WorldWideScience

Sample records for thuringiensis cry1f corn

  1. 40 CFR 174.520 - Bacillus thuringiensis Cry1F protein in corn; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis Cry1F protein in corn; exemption from the requirement of a tolerance. 174.520 Section 174.520 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PROCEDURES AND REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances and...

  2. Genetic Basis of Cry1F-Resistance in a Laboratory Selected Asian Corn Borer Strain and Its Cross-Resistance to Other Bacillus thuringiensis Toxins.

    Directory of Open Access Journals (Sweden)

    Yueqin Wang

    Full Text Available The Asian corn borer (ACB, Ostrinia furnacalis (Guenée (Lepidoptera: Crambidae, is the most destructive insect pest of corn in China. Susceptibility to the Cry1F toxin derived from Bacillus thuringiensis has been demonstrated for ACB, suggesting the potential for Cry1F inclusion as part of an insect pest management program. Insects can develop resistance to Cry toxins, which threatens the development and use of Bt formulations and Bt crops in the field. To determine possible resistance mechanisms to Cry1F, a Cry1F-resistant colony of ACB (ACB-FR that exhibited more than 1700-fold resistance was established through selection experiments after 49 generations of selection under laboratory conditions. The ACB-FR strain showed moderate cross-resistance to Cry1Ab and Cry1Ac of 22.8- and 26.9-fold, respectively, marginally cross-resistance to Cry1Ah (3.7-fold, and no cross-resistance to Cry1Ie (0.6-fold. The bioassay responses of progeny from reciprocal F1 crosses to different Cry1 toxin concentrations indicated that the resistance trait to Cry1Ab, Cry1Ac and Cry1F has autosomal inheritance with no maternal effect or sex linked. The effective dominance (h of F1 offspring was calculated at different concentrations of Cry1F, showing that h decreased as concentration of Cry1F increased. Finally, the analysis of actual and expected mortality of the progeny from a backcross (F1 × resistant strain indicated that the inheritance of the resistance to Cry1F in ACB-FR was due to more than one locus. The present study provides an understanding of the genetic basis of Cry1F resistance in ACB-FR and also shows that pyramiding Cry1F with Cry1Ah or Cry1Ie could be used as a strategy to delay the development of ACB resistance to Bt proteins.

  3. Susceptibility of field populations of the fall armyworm (Lepidoptera: Noctuidae) from Florida and Puerto Rico to purified Cry1F protein and corn leaf tissue containing single and pyramided Bt genes

    Science.gov (United States)

    Larval survival of Cry1F-susceptible (FL), -resistant (PR and Cry1F-RR), and -heterozygous (FL x PR and Cry1F-RS) populations of the fall armyworm, Spodoptera frugiperda (J.E. Smith) to purified Cry1F protein and corn leaf tissue of seven Bacillus thuringiensis (Bt) corn hybrids and five non-Bt corn...

  4. 40 CFR 174.506 - Bacillus thuringiensis Cry34Ab1 and Cry35Ab1 proteins in corn; exemption from the requirement of...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis Cry34Ab1 and Cry35Ab1 proteins in corn; exemption from the requirement of a tolerance. 174.506 Section 174.506 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PROCEDURES AND REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS...

  5. Baseline sensitivity of lepidopteran corn pests in India to Cry1Ab insecticidal protein of Bacillus thuringiensis.

    Science.gov (United States)

    Jalali, Sushil K; Lalitha, Yadavalli; Kamath, Subray P; Mohan, Komarlingam S; Head, Graham P

    2010-08-01

    Genetically engineered corn (Bt corn) expressing Bacillus thuringiensis Berliner insecticidal protein Cry1Ab is a biotechnological option being considered for management of lepidopteran corn pests in India. As a resistance management practice it was essential to determine the sensitivity of multiple populations of the stalk borer Chilo partellus (Swinhoe), pink borer Sesamia inferens (Walker) and the cob borer Helicoverpa armigera (Hübner) to Cry1Ab protein through bioassays. The insect populations were collected during growing seasons of Rabi 2005 (October 2005 to February 2006) and Kharif 2006 (May to September 2006). Multiple populations of the three lepidopteran corn pests were found to be susceptible to Cry1Ab. Median lethal concentrations (LC(50)) ranged between 0.008 and 0.068 microg Cry1Ab mL(-1) diet for 18 populations of C. partellus (across two seasons), between 0.12 and 1.99 microg mL(-1) for seven populations of H. armigera and between 0.46 and 0.56 microg mL(-1) for two populations of S. inferens. Dose-response concentrations for lethality and growth inhibition have been determined to mark baseline sensitivity of multiple populations of key lepidopteran corn pests in India to Cry1Ab protein. These benchmark values will be referenced while monitoring resistance to Cry1Ab should Bt corn hybrids expressing Cry1Ab be approved for commercial cultivation in India. Copyright (c) 2010 Society of Chemical Industry.

  6. Larval development of Spodoptera eridania and Spodoptera frugiperda fed on fresh ear of field corn expressing the Bt proteins (Cry1F and Cry1F + Cry1A.105 + Cry2Ab2

    Directory of Open Access Journals (Sweden)

    Orcial Ceolin Bortolotto

    Full Text Available ABSTRACT: The objective of this study was to evaluate extent of larval period, larval survival (%, food consumption, and pupal biomass of Spodoptera eridania and Spodoptera frugiperda (Lepidoptera: Noctuidae fed on fresh ears of field corn expressing Bt proteins (Cry1F and Cry1F+Cry1A.105+Cry2Ab2. Larvae of Spodoptera spp. survived less than two days when they consumed Bt corncobs and showed 100% mortality. Spodoptera eridania reared on non-Bt corn cobs showed higher larval development (21.6 days than S. frugiperda (18.4 days and lower viability (56.4% and 80.2% for S. eridania and S. frugiperda , respectively. A higher amount of corn grains was consumed by S. eridania (5.4g than by S. frugiperda (3.9g. In summary, this study demonstrated that the toxins Cry1F and Cry1F + Cry1A.105 + Cry2Ab2 expressed in fresh corn cobs contributed to protect ears of corn against S. frugiperda and the non-target pest S. eridania . However, itis important to monitor non-Bt cornfields because of the potential of both species to cause damage to ear sof corn.

  7. Intraguild competition and enhanced survival of western bean cutworm (Lepidoptera: Noctuidae) on transgenic Cry1Ab (MON810) Bacillus thuringiensis corn.

    Science.gov (United States)

    Dorhout, David L; Rice, Marlin E

    2010-02-01

    The effect of genetically modified corn (event MON810, YieldGard Corn Borer) expressing the Bacillus thuringiensis sp. kurstaki (Berliner) (Bt) endotoxin, Cry1Ab, on the survival of western bean cutworm, Striacosta albicosta (Smith), larvae was examined during intraguild competition studies with either European corn borer, Ostrinia nubilalis (Hübner), or corn earworm, Helicoverpa zea (Boddie), larvae. Competition scenarios were constructed by using either a laboratory or field competition arena containing one of five different diets and one of 13 different larval size-by-species scenarios. The survival of western bean cutworms competing with corn earworms in the laboratory arenas on either a meridic diet or isoline corn silk diet was significantly lower (P corn earworm on a Cry1Ab-MON810 corn silk diet was significant higher (P corn borers generally did not alter the outcomes observed in the western bean cutworm and corn earworm only two-way competitions. These data suggest that Cry1Ab-MON810 corn may confer a competitive advantage to western bean cutworm larvae during intraguild competition, particularly from corn earworms, and that western bean cutworms become equal competitors only when they are of equal or larger size and the diet is Cry1Ab-MON810 corn.

  8. Larval development of Spodoptera eridania and Spodoptera frugiperda fed on fresh ear of field corn expressing the Bt proteins (Cry1F and Cry1F + Cry1A.105 + Cry2Ab2)

    OpenAIRE

    Bortolotto,Orcial Ceolin; Bueno,Adeney de Freitas; Queiroz,Ana Paula de; Silva,Gabriela Vieira

    2016-01-01

    ABSTRACT: The objective of this study was to evaluate extent of larval period, larval survival (%), food consumption, and pupal biomass of Spodoptera eridania and Spodoptera frugiperda (Lepidoptera: Noctuidae ) fed on fresh ears of field corn expressing Bt proteins (Cry1F and Cry1F+Cry1A.105+Cry2Ab2). Larvae of Spodoptera spp. survived less than two days when they consumed Bt corncobs and showed 100% mortality. Spodoptera eridania reared on non-Bt corn cobs showed higher larval development (...

  9. 40 CFR 174.518 - Bacillus thuringiensis Cry3Bb1 protein in corn; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis Cry3Bb1 protein in corn; exemption from the requirement of a tolerance. 174.518 Section 174.518 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PROCEDURES AND REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances and...

  10. Susceptibility of The Asian Corn Borer, Ostrinia furnacalis, to Bacillus thuringiensis Toxin CRY1AC

    Directory of Open Access Journals (Sweden)

    Aye Kyawt Kyawt Ei

    2008-07-01

    Full Text Available The larval susceptibility of the Asian corn borer, Ostrinia furnacalis (Guenee (Lepidoptera: Crambidae, to a Bacillus thuringiensis protein (Cry1Ac was evaluated using insect feeding bioassays. The founding population of O. furnacalis was originally collected from the experimental station of UGM at Kalitirto and had been reared in the laboratory for three generations using an artificial diet “InsectaLf”. The tested instars were exposed on diets treated with a series of concentrations of Cry1Ac for one week. The LC50 values on the seventh day after treatment for 1st, 2nd, 3rd and 4th instars were 7.79, 21.12, 113.66, and 123.17 ppm, respectively, showing that the higher the instars the lesser the susceptibility to Cry1Ac. When the neonates were exposed to sublethal concentrations of Cry1Ac (0.0583, 0.116, and 0.5830 ppm, growth and development of the surviving larvae were inhibited. The fecundity and viability of females produced from treated larvae decreased with increasing the concentrations. These findings indicate that Cry1Ac is toxic to larva of O. furnacalis and has chronic effects to larvae surviving from Cry1Ac ingestion.   Kepekaan larva penggerek batang jagung Asia, Ostrinia furnacalis (Guenee (Lepidoptera: Crambidae, terhadap protein Bacillus thuringiensis Cry1Ac diuji dengan metode celup pakan. Larva berasal dari pertanaman jagung di KP-4, UGM di Kalitirto dan telah dikembangbiakkan di laboratorium menggunakan pakan buatan (InsectaLF selama tiga generasi sebelum digunakan untuk pengujian. Larva O. furnacalis yang diuji dipaparkan pada pakan buatan yang telah dicelupkan pada seri konsentrasi Cry1Ac. Nilai LC50 pada hari ketujuh setelah perlakukan untuk instar 1, 2, 3, dan 4 berturut-turut adalah 0,79; 21,12; 113,66; dan 123,17 ppm. Hal ini menunjukkan bahwa instar yang semakin tinggi tingkat kepekaannya terhadap Cry1Ac semakin menurun. Larva yang baru menetas dan diberi pakan yang telah dicelupkan pada konsentrasi sublethal Cry1Ac

  11. 40 CFR 174.505 - Bacillus thuringiensis modified Cry3A protein (mCry3A) in corn; exemption from the requirement of...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis modified Cry3A protein (mCry3A) in corn; exemption from the requirement of a tolerance. 174.505 Section 174.505 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PROCEDURES AND REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS...

  12. 40 CFR 174.532 - Bacillus thuringiensis eCry3.1Ab protein in corn; temporary exemption from the requirement of a...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis eCry3.1Ab protein in corn; temporary exemption from the requirement of a tolerance. 174.532 Section 174.532 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PROCEDURES AND REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS...

  13. Frequency of Cry1F Non-Recessive Resistance Alleles in North Carolina Field Populations of Spodoptera frugiperda (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Li, Guoping; Reisig, Dominic; Miao, Jin; Gould, Fred; Huang, Fangneng; Feng, Hongqiang

    2016-01-01

    Fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), is a target species of transgenic corn (Zea mays L.) that expresses single and pyramided Bacillus thuringiensis (Bt) toxin. In 2014, S. frugiperda were collected from a light trap in North Carolina, and a total of 212 F1/F2 isofemale lines of S. frugiperda were screened for resistance to Bt and non-Bt corn. All of the 212 isolines were susceptible to corn tissue expressing Cry1A.105 + Cry2Ab, Cry1F + Cry1A.105 + Cry2Ab, and Cry1F + Cry1Ab + Vip3Aa20. Growth rate bioassays were performed to isolate non-recessive Bt resistance alleles. Seven individuals out of the 212 isofemale lines carried major non-recessive alleles conferring resistance to Cry1F. A pooled colony was created from the seven individuals. This colony was 151.21 times more resistant to Cry1F than a known-susceptible population and was also resistant to Cry1A.105, but was not resistant to Cry2Ab and Vip3Aa20. The results demonstrate that field populations of S. frugiperda collected from North Carolina are generally susceptible to Cry1F, but that some individuals carry resistant alleles. The data generated in this study can be used as baseline data for resistance monitoring.

  14. Cross-resistance to purified Bt proteins, Bt corn and Bt cotton in a Cry2Ab2-corn resistant strain of Spodoptera frugiperda.

    Science.gov (United States)

    Yang, Fei; Kerns, David L; Head, Graham P; Price, Paula; Huang, Fangneng

    2017-12-01

    Gene-pyramiding by combining two or more dissimilar Bacillus thuringiensis (Bt) proteins into a crop has been used to delay insect resistance. The durability of gene-pyramiding can be reduced by cross-resistance. Fall armyworm, Spodoptera frugiperda, is a major target pest of the Cry2Ab2 protein used in pyramided Bt corn and cotton. Here, we provide the first experimental evaluation of cross-resistance in S. frugiperda selected with Cry2Ab2 corn to multiple Bt sources including purified Bt proteins, Bt corn and Bt cotton. Concentration - response bioassays showed that resistance ratios for Cry2Ab2-resistant (RR) relative to Cry2Ab2-susceptible (SS) S. frugiperda were -1.4 for Cry1F, 1.2 for Cry1A.105, >26.7 for Cry2Ab2, >10.0 for Cry2Ae and -1.1 for Vip3A. Larvae of Cry2Ab2-heterozygous (RS), SS and RR S. frugiperda were all susceptible to Bt corn and Bt cotton containing Cry1 (Cry1F or Cry1A.105) and/or Vip3A proteins. Pyramided Bt cotton containing Cry1Ac + Cry2Ab2 or Cry1Ab + Cry2Ae were also effective against SS and RS, but not RR. These findings suggest that Cry2Ab2-corn-selected S. frugiperda is not cross-resistant to Cry1F, Cry1A.105 or Vip3A protein, or corn and cotton plants containing these Bt proteins, but it can cause strong cross-resistance to Cry2Ae and Bt crops expressing similar Bt proteins. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  15. Field Trial Performance of Herculex XTRA (Cry34Ab1/Cry35Ab1) and SmartStax (Cry34Ab1/Cry35Ab1 + Cry3Bb1) Hybrids and Soil Insecticides Against Western and Northern Corn Rootworms (Coleoptera: Chrysomelidae).

    Science.gov (United States)

    Johnson, K D; Campbell, L A; Lepping, M D; Rule, D M

    2017-06-01

    Western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), and northern corn rootworm, Diabrotica barberi Smith and Lawrence (Coleoptera: Chrysomelidae), are important insect pests in corn, Zea mays L. For more than a decade, growers have been using transgenic plants expressing proteins from the bacterium Bacillus thuringiensis (Bt) to protect corn roots from feeding. In 2011, western corn rootworm populations were reported to have developed resistance to Bt hybrids expressing Cry3Bb1 and later found to be cross-resistant to hybrids expressing mCry3A and eCry3.1Ab. The identification of resistance to Cry3 (Cry3Bb1, mCry3A, and eCry3.1Ab) hybrids led to concerns about durability and efficacy of products with single traits and of products containing a pyramid of a Cry3 protein and the binary Bt proteins Cry34Ab1 and Cry35Ab1. From 2012 to 2014, 43 field trials were conducted across the central United States to estimate root protection provided by plants expressing Cry34Ab1/Cry35Ab1 alone (Herculex RW) or pyramided with Cry3Bb1 (SmartStax). These technologies were evaluated with and without soil-applied insecticides to determine if additional management measures provided benefit where Cry3 performance was reduced. Trials were categorized for analysis based on rootworm damage levels on Cry3-expressing hybrids and rootworm feeding pressure within each trial. Across scenarios, Cry34Ab1/Cry35Ab1 hybrids provided excellent root protection. Pyramided traits provided greater root and yield protection than non-Bt plus a soil-applied insecticide, and only in trials where larval feeding pressure exceeded two nodes of damage did Cry34Ab1/Cry35Ab1 single-trait hybrids and pyramided hybrids show greater root protection from the addition of soil-applied insecticides. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. The effect of nitrogen rate on transgenic corn Cry3Bb1 protein expression.

    Science.gov (United States)

    Marquardt, Paul T; Krupke, Christian H; Camberato, James J; Johnson, William G

    2014-05-01

    Combining herbicide-resistant and Bacillus thuringiensis (Bt) traits in corn (Zea mays L.) hybrids may affect insect resistance management owing to volunteer corn. Some Bt toxins may be expressed at lower levels by nitrogen-deficient corn roots. Corn plants with sublethal levels of Bt expression could accelerate the evolution of Bt resistance in target insects. The present objective was to quantify the concentration of Bt (Cry3Bb1) in corn root tissue with varying tissue nitrogen concentrations. Expression of Cry3Bb1 toxin in root tissue was highly variable, but there were no differences in the overall concentration of Cry3Bb1 expressed between roots taken from Cry3Bb1-positive volunteer and hybrid corn plants. The nitrogen rate did affect Cry3Bb1 expression in the greenhouse, less nitrogen resulted in decreased Cry3Bb1 expression, yet this result was not documented in the field. A positive linear relationship of plant nitrogen status on Cry3Bb1 toxin expression was documented. Also, high variability in Cry3Bb1 expression is potentially problematic from an insect resistance management perspective. This variability could create a mosaic of toxin doses in the field, which does not fit into the high-dose refuge strategy and could alter predictions about the speed of evolution of resistance to Cry3Bb1 in western corn rootworm Diabrotica virgifera virgifera LeConte. © 2013 Society of Chemical Industry.

  17. Nitrogen Rate Effects on Cry3Bb1 and Cry3Bb1 + Cry34/35Ab1 Expression in Transgenic Corn Roots, Resulting Root Injury, and Corn Rootworm Beetle Emergence.

    Science.gov (United States)

    Leaf, T M; Ostlie, K R

    2017-06-01

    Nitrogen (N) application rates have been recommended historically for maximum economic yield of corn (Zea mays L.), but not for optimal expression or impacts of Bt (Bacillus thuringiensis Berliner) Cry protein(s) on target insects. This study explored the need to adjust N rates to optimize expression of corn rootworm-active Bt (Bt-RW) protein(s) in a single and a pyramided trait hybrid and resulting impacts on beetle emergence and root injury, under field conditions. The experiment featured a factorial treatment arrangement in a split-plot randomized complete block design with six N rates as the main plots and three hybrids (MON88017 expressing Cry3Bb1, MON88017 x DAS-59122 expressing Cry3Bb1 + Cry34/35Ab1, and a non-Bt-RW hybrid) as the subplots. Corn roots were sampled at the beginning of, and after, peak larval feeding to determine Bt-expression levels using an enzyme-linked immunosorbent assay. Beetles were collected every 2-3 d during emergence using cut-plant emergence cages. Cry3Bb1 expression was significantly reduced when little or no N was applied. Cry34Ab1 and Cry35Ab1 expression was highly variable and unaffected by N rate. Beetle emergence increased with N rate in the non-Bt-RW hybrid while root injury declined. Provided Bt-RW hybrids had sufficient applied N, root injury was relatively low. Results indicate that N management could affect Bt-RW expression and success of insect resistance management plans provided N is applied at rates that enhance production of susceptible beetles emerging from the non-Bt-RW (refuge) hybrid, and achieve optimal expression and efficacy of Bt traits. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. In vitro effect of Bacillus thuringiensis strains and Cry proteins in phytopathogenic fungi of paddy rice-field Efeito in vitro de cepas e proteínas Cry de Bacillus thuringiensis em fungos fitopatogênicos da cultura do arroz irrigado

    Directory of Open Access Journals (Sweden)

    Neiva Knaak

    2007-09-01

    Full Text Available Cry1Ab and Cry1Ac strains and proteins synthesized by Bacillus thuringiensis thuringiensis and B. thuringiensis kurstaki were assessed in the following phytopathogens: Rhizoctonia solani,Pyricularia grisea,Fusarium oxysporum and F. solani, which had their micelial growth decreased after incubation in the presence of the bacterial strains. As to Cry proteins, there were no inhibition halo development in the assessed concentrations.As cepas e proteínas Cry1Ab e Cry1Ac sintetizadas por Bacillus thuringiensis thuringiensis e B. thuringiensis kurstaki, foram avaliadas nos fitopatógenos: Rhizoctonia solani,Pyricularia grisea,Fusarium oxysporum e F. solani, os quais tiveram seu crescimento micelial reduzido após a incubação na presença das cepas bacterianas. Em relação às proteínas Cry, não houve formação de halo de inibição nas concentrações avaliadas.

  19. 40 CFR 174.517 - Bacillus thuringiensis Cry9C protein in corn; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis Cry9C protein in corn; exemption from the requirement of a tolerance. 174.517 Section 174.517 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PROCEDURES AND REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances and...

  20. Shared Midgut Binding Sites for Cry1A.105, Cry1Aa, Cry1Ab, Cry1Ac and Cry1Fa Proteins from Bacillus thuringiensis in Two Important Corn Pests, Ostrinia nubilalis and Spodoptera frugiperda

    Science.gov (United States)

    Hernández-Rodríguez, Carmen Sara; Hernández-Martínez, Patricia; Van Rie, Jeroen; Escriche, Baltasar; Ferré, Juan

    2013-01-01

    First generation of insect-protected transgenic corn (Bt-corn) was based on the expression of Cry1Ab or Cry1Fa proteins. Currently, the trend is the combination of two or more genes expressing proteins that bind to different targets. In addition to broadening the spectrum of action, this strategy helps to delay the evolution of resistance in exposed insect populations. One of such examples is the combination of Cry1A.105 with Cry1Fa and Cry2Ab to control O. nubilalis and S. frugiperda. Cry1A.105 is a chimeric protein with domains I and II and the C-terminal half of the protein from Cry1Ac, and domain III almost identical to Cry1Fa. The aim of the present study was to determine whether the chimeric Cry1A.105 has shared binding sites either with Cry1A proteins, with Cry1Fa, or with both, in O. nubilalis and in S. frugiperda. Brush-border membrane vesicles (BBMV) from last instar larval midguts were used in competition binding assays with 125I-labeled Cry1A.105, Cry1Ab, and Cry1Fa, and unlabeled Cry1A.105, Cry1Aa, Cry1Ab, Cry1Ac, Cry1Fa, Cry2Ab and Cry2Ae. The results showed that Cry1A.105, Cry1Ab, Cry1Ac and Cry1Fa competed with high affinity for the same binding sites in both insect species. However, Cry2Ab and Cry2Ae did not compete for the binding sites of Cry1 proteins. Therefore, according to our results, the development of cross-resistance among Cry1Ab/Ac, Cry1A.105, and Cry1Fa proteins is possible in these two insect species if the alteration of shared binding sites occurs. Conversely, cross-resistance between these proteins and Cry2A proteins is very unlikely in such case. PMID:23861865

  1. Bacillus thuringiensis delta-endotoxin Cry1Ac domain III enhances activity against Heliothis virescens in some, but not all Cry1-Cry1Ac hybrids

    NARCIS (Netherlands)

    Karlova, R.B.; Weemen, W.M.J.; Naimov, S.; Ceron, J.; Dukiandjiev, S.; Maagd, de R.A.

    2005-01-01

    We investigated the role of domain III of Bacillus thuringiensis d-endotoxin Cry1Ac in determining toxicity against Heliothis virescens. Hybrid toxins, containing domain III of Cry1Ac with domains I and II of Cry1Ba, Cry1Ca, Cry1Da, Cry1Ea, and Cry1Fb, respectively, were created. In this way Cry1Ca,

  2. Field evidence for the exposure of ground beetles to Cry1Ab from transgenic corn.

    Science.gov (United States)

    Zwahlen, Claudia; Andow, David A

    2005-01-01

    Non-target organisms associated with the soil might be adversely affected by exposure to the CrylAb protein from Bacillus thuringiensis (Bt) in transgenic corn (Zea mays L.). To check for such exposure, we used ELISA to test for Cry1Ab in ground beetles collected live from fields with Bt corn residues and Bt corn (Bt/Bt), Bt corn residues and non-Bt crops (Bt/non-Bt), or non-Bt corn residues and non-Bt crops (non-Bt/non-Bt). In fields with Bt corn residues (Bt/Bt and Bt/non-Bt), Cry1Ab was present in all seven species of ground beetles examined (Agonum placidum, Bembidion rupicola, Clivina impressefrons, Cyclotrachelus iowensis, Harpalus pensylvanicus, Poecilus chalcites, and Poecilus lucublandus). For the two most abundant species, P. chalcites and P. lucublandus, the proportion of beetles with Cry1Ab was significantly higher in Bt/Bt fields (0.50-1.0) and Bt/non-Bt fields (0.41-0.50) than in non-Bt/non-Bt fields (0.0). This is the first field evidence that some ground beetle species are exposed to Cry1Ab. The implications of exposure on the performance of these non-target organisms are unclear.

  3. 40 CFR 174.504 - Bacillus thuringiensis Cry1F protein in cotton; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis Cry1F protein in cotton; exemption from the requirement of a tolerance. 174.504 Section 174.504 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PROCEDURES AND REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances and...

  4. Characterization of field-evolved resistance to Bacillus thuringiensis-derived Cry1F δ-endotoxin in Spodoptera frugiperda populations from Argentina.

    Science.gov (United States)

    Chandrasena, Desmi I; Signorini, Ana M; Abratti, Gustavo; Storer, Nicholas P; Olaciregui, Magdalena L; Alves, Analiza P; Pilcher, Clinton D

    2018-03-01

    Transgenic maize (Zea mays L.) event TC1507 (Herculex ® I insect protection), expressing Cry1F δ-endotoxin derived from Bacillus thuringiensis var. aizawai, was commercialized in 2003 in the Americas. Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) susceptibility to Cry1F was monitored annually across several regions in Argentina using diagnostic concentration bioassays. Reduced performance of TC1507 maize against S. frugiperda was reported in 2013. A resistant population was established in the laboratory and the dominance of Cry1F resistance was characterized. During 2012-2015, high-survivorship of several populations was observed in the resistance monitoring program. Reciprocal crosses of a Cry1F-resistant population with a Cry1F-susceptible population were evaluated to calculate effective dominance (D ML ) based on mortality levels observed at 100 µg/ml Cry1F. Two additional dominance levels (D LC and D EC ) were calculated using lethal (LC 50 ) or effective concentration (EC 50 ) derived from concentration-response bioassays. Estimates indicated that Cry1F resistance in S. frugiperda in Argentina was either highly recessive (D ML = 0.005) or incompletely recessive (D LC frugiperda Cry1F field-evolved resistance in Argentina. The resistance to Cry1F in S. frugiperda populations collected in Argentina, is autosomal and incompletely recessive similar to the resistance reported in Brazil. © 2017 The Authors. Pest Management Science published by John Wiley © Sons Ltd on behalf of Society of Chemical Industry. © 2017 The Authors. Pest Management Science published by John Wiley © Sons Ltd on behalf of Society of Chemical Industry.

  5. 40 CFR 174.519 - Bacillus thuringiensis Cry2Ab2 protein in corn and cotton; exemption from the requirement of a...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis Cry2Ab2 protein in corn and cotton; exemption from the requirement of a tolerance. 174.519 Section 174.519 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PROCEDURES AND REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS...

  6. Field-Evolved Mode 1 Resistance of the Fall Armyworm to Transgenic Cry1Fa-Expressing Corn Associated with Reduced Cry1Fa Toxin Binding and Midgut Alkaline Phosphatase Expression

    Science.gov (United States)

    Jakka, Siva R. K.; Gong, Liang; Hasler, James; Banerjee, Rahul; Sheets, Joel J.; Narva, Kenneth; Blanco, Carlos A.

    2015-01-01

    Insecticidal protein genes from the bacterium Bacillus thuringiensis (Bt) are expressed by transgenic Bt crops (Bt crops) for effective and environmentally safe pest control. The development of resistance to these insecticidal proteins is considered the most serious threat to the sustainability of Bt crops. Resistance in fall armyworm (Spodoptera frugiperda) populations from Puerto Rico to transgenic corn producing the Cry1Fa insecticidal protein resulted, for the first time in the United States, in practical resistance, and Bt corn was withdrawn from the local market. In this study, we used a field-collected Cry1Fa corn-resistant strain (456) of S. frugiperda to identify the mechanism responsible for field-evolved resistance. Binding assays detected reduced Cry1Fa, Cry1Ab, and Cry1Ac but not Cry1Ca toxin binding to midgut brush border membrane vesicles (BBMV) from the larvae of strain 456 compared to that from the larvae of a susceptible (Ben) strain. This binding phenotype is descriptive of the mode 1 type of resistance to Bt toxins. A comparison of the transcript levels for putative Cry1 toxin receptor genes identified a significant downregulation (>90%) of a membrane-bound alkaline phosphatase (ALP), which translated to reduced ALP protein levels and a 75% reduction in ALP activity in BBMV from 456 compared to that of Ben larvae. We cloned and heterologously expressed this ALP from susceptible S. frugiperda larvae and demonstrated that it specifically binds with Cry1Fa toxin. This study provides a thorough mechanistic description of field-evolved resistance to a transgenic Bt crop and supports an association between resistance and reduced Cry1Fa toxin binding and levels of a putative Cry1Fa toxin receptor, ALP, in the midguts of S. frugiperda larvae. PMID:26637593

  7. Field-Evolved Resistance in Corn Earworm to Cry Proteins Expressed by Transgenic Sweet Corn

    Science.gov (United States)

    Dively, Galen P.; Finkenbinder, Chad

    2016-01-01

    Background Transgenic corn engineered with genes expressing insecticidal toxins from the bacterium Bacillus thuringiensis (Berliner) (Bt) are now a major tool in insect pest management. With its widespread use, insect resistance is a major threat to the sustainability of the Bt transgenic technology. For all Bt corn expressing Cry toxins, the high dose requirement for resistance management is not achieved for corn earworm, Helicoverpa zea (Boddie), which is more tolerant to the Bt toxins. Methodology/Major Findings We present field monitoring data using Cry1Ab (1996–2016) and Cry1A.105+Cry2Ab2 (2010–2016) expressing sweet corn hybrids as in-field screens to measure changes in field efficacy and Cry toxin susceptibility to H. zea. Larvae successfully damaged an increasing proportion of ears, consumed more kernel area, and reached later developmental stages (4th - 6th instars) in both types of Bt hybrids (Cry1Ab—event Bt11, and Cry1A.105+Cry2Ab2—event MON89034) since their commercial introduction. Yearly patterns of H. zea population abundance were unrelated to reductions in control efficacy. There was no evidence of field efficacy or tissue toxicity differences among different Cry1Ab hybrids that could contribute to the decline in control efficacy. Supportive data from laboratory bioassays demonstrate significant differences in weight gain and fitness characteristics between the Maryland H. zea strain and a susceptible strain. In bioassays with Cry1Ab expressing green leaf tissue, Maryland H. zea strain gained more weight than the susceptible strain at all concentrations tested. Fitness of the Maryland H. zea strain was significantly lower than that of the susceptible strain as indicated by lower hatch rate, longer time to adult eclosion, lower pupal weight, and reduced survival to adulthood. Conclusions/Significance After ruling out possible contributing factors, the rapid change in field efficacy in recent years and decreased susceptibility of H. zea to Bt

  8. Sublethal effects of Cry 1F Bt corn and clothianidin on black cutworm (Lepidoptera: Noctuidae) larval development.

    Science.gov (United States)

    Kullik, Sigrun A; Sears, Mark K; Schaafsma, Arthur W

    2011-04-01

    Black cutworm, Agrotis ipsilon (Hufnagel) (Lepidoptera: Noctuidae), is an occasional pest of maize (corn), Zea mays L., that may cause severe stand losses and injury to corn seedlings. The efficacy of the neonicotinoid seed treatment clothianidin at two commercially available rates and their interaction with a transgenic corn hybrid (Bt corn), trait expressing the Bacillus thuringiensis variety aizawai insecticidal toxin Cry 1Fa2, against black cutworm larvae was investigated. Clothianidin at a rate of 25 mg kernel(-1) on Bt corn increased larval mortality and reduced larval weight gains additively. In contrast, weights of larvae fed non-Bt corn seedlings treated with clothianidin at a rate of 25 mg kernel(-1) increased significantly, suggesting either compensatory overconsumption, hormesis, or hormoligosis. Both Bt corn alone and clothianidin at a rate of 125 mg kernel(-1) applied to non-Bt corn seedlings caused increased mortality and reduced larval weight gains. In two field trials, plots planted with Bt corn hybrids consistently had the highest plant populations and yields, regardless of whether they were treated with clothianidin at the lower commercial rate of 25 mg kernel(-1) The use of Bt corn alone or in combination with the low rate of clothianidin (25 mg kernel(-1)) seems suitable as a means of suppressing black cutworm in no-tillage cornfields, although rescue treatments may still be necessary under severe infestations. Clothianidin alone at the low rate of 25 mg kernel(-1) is not recommended for black cutworm control until further studies of its effects on larval physiology and field performance have been completed.

  9. Dominant negative phenotype of Bacillus thuringiensis Cry1Ab, Cry11Aa and Cry4Ba mutants suggest hetero-oligomer formation among different Cry toxins.

    NARCIS (Netherlands)

    Carmona, D.; Rodriguez-Almazan, C.; Munoz-Garay, C.; Portugal, L.; Perez, C.; Maagd, de R.A.; Bakker, P.; Soberon, M.; Bravo, A.

    2011-01-01

    Background - Bacillus thuringiensis Cry toxins are used worldwide in the control of different insect pests important in agriculture or in human health. The Cry proteins are pore-forming toxins that affect the midgut cell of target insects. It was shown that non-toxic Cry1Ab helix a-4 mutants had a

  10. The cultivation of Bt corn producing Cry1Ac toxins does not adversely affect non-target arthropods.

    Directory of Open Access Journals (Sweden)

    Yanyan Guo

    Full Text Available Transgenic corn producing Cry1Ac toxins from Bacillus thuringiensis (Bt provides effective control of Asian corn borer, Ostrinia furnacalis (Guenée, and thus reduces insecticide applications. However, whether Bt corn exerts undesirable effects on non-target arthropods (NTAs is still controversial. We conducted a 2-yr study in Shangzhuang Agricultural Experiment Station to assess the potential impact of Bt corn on field population density, biodiversity, community composition and structure of NTAs. On each sampling date, the total abundance, Shannon's diversity index, Pielou's evenness index and Simpson's diversity index were not significantly affected by Bt corn as compared to non-Bt corn. The "sampling dates" had a significant effect on these indices, but no clear tendencies related to "Bt corn" or "sampling dates X corn variety" interaction were recorded. Principal response curve analysis of variance indicated that Bt corn did not alter the distribution of NTAs communities. Bray-Curtis dissimilarity and distance analysis showed that Cry1Ac toxin exposure did not increase community dissimilarities between Bt and non-Bt corn plots and that the evolution of non-target arthropod community was similar on the two corn varieties. The cultivation of Bt corn failed to show any detrimental evidence on the density of non-target herbivores, predators and parasitoids. The composition of herbivores, predators and parasitoids was identical in Bt and non-Bt corn plots. Taken together, results from the present work support that Bt corn producing Cry1Ac toxins does not adversely affect NTAs.

  11. Characterization of lepidopteran-specific cry1 and cry2 gene harbouring native Bacillus thuringiensis isolates toxic against Helicoverpa armigera

    Directory of Open Access Journals (Sweden)

    Showkat Ahmad Lone

    2017-09-01

    Full Text Available Bacillus thuringiensis (Bt based biopesticides are feasible alternatives to chemical pesticides. Here, we present the distribution of lepidopteran-specific cry1 and cry2 genes in native B. thuringiensis. Forty four out of 86 colonies were found to harbour crystals by phase contrast microscopy exhibiting a Bt index of 0.51. PCR analysis resulted in the amplification of cry1 in 24 and cry2 in 14 isolates. Twelve of the isolates showed presence of both cry1 and cry2, while 18 isolates did not show presence of either of the genes. Toxicity screening using spore-crystal mixtures against 2nd instar larvae of Helicoverpa armigera revealed that the isolates (50% were either mildly toxic or not toxic (36.36%, and only 13.63% were toxic. The results are interesting, particularly so because the same isolates were previously reported to contain lepidopteran specific vip3A genes also, hence can complement the toxicity of the isolates harbouring vip3A genes.

  12. Aquatic degradation of Cry1Ab protein and decomposition dynamics of transgenic corn leaves under controlled conditions.

    Science.gov (United States)

    Böttger, Rita; Schaller, Jörg; Lintow, Sven; Gert Dudel, E

    2015-03-01

    The increasing cultivation of genetically modified corn plants (Zea mays) during the last decades is suggested as a potential risk to the environment. One of these genetically modified variety expressed the insecticidal Cry1Ab protein originating from Bacillus thuringiensis (Bt), resulting in resistance against Ostrinia nubilalis, the European corn borer. Transgenic litter material is extensively studied regarding the decomposition in soils. However, only a few field studies analyzed the fate of the Cry1Ab protein and the impact of green and senescent leaf litter from corn on the decomposition rate and related ecosystem functions in aquatic environments. Consequently, a microbial litter decomposition experiment was conducted under controlled semi-natural conditions in batch culture using two maize varieties: one variety with Cry1Ab and another one with the appertaining Iso-line as control treatment. The results showed no significant differences between the treatment with Cry1Ab and the Iso-line regarding loss of total mass in dry weight of 43% for Iso-line and 45% for Bt-corn litter, lignin content increased to 137.5% (Iso-line) and 115.7% (Bt-corn), and phenol loss decreased by 53.6% (Iso-line), 62.2% (Bt-corn) during three weeks of the experiment. At the end of the experiment Cry1Ab protein was still detected with 6% of the initial concentration. A slightly but significant lower cellulose content was found for the Cry1Ab treatment compared to the Iso-line litter at the end of the experiment. The significant higher total protein (25%) and nitrogen (25%) content in Bt corn, most likely due to the additionally expression of the transgenic protein, may increase the microbial cellulose degradation and decrease microbial lignin degradation. In conclusion a relevant year by year input of protein and therefore nitrogen rich Bt corn litter into aquatic environments may affect the balanced nutrient turnover in aquatic ecosystems. Copyright © 2014 Elsevier Inc. All rights

  13. Susceptibility and aversion of Spodoptera frugiperda (Lepidoptera: Noctuidae) to Cry1F Bt maize and considerations for insect resistance management.

    Science.gov (United States)

    Binning, Rachel R; Coats, Joel; Kong, Xiaoxiao; Hellmich, Richard L

    2014-02-01

    Bacillus thuringiensis (Bt) maize was developed primarily for North American pests such as European corn borer (Ostrinia nubilalis (Hübner)). However, most Bt maize products are also cultivated outside of North America, where the primary pests may be different and may have lower susceptibility to Bt toxins. Fall armyworm (Spodoptera frugiperda JE Smith) is an important pest and primary target of Bt maize in Central and South America. S. frugiperda susceptibility to Cry1F (expressed in event TC1507) is an example of a pest-by-toxin interaction that does not meet the high-dose definition. In this study, the behavioral and toxic response of S. frugiperda to Cry1F maize was investigated by measuring the percentage of time naive third instars spent feeding during a 3-min exposure. S. frugiperda also were exposed as third instars to Cry1F maize for 14 d to measure weight gain and survival. S. frugiperda demonstrated an initial, postingestive aversive response to Cry1F maize, and few larvae survived the 14 d exposure. The role of susceptibility and avoidance are discussed in the context of global IRM refuge strategy development for Bt products.

  14. Assessment of fitness costs in Cry3Bb1 resistant and susceptible western corn rootworm (Coleoptera:Chrysomelidae) laboratory colonies

    Science.gov (United States)

    Maize production in the United States is dominated by plants genetically modified with transgenes from Bacillus thuringiensis (Bt). Varieties of Bt maize expressing Cry3Bb endotoxins that specifically target corn rootworms (genus Diabrotica) have proven highly efficacious. Howeve...

  15. Bacillus thuringiensis delta-endotoxin Cry1 hybrid proteins with increased activity against the Colorado potato beetle

    NARCIS (Netherlands)

    Naimov, S.; Weemen-Hendriks, M.; Dukiandjiev, S.; Maagd, de R.A.

    2001-01-01

    Cry1 delta-endotoxins of Bacillus thuringiensis are generally active against lepidopteran insects, but Cry1Ba and Cry1Ia have additional, though low, levels of activity against coleopterans such as the Colorado potato beetle. Here we report the construction of Cry1Ba/Cry1Ia hybrid toxins which have

  16. Effects of Bacillus thuringiensis (Bt) corn on soil Folsomia fimetaria, Folsomia candida (Collembola), Hypoaspis aculeifer (Acarina) and Enchytraeus crypticus (Oligochaeta)

    DEFF Research Database (Denmark)

    Ke, X.; Krogh, P. H.

    The effects of the Cry1Ab toxin from Bacillus thuringiensis (corn variety Cascade Bt MON810 and DeKalb variety 618 Bt) were studied on survival and reproduction of the soil collembolan Folsomia fimetaria, Folsomia candida, the collembolan predator mite Hypoaspis aculeifer and enchytraeids....... There was a weak significant reduction by 30% on the reproduction of F. fimetaria fed Bt corn in Petri dishes for 21 days. Likewise there was a weak significant reduction by 40% of the reproduction of H. aculeifer by Bt corn in amounts corresponding to 20 g plant material kg-1 soil in the two species soil......-litter microcosm systems. There were no effects of Bt corn materials on the reproduction of F. fimetaria and E. crypticus in the single species soil-litter microcosms. No effects of Bt corn materials on mortality of all the 4 species were observed in all treatments. The tendency of effects of the Bt corn...

  17. Characterization of Asian Corn Borer Resistance to Bt Toxin Cry1Ie

    Directory of Open Access Journals (Sweden)

    Yueqin Wang

    2017-06-01

    Full Text Available A strain of the Asian corn borer (ACB, Ostrinia furnacalis (Guenée, has evolved >800-fold resistance to Cry1Ie (ACB-IeR after 49 generations of selection. The inheritance pattern of resistance to Cry1Ie in ACB-IeR strain and its cross-resistance to other Bt toxins were determined through bioassay by exposing neonates from genetic-crosses to toxins incorporated into the diet. The response of progenies from reciprocal F1 crosses were similar (LC50s: 76.07 vs. 74.32 μg/g, which suggested the resistance was autosomal. The effective dominance (h decreased as concentration of Cry1Ie increased. h was nearly recessive or incompletely recessive on Cry1Ie maize leaf tissue (h = 0.02, but nearly dominant or incompletely dominant (h = 0.98 on Cry1Ie maize silk. Bioassay of the backcross suggested that the resistance was controlled by more than one locus. In addition, the resistant strain did not perform cross-resistance to Cry1Ab (0.8-fold, Cry1Ac (0.8-fold, Cry1F (0.9-fold, and Cry1Ah (1.0-fold. The present study not only offers the manifestation for resistance management, but also recommends that Cry1Ie will be an appropriate candidate for expression with Cry1Ab, Cry1Ac, Cry1F, or Cry1Ah for the development of Bt maize.

  18. Evaluation of Cytotoxicity, Genotoxicity and Hematotoxicity of the Recombinant Spore-Crystal Complexes Cry1Ia, Cry10Aa and Cry1Ba6 from Bacillus thuringiensis in Swiss Mice

    Directory of Open Access Journals (Sweden)

    Ingrid de Souza Freire

    2014-09-01

    Full Text Available The insecticidal properties of Cry-endotoxins from Bacillus thuringiensis (Bt have long been used as spore-crystals in commercial spray formulations for insect control. Recently, some Bt-endotoxin genes have been cloned in many different plants. Toxicological evaluations of three spore-crystal endotoxins, BtCry1Ia, BtCry10Aa and BtCry1Ba6 from B. thuringiensis, were carried out on mice to understand their adverse effects on hematological systems and on genetic material. These three spore-crystals have shown toxic activity to the boll weevil, which is one of the most aggressive pests of the cotton crop. Cry1Ia, Cry10Aa and Cry1Ba6 did not increase the micronucleus frequency in the peripheral erythrocytes of mice and did not cause changes in the frequency of polychromatic erythrocytes. However, some hematologic disburbances were observed, specifically related to Cry1Ia and Cry1Ba6, respectively, for the erythroid and lymphoid lineage. Thus, although the profile of such adverse side effects can be related to their high level of exposure, which is not commonly found in the environment, results showed that these Bt spore-crystals were not harmless to mice, indicating that each spore-crystal endotoxin presents a characteristic profile of toxicity and might be investigated individually.

  19. Bt crops producing Cry1Ac, Cry2Ab and Cry1F do not harm the green lacewing, Chrysoperla rufilabris.

    Directory of Open Access Journals (Sweden)

    Jun-Ce Tian

    Full Text Available The biological control function provided by natural enemies is regarded as a protection goal that should not be harmed by the application of any new pest management tool. Plants producing Cry proteins from the bacterium, Bacillus thuringiensis (Bt, have become a major tactic for controlling pest Lepidoptera on cotton and maize and risk assessment studies are needed to ensure they do not harm important natural enemies. However, using Cry protein susceptible hosts as prey often compromises such studies. To avoid this problem we utilized pest Lepidoptera, cabbage looper (Trichoplusia ni and fall armyworm (Spodoptera frugiperda, that were resistant to Cry1Ac produced in Bt broccoli (T. ni, Cry1Ac/Cry2Ab produced in Bt cotton (T. ni, and Cry1F produced in Bt maize (S. frugiperda. Larvae of these species were fed Bt plants or non-Bt plants and then exposed to predaceous larvae of the green lacewing Chrysoperla rufilabris. Fitness parameters (larval survival, development time, fecundity and egg hatch of C. rufilabris were assessed over two generations. There were no differences in any of the fitness parameters regardless if C. rufilabris consumed prey (T. ni or S. frugiperda that had consumed Bt or non-Bt plants. Additional studies confirmed that the prey contained bioactive Cry proteins when they were consumed by the predator. These studies confirm that Cry1Ac, Cry2Ab and Cry1F do not pose a hazard to the important predator C. rufilabris. This study also demonstrates the power of using resistant hosts when assessing the risk of genetically modified plants on non-target organisms.

  20. Structural studies of {delta}-endotoxin Cry 1 C from Bacillus thuringiensis

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, B.G.; Garratt, R.C.; Oliva, G. [Sao Paulo Univ., Sao Carlos, SP (Brazil). Inst. de Fisica; Lemos, M.V.F. [UNESP, Jaboticabal, SP (Brazil). Dept. de Biologia Aplicada Agropecuaria; Arantes, O.M.N. [Universidade Estadual de Londrina, PR (Brazil). Dept. de Biologia Geral

    1996-12-31

    Full text. The {delta}-endotoxins are a family of crystal protein by a soil bacterium, Bacillus thuringiensis. The study of these proteins has been of great interest due to their highly specific activity against insects of the orders Lepidoptera, Diptera and Coleoptera. Thus, the {delta}a-endotoxins have been used for more than two decades as biological insecticides to control agricultural pests and, more recently, insects vectors of some diseases. The knowledge of their three-dimensional structures is very important to understand their mechanism of action and their high specificity. To date, the structure of only three proteins of the {delta}-endotoxins family have been reported: Cry3A, a coleopteran-specific toxin (beetle toxin){sup 1}, Cry1Aa, a lepidopteran-specific toxin (butterfly toxin){sup 2} and CytB, a dipteran-specific toxin (mosquito toxin){sup 3} Our work is aimed at the determination of the crystallographic structure by X-ray diffraction of {delta}-endotoxin Cry1C, also toxic to insects of the Lepidoptera order but towards families other than those affected by Cry1Aa. A comparison between these structures may lead to important conclusions about the reasons for the specificity and would allow the planning of mutants with more efficient activity. The cry1C gene was cloned into an adequate vector and expressed in an acrystalliferous B. thuringiensis strain. After cell culture and sporulation the microcrystals of Cry1C were separated by ultra-centrifugation in sacharose. The protoxin inclusion bodies were activated by commercial trpsin and the protease-resistant core was purified by anion-exchange chromatography. Crystallization experiments are being conducted in order to obtain single crystals suitable for diffraction measurements. We intend to use the Protein Crystallograph Station of the LNLS to collect data as soon as it is available and we have suitable crystals. (author) 3 refs.

  1. Structural studies of δ-endotoxin Cry 1 C from Bacillus thuringiensis

    International Nuclear Information System (INIS)

    Guimaraes, B.G.; Garratt, R.C.; Oliva, G.; Lemos, M.V.F.; Arantes, O.M.N.

    1996-01-01

    Full text. The δ-endotoxins are a family of crystal protein by a soil bacterium, Bacillus thuringiensis. The study of these proteins has been of great interest due to their highly specific activity against insects of the orders Lepidoptera, Diptera and Coleoptera. Thus, the δa-endotoxins have been used for more than two decades as biological insecticides to control agricultural pests and, more recently, insects vectors of some diseases. The knowledge of their three-dimensional structures is very important to understand their mechanism of action and their high specificity. To date, the structure of only three proteins of the δ-endotoxins family have been reported: Cry3A, a coleopteran-specific toxin (beetle toxin) 1 , Cry1Aa, a lepidopteran-specific toxin (butterfly toxin) 2 and CytB, a dipteran-specific toxin (mosquito toxin) 3 Our work is aimed at the determination of the crystallographic structure by X-ray diffraction of δ-endotoxin Cry1C, also toxic to insects of the Lepidoptera order but towards families other than those affected by Cry1Aa. A comparison between these structures may lead to important conclusions about the reasons for the specificity and would allow the planning of mutants with more efficient activity. The cry1C gene was cloned into an adequate vector and expressed in an acrystalliferous B. thuringiensis strain. After cell culture and sporulation the microcrystals of Cry1C were separated by ultra-centrifugation in sacharose. The protoxin inclusion bodies were activated by commercial trpsin and the protease-resistant core was purified by anion-exchange chromatography. Crystallization experiments are being conducted in order to obtain single crystals suitable for diffraction measurements. We intend to use the Protein Crystallograph Station of the LNLS to collect data as soon as it is available and we have suitable crystals. (author)

  2. Characterization of Asian Corn Borer Resistance to Bt Toxin Cry1Ie.

    Science.gov (United States)

    Wang, Yueqin; Yang, Jing; Quan, Yudong; Wang, Zhenying; Cai, Wanzhi; He, Kanglai

    2017-06-07

    A strain of the Asian corn borer (ACB), Ostrinia furnacalis (Guenée), has evolved >800-fold resistance to Cry1Ie (ACB-IeR) after 49 generations of selection. The inheritance pattern of resistance to Cry1Ie in ACB-IeR strain and its cross-resistance to other Bt toxins were determined through bioassay by exposing neonates from genetic-crosses to toxins incorporated into the diet. The response of progenies from reciprocal F₁ crosses were similar (LC 50 s: 76.07 vs. 74.32 μg/g), which suggested the resistance was autosomal. The effective dominance ( h ) decreased as concentration of Cry1Ie increased. h was nearly recessive or incompletely recessive on Cry1Ie maize leaf tissue ( h = 0.02), but nearly dominant or incompletely dominant ( h = 0.98) on Cry1Ie maize silk. Bioassay of the backcross suggested that the resistance was controlled by more than one locus. In addition, the resistant strain did not perform cross-resistance to Cry1Ab (0.8-fold), Cry1Ac (0.8-fold), Cry1F (0.9-fold), and Cry1Ah (1.0-fold). The present study not only offers the manifestation for resistance management, but also recommends that Cry1Ie will be an appropriate candidate for expression with Cry1Ab, Cry1Ac, Cry1F, or Cry1Ah for the development of Bt maize.

  3. pH-controlled Bacillus thuringiensis Cry1Ac protoxin loading and release from polyelectrolyte microcapsules.

    Directory of Open Access Journals (Sweden)

    Wenhui Yang

    Full Text Available Crystal proteins synthesized by Bacillus thuringiensis (Bt have been used as biopesticides because of their toxicity to the insect larval hosts. To protect the proteins from environmental stress to extend their activity, we have developed a new microcapsule formulation. Poly (acrylic acid (PAH and poly (styrene sulfonate (PSS were fabricated through layer-by-layer self-assembly based on a CaCO(3 core. Cry1Ac protoxins were loaded into microcapsules through layer-by-layer self-assembly at low pH, and the encapsulated product was stored in water at 4°C. Scanning electron microscopy (SEM was used to observe the morphology of the capsules. To confirm the successful encapsulation, the loading results were observed with a confocal laser scattering microscope (CLSM, using fluorescein-labeled Cry1Ac protoxin (FITC-Cry1Ac. The protoxins were released from the capsule under the alkaline condition corresponding to the midgut of certain insects, a condition which seldom exists elsewhere in the environment. The following bioassay experiment demonstrated that the microcapsules with Cry1Ac protoxins displayed approximately equivalent insecticidal activity to the Asian corn borer compared with free Cry1Ac protoxins, and empty capsules proved to have no effect on insects. Further result also indicated that the formulation could keep stable under the condition of heat and desiccation. These results suggest that this formulation provides a promising methodology that protects protoxins from the environment and releases them specifically in the target insects' midgut, which has shown potential as biopesticide in the field.

  4. Evidence of field-evolved resistance of Spodoptera frugiperda to Bt corn expressing Cry1F in Brazil that is still sensitive to modified Bt toxins.

    Science.gov (United States)

    Monnerat, Rose; Martins, Erica; Macedo, Cristina; Queiroz, Paulo; Praça, Lilian; Soares, Carlos Marcelo; Moreira, Helio; Grisi, Isabella; Silva, Joseane; Soberon, Mario; Bravo, Alejandra

    2015-01-01

    Brazil ranked second only to the United States in hectares planted to genetically modified crops in 2013. Recently corn producers in the Cerrado region reported that the control of Spodoptera frugiperda with Bt corn expressing Cry1Fa has decreased, forcing them to use chemicals to reduce the damage caused by this insect pest. A colony of S. frugiperda was established from individuals collected in 2013 from Cry1Fa corn plants (SfBt) in Brazil and shown to have at least more than ten-fold higher resistance levels compared with a susceptible colony (Sflab). Laboratory assays on corn leaves showed that in contrast to SfLab population, the SfBt larvae were able to survive by feeding on Cry1Fa corn leaves. The SfBt population was maintained without selection for eight generations and shown to maintain high levels of resistance to Cry1Fa toxin. SfBt showed higher cross-resistance to Cry1Aa than to Cry1Ab or Cry1Ac toxins. As previously reported, Cry1A toxins competed the binding of Cry1Fa to brush border membrane vesicles (BBMV) from SfLab insects, explaining cross-resistance to Cry1A toxins. In contrast Cry2A toxins did not compete Cry1Fa binding to SfLab-BBMV and no cross-resistance to Cry2A was observed, although Cry2A toxins show low toxicity to S. frugiperda. Bioassays with Cry1AbMod and Cry1AcMod show that they are highly active against both the SfLab and the SfBt populations. The bioassay data reported here show that insects collected from Cry1Fa corn in the Cerrado region were resistant to Cry1Fa suggesting that resistance contributed to field failures of Cry1Fa corn to control S. frugiperda.

  5. Identification of Bacillus thuringiensis Cry1AbMod binding-proteins from Spodoptera frugiperda.

    Science.gov (United States)

    Martínez de Castro, Diana L; García-Gómez, Blanca I; Gómez, Isabel; Bravo, Alejandra; Soberón, Mario

    2017-12-01

    Bacillus thuringiensis Cry toxins are currently used for pest control in transgenic crops but evolution of resistance by the insect pests threatens the use of this technology. The Cry1AbMod toxin was engineered to lack the alpha helix-1 of the parental Cry1Ab toxin and was shown to counter resistance to Cry1Ab and Cry1Ac toxins in different insect species including the fall armyworm Spodoptera frugiperda. In addition, Cry1AbMod showed enhanced toxicity to Cry1Ab-susceptible S. frugiperda populations. To gain insights into the mechanisms of this Cry1AbMod-enhanced toxicity, we isolated the Cry1AbMod toxin binding proteins from S. frugiperda brush border membrane vesicles (BBMV), which were identified by pull-down assay and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The LC-MS/MS results indicated that Cry1AbMod toxin could bind to four classes of aminopeptidase (N1, N3, N4 y N5) and actin, with the highest amino acid sequence coverage acquired for APN 1 and APN4. In addition to these proteins, we found other proteins not previously described as Cry toxin binding proteins. This is the first report that suggests the interaction between Cry1AbMod and APN in S. frugiperda. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Inheritance of Cry1F resistance, cross-resistance and frequency of resistant alleles in Spodoptera frugiperda (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Vélez, A M; Spencer, T A; Alves, A P; Moellenbeck, D; Meagher, R L; Chirakkal, H; Siegfried, B D

    2013-12-01

    Transgenic maize, Zea maize L., expressing the Cry1F protein from Bacillus thuringiensis has been registered for Spodoptera frugiperda (J. E. Smith) control since 2003. Unexpected damage to Cry1F maize was reported in 2006 in Puerto Rico and Cry1F resistance in S. frugiperda was documented. The inheritance of Cry1F resistance was characterized in a S. frugiperda resistant strain originating from Puerto Rico, which displayed >289-fold resistance to purified Cry1F. Concentration-response bioassays of reciprocal crosses of resistant and susceptible parental populations indicated that resistance is recessive and autosomal. Bioassays of the backcross of the F1 generation crossed with the resistant parental strain suggest that a single locus is responsible for resistance. In addition, cross-resistance to Cry1Aa, Cry1Ab, Cry1Ac, Cry1Ba, Cry2Aa and Vip3Aa was assessed in the Cry1F-resistant strain. There was no significant cross-resistance to Cry1Aa, Cry1Ba and Cry2Aa, although only limited effects were observed in the susceptible strain. Vip3Aa was highly effective against susceptible and resistant insects indicating no cross-resistance with Cry1F. In contrast, low levels of cross-resistance were observed for both Cry1Ab and Cry1Ac. Because the resistance is recessive and conferred by a single locus, an F1 screening assay was used to measure the frequency of Cry1F-resistant alleles from populations of Florida and Texas in 2010 and 2011. A total frequency of resistant alleles of 0.13 and 0.02 was found for Florida and Texas populations, respectively, indicating resistant alleles could be found in US populations, although there have been no reports of reduced efficacy of Cry1F-expressing plants.

  7. Cry1F resistance in fall armyworm Spodoptera frugiperda: single gene versus pyramided Bt maize.

    Science.gov (United States)

    Huang, Fangneng; Qureshi, Jawwad A; Meagher, Robert L; Reisig, Dominic D; Head, Graham P; Andow, David A; Ni, Xinzi; Kerns, David; Buntin, G David; Niu, Ying; Yang, Fei; Dangal, Vikash

    2014-01-01

    Evolution of insect resistance to transgenic crops containing Bacillus thuringiensis (Bt) genes is a serious threat to the sustainability of this technology. However, field resistance related to the reduced efficacy of Bt maize has not been documented in any lepidopteran pest in the mainland U.S. after 18 years of intensive Bt maize planting. Here we report compelling evidence of field resistance in the fall armyworm, Spodoptera frugiperda (J.E. Smith), to Cry1F maize (TC 3507) in the southeastern region of the U.S. An F2 screen showed a surprisingly high (0.293) Cry1F resistance allele frequency in a population collected in 2011 from non-Bt maize in south Florida. Field populations from non-Bt maize in 2012-2013 exhibited 18.8-fold to >85.4-fold resistance to purified Cry1F protein and those collected from unexpectedly damaged Bt maize plants at several locations in Florida and North Carolina had >85.4-fold resistance. In addition, reduced efficacy and control failure of Cry1F maize against natural populations of S. frugiperda were documented in field trials using Cry1F-based and pyramided Bt maize products in south Florida. The Cry1F-resistant S. frugiperda also showed a low level of cross-resistance to Cry1A.105 and related maize products, but not to Cry2Ab2 or Vip3A. The occurrence of Cry1F resistance in the U.S. mainland populations of S. frugiperda likely represents migration of insects from Puerto Rico, indicating the great challenges faced in achieving effective resistance management for long-distance migratory pests like S. frugiperda.

  8. Effects of Bacillus thuringiensis CRY1A(c) d-endotoxin on growth ...

    African Journals Online (AJOL)

    The recent introduction of Bt maize and Bt cotton transgenic crops into Africa has raised concerns on their potential short and long-term ecological effects on the environment. The effects of Bacillus thuringiensis (Bt) Cry1A(c) d-endotoxin on the growth, nodulation and productivity of two leguminous plants grown in clay soil ...

  9. Fitness costs associated with Cry1F resistance in the European corn borer

    Science.gov (United States)

    Crops producing insecticidal toxins derived from the soil bacterium Bacillus thuringiensis (Bt) are widely planted in order to manage key insect pests. Bt crops can provide an effective tool for pest management; however, the evolution of Bt resistance can diminish this benefit. The European corn b...

  10. Impact of Cry3Bb1-expressing Bt maize on adults of the western corn rootworm, Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae).

    Science.gov (United States)

    Meissle, Michael; Hellmich, Richard L; Romeis, Jörg

    2011-07-01

    Genetically engineered maize producing insecticidal Cry3Bb1 protein from Bacillus thuringiensis (Bt) is protected from root damage by corn rootworm larvae. An examination was made to establish whether western corn rootworm (Diabrotica virgifera virgifera) adults are affected by Cry3Bb1-expressing maize (MON88017) when feeding on above-ground tissue. In laboratory bioassays, adult D. v. virgifera were fed for 7 weeks with silk, leaves or pollen from Bt maize or the corresponding near-isoline. Male, but not female, survival was reduced in the Bt-leaf treatment compared with the control. Female weight was lower when fed Bt maize, and egg production was reduced in the Bt-silk treatment. ELISA measurements demonstrated that beetles feeding on silk were exposed to higher Cry3Bb1 concentrations than beetles collected from Bt-maize fields in the United States. In contrast to silk and pollen, feeding on leaves resulted in high mortality and low fecundity. Females feeding on pollen produced more eggs than on silk. C:N ratios indicated that silk does not provide enough nitrogen for optimal egg production. Direct effects of Cry3Bb1 on adult beetles could explain the observed effects, but varietal differences between Bt and control maize are also possible. The impact of Bt maize on adult populations, however, is likely to be limited. Copyright © 2011 Society of Chemical Industry.

  11. Expression of the sigma35 and cry2AB genes involved in Bacillus thuringiensis virulence Expressão dos genes sigma35 e cry2AB envolvidos na virulência de Bacillus thuringiensis

    Directory of Open Access Journals (Sweden)

    Ana Maria Guidelli-Thuler

    2009-06-01

    Full Text Available There are several genes involved in Bacillus thuringiensis sporulation. The regulation and expression of these genes results in an upregulation in Cry protein production, and this is responsible for the death of insect larvae infected by Bacillus thuringiensis. Gene expression was monitored in Bacillus thuringiensis during three developmental phases. DNA macroarrays were constructed for selected genes whose sequences are available in the GenBank database. These genes were hybridized to cDNA sequences from B. thuringiensis var. kurstaki HD-1. cDNA probes were synthesized by reverse transcription from B. thuringiensis RNA templates extracted during the exponential (log growth, stationary and sporulation phases, and labeled with 33PadCTP. Two genes were differentially expressed levels during the different developmental phases. One of these genes is related to sigma factor (sigma35, and the other is a cry gene (cry2Ab. There were differences between the differential levels of expression of various genes and among the expression detected for different combinations of the sigma factor and cry2Ab genes. The maximum difference in expression was observed for the gene encoding sigma35 factor in the log phase, which was also expressed at a high level during the sporulation phase. The cry2Ab gene was only expressed at a high level in the log phase, but at very low levels in the other phases when compared to the sigma35.Muitos genes estão envolvidos nos mecanismos de esporulação da bactéria Bacillus thuringiensis. A regulação e expressão desses genes resultam em uma produção massiva da proteína Cry, responsável pela morte das larvas de muitos insetos. Neste trabalho monitorou-se a expressão de genes de Bacillus thuringiensis, ao longo de três fases de seu desenvolvimento. Foram construídos macroarrays de DNA dos genes selecionados, cujas seqüências estão disponibilizadas no GenBank. Estes genes foram hibridizados com cDNAs obtidos de B

  12. Performance and cross-crop resistance of Cry1F-maize selected Spodoptera frugiperda on transgenic Bt cotton: implications for resistance management.

    Science.gov (United States)

    Yang, Fei; Kerns, David L; Brown, Sebe; Kurtz, Ryan; Dennehy, Tim; Braxton, Bo; Head, Graham; Huang, Fangneng

    2016-06-15

    Transgenic crops producing Bacillus thuringiensis (Bt) proteins have become a primary tool in pest management. Due to the intensive use of Bt crops, resistance of the fall armyworm, Spodoptera frugiperda, to Cry1F maize has occurred in Puerto Rico, Brazil, and some areas of the southeastern U.S. The sustainability of Bt crops faces a great challenge because the Cry1F-maize resistant S. frugiperda may also infest other Bt crops in multiple cropping ecosystems. Here we examined the survival and plant injury of a S. frugiperda population selected with Cry1F maize on three single-gene and five pyramided Bt cotton products. Larvae of Cry1F-susceptible (SS), -heterozygous (RS), and -resistant (RR) genotypes of S. frugiperda were all susceptible to the pyramided cotton containing Cry1Ac/Cry2Ab, Cry1Ac/Cry1F/Vip3A, Cry1Ab/Cry2Ae, or Cry1Ab/Cry2Ae/Vip3A, and the single-gene Cry2Ae cotton. Pyramided cotton containing Cry1Ac/Cry1F was effective against SS and RS, but not for RR. These findings show that the Cry1F-maize selected S. frugiperda can cause cross-crop resistance to other Bt crops expressing similar insecticidal proteins. Resistance management and pest management programs that utilize diversify mortality factors must be implemented to ensure the sustainability of Bt crops. This is especially important in areas where resistance to single-gene Bt crops is already widespread.

  13. Assessment of Inheritance and Fitness Costs Associated with Field-Evolved Resistance to Cry3Bb1 Maize by Western Corn Rootworm.

    Science.gov (United States)

    Paolino, Aubrey R; Gassmann, Aaron J

    2017-05-11

    The western corn rootworm, Diabrotica virgifera virgifera LeConte, is among the most serious insect pests of maize in North America. One strategy used to manage this pest is transgenic maize that produces one or more crystalline (Cry) toxins derived from the bacterium Bacillus thuringiensis (Bt). To delay Bt resistance by insect pests, refuges of non-Bt maize are grown in conjunction with Bt maize. Two factors influencing the success of the refuge strategy to delay resistance are the inheritance of resistance and fitness costs, with greater delays in resistance expected when inheritance of resistance is recessive and fitness costs are present. We measured inheritance and fitness costs of resistance for two strains of western corn rootworm with field-evolved resistance to Cry3Bb1 maize. Plant-based and diet-based bioassays revealed that the inheritance of resistance was non-recessive. In a greenhouse experiment, in which larvae were reared on whole maize plants in field soil, no fitness costs of resistance were detected. In a laboratory experiment, in which larvae experienced intraspecific and interspecific competition for food, a fitness cost of delayed larval development was identified, however, no other fitness costs were found. These findings of non-recessive inheritance of resistance and minimal fitness costs, highlight the potential for the rapid evolution of resistance to Cry3Bb1 maize by western corn rootworm, and may help to improve resistance management strategies for this pest.

  14. Assessment of Inheritance and Fitness Costs Associated with Field-Evolved Resistance to Cry3Bb1 Maize by Western Corn Rootworm

    Directory of Open Access Journals (Sweden)

    Aubrey R. Paolino

    2017-05-01

    Full Text Available The western corn rootworm, Diabrotica virgifera virgifera LeConte, is among the most serious insect pests of maize in North America. One strategy used to manage this pest is transgenic maize that produces one or more crystalline (Cry toxins derived from the bacterium Bacillus thuringiensis (Bt. To delay Bt resistance by insect pests, refuges of non-Bt maize are grown in conjunction with Bt maize. Two factors influencing the success of the refuge strategy to delay resistance are the inheritance of resistance and fitness costs, with greater delays in resistance expected when inheritance of resistance is recessive and fitness costs are present. We measured inheritance and fitness costs of resistance for two strains of western corn rootworm with field-evolved resistance to Cry3Bb1 maize. Plant-based and diet-based bioassays revealed that the inheritance of resistance was non-recessive. In a greenhouse experiment, in which larvae were reared on whole maize plants in field soil, no fitness costs of resistance were detected. In a laboratory experiment, in which larvae experienced intraspecific and interspecific competition for food, a fitness cost of delayed larval development was identified, however, no other fitness costs were found. These findings of non-recessive inheritance of resistance and minimal fitness costs, highlight the potential for the rapid evolution of resistance to Cry3Bb1 maize by western corn rootworm, and may help to improve resistance management strategies for this pest.

  15. Cry1F resistance among lepidopteran pests: a model for improved resistance management?

    Science.gov (United States)

    Vélez, Ana M; Vellichirammal, Neetha Nanoth; Jurat-Fuentes, Juan Luis; Siegfried, Blair D

    2016-06-01

    The Cry1Fa protein from the bacterium Bacillus thuringiensis (Bt) is known for its potential to control lepidopteran pests, especially through transgenic expression in maize and cotton. The maize event TC1507 expressing the cry1Fa toxin gene became commercially available in the United States in 2003 for the management of key lepidopteran pests including the European corn borer, Ostrinia nubilalis, and the fall armyworm, Spodoptera frugiperda. A high-dose/refuge strategy has been widely adopted to delay evolution of resistance to event TC1507 and other transgenic Bt crops. Efficacy of this strategy depends on the crops expressing a high dose of the Bt toxin to targeted pests and adjacent refuges of non-Bt host plants serving as a source of abundant susceptible insects. While this strategy has proved effective in delaying O. nubilalis resistance, field-evolved resistance to event TC1507 has been reported in S. frugiperda populations in Puerto Rico, Brazil, and the southeastern United States. This paper examines available information on resistance to Cry1Fa in O. nubilalis and S. frugiperda and discusses how this information identifies opportunities to refine resistance management recommendations for Bt maize. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Midgut GPI-anchored proteins with alkaline phosphatase activity from the cotton boll weevil (Anthonomus grandis) are putative receptors for the Cry1B protein of Bacillus thuringiensis.

    Science.gov (United States)

    Martins, Erica Soares; Monnerat, Rose Gomes; Queiroz, Paulo Roberto; Dumas, Vinicius Fiuza; Braz, Shélida Vasconcelos; de Souza Aguiar, Raimundo Wagner; Gomes, Ana Cristina Menezes Mendes; Sánchez, Jorge; Bravo, Alejandra; Ribeiro, Bergmann Morais

    2010-02-01

    Cry toxins from Bacillus thuringiensis (Bt) are used for insect control. They interact with specific receptors located on the host cell surface and are activated by host proteases following receptor binding resulting in midgut epithelial cells lysis. In this work we had cloned, sequenced and expressed a cry1Ba toxin gene from the B thuringiensis S601 strain which was previously shown to be toxic to Anthonomus grandis, a cotton pest. The Cry1Ba6 protein expressed in an acrystaliferous B. thuringiensis strain was toxic to A. grandis in bioassays. The binding of Cry1Ba6 toxin to proteins located in the midgut brush border membrane of A. grandis was analyzed and we found that Cry1Ba6 binds to two proteins (62 and 65kDa) that showed alkaline phosphatase (ALP) activity. This work is the first report that shows the localization of Cry toxin receptors in the midgut cells of A. grandis. 2009. Published by Elsevier Ltd.

