar, A R; Khalafi, H; Kasesaz, Y; Sarmani, S; Yahaya, R; Wood, A K; Khoo, K S

    2012-10-01

    A 3-D model for 1 MW TRIGA Mark II research reactor was simulated. Neutron flux parameters were calculated using MCNP-4C code and were compared with experimental results obtained by k(0)-INAA and absolute method. The average values of φ(th),φ(epi), and φ(fast) by MCNP code were (2.19±0.03)×10(12) cm(-2)s(-1), (1.26±0.02)×10(11) cm(-2)s(-1) and (3.33±0.02)×10(10) cm(-2)s(-1), respectively. These average values were consistent with the experimental results obtained by k(0)-INAA. The findings show a good agreement between MCNP code results and experimental results. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Reactor parameters for European economic, safety and environmental studies

    International Nuclear Information System (INIS)

    Hancox, R.; Cooke, P.I.H.; Spears, W.R.

    1990-01-01

    Parameter sets for five 1200 MW e tokamak reactors were developed for the European Study Group on the Environmental, Safety-related and Economic Potential of Fusion Power, showing today's perception of the range of reactors likely to be available as a result of the Commission's fusion programme. On the basis of the cost of generating electricity, relative to a fission reactor, a reference set was chosen and endorsed by the Group for further studies including that on the environmental impact of fusion power. Key physics and technology parameters for the reference reactor are compared with values used in the ITER design, and with those from American studies. (author)

  6. MHD stability regimes for steady state and pulsed reactors

    International Nuclear Information System (INIS)

    Jardin, S.C.; Kessel, C.E.; Pomphrey, N.

    1994-02-01

    A tokamak reactor will operate at the maximum value of β≡2μ 0 /B 2 that is compatible with MHD stability. This value depends upon the plasma current and pressure profiles, the plasma shape and aspect ratio, and the location of nearby conducting structures. In addition, a steady state reactor will minimize its external current drive requirements and thus achieve its maximum economic benefit with a bootstrap fraction near one, I bs /I p ∼ 1, which constrains the product of the inverse aspect ratio and the plasma poloidal beta to be near unity, ε β p ∼ 1. An inductively driven pulsed reactor has different constraints set by the steady-state Ohm's law which relates the plasma temperature and density profiles to the parallel current density. We present the results obtained during the ARIES I, II/IV, and III and the PULSAR reactor studies where these quantities were optimized subject to different design philosophies. The ARIES-II/IV and ARIES-III designs are both in the second stability regime, but differ in requirements on the form of the profiles at the plasma edge, and in the location of the conducting wall. The relation between these, as well as new attractive MHD regimes not utilized in the ARIES or PULSAR studies is also discussed

  7. Magnetohydrodynamic stability regimes for steady state and pulsed reactors

    International Nuclear Information System (INIS)

    Jardin, S.C.; Kessel, C.E.; Pomphrey, N.

    1994-01-01

    A tokamak reactor will operate at the maximum value of β≡2μ 0 left angle p right angle /B 2 that is compatible with magnetohydrodynamic (MHD) stability. This value depends on the plasma current and pressure profiles, the plasma shape and aspect ratio, and the location of nearby conducting structures. In addition, a steady state reactor will minimize its external current drive requirements and thus achieve its maximum economic benefit with a bootstrap fraction near unity, I BS /I P ∼1, which constrains the product of the inverse aspect ratio and the plasma poloidal β to be near unity, arepsilonβ P ∼1. An inductively driven pulsed reactor has different constraints set by the steady-state Ohm's law which relates the plasma temperature and density profiles to the parallel current density. We present the results obtained during ARIES I, II/IV, and III and PULSAR reactor studies where these quantities were optimized subject to different design philosophies. The ARIES-II/IV and ARIES-III designs are both in the second stability regime, but differ in requirements in the form of the profiles at the plasma edge, and in the location of the conducting wall. The relation between these, as well as new attractive MHD regimes not utilized in the ARIES or PULSAR studies, is also discussed. ((orig.))

  8. Status of the US stellarator reactor study

    International Nuclear Information System (INIS)

    Lyon, J.F.; Gulec, K.; Miller, R.L.; El-Guebaly, L.

    1994-01-01

    Stellarators have significant operational advantages over tokamaks as ignited steady-state reactors. This scoping study, which uses an integrated cost-minimization code that incorporates costing and reactor component models self-consistently with a 1-D energy transport calculation, shows that a torsatron reactor could also be competitive with a tokamak reactor. The projected cost of electricity (COE) estimated using the ARIES costing algorithms is 62.5 mill/kW(e)h in constant 1992 dollars for a 1-GW(e) Compact Torsatron reactor reference case. The COE is relatively insensitive (< 10% variation) over a wide range of assumptions including variations in the maximum field allowed on the coils, the coil elongation, the shape of the density profile, the beta limit, the confinement multiplier, and the presence of a large loss region for alpha particles. The largest variations in the COE occur for variations in the electrical power output demanded and the plasma-coil separation ratio

  9. Culham conceptual Tokamak reactor MkII. Conceptual layout of buildings for a twin reactor power station

    International Nuclear Information System (INIS)

    Guthrie, J.A.S.; Harding, N.H.

    1981-01-01

    This paper discusses the conceptual design of the nuclear complex of a 2400 MWe twin fusion reactor power station utilising common services and a single containment building. The design is based upon environmental and maintenance logistical requirements, the provision of adequate storage, workshop and construction facilities and the constraints imposed by the geometry of the main and auxiliary reactor coolant systems. (author)

  10. Standard mirror fusion reactor design study

    International Nuclear Information System (INIS)

    Moir, R.W.

    1978-01-01

    This report covers the work of the Magnetic Fusion Energy Division's reactor study group during FY 1976 on the standard mirror reactor. The ''standard'' mirror reactor is characterized as a steady state, neutral beam sustained, D-T fusioning plasma confined by a Yin-Yang magnetic mirror field. The physics parameters are obtained from the same physics model that explains the 2XIIB experiment. The model assumes that the drift cyclotron loss cone mode occurs on the boundary of the plasma, and that it is stabilized by warm plasma with negligible energy investment. The result of the study was a workable mirror fusion power plant, steady-state blanket removal made relatively simple by open-ended geometry, and no impurity problem due to the positive plasma potential. The Q (fusion power/injected beam power) turns out to be only 1.1 because of loss out the ends from Coulomb collisions, i.e., classical losses. This low Q resulted in 77% of the gross electrical power being used to power the injectors, thereby causing the net power cost to be high. The low Q stimulated an intensive search for Q-enhancement concepts, resulting in the LLL reactor design effort turning to the field reversal mirror and the tandem mirror, each having Q of order 5

  11. Overview of the Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Nguyen Nhi Dien; Nguyen Thai Sinh; Luong Ba Vien

    2016-01-01

    The present reactor called Dalat Nuclear Research Reactor (DNRR) has been reconstructed from the former TRIGA Mark II reactor which was designed by General Atomic (GA, San Diego, California, USA), started building in early 1960s, put into operation in 1963 and operated until 1968 at nominal power of 250 kW. In 1975, all fuel elements of the reactor were unloaded and shipped back to the USA. The DNRR is a 500-kW pool-type research reactor using light water as both moderator and coolant. The reactor is used as a neutron source for the purposes of: (1) radioactive isotope production; (2) neutron activation analysis; and (3) research and training

  12. Preliminary feasibility study of modular reactors

    International Nuclear Information System (INIS)

    Yamaji, Kenji

    1987-01-01

    In the future, electric utilities will be required to make a switch-over to a more flexible and dynamic form of power supply due to the slowing growth of power demand, increasing uncertainty, the stagnating economy of increasing scale, the bottleneck of transmission and so on. Nuclear technology would also be required to adapt to this changing environment surrounding its development. The long term prospect of energy demand and nuclear power growth, and the evolution of commercial reactors in Japan are shown. The design of 1,300 MWe advanced LWRs has been completed, and as the reactors of next generation, the ultralarge LWRs of 1,500 - 1,800 MWe are suggested. However, there can be an alternative future for nuclear power development, and in this paper, the possibility for altering the image of conventional nuclear power technology by developing modular reactors which are economical even at small capacity, and can be sited in urban areas just like conventional thermal power plants is examined. The factors for the economical evaluation of modular reactors, learning effect and scale effect on the economy, the case study on a modular high temperature reactor designed by Interatom-GHT, and the possibility of siting in urban areas due to the system of inherent safety are reported. (Kako, I.)