  17. Fitness costs and stability of Cry1Fa resistance in Brazilian populations of Spodoptera frugiperda.

    Science.gov (United States)

    Santos-Amaya, Oscar F; Tavares, Clébson S; Rodrigues, João Victor C; Campos, Silverio O; Guedes, Raul Narciso C; Alves, Analiza P; Pereira, Eliseu José G

    2017-01-01

    The presence of fitness costs of resistance to Bacillus thuringiensis (Bt) insecticidal proteins in insect populations may delay or even reverse the local selection of insect resistance to Bt transgenic crops, and deserves rigorous investigation. Here we assessed the fitness costs associated with Cry1Fa resistance in two strains of fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), derived from field collections in different Brazilian regions and further selected in the laboratory for high levels of resistance to Cry1Fa using leaves of TC1507 corn. Fitness components were compared using paired resistant and susceptible strains with similar genetic backgrounds and F 1 generations from reciprocal crosses, all of them reared on non-transgenic corn leaves. No apparent life history costs in the larval stage were observed in the Bt-resistant strains. Moreover, the resistance remained stable for seven generations in the absence of selection, with no decrease in the proportion of resistant individuals. Larval respiration rates were also similar between resistant and susceptible homozygotes, and heterozygotes displayed respiration rates and demographic performance equal or superior to those of susceptible homozygotes. In combination, these results indicate the lack of strong fitness costs associated with resistance to Cry1Fa in the fall armyworm strains studied. These findings suggest that Cry1Fa resistance in S. frugiperda populations is unlikely to be counterselected in Cry1Fa-free environments. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  18. Bacillus thuringiensis Cry1Ca-resistant Spodoptera exigua lacks expression of one of four Aminopeptidase N genes

    Directory of Open Access Journals (Sweden)

    Moar William J

    2005-06-01

    Full Text Available Abstract Background Insecticidal toxins from Bacillus thuringiensis bind to receptors on midgut epithelial cells of susceptible insect larvae. Aminopeptidases N (APNs from several insect species have been shown to be putative receptors for these toxins. Here we report the cloning and expression analysis of four APN cDNAs from Spodoptera exigua. Results Suppression Subtractive Hybridization (SSH was used to construct cDNA libraries of genes that are up-and down-regulated in the midgut of last instar larvae of beet armyworm, S. exigua exposed to B. thuringiensis Cry1Ca toxin. Among the clones from the SSH libraries, cDNA fragments coding for two different APNs were obtained (APN2 and APN4. A similar procedure was employed to compare mRNA differences between susceptible and Cry1Ca resistant S. exigua. Among the clones from this last comparison, cDNA fragments belonging to a third APN (APN1 were detected. Using sequences obtained from the three APN cDNA fragments and degenerate primers for a fourth APN (APN3, the full length sequences of four S. exigua APN cDNAs were obtained. Northern blot analysis of expression of the four APNs showed complete absence of APN1 expression in the resistant insects, while the other three APNs showed similar expression levels in the resistant and susceptible insects. Conclusion We have cloned and characterized four different midgut APN cDNAs from S. exigua. Expression analysis revealed the lack of expression of one of these APNs in the larvae of a Cry1Ca-resistant colony. Combined with previous evidence that shows the importance of APN in the mode of action of B. thuringiensis toxins, these results suggest that the lack of APN1 expression plays a role in the resistance to Cry1Ca in this S. exigua colony.

  19. Recombinant Bacillus thuringiensis subsp. kurstaki HD73 strain that synthesizes Cry1Ac and chimeric ChiA74∆sp chitinase inclusions.

    Science.gov (United States)

    González-Ponce, Karen S; Casados-Vázquez, Luz E; Salcedo-Hernández, Rubén; Bideshi, Dennis K; Del Rincón-Castro, María C; Barboza-Corona, José E

    2017-05-01

    In this study, the endochitinase chiA74 gene lacking its secretion signal peptide sequence (chiA74∆sp) was fused in frame with the sequence coding for the C-terminal crystallization domain and transcription terminator of cry1Ac. The chimeric gene was expressed under the strong pcytA-p/STAB-SD promoter system in an acrystalliferous Cry - B strain of Bacillus thuringiensis and B. thuringiensis subsp. kurstaki HD73. We showed that the chimeric ChiA74∆sp produced amorphous inclusions in both Cry - B and HD73. In addition to the amorphous inclusions putatively composed of the chimera, bipyramidal Cry1Ac crystals, smaller than the wild-type crystal, were observed in recombinant HD73, and chitinase activity was remarkably higher (75-fold) in this strain when compared with parental HD73. Moreover, we observed that lyophilized samples of a mixture containing Cry1Ac, amorphous inclusions, and spores maintained chitinase activity. Amorphous inclusions could not be separated from Cry1Ac crystals by sucrose gradient centrifugation. Interestingly, the chitinase activity of purified Cry1Ac/amorphous inclusions was 51-fold higher compared to purified Cry1Ac inclusions of parental HD73, indicating that the increased enzymatic activity was due primarily to the presence of the atypical amorphous component. The possibility that the chimera is occluded with the Cry1Ac crystal, thereby contributing to the increased endochitinolytic activity, cannot be excluded. Finally, bioassays against larvae of Spodoptera frugiperda with spore/crystals of HD73 or spore-crystal ChiA74∆sp chimeric inclusions of recombinant HD73 strain showed LC 50 s of 396.86 and 290.25 ng/cm 2 , respectively. Our study suggests a possible practical application of the chimera in formulations of B. thuringiensis-based lepidopteran larvicides.

  20. A Novel Tenebrio molitor Cadherin Is a Functional Receptor for Bacillus thuringiensis Cry3Aa Toxin*

    Science.gov (United States)

    Fabrick, Jeff; Oppert, Cris; Lorenzen, Marcé D.; Morris, Kaley; Oppert, Brenda; Jurat-Fuentes, Juan Luis

    2009-01-01

    Cry toxins produced by the bacterium Bacillus thuringiensis are effective biological insecticides. Cadherin-like proteins have been reported as functional Cry1A toxin receptors in Lepidoptera. Here we present data that demonstrate that a coleopteran cadherin is a functional Cry3Aa toxin receptor. The Cry3Aa receptor cadherin was cloned from Tenebrio molitor larval midgut mRNA, and the predicted protein, TmCad1, has domain structure and a putative toxin binding region similar to those in lepidopteran cadherin B. thuringiensis receptors. A peptide containing the putative toxin binding region from TmCad1 bound specifically to Cry3Aa and promoted the formation of Cry3Aa toxin oligomers, proposed to be mediators of toxicity in lepidopterans. Injection of TmCad1-specific double-stranded RNA into T. molitor larvae resulted in knockdown of the TmCad1 transcript and conferred resistance to Cry3Aa toxicity. These data demonstrate the functional role of TmCad1 as a Cry3Aa receptor in T. molitor and reveal similarities between the mode of action of Cry toxins in Lepidoptera and Coleoptera. PMID:19416969

  1. Effect of gamma irradiation on nutritional components and Cry1Ab protein in the transgenic rice with a synthetic cry1Ab gene from Bacillus thuringiensis

    International Nuclear Information System (INIS)

    Wu Dianxing; Ye Qingfu; Wang Zhonghua; Xia Yingwu

    2004-01-01

    The effects of gamma irradiation on the transgenic rice containing a synthetic cry1Ab gene from Bacillus thuringiensis were investigated. There was almost no difference in the content of the major nutritional components, i.e. crude protein, crude lipid, eight essential amino acids and total ash between the irradiated grains and the non-irradiated transgenic rice. However, the amounts of Cry1Ab protein and apparent amylose in the irradiated transgenic rice were reduced significantly by the doses higher than 200 Gy. In vivo observation showed that Cry1Ab protein contents also decreased in the fresh leaf tissues of survival seedlings after irradiation with 200 Gy or higher doses and showed inhibition of seedling growth. The results indicate that gamma irradiation might improve the quality of transgenic rice due to removal of the toxic Cry1Ab protein

  2. Comparison and validation of methods to quantify Cry1Ab toxin from Bacillus thuringiensis for standardization of insect bioassays.

    Science.gov (United States)

    Crespo, André L B; Spencer, Terence A; Nekl, Emily; Pusztai-Carey, Marianne; Moar, William J; Siegfried, Blair D

    2008-01-01

    Standardization of toxin preparations derived from Bacillus thuringiensis (Berliner) used in laboratory bioassays is critical for accurately assessing possible changes in the susceptibility of field populations of target pests. Different methods were evaluated to quantify Cry1Ab, the toxin expressed by 80% of the commercially available transgenic maize that targets the European corn borer, Ostrinia nubilalis (Hübner). We compared three methods of quantification on three different toxin preparations from independent sources: enzyme-linked immunosorbent assay (ELISA), sodium dodecyl sulfate-polyacrylamide gel electrophoresis and densitometry (SDS-PAGE/densitometry), and the Bradford assay for total protein. The results were compared to those obtained by immunoblot analysis and with the results of toxin bioassays against susceptible laboratory colonies of O. nubilalis. The Bradford method resulted in statistically higher estimates than either ELISA or SDS-PAGE/densitometry but also provided the lowest coefficients of variation (CVs) for estimates of the Cry1Ab concentration (from 2.4 to 5.4%). The CV of estimates obtained by ELISA ranged from 12.8 to 26.5%, whereas the CV of estimates obtained by SDS-PAGE/densitometry ranged from 0.2 to 15.4%. We standardized toxin concentration by using SDS-PAGE/densitometry, which is the only method specific for the 65-kDa Cry1Ab protein and is not confounded by impurities detected by ELISA and Bradford assay for total protein. Bioassays with standardized Cry1Ab preparations based on SDS-PAGE/densitometry showed no significant differences in LC(50) values, although there were significant differences in growth inhibition for two of the three Cry1Ab preparations. However, the variation in larval weight caused by toxin source was only 4% of the total variation, and we conclude that standardization of Cry1Ab production and quantification by SDS-PAGE/densitometry may improve data consistency in monitoring efforts to identify changes in

  3. Histopathology and the lethal effect of Cry proteins and strains of Bacillus thuringiensis Berliner in Spodoptera frugiperda J.E. Smith Caterpillars (Lepidoptera, Noctuidae

    Directory of Open Access Journals (Sweden)

    N. Knaak

    Full Text Available Among the phytophagous insects which attack crops, the fall armyworm, Spodoptera frugiperda (J.E. Smith, 1797 (Lepidoptera, Noctuidae is particularly harmful in the initial growth phase of rice plants. As a potential means of controlling this pest, and considering that the entomopathogen Bacillus thuringiensis Berliner demonstrates toxicity due to synthesis of the Cry protein, the present study was undertaken to evaluate this toxic effect of B. thuringiensis thuringiensis 407 (pH 408 and B. thuringiensis kurstaki HD-73 on S. frugiperda. The following method was used. Both bacterial strains were evaluated in vitro in 1st instar S. frugiperda caterpillars, by means of histopathological assays. The Cry1Ab and Cry1Ac proteins, codified by the respective strains of B. thuringiensis, were evaluated in vivo by bioassays of 1st instar S. frugiperda caterpillars in order to determine the Mean Lethal Concentration (LC50. The results of the histopathological analysis of the midget of S. frugiperda caterpillars demonstrate that treatment with the B. thuringiensis thuringiensis strain was more efficient, because the degradations of the microvilosities started 9 hours after treatment application (HAT, while in the B. thuringiensis kurstaki the same effect was noticed only after 12 HAT. Toxicity data of the Cry1Ab and Cry1Ac proteins presented for the target-species LC50 levels of 9.29 and 1.79 μg.cm-2 respectively. The strains and proteins synthesised by B. thuringiensis thuringiensis and B. thuringiensis kurstaki are effective in controlling S. frugiperda, and may be used to produce new biopesticides or the genes may be utilised in the genetic transformation of Oryza sativa L.

  4. Identificación de los Genes cry en Cepas Mexicanas de Bacillus thuringiensis con Potencial Insecticida Identificación de los Genes cry en Cepas Mexicanas de Bacillus thuringiensis con Potencial Insecticida

    Directory of Open Access Journals (Sweden)

    J. E. Ibarra

    2012-02-01

    Full Text Available En el presente estudio se determinó la morfología y la composición proteica de los cristales de las cepas LBIT-499 y LBIT-504 de B. thuringiensis, ambas nativas de Guanajuato, México. La primera mostró sólo cristales bipiramidales mientras que la segunda presentó cristales tanto bipiramidales como cúbicos. Estos cristales estuvieron compuestos de proteínas de aproximadamente 130 y 60 kDa, respectivamente. En ambas cepas, además de la LBIT-500 y LBIT-544, se detectó una gran variedad de genes cry1. En éstas últimas se encontraron los genes cry2A y cry2B, en la LBIT- 504 sólo el cry2B y en la LBIT-499 no se detectó ningún cry2. This report revealed the crystal morphology and protein composition of strains LBIT-499 and LBIT-504 of B. thuringiensis, native to Guanajuato, Mexico. LBIT-499 showed only bipyramidal crystals, while LBIT-504 showed both bipyramidal and cubical crystals. These crystals were composed by proteins of ca. 130 and 60 kDa, respectively. Both strains as well as LBIT-500 and LBIT-544, showed a great variety of cry1 genes, while cry2A and cry2B were identified in LBT-500 and LBIT-544, LBIT-504 showed only the cry2B gene, and no cry2 was detected in LBIT-499.

  5. Improved insecticidal toxicity by fusing Cry1Ac of Bacillus thuringiensis with Av3 of Anemonia viridis.

    Science.gov (United States)

    Yan, Fu; Cheng, Xing; Ding, Xuezhi; Yao, Ting; Chen, Hanna; Li, Wenping; Hu, Shengbiao; Yu, Ziquan; Sun, Yunjun; Zhang, Youming; Xia, Liqiu

    2014-05-01

    Av3, a neurotoxin of Anemonia viridis, is toxic to crustaceans and cockroaches but inactive in mammals. In the present study, Av3 was expressed in Escherichia coli Origami B (DE3) and purified by reversed-phase liquid chromatography. The purified Av3 was injected into the hemocoel of Helicoverpa armigera, rendering the worm paralyzed. Then, Av3 was expressed alone or fusion expressed with the Cry1Ac in acrystalliferous strain Cry(-)B of Bacillus thuringiensis. The shape of Cry1Ac was changed by fusion with Av3. The expressed fusion protein, Cry1AcAv3, formed irregular rhombus- or crescent-shaped crystalline inclusions, which is quite different from the shape of original Cry1Ac crystals. The toxicity of Cry1Ac was improved by fused expression. Compared with original Cry1Ac expressed in Cry(-)B, the oral toxicity of Cry1AcAv3 to H. armigera was elevated about 2.6-fold. No toxicity was detected when Av3 was expressed in Cry(-)B alone. The present study confirmed that marine toxins could be used in bio-control and implied that fused expression with other insecticidal proteins could be an efficient way for their application.

  6. Geographical and Temporal Variability in Susceptibility to Cry1F Toxin From Bacillus thuringiensis in Spodoptera frugiperda (Lepidoptera: Noctuidae) Populations in Brazil.

    Science.gov (United States)

    Farias, Juliano R; Horikoshi, Renato J; Santos, Antonio C; Omoto, Celso

    2014-12-01

    The genetically modified maize TC1507 event with the cry1F gene (Cry1F maize) has been used to control Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) in Brazil since the 2009-2010 cropping season. As part of the insect resistance management program, we conducted studies to determine the baseline susceptibility to Cry1F before the widespread planting of Cry1F maize. Subsequently, we evaluated the geographical and temporal variability of susceptibility to this toxin in populations of S. frugiperda collected from major maize-growing regions in Brazil. The baseline susceptibility to Cry1F was determined using a diet-overlay bioassay for a susceptible reference population and four field populations of S. frugiperda. We then monitored the susceptibility to Cry1F in 43 populations of S. frugiperda sampled in nine States of Brazil between 2011 and 2013. In the baseline study, the MIC50 (the concentration that inhibits molting to second instars in 50% of individuals) ranged from 3.59 to 72.47 ng Cry1F toxin per centimeter square. Based on the upper limit of the MIC99 value of the joint analysis from the baseline susceptibility data, the concentrations of 200 and 2,000 ng of Cry1F toxin per centimeter square were defined as diagnostic concentrations for potentially resistant individuals, and these were used to monitor the susceptibility of S. frugiperda to Cry1F. Survival at 2,000 ng Cry1F toxin per centimeter square increased significantly throughout the cropping seasons in S. frugiperda populations from São Paulo, Santa Catarina, Rio Grande do Sul, Bahia, Mato Grosso, Goiás, Mato Grosso do Sul, and Paraná. The highest survival (>50%) was reached in populations collected from Bahia, Mato Grosso, Goiás, Mato Grosso do Sul, and Paraná during the 2012-2013 cropping season. Therefore, a significant decrease in susceptibility to Cry1F was detected in S. frugiperda throughout cropping seasons, especially in regions with intensive maize production in Brazil

  7. Evolution of Bacillus thuringiensis Cry toxins insecticidal activity.

    Science.gov (United States)

    Bravo, Alejandra; Gómez, Isabel; Porta, Helena; García-Gómez, Blanca Ines; Rodriguez-Almazan, Claudia; Pardo, Liliana; Soberón, Mario

    2013-01-01

    Insecticidal Cry proteins produced by Bacillus thuringiensis are use worldwide in transgenic crops for efficient pest control. Among the family of Cry toxins, the three domain Cry family is the better characterized regarding their natural evolution leading to a large number of Cry proteins with similar structure, mode of action but different insect specificity. Also, this group is the better characterized regarding the study of their mode of action and the molecular basis of insect specificity. In this review we discuss how Cry toxins have evolved insect specificity in nature and analyse several cases of improvement of Cry toxin action by genetic engineering, some of these examples are currently used in transgenic crops. We believe that the success in the improvement of insecticidal activity by genetic evolution of Cry toxins will depend on the knowledge of the rate-limiting steps of Cry toxicity in different insect pests, the mapping of the specificity binding regions in the Cry toxins, as well as the improvement of mutagenesis strategies and selection procedures. © 2012 The Authors. Microbial Biotechnology © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  8. Detection of the mosquitocidal toxin genes encoding Cry11 proteins from Bacillus thuringiensis using a novel PCR-RFLP method Detección de genes que codifican proteínas mosquitocidas Cry11 de Bacillus thuringiensis mediante un método de PCR-RFLP novedoso

    Directory of Open Access Journals (Sweden)

    D. H. Sauka

    2010-02-01

    Full Text Available A polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP method for detection of cry11 genes from Bacillus thuringiensis was established. Based on the analysis of conserved regions of the cry11 genes, 2 oligonucleotide primers were designed to amplify a 1459-bp fragment of the cry11Aa gene, and a 1471-bp of the cry11Ba and cry11Bb genes. The amplification products were digested with restriction endonuclease HinfI. Exotic B. thuringiensis strains and native isolates collected from soils, leaves and stored product dust of Argentina were analyzed to study the distribution of cry11 genes. The PCR-RFLP patterns revealed the detection of cry11 genes in 3 of 64 exotic strains and in 10 of 107 native B. thuringiensis isolates tested. Just the cry11Aa gene subclass was detected among these bacteria. Since the methodology was also developed to detect cry11Ba and cry11Bb genes, an experimental future confirmation will be required. Based on the results obtained, the PCR-RFLP method presented may be a valuable tool for specific detection of the mosquitocidal toxin genes encoding Cry11 proteins from B. thuringiensis.En el presente estudio se estableció una estrategia basada en la amplificación génica (PCR y el posterior análisis de restricción (RFLP para detectar todos los genes cry11 de Bacillus thuringiensis informados hasta ahora. De acuerdo con el análisis de las regiones conservadas en los genes cry11, se diseñaron dos cebadores para amplificar un fragmento de 1459 pb de los genes cry11Aa y un fragmento de 1471 pb de los genes cry11Ba y cry11Bb. Los productos de la amplificación fueron digeridos con la enzima de restricción HinfI. Se analizaron cepas exóticas de B. thuringiensis y aislamientos nativos de Argentina obtenidos a partir de muestras de suelos, hojas y polvillo de silos, para estudiar la distribución de los genes cry11. Los patrones de PCR-RFLP revelaron la presencia de genes cry11 en 3 de las 64 cepas ex

  9. Correspondence of High Levels of Beta-Exotoxin I and the Presence of cry1B in Bacillus thuringiensis

    Science.gov (United States)

    Espinasse, Sylvain; Gohar, Michel; Chaufaux, Josette; Buisson, Christophe; Perchat, Stéphane; Sanchis, Vincent

    2002-01-01

    Examination of 640 natural isolates of Bacillus thuringiensis showed that the 58 strains (9%) whose supernatants were toxic to Anthonomus grandis (Coleoptera: Curculionidae) produced between 10 and 175 μg of β-exotoxin I per ml. We also found that 55 (46%) of a sample of 118 strains whose culture supernatants were not toxic to A. grandis nevertheless produced between 2 and 5 μg/ml. However, these amounts of β-exotoxin I were below the threshold for detectable toxicity against this insect species. Secretion of large amounts of β-exotoxin I was strongly associated with the presence of cry1B and vip2 genes in the 640 natural B. thuringiensis isolates studied. We concluded that strains carrying cry1B and vip2 genes also possess, on the same plasmid, genetic determinants necessary to promote high levels of production of β-exotoxin I. PMID:12200263

  10. Baseline sensitivity of maize borers in India to the Bacillus thuringiensis insecticidal proteins Cry1A.105 and Cry2Ab2.

    Science.gov (United States)

    Jalali, Sushil K; Yadavalli, Lalitha; Ojha, Rakshit; Kumar, Pradyumn; Sulaikhabeevi, Suby B; Sharma, Reema; Nair, Rupa; Kadanur, Ravi C; Kamath, Subray P; Komarlingam, Mohan S

    2015-08-01

    Among the major pests of maize in India are two stem borers, Chilo partellus (Swinhoe) and Sesamia inferens (Walker), and an earworm, Helicoverpa armigera (Hübner). As a pest control strategy, transgenic Bacillus thuringiensis (Bt) maize hybrids are undergoing regulatory trials in India. We have determined the sensitivity of the target lepidopterans to the insecticidal Bt proteins expressed in Bt maize, as this determines product efficacy and the resistance management strategy to be adopted. Maize hybrids with event MON89034 express two insecticidal Bt proteins, Cry1A.105 and Cry2Ab2. Sensitivity profiles of 53 populations of C. partellus, 21 populations of S. inferens and 21 populations of H. armigera, collected between 2008 and 2013 from maize-growing areas in India, to Cry1A.105 and Cry2Ab2 proteins were generated through dose-response assays. Cry1A.105 protein was the most effective to neonates of C. partellus (mean MIC90 range 0.30-1.0 µg mL(-1) ) and H. armigera (mean MIC90 range 0.71-8.22 µg mL(-1) ), whereas Cry2Ab2 (mean MIC90 range 0.65-1.70 µg mL(-1) ) was the most effective to S. inferens. Populations of C. partellus, S. inferens and H. armigera were susceptible to the Bt proteins Cry1A.105 and Cry2Ab2. The Bt sensitivity data will serve as precommercialisation benchmarks for resistance monitoring purposes. © 2014 Society of Chemical Industry.

  11. Construction of occluded recombinant baculoviruses containing the full-length cry1Ab and cry1Ac genes from Bacillus thuringiensis

    Directory of Open Access Journals (Sweden)

    B.M. Ribeiro

    1998-06-01

    Full Text Available The administration of baculoviruses to insects for bioassay purposes is carried out, in most cases, by contamination of food surfaces with a known amount of occlusion bodies (OBs. Since per os infection is the natural route of infection, occluded recombinant viruses containing crystal protein genes (cry1Ab and cry1Ac from Bacillus thuringiensis were constructed for comparison with the baculovirus prototype Autographa californica nucleopolyhedrovirus (AcNPV. The transfer vector pAcUW2B was used for construction of occluded recombinant viruses. The transfer vector containing the crystal protein genes was cotransfected with linearized DNA from a non-occluded recombinant virus. The isolation of recombinant viruses was greatly facilitated by the reduction of background "wild type" virus and the increased proportion of recombinant viruses. Since the recombinant viruses containing full-length and truncated forms of the crystal protein genes did not seem to improve the pathogenicity of the recombinant viruses when compared with the wild type AcNPV, and in order to compare expression levels of the full-length crystal proteins produced by non-occluded and occluded recombinant viruses the full-length cry1Ab and cry1Ac genes were chosen for construction of occluded recombinant viruses. The recombinant viruses containing full-length and truncated forms of the crystal protein genes did not seem to improve its pathogenicity but the size of the larvae infected with the recombinant viruses was significantly smaller than that of larvae infected with the wild type virus.

  12. Larval development of Spodoptera eridania (Cramer fed on leaves of Bt maize expressing Cry1F and Cry1F + Cry1A.105 + Cry2Ab2 proteins and its non-Bt isoline

    Directory of Open Access Journals (Sweden)

    Orcial Ceolin Bortolotto

    2015-03-01

    Full Text Available This study aimed to evaluate, in controlled laboratory conditions (temperature of 25±2 °C, relative humidity of 60±10%, and 14/10 h L/D photoperiod, the larval development of Spodoptera eridania (Cramer, 1784 (Lepidoptera, Noctuidae fed with leaves of Bt maize expressing Cry1F and Cry1F + Cry1A.105 + Cry2Ab2 insecticide proteins and its non-Bt isoline. Maize leaves triggered 100% of mortality on S. eridania larvae independently of being Bt or non-Bt plants. However, it was observed that in overall Bt maize (expressing a single or pyramided protein slightly affects the larval development of S. eridania, even under reduced leaf consumption. Therefore, these results showed that Cry1F and Cry1F + Cry1A.105 + Cry2Ab2 can affect the larval development of S. eridania, although it is not a target pest of this plant; however, more research is needed to better understand this evidence. Finally, this study confirms that non-Bt maize leaves are unsuitable food source to S. eridania larvae, suggesting that they are not a potential pest in maize fields.

  13. A Novel Tenebrio molitor Cadherin Is a Functional Receptor for Bacillus thuringiensis Cry3Aa Toxin*

    OpenAIRE

    Fabrick, Jeff; Oppert, Cris; Lorenzen, Marcé D.; Morris, Kaley; Oppert, Brenda; Jurat-Fuentes, Juan Luis

    2009-01-01

    Cry toxins produced by the bacterium Bacillus thuringiensis are effective biological insecticides. Cadherin-like proteins have been reported as functional Cry1A toxin receptors in Lepidoptera. Here we present data that demonstrate that a coleopteran cadherin is a functional Cry3Aa toxin receptor. The Cry3Aa receptor cadherin was cloned from Tenebrio molitor larval midgut mRNA, and the predicted protein, TmCad1, has domain structure and a putative toxin binding region similar to those in lepid...

  14. Cry1A(b)16 toxin from Bacillus thuringiensis: Theoretical refinement of three-dimensional structure and prediction of peptides as molecular markers for detection of genetically modified organisms.

    Science.gov (United States)

    Plácido, Alexandra; Coelho, Andreia; Abreu Nascimento, Lucas; Gomes Vasconcelos, Andreanne; Fátima Barroso, Maria; Ramos-Jesus, Joilson; Costa, Vladimir; das Chagas Alves Lima, Francisco; Delerue-Matos, Cristina; Martins Ramos, Ricardo; Marani, Mariela M; Roberto de Souza de Almeida Leite, José

    2017-07-01

    Transgenic maize produced by the insertion of the Cry transgene into its genome became the second most cultivated crop worldwide. Cry gene from Bacillus thuringiensis kurstaki expresses protein derivatives of crystalline endotoxins which confer insect resistance onto the maize crop. Mandatory labeling of processed food containing or made by genetically modified organisms is in force in many countries, so, it is very urgent to develop fast and practical methods for GMO identification, for example, biosensors. In the absence of an available empirical structure of Cry1A(b)16 protein, a theoretical model was effectively generated, in this work, by homology modeling and molecular dynamics simulations based on two available homologous protein structures. Molecular dynamics simulations were carried out to refine the selected model, and an analysis of its global structure was performed. The refined models of Cry1A(b)16 showed a standard fold and structural characteristics similar to those seen in Bacillus thuringiensis Cry1A(a) insecticidal toxin and Bacillus thuringiensis serovar kurstaki Cry1A(c) toxin. After in silico analysis of Cry1A(b)16, two immunoreactive candidate peptides were selected and specific polyclonal antibodies were produced resulting in antibody-peptide interaction. Biosensing devices are expected to be developed for detection of the Cry1A(b) protein as a marker of transgenic maize in food. Proteins 2017; 85:1248-1257. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Lack of fitness costs and inheritance of resistance to Bacillus thuringiensis Cry1Ac toxin in a near-isogenic strain of Plutella xylostella (Lepidoptera: Plutellidae).

    Science.gov (United States)

    Zhu, Xun; Yang, Yanjv; Wu, Qingjun; Wang, Shaoli; Xie, Wen; Guo, Zhaojiang; Kang, Shi; Xia, Jixing; Zhang, Youjun

    2016-02-01

    Resistance to Bacillus thuringiensis (Bt) formulations in insects may be associated with fitness costs. A lack of costs enables resistance alleles to persist, which may contribute to the rapid development and spread of resistance in populations. To assess the fitness costs associated with Bt Cry1Ac resistance in Plutella xylostella, life tables were constructed for a near-isogenic resistant strain (NIL-R) and a susceptible strain in this study. No fitness costs associated with Cry1Ac resistance in NIL-R were detected, based on the duration of egg and larval stages, the survival of eggs and larvae, adult longevity, fecundity, net reproductive rate, gross reproduction rate, finite rate of increase and mean generation time. Based on log dose-probit lines, resistance in NIL-R is incompletely recessive and results from a single, autosomal, recessive locus; the degree of dominance was estimated to be -0.74 and -0.71 for F1 (resistant ♀ × susceptible ♂) and F1 ' (susceptible ♀ × resistant ♂) progeny respectively. Assessment of near-isogenic Cry1Ac-resistant and Cry1Ac-susceptible strains of P. xylostella indicated that resistance is not accompanied with fitness costs, and that resistance is incompletely recessive. These findings should be useful in managing the development of Bt Cry1Ac resistance. © 2015 Society of Chemical Industry.

  16. 40 CFR 174.502 - Bacillus thuringiensis Cry1A.105 protein; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis Cry1A.105 protein; exemption from the requirement of a tolerance. 174.502 Section 174.502 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PROCEDURES AND REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances and...

  17. Expresión de la toxina Cry11Aa de Bacillus thuringiensis serovar. israelensis en Asticcacaulis excentricus, para el control de larvas acuáticas de dípteros de la familia Culicidae, vectores de enfermedades Expression of Bacillus thuringiensis serovar. israelensis toxins in Asticcacaulis excentricus to control dipteran larvae of vectors of diseases

    Directory of Open Access Journals (Sweden)

    Orduz Sergio

    2004-07-01

    insecticides based on mosquito larvicidal B. thuringiensis strains can be enhanced by using aquatic prosthecated bacteria as alternative hosts, since they do not sink, cytoplasmic located toxins are protected f rom UV radiation and, most importantly, mosquito larvae feed on them. An Asticcacaulis excentricus reference strain was transformed with the cry1 1Aa gene from Bacillus thuringiensis serovar. israelensis. Western blot and electrophoresis were used to test recombinant protein expression; Western blot revealed a 72 kDa protein corresponding to B. thuringiensis serovar. israelensis Cry1 1 Aa. These aquatic bacte­rias toxicity achieved 50% mortality at 23 ng/mL concentration in f irst instar Culex quinquefasciatus larvae. Other bioassays indicated that recombinant A. excentricus is toxic against Aedes aegyptiand Anopheles albimanus first instar larvae. Buoyancy tests demonstrated the advantage of A. excentricus over B. thuringiensis. Key words: Asticcacaulis excentricus, Bacillus thuringiensis, prosthecated bacteria, dengue, malaria.

  18. Presence and significance of Bacillus thuringiensis Cry proteins associated with the Andean weevil Premnotrypes vorax (Coleoptera: Curculionidae

    Directory of Open Access Journals (Sweden)

    SilvioAlejandro López-Pazos

    2009-12-01

    Full Text Available The Andean weevil Premnotrypes vorax represents an important cause of damage to Colombian potato crops. Due to the impact of this plague on the economy of the country, we searched for new alternatives for its biological control, based on the entomopathogenic bacteria Bacillus thuringiensis. A total of 300 B. thuringiensis strains obtained from potato plantations infested with P. vorax were analyzed through crystal morphology, SDS-PAGE, PCR and bioassays. We used site- directed mutagenesis to modify the Cry3Aa protein. Most of the B. thuringiensis isolates had a bipyramidal crystal morphology. SDS-PAGE analyses had seven strains groups with σ-endotoxins from 35 to 135 kDa. The genes cry 2 and cry 1 were significantly more frequent in the P. vorax habitat (PCR analyses. Three mutant toxins, 1 (D354E, 2 (R345A, ∆Y350, ∆Y351, and 3 (Q482A, S484A, R485A, were analyzed to assess their activity against P. vorax larvae. Toxicity was low, or absent, against P. vorax for isolates, wild type cry 3Aa and cry 3Aa mutants. The genetic characterization of the collection provides opportunities for the selection of strains to be tested in bioassays against other insect pests of agricultural importance, and for designing Cry proteins with improved insecticidal toxicity. Rev. Biol. Trop. 57 (4: 1235-1243. Epub 2009 December 01.El gorgojo andino Premnotrypes vorax es una causa importante de daño en los cultivos colombianos de este tubérculo. Debido al impacto que esta plaga tiene sobre la economía del país, nos interesamos en buscar alternativas nuevas para el control biológico de P. vorax, basadas en la bacteria entomopatógena Bacillus thuringiensis. Se recolectaron un total de 300 cepas de B. thuringiensis a partir de plantaciones de papa infestadas con P. vorax, las cuales fueron analizadas por medio de la morfología del cristal, SDS-PAGE, PCR y ensayos biológicos. La mayoría de los aislamientos de B. thuringiensis presentaron cristales

  19. Binding specificity of Bacillus thuringiensis Cry1Aa for purified, native Bombyx mori aminopeptidase N and cadherin-like receptors

    Directory of Open Access Journals (Sweden)

    Jenkins Jeremy L

    2001-10-01

    Full Text Available Abstract Background To better understand the molecular interactions of Bt toxins with non-target insects, we have examined the real-time binding specificity and affinity of Cry1 toxins to native silkworm (Bombyx mori midgut receptors. Previous studies on B. mori receptors utilized brush border membrane vesicles or purifed receptors in blot-type assays. Results The Bombyx mori (silkworm aminopeptidase N (APN and cadherin-like receptors for Bacillus thuringiensis insecticidal Cry1Aa toxin were purified and their real-time binding affinities for Cry toxins were examined by surface plasmon resonance. Cry1Ab and Cry1Ac toxins did not bind to the immobilized native receptors, correlating with their low toxicities. Cry1Aa displayed moderate affinity for B. mori APN (75 nM, and unusually tight binding to the cadherin-like receptor (2.6 nM, which results from slow dissociation rates. The binding of a hybrid toxin (Aa/Aa/Ac was identical to Cry1Aa. Conclusions These results indicate domain II of Cry1Aa is essential for binding to native B. mori receptors and for toxicity. Moreover, the high-affinity binding of Cry1Aa to native cadherin-like receptor emphasizes the importance of this receptor class for Bt toxin research.

  20. Binding specificity of Bacillus thuringiensis Cry1Aa for purified, native Bombyx mori aminopeptidase N and cadherin-like receptors

    Science.gov (United States)

    Jenkins, Jeremy L; Dean, Donald H

    2001-01-01

    Background To better understand the molecular interactions of Bt toxins with non-target insects, we have examined the real-time binding specificity and affinity of Cry1 toxins to native silkworm (Bombyx mori) midgut receptors. Previous studies on B. mori receptors utilized brush border membrane vesicles or purifed receptors in blot-type assays. Results The Bombyx mori (silkworm) aminopeptidase N (APN) and cadherin-like receptors for Bacillus thuringiensis insecticidal Cry1Aa toxin were purified and their real-time binding affinities for Cry toxins were examined by surface plasmon resonance. Cry1Ab and Cry1Ac toxins did not bind to the immobilized native receptors, correlating with their low toxicities. Cry1Aa displayed moderate affinity for B. mori APN (75 nM), and unusually tight binding to the cadherin-like receptor (2.6 nM), which results from slow dissociation rates. The binding of a hybrid toxin (Aa/Aa/Ac) was identical to Cry1Aa. Conclusions These results indicate domain II of Cry1Aa is essential for binding to native B. mori receptors and for toxicity. Moreover, the high-affinity binding of Cry1Aa to native cadherin-like receptor emphasizes the importance of this receptor class for Bt toxin research. PMID:11722800

  1. Larvicidal activity of Bacillus thuringiensis var. israelensis Cry11Aa toxin against Haemonchus contortus.

    Science.gov (United States)

    DE Lara, Ana Paula DE Souza Stori; Lorenzon, Lucas Bigolin; Vianna, Ana Muñoz; Santos, Francisco Denis Souza; Pinto, Luciano Silva; Aires Berne, Maria Elisabeth; Leite, Fábio Pereira Leivas

    2016-10-01

    Effective control of gastrointestinal parasites is necessary in sheep production. The development of anthelmintics resistance is causing the available chemically based anthelmintics to become less effective. Biological control strategies present an alternative to this problem. In the current study, we tested the larvicidal effects of Bacillus thuringiensis var. israelensis Cry11Aa toxin against Haemonchus contortus larvae. Bacterial suspensions [2 × 108 colony-forming units (CFU) g-1 of the feces] of B. thuringiensis var. israelensis and recombinant Escherichia coli expressing Cry11Aa toxin were added to naturally H. contortus egg-contaminated feces. The larvae were quantified, and significant reductions of 62 and 81% (P var. israelensis and recombinant E. coli expressing Cry11Aa toxin were then orally administered to lambs naturally infected with H. contortus. Twelve hours after administration, feces were collected and submitted to coprocultures. Significant larvae reductions (P var. israelensis is a promising new class of biological anthelmintics for treating sheep against H. contortus.

  2. Induction of Manduca sexta Larvae Caspases Expression in Midgut Cells by Bacillus thuringiensis Cry1Ab Toxin

    Directory of Open Access Journals (Sweden)

    Helena Porta

    2011-01-01

    Full Text Available Bacillus thuringiensis produces crystal toxins known as Cry that are highly selective against important agricultural and human health-related insect pests. Cry proteins are pore-forming toxins that interact with specific receptors in the midgut cell membrane of susceptible larvae making pores that cause osmotic shock, leading finally to insect death. In the case of pore-forming toxins that are specific to mammalian cells, death responses at low doses may induce apoptosis or pyroptosis, depending on the cell type. The death mechanism induced by Cry toxins in insect midgut cells is poorly understood. Here, we analyze the caspases expression by RT-PCR analysis, showing that the initial response of Manduca sexta midgut cells after low dose of Cry1Ab toxin administration involves a fast and transient accumulation of caspase-1 mRNA, suggesting that pyroptosis was activated by Cry1Ab toxin as an initial response but was repressed later. In contrast, caspase-3 mRNA requires a longer period of time of toxin exposure to be activated but presents a sustained activation, suggesting that apoptosis may be a cell death mechanism induced also at low dose of toxin.

  3. Possibly similar genetic basis of resistance to Bacillus thuringiensis Cry1Ab protein in 3 resistant colonies of the sugarcane borer collected from Louisiana, USA.

    Science.gov (United States)

    Yang, Fei; Chen, Mao; Gowda, Anilkumar; Kerns, David L; Huang, Fangneng

    2018-04-01

    The sugarcane borer, Diatraea saccharalis (F.), is a major maize borer pest and a target of transgenic maize expressing Bacillus thuringiensis (Bt) proteins in South America and the mid-southern region of the United States. Evolution of resistance in target pest populations is a great threat to the long-term efficacy of Bt crops. In this study, we compared the genetic basis of resistance to Cry1Ab protein in 3 resistant colonies of sugarcane borer established from field populations in Louisiana, USA. Responses of larvae to the Cry1Ab protein for the parental and 10 other cross colonies were assayed in a diet-incorporated bioassay. All 3 resistant colonies were highly resistant to the Cry1Ab protein with a resistance ratio of >555.6 fold. No maternal effect or sex linkage was evident for the resistance in the 3 colonies; and the resistance was functionally nonrecessive at the Cry1Ab concentrations of ≤ 3.16 μg/g, but it became recessive at ≥10 μg/g. In an interstrain complementation test for allelism, the F 1 progeny from crosses between any 2 of the 3 resistant colonies exhibited the similar resistance levels as their parental colonies, indicating that the 3 colonies most likely shared a locus of Cry1Ab resistance. Results generated from this study should provide useful information in developing effective strategies for managing Bt resistance in the insect. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  4. Elucidation of the mechanisms of CryIIIA overproduction in a mutagenized strain of Bacillus thuringiensis var. tenebrionis

    International Nuclear Information System (INIS)

    Adams, L.F.; Mathewes, S.; O'Hara, P.; Peterson, A.; Gürtler, H.

    1994-01-01

    NB176 is a Bacillus thuringiensis mutant derived by λ-irradiation of NB125 Bacillus thuringiensis var. tenebrionis (Krieg). It exhibits two interesting phenotypes: (i) oligosporogeny and (ii) twofold to threefold overproduction of the CryIIIA protein. Southern profiles of the NB176 strain showed an additional copy(s) of the cryIIIA gene located on a 4 kb HindIII fragment, in addition to the expected cryIIIA gene on a 3 kb HindIII fragment. Each cryIIIA gene-bearing HindIII fragment was cloned from NB176. The restriction map of the 3 kb HindIII fragment was identical to that published by Donovan and coworkers. Sequencing of the 4 kb HindIII fragment showed no alterations in the promoter region of the cryIIIA gene but did show replacement of the region immediately following the cryIIIA open reading frame with a sequence encoding a transposase with 50% amino acid homology to that of Tn 1000. These findings suggest that the overproduction phenotype of NB176 results from extra copies of the cryIIIA gene produced from a transposition event(s) induced or stabilized by γ-irradiation. Integration of additional copies of the cryIIIA gene into the native 90MDa plasmid of the wild-type B. thuringiensis var. tenebrionis strain resulted in strains that made enormous crystals, many possessing greatly enhanced insecticidal activity

  5. Inheritance Patterns, Dominance and Cross-Resistance of Cry1Ab- and Cry1Ac-Selected Ostrinia furnacalis (Guenée

    Directory of Open Access Journals (Sweden)

    Tiantao Zhang

    2014-09-01

    Full Text Available Two colonies of Asian corn borer, Ostrinia furnacalis (Guenée, artificially selected from a Bt-susceptible colony (ACB-BtS for resistance to Cry1Ab (ACB-AbR and Cry1Ac (ACB-AcR toxins, were used to analyze inheritance patterns of resistance to Cry1 toxins. ACB-AbR and ACB-AcR evolved significant levels of resistance, with resistance ratios (RR of 39-fold and 78.8-fold to Cry1Ab and Cry1Ac, respectively. The susceptibility of ACB-AbR larvae to Cry1Ac and Cry1F toxins, which had not previously been exposed, were significantly reduced, being >113-fold and 48-fold, respectively. Similarly, susceptibility of ACB-AcR larvae to Cry1Ab and Cry1F were also significantly reduced (RR > nine-fold, RR > 18-fold, respectively, indicating cross-resistance among Cry1Ab, Cry1Ac, and Cry1F toxins. However, ACB-AbR and ACB-AcR larvae were equally susceptible to Cry1Ie as were ACB-BtS larvae, indicating no cross-resistance between Cry1Ie and Cry1Ab or Cry1Ac toxins; this may provide considerable benefits in preventing or delaying the evolution of resistance in ACB to Cry1Ab and Cry1Ac toxins. Backcrossing studies indicated that resistance to Cry1Ab toxin was polygenic in ACB-AbR, but monogenic in ACB-AcR, whilst resistance to Cry1Ac toxin was primarily monogenic in both ACB-AbR and ACB-AcR, but polygenic as resistance increased.

  6. Preferential protection of domains ii and iii of bacillus thuringiensis cry1aa toxin by brush border membrane vesicles

    OpenAIRE

    Hussain, Syed-Rehan A.; Flórez, Álvaro M.; Dean, Donald H.; Alzate, Óscar

    2011-01-01

    Título español: Protección preferencial de los dominios II y III de la toxina Cry1Aa de Bacillus thuringiensis en Vesículas de Membrana de Borde de Cepillo Abstract The surface exposed Leucine 371 on loop 2 of domain II, in Cry1Aa toxin, was mutated to Lysine to generate the trypsin-sensitive mutant, L371K. Upon trypsin digestion L371K is cleaved into approximately 37 and 26 kDa fragments. These are separable on SDS-PAGE, but remain as a single molecule of 65 kDa upon purification by ...

  7. Preferential Protection of Domains II and III of Bacillus thuringiensis Cry1Aa Toxin by Brush Border Membrane Vesicles

    OpenAIRE

    Syed-Rehan A. Hussain; Álvaro M. Flórez; Donald H. Dean; Óscar Alzate

    2011-01-01

    Título español: Protección preferencial de los dominios II y III de la toxina Cry1Aa de Bacillus thuringiensis en Vesículas de Membrana de Borde de Cepillo Abstract The surface exposed Leucine 371 on loop 2 of domain II, in Cry1Aa toxin, was mutated to Lysine to generate the trypsin-sensitive mutant, L371K. Upon trypsin digestion L371K is cleaved into approximately 37 and 26 kDa fragments. These are separable on SDS-PAGE, but remain as a single molecule of 65 kDa upon purification by ...

  8. Transgenic Bt Corn, Soil Insecticide, and Insecticidal Seed Treatment Effects on Corn Rootworm (Coleoptera: Chrysomelidae) Beetle Emergence, Larval Feeding Injury, and Corn Yield in North Dakota.

    Science.gov (United States)

    Calles-Torrez, Veronica; Knodel, Janet J; Boetel, Mark A; Doetkott, Curt D; Podliska, Kellie K; Ransom, Joel K; Beauzay, Patrick; French, B Wade; Fuller, Billy W

    2018-02-09

    Northern, Diabrotica barberi Smith & Lawrence (Coleoptera: Chrysomelidae), and western, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), corn rootworms are economic pests of corn, Zea mays L. in North America. We measured the impacts of corn hybrids incorporated with Cry3Bb1, Cry34/35Ab1, and pyramided (Cry3Bb1 + Cry34/35Ab1) Bacillus thuringiensis Berliner (Bt) proteins, tefluthrin soil insecticide, and clothianidin insecticidal seed treatment on beetle emergence, larval feeding injury, and corn yield at five locations from 2013 to 2015 in eastern North Dakota. In most cases, emergence was significantly lower in Bt-protected corn than in non-Bt corn hybrids. Exceptions included Wyndmere, ND (2013), where D. barberi emergence from Cry34/35Ab1 plots was not different from that in the non-Bt hybrid, and Arthur, ND (2013), where D. v. virgifera emergence from Cry3Bb1 plots did not differ from that in the non-Bt hybrid. Bt hybrids generally produced increased grain yield compared with non-Bt corn where rootworm densities were high, and larval root-feeding injury was consistently lower in Bt-protected plots than in non-Bt corn. The lowest overall feeding injury and emergence levels occurred in plots planted with the Cry3Bb1 + Cry34/35Ab1 hybrid. Time to 50% cumulative emergence of both species was 5-7 d later in Bt-protected than in non-Bt hybrids. Tefluthrin and clothianidin were mostly inconsequential in relation to beetle emergence and larval root injury. Our findings could suggest that some North Dakota populations could be in early stages of increased tolerance to some Bt toxins; however, Bt corn hybrids currently provide effective protection against rootworm injury in eastern North Dakota. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Composition of forage and grain from second-generation insect-protected corn MON 89034 is equivalent to that of conventional corn (Zea mays L.).

    Science.gov (United States)

    Drury, Suzanne M; Reynolds, Tracey L; Ridley, William P; Bogdanova, Natalia; Riordan, Susan; Nemeth, Margaret A; Sorbet, Roy; Trujillo, William A; Breeze, Matthew L

    2008-06-25

    Insect-protected corn hybrids containing Cry insecticidal proteins derived from Bacillus thuringiensis have protection from target pests and provide effective management of insect resistance. MON 89034 hybrids have been developed that produce both the Cry1A.105 and Cry2Ab2 proteins, which provide two independent modes of insecticidal action against the European corn borer ( Ostrinia nubilalis ) and other lepidopteran insect pests of corn. The composition of MON 89034 corn was compared to conventional corn by measuring proximates, fiber, and minerals in forage and by measuring proximates, fiber, amino acids, fatty acids, vitamins, minerals, antinutrients, and secondary metabolites in grain collected from 10 replicated field sites across the United States and Argentina during the 2004-2005 growing seasons. Analyses established that the forage and grain from MON 89034 are compositionally comparable to the control corn hybrid and conventional corn reference hybrids. These findings support the conclusion that MON 89034 is compositionally equivalent to conventional corn hybrids.

  10. Downregulation and Mutation of a Cadherin Gene Associated with Cry1Ac Resistance in the Asian Corn Borer, Ostrinia furnacalis (Guenée

    Directory of Open Access Journals (Sweden)

    Tingting Jin

    2014-09-01

    Full Text Available Development of resistance in target pests is a major threat to long-term use of transgenic crops expressing Bacillus thuringiensis (Bt Cry toxins. To manage and/or delay the evolution of resistance in target insects through the implementation of effective strategies, it is essential to understand the basis of resistance. One of the most important mechanisms of insect resistance to Bt crops is the alteration of the interactions between Cry toxins and their receptors in the midgut. A Cry1Ac-selected strain of Asian corn borer (ACB, Ostrinia furnacalis, a key pest of maize in China, evolved three mutant alleles of a cadherin-like protein (OfCAD (MPR-r1, MPR-r2 and MPR-r3, which mapped within the toxin-binding region (TBR. Each of the three mutant alleles possessed two or three amino acid substitutions in this region, especially Thr1457→Ser. In highly resistant larvae (ACB-Ac200, MPR-r2 had a 26-amino acid residue deletion in the TBR, which resulted in reduced binding of Cry1Ac compared to the MPR from the susceptible strain, suggesting that the number of amino acid deletions influences the level of resistance. Furthermore, downregulation of OfCAD gene (ofcad transcription was observed in the Cry1Ac resistant strain, ACB-Ac24, suggesting that Cry1Ac resistance in ACB is associated with the downregulation of the transcript levels of the cadherin-like protein gene. The OfCAD identified from ACB exhibited a high degree of similarity to other members of the cadherin super-family in lepidopteran species.

  11. Sequence and expression of two cry8 genes from Bacillus thuringiensis INTA Fr7-4, a native strain from Argentina.

    Science.gov (United States)

    Navas, Laura E; Berretta, Marcelo F; Pérez, Melisa P; Amadio, Ariel F; Ortiz, Elio M; Sauka, Diego H; Benintende, Graciela B; Zandomeni, Rubén O

    2014-01-01

    We found and characterized two cry8 genes from the Bacillus thuringiensis strain INTA Fr7-4 isolated in Argentina. These genes, cry8Kb3 and cry8Pa3, are located in a tandem array within a 13,200-bp DNA segment sequenced from a preparation of total DNA. They encode 1,169- and 1,176-amino-acid proteins, respectively. Both genes were cloned with their promoter sequences and the proteins were expressed separately in an acrystalliferous strain of B. thuringiensis leading to the formation of ovoid crystals in the recombinant strains. The toxicity against larvae of Anthonomus grandis Bh. (Coleoptera: Curculionidae) of a spore-crystal suspension from the recombinant strain containing cry8Pa3 was similar to that of the parent strain INTA Fr7-4. © 2014 S. Karger AG, Basel.

  12. Cry64Ba and Cry64Ca, Two ETX/MTX2-Type Bacillus thuringiensis Insecticidal Proteins Active against Hemipteran Pests.

    Science.gov (United States)

    Liu, Yonglei; Wang, Yinglong; Shu, Changlong; Lin, Kejian; Song, Fuping; Bravo, Alejandra; Soberón, Mario; Zhang, Jie

    2018-02-01

    Genetically modified crops that express insecticidal Bacillus thuringiensis (Bt) proteins have become a primary approach for control of lepidopteran (moth) and coleopteran (beetle) pests that feed by chewing the plants. However, the sap-sucking insects (Hemiptera) are not particularly susceptible to Bt toxins. In this study, we describe two Cry toxins (Cry64Ba and Cry64Ca) from Bt strain 1012 that showed toxicity against two important hemipteran rice pests, Laodelphax striatellus and Sogatella furcifera Both of these proteins contain an ETX/MTX2 domain and share common sequence features with the β-pore-forming toxins. Coexpression of cry64Ba and cry64Ca genes in the acrystalliferous Bt strain HD73 - resulted in high insecticidal activity against both hemipteran pests. No toxicity was observed on other pests such as Ostrinia furnacalis , Plutella xylostella , or Colaphellus bowringi Also, no hemolytic activity or toxicity against cancer cells was detected. Binding assays showed specific binding of the Cry64Ba/Cry64Ca toxin complex to brush border membrane vesicles isolated from L. striatellus Cry64Ba and Cry64Ca are Bt Cry toxins highly effective against hemipteran pests and could provide a novel strategy for the environmentally friendly biological control of rice planthoppers in transgenic plants. IMPORTANCE In Asia, rice is an important staple food, whose production is threatened by rice planthoppers. To date, no effective Bacillus thuringiensis (Bt) protein has been shown to have activity against rice planthoppers. We cloned two Bt toxin genes from Bt strain 1012 that showed toxicity against small brown planthoppers ( Laodelphax striatellus ) and white-backed planthoppers ( Sogatella furcifera ). To our knowledge, the proteins encoded by the cry64Ba and cry64Ca genes are the most efficient insecticidal Bt Cry proteins with activity against hemipteran insects reported so far. Cry64Ba and Cry64Ca showed no toxicity against some lepidopteran or coleopteran pests

  13. Expression of Bacillus thuringiensis serovar. israelensis toxins in Asticcacaulis excentricus to control dipteran larvae of vectors of diseases

    Directory of Open Access Journals (Sweden)

    Óscar Enrique Guevara

    2004-01-01

    Full Text Available Bacillus thuringiensis cry genes encode for a diverse group of crystal-forming proteins that exhibit insecticidal activity towards dipteran, lepidopteran and coleopteran larvae. The effectiveness of insecticides based on mosquito larvicidal B. thuringiensis strains can be enhanced by using aquatic prosthecated bacteria as alternative hosts, since they do not sink, cytoplasmic located toxins are protected f rom UV radiation and, most importantly, mosquito larvae feed on them. An Asticcacaulis excentricus reference strain was transformed with the cry1 1Aa gene from Bacillus thuringiensis serovar. israelensis. Western blot and electrophoresis were used to test recombinant protein expression; Western blot revealed a 72 kDa protein corresponding to B. thuringiensis serovar. israelensis Cry1 1 Aa. These aquatic bacte­rias toxicity achieved 50% mortality at 23 ng/mL concentration in f irst instar Culex quinquefasciatus larvae. Other bioassays indicated that recombinant A. excentricus is toxic against Aedes aegyptiand Anopheles albimanus first instar larvae. Buoyancy tests demonstrated the advantage of A. excentricus over B. thuringiensis. Key words: Asticcacaulis excentricus, Bacillus thuringiensis, prosthecated bacteria, dengue, malaria.

  14. Fatores de virulência de Bacillus thuringiensis: o que existe além das proteínas Cry

    Directory of Open Access Journals (Sweden)

    Gislayne Vilas-Bôas

    2012-03-01

    Virulence Factors of Bacillus thuringiensis Berliner: Something Beyond of Cry Proteins? Abstract. The Cry proteins produced by the entomopathogenic bacterium Bacillus thuringiensis Berliner are widely known due to its high toxicity against a variety of insects. The mode of action of these proteins is specific and becomes B. thuringiensis-based products the most used in biological control programs of insect pests in agriculture and of important human disease vectors. However, while the Cry proteins are the best-known insect-specific virulence factor, strains of B. thuringiensis show also a wide range of other virulence factors, which allow the bacteria to achieve the hemolymph and colonize efficiently the insect host. Among these factors, we highlight the Vip proteins, Cyt, enterotoxins, hemolysins, phospholipases, proteases and enzymes of degradation, in addition to the recently described parasporin. This review explores the action of these virulence factors, as well as, the characterization and control of expression of their genes. Additionally, we discuss aspects related to the ecological niche of the bacteria with emphasis on the characteristics involved in the biosafety of the use of B. thuringiensis-based products for biological control of target insects.

  15. 40 CFR 174.510 - Bacillus thuringiensis Cry1Ac protein in all plants; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis Cry1Ac protein in all plants; exemption from the requirement of a tolerance. 174.510 Section 174.510 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PROCEDURES AND REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances...

  16. 40 CFR 174.511 - Bacillus thuringiensis Cry1Ab protein in all plants; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis Cry1Ab protein in all plants; exemption from the requirement of a tolerance. 174.511 Section 174.511 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PROCEDURES AND REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances...

  17. Bombyx mori ABC transporter C2 structures responsible for the receptor function of Bacillus thuringiensis Cry1Aa toxin.

    Science.gov (United States)

    Tanaka, Shiho; Endo, Haruka; Adegawa, Satomi; Iizuka, Ami; Imamura, Kazuhiro; Kikuta, Shingo; Sato, Ryoichi

    2017-12-01

    Because Bombyx mori ABC transporter C2 (BmABCC2) has 1000-fold higher potential than B. mori cadherin-like protein as a receptor for Bacillus thuringiensis Cry1Aa toxin (Tanaka et al., 2013), the gate-opening ability of the latent pore under six extracellular loops (ECLs) of BmABCC2 was expected to be the reason for its higher potential (Heckel, 2012). In this study, cell swelling assays in Sf9 cells showed that BmABCC2 mutants lacking substrate-excreting activity retained receptor activity, indicating that the gate-opening activity of BmABCC2 is not responsible for Cry1Aa toxicity. The analysis of 29 BmABCC2 mutants demonstrated that 770 DYWL 773 of ECL 4 comprise a putative binding site to Cry1Aa. This suggests that specific toxicity of Cry1Aa toxin to a restricted range of lepidopteran insects is dependent on conservation and variation in the amino acid residues around 770 DYWL 773 of ECL 4 in the ABCC2. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Establishment of a sensitive time-resolved fluoroimmunoassay for detection of Bacillus thuringiensis Cry1Ie toxin based nanobody from a phage display library.

    Science.gov (United States)

    Xu, Chongxin; Liu, Xiaoqin; Zhang, Cunzheng; Zhang, Xiao; Zhong, Jianfeng; Liu, Yuan; Hu, Xiaodan; Lin, Manman; Liu, Xianjin

    2017-02-01

    Cry1Ie toxin was an insect-resistant protein used in genetically modified crops (GMC). In this study, a large human VH gene nanobodies phage displayed library was employed to select anti-Cry1Ie toxin antibody by affinity panning. After 5 rounds of panning, total 12 positive monoclonal phage particles were obtained. One of the identified positive phage nanobody was expressed in E.coli BL21 and the purified protein was indicated as a molecular mass of approximately 20 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Then a sensitive indirect competitive time-resolved fluoroimmunoassay (IC-TRFIA) was established for detection of Cry1Ie toxin by the purified protein. The working range of detection for Cry1Ie toxin standards in the IC-TRFIA were 0.08-6.44 ng mL -1 and the medium inhibition of control (IC 50 ) was 0.73 ng mL -1 . It showed a weak cross-reactivity with Cry1Ab toxin (at 5.6%), but did not recognize Cry1B, Cry1C, Cry1F, and Cry2A toxins (were <0.1%). The average recoveries of Cry1Ie toxin from respectively spiked in rice, corn and soil samples were in the range of 83.5%-96.6% and with a coefficient of variation (CV) among 2.0%-8.6%. These results showed the IC-TRFIA was promising for detection of Cry1Ie toxin in agricultural and environmental samples. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. F2 screen for resistance to Bacillus thuringiensis Cry2Ab2-maize in field populations of Spodoptera frugiperda (Lepidoptera: Noctuidae) from the southern United States.

    Science.gov (United States)

    Niu, Ying; Qureshi, Jawwad A; Ni, Xinzhi; Head, Graham P; Price, Paula A; Meagher, Robert L; Kerns, David; Levy, Ronnie; Yang, Xiangbing; Huang, Fangneng

    2016-07-01

    The fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), is a target pest of transgenic maize and cotton expressing Bacillus thuringiensis (Bt) proteins in both North and South America. In 2013 and 2014, a total of 215 F2 two-parent families of S. frugiperda were established using single-pair mating of field individuals collected from seven locations in four states of the southern U.S.: Texas, Louisiana, Georgia, and Florida. The objective of the investigation was to detect resistance alleles in field populations to Cry2Ab2, a common Bt protein produced in transgenic maize and cotton. For each F2 family, 128 F2 neonates were screened on leaf tissue of Cry2Ab2 maize plants in the laboratory. A conservative estimate of the frequency of major Cry2Ab2 resistance alleles in S. frugiperda from the four states was 0.0023 with a 95% credibility interval of 0.0003-0.0064. In addition, six families were considered to likely possess minor resistance alleles at a frequency of 0.0082 with a 95% credibility interval of 0.0033-0.0152. One F2 family from Georgia (GA-15) was confirmed to possess a major resistance allele to the Cry2Ab2 protein. Larvae from this family survived well on whole maize plants expressing Cry2Ab2 protein and demonstrated a significant level (>15-fold) of resistance when fed with the same protein incorporated in a meridic diet. The detection of the major resistance allele along with the relatively abundant minor resistance alleles revealed in this study may have important implications for resistance management. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Comparative analysis of the genetic basis of Cry1F resistance in two strains of Spodoptera frugiperda originated from Puerto Rico and Florida.

    Science.gov (United States)

    Camargo, Ana M; Castañera, Pedro; Farinós, Gema P; Huang, Fangneng

    2017-06-01

    The fall armyworm, Spodoptera frugiperda (J.E. Smith), is a major target pest of Bacillus thuringiensis (Bt) maize and cotton in America. Since the commercialization of Cry1F maize (event TC1507) in 2003, resistance to Cry1F maize in field populations of S. frugiperda has occurred in Puerto Rico, Brazil and the southeast region of the United States. In this paper, we conducted a comparative analysis of the inheritance of two Cry1F-resistant colonies of S. frugiperda originated from Puerto Rico (PR) and Florida (FL), respectively. The objective of the analysis was to determine if the genetic basis of the resistance was similar in the two different originated colonies. To accomplish the objective, besides PR, FL, and a known Cry1F-susceptible colony, 14 additional colonies were developed by reciprocal crosses among the three parents, F 1 by F 1 crosses, backcrosses, and intercolony-crosses between PR and FL. Larval mortalities of the 17 colonies were assayed on both Cry1F maize leaf tissue and Cry1F-treated diet at the concentrations of 3.16, 10.00, and 31.60µg/g. Resistance to Cry1F in both PR and FL was autosomal and recessive or incompletely recessive. Segregations in F 2 and backcrossed generations associated with FL fitted the Mendelian monogenic model well, while with PR the segregations did not follow the single gene model in some bioassays. Further analyses with the intercolony complementation tests showed a similar level of resistance in the F 1 progeny as their parents FL and PR. Together with the data, it was likely that a single (or a few tightly-linked) gene was involved in FL; PR shared the same locus of the major resistance gene as FL, but the resistance in PR might also be associated with additional minor factors. Information generated from this study should be useful in understanding the origin of Cry1F resistance in the U.S. mainland and developing effective strategies for Bt resistance management in S. frugiperda. Copyright © 2017 Elsevier Inc

  1. The interaction of two-spotted spider mites, Tetranychus urticae Koch, with Cry protein production and predation by Amblyseius andersoni (Chant) in Cry1Ac/Cry2Ab cotton and Cry1F maize.

    Science.gov (United States)

    Crops producing insecticidal crystal (Cry) proteins from the bacterium, Bacillus thuringiensis (Bt), are an important tool for managing lepidopteran pests on cotton and maize. However, the effects of these Bt crops on non-target organisms, especially natural enemies that provide biological control s...

  2. Synthetic Polymer Affinity Ligand for Bacillus thuringiensis ( Bt) Cry1Ab/Ac Protein: The Use of Biomimicry Based on the Bt Protein-Insect Receptor Binding Mechanism.

    Science.gov (United States)

    Liu, Mingming; Huang, Rong; Weisman, Adam; Yu, Xiaoyang; Lee, Shih-Hui; Chen, Yalu; Huang, Chao; Hu, Senhua; Chen, Xiuhua; Tan, Wenfeng; Liu, Fan; Chen, Hao; Shea, Kenneth J

    2018-05-24

    We report a novel strategy for creating abiotic Bacillus thuringiensis ( Bt) protein affinity ligands by biomimicry of the recognition process that takes place between Bt Cry1Ab/Ac proteins and insect receptor cadherin-like Bt-R 1 proteins. Guided by this strategy, a library of synthetic polymer nanoparticles (NPs) was prepared and screened for binding to three epitopes 280 FRGSAQGIEGS 290 , 368 RRPFNIGINNQQ 379 and 436 FRSGFSNSSVSIIR 449 located in loop α8, loop 2 and loop 3 of domain II of Bt Cry1Ab/Ac proteins. A negatively charged and hydrophilic nanoparticle (NP12) was found to have high affinity to one of the epitopes, 368 RRPFNIGINNQQ 379 . This same NP also had specific binding ability to both Bt Cry1Ab and Bt Cry1Ac, proteins that share the same epitope, but very low affinity to Bt Cry2A, Bt Cry1C and Bt Cry1F closely related proteins that lack epitope homology. To locate possible NP- Bt Cry1Ab/Ac interaction sites, NP12 was used as a competitive inhibitor to block the binding of 865 NITIHITDTNNK 876 , a specific recognition site in insect receptor Bt-R 1 , to 368 RRPFNIGINNQQ 379 . The inhibition by NP12 reached as high as 84%, indicating that NP12 binds to Bt Cry1Ab/Ac proteins mainly via 368 RRPFNIGINNQQ 379 . This epitope region was then utilized as a "target" or "bait" for the separation and concentration of Bt Cry1Ac protein from the extract of transgenic Bt cotton leaves by NP12. This strategy, based on the antigen-receptor recognition mechanism, can be extended to other biotoxins and pathogen proteins when designing biomimic alternatives to natural protein affinity ligands.

  3. LSSP-PCR para la identificación de polimorfismos en el gen cry1B en cepas nativas de Bacillus thuringiensis

    Directory of Open Access Journals (Sweden)

    Martha Ilce Orozco Mera

    2012-01-01

    Full Text Available Título en ingles: LSSP-PCR to identify polymorphisms in the gene cry1B of Bacillus thuringiensis native strain Resumen: Se estandarizó la técnica LSSP-PCR (reacción en cadena de la polimerasa con un único oligonucleótido en condiciones de baja astringencia, para identificar polimorfismos del gen cry1B en aislamientos nativos de Bacillus thuringiensis (Bt. Se evaluaron 164 aislamientos nativos colombianos identificándose el gen cry1Ba en 11 de estos aislamientos. Los 11 fragmentos amplificados, junto con el de la cepa de referencia Bt subsp. aizawai HD137, se analizaron por LSSP-PCR y los patrones electroforéticos obtenidos se compararon cualitativamente. Con los productos amplificados mediante el oligonucleótido directo se construyó un dendrograma utilizando UPGMA que  mostró tres agrupamientos con similitud de 83, 79 y 68%. La agrupación con 68% de similaridad correspondió al aislamiento nativo BtGC120 que presentó el patrón de bandas más variable. Con el oligonucleótido reverso el aislamiento BtGC120 mostró una menor variabilidad (43%. La secuencia nucleotidica obtenida de este fragmento de 806 pares de bases mostró una identidad de 93% con la secuencia de los genes cry1Bc1 de Bt morrisoni y cry1Bb1 de la cepa BT-EG5847. Se predijo del marco de lectura +3 una proteína de 268 residuos aminoácidicos, con 88% de identidad con la proteína Cry1Bc. Esta  secuencia reveló dos dominios, una endotoxina N implicada en la formación del poro y otra endotoxina M relacionada en el reconocimiento del receptor. La evaluación biológica del aislamiento BtGC120 sobre larvas de primer instar del insecto plaga Spodoptera frugiperda, mostró una CL50 de 1,896 ng de proteína total por cm2. Este estudio muestra que la LSSP-PCR es una técnica que permite identificar de una manera específica variaciones en las secuencias de los genes cry de Bt, con potencialidad de encontrar nuevos genes con novedosas actividades biológicas. Abstract

  4. Construction and characterization of the interdomain chimeras using Cry11Aa and Cry11Ba from Bacillus thuringiensis and identification of a possible novel toxic chimera.

    Science.gov (United States)

    Sun, Yunjun; Zhao, Qiang; Zheng, Dasheng; Ding, Xuezhi; Wang, Jingfang; Hu, Quanfang; Yuan, Zhiming; Park, Hyun-Woo; Xia, Liqiu

    2014-01-01

    Three structural domains of mosquitocidal Cry11Aa and Cry11Ba from Bacillus thuringiensis were exchanged to produce interdomain chimeras [BAA (11Ba/11Aa/11Aa), ABA (11Aa/11Ba/11Aa), AAB (11Aa/11Aa/11Ba), ABB (11Aa/11Ba/11Ba), BAB (11Ba/11Aa/11Ba), BBA (11Ba/11Ba/11Aa]. Chimeras BAB, BAA, BBA, and AAB formed inclusion bodies in the crystal-negative B. thuringiensis host and produced expected protein bands on SDS-PAGE gel. However, no inclusion body or target protein could be found for chimeras ABA and ABB. In bioassays using the fourth-instar larvae of Culex quinquefasciatus and Aedes aegypti, AAB had ~50 % lethal concentrations of 4.8 and 2.2 μg ml(-1), respectively; however, the rest of chimeras were not toxic. This study thus helps to understand the domain-function relationships of the Cry11Aa and Cry11Ba toxins. The toxic chimera, AAB, might be a candidate for mosquito control as its amino acid sequence is different from the two parental toxins.

  5. Identification of Bacillus thuringiensis Cry3Aa toxin domain II loop 1 as the binding site of Tenebrio molitor cadherin repeat CR12.