  13. Neutronics analysis of the TRIGA Mark II reactor core and its experimental facilities

    International Nuclear Information System (INIS)

    Khan, R.

    2010-01-01

    The neutronics analysis of the current core of the TRIGA Mark II research reactor is performed at the Atominstitute (ATI) of Vienna University of Technology. The current core is a completely mixed core having three different types of fuels i.e. aluminium clad 20 % enriched, stainless steel clad 20 % enriched and SS clad 70 % enriched (FLIP) Fuel Elements (FE(s)). The completely mixed nature and complicated irradiation history of the core makes the reactor physics calculations challenging. This PhD neutronics research is performed by employing the combination of two best and well practiced reactor simulation tools i.e. MCNP (general Monte Carlo N-particle transport code) for static analysis and ORIGEN2 (Oak Ridge Isotop Generation and depletion code) for dynamic analysis of the reactor core. The PhD work is started to develop a MCNP model of the first core configuration (March 1962) employing fresh fuel composition. The neutrons reaction data libraries ENDF/B-VI is applied taking the missing isotope of Samarium from JEFF3.1. The MCNP model of the very first core has been confirmed by three different local experiments performed on the first core configuration. These experiments include the first criticality, reactivity distribution and the neutron flux density distribution experiment. The first criticality experiment verifies the MCNP model that core achieves its criticality on addition of the 57th FE with a reactivity difference of about 9.3 cents. The measured reactivity worths of four FE(s) and a graphite element are taken from the log book and compared with MCNP simulated results. The percent difference between calculations and measurements ranges from 4 to 22 %. The neutron flux density mapping experiment confirms the model completely exhibiting good agreement between simulated and the experimental results. Since its first criticality, some additional 104-type and 110-type (FLIP) FE(s) have been added to keep the reactor into operation. This turns the current

  14. Parametric design study of tandem mirror fusion reactors

    International Nuclear Information System (INIS)

    Carlson, G.A.

    1977-01-01

    The parametric design study of the tandem mirror reactor (TMR) is described. The results of this study illustrate the variation of reactor characteristics with changes in the independent design parameters, reveal the set of design parameters which minimizes the cost of the reactor, and show the sensitivity of the optimized design to physics and technological uncertainties. The total direct capital cost of an optimized 1000 MWe TMR is estimated to be $1300/kWe. The direct capital cost of a 2000 MWe plant is less than $1000/kWe

  15. Fusion reactor design studies

    International Nuclear Information System (INIS)

    Emmert, G.A.; Kulcinski, G.L.; Santarius, J.F.

    1990-01-01

    This report discusses the following topics on the ARIES tokamak: systems; plasma power balance; impurity control and fusion ash removal; fusion product ripple loss; energy conversion; reactor fueling; first wall design; shield design; reactor safety; and fuel cost and resources

  16. CCF analysis of BWR reactor shutdown systems based on the operating experience at the TVO I/II in 1981-1993

    International Nuclear Information System (INIS)

    Mankamo, T.

    1996-04-01

    The work constitutes a part of the project conducted within the research program of the Swedish Nuclear Power Inspectorate SKI, aimed to develop the methods and data base for the Common Cause Failure (CCF) analysis of highly redundant reactor scram systems. The data analysis for the TVO I/II plant is focused on the hydraulic scram system, and control rods and drives. It covers operating experiences from 1981 through 1993. (9 refs., 9 figs., 7 tabs.)

  17. WARRIOR II, a high performance modular electric robot system

    International Nuclear Information System (INIS)

    Downton, G.C.

    1996-01-01

    Initially designed for in-reactor welding by the Central Electricity Generating Board, WARRIOR has been developed using the concept of modular technology to become a light-weight, high performance robotic system. Research work on existing machines for in-reactor inspection and repair and heavy duty hydraulic manipulators was progressed in order to develop WARRIOR II, a versatile in-reactor welding system usable at any nuclear power station light enough to be deployed by existing remote handling equipment. WARRIOR II can be significantly reconfigured quickly to pursue different ends. (UK)

  18. Interim waste storage for the Integral Fast Reactor

    International Nuclear Information System (INIS)

    Benedict, R.W.; Phipps, R.D.; Condiff, D.W.

    1991-01-01

    The Integral Fast Reactor (IFR), which Argonne National Laboratory is developing, is an innovative liquid metal breeder reactor that uses metallic fuel and has a close coupled fuel recovery process. A pyrochemical process is used to separate the fission products from the actinide elements. These actinides are used to make new fuel for the reactor. As part of the overall IFR development program, Argonne has refurbished an existing Fuel Cycle Facility at ANL-West and is installing new equipment to demonstrate the remote reprocessing and fabrication of fuel for the Experimental Breeder Reactor II (EBR-II). During this demonstration the wastes that are produced will be treated and packaged to produce waste forms that would be typical of future commercial operations. These future waste forms would, assuming Argonne development goals are fulfilled, be essentially free of long half-life transuranic isotopes. Promising early results indicate that actinide extraction processes can be developed to strip these isotopes from waste stream and return them to the IFR type reactors for fissioning. 1 fig

  19. Combustion of a Pb(II)-loaded olive tree pruning used as biosorbent.

    Science.gov (United States)

    Ronda, A; Della Zassa, M; Martín-Lara, M A; Calero, M; Canu, P

    2016-05-05

    The olive tree pruning is a specific agroindustrial waste that can be successfully used as adsorbent, to remove Pb(II) from contaminated wastewater. Its final incineration has been studied in a thermobalance and in a laboratory flow reactor. The study aims at evaluating the fate of Pb during combustion, at two different scales of investigation. The flow reactor can treat samples approximately 10(2) larger than the conventional TGA. A detailed characterization of the raw and Pb(II)-loaded waste, before and after combustion is presented, including analysis of gas and solids products. The Pb(II)-loaded olive tree pruning has been prepared by a previous biosorption step in a lead solution, reaching a concentration of lead of 2.3 wt%. Several characterizations of the ashes and the mass balances proved that after the combustion, all the lead presents in the waste remained in ashes. Combustion in a flow reactor produced results consistent with those obtained in the thermobalance. It is thus confirmed that the combustion of Pb(II)-loaded olive tree pruning is a viable option to use it after the biosorption process. The Pb contained in the solid remained in the ashes, preventing possible environmental hazards. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Simulation and operation of the EBR-II automatic control rod drive system

    International Nuclear Information System (INIS)

    Lehto, W.K.; Larson, H.A.; Dean, E.M.; Christensen, L.J.