    Science.gov (United States)

    Zúñiga-Navarrete, Fernando; Gómez, Isabel; Peña, Guadalupe; Amaro, Itzel; Ortíz, Ernesto; Becerril, Baltazar; Ibarra, Jorge E; Bravo, Alejandra; Soberón, Mario

    2015-04-01

    Bacillus thuringiensis Cry toxins exert their toxic effect by specific recognition of larval midgut proteins leading to oligomerization of the toxin, membrane insertion and pore formation. The exposed domain II loop regions of Cry toxins have been shown to be involved in receptor binding. Insect cadherins have shown to be functionally involved in toxin binding facilitating toxin oligomerization. Here, we isolated a VHH (VHHA5) antibody by phage display that binds Cry3Aa loop 1 and competed with the binding of Cry3Aa to Tenebrio molitor brush border membranes. VHHA5 also competed with the binding of Cry3Aa to a cadherin fragment (CR12) that was previously shown to be involved in binding and toxicity of Cry3Aa, indicating that Cry3Aa binds CR12 through domain II loop 1. Moreover, we show that a loop 1 mutant, previously characterized to have increased toxicity to T. molitor, displayed a correlative enhanced binding affinity to T. molitor CR12 and to VHHA5. These results show that Cry3Aa domain II loop 1 is a binding site of CR12 T. molitor cadherin. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Identification and Characterization of Hyphantria cunea Aminopeptidase N as a Binding Protein of Bacillus thuringiensis Cry1Ab35 Toxin

    Directory of Open Access Journals (Sweden)

    Yakun Zhang

    2017-11-01

    Full Text Available The fall webworm, Hyphantria cunea (Drury is a major invasive pest in China. Aminopeptidase N (APN isoforms in lepidopteran larvae midguts are known for their involvement in the mode of action of insecticidal crystal (Cry proteins from Bacillus thuringiensis. In the present work, we identified a putative Cry1Ab toxin-binding protein, an APN isoform designated HcAPN3, in the midgut of H. cunea by ligand blot and mass spectrometry. HcAPN3 was highly expressed throughout all larval developmental stages and was abundant in the midgut and hindgut tissues. HcAPN3 was down-regulated at 6 h, then was up-regulated significantly at 12 h and 24 h after Cry1Ab toxin treatment. We expressed HcAPN3 in insect cells and detected its interaction with Cry1Ab toxin by ligand blot assays. Furthermore, RNA interference (RNAi against HcAPN3 using oral delivery and injection of double-stranded RNA (dsRNA resulted in a 61–66% decrease in transcript level. Down-regulating of the expression of HcAPN3 was closely associated with reduced susceptibility of H. cunea to Cry1Ab. In addition, the HcAPN3E fragment peptide expressed in Escherichia coli enhanced Cry1Ab toxicity against H. cunea larvae. This work represents the first evidence to suggest that an APN in H. cunea is a putative binding protein involved in Cry1Ab susceptibility.

  7. In Silico Modeling and Functional Interpretations of Cry1Ab15 Toxin from Bacillus thuringiensis BtB-Hm-16

    Directory of Open Access Journals (Sweden)

    Sudhanshu Kashyap

    2013-01-01

    Full Text Available The theoretical homology based structural model of Cry1Ab15 δ-endotoxin produced by Bacillus thuringiensis BtB-Hm-16 was predicted using the Cry1Aa template (resolution 2.25 Å. The Cry1Ab15 resembles the template structure by sharing a common three-domain extending conformation structure responsible for pore-forming and specificity determination. The novel structural differences found are the presence of β0 and α3, and the absence of α7b, β1a, α10a, α10b, β12, and α11a while α9 is located spatially downstream. Validation by SUPERPOSE and with the use of PROCHECK program showed folding of 98% of modeled residues in a favourable and stable orientation with a total energy Z-score of −6.56; the constructed model has an RMSD of only 1.15 Å. These increments of 3D structure information will be helpful in the design of domain swapping experiments aimed at improving toxicity and will help in elucidating the common mechanism of toxin action.

  8. The midgut cadherin-like gene is not associated with resistance to Bacillus thuringiensis toxin Cry1Ac in Plutella xylostella (L.).

    Science.gov (United States)

    Guo, Zhaojiang; Kang, Shi; Zhu, Xun; Wu, Qingjun; Wang, Shaoli; Xie, Wen; Zhang, Youjun

    2015-03-01

    The Gram-positive bacterium Bacillus thuringiensis (Bt) produces Cry toxins that have been used to control important agricultural pests. Evolution of resistance in target pests threatens the effectiveness of these toxins when used either in sprayed biopesticides or in Bt transgenic crops. Although alterations of the midgut cadherin-like receptor can lead to Bt Cry toxin resistance in many insects, whether the cadherin gene is involved in Cry1Ac resistance of Plutella xylostella (L.) remains unclear. Here, we present experimental evidence that resistance to Cry1Ac or Bt var. kurstaki (Btk) in P. xylostella is not due to alterations of the cadherin gene. The bona fide P. xylostella cadherin cDNA sequence was cloned and analyzed, and comparisons of the cadherin cDNA sequence among susceptible and resistant P. xylostella strains confirmed that Cry1Ac resistance was independent of mutations in this gene. In addition, real-time quantitative PCR (qPCR) indicated that cadherin transcript levels did not significantly differ among susceptible and resistant P. xylostella strains. RNA interference (RNAi)-mediated suppression of cadherin gene expression did not affect larval susceptibility to Cry1Ac toxin. Furthermore, genetic linkage assays using four cadherin gDNA allelic biomarkers confirmed that the cadherin gene is not linked to resistance against Cry1Ac in P. xylostella. Taken together, our findings demonstrate that Cry1Ac resistance of P. xylostella is independent of the cadherin gene. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Characterization of Baculovirus Insecticides Expressing Tailored Bacillus thuringiensis CryIA(b) Crystal Proteins

    NARCIS (Netherlands)

    Martens, John W M; Knoester, Marga; Weijts, Franci; Groffen, Sander J A; Hu, Zhihong; Bosch, Dirk; Vlak, Just M.

    1995-01-01

    Full-length, truncated, and mature forms of the CryIA(b) insecticidal crystal protein gene of Bacillus thuringiensis were engineered into the p10 locus of Autographa californica nuclear polyhedrosis virus (AcNPV). A signal sequence of Heliothis virescens juvenile hormone esterase was introduced at

  10. Synergism and Antagonism between Bacillus thuringiensis Vip3A and Cry1 Proteins in Heliothis virescens, Diatraea saccharalis and Spodoptera frugiperda

    Science.gov (United States)

    Lemes, Ana Rita Nunes; Davolos, Camila Chiaradia; Legori, Paula Cristina Brunini Crialesi; Fernandes, Odair Aparecido; Ferré, Juan; Lemos, Manoel Victor Franco; Desiderio, Janete Apparecida

    2014-01-01

    Second generation Bt crops (insect resistant crops carrying Bacillus thuringiensis genes) combine more than one gene that codes for insecticidal proteins in the same plant to provide better control of agricultural pests. Some of the new combinations involve co-expression of cry and vip genes. Because Cry and Vip proteins have different midgut targets and possibly different mechanisms of toxicity, it is important to evaluate possible synergistic or antagonistic interactions between these two classes of toxins. Three members of the Cry1 class of proteins and three from the Vip3A class were tested against Heliothis virescens for possible interactions. At the level of LC50, Cry1Ac was the most active protein, whereas the rest of proteins tested were similarly active. However, at the level of LC90, Cry1Aa and Cry1Ca were the least active proteins, and Cry1Ac and Vip3A proteins were not significantly different. Under the experimental conditions used in this study, we found an antagonistic effect of Cry1Ca with the three Vip3A proteins. The interaction between Cry1Ca and Vip3Aa was also tested on two other species of Lepidoptera. Whereas antagonism was observed in Spodoptera frugiperda, synergism was found in Diatraea saccharalis. In all cases, the interaction between Vip3A and Cry1 proteins was more evident at the LC90 level than at the LC50 level. The fact that the same combination of proteins may result in a synergistic or an antagonistic interaction may be an indication that there are different types of interactions within the host, depending on the insect species tested. PMID:25275646

  11. Localization of Bacillus thuringiensis Cry1A toxin-binding molecules in gypsy moth larval gut sections using fluorescence microscopy

    Science.gov (United States)

    Algimantas P. Valaitis

    2011-01-01

    The microbial insecticide Bacillus thuringiensis (Bt) produces Cry toxins, proteins that bind to the brush border membranes of gut epithelial cells of insects that ingest it, disrupting the integrity of the membranes, and leading to cell lysis and insect death. In gypsy moth, Lymantria dispar, two toxin-binding molecules for the...

  12. Effects of feeding transgenic corn with mCry1Ac or maroACC gene to laying hens for 12 weeks on growth, egg quality and organ health.

    Science.gov (United States)

    Zhong, R Q; Chen, L; Gao, L X; Zhang, L L; Yao, B; Yang, X G; Zhang, H F

    2016-08-01

    The objective of the present study was to investigate the effect of feeding two transgenic corn lines containing the mCry1Ac gene from Bacillus thuringiensis strain (BT-799) and the maroACC gene from Agrobacterium tumefaciens strain (CC-2), respectively, on growth, egg quality and organ health indicators. Expression of the mCry1Ac gene confers resistance to Pyrausta nubilalis and the maroACC gene confers tolerance to herbicides. Healthy hens (n=96 placed in cages; 3 hens/cage) were randomly assigned to one of four corn-soybean meal dietary treatments (8 cages/treatment) formulated with the following corn: non-transgenic near-isoline control corn (control), BT-799 corn, CC-2 corn and commercially available non-transgenic reference corn (reference). The experiment was divided into three 4-week phases (week 1 to 4, week 5 to 8 and week 9 to 12), during which hens were fed mash diets. Performance (BW, feed intake and egg production) and egg quality were determined. Following slaughter at the end of 12 weeks of feeding (n=8/treatment), carcass yield and organ weights (heart, liver, spleen, lung, kidneys, stomach and ovary) were recorded; organs and intestines were sampled for histological analysis. Analysis of serum biochemistry parameters to assess the liver and kidney function were performed. No differences in BW, egg production and production efficiency were observed between hens consuming the control diet and hens consuming the BT-799 or CC-2 diet. Haugh unit measures and egg component weights were similar between the control and test groups. Carcass yield was not affected by the diet treatment. Similar organosomatic indices and serum parameters did not indicate the characteristics of organ dysfunction. All observed values of the BT-799 and CC-2 groups were within the calculated tolerance intervals. This research indicates that the performance, egg quality, organ health and carcass yield of laying hens fed diets containing the BT-799 or CC-2 corn line were similar

  13. Characterization of a Chitin-Binding Protein from Bacillus thuringiensis HD-1.

    Directory of Open Access Journals (Sweden)

    Naresh Arora

    Full Text Available Strains of Bacillus thuringiensis produce insecticidal proteins. These strains have been isolated from diverse ecological niches, such as soil, phylloplane, insect cadavers and grain dust. To effectively propagate, these strains produce a range of molecules that facilitate its multiplication in a competing environment. In this report, we have examined synthesis of a chitin-binding protein and evaluated its effect on fungi encountered in environment and its interaction with insecticidal proteins synthesized by B. thuringiensis. The gene encoding chitin-binding protein has been cloned and expressed. The purified protein has been demonstrated to interact with Cry insecticidal protein, Cry1Ac by Circular Dichrosim spectroscopy (CD and in vitro pull down assays. The chitin-binding protein potentiates insecticidal activity of bacillar insecticidal protein, Cry1Ac. Further, chitin-binding protein was fungistatic against several soil fungi. The chitin binding protein is expressed in spore mother cell and deposited along with insecticidal protein, Cry1Ac. It interacts with Cry1Ac to potentiate its insecticidal activity and facilitate propagation of Bacillus strain in environment by inhibiting growth of certain fungi.

  14. An overview of the safety and biological effects of Bacillus thuringiensis Cry toxins in mammals.

    Science.gov (United States)

    Rubio-Infante, Néstor; Moreno-Fierros, Leticia

    2016-05-01

    Crystal proteins (Cry) produced during the growth and sporulation phases of Bacillus thuringiensis (Bt) bacterium are known as delta endotoxins. These toxins are being used worldwide as bioinsecticides to control pests in agriculture, and some Cry toxins are used against mosquitoes to control vector transmission. This review summarizes the relevant information currently available regarding the biosafety and biological effects that Bt and its insecticidal Cry proteins elicit in mammals. This work was performed because of concerns regarding the possible health impact of Cry toxins on vertebrates, particularly because Bt toxins might be associated with immune-activating or allergic responses. The controversial data published to date are discussed in this review considering earlier toxicological studies of B. thuringiensis, spores, toxins and Bt crops. We discussed the experimental studies performed in humans, mice, rats and sheep as well as in diverse mammalian cell lines. Although the term 'toxic' is not appropriate for defining the effects these toxins have on mammals, they cannot be considered innocuous, as they have some physiological effects that may become pathological; thus, trials that are more comprehensive are necessary to determine their effects on mammals because knowledge in this field remains limited. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Association of bioassays and molecular characterization to select new Bacillus thuringiensis isolates effective against Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae); Associacao de bioensaios e caracterizacao molecular para selecao de novos isolados de Bacillus thuringiensis efetivos contra Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae)

    Energy Technology Data Exchange (ETDEWEB)

    Fatoretto, Julio C.; Sena, Janete A.D.; Lemos, Manoel V.F. [UNESP, Jaboticabal, SP (Brazil). Faculdade de Ciencias Agrarias e Veterinarias. Dept. de Biologia Aplicada a Agropecuaria; Barreto, Marliton R. [Universidade Federal do Mato Grosso (UFMT), Cuiaba, MT (Brazil). Inst. Universitario do Norte Matogrossense (IUNMAT)]. E-mail: mrbarreto@pop.com.br; Junior Boica, Arlindo L. (UNESP), Jaboticabal, SP (Brazil). Faculdade de Ciencias Agrarias e Veterinarias. Dept. de Fitossanidade)

    2007-09-15

    The fall armyworm, Spodoptera frugiperda (J. E. Smith), is one of the main corn pests and Bacillus thuringiensis is important in its control because of its entomopathogenic property. The objective of this study was the molecular characterization of B. thuringiensis isolates for cry1 locus presence and the assessment of the efficiency of these isolates in controlling S. frugiperda caterpillars. Gral-cry1 was used in the PCR analyses to confirm the presence of the cry1 locus in 15 isolates. A 3 x 108 spore/ml suspension bathed the diet used to feed 30 caterpillars per isolate, with three replications. The cry1 locus type genes of the different isolates were identified for five gene subclasses; linear regression analyses were carried out to ascertain possible associations between the presence of an individual cry1 locus gene and high levels of toxicity. All the DNAs amplified with Gral-cry1 presented an amplification product with the expected size. Regarding the levels of insecticide efficiency against the cob worm, 41 isolates presented 100% mortality and 16 presented an index between 70% and 90%. The cry1Ab gene was present in 80 isolates, cryb in 69 isolates, cry1Ac in all the isolates and cryv and cry1E in 93 and 27 isolates, respectively. The values regarding the individual effect of each gene on caterpillar mortality were significant at 1% probability for the cry1Ac and cry1E genes. (author)

  16. Construction and characterisation of near-isogenic Plutella xylostella (Lepidoptera: Plutellidae) strains resistant to Cry1Ac toxin.

    Science.gov (United States)

    Zhu, Xun; Lei, Yanyuan; Yang, Yanjv; Baxter, Simon W; Li, Jianhong; Wu, Qingjun; Wang, Shaoli; Xie, Wen; Guo, Zhaojiang; Fu, Wei; Zhang, Youjun

    2015-02-01

    Resistance to insecticidal Bacillus thuringiensis (Bt) toxins has arisen in multiple populations of the worldwide Brassica pest Plutella xylostella (L.). To help elucidate the mechanism of resistance to Bt Cry1Ac toxin in a population from Florida, two pairs of near-isogenic lines (NILs) were developed. NILs were generated using either backcross or recombinant inbred line methodologies and evaluated for near-isogenicity with inter-simple-sequence-repeat (ISSR) markers. Backcross line BC6F4 maintained a similar level of Cry1Ac resistance to parental strain DBM1Ac-R (>5000-fold) yet showed 98.24% genetic similarity to the susceptible parental strain DBM1Ac-S. Single-pair backcrosses between DBM1Ac-S and BC6F4 revealed that Cry1Ac resistance was controlled by one recessive autosomal locus. BC6F4 exhibited high levels of cross-resistance to Cry1Ab and Cry1Ah but not to Cry1Ca or Cry1Ie. Near-isogenic strains were constructed to provide a reliable biological system to investigate the mechanism of Cry1Ac resistance in P. xylostella. These data suggest that resistance to Cry1Ac, Cry1Ab and Cry1Ah is probably caused by the alteration of a common receptor not recognised by Cry1Ca or Cry1Ie. Understanding Bt toxin cross-resistance provides valuable information to consider when developing pest control strategies to delay resistance evolution. © 2014 Society of Chemical Industry. © 2014 Society of Chemical Industry.

  17. Different Effects of Bacillus thuringiensis Toxin Cry1Ab on Midgut Cell Transmembrane Potential of Mythimna separata and Agrotis ipsilon Larvae

    Directory of Open Access Journals (Sweden)

    Yingying Wang

    2015-12-01

    Full Text Available Bacillus thuringiensis (Bt Cry toxins from the Cry1A family demonstrate significantly different toxicities against members of the family Noctuidae for unknown reasons. In this study, membrane potential was measured and analyzed in freshly isolated midgut samples from Mythimna separata and Agrotis ipsilon larvae under oral administration and in vitro incubation with Bt toxin Cry1Ab to elucidate the mechanism of action for further control of these pests. Bioassay results showed that the larvae of M. separata achieved a LD50 of 258.84 ng/larva at 24 h after ingestion; M. separata larvae were at least eightfold more sensitive than A. ipsilon larvae to Cry1Ab. Force-feeding showed that the observed midgut apical-membrane potential (Vam of M. separata larvae was significantly depolarized from −82.9 ± 6.6 mV to −19.9 ± 7.2 mV at 8 h after ingestion of 1 μg activated Cry1Ab, whereas no obvious changes were detected in A. ipsilon larvae with dosage of 5 μg Cry1Ab. The activated Cry1Ab caused a distinct concentration-dependent depolarization of the apical membrane; Vam was reduced by 50% after 14.7 ± 0.2, 9.8 ± 0.4, and 7.6 ± 0.6 min of treatment with 1, 5, and 10 μg/mL Cry1Ab, respectively. Cry1Ab showed a minimal effect on A. ipsilon larvae even at 20 μg/mL, and Vam decreased by 26.3% ± 2.3% after 15 min. The concentrations of Cry1Ab displayed no significant effect on the basolateral side of the epithelium. The Vam of A. ipsilon (−33.19 ± 6.29 mV, n = 51 was only half that of M. separata (−80.94 ± 6.95 mV, n = 75. The different degrees of sensitivity to Cry1Ab were speculatively associated with various habits, as well as the diverse physiological or biochemical characteristics of the midgut cell membranes.

  18. Association of bioassays and molecular characterization to select new Bacillus thuringiensis isolates effective against Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae)

    International Nuclear Information System (INIS)

    Fatoretto, Julio C.; Sena, Janete A.D.; Lemos, Manoel V.F.; Junior Boica, Arlindo L. , Jaboticabal, SP . Faculdade de Ciencias Agrarias e Veterinarias. Dept. de Fitossanidade; Brazil)

    2007-01-01

    The fall armyworm, Spodoptera frugiperda (J. E. Smith), is one of the main corn pests and Bacillus thuringiensis is important in its control because of its entomopathogenic property. The objective of this study was the molecular characterization of B. thuringiensis isolates for cry1 locus presence and the assessment of the efficiency of these isolates in controlling S. frugiperda caterpillars. Gral-cry1 was used in the PCR analyses to confirm the presence of the cry1 locus in 15 isolates. A 3 x 108 spore/ml suspension bathed the diet used to feed 30 caterpillars per isolate, with three replications. The cry1 locus type genes of the different isolates were identified for five gene subclasses; linear regression analyses were carried out to ascertain possible associations between the presence of an individual cry1 locus gene and high levels of toxicity. All the DNAs amplified with Gral-cry1 presented an amplification product with the expected size. Regarding the levels of insecticide efficiency against the cob worm, 41 isolates presented 100% mortality and 16 presented an index between 70% and 90%. The cry1Ab gene was present in 80 isolates, cryb in 69 isolates, cry1Ac in all the isolates and cryv and cry1E in 93 and 27 isolates, respectively. The values regarding the individual effect of each gene on caterpillar mortality were significant at 1% probability for the cry1Ac and cry1E genes. (author)

  19. An ABC transporter mutation is correlated with insect resistance to Bacillus thuringiensis Cry1Ac toxin.

    Directory of Open Access Journals (Sweden)

    Linda J Gahan

    2010-12-01

    Full Text Available Transgenic crops producing insecticidal toxins from Bacillus thuringiensis (Bt are commercially successful in reducing pest damage, yet knowledge of resistance mechanisms that threaten their sustainability is incomplete. Insect resistance to the pore-forming Cry1Ac toxin is correlated with the loss of high-affinity, irreversible binding to the mid-gut membrane, but the genetic factors responsible for this change have been elusive. Mutations in a 12-cadherin-domain protein confer some Cry1Ac resistance but do not block this toxin binding in in vitro assays. We sought to identify mutations in other genes that might be responsible for the loss of binding. We employed a map-based cloning approach using a series of backcrosses with 1,060 progeny to identify a resistance gene in the cotton pest Heliothis virescens that segregated independently from the cadherin mutation. We found an inactivating mutation of the ABC transporter ABCC2 that is genetically linked to Cry1Ac resistance and is correlated with loss of Cry1Ac binding to membrane vesicles. ABC proteins are integral membrane proteins with many functions, including export of toxic molecules from the cell, but have not been implicated in the mode of action of Bt toxins before. The reduction in toxin binding due to the inactivating mutation suggests that ABCC2 is involved in membrane integration of the toxin pore. Our findings suggest that ABC proteins may play a key role in the mode of action of Bt toxins and that ABC protein mutations can confer high levels of resistance that could threaten the continued utilization of Bt-expressing crops. However, such mutations may impose a physiological cost on resistant insects, by reducing export of other toxins such as plant secondary compounds from the cell. This weakness could be exploited to manage this mechanism of Bt resistance in the field.

  20. An ABC transporter mutation is correlated with insect resistance to Bacillus thuringiensis Cry1Ac toxin.

    Science.gov (United States)

    Gahan, Linda J; Pauchet, Yannick; Vogel, Heiko; Heckel, David G

    2010-12-16

    Transgenic crops producing insecticidal toxins from Bacillus thuringiensis (Bt) are commercially successful in reducing pest damage, yet knowledge of resistance mechanisms that threaten their sustainability is incomplete. Insect resistance to the pore-forming Cry1Ac toxin is correlated with the loss of high-affinity, irreversible binding to the mid-gut membrane, but the genetic factors responsible for this change have been elusive. Mutations in a 12-cadherin-domain protein confer some Cry1Ac resistance but do not block this toxin binding in in vitro assays. We sought to identify mutations in other genes that might be responsible for the loss of binding. We employed a map-based cloning approach using a series of backcrosses with 1,060 progeny to identify a resistance gene in the cotton pest Heliothis virescens that segregated independently from the cadherin mutation. We found an inactivating mutation of the ABC transporter ABCC2 that is genetically linked to Cry1Ac resistance and is correlated with loss of Cry1Ac binding to membrane vesicles. ABC proteins are integral membrane proteins with many functions, including export of toxic molecules from the cell, but have not been implicated in the mode of action of Bt toxins before. The reduction in toxin binding due to the inactivating mutation suggests that ABCC2 is involved in membrane integration of the toxin pore. Our findings suggest that ABC proteins may play a key role in the mode of action of Bt toxins and that ABC protein mutations can confer high levels of resistance that could threaten the continued utilization of Bt-expressing crops. However, such mutations may impose a physiological cost on resistant insects, by reducing export of other toxins such as plant secondary compounds from the cell. This weakness could be exploited to manage this mechanism of Bt resistance in the field.

  1. Mechanism and DNA-based detection of field-evolved resistance to transgenic Bt corn in fall armyworm (Spodoptera frugiperda)

    Science.gov (United States)

    Evolution of resistance threatens sustainability of transgenic crops producing insecticidal proteins from the bacterium Bacillus thuringiensis (Bt). The fall armyworm is a devastating pest controlled by transgenic Bt corn producing the Cry1Fa insecticidal protein. However, fall armyworm populations ...

  2. Nanobody-based electrochemical immunoassay for Bacillus thuringiensis Cry1Ab toxin by detecting the enzymatic formation of polyaniline

    International Nuclear Information System (INIS)

    Zhu, Min; Li, Guanghui; Li, Min; Zhou, Zikai; Liu, Hong; Lei, Hongtao; Shen, Yanfei; Wan, Yakun

    2015-01-01

    We describe an electrochemical immunoassay for the Cry1Ab toxin that is produced by Bacillus thuringiensis. It is making use of a nanobody (a heavy-chain only antibody) that was selected from an immune phage displayed library. A biotinylated primary nanobody and a HRP-conjugated secondary nanobody were applied in a sandwich immunoassay where horseradish peroxidase (HRP) is used to produce polyaniline (PANI) from aniline. PANI can be easily detected by differential pulse voltammetry at a working voltage as low as 40 mV (vs. Ag/AgCl) which makes the assay fairly selective. This immunoassay for Cry1Ab has an analytical range from 0.1 to 1000 ng∙mL -1 and a 0.07 ng∙mL -1 lower limit of detection. The average recoveries of the toxin from spiked samples are in the range from 102 to 114 %, with a relative standard deviation of <7.5 %. The results demonstrated that the assay represented an attractive alternative to existing immunoassays in enabling affordable, sensitive, robust and specific determination of this toxin. (author)

  3. Study of the allergenic potential of Bacillus thuringiensis Cry1Ac toxin following intra-gastric administration in a murine model of food-allergy.

    Science.gov (United States)

    Santos-Vigil, Karla I; Ilhuicatzi-Alvarado, Damaris; García-Hernández, Ana L; Herrera-García, Juan S; Moreno-Fierros, Leticia

    2018-06-07

    Cry1Ac toxin, from Bacillus thuringiensis, is widely used as a biopesticide and expressed in genetically modified (GM) plants used for human and animal consumption. Since Cry1Ac is also immunogenic and able to activate macrophages, it is crucial to thoroughly evaluate the immunological effects elicited after intra-gastric administration. The allergenic potential of purified Cry1Ac was assessed and compared with that induced in a murine model of food-allergy to ovalbumin (OVA), in which animals are sensitized with the adjuvant Cholera toxin (CT). Mice were weekly intragastrically administered with: i) vehicle phosphate-buffered saline (PBS), ii) OVA, iii) OVA plus CT iv) Cry1Ac or v) OVA plus Cry1Ac. Seven weeks after, mice were intragastrically challenged and allergic reactions along with diverse allergy related immunological parameters were evaluated at systemic and intestinal level. The groups immunized with, Cry1Ac, OVA/Cry1Ac or OVA/CT developed moderate allergic reactions, induced significant IgE response and increased frequencies of intestinal granulocytes, IgE+ eosinophils and IgE+ lymphocytes. These same groups also showed colonic lymphoid hyperplasia, notably in humans, this has been associated with food allergy and intestinal inflammation. Although the adjuvant and allergenic potential of CT were higher than the effects of Cry1Ac, the results show that applied intra-gastrically at 50 μg doses, Cry1Ac is immunogenic, moderately allergenic and able to provoke intestinal lymphoid hyperplasia. Moreover, Cry1Ac is also able to induce anaphylaxis, since when mice were intragastrically sensitized with increasing doses of Cry1Ac, with every dose tested, a significant drop in rectal temperature was recorded after intravenous challenge. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Use of endophytic diazotrophic bacteria as a vector to express the cry3A gene from Bacillus thuringiensis

    Directory of Open Access Journals (Sweden)

    Salles Joana Falcão

    2000-01-01

    Full Text Available The goal of this study was to evaluate the potential of endophytic diazotrophic bacteria as a vector to express a cry gene from Bacillus thuringiensis, envisaging the control of pests that attack sugarcane plants. The endophytic nitrogen-fixing bacteria Gluconacetobacter diazotrophicus strain BR11281 and Herbaspirillum seropedicae strain BR11335 were used as models. The cry3A gene was transferred by conjugation using a suicide plasmid and the recombinant strains were selected by their ability to fix nitrogen in semi-solid N-free medium. The presence of the cry gene was detected by Southern-blot using an internal fragment of 1.0 kb as a probe. The production of delta-endotoxin by the recombinant H. seropedicae strain was detected by dot blot while for G. diazotrophicus the Western-blot technique was used. In both cases, a specific antibody raised against the B. thuringiensis toxin was applied. The delta-endotoxin production showed by the G. diazotrophicus recombinant strain was dependent on the nitrogen fixing conditions since the cry3A gene was fused to a nif promoter. In the case of H. seropedicae the delta-endotoxin expression was not affected by the promoter (rhi used. These results suggest that endophytic diazotrophic bacteria can be used as vectors to express entomopathogenic genes envisaging control of sugarcane pests.

  5. Cloning of partial cry1Ac gene from an indigenous isolate of Bacillus ...

    African Journals Online (AJOL)

    The discoveries of novel cry genes of Bacillus thuringiensis (Bt) with higher toxicity are important for the development of new products. The cry1 family genes are more toxic to the lepidopteran insects according to the previous reports. In the present study, nine indigenous isolates of Bt were used for screening of cry1 genes ...

  6. Isolation and partial characterization of gypsy moth BTR-270, an anionic brush border membrane glycoconjugate that binds Bacillus thuringiensis Cry1A toxins with high affinity

    Science.gov (United States)

    Algimantas P. Valaitis; Jeremy L. Jenkins; Mi Kyong Lee; Donald H. Dean; Karen J. Garner

    2001-01-01

    BTR-270, a gypsy moth (Lymantria dispar) brush border membrane molecule that binds Bacillus thuringiensis (Bt) Cry1A toxins with high affinity, was purified by preparative gel electrophoresis. Rabbit antibodies specific for the Bt toxin-binding molecule were raised. Attempts to label BTR-270 by protein-directed techniques were...

  7. Bacillus thuringiensis Cry3Aa toxin increases the susceptibility of Crioceris quatuordecimpunctata to Beauveria bassiana infection

    Science.gov (United States)

    The spotted asparagus beetle, Crioceris quatuordecimpunctata (Coleoptera: Chrysomelidae), is one of the most devastating pests of asparagus in China and elsewhere. In this study, we investigated the interaction of Bacillus thuringiensis (Bt) Cry3Aa toxin and the entomopathogenic fungus Beauveria bas...

  8. Diversity of Bacillus thuringiensis strains in the maize and bean phylloplane and their respective soils in Colombia.

    Science.gov (United States)

    Jara, S; Maduell, P; Orduz, S

    2006-07-01

    To evaluate the distribution of Bacillus thuringiensis strains from maize and bean phylloplane and their respective soils. B. thuringiensis was isolated from the phylloplane and soil of maize and bean from three municipalities in Antioquia, Colombia. Ninety six samples of phylloplane and 24 of soil were analyzed. A total of 214 isolates were obtained from 96 phylloplane samples while 59 isolates were recovered from 24 soil samples. Sixty five per cent and 12% of the phylloplane and soil isolates, respectively, showed activity against Spodoptera frugiperda. These isolates contained delta-endotoxin proteins of 57 and 130 kDa. The most toxic isolates against S. frugiperda had the genotype cry1Aa, cry1Ac, cry1B, and cry1D. In contrast, 27% of the phylloplane isolates and 88% of the soil isolates were active against Culex quinquefasciatus and had protein profiles similar to B. thuringiensis serovar. medellin and B. thuringiensis serovar. israelensis. The most active isolates contain cry4 and cry11 genes. The predominant population of B. thuringiensis on the phylloplane harbored the cry1 gene and was active against S. frugiperda, whereas in soil, isolates harboring cry11 gene and active against C. quinquefasciatus were the majority. The predominance of specific B. thuringiensis populations, both on the leaves and in the soil, suggests the presence of selection in B. thuringiensis populations on the studied environment.

  9. Field-Evolved Resistance to Bt Maize by Western Corn Rootworm

    Science.gov (United States)

    Gassmann, Aaron J.; Petzold-Maxwell, Jennifer L.; Keweshan, Ryan S.; Dunbar, Mike W.

    2011-01-01

    Background Crops engineered to produce insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt) are planted on millions of hectares annually, reducing the use of conventional insecticides and suppressing pests. However, the evolution of resistance could cut short these benefits. A primary pest targeted by Bt maize in the United States is the western corn rootworm Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae). Methodology/Principal Findings We report that fields identified by farmers as having severe rootworm feeding injury to Bt maize contained populations of western corn rootworm that displayed significantly higher survival on Cry3Bb1 maize in laboratory bioassays than did western corn rootworm from fields not associated with such feeding injury. In all cases, fields experiencing severe rootworm feeding contained Cry3Bb1 maize. Interviews with farmers indicated that Cry3Bb1 maize had been grown in those fields for at least three consecutive years. There was a significant positive correlation between the number of years Cry3Bb1 maize had been grown in a field and the survival of rootworm populations on Cry3Bb1 maize in bioassays. However, there was no significant correlation among populations for survival on Cry34/35Ab1 maize and Cry3Bb1 maize, suggesting a lack of cross resistance between these Bt toxins. Conclusions/Significance This is the first report of field-evolved resistance to a Bt toxin by the western corn rootworm and by any species of Coleoptera. Insufficient planting of refuges and non-recessive inheritance of resistance may have contributed to resistance. These results suggest that improvements in resistance management and a more integrated approach to the use of Bt crops may be necessary. PMID:21829470

  10. Screening of Bacillus thuringiensis strains effective against mosquitoes Prospecção de estirpes de Bacillus thuringiensis efetivas contra mosquitos

    Directory of Open Access Journals (Sweden)

    Rose Gomes Monnerat

    2005-02-01

    Full Text Available The objective of this work was to evaluate 210 Bacillus thuringiensis strains against Aedes aegypti and Culex quinquefasciatus larvae to select the most effective. These strains were isolated from different regions of Brazil and are stored in a Bacillus spp. collection at Embrapa Recursos Genéticos e Biotecnologia, Brasília, Brazil. The selected strains were characterized by morphological (microscopy, biochemical (SDS-PAGE 10% and molecular (PCR methods. Six B. thuringiensis strains were identified as mosquito-toxic after the selective bioassays. None of the strains produced the expected PCR products for detection of cry4, cry11 and cyt1A genes. These results indicate that the activity of mosquitocidal Brazilian strains are not related with Cry4, Cry11 or Cyt proteins, so they could be used as an alternative bioinsecticide against mosquitoes.Neste trabalho foram realizados testes de patogenicidade com 210 estirpes de Bacillus thuringiensis contra larvas de Aedes aegypti e Culex quinquefasciatus, a fim de se determinar as mais eficazes. Estas estirpes foram isoladas de diversas regiões do Brasil e estão armazenadas na coleção de Bacillus spp. da Embrapa Recursos Genéticos e Biotecnologia. As estirpes selecionadas foram caracterizadas por métodos morfológicos (microscopia, bioquímicos (SDS-PAGE 10% e moleculares (Reação em Cadeia da Polimerase. Foram selecionadas seis estirpes entomopatogênicas de Bacillus thuringiensis. Nenhuma das estirpes de Bacillus thuringiensis apresentou produtos de PCR esperados para a detecção dos genes cry4, cry11 e cyt1A. A patogenicidade das estirpes não está associada à presença das toxinas Cry4, Cry11 ou Cyt, assim, essas estirpes poderão ser utilizadas para a formatação de um bioinseticida alternativo contra mosquitos.

  11. Persistence of detectable insecticidal proteins from Bacillus thuringiensis (Cry) and toxicity after adsorption on contrasting soils

    International Nuclear Information System (INIS)

    Hung, T.P.; Truong, L.V.; Binh, N.D.; Frutos, R.; Quiquampoix, H.; Staunton, S.

    2016-01-01

    Insecticidal Cry, or Bt, proteins are produced by the soil-endemic bacterium, Bacillus thuringiensis and some genetically modified crops. Their environmental fate depends on interactions with soil. Little is known about the toxicity of adsorbed proteins and the change in toxicity over time. We incubated Cry1Ac and Cry2A in contrasting soils subjected to different treatments to inhibit microbial activity. The toxin was chemically extracted and immunoassayed. Manduca sexta was the target insect for biotests. Extractable toxin decreased during incubation for up to four weeks. Toxicity of Cry1Ac was maintained in the adsorbed state, but lost after 2 weeks incubation at 25 °C. The decline in extractable protein and toxicity were much slower at 4 °C with no significant effect of soil sterilization. The major driving force for decline may be time-dependent fixation of adsorbed protein, leading to a decrease in the extraction yield in vitro, paralleled by decreasing solubilisation in the larval gut. - Graphical abstract: Biotest, presenting Cry-contaminated feed to Manduca sexta larvae in individual Perspex boxes. Display Omitted - Highlights: • Toxicity of Cry protein is initially conserved after adsorption on soil. • Toxicity and extractability decline with time, more rapidly at 25 °C than 4 °C. • Similar dynamics of Cry1AC and Cry2A on soil with varying texture and organic C. • Sterilization of soil does not change Cry dynamics or temperature effect in soil. • Cry decline is determined by progressive fixation on soil not microbial breakdown. - Toxicity was initially maintained after adsorption on soil and both extractable Cry and toxicity declined rapidly, more slowly at low temperature, due to different fixation dynamics. Toxicity of Cry protein is initially conserved after adsorption on soil.

  12. Effects of a diet containing genetically modified rice expressing the Cry1Ab/1Ac protein (Bacillus thuringiensis toxin) on broiler chickens.

    Science.gov (United States)

    Li, Zeyang; Gao, Yang; Zhang, Minhong; Feng, Jinghai; Xiong, Yandan

    2015-01-01

    The aim of this study was to evaluate the effect of feeding Bacillus thuringiensis (Bt) rice expressing the Cry1Ab/1Ac protein on broiler chicken. The genetically modified (GM) Bt rice was compared with the corresponding non-GM rice regarding performance of feeding groups, their health status, relative organ weights, biochemical serum parameters and occurrence of Cry1Ab/1Ac gene fragments. One hundred and eighty day-old Arbor Acres female broilers with the same health condition were randomly allocated to the two treatments (6 replicate cages with 15 broilers in each cage per treatment). They received diets containing GM rice (GM group) or its parental non-GM rice (non-GM group) at 52-57% of the air-dried diet for 42 days. The results show that the transgenic rice had a similar nutrient composition as the non-GM rice and had no adverse effects on chicken growth, biochemical serum parameters and necropsy during the 42-day feeding period. In birds fed the GM rice, no transgenic gene fragments were detected in the samples of blood, liver, kidneys, spleen, jejunum, ileum, duodenum and muscle tissue. In conclusion, the results suggest that Bt rice expressing Cry1Ab/1Ac protein has no adverse effects on broiler chicken. Therefore, it can be considered as safe and used as feed source for broiler chicken.

  13. Influences of Cry1Ac broccoli on larval survival and oviposition of diamondback moth.

    Science.gov (United States)

    Yi, Dengxia; Cui, Shusong; Yang, Limei; Fang, Zhiyuan; Liu, Yumei; Zhuang, Mu; Zhang, Yangyong

    2015-01-01

    Larval survival and oviposition behavior of three genotypes of diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae), (homozygous Cry1Ac-susceptibile, Cry1Ac-resistant, and their F1 hybrids), on transgenic Bacillus thuringiensis (Bt) broccoli expressing different levels of Cry1Ac protein were evaluated in laboratory. These Bt broccoli lines were designated as relative low, medium, and high, respectively, according to the Cry1Ac content. Untransformed brocccoli plants were used as control. Larval survival of diamondback moth on non-Bt leaves was not significantly different among the three genotypes. The Cry1Ac-resistant larvae could survive on the low level of Bt broccoli plants, while Cry1Ac-susceptible and F1 larvae could not survive on them. The three genotypes of P. xylostella larvae could not survive on medium and high levels of Bt broccoli. In oviposition choice tests, there was no significant difference in the number of eggs laid by the three P. xylostella genotypes among different Bt broccoli plants. The development of Cry1Ac-susceptible and Cry1Ac-resistant P. xylostella on intact Bt plants was also tested in greenhouse. All susceptible P. xylostella larvae died on all Bt plants, while resistant larvae could survive on broccoli, which expresses low Cry1Ac protein under greenhouse conditions. The results of the greenhouse trials were similar to that of laboratory tests. This study indicated that high dose of Bt toxins in broccoli cultivars or germplasm lines is required for effective resistance management. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.

  14. Bacillus thuringiensis Cry1Ia10 and Vip3Aa protein interactions and their toxicity in Spodoptera spp. (Lepidoptera).

    Science.gov (United States)

    Bergamasco, V B; Mendes, D R P; Fernandes, O A; Desidério, J A; Lemos, M V F

    2013-02-01

    The polyphagous pests belonging to the genus Spodoptera are considered to be among the most important causes of damage and are widely distributed throughout the Americas'. Due to the extensive use of genetically modified plants containing Bacillus thuringiensis genes that code for insecticidal proteins, resistant insects may arise. To prevent the development of resistance, pyramided plants, which express multiple insecticidal proteins that act through distinct mode of actions, can be used. This study analyzed the mechanisms of action for the proteins Cry1Ia10 and Vip3Aa on neonatal Spodoptera frugiperda, Spodoptera albula, Spodoptera eridania and Spodoptera cosmioides larvae. The interactions of these toxins with receptors on the intestinal epithelial membrane were also analyzed by binding biotinylated toxins to brush border membrane vesicles (BBMVs) from the intestines of these insects. A putative receptor of approximately 65 kDa was found by ligand blotting in all of these species. In vitro competition assays using biotinylated proteins have indicated that Vip3Aa and Cry1Ia10 do not compete for the same receptor for S. frugiperda, S. albula and S. cosmioides and that Vip3Aa was more efficient than Cry1Ia10 when tested individually, by bioassays. A synergistic effect of the toxins in S. frugiperda, S. albula and S. cosmioides was observed when they were combined. However, in S. eridania, Cry1Ia10 and Vip3Aa might compete for the same receptor and through bioassays Cry1Ia10 was more efficient than Vip3Aa and showed an antagonistic effect when the proteins were combined. These results suggest that using these genes to develop pyramided plants may not prove effective in preventing the development of resistance in S. eridiana. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Estirpes de Bacillus thuringiensis efetivas contra insetos das ordens Lepidoptera, Coleoptera e Diptera Bacillus thuringiensis strains effective against insects of Lepidoptera, Coleoptera and Diptera orders

    Directory of Open Access Journals (Sweden)

    Lílian Botelho Praça

    2004-01-01

    Full Text Available O objetivo deste trabalho foi selecionar entre 300 estirpes de Bacillus thuringiensis as efetivas simultaneamente contra larvas de Spodoptera frugiperda J.E. Smith e Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae, Anthonomus grandis Boheman (Coleoptera: Curculionidae, Aedes aegypti Linnaeus e Culex quinquefasciatus Say (Diptera: Culicidae. Foram selecionadas duas estirpes de B. thuringiensis, denominadas S234 e S997, que apresentaram atividade contra as três ordens de insetos. As estirpes foram caracterizadas por métodos morfológicos, bioquímicos e moleculares. As mesmas apresentaram duas proteínas principais de 130 e 65 kDa, produtos de reação em cadeia da polimerase de tamanho esperado para a detecção dos genes cry1Aa, cry1Ab, cry1Ac, cry1B e cry2 e cristais bipiramidais, cubóides e esféricos.The aim of this work was to select among 300 strains of Bacillus thuringiensis those which are simultaneously effective against larvae of Spodoptera frugiperda J.E. Smith and Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae, Anthonomus grandis Boheman (Coleoptera: Curculionidae, Aedes aegypti Linnaeus and Culex quinquefasciatus Say (Diptera: Culicidae. Two strains of B. thuringiensis were selected, S234 and S997, which presented activity against those three insect orders. Both strains were characterized by morphological, biochemical and molecular methods. They have presented two main proteins with 130 and 65 kDa, polimerase chain reaction products with expected sizes for detection of the genes cry1Aa, cry1Ab, cry1Ac, cry1B and cry2 and bipiramidal, cubical and spherical crystals.

  16. A theoretical model of the tridimensional structure of Bacillus thuringiensis subsp. medellin Cry 11Bb toxin deduced by homology modelling

    Directory of Open Access Journals (Sweden)

    Gutierrez Pablo

    2001-01-01

    Full Text Available Cry11Bb is an insecticidal crystal protein produced by Bacillus thuringiensis subsp. medellin during its stationary phase; this ¶-endotoxin is active against dipteran insects and has great potential for mosquito borne disease control. Here, we report the first theoretical model of the tridimensional structure of a Cry11 toxin. The tridimensional structure of the Cry11Bb toxin was obtained by homology modelling on the structures of the Cry1Aa and Cry3Aa toxins. In this work we give a brief description of our model and hypothesize the residues of the Cry11Bb toxin that could be important in receptor recognition and pore formation. This model will serve as a starting point for the design of mutagenesis experiments aimed to the improvement of toxicity, and to provide a new tool for the elucidation of the mechanism of action of these mosquitocidal proteins.

  17. Evaluation of sampling plans to detect Cry9C protein in corn flour and meal.

    Science.gov (United States)

    Whitaker, Thomas B; Trucksess, Mary W; Giesbrecht, Francis G; Slate, Andrew B; Thomas, Francis S

    2004-01-01

    StarLink is a genetically modified corn that produces an insecticidal protein, Cry9C. Studies were conducted to determine the variability and Cry9C distribution among sample test results when Cry9C protein was estimated in a bulk lot of corn flour and meal. Emphasis was placed on measuring sampling and analytical variances associated with each step of the test procedure used to measure Cry9C in corn flour and meal. Two commercially available enzyme-linked immunosorbent assay kits were used: one for the determination of Cry9C protein concentration and the other for % StarLink seed. The sampling and analytical variances associated with each step of the Cry9C test procedures were determined for flour and meal. Variances were found to be functions of Cry9C concentration, and regression equations were developed to describe the relationships. Because of the larger particle size, sampling variability associated with cornmeal was about double that for corn flour. For cornmeal, the sampling variance accounted for 92.6% of the total testing variability. The observed sampling and analytical distributions were compared with the Normal distribution. In almost all comparisons, the null hypothesis that the Cry9C protein values were sampled from a Normal distribution could not be rejected at 95% confidence limits. The Normal distribution and the variance estimates were used to evaluate the performance of several Cry9C protein sampling plans for corn flour and meal. Operating characteristic curves were developed and used to demonstrate the effect of increasing sample size on reducing false positives (seller's risk) and false negatives (buyer's risk).

  18. Histopathological Effects of Bt and TcdA Insecticidal Proteins on the Midgut Epithelium of Western Corn Rootworm Larvae (Diabrotica virgifera virgifera

    Directory of Open Access Journals (Sweden)

    Andrew J. Bowling

    2017-05-01

    Full Text Available Western corn rootworm (WCR, Diabrotica virgifera virgifera LeConte is a major corn pest in the United States, causing annual losses of over $1 billion. One approach to protect against crop loss by this insect is the use of transgenic corn hybrids expressing one or more crystal (Cry proteins derived from Bacillus thuringiensis. Cry34Ab1 and Cry35Ab1 together comprise a binary insecticidal toxin with specific activity against WCR. These proteins have been developed as insect resistance traits in commercialized corn hybrids resistant to WCR feeding damage. Cry34/35Ab1 is a pore forming toxin, but the specific effects of Cry34/35Ab1 on WCR cells and tissues have not been well characterized microscopically, and the overall histopathology is poorly understood. Using high-resolution resin-based histopathology methods, the effects of Cry34/35Ab1 as well as Cry3Aa1, Cry6Aa1, and the Photorhabdus toxin complex protein TcdA have been directly visualized and documented. Clear symptoms of intoxication were observed for all insecticidal proteins tested, including swelling and sloughing of enterocytes, constriction of midgut circular muscles, stem cell activation, and obstruction of the midgut lumen. These data demonstrate the effects of these insecticidal proteins on WCR midgut cells, and the collective response of the midgut to intoxication. Taken together, these results advance our understanding of the insect cell biology and pathology of these insecticidal proteins, which should further the field of insect resistance traits and corn rootworm management.

  19. Induction of rapid and selective cell necrosis in Drosophila using Bacillus thuringiensis Cry toxin and its silkworm receptor.

    Science.gov (United States)

    Obata, Fumiaki; Tanaka, Shiho; Kashio, Soshiro; Tsujimura, Hidenobu; Sato, Ryoichi; Miura, Masayuki

    2015-07-08

    Genetic ablation of target cells is a powerful tool to study the origins and functions of cells, tissue regeneration, or pathophysiology in a human disease model in vivo. Several methods for selective cell ablation by inducing apoptosis have been established, using exogenous toxins or endogenous proapoptotic genes. However, their application is limited to cells with intact apoptotic machinery. Herein, we established a method for inducing rapid and selective cell necrosis by the pore-forming bacterial toxin Cry1Aa, which is specifically active in cells expressing the Cry1Aa receptor (CryR) derived from the silkworm Bombyx mori. We demonstrated that overexpressing CryR in Drosophila melanogaster tissues induced rapid cell death of CryR-expressing cells only, in the presence of Cry1Aa toxin. Cry/CryR system was effective against both proliferating cells in imaginal discs and polyploid postmitotic cells in the fat body. Live imaging analysis of cell ablation revealed swelling and subsequent osmotic lysis of CryR-positive cells after 30 min of incubation with Cry1Aa toxin. Osmotic cell lysis was still triggered when apoptosis, JNK activation, or autophagy was inhibited, suggesting that Cry1Aa-induced necrotic cell death occurred independently of these cellular signaling pathways. Injection of Cry1Aa into the body cavity resulted in specific ablation of CryR-expressing cells, indicating the usefulness of this method for in vivo cell ablation. With Cry toxins from Bacillus thuringiensis, we developed a novel method for genetic induction of cell necrosis. Our system provides a "proteinous drill" for killing target cells through physical injury of the cell membrane, which can potentially be used to ablate any cell type in any organisms, even those that are resistant to apoptosis or JNK-dependent programmed cell death.

  20. Hyperactivity of the Arabidopsis cryptochrome (cry1) L407F mutant is caused by a structural alteration close to the cry1 ATP-binding site.

    Science.gov (United States)

    Orth, Christian; Niemann, Nils; Hennig, Lars; Essen, Lars-Oliver; Batschauer, Alfred

    2017-08-04

    Plant cryptochromes (cry) act as UV-A/blue light receptors. The prototype, Arabidopsis thaliana cry1, regulates several light responses during the life cycle, including de-etiolation, and is also involved in regulating flowering time. The cry1 photocycle is initiated by light absorption by its FAD chromophore, which is most likely fully oxidized (FAD ox ) in the dark state and photoreduced to the neutral flavin semiquinone (FADH°) in its lit state. Cryptochromes lack the DNA-repair activity of the closely related DNA photolyases, but they retain the ability to bind nucleotides such as ATP. The previously characterized L407F mutant allele of Arabidopsis cry1 is biologically hyperactive and seems to mimic the ATP-bound state of cry1, but the reason for this phenotypic change is unclear. Here, we show that cry1 L407F can still bind ATP, has less pronounced photoreduction and formation of FADH° than wild-type cry1, and has a dark reversion rate 1.7 times lower than that of the wild type. The hyperactivity of cry1 L407F is not related to a higher FADH° occupancy of the photoreceptor but is caused by a structural alteration close to the ATP-binding site. Moreover, we show that ATP binds to cry1 in both the dark and the lit states. This binding was not affected by cry1's C-terminal extension, which is important for signal transduction. Finally, we show that a recently discovered chemical inhibitor of cry1, 3-bromo-7-nitroindazole, competes for ATP binding and thereby diminishes FADH° formation, which demonstrates that both processes are important for cry1 function. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Structure and distribution of the Bacillus thuringiensis Cry4Ba toxin in lipid membranes

    International Nuclear Information System (INIS)

    Puntheeranurak, Theeraporn; Stroh, Cordula; Zhu Rong; Angsuthanasombat, Chanan; Hinterdorfer, Peter

    2005-01-01

    Bacillus thuringiensis Cry δ-endotoxins cause death of susceptible insect larvae by forming lytic pores in the midgut epithelial cell membranes. The 65 kDa trypsin activated Cry4Ba toxin was previously shown to be capable of permeabilizing liposomes and forming ionic channels in receptor-free planar lipid bilayers. Here, magnetic ACmode (MACmode) atomic force microscopy (AFM) was used to characterize the lateral distribution and the native molecular structure of the Cry4Ba toxin in the membrane. Liposome fusion and the Langmuir-Blodgett technique were employed for supported lipid bilayer preparations. The toxin preferentially inserted in a self-assembled structure, rather than as a single monomeric molecule. In addition, the spontaneous insertion into receptor-free lipid bilayers lead to formation of characteristic pore-like structures with four-fold symmetry, suggesting that tetramers are the preferred oligomerization state of this toxin

  2. Isolation and characterization of Bacillus thuringiensis from soils in ...

    African Journals Online (AJOL)

    Bioassays were used to test the insecticidal activity of B. thuringiensis strains ... of crystal protein genes, 7 tested positive for cry 4, cry 11, and cyt toxin genes. ... mosquitocidal cry and cyt genes in Bacillus thuringiensis subsp. israelensis.

  3. Binding site alteration is responsible for field-isolated resistance to Bacillus thuringiensis Cry2A insecticidal proteins in two Helicoverpa species.

    Directory of Open Access Journals (Sweden)

    Silvia Caccia

    Full Text Available BACKGROUND: Evolution of resistance by target pests is the main threat to the long-term efficacy of crops expressing Bacillus thuringiensis (Bt insecticidal proteins. Cry2 proteins play a pivotal role in current Bt spray formulations and transgenic crops and they complement Cry1A proteins because of their different mode of action. Their presence is critical in the control of those lepidopteran species, such as Helicoverpa spp., which are not highly susceptible to Cry1A proteins. In Australia, a transgenic variety of cotton expressing Cry1Ac and Cry2Ab (Bollgard II comprises at least 80% of the total cotton area. Prior to the widespread adoption of Bollgard II, the frequency of alleles conferring resistance to Cry2Ab in field populations of Helicoverpa armigera and Helicoverpa punctigera was significantly higher than anticipated. Colonies established from survivors of F(2 screens against Cry2Ab are highly resistant to this toxin, but susceptible to Cry1Ac. METHODOLOGY/PRINCIPAL FINDINGS: Bioassays performed with surface-treated artificial diet on neonates of H. armigera and H. punctigera showed that Cry2Ab resistant insects were cross-resistant to Cry2Ae while susceptible to Cry1Ab. Binding analyses with (125I-labeled Cry2Ab were performed with brush border membrane vesicles from midguts of Cry2Ab susceptible and resistant insects. The results of the binding analyses correlated with bioassay data and demonstrated that resistant insects exhibited greatly reduced binding of Cry2Ab toxin to midgut receptors, whereas no change in (125I-labeled-Cry1Ac binding was detected. As previously demonstrated for H. armigera, Cry2Ab binding sites in H. punctigera were shown to be shared by Cry2Ae, which explains why an alteration of the shared binding site would lead to cross-resistance between the two Cry2A toxins. CONCLUSION/SIGNIFICANCE: This is the first time that a mechanism of resistance to the Cry2 class of insecticidal proteins has been reported

  4. Susceptibility of Anthonomus grandis (cotton boll weevil) and Spodoptera frugiperda (fall armyworm) to a cry1ia-type toxin from a Brazilian Bacillus thuringiensis strain.

    Science.gov (United States)

    Grossi-de-Sa, Maria Fatima; Quezado de Magalhaes, Mariana; Silva, Marilia Santos; Silva, Shirley Margareth Buffon; Dias, Simoni Campos; Nakasu, Erich Yukio Tempel; Brunetta, Patricia Sanglard Felipe; Oliveira, Gustavo Ramos; Neto, Osmundo Brilhante de Oliveira; Sampaio de Oliveira, Raquel; Soares, Luis Henrique Barros; Ayub, Marco Antonio Zachia; Siqueira, Herbert Alvaro Abreu; Figueira, Edson L Z

    2007-09-30

    Different isolates of the soil bacterium Bacillus thuringiensis produce multiple crystal (Cry) proteins toxic to a variety of insects, nematodes and protozoans. These insecticidal Cry toxins are known to be active against specific insect orders, being harmless to mammals, birds, amphibians, and reptiles. Due to these characteristics, genes encoding several Cry toxins have been engineered in order to be expressed by a variety of crop plants to control insectpests. The cotton boll weevil, Anthonomus grandis, and the fall armyworm, Spodoptera frugiperda, are the major economically devastating pests of cotton crop in Brazil, causing severe losses, mainly due to their endophytic habit, which results in damages to the cotton boll and floral bud structures. A cry1Ia-type gene, designated cry1Ia12, was isolated and cloned from the Bt S811 strain. Nucleotide sequencing of the cry1Ia12 gene revealed an open reading frame of 2160 bp, encoding a protein of 719 amino acid residues in length, with a predicted molecular mass of 81 kDa. The amino acid sequence of Cry1Ia12 is 99% identical to the known Cry1Ia proteins and differs from them only in one or two amino acid residues positioned along the three domains involved in the insecticidal activity of the toxin. The recombinant Cry1Ia12 protein, corresponding to the cry1Ia12 gene expressed in Escherichia coli cells, showed moderate toxicity towards first instar larvae of both cotton boll weevil and fall armyworm. The highest concentration of the recombinant Cry1Ia12 tested to achieve the maximum toxicities against cotton boll weevil larvae and fall armyworm larvae were 230 microg/mL and 5 microg/mL, respectively. The herein demonstrated insecticidal activity of the recombinant Cry1Ia12 toxin against cotton boll weevil and fall armyworm larvae opens promising perspectives for the genetic engineering of cotton crop resistant to both these devastating pests in Brazil.

  5. 40 CFR 174.509 - Bacillus thuringiensis Cry3A protein; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis Cry3A protein; exemption from the requirement of a tolerance. 174.509 Section 174.509 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PROCEDURES AND REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances and Tolerance...

  6. Characterization of cry1Cb3 and cry1Fb7 from Bacillus thuringiensis subsp. galleriae

    Czech Academy of Sciences Publication Activity Database

    Huang, T.; Xiao, Y.; Pan, J.; Zhang, L.; Gelbič, Ivan; Guan, X.

    2015-01-01

    Roč. 10, č. 1 (2015), s. 521-528 ISSN 2391-5412 Institutional support: RVO:60077344 Keywords : Bacillus thuringiensis subsp. galleriae * PCR-RFLP * cloning Subject RIV: EB - Genetics ; Molecular Biology http://www.degruyter.com/view/j/biol.2015.10.issue-1/biol-2015-0054/biol-2015-0054.xml

  7. A synthetic cryIC gene, encoding a Bacillus thuringiensis δ-endotoxin, confers Spodoptera resistance in alfalfa and tobacco

    NARCIS (Netherlands)

    Strizhov, N.; Keller, M.; Mathur, J.; Koncz-Kaiman, Z.; Bosch, D.; Prudovksy, E.; Schell, J.; Sneh, B.; Koncz, C.; Zilberstein, A.

    1996-01-01

    Spodoptera species, representing widespread polyphagous insect pests, are resistant to Bacillus thuringiensis δ-endotoxins used thus far as insecticides in transgenic plants. Here we describe the chemical synthesis of a cryIC gene by a novel template directed ligation–PCR method. This simple and

  8. Near-Isogenic Cry1F-Resistant Strain of Spodoptera frugiperda (Lepidoptera: Noctuidae) to Investigate Fitness Cost Associated With Resistance in Brazil.

    Science.gov (United States)

    Horikoshi, Renato J; Bernardi, Oderlei; Bernardi, Daniel; Okuma, Daniela M; Farias, Juliano R; Miraldo, Leonardo L; Amaral, Fernando S A; Omoto, Celso

    2016-04-01

    Field-evolved resistance to Cry1F maize in Spodoptera frugiperda (J.E. Smith) populations in Brazil was reported in 2014. In this study, to investigate fitness costs, we constructed a near-isogenic S. frugiperda-resistant strain (R-Cry1F) using Cry1F-resistant and Cry1F-susceptible strains sharing a close genetic background. A near-isogenic R-Cry1F strain was obtained by eight repeated backcrossings, each followed by sib-mating and selection among resistant and susceptible strains. Fitness cost parameters were evaluated by comparing the biological performance of resistant, susceptible, and heterozygous strains on artificial diet. Fitness parameters monitored included development time and survival rates of egg, larval, pupal, and egg-to-adult periods; sex ratio; adult longevity; timing of preoviposition, oviposition, and postoviposition; fecundity; and fertility. A fertility life table was also calculated. The near-isogenic R-Cry1F strain showed lower survival rate of eggs (32%), when compared with Sus and reciprocal crosses (41 and 55%, respectively). The number of R-Cry1F insects that completed the life cycle was reduced to ∼25%, compared with the Sus strain with ∼32% reaching the adult stage. The mean generation time (T) of R-Cry1F strain was ∼2 d shorter than R-Cry1F♂×Sus♀ and Sus strains. The reproductive parameters of R-Cry1F strain were similar to the Sus strain. However, fewer females were produced by R-Cry1F strain than R-Cry1F♀×Sus♂ and more females than R-Cry1F♂×Sus♀. In summary, no relevant fitness costs are observed in a near-isogenic Cry1F-resistant strain of S. frugiperda, indicating stability of resistance to Cry1F protein in Brazilian populations of this species in the absence of selection pressure.

  9. MAPK Signaling Pathway Alters Expression of Midgut ALP and ABCC Genes and Causes Resistance to Bacillus thuringiensis Cry1Ac Toxin in Diamondback Moth

    Science.gov (United States)

    Wu, Qingjun; Wang, Shaoli; Xie, Wen; Zhu, Xun; Baxter, Simon W.; Zhou, Xuguo; Jurat-Fuentes, Juan Luis; Zhang, Youjun

    2015-01-01

    Insecticidal crystal toxins derived from the soil bacterium Bacillus thuringiensis (Bt) are widely used as biopesticide sprays or expressed in transgenic crops to control insect pests. However, large-scale use of Bt has led to field-evolved resistance in several lepidopteran pests. Resistance to Bt Cry1Ac toxin in the diamondback moth, Plutella xylostella (L.), was previously mapped to a multigenic resistance locus (BtR-1). Here, we assembled the 3.15 Mb BtR-1 locus and found high-level resistance to Cry1Ac and Bt biopesticide in four independent P. xylostella strains were all associated with differential expression of a midgut membrane-bound alkaline phosphatase (ALP) outside this locus and a suite of ATP-binding cassette transporter subfamily C (ABCC) genes inside this locus. The interplay between these resistance genes is controlled by a previously uncharacterized trans-regulatory mechanism via the mitogen-activated protein kinase (MAPK) signaling pathway. Molecular, biochemical, and functional analyses have established ALP as a functional Cry1Ac receptor. Phenotypic association experiments revealed that the recessive Cry1Ac resistance was tightly linked to down-regulation of ALP, ABCC2 and ABCC3, whereas it was not linked to up-regulation of ABCC1. Silencing of ABCC2 and ABCC3 in susceptible larvae reduced their susceptibility to Cry1Ac but did not affect the expression of ALP, whereas suppression of MAP4K4, a constitutively transcriptionally-activated MAPK upstream gene within the BtR-1 locus, led to a transient recovery of gene expression thereby restoring the susceptibility in resistant larvae. These results highlight a crucial role for ALP and ABCC genes in field-evolved resistance to Cry1Ac and reveal a novel trans-regulatory signaling mechanism responsible for modulating the expression of these pivotal genes in P. xylostella. PMID:25875245

  10. MAPK signaling pathway alters expression of midgut ALP and ABCC genes and causes resistance to Bacillus thuringiensis Cry1Ac toxin in diamondback moth.

    Directory of Open Access Journals (Sweden)

    Zhaojiang Guo

    2015-04-01

    Full Text Available Insecticidal crystal toxins derived from the soil bacterium Bacillus thuringiensis (Bt are widely used as biopesticide sprays or expressed in transgenic crops to control insect pests. However, large-scale use of Bt has led to field-evolved resistance in several lepidopteran pests. Resistance to Bt Cry1Ac toxin in the diamondback moth, Plutella xylostella (L., was previously mapped to a multigenic resistance locus (BtR-1. Here, we assembled the 3.15 Mb BtR-1 locus and found high-level resistance to Cry1Ac and Bt biopesticide in four independent P. xylostella strains were all associated with differential expression of a midgut membrane-bound alkaline phosphatase (ALP outside this locus and a suite of ATP-binding cassette transporter subfamily C (ABCC genes inside this locus. The interplay between these resistance genes is controlled by a previously uncharacterized trans-regulatory mechanism via the mitogen-activated protein kinase (MAPK signaling pathway. Molecular, biochemical, and functional analyses have established ALP as a functional Cry1Ac receptor. Phenotypic association experiments revealed that the recessive Cry1Ac resistance was tightly linked to down-regulation of ALP, ABCC2 and ABCC3, whereas it was not linked to up-regulation of ABCC1. Silencing of ABCC2 and ABCC3 in susceptible larvae reduced their susceptibility to Cry1Ac but did not affect the expression of ALP, whereas suppression of MAP4K4, a constitutively transcriptionally-activated MAPK upstream gene within the BtR-1 locus, led to a transient recovery of gene expression thereby restoring the susceptibility in resistant larvae. These results highlight a crucial role for ALP and ABCC genes in field-evolved resistance to Cry1Ac and reveal a novel trans-regulatory signaling mechanism responsible for modulating the expression of these pivotal genes in P. xylostella.

  11. A toxin-binding alkaline phosphatase fragment synergizes Bt toxin Cry1Ac against susceptible and resistant Helicoverpa armigera.

    Directory of Open Access Journals (Sweden)

    Wenbo Chen

    Full Text Available Evolution of resistance by insects threatens the continued success of pest control using insecticidal crystal (Cry proteins from the bacterium Bacillus thuringiensis (Bt in sprays and transgenic plants. In this study, laboratory selection with Cry1Ac yielded five strains of cotton bollworm, Helicoverpa armigera, with resistance ratios at the median lethal concentration (LC50 of activated Cry1Ac ranging from 22 to 1700. Reduced activity and reduced transcription of an alkaline phosphatase protein that binds Cry1Ac was associated with resistance to Cry1Ac in the four most resistant strains. A Cry1Ac-binding fragment of alkaline phosphatase from H. armigera (HaALP1f was not toxic by itself, but it increased mortality caused by Cry1Ac in a susceptible strain and in all five resistant strains. Although synergism of Bt toxins against susceptible insects by toxin-binding fragments of cadherin and aminopeptidase N has been reported previously, the results here provide the first evidence of synergism of a Bt toxin by a toxin-binding fragment of alkaline phosphatase. The results here also provide the first evidence of synergism of a Bt toxin by any toxin-binding peptide against resistant insects.

  12. Activity of Bacillus thuringiensis D(delta)-endotoxins against codling moth (Cydia pomonella L.) larvae

    NARCIS (Netherlands)

    Boncheva, R.; Dukiandjiev, S.; Minkov, I.; Maagd, de R.A.; Naimov, S.

    2006-01-01

    Solubilized protoxins of nine Cry1 and one hybrid Cry1 ¿-endotoxin from Bacillus thuringiensis were tested for their activity against larvae of the codling moth (Cydia pomonella L). Cry1Da was the most toxic, followed by Cry1Ab, Cry1Ba, and Cry1Ac, while Cry1Aa, Cry1Fa, Cry1Ia, and SN19 were still

  13. Dominant inheritance of field-evolved resistance to Bt corn in Busseolafusca.

    Directory of Open Access Journals (Sweden)

    Pascal Campagne

    Full Text Available Transgenic crops expressing Bacillus thuringiensis (Bt toxins have been adopted worldwide, notably in developing countries. In spite of their success in controlling target pests while allowing a substantial reduction of insecticide use, the sustainable control of these pest populations is threatened by the evolution of resistance. The implementation of the "high dose/refuge" strategy for managing insect resistance in transgenic crops aims at delaying the evolution of resistance to Bt crops in pest populations by promoting survival of susceptible insects. However, a crucial condition for the "high dose/refuge" strategy to be efficient is that the inheritance of resistance should be functionally recessive. Busseolafusca developed high levels of resistance to the Bt toxin Cry 1Ab expressed in Bt corn in South Africa. To test whether the inheritance of B. fusca resistance to the Bt toxin could be considered recessive we performed controlled crosses with this pest and evaluated its survival on Bt and non-Bt corn. Results show that resistance of B. fusca to Bt corn is dominant, which refutes the hypothesis of recessive inheritance. Survival on Bt corn was not lower than on non-Bt corn for both resistant larvae and the F1 progeny from resistant × susceptible parents. Hence, resistance management strategies of B. fusca to Bt corn must address non-recessive resistance.

  14. Detection of cry1 genes in Bacillus thuringiensis isolates from South of Brazil and activity against Aanticarsia gemmatalis (Lepidoptera:Noctuidae

    Directory of Open Access Journals (Sweden)

    Bobrowski Vera Lucia

    2001-01-01

    Full Text Available The bacterium Bacillus thuringiensis (Bt is characterized by its ability to produce proteic crystalline inclusions during sporulation. Cry1 protein has insecticidal activity and is highly specific to certain insects and not toxic to unrelated insects, plants or vertebrates. In this work, the patogenicity of twelve Bt isolates was tested against Anticarsia gemmatalis, one of the most important insect pests of soybeans. Spore-crystal complex was applied to the surface of artificial diets and the mortality of A. gemmatalis larvae was assessed seven days after each treatment. When compared to a control Bt isolate known by its high toxicity to A. gemmatalis larvae, four novel Bt isolates exhibited even higher toxic activities against the insect, resulting in more than 90% mortality. PCR was used to amplify DNA fragments related to known cry1 genes. Bt strains with high toxicity produced expected PCR products of around 280 bp, whereas non-toxic or low toxic strains did not produce any PCR product or showed amplified fragments of different sizes. Toxic Bt isolates also exhibited an expected protein profile when total protein extracts were evaluated by SDS-PAGE.

  15. Cross-Resistance between Cry1 Proteins in Fall Armyworm (Spodoptera frugiperda) May Affect the Durability of Current Pyramided Bt Maize Hybrids in Brazil.

    Science.gov (United States)

    Bernardi, Daniel; Salmeron, Eloisa; Horikoshi, Renato Jun; Bernardi, Oderlei; Dourado, Patrick Marques; Carvalho, Renato Assis; Martinelli, Samuel; Head, Graham P; Omoto, Celso

    2015-01-01

    Genetically modified plants expressing insecticidal proteins from Bacillus thuringiensis (Bt) offer valuable options for managing insect pests with considerable environmental and economic benefits. Despite the benefits provided by Bt crops, the continuous expression of these insecticidal proteins imposes strong selection for resistance in target pest populations. Bt maize (Zea mays) hybrids have been successful in controlling fall armyworm (Spodoptera frugiperda), the main maize pest in Brazil since 2008; however, field-evolved resistance to the protein Cry1F has recently been reported. Therefore it is important to assess the possibility of cross-resistance between Cry1F and other Cry proteins expressed in Bt maize hybrids. In this study, an F2 screen followed by subsequent selection on MON 89034 maize was used to select an S. frugiperda strain (RR) able to survive on the Bt maize event MON 89034, which expresses the Cry1A.105 and Cry2Ab2 proteins. Field-collected insects from maize expressing the Cry1F protein (event TC1507) represented most of the positive (resistance allele-containing) (iso)families found. The RR strain showed high levels of resistance to Cry1F, which apparently also conferred high levels of cross resistance to Cry1A.105 and Cry1Ab, but had only low-level (10-fold) resistance to Cry2Ab2. Life history studies to investigate fitness costs associated with the resistance in RR strain revealed only small reductions in reproductive rate when compared to susceptible and heterozygous strains, but the RR strain produced 32.2% and 28.4% fewer females from each female relative to the SS and RS (pooled) strains, respectively. Consistent with the lack of significant resistance to Cry2Ab2, MON 89034 maize in combination with appropriate management practices continues to provide effective control of S. frugiperda in Brazil. Nevertheless, the occurrence of Cry1F resistance in S. frugiperda across Brazil, and the cross-resistance to Cry1Ab and Cry1A.105

  16. Persistence of Bt Bacillus thuringiensis Cry1Aa toxin in various soils determined by physicochemical reactions

    Science.gov (United States)

    Helassa, N.; Noinville, S.; Déjardin, P.; Janot, J. M.; Quiquampoix, H.; Staunton, S.

    2009-04-01

    Insecticidal Cry proteins from the soil bacterium, Bacillus thuringiensis (Bt) are produced by a class of genetically modified (GM) crops, and released into soils through root exudates and upon decomposition of residues. In contrast to the protoxin produced by the Bacillus, the protein produced in GM crops does not require activation in insect midguts and thereby potentially looses some of its species specificity. Although gene transfer and resistance emergence phenomena are well documented, the fate of these toxins in soil has not yet been clearly elucidated. Cry proteins, in common with other proteins, are adsorbed on soils and soil components. Adsorption on soil, and the reversibility of this adsorption is an important aspect of the environmental behaviour of these toxins. The orientation of the molecule and conformational changes on surfaces may modify the toxicity and confer some protection against microbial degradation. Adsorption will have important consequences for both the risk of exposition of non target species and the acquisition of resistance by target species. We have adopted different approaches to investigate the fate of Cry1Aa in soils and model minerals. In each series of experiments we endeavoured to maintain the protein in a monomeric form (pH above 6.5 and a high ionic strength imposed with 150 mM NaCl). The adsorption and the desorbability of the Cry1Aa Bt insecticidal protein were measured on two different homoionic clays: montmorillonite and kaolinite. Adsorption isotherms obtained followed a low affinity interaction for both clays and could be fitted using the Langmuir equation. Binding of the toxin decreased as the pH increased from 6.5 (close to the isoelectric point) to 9. Maximum adsorption was about 40 times greater on montmorillonite (1.71 g g-1) than on kaolinite (0.04 g g-1) in line with the contrasting respective specific surface areas of the minerals. Finally, some of the adsorbed toxin was desorbed by water and more, about 36

  17. Activity of wild-type and hybrid Bacillus thuringiensis delta-endotoxins against Agrotis ipsilon

    NARCIS (Netherlands)

    Maagd, de R.A.; Weemen-Hendriks, M.; Molthoff, J.W.; Naimov, S.

    2003-01-01

    Twelve Cry1 and two Cry9 ?-endotoxins fromBacillus thuringiensis were tested for their activity against black cutworm (Agrotis ipsilon).A. ipsilon was not susceptible to many toxins, but three toxins had significant activity. Cry9Ca was the most toxic, followed by Cry1Aa and Cry1Fb. Hybrids between

  18. Expression of Cry1Ab and Cry2Ab by a polycistronic transgene with a self-cleavage peptide in rice.

    Directory of Open Access Journals (Sweden)

    Qichao Zhao

    Full Text Available Insect resistance to Bacillus thuringiensis (Bt crystal protein is a major threat to the long-term use of transgenic Bt crops. Gene stacking is a readily deployable strategy to delay the development of insect resistance while it may also broaden insecticidal spectrum. Here, we report the creation of transgenic rice expressing discrete Cry1Ab and Cry2Ab simultaneously from a single expression cassette using 2A self-cleaving peptides, which are autonomous elements from virus guiding the polycistronic viral gene expression in eukaryotes. The synthetic coding sequences of Cry1Ab and Cry2Ab, linked by the coding sequence of a 2A peptide from either foot and mouth disease virus or porcine teschovirus-1, regardless of order, were all expressed as discrete Cry1Ab and Cry2Ab at high levels in the transgenic rice. Insect bioassays demonstrated that the transgenic plants were highly resistant to lepidopteran pests. This study suggested that 2A peptide can be utilized to express multiple Bt genes at high levels in transgenic crops.

  19. 40 CFR 174.530 - Bacillus thuringiensis Cry2Ae protein in cotton; temporary exemption from the requirement of a...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis Cry2Ae protein in cotton; temporary exemption from the requirement of a tolerance. 174.530 Section 174.530 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PROCEDURES AND REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS...

  20. Differential protection of Cry1Fa toxin against Spodoptera frugiperda larval gut proteases by cadherin orthologs correlates with increased synergism.

    Science.gov (United States)

    Rahman, Khalidur; Abdullah, Mohd Amir F; Ambati, Suresh; Taylor, Milton D; Adang, Michael J

    2012-01-01

    The Cry proteins produced by Bacillus thuringiensis (Bt) are the most widely used biopesticides effective against a range of crop pests and disease vectors. Like chemical pesticides, development of resistance is the primary threat to the long-term efficacy of Bt toxins. Recently discovered cadherin-based Bt Cry synergists showed the potential to augment resistance management by improving efficacy of Cry toxins. However, the mode of action of Bt Cry synergists is thus far unclear. Here we elucidate the mechanism of cadherin-based Cry toxin synergism utilizing two cadherin peptides, Spodoptera frugiperda Cad (SfCad) and Manduca sexta Cad (MsCad), which differentially enhance Cry1Fa toxicity to Spodoptera frugiperda neonates. We show that differential SfCad- and MsCad-mediated protection of Cry1Fa toxin in the Spodoptera frugiperda midgut correlates with differential Cry1Fa toxicity enhancement. Both peptides exhibited high affinity for Cry1Fa toxin and an increased rate of Cry1Fa-induced pore formation in S. frugiperda. However, only SfCad bound the S. frugiperda brush border membrane vesicle and more effectively prolonged the stability of Cry1Fa toxin in the gut, explaining higher Cry1Fa enhancement by this peptide. This study shows that cadherin fragments may enhance B. thuringiensis toxicity by at least two different mechanisms or a combination thereof: (i) protection of Cry toxin from protease degradation in the insect midgut and (ii) enhancement of pore-forming ability of Cry toxin.

  1. Frequency of Cry1F resistance alleles in Spodoptera frugiperda (Lepidoptera: Noctuidae) in Brazil.

    Science.gov (United States)

    Farias, Juliano R; Andow, David A; Horikoshi, Renato J; Bernardi, Daniel; Ribeiro, Rebeca da S; Nascimento, Antonio Rb do; Santos, Antonio C Dos; Omoto, Celso

    2016-12-01

    The frequency of resistance alleles is a major factor influencing the rate of resistance evolution. Here, we adapted the F 2 screen procedure for Spodoptera frugiperda (J. E. Smith) with a discriminating concentration assay, and extended associated statistical methods to estimate the frequency of resistance to Cry1F protein in S. frugiperda in Brazil when resistance was not rare. We show that F 2 screen is efficient even when the resistance frequency is 0.250. It was possible to screen 517 isoparental lines from 12 populations sampled in five states of Brazil during the first half of 2012. Western Bahia had the highest allele frequency of Cry1F resistance, 0.192, with a 95% confidence interval (CI) between 0.163 and 0.220. All other states had a similar and lower frequency varying from 0.042 in Paraná to 0.080 in Mato Grosso do Sul. The high frequency in western Bahia may be related to year-round availability of maize, the high population density of S. frugiperda, the lack of refuges and the high adoption rate of Cry1F maize. Cry1F resistance alleles were not rare and occurred at frequencies that have already compromised the useful life of TC1507 maize in western Bahia. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  2. Transcriptome profiling of the intoxication response of Tenebrio molitor larvae to Bacillus thuringiensis Cry3Aa protoxin.

    Science.gov (United States)

    Oppert, Brenda; Dowd, Scot E; Bouffard, Pascal; Li, Lewyn; Conesa, Ana; Lorenzen, Marcé D; Toutges, Michelle; Marshall, Jeremy; Huestis, Diana L; Fabrick, Jeff; Oppert, Cris; Jurat-Fuentes, Juan Luis

    2012-01-01

    Bacillus thuringiensis (Bt) crystal (Cry) proteins are effective against a select number of insect pests, but improvements are needed to increase efficacy and decrease time to mortality for coleopteran pests. To gain insight into the Bt intoxication process in Coleoptera, we performed RNA-Seq on cDNA generated from the guts of Tenebrio molitor larvae that consumed either a control diet or a diet containing Cry3Aa protoxin. Approximately 134,090 and 124,287 sequence reads from the control and Cry3Aa-treated groups were assembled into 1,318 and 1,140 contigs, respectively. Enrichment analyses indicated that functions associated with mitochondrial respiration, signalling, maintenance of cell structure, membrane integrity, protein recycling/synthesis, and glycosyl hydrolases were significantly increased in Cry3Aa-treated larvae, whereas functions associated with many metabolic processes were reduced, especially glycolysis, tricarboxylic acid cycle, and fatty acid synthesis. Microarray analysis was used to evaluate temporal changes in gene expression after 6, 12 or 24 h of Cry3Aa exposure. Overall, microarray analysis indicated that transcripts related to allergens, chitin-binding proteins, glycosyl hydrolases, and tubulins were induced, and those related to immunity and metabolism were repressed in Cry3Aa-intoxicated larvae. The 24 h microarray data validated most of the RNA-Seq data. Of the three intoxication intervals, larvae demonstrated more differential expression of transcripts after 12 h exposure to Cry3Aa. Gene expression examined by three different methods in control vs. Cry3Aa-treated larvae at the 24 h time point indicated that transcripts encoding proteins with chitin-binding domain 3 were the most differentially expressed in Cry3Aa-intoxicated larvae. Overall, the data suggest that T. molitor larvae mount a complex response to Cry3Aa during the initial 24 h of intoxication. Data from this study represent the largest genetic sequence dataset for T. molitor

  3. Transcriptome profiling of the intoxication response of Tenebrio molitor larvae to Bacillus thuringiensis Cry3Aa protoxin.

    Directory of Open Access Journals (Sweden)

    Brenda Oppert

    Full Text Available Bacillus thuringiensis (Bt crystal (Cry proteins are effective against a select number of insect pests, but improvements are needed to increase efficacy and decrease time to mortality for coleopteran pests. To gain insight into the Bt intoxication process in Coleoptera, we performed RNA-Seq on cDNA generated from the guts of Tenebrio molitor larvae that consumed either a control diet or a diet containing Cry3Aa protoxin. Approximately 134,090 and 124,287 sequence reads from the control and Cry3Aa-treated groups were assembled into 1,318 and 1,140 contigs, respectively. Enrichment analyses indicated that functions associated with mitochondrial respiration, signalling, maintenance of cell structure, membrane integrity, protein recycling/synthesis, and glycosyl hydrolases were significantly increased in Cry3Aa-treated larvae, whereas functions associated with many metabolic processes were reduced, especially glycolysis, tricarboxylic acid cycle, and fatty acid synthesis. Microarray analysis was used to evaluate temporal changes in gene expression after 6, 12 or 24 h of Cry3Aa exposure. Overall, microarray analysis indicated that transcripts related to allergens, chitin-binding proteins, glycosyl hydrolases, and tubulins were induced, and those related to immunity and metabolism were repressed in Cry3Aa-intoxicated larvae. The 24 h microarray data validated most of the RNA-Seq data. Of the three intoxication intervals, larvae demonstrated more differential expression of transcripts after 12 h exposure to Cry3Aa. Gene expression examined by three different methods in control vs. Cry3Aa-treated larvae at the 24 h time point indicated that transcripts encoding proteins with chitin-binding domain 3 were the most differentially expressed in Cry3Aa-intoxicated larvae. Overall, the data suggest that T. molitor larvae mount a complex response to Cry3Aa during the initial 24 h of intoxication. Data from this study represent the largest genetic sequence

  4. Mating Success, Longevity, and Fertility of Diabrotica virgifera virgifera LeConte (Chrysomelidae: Coleoptera in Relation to Body Size and Cry3Bb1-Resistant and Cry3Bb1-Susceptible Genotypes

    Directory of Open Access Journals (Sweden)

    Bryan Wade French

    2015-11-01

    Full Text Available Insect resistance to population control methodologies is a widespread problem. The development of effective resistance management programs is often dependent on detailed knowledge regarding the biology of individual species and changes in that biology associated with resistance evolution. This study examined the reproductive behavior and biology of western corn rootworm beetles of known body size from lines resistant and susceptible to the Cry3Bb1 protein toxin expressed in transgenic Bacillus thuringiensis maize. In crosses between, and within, the resistant and susceptible genotypes, no differences occurred in mating frequency, copulation duration, courtship duration, or fertility; however, females mated with resistant males showed reduced longevity. Body size did not vary with genotype. Larger males and females were not more likely to mate than smaller males and females, but larger females laid more eggs. Moderately strong, positive correlation occurred between the body sizes of successfully mated males and females; however, weak correlation also existed for pairs that did not mate. Our study provided only limited evidence for fitness costs associated with the Cry3Bb1-resistant genotype that might reduce the persistence in populations of the resistant genotype but provided additional evidence for size-based, assortative mating, which could favor the persistence of resistant genotypes affecting body size.

  5. Single amino acid insertions in extracellular loop 2 of Bombyx mori ABCC2 disrupt its receptor function for Bacillus thuringiensis Cry1Ab and Cry1Ac but not Cry1Aa toxins.

    Science.gov (United States)

    Tanaka, Shiho; Miyamoto, Kazuhisa; Noda, Hiroaki; Endo, Haruka; Kikuta, Shingo; Sato, Ryoichi

    2016-04-01

    In a previous report, seven Cry1Ab-resistant strains were identified in the silkworm, Bombyx mori; these strains were shown to have a tyrosine insertion at position 234 in extracellular loop 2 of the ABC transporter C2 (BmABCC2). This insertion was confirmed to destroy the receptor function of BmABCC2 and confer the strains resistance against Cry1Ab and Cry1Ac. However, these strains were susceptible to Cry1Aa. In this report, we examined the mechanisms of the loss of receptor function of the transporter by expressing mutations in Sf9 cells. After replacement of one or two of the five amino acid residues in loop 2 of the susceptible BmABCC2 gene [BmABCC2_S] with alanine, cells still showed susceptibility, retaining the receptor function. Five mutants with single amino acid insertions at position 234 in BmABCC2 were also generated, resulting in loop 2 having six amino acids, which corresponds to replacing the tyrosine insertion in the resistant BmABCC2 gene [BmABCC2_R(+(234)Y)] with another amino acid. All five mutants exhibited loss of function against Cry1Ab and Cry1Ac. These results suggest that the amino acid sequence in loop 2 is less important than the loop size (five vs. six amino acids) or loop structure for Cry1Ab and Cry1Ac activity. Several domain-swapped mutant toxins were then generated among Cry1Aa, Cry1Ab, and Cry1Ac, which are composed of three domains. Swapped mutants containing domain II of Cry1Ab or Cry1Ac did not kill Sf9 cells expressing BmABCC2_R(+(234)Y), suggesting that domain II of the Cry toxin is related to the interaction with the receptor function of BmABCC2. This also suggests that different reactions against Bt-toxins in some B. mori strains, that is, Cry1Ab resistance or Cry1Aa susceptibility, are attributable to structural differences in domain II of Cry1A toxins. Copyright © 2016. Published by Elsevier Inc.

  6. Food safety assessment of Cry8Ka5 mutant protein using Cry1Ac as a control Bt protein.

    Science.gov (United States)

    Farias, Davi Felipe; Viana, Martônio Ponte; Oliveira, Gustavo Ramos; Santos, Vanessa Olinto; Pinto, Clidia Eduarda Moreira; Viana, Daniel Araújo; Vasconcelos, Ilka Maria; Grossi-de-Sa, Maria Fátima; Carvalho, Ana Fontenele Urano

    2015-07-01

    Cry8Ka5 is a mutant protein from Bacillus thuringiensis (Bt) that has been proposed for developing transgenic plants due to promising activity against coleopterans, like Anthonomus grandis (the major pest of Brazilian cotton culture). Thus, an early food safety assessment of Cry8Ka5 protein could provide valuable information to support its use as a harmless biotechnological tool. This study aimed to evaluate the food safety of Cry8Ka5 protein following the two-tiered approach, based on weights of evidence, proposed by ILSI. Cry1Ac protein was used as a control Bt protein. The history of safe use revealed no convincing hazard reports for Bt pesticides and three-domain Cry proteins. The bioinformatics analysis with the primary amino acids sequence of Cry8Ka5 showed no similarity to any known toxic, antinutritional or allergenic proteins. The mode of action of Cry proteins is well understood and their fine specificity is restricted to insects. Cry8Ka5 and Cry1Ac proteins were rapidly degraded in simulated gastric fluid, but were resistant to simulated intestinal fluid and heat treatment. The LD50 for Cry8Ka5 and Cry1Ac was >5000 mg/kg body weight when administered by gavage in mice. Thus, no expected relevant risks are associated with the consumption of Cry8Ka5 protein. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Intracellular and Extracellular Expression of Bacillus thuringiensis Crystal Protein Cry5B in Lactococcus lactis for Use as an Anthelminthic

    Science.gov (United States)

    Durmaz, Evelyn; Hu, Yan; Aroian, Raffi V.

    2015-01-01

    The Bacillus thuringiensis crystal (Cry) protein Cry5B (140 kDa) and a truncated version of the protein, tCry5B (79 kDa), are lethal to nematodes. Genes encoding the two proteins were separately cloned into a high-copy-number vector with a strong constitutive promoter (pTRK593) in Lactococcus lactis for potential oral delivery against parasitic nematode infections. Western blots using a Cry5B-specific antibody revealed that constitutively expressed Cry5B and tCry5B were present in both cells and supernatants. To increase production, cry5B was cloned into the high-copy-number plasmid pMSP3535H3, carrying a nisin-inducible promoter. Immunoblotting revealed that 3 h after nisin induction, intracellular Cry5B was strongly induced at 200 ng/ml nisin, without adversely affecting cell viability or cell membrane integrity. Both Cry5B genes were also cloned into plasmid pTRK1061, carrying a promoter and encoding a transcriptional activator that invoke low-level expression of prophage holin and lysin genes in Lactococcus lysogens, resulting in a leaky phenotype. Cry5B and tCry5B were actively expressed in the lysogenic strain L. lactis KP1 and released into cell supernatants without affecting culture growth. Lactate dehydrogenase (LDH) assays indicated that Cry5B, but not LDH, leaked from the bacteria. Lastly, using intracellular lysates from L. lactis cultures expressing both Cry5B and tCry5B, in vivo challenges of Caenorhabditis elegans worms demonstrated that the Cry proteins were biologically active. Taken together, these results indicate that active Cry5B proteins can be expressed intracellularly in and released extracellularly from L. lactis, showing potential for future use as an anthelminthic that could be delivered orally in a food-grade microbe. PMID:26682852

  8. Sodium Solute Symporter and Cadherin Proteins Act as Bacillus thuringiensis Cry3Ba Toxin Functional Receptors in Tribolium castaneum*

    Science.gov (United States)

    Contreras, Estefanía; Schoppmeier, Michael; Real, M. Dolores; Rausell, Carolina

    2013-01-01

    Understanding how Bacillus thuringiensis (Bt) toxins interact with proteins in the midgut of susceptible coleopteran insects is crucial to fully explain the molecular bases of Bt specificity and insecticidal action. In this work, aminopeptidase N (TcAPN-I), E-cadherin (TcCad1), and sodium solute symporter (TcSSS) have been identified by ligand blot as putative Cry3Ba toxin-binding proteins in Tribolium castaneum (Tc) larvae. RNA interference knockdown of TcCad1 or TcSSS proteins resulted in decreased susceptibility to Cry3Ba toxin, demonstrating the Cry toxin receptor functionality for these proteins. In contrast, TcAPN-I silencing had no effect on Cry3Ba larval toxicity, suggesting that this protein is not relevant in the Cry3Ba toxin mode of action in Tc. Remarkable features of TcSSS protein were the presence of cadherin repeats in its amino acid sequence and that a TcSSS peptide fragment containing a sequence homologous to a binding epitope found in Manduca sexta and Tenebrio molitor Bt cadherin functional receptors enhanced Cry3Ba toxicity. This is the first time that the involvement of a sodium solute symporter protein as a Bt functional receptor has been demonstrated. The role of this novel receptor in Bt toxicity against coleopteran insects together with the lack of receptor functionality of aminopeptidase N proteins might account for some of the differences in toxin specificity between Lepidoptera and Coleoptera insect orders. PMID:23645668

  9. Reduced levels of membrane-bound alkaline phosphatase are common to lepidopteran strains resistant to Cry toxins from Bacillus thuringiensis.

    Directory of Open Access Journals (Sweden)

    Juan Luis Jurat-Fuentes

    Full Text Available Development of insect resistance is one of the main concerns with the use of transgenic crops expressing Cry toxins from the bacterium Bacillus thuringiensis. Identification of biomarkers would assist in the development of sensitive DNA-based methods to monitor evolution of resistance to Bt toxins in natural populations. We report on the proteomic and genomic detection of reduced levels of midgut membrane-bound alkaline phosphatase (mALP as a common feature in strains of Cry-resistant Heliothis virescens, Helicoverpa armigera and Spodoptera frugiperda when compared to susceptible larvae. Reduced levels of H. virescens mALP protein (HvmALP were detected by two dimensional differential in-gel electrophoresis (2D-DIGE analysis in Cry-resistant compared to susceptible larvae, further supported by alkaline phosphatase activity assays and Western blotting. Through quantitative real-time polymerase chain reaction (qRT-PCR we demonstrate that the reduction in HvmALP protein levels in resistant larvae are the result of reduced transcript amounts. Similar reductions in ALP activity and mALP transcript levels were also detected for a Cry1Ac-resistant strain of H. armigera and field-derived strains of S. frugiperda resistant to Cry1Fa. Considering the unique resistance and cross-resistance phenotypes of the insect strains used in this work, our data suggest that reduced mALP expression should be targeted for development of effective biomarkers for resistance to Cry toxins in lepidopteran pests.

  10. Bacillus thuringiensis monogenic strains: screening and interactions with insecticides used against rice pests

    Science.gov (United States)

    Pinto, Laura M.N.; Dörr, Natália C.; Ribeiro, Ana Paula A.; de Salles, Silvia M.; de Oliveira, Jaime V.; Menezes, Valmir G.; Fiuza, Lidia M.

    2012-01-01

    The screening of Bacillus thuringiensis (Bt) Cry proteins with high potential to control insect pests has been the goal of numerous research groups. In this study, we evaluated six monogenic Bt strains (Bt dendrolimus HD-37, Bt kurstaki HD-1, Bt kurstaki HD-73, Bt thuringiensis 4412, Bt kurstaki NRD-12 and Bt entomocidus 60.5, which codify the cry1Aa, cry1Ab, cry1Ac, cry1Ba, cry1C, cry2A genes respectively) as potential insecticides for the most important insect pests of irrigated rice: Spodoptera frugiperda, Diatraea saccharalis, Oryzophagus oryzae, Oebalus poecilus and Tibraca limbativentris. We also analyzed their compatibility with chemical insecticides (thiamethoxam, labdacyhalothrin, malathion and fipronil), which are extensively used in rice crops. The bioassay results showed that Bt thuringiensis 4412 and Bt entomocidus 60.5 were the most toxic for the lepidopterans, with a 93% and 82% mortality rate for S. frugiperda and D. saccharalis, respectively. For O. oryzae, the Bt kurstaki NRD-12 (64%) and Bt dendrolimus HD-37 (62%) strains were the most toxic. The Bt dendrolimus HD-37 strain also caused high mortality (82%) to O. poecilus, however the strains assessed to T. limbativentris caused a maximum rate of 5%. The assays for the Bt strains interaction with insecticides revealed the compatibility of the six strains with the four insecticides tested. The results from this study showed the high potential of cry1Aa and cry1Ba genes for genetic engineering of rice plants or the strains to biopesticide formulations. PMID:24031872

  11. Specificity and combinatorial effects of Bacillus thuringiensis Cry toxins in the context of GMO environmental risk assessment

    Directory of Open Access Journals (Sweden)

    Angelika eHilbeck

    2015-11-01

    Full Text Available Stacked GM crops expressing up to six Cry toxins from Bacillus thuringiensis are today replacing the formerly grown single- transgene GM crop varieties. Stacking of multiple Cry toxins not only increase the environmental load of toxins but also raise the question on how possible interactions of the toxins can be assessed for risk assessment, which is mandatory for GM crops. However, no operational guidelines for a testing strategy or testing procedures exist. From the developers point of view, little data testing for combinatorial effects of Cry toxins is necessary as the range of affected organisms is focused on pest species and no evidence is claimed to exists pointing to combinatorial effects on nontarget organisms. We have examined this rationale critically using information reported in the scientific literature. To do so we address the hypothesis of narrow specificity of Cry toxins subdivided into three underlying different conceptual conditions i 'efficacy' in target pests as indicator for 'narrow specificity', ii lack of reported adverse effects of Cry toxins on nontarget organisms, and iii proposed modes of action of Cry toxins (or the lack thereof as mechanisms underlying the reported activity/efficacy/specificity of Cry toxins. Complementary to this information we evaluate reports about outcomes of combinatorial effect testing of Cry toxins in the scientific literature and relate those findings to the practice of the environmental risk assessment of Bt-corps in general and of stacked Bt-events in particular.

  12. Confirmation of a predicted lack of IgE binding to Cry3Bb1 from genetically modified (GM) crops.

    Science.gov (United States)

    Nakajima, Osamu; Koyano, Satoru; Akiyama, Hiroshi; Sawada, Jun-Ichi; Teshima, Reiko

    2010-04-01

    Some GM crops including MON863 corn and stack varieties contain Cry3Bb1 protein. Cry3Bb1 is very important from the standpoint of assessing the safety of GM crops. In this study Cry3Bb1 was assessed from the standpoint of possible binding to IgE from allergy patients. First, an ELISA that was improved in our laboratory was used to test serum samples from 13 corn allergy patients in the United States with recombinant Cry3Bb1 expressed in Escherichia coli, and serum samples from 55 patients in Japan with various food allergies were also assayed. Two samples from the Japanese allergy patients were suspected of being positive, but Western blotting analysis with purified Cry3Bb1 indicated that the binding between IgE and Cry3Bb1 was nonspecific. Ultimately, no specific binding between IgE and recombinant Cry3Bb1 was detected. Next, all proteins extracted from MON863 corn and non-GM corn were probed with IgE antibodies in serum samples from the corn allergy patients by Western blotting, but the staining patterns of MON863 and non-GM corn were similar, meaning that unintended allergic reactions to MON863 are unlikely to occur. Our study provides additional information that confirms the predicted lack of IgE binding to Cry3Bb1 in people with existing food allergies. Copyright 2009 Elsevier Inc. All rights reserved.

  13. In vivo binding of the Cry11Bb toxin of Bacillus thuringiensis subsp. medellin to the midgut of mosquito larvae (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Ruiz Lina María

    2004-01-01

    Full Text Available Bacillus thuringiensis subsp. medellin produces numerous proteins among which 94 kDa known as Cry11Bb, has mosquitocidal activity. The mode of action of the Cry11 proteins has been described as similar to those of the Cry1 toxins, nevertheless, the mechanism of action is still not clear. In this study we investigated the in vivo binding of the Cry11Bb toxin to the midgut of the insect species Anopheles albimanus, Aedes aegypti, and Culex quinquefasciatus by immunohistochemical analysis. Spodoptera frugiperda was included as negative control. The Cry11Bb protein was detected on the apical microvilli of the midgut epithelial cells, mostly on the posterior midgut and gastric caeca of the three mosquito species. Additionally, the toxin was detected in the Malpighian tubules of An. albimanus, Ae. aegypti, Cx. quinquefasciatus, and in the basal membrane of the epithelial cells of Ae. aegypti midgut. No toxin accumulation was observed in the peritrophic membrane of any of the mosquito species studied. These results confirm that the primary site of action of the Cry11 toxins is the apical membrane of the midgut epithelial cells of mosquito larvae.

  14. Climate change, transgenic corn adoption and field-evolved resistance in corn earworm.

    Science.gov (United States)

    Venugopal, P Dilip; Dively, Galen P

    2017-06-01

    Increased temperature anomaly during the twenty-first century coincides with the proliferation of transgenic crops containing the bacterium Bacillus thuringiensis (Berliner) (Bt) to express insecticidal Cry proteins. Increasing temperatures profoundly affect insect life histories and agricultural pest management. However, the implications of climate change on Bt crop-pest interactions and insect resistance to Bt crops remains unexamined. We analysed the relationship of temperature anomaly and Bt adoption with field-evolved resistance to Cry1Ab Bt sweet corn in a major pest, Helicoverpa zea (Boddie). Increased Bt adoption during 1996-2016 suppressed H. zea populations, but increased temperature anomaly buffers population reduction. Temperature anomaly and its interaction with elevated selection pressure from high Bt acreage probably accelerated the Bt-resistance development. Helicoverpa zea damage to corn ears, kernel area consumed, mean instars and proportion of late instars in Bt varieties increased with Bt adoption and temperature anomaly, through additive or interactive effects. Risk of Bt-resistant H. zea spreading is high given extensive Bt adoption, and the expected increase in overwintering and migration. Our study highlights the challenges posed by climate change for Bt biotechnology-based agricultural pest management, and the need to incorporate evolutionary processes affected by climate change into Bt-resistance management programmes.

  15. Increased toxicity of Bacillus thuringiensis Cry3Aa against Crioceris quatuordecimpunctata, Phaedon brassicae and Colaphellus bowringi by a Tenebrio molitor cadherin fragment

    Science.gov (United States)

    BACKGROUND: Biopesticides containing Cry insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) are effective against many lepidopteran pests, but there is a lack of Bt-based pesticides to efficiently control important coleopteran pests. Based on the reported increase of Bt toxin olig...

  16. Fitness costs of Cry1F resistance in two populations of fall armyworm, Spodoptera frugiperda (J.E. Smith), collected from Puerto Rico and Florida.

    Science.gov (United States)

    Dangal, Vikash; Huang, Fangneng

    2015-05-01

    The development of resistance in target pest populations is a threat to the sustainability of transgenic crops expressing Bacillus thuringiensis (Bt) proteins. Fall armyworm, Spodoptera frugiperda (J.E. Smith), is a major target pest of Bt maize in North and South America. This insect is the first target pest that has developed field resistance to Bt maize at multiple locations in these regions. The objective of this study was to assess the fitness costs associated with the Cry1F resistance in two populations of S. frugiperda collected from Puerto Rico (RR-PR) and Florida (RR-FL). In the study, fitness costs were evaluated by comparing survival, growth, and developmental time of seven populations of S. frugiperda on (1) non-Bt meridic diet and (2) non-Bt maize leaf tissue and non-Bt diet. The seven populations were RR-PR, RR-FL, a Bt-susceptible strain (Bt-SS), and four F1 populations developed from reciprocal crosses between Bt-SS and the two resistant populations. Biological parameters measured were neonate-to-adult survivorship, neonate-to-adult developmental time, 10day larval weight on non-Bt maize leaf tissue, pupal weight, and sex ratios. Results of the study show that the Cry1F resistance in both RR-PR and RR-FL was associated with considerable fitness costs, especially for the Florida population. Compared to the Bt-susceptible population, RR-PR showed an average of 61.1% reduction in larval weight, 20.4% less in neonate-to-adult survivorship, and 3.7days delay in neonate-to-adult developmental time. These fitness costs for RR-FL were 66.9%, 31.7% and 4.4days, respectively. The fitness costs of RR-PR and RR-FL appeared to be non-recessive. The results indicate that a diversified genetic basis may exist for the Cry1F resistance in S. frugiperda. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Toxicological Evaluation of a Potential Immunosensitizer for Use as a Mucosal Adjuvant—Bacillus thuringiensis Cry1Ac Spore-Crystals: A Possible Inverse Agonist that Deserves Further Investigation

    Directory of Open Access Journals (Sweden)

    Bélin Poletto Mezzomo

    2015-12-01

    Full Text Available In addition to their applicability as biopesticides, Bacillus thuringiensis (Bt Cry1Ac spore-crystals are being researched in the immunology field for their potential as adjuvants in mucosal and parenteral immunizations. We aimed to investigate the hematotoxicity and genotoxicity of Bt spore-crystals genetically modified to express Cry1Ac individually, administered orally (p.o. or with a single intraperitoneal (i.p. injection 24 h before euthanasia, to simulate the routes of mucosal and parenteral immunizations in Swiss mice. Blood samples were used to perform hemogram, and bone marrow was used for the micronucleus test. Cry1Ac presented cytotoxic effects on erythroid lineage in both routes, being more severe in the i.p. route, which also showed genotoxic effects. The greater severity noted in this route, mainly at 6.75 mg/kg, as well as the intermediate effects at 13.5 mg/kg, and the very low hematotoxicity at 27 mg/kg, suggested a possible inverse agonism. The higher immunogenicity for the p.o. route, particularly at 27 mg/kg, suggested that at this dose, Cry 1Ac could potentially be used as a mucosal adjuvant (but not in parenteral immunizations, due to the genotoxic effects observed. This potential should be investigated further, including making an evaluation of the proposed inverse agonism and carrying out cytokine profiling.

  18. Bacillus thuringiensis Cry3Aa protoxin intoxication of Tenebrio molitor induces widespread changes in the expression of serine peptidase transcripts.

    Science.gov (United States)

    Oppert, Brenda; Martynov, Alexander G; Elpidina, Elena N

    2012-09-01

    The yellow mealworm, Tenebrio molitor, is a pest of stored grain products and is sensitive to the Bacillus thuringiensis (Bt) Cry3Aa toxin. As digestive peptidases are a determining factor in Cry toxicity and resistance, we evaluated the expression of peptidase transcripts in the midgut of T. molitor larvae fed either a control or Cry3Aa protoxin diet for 24 h (RNA-Seq), or in larvae exposed to the protoxin for 6, 12, or 24 h (microarrays). Cysteine peptidase transcripts (9) were similar to cathepsins B, L, and K, and their expression did not vary more than 2.5-fold in control and Cry3Aa-treated larvae. Serine peptidase transcripts (48) included trypsin, chymotrypsin and chymotrypsin-like, elastase 1-like, and unclassified serine peptidases, as well as homologs lacking functional amino acids. Highly expressed trypsin and chymotrypsin transcripts were severely repressed, and most serine peptidase transcripts were expressed 2- to 15-fold lower in Cry3Aa-treated larvae. Many serine peptidase and homolog transcripts were found only in control larvae. However, expression of a few serine peptidase transcripts was increased or found only in Cry3Aa-treated larvae. Therefore, Bt intoxication significantly impacted the expression of serine peptidases, potentially important in protoxin processing, while the insect maintained the production of critical digestive cysteine peptidases. Published by Elsevier Inc.

  19. A Tenebrio molitor GPI-anchored alkaline phosphatase is involved in binding of Bacillus thuringiensis Cry3Aa to brush border membrane vesicles.

    Science.gov (United States)

    Zúñiga-Navarrete, Fernando; Gómez, Isabel; Peña, Guadalupe; Bravo, Alejandra; Soberón, Mario

    2013-03-01

    Bacillus thuringiensis Cry toxins recognizes their target cells in part by the binding to glycosyl-phosphatidyl-inositol (GPI) anchored proteins such as aminopeptidase-N (APN) or alkaline phosphatases (ALP). Treatment of Tenebrio molitor brush border membrane vesicles (BBMV) with phospholipase C that cleaves out GPI-anchored proteins from the membranes, showed that GPI-anchored proteins are involved in binding of Cry3Aa toxin to BBMV. A 68 kDa GPI-anchored ALP was shown to bind Cry3Aa by toxin overlay assays. The 68 kDa GPI-anchored ALP was preferentially expressed in early instar larvae in comparison to late instar larvae. Our work shows for the first time that GPI-anchored ALP is important for Cry3Aa binding to T. molitor BBMV suggesting that the mode of action of Cry toxins is conserved in different insect orders. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. The diverse nematicidal properties and biocontrol efficacy of Bacillus thuringiensis Cry6A against the root-knot nematode Meloidogyne hapla.

    Science.gov (United States)

    Yu, Ziquan; Xiong, Jing; Zhou, Qiaoni; Luo, Haiyan; Hu, Shengbiao; Xia, Liqiu; Sun, Ming; Li, Lin; Yu, Ziniu

    2015-02-01

    Cry6A toxin from Bacillus thuringiensis is a representative nematicidal crystal protein with a variety of nematicidal properties to free-living nematode Caenorhabditis elegans. Cry6A shares very low homology and different structure with Cry5B, another representative nematicidal crystal protein, and probably acts in a distinct pathway. All these strongly indicate that Cry6A toxin is likely a potent candidate for nematicide. The present study dealt with global investigation to determine the detrimental impacts of Cry6Aa2 toxin on Meloidogyne hapla, a root-knot nematode, and evaluated its biocontrol efficacy in pot experiment. Obtained results indicated that Cry6Aa2 toxin exhibits obvious toxicity to second-stage juvenile of M. hapla, and significantly inhibits egg hatch, motility, and penetration to host plant. Pot experiment suggested that soil drenching with spore-crystal mixture of Cry6Aa2 can clearly lighten the disease of root-knot nematode, including reduction of galling index and egg masses on host plant root, decreasing final population of nematode in soil. Moreover, application of Cry6Aa2 can obviously promote plant growth. These results demonstrated that Cry6Aa2 toxin is a promising nematicidal agent, and possesses great potential in plant-parasitic nematode management and construction of transgenic crop with constant resistance to nematode. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Toxicological, Biochemical, and Histopathological Analyses Demonstrating That Cry1C and Cry2A Are Not Toxic to Larvae of the Honeybee, Apis mellifera.

    Science.gov (United States)

    Wang, Yuan-Yuan; Li, Yun-He; Huang, Zachary Y; Chen, Xiu-Ping; Romeis, Jörg; Dai, Ping-Li; Peng, Yu-Fa

    2015-07-15

    The honey bee, Apis mellifera, is commonly used as a test species for the regulatory risk assessment of insect-resistant genetically engineered (IRGE) plants. In the current study, a dietary exposure assay was developed, validated, and used to assess the potential toxicity of Cry1C and Cry2A proteins from Bacillus thuringiensis (Bt) to A. mellifera larvae; Cry1C and Cry2A are produced by different IRGE crops. The assay, which uses the soybean trypsin inhibitor (SBTI) as a positive control and bovine serum albumin (BSA) as a negative control, was used to measure the responses of A. mellifera larvae to high concentrations of Cry1C and Cry2A. Survival was reduced and development was delayed when larvae were fed SBTI (1 mg/g diet) but were unaffected when larvae were fed BSA (400 μg/g), Cry1C (50 μg/g), or Cry2A (400 μg/g). The enzymatic activities of A. mellifera larvae were not altered and their midgut brush border membranes (BBMs) were not damaged after being fed with diets containing BSA, Cry1C, or Cry2A; however, enzymatic activities were increased and BBMs were damaged when diets contained SBTI. The study confirms that Cry1C and Cry2A have no acute toxicity to A. mellifera larvae at concentrations >10 times higher than those detected in pollen from Bt plants.

  2. [Genes of insecticidal crystal proteins with dual specificity in Bacillus thuringiensis strains, isolated in the Crimea territory].

    Science.gov (United States)

    Rymar, S Iu; Isakova, I A; Kuznietsova, L M; Kordium, V A

    2006-01-01

    The insecticidal crystal proteins of 15 B. thuringiensis strains, isolated in the Crimea territory that are toxical for some Lepidoptera and Colorado potato beetle larvae were identified by PAGE electrophoresis. Ten strains produced the crystal proteins with high molecular weight (> 120 kD). PCR with use of broad specificity primers and DNA of these B. thuringiensis strains as template demonstrated the specific PCR products (1000 bp). Amplified DNA fragments were cloned and sequenced. The nucleotide sequence analysis revealed that the genomes of ten strains of B. thuringiensis carried Cry1B genes, which are responsible for production of the insecticidal crystal proteins with dual specificity. The influence of the solubilization conditions on the structure and toxicity of Cry1B protein for Colorado potato beetle larvae was shown. The dual toxicity of studied B. thuringiensis strains is explained by the Cry1B genes presence in their genomes. These strains may be used to develop the broad specificity bioinsecticides.

  3. Monitoring resistance to Bacillus thuringiensis subsp. israelensis in the field by performing bioassays with each Cry toxin separately

    Directory of Open Access Journals (Sweden)

    Guillaume Tetreau

    2013-11-01

    Full Text Available Bacillus thuringiensis subsp. israelensis (Bti is increasingly used worldwide for mosquito control and is the only larvicide used in the French Rhône-Alpes region since decades. The artificial selection of mosquitoes with field-persistent Bti collected in breeding sites from this region led to a moderate level of resistance to Bti, but to relatively high levels of resistance to individual Bti Cry toxins. Based on this observation, we developed a bioassay procedure using each Bti Cry toxin separately to detect cryptic Bti-resistance evolving in field mosquito populations. Although no resistance to Bti was detected in none of the three mosquito species tested (Aedes rusticus, Aedes sticticus and Aedes vexans, an increased tolerance to Cry4Aa (3.5-fold and Cry11Aa toxins (8-fold was found in one Ae. sticticus population compared to other populations of the same species, suggesting that resistance to Bti may be arising in this population. This study confirms previous works showing a lack of Bti resistance in field mosquito populations treated for decades with this bioinsecticide. It also provides a first panorama of their susceptibility status to individual Bti Cry toxins. In combination with bioassays with Bti, bioassays with separate Cry toxins allow a more sensitive monitoring of Bti-resistance in the field.

  4. Biological activity of Bt proteins expressed in different structures of transgenic corn against Spodoptera frugiperda

    Directory of Open Access Journals (Sweden)

    Daniel Bernardi

    2016-06-01

    Full Text Available ABSTRACT: Spodoptera frugiperda (J. E. Smith is the main target pest of Bt corn technologies, such as YieldGard VT PRO(tm (Cry1A.105/Cry2Ab2 and PowerCore(tm (Cry1A.105/Cry2Ab2/Cry1F. In this study, it was evaluated the biological activity of Bt proteins expressed in different plant structures of YieldGard VT PRO(tm and PowerCore(tm corn against S. frugiperda . Complete mortality of S. frugiperda neonates was observed on leaf-disc of both Bt corn technologies. However, the mortality in silks and grains was lower than 50 and 6%, respectively. In addition, more than 49% of the surviving larvae in silks and grains completed the biological cycle. However, all life table parameters were negatively affected in insects that developed in silks and grains of both Bt corn events. In summary, the low biological activity of Bt proteins expressed on silks and grains of YieldGard VT PRO(tm and PowerCore(tm corn can contribute to the resistance evolution in S. frugiperda populations.

  5. Agronomic performance of insect-protected and herbicide-tolerant MON 89034 × TC1507 × NK603 × DAS-40278-9 corn is equivalent to that of conventional corn.

    Science.gov (United States)

    de Cerqueira, Denise T Rezende; Schafer, Ariane C; Fast, Brandon J; Herman, Rod A

    2017-07-03

    Agronomic characteristics of genetically modified (GM) MON 89034 × TC1507 × NK603 × DAS-40278-9 (PowerCore™ Enlist™), MON 89034 × TC1507 × NK603 (PowerCore™), and DAS-40278-9 (Enlist™) corn, a non-GM near-isogenic hybrid, and 2 commercial non-GM hybrids were assessed in a field study to determine if the agronomic performance of the GM corn hybrids is equivalent to that of non-transgenic hybrid corn. The MON 89034 × TC1507 × NK603 × DAS-40278-9 hybrid corn was developed through stacking of 4 individual transgenic events, MON 89034, TC1507, NK603, and DAS-40278-9 by traditional breeding and contains the cry1A.105 and cry2Ab2 (MON 89034), cry1F and pat (TC1507), cp4 epsps (NK603) and aad-1 (DAS-40278-9) transgenes. These transgenes encode the proteins Cry1A.105, Cry2Ab2, and Cry1F, which confer insect resistance, PAT, CP4 EPSPS, and AAD-1, which confer herbicide tolerance. The following agronomic characteristics were assessed in the study: initial and final stand count, seedling vigor, time to silk, time to pollen shed, pollen viability, plant height, ear height, stalk lodging, root lodging, days to maturity, stay green, disease incidence, insect damage, herbicide injury, and yield. The agronomic assessment was conducted in 2 regions of Brazil (Indianopolis-MG; Cravinhos-SP). The agronomic attributes for all GM entries were statistically indistinguishable from the non-GM near-isogenic hybrid. In addition, most of the agronomic assessments fell within the range of the commercial varieties included in the study. Taken together, MON 89034 × TC1507 × NK603 × DAS-40278, MON 89034 × TC1507 × NK603, and DAS-40278-9 were found to be agronomically equivalent to non-GM corn.

  6. Susceptibility and aversion of Spodoptera frugiperda to Cry1F Bt maize and considerations for insect resistance management

    Science.gov (United States)

    Bacillus thuringiensis (Bt) maize was developed primarily for North American pests such as European corn borer (Ostrinia nubilalis Hubner). However, most Bt maize products also are cultivated outside of North America, where the primary pests are different and often have lower susceptibility to Bt to...

  7. Seleção e caracterização de estirpes de Bacillus thuringiensis eficientes contra a Diatraea saccharalis (Lepidoptera: Crambidae Selection and characterization of Bacillus thuringiensis efficient strains against Diatraea saccharalis (Lepidoptera: Crambidae

    Directory of Open Access Journals (Sweden)

    Cristina Lima de Macedo

    2012-12-01

    Full Text Available O objetivo deste trabalho foi selecionar e caracterizar estirpes nativas de Bacillus thuringiensis tóxicas a Diatraea saccharalis (Lepidoptera: Crambidae. Cento e seis estirpes pertencentes ao Banco de Bactérias de Invertebrados, da Embrapa Recursos Genéticos e Biotecnologia, foram testadas quanto à toxicidade a D. saccharalis, e, as mais tóxicas, caracterizadas por métodos bioquímicos e moleculares. Das 106 estirpes testadas, 16 causaram 100% de mortalidade em 24 horas. As três estirpes mais tóxicas apresentaram concentração letal média entre 8 e 43 ng cm-2. O perfil proteico das 16 estirpes mostrou a presença de proteínas de 130 e 65 kDa, e a caracterização molecular mostrou a presença dos genes tipo cry1 e cry2: cry1Aa, cry1Ab, cry1Ac e cry2Aa. A concentração letal média de esporos e cristais obtidos a partir de estirpes recombinantes, que expressavam individualmente os genes cry1Aa, cry1Ab, cry1Ac e cry2Aa, variou entre 222 e 610 ng cm-2, valores muito superiores aos das estirpes nativas mais tóxicas, que apresentavam possibilidade de expressão simultânea desses genes. Este resultado é indicativo de que há sinergia entre as toxinas. Há interação entre as toxinas de B. thuringiensis e seus receptores na broca-do-colmo da cana-de-açúcar.The objective of this work was to select and characterize native strains of Bacillus thuringiensis toxic to Diatraea saccharalis (Lepidoptera: Crambidae. A hundred-and-six strains, belonging to the bank of invertebrate bacteria (Brazil, of Embrapa Genetic Resources and Biotechnology, were tested as to their toxicity to D. saccharalis, and the most toxic ones were characterized by biochemical and molecular methods. Out of the 106 tested strains, 16 caused 100% mortality within 24 hours. The three most toxic strains showed median lethal concentrations between 8 and 43 ng cm-2. The protein profile of the 16 strains showed the presence of 130 and 65 kDa proteins, and the molecular

  8. Evaluation of Bt Corn with Pyramided Genes on Efficacy and Insect Resistance Management for the Asian Corn Borer in China.

    Directory of Open Access Journals (Sweden)

    Fan Jiang

    Full Text Available A Bt corn hybrid (AcIe with two Bt genes (cry1Ie and cry1Ac was derived by breeding stack from line expressing Cry1Ie and a line expressing Cry1Ac. Efficacy of this pyramided Bt corn hybrid against the Asian corn borer (ACB, Ostrinia furnacalis, was evaluated. We conducted laboratory bioassays using susceptible and resistant ACB strains fed on artificial diet or fresh plant tissues. We also conducted field trials with artificial infestations of ACB neonates at the V6 and silk stages. The toxin-diet bioassay data indicated that mixtures of Cry1Ac and Cry1Ie proteins had synergistic insecticidal efficacy. The plant tissue bioassay data indicated that Bt corn hybrids expressing either a single toxin (Cry1Ac or Cry1Ie or two toxins had high efficacy against susceptible ACB. Damage ratings in the field trials indicated that the Bt corn hybrids could effectively protect against 1st and the 2nd generation ACB in China. The hybrid line with two Bt genes showed a higher efficacy against ACB larvae resistant to Cry1Ac or CryIe than the hybrid containing one Bt gene, and the two gene hybrid would have increased potential for managing or delaying the evolution of ACB resistance to Bt corn plants.

  9. Evaluation of Bt Corn with Pyramided Genes on Efficacy and Insect Resistance Management for the Asian Corn Borer in China.

    Science.gov (United States)

    Jiang, Fan; Zhang, Tiantao; Bai, Shuxiong; Wang, Zhenying; He, Kanglai

    2016-01-01

    A Bt corn hybrid (AcIe) with two Bt genes (cry1Ie and cry1Ac) was derived by breeding stack from line expressing Cry1Ie and a line expressing Cry1Ac. Efficacy of this pyramided Bt corn hybrid against the Asian corn borer (ACB), Ostrinia furnacalis, was evaluated. We conducted laboratory bioassays using susceptible and resistant ACB strains fed on artificial diet or fresh plant tissues. We also conducted field trials with artificial infestations of ACB neonates at the V6 and silk stages. The toxin-diet bioassay data indicated that mixtures of Cry1Ac and Cry1Ie proteins had synergistic insecticidal efficacy. The plant tissue bioassay data indicated that Bt corn hybrids expressing either a single toxin (Cry1Ac or Cry1Ie) or two toxins had high efficacy against susceptible ACB. Damage ratings in the field trials indicated that the Bt corn hybrids could effectively protect against 1st and the 2nd generation ACB in China. The hybrid line with two Bt genes showed a higher efficacy against ACB larvae resistant to Cry1Ac or CryIe than the hybrid containing one Bt gene, and the two gene hybrid would have increased potential for managing or delaying the evolution of ACB resistance to Bt corn plants.

  10. Activity of a Brazilian strain of Bacillus thuringiensis israelensis against the cotton Boll Weevil Anthonomus grandis Boheman (Coleoptera: Tenebrionidae).

    Science.gov (United States)

    Monnerat, R; Martins, E; Praça, L; Dumas, V; Berry, C

    2012-02-01

    A Brazilian Bacillus thuringiensis subspecies israelensis, toxic to Diptera, including mosquitoes, was found also to show toxicity to the coleopteran boll weevil Anthonomus grandis Boheman at an equivalent level to that of the standard coleopteran-active B. thuringiensis subspecies tenebrionis T08017. Recombinant B. thuringiensis strains expressing the individual Cyt1Aa, Cry4Aa, Cry4Ba and Cry11Aa toxins from this strain were assessed to evaluate their potential contribution to the activity against A. grandis, either alone or in combination. Whilst individual toxins produced mortality, none was sufficiently potent to allow calculation of LC50 values. Combinations of toxins were unable to attain the same potency as the parental B. thuringiensis subsp. israelensis, suggesting a major role for other factors produced by this strain.

  11. Changes in protease activity and Cry3Aa toxin binding in the Colorado potato beetle: implications for insect resistance to Bacillus thuringiensis toxins

    Science.gov (United States)

    Olga Loseva; Mohamed Ibrahim; Mehmet Candas; C. Noah Koller; Leah S. Bauer; Lee A. Jr. Bulla

    2002-01-01

    Widespread commercial use of Bacillus thuringiensis Cry toxins to control pest insects has increased the likelihood for development of insect resistance to this entomopathogen. In this study, we investigated protease activity profiles and toxin-binding capacities in the midgut of a strain of Colorado potato beetle (CPB) that has developed resistance...

  12. Biocontrol of the Sugarcane Borer Eldana saccharina by Expression of the Bacillus thuringiensis cry1Ac7 and Serratia marcescens chiA Genes in Sugarcane-Associated Bacteria

    Science.gov (United States)

    Downing, Katrina J.; Leslie, Graeme; Thomson, Jennifer A.

    2000-01-01

    The cry1Ac7 gene of Bacillus thuringiensis strain 234, showing activity against the sugarcane borer Eldana saccharina, was cloned under the control of the tac promoter. The fusion was introduced into the broad-host-range plasmid pKT240 and the integration vector pJFF350 and without the tac promoter into the broad-host-range plasmids pML122 and pKmM0. These plasmids were introduced into a Pseudomonas fluorescens strain isolated from the phylloplane of sugarcane and the endophytic bacterium Herbaspirillum seropedicae found in sugarcane. The ptac-cry1Ac7 construct was introduced into the chromosome of P. fluorescens using the integration vector pJFF350 carrying the artificial interposon Omegon-Km. Western blot analysis showed that the expression levels of the integrated cry1Ac7 gene were much higher under the control of the tac promoter than under the control of its endogenous promoter. It was also determined that multicopy expression in P. fluorescens and H. seropedicae of ptac-cry1Ac7 carried on pKT240 caused plasmid instability with no detectable protein expression. In H. seropedicae, more Cry1Ac7 toxin was produced when the gene was cloned under the control of the Nmr promoter on pML122 than in the opposite orientation and bioassays showed that the former resulted in higher mortality of E. saccharina larvae than the latter. P. fluorescens 14::ptac-tox resulted in higher mortality of larvae than did P. fluorescens 14::tox. An increased toxic effect was observed when P. fluorescens 14::ptac-tox was combined with P. fluorescens carrying the Serratia marcescens chitinase gene chiA, under the control of the tac promoter, integrated into the chromosome. PMID:10877771

  13. Modeling evolution of resistance of sugarcane borer (Lepidoptera: Crambidae) to transgenic Bt corn.

    Science.gov (United States)

    Kang, J; Huang, F; Onstad, D W

    2014-08-01

    Diatraea saccharalis (F.) (Lepidoptera: Crambidae) is a target pest of transgenic corn expressing Bacillus thuringiensis (Bt) protein, and the first evidence of resistance by D. saccharalis to Cry1Ab corn was detected in a field population in northeast Louisiana in 2004. We used a model of population dynamics and genetics of D. saccharalis to 1) study the effect of interfield dispersal, the first date that larvae enter diapause for overwintering, toxin mortality, the proportion of non-Bt corn in the corn patch, and the area of a crop patch on Bt resistance evolution; and 2) to identify gaps in empirical knowledge for managing D. saccharalis resistance to Bt corn. Increasing, the proportion of corn refuge did not always improve the durability of Bt corn if the landscape also contained sugarcane, sorghum, or rice. In the landscape, which consisted of 90% corn area, 5% sorghum area, and 5% rice area, the durability of single-protein Bt corn was 40 yr when the proportion of corn refuge was 0.2 but 16 yr when the proportion of corn refuge was 0.5. The Bt resistance evolution was sensitive to a change (from Julian date 260 to 272) in the first date larvae enter diapause for overwintering and moth movement. In the landscapes with Bt corn, non-Bt corn, sugarcane, sorghum, and rice, the evolution of Bt resistance accelerated when larvae entered diapause for overwintering early. Intermediate rates of moth movement delayed evolution of resistance more than either extremely low or high rates. This study suggested that heterogeneity in the agrolandscapes may complicate the strategy for managing Bt resistance in D. saccharalis, and designing a Bt resistance management strategy for D. saccharalis is challenging because of a lack of empirical data about overwintering and moth movement.

  14. Bacillus thuringiensis subsp. israelensis and Its Dipteran-Specific Toxins

    Directory of Open Access Journals (Sweden)

    Eitan Ben-Dov

    2014-03-01

    Full Text Available Bacillus thuringiensis subsp. israelensis (Bti is the first Bacillus thuringiensis to be found and used as an effective biological control agent against larvae of many mosquito and black fly species around the world. Its larvicidal activity resides in four major (of 134, 128, 72 and 27 kDa and at least two minor (of 78 and 29 kDa polypeptides encoded respectively by cry4Aa, cry4Ba, cry11Aa, cyt1Aa, cry10Aa and cyt2Ba, all mapped on the 128 kb plasmid known as pBtoxis. These six δ-endotoxins form a complex parasporal crystalline body with remarkably high, specific and different toxicities to Aedes, Culex and Anopheles larvae. Cry toxins are composed of three domains (perforating domain I and receptor binding II and III and create cation-selective channels, whereas Cyts are composed of one domain that acts as well as a detergent-like membrane perforator. Despite the low toxicities of Cyt1Aa and Cyt2Ba alone against exposed larvae, they are highly synergistic with the Cry toxins and hence their combinations prevent emergence of resistance in the targets. The lack of significant levels of resistance in field mosquito populations treated for decades with Bti-bioinsecticide suggests that this bacterium will be an effective biocontrol agent for years to come.

  15. Genetic markers for western corn rootworm resistance to Bt toxin.

    Science.gov (United States)

    Flagel, Lex E; Swarup, Shilpa; Chen, Mao; Bauer, Christopher; Wanjugi, Humphrey; Carroll, Matthew; Hill, Patrick; Tuscan, Meghan; Bansal, Raman; Flannagan, Ronald; Clark, Thomas L; Michel, Andrew P; Head, Graham P; Goldman, Barry S

    2015-01-07

    Western corn rootworm (WCR) is a major maize (Zea mays L.) pest leading to annual economic losses of more than 1 billion dollars in the United States. Transgenic maize expressing insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt) are widely used for the management of WCR. However, cultivation of Bt-expressing maize places intense selection pressure on pest populations to evolve resistance. Instances of resistance to Bt toxins have been reported in WCR. Developing genetic markers for resistance will help in characterizing the extent of existing issues, predicting where future field failures may occur, improving insect resistance management strategies, and in designing and sustainably implementing forthcoming WCR control products. Here, we discover and validate genetic markers in WCR that are associated with resistance to the Cry3Bb1 Bt toxin. A field-derived WCR population known to be resistant to the Cry3Bb1 Bt toxin was used to generate a genetic map and to identify a genomic region associated with Cry3Bb1 resistance. Our results indicate that resistance is inherited in a nearly recessive manner and associated with a single autosomal linkage group. Markers tightly linked with resistance were validated using WCR populations collected from Cry3Bb1 maize fields showing significant WCR damage from across the US Corn Belt. Two markers were found to be correlated with both diet (R2 = 0.14) and plant (R2 = 0.23) bioassays for resistance. These results will assist in assessing resistance risk for different WCR populations, and can be used to improve insect resistance management strategies. Copyright © 2015 Flagel et al.

  16. Multi-state trials of Bt sweet corn varieties for control of the corn earworm (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Shelton, A M; Olmstead, D L; Burkness, E C; Hutchison, W D; Dively, G; Welty, C; Sparks, A N

    2013-10-01

    Field tests in 2010-2011 were performed in New York, Minnesota, Maryland, Ohio, and Georgia to compare Bt sweet corn lines expressing Cry1A.105 + Cry2Ab2 and Cry1Ab with their non-Bt isolines, with and without the use of foliar insecticides. The primary insect pest in all locations during the trial years was Heliocoverpa zea (Boddie), which is becoming the most serious insect pest of sweet corn in the United States. At harvest, the ears were measured for marketability according to fresh market and processing standards. For fresh market and processing, least squares regression showed significant effects of protein expression, state, and insecticide frequency. There was a significant effect of year for fresh market but not for processing. The model also showed significant effects of H. zea per ear by protein expression. Sweet corn containing two genes (Cry1A.105 + Cry2Ab2) and a single gene (Cry1Ab) provided high marketability, and both Bt varieties significantly outperformed the traditional non-Bt isolines in nearly all cases regardless of insecticide application frequency. For pest suppression of H. zea, plants expressing Bt proteins consistently performed better than non-Bt isoline plants, even those sprayed at conventional insecticide frequencies. Where comparisons in the same state were made between Cry1A.105 + Cry2Ab2 and Cry1Ab plants for fresh market, the product expressing Cry1A.105 + Cry2Ab2 provided better protection and resulted in less variability in control. Overall, these results indicate Cry1A.105 + Cry2Ab2 and Cry1Ab plants are suitable for fresh market and processing corn production across a diversity of growing regions and years. Our results demonstrate that Bt sweet corn has the potential to significantly reduce the use of conventional insecticides against lepidopteran pests and, in turn, reduce occupational and environmental risks that arise from intensive insecticide use.

  17. Bacillus thuringiensis Cry5B protein is highly efficacious as a single-dose therapy against an intestinal roundworm infection in mice.

    Directory of Open Access Journals (Sweden)

    Yan Hu

    2010-03-01

    Full Text Available Intestinal parasitic nematode diseases are one of the great diseases of our time. Intestinal roundworm parasites, including hookworms, whipworms, and Ascaris, infect well over 1 billion people and cause significant morbidity, especially in children and pregnant women. To date, there is only one drug, albendazole, with adequate efficacy against these parasites to be used in mass drug administration, although tribendimidine may emerge as a second. Given the hundreds of millions of people to be treated, the threat of parasite resistance, and the inadequacy of current treatments, new anthelmintics are urgently needed. Bacillus thuringiensis (Bt crystal (Cry proteins are the most common used biologically produced insecticides in the world and are considered non-toxic to vertebrates.Here we study the ability of a nematicidal Cry protein, Cry5B, to effect a cure in mice of a chronic roundworm infection caused by the natural intestinal parasite, Heligmosomoides bakeri (formerly polygyrus. We show that Cry5B produced from either of two Bt strains can act as an anthelmintic in vivo when administered as a single dose, achieving a approximately 98% reduction in parasite egg production and approximately 70% reduction in worm burdens when delivered per os at approximately 700 nmoles/kg (90-100 mg/kg. Furthermore, our data, combined with the findings of others, suggest that the relative efficacy of Cry5B is either comparable or superior to current anthelmintics. We also demonstrate that Cry5B is likely to be degraded quite rapidly in the stomach, suggesting that the actual dose reaching the parasites is very small.This study indicates that Bt Cry proteins such as Cry5B have excellent anthelmintic properties in vivo and that proper formulation of the protein is likely to reveal a superior anthelmintic.

  18. Cry3A δ-endotoxin gene mutagenized for enhanced toxicity

    African Journals Online (AJOL)

    Bacillus thuringiensis Cry3A gene was redesigned for high expression in Norwegian spruce and the sequence was slightly modified to allow for simple N- and C- terminal deletions and domain II loop 1 exchange for synthetic oligos. Modified Cry3A toxins from 13 variants of the synthetic gene were expressed in Escherichia ...

  19. Binding Site Concentration Explains the Differential Susceptibility of Chilo suppressalis and Sesamia inferens to Cry1A-Producing Rice

    OpenAIRE

    Han, Lanzhi; Han, Chao; Liu, Zewen; Chen, Fajun; Jurat-Fuentes, Juan Luis; Hou, Maolin; Peng, Yufa

    2014-01-01

    Chilo suppressalis and Sesamia inferens are two important lepidopteran rice pests that occur concurrently during outbreaks in paddy fields in the main rice-growing areas of China. Previous and current field tests demonstrate that the transgenic rice line Huahui 1 (HH1) producing a Cry1Ab-Cry1Ac hybrid toxin from the bacterium Bacillus thuringiensis reduces egg and larval densities of C. suppressalis but not of S. inferens. This differential susceptibility to HH1 rice correlates with the reduc...

  20. Effect of Bacillus thuringiensis parasporal toxin on stimulating of IL-2 and IL-5 cytokines production

    Directory of Open Access Journals (Sweden)

    Marzieh Soleimany

    2018-03-01

    Full Text Available Introduction:Bacillus thuringiensis, is a Gram-positive spore-forming bacterium that produces crystalline parasporal protein (Cry during sporulation. Some of these Cry toxins do not show cytotoxicity against insects but they are capable to kill some human and animal cancer cells. The aim of this study was to verify whether cytocidal parasporal of B thuringiensis strains have immunostimulatory activity on human peripheral blood mononuclear cells (PBMNC and to evaluate the ability of IL-2 and IL-5 production. Materials and methods: B. thuringiensis toxin with cytocidal activity was isolated and treated with proteinase K. PBMNC was cultured and treated with activated crystal proteins. We evaluated the ability of different cytokines production with Flow Cytometry. Results: In this study, immune stimulatory toxins Cry1 were distinguished. This toxin can stimulate production of cytokines IL-2 and stop production of IL-5. Discussion and conclusion: According to anti-cancer effect of B. thuringiensis toxins and also immune stimulatory effect, with more research these toxins can be introduced as immunotherapy drug in cancer treatment.

  1. Layer-by-layer films containing peptides of the Cry1Ab16 toxin from Bacillus thuringiensis for potential biotechnological applications

    International Nuclear Information System (INIS)

    Plácido, Alexandra; Oliveira Farias, Emanuel Airton de; Marani, Mariela M.; Vasconcelos, Andreanne G.; Mafud, Ana C.; Mascarenhas, Yvonne P.; Eiras, Carla

    2016-01-01

    Cry1Ab16 is a toxin of crystalline insecticidal proteins that has been widely used in genetically modified organisms (GMOs) to gain resistance to pests. For the first time, in this study, peptides derived from the immunogenic Cry1Ab16 toxin (from Bacillus thuringiensis) were immobilized as layer-by-layer (LbL) films. Given the concern about food and environmental safety, a peptide with immunogenic potential, PcL342–354C, was selected for characterization of the electrochemical, optical, and morphological properties. The results obtained by cyclic voltammetry (CV) showed that the peptide have an irreversible oxidation process in electrolyte of 0.1 mol·L"−"1 potassium phosphate buffer (PBS) at pH 7.2. It was also observed that the electrochemical response of the peptide is governed mainly by charge transfer. In an attempt to maximize the electrochemical signal of peptide, it was intercalated with natural (agar, alginate and chitosan) or synthetic polymers (polyethylenimine (PEI) and poly(sodium 4-styrenesulfonate (PSS)). The presence of synthetic polymers on the film increased the electrochemical signal of PcL342–354C up to 100 times. Images by Atomic Force Microscopy (AFM) showed that the immobilized PcL342–354C formed self-assembled nanofibers with diameters ranging from 100 to 200 nm on the polymeric film. By UV–Visible spectroscopy (UV–Vis) it was observed that the ITO/PEI/PSS/PcL342–354C film grows linearly up to the fifth layer, thereafter tending to saturation. X-ray diffraction confirmed the presence on the films of crystalline ITO and amorphous polypeptide phases. In general, the ITO/PEI/PSS/PcL342–354C film characterization proved that this system is an excellent candidate for applications in electrochemical sensors and other biotechnological applications for GMOs and environmental indicators. - Highlights: • Peptides of the Cry1Ab16 toxin for potential biotechnological applications • Optimized LbL film deposition for synergic

  2. Layer-by-layer films containing peptides of the Cry1Ab16 toxin from Bacillus thuringiensis for potential biotechnological applications

    Energy Technology Data Exchange (ETDEWEB)

    Plácido, Alexandra [REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto (Portugal); Oliveira Farias, Emanuel Airton de [Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Campus Ministro Reis Velloso, CMRV, Universidade Federal do Piauí, UFPI, 64202020 Parnaíba, Piaui (Brazil); Marani, Mariela M. [IPEEC-CENPAT-CONICET, Centro Nacional Patagónico, Consejo Nacional de Investigaciones Científicas y Técnicas, 9120 Puerto Madryn, Chubut (Argentina); Vasconcelos, Andreanne G. [Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Campus Ministro Reis Velloso, CMRV, Universidade Federal do Piauí, UFPI, 64202020 Parnaíba, Piaui (Brazil); Mafud, Ana C.; Mascarenhas, Yvonne P. [Instituto de Física de São Carlos, Universidade de São Paulo, USP, 13566-590 São Carlos, SP (Brazil); Eiras, Carla [Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Campus Ministro Reis Velloso, CMRV, Universidade Federal do Piauí, UFPI, 64202020 Parnaíba, Piaui (Brazil); Laboratório de Materiais Avançados, LIMAV, Engenharia de Materiais, Centro de Tecnologia, CT, Universidade Federal do Piauí, UFPI, 64049550 Teresina, Piaui (Brazil); and others

    2016-04-01

    Cry1Ab16 is a toxin of crystalline insecticidal proteins that has been widely used in genetically modified organisms (GMOs) to gain resistance to pests. For the first time, in this study, peptides derived from the immunogenic Cry1Ab16 toxin (from Bacillus thuringiensis) were immobilized as layer-by-layer (LbL) films. Given the concern about food and environmental safety, a peptide with immunogenic potential, PcL342–354C, was selected for characterization of the electrochemical, optical, and morphological properties. The results obtained by cyclic voltammetry (CV) showed that the peptide have an irreversible oxidation process in electrolyte of 0.1 mol·L{sup −1} potassium phosphate buffer (PBS) at pH 7.2. It was also observed that the electrochemical response of the peptide is governed mainly by charge transfer. In an attempt to maximize the electrochemical signal of peptide, it was intercalated with natural (agar, alginate and chitosan) or synthetic polymers (polyethylenimine (PEI) and poly(sodium 4-styrenesulfonate (PSS)). The presence of synthetic polymers on the film increased the electrochemical signal of PcL342–354C up to 100 times. Images by Atomic Force Microscopy (AFM) showed that the immobilized PcL342–354C formed self-assembled nanofibers with diameters ranging from 100 to 200 nm on the polymeric film. By UV–Visible spectroscopy (UV–Vis) it was observed that the ITO/PEI/PSS/PcL342–354C film grows linearly up to the fifth layer, thereafter tending to saturation. X-ray diffraction confirmed the presence on the films of crystalline ITO and amorphous polypeptide phases. In general, the ITO/PEI/PSS/PcL342–354C film characterization proved that this system is an excellent candidate for applications in electrochemical sensors and other biotechnological applications for GMOs and environmental indicators. - Highlights: • Peptides of the Cry1Ab16 toxin for potential biotechnological applications • Optimized LbL film deposition for synergic

  3. Impact of transgenic soybean expressing Cry1Ac and Cry1F proteins on the non-target arthropod community associated with soybean in Brazil.

    Science.gov (United States)

    Marques, Luiz H; Santos, Antonio C; Castro, Boris A; Storer, Nicholas P; Babcock, Jonathan M; Lepping, Miles D; Sa, Verissimo; Moscardini, Valéria F; Rule, Dwain M; Fernandes, Odair A

    2018-01-01

    Field-scale studies that examine the potential for adverse effects of Bt crop technology on non-target arthropods may supplement data from laboratory studies to support an environmental risk assessment. A three year field study was conducted in Brazil to evaluate potential for adverse effects of cultivating soybean event DAS-81419-2 that produces the Cry1Ac and Cry1F proteins. To do so, we examined the diversity and abundance of non-target arthropods (NTAs) in Bt soybean in comparison with its non-Bt near isoline, with and without conventional insecticide applications, in three Brazilian soybean producing regions. Non-target arthropod abundance was surveyed using Moericke traps (yellow pan) and pitfall trapping. Total abundance (N), richness (S), Shannon-Wiener (H'), Simpson's (D) and Pielou's evenness (J) values for arthropod samples were calculated for each treatment and sampling period (soybean growth stages). A faunistic analysis was used to select the most representative NTAs which were used to describe the NTA community structure associated with soybean, and to test for effects due to the treatments effects via application of the Principal Response Curve (PRC) method. Across all years and sites, a total of 254,054 individuals from 190 taxa were collected by Moericke traps, while 29,813 individuals from 100 taxa were collected using pitfall traps. Across sites and sampling dates, the abundance and diversity measurements of representative NTAs were not significantly affected by Bt soybean as compared with non-sprayed non-Bt soybean. Similarly, community analyses and repeated measures ANOVA, when applicable, indicated that neither Bt soybean nor insecticide sprays altered the structure of the NTA communities under study. These results support the conclusion that transgenic soybean event DAS-81419-2 producing Cry1Ac and Cry1F toxins does not adversely affect the NTA community associated with soybean.

  4. Field evolved resistance in Helicoverpa armigera (Lepidoptera: Noctuidae to Bacillus thuringiensis toxin Cry1Ac in Pakistan.