    1985-01-01

    An automatic control rod drive system (ACRDS) installed at EBR-II produces shaped power transients from 40% to full reactor power at a linear ramp rate of 4 MWt/s. A digital computer and modified control-rod-drive provides this capability. Simulation and analysis of ACRDS experiments establish the safety envelope for reactor transient operation. Tailored transients are required as part of USDOE Operational Reliability Testing program for prototypic fast reactor fuel cladding breach behavior studies. After initial EBR-II driver fuel testing and system checkout, test subassemblies were subjected to both slow and fast transients. In addition, the ACRDS is used for steady-state operation and will be qualified to control power ascent from initial critical to full power

  1. Simulation and operation of the EBR-II automatic control rod drive system

    International Nuclear Information System (INIS)

    Lehto, W.K.; Larson, H.A.; Dean, E.M.; Christensen, L.J.

    1985-01-01

    An automatic control rod drive system (ACRDS) installed at EBR-II produces shaped power transients from 40% to full reactor power at a linear ramp rate of 4 MWt/s. A digital computer and modified control-rod-drive provides this capability. Simulation and analysis of ACRDS experiments establish the safety envelope for reactor transient operation. Tailored transients are required as part of USDOE Operational Reliability Testing program for prototypic fast reactor fuel cladding breach behavior studies. After initial EBR-II driver fuel testing and system checkout, test subassemblies were subjected to both slow and fast transients. In additions, the ACRDS is used for steady-state operation and will be qualified to control power ascent from initial critical to full power

  2. Thai research reactor

    International Nuclear Information System (INIS)

    Aramrattana, M.

    1987-01-01

    The Office of Atomic Energy for Peace (OAEP) was established in 1962, as a reactor center, by the virtue of the Atomic Energy for Peace Act, under operational policy and authority of the Thai Atomic Energy for Peace Commission (TAEPC); and under administration of Ministry of Science, Technology and Energy. It owns and operates the only Thai Research Reactor (TRR-1/M1). The TRR-1/M1 is a mixed reactor system constituting of the old MTR type swimming pool, irradiation facilities and cooling system; and TRIGA Mark III core and control instrumentation. The general performance of TRR-1/M1 is summarized in Table I. The safe operation of TRR-1/M1 is regulated by Reactor Safety Committee (RSC), established under TAEPC, and Health Physics Group of OAEP. The RCS has responsibility and duty to review of and make recommendations on Reactor Standing Orders, Reactor Operation Procedures, Reactor Core Loading and Requests for Reactor Experiments. In addition,there also exist of Emergency Procedures which is administered by OAEP. The Reactor Operation Procedures constitute of reactor operating procedures, system operating procedures and reactor maintenance procedures. At the level of reactor routine operating procedures, there is a set of Specifications on Safety and Operation Limits and Code of Practice from which reactor shift supervisor and operators must follow in order to assure the safe operation of TRR-1/M1. Table II is the summary of such specifications. The OAEP is now upgrading certain major components of the TRR-1/M1 such as the cooling system, the ventilation system and monitoring equipment to ensure their adequately safe and reliable performance under normal and emergency conditions. Furthermore, the International Atomic Energy Agency has been providing assistance in areas of operation and maintenance and safety analysis. (author)

  3. Planning and implementation of Istanbul Technical University TRIGA research reactor program

    International Nuclear Information System (INIS)

    Aybers, N.; Yavuz, H.; Bayulken, A.

    1982-01-01

    The Istanbul Technical University TRIGA Research Reactor at the Institute for Nuclear Energy, which went critical on March 11, 1979 is basically a pulsing type TRIGA Mark - II reactor. Completion of the ITU-TRR contributed to broaden the role of the Institute for Nuclear Energy of the Technical University in Istanbul in the nuclear field by providing for the first time adequate on-campus experimental facilities for nuclear engineering studies to ITU students. The research program which is currently under planning at ITU-NEE encompasses: a) Neutron activation analysis studies by techniques and applications to chemistry, mining, materials research, archaeological and biomedical studies; b) applications of Radioisotopes; c) Radiography with reactor neutron beams; d) Radiation Pulsing

  4. Overview of the reactor safety study consequence model

    International Nuclear Information System (INIS)

    Wall, I.B.; Yaniv, S.S.; Blond, R.M.; McGrath, P.E.; Church, H.W.; Wayland, J.R.

    1977-01-01

    The Reactor Safety Study (WASH-1400) is a comprehensive assessment of the potential risk to the public from accidents in light water power reactors. The engineering analysis of the plants is described in detail in the Reactor Safety Study: it provides an estimate of the probability versus magnitude of the release of radioactive material. The consequence model, which is the subject of this paper, describes the progression of the postulated accident after the release of the radioactive material from the containment. A brief discussion of the manner in which the consequence calculations are performed is presented. The emphasis in the description is on the models and data that differ significantly from those previously used for these types of assessments. The results of the risk calculations for 100 light water power reactors are summarized

  5. Mirror Advanced Reactor Study interim design report

    Energy Technology Data Exchange (ETDEWEB)

    1983-04-01

    The status of the design of a tenth-of-a-kind commercial tandem-mirror fusion reactor is described at the midpoint of a two-year study. When completed, the design is to serve as a strategic goal for the mirror fusion program. The main objectives of the Mirror Advanced Reactor Study (MARS) are: (1) to design an attractive tandem-mirror fusion reactor producing electricity and synfuels (in alternate versions), (2) to identify key development and technology needs, and (3) to exploit the potential of fusion for safety, low activation, and simple disposal of radioactive waste. In the first year we have emphasized physics and engineering of the central cell and physics of the end cell. Design optimization and trade studies are continuing, and we expect additional modifications in the end cells to further improve the performance of the final design.

  6. Mirror Advanced Reactor Study interim design report

    International Nuclear Information System (INIS)

    1983-04-01

    The status of the design of a tenth-of-a-kind commercial tandem-mirror fusion reactor is described at the midpoint of a two-year study. When completed, the design is to serve as a strategic goal for the mirror fusion program. The main objectives of the Mirror Advanced Reactor Study (MARS) are: (1) to design an attractive tandem-mirror fusion reactor producing electricity and synfuels (in alternate versions), (2) to identify key development and technology needs, and (3) to exploit the potential of fusion for safety, low activation, and simple disposal of radioactive waste. In the first year we have emphasized physics and engineering of the central cell and physics of the end cell. Design optimization and trade studies are continuing, and we expect additional modifications in the end cells to further improve the performance of the final design

  7. An Account of Oak Ridge National Laboratory's Thirteen Research Reactors

    International Nuclear Information System (INIS)

    Rosenthal, Murray Wilford

    2009-01-01

    The Oak Ridge National Laboratory has built and operated 13 nuclear reactors in its 66-year history. The first was the graphite reactor, the world's first operational nuclear reactor, which served as a plutonium production pilot plant during World War II. It was followed by two aqueous-homogeneous reactors and two red-hot molten-salt reactors that were parts of power-reactor development programs and by eight others designed for research and radioisotope production. One of the eight was an all-metal fast burst reactor used for health physics studies. All of the others were light-water cooled and moderated, including the famous swimming-pool reactor that was copied dozens of times around the world. Two of the reactors were hoisted 200 feet into the air to study the shielding needs of proposed nuclear-powered aircraft. The final reactor, and the only one still operating today, is the High Flux Isotope Reactor (HFIR) that was built particularly for the production of californium and other heavy elements. With the world's highest flux and recent upgrades that include the addition of a cold neutron source, the 44-year-old HFIR continues to be a valuable tool for research and isotope production, attracting some 500 scientific visitors and guests to Oak Ridge each year. This report describes all of the reactors and their histories.