    Directory of Open Access Journals (Sweden)

    Anwaar H K Alvi

    Full Text Available Helicoverpa armigera (Hübner is one of the most destructive pests of several field and vegetable crops, with indiscriminate use of insecticides contributing to multiple instances of resistance. In the present study we assessed whether H. armigera had developed resistance to Bt cotton and compared the results with several conventional insecticides. Furthermore, the genetics of resistance was also investigated to determine the inheritance to Cry1Ac resistance. To investigate the development of resistance to Bt cotton, and selected foliar insecticides, H. armigera populations were sampled in 2010 and 2011 in several cotton production regions in Pakistan. The resistance ratios (RR for Cry1Ac, chlorpyrifos, profenofos, cypermethrin, spinosad, indoxacarb, abamectin and deltamethrin were 580-fold, 320-, 1110-, 1950-, 200-, 380, 690, and 40-fold, respectively, compared with the laboratory susceptible (Lab-PK population. Selection of the field collected population with Cry1Ac in 2010 for five generations increased RR to 5440-fold. The selection also increased RR for deltamethrin, chlorpyrifos, profenofos, cypermethrin, spinosad, indoxacarb, abamectin to 125-folds, 650-, 2840-, 9830-, 370-, 3090-, 1330-fold. The estimated LC(50s for reciprocal crosses were 105 µg/ml (Cry1Ac-SEL female × Lab-PK male and 81 g µg/ml (Lab-PK female × Cry1Ac-SEL male suggesting that the resistance to Cry1Ac was autosomal; the degree of dominance (D(LC was 0.60 and 0.57 respectively. Mixing of enzyme inhibitors significantly decreased resistance to Cry1Ac suggesting that the resistance to Cry1Ac and other insecticides tested in the present study was primarily metabolic. Resistance to Cry1Ac was probably due to a single but unstable factor suggesting that crop rotation with non-Bt cotton or other crops could reduce the selection pressure for H. armigera and improve the sustainability of Bt cotton.

  5. Potential factors impacting season-long expression of Cry1Ac in 13 commercial varieties of Bollgard® cotton

    Directory of Open Access Journals (Sweden)

    John J. Adamczyk, Jr.

    2001-11-01

    Full Text Available Thirteen commercial varieties of transgenic Cry1Ac Bacillus thuringiensis Berliner (Bt cotton were examined across two sites in 2000 for potential factors that impact endotoxin expression. In all cases, two varieties (NuCOTN 33B and DP 458B/RR, Delta and Pineland Co., Scott, MS expressed more Cry1Ac than the other 11 varieties in various plant structures. These two varieties share the same parental background (DP 5415. Furthermore, when the next generation of plants were tested in the greenhouse, the same varietal patterns were exhibited. These data strongly suggest that factors such as parental background had a stronger impact on the expression of Cry1Ac than the environment.

  6. Genetic engineering of cotton with a novel cry2AX1 gene to impart insect resistance against Helicoverpa armigera

    Directory of Open Access Journals (Sweden)

    Karunamurthy Dhivya

    2016-09-01

    Full Text Available Embryogenic calli of cotton (Coker310 were cocultivated with the Agrobacterium tumefaciens strain LBA4404 harbouring the codon-optimised, chimeric cry2AX1 gene consisting of sequences from cry2Aa and cry2Ac genes isolated from Indian strains of Bacillus thuringiensis. Forty-eight putative transgenic plants were regenerated, and PCR analysis of these plants revealed the presence of the cry2AX1 gene in 40 plants. Southern blot hybridisation analysis of selected transgenic plants confirmed stable T-DNA integration in the genome of transformed plants. The level of Cry2AX1 protein expression in PCR positive plants ranged from 4.9 to 187.5 ng g-1 of fresh tissue. A transgenic cotton event, TP31, expressing the cry2AX1 gene showed insecticidal activity of 56.66 per cent mortality against Helicoverpa armigera in detached leaf disc bioassay. These results indicate that the chimeric cry2AX1 gene expressed in transgenic cotton has insecticidal activity against H. armigera.

  7. Transformation and evaluation of Cry1Ac+Cry2A and GTGene in Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    Agung Nugroho Puspito

    2015-11-01

    Full Text Available More than 50 countries around the globe cultivate cotton on a large scale. It is a major cash crop of Pakistan and is considered white gold because it is highly important to the economy of Pakistan. In addition to its importance, cotton cultivation faces several problems, such as insect pests, weeds, and viruses. In the past, insects have been controlled by insecticides, but this method caused a severe loss to the economy. However, conventional breeding methods have provided considerable breakthroughs in the improvement of cotton, but it also has several limitations. In comparison with conventional methods, biotechnology has the potential to create genetically modified plants that are environmentally safe and economically viable. In this study, a local cotton variety VH 289 was transformed with two Bt genes (Cry1Ac and Cry2A and a herbicide resistant gene (cp4 EPSPS using the Agrobacterium mediated transformation method. The constitutive CaMV 35S promoter was attached to the genes taken from Bacillus thuringiensis (Bt and to an herbicide resistant gene during cloning, and this promoter was used for the expression of the genes in cotton plants. This construct was used to develop the Glyphosate Tolerance Gene (GTGene for herbicide tolerance and insecticidal gene (Cry1Ac and Cry2A for insect tolerance in the cotton variety VH 289. The transgenic cotton variety performed 85% better compared with the non-transgenic variety. The study results suggest that farmers should use the transgenic cotton variety for general cultivation to improve the production of cotton.

  8. Isolation of Bacillus thuringiensis from the state of Amazonas, in Brazil, and screening against Aedes aegypti (Diptera, Culicidae

    Directory of Open Access Journals (Sweden)

    Joelma Soares-da-Silva

    2015-03-01

    Full Text Available We investigated the use of Bacillus thuringiensis isolated in the state of Amazonas, in Brazil, for the biological control of the dengue vector Aedes aegypti. From 25 soil samples collected in nine municipalities, 484 bacterial colonies were obtained, 57 (11.78% of which were identified as B. thuringiensis. Six isolates, IBt-03, IBt-06, IBt-07, IBt-28, IBt-30, and BtAM-27 showed insecticidal activity, and only BtAM-27 presents the five genes investigated cry4Aa, cry4Ba, cry10Aa, cry11Aa, and cry11Ba. The IBt-07 and IBt- 28, with lower LC50 values, showed equal toxicity compared to the standards. The isolates of B. thuringiensis from Amazonas constitute potential new means of biological control for A. aegypti, because of their larvicidal activity and the possibility that they may also contain new combinations of toxins.

  9. Toxicidad de δ-endotoxinas recombinantes de Bacillus thuringiensis sobre larvas de la polilla guatemalteca (Tecia solanivora (Lepidóptera: Gelechiidae

    Directory of Open Access Journals (Sweden)

    Javier Hernández-Fernández

    2008-07-01

    Full Text Available Con el objetivo de determinar la actividad tóxica específica de las proteínas recombinantes Cry1Aa, Cry1Ac, Cry1B y Cry1C de Bacillus thuringiensis (Bt, sobre larvas de primer instar de Tecia solanivora se estableció la CL50 para las toxinas. Para este fin se implementó la cría masiva de este insecto bajo condiciones de laboratorio, 58±5% de humedad relativa, 18±5ºC de temperatura y un fotoperiodo de 23 h oscuridad y 1 h luz. Se utilizó una dieta seminatural consistente en láminas de papa variedad parda pastusa autoclavada con solución preservante (ácido ascórbico 7 g/L y metilparabeno 5 g/L, ya que fue estable en el tiempo, garantizó la reproducibilidad de los resultados y fue de fácil evaluación. Las proteínas recombinantes se evaluaron a una concentración de 0,1 μg/cm2. Los resultados obtenidos de porcentaje de mortalidad indicaron que no había diferencias entre las delta-endotoxinas recombinantes Cry1Aa, Cry1Ac, Cry1B y Cry1C de Bt (P

  10. Recombinant Cry1Ia protein is highly toxic to cotton boll weevil (Anthonomus grandis Boheman) and fall armyworm (Spodoptera frugiperda).

    Science.gov (United States)

    Martins, E S; Aguiar, R W D S; Martins, N F; Melatti, V M; Falcão, R; Gomes, A C M M; Ribeiro, B M; Monnerat, R G

    2008-05-01

    To evaluate the activity of cry1Ia gene against cotton pests, Spodoptera frugiperda and Anthonomus grandis. Had isolated and characterized a toxin gene from the Bacillus thuringiensis S1451 strain which have been previously shown to be toxic to S. frugiperda and A. grandis. The toxin gene (cry1Ia) was amplified by PCR, sequenced, and cloned into the genome of a baculovirus. The Cry1Ia protein was expressed in baculovirus infected insect cells, producing protein inclusions in infected cells. The Cry1Ia protein has used in bioassays against to S. frugiperda and A. grandis. Bioassays using the purified recombinant protein showed high toxicity to S. frugiperda and A. grandis larvae. Molecular modelling of the Cry1Ia protein translated from the DNA sequence obtained in this work, showed that this protein possibly posses a similar structure to the Cry3A protein. Ultrastructural analysis of midgut cells from A. grandis incubated with the Cry1Ia toxin, showed loss of microvilli integrity. The results indicate that the cry1Ia is a good candidate for the construction of transgenic plants resistant to these important cotton pests.

  11. Midgut microbiota and host immunocompetence underlie Bacillus thuringiensis killing mechanism

    Science.gov (United States)

    Caccia, Silvia; Di Lelio, Ilaria; La Storia, Antonietta; Marinelli, Adriana; Varricchio, Paola; Franzetti, Eleonora; Banyuls, Núria; Tettamanti, Gianluca; Casartelli, Morena; Giordana, Barbara; Ferré, Juan; Gigliotti, Silvia; Pennacchio, Francesco

    2016-01-01

    Bacillus thuringiensis is a widely used bacterial entomopathogen producing insecticidal toxins, some of which are expressed in insect-resistant transgenic crops. Surprisingly, the killing mechanism of B. thuringiensis remains controversial. In particular, the importance of the septicemia induced by the host midgut microbiota is still debated as a result of the lack of experimental evidence obtained without drastic manipulation of the midgut and its content. Here this key issue is addressed by RNAi-mediated silencing of an immune gene in a lepidopteran host Spodoptera littoralis, leaving the midgut microbiota unaltered. The resulting cellular immunosuppression was characterized by a reduced nodulation response, which was associated with a significant enhancement of host larvae mortality triggered by B. thuringiensis and a Cry toxin. This was determined by an uncontrolled proliferation of midgut bacteria, after entering the body cavity through toxin-induced epithelial lesions. Consequently, the hemolymphatic microbiota dramatically changed upon treatment with Cry1Ca toxin, showing a remarkable predominance of Serratia and Clostridium species, which switched from asymptomatic gut symbionts to hemocoelic pathogens. These experimental results demonstrate the important contribution of host enteric flora in B. thuringiensis-killing activity and provide a sound foundation for developing new insect control strategies aimed at enhancing the impact of biocontrol agents by reducing the immunocompetence of the host. PMID:27506800

  12. Distribution and Metabolism of Bt-Cry1Ac Toxin in Tissues and Organs of the Cotton Bollworm, Helicoverpa armigera

    Directory of Open Access Journals (Sweden)

    Zhuoya Zhao

    2016-07-01

    Full Text Available Crystal (Cry proteins derived from Bacillus thuringiensis (Bt have been widely used in transgenic crops due to their toxicity against insect pests. However, the distribution and metabolism of these toxins in insect tissues and organs have remained obscure because the target insects do not ingest much toxin. In this study, several Cry1Ac-resistant strains of Helicoverpa armigera, fed artificial diets containing high doses of Cry1Ac toxin, were used to investigate the distribution and metabolism of Cry1Ac in their bodies. Cry1Ac was only detected in larvae, not in pupae or adults. Also, Cry1Ac passed through the midgut into other tissues, such as the hemolymph and fat body, but did not reach the larval integument. Metabolic tests revealed that Cry1Ac degraded most rapidly in the fat body, followed by the hemolymph, peritrophic membrane and its contents. The toxin was metabolized slowly in the midgut, but was degraded in all locations within 48 h. These findings will improve understanding of the functional mechanism of Bt toxins in target insects and the biotransfer and the bioaccumulation of Bt toxins in arthropod food webs in the Bt crop ecosystem.

  13. Elevated atmospheric ozone increases concentration of insecticidal Bacillus thuringiensis (Bt) Cry1Ac protein in Bt Brassica napus and reduces feeding of a Bt target herbivore on the non-transgenic parent

    International Nuclear Information System (INIS)

    Himanen, Sari J.; Nerg, Anne-Marja; Nissinen, Anne; Stewart, C. Neal; Poppy, Guy M.; Holopainen, Jarmo K.

    2009-01-01

    Sustained cultivation of Bacillus thuringiensis (Bt) transgenic crops requires stable transgene expression under variable abiotic conditions. We studied the interactions of Bt toxin production and chronic ozone exposure in Bt cry1Ac-transgenic oilseed rape and found that the insect resistance trait is robust under ozone elevations. Bt Cry1Ac concentrations were higher in the leaves of Bt oilseed rape grown under elevated ozone compared to control treatment, measured either per leaf fresh weight or per total soluble protein of leaves. The mean relative growth rate of a Bt target herbivore, Plutella xylostella L. larvae was negative on Bt plants in all ozone treatments. On the non-transgenic plants, larval feeding damage was reduced under elevated ozone. Our results indicate the need for monitoring fluctuations in Bt toxin concentrations to reveal the potential of ozone exposure for altering dosing of Bt proteins to target and non-target herbivores in field environments experiencing increasing ozone pollution. - Elevated atmospheric ozone can induce fluctuations in insecticidal protein concentrations in transgenic plants

  14. Elevated atmospheric ozone increases concentration of insecticidal Bacillus thuringiensis (Bt) Cry1Ac protein in Bt Brassica napus and reduces feeding of a Bt target herbivore on the non-transgenic parent

    Energy Technology Data Exchange (ETDEWEB)

    Himanen, Sari J. [University of Kuopio, Department of Environmental Science, P.O. Box 1627, FIN-70211 Kuopio (Finland)], E-mail: sari.himanen@uku.fi; Nerg, Anne-Marja [University of Kuopio, Department of Environmental Science, P.O. Box 1627, FIN-70211 Kuopio (Finland); Nissinen, Anne [University of Kuopio, Department of Environmental Science, P.O. Box 1627, FIN-70211 Kuopio (Finland); MTT Agrifood Research Finland, Plant Protection, FIN-31600 Jokioinen (Finland); Stewart, C. Neal [University of Tennessee, Department of Plant Sciences, Knoxville, TN 37996-4561 (United States); Poppy, Guy M. [University of Southampton, School of Biological Sciences, Southampton SO16 7PX (United Kingdom); Holopainen, Jarmo K. [University of Kuopio, Department of Environmental Science, P.O. Box 1627, FIN-70211 Kuopio (Finland)

    2009-01-15

    Sustained cultivation of Bacillus thuringiensis (Bt) transgenic crops requires stable transgene expression under variable abiotic conditions. We studied the interactions of Bt toxin production and chronic ozone exposure in Bt cry1Ac-transgenic oilseed rape and found that the insect resistance trait is robust under ozone elevations. Bt Cry1Ac concentrations were higher in the leaves of Bt oilseed rape grown under elevated ozone compared to control treatment, measured either per leaf fresh weight or per total soluble protein of leaves. The mean relative growth rate of a Bt target herbivore, Plutella xylostella L. larvae was negative on Bt plants in all ozone treatments. On the non-transgenic plants, larval feeding damage was reduced under elevated ozone. Our results indicate the need for monitoring fluctuations in Bt toxin concentrations to reveal the potential of ozone exposure for altering dosing of Bt proteins to target and non-target herbivores in field environments experiencing increasing ozone pollution. - Elevated atmospheric ozone can induce fluctuations in insecticidal protein concentrations in transgenic plants.

  15. Asian corn borer (ACB) and non-ACB pests in GM corn (Zea mays L.) in the Philippines.

    Science.gov (United States)

    Afidchao, Miladis M; Musters, C J M; de Snoo, Geert R

    2013-07-01

    The Asian corn borer (ACB), Ostrinia furnacalis (Guenée), has become the most damaging pest in corn in south-east Asia. Corn farmers in the Philippines have incurred great yield losses in the past decades because of ACB infestation. Bacillus thuringiensis (Bt) and Bt herbicide-tolerant (BtHT) corns have been developed to reduce borer attacks worldwide. This study assessed the extent of ACB and non-ACB pest infestations in both GM and non-GM corn in Isabela Province, the Philippines. Specific aims were to reinvestigate the efficacy of Bt corn in controlling ACB, to evaluate what parts of Bt corn plants are susceptible to ACB, to monitor the potential development of ACB resistance and to evaluate whether secondary pests dominate in an ACB-free Bt corn environment. The study involved preparatory interviews with farmers, site selection, field scouting and visual inspection of 200 plants along 200 m transect lines through 198 cornfields. Bt corn can efficiently reduce the ACB pest problem and reduce borer damage by 44%, to damage levels in Bt and BtHT corn of 6.8 and 7% respectively. The leaves of Bt corn were more susceptible, while cobs of Bt corn were less affected by ACB. Non-ACB pests were common in Bt toxin-free cornfields and reduced in non-GM cornfields where ACB was abundant. No secondary pest outbreaks were found in ACB-free Bt cornfields. Bt and BtHT corn hybrids containing the Cry1Ab protein performed well in Isabela Province. Reduced cob damage by ACB on Bt fields could mean smaller economic losses even with ACB infestation. The occurrence of ACB in Bt and BtHT cornfields, although at a moderate and insignificant level, could imply the potential development of resistance to Bt toxin. © 2012 Society of Chemical Industry.

  16. Effects of Transgenic cry1Ca Rice on the Development of Xenopus laevis.

    Directory of Open Access Journals (Sweden)

    Xiuping Chen

    Full Text Available In fields of genetically modified, insect-resistant rice expressing Bacillus thuringiensis (Bt proteins, frogs are exposed to Bt Cry proteins by consuming both target and non-target insects, and through their highly permeable skin. In the present study, we assessed the potential risk posed by transgenic cry1Ca rice (T1C-19 on the development of a frog species by adding purified Cry1Ca protein or T1C-19 rice straw into the rearing water of Xenopus laevis tadpoles, and by feeding X. laevis froglets diets containing rice grains of T1C-19 or its non-transformed counterpart MH63. Our results showed that there were no significant differences among groups receiving 100 μg L-1 or 10 μg L-1 Cry1Ca and the blank control in terms of time to completed metamorphosis, survival rate, body weight, body length, organ weight and liver enzyme activity after being exposed to the Cry1Ca (P > 0.05. Although some detection indices in the rice straw groups were significantly different from those of the blank control group (P < 0.05, there was no significant difference between the T1C-19 and MH63 rice straw groups. Moreover, there were no significant differences in the mortality rate, body weight, daily weight gain, liver and fat body weight of the froglets between the T1C-19 and MH63 dietary groups after 90 days, and there were no abnormal pathological changes in the stomach, intestines, livers, spleens and gonads. Thus, we conclude that the planting of transgenic cry1Ca rice will not adversely affect frog development.

  17. Occurrence of Natural Bacillus thuringiensis Contaminants and Residues of Bacillus thuringiensis-Based Insecticides on Fresh Fruits and Vegetables

    Science.gov (United States)

    Frederiksen, Kristine; Rosenquist, Hanne; Jørgensen, Kirsten; Wilcks, Andrea

    2006-01-01

    A total of 128 Bacillus cereus-like strains isolated from fresh fruits and vegetables for sale in retail shops in Denmark were characterized. Of these strains, 39% (50/128) were classified as Bacillus thuringiensis on the basis of their content of cry genes determined by PCR or crystal proteins visualized by microscopy. Random amplified polymorphic DNA analysis and plasmid profiling indicated that 23 of the 50 B. thuringiensis strains were of the same subtype as B. thuringiensis strains used as commercial bioinsecticides. Fourteen isolates were indistinguishable from B. thuringiensis subsp. kurstaki HD1 present in the products Dipel, Biobit, and Foray, and nine isolates grouped with B. thuringiensis subsp. aizawai present in Turex. The commercial strains were primarily isolated from samples of tomatoes, cucumbers, and peppers. A multiplex PCR method was developed to simultaneously detect all three genes in the enterotoxin hemolysin BL (HBL) and the nonhemolytic enterotoxin (NHE), respectively. This revealed that the frequency of these enterotoxin genes was higher among the strains indistinguishable from the commercial strains than among the other B. thuringiensis and B. cereus-like strains isolated from fruits and vegetables. The same was seen for a third enterotoxin, CytK. In conclusion, the present study strongly indicates that residues of B. thuringiensis-based insecticides can be found on fresh fruits and vegetables and that these are potentially enterotoxigenic. PMID:16672488

  18. Cry-Bt identifier: a biological database for PCR detection of Cry genes present in transgenic plants.

    Science.gov (United States)

    Singh, Vinay Kumar; Ambwani, Sonu; Marla, Soma; Kumar, Anil

    2009-10-23

    We describe the development of a user friendly tool that would assist in the retrieval of information relating to Cry genes in transgenic crops. The tool also helps in detection of transformed Cry genes from Bacillus thuringiensis present in transgenic plants by providing suitable designed primers for PCR identification of these genes. The tool designed based on relational database model enables easy retrieval of information from the database with simple user queries. The tool also enables users to access related information about Cry genes present in various databases by interacting with different sources (nucleotide sequences, protein sequence, sequence comparison tools, published literature, conserved domains, evolutionary and structural data). http://insilicogenomics.in/Cry-btIdentifier/welcome.html.

  19. Seleção e caracterização de estirpes de Bacillus thuringiensis efetivas no controle da traça-das-crucíferas Plutella xylostella Selection and characterization of Bacillus thuringiensis strains effective to control the diamondback moth Plutella xylostella

    Directory of Open Access Journals (Sweden)

    Patrícia Teles Medeiros

    2005-11-01

    Full Text Available O objetivo deste trabalho foi selecionar e caracterizar, no Banco de Germoplasma de Bacillus spp., da Empresa Brasileira de Pesquisa Agropecuária, as estirpes de Bacillus thuringiensis mais tóxicas à Plutella xylostella, por métodos morfológicos, bioquímicos e moleculares. Das 203 estirpes testadas, sete causaram 100% de mortalidade e foram semelhantes à estirpe padrão utilizada, B. thuringiensis subsp. kurstaki. Elas apresentaram proteínas de 130 kDa e 65 kDa, presença de genes cry1 e cry2 e cristais bipiramidais, cubóides e redondos. As estirpes selecionadas oferecem novas perspectivas de controle de P. xylostella.The aim of this work was to select and characterize the most toxic Bacillus thuringiensis strains, from the Germplasm Bank of Bacillus spp. of Empresa Brasileira de Pesquisa Agropecuária, against Plutella xylostella. Strains were characterized by morphological, biochemical and molecular methods. It was observed that seven out of the 203 strains tested showed high toxicity compared to the standard used B. thuringiensis subsp. kurstaki (HD-1, which showed 100% mortality. Selected strains showed features described for lepidoptera regarding the protein of 130 kDa and 65 kDa; profile and features were obtained through the PCR reactions, making possible to identify the presence of cry1 and cry2 genes. Moreover, the scanning electron microscopy showed the bipiramydal, cubed and round crystal forms. The selected strains offer new perspectives to control P. xylostella.

  20. Characterization and selection of Bacillus thuringiensis isolates effective against Sitophilus oryzae Caracterização e seleção de isolados de Bacillus thuringiensis efetivos contra Sitophilus oryzae

    Directory of Open Access Journals (Sweden)

    Najara da Silva

    2010-08-01

    Full Text Available The entomopathogenic bacterium Bacillus thuringiensis is a control agent with toxic and environmental characteristics that allows the control of pest insects according to the Integrate Pest Management (IPM precepts. In order to find new strains, potentially toxic to Sitophilus oryzae L. 1763 (Coleoptera: Curculinidae, 1.073 strains of B. thuringiensis from parts of Brazil were used. Genetic material was extracted with InstaGene Matrix kit, used for the amplification of sequences in Polymerase chain reaction (PCR, and viewed in 1.5% agarose gel. The gene cry35Ba class was represented by 60 B. thuringiensis isolates (5.6%, which were then subjected to bioassays with S. oryzae larvae. Among the isolates studied, four caused more than 50% mortality in pathogenicity tests, and the isolates 544 and 622 were the most virulent, as determined by CL50 estimates. The four toxic isolates had spherical, bi-pyramidal and cuboid crystals, and a 44-kDa protein was found in sodium dodecyl sulphate - polyacrylamide gel electrophoresis (SDS-PAGE, which coded for the product of cry35Ba genes. These data demonstrate the potential of B. thuringiensis for the management of S. oryzae larvae.A bactéria entomopatogênica Bacillus thuringiensis (Bt é um agente de controle com características tóxicas e ambientais que permitem o controle de insetos-praga de acordo com as premissas do Manejo integrado de pragas (MIP. Com o objetivo de buscar novas linhagens potencialmente tóxicas para Sitophilus oryzae L. 1763 (Coleoptera: Curculinidae, caracterizaram-se molecularmente 1,073 isolados de B. thuringiensis de regiões do Brasil. O material genético foi extraído através do kit InstaGene Matrix, utilizado para a amplificação das seqüências através da técnica de Polymerase chain reaction PCR, sendo os resultados visualizados em gel de agarose 1,5%. A classe do gene cry35Ba foi representada por 60 isolados (5,6% de Bt, os quais foram submetidos a bioensaio com larvas

  1. Poly-β-hydroxybutyrate Metabolism Is Unrelated to the Sporulation and Parasporal Crystal Protein Formation in Bacillus thuringiensis.

    Science.gov (United States)

    Wang, Xun; Li, Zhou; Li, Xin; Qian, Hongliang; Cai, Xia; Li, Xinfeng; He, Jin

    2016-01-01

    Poly-3-hydroxybutyrate (PHB) is a natural polymer synthesized by many bacteria as a carbon-energy storage material. It was accumulated maximally prior to the spore formation but was degraded during the process of sporulation in Bacillus thuringiensis. Intriguingly, B. thuringiensis also accumulates large amounts of insecticidal crystal proteins (ICPs) during sporulation, which requires considerable input of carbon and energy sources. How PHB accumulation affects sporulation and ICP formation remains unclear to date. Intuitively, one would imagine that accumulated PHB provides the energy required for ICP formation. Yet our current data indicate that this is not the case. First, growth curves of the deletion mutants of phaC (encoding the PHB synthase) and phaZ (encoding the PHB depolymerase) were found to be similar to the parent strain BMB171; no difference in growth rate could be observed. In addition we further constructed the cry1Ac10 ICP gene overexpression strains of BMB171 (BMB171-cry), as well as its phaC and phaZ deletion mutants ΔphaC-cry and ΔphaZ-cry to compare their spore and ICP production rates. Again, not much change of ICP production was observed among these strains either. In fact, PHB was still degraded in most ΔphaZ-cry cells as observed by transmission electron microscopy. Together these results indicated that there is no direct association between the PHB accumulation and the sporulation and ICP formation in B. thuringiensis. Some other enzymes for PHB degradation or other energy source may be responsible for the sporulation and/or ICP formation in B. thuringiensis.

  2. In-silico determination of insecticidal potential of Vip3Aa-Cry1Ac fusion protein against Lepidopteran targets using molecular docking

    Directory of Open Access Journals (Sweden)

    Aftab eAhmad

    2015-12-01

    Full Text Available Study and research of Bt (Bacillus thuringiensis transgenic plants have opened new ways to combat insect pests. Over the decades, however, insect pests, especially the Lepidopteran, have developed tolerance against Bt delta-endotoxins. Such issues can be addressed through the development of novel toxins with greater toxicity and affinity against a broad range of insect receptors. In this computational study, functional domains of Bacillus thuringiensis crystal delta-endotoxin (Cry1Ac insecticidal protein and vegetative insecticidal protein (Vip3Aa have been fused to develop a broad-range Vip3Aa-Cry1Ac fusion protein. Cry1Ac and Vip3Aa are non-homologous insecticidal proteins possessing receptors against different targets within the midgut of insects. The insecticidal proteins were fused to broaden the insecticidal activity. Molecular docking analysis of the fusion protein against aminopeptidase-N (APN and cadherin receptors of five Lepidopteran insects (Agrotis ipsilon, Helicoverpa armigera, Pectinophora gossypiella, Spodoptera exigua and Spodoptera litura revealed that the Ser290, Ser293, Leu337, Thr340 and Arg437 residues of the fusion protein are involved in the interaction with insect receptors. The Helicoverpa armigera cadherin receptor, however, showed no interaction, which might be due to either loss or burial of interactive residues inside the fusion protein. These findings revealed that the Vip3Aa-Cry1Ac fusion protein has a strong affinity against Lepidopteran insect receptors and hence has a potential to be an efficient broad-range insecticidal protein.

  3. Diversity of Bacillus thuringiensis strains isolated from coffee plantations infested with the coffee berry borer Hypothenemus hampei

    Directory of Open Access Journals (Sweden)

    Glen Arrieta

    2004-09-01

    Full Text Available The coffee berry borer Hypothenemus hampei Ferrari (Coleoptera: Scolytidae was first reported infecting Costa Rican coffee plantations in the year 2000. Due to the impact that this plague has in the economy of the country, we were interested in seeking new alternatives for the biological control of H. hampei, based on the entomopathogenic bacteria Bacillus thuringiensis. Atotal of 202 B. thuringiensis isolates obtained from Costa Rican coffee plantations infested with H. hampei were analyzed through crystal morphology of the crystal inclusions and SDS-PAGE of d-endotoxins, while 105 strains were further evaluated by PCR for the presence cry, cyt and vip genes. Most of the Bt strains showed diverse crystal morphologies: pleomorphic (35%, oval (37%, bipyramidal (3%, bipyramidal and oval (12%, bipyramidal, oval and pleomorphic (10% and bipyramidal, oval and cubic (3%. The SDS-PAGE analyses of the crystal preparations showed five strains with delta -endotoxin from 20 to 40 kDa, six from 40 to 50 kDa, seven from 50 to 60 kDa, 19 from 60 to 70 kDa, 29 from 70 to 100 kDa and 39 from 100-145 kDa. PCR analyses demonstrated that the collection showed diverse cry genes profiles having several genes per strain: 78 strains contained the vip3 gene, 82 the cry2 gene, 45 the cry1 and 29 strains harbored cry3-cry7 genes. A total of 13 strains did not amplified with any of the cry primers used: cry1, cry2, cry37, cry5, cry11, cry12 and cry14. Forty-three different genetic profiles were found, mainly due to the combination of cry1A genes with other cry and vip genes. The genetic characterization of the collection provides opportunities for the selection of strains to be tested in bioassays against H. hampei and other insect pests of agricultural importance. Rev. Biol. Trop. 52(3: 757-764. Epub 2004 Dic 15.En el año 2000 se reportó por primera vez la principal plaga del cafeto, conocida como broca (Hypothenemus hampei Ferrari (Coleoptera: Scolitidae en

  4. Toxicidade e capacidade de ligação de proteínas Cry1 a receptores intestinais de Helicoverpa armigera (Lepidoptera: Noctuidae

    Directory of Open Access Journals (Sweden)

    Isis Sebastião

    2015-11-01

    Full Text Available Resumo: O objetivo deste trabalho foi avaliar a toxicidade e a capacidade de ligação das proteínas Cry1Aa, Cry1Ab, Cry1Ac e Cry1Ca, de Bacillus thuringiensis, a receptores intestinais de Helicoverpa armigera. Realizou-se análise de ligação das proteínas ativadas às vesículas de membrana da microvilosidade apical (VMMA do intestino médio deH. armigera, além de ensaios de competição heteróloga para avaliar sua capacidade de ligação. Cry1Ac destacou-se como a proteína mais tóxica, seguida por Cry1Ab e Cry1Aa. A proteína Cry1Ca não foi tóxica às lagartas e, portanto, não foi possível determinar os seus parâmetros de toxicidade CL50 e CL90. As proteínas Cry1Aa, Cry1Ab e Cry1Ac são capazes de se ligar a um mesmo receptor nas membranas intestinais, o que aumenta o risco do desenvolvimento de resistência cruzada. Portanto, a utilização conjunta dessas proteínas deve ser evitada.

  5. A comprehensive assessment of the effects of Bt cotton on Coleomegilla maculata demonstrates no detrimental effects by Cry1Ac and Cry2Ab.

    Directory of Open Access Journals (Sweden)

    Yunhe Li

    Full Text Available The ladybird beetle, Coleomegilla maculata (DeGeer, is a common and abundant predator in many cropping systems. Its larvae and adults are predaceous, feeding on aphids, thrips, lepidopteran larvae and plant tissues, such as pollen. Therefore, this species is exposed to insecticidal proteins expressed in insect-resistant, genetically engineered cotton expressing Cry proteins derived from Bacillus thuringiensis (Bt. A tritrophic bioassay was conduced to evaluate the potential impact of Cry2Ab- and Cry1Ac-expressing cotton on fitness parameters of C. maculata using Bt-susceptible and -resistant larvae of Trichoplusia ni as prey. Coleomegilla maculata survival, development time, adult weight and fecundity were not different when they were fed with resistant T. ni larvae reared on either Bt or control cotton. To ensure that C. maculata were not sensitive to the tested Cry toxins independent from the plant background and to add certainty to the hazard assessment, C. maculata larvae were fed artificial diet incorporated with Cry2Ab, Cry1Ac or both at >10 times higher concentrations than in cotton tissue. Artificial diet containing E-64 was included as a positive control. No differences were detected in any life-table parameters between Cry protein-containing diet treatments and the control diet. In contrast, larvae of C. maculata fed the E-64 could not develop to the pupal stage and the 7-d larval weight was significantly negatively affected. In both feeding assays, the stability and bioactivity of Cry proteins in the food sources were confirmed by ELISA and sensitive-insect bioassays. Our results show that C. maculata is not affected by Bt cotton and is not sensitive to Cry2Ab and Cry1Ac at concentrations exceeding the levels in Bt cotton, thus demonstrating that Bt cotton will pose a negligible risk to C. maculata. More importantly, this study demonstrates a comprehensive system for assessing the risk of genetically modified plants on non

  6. Binding site concentration explains the differential susceptibility of Chilo suppressalis and Sesamia inferens to Cry1A-producing rice.

    Science.gov (United States)

    Han, Lanzhi; Han, Chao; Liu, Zewen; Chen, Fajun; Jurat-Fuentes, Juan Luis; Hou, Maolin; Peng, Yufa

    2014-08-01

    Chilo suppressalis and Sesamia inferens are two important lepidopteran rice pests that occur concurrently during outbreaks in paddy fields in the main rice-growing areas of China. Previous and current field tests demonstrate that the transgenic rice line Huahui 1 (HH1) producing a Cry1Ab-Cry1Ac hybrid toxin from the bacterium Bacillus thuringiensis reduces egg and larval densities of C. suppressalis but not of S. inferens. This differential susceptibility to HH1 rice correlates with the reduced susceptibility to Cry1Ab and Cry1Ac toxins in S. inferens larvae compared to C. suppressalis larvae. The goal of this study was to identify the mechanism responsible for this differential susceptibility. In saturation binding assays, both Cry1Ab and Cry1Ac toxins bound with high affinity and in a saturable manner to midgut brush border membrane vesicles (BBMV) from C. suppressalis and S. inferens larvae. While binding affinities were similar, a dramatically lower concentration of Cry1A toxin binding sites was detected for S. inferens BBMV than for C. suppressalis BBMV. In contrast, no significant differences between species were detected for Cry1Ca toxin binding to BBMV. Ligand blotting detected BBMV proteins binding Cry1Ac or Cry1Ca toxins, some of them unique to C. suppressalis or S. inferens. These data support that reduced Cry1A binding site concentration is associated with a lower susceptibility to Cry1A toxins and HH1 rice in S. inferens larvae than in C. suppressalis larvae. Moreover, our data support Cry1Ca as a candidate for pyramiding efforts with Cry1A-producing rice to extend the activity range and durability of this technology against rice stem borers. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  7. Evaluation of SmartStax and SmartStax PRO maize against western corn rootworm and northern corn rootworm: efficacy and resistance management.

    Science.gov (United States)

    Head, Graham P; Carroll, Matthew W; Evans, Sean P; Rule, Dwain M; Willse, Alan R; Clark, Thomas L; Storer, Nicholas P; Flannagan, Ronald D; Samuel, Luke W; Meinke, Lance J

    2017-09-01

    Cases of western corn rootworm (WCR) field-evolved resistance to Cry3Bb1 and other corn rootworm (CRW) control traits have been reported. Pyramid products expressing multiple CRW traits can delay resistance compared to single trait products. We used field studies to assess the pyramid CRW corn products, SmartStax (expressing Cry3Bb1 and Cry34Ab1/Cry35Ab1) and SmartStax PRO (expressing Cry3Bb1, Cry34Ab1/Cry35Ab1 and DvSnf7), at locations with high WCR densities and possible Cry3Bb1 resistance, and to assess the reduction in adult emergence attributable to DvSnf7 and other traits. Insect resistance models were used to assess durability of SmartStax and SmartStax PRO to WCR resistance. SmartStax significantly reduced root injury compared to non-CRW-trait controls at all but one location with measurable WCR pressure, while SmartStax PRO significantly reduced root injury at all locations, despite evidence of Cry3Bb1 resistance at some locations. The advantage of SmartStax PRO over SmartStax in reducing root damage was positively correlated with root damage on non-CRW-trait controls. DvSnf7 was estimated to reduce WCR emergence by approximately 80-95%, which modeling indicated will improve durability of Cry3Bb1 and Cry34Ab1/Cry35Ab1 compared to SmartStax. The addition of DvSnf7 in SmartStax PRO can reduce root damage under high WCR densities and prolong Cry3Bb1 and Cry34Ab1/Cry35Ab1 durability. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. 40 CFR 174.501 - Bacillus thuringiensis Vip3Aa protein in corn and cotton; exemption from the requirement of a...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis Vip3Aa protein in corn and cotton; exemption from the requirement of a tolerance. 174.501 Section 174.501 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PROCEDURES AND REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS...

  9. Efficacy of pyramided Bt proteins Cry1F, Cry1A.105, and cry2Ab2 expressed in Smartstax corn hybrids against lepidopteran insect pests in the northern United States.

    NARCIS (Netherlands)

    Rule, D.M.; Nolting, S.P.; Prasfika, P.L.; Storer, N.P.; Hopkins, B.W.; Scherder, E.J.A.; Siebert, M.W.; Hendrix, W.H.

    2014-01-01

    Commercial field corn (Zea mays L.) hybrids transformed to express some or all of the lepidopteran insect-resistant traits present in SmartStax corn hybrids were evaluated for insecticidal efficacy against a wide range of lepidopteran corn pests common to the northern United States, during 2008 to

  10. Microarray detection and qPCR screening of potential biomarkers of Folsomia candida (Collembola: Isotomidae) exposed to Bt proteins (Cry1Ab and Cry1Ac)

    DEFF Research Database (Denmark)

    Yuan, Yiyang; Krogh, Paul Henning; Bai, Xue

    2014-01-01

    The impact of Bt proteins on non-target arthropods is less understood than their effects on target organisms where the mechanism of toxic action is known. Here, we report the effects of two Bt proteins, Cry1Ab and Cry1Ac, on gene expression in the non-target collembolan, Folsomia candida....... A customized microarray was used to study gene expression in F. candida specimens that were exposed to Cry1Ab and Cry1Ac. All selected transcripts were subsequently confirmed by qPCR. Eleven transcripts were finally verified, and three of them were annotated. The responses of all eleven transcripts were...... tested in specimens for both Cry1Ab and Cry1Ac at a series of concentrations. These transcripts were separated into two and three groups for Cry1Ab and Cry1Ac, respectively, depend on their expression levels. However, those eleven transcripts did not respond to the Bt proteins in Bt-rice residues....

  11. Cytotoxicity analysis of three Bacillus thuringiensis subsp. israelensis δ-endotoxins towards insect and mammalian cells.

    Directory of Open Access Journals (Sweden)

    Roberto Franco Teixeira Corrêa

    Full Text Available Three members of the δ-endotoxin group of toxins expressed by Bacillus thuringiensis subsp. israelensis, Cyt2Ba, Cry4Aa and Cry11A, were individually expressed in recombinant acrystalliferous B. thuringiensis strains for in vitro evaluation of their toxic activities against insect and mammalian cell lines. Both Cry4Aa and Cry11A toxins, activated with either trypsin or Spodoptera frugiperda gastric juice (GJ, resulted in different cleavage patterns for the activated toxins as seen by SDS-PAGE. The GJ-processed proteins were not cytotoxic to insect cell cultures. On the other hand, the combination of the trypsin-activated Cry4Aa and Cry11A toxins yielded the highest levels of cytotoxicity to all insect cells tested. The combination of activated Cyt2Ba and Cry11A also showed higher toxic activity than that of toxins activated individually. When activated Cry4Aa, Cry11A and Cyt2Ba were used simultaneously in the same assay a decrease in toxic activity was observed in all insect cells tested. No toxic effect was observed for the trypsin-activated Cry toxins in mammalian cells, but activated Cyt2Ba was toxic to human breast cancer cells (MCF-7 when tested at 20 µg/mL.

  12. Proteomics-based identification of midgut proteins correlated with Cry1Ac resistance in Plutella xylostella (L.).

    Science.gov (United States)

    Xia, Jixing; Guo, Zhaojiang; Yang, Zezhong; Zhu, Xun; Kang, Shi; Yang, Xin; Yang, Fengshan; Wu, Qingjun; Wang, Shaoli; Xie, Wen; Xu, Weijun; Zhang, Youjun

    2016-09-01

    The diamondback moth, Plutella xylostella (L.), is a worldwide pest of cruciferous crops and can rapidly develop resistance to many chemical insecticides. Although insecticidal crystal proteins (i.e., Cry and Cyt toxins) derived from Bacillus thuringiensis (Bt) have been useful alternatives to chemical insecticides for the control of P. xylostella, resistance to Bt in field populations of P. xylostella has already been reported. A better understanding of the resistance mechanisms to Bt should be valuable in delaying resistance development. In this study, the mechanisms underlying P. xylostella resistance to Bt Cry1Ac toxin were investigated using two-dimensional differential in-gel electrophoresis (2D-DIGE) and ligand blotting for the first time. Comparative analyses of the constitutive expression of midgut proteins in Cry1Ac-susceptible and -resistant P. xylostella larvae revealed 31 differentially expressed proteins, 21 of which were identified by mass spectrometry. Of these identified proteins, the following fell into diverse eukaryotic orthologous group (KOG) subcategories may be involved in Cry1Ac resistance in P. xylostella: ATP-binding cassette (ABC) transporter subfamily G member 4 (ABCG4), trypsin, heat shock protein 70 (HSP70), vacuolar H(+)-ATPase, actin, glycosylphosphatidylinositol anchor attachment 1 protein (GAA1) and solute carrier family 30 member 1 (SLC30A1). Additionally, ligand blotting identified the following midgut proteins as Cry1Ac-binding proteins in Cry1Ac-susceptible P. xylostella larvae: ABC transporter subfamily C member 1 (ABCC1), solute carrier family 36 member 1 (SLC36A1), NADH dehydrogenase iron-sulfur protein 3 (NDUFS3), prohibitin and Rap1 GTPase-activating protein 1. Collectively, these proteomic results increase our understanding of the molecular resistance mechanisms to Bt Cry1Ac toxin in P. xylostella and also demonstrate that resistance to Bt Cry1Ac toxin is complex and multifaceted. Copyright © 2016 Elsevier B.V. All

  13. Seleção e caracterização de estirpes de Bacillus thuringiensis eficientes contra a Diatraea saccharalis (Lepidoptera: Crambidae

    Directory of Open Access Journals (Sweden)

    Cristina Lima de Macedo

    2012-12-01

    Full Text Available O objetivo deste trabalho foi selecionar e caracterizar estirpes nativas de Bacillus thuringiensis tóxicas a Diatraea saccharalis (Lepidoptera: Crambidae. Cento e seis estirpes pertencentes ao Banco de Bactérias de Invertebrados, da Embrapa Recursos Genéticos e Biotecnologia, foram testadas quanto à toxicidade a D. saccharalis, e, as mais tóxicas, caracterizadas por métodos bioquímicos e moleculares. Das 106 estirpes testadas, 16 causaram 100% de mortalidade em 24 horas. As três estirpes mais tóxicas apresentaram concentração letal média entre 8 e 43 ng cm-2. O perfil proteico das 16 estirpes mostrou a presença de proteínas de 130 e 65 kDa, e a caracterização molecular mostrou a presença dos genes tipo cry1 e cry2: cry1Aa, cry1Ab, cry1Ac e cry2Aa. A concentração letal média de esporos e cristais obtidos a partir de estirpes recombinantes, que expressavam individualmente os genes cry1Aa, cry1Ab, cry1Ac e cry2Aa, variou entre 222 e 610 ng cm-2, valores muito superiores aos das estirpes nativas mais tóxicas, que apresentavam possibilidade de expressão simultânea desses genes. Este resultado é indicativo de que há sinergia entre as toxinas. Há interação entre as toxinas de B. thuringiensis e seus receptores na broca-do-colmo da cana-de-açúcar.

  14. Transgenic rice plants expressing synthetic cry2AX1 gene exhibits resistance to rice leaffolder (Cnaphalocrosis medinalis).

    Science.gov (United States)

    Manikandan, R; Balakrishnan, N; Sudhakar, D; Udayasuriyan, V

    2016-06-01

    Bacillus thuringiensis is a major source of insecticidal genes imparting insect resistance in transgenic plants. Level of expression of transgenes in transgenic plants is important to achieve desirable level of resistance against target insects. In order to achieve desirable level of expression, rice chloroplast transit peptide sequence was fused with synthetic cry2AX1 gene to target its protein in chloroplasts. Sixteen PCR positive lines of rice were generated by Agrobacterium mediated transformation using immature embryos. Southern blot hybridization analysis of T 0 transgenic plants confirmed the integration of cry2AX1 gene in two to five locations of rice genome and ELISA demonstrated its expression. Concentration of Cry2AX1 in transgenic rice events ranged 5.0-120 ng/g of fresh leaf tissue. Insect bioassay of T 0 transgenic rice plants against neonate larvae of rice leaffolder showed larval mortality ranging between 20 and 80 % in comparison to control plant. Stable inheritance and expression of cry2AX1 gene was demonstrated in T 1 progenies through Southern and ELISA. In T 1 progenies, the highest concentration of Cry2AX1 and mortality of rice leaffolder larvae were recorded as 150 ng/g of fresh leaf tissue and 80 %, respectively. The Cry2AX1 expression even at a very low concentration (120-150 ng/g) in transgenic rice plants was found effective against rice leaffolder larvae.

  15. Influence of transgenic rice expressing a fused Cry1Ab/1Ac protein on frogs in paddy fields.

    Science.gov (United States)

    Wang, Jia-Mei; Chen, Xiu-Ping; Liang, Yu-Yong; Zhu, Hao-Jun; Ding, Jia-Tong; Peng, Yu-Fa

    2014-11-01

    As genetic engineering in plants is increasingly used to control agricultural pests, it is important to determine whether such transgenic plants adversely affect non-target organisms within and around cultivated fields. The cry1Ab/1Ac fusion gene from Bacillus thuringiensis (Bt) has insecticidal activity and has been introduced into rice line Minghui 63 (MH63). We evaluated the effect of transgenic cry1Ab/1Ac rice (Huahui 1, HH1) on paddy frogs by comparing HH1 and MH63 rice paddies with and without pesticide treatment. The density of tadpoles in rice fields was surveyed at regular intervals, and Cry1Ab/1Ac protein levels were determined in tissues of tadpoles and froglets collected from the paddy fields. In addition, Rana nigromaculata froglets were raised in purse nets placed within these experimental plots. The survival, body weight, feeding habits, and histological characteristics of the digestive tract of these froglets were analyzed. We found that the tadpole density was significantly decreased immediately after pesticide application, and the weight of R. nigromaculata froglets of pesticide groups was significantly reduced compared with no pesticide treatment, but we found no differences between Bt and non-Bt rice groups. Moreover, no Cry1Ab/1Ac protein was detected in tissue samples collected from 192 tadpoles and froglets representing all four experimental groups. In addition, R. nigromaculata froglets raised in purse seines fed primarily on stem borer and non-target insects, and showed no obvious abnormality in the microstructure of their digestive tracts. Based on these results, we conclude that cultivation of transgenic cry1Ab/1Ac rice does not adversely affect paddy frogs.

  16. Preliminary investigations reveal that Bacillus thuringiensis δ ...

    African Journals Online (AJOL)

    The imminent introduction of transgenic crops into Kenya requires a rigorous assessment of the potential risks involved. This study focused on the possible effect of Bacillus thuringiensisδ-endotoxin [CryIA(c)] on arbuscular mycorrhizal fungi (AMF) associated with sorghum. In green house experiments, sorghum seedlings ...

  17. Microarray detection and qPCR screening of potential biomarkers of Folsomia candida (Collembola: Isotomidae) exposed to Bt proteins (Cry1Ab and Cry1Ac)

    International Nuclear Information System (INIS)

    Yuan, Yiyang; Krogh, Paul Henning; Bai, Xue; Roelofs, Dick; Chen, Fajun; Zhu-Salzman, Keyan; Liang, Yuyong; Sun, Yucheng; Ge, Feng

    2014-01-01

    The impact of Bt proteins on non-target arthropods is less understood than their effects on target organisms where the mechanism of toxic action is known. Here, we report the effects of two Bt proteins, Cry1Ab and Cry1Ac, on gene expression in the non-target collembolan, Folsomia candida. A customized microarray was used to study gene expression in F. candida specimens that were exposed to Cry1Ab and Cry1Ac. All selected transcripts were subsequently confirmed by qPCR. Eleven transcripts were finally verified, and three of them were annotated. The responses of all eleven transcripts were tested in specimens for both Cry1Ab and Cry1Ac at a series of concentrations. These transcripts were separated into two and three groups for Cry1Ab and Cry1Ac, respectively, depend on their expression levels. However, those eleven transcripts did not respond to the Bt proteins in Bt-rice residues. -- Highlights: • We examined the effects of Bt proteins on gene expression of Folsomia candida. • Eleven transcripts were up-regulated by Bt proteins (Cry1Ab and Cry1Ac). • Only three of the eleven transcripts were annotated. • The responses of 11 transcripts were tested on both Cry1Ab and Cry1Ac. • These transcripts did not respond to the Bt proteins in Bt-rice residues. -- Eleven potential molecular biomarkers of Folsomia candida to Cry1Ab and Cry1Ac were screened by microarray and qPCR analysis

  18. Expressed sequence tags from larval gut of the European corn borer (Ostrinia nubilalis: Exploring candidate genes potentially involved in Bacillus thuringiensis toxicity and resistance

    Directory of Open Access Journals (Sweden)

    Crespo Andre LB

    2009-06-01

    Full Text Available Abstract Background Lepidoptera represents more than 160,000 insect species which include some of the most devastating pests of crops, forests, and stored products. However, the genomic information on lepidopteran insects is very limited. Only a few studies have focused on developing expressed sequence tag (EST libraries from the guts of lepidopteran larvae. Knowledge of the genes that are expressed in the insect gut are crucial for understanding basic physiology of food digestion, their interactions with Bacillus thuringiensis (Bt toxins, and for discovering new targets for novel toxins for use in pest management. This study analyzed the ESTs generated from the larval gut of the European corn borer (ECB, Ostrinia nubilalis, one of the most destructive pests of corn in North America and the western world. Our goals were to establish an ECB larval gut-specific EST database as a genomic resource for future research and to explore candidate genes potentially involved in insect-Bt interactions and Bt resistance in ECB. Results We constructed two cDNA libraries from the guts of the fifth-instar larvae of ECB and sequenced a total of 15,000 ESTs from these libraries. A total of 12,519 ESTs (83.4% appeared to be high quality with an average length of 656 bp. These ESTs represented 2,895 unique sequences, including 1,738 singletons and 1,157 contigs. Among the unique sequences, 62.7% encoded putative proteins that shared significant sequence similarities (E-value ≤ 10-3with the sequences available in GenBank. Our EST analysis revealed 52 candidate genes that potentially have roles in Bt toxicity and resistance. These genes encode 18 trypsin-like proteases, 18 chymotrypsin-like proteases, 13 aminopeptidases, 2 alkaline phosphatases and 1 cadherin-like protein. Comparisons of expression profiles of 41 selected candidate genes between Cry1Ab-susceptible and resistant strains of ECB by RT-PCR showed apparently decreased expressions in 2 trypsin-like and 2

  19. Molecular Approaches to Improve the Insecticidal Activity of Bacillus thuringiensis Cry Toxins

    Directory of Open Access Journals (Sweden)

    Wagner A. Lucena

    2014-08-01

    Full Text Available Bacillus thuringiensis (Bt is a gram-positive spore-forming soil bacterium that is distributed worldwide. Originally recognized as a pathogen of the silkworm, several strains were found on epizootic events in insect pests. In the 1960s, Bt began to be successfully used to control insect pests in agriculture, particularly because of its specificity, which reflects directly on their lack of cytotoxicity to human health, non-target organisms and the environment. Since the introduction of transgenic plants expressing Bt genes in the mid-1980s, numerous methodologies have been used to search for and improve toxins derived from native Bt strains. These improvements directly influence the increase in productivity and the decreased use of chemical insecticides on Bt-crops. Recently, DNA shuffling and in silico evaluations are emerging as promising tools for the development and exploration of mutant Bt toxins with enhanced activity against target insect pests. In this report, we describe natural and in vitro evolution of Cry toxins, as well as their relevance in the mechanism of action for insect control. Moreover, the use of DNA shuffling to improve two Bt toxins will be discussed together with in silico analyses of the generated mutations to evaluate their potential effect on protein structure and cytotoxicity.

  20. Assessment of potential adjuvanticity of Cry proteins

    DEFF Research Database (Denmark)

    Joshi, Saurabh S; Barnett, Brian; Doerrer, Nancy G

    2016-01-01

    protection, herbicide tolerance, or both. Plant expression of Bacillus thuringiensis (Bt) crystal (Cry) insecticidal proteins have been the primary way to impart insect resistance in GM crops. Although deemed safe by regulatory agencies globally, previous studies have been the basis for discussions around...

  1. Seleção e caracterização de estirpes de Bacillus thuringiensis tóxicas a Agrotis ipsilon - doi: 10.5102/ucs.v8i2.1142

    Directory of Open Access Journals (Sweden)

    Rafael Silva Menezes

    2011-04-01

    Full Text Available Agrotis ipsilon (Lepidoptera: Noctuidae, conhecida como lagarta rosca, é uma praga polífaga e cosmopolita, causadora de sérios danos em cultivos hortícolas e em sistemas de produção de grãos. Uma das alternativas para o combate a esta praga pode ser a utilização de produtos a base de Bacillus thuringiensis (Bt, bactéria aeróbica, Gram positiva, caracterizada pela produção proteínas tóxicas a insetos. A Embrapa Recursos Genéticos e Biotecnologia possui uma coleção de cerca de 2.300 estirpes de Bt. Neste trabalho cem estirpes desta coleção foram testadas para controle de A. ipsilon e destas, nove foram bastante tóxicas. Essas estirpes pertencem aos sorotipos kurstaki, aizawai, sotto e galleriae. A análise molecular e protéica mostrou a presença dos genes cry1Aa, cry1Ab, cry1Ac, cry1B, cry1C, cry1F, cry2 e cry11 e suas respectivas proteínas, indicando serem elas as proteínas envolvidas na atividade tóxica das estirpes selecionadas.

  2. Consumption of Bt Rice Pollen Containing Cry1C or Cry2A Protein Poses a Low to Negligible Risk to the Silkworm Bombyx mori (Lepidoptera: Bombyxidae)

    Science.gov (United States)

    Yang, Yan; Liu, Yue; Cao, Fengqin; Chen, Xiuping; Cheng, Lisheng; Romeis, Jörg; Li, Yunhe; Peng, Yufa

    2014-01-01

    By consuming mulberry leaves covered with pollen from nearby genetically engineered, insect-resistant rice lines producing Cry proteins derived from Bacillus thuringiensis (Bt), larvae of the domestic silkworm, Bombyx mori (Linnaeus) (Lepidoptera: Bombyxidae), could be exposed to insecticidal proteins. Laboratory experiments were conducted to assess the potential effects of Cry1C- or Cry2A-producing transgenic rice (T1C-19, T2A-1) pollen on B. mori fitness. In a short-term assay, B. mori larvae were fed mulberry leaves covered with different densities of pollen from Bt rice lines or their corresponding near isoline (control) for the first 3 d and then were fed mulberry leaves without pollen. No effect was detected on any life table parameter, even at 1800 pollen grains/cm2 leaf, which is much higher than the mean natural density of rice pollen on leaves of mulberry trees near paddy fields. In a long-term assay, the larvae were fed Bt and control pollen in the same way but for their entire larval stage (approximately 27 d). Bt pollen densities ≥150 grains/cm2 leaf reduced 14-d larval weight, increased larval development time, and reduced adult eclosion rate. ELISA analyses showed that 72.6% of the Cry protein was still detected in the pollen grains excreted with the feces. The low exposure of silkworm larvae to Cry proteins when feeding Bt rice pollen may be the explanation for the relatively low toxicity detected in the current study. Although the results demonstrate that B. mori larvae are sensitive to Cry1C and Cry2A proteins, the exposure levels that harmed the larvae in the current study are far greater than natural exposure levels. We therefore conclude that consumption of Bt rice pollen will pose a low to negligible risk to B. mori. PMID:25014054

  3. Effects of ensiling of Bacillus thuringiensis (Bt) maize (MON810) on ...

    African Journals Online (AJOL)

    The study investigated the degradation of the Bt protein (Cry1Ab) in Bt maize during ensiling and chemical composition of the silage. Two laboratory studies were conducted at the University of Fort Hare. One Bacillus thuringiensis (Bt) maize cultivar (DKC80-12B) and its isoline (DKC80-10) in the 2008/2009 study and two Bt ...

  4. Uniform Orientation of Biotinylated Nanobody as an Affinity Binder for Detection of Bacillus thuringiensis (Bt) Cry1Ac Toxin

    Science.gov (United States)

    Li, Min; Zhu, Min; Zhang, Cunzheng; Liu, Xianjin; Wan, Yakun

    2014-01-01

    Nanobodies are the smallest natural fragments with useful properties such as high affinity, distinct paratope and high stability, which make them an ideal tool for detecting target antigens. In this study, we generated and characterized nanobodies against the Cry1Ac toxin and applied them in a biotin-streptavidin based double antibodies (nanobodies) sandwich-ELISA (DAS-ELISA) assay. After immunizing a camel with soluble Cry1Ac toxin, a phage displayed library was constructed to generate Nbs against the Cry1Ac toxin. Through successive rounds of affinity bio-panning, four nanobodies with greatest diversity in CDR3 sequences were obtained. After affinity determination and conjugating to HRP, two nanobodies with high affinity which can recognize different epitopes of the same antigen (Cry1Ac) were selected as capture antibody (Nb61) and detection antibody (Nb44). The capture antibody (Nb61) was biotinylated in vivo for directional immobilization on wells coated with streptavidin matrix. Both results of specificity analysis and thermal stability determination add support for reliability of the following DAS-ELISA with a minimum detection limit of 0.005 μg·mL−1 and a working range 0.010–1.0 μg·mL−1. The linear curve displayed an acceptable correlation coefficient of 0.9976. These results indicated promising applications of nanobodies for detection of Cry1Ac toxin with biotin-streptavidin based DAS-ELISA system. PMID:25474492

  5. Uniform Orientation of Biotinylated Nanobody as an Affinity Binder for Detection of Bacillus thuringiensis (Bt Cry1Ac Toxin

    Directory of Open Access Journals (Sweden)

    Min Li

    2014-12-01

    Full Text Available Nanobodies are the smallest natural fragments with useful properties such as high affinity, distinct paratope and high stability, which make them an ideal tool for detecting target antigens. In this study, we generated and characterized nanobodies against the Cry1Ac toxin and applied them in a biotin-streptavidin based double antibodies (nanobodies sandwich-ELISA (DAS-ELISA assay. After immunizing a camel with soluble Cry1Ac toxin, a phage displayed library was constructed to generate Nbs against the Cry1Ac toxin. Through successive rounds of affinity bio-panning, four nanobodies with greatest diversity in CDR3 sequences were obtained. After affinity determination and conjugating to HRP, two nanobodies with high affinity which can recognize different epitopes of the same antigen (Cry1Ac were selected as capture antibody (Nb61 and detection antibody (Nb44. The capture antibody (Nb61 was biotinylated in vivo for directional immobilization on wells coated with streptavidin matrix. Both results of specificity analysis and thermal stability determination add support for reliability of the following DAS-ELISA with a minimum detection limit of 0.005 μg·mL−1 and a working range 0.010–1.0 μg·mL−1. The linear curve displayed an acceptable correlation coefficient of 0.9976. These results indicated promising applications of nanobodies for detection of Cry1Ac toxin with biotin-streptavidin based DAS-ELISA system.

  6. in silico identification of cross affinity towards Cry1Ac pesticidal protein with receptor enzyme in Bos taurus and sequence, structure analysis of crystal proteins for stability.

    Science.gov (United States)

    Ebenezer, King Solomon; Nachimuthu, Ramesh; Thiagarajan, Prabha; Velu, Rajesh Kannan

    2013-01-01

    Any novel protein introduced into the GM crops need to be evaluated for cross affinity on living organisms. Many researchers are currently focusing on the impact of Bacillus thuringiensis cotton on soil and microbial diversity by field experiments. In spite of this, in silico approach might be helpful to elucidate the impact of cry genes. The crystal a protein which was produced by Bt at the time of sporulation has been used as a biological pesticide to target the insectivorous pests like Cry1Ac for Helicoverpa armigera and Cry2Ab for Spodoptera sp. and Heliothis sp. Here, we present the comprehensive in silico analysis of Cry1Ac and Cry2Ab proteins with available in silico tools, databases and docking servers. Molecular docking of Cry1Ac with procarboxypeptidase from Helicoverpa armigera and Cry1Ac with Leucine aminopeptidase from Bos taurus has showed the 125(th) amino acid position to be the preference site of Cry1Ac protein. The structures were compared with each other and it showed 5% of similarity. The cross affinity of this toxin that have confirmed the earlier reports of ill effects of Bt cotton consumed by cattle.

  7. Deletion of aprA and nprA genes for alkaline protease A and neutral protease A from bacillus thuringiensis: effect on insecticidal crystal proteins.

    Science.gov (United States)

    Tan, Y; Donovan, W P

    2001-11-17

    The aprA gene encoding alkaline protease A (AprA) was cloned from Bacillus thuringiensis subsp. kurstaki, and the cloned gene was used to construct aprA-deleted (aprA1) strains of B. thuringiensis. An aprA1 strain of B. thuringiensis that contained the wild-type gene for neutral protease A (nprA(+)) displayed levels of extracellular proteolytic activity that were similar to those of an aprA(+)nprA(+) strain. However, when EDTA was included in the protease assay to inhibit NprA activity the aprA1nprA(+) strain displayed only 2% of the extracellular proteolytic activity of the aprA(+)nprA(+) strain. A strain that was deleted for both aprA and nprA (aprA1nprA3 strain) failed to produce detectable levels of proteolytic activity either in the presence or absence of EDTA in the assay. Compared with the aprA(+)nprA(+) strain the aprA1nprA(+) strain yielded 10% more full-length Cry1Bb crystal protein and the aprA1nprA3 strain yielded 25% more full-length Cry1Bb protein. No significant differences were seen in the 50% lethal dose of Cry1Bb protein from aprA(+)nprA(+) and aprA1nprA3 strains against three species of lepidopteran insects. These results suggest that enhanced yield of certain crystal proteins can be obtained by deletion of the genes aprA and nprA which are the major extracellular proteases of B. thuringiensis.

  8. Mannose Phosphate Isomerase Isoenzymes in Plutella xylostella Support Common Genetic Bases of Resistance to Bacillus thuringiensis Toxins in Lepidopteran Species

    OpenAIRE

    Herrero, Salvador; Ferré, Juan; Escriche, Baltasar

    2001-01-01

    A strong correlation between two mannose phosphate isomerase (MPI) isoenzymes and resistance to Cry1A toxins from Bacillus thuringiensis has been found in a Plutella xylostella population. MPI linkage to Cry1A resistance had previously been reported for a Heliothis virescens population. The fact that the two populations share similar biochemical, genetic, and cross-resistance profiles of resistance suggests the occurrence of homologous resistance loci in both species.

  9. Effect of Stacked Insecticidal Cry Proteins from Maize Pollen on Nurse Bees (Apis mellifera carnica) and Their Gut Bacteria

    Science.gov (United States)

    Härtel, Stephan; Näther, Astrid; Dohrmann, Anja B.; Steffan-Dewenter, Ingolf; Tebbe, Christoph C.

    2013-01-01

    Honey bee pollination is a key ecosystem service to nature and agriculture. However, biosafety research on genetically modified crops rarely considers effects on nurse bees from intact colonies, even though they receive and primarily process the largest amount of pollen. The objective of this study was to analyze the response of nurse bees and their gut bacteria to pollen from Bt maize expressing three different insecticidal Cry proteins (Cry1A.105, Cry2Ab2, and Cry3Bb1). Naturally Cry proteins are produced by bacteria (Bacillus thuringiensis). Colonies of Apis mellifera carnica were kept during anthesis in flight cages on field plots with the Bt maize, two different conventionally bred maize varieties, and without cages, 1-km outside of the experimental maize field to allow ad libitum foraging to mixed pollen sources. During their 10-days life span, the consumption of Bt maize pollen had no effect on their survival rate, body weight and rates of pollen digestion compared to the conventional maize varieties. As indicated by ELISA-quantification of Cry1A.105 and Cry3Bb1, more than 98% of the recombinant proteins were degraded. Bacterial population sizes in the gut were not affected by the genetic modification. Bt-maize, conventional varieties and mixed pollen sources selected for significantly different bacterial communities which were, however, composed of the same dominant members, including Proteobacteria in the midgut and Lactobacillus sp. and Bifidobacterium sp. in the hindgut. Surprisingly, Cry proteins from natural sources, most likely B. thuringiensis, were detected in bees with no exposure to Bt maize. The natural occurrence of Cry proteins and the lack of detectable effects on nurse bees and their gut bacteria give no indication for harmful effects of this Bt maize on nurse honey bees. PMID:23533634

  10. Effect of stacked insecticidal Cry proteins from maize pollen on nurse bees (Apis mellifera carnica and their gut bacteria.

    Directory of Open Access Journals (Sweden)

    Harmen P Hendriksma

    Full Text Available Honey bee pollination is a key ecosystem service to nature and agriculture. However, biosafety research on genetically modified crops rarely considers effects on nurse bees from intact colonies, even though they receive and primarily process the largest amount of pollen. The objective of this study was to analyze the response of nurse bees and their gut bacteria to pollen from Bt maize expressing three different insecticidal Cry proteins (Cry1A.105, Cry2Ab2, and Cry3Bb1. Naturally Cry proteins are produced by bacteria (Bacillus thuringiensis. Colonies of Apis mellifera carnica were kept during anthesis in flight cages on field plots with the Bt maize, two different conventionally bred maize varieties, and without cages, 1-km outside of the experimental maize field to allow ad libitum foraging to mixed pollen sources. During their 10-days life span, the consumption of Bt maize pollen had no effect on their survival rate, body weight and rates of pollen digestion compared to the conventional maize varieties. As indicated by ELISA-quantification of Cry1A.105 and Cry3Bb1, more than 98% of the recombinant proteins were degraded. Bacterial population sizes in the gut were not affected by the genetic modification. Bt-maize, conventional varieties and mixed pollen sources selected for significantly different bacterial communities which were, however, composed of the same dominant members, including Proteobacteria in the midgut and Lactobacillus sp. and Bifidobacterium sp. in the hindgut. Surprisingly, Cry proteins from natural sources, most likely B. thuringiensis, were detected in bees with no exposure to Bt maize. The natural occurrence of Cry proteins and the lack of detectable effects on nurse bees and their gut bacteria give no indication for harmful effects of this Bt maize on nurse honey bees.

  11. Effect of stacked insecticidal Cry proteins from maize pollen on nurse bees (Apis mellifera carnica) and their gut bacteria.

    Science.gov (United States)

    Hendriksma, Harmen P; Küting, Meike; Härtel, Stephan; Näther, Astrid; Dohrmann, Anja B; Steffan-Dewenter, Ingolf; Tebbe, Christoph C

    2013-01-01

    Honey bee pollination is a key ecosystem service to nature and agriculture. However, biosafety research on genetically modified crops rarely considers effects on nurse bees from intact colonies, even though they receive and primarily process the largest amount of pollen. The objective of this study was to analyze the response of nurse bees and their gut bacteria to pollen from Bt maize expressing three different insecticidal Cry proteins (Cry1A.105, Cry2Ab2, and Cry3Bb1). Naturally Cry proteins are produced by bacteria (Bacillus thuringiensis). Colonies of Apis mellifera carnica were kept during anthesis in flight cages on field plots with the Bt maize, two different conventionally bred maize varieties, and without cages, 1-km outside of the experimental maize field to allow ad libitum foraging to mixed pollen sources. During their 10-days life span, the consumption of Bt maize pollen had no effect on their survival rate, body weight and rates of pollen digestion compared to the conventional maize varieties. As indicated by ELISA-quantification of Cry1A.105 and Cry3Bb1, more than 98% of the recombinant proteins were degraded. Bacterial population sizes in the gut were not affected by the genetic modification. Bt-maize, conventional varieties and mixed pollen sources selected for significantly different bacterial communities which were, however, composed of the same dominant members, including Proteobacteria in the midgut and Lactobacillus sp. and Bifidobacterium sp. in the hindgut. Surprisingly, Cry proteins from natural sources, most likely B. thuringiensis, were detected in bees with no exposure to Bt maize. The natural occurrence of Cry proteins and the lack of detectable effects on nurse bees and their gut bacteria give no indication for harmful effects of this Bt maize on nurse honey bees.

  12. Development, survival and fitness performance of Helicoverpa zea (Lepidoptera: Noctuidae) in MON810 Bt field corn.

    Science.gov (United States)

    Horner, T A; Dively, G P; Herbert, D A

    2003-06-01

    Helicoverpa zea (Boddie) development, survival, and feeding injury in MON810 transgenic ears of field corn (Zea mays L.) expressing Bacillus thuringiensis variety kurstaki (Bt) Cry1Ab endotoxins were compared with non-Bt ears at four geographic locations over two growing seasons. Expression of Cry1Ab endotoxin resulted in overall reductions in the percentage of damaged ears by 33% and in the amount of kernels consumed by 60%. Bt-induced effects varied significantly among locations, partly because of the overall level and timing of H. zea infestations, condition of silk tissue at the time of egg hatch, and the possible effects of plant stress. Larvae feeding on Bt ears produced scattered, discontinuous patches of partially consumed kernels, which were arranged more linearly than the compact feeding patterns in non-Bt ears. The feeding patterns suggest that larvae in Bt ears are moving about sampling kernels more frequently than larvae in non-Bt ears. Because not all kernels express the same level of endotoxin, the spatial heterogeneity of toxin distribution within Bt ears may provide an opportunity for development of behavioral responses in H. zea to avoid toxin. MON810 corn suppressed the establishment and development of H. zea to late instars by at least 75%. This level of control is considered a moderate dose, which may increase the risk of resistance development in areas where MON810 corn is widely adopted and H. zea overwinters successfully. Sublethal effects of MON810 corn resulted in prolonged larval and prepupal development, smaller pupae, and reduced fecundity of H. zea. The moderate dose effects and the spatial heterogeneity of toxin distribution among kernels could increase the additive genetic variance for both physiological and behavioral resistance in H. zea populations. Implications of localized population suppression are discussed.