  8. Calculation of neutron fluxes in biological shield of the TRIGA Mark II reactor

    International Nuclear Information System (INIS)

    Bozic, M.; Zagar, T.; Ravnik, M.

    2001-01-01

    The complete calculation of neutron fluxes in biological shield and verification with experimental results is presented. Calculated results are obtained with TORT code (TORT-Three Dimensional Oak Ridge Discrete Ordinates Neutron/Photon Transport Code). Experimental results used for comparison are available from irradiation experiment with selected type of concrete and other materials in irradiation channel 4 in TRIGA Mark II reactor. These experimental results were used as a benchmark. Homogeneous type of problem (without inserted irradiation channel) and problem with asymmetry (inserted beam port 4, filled with different materials) were of interest for neutron flux calculation. Deviation from material data set up as original parameters is also considered (first of all presence of water in concrete and density of concrete) for type of concrete in biological shield and for selected type of concrete in irradiation channel. BUGLE-96 (47 neutron energy groups) library is used. Excellent agreement between calculated and experimental results for reaction rate is received.(author)

  9. A study on ex-vessel steam explosion for a flooded reactor cavity of reactor scale - 15216

    International Nuclear Information System (INIS)

    Song, S.; Yoon, E.; Kim, Y.; Cho, Y.

    2015-01-01

    A steam explosion can occur when a molten corium is mixed with a coolant, more volatile liquid. In severe accidents, corium can come into contact with coolant either when it flows to the bottom of the reactor vessel and encounters the reactor coolant, or when it breaches the reactor vessel and flows into the reactor containment. A steam explosion could then threaten the containment structures, such as the reactor vessel or the concrete walls/penetrations of the containment building. This study is to understand the shortcomings of the existing analysis code (TEXAS-V) and to estimate the steam explosion loads on reactor scale and assess the effect of variables, then we compared results and physical phenomena. Sensitivity study of major parameters for initial condition is performed. Variables related to melt corium such as corium temperature, falling velocity and diameter of melt are more important to the ex-vessel steam explosion load and the steam explosion loads are proportional to these variables related to melt corium. Coolant temperature on reactor cavity has a specific area to increase the steam explosion loads. These results will be used to evaluate the steam explosion loads using ROAAM (Risk Oriented Accident Analysis Methodology) and to develop the evaluation methodology of ex-vessel steam explosion. (authors)

  10. The integral fast reactor

    International Nuclear Information System (INIS)

    Till, C.E.

    1987-01-01

    On April 3rd, 1986, two demonstrations of the inherent capability of sodium-cooled fast reactors to survive unprotected loss of cooling accidents were carried out on the experimental sodium-cooled power reactor, EBR-II, on the Idaho site of Argonne National Laboratory. Transients potentially of the most serious kind, one an unprotected loss of flow, the other an unprotected loss of heat sink, both initiated from full power. In both cases the reactor quietly shut itself down, without damage of any kind. These tests were a part of the on-going development program at Argonne to develop an advanced reactor with significant new inherent safety characteristics. Called the integral fast reactor, or IFR, the basic thrust is to develop everything that is needed for a complete nuclear power system - reactor, closed fuel cycle, and waste processing - as a single optimized entity, and, for simplicity in concept, as an integral part of a single plant. The particular selection of reactor materials emphasizes inherent safety characteristics also makes possible a simplified close fuel cycle and waste process improvements. The paper describes the IFR concept, the inherent safety, tests, and status of IFR development today

  11. MANHATTAN PROJECT B REACTOR HANFORD WASHINGTON [HANFORD'S HISTORIC B REACTOR (12-PAGE BOOKLET)

    Energy Technology Data Exchange (ETDEWEB)

    GERBER MS

    2009-04-28

    The Hanford Site began as part of the United States Manhattan Project to research, test and build atomic weapons during World War II. The original 670-square mile Hanford Site, then known as the Hanford Engineer Works, was the last of three top-secret sites constructed in order to produce enriched uranium and plutonium for the world's first nuclear weapons. B Reactor, located about 45 miles northwest of Richland, Washington, is the world's first full-scale nuclear reactor. Not only was B Reactor a first-of-a-kind engineering structure, it was built and fully functional in just 11 months. Eventually, the shoreline of the Columbia River in southeastern Washington State held nine nuclear reactors at the height of Hanford's nuclear defense production during the Cold War era. The B Reactor was shut down in 1968. During the 1980's, the U.S. Department of Energy began removing B Reactor's support facilities. The reactor building, the river pumphouse and the reactor stack are the only facilities that remain. Today, the U.S. Department of Energy (DOE) Richland Operations Office offers escorted public access to B Reactor along a designated tour route. The National Park Service (NPS) is studying preservation and interpretation options for sites associated with the Manhattan Project. A draft is expected in summer 2009. A final report will recommend whether the B Reactor, along with other Manhattan Project facilities, should be preserved, and if so, what roles the DOE, the NPS and community partners will play in preservation and public education. In August 2008, the DOE announced plans to open B Reactor for additional public tours. Potential hazards still exist within the building. However, the approved tour route is safe for visitors and workers. DOE may open additional areas once it can assure public safety by mitigating hazards.

  12. RA reactor safety analysis, Part II - Accident analysis; Analiza sigurnosti rada Reaktora RA I-III, Deo II - Analiza akcidenta

    Energy Technology Data Exchange (ETDEWEB)

    Raisic, N; Radanovic, Lj; Milovanovic, M; Afgan, N; Kulundzic, P [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1963-02-15

    This part of the RA reactor safety analysis includes analysis of possible accidents caused by failures of the reactor devices and errors during reactor operation. Two types of accidents are analyzed: accidents resulting from uncontrolled reactivity increase, and accidents caused by interruption of cooling.

  13. Inertial Fusion Energy reactor design studies: Prometheus-L, Prometheus-H

    International Nuclear Information System (INIS)

    Waganer, L.M.; Driemeyer, D.E.; Lee, V.D.

    1992-03-01

    This report contains a review of design studies for inertial confinement reactors. The first of three volumes briefly discusses the following: Introduction; Key objectives, requirements, and assumptions; Systems modeling and trade studies; Prometheus-L reactor plant design overview; Prometheus-H reactor plant design overview; Key technical issues and R ampersand D requirements; Comparison of IFE designs; and study conclusions

  14. Design of a reactor inlet temperature controller for EBR-2 using state feedback

    International Nuclear Information System (INIS)

    Vilim, R.B.; Planchon, H.P.

    1990-01-01

    A new reactor inlet temperature controller for pool type liquid-metal reactors has been developed and will be tested in EBR-II. The controller makes use of modern control techniques to take into account stratification and mixing in the cold pool during normal operation. Secondary flowrate is varied so that the reactor inlet temperature tracks a setpoint while reactor outlet temperature, primary flowrate and secondary cold leg temperature are treated as exogenous disturbances and are free to vary. A disturbance rejection technique minimizes the effect of these disturbances on inlet temperature. A linear quadratic regulator improves inlet temperature response. Tests in EBR-II will provide experimental data for assessing the performance improvements that modern control can produce over the existing EBR-II analog inlet temperature controller. 10 refs., 8 figs

  15. Fusion reactor safety studies, FY 1977

    International Nuclear Information System (INIS)

    Darby, J.B. Jr.