  13. Increased frequency of pink bollworm resistance to Bt toxin Cry1Ac in China.

    Directory of Open Access Journals (Sweden)

    Peng Wan

    Full Text Available Transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt kill some key insect pests, but evolution of resistance by pests can reduce their efficacy. The main approach for delaying pest adaptation to Bt crops uses non-Bt host plants as "refuges" to increase survival of susceptible pests. To delay evolution of pest resistance to transgenic cotton producing Bt toxin Cry1Ac, the United States and some other countries have required refuges of non-Bt cotton, while farmers in China have relied on "natural" refuges of non-Bt host plants other than cotton. The "natural" refuge strategy focuses on cotton bollworm (Helicoverpa armigera, the primary target of Bt cotton in China that attacks many crops, but it does not apply to another major pest, pink bollworm (Pectinophora gossypiella, which feeds almost entirely on cotton in China. Here we report data showing field-evolved resistance to Cry1Ac by pink bollworm in the Yangtze River Valley of China. Laboratory bioassay data from 51 field-derived strains show that the susceptibility to Cry1Ac was significantly lower during 2008 to 2010 than 2005 to 2007. The percentage of field populations yielding one or more survivors at a diagnostic concentration of Cry1Ac increased from 0% in 2005-2007 to 56% in 2008-2010. However, the median survival at the diagnostic concentration was only 1.6% from 2008 to 2010 and failure of Bt cotton to control pink bollworm has not been reported in China. The early detection of resistance reported here may promote proactive countermeasures, such as a switch to transgenic cotton producing toxins distinct from Cry1A toxins, increased planting of non-Bt cotton, and integration of other management tactics together with Bt cotton.

  14. Feasibility of using fMRI to study mothers responding to infant cries.

    Science.gov (United States)

    Lorberbaum, J P; Newman, J D; Dubno, J R; Horwitz, A R; Nahas, Z; Teneback, C C; Bloomer, C W; Bohning, D E; Vincent, D; Johnson, M R; Emmanuel, N; Brawman-Mintzer, O; Book, S W; Lydiard, R B; Ballenger, J C; George, M S

    1999-01-01

    While parenting is a universal human behavior, its neuroanatomic basis is currently unknown. Animal data suggest that the cingulate may play an important function in mammalian parenting behavior. For example, in rodents cingulate lesions impair maternal behavior. Here, in an attempt to understand the brain basis of human maternal behavior, we had mothers listen to recorded infant cries and white noise control sounds while they underwent functional MRI (fMRI) of the brain. We hypothesized that mothers would show significantly greater cingulate activity during the cries compared to the control sounds. Of 7 subjects scanned, 4 had fMRI data suitable for analysis. When fMRI data were averaged for these 4 subjects, the anterior cingulate and right medial prefrontal cortex were the only brain regions showing statistically increased activity with the cries compared to white noise control sounds (cluster analysis with one-tailed z-map threshold of P parent-infant bond and (2) examine whether markers of this bond, such as maternal brain response to infant crying, can predict maternal style (i.e., child neglect), offspring temperament, or offspring depression or anxiety.

  15. 40 CFR 180.1154 - CryIA(c) and CryIC derived delta-endotoxins of Bacillus thuringiensis var. kurstaki encapsulated...

    Science.gov (United States)

    2010-07-01

    ... expression plasmid and cloning vector genetic constructs. 180.1154 Section 180.1154 Protection of Environment... RESIDUES IN FOOD Exemptions From Tolerances § 180.1154 CryIA(c) and CryIC derived delta-endotoxins of... plasmid and cloning vector genetic constructs. CryIA(c) and CryIC derived delta-endotoxins of Bacillus...

  16. High Expression of Cry1Ac Protein in Cotton (Gossypium hirsutum by Combining Independent Transgenic Events that Target the Protein to Cytoplasm and Plastids.

    Directory of Open Access Journals (Sweden)

    Amarjeet Kumar Singh

    Full Text Available Transgenic cotton was developed using two constructs containing a truncated and codon-modified cry1Ac gene (1,848 bp, which was originally characterized from Bacillus thuringiensis subspecies kurstaki strain HD73 that encodes a toxin highly effective against many lepidopteran pests. In Construct I, the cry1Ac gene was cloned under FMVde, a strong constitutively expressing promoter, to express the encoded protein in the cytoplasm. In Construct II, the encoded protein was directed to the plastids using a transit peptide taken from the cotton rbcSIb gene. Genetic transformation experiments with Construct I resulted in a single copy insertion event in which the Cry1Ac protein expression level was 2-2.5 times greater than in the Bacillus thuringiensis cotton event Mon 531, which is currently used in varieties and hybrids grown extensively in India and elsewhere. Another high expression event was selected from transgenics developed with Construct II. The Cry protein expression resulting from this event was observed only in the green plant parts. No transgenic protein expression was observed in the non-green parts, including roots, seeds and non-green floral tissues. Thus, leucoplasts may lack the mechanism to allow entry of a protein tagged with the transit peptide from a protein that is only synthesized in tissues containing mature plastids. Combining the two events through sexual crossing led to near additive levels of the toxin at 4-5 times the level currently used in the field. The two high expression events and their combination will allow for effective resistance management against lepidopteran insect pests, particularly Helicoverpa armigera, using a high dosage strategy.

  17. Two conformational states of the membrane-associated Bacillus thuringiensis Cry4Ba δ-endotoxin complex revealed by electron crystallography: Implications for toxin-pore formation

    International Nuclear Information System (INIS)

    Ounjai, Puey; Unger, Vinzenz M.; Sigworth, Fred J.; Angsuthanasombat, Chanan

    2007-01-01

    The insecticidal nature of Cry δ-endotoxins produced by Bacillus thuringiensis is generally believed to be caused by their ability to form lytic pores in the midgut cell membrane of susceptible insect larvae. Here we have analyzed membrane-associated structures of the 65-kDa dipteran-active Cry4Ba toxin by electron crystallography. The membrane-associated toxin complex was crystallized in the presence of DMPC via detergent dialysis. Depending upon the charge of the adsorbed surface, 2D crystals of the oligomeric toxin complex have been captured in two distinct conformations. The projection maps of those crystals have been generated at 17 A resolution. Both complexes appeared to be trimeric; as in one crystal form, its projection structure revealed a symmetrical pinwheel-like shape with virtually no depression in the middle of the complex. The other form revealed a propeller-like conformation displaying an obvious hole in the center region, presumably representing the toxin-induced pore. These crystallographic data thus demonstrate for the first time that the 65-kDa activated Cry4Ba toxin in association with lipid membranes could exist in at least two different trimeric conformations, conceivably implying the closed and open states of the pore

  18. Screen of Bacillus thuringiensis toxins for transgenic rice to control Sesamia inferens and Chilo suppressalis.

    Science.gov (United States)

    Gao, Yulin; Hu, Yang; Fu, Qiang; Zhang, Jie; Oppert, Brenda; Lai, Fengxiang; Peng, Yufa; Zhang, Zhitao

    2010-09-01

    Transgenic rice to control stem borer damage is under development in China. To assess the potential of Bacillus thuringiensis (Bt) transgenes in stem borer control, the toxicity of five Bt protoxins (Cry1Aa, Cry1Ab, Cry1Ac, Cry1Ba and Cry1Ca) against two rice stem borers, Sesamia inferens (pink stem borer) and Chilo suppressalis (striped stem borer), was evaluated in the laboratory by feeding neonate larvae on artificial diets containing Bt protoxins. The results indicated that Cry1Ca exhibited the highest level of toxicity to both stem borers, with an LC(50) of 0.24 and 0.30 microg/g for C. suppressalis and S. inferens, respectively. However, S. inferens was 4-fold lower in susceptibility to Cry1Aa, and 6- and 47-fold less susceptible to Cry1Ab and Cry1Ba, respectively, compared to C. suppressalis. To evaluate interactions among Bt protoxins in stem borer larvae, toxicity assays were performed with mixtures of Cry1Aa/Cry1Ab, Cry1Aa/Cry1Ca, Cry1Ac/Cry1Ca, Cry1Ac/Cry1Ba, Cry1Ab/Cry1Ac, Cry1Ab/Cry1Ba, and Cry1Ab/Cry1Ca at 1:1 (w/w) ratios. All protoxin mixtures demonstrated significant synergistic toxicity activity against C. suppressalis, with values of 1.6- to 11-fold higher toxicity than the theoretical additive effect. Surprisingly, all but one of the Bt protoxin mixtures were antagonistic in toxicity to S. inferens. In mortality-time response experiments, S. inferens demonstrated increased tolerance to Cry1Ab and Cry1Ac compared to C. suppressalis when treated with low or high protoxin concentrations. The data indicate the utility of Cry1Ca protoxin and a Cry1Ac/Cry1Ca mixture to control both stem borer populations. Copyright 2010 Elsevier Inc. All rights reserved.

  19. Treatment of an Aedes aegypti colony with the Cry11Aa toxin for 54 generations results in the development of resistance

    Directory of Open Access Journals (Sweden)

    Gloria Cadavid-Restrepo

    2012-02-01

    Full Text Available To study the potential for the emergence of resistance in Aedes aegypti populations, a wild colony was subjected to selective pressure with Cry11Aa, one of four endotoxins that compose the Bacillus thuringiensis serovar israelensis toxin. This bacterium is the base component of the most important biopesticide used in the control of mosquitoes worldwide. After 54 generations of selection, significant resistance levels were observed. At the beginning of the selection experiment, the half lethal concentration was 26.3 ng/mL and had risen to 345.6 ng/mL by generation 54. The highest rate of resistance, 13.1, was detected in the 54th generation. Because digestive proteases play a key role in the processing and activation of B. thuringiensis toxin, we analysed the involvement of insect gut proteases in resistance to the Cry11Aa B. thuringiensis serovar israelensis toxin. The protease activity from larval gut extracts from the Cry11Aa resistant population was lower than that of the B. thuringiensisserovar israelensis susceptible colony. We suggest that differences in protoxin proteolysis could contribute to the resistance of this Ae. aegypti colony.

  20. Fragments of Tenebrio molitor cadherin enhance Cry3Aa toxicity for the red flour beetle, Tribolium castaneum (Herbst)

    Czech Academy of Sciences Publication Activity Database

    Moustafa, M.A.M.; Vlasák, Josef; Sehnal, František

    2016-01-01

    Roč. 140, č. 4 (2016), s. 277-286 ISSN 0931-2048 Institutional support: RVO:60077344 Keywords : Bacillus thuringiensis Cry3Aa * biocontrol * toxicity modulation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.641, year: 2016

  1. An Intramolecular Salt Bridge in Bacillus thuringiensis Cry4Ba Toxin Is Involved in the Stability of Helix α-3, Which Is Needed for Oligomerization and Insecticidal Activity.

    Science.gov (United States)

    Pacheco, Sabino; Gómez, Isabel; Sánchez, Jorge; García-Gómez, Blanca-Ines; Soberón, Mario; Bravo, Alejandra

    2017-10-15

    Bacillus thuringiensis three-domain Cry toxins kill insects by forming pores in the apical membrane of larval midgut cells. Oligomerization of the toxin is an important step for pore formation. Domain I helix α-3 participates in toxin oligomerization. Here we identify an intramolecular salt bridge within helix α-3 of Cry4Ba (D111-K115) that is conserved in many members of the family of three-domain Cry toxins. Single point mutations such as D111K or K115D resulted in proteins severely affected in toxicity. These mutants were also altered in oligomerization, and the mutant K115D was more sensitive to protease digestion. The double point mutant with reversed charges, D111K-K115D, recovered both oligomerization and toxicity, suggesting that this salt bridge is highly important for conservation of the structure of helix α-3 and necessary to promote the correct oligomerization of the toxin. IMPORTANCE Domain I has been shown to be involved in oligomerization through helix α-3 in different Cry toxins, and mutations affecting oligomerization also elicit changes in toxicity. The three-dimensional structure of the Cry4Ba toxin reveals an intramolecular salt bridge in helix α-3 of domain I. Mutations that disrupt this salt bridge resulted in changes in Cry4Ba oligomerization and toxicity, while a double point reciprocal mutation that restored the salt bridge resulted in recovery of toxin oligomerization and toxicity. These data highlight the role of oligomer formation as a key step in Cry4Ba toxicity. Copyright © 2017 American Society for Microbiology.

  2. Isolation and molecular characterization of Bacillus thuringiensis found in soils of the Cerrado region of Brazil, and their toxicity to Aedes aegypti larvae

    Directory of Open Access Journals (Sweden)

    Katiane dos Santos Lobo

    Full Text Available ABSTRACT This study investigated the potential of Bacillus thuringiensis isolates obtained in the Cerrado region of the Brazilian state of Maranhão for the biological control of Aedes aegypti larvae. The isolates were obtained from soil samples and the identification of the B. thuringiensis colonies was based on morphological characteristics. Bioassays were run to assess the pathogenicity and toxicity of the different strains of the B. thuringiensis against third-instar larvae of A. aegypti. Protein profiles were obtained by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Polymerase chain reaction assays were used to detect the toxin genes found in the bacterial isolates. Overall, 12 (4.0% of the 300 isolates obtained from 45 soil samples were found to present larvicidal activity, with the BtMA-104, BtMA-401 and BtMA-560 isolates causing 100% of mortality. The BtMA-401 isolate was the most virulent, with the lowest median lethal concentration (LC50 (0.004 × 107 spores/mL, followed by the Bacillus thuringiensis var. israelensis standard (0.32 × 107 spores/mL. The protein profiles of BtMA-25 and BtMA-401 isolates indicated the presence of molecular mass consistent with the presence of the proteins Cry4Aa, Cry11Aa and Cyt1, similar to the profile of Bacillus thuringiensis var. israelensis IPS-82. Surprisingly, however, none of the cry and cyt genes analyzed were amplified in the isolate BtMA-401. The results of the present study revealed the larvicidal potential of B. thuringiensis isolates found in the soils of the Cerrado region from Maranhão, although further research will be necessary to better elucidate and describe other genes associated with the production of insecticidal toxins in these isolates.

  3. Profile of cry from native Bacillus thuringiensis isolates and ...

    African Journals Online (AJOL)

    The characterization of 255 Bacillus thuringiensis isolates of Coorg, Sharavatti and BR hills, containing genes known to be active against coleopteran and lepidopteran insect species was done through PCR amplification using the specific and degenerate primers. The isolates were also tested for their insecticidal activity ...

  4. Uptake and bioaccumulation of Cry toxins by an aphidophagous predator

    International Nuclear Information System (INIS)

    Paula, Débora P.; Andow, David A.

    2016-01-01

    Uptake of Cry toxins by insect natural enemies has rarely been considered and bioaccumulation has not yet been demonstrated. Uptake can be demonstrated by the continued presence of Cry toxin after exposure has stopped and gut contents eliminated. Bioaccumulation can be demonstrated by showing uptake and that the concentration of Cry toxin in the natural enemy exceeds that in its food. We exposed larvae of the aphidophagous predator, Harmonia axyridis, to Cry1Ac and Cry1F through uniform and constant tritrophic exposure via an aphid, Myzus persicae, and looked for toxin presence in the pupae. We repeated the experiment using only Cry1F and tested newly emerged adults. Both Cry toxins were detected in pupae, and Cry1F was detected in recently emerged, unfed adults. Cry1Ac was present 2.05 times and Cry1F 3.09 times higher in predator pupae than in the aphid prey. Uptake and bioaccumulation in the third trophic level might increase the persistence of Cry toxins in the food web and mediate new exposure routes to natural enemies. - Highlights: • Uptake and bioaccumulation of two Cry toxins by a larval coccinellid was tested. • Uptake was demonstrated by presence of the toxins in pupae and adults. • Bioaccumulation was shown by higher toxin concentration in pupae than prey. • Cry1Ac was present 2.05× and Cry1F 3.09× higher in predator pupae than prey. • This might increase persistence of Cry toxins in food webs with new exposure routes. - Immatures of the predaceous coccinellid Harmonia axyridis can uptake and bioaccumulate Cry toxins delivered via their aphid prey.

  5. Performance of laying hens fed diets containing DAS-59122-7 maize grain compared with diets containing nontransgenic maize grain.

    Science.gov (United States)

    Jacobs, C M; Utterback, P L; Parsons, C M; Rice, D; Smith, B; Hinds, M; Liebergesell, M; Sauber, T

    2008-03-01

    An experiment using 216 Hy-Line W-36 pullets was conducted to evaluate transgenic maize grain containing the cry34Ab1 and cry35Ab1 genes from a Bacillus thuringiensis (Bt) strain and the phosphinothricin ace-tyltransferase (pat) gene from Streptomyces viridochromogenes. Expression of the cry34Ab1 and cry35Ab1 genes confers resistance to corn rootworms, and the pat gene confers tolerance to herbicides containing glufosinate-ammonium. Pullets (20 wk of age) were placed in cage lots (3 hens/cage, 2 cages/lot) and were randomly assigned to 1 of 3 corn-soybean meal dietary treatments (12 lots/treatment) formulated with the following maize grains: near-isogenic control (control), conventional maize, and transgenic test corn line 59122 containing event DAS-59122-7. Differences between 59122 and control group means were evaluated with statistical significance at P < 0.05. Body weight and gain, egg production, egg mass, and feed efficiency for hens fed the 59122 corn were not significantly different from the respective values for hens fed diets formulated with control maize grain. Egg component weights, Haugh unit measures, and egg weight class distribution were similar regardless of the corn source. This research indicates that performance of hens fed diets containing 59122 maize grain, as measured by egg production and egg quality, was similar to that of hens fed diets formulated with near-isogenic corn grain.

  6. Development of Monoclonal Antibodies Recognizing Linear Epitope: Illustration by Three Bacillus thuringiensis Crystal Proteins of Genetically Modified Cotton, Maize, and Tobacco.

    Science.gov (United States)

    Cao, Zhen; Zhang, Wei; Ning, Xiangxue; Wang, Baomin; Liu, Yunjun; Li, Qing X

    2017-11-22

    Bacillus thuringiensis Cry1Ac, Cry1Ia1, and Cry1Ie are δ-endotoxin insecticidal proteins widely implemented in genetically modified organisms (GMO), such as cotton, maize, and potato. Western blot assay integrates electrophoresis separation power and antibody high specificity for monitoring specific exogenous proteins expressed in GMO. Procedures for evoking monoclonal antibody (mAb) for Western blot were poorly documented. In the present study, Cry1Ac partially denatured at 100 °C for 5 min was used as an immunogen to develop mAbs selectively recognizing a linear epitope of Cry1Ac for Western blot. mAb 5E9C6 and 3E6E2 selected with sandwich ELISA strongly recognized the heat semidenatured Cry1Ac. Particularly, 3E6E2 recognized both E. coli and cotton seed expressed Cry1Ac in Western blot. Such strategy of using partially denatured proteins as immunogens and using sandwich ELISA for mAb screening was also successfully demonstrated with production of mAbs against Cry1Ie for Western blot assay in maize.

  7. Interação de proteínas Cry1 e Vip3A de Bacillus thuringiensis para controle de lepidópteros-praga

    Directory of Open Access Journals (Sweden)

    Paula Cristina Brunini Crialesi-Legori

    2014-02-01

    Full Text Available O objetivo deste trabalho foi avaliar a suscetibilidade das lagartas Anticarsia gemmatalis (Lepidoptera: Erebidae e Chrysodeixis includens (Lepidoptera: Noctuidae às proteínas Cry1 e Vip3A, bem como determinar se há a interação entre essas proteínas no controle das duas espécies. Bioensaios com as proteínas isoladas e em combinações foram realizados, e as concentrações letais CL50 e CL90 foram estimadas para cada condição. As proteínas Cry1Aa, Cry1Ac e Vip3Af foram as mais efetivas no controle de A. gemmatalis, enquanto Cry1Ac, Vip3Aa e Vip3Af foram mais efetivas no de C. includens. As proteínas Cry1Ac e Cry1Ca causaram maior inibição do desenvolvimento das larvas sobreviventes à CL50, em ambas as espécies. Combinações entre Vip3A e Cry1 apresentam efeito sinérgico no controle das espécies e a combinação Vip3Aa+Cry1Ea destaca-se no controle de A. gemmatalis e C. includens. Essas proteínas combinadas são promissoras na construção de plantas piramidadas, para o controle simultâneo das pragas.

  8. Possible Insecticidal Mechanisms Mediated by Immune-Response-Related Cry-Binding Proteins in the Midgut Juice of Plutella xylostella and Spodoptera exigua.

    Science.gov (United States)

    Lu, Keyu; Gu, Yuqing; Liu, Xiaoping; Lin, Yi; Yu, Xiao-Qiang

    2017-03-15

    Cry toxins are insecticidal toxin proteins produced by a spore-forming Gram-positive bacterium Bacillus thuringiensis. Interactions between the Cry toxins and the receptors from midgut brush border membrane vesicles (BBMVs), such as cadherin, alkaline phosphatase, and aminopeptidase, are key steps for the specificity and insecticidal activity of Cry proteins. However, little is known about the midgut juice proteins that may interfere with Cry binding to the receptors. To validate the hypothesis that there exist Cry-binding proteins that can interfere with the insecticidal process of Cry toxins, we applied Cry1Ab1-coupled Sepharose beads to isolate Cry-binding proteins form midgut juice of Plutella xylostella and Spodoptera exigua. Trypsin-like serine proteases and Dorsal were found to be Cry1Ab1-binding proteins in the midgut juice of P. xylostella. Peroxidase-C (POX-C) was found to be the Cry1Ab1-binding protein in the midgut juice of S. exigua. We proposed possible insecticidal mechanisms of Cry1Ab1 mediated by the two immune-related proteins: Dorsal and POX-C. Our results suggested that there exist, in the midgut juice, Cry-binding proteins, which are different from BBMV-specific receptors.

  9. Does Bt Corn Really Produce Tougher Residues

    Science.gov (United States)

    Bt corn hybrids produce insecticidal proteins that are derived from a bacterium, Bacillus thuringiensis. There have been concerns that Bt corn hybrids produce residues that are relatively resistant to decomposition. We conducted four experiments that examined the decomposition of corn residues und...

  10. Evaluation of cytotoxic and antimicrobial effects of two Bt Cry proteins on a GMO safety perspective.

    Science.gov (United States)

    Farias, Davi Felipe; Viana, Martônio Ponte; de Oliveira, Gustavo Ramos; Beneventi, Magda Aparecida; Soares, Bruno Marques; Pessoa, Claudia; Pessoa, Igor Parra; Silva, Luciano Paulino; Vasconcelos, Ilka Maria; de Sá, Maria Fátima Grossi; Carvalho, Ana Fontenele Urano

    2014-01-01

    Studies have contested the innocuousness of Bacillus thuringiensis (Bt) Cry proteins to mammalian cells as well as to mammals microbiota. Thus, this study aimed to evaluate the cytotoxic and antimicrobial effects of two Cry proteins, Cry8Ka5 (a novel mutant protein) and Cry1Ac (a widely distributed protein in GM crops). Evaluation of cyto- and genotoxicity in human lymphocytes was performed as well as hemolytic activity coupled with cellular membrane topography analysis in mammal erythrocytes. Effects of Cry8Ka5 and Cry1Ac upon Artemia sp. nauplii and upon bacteria and yeast growth were assessed. The toxins caused no significant effects on the viability (IC50 > 1,000 µg/mL) or to the cellular DNA integrity of lymphocytes (no effects at 1,000 µg/mL). The Cry8Ka5 and Cry1Ac proteins did not cause severe damage to erythrocytes, neither with hemolysis (IC50 > 1,000 µg/mL) nor with alterations in the membrane. Likewise, the Cry8Ka5 and Cry1Ac proteins presented high LC50 (755.11 and >1,000 µg/mL, resp.) on the brine shrimp lethality assay and showed no growth inhibition of the microorganisms tested (MIC > 1,000 µg/mL). This study contributed with valuable information on the effects of Cry8Ka5 and Cry1Ac proteins on nontarget organisms, which reinforce their potential for safe biotechnological applications.

  11. Analysis of Cry8Ka5-binding proteins from Anthonomus grandis (Coleoptera: Curculionidae) midgut.

    Science.gov (United States)

    Nakasu, Erich Y T; Firmino, Alexandre A P; Dias, Simoni C; Rocha, Thales L; Ramos, Hudson B; Oliveira, Gustavo R; Lucena, Wagner; Carlini, Célia R; Grossi-de-Sá, Maria Fátima

    2010-07-01

    Biotech crops expressing Bacillus thuringiensis Cry toxins present a valuable approach for insect control. Cry8Ka5, which is highly toxic to the cotton boll weevil (Anthonomus grandis), was used as a model to study toxin-ligand interactions. Three Cry-binding proteins were detected after toxin overlay assays. Following de novo sequencing, a heat-shock cognate protein and a V-ATPase were identified, whilst a approximately 120 kDa protein remained unknown. Additional Cry8Ka5-binding proteins were visualized by two-dimensional gel electrophoresis ligand blots. (c) 2010 Elsevier Inc. All rights reserved.

  12. [Transformation and expression of specific insecticide gene Bt cry3A in resident endogenetic bacteria isolated from Apriona germari (Hope) larvae intestines].

    Science.gov (United States)

    Zhongkang, Wang; Wei, He; Guoxiong, Peng; Yuxian, Xia; Qiang, Li; Youping, Yin

    2008-09-01

    Transforming the specific insecticidal gene Bt cry3A into the dominant resident endogenetic bacteria in intestines of Apriona germari (Hope) larvae to construct transgenic bacteria that can colonize and express the insecticidal gene Bt cry3A perfectly in intestines of Apriona germari (Hope) larvae. We isolated and identified the dominant resident endogenetic bacteria by traditional methods and molecular method based of 16S rDNA analysis. Two Escherichia coli--Bacillus thuringiensis shuttle plasmid pHT305a and pHT7911 which contained specific insecticidal gene Bt cry3A were transformed into two resident endogenetic bacteria Brevibacillus brevis Ag12 and Bacillus thuringiensis Ag13 isolated from A. germari larvae intestines respectively by electro-transformation. Eighteen species of bacteria have isolated and identified from Apriona germari larvae intestines and two of them (Brevibacillus brevis Ag12 and Bacillus thuringiensis Ag13) were selected as starting bacteria to recieve the Bt cry3A. The 4 transgenic engineering strains Ag12-7911, Ag12-305a, Ag13-7911 and Ag13-305a were obtained successfully and validated by testing the plasmid stability in recombinants, transformants vegetal properties, crystal poisonous protein observation, expressional protein SDS-PAGE. The Bt cry3A gene had been transformed into Brevibacillus brevis and Bacillus thuringiensis. Both bioassay and examination of the engineering strains in intestines after feeding them to larvae showed that all these transformant strains (Brevibacillus brevis Ag12-305a, Bacillus thurigiensis Ag13-305a, Brevibacillus brevis Ag12-7911 and Bacillus thurigiensis Ag13-7911) could colonize and express 65 kDa protoxin in intestines of A. germari larvae and had insecticidal activity. We obtained four transgenic bacteria that can colonize and express the target insecticide gene Bt cry3A in A. germari larvae. They may be developed as a new insecticide.

  13. Expression of Cry1Ac toxin-binding region in Plutella xyllostella cadherin-like receptor and studying their interaction mode by molecular docking and site-directed mutagenesis.

    Science.gov (United States)

    Hu, Xiaodan; Zhang, Xiao; Zhong, Jianfeng; Liu, Yuan; Zhang, Cunzheng; Xie, Yajing; Lin, Manman; Xu, Chongxin; Lu, Lina; Zhu, Qing; Liu, Xianjin

    2018-05-01

    Cadherin-like protein has been identified as the primary Bacillus thuringiensis (Bt) Cry toxin receptor in Lepidoptera pests and plays a key role in Cry toxin insecticidal. In this study, we successfully expressed the putative Cry1Ac toxin-binding region (CR7-CR11) of Plutella xylostella cadherin-like in Escherichia coli BL21 (DE3). The expressed CR7-CR11 fragment showed binding ability to Cry1Ac toxin under denaturing (Ligand blot) and non-denaturing (ELISA) conditions. The three-dimensional structure of CR7-CR11 was constructed by homology modeling. Molecular docking results of CR7-CR11 and Cry1Ac showed that domain II and domain III of Cry1Ac were taking part in binding to CR7-CR11, while CR7-CR8 was the region of CR7-CR11 in interacting with Cry1Ac. The interaction of toxin-receptor complex was found to arise from hydrogen bond and hydrophobic interaction. Through the computer-aided alanine mutation scanning, amino acid residues of Cry1Ac (Met341, Asn442 and Ser486) and CR7-CR11 (Asp32, Arg101 and Arg127) were predicted as the hot spot residues involved in the interaction of the toxin-receptor complex. At last, we verified the importance role of these key amino acid residues by binding assay. These results will lay a foundation for further elucidating the insecticidal mechanism of Cry toxin and enhancing Cry toxin insecticidal activity by molecular modification. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Phage-Mediated Immuno-PCR for Ultrasensitive Detection of Cry1Ac Protein Based on Nanobody.

    Science.gov (United States)

    Liu, Yuanyuan; Jiang, Dongjian; Lu, Xin; Wang, Wei; Xu, Yang; He, Qinghua

    2016-10-11

    The widespread use of Cry proteins in transgenic plants for insect control has raised concerns about the environment and food safety in the public. An effective detection method for introduced Cry proteins is of significance for environmental risk assessment and product quality control. This paper describes a novel phage mediated immuno-PCR (iPCR) for the ultrasensitive determination of Cry proteins based on nanobodies. Three nanobodies against Cry1Ac protein were obtained from a naı̈ve phage displayed nanobody library without animal immunization process and were applied to the iPCR assay for Cry1Ac. The phage-mediated iPCR for Cry1Ac based on nanobodies showed a dynamic range of 0.001-100 ng/mL and a limit detection of 0.1 pg/mL. Specific measurement of this established method was performed by testing cross-reativity of other Cry1Ac analogues, and the result showed negligible cross-reactivity with other test Cry proteins (Cry1Ab, Cry1F, Cry3B). Furthermore, the phage-mediated iPCR based on nanobody should be easily applicable to the detection of many other Cry proteins.

  15. Chitinolitic activity in proteic extracts of Bacillus thuringiensis toxic to boll weevil (Anthonomus grandis)

    Energy Technology Data Exchange (ETDEWEB)

    Silva, T.S; Rocha, T.L. [EMBRAPA Recursos Geneticos e Biotecnologia, DF (Brazil); Vasconcelos, E.A.R [Universidade de Brasilia (UnB), DF (Brazil); Grossi-de-Sa, M.F. [Universidade Catolica de Brasilia, DF (Brazil)

    2008-07-01

    Full text: Bacillus thuringiensis (Bt) is a spore forming bacteria, which produces Cry proteins toxic towards several insect orders. Bt S 811 strain produces at least three Cry toxins: Cry1Ab, Cry1Ia12, and Cry8, and shown toxicity to insects from Coleoptera order. In order to characterize the production of theses toxins, and check its activity against Boll weevil larvae, proteic extracts from Bt cells and supernatant proteins from the bacterial culture, were obtained at different stages of cell cycle; 8, 16, 24, and 32 hours after inoculation (HAI). Proteins from 32 HAI of the supernatant, and 8 HAI of the cellular fractions, shown highest activity towards the Boll weevil larvae. Western blotting assays using anti-Cry8 and anti-Cry1I were carried out to analyse these toxins in the Bt proteic extracts. The existence of a Cry8 was detected at 8 HAI in the cellular fraction, what allow associate this molecule with the toxicity of this fraction. However, toxicity observed at 32 HAI in the supernatant fraction, was not possible to be associated with Cry8 or Cry1Ia toxins, indicating that there are another protein(s) responsible for the toxicity. A protein homo log to Cry1Ab was identified by 'Peptide Mass Fingerprint' at 32 HAI of the supernatant fraction and a chitin binding protein was identified by 2DE/MS/MS in this same stage and chitinolitic activity was also observed by enzymatic assay. All our data suggest a possible synergism between Cry toxins and a chitinase in the activity of this strain towards Boll weevil.

  16. Characterization of Bacillus thuringiensis Berl. indigenous from soil and its potency as biological agents of Spodoptera litura (Lepidoptera: Noctuidae)

    Science.gov (United States)

    Pujiastuti, Y.; Astuti, D. T.; Afriyani, S. R.; Suparman, S.; Irsan, C.; Sembiring, E. R.; Nugraha, S.; Mulawarman; Damiri, N.

    2018-01-01

    The objective of the study was to characterize the molecular weight of protein in order to be utilized as biological agent of S. litura and their cell or spores production. To investigate the molecular weight of protein was done by SDS-Page electrophoresis. Growth media used for producing B. thuringiensis were T3, LB broth and agricultural waste. The results showed that the molecular weight of protein ranged from 37 to 140 kDa. In DLM and DLKK23 isolates were found ranging from 37 to 40 kDa and from 110 to 130 kDa, respectively. KJ3R5 and KJ3P1 isolates were obtained having three protein bands ranging from 43 to 45, 73 to 80 and 110 to 130 kDa and 45-50, 75-80 and 130-140 kDa, respectively. It was predicted that isolates B. thuringiensis were belonging to Cry IA, Cry IIA, Cry IVC and Cry15c. These crystal proteins were toxic to S. litura. There was no protein bands found in the two last isolates (KJ3R3 and KJ3J4). Production of spore after sporulation in agricultural waste media ranged from 0.5 to 106 - 2.67 x 107 spores/ml showing medium level of toxicity to S. litura.

  17. Construction of a biodynamic model for Cry protein production studies.

    Science.gov (United States)

    Navarro-Mtz, Ana Karin; Pérez-Guevara, Fermín

    2014-12-01

    Mathematical models have been used from growth kinetic simulation to gen regulatory networks prediction for B. thuringiensis culture. However, this culture is a time dependent dynamic process where cells physiology suffers several changes depending on the changes in the cell environment. Therefore, through its culture, B. thuringiensis presents three phases related with the predominance of three major metabolic pathways: vegetative growth (Embded-Meyerhof-Parnas pathway), transition (γ-aminobutiric cycle) and sporulation (tricarboxylic acid cycle). There is not available a mathematical model that relates the different stages of cultivation with the metabolic pathway active on each one of them. Therefore, in the present study, and based on published data, a biodynamic model was generated to describe the dynamic of the three different phases based on their major metabolic pathways. The biodynamic model is used to study the interrelation between the different culture phases and their relationship with the Cry protein production. The model consists of three interconnected modules where each module represents one culture phase and its principal metabolic pathway. For model validation four new fermentations were done showing that the model constructed describes reasonably well the dynamic of the three phases. The main results of this model imply that poly-β-hydroxybutyrate is crucial for endospore and Cry protein production. According to the yields of dipicolinic acid and Cry from poly-β-hydroxybutyrate, calculated with the model, the endospore and Cry protein production are not just simultaneous and parallel processes they are also competitive processes.

  18. Proteomic analysis of Bacillus thuringiensis at different growth phases by using an automated online two-dimensional liquid chromatography-tandem mass spectrometry strategy.

    Science.gov (United States)

    Huang, Shaoya; Ding, Xuezhi; Sun, Yunjun; Yang, Qi; Xiao, Xiuqing; Cao, Zhenping; Xia, Liqiu

    2012-08-01

    The proteome of a new Bacillus thuringiensis subsp. kurstaki strain, 4.0718, from the middle vegetative (T(1)), early sporulation (T(2)), and late sporulation (T(3)) phases was analyzed using an integrated liquid chromatography (LC)-based protein identification system. The system comprised two-dimensional (2D) LC coupled with nanoscale electrospray ionization (ESI) tandem mass spectrometry (MS/MS) on a high-resolution hybrid mass spectrometer with an automated data analysis system. After deletion of redundant proteins from the different batches and B. thuringiensis subspecies, 918, 703, and 778 proteins were identified in the respective three phases. Their molecular masses ranged from 4.6 Da to 477.4 Da, and their isoelectric points ranged from 4.01 to 11.84. Function clustering revealed that most of the proteins in the three phases were functional metabolic proteins, followed by proteins participating in cell processes. Small molecular and macromolecular metabolic proteins were further classified according to the Kyoto Encyclopedia of Genes and Genome and BioCyc metabolic pathway database. Three protoxins (Cry2Aa, Cry1Aa, and Cry1Ac) as well as a series of potential intracellular active factors were detected. Many significant proteins related to spore and crystal formation, including sporulation proteins, help proteins, chaperones, and so on, were identified. The expression patterns of two identified proteins, CotJc and glutamine synthetase, were validated by Western blot analysis, which further confirmed the MS results. This study is the first to use shotgun technology to research the proteome of B. thuringiensis. Valuable experimental data are provided regarding the methodology of analyzing the B. thuringiensis proteome (which can be used to produce insecticidal crystal proteins) and have been added to the related protein database.

  19. Evaluation of Cytotoxic and Antimicrobial Effects of Two Bt Cry Proteins on a GMO Safety Perspective

    Directory of Open Access Journals (Sweden)

    Davi Felipe Farias

    2014-01-01

    Full Text Available Studies have contested the innocuousness of Bacillus thuringiensis (Bt Cry proteins to mammalian cells as well as to mammals microbiota. Thus, this study aimed to evaluate the cytotoxic and antimicrobial effects of two Cry proteins, Cry8Ka5 (a novel mutant protein and Cry1Ac (a widely distributed protein in GM crops. Evaluation of cyto- and genotoxicity in human lymphocytes was performed as well as hemolytic activity coupled with cellular membrane topography analysis in mammal erythrocytes. Effects of Cry8Ka5 and Cry1Ac upon Artemia sp. nauplii and upon bacteria and yeast growth were assessed. The toxins caused no significant effects on the viability (IC50>1,000 µg/mL or to the cellular DNA integrity of lymphocytes (no effects at 1,000 µg/mL. The Cry8Ka5 and Cry1Ac proteins did not cause severe damage to erythrocytes, neither with hemolysis (IC50>1,000 µg/mL nor with alterations in the membrane. Likewise, the Cry8Ka5 and Cry1Ac proteins presented high LC50 (755.11 and >1,000 µg/mL, resp. on the brine shrimp lethality assay and showed no growth inhibition of the microorganisms tested (MIC>1,000 µg/mL. This study contributed with valuable information on the effects of Cry8Ka5 and Cry1Ac proteins on nontarget organisms, which reinforce their potential for safe biotechnological applications.

  20. A Comparison of Soil microbial community structure, protozoa and nematodes in field plots of conventional and genetically modified maize expressing the Bacillus thuringiensis Cry1Ab toxin

    DEFF Research Database (Denmark)

    Griffiths, B. S.; Caul, S.; Thompson, J.

    2005-01-01

    Field trials were established at three European sites (Denmark, Eastern France, South-West France) of genetically modified maize (Zea mays L.) expressing the CryIAb Bacillus thuringiensis toxin (Bt), the near-isogenic non-Bt cultivar, another conventional maize cultivar and grass. Soil from Denmark......) and phospholipid fatty acid analysis (PLFA), and protozoa and nematodes in all samples. Individual differences within a site resulted from: greater nematode numbers under grass than maize on three occasions; different nematode populations under the conventional maize cultivars once; and two occasions when...... there was a reduced protozoan population under Bt maize compared to non-Bt maize. Microbial community structure within the sites only varied with grass compared to maize, with one occurrence of CLPP varying between maize cultivars (Bt versus a conventional cultivar). An overall comparison of Bt versus non-Bt maize...

  1. Effect of inherited sterility and bacillus thuringiensis on mortality and reproduction of phthorimaea opercullela zeller (lepidoptera: gelechidae)

    International Nuclear Information System (INIS)

    Makee, H.; Tlas, M. D.; Amer, S.; Abdulla, J.

    2008-01-01

    The effect of a commercial formulation of Bacillus thuringiensis (Dipel 2X) upon F 1 progeny of irradiated and unirradiated phthorimaea operculella male parents was investigated. F 1 progeny of irradiated parents was more susceptible to B. thuringiensis than that of unirradiated parents. A combination of irradiation and B. thuringiensis led to higher mortality in F 1 progeny of P. operculella. The LC 50 was 0.406 g/100ml for F 1 progeny of unirradiated parents, but 0.199 g/100ml for those of irradiated parents. There was a great reduction in the pupal weight, fecundity and egg hatchability of F 1 progeny of irradiated patents compared to those unirradiated parents. Such reduction was increased by applying higher concentration of B. thuringiensis. A combination between inherited sterility technique and B. thuringiensis application could give a good controlling result against P. operculella. (author)

  2. Assessment of potential adjuvanticity of Cry proteins.

    Science.gov (United States)

    Joshi, Saurabh S; Barnett, Brian; Doerrer, Nancy G; Glenn, Kevin; Herman, Rod A; Herouet-Guicheney, Corinne; Hunst, Penny; Kough, John; Ladics, Gregory S; McClain, Scott; Papineni, Sabitha; Poulsen, Lars K; Rascle, Jean-Baptiste; Tao, Ai-Lin; van Ree, Ronald; Ward, Jason; Bowman, Christal C

    2016-08-01

    Genetically modified (GM) crops have achieved success in the marketplace and their benefits extend beyond the overall increase in harvest yields to include lowered use of insecticides and decreased carbon dioxide emissions. The most widely grown GM crops contain gene/s for targeted insect protection, herbicide tolerance, or both. Plant expression of Bacillus thuringiensis (Bt) crystal (Cry) insecticidal proteins have been the primary way to impart insect resistance in GM crops. Although deemed safe by regulatory agencies globally, previous studies have been the basis for discussions around the potential immuno-adjuvant effects of Cry proteins. These studies had limitations in study design. The studies used animal models with extremely high doses of Cry proteins, which when given using the ig route were co-administered with an adjuvant. Although the presumption exists that Cry proteins may have immunostimulatory activity and therefore an adjuvanticity risk, the evidence shows that Cry proteins are expressed at very low levels in GM crops and are unlikely to function as adjuvants. This conclusion is based on critical review of the published literature on the effects of immunomodulation by Cry proteins, the history of safe use of Cry proteins in foods, safety of the Bt donor organisms, and pre-market weight-of-evidence-based safety assessments for GM crops. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Assessment of the impact of Cry1Ab expression on insects dwelling on the maize plants

    Czech Academy of Sciences Publication Activity Database

    Habuštová, Oxana; Doležal, Petr; Hussein, H. M.; Spitzer, Lukáš; Turanli, F.; Růžička, Vlastimil; Sehnal, František

    2007-01-01

    Roč. 37, supplement 1 (2007), s. 50-51 ISSN 1738-2297. [International Congress of Insect Biotechnology and Industry. 19.08.2007-24.08.2007, Daegu] R&D Projects: GA AV ČR KJB6007304 Institutional research plan: CEZ:AV0Z50070508 Keywords : GM crops * Cry1Ab endotoxin * European corn borer Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection

  4. Eliminating host-mediated effects demonstrates Bt maize producing Cry1F has no adverse effects on the parasitoid Cotesia marginiventris

    Science.gov (United States)

    The fall armyworm, Spodoptera frugiperda, is an important pest of maize in the United States and many tropical areas in the western hemisphere. In 2001, Herculex I ® (Cry1F) maize was commercially planted in the United States to control Lepidoptera, including S. frugiperda. In 2006, a population of ...

  5. Improving Cry8Ka toxin activity towards the cotton boll weevil (Anthonomus grandis).

    Science.gov (United States)

    Oliveira, Gustavo R; Silva, Maria C M; Lucena, Wagner A; Nakasu, Erich Y T; Firmino, Alexandre A P; Beneventi, Magda A; Souza, Djair S L; Gomes, José E; de Souza, José D A; Rigden, Daniel J; Ramos, Hudson B; Soccol, Carlos R; Grossi-de-Sa, Maria F

    2011-09-09

    The cotton boll weevil (Anthonomus grandis) is a serious insect-pest in the Americas, particularly in Brazil. The use of chemical or biological insect control is not effective against the cotton boll weevil because of its endophytic life style. Therefore, the use of biotechnological tools to produce insect-resistant transgenic plants represents an important strategy to reduce the damage to cotton plants caused by the boll weevil. The present study focuses on the identification of novel molecules that show improved toxicity against the cotton boll weevil. In vitro directed molecular evolution through DNA shuffling and phage display screening was applied to enhance the insecticidal activity of variants of the Cry8Ka1 protein of Bacillus thuringiensis. Bioassays carried out with A. grandis larvae revealed that the LC50 of the screened mutant Cry8Ka5 toxin was 3.15-fold higher than the wild-type Cry8Ka1 toxin. Homology modelling of Cry8Ka1 and the Cry8Ka5 mutant suggested that both proteins retained the typical three-domain Cry family structure. The mutated residues were located mostly in loops and appeared unlikely to interfere with molecular stability. The improved toxicity of the Cry8Ka5 mutant obtained in this study will allow the generation of a transgenic cotton event with improved potential to control A. grandis.

  6. Improving Cry8Ka toxin activity towards the cotton boll weevil (Anthonomus grandis

    Directory of Open Access Journals (Sweden)

    Gomes José E

    2011-09-01

    Full Text Available Abstract Background The cotton boll weevil (Anthonomus grandis is a serious insect-pest in the Americas, particularly in Brazil. The use of chemical or biological insect control is not effective against the cotton boll weevil because of its endophytic life style. Therefore, the use of biotechnological tools to produce insect-resistant transgenic plants represents an important strategy to reduce the damage to cotton plants caused by the boll weevil. The present study focuses on the identification of novel molecules that show improved toxicity against the cotton boll weevil. In vitro directed molecular evolution through DNA shuffling and phage display screening was applied to enhance the insecticidal activity of variants of the Cry8Ka1 protein of Bacillus thuringiensis. Results Bioassays carried out with A. grandis larvae revealed that the LC50 of the screened mutant Cry8Ka5 toxin was 3.15-fold higher than the wild-type Cry8Ka1 toxin. Homology modelling of Cry8Ka1 and the Cry8Ka5 mutant suggested that both proteins retained the typical three-domain Cry family structure. The mutated residues were located mostly in loops and appeared unlikely to interfere with molecular stability. Conclusions The improved toxicity of the Cry8Ka5 mutant obtained in this study will allow the generation of a transgenic cotton event with improved potential to control A. grandis.

  7. Comparison of fumonisin contamination using HPLC and ELISA methods in bt and near-isogenic maize hybrids infested with European corn borer or western bean cutworm.

    Science.gov (United States)

    Bowers, Erin; Hellmich, Richard; Munkvold, Gary

    2014-07-09

    Field trials were conducted from 2007 to 2010 to compare grain fumonisin levels among non-Bt maize hybrids and Bt hybrids with transgenic protection against manual infestations of European corn borer (ECB) and Western bean cutworm (WBC). HPLC and ELISA were used to measure fumonisin levels. Results of the methods were highly correlated, but ELISA estimates were higher. Bt hybrids experienced less insect injury, Fusarium ear rot, and fumonisin contamination compared to non-Bt hybrids. WBC infestation increased fumonisin content compared to natural infestation in non-Bt and hybrids expressing Cry1Ab protein in five of eight possible comparisons; in Cry1F hybrids, WBC did not impact fumonisins. These results indicate that WBC is capable of increasing fumonisin levels in maize. Under WBC infestation, Cry1F mitigated this risk more consistently than Cry1Ab or non-Bt hybrids. Transgenically expressed Bt proteins active against multiple lepidopteran pests can provide broad, consistent reductions in the risk of fumonisin contamination.

  8. Down-regulation of a novel ABC transporter gene (Pxwhite) is associated with Cry1Ac resistance in the diamondback moth, Plutella xylostella (L.).

    Science.gov (United States)

    Guo, Zhaojiang; Kang, Shi; Zhu, Xun; Xia, Jixing; Wu, Qingjun; Wang, Shaoli; Xie, Wen; Zhang, Youjun

    2015-04-01

    Biopesticides or transgenic crops based on Cry toxins from the soil bacterium Bacillus thuringiensis (Bt) effectively control agricultural insect pests. The sustainable use of Bt biopesticides and Bt crops is threatened, however, by the development of Cry resistance in the target pests. The diamondback moth, Plutella xylostella (L.), is the first pest that developed resistance to a Bt biopesticide in the field, and a recent study has shown that the resistance of P. xylostella to Cry1Ac is caused by a mutation in an ATP-binding cassette (ABC) transporter gene (ABCC2). In this study, we report that down-regulation of a novel ABC transporter gene from ABCG subfamily (Pxwhite) is associated with Cry1Ac resistance in P. xylostella. The full-length cDNA sequence of Pxwhite was cloned and analyzed. Spatial-temporal expression detection revealed that Pxwhite was expressed in all tissues and developmental stages, and highest expressed in Malpighian tubule tissue and in egg stage. Sequence variation analysis of Pxwhite indicated the absence of constant non-synonymous mutations between susceptible and resistant strains, whereas midgut transcript analysis showed that Pxwhite was remarkably reduced in all resistant strains and further reduced when larvae of the moderately resistant SZ-R strain were subjected to selection with Cry1Ac toxin. Furthermore, RNA interference (RNAi)-mediated suppression of Pxwhite gene expression significantly reduced larval susceptibility to Cry1Ac toxin, and genetic linkage analysis confirmed that down-regulation of Pxwhite gene is tightly linked to Cry1Ac resistance in P. xylostella. To our knowledge, this is the first report indicating that Pxwhite gene is involved in Cry1Ac resistance in P. xylostella. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Investigation of the Cry4B-prohibitin interaction in Aedes aegypti cells.

    Science.gov (United States)

    Kuadkitkan, Atichat; Smith, Duncan R; Berry, Colin

    2012-10-01

    Bacillus thuringiensis (Bt) produces insecticidal toxins active against insects. Cry4B, one of the major insecticidal toxins produced by Bt subsp. israelensis, is highly toxic to mosquitoes in the genus Aedes: the major vectors of dengue, yellow fever, and chikungunya. Previous work has shown that Cry4B binds to several mid-gut membrane proteins in Aedes aegypti larvae including prohibitin, a protein recently identified as a receptor that also mediates entry of dengue virus into Aedes cells. This study confirms the interaction between Cry4B and prohibitin by co-immunoprecipitation analysis and demonstrates colocalization of prohibitin and Cry4B by confocal microscopy. While activated Cry4B toxin showed high larvicidal activity, it was not cytotoxic to two Aedes cell lines, allowing determination of its effect on dengue virus infectivity in the absence of Cry4B-induced cell lysis. Pre-exposure of Aedes cells to Cry4B resulted in a significant reduction in the number of infected cells compared to untreated cells.

  10. Effects of insecticidal crystal proteins (Cry proteins) produced by genetically modified maize (Bt maize) on the nematode Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Höss, Sebastian; Menzel, Ralph; Gessler, Frank; Nguyen, Hang T.; Jehle, Johannes A.; Traunspurger, Walter

    2013-01-01

    The genetically modified maize MON89034 × MON88017 expresses different crystal (Cry) proteins with pesticidal activity against the European corn borer (Cry1.105; Cry2Ab2) and the Western corn root worm (Cry3Bb1). Non-target organisms, such as soil nematodes, might be exposed to the Cry proteins that enter the soil in course of crop growing. Therefore, the risk of those proteins for nematodes was assessed by testing their toxic effects on Caenorhabditis elegans. All three insecticidal Cry proteins showed dose-dependent inhibitory effects on C. elegans reproduction (EC50: 0.12–0.38 μmol L −1 ), however, at concentrations that were far above the expected soil concentrations. Moreover, a reduced toxicity was observed when Cry proteins were added jointly. A C. elegans mutant strain deficient for receptors for the nematicidal Cry5B was also resistant against Cry1.105 and Cry2Ab2, suggesting that these Cry proteins bound to the same or similar receptors as nematicidal Cry proteins and thereby affect the reproduction of C. elegans. -- Highlights: •Insecticidal Cry proteins dose-dependently inhibited the reproduction of C. elegans. •Mixture toxicity was lower than expected from concentration-additive single effects. •Genes for MAPK-defense-pathway were up-regulated in presence of Cry protein mixture. •Knock-out strains deficient for Cry5B-receptors showed lower susceptibility to insecticidal Cry proteins. •Toxicity of insecticidal Cry-proteins on C. elegans occurred at concentrations far above expected field concentrations. -- Insecticidal Cry proteins expressed by genetically modified maize act on nematodes via a similar mode of action as nematicidal Cry proteins, however, at concentrations far above expected soil levels

  11. Comparative analysis of Bacillus thuringiensis toxin binding to gypsy moth, browntail moth, and douglas-fir tussock moth midgut tissue sections using fluorescence microscopy

    Science.gov (United States)

    Algimantas P. Valaitis; John D. Podgwaite

    2011-01-01

    Many strains of Bacillus thuringiensis (Bt) produce insecticidal proteins, also referred to as Cry toxins, in crystal inclusions during sporulation. When ingested by insects, the Cry toxins bind to receptors on the brush border midgut epithelial cells and create pores in the epithelial gut membranes resulting in the death of...

  12. Bacillus thuringiensis Cry1Ca-resistant Spodoptera exigua lacks expression of one of four Aminopeptidase N genes

    NARCIS (Netherlands)

    Herrero, S.; Gechev, T.; Bakker, P.L.; Moar, W.; Maagd, de R.A.

    2005-01-01

    BACKGROUND: Insecticidal toxins from Bacillus thuringiensis bind to receptors on midgut epithelial cells of susceptible insect larvae. Aminopeptidases N (APNs) from several insect species have been shown to be putative receptors for these toxins. Here we report the cloning and expression analysis of

  13. Assessment of the nutritional values of genetically modified wheat, corn, and tomato crops.

    Science.gov (United States)

    Venneria, Eugenia; Fanasca, Simone; Monastra, Giovanni; Finotti, Enrico; Ambra, Roberto; Azzini, Elena; Durazzo, Alessandra; Foddai, Maria Stella; Maiani, Giuseppe

    2008-10-08

    The genetic modification in fruit and vegetables could lead to changes in metabolic pathways and, therefore, to the variation of the molecular pattern, with particular attention to antioxidant compounds not well-described in the literature. The aim of the present study was to compare the quality composition of transgenic wheat ( Triticum durum L.), corn ( Zea mays L.), and tomato ( Lycopersicum esculentum Mill.) to the nontransgenic control with a similar genetic background. In the first experiment, Ofanto wheat cultivar containing the tobacco rab1 gene and nontransgenic Ofanto were used. The second experiment compared two transgenic lines of corn containing Bacillus thuringiensis "Cry toxin" gene (PR33P67 and Pegaso Bt) to their nontransgenic forms. The third experiment was conducted on transgenic tomato ( Lycopersicum esculentum Mill.) containing the Agrobacterium rhizogenes rolD gene and its nontransgenic control (cv. Tondino). Conventional and genetically modified crops were compared in terms of fatty acids content, unsaponifiable fraction of antioxidants, total phenols, polyphenols, carotenoids, vitamin C, total antioxidant activity, and mineral composition. No significant differences were observed for qualitative traits analyzed in wheat and corn samples. In tomato samples, the total antioxidant activity (TAA), measured by FRAP assay, and the naringenin content showed a lower value in genetically modified organism (GMO) samples (0.35 mmol of Fe (2+) 100 g (-1) and 2.82 mg 100 g (-1), respectively), in comparison to its nontransgenic control (0.41 mmol of Fe (2+) 100 g (-1) and 4.17 mg 100 g (-1), respectively). On the basis of the principle of substantial equivalence, as articulated by the World Health Organization, the Organization for Economic Cooperation and Development, and the United Nations Food and Agriculture Organization, these data support the conclusion that GM events are nutritionally similar to conventional varieties of wheat, corn, and tomato on

  14. The distinct properties of natural and GM cry insecticidal proteins.

    Science.gov (United States)

    Latham, Jonathan R; Love, Madeleine; Hilbeck, Angelika

    2017-04-01

    The Cry toxins are a family of crystal-forming proteins produced by the bacterium Bacillus thuringiensis. Their mode of action is thought to be to create pores that disrupt the gut epithelial membranes of juvenile insects. These pores allow pathogen entry into the hemocoel, thereby killing the insect. Genes encoding a spectrum of Cry toxins, including Cry mutants, Cry chimaeras and other Cry derivatives, are used commercially to enhance insect resistance in genetically modified (GM) crops. In most countries of the world, such GM crops are regulated and must be assessed for human and environmental safety. However, such risk assessments often do not test the GM crop or its tissues directly. Instead, assessments rely primarily on historical information from naturally occurring Cry proteins and on data collected on Cry proteins (called 'surrogates') purified from laboratory strains of bacteria engineered to express Cry protein. However, neither surrogates nor naturally occurring Cry proteins are identical to the proteins to which humans or other nontarget organisms are exposed by the production and consumption of GM plants. To-date there has been no systematic survey of these differences. This review fills this knowledge gap with respect to the most commonly grown GM Cry-containing crops approved for international use. Having described the specific differences between natural, surrogate and GM Cry proteins this review assesses these differences for their potential to undermine the reliability of risk assessments. Lastly, we make specific recommendations for improving risk assessments.

  15. Host Recognition Responses of Western (Family: Chrysomelidae) Corn Rootworm Larvae to RNA Interference and Bt Corn.

    Science.gov (United States)

    Zukoff, Sarah N; Zukoff, Anthony L

    2017-01-01

    Western corn rootworm Diabrotica virgifera virgifera LeConte is an important pest of corn whose larvae exhibit particular quantifiable patterns of locomotion after exposure to, and removal from, host roots and nonhost roots. Using EthoVision software, the behavior and locomotion of the western corn rootworm larvae was analyzed to determine the level of host recognition to germinated roots of differing corn hybrids containing either rootworm targeted Bt genes, RNA interference (RNAi) technology, the stack of both Bt and RNAi, or the isoline of these. The behavior of the rootworm larvae indicated a significant host preference response to all corn hybrids (with or without insecticidal traits) compared to the filter paper and oat roots. A weaker host response to the RNAi corn roots was observed in the susceptible larvae when compared to the resistant larvae, but not for the Bt + RNAi vector stack. Additionally, the resistant larvae demonstrated a weaker host response to the isoline corn roots when compared to the susceptible larvae. Although weaker, these host responses were significantly different from those observed in the negative controls, indicating that all hybrids tested do contain the contact cues necessary to elicit a host preference response by both Cry3Bb1-resistant and Cry3Bb1-susceptible larvae that would work to hinder resistance development in refuge in a bag fields. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  16. Characterization of parasporin gene harboring Indian isolates of Bacillus thuringiensis

    OpenAIRE

    Lenina, N. K.; Naveenkumar, A.; Sozhavendan, A. E.; Balakrishnan, N.; Balasubramani, V.; Udayasuriyan, V.

    2013-01-01

    Bacillus thuringiensis (Bt) is popularly known as insecticidal bacterium. However, non-insecticidal Bt strains are more extensively available in natural environment than the insecticidal ones. Parasporin (PS) is a collection of genealogically heterogeneous Cry proteins synthesized in non-insecticidal isolates of Bt. An important character generally related with PS proteins is their strong cytocidal activity preferentially on human cancer cells of various origins. Identification and characteri...

  17. Occurrence and significance of Bacillus cereus and Bacillus thuringiensis in ready-to-eat food

    DEFF Research Database (Denmark)

    Rosenquist, Hanne; Ørum-Smidt, Lasse; Andersen, Sigrid R

    2005-01-01

    Among 48,901 samples of ready-to-eat food products at the Danish retail market, 0.5% had counts of Bacillus cereus-like bacteria above 10(4) cfu g(-1). The high counts were most frequently found in starchy, cooked products, but also in fresh cucumbers and tomatoes. Forty randomly selected strains....../or content of cry genes. Thus, a large proportion of the B. cereus-like organisms present in food may belong to B. thuringiensis....

  18. Potato expressing beetle-specific Bacillus thuringiensis Cry3Aa toxin reduces performance of a moth

    Czech Academy of Sciences Publication Activity Database

    Hussein, H. M.; Habuštová, Oxana; Turanli, Ferit; Sehnal, František

    2006-01-01

    Roč. 32, č. 1 (2006), s. 1-13 ISSN 0098-0331 R&D Projects: GA ČR(CZ) GA522/02/1507 Institutional research plan: CEZ:AV0Z50070508 Keywords : Bacillus thuringiensis * Spodoptera littoralis * Leptinotarsa decemlineata Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection Impact factor: 1.896, year: 2006

  19. PxAPN5 serves as a functional receptor of Cry2Ab in Plutella xylostella (L.) and its binding domain analysis.

    Science.gov (United States)

    Pan, Zhi-Zhen; Xu, Lian; Liu, Bo; Zhang, Jing; Chen, Zheng; Chen, Qing-Xi; Zhu, Yu-Jing

    2017-12-01

    Lepidopteran midgut aminopeptidases N (APNs) are widely studied for their potential roles as one of the receptors for Bacillus thuringiensis (Bt) crystal toxins. In the present study, a loss of function analyses by RNAi (RNA interference) silencing of the Plutella xylostella APN5 (PxAPN5), a binding protein of Bt crystal toxin Cry2Ab, were performed. The knocking down of PxAPN5 in P. xylostella larvae greatly reduced their susceptibility to Cry2Ab and led to a decrease of Cry2Ab binding to P. xylostella midgut. Four truncated fragments of PxAPN5 were further constructed and expressed in Escherichia coli (E.coli) to find the binding region of PxAPN5 to Cry2Ab. The ligand blot result indicated that D1 domain (residues 1-262) and D3 domain (residues 510-620) of PxAPN5 could specially bind to Cry2Ab. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Dominance of Cry1F resistance in Spodoptera frugiperda (Lepidoptera: Noctuidae) on TC1507 Bt maize in Brazil.

    Science.gov (United States)

    Farias, Juliano R; Andow, David A; Horikoshi, Renato J; Sorgatto, Rodrigo J; dos Santos, Antonio C; Omoto, Celso

    2016-05-01

    Dominance of resistance has been one of the major parameters affecting the rate of evolution of resistance to Bt crops. High dose is the capacity of Bt crops to kill heterozygous insects and has been an essential component of the most successful strategy to manage resistance to these crops. Experiments were conducted to evaluate directly and indirectly whether the TC1507 event is high dose to Spodoptera frugiperda (JE Smith). About 8% of heterozygote neonate larvae were able to survive, complete larval development and emerge as normal adults on TC1507 leaves, while susceptible larvae could not survive for 5 days. The estimated dominance of resistance was 0.15 ± 0.09 and significantly higher than zero; therefore, the resistance to Cry1F expressed in TC1507 was not completely recessive. A 25-fold dilution of TC1507 maize leaf tissue in an artificial diet was able to cause a maximum mortality of only 37%, with growth inhibition of 82% at 7 days after larval infestation. Resistance to Cry1F in TC1507 maize is incompletely recessive in S. frugiperda. TC1507 maize is not high dose for S. frugiperda. Additional or alternative resistance management strategies, such as the replacement of single-trait Bt maize with pyramided Bt maize, which produces multiple proteins targeting the same insect pests, should be implemented wherever this technology is in use and S. frugiperda is the major pest. © 2015 Society of Chemical Industry.

  1. Impact of transgenic sweet corn silks to two noctuid pests

    Science.gov (United States)

    Eight Bacillus thuringiensis (Bt) transgenic sweet corn hybrids were evaluated (with two controls) for their efficacy against two ear-feeding insects; the corn earworm [Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae)], and the fall armyworm (Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuid...

  2. Actividad biológica de Bacillus thuringiensis sobre la polilla guatemalteca de la papa, Tecia solanivora Povolny (Lepidoptera: Gelechiidae

    Directory of Open Access Journals (Sweden)

    Adriana Carolina Rojas Arias

    2013-12-01

    Full Text Available La papa (Solanum tuberosum es uno de los cultivos más importantes de Colombia. Las larvas de la polilla guatemalteca de la papa, Tecia solanivora Povolny (Lepidoptera: Gelechiidae, causan daños directos a los tubérculos, produciendo pérdidas económicas e incremento en el uso de agroquímicos. Bacillus thuringiensis (Bt es una alternativa en el manejo de insectos plaga gracias a su especificidad. Su actividad depende de proteínas denominadas Cry, que cuando son ingeridas por un insecto susceptible forman poros en sus células intestinales que producen la muerte del insecto. Esta revisión presenta los estudios sobre el efecto de Bt hacia T. solanivora. Se ha encontrado que las toxinas Cry1Ac (base para variedades transgénicas y Cry1B tienen importante actividad tóxica. Igualmente se destaca la experiencia del diseño y evaluación de una toxina híbrida (Cry1B-Cry1I que resultó en una importante letalidad hacia T. solanivora.

  3. Field-evolved resistance to Cry1Ab maize by Spodoptera frugiperda in Brazil.

    Science.gov (United States)

    Omoto, Celso; Bernardi, Oderlei; Salmeron, Eloisa; Sorgatto, Rodrigo J; Dourado, Patrick M; Crivellari, Augusto; Carvalho, Renato A; Willse, Alan; Martinelli, Samuel; Head, Graham P

    2016-09-01

    The first Bt maize in Brazil was launched in 2008 and contained the MON 810 event, which expresses Cry1Ab protein. Although the Cry1Ab dose in MON 810 is not high against fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith), MON 810 provided commercial levels of control. To support insect resistance management in Brazil, the baseline and ongoing susceptibility of FAW was examined using protein bioassays, and the level of control and life history parameters of FAW were evaluated on MON 810 maize. Baseline diet overlay assays with Cry1Ab (16 µg cm(-2) ) caused 76.3% mortality to field FAW populations sampled in 2009. Moderate mortality (48.8%) and significant growth inhibition (88.4%) were verified in leaf-disc bioassays. In greenhouse trials, MON 810 had significantly less damage than non-Bt maize. The surviving FAW larvae on MON 810 (22.4%) had a 5.5 day increase in life cycle time and a 24% reduction in population growth rate. Resistance monitoring (2010-2015) showed a significant reduction in Cry1Ab susceptibility of FAW over time. Additionally, a significant reduction in the field efficacy of MON 810 maize against FAW was observed in different regions from crop season 2009 to 2013. The decrease in susceptibility to Cry1Ab was expected, but the specific contributions to this resistance by MON 810 maize cannot be distinguished from cross-resistance to Cry1Ab caused by exposure to Cry1F maize. Technologies combining multiple novel insecticidal traits with no cross-resistance to the current Cry1 proteins and high activity against the same target pests should be pursued in Brazil and similar environments. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  4. Production of the {sup 14}C-labeled insecticidal protein Cry1Ab for soil metabolic studies using a recombinant Escherichia coli in small-scale batch fermentations

    Energy Technology Data Exchange (ETDEWEB)

    Valldor, Petra; Miethling-Graff, Rona; Dockhorn, Susanne; Martens, Rainer; Tebbe, Christoph C. [Federal Research Institute for Rural Areas, Forestry and Fisheries, Braunschweig (Germany). Thuenen Institute (vTI) for Biodiversity

    2012-10-15

    Insecticidal Cry proteins naturally produced by Bacillus thuringiensis are a major recombinant trait expressed by genetically modified crops. They are released into the soil during and after cropping. The objective of this study was to produce {sup 14}C-labeled Cry1Ab proteins for soil metabolic studies in scope of their environmental risk assessment. Cry1Ab was synthesized as a protoxin by Escherichia coli HB101 pMP in 200-mL liquid batch culture fermentations and purified from inclusion bodies after trypsin digestion. For cultivation, U-{sup 14}C-glycerol was the main carbon source. Inclusion bodies were smaller and Cry1Ab yield was lower when the initial amount of total organic carbon in the cultivation broth was below 6.4 mg C L{sup -1}. Concentrations of 12.6 g {sup 14}C-labeled glycerol L{sup -1} (1 % v/v) resulted in the production of 17.1 mg {sup 14}C-Cry1Ab L{sup -1} cultivation medium. {sup 14}C mass balances showed that approx. 50 % of the label was lost by respiration and 20 % remained in the growth media, while the residual activity was associated with biomass. Depending on the production batch, 0.01 to 0.05 % of the total {sup 14}C originated from Cry1Ab. In the presence of 2.04 MBq {sup 14}C-labeled carbon sources, a specific activity of up to 268 Bq mg{sup -1} {sup 14}C-Cry1Ab was obtained. A more than threefold higher specific activity was achieved with 4.63 MBq and an extended cultivation period of 144 h. This study demonstrates that {sup 14}C-labeled Cry1Ab can be obtained from batch fermentations with E. coli in the presence of a simple {sup 14}C-labeled carbon source. It also provides a general strategy to produce {sup 14}C-labeled proteins useful for soil metabolic studies. (orig.)

  5. Differential brain responses to cries of infants with autistic disorder and typical development: an fMRI study.

    Science.gov (United States)

    Venuti, Paola; Caria, Andrea; Esposito, Gianluca; De Pisapia, Nicola; Bornstein, Marc H; de Falco, Simona

    2012-01-01

    This study used fMRI to measure brain activity during adult processing of cries of infants with autistic disorder (AD) compared to cries of typically developing (TD) infants. Using whole brain analysis, we found that cries of infants with AD compared to those of TD infants elicited enhanced activity in brain regions associated with verbal and prosodic processing, perhaps because altered acoustic patterns of AD cries render them especially difficult to interpret, and increased activity in brain regions associated with emotional processing, indicating that AD cries also elicit more negative feelings and may be perceived as more aversive and/or arousing. Perceived distress engendered by AD cries related to increased activation in brain regions associated with emotional processing. This study supports the hypothesis that cry is an early and meaningful anomaly displayed by children with AD. It could be that cries associated with AD alter parent-child interactions much earlier than the time that reliable AD diagnosis normally occurs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Insect Resistance to Bacillus thuringiensis Toxin Cry2Ab Is Conferred by Mutations in an ABC Transporter Subfamily A Protein.

    Directory of Open Access Journals (Sweden)

    Wee Tek Tay

    2015-11-01

    Full Text Available The use of conventional chemical insecticides and bacterial toxins to control lepidopteran pests of global agriculture has imposed significant selection pressure leading to the rapid evolution of insecticide resistance. Transgenic crops (e.g., cotton expressing the Bt Cry toxins are now used world wide to control these pests, including the highly polyphagous and invasive cotton bollworm Helicoverpa armigera. Since 2004, the Cry2Ab toxin has become widely used for controlling H. armigera, often used in combination with Cry1Ac to delay resistance evolution. Isolation of H. armigera and H. punctigera individuals heterozygous for Cry2Ab resistance in 2002 and 2004, respectively, allowed aspects of Cry2Ab resistance (level, fitness costs, genetic dominance, complementation tests to be characterised in both species. However, the gene identity and genetic changes conferring this resistance were unknown, as was the detailed Cry2Ab mode of action. No cross-resistance to Cry1Ac was observed in mutant lines. Biphasic linkage analysis of a Cry2Ab-resistant H. armigera family followed by exon-primed intron-crossing (EPIC marker mapping and candidate gene sequencing identified three independent resistance-associated INDEL mutations in an ATP-Binding Cassette (ABC transporter gene we named HaABCA2. A deletion mutation was also identified in the H. punctigera homolog from the resistant line. All mutations truncate the ABCA2 protein. Isolation of further Cry2Ab resistance alleles in the same gene from field H. armigera populations indicates unequal resistance allele frequencies and the potential for Bt resistance evolution. Identification of the gene involved in resistance as an ABC transporter of the A subfamily adds to the body of evidence on the crucial role this gene family plays in the mode of action of the Bt Cry toxins. The structural differences between the ABCA2, and that of the C subfamily required for Cry1Ac toxicity, indicate differences in the

  7. Association of PER2 and CRY1 Polymorphisms with the Morningness-Eveningness in Korean Adults

    Directory of Open Access Journals (Sweden)

    Jung Hie Lee

    2015-12-01

    Full Text Available Background and Objective Individuals have a unique circadian preference, which is based on differences in endogenous rhythm and environmental factors. There has been no study on the relationship between the morningness-eveningness (ME preference and the polymorphisms of PER2 and CRY1 genes, which may play an essential role in the modulation of circadian rhythm. Our present study aims to examine the difference in the polymorphisms of PER2-2221A/G and CRY1-2790T/G, which are related to a greater cancer risk, according to the ME preference. Methods The Korean version of the Morningness-Eveningness Questionnaire was administered and buccal DNA samples were obtained from 425 Korean adults aged 18 years or older. We excluded subjects who were being treated for sleep disorders or those with shift work. 47 morning type (MT (age: 44.57 ± 12.33, M:F = 14:33 subjects, 59 neither type (NT (age: 35.20 ± 9.53, M:F = 20:39 subjects and 51 evening type (ET (age: 28.80 ± 8.03, M:F = 14:37 subjects were finally included in the present study. The above candidate single nucleotide polymorphisms were analyzed by DNA sequencing or a SNaPshot assay. Results For the PER2-2221A/G and CRY1-2790T/G, there were no significant differences in the genotype distribution, allele frequency, or proportion of G allele positive subjects between the MT and ET groups. There was no significant difference in the mean scores of the MEQ-K, KESS, or PSQI between G allele positive and negative subjects for either PER2-A2221A/G or CRY1-2790T/G. Conclusions Our study did not support the association of the ME preference with the PER2-2221 A/G and CRY1-2790T/G in Korean adults.