    1978-04-01

    This report reviews the technical progress in the fusion reactor safety studies performed during FY 1977 in the Fusion Power Program at the Argonne National Laboratory. The subjects reported on include safety considerations of the vacuum vessel and first-wall design for the ANL/EPR, the thermal responses of a tokamak reactor first wall, the vacuum wall electrical resistive requirements in relationship to magnet safety, and a major effort is reported on considerations and experiments on air detritiation

  16. Neutronics assessment for the ARIES advanced reactor studies

    International Nuclear Information System (INIS)

    El-Guebaly, L.A.

    1995-01-01

    The ARIES tokamak designs have incorporated environmental and safety constraints in the design from the beginning. Low activation materials such as SiC or SiC composites, vanadium alloy, and modified HT-9 ferritic steel were utilized as the main structures in ARIES-IV, II, and III, respectively. All designs employ D-T fuel cycles except ARIES-III which is D- 3 He fuelled. An overall tritium breeding ratio of 1.12 seems adequate for ARIES-II and IV. The Li 2 O breeder requires a beryllium multiplier to achieve T self-sufficiency in the ARIES-IV design while the lithium has the ability to breed sufficient T in ARIES-II without a multiplier. Radiation damage concerns for the structures are the burn-up of the SiC and SiC composites and the atomic displacement in the vanadium. The first wall and blanket require frequent replacement (every 3-4 years) during reactor operation. The end-of-life fluences are 16.5MW yearsm -2 and 13MW yearsm -2 based on the 200dpa and 3% burn-up limits for the V and SiC structures respectively. Because of the lower neutron production, the ARIES-III first wall and shield are permanent components and require no replacement over the plant lifetime. A variety of shield options was examined and the ability of various materials to protect the magnets was assessed. At least 1.2m and 1.4m of inboard blanket-shield are required for magnet protection in ARIES-II and ARIES-IV respectively. The lack of T breeding and the lower wall loading result in a much thinner shield (0.65m) for ARIES-III. (orig.)

  17. Pre-treatment processes of Azolla filiculoides to remove Pb(II), Cd(II), Ni(II) and Zn(II) from aqueous solution in the batch and fixed-bed reactors.

    Science.gov (United States)

    Khosravi, Morteza; Rakhshaee, Roohan; Ganji, Masuod Taghi

    2005-12-09

    Intact and treated biomass can remove heavy metals from water and wastewater. This study examined the ability of the activated, semi-intact and inactivated Azolla filiculoides (a small water fern) to remove Pb(2+), Cd(2+), Ni(2+) and Zn(2+) from the aqueous solution. The maximum uptake capacities of these metal ions using the activated Azolla filiculoides by NaOH at pH 10.5 +/- 0.2 and then CaCl(2)/MgCl(2)/NaCl with total concentration of 2 M (2:1:1 mole ratio) in the separate batch reactors were obtained about 271, 111, 71 and 60 mg/g (dry Azolla), respectively. The obtained capacities of maximum adsorption for these kinds of the pre-treated Azolla in the fixed-bed reactors (N(o)) were also very close to the values obtained for the batch reactors (Q(max)). On the other hand, it was shown that HCl, CH(3)OH, C(2)H(5)OH, FeCl(2), SrCl(2), BaCl(2) and AlCl(3) in the pre-treatment processes decreased the ability of Azolla to remove the heavy metals in comparison to the semi-intact Azolla, considerably. The kinetic studies showed that the heavy metals uptake by the activated Azolla was done more rapid than those for the semi-intact Azolla.

  18. The new German neutron source FRM-II

    International Nuclear Information System (INIS)

    Nuding, M.; Axmann, A.; Boening, K.

    2002-01-01

    The construction of a new high-flux research reactor, the FRM-II is finished. This new reactor shall replace the existing FRM, which has been operated very successfully for about 43 years. The report at first presents the main applications of the FRM-II and its core and plant design. After that a description of the tests performed during the licensing procedure is given. At the end some current topics are discussed and an outlook on the time schedule is presented [ru

  19. Study of experimentally undetermined neutrino parameters in the light of baryogenesis considering type I and type II Seesaw models

    International Nuclear Information System (INIS)

    Kalita, Rupam

    2017-01-01

    We study to connect all the experimentally undetermined neutrino parameters namely lightest neutrino mass, neutrino CP phases and baryon asymmetry of the Universe within the framework of a model where both type I and type II seesaw mechanisms can contribute to tiny neutrino masses. In this work we study the effects of Dirac and Majorana neutrino phases in the origin of matter-antimatter asymmetry through the mechanism of leptogenesis. Type I seesaw mass matrix considered to a tri-bimaximal (TBM) type neutrino mixing which always gives non zero reactor mixing angle. The type II seesaw mass matrix is then considered in such a way that the necessary deviation from TBM mixing and the best fit values of neutrino parameters can be obtained when both type I and type II seesaw contributions are taken into account. We consider different contribution from type I and type II seesaw mechanism to study the effects of neutrino CP phases in the baryon asymmetry of the universe. We further study to connect all these experimentally undetermined neutrino parameters by considering various contribution of type I and type II seesaw. (author)

  20. The research reactor TRIGA Heidelberg II

    International Nuclear Information System (INIS)

    Maier-Borst, W.; Krauss, O.

    1988-01-01

    The reactor is in operation since the beginning of 1978. On the base of the working experience gathered during that time employing the TRIGA in biomedical research, especially the irradiation units have been extended or newly developed. Several TRIGA users have reported difficulties in using the rotary irradiation system. It became obvious that the alternatives to the original Lazy Susan are not commonly known. In this report, the open rotary system fed by a hydraulic rabbit system, which has proved successful in this form during the past ten years is presented

  1. Surveillance application using patten recognition software at the EBR-II Reactor Facility

    International Nuclear Information System (INIS)

    Olson, D.L.

    1992-01-01

    The System State Analyzer (SSA) is a software based pattern recognition system. For the past several year this system has been used at Argonne National Laboratory's Experimental Breeder Reactor 2 (EBR-2) reactor for detection of degradation and other abnormalities in plant systems. Currently there are two versions of the SSA being used at EBR-2. One version of SSA is used for daily surveillance and trending of the reactor delta-T and startups of the reactor. Another version of the SSA is the QSSA which is used to monitor individual systems of the reactor such as the Secondary Sodium System, Secondary Sodium Pumps, and Steam Generator. This system has been able to detect problems such as signals being affected by temperature variations due to a failing temperature controller

  2. Research reactor's role in Korea

    International Nuclear Information System (INIS)

    Choi, C-O.

    1995-01-01

    After a TRIGA MARK-II was constructed in 1962, new research activity of a general nature, utilizing neutrons, prevailed in Korea. Radioisotopes produced from the MARK-II played a good role in the 1960's in educating people as to what could be achieved by a neutron source. Because the research reactor had implanted neutron science in the country, another TRIGA MARK-III had to be constructed within 10 years after importing the first reactor, due to increased neutron demand from the nuclear community. With the sudden growth of nuclear power, however, the emphasis of research changed. For a while research activities were almost all oriented to nuclear power plant technology. However, the specifics of nuclear power plant technology created a need for a more highly capable research reactor like HANARO 30MWt. HANARO will perform well with irradiation testing and other nuclear programs in the future, including: production of key radioisotopes, doping of silicon by transmutation, neutron activation analysis, neutron beam experiments, cold neutron source. 3 tabs., 2 figs

  3. PASC-1, Petten AMPX-II/SCALE-3 Code System for Reactor Neutronics Calculation

    International Nuclear Information System (INIS)

    Yaoqing, W.; Oppe, J.; Haas, J.B.M. de; Gruppelaar, H.; Slobben, J.