  8. Bt Jute Expressing Fused δ-Endotoxin Cry1Ab/Ac for Resistance to Lepidopteran Pests

    Directory of Open Access Journals (Sweden)

    Shuvobrata Majumder

    2018-01-01

    Full Text Available Jute (Corchorus sp. is naturally occurring, biodegradable, lignocellulosic-long, silky, golden shiny fiber producing plant that has great demands globally. Paper and textile industries are interested in jute because of the easy availability, non-toxicity and high yield of cellulosic biomass produced per acre in cultivation. Jute is the major and most industrially used bast fiber-producing crop in the world and it needs protection from insect pest infestation that decreases its yield and quality. Single locus integration of the synthetically fused cry1Ab/Ac gene of Bacillus thuringiensis (Bt in Corchorus capsularis (JRC 321 by Agrobacterium tumefaciens-mediated shoot tip transformation provided 5 potent Bt jute lines BT1, BT2, BT4, BT7 and BT8. These lines consistently expressed the Cry1Ab/Ac endotoxin ranging from 0.16 to 0.35 ng/mg of leaf, in the following generations (analyzed upto T4. The effect of Cry1Ab/Ac endotoxin was studied against 3 major Lepidopteran pests of jute- semilooper (Anomis sabulifera Guenee, hairy caterpillar (Spilarctia obliqua Walker and indigo caterpillar (Spodoptera exigua Hubner by detached leaf and whole plant insect bioassay on greenhouse-grown transgenic plants. Results confirm that larvae feeding on transgenic plants had lower food consumption, body size, body weight and dry weight of excreta compared to non-transgenic controls. Insect mortality range among transgenic feeders was 66–100% for semilooper and hairy caterpillar and 87.50% for indigo caterpillar. Apart from insect resistance, the transgenic plants were at par with control plants in terms of agronomic parameters and fiber quality. Hence, these Bt jutes in the field would survive Lepidopteran pest infestation, minimize harmful pesticide usage and yield good quality fiber.

  9. Pathogenicity of Bacillus thuringiensis isolated from two species of Acromyrmex (Hymenoptera, Formicidae

    Directory of Open Access Journals (Sweden)

    L. M. N. Pinto

    Full Text Available The control of Acromyrmex leaf-cutting ants is necessary due to the severe damage they cause to diverse crops. A possibility was to control them using the bacterium Bacillus thuringiensis (Bt that characteristically produces insecticidal crystal proteins (ICPs. The ICPs have been effective in controlling lepidopterans, dipterans, and coleopterans, but their action against hymenopterans is unknown. This paper describes an attempt to isolate Bt from ants of two Acromyrmex species, to evaluate its pathogenicity towards these ants, and to test isolates by PCR. Bacterial isolates of Bt obtained from A. crassispinus and A. lundi have been assayed against A. lundi in the laboratory. The bioassays were carried out in BOD at 25°C, with a 12-hour photoperiod, until the seventh day after treatment. The Bt isolates obtained were submitted to total DNA extraction and tested by PCR with primers specific to cry genes. The results showed Bt presence in 40% of the assessed samples. The data from the in vivo assays showed a mortality rate higher than 50% in the target population, with the Bt HA48 isolate causing 100% of corrected mortality. The PCR results of Bt isolates showed a magnification of DNA fragments relative to cry1 genes in 22% of the isolates, and cry9 in 67%. Cry2, cry3, cry7, and cry8 genes were not detected in the tested samples, and 22% had no magnified DNA fragments corresponding to the assessed cry genes. The results are promising not only regarding allele identification in new isolates, but also fort the assays aimed at determining the Bt HA48 LC50's, which can eventually be applied in controlling of Acromyrmex leaf-cutting ants.

  10. Uso de productos derivados de Bacillus thuringiensis como alternativa de control en nematodos de importancia veterinaria. Revisión

    Directory of Open Access Journals (Sweden)

    Alejandro Vázquez-Pineda

    2012-01-01

    Full Text Available La bacteria entomopatógena Bacillus thuringiensis produce cristales proteicos con actividad citotóxica en contra de insectos y nematodos. La toxicidad de B. thuringiensis en plagas agrícolas es ampliamente conocida, pero poco se conoce acerca de su actividad en contra de nematodos parásitos. Recientemente, la actividad nematicida de las proteínas derivadas de B. thuringiensis se demostró en parásitos de mamíferos como Haemonchus, Teladorsagia, Nippostrongylus, y Ancylostoma, y en nematodos de plantas, Globodera y Meloidogyne. Entre el grupo de B. thuringiensis con efecto nematicida, las proteínas de la cepa IB-16 han mostrado actividad letal de 50 a 100 % en contra de diferentes estadios del principal género de rumiantes, Haemonchus contortus. Asimismo, los géneros de nematodos de vida libre, Panagrellus redivivus y Caenorhabditis elegans han sido blanco de estudios de la acción nematicida de B. thuringiensis. Por ejemplo, el efecto tóxico de la proteína Cry5B de B. thuringiensis se observó en las células intestinales de C. elegans, además esta acción parece involucrar receptores celulares específicos, similares a los que se han notificado en contra de plagas agrícolas. Asimismo, la unión de la proteína Cry5B ocurre en receptores específicos, como moléculas de carbohidratos, las cuales están presentes en la membrana de las células de intestino de los nematodos, ocasionando daño y muerte. A través de este tipo de estudios, los derivados de B. thuringiensis podrían considerarse una alternativa de control en nematodos que afectan a los animales domésticos, como rumiantes, así como en contra de otros nematodos patógenos de mamíferos e incluso de plantas agrícolas.

  11. Susceptibilidade de larvas de Cerotoma arcuata Olivier (Coleoptera: Chrysomelidae a Beauveria bassiana (Bals. Vuillemin, Metarhizium anisopliae (Metsch. Sorokin e Bacillus thuringiensis Berliner Susceptibility of Cerotoma arcuata Olivier (Coleoptera: Chrysomelidae larvae to Beauveria bassiana (Bals. Vuillemin, Metarhizium anisopliae (Metsch. Sorokin and Bacillus thuringiensis Berliner

    Directory of Open Access Journals (Sweden)

    Maria Lucia França Teixeira

    2007-02-01

    Full Text Available Larvas de 2° instar de Cerotoma arcuata foram avaliadas em relação à susceptibilidade aos fungos entomopatogênicos Beauveria bassiana, Metarhizium anisopliae e a bactéria Bacillus thuringiensis com as toxinas Cry3. Os insetos adultos foram mantidos em gaiolas e alimentados com plântulas de feijão (Phaseolus vulgaris L. e as larvas em "gerbox" com cotilédones de plântulas de feijão recém-germinadas. Das oito estirpes de B. bassiana avaliadas, CG 156 e CG 213 causaram 100% de mortalidade das larvas, as duas estirpes de M. anisopliae CG 210 e CG 321 foram patogênicas, eliminando 80 e 100% das larvas de C. arcuata, e, das cinco estirpes de B. thuringiensis testadas, o isolado CG 940 causou 70% de mortalidade das larvas.Second instar larvae of Cerotoma arcuata were evaluated concerning the susceptibility to fungi Beauveria bassiana and Metarhizium anisopliae and Bacillus thuringiensis strains containing Cry3 toxin. Adults of C. arcuata were kept in large cages and fed on bean seedlings and the larvae were reared in ‘gearbox’ feeding on germinated Phaseolus bean cotyledons. Strains CG 156 and CG 213 of B. bassiana killed 100% of the insect larvae and strains CG 210 and CG 321 of M. anisopliae killed 80 and 100% of the insect larvae. Strain CG 940 of B. thuringiensis killed 70% of the insect larvae.

  12. Population dynamics of Sesamia inferens on transgenic rice expressing Cry1Ac and CpTI in southern China.

    Science.gov (United States)

    Han, Lanzhi; Liu, Peilei; Wu, Kongming; Peng, Yufa; Wang, Feng

    2008-10-01

    Genetically modified insect-resistant rice lines containing the cry1Ac gene from Bacillus thuringiensis (Bt) or the CpTI (cowpea trypsin inhibitor) gene developed for the management of lepidopterous pests are highly resistant to the major target pests, Chilo suppressalis (Walker), Cnaphalocrocis medinalis (Guenée), and Scirpophaga incertulas (Walker), in the main rice-growing areas of China. However, the effects of these transgenic lines on Sesamia inferens (Walker), an important lepidopterous rice pest, are currently unknown. Because different insect species have varying susceptibility to Bt insecticidal proteins that may affect population dynamics, research into the effects of these transgenic rice lines on the population dynamics of S. inferens was conducted in Fuzhou, southern China, in 2005 and 2006. The results of laboratory, field cage, and field plot experiments show that S. inferens has comparatively high susceptibility to the transgenic line during the early growing season, with significant differences observed in larval density and infestation levels between transgenic and control lines. Because of a decrease in Cry1Ac levels in the plant as it ages, the transgenic line provided only a low potential for population suppression late in the growing season. There is a correlation between the changing expression of Cry1Ac and the impact of transgenic rice on the population dynamics of S. inferens during the season. These results indicate that S. inferens may become a major pest in fields of prospective commercially released transgenic rice, and more attention should be paid to developing an effective alternative management strategy.

  13. Effects of Cry1Ab Transgenic Maize on Lifecycle and Biomarker Responses of the Earthworm, Eisenia Andrei

    Directory of Open Access Journals (Sweden)

    Mark Maboeta

    2012-12-01

    Full Text Available A 28-day study was conducted to determine the effects of the Bacillus thuringiensis Cry1Ab toxin on the earthworm Eisenia andrei. Previously, investigations have been limited to life-cycle level effects of this protein on earthworms, and mostly on E. fetida. In this study several endpoints were compared which included biomass changes, cocoon production, hatching success, a cellular metal-stress biomarker (Neutral Red Retention Time; NRRT and potential genotoxic effects in terms of Randomly Amplified Polymorphic DNA sequences (RAPDs. NRRT results indicated no differences between treatments (p > 0.36, and NRRT remained the same for both treatments at different times during the experiment (p = 0.18. Likewise, no significant differences were found for cocoon production (p = 0.32 or hatching success (p = 0.29. Conversely, biomass data indicated a significant difference between the control treatment and the Bt treatment from the second week onwards (p < 0.001, with the Bt treatment losing significantly more weight than the isoline treatment. Possible confounding factors were identified that might have affected the differences in weight loss between groups. From the RAPD profiles no conclusive data were obtained that could link observed genetic variation to exposure of E. andrei to Cry1Ab proteins produced by Bt maize.

  14. Consequences for Protaphorura armata (Collembola: Onychiuridae) following exposure to genetically modified Bacillus thuringiensis (Bt) maize and non-Bt maize

    DEFF Research Database (Denmark)

    Heckmann, Lars-Henrik; Griffiths, Bryan S; Caul, Sandra

    2006-01-01

    Studies on the effect of genetically modified Bacillus thuringiensis (Bt) crops on true soil dwelling non-target arthropods are scarce. The objective of this study was to assess the influence of a 4-week exposure to two Bt maize varieties (Cry1Ab) Cascade and MEB307 on the collembolan Protaphorur...

  15. Cry features reflect pain intensity in term newborns: an alarm threshold.

    Science.gov (United States)

    Bellieni, Carlo V; Sisto, Renata; Cordelli, Duccio M; Buonocore, Giuseppe

    2004-01-01

    The purpose of this study was to assess differences in sound spectra of crying of term newborns in relation to different pain levels. Fifty-seven consecutively born neonates were evaluated during heel-prick performed with different analgesic techniques. Crying was recorded and frequency spectrograms analyzed. A pain score on the DAN (Douleur Aiguë du Nouveau-né) scale was assigned to each baby after the sampling. Three features were considered and correlated with the corresponding DAN scores: 1) whole spectral form; 2) the fundamental frequency of the first cry emitted (F0); and 3) root mean square sound pressure normalized to its maximum. After emission of the first cry, babies with DAN scores >8, but not with DAN scores cry") characterized by a sequence of almost identical cries with a period on the order of 1 s. A statistically significant correlation was found between root mean square (r2 = 89%, p cry (r2 = 68.2%, p = 0.02), and DAN score. F0 did not show significant correlation with DAN score in the subset of neonates with DAN scores babies with a DAN score >8 had a significantly higher F0 than those with lower DAN scores (p = 0.016). An alarm threshold exists between high (>8) and low (cry at a high pitch is emitted, followed by the siren cry, with a sound level maintained near its maximum.

  16. Impact of Corn Earworm (Lepidoptera: Noctuidae) on Field Corn (Poales: Poaceae) Yield and Grain Quality.

    Science.gov (United States)

    Bibb, Jenny L; Cook, Donald; Catchot, Angus; Musser, Fred; Stewart, Scott D; Leonard, Billy Rogers; Buntin, G David; Kerns, David; Allen, Tom W; Gore, Jeffrey

    2018-05-28

    Corn earworm, Helicoverpa zea (Boddie), commonly infests field corn, Zea mays (L.). The combination of corn plant biology, corn earworm behavior in corn ecosystems, and field corn value renders corn earworm management with foliar insecticides noneconomical. Corn technologies containing Bacillus thuringiensis (Bt) Berliner (Bacillales: Bacillaceae) were introduced that exhibit substantial efficacy against corn earworm and may reduce mycotoxin contamination in grain. The first generation Bt traits in field corn demonstrated limited activity on corn earworm feeding on grain. The pyramided corn technologies have greater cumulative protein concentrations and higher expression throughout the plant, so these corn traits should provide effective management of this pest. Additionally, reduced kernel injury may affect physical grain quality. Experiments were conducted during 2011-2012 to investigate corn earworm impact on field corn yield and grain quality. Treatments included field corn hybrids expressing the Herculex, YieldGard, and Genuity VT Triple Pro technologies. Supplemental insecticide treatments were applied every 1-2 d from silk emergence until silk senescence to create a range of injured kernels for each technology. No significant relationship between the number of corn earworm damaged kernels and yield was observed for any technology/hybrid. In these studies, corn earworm larvae did not cause enough damage to impact yield. Additionally, no consistent relationship between corn earworm damage and aflatoxin contamination was observed. Based on these data, the economic value of pyramided Bt corn traits to corn producers, in the southern United States, appears to be from management of other lepidopteran insect pests including European and southwestern corn borer.

  17. Field Performance of Bt Eggplants (Solanum melongena L. in the Philippines: Cry1Ac Expression and Control of the Eggplant Fruit and Shoot Borer (Leucinodes orbonalis Guenee.

    Directory of Open Access Journals (Sweden)

    Desiree M Hautea

    Full Text Available Plants expressing Cry proteins from the bacterium, Bacillus thuringiensis (Bt, have become a major tactic for controlling insect pests in maize and cotton globally. However, there are few Bt vegetable crops. Eggplant (Solanum melongena is a popular vegetable grown throughout Asia that is heavily treated with insecticides to control the eggplant fruit and shoot borer, Leucinodes orbonalis (EFSB. Herein we provide the first publicly available data on field performance in Asia of eggplant engineered to produce the Cry1Ac protein. Replicated field trials with five Bt eggplant open-pollinated (OP lines from transformation event EE-1 and their non-Bt comparators were conducted over three cropping seasons in the Philippines from 2010-2012. Field trials documented levels of Cry1Ac protein expressed in plants and evaluated their efficacy against the primary target pest, EFSB. Cry1Ac concentrations ranged from 0.75-24.7 ppm dry weight with the highest in the terminal leaves (or shoots and the lowest in the roots. Cry1Ac levels significantly increased from the vegetative to the reproductive stage. Bt eggplant lines demonstrated excellent control of EFSB. Pairwise analysis of means detected highly significant differences between Bt eggplant lines and their non-Bt comparators for all field efficacy parameters tested. Bt eggplant lines demonstrated high levels of control of EFSB shoot damage (98.6-100% and fruit damage (98.1-99.7% and reduced EFSB larval infestation (95.8-99.3% under the most severe pest pressure during trial 2. Moths that emerged from larvae collected from Bt plants in the field and reared in their Bt eggplant hosts did not produce viable eggs or offspring. These results demonstrate that Bt eggplant lines containing Cry1Ac event EE-1 provide outstanding control of EFSB and can dramatically reduce the need for conventional insecticides.

  18. 77 FR 26548 - Issuance of an Experimental Use Permit

    Science.gov (United States)

    2012-05-04

    ... conducted a comprehensive analysis of data and information related to the requested experimental uses and...- incorporated protectants (PIPs): (1) [Bt11] Bacillus thuringiensis Cry1Ab delta-endotoxin and the genetic...) [DAS-59122-7] Bacillus thuringiensis Cry34Ab1 and Cry35Ab1 proteins and the genetic material necessary...

  19. Expression of a Chimeric Gene Encoding Insecticidal Crystal Protein Cry1Aabc of Bacillus thuringiensis in Chickpea (Cicer arietinum L.) Confers Resistance to Gram Pod Borer (Helicoverpa armigera Hubner.).

    Science.gov (United States)

    Das, Alok; Datta, Subhojit; Thakur, Shallu; Shukla, Alok; Ansari, Jamal; Sujayanand, G K; Chaturvedi, Sushil K; Kumar, P A; Singh, N P

    2017-01-01

    Domain swapping and generation of chimeric insecticidal crystal protein is an emerging area of insect pest management. The lepidopteran insect pest, gram pod borer ( Helicoverpa armigera H.) wreaks havoc to chickpea crop affecting production. Lepidopteran insects were reported to be controlled by Bt ( cryI ) genes. We designed a plant codon optimized chimeric Bt gene ( cry1Aabc ) using three domains from three different cry1A genes (domains I, II, and III from cry1Aa , cry1Ab , and cry1Ac , respectively) and expressed it under the control of a constitutive promoter in chickpea ( cv . DCP92-3) to assess its effect on gram pod borer. A total of six transgenic chickpea shoots were established by grafting into mature fertile plants. The in vitro regenerated (organogenetic) shoots were selected based on antibiotic kanamycin monosulfate (100 mg/L) with transformation efficiency of 0.076%. Three transgenic events were extensively studied based on gene expression pattern and insect mortality across generations. Protein expression in pod walls, immature seeds and leaves (pre- and post-flowering) were estimated and expression in pre-flowering stage was found higher than that of post-flowering. Analysis for the stable integration, expression and insect mortality (detached leaf and whole plant bioassay) led to identification of efficacious transgenic chickpea lines. The chimeric cry1Aabc expressed in chickpea is effective against gram pod borer and generated events can be utilized in transgenic breeding program.

  20. Expression of a Chimeric Gene Encoding Insecticidal Crystal Protein Cry1Aabc of Bacillus thuringiensis in Chickpea (Cicer arietinum L. Confers Resistance to Gram Pod Borer (Helicoverpa armigera Hubner.

    Directory of Open Access Journals (Sweden)

    Alok Das

    2017-08-01

    Full Text Available Domain swapping and generation of chimeric insecticidal crystal protein is an emerging area of insect pest management. The lepidopteran insect pest, gram pod borer (Helicoverpa armigera H. wreaks havoc to chickpea crop affecting production. Lepidopteran insects were reported to be controlled by Bt (cryI genes. We designed a plant codon optimized chimeric Bt gene (cry1Aabc using three domains from three different cry1A genes (domains I, II, and III from cry1Aa, cry1Ab, and cry1Ac, respectively and expressed it under the control of a constitutive promoter in chickpea (cv. DCP92-3 to assess its effect on gram pod borer. A total of six transgenic chickpea shoots were established by grafting into mature fertile plants. The in vitro regenerated (organogenetic shoots were selected based on antibiotic kanamycin monosulfate (100 mg/L with transformation efficiency of 0.076%. Three transgenic events were extensively studied based on gene expression pattern and insect mortality across generations. Protein expression in pod walls, immature seeds and leaves (pre- and post-flowering were estimated and expression in pre-flowering stage was found higher than that of post-flowering. Analysis for the stable integration, expression and insect mortality (detached leaf and whole plant bioassay led to identification of efficacious transgenic chickpea lines. The chimeric cry1Aabc expressed in chickpea is effective against gram pod borer and generated events can be utilized in transgenic breeding program.

  1. Isolation and characterization of Bacillus thuringiensis strains active against Elasmopalpus lignosellus (Zeller, 1848 (Lepidoptera, Pyralidae

    Directory of Open Access Journals (Sweden)

    Janaina Zorzetti

    2017-08-01

    Full Text Available Elasmopalpus lignosellus (Zeller, 1848 (Lepidoptera, Pyralidae is an insect pest of 60 economically important crops, including sugarcane, wheat, soybean, rice, beans, sorghum, peanuts, and cotton. The aim of this work was to select and characterize Bacillus thuringiensis isolates with insecticidal activity against E. Lignosellus that could be used as an alternative method of control. Selective bioassays were done to evaluate the toxicity of 47 isolates against first instar larvae of E. lignosellus. For the most toxic bacterial strains, the lethal concentration (LC50 was estimated and morphological, biochemical and molecular methods were used to characterize the isolates. Among the 47 isolates tested, 12 caused mortality above 85% and showed LC50 values from 0.038E+8 to 0.855E+8 spores mL-1. Isolates BR83, BR145, BR09, BR78, S1534, and S1302 had the lowest LC50 values and did not differ from the standard HD-1 strain; the exception was BR83.The protein profiles produced bands with molecular masses of 60-130 kDa. The genes cry1, cry2, cry3, and cry11 were identified in the molecular characterization. The morphological analysis identified three different crystal inclusions: bipyramidal, spherical and cuboidal. Among the tested isolates, 12 isolates have potential for biotechnological control of E. Lignosellus by development of new biopesticides or genetically modified plants.

  2. Comparison of grain from corn rootworm resistant transgenic DAS-59122-7 maize with non-transgenic maize grain in a 90-day feeding study in Sprague-Dawley rats.

    Science.gov (United States)

    He, X Y; Huang, K L; Li, X; Qin, W; Delaney, B; Luo, Y B

    2008-06-01

    DAS-59122-7 (59122) is a transgenic maize (Zea mays L.) that contains genes encoding Cry34Ab1 and Cry35Ab1 proteins from Bacillus thuringiensis Berliner strain 149B1 and phosphinothricin acetyltransferase (PAT) protein from Streptomyces viridochromogenes. Expression of these proteins in planta confers resistance to corn rootworms and other Coleopteran parasites and tolerance to herbicides containing glufosinate ammonium, respectively. In the current study, processed flours from 59122 maize grain or its near isogenic control line (091) were used at two concentrations (50% and 70% wt/wt) to produce diets that were fed to rats for 90 days in accordance with Chinese toxicology guidelines (GB15193.13-2003). A commercial AIN93G diet was used as an additional negative control. No significant differences in body weight and feed utilization were observed between rats consuming diets formulated with 59122 and 091 Control corn. Statistical differences (p<0.05) were observed in certain hematology and serum chemistry response variables between rats consuming diets formulated with 59122 or 091 Control flour compared to AIN93G diet. However, the mean value of these response variables in the 59122 groups were not statistically different from those observed in diets formulated with corresponding high and low concentrations of the flour from the 091 Control maize grain. Therefore, the statistical differences were considered to be related to consumption of diets containing high concentrations of maize flour (compared to AIN93G diets) regardless of source rather than to consumption of flour from 59122 maize grain. The results from this study demonstrated that 59122 maize grain is as safe as non-transgenic maize grain.

  3. Caracterização de novos isolados de Bacillus thuringiensis para o controle de importantes insetos-praga da agricultura

    Directory of Open Access Journals (Sweden)

    Emeline Boni Campanini

    2012-01-01

    Full Text Available A bactéria Bacillus thuringiensis Berliner produz um corpo de inclusão paraesporal (cristal de natureza proteica, formado durante a esporulação, que atua de forma eficiente no controle de insetos-praga de culturas economicamente importantes. Esse cristal é constituído de proteínas Cry, que são codificadas pelos genes cry; um isolado pode ser caracterizado pelo conteúdo de genes cry que apresenta. Visando caracterizar novos isolados no combate de insetos-praga pertencentes às ordens Lepidoptera e Coleoptera, 76 isolados bacterianos foram analisados molecularmente e tiveram seu potencial de controle avaliado por meio de bioensaios com larvas de Spodoptera frugiperda (J.E. Smith, Sphenophorus levis Vaurie e Tenebrio molitor Linnaeus. As análises moleculares indicaram 11 isolados (14,5% da coleção, contendo genes lepidóptero-específicos e 17 (22,37% com genes coleóptero-específicos. As análises de patogenicidade revelaram dois isolados com alto potencial de controle para lagartas de S. frugiperda, um para larvas de S. levis e seis prejudiciais ao desenvolvimento das larvas de T. molitor. Esses isolados de B. thuringiensis podem ser promissores no controle biológico das referidas pragas.

  4. Proteomic Analysis of Bacillus thuringiensis Strain 4.0718 at Different Growth Phases

    Directory of Open Access Journals (Sweden)

    Xiaohui Li

    2012-01-01

    Full Text Available The growth process of Bacillus thuringiensis Bt4.0718 strain was studied using proteomic technologies. The proteins of Bt whole cells at three phases—middle vegetative, early sporulation, and late sporulation—were extracted with lysis buffer, followed with separation by 2-DE and identified by MALDI-TOF/TOF MS. Bioactive factors such as insecticidal crystal proteins (ICPs including Cry1Ac(3, Cry2Aa, and BTRX28, immune inhibitor (InhA, and InhA precursor were identified. InhA started to express at the middle vegetative phase, suggesting its contribution to the survival of Bt in the host body. At the early sporulation phase, ICPs started their expression. CotJC, OppA, ORF1, and SpoIVA related to the formation of crystals and spores were identified, the expression characteristics of which ensured the stable formation of crystals and spores. This study provides an important foundation for further exploration of the stable expression of ICPs, the smooth formation of crystals, and the construction of recombinant strains.

  5. The Cry Toxin Operon of Clostridium bifermentans subsp. malaysia Is Highly Toxic to Aedes Larval Mosquitoes

    Science.gov (United States)

    Qureshi, Nadia; Chawla, Swati; Likitvivatanavong, Supaporn; Lee, Han Lim

    2014-01-01

    The management and control of mosquito vectors of human disease currently rely primarily on chemical insecticides. However, larvicidal treatments can be effective, and if based on biological insecticides, they can also ameliorate the risk posed to human health by chemical insecticides. The aerobic bacteria Bacillus thuringiensis and Lysinibacillus sphaericus have been used for vector control for a number of decades. But a more cost-effective use would be an anaerobic bacterium because of the ease with which these can be cultured. More recently, the anaerobic bacterium Clostridium bifermentans subsp. malaysia has been reported to have high mosquitocidal activity, and a number of proteins were identified as potentially mosquitocidal. However, the cloned proteins showed no mosquitocidal activity. We show here that four toxins encoded by the Cry operon, Cry16A, Cry17A, Cbm17.1, and Cbm17.2, are all required for toxicity, and these toxins collectively show remarkable selectivity for Aedes rather than Anopheles mosquitoes, even though C. bifermentans subsp. malaysia is more toxic to Anopheles. Hence, toxins that target Anopheles are different from those expressed by the Cry operon. PMID:25002432

  6. Incipient resistance of Helicoverpa punctigera to the Cry2Ab Bt toxin in Bollgard II cotton.

    Directory of Open Access Journals (Sweden)

    Sharon Downes

    Full Text Available Combinations of dissimilar insecticidal proteins ("pyramids" within transgenic plants are predicted to delay the evolution of pest resistance for significantly longer than crops expressing a single transgene. Field-evolved resistance to Bacillus thuringiensis (Bt transgenic crops has been reported for first generation, single-toxin varieties and the Cry1 class of proteins. Our five year data set shows a significant exponential increase in the frequency of alleles conferring Cry2Ab resistance in Australian field populations of Helicoverpa punctigera since the adoption of a second generation, two-toxin Bt cotton expressing this insecticidal protein. Furthermore, the frequency of cry2Ab resistance alleles in populations from cropping areas is 8-fold higher than that found for populations from non-cropping regions. This report of field evolved resistance to a protein in a dual-toxin Bt-crop has precisely fulfilled the intended function of monitoring for resistance; namely, to provide an early warning of increases in frequencies that may lead to potential failures of the transgenic technology. Furthermore, it demonstrates that pyramids are not 'bullet proof' and that rapid evolution to Bt toxins in the Cry2 class is possible.

  7. Field dispersal ability and taxis to sex pheromone of irradiated F-1 male Asian corn borer

    International Nuclear Information System (INIS)

    Wang Huasong; Liu Qiongru; Lu Daguang; Wang Endong; Kang Wen; Li Yongjun; He Qiulan; Hu Jianguo

    1998-01-01

    The dispersal ability of F-1 male Asian corn borer, Ostrinia furnacalis (Guenee), irradiated with 100, 150 and 200 Gy Separately in parental generation were tested by marking (with Calco oil red or Sudan blue internally)-releasing-recapturing (with synthesized sex pheromone) method in the field where the farthest distance from release point to pheromone trap was 550 m. The results showed that, as compared with the normal male moths, despite of the fact that a part of the irradiated F-1 males had lost dispersal ability or taxis to sex pheromone, there was no significant difference between the captured rates of irradiated F-1 males and normal males in the trap 550 m from release point, indicated that the dispersal ability or taxis to sex pheromone of irradiated F-1 males arrived at 550 m from release point are still well matched with the normal ones

  8. Efficient genetic transformation of okra (Abelmoschus esculentus (L.) Moench) and generation of insect-resistant transgenic plants expressing the cry1Ac gene.

    Science.gov (United States)

    Narendran, M; Deole, Satish G; Harkude, Satish; Shirale, Dattatray; Nanote, Asaram; Bihani, Pankaj; Parimi, Srinivas; Char, Bharat R; Zehr, Usha B

    2013-08-01

    Agrobacterium -mediated transformation system for okra using embryos was devised and the transgenic Bt plants showed resistance to the target pest, okra shoot, and fruit borer ( Earias vittella ). Okra is an important vegetable crop and progress in genetic improvement via genetic transformation has been impeded by its recalcitrant nature. In this paper, we describe a procedure using embryo explants for Agrobacterium-mediated transformation and tissue culture-based plant regeneration for efficient genetic transformation of okra. Twenty-one transgenic okra lines expressing the Bacillus thuringiensis gene cry1Ac were generated from five transformation experiments. Molecular analysis (PCR and Southern) confirmed the presence of the transgene and double-antibody sandwich ELISA analysis revealed Cry1Ac protein expression in the transgenic plants. All 21 transgenic plants were phenotypically normal and fertile. T1 generation plants from these lines were used in segregation analysis of the transgene. Ten transgenic lines were selected randomly for Southern hybridization and the results confirmed the presence of transgene integration into the genome. Normal Mendelian inheritance (3:1) of cry1Ac gene was observed in 12 lines out of the 21 T0 lines. We selected 11 transgenic lines segregating in a 3:1 ratio for the presence of one transgene for insect bioassays using larvae of fruit and shoot borer (Earias vittella). Fruit from seven transgenic lines caused 100 % larval mortality. We demonstrate an efficient transformation system for okra which will accelerate the development of transgenic okra with novel agronomically useful traits.

  9. New tool for spreading proteins to the environment: Cry1Ab toxin immobilized to bioplastics.

    Science.gov (United States)

    Moldes, Cristina; Farinós, Gema P; de Eugenio, Laura I; García, Pedro; García, José L; Ortego, Félix; Hernández-Crespo, Pedro; Castañera, Pedro; Prieto, María A

    2006-08-01

    A new tool to provide an environmentally friendly way to deliver active proteins to the environment has been developed, based on the use of polyhydroxyalkanoate (PHA, bioplastic) granules. To illustrate this novel approach, a derived Cry1Ab insect-specific toxin protein was in vivo immobilized into PHA granules through the polypeptide tag BioF. The new toxin, named Fk-Bt1, was shown to be active against Sesamia nonagrioides (Lepidoptera: Noctuidae). The dose-mortality responses of the new toxin granule formulation (PFk-Bt1) and purified Cry1Ab have been compared, demonstrating the effectiveness of PFk-Bt1 and suggesting a common mode of action.

  10. Heritability of Wing Size and Shape of the Rice and Corn Strains of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Cañas-Hoyos, N; Márquez, E J; Saldamando-Benjumea, C I

    2016-08-01

    Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) represents a pest of economic importance in all Western Hemisphere. This polyphagous species has diverged into two populations that have been mainly recognized with various mitochondrial and nuclear molecular markers and named "the rice" and "the corn" strains. In Colombia, both strains have evolved prezygotic and postzygotic isolation. They differ in tolerance to Bacillus thuringiensis (Cry1Ac and Cry1Ab endotoxins) and the insecticides lambda-cyhalothrin and methomyl. In 2014, a wing morphometric analysis made in 159 individuals from a colony showed that both strains significantly differ in wing shape. The species also exhibits sexual dimorphism in the rice strain as in females wing size is larger than in males. Here, we continued this work with another wing morphometric approach in laboratory-reared strains to calculate wing size and shape heritabilities using a full-sib design and in wild populations to determine if this method distinguishes these strains. Our results show that male heritabilities of both traits were higher than female ones. Wild populations were significantly different in wing shape and size. These results suggest that wing morphometrics can be used as an alternative method to molecular markers to differentiate adults from laboratory-reared populations and wild populations of this pest, particularly in males of this species. Finally, Q ST values obtained for wing size and shape further demonstrated that both strains are genetically differentiated in nature.

  11. Food safety knowledge on the Bt mutant protein Cry8Ka5 employed in the development of coleopteran-resistant transgenic cotton plants

    NARCIS (Netherlands)

    Felipe Farias, Davi; Peijnenburg, A.A.C.M.; Grossi-de-Sá, Maria F.; Carvalho, A.F.U.

    2015-01-01

    Insecticidal Cry proteins from Bacillus thuringiensis (Bt) have been exploited in the development of genetically modified (GM) crops for pest control. However, several pests are still difficult to control such as the coleopteran boll weevil Anthonomus grandis. By applying in vitro molecular

  12. Adsorption of Insecticidal Crystal Protein Cry11Aa onto Nano-Mg(OH)2: Effects on Bioactivity and Anti-Ultraviolet Ability.

    Science.gov (United States)

    Pan, Xiaohong; Xu, Zhangyan; Li, Lan; Shao, Enshi; Chen, Saili; Huang, Tengzhou; Chen, Zhi; Rao, Wenhua; Huang, Tianpei; Zhang, Lingling; Wu, Songqing; Guan, Xiong

    2017-11-01

    The traditional Bacillus thuringiensis (Bt) formulations for field applications are not resistant to harsh environmental conditions. Hence, the active ingredients of the Bt bioinsecticides could degrade quickly and has low anti-ultraviolet ability in the field, which significantly limits its practical application. In the present study, we developed an efficient and stable delivery system for Bt Cry11Aa toxins. We coated Cry11Aa proteins with Mg(OH) 2 nanoparticles (MHNPs), and then assessed the effects of MHNPs on bioactivity and anti-ultraviolet ability of the Cry11Aa proteins. Our results indicated that MHNPs, like "coating clothes", could effectively protect the Cry protein and enhance the insecticidal bioactivity after UV radiation (the degradation rate was decreased from 64.29% to 16.67%). In addtion, MHNPs could improve the proteolysis of Cry11Aa in the midgut and aggravate the damage of the Cry protein to the gut epithelial cells, leading to increased insecticidal activity against Culex quinquefasciatus. Our results revealed that MHNPs, as an excellent nanocarrier, could substantially improve the insecticidal bioactivity and anti-ultraviolet ability of Cry11Aa.

  13. Investigation of Cytocidal Activity of Bacillus Thuringiensis Parasporal Toxin on CCRF-CEM Cell Line

    Directory of Open Access Journals (Sweden)

    Elham Moazamian

    2013-03-01

    Full Text Available Background & Objective: Parasporin is a parasporal protein of Bacillus thuringiensis and exhibits special cytocidal activity against human cancer cells. Similar to other insecticidal Bacillus thuringiensis crystal toxins, parasporin shows target specificity and damages the cellular membrane. In this study, different strains of Bacillus thuringiensis isolated from various regions of Iran and their cytocidal activity against CCRF-CEM cell line and human erythrocyte were investigated.   Materials & Methods: Fifty soil samples were collected from different Iranian provinces, and characterization was performed based on protein crystal morphology by phase-contrast microscope and variations of Cry protein toxin using SDS-PAGE. After parasporin was processed with proteinase K, the active form was produced and protein activity on the cell line was evaluated. Results: Parasporal inclusion proteins showed different cytotoxicity against acute lymphoblastic leukemia cells (ALL, but not against normal lymphocyte. Isolated parasporin demonstrated no hemolytic activity against human erythrocyte. It appears that these proteins have the ability to differentiate between normal lymphocytes and leukemia cells and have specific receptors on specific cancer cell lines. Conclusion: Our results provide evidence that the parasporin-producing organism is a common member in Bacillus thuringiensis populations occurring in the natural environments of Iran.

  14. Field response of aboveground non-target arthropod community to transgenic Bt-Cry1Ab rice plant residues in postharvest seasons.

    Science.gov (United States)

    Bai, Yao-Yu; Yan, Rui-Hong; Ye, Gong-Yin; Huang, Fangneng; Wangila, David S; Wang, Jin-Jun; Cheng, Jia-An

    2012-10-01

    Risk assessments of ecological effects of transgenic rice expressing lepidoptera-Cry proteins from Bacillus thuringiensis (Bt) on non-target arthropods have primarily focused on rice plants during cropping season, whereas few studies have investigated the effects in postharvest periods. Harvested rice fallow fields provide a critical over-wintering habitat for arthropods in the Chinese rice ecosystems, particularly in the southern region of the country. During 2006-08, two independent field trials were conducted in Chongqing, China to investigate the effects of transgenic Cry1Ab rice residues on non-target arthropod communities. In each trial, pitfall traps were used to sample arthropods in field plots planted with one non-Bt variety and two Bt rice lines expressing the Cry1Ab protein. Aboveground arthropods in the trial plots during the postharvest season were abundant, while community densities varied significantly between the two trials. A total of 52,386 individual insects and spiders, representing 93 families, was captured in the two trials. Predominant arthropods sampled were detritivores, which accounted for 91.9% of the total captures. Other arthropods sampled included predators (4.2%), herbivores (3.2%), and parasitoids (0.7%). In general, there were no significant differences among non-Bt and Bt rice plots in all arthropod community-specific parameters for both trials, suggesting no adverse impact of the Bt rice plant residues on the aboveground non-target arthropod communities during the postharvest season. The results of this study provide additional evidence that Bt rice is safe to non-target arthropod communities in the Chinese rice ecosystems.

  15. Characterization of a highly toxic strain of Bacillus thuringiensis serovar kurstaki very similar to the HD-73 strain.

    Science.gov (United States)

    Reinoso-Pozo, Yaritza; Del Rincón-Castro, Ma Cristina; Ibarra, Jorge E

    2016-09-01

    The LBIT-1200 strain of Bacillus thuringiensis was recently isolated from soil, and showed a 6.4 and 9.5 increase in toxicity, against Manduca sexta and Trichoplusia ni, respectively, compared to HD-73. However, LBIT-1200 was still highly similar to HD-73, including the production of bipyramidal crystals containing only one protein of ∼130 000 kDa, its flagellin gene sequence related to the kurstaki serotype, plasmid and RepPCR patterns similar to HD-73, no production of β-exotoxin and no presence of VIP genes. Sequencing of its cry gene showed the presence of a cry1Ac-type gene with four amino acid differences, including two amino acid replacements in domain III, compared to Cry1Ac1, which may explain its higher toxicity. In conclusion, the LBIT-1200 strain is a variant of the HD-73 strain but shows a much higher toxicity, which makes this new strain an important candidate to be developed as a bioinsecticide, once it passes other tests, throughout its biotechnological development. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Effect of Iranian Bt cotton on life table of Bemisia tabaci (Hemiptera: Alyrodidae and Cry 1Ab detection in the whitefly honeydew

    Directory of Open Access Journals (Sweden)

    Solmaz Azimi

    2016-09-01

    Full Text Available Transgenic cotton expressing the Cry 1Ab protein of Bacillus thuringiensis developing against Helocoverpa armigera may be affect on secondary pest such as Bemisia tabaci. In this study effects of Bt cotton on demographic parameters of B. tabaci were assessed and the data analyzed using the age specific, two-sex life table parameters. Results showed that getting to the adulthood stage, was faster on non-Bt cotton in comparison with Bt cotton. Also the fecundity was higher on non-Bt cotton than that on Bt cotton. Some of the population parameters (r, R0 and T of B. tabaci were affected by the Bt cotton significantly. The intrinsic rate of increase (r on Bt and non-Bt cotton was 0.07 day-1 and 0.1 day-1 , respectively. The net reproductive rate (R0 was 20.68 and 15.04 offspring/individual on Bt and non-Bt cotton, respectively. Mean generation time (T in non-Bt cotton was 27.22 and 34.62 days in Bt cotton. The results indicated that the life history of B. tabaci in the laboratory condition was influenced by host plant quality and Bt cotton was not a suitable host for B. tabaci. The western immunoblot method showed that the Cry protein detection in honeydew was positive which indicated that the Cry protein was ingested. Results revealed that the transgenic cotton could adversely affect the secondary pest and the natural enemies which feed on such pests as a host or their honeydew as a food source should be considered.

  17. DDB1-Mediated CRY1 Degradation Promotes FOXO1-Driven Gluconeogenesis in Liver.

    Science.gov (United States)

    Tong, Xin; Zhang, Deqiang; Charney, Nicholas; Jin, Ethan; VanDommelen, Kyle; Stamper, Kenneth; Gupta, Neil; Saldate, Johnny; Yin, Lei

    2017-10-01

    Targeted protein degradation through ubiquitination is an important step in the regulation of glucose metabolism. Here, we present evidence that the DDB1-CUL4A ubiquitin E3 ligase functions as a novel metabolic regulator that promotes FOXO1-driven hepatic gluconeogenesis. In vivo, hepatocyte-specific Ddb1 deletion leads to impaired hepatic gluconeogenesis in the mouse liver but protects mice from high-fat diet-induced hyperglycemia. Lack of Ddb1 downregulates FOXO1 protein expression and impairs FOXO1-driven gluconeogenic response. Mechanistically, we discovered that DDB1 enhances FOXO1 protein stability via degrading the circadian protein cryptochrome 1 (CRY1), a known target of DDB1 E3 ligase. In the Cry1 depletion condition, insulin fails to reduce the nuclear FOXO1 abundance and suppress gluconeogenic gene expression. Chronic depletion of Cry1 in the mouse liver not only increases FOXO1 protein but also enhances hepatic gluconeogenesis. Thus, we have identified the DDB1-mediated CRY1 degradation as an important target of insulin action on glucose homeostasis. © 2017 by the American Diabetes Association.

  18. Beetle-specific Bacillus thuringiensis Cry3Aa toxin reduces larval growth and curbs reproduction in Spodoptera littoralis (Boisd.)

    Czech Academy of Sciences Publication Activity Database

    Hussein, Hany; Habuštová, Oxana; Sehnal, František

    2005-01-01

    Roč. 61, - (2005), s. 1186-1192 ISSN 1526-498X R&D Projects: GA ČR(CZ) GA522/02/1507 Institutional research plan: CEZ:AV0Z50070508 Keywords : Bacillus thuringiensis * Spodoptera littoralis * Bt applications Subject RIV: ED - Physiology Impact factor: 1.175, year: 2005

  19. Effects of water management practices on residue decomposition and degradation of Cry1Ac protein from crop-wild Bt rice hybrids and parental lines during winter fallow season.

    Science.gov (United States)

    Xiao, Manqiu; Dong, Shanshan; Li, Zhaolei; Tang, Xu; Chen, Yi; Yang, Shengmao; Wu, Chunyan; Ouyang, Dongxin; Fang, Changming; Song, Zhiping

    2015-12-01

    Rice is the staple diet of over half of the world's population and Bacillus thuringiensis (Bt) rice expressing insecticidal Cry proteins is ready for deployment. An assessment of the potential impact of Bt rice on the soil ecosystem under varied field management practices is urgently required. We used litter bags to assess the residue (leaves, stems and roots) decomposition dynamics of two transgenic rice lines (Kefeng6 and Kefeng8) containing stacked genes from Bt and sck (a modified CpTI gene encoding a cowpea trypsin inhibitor) (Bt/CpTI), a non-transgenic rice near-isoline (Minghui86), wild rice (Oryza rufipogon) and crop-wild Bt rice hybrid under contrasting conditions (drainage or continuous flooding) in the field. No significant difference was detected in the remaining mass, total C and total N among cultivars under aerobic conditions, whereas significant differences in the remaining mass and total C were detected between Kefeng6 and Kefeng8 and Minghui86 under the flooded condition. A higher decomposition rate constant (km) was measured under the flooded condition compared with the aerobic condition for leaf residues, whereas the reverse was observed for root residues. The enzyme-linked immunosorbent assay (ELISA), which was used to monitor the changes in the Cry1Ac protein in Bt rice residues, indicated that (1) the degradation of the Cry1Ac protein under both conditions best fit first-order kinetics, and the predicted DT50 (50% degradation time) of the Cry1Ac protein ranged from 3.6 to 32.5 days; (2) the Cry1Ac protein in the residue degraded relatively faster under aerobic conditions; and (3) by the end of the study (~154 days), the protein was present at a low concentration in the remaining residues under both conditions. The degradation rate constant was negatively correlated with the initial carbon content and positively correlated with the initial Cry1Ac protein concentration, but it was only correlated with the mass decomposition rate constants under

  20. Degradation and detection of transgenic Bacillus thuringiensis DNA and proteins in flour of three genetically modified rice events submitted to a set of thermal processes.

    Science.gov (United States)

    Wang, Xiaofu; Chen, Xiaoyun; Xu, Junfeng; Dai, Chen; Shen, Wenbiao

    2015-10-01

    This study aimed to investigate the degradation of three transgenic Bacillus thuringiensis (Bt) genes (Cry1Ab, Cry1Ac, and Cry1Ab/Ac) and the corresponding encoded Bt proteins in KMD1, KF6, and TT51-1 rice powder, respectively, following autoclaving, cooking, baking, or microwaving. Exogenous Bt genes were more stable than the endogenous sucrose phosphate synthase (SPS) gene, and short DNA fragments were detected more frequently than long DNA fragments in both the Bt and SPS genes. Autoclaving, cooking (boiling in water, 30 min), and baking (200 °C, 30 min) induced the most severe Bt protein degradation effects, and Cry1Ab protein was more stable than Cry1Ac and Cry1Ab/Ac protein, which was further confirmed by baking samples at 180 °C for different periods of time. Microwaving induced mild degradation of the Bt and SPS genes, and Bt proteins, whereas baking (180 °C, 15 min), cooking and autoclaving led to further degradation, and baking (200 °C, 30 min) induced the most severe degradation. The findings of the study indicated that degradation of the Bt genes and proteins somewhat correlated with the treatment intensity. Polymerase chain reaction, enzyme-linked immunosorbent assay, and lateral flow tests were used to detect the corresponding transgenic components. Strategies for detecting transgenic ingredients in highly processed foods are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Status and potential of F1 sterility for control of European corn borer, Ostrinia nubilalis Hb

    International Nuclear Information System (INIS)

    Rosca, I.; Barbulescu, A.

    1994-01-01

    In certain lepidopterous insects partially gamma-ray-sterilized males mated with normal females produce progeny which are more sterile than their male parents. Inherited sterility has been observed in numerous pests including the European corn borer, Ostrinia nubilalis Hb. The most important discoveries contributing the development of this techniques are reviewed. The studies on the European corn borer have revealed a dramatic inherited sterility effect when pupae have been irradiated with a low dose of 100 or 150 Gy. Data on the growth, development and behaviour of F 1 individuals indicate that the treated insects are highly competitive with the normal insects. Field tests of the inherited sterility technique in isolated O. nubilalis infestations have indicated that this method is effective and a small eradication has been done. These studies are continuing. (author)

  2. Food safety knowledge on the Bt mutant protein Cry8Ka5 employed in the development of coleopteran-resistant transgenic cotton plants.

    Science.gov (United States)

    Farias, Davi F; Peijnenburg, Ad A C M; Grossi-de-Sá, Maria F; Carvalho, Ana F U

    2015-01-01

    Insecticidal Cry proteins from Bacillus thuringiensis (Bt) have been exploited in the development of genetically modified (GM) crops for pest control. However, several pests are still difficult to control such as the coleopteran boll weevil Anthonomus grandis. By applying in vitro molecular evolution to the cry8Ka1 gene sequence, variants were generated with improved activity against A. grandis. Among them, Cry8Ka5 mutant protein showed coleoptericidal activity 3-fold higher (LC50 2.83 μg/mL) than that of the original protein (Cry8Ka1). Cry8Ka5 has been used in breeding programs in order to obtain coleopteran-resistant cotton plants. Nevertheless, there is some concern in relation to the food safety of transgenic crops, especially to the heterologously expressed proteins. In this context, our research group has performed risk assessment studies on Cry8Ka5, using the tests recommended by Codex as well as tests that we proposed as alternative and/or complementary approaches. Our results on the risk analysis of Cry8Ka5 taken together with those of other Cry proteins, point out that there is a high degree of certainty on their food safety. It is reasonable to emphasize that most safety studies on Cry proteins have essentially used the Codex approach. However, other methodologies would potentially provide additional information such as studies on the effects of Cry proteins and derived peptides on the indigenous gastrointestinal microbiota and on intestinal epithelial cells of humans. Additionally, emerging technologies such as toxicogenomics potentially will offer sensitive alternatives for some current approaches or methods.

  3. Mice deficient in cryptochrome 1 (Cry1-/- exhibit resistance to obesity induced by a high fat diet

    Directory of Open Access Journals (Sweden)

    Guy eGriebel

    2014-04-01

    Full Text Available Disruption of circadian clock enhances the risk of metabolic syndrome, obesity, and type 2 diabetes. Circadian clocks rely on a highly regulated network of transcriptional and translational loops that drive clock-controlled gene expression. Among these transcribed clock genes are cryptochrome (CRY family members, which comprise Cry1 and Cry2. While the metabolic effects of deletion of several core components of the clock gene machinery have been well characterized, those of selective inactivation of Cry1 or Cry2 genes have not been described. In this study we demonstrate that ablation of Cry1, but not Cry2, prevents high-fat diet (HFD-induced obesity in mice. Despite similar caloric intake, Cry1-/- mice on HFD gained markedly less weight (-18 % at the end of the 16-week experiment and displayed reduced fat accumulation compared to wild-type (WT littermates (-61 %, suggesting increased energy expenditure. Analysis of serum lipid and glucose profiles showed no difference between Cry1-/- and WT mice. Both Cry1-/- and Cry2-/- mice are indistinguishable from WT controls in body weight, fat and protein contents, and food consumption when they are allowed unlimited access to a standard rodent diet. We conclude that although CRY signaling may not be essential for the maintenance of energy homeostasis under steady-state nutritional conditions, Cry1 may play a role in readjusting energy balance under changing nutritional circumstances. These studies reinforce the important role of circadian clock genes in energy homeostasis and suggest that Cry1 is a plausible target for antiobesity therapy.

  4. Mice deficient in cryptochrome 1 (cry1 (-/-)) exhibit resistance to obesity induced by a high-fat diet.

    Science.gov (United States)

    Griebel, Guy; Ravinet-Trillou, Christine; Beeské, Sandra; Avenet, Patrick; Pichat, Philippe

    2014-01-01

    Disruption of circadian clock enhances the risk of metabolic syndrome, obesity, and type 2 diabetes. Circadian clocks rely on a highly regulated network of transcriptional and translational loops that drive clock-controlled gene expression. Among these transcribed clock genes are cryptochrome (CRY) family members, which comprise Cry1 and Cry2. While the metabolic effects of deletion of several core components of the clock gene machinery have been well characterized, those of selective inactivation of Cry1 or Cry2 genes have not been described. In this study, we demonstrate that ablation of Cry1, but not Cry2, prevents high-fat diet (HFD)-induced obesity in mice. Despite similar caloric intake, Cry1 (-/-) mice on HFD gained markedly less weight (-18%) at the end of the 16-week experiment and displayed reduced fat accumulation compared to wild-type (WT) littermates (-61%), suggesting increased energy expenditure. Analysis of serum lipid and glucose profiles showed no difference between Cry1 (-/-) and WT mice. Both Cry1 (-/-) and Cry2 (-/-) mice are indistinguishable from WT controls in body weight, fat and protein contents, and food consumption when they are allowed unlimited access to a standard rodent diet. We conclude that although CRY signaling may not be essential for the maintenance of energy homeostasis under steady-state nutritional conditions, Cry1 may play a role in readjusting energy balance under changing nutritional circumstances. These studies reinforce the important role of circadian clock genes in energy homeostasis and suggest that Cry1 is a plausible target for anti-obesity therapy.

  5. KPNB1 mediates PER/CRY nuclear translocation and circadian clock function.

    Science.gov (United States)

    Lee, Yool; Jang, A Reum; Francey, Lauren J; Sehgal, Amita; Hogenesch, John B

    2015-08-29

    Regulated nuclear translocation of the PER/CRY repressor complex is critical for negative feedback regulation of the circadian clock of mammals. However, the precise molecular mechanism is not fully understood. Here, we report that KPNB1, an importin β component of the ncRNA repressor of nuclear factor of activated T cells (NRON) ribonucleoprotein complex, mediates nuclear translocation and repressor function of the PER/CRY complex. RNAi depletion of KPNB1 traps the PER/CRY complex in the cytoplasm by blocking nuclear entry of PER proteins in human cells. KPNB1 interacts mainly with PER proteins and directs PER/CRY nuclear transport in a circadian fashion. Interestingly, KPNB1 regulates the PER/CRY nuclear entry and repressor function, independently of importin α, its classical partner. Moreover, inducible inhibition of the conserved Drosophila importin β in lateral neurons abolishes behavioral rhythms in flies. Collectively, these data show that KPNB1 is required for timely nuclear import of PER/CRY in the negative feedback regulation of the circadian clock.

  6. Resistance to Spodoptera frugiperda (Lepidoptera: Noctuidae) and Euxesta stigmatias (Diptera: Ulidiidae) in sweet corn derived from exogenous and endogenous genetic systems.

    Science.gov (United States)

    Nuessly, G S; Scully, B T; Hentz, M G; Beiriger, R; Snook, M E; Widstrom, N W

    2007-12-01

    Field trials using Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) and Euxesta stigmatias Loew (Diptera: Ulidiidae) were conducted to evaluate resistance and potential damage interactions between these two primary corn, Zea mays L., pests against Lepidoptera-resistant corn varieties derived from both endogenous and exogenous sources. The endogenous source of resistance was maysin, a C-glycosyl flavone produced in high concentrations in varieties 'Zapalote Chico 2451' and 'Zapalote Chico sh2'. The exogenous resistance source was the Bacillus thuringiensis (Bt)11 gene that expresses Cry1A(b) insecticidal protein found in 'Attribute GSS-0966'. Damage by the two pests was compared among these resistant varieties and the susceptible 'Primetime'. Single-species tests determined that the Zapalote Chico varieties and GSS-0966 effectively reduced S. frugiperda larval damage compared with Primetime. E. stigmatias larval damage was less in the Zapalote Chico varieties than the other varieties in single-species tests. E. stigmatias damage was greater on S. frugiperda-infested versus S. frugiperda-excluded ears. Ears with S. frugiperda damage to husk, silk and kernels had greater E. stigmatias damage than ears with less S. frugiperda damage. Reversed phase high-performance liquid chromatography analysis of nonpollinated corn silk collected from field plots determined that isoorientin, maysin, and apimaysin plus 3'-methoxymaysin concentrations followed the order Zapalote Chico sh2 > Zapalote Chico 2451 > Attribute GSS-0966 = Primetime. Chlorogenic acid concentrations were greatest in Zapalote Chico 2451. The two high maysin Zapalote Chico varieties did as well against fall armyworm as the Bt-enhanced GSS-0966, and they outperformed GSS-0966 against E. stigmatias.

  7. Norway spruce (Picea abies) genetic transformation with modified Cry3A gene of Bacillus thuringiensis

    Czech Academy of Sciences Publication Activity Database

    Bříza, Jindřich; Pavingerová, Daniela; Vlasák, Josef; Niedermeierová, Hana

    2013-01-01

    Roč. 60, č. 3 (2013), s. 395-400 ISSN 0001-527X R&D Projects: GA MZe QH71290; GA ČR(CZ) GAP502/11/1471 Institutional support: RVO:60077344 Keywords : Cry3A gene modification * Picea abies * Agrobacterium tumefaciens Subject RIV: EB - Genetic s ; Molecular Biology Impact factor: 1.389, year: 2013

  8. Proteome response of Tribolium castaneum larvae to Bacillus thuringiensis toxin producing strains.

    Directory of Open Access Journals (Sweden)

    Estefanía Contreras

    Full Text Available Susceptibility of Tribolium castaneum (Tc larvae was determined against spore-crystal mixtures of five coleopteran specific and one lepidopteran specific Bacillus thuringiensis Cry toxin producing strains and those containing the structurally unrelated Cry3Ba and Cry23Aa/Cry37Aa proteins were found toxic (LC(50 values 13.53 and 6.30 µg spore-crystal mixture/µL flour disc, respectively. Using iTRAQ combined with LC-MS/MS allowed the discovery of seven novel differentially expressed proteins in early response of Tc larvae to the two active spore-crystal mixtures. Proteins showing a statistically significant change in treated larvae compared to non-intoxicated larvae fell into two major categories; up-regulated proteins were involved in host defense (odorant binding protein C12, apolipophorin-III and chemosensory protein 18 and down-regulated proteins were linked to metabolic pathways affecting larval metabolism and development (pyruvate dehydrogenase Eα subunit, cuticular protein, ribosomal protein L13a and apolipoprotein LI-II. Among increased proteins, Odorant binding protein C12 showed the highest change, 4-fold increase in both toxin treatments. The protein displayed amino acid sequence and structural homology to Tenebrio molitor 12 kDa hemolymph protein b precursor, a non-olfactory odorant binding protein. Analysis of mRNA expression and mortality assays in Odorant binding protein C12 silenced larvae were consistent with a general immune defense function of non-olfactory odorant binding proteins. Regarding down-regulated proteins, at the transcriptional level, pyruvate dehydrogenase and cuticular genes were decreased in Tc larvae exposed to the Cry3Ba producing strain compared to the Cry23Aa/Cry37Aa producing strain, which may contribute to the developmental arrest that we observed with larvae fed the Cry3Ba producing strain. Results demonstrated a distinct host transcriptional regulation depending upon the Cry toxin treatment. Knowledge

  9. Transgenic loblolly pine (Pinus taeda L.) plants expressing a modified delta-endotoxin gene of Bacillus thuringiensis with enhanced resistance to Dendrolimus punctatus Walker and Crypyothelea formosicola Staud.

    Science.gov (United States)

    Tang, Wei; Tian, Yingchuan

    2003-02-01

    A synthetic version of the CRY1Ac gene of Bacillus thuringiensis has been used for the transformation of loblolly pine (Pinus taeda L.) using particle bombardment. Mature zygotic embryos were used to be bombarded and to generate organogenic callus and transgenic regenerated plants. Expression vector pB48.215 DNA contained a synthetic Bacillus thuringiensis (B.t.) CRY1Ac coding sequence flanked by the double cauliflower mosaic virus (CaMV) 35S promoter and nopaline synthase (NOS) terminator sequences, and the neomycin phosphotransferase II (NPTII) gene controlled by the promoter of the nopaline synthase gene was introduced into loblolly pine tissues by particle bombardment. The transformed tissues were proliferated and selected on media with kanamycin. Shoot regeneration was induced from the kanamycin-resistant calli, and transgenic plantlets were then produced. More than 60 transformed plants from independent transformation events were obtained for each loblolly pine genotype tested. The integration and expression of the introduced genes in the transgenic loblolly pine plants was confirmed by polymerase chain reactions (PCR) analysis, by Southern hybridization, by Northern blot analysis, and by Western blot analysis. Effective resistance of transgenic plants against Dendrolimus punctatus Walker and Crypyothelea formosicola Staud was verified in feeding bioassays with the insects. The transgenic plants recovered could represent a good opportunity to analyse the impact of genetic engineering of pine for sustainable resistance to pests using a B. thuringiensis insecticidal protein. This protocol enabled the routine transformation of loblolly pine plants that were previously difficult to transform.

  10. CRY 1AB trangenic cowpea obtained by nodal electroporation ...

    African Journals Online (AJOL)

    Electroporation-mediated genetic transformation was used to introduce Cry 1 Ab insecticidal gene into cowpea. Nodal buds were electroporated in planta with a plasmid carrying the Cry 1Ab and antibiotic resistance npt II genes driven by a 35S CaMV promoter. T1 seeds derived from electroporated branches were selected ...

  11. Efektivitas Bacillus thuringiensis dalam Pengendalian Larva Nyamuk Anopheles sp.

    Directory of Open Access Journals (Sweden)

    Citra Inneke Wibowo

    2017-08-01

    Full Text Available Nyamuk Anopheles sp adalah vektor penyakit malaria. Pengendalian vektor penyakit malaria dapat dilakukan secara biologis yaitu dengan menggunakan Bacillus thuringiensis. Tujuan penelitian adalah untuk mengetahui efektivitas konsentrasi Bacillus thuringiensis dalam pengendalian larva nyamuk Anopheles sp.Penelitian ini dilakukan secara eksperimental menggunakan Rancangan Acak Lengkap Faktorial (RAL Faktorial yang terdiri atas dua faktor yaitu konsentrasi Bacillus thuringiensis dan stadia larva Anopheles dengan pengulangan tiga kali.Perlakuan yang dicobakan adalahkonsentrasi Bacillus thuringiensis (A yang terdiri atas 5 taraf:A0: konsentrasi B.thuringiensis 0 CFU.mL-1, A1: konsentrasi B.thuringiensis 102 CFU.mL-1, A2: konsentrasi B.thuringiensis 104 CFU.mL-1, A3: konsentrasi B.thuringiensis 106CFU.mL-1, A4: konsentrasi B.thuringiensis 108CFU.mL-1. Perlakuan tahapan instar larva Anopheles sp. (B adalah sebagai berikut:B1: stadia larva instar I, B2: stadia larva instar II, B3: stadia larva instar III, B4: stadia larva instar IVsehingga terdapat 60 satuan percobaan. Hasil penelitian  menunjukkan konsentrasi B. thuringiensis isolat CK dan IPB CC yang paling berpengaruh dalam pengendalian larva Anopheles sp adalah 108 CFU.mL-1 . Instar larva yang paling peka terhadap B. thuringiensis isolat IPB CC adalah instar I dan II sedangkan instar yang peka terhadap isolat CK adalah instar II, Perlakuan konsentrasi isolat B. thuringiensis dan tingkat instar larva yang paling baik dalam pengendalian larva Anopheles sp. adalah 108 CFU.mL-1, dan instar I dan II.

  12. Testing potential effects of maize expressing the Bacillus thuringiensis Cry1Ab endotoxin (Bt maize) on mycorrhizal fungal communities via DNA- and RNA-based pyrosequencing and molecular fingerprinting.

    Science.gov (United States)

    Verbruggen, Erik; Kuramae, Eiko E; Hillekens, Remy; de Hollander, Mattias; Kiers, E Toby; Röling, Wilfred F M; Kowalchuk, George A; van der Heijden, Marcel G A

    2012-10-01

    The cultivation of genetically modified (GM) crops has increased significantly over the last decades. However, concerns have been raised that some GM traits may negatively affect beneficial soil biota, such as arbuscular mycorrhizal fungi (AMF), potentially leading to alterations in soil functioning. Here, we test two maize varieties expressing the Bacillus thuringiensis Cry1Ab endotoxin (Bt maize) for their effects on soil AM fungal communities. We target both fungal DNA and RNA, which is new for AM fungi, and we use two strategies as an inclusive and robust way of detecting community differences: (i) 454 pyrosequencing using general fungal rRNA gene-directed primers and (ii) terminal restriction fragment length polymorphism (T-RFLP) profiling using AM fungus-specific markers. Potential GM-induced effects were compared to the normal natural variation of AM fungal communities across 15 different agricultural fields. AM fungi were found to be abundant in the experiment, accounting for 8% and 21% of total recovered DNA- and RNA-derived fungal sequences, respectively, after 104 days of plant growth. RNA- and DNA-based sequence analyses yielded most of the same AM fungal lineages. Our research yielded three major conclusions. First, no consistent differences were detected between AM fungal communities associated with GM plants and non-GM plants. Second, temporal variation in AMF community composition (between two measured time points) was bigger than GM trait-induced variation. Third, natural variation of AMF communities across 15 agricultural fields in The Netherlands, as well as within-field temporal variation, was much higher than GM-induced variation. In conclusion, we found no indication that Bt maize cultivation poses a risk for AMF.

  13. 75 FR 57778 - Issuance of an Experimental Use Permit

    Science.gov (United States)

    2010-09-22

    ... comprehensive analysis of data and information related to the requested experimental uses and, based on that... 5307] Bacillus thuringiensis eCry3.1Ab protein and the genetic material necessary for its production...) [Bt11] Bacillus thuringiensis Cry1Ab delta-endotoxin and the genetic material (as contained in plasmid...

  14. Transgenic cotton expressing Cry10Aa toxin confers high resistance to the cotton boll weevil.

    Science.gov (United States)

    Ribeiro, Thuanne Pires; Arraes, Fabricio Barbosa Monteiro; Lourenço-Tessutti, Isabela Tristan; Silva, Marilia Santos; Lisei-de-Sá, Maria Eugênia; Lucena, Wagner Alexandre; Macedo, Leonardo Lima Pepino; Lima, Janaina Nascimento; Santos Amorim, Regina Maria; Artico, Sinara; Alves-Ferreira, Márcio; Mattar Silva, Maria Cristina; Grossi-de-Sa, Maria Fatima

    2017-08-01

    Genetically modified (GM) cotton plants that effectively control cotton boll weevil (CBW), which is the most destructive cotton insect pest in South America, are reported here for the first time. This work presents the successful development of a new GM cotton with high resistance to CBW conferred by Cry10Aa toxin, a protein encoded by entomopathogenic Bacillus thuringiensis (Bt) gene. The plant transformation vector harbouring cry10Aa gene driven by the cotton ubiquitination-related promoter uceA1.7 was introduced into a Brazilian cotton cultivar by biolistic transformation. Quantitative PCR (qPCR) assays revealed high transcription levels of cry10Aa in both T 0 GM cotton leaf and flower bud tissues. Southern blot and qPCR-based 2 -ΔΔCt analyses revealed that T 0 GM plants had either one or two transgene copies. Quantitative and qualitative analyses of Cry10Aa protein expression showed variable protein expression levels in both flower buds and leaves tissues of T 0 GM cotton plants, ranging from approximately 3.0 to 14.0 μg g -1 fresh tissue. CBW susceptibility bioassays, performed by feeding adults and larvae with T 0 GM cotton leaves and flower buds, respectively, demonstrated a significant entomotoxic effect and a high level of CBW mortality (up to 100%). Molecular analysis revealed that transgene stability and entomotoxic effect to CBW were maintained in T 1 generation as the Cry10Aa toxin expression levels remained high in both tissues, ranging from 4.05 to 19.57 μg g -1 fresh tissue, and the CBW mortality rate remained around 100%. In conclusion, these Cry10Aa GM cotton plants represent a great advance in the control of the devastating CBW insect pest and can substantially impact cotton agribusiness. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  15. Effect ob Bacillus Thuringiensis Aegypti and Gamma Irradiation on the Ultrastructure of the Mid Gut of Arenipses Sabella Larvae Hampson (pyralidae:Lepidoptera)

    International Nuclear Information System (INIS)

    Mikhaiel, A.A.; Abul Fadl, H.A.A.

    2011-01-01

    Laboratory experiments were carried out to investigate the effect of Egyptian Bacillus thuringiensis aegypti on the third larval instar of Arenipses sabella at five concentrations (0.125, 0.25, 0.50, 1 and 2 g/100 ml water). The results showed that the percentages of larval mortality were increased by increasing the applied concentration. A combination of irradiation and B. thuringiensis led to higher mortality in F1 progeny of A. sabella while F1 progeny of irradiated parents with 175 Gy was more susceptible to B. thuringiensis than that of non-irradiated parents. The LC 50 was 0.721 g/100 ml for F1 progeny of non-irradiated parents but 0.237 g/100 ml for those of irradiated parents. There was an inverse relation between the concentration and emergence percentage in non-irradiated larvae and there was a great reduction in the emergence of F1 progeny of irradiated parents as compared to non-irradiated parents. Such reduction was increased by applying a higher concentration of B. thuringiensis. The histopathological studies using ultrastructure microscopy were carried out on the mid gut of the 3rd larval instar after the treatment with LC 50 of the agerin, F1 larvae resulted from irradiated parents with 125 Gy and combined effect of both treatments. Electron microscope observations revealed that the most characteristic effects were mid gut columnar cell vacuolisation, microvilli damages, epithelium cell contents passing into the mid gut lumen and finally the cell death. It could be concluded that the integrated of inherited sterility technique and B. thuringiensis application gave a good control result against A. sabella.

  16. Possibilities of using radiation induced F1 sterility for control of European corn borer in Romania

    International Nuclear Information System (INIS)

    Barbulescu, A.; Rosca, I.

    1993-01-01

    Investigations were undertaken to develop the foundation for control in the future of the European corn borer, Ostrinia nubilalis (Huebner), with a pest management system based on sterility expressed to the greatest extent during the F 1 generation of progeny of moths irradiated with gamma rays. As a basis for the mass rearing of the pest, a diet was developed from locally available ingredients. The ingredients are bean meal, wheat bran, brewe's yeast, milk powder substitute for calves, salt mixture used in poultry production, sugar, ascorbic acid, sorbic acid, glacial acetic acid, formaldehyde, agar and water. Using this diet, 1000 moths can be reared for as little as one US dollar. Complete sterility induced by exposure to gamma rays occurs at a lower dose in females than in males. When males that are exposed as six-day-old pupae to 150 Gy are mated to untreated females, 67.5% of the eggs hatch. Further, when the sons of treated males are mated to untreated females, 42.8% of the eggs hatch, when daughters of treated males are mated to untreated males, 40.7% of the eggs hatch, and when sons and daughters of treated males are mated to each other, 9.1% of the eggs hatch. The amount of mortality following egg hatch was not recorded. However, in field cage experiments, F 1 larvae damaged 4, 8 and 0% of corn stalks for these respective crosses compared with the 76% damage by larvae from untreated parents. The corresponding yield of kernels of corn in grammes per plant was 57, 42, 46, and 27. In order to mark moths for filed studies they were reared on diet containing Calco red dye. Traps baited with the various enantiomers of the sex pheromone were used to study the dispersal of released moths and the dates of adult moth emergence in various regions of Romania. (author). 20 refs, 12 tabs

  17. Modification of Cry4Aa toward Improved Toxin Processing in the Gut of the Pea Aphid, Acyrthosiphon pisum.

    Directory of Open Access Journals (Sweden)

    Michael A Rausch

    Full Text Available Aphids are sap-sucking insects (order: Hemiptera that cause extensive damage to a wide range of agricultural crops. Our goal was to optimize a naturally occurring insecticidal crystalline (Cry toxins produced by the soil-dwelling bacterium Bacillus thuringiensis for use against the pea aphid, Acyrthosiphon pisum. On the basis that activation of the Cry4Aa toxin is a rate-limiting factor contributing to the relatively low aphicidal activity of this toxin, we introduced cathepsin L and cathepsin B cleavage sites into Cry4Aa for rapid activation in the aphid gut environment. Incubation of modified Cry4Aa and aphid proteases in vitro demonstrated enhanced processing of the toxin into the active form for some of the modified constructs relative to non-modified Cry4Aa. Aphids fed artificial diet with toxin at a final concentration of 125 μg/ml showed enhanced mortality after two days for one of the four modified constructs. Although only modest toxin improvement was achieved by use of this strategy, such specific toxin modifications designed to overcome factors that limit aphid toxicity could be applied toward managing aphid populations via transgenic plant resistance.