    1995-01-01

    1 - Description of program or function: The Petten AMPX-II/SCALE-3 Code System PASC-1 is a reactor neutronics calculation programme system consisting of well known IBM-oriented codes, that have been translated into FORTRAN-77, for calculations on a CDC-CYBER computer. Thus, the portability of these codes has been increased. In this system, some AMPX-II and SCALE-3 modules, the one-dimensional transport code ANISN and the 1 to 3-dimensional diffusion code CITATION are linked together on the CDC-CYBER/855 computer. The new cell code XSDRNPM-S and the old XSDRN code are included in the system. Starting from an AMPX fine group library up to CITATION, calculations can be performed for each individual module. Existing AMPX master interface format libraries, such as CSRL-IV, JEF-1, IRI and SCALE-45, and the old XSDRN-formatted libraries such as the COBB library can be used for the calculations. The code system contains the following modules and codes at present: AIM, AJAX, MALOCS, NITAWL-S, REVERT-I, ICE-2, CONVERT, JUAN, OCTAGN, XSDRNPM-S, XSDRN, ANISN and CITATION. The system will be extended with other SCALE modules and transport codes. 2 - Method of solution: The PASC-1 system is based on AMPX-II/SCALE-3 modules. Except for some SCALE-3 modules taken from the SCALIAS package, the original AMPX-II modules were IBM versions written in FORTRAN IV. These modules have been translated into CDC FORTRAN V. In order to test these modules and link them with some codes, some of the sample problem calculations have been performed for the whole PASC-1 system. During these calculations, some FORTRAN-77 errors were found in MALOCS, REVERT, CONVERT and some subroutines of SUBLIB (FORTRAN-77 subroutine library). These errors have been corrected. Because many corrections were made for the REVERT module, it is renamed as REVERT-I (improved version of REVERT). After these corrections, the whole system is running on a CDC-CYBER Computer (NOS-BE operating system). 3 - Restrictions on the

  4. Component failure data base of TRIGA reactors

    International Nuclear Information System (INIS)

    Djuricic, M.

    2004-10-01

    This compilation provides failure data such as first criticality, component type description (reactor component, population, cumulative calendar time, cumulative operating time, demands, failure mode, failures, failure rate, failure probability) and specific information on each type of component of TRIGA Mark-II reactors in Austria, Bangladesh, Germany, Finland, Indonesia, Italy, Indonesia, Slovenia and Romania. (nevyjel)

  5. The TITAN reversed-field-pinch fusion reactor study

    International Nuclear Information System (INIS)

    1990-01-01

    This paper on titan plasma engineering contains papers on the following topics: reversed-field pinch as a fusion reactor; parametric systems studies; magnetics; burning-plasma simulations; plasma transient operations; current drive; and physics issues for compact RFP reactors

  6. Status of advanced technology and design for water cooled reactors: Light water reactors

    International Nuclear Information System (INIS)

    1988-10-01

    Water reactors represent a high level of performance and safety. They are mature technology and they will undoubtedly continue to be the main stream of nuclear power. There are substantial technological development programmes in Member States for further improving the technology and for the development of new concepts in water reactors. Therefore the establishment of an international forum for the exchange of information and stimulation of international co-operation in this field has emerged. In 1987 the IAEA established the International Working Group on Advanced Technologies for Water-Cooled Reactors (IWGATWR). Within the framework of IWGATWR the IAEA Technical Report on Status of Advanced Technology and Design for Water Cooled Reactors, Part I: Light Water Reactors and Part II: Heavy Water Reactors has been undertaken to document the major current activities and different trends of technological improvements and developments for future water reactors. Part I of the report dealing with LWRs has now been prepared and is based mainly on submissions from Member States. It is hoped that this part of the report, containing the status of advanced light water reactor design and technology of the year 1987 and early 1988 will be useful for disseminating information to Agency Member States and for stimulating international cooperation in this subject area. 93 refs, figs and tabs

  7. Dynamic simulation of the air-cooled decay heat removal system of the German KNK-II experimental breeder reactor

    International Nuclear Information System (INIS)

    Schubert, B.K.

    1984-07-01

    A Dump Heat Exchanger and associated feedback control system models for decay heat removal in the German KNK-II experimental fast breeder reactor are presented. The purpose of the controller is to minimize temperature variations in the circuits and, hence, to prevent thermal shocks in the structures. The basic models for the DHX include the sodium-air thermodynamics and hydraulics, as well as a control system. Valve control models for the primary and intermediate sodium flow regulation during post shutdown conditions are also presented. These models have been interfaced with the SSC-L code. Typical results of sample transients are discussed

  8. Validation of CATHARE for gas-cooled reactors

    International Nuclear Information System (INIS)

    Fabrice Bentivoglio; Ola Widlund; Manuel Saez

    2005-01-01

    Full text of publication follows: Extensively validated and qualified for light-water reactor safety studies, the thermo-hydraulics code CATHARE has been adapted to deal also with gas-cooled reactor applications. In order to validate the code for these novel applications, CEA (Commissariat a l'Energie Atomique) has initiated an ambitious long-term experimental program. The foreseen experimental facilities range from small-scale loops for physical correlations, to component technology and system demonstration loops. In the short-term perspective, CATHARE is being validated against existing experimental data, in particular from the German power plant Oberhausen II and the South African Pebble-Bed Micro Model (PBMM). Oberhausen II, operated by the German utility EVO, is a 50 MW(e) direct-cycle Helium turbine plant. The power source is a gas burner rather than a nuclear reactor core, but the power conversion system resembles those of the GFR (Gas-cooled Fast Reactor) and other high-temperature reactor concepts. Oberhausen II was operated for more than 100 000 hours between 1974 and 1988. Design specifications, drawings and experimental data have been obtained through the European HTR project, offering a unique opportunity to validate CATHARE on a large-scale Brayton cycle. Available measurements of temperatures, pressures and mass flows throughout the circuit have allowed a very comprehensive thermohydraulic description of the plant, in steady-state conditions as well as during transients. The Pebble-Bed Micro Model (PBMM) is a small-scale model conceived to demonstrate the operability and control strategies of the South African PBMR concept. The model uses Nitrogen instead of Helium, and an electrical heater with a maximum rating of 420 kW. As the full-scale PBMR, the PBMM loop features three turbines and two compressors on the primary circuit, located on three separate shafts. The generator, however, is modelled by a third compressor on a separate circuit, with a

  9. Promising fast reactor systems in the feasibility study on commercialized FR cycle system

    International Nuclear Information System (INIS)

    Sakamoto, Y.; Kotake, S.; Enuma, Y.; Sagayama, Y.; Nishikawa, A.; Ando, M.

    2005-01-01

    The Feasibility Study on Commercialized Fast Reactor (FR) Cycle Systems is under way in order to propose prominent FR cycle systems that will respond to the diverse needs of society in the future. The design studies on various FR system concepts have been achieved and then the evaluations of potential to achieve the development targets have been carried out. Crucial issues have been found out for each FR system concept and their development plans for the key technologies are summarized as the roadmap. The characteristics and the differences in performances have been investigated. The crucial issues and the development periods have been clarified. Further investigation is now in progress. The promising concept will be proposed based on result of comparative evaluation at the end of the Phase II study. (authors)

  10. IRPhEP-handbook, International Handbook of Evaluated Reactor Physics Benchmark Experiments

    International Nuclear Information System (INIS)

    Sartori, Enrico; Blair Briggs, J.

    2008-01-01

    experimental series that were performed at 17 different reactor facilities. The Handbook is organized in a manner that allows easy inclusion of additional evaluations, as they become available. Additional evaluations are in progress and will be added to the handbook periodically. Content: FUND - Fundamental; GCR - Gas Cooled (Thermal) Reactor; HWR - Heavy Water Moderated Reactor; LMFR - Liquid Metal Fast Reactor; LWR - Light Water Moderated Reactor; PWR - Pressurized Water Reactor; VVER - VVER Reactor; Evaluations published as drafts 2 - Related Information: International Criticality Safety Benchmark Evaluation Project (ICSBEP); IRPHE/B and W-SS-LATTICE, Spectral Shift Reactor Lattice Experiments; IRPHE-JAPAN, Reactor Physics Experiments carried out in Japan ; IRPHE/JOYO MK-II, JOYO MK-II core management and characteristics database ; IRPhE/RRR-SEG, Reactor Physics Experiments from Fast-Thermal Coupled Facility; IRPHE-SNEAK, KFK SNEAK Fast Reactor Experiments, Primary Documentation ; IRPhE/STEK, Reactor Physics Experiments from Fast-Thermal Coupled Facility ; IRPHE-ZEBRA, AEEW Fast Reactor Experiments, Primary Documentation ; IRPHE-DRAGON-DPR, OECD High Temperature Reactor Dragon Project, Primary Documents; IRPHE-ARCH-01, Archive of HTR Primary Documents ; IRPHE/AVR, AVR High Temperature Reactor Experience, Archival Documentation ; IRPHE-KNK-II-ARCHIVE, KNK-II fast reactor documents, power history and measured parameters; IRPhE/BERENICE, effective delayed neutron fraction measurements ; IRPhE-TAPIRO-ARCHIVE, fast neutron source reactor primary documents, reactor physics experiments. The International Handbook of Evaluated Reactor Physics Benchmark Experiments was prepared by a working party comprised of experienced reactor physics personnel from Belgium, Brazil, Canada, P.R. of China, Germany, Hungary, Japan, Republic of Korea, Russian Federation, Switzerland, United Kingdom, and the United States of America. The IRPhEP Handbook is available to authorised requesters from the

  11. Magnetite Dissolution Performance of HYBRID-II Decontamination Process

    International Nuclear Information System (INIS)

    Kim, Seonbyeong; Lee, Woosung; Won, Huijun; Moon, Jeikwon; Choi, Wangkyu

    2014-01-01

    In this study, we conducted the magnetite dissolution performance test of HYBRID-II (Hydrazine Based Reductive metal Ion Decontamination with sulfuric acid) as a part of decontamination process development. Decontamination performance of HYBRID process was successfully tested with the results of the acceptable decontamination factor (DF) in the previous study. While following-up studies such as the decomposition of the post-decontamination HYBRID solution and corrosion compatibility on the substrate metals of the target reactor coolant system have been continued, we also seek for an alternate version of HYBRID process suitable especially for decommissioning. Inspired by the relationship between the radius of reacting ion and the reactivity, we replaced the nitrate ion in HYBRID with bigger sulfate ion to accommodate the dissolution reaction and named HYBRID-II process. As a preliminary step for the decontamination performance, we tested the magnetite dissolution performance of developing HYBRID-II process and compared the results with those of HYBRID process. HYBRID process developed previously is known have the acceptable decontamination performance, but the relatively larger volume of secondary waste induced by anion exchange resin to treat nitrate ion is the one of the problems related in the development of HYBRID process to be applicable. Therefore we alternatively devised HYBRID-II process using sulfuric acid and tested its dissolution of magnetite in numerous conditions. From the results shown in this study, we can conclude that HYBRID-II process improves the decontamination performance and potentially reduces the volume of secondary waste. Rigorous tests with metal oxide coupons obtained from reactor coolant system will be followed to prove the robustness of HYBRID-II process in the future

  12. RTNS-II 1984 annual report

    International Nuclear Information System (INIS)

    1984-01-01

    RTNS-II was built to provide a deuterium-tritium neutron source for the study of fusion neutron effects. In the quest to apply fusion to commercial power production, the specific mission of RTNS-II is threefold: to acquire direct engineering data for near-term confinement experiments and for materials that will see moderate neutron dose in future reactor systems; to measure production rates of transmutants and to develop appropriate radiation-resistant instrumentation for fusion systems; and to study the radiation-induced property changes caused by fusion neutrons. RTNS-II comprises two independent sources of 14-MeV neutrons. This is the third annual report summarizing irradiation experiments at RTNS-II. It covers calendar year 1983, and includes reports of all irradiation results, both fusion and non-fusion related. These comprise both secondary (or ''add-on'') and primary irradiations. Each summary article has been submitted by the investigator and has been altered only to meet the style and format requirements of this report

  13. Small space reactor power systems for unmanned solar system exploration missions

    International Nuclear Information System (INIS)

    Bloomfield, H.S.

    1987-12-01

    A preliminary feasibility study of the application of small nuclear reactor space power systems to the Mariner Mark II Cassini spacecraft/mission was conducted. The purpose of the study was to identify and assess the technology and performance issues associated with the reactor power system/spacecraft/mission integration. The Cassini mission was selected because study of the Saturn system was identified as a high priority outer planet exploration objective. Reactor power systems applied to this mission were evaluated for two different uses. First, a very small 1 kWe reactor power system was used as an RTG replacement for the nominal spacecraft mission science payload power requirements while still retaining the spacecraft's usual bipropellant chemical propulsion system. The second use of reactor power involved the additional replacement of the chemical propulsion system with a small reactor power system and an electric propulsion system. The study also provides an examination of potential applications for the additional power available for scientific data collection. The reactor power system characteristics utilized in the study were based on a parametric mass model that was developed specifically for these low power applications. The model was generated following a neutronic safety and operational feasibility assessment of six small reactor concepts solicited from U.S. industry. This assessment provided the validation of reactor safety for all mission phases and generatad the reactor mass and dimensional data needed for the system mass model

  14. Measurements and calculations for determination of discharge of 41Ar from IFEs research reactor JEEP II at Kjeller, Norway

    International Nuclear Information System (INIS)

    Raaum, A.; Straelberg, E.

    2003-01-01

    41 Ar is formed by neutron irradiation of 40 Ar, which occurs naturally in air with a concentration of 9300 ppm. The discharge of 41 Ar from IFEs research reactor Jeep II is yearly reported to the Norwegian Radiation Protection Authority (NRPA). Until year 2000 the reported values were based on theoretical calculations of produced 41 Ar per operating hour of 6.8 GBq/h. During 2000 and 2001 the reactor was upgraded to increase the irradiation capacity and to meet the markets demand for irradiation of 5'Si-crystalls. After the upgrading, measurements and calculations were initiated to determine the new discharge rate for 41 Ar. During reactor operation an approximately constant discharge of 41 Ar is expected, mainly due to irradiation of air in open beam channels. In addition 41 Ar is released from irradiation pockets when they are opened to transfer samples in and out during reactor stop. The new value for discharge rate was determined from measurements of air samples from the discharge channel during operation and theoretical calculations of the release from the irradiation pockets. The new discharge rate was determined to 5.9 ± 0.5 GBq/h, which is a small reduction compared to the former value of 6.8 GBq/h. A small reduction in discharge rate was expected because the number of air-filled irradiation pockets was reduced after the upgrading. In a normal year the discharge of 41 Ar will be about 2 % of the Institutes discharge permission. (orig.)

  15. Design study on sodium cooled large-scale reactor

    International Nuclear Information System (INIS)

    Murakami, Tsutomu; Hishida, Masahiko; Kisohara, Naoyuki

    2004-07-01

    In Phase 1 of the 'Feasibility Studies on Commercialized Fast Reactor Cycle Systems (F/S)', an advanced loop type reactor has been selected as a promising concept of sodium-cooled large-scale reactor, which has a possibility to fulfill the design requirements of the F/S. In Phase 2, design improvement for further cost reduction of establishment of the plant concept has been performed. This report summarizes the results of the design study on the sodium-cooled large-scale reactor performed in JFY2003, which is the third year of Phase 2. In the JFY2003 design study, critical subjects related to safety, structural integrity and thermal hydraulics which found in the last fiscal year has been examined and the plant concept has been modified. Furthermore, fundamental specifications of main systems and components have been set and economy has been evaluated. In addition, as the interim evaluation of the candidate concept of the FBR fuel cycle is to be conducted, cost effectiveness and achievability for the development goal were evaluated and the data of the three large-scale reactor candidate concepts were prepared. As a results of this study, the plant concept of the sodium-cooled large-scale reactor has been constructed, which has a prospect to satisfy the economic goal (construction cost: less than 200,000 yens/kWe, etc.) and has a prospect to solve the critical subjects. From now on, reflecting the results of elemental experiments, the preliminary conceptual design of this plant will be preceded toward the selection for narrowing down candidate concepts at the end of Phase 2. (author)

  16. Preliminary design studies on the Broad Application Test Reactor

    International Nuclear Information System (INIS)

    Terry, W.J.; Terry, W.K.; Ryskamp, J.M.; Jahshan, S.N.; Fletcher, C.D.; Moore, R.L.; Leyse, C.F.; Ottewitte, E.H.; Motloch, C.G.; Lacy, J.M.

    1992-08-01

    This report describes progress made at the Idaho National Engineering Laboratory during the first three quarters of Fiscal Year (FY) 1992 on the Laboratory-Directed Research and Development (LDRD) project to perform preliminary design studies on the Broad Application Test Reactor (BATR). This work builds on the FY-92 BATR studies, which identified anticipated mission and safety requirements for BATR and assessed a variety of reactor concepts for their potential capability to meet those requirements. The main accomplishment of the FY-92 BATR program is the development of baseline reactor configurations for the two conventional conceptual test reactors recommended in the FY-91 report. Much of the present report consists of descriptions and neutronics and thermohydraulics analyses of these baseline configurations. In addition, we considered reactor safety issues, compared the consequences of steam explosions for alternative conventional fuel types, explored a Molten Chloride Fast Reactor concept as an alternate BATR design, and examined strategies for the reduction of operating costs. Work planned for the last quarter of FY-92 is discussed, and recommendations for future work are also presented

  17. Recent designs for advanced fusion reactor blankets

    International Nuclear Information System (INIS)

    Sze, D.K.

    1994-01-01

    A series of reactor design studies based on the Tokamak configuration have been carried out under the direction of Professor Robert Conn of UCLA. They are called ARIES-I through IV. The key mission of these studies is to evaluate the attractiveness of fusion assuming different degrees of advancement in either physics or engineering development. This paper discusses the directions and conclusions of the blanket and related engineering systems for those design studies. ARIES-1 investigated the use of SiC composite as the structural material to increase the blanket temperature and reduce the blanket activation. Li 2 ZrO 3 was used as the breeding material due to its high temperature stability and good tritium recovery characteristics. The ARIES-IV is a modification of ARIES-1. The plasma was in the second stability regime. Li 2 O was used as the breeding material to remove Zr. A gaseous divertor was used to replace the conventional divertor so that high Z divertor target is not required. The physics of ARIES-II was the same as ARIES-IV. The engineering design of the ARIES-II was based on a self-cooled lithium blanket with a V-alloy as the structural material. Even though it was assumed that the plasma was in the second stability regime, the plasma beta was still rather low (3.4%). The ARIES-III is an advanced fuel (D- 3 He) tokamak reactor. The reactor design assumed major advancement on the physics, with a plasma beta of 23.9%. A conventional structural material is acceptable due to the low neutron wall loading. From the radiation damage point of view, the first wall can last the life of the reactor, which is expected to be a major advantage from the engineering design and waste disposal point of view

  18. Experimental facilities for gas-cooled reactor safety studies. Task group on Advanced Reactor Experimental Facilities (TAREF)

    International Nuclear Information System (INIS)

    2009-01-01

    In 2007, the NEA Committee on the Safety of Nuclear Installations (CSNI) completed a study on Nuclear Safety Research in OECD Countries: Support Facilities for Existing and Advanced Reactors (SFEAR) which focused on facilities suitable for current and advanced water reactor systems. In a subsequent collective opinion on the subject, the CSNI recommended to conduct a similar exercise for Generation IV reactor designs, aiming to develop a strategy for ' better preparing the CSNI to play a role in the planned extension of safety research beyond the needs set by current operating reactors'. In that context, the CSNI established the Task Group on Advanced Reactor Experimental Facilities (TAREF) in 2008 with the objective of providing an overview of facilities suitable for performing safety research relevant to gas-cooled reactors and sodium fast reactors. This report addresses gas-cooled reactors; a similar report covering sodium fast reactors is under preparation. The findings of the TAREF are expected to trigger internationally funded CSNI projects on relevant safety issues at the key facilities identified. Such CSNI-sponsored projects constitute a means for efficiently obtaining the necessary data through internationally co-ordinated research. This report provides an overview of experimental facilities that can be used to carry out nuclear safety research for gas-cooled reactors and identifies priorities for organizing international co-operative programmes at selected facilities. The information has been collected and analysed by a Task Group on Advanced Reactor Experimental Facilities (TAREF) as part of an ongoing initiative of the NEA Committee on the Safety of Nuclear Installations (CSNI) which aims to define and to implement a strategy for the efficient utilisation of facilities and resources for Generation IV reactor systems. (author)

  19. Preliminary Options Assessment of Versatile Irradiation Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Ramazan Sonat [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-01-01

    The objective of this report is to summarize the work undertaken at INL from April 2016 to January 2017 and aimed at analyzing some options for designing and building a versatile test reactor; the scope of work was agreed upon with DOE-NE. Section 2 presents some results related to KNK II and PRISM Mod A. Section 3 presents some alternatives to the VCTR presented in [ ] as well as a neutronic parametric study to assess the minimum power requirement needed for a 235U metal fueled fast test reactor capable to generate a fast (>100 keV) flux of 4.0 x 1015 n /cm2-s at the test location. Section 4 presents some results regarding a fundamental characteristic of test reactors, namely displacement per atom (dpa) in test samples. Section 5 presents the INL assessment of the ANL fast test reactor design FASTER. Section 6 presents a summary.

  20. Safety characteristics of the integral fast reactor concept

    International Nuclear Information System (INIS)

    Marchaterre, J.F.; Cahalan, J.E.; Sevy, R.H.; Wright, A.E.

    1985-01-01

    The Integral Fast Reactor (IFR) concept is an innovative approach to liquid metal reactor design which is being studied by Argonne National Laboratory. Two of the key features of the IFR design are a metal fuel core design, based on the fuel technology developed at EBR-II, and an integral fuel cycle with a colocated fuel cycle facility based on the compact and simplified process steps made possible by the use of metal fuel. The paper presents the safety characteristics of the IFR concept which derive from the use of metal fuel. Liquid metal reactors, because of the low pressure coolant operating far below its boiling point, the natural circulation capability, and high system heat capacities, possess a high degree of inherent safety. The use of metallic fuel allows the reactor designer to further enhance the system capability for passive accommodation of postulated accidents