  18. Effect of transgenic Bacillus thuringiensis rice lines on mortality and feeding behavior of rice stem borers (Lepidoptera: Crambidae).

    Science.gov (United States)

    Chen, Hao; Zhang, Guoan; Zhang, Qifa; Lin, Yongjun

    2008-02-01

    Ten transgenic Bacillus thuringiensis Bt rice, Oryza sativa L., lines with different Bt genes (two Cry1Ac lines, three Cry2A lines, and five Cry9C lines) derived from the same variety Minghui 63 were evaluated in both the laboratory and the field. Bioassays were conducted by using the first instars of two main rice lepidopteran insect species: yellow stem borer, Scirpophaga incertulas (Walker) and Asiatic rice borer, Chilo suppressalis (Walker). All transgenic lines exhibited high toxicity to these two rice borers. Field evaluation results also showed that all transgenic lines were highly insect resistant with both natural infestation and manual infestation of the neonate larvae of S. incertulas compared with the nontransformed Minghui63. Bt protein concentrations in leaves of 10 transgenic rice lines were estimated by the sandwich enzyme-linked immunosorbent assay. The cry9C gene had the highest expression level, next was cry2A gene, and the cry1Ac gene expressed at the lowest level. The feeding behavior of 7-d-old Asiatic rice borer to three classes of Bt transgenic rice lines also was detected by using rice culm cuttings. The results showed that 7-d-old larvae of Asiatic rice borer have the capacity to distinguish Bt and non-Bt culm cuttings and preferentially fed on non-Bt cuttings. When only Bt culm cuttings with three classes of different Bt proteins (CrylAc, Cry2A, and Cry9C) were fed, significant distribution difference of 7-d-old Asiatic rice borer in culm cuttings of different Bt proteins also was found. In the current study, we evaluate different Bt genes in the same rice variety in both the laboratory and the field, and also tested feeding behavior of rice insect to these Bt rice. These data are valuable for the further development of two-toxin Bt rice and establishment of appropriate insect resistance management in the future.

  19. Chloroplast localization of Cry1Ac and Cry2A protein- an alternative way of insect control in cotton

    Directory of Open Access Journals (Sweden)

    Adnan Muzaffar

    2015-01-01

    Full Text Available BACKGROUND: Insects have developed resistance against Bt-transgenic plants. A multi-barrier defense system to weaken their resistance development is now necessary. One such approach is to use fusion protein genes to increase resistance in plants by introducing more Bt genes in combination. The locating the target protein at the point of insect attack will be more effective. It will not mean that the non-green parts of the plants are free of toxic proteins, but it will inflict more damage on the insects because they are at maximum activity in the green parts of plants. RESULTS: Successful cloning was achieved by the amplification of Cry2A, Cry1Ac, and a transit peptide. The appropriate polymerase chain reaction amplification and digested products confirmed that Cry1Ac and Cry2A were successfully cloned in the correct orientation. The appearance of a blue color in sections of infiltrated leaves after 72 hours confirmed the successful expression of the construct in the plant expression system. The overall transformation efficiency was calculated to be 0.7%. The amplification of Cry1Ac-Cry2A and Tp2 showed the successful integration of target genes into the genome of cotton plants. A maximum of 0.673 μg/g tissue of Cry1Ac and 0.568 μg/g tissue of Cry2A was observed in transgenic plants. We obtained 100% mortality in the target insect after 72 hours of feeding the 2nd instar larvae with transgenic plants. The appearance of a yellow color in transgenic cross sections, while absent in the control, through phase contrast microscopy indicated chloroplast localization of the target protein. CONCLUSION: Locating the target protein at the point of insect attack increases insect mortality when compared with that of other transgenic plants. The results of this study will also be of great value from a biosafety point of view.

  20. Notification: Evaluation of Office of Pesticide Programs’ Genetically Engineered Corn Insect Resistance Management

    Science.gov (United States)

    Project #OPE-FY15-0055, July 09, 2015. The EPA OIG plans to begin preliminary research on the EPA's ability to manage and prevent increased insect resistance to genetically engineered Bacillus thuringiensis (Bt) corn.

  1. A single type of cadherin is involved in Bacillus thuringiensis toxicity in Plutella xylostella.

    Science.gov (United States)

    Park, Y; Herrero, S; Kim, Y

    2015-12-01

    Cadherins have been described as one the main functional receptors for the toxins of the entomopathogenic bacterium, Bacillus thuringiensis (Bt). With the availability of the whole genome of Plutella xylostella, different types of cadherins have been annotated. In this study we focused on determining those members of the cadherin-related proteins that potentially play a role in the mode of action of Bt toxins. For this, we mined the genome of P. xylostella to identify these putative cadherins. The genome screening revealed 52 genes that were annotated as cadherin or cadherin-like genes. Further analysis revealed that six of these putative cadherins had three motifs common to all Bt-related cadherins: a signal peptide, cadherin repeats and a transmembrane domain. From the six selected cadherins, only P. xylostella cadherin 1 (PxCad1) was expressed in the larval midgut and only the silencing of this gene by RNA interference (double-stranded RNA feeding) reduce toxicity and binding to the midgut of the Cry1Ac type toxin from Bt. These results indicate that from the whole set of cadherin-related genes identified in P. xylostella, only PxCad1 is associated with the Cry1Ac mode of action. © 2015 The Royal Entomological Society.

  2. Effect of γ-irradiation on F-2 and T-2 toxin production in corn a rice

    International Nuclear Information System (INIS)

    Halasz, A.; Badaway, A.; Sawinsky, J.; Kozma-Kovacs, E.; Beczner, J.

    1989-01-01

    Fusarium graminearum and F. tricinctum were grown on moistened corn and rice. After inoculation the substrates were exposed to γ radiation and the growth rate and mycotoxin production were measured. A delay in mycelium growth and an increase in F-2 and T-2 toxin production occurred after irradiation with 1 and 3 kGy. The maximum F-2 production was 10.7 mg/kg for rice at 3 kGy whereas for T-2 it was 735 μg/kg for rice at 3 kGy. At 9 kGy neither growth nor toxin production could be detected in any inoculated corn and rice substrate. (author). 3 tabs., 12 refs

  3. Mechanistic and single-dose in vivo therapeutic studies of Cry5B anthelmintic action against hookworms.

    Directory of Open Access Journals (Sweden)

    Yan Hu

    Full Text Available Hookworm infections are one of the most important parasitic infections of humans worldwide, considered by some second only to malaria in associated disease burden. Single-dose mass drug administration for soil-transmitted helminths, including hookworms, relies primarily on albendazole, which has variable efficacy. New and better hookworm therapies are urgently needed. Bacillus thuringiensis crystal protein Cry5B has potential as a novel anthelmintic and has been extensively studied in the roundworm Caenorhabditis elegans. Here, we ask whether single-dose Cry5B can provide therapy against a hookworm infection and whether C. elegans mechanism-of-action studies are relevant to hookworms.To test whether the C. elegans invertebrate-specific glycolipid receptor for Cry5B is relevant in hookworms, we fed Ancylostoma ceylanicum hookworm adults Cry5B with and without galactose, an inhibitor of Cry5B-C. elegans glycolipid interactions. As with C. elegans, galactose inhibits Cry5B toxicity in A. ceylanicum. Furthermore, p38 mitogen-activated protein kinase (MAPK, which controls one of the most important Cry5B signal transduction responses in C. elegans, is functionally operational in hookworms. A. ceylanicum hookworms treated with Cry5B up-regulate p38 MAPK and knock down of p38 MAPK activity in hookworms results in hypersensitivity of A. ceylanicum adults to Cry5B attack. Single-dose Cry5B is able to reduce by >90% A. ceylanicum hookworm burdens from infected hamsters, in the process eliminating hookworm egg shedding in feces and protecting infected hamsters from blood loss. Anthelmintic activity is increased about 3-fold, eliminating >97% of the parasites with a single 3 mg dose (∼30 mg/kg, by incorporating a simple formulation to help prevent digestion in the acidic stomach of the host mammal.These studies advance the development of Cry5B protein as a potent, safe single-dose anthelmintic for hookworm therapy and make available the information of how

  4. A new artificial diet for western corn rootworm larvae is compatible with and detects resistance to all current Bt toxins

    Science.gov (United States)

    Insect resistance to transgenic crops expressing one or more genes from Bacillus thuringiensis Berliner (Bt) is a growing concern for farmers, regulatory agencies, the seed industry, and researchers alike. Western corn rootworm (Diabrotica virgifera virgifera LeConte) is a pest of corn (Zea mays L.)...

  5. A Simple and Sensitive Plant-Based Western Corn Rootworm Bioassay Method for Resistance Determination and Event Selection.

    Science.gov (United States)

    Wen, Zhimou; Chen, Jeng Shong

    2018-05-26

    We report here a simple and sensitive plant-based western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), bioassay method that allows for examination of multiple parameters for both plants and insects in a single experimental setup within a short duration. For plants, injury to roots can be visually examined, fresh root weight can be measured, and expression of trait protein in plant roots can be analyzed. For insects, in addition to survival, larval growth and development can be evaluated in several aspects including body weight gain, body length, and head capsule width. We demonstrated using the method that eCry3.1Ab-expressing 5307 corn was very effective against western corn rootworm by eliciting high mortality and significantly inhibiting larval growth and development. We also validated that the method allowed determination of resistance in an eCry3.1Ab-resistant western corn rootworm strain. While data presented in this paper demonstrate the usefulness of the method for selection of events of protein traits and for determination of resistance in laboratory populations, we envision that the method can be applied in much broader applications.

  6. Genetic Markers for Western Corn Rootworm Resistance to Bt Toxin

    OpenAIRE

    Flagel, Lex E.; Swarup, Shilpa; Chen, Mao; Bauer, Christopher; Wanjugi, Humphrey; Carroll, Matthew; Hill, Patrick; Tuscan, Meghan; Bansal, Raman; Flannagan, Ronald; Clark, Thomas L.; Michel, Andrew P.; Head, Graham P.; Goldman, Barry S.

    2015-01-01

    Western corn rootworm (WCR) is a major maize (Zea mays L.) pest leading to annual economic losses of more than 1 billion dollars in the United States. Transgenic maize expressing insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt) are widely used for the management of WCR. However, cultivation of Bt-expressing maize places intense selection pressure on pest populations to evolve resistance. Instances of resistance to Bt toxins have been reported in WCR. Developing genet...

  7. Chilo suppressalis and Sesamia inferens display different susceptibility responses to Cry1A insecticidal proteins.

    Science.gov (United States)

    Li, Bo; Xu, Yangyang; Han, Cao; Han, Lanzhi; Hou, Maolin; Peng, Yufa

    2015-10-01

    Chilo suppressalis and Sesamia inferens are important lepidopteran rice pests that occur concurrently in rice-growing areas of China. The development of transgenic rice expressing Cry1A insecticidal proteins has provided a useful strategy for controlling these pests. This study evaluated the baseline susceptibilities of C. suppressalis and S. inferens to Cry1A, as well as their responses to selection with Cry1A. Wide geographic variation in susceptibility was observed across all field populations. Within a given population, the LC50 of both Cry1Ab and Cry1Ac against S. inferens was drastically higher than that of C. suppressalis. Large LC50 differences (74.6-fold) were detected between the two species for Cry1Ab in the Poyang population, while small differences (3.6-fold) were detected for Cry1Ac in the Changsha population. The Cry1Ac LC50 of C. suppressalis and S. inferens increased 8.4- and 4.4-fold after 21 and eight selection generations respectively. Additionally, the estimated realised heritabilities (h(2) ) of Cry1Ac tolerance were 0.11 in C. suppressalis and 0.292 in S. inferens. S. inferens exhibited a significantly lower susceptibility and more rapidly evolved resistance to Cry1A compared with C. suppressalis. Therefore, S. inferens is more likely to evolve increased resistance, which threatens the sustainability of rice expressing Cry1A protein. © 2014 Society of Chemical Industry.

  8. Potential allergenicity research of Cry1C protein from genetically modified rice.

    Science.gov (United States)

    Cao, Sishuo; He, Xiaoyun; Xu, Wentao; Luo, Yunbo; Ran, Wenjun; Liang, Lixing; Dai, Yunqing; Huang, Kunlun

    2012-07-01

    With the development of genetically modified crops, there has been a growing interest in available approaches to assess the potential allergenicity of novel gene products. We were not sure whether Cry1C could induce allergy. We examined the protein with three other proteins to determine the potential allergenicity of Cry1C protein from genetically modified rice. Female Brown Norway (BN) rats received 0.1 mg peanut agglutinin (PNA), 1mg potato acid phosphatase (PAP), 1mg ovalbumin (OVA) or 5 mg purified Cry1C protein dissolved in 1 mL water by daily gavage for 42 days to test potential allergenicity. Ten days after the last gavage, rats were orally challenged with antigens, and physiologic and immunologic responses were studied. In contrast to sensitization with PNA, PAP and OVA Cry1C protein did not induce antigen-specific IgG2a in BN rats. Cytokine expression, serum IgE and histamine levels and the number of eosinophils and mast cells in the blood of Cry1C group rats were comparable to the control group rats, which were treated with water alone. As Cry1C did not show any allergenicity, we make the following conclusion that the protein could be safety used in rice or other plants. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Histopathological effects of Bacillus Thuringiensis and gamma irradiation on F1 Larvae of the greater Wax Moth, Galleria Mellonella L

    International Nuclear Information System (INIS)

    Mohamed, H.F.; Mikhaiel, A.A.; Abul-Fadl, H.A.

    2006-01-01

    Full grown male pupae of the greater wax moth, Galleria mellonella L., were gamma irradiated with 50, 100, 200, 300 and 400 Gy. The resulting F1 larvae were treated at the fourth instar with different concentrations (0, 5, 10, 20, and 40 %) of Bacillus thuringiensis (Bt.) var. kurstaki. Combined effects of the two doses of gamma radiation (50 and 100 Gy) and / or Bt. (LC 50 ) on certain biological aspects in addition to histological effects on larval mid gut were studied. The obtained results indicated that Bt. or irradiation treatments either alone or in combination decreased the number of F1 larvae that reached the adult stage as compared to the control. Also, the reduction in survived individuals was obvious at dose level 400 Gy than 50, 100 and 200 Gy (the lower doses). The larval mortality, percent pupation, percent emergence and adult survival were decreased gradually by increasing the concentration of Bt. especially at the combined treatments. The sex ratio was altered in favour of males at either Bt. and / or irradiation treatments. Certain histological changes through longitudinal sections of the mid gut of F1 larvae due to irradiation and / or Bt. treatments were detected. The damage of tissues was increased by increasing the dose of irradiation and / or concentration of Bt. The cytoplasmic extrusion was appeared as the apical margin of cells as a confluent mass and the muscular layers were broken in some parts, large amount of secretions was released in the lumen of the mid gut while a few amounts were attached to the apical margin of the cells. Much destruction of the mid gut took place when the Bt. treatments were combined with gamma irradiation where large number of epithelial cells became vacuolated and the cytoplasm was appeared as confluent masses because of the hydropic analysis of the epithelium

  10. Characterization of a Bacillus thuringiensis strain collection isolated from diverse Costa Rican natural ecosystems

    Directory of Open Access Journals (Sweden)

    Glen Arrieta

    2006-03-01

    Full Text Available Costa Rican natural ecosystems are among the most diverse in the world. For this reason, we isolated strains of the entomopathogenic bacteria Bacillus thuringiensis (Bt to determine their diversity, distribution and abundance. A total of 146 Bt strains were obtained from environmental samples collected from diverse natural ecosystems and life zones of Costa Rica. We recovered Bt strains from 71%, 63%, 61% and 54% of soil samples, fresh leaves, other substrates and leaf litter respectively. Bt was isolated in 65%of the samples collected in the humid tropical forest in national parks (Braulio Carrillo, Gandoca Manzanillo, Sierpe, Hitoy Cerere, and Cahuita, and in 59% of the samples collected in the dry tropical forest (Parque Nacional Marino las Baulas, Palo Verde and Santa Rosa. In the very humid tropical forest (Tortuguero Bt was isolated in 75% of the samples and in the very humid tropical forest transition perhumid (Cararait was found in 69% of the samples. The strains exhibit a diverse number, size and morphology of parasporal inclusion bodies: irregular (47%,oval (20%, bipyramidal (3%, bipyramidal and cubic (1%, bipyramidal, oval and irregular (5% and bipyramidal, oval and cubic crystals (2%. Strains isolated from Braulio Carrillo, Tortuguero and Cahuita, presented predominantly irregular crystals. On the other hand, more than 60% of the isolates from Térraba-Sierpe and Hitoy-Cerere had medium oval crystals. Strains from Gandoca-Manzanillo, Palo Verde and Carara presented mainly combinations of oval and irregular crystals. Nevertheless, the greatest diversity in crystal morphology was observed in those from Santa Rosa, Llanos del Río Medio Queso and Parque Marino las Baulas. Protein analyses of the crystal-spore preparations showed ä -endotoxin with diverse electrophoretic patterns, with molecular weights in the range of 20 to 160 kDa. Fifty six percent of the strains amplified with the cry2 primer, 54% with vip3, 20% with cry1, 9% with

  11. 77 FR 6471 - Bacillus thuringiensis Cry2Ae Protein in Cotton; Exemption from the Requirement of a Tolerance

    Science.gov (United States)

    2012-02-08

    ... rather provides a guide for readers regarding entities likely to be affected by this action. Other types... degradation by acid and proteases (Ref. 4). The Cry2Ae protein was rapidly digested (within 30 seconds) in SGF... shown to be rapidly digested in vitro. As previously stated, when Cry2Ae protein is used as a PIP in...

  12. A 90-day safety study of genetically modified rice expressing Cry1Ab protein (Bacillus thuringiensis toxin) in Wistar rats

    DEFF Research Database (Denmark)

    Schrøder, Malene; Poulsen, Morten; Wilcks, Andrea

    2007-01-01

    An animal model for safety assessment of genetically modified foods was tested as part of the SAFOTEST project. In a 90-day feeding study on Wistar rats, the transgenic KMD1 rice expressing Cry1Ab protein was compared to its non-transgenic parental wild type, Xiushui 11. The KMD1 rice contained 15......, macroscopic and histopathological examinations were performed with only minor changes to report. The aim of the study was to use a known animal model in performance of safety assessment of a GM crop, in this case KMD1 rice. The results show no adverse or toxic effects of KMD1 rice when tested in the design...... used in this 90-day study. Nevertheless the experiences from this study lead to the overall conclusion that safety assessment for unintended effects of a GM crop cannot be done without additional test group(s)....

  13. Field-evolved resistance to Bt maize in sugarcane borer (Diatraea saccharalis) in Argentina.

    Science.gov (United States)

    Grimi, Damián A; Parody, Betiana; Ramos, María Laura; Machado, Marcos; Ocampo, Federico; Willse, Alan; Martinelli, Samuel; Head, Graham

    2018-04-01

    Maize technologies expressing Bacillus thuringiensis (Bt) insecticidal proteins are widely used in Argentina to control sugarcane borer (Diatraea saccharalis Fabricius). Unexpected D. saccharalis damage was observed to Bt maize events TC1507 (expressing Cry1F) and MON 89034 × MON 88017 (expressing Cry1A.105 and Cry2Ab2) in an isolated area of San Luis Province. Diatraea saccharalis larvae were sampled from MON 89034 × MON 88017 fields in the area to generate a resistant strain (RR), which was subsequently characterized in plant and diet bioassays. Survivorship of the RR strain was high on TC1507 leaf tissue, intermediate on MON 89034 × MON 88017, and low on MON 810 (expressing Cry1Ab). The RR strain had high resistance to Cry1A.105 (186.74-fold) and no resistance to Cry2Ab2 in diet bioassays. These results indicate resistance to Cry1F and Cry1A.105 (and likely cross-resistance between them) but not to Cry1Ab or Cry2Ab2. Resistance to MON 89034 × MON 88017 was functionally recessive. Reviews of grower records suggest that resistance initially evolved to Cry1F, conferring cross-resistance to Cry1A.105, with low refuge compliance as the primary cause. A mitigation plan was implemented in San Luis that included technology rotation, field monitoring, and grower education on best management practices (BMPs) including refuges. In the affected area, the resistance to Cry1F and Cry1A.105 is being managed effectively through use of MON 89034 × MON 88017 and MON 810 in combination with BMPs, and no spread of resistance to other regions has been observed. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  14. Estimation of resistance allele frequency to maize incorporated Bacillus thuringiensis Cry2Ab2 protein in field populations of the fall army Spodoptera frugiperda (Lepidoptera: Noctuidae) from south region of the United State

    Science.gov (United States)

    The fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), is a target of transgenic maize and cotton expressing Bacillus thuringiensis (Bt) proteins in both North and South Americas. In the falls of 2013 and 2014, a total of 215 F2 two-parent families of S. frugiperda were es...

  15. Evaluation of two cotton varieties CRSP1 and CRSP2 for genetic transformation efficiency, expression of transgenes Cry1Ac + Cry2A, GT gene and insect mortality

    Directory of Open Access Journals (Sweden)

    Arfan Ali

    2016-03-01

    Full Text Available Expression of the transgene with a desirable character in crop plant is the ultimate goal of transgenic research. Transformation of two Bt genes namely Cry1Ac and Cry2A cloned as separate cassette under 35S promoter in pKHG4 plant expression vector was done by using shoot apex cut method of Agrobacterium. Molecular confirmation of putative transgenic cotton plants for Cry1Ac, Cry2A and GT gene was done through PCR and ELISA. Transformation efficiency of CRSP-1 and CRSP-2 was calculated to be 1.2 and 0.8% for Cry1Ac while 0.9 and 0.6% for Cry2A and 1.5 and 0.7% for GTG respectively. CRSP-1 was found to adopt natural environment (acclimatized earlier than CRSP-2 when exposed to sunlight for one month. Expression of Cry1Ac, Cry2A and GTG was found to be 1.2, 1 and 1.3 ng/μl respectively for CRSP-1 as compared to CRSP-2 where expression was recorded to be 0.9, 0.5 and 0.9 ng/μl respectively. FISH analysis of the transgenic CRSP-1 and CRSP-2 demonstrated the presence of one and two copy numbers respectively. Similarly, the response of CRSP-1 against Glyphosate @1900 ml/acre was far better with almost negligible necrotic spot and efficient growth after spray as compared to CRSP-2 where some plants were found to have necrosis and negative control where the complete decay of plant was observed after seven days of spray assay. Similarly, almost 100% mortality of 2nd instar larvae of Heliothis armigera was recorded after three days in CRSP-1 as compared CRSP-2 where insect mortality was found to be less than 90%. Quantitatively speaking non transgenic plants were found with 23–90% leaf damage by insect, while CRSP-1 was with less than 5% and CRSP-2 with 17%. Taken together CRSP1 was found to have better insect control and weedicide resistance along with its natural ability of genetic modification and can be employed by the valuable farmers for better insect control and simultaneously for better production.

  16. 78 FR 69849 - Issuance of an Experimental Use Permit

    Science.gov (United States)

    2013-11-21

    ... http://www.regulations.gov or at the Office of Pesticide Programs Regulatory Public Docket (OPP Docket... Dv49 double stranded RNA (dsRNA) suppression cassette in combination with Bacillus thuringiensis (Bt....105, Cry2Ab2, Vip3Aa20, Dv49 dsRNA, Cry3Bb1, Cry34Ab1, Cry35Ab1, eCry3.1Ab, respectively) are to be...

  17. Bt rice harbouring cry genes controlled by a constitutive or wound-inducible promoter: protection and transgene expression under Mediterranean field conditions.

    Science.gov (United States)

    Breitler, Jean Christophe; Vassal, Jean Michel; del Mar Catala, Maria; Meynard, Donaldo; Marfà, Victoria; Melé, Enric; Royer, Monique; Murillo, Isabel; San Segundo, Blanca; Guiderdoni, Emmanuel; Messeguer, Joaquima

    2004-09-01

    Seven homozygous transgenic lines of two European commercial cultivars of rice (Ariete (A) and Senia (S)), harbouring the cry1B or cry1Aa Bacillus thuringiensis (Bt) delta-endotoxin genes, were field evaluated for protection from striped stem borer (SSB) (Chilo suppressalis) damage during the 2001 and 2002 summer crop seasons in the Delta de l'Ebre region, Spain. The plant codon-optimized toxin gene was placed under the control of the promoter of either the constitutive ubi1 gene or the wound-inducible mpi gene from maize. Stable, high-level, insecticidal protein accumulation was observed throughout root, leaf and seed tissues of field-grown plants harbouring the cry1B (lines A64.1, A33.1, A3.4 and S98.9) or cry1Aa (lines S05.1 and A19.14) genes under the control of the ubi1 promoter. Conversely, no toxin was detected in unwounded vegetative tissues of the A9.1 line harbouring the cry1B gene controlled by the mpi promoter, indicating that natural environmental stresses did not trigger the activity of the wound-inducible promoter. However, the toxin accumulated at 0.2% total soluble proteins in A9.1 sheath tissue exhibiting brown lesions resulting from SSB damage. The agronomical traits and performance of the transgenic lines were generally comparable with parental controls, except in the two lines accumulating Cry1Aa, which exhibited a high frequency of plants non-true to type. Natural infestation was assisted with manual infestations of L2/L3 SSB larvae in border control plants surrounding the experimental plots, which served as a reservoir for the second-cycle SSB population. The observation of damage (brown lesions and dead hearts) during the crop season and dissection of plants at harvest stage revealed a range of protection amongst the transgenic lines, which was highly consistent with the level of toxin accumulation and with previous experience in greenhouse assays. Lines A3.4 and S05.1 were found to exhibit stable and full protection against SSB attacks

  18. Acquisition of Cry1Ac protein by non-target arthropods in Bt soybean fields.

    Directory of Open Access Journals (Sweden)

    Huilin Yu

    Full Text Available Soybean tissue and arthropods were collected in Bt soybean fields in China at different times during the growing season to investigate the exposure of arthropods to the plant-produced Cry1Ac toxin and the transmission of the toxin within the food web. Samples from 52 arthropod species/taxa belonging to 42 families in 10 orders were analysed for their Cry1Ac content using enzyme-linked immunosorbent assay (ELISA. Among the 22 species/taxa for which three samples were analysed, toxin concentration was highest in the grasshopper Atractomorpha sinensis and represented about 50% of the concentration in soybean leaves. Other species/taxa did not contain detectable toxin or contained a concentration that was between 1 and 10% of that detected in leaves. These Cry1Ac-positive arthropods included a number of mesophyll-feeding Hemiptera, a cicadellid, a curculionid beetle and, among the predators, a thomisid spider and an unidentified predatory bug belonging to the Anthocoridae. Within an arthropod species/taxon, the Cry1Ac content sometimes varied between life stages (nymphs/larvae vs. adults and sampling dates (before, during, and after flowering. Our study is the first to provide information on Cry1Ac-expression levels in soybean plants and Cry1Ac concentrations in non-target arthropods in Chinese soybean fields. The data will be useful for assessing the risk of non-target arthropod exposure to Cry1Ac in soybean.

  19. Acquisition of Cry1Ac Protein by Non-Target Arthropods in Bt Soybean Fields

    Science.gov (United States)

    Yu, Huilin; Romeis, Jörg; Li, Yunhe; Li, Xiangju; Wu, Kongming

    2014-01-01

    Soybean tissue and arthropods were collected in Bt soybean fields in China at different times during the growing season to investigate the exposure of arthropods to the plant-produced Cry1Ac toxin and the transmission of the toxin within the food web. Samples from 52 arthropod species/taxa belonging to 42 families in 10 orders were analysed for their Cry1Ac content using enzyme-linked immunosorbent assay (ELISA). Among the 22 species/taxa for which three samples were analysed, toxin concentration was highest in the grasshopper Atractomorpha sinensis and represented about 50% of the concentration in soybean leaves. Other species/taxa did not contain detectable toxin or contained a concentration that was between 1 and 10% of that detected in leaves. These Cry1Ac-positive arthropods included a number of mesophyll-feeding Hemiptera, a cicadellid, a curculionid beetle and, among the predators, a thomisid spider and an unidentified predatory bug belonging to the Anthocoridae. Within an arthropod species/taxon, the Cry1Ac content sometimes varied between life stages (nymphs/larvae vs. adults) and sampling dates (before, during, and after flowering). Our study is the first to provide information on Cry1Ac-expression levels in soybean plants and Cry1Ac concentrations in non-target arthropods in Chinese soybean fields. The data will be useful for assessing the risk of non-target arthropod exposure to Cry1Ac in soybean. PMID:25110881

  20. Strategies of day care center educators in dealing crying babies

    OpenAIRE

    Lígia Ebner Melchiori; Zélia Maria Mendes Biasoli Alves

    2004-01-01

    The purpose of this study is to explore the views of day care center educators on how they act when babies cry, if they are able to identify the causes of crying and what are the subjection reasons that make them take action or not. Twenty-one caretakers were interviewed about each of the ninety babies, aged 4 to 24 months, under their care, using a semi-structured guide. The results show that overall the proportion of babies that do not cry significantly increases with age. However, crying f...

  1. Cloning of the cryptochrome-encoding PeCRY1 gene from Populus euphratica and functional analysis in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Ke Mao

    Full Text Available Cryptochromes are photolyase-like blue/UV-A light receptors that evolved from photolyases. In plants, cryptochromes regulate various aspects of plant growth and development. Despite of their involvement in the control of important plant traits, however, most studies on cryptochromes have focused on lower plants and herbaceous crops, and no data on cryptochrome function are available for forest trees. In this study, we isolated a cryptochrome gene, PeCRY1, from Euphrates poplar (Populus euphratica, and analyzed its structure and function in detail. The deduced PeCRY1 amino acid sequence contained a conserved N-terminal photolyase-homologous region (PHR domain as well as a C-terminal DQXVP-acidic-STAES (DAS domain. Secondary and tertiary structure analysis showed that PeCRY1 shares high similarity with AtCRY1 from Arabidopsis thaliana. PeCRY1 expression was upregulated at the mRNA level by light. Using heterologous expression in Arabidopsis, we showed that PeCRY1 overexpression rescued the cry1 mutant phenotype. In addition, PeCRY1 overexpression inhibited hypocotyl elongation, promoted root growth, and enhanced anthocyanin accumulation in wild-type background seedlings grown under blue light. Furthermore, we examined the interaction between PeCRY1 and AtCOP1 using a bimolecular fluorescence complementation (BiFc assay. Our data provide evidence for the involvement of PeCRY1 in the control of photomorphogenesis in poplar.

  2. Cry1Ab protein from Bt transgenic rice does not residue in rhizosphere soil

    International Nuclear Information System (INIS)

    Wang Haiyan; Ye Qingfu; Wang Wei; Wu Licheng; Wu Weixiang

    2006-01-01

    Expression of Cry1Ab protein in Bt transgenic rice (KMD) and its residue in the rhizosphere soil during the whole growth in field, as well as degradation of the protein from KMD straw in five soils under laboratory incubation were studied. The residue of Cry1Ab protein in KMD rhizosphere soil was undetectable (below the limit of 0.5 ng/g air-dried soil). The Cry1Ab protein contents in the shoot and root of KMD were 3.23-8.22 and 0.68-0.89 μg/g (fresh weight), respectively. The half-lives of the Cry1Ab protein in the soils amended with KMD straw (4%, w/w) ranged from 11.5 to 34.3 d. The residence time of the protein varied significantly in a Fluvio-marine yellow loamy soil amended with KMD straw at the rate of 3, 4 and 7%, with half-lives of 9.9, 13.8 and 18 d, respectively. In addition, an extraction method for Cry1Ab protein in soil was developed, with extraction efficiencies of 46.4-82.3%. - Cry1Ab protein was not detected in the rhizosphere soil of field-grown Bt transgenic rice

  3. Atypical cry acoustics in 6-month-old infants at risk for autism spectrum disorder.

    Science.gov (United States)

    Sheinkopf, Stephen J; Iverson, Jana M; Rinaldi, Melissa L; Lester, Barry M

    2012-10-01

    This study examined differences in acoustic characteristics of infant cries in a sample of babies at risk for autism and a low-risk comparison group. Cry samples derived from vocal recordings of 6-month-old infants at risk for autism spectrum disorder (ASD; n = 21) and low-risk infants (n = 18) were subjected to acoustic analyses using analysis software designed for this purpose. Cries were categorized as either pain-related or non-pain-related based on videotape coding. At-risk infants produced pain-related cries with higher and more variable fundamental frequency (F (0) ) than low-risk infants. At-risk infants later classified with ASD at 36 months had among the highest F (0) values for both types of cries and produced cries that were more poorly phonated than those of nonautistic infants, reflecting cries that were less likely to be produced in a voiced mode. These results provide preliminary evidence that disruptions in cry acoustics may be part of an atypical vocal signature of autism in early life. © 2012 International Society for Autism Research, Wiley Periodicals, Inc.

  4. Resistance Risk Assessment of Spodoptera frugiperda (Lepidoptera: Noctuidae) and Diatraea saccharalis (Lepidoptera: Crambidae) to Vip3Aa20 Insecticidal Protein Expressed in Corn.

    Science.gov (United States)

    Bernardi, Oderlei; Bernardi, Daniel; Amado, Douglas; Sousa, Renan S; Fatoretto, Julio; Medeiros, Fernanda C L; Conville, Jared; Burd, Tony; Omoto, Celso

    2015-12-01

    Transgenic Agrisure Viptera 3 corn that expresses Cry1Ab, Vip3Aa20, and EPSPS proteins and Agrisure Viptera expressing Vip3Aa20 are used for control of Spodoptera frugiperda (J.E. Smith) and Diatraea saccharalis (F.) in Brazil. To support a resistance management program, resistance risk assessment studies were conducted to characterize the dose expression of Vip3Aa20 protein and level of control against these species. The Vip3Aa20 expression in Agrisure Viptera 3 and Agrisure Viptera decreased from V6 to V10 stage of growth. However, Vip3Aa20 expression in Agrisure Viptera 3 at V6 and V10 stages was 13- and 16-fold greater than Cry1Ab, respectively. The Vip3Aa20 expression in lyophilized tissue of Agrisure Viptera 3 and Agrisure Viptera diluted 25-fold in an artificial diet caused complete larval mortality of S. frugiperda and D. saccharalis. In contrast, lyophilized tissue of Bt11 at the same dilution does not provide complete mortality of these species. Agrisure Viptera 3 and Agrisure Viptera also caused a high level of mortality against S. frugiperda and D. saccharalis. Moreover, 100% mortality was observed for S. frugiperda larvae (neonates through fifth-instar larvae) when fed in corn with the Vip trait technology. Viptera corn achieves a high level of control against S. frugiperda and D. saccharalis providing a high dose, which is an important determination to support the refuge strategy for an effective resistance management program. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Analisis Swot pada Industri Jagung Manis di Kota Payakumbuh (Studi Kasus : Jagung Manis F1aina)

    OpenAIRE

    Ningsih, Dea Gita; Sari, Lapeti; Setiawan, Deny

    2017-01-01

    The success of Industrial and trading sector have given big contribution in creating national economic structure. One of food industries in Payakumbuh city that have vase growth is F1 Aina corn industry. This study aims to determine the strengths, weaknesses, opportunities and threats in the development of Sweet Corn Industry F1Aina. Knowing the industry development strategy F1Aina Sweet Corn. The analytical method used is the SWOT analysis (Strengths, Weaknesses, opportunites, Threats). This...

  6. Isolamento e caracterização de estirpes de Bacillus thuringiensis coletadas em solos do oeste baiano - doi: 10.5102/ucs.v7i2.999

    Directory of Open Access Journals (Sweden)

    Lílian Botelho Praça

    2010-06-01

    Full Text Available A partir de 21 amostras de solos da região oeste da Bahia, foram isoladas nove estirpes de B. thuringiensis. As estirpes de B. thuringiensis foram testadas contra lagartas de Spodoptera frugiperda, Anticarsia gemmatalis, Plutella xylostella e Anthonomus grandis. Das nove estirpes, duas apresentaram efetividade, a S2183 contra S. frugiperda e a S2186 contra S. frugiperda, A. gemmatalis e P. xylostella. Com relação ao A. grandis, nenhuma das estirpes apresentou mortalidade acima de 70%. Estas estirpes foram submetidas à bioensaios para cálculo da CL50 e a caracterizações bioquímicas e moleculares. Em bioensaio, a S2183 não apresentou efetividade nas doses recomendadas contra os insetos testados e S2186 apresentou uma CL50 de 375 µg/mL apenas para P. xylostella. As estirpes apresentaram duas proteínas principais de 100 e 70 kDa. Somente S2186 apresentou produtos de PCR para o gene cry2 e cristais bipiramidais, apresentando-se semelhante ao padrão B. thuringiensis subespécie kurstaki.

  7. Fundamental Frequency Variation of Neonatal Spontaneous Crying Predicts Language Acquisition in Preterm and Term Infants.

    Science.gov (United States)

    Shinya, Yuta; Kawai, Masahiko; Niwa, Fusako; Imafuku, Masahiro; Myowa, Masako

    2017-01-01

    Spontaneous cries of infants exhibit rich melodic features (i.e., time variation of fundamental frequency [ F 0 ]) even during the neonatal period, and the development of these characteristics might provide an essential base for later expressive prosody in language. However, little is known about the melodic features of spontaneous cries in preterm infants, who have a higher risk of later language-related problems. Thus, the present study investigated how preterm birth influenced melodic features of spontaneous crying at term-equivalent age as well as how these melodic features related to language outcomes at 18 months of corrected age in preterm and term infants. At term, moderate-to-late preterm (MLP) infants showed spontaneous cries with significantly higher F 0 variation and melody complexity than term infants, while there were no significant differences between very preterm (VP) and term infants. Furthermore, larger F 0 variation within cry series at term was significantly related to better language and cognitive outcomes, particularly expressive language skills, at 18 months. On the other hand, no other melodic features at term predicted any developmental outcomes at 18 months. The present results suggest that the additional postnatal vocal experience of MLP preterm infants increased F 0 variation and the complexity of spontaneous cries at term. Additionally, the increases in F 0 variation may partly reflect the development of voluntary vocal control, which, in turn, contributes to expressive language in infancy.

  8. Edible Safety Assessment of Genetically Modified Rice T1C-1 for Sprague Dawley Rats through Horizontal Gene Transfer, Allergenicity and Intestinal Microbiota.

    Science.gov (United States)

    Zhao, Kai; Ren, Fangfang; Han, Fangting; Liu, Qiwen; Wu, Guogan; Xu, Yan; Zhang, Jian; Wu, Xiao; Wang, Jinbin; Li, Peng; Shi, Wei; Zhu, Hong; Lv, Jianjun; Zhao, Xiao; Tang, Xueming

    2016-01-01

    In this study, assessment of the safety of transgenic rice T1C-1 expressing Cry1C was carried out by: (1) studying horizontal gene transfer (HGT) in Sprague Dawley rats fed transgenic rice for 90 d; (2) examining the effect of Cry1C protein in vitro on digestibility and allergenicity; and (3) studying the changes of intestinal microbiota in rats fed with transgenic rice T1C-1 in acute and subchronic toxicity tests. Sprague Dawley rats were fed a diet containing either 60% GM Bacillus thuringiensis (Bt) rice T1C-1 expressing Cry1C protein, the parental rice Minghui 63, or a basic diet for 90 d. The GM Bt rice T1C-1 showed no evidence of HGT between rats and transgenic rice. Sequence searching of the Cry1C protein showed no homology with known allergens or toxins. Cry1C protein was rapidly degraded in vitro with simulated gastric and intestinal fluids. The expressed Cry1C protein did not induce high levels of specific IgG and IgE antibodies in rats. The intestinal microbiota of rats fed T1C-1 was also analyzed in acute and subchronic toxicity tests by DGGE. Cluster analysis of DGGE profiles revealed significant individual differences in the rats' intestinal microbiota.

  9. Edible Safety Assessment of Genetically Modified Rice T1C-1 for Sprague Dawley Rats through Horizontal Gene Transfer, Allergenicity and Intestinal Microbiota.

    Directory of Open Access Journals (Sweden)

    Kai Zhao

    Full Text Available In this study, assessment of the safety of transgenic rice T1C-1 expressing Cry1C was carried out by: (1 studying horizontal gene transfer (HGT in Sprague Dawley rats fed transgenic rice for 90 d; (2 examining the effect of Cry1C protein in vitro on digestibility and allergenicity; and (3 studying the changes of intestinal microbiota in rats fed with transgenic rice T1C-1 in acute and subchronic toxicity tests. Sprague Dawley rats were fed a diet containing either 60% GM Bacillus thuringiensis (Bt rice T1C-1 expressing Cry1C protein, the parental rice Minghui 63, or a basic diet for 90 d. The GM Bt rice T1C-1 showed no evidence of HGT between rats and transgenic rice. Sequence searching of the Cry1C protein showed no homology with known allergens or toxins. Cry1C protein was rapidly degraded in vitro with simulated gastric and intestinal fluids. The expressed Cry1C protein did not induce high levels of specific IgG and IgE antibodies in rats. The intestinal microbiota of rats fed T1C-1 was also analyzed in acute and subchronic toxicity tests by DGGE. Cluster analysis of DGGE profiles revealed significant individual differences in the rats' intestinal microbiota.

  10. Toxicity assessment of modified Cry1Ac1 proteins and genetically ...

    African Journals Online (AJOL)

    Owner

    2015-06-10

    Jun 10, 2015 ... Key words: Modified Cry1Ac1, food safety assessment, toxicity, insect- resistant rice Agb0101. INTRODUCTION. Genetically modified (GM) crops are becoming an increasingly important feature of the agricultural land- scapes. In 2013, approximately 175 million hectares of. GM crops were planted by 18 ...

  11. F2 screen, inheritance and cross-resistance of field-derived Vip3A resistance in Spodoptera frugiperda (Lepidoptera: Noctuidae) collected from Louisiana, USA.

    Science.gov (United States)

    Yang, Fei; Morsello, Shannon; Head, Graham P; Sansone, Chris; Huang, Fangneng; Gilreath, Ryan T; Kerns, David L

    2017-11-28

    Fall armyworm, Spodoptera frugiperda, is a target pest of the Vip3A protein used in pyramided Bt corn and cotton in the USA. In this study, we provide the first documentation of a resistance allele conferring Vip3A resistance in a field-derived population of S. frugiperda from the USA, and characterize its inheritance and cross-resistance. An F 2 screen with 104 two-parent families generated from a field collection of S. frugiperda in Louisiana, USA, resulted in one family carrying a Vip3A resistance allele. The Vip3A-resistant strain (RR) derived from the two-parent family showed a high level of resistance to Vip3A in both diet and whole-plant bioassays, with a resistance ratio of >632.0-fold relative to a susceptible population (SS) based on diet-overlay bioassays. The inheritance of Vip3A resistance was monogenic, autosomal and recessive. Furthermore, the Vip3A resistance conferred no cross-resistance to Cry1F, Cry2Ab2 or Cry2Ae purified proteins, with resistance ratios of 3.5, 5.0 and 1.1, respectively. These findings provide valuable information for characterizing Vip3A resistance, resistance monitoring, and developing effective resistance management strategies for the sustainable use of the Vip3A technology. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  12. Phage-Mediated Competitive Chemiluminescent Immunoassay for Detecting Cry1Ab Toxin by Using an Anti-Idiotypic Camel Nanobody.

    Science.gov (United States)

    Qiu, Yulou; Li, Pan; Dong, Sa; Zhang, Xiaoshuai; Yang, Qianru; Wang, Yulong; Ge, Jing; Hammock, Bruce D; Zhang, Cunzheng; Liu, Xianjin

    2018-01-31

    Cry toxins have been widely used in genetically modified organisms for pest control, raising public concern regarding their effects on the natural environment and food safety. In this work, a phage-mediated competitive chemiluminescent immunoassay (c-CLIA) was developed for determination of Cry1Ab toxin using anti-idiotypic camel nanobodies. By extracting RNA from camels' peripheral blood lymphocytes, a naive phage-displayed nanobody library was established. Using anti-Cry1Ab toxin monoclonal antibodies (mAbs) against the library for anti-idiotypic antibody screening, four anti-idiotypic nanobodies were selected and confirmed to be specific for anti-Cry1Ab mAb binding. Thereafter, a c-CLIA was developed for detection of Cry1Ab toxin based on anti-idiotypic camel nanobodies and employed for sample testing. The results revealed a half-inhibition concentration of developed assay to be 42.68 ± 2.54 ng/mL, in the linear range of 10.49-307.1 ng/mL. The established method is highly specific for Cry1Ab recognition, with negligible cross-reactivity for other Cry toxins. For spiked cereal samples, the recoveries of Cry1Ab toxin ranged from 77.4% to 127%, with coefficient of variation of less than 9%. This study demonstrated that the competitive format based on phage-displayed anti-idiotypic nanobodies can provide an alternative strategy for Cry toxin detection.

  13. CRY Drives Cyclic CK2-Mediated BMAL1 Phosphorylation to Control the Mammalian Circadian Clock.

    Directory of Open Access Journals (Sweden)

    Teruya Tamaru

    Full Text Available Intracellular circadian clocks, composed of clock genes that act in transcription-translation feedback loops, drive global rhythmic expression of the mammalian transcriptome and allow an organism to anticipate to the momentum of the day. Using a novel clock-perturbing peptide, we established a pivotal role for casein kinase (CK-2-mediated circadian BMAL1-Ser90 phosphorylation (BMAL1-P in regulating central and peripheral core clocks. Subsequent analysis of the underlying mechanism showed a novel role of CRY as a repressor for protein kinase. Co-immunoprecipitation experiments and real-time monitoring of protein-protein interactions revealed that CRY-mediated periodic binding of CK2β to BMAL1 inhibits BMAL1-Ser90 phosphorylation by CK2α. The FAD binding domain of CRY1, two C-terminal BMAL1 domains, and particularly BMAL1-Lys537 acetylation/deacetylation by CLOCK/SIRT1, were shown to be critical for CRY-mediated BMAL1-CK2β binding. Reciprocally, BMAL1-Ser90 phosphorylation is prerequisite for BMAL1-Lys537 acetylation. We propose a dual negative-feedback model in which a CRY-dependent CK2-driven posttranslational BMAL1-P-BMAL1 loop is an integral part of the core clock oscillator.

  14. Characterization of Bacillus thuringiensis strains from Jordan and ...

    African Journals Online (AJOL)

    Eight serotypes with Bacillus thuringiensis israelensis being the most common. Out of the twenty-six isolated strains, five strains (serotype: kenyae, kurstaki, kurstaki HD1 and thuringiensis) that produced bipyramid crystal proteins were toxic to the lepidoptera larvae of Ephestia kuehniella Zeller. The SDS-PAGE protein ...

  15. Resistance to dual-gene Bt maize in Spodoptera frugiperda: selection, inheritance, and cross-resistance to other transgenic events.

    Science.gov (United States)

    Santos-Amaya, Oscar F; Rodrigues, João V C; Souza, Thadeu C; Tavares, Clébson S; Campos, Silverio O; Guedes, Raul N C; Pereira, Eliseu J G

    2015-12-17

    Transgenic crop "pyramids" producing two or more Bacillus thuringiensis (Bt) toxins active against the same pest are used to delay evolution of resistance in insect pest populations. Laboratory and greenhouse experiments were performed with fall armyworm, Spodoptera frugiperda, to characterize resistance to Bt maize producing Cry1A.105 and Cry2Ab and test some assumptions of the "pyramid" resistance management strategy. Selection of a field-derived strain of S. frugiperda already resistant to Cry1F maize with Cry1A.105 + Cry2Ab maize for ten generations produced resistance that allowed the larvae to colonize and complete the life cycle on these Bt maize plants. Greenhouse experiments revealed that the resistance was completely recessive (Dx = 0), incomplete, autosomal, and without maternal effects or cross-resistance to the Vip3Aa20 toxin produced in other Bt maize events. This profile of resistance supports some of the assumptions of the pyramid strategy for resistance management. However, laboratory experiments with purified Bt toxin and plant leaf tissue showed that resistance to Cry1A.105 + Cry2Ab2 maize further increased resistance to Cry1Fa, which indicates that populations of fall armyworm have high potential for developing resistance to some currently available pyramided maize used against this pest, especially where resistance to Cry1Fa was reported in the field.

  16. Cloning and Characterization of a Unique Cytotoxic Protein Parasporin-5 Produced by Bacillus thuringiensis A1100 Strain

    Directory of Open Access Journals (Sweden)

    Keisuke Ekino

    2014-06-01

    Full Text Available Parasporin is the cytocidal protein present in the parasporal inclusion of the non-insecticidal Bacillus thuringiensis strains, which has no hemolytic activity but has cytocidal activities, preferentially killing cancer cells. In this study, we characterized a cytocidal protein that belongs to this category, which was designated parasporin-5 (PS5. PS5 was purified from B. thuringiensis serovar tohokuensis strain A1100 based on its cytocidal activity against human leukemic T cells (MOLT-4. The 50% effective concentration (EC50 of PS5 to MOLT-4 cells was approximately 0.075 μg/mL. PS5 was expressed as a 33.8-kDa inactive precursor protein and exhibited cytocidal activity only when degraded by protease at the C-terminal into smaller molecules of 29.8 kDa. Although PS5 showed no significant homology with other known parasporins, a Position Specific Iterative-Basic Local Alignment Search Tool (PSI-BLAST search revealed that the protein showed slight homology to, not only some B. thuringiensis Cry toxins, but also to aerolysin-type β-pore-forming toxins (β-PFTs. The recombinant PS5 protein could be obtained as an active protein only when it was expressed in a precursor followed by processing with proteinase K. The cytotoxic activities of the protein against various mammalian cell lines were evaluated. PS5 showed strong cytocidal activity to seven of 18 mammalian cell lines tested, and low to no cytotoxicity to the others.

  17. A 52-week safety study in cynomolgus macaques for genetically modified rice expressing Cry1Ab/1Ac protein.

    Science.gov (United States)

    Mao, Jie; Sun, Xing; Cheng, Jian-Hua; Shi, Yong-Jie; Wang, Xin-Zheng; Qin, Jun-Jie; Sang, Zhi-Hong; He, Kun; Xia, Qing

    2016-09-01

    A 52-week feeding study in cynomolgus macaques was carried out to evaluate the safety of Bt rice Huahui 1 (HH1), a transgenic rice line expressing Cry1Ab/1Ac protein. Monkeys were fed a diet with 20% or 60% HH1 rice, 20% or 60% parental rice (Minghui 63, MH63), normal diet, normal diet spiked with purified recombinant Cry1Ab/1Ac fusion protein or bovine serum albumin (BSA) respectively. During the feeding trail, clinical observations were conducted daily, and multiple parameters, including body weight, body temperature, electrocardiogram, hematology, blood biochemistry, serum metabolome and gut microbiome were examined at regular intervals. Upon sacrifice, the organs were weighted, and the macroscopic, microscopic and electron microscopic examinations were performed. The results show no adverse or toxic effects of Bt rice HH1 or Cry1Ab/1Ac fusion protein on monkeys. Therefore, the present 52-week primate feeding study suggests that the transgenic rice containing Cry 1Ab/1Ac is equivalent to its parental rice line MH63. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Mobility of adsorbed Cry1Aa insecticidal toxin from Bacillus thuringiensis (Bt) on montmorillonite measured by fluorescence recovery after photobleaching (FRAP)

    Science.gov (United States)

    Helassa, Nordine; Daudin, Gabrielle; Noinville, Sylvie; Janot, Jean-Marc; Déjardin, Philippe; Staunton, Siobhán; Quiquampoix, Hervé

    2010-06-01

    The insecticidal toxins produced by genetically modified Bt crops are introduced into soil through root exudates and tissue decomposition and adsorb readily on soil components, especially on clays. This immobilisation and the consequent concentration of the toxins in "hot spots" could increase the exposure of soil organisms. Whereas the effects on non-target organisms are well documented, few studies consider the migration of the toxin in soil. In this study, the residual mobility of Bt Cry1Aa insecticidal toxin adsorbed on montmorillonite was assessed using fluorescence recovery after photobleaching (FRAP). This technique, which is usually used to study dynamics of cytoplasmic and membrane molecules in live cells, was applied for the first time to a protein adsorbed on a finely divided swelling clay mineral, montmorillonite. No mobility of adsorbed toxin was observed at any pH and at different degrees of surface saturation.

  19. Uptake, translocation, and metabolism of [14C]thuringiensin (β-exotoxin) in corn

    International Nuclear Information System (INIS)

    Mersie, W.; Singh, M.

    1989-01-01

    The absorption, translocation, and metabolism of [ 14 C]thuringiensin (β-exotoxin), an insecticide, derived from Bacillus thuringiensis was investigated in corn. Corn was harvested 3 and 7 days after its roots or leaves were exposed to thuringiensin. Corn absorbed more thuringiensin at 7 than 3 days of root exposure. Less than 10% of the applied thuringiensin was absorbed after 7 days of exposure. Only 12% of the foliar-applied thuringiensin was detected in the whole plant, and amounts absorbed at 3 and 7 days were similar. About 80% of the applied radioactivity was found in the leaf wash at both times of harvest, and only 20% of the absorbed was translocated out of the treated leaf. More than 95% of the absorbed radioactivity remained in the root. Time did not affect the distribution pattern of root- or foliar-applied thuringiensin in different parts of corn. In this study, thuringiensin was not readily absorbed by root or leaves of corn and had limited mobility in the plant. The insecticide was also not metabolized by corn shoot after 3 and 7 days of exposures. The implications of these results are discussed

  20. Consumption of Bt Maize Pollen Containing Cry1Ie Does Not Negatively Affect Propylea japonica (Thunberg (Coleoptera: Coccinellidae

    Directory of Open Access Journals (Sweden)

    Yonghui Li

    2017-03-01

    Full Text Available Propylea japonica (Thunberg (Coleoptera: Coccinellidae are prevalent predators and pollen feeders in East Asian maize fields. They are therefore indirectly (via prey and directly (via pollen exposed to Cry proteins within Bt-transgenic maize fields. The effects of Cry1Ie-producing transgenic maize pollen on the fitness of P. japonica was assessed using two dietary-exposure experiments in the laboratory. In the first experiment, survival, larval developmental time, adult fresh weight, and fecundity did not differ between ladybirds consuming Bt or non-Bt maize pollen. In the second experiment, none of the tested lethal and sublethal parameters of P. japonica were negatively affected when fed a rapeseed pollen-based diet containing Cry1Ie protein at 200 μg/g dry weight of diet. In contrast, the larval developmental time, adult fresh weight, and fecundity of P. japonica were significantly adversely affected when fed diet containing the positive control compound E-64. In both experiments, the bioactivity of the Cry1Ie protein in the food sources was confirmed by bioassays with a Cry1Ie-sensitive lepidopteran species. These results indicated that P. japonica are not affected by the consumption of Cry1Ie-expressing maize pollen and are not sensitive to the Cry1Ie protein, suggesting that the growing of Bt maize expressing Cry1Ie protein will pose a negligible risk to P. japonica.

  1. Longitudinal study of the fundamental frequency of hunger cries along the first 6 months of healthy babies.

    Science.gov (United States)

    Baeck, Heidi Elisabeth; de Souza, Marcio Nogueira

    2007-09-01

    Potentially rich in information, the baby's cry has motivated several researches along the years. Although most of these studies have generated important knowledge about the baby's cry, they were focused on the neonatal period. The few longitudinal studies on changes in the acoustical features of the cry over the baby's growth have been done with a small sample and a large recording interval. Aiming to overcome such methodological limitations, this work investigated hunger cries using a more representative sample size (30 babies) and time resolution (biweekly intervals) from birth to 6 months of baby's age. The findings indicate that the fundamental frequency (f0) of the cry signals did vary more than previously reported in the literature. The results showed a widespread oscillatory behavior in f0 evolution along all the 6 months with an especially significant decrease from birth to the 15th day of life. The present results are not clinically applicable yet, but they pointed some novel aspects of the f0 mean values along the baby's growth. These findings and further longitudinal studies can help standardize age-related cry parameters, which are essential for medical and language development researches.

  2. Manejo de lepidópteros-praga na cultura do milho com o evento Bt piramidado Cry1A.105 e Cry2Ab2

    Directory of Open Access Journals (Sweden)

    José Magid Waquil

    2013-12-01

    Full Text Available O objetivo deste trabalho foi avaliar a eficácia do evento piramidado (MON 89034, que expressa as proteínas Cry1A.105 e Cry2Ab2, no controle dos principais lepidópteros-praga da cultura do milho no Brasil, Spodoptera frugiperda, Helicoverpa spp. e Diatraea saccharalis. Os ensaios foram conduzidos em quatro regiões do país, com o híbrido DKB 390, submetido a seis tratamentos: híbrido com o evento piramidado, híbrido com o evento que expressa apenas a proteína Cry1A(b (MON 810 e híbrido convencional (não Bt, todos com e sem manejo integrado de S. frugiperda. Para o evento piramidado, não foi necessário o controle químico em nenhum dos locais avaliados. Diferenças significativas foram observadas entre os tratamentos quanto aos danos e à presença de lagartas. Em geral, essas variáveis foram mais baixas no híbrido com o evento piramidado e mais altas no híbrido convencional, sem controle químico. Sob alta infestação, o controle químico reduziu os danos causados por S. frugiperda e D. saccharalis, tanto no evento que expressa apenas uma proteína, como no híbrido convencional. Com base nos danos causados pelos insetos, o evento piramidado Cry1A.105 e Cry2Ab2 é eficiente no controle dos principais lepidópteros-pragas do milho no Brasil.

  3. Intranasal Coadministration of the Cry1Ac Protoxin with Amoebal Lysates Increases Protection against Naegleria fowleri Meningoencephalitis

    Science.gov (United States)

    Rojas-Hernández, Saúl; Rodríguez-Monroy, Marco A.; López-Revilla, Rubén; Reséndiz-Albor, Aldo A.; Moreno-Fierros, Leticia

    2004-01-01

    Cry1Ac protoxin has potent mucosal and systemic adjuvant effects on antibody responses to proteins or polysaccharides. In this work, we examined whether Cry1Ac increased protective immunity against fatal Naegleria fowleri infection in mice, which resembles human primary amoebic meningoencephalitis. Higher immunoglobulin G (IgG) than IgA anti-N. fowleri responses were elicited in the serum and tracheopulmonary fluids of mice immunized by the intranasal or intraperitoneal route with N. fowleri lysates either alone or with Cry1Ac or cholera toxin. Superior protection against a lethal challenge with 5 × 104 live N. fowleri trophozoites was achieved for immunization by the intranasal route. Intranasal immunization of N. fowleri lysates coadministered with Cry1Ac increased survival to 100%; interestingly, immunization with Cry1Ac alone conferred similar protection to that achieved with amoebal lysates alone (60%). When mice intranasally immunized with Cry1Ac plus lysates were challenged with amoebae, both IgG and IgA mucosal responses were rapidly increased, but only the increased IgG response persisted until day 60 in surviving mice. The brief rise in the level of specific mucosal IgA does not exclude the role that this isotype may play in the early defense against this parasite, since higher IgA responses were detected in nasal fluids of mice intranasally immunized with lysates plus either Cry1Ac or cholera toxin, which, indeed, were the treatments that provided the major protection levels. In contrast, serum antibody responses do not seem to be related to the protection level achieved. Both acquired and innate immune systems seem to play a role in host defense against N. fowleri infection, but further studies are required to elucidate the mechanisms involved in protective effects conferred by Cry1Ac, which may be a valuable tool to improve mucosal vaccines. PMID:15271892

  4. Aracnidae diversity in soil cultivated with corn (Zea mays

    Directory of Open Access Journals (Sweden)

    Lígia Vanessa da Silva

    2014-09-01

    Full Text Available Studies carried out on the diversity and abundance of spiders may provide a rich information base on the degree of integrity of agricultural systems where they are found. In transgenic corn, Bacillus thuringiensis proteins are expressed in great amounts in plant tissues and may affect arthropod communities. Thus, the main goal of this work was to identify the spider diversity associated to transgenic and conventional corn hybrids. Pitfall collections were performed in conventional and transgenic corn plots during the 2010/2011 crop season, at the experimental field of the Agronomy Course of the University of Cruz Alta, RS. A total of 559 spiders were collected, from which 263 were adults and 296 young individuals. In the transgenic corn 266 spiders were collected and in the conventional one 293. Eleven families were determined and the adult individuals grouped in 27 morphospecies. Families with the largest number of representatives were Linyphiidae (29.70%, Theridiidae (5.72% and Lycosidae (5.01%. The most abundant morphospecies were Lyniphiidae sp. with 77 individuals, Erigone sp. with 40 individuals, Lynyphiidae sp. with 33 individuals, Theridiidae sp. with 21 individuals, Lycosa erythrognatha with 14 individuals and Lycosidae sp. with 13 individuals. The Shannon Diversity Index was higher for transgenic corn (H” =1.01 in February and smaller (H’=0.54 in the December collection in the conventional corn, and the Margaleff Richness Index showed higher diversity in December and February for the conventional corn (M=18.3, and smaller diversity for the transgenic corn in November (M=11.3. Families were classified in five guilds; two weavers: Irregular web builders and sheet web builders, and three hunter guilds: Night soil runners, ambush spiders and aerial night runners. The relative proportion of the spiders morphospecies found in this research, as well as the guilds, suggest that this group may not have been affected by the genetically

  5. Does Cry1Ab protein affect learning performances of the honey bee Apis mellifera L. (Hymenoptera, Apidae)?

    Science.gov (United States)

    Ramirez-Romero, R; Desneux, N; Decourtye, A; Chaffiol, A; Pham-Delègue, M H

    2008-06-01

    Genetically modified Bt crops are increasingly used worldwide but side effects and especially sublethal effects on beneficial insects remain poorly studied. Honey bees are beneficial insects for natural and cultivated ecosystems through pollination. The goal of the present study was to assess potential effects of two concentrations of Cry1Ab protein (3 and 5000 ppb) on young adult honey bees. Following a complementary bioassay, our experiments evaluated effects of the Cry1Ab on three major life traits of young adult honey bees: (a) survival of honey bees during sub-chronic exposure to Cry1Ab, (b) feeding behaviour, and (c) learning performance at the time that honey bees become foragers. The latter effect was tested using the proboscis extension reflex (PER) procedure. The same effects were also tested using a chemical pesticide, imidacloprid, as positive reference. The tested concentrations of Cry1Ab protein did not cause lethal effects on honey bees. However, honey bee feeding behaviour was affected when exposed to the highest concentration of Cry1Ab protein, with honey bees taking longer to imbibe the contaminated syrup. Moreover, honey bees exposed to 5000 ppb of Cry1Ab had disturbed learning performances. Honey bees continued to respond to a conditioned odour even in the absence of a food reward. Our results show that transgenic crops expressing Cry1Ab protein at 5000 ppb may affect food consumption or learning processes and thereby may impact honey bee foraging efficiency. The implications of these results are discussed in terms of risks of transgenic Bt crops for honey bees.

  6. DNA degradation in genetically modified rice with Cry1Ab by food processing methods: implications for the quantification of genetically modified organisms.

    Science.gov (United States)

    Xing, Fuguo; Zhang, Wei; Selvaraj, Jonathan Nimal; Liu, Yang

    2015-05-01

    Food processing methods contribute to DNA degradation, thereby affecting genetically modified organism detection and quantification. This study evaluated the effect of food processing methods on the relative transgenic content of genetically modified rice with Cry1Ab. In steamed rice and rice noodles, the levels of Cry1Ab were ⩾ 100% and <83%, respectively. Frying and baking in rice crackers contributed to a reduction in Pubi and Cry1Ab, while microwaving caused a decrease in Pubi and an increase in Cry1Ab. The processing methods of sweet rice wine had the most severe degradation effects on Pubi and Cry1Ab. In steamed rice and rice noodles, Cry1Ab was the most stable, followed by SPS and Pubi. However, in rice crackers and sweet rice wine, SPS was the most stable, followed by Cry1Ab and Pubi. Therefore, Cry1Ab is a better representative of transgenic components than is Pubi because the levels of Cry1Ab were less affected compared to Pubi. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Effective dominance of resistance of Spodoptera frugiperda to Bt maize and cotton varieties: implications for resistance management

    Science.gov (United States)

    Horikoshi, Renato J.; Bernardi, Daniel; Bernardi, Oderlei; Malaquias, José B.; Okuma, Daniela M.; Miraldo, Leonardo L.; Amaral, Fernando S. De A. E.; Omoto, Celso

    2016-10-01

    The resistance of fall armyworm (FAW), Spodoptera frugiperda, has been characterized to some Cry and Vip3A proteins of Bacillus thuringiensis (Bt) expressed in transgenic maize in Brazil. Here we evaluated the effective dominance of resistance based on the survival of neonates from selected Bt-resistant, heterozygous, and susceptible (Sus) strains of FAW on different Bt maize and cotton varieties. High survival of strains resistant to the Cry1F (HX-R), Cry1A.105/Cry2Ab (VT-R) and Cry1A.105/Cry2Ab/Cry1F (PW-R) proteins was detected on Herculex, YieldGard VT PRO and PowerCore maize. Our Vip3A-resistant strain (Vip-R) exhibited high survival on Herculex, Agrisure Viptera and Agrisure Viptera 3 maize. However, the heterozygous from HX-R × Sus, VT-R × Sus, PW-R × Sus and Vip-R × Sus had complete mortality on YieldGard VT PRO, PowerCore, Agrisure Viptera, and Agrisure Viptera 3, whereas the HX-R × Sus and Vip-R × Sus strains survived on Herculex maize. On Bt cotton, the HX-R, VT-R and PW-R strains exhibited high survival on Bollgard II. All resistant strains survived on WideStrike, but only PW-R and Vip-R × Sus survived on TwinLink. Our study provides useful data to aid in the understanding of the effectiveness of the refuge strategy for Insect Resistance Management of Bt plants.

  8. Infant Cries Rattle Adult Cognition.

    Directory of Open Access Journals (Sweden)

    Joanna Dudek

    Full Text Available The attention-grabbing quality of the infant cry is well recognized, but how the emotional valence of infant vocal signals affects adult cognition and cortical activity has heretofore been unknown. We examined the effects of two contrasting infant vocalizations (cries vs. laughs on adult performance on a Stroop task using a cross-modal distraction paradigm in which infant distractors were vocal and targets were visual. Infant vocalizations were presented before (Experiment 1 or during each Stroop trial (Experiment 2. To evaluate the influence of infant vocalizations on cognitive control, neural responses to the Stroop task were obtained by measuring electroencephalography (EEG and event-related potentials (ERPs in Experiment 1. Based on the previously demonstrated existence of negative arousal bias, we hypothesized that cry vocalizations would be more distracting and invoke greater conflict processing than laugh vocalizations. Similarly, we expected participants to have greater difficulty shifting attention from the vocal distractors to the target task after hearing cries vs. after hearing laughs. Behavioral results from both experiments showed a cry interference effect, in which task performance was slower with cry than with laugh distractors. Electrophysiology data further revealed that cries more than laughs reduced attention to the task (smaller P200 and increased conflict processing (larger N450, albeit differently for incongruent and congruent trials. Results from a correlation analysis showed that the amplitudes of P200 and N450 were inversely related, suggesting a reciprocal relationship between attention and conflict processing. The findings suggest that cognitive control processes contribute to an attention bias to infant signals, which is modulated in part by the valence of the infant vocalization and the demands of the cognitive task. The findings thus support the notion that infant cries elicit a negative arousal bias that is

  9. Contributions of gut bacteria to Bacillus thuringiensis-induced mortality vary across a range of Lepidoptera

    Directory of Open Access Journals (Sweden)

    Holt Jonathan

    2009-03-01

    Full Text Available Abstract Background Gut microbiota contribute to the health of their hosts, and alterations in the composition of this microbiota can lead to disease. Previously, we demonstrated that indigenous gut bacteria were required for the insecticidal toxin of Bacillus thuringiensis to kill the gypsy moth, Lymantria dispar. B. thuringiensis and its associated insecticidal toxins are commonly used for the control of lepidopteran pests. A variety of factors associated with the insect host, B. thuringiensis strain, and environment affect the wide range of susceptibilities among Lepidoptera, but the interaction of gut bacteria with these factors is not understood. To assess the contribution of gut bacteria to B. thuringiensis susceptibility across a range of Lepidoptera we examined larval mortality of six species in the presence and absence of their indigenous gut bacteria. We then assessed the effect of feeding an enteric bacterium isolated from L. dispar on larval mortality following ingestion of B. thuringiensis toxin. Results Oral administration of antibiotics reduced larval mortality due to B. thuringiensis in five of six species tested. These included Vanessa cardui (L., Manduca sexta (L., Pieris rapae (L. and Heliothis virescens (F. treated with a formulation composed of B. thuringiensis cells and toxins (DiPel, and Lymantria dispar (L. treated with a cell-free formulation of B. thuringiensis toxin (MVPII. Antibiotics eliminated populations of gut bacteria below detectable levels in each of the insects, with the exception of H. virescens, which did not have detectable gut bacteria prior to treatment. Oral administration of the Gram-negative Enterobacter sp. NAB3, an indigenous gut resident of L. dispar, restored larval mortality in all four of the species in which antibiotics both reduced susceptibility to B. thuringiensis and eliminated gut bacteria, but not in H. virescens. In contrast, ingestion of B. thuringiensis toxin (MVPII following antibiotic

  10. An ultrasensitive label-free electrochemiluminescent immunosensor for measuring Cry1Ab level and genetically modified crops content.

    Science.gov (United States)

    Gao, Hongfei; Wen, Luke; Wu, Yuhua; Fu, Zhifeng; Wu, Gang

    2017-11-15

    The development of genetically modified (GM) insect-resistant crops has aroused great public concern about the risks on the eco-environment resulting from a release of toxic Cry proteins (such as Cry1Ab) to the soil. Therefore, it is of crucial importance to measure the Cry proteins level and the GM crops content. Here, we have tested for the first time a method that uses novel carbon nanospheres (CNPs) label-free electrochemiluminescent (ECL) immunosensor for the ultrasensitive quantification of Cry1Ab and GM crops. In this work, novel CNPs were prepared from printer toner with a very facile approach, and linked with anti-Cry1Ab antibodies to modify a golden working electrode. The immunoreaction between Cry1Ab and its antibody formed an immunocomplex on the bioreceptor region of the sensor, which inhibited electron transfer between the electrode surface and the ECL substance, leading to a decrease of ECL response. Under the optimal conditions, the fabricated label-free ECL immunosensor determined Cry1Ab down to 3.0pgmL -1 within a linear range of 0.010-1.0ngmL -1 , showing significant improvement of sensitivity than that of most previous reports. Meanwhile, the proposed method was successfully applied for GM rice BT63 and GM maize MON810 detections down to 0.010% and 0.020%, respectively. Due to its outstanding advantages such as high sensitivity, ideal selectivity, simple fabrication, rapid detection, and low cost, the developed method can be considered as a powerful and pioneering tool for GM crops detection. Its use can also be extended to other toxin protein sensing in foods. Copyright © 2017. Published by Elsevier B.V.

  11. 77 FR 14362 - Pesticide Products; Registration Applications

    Science.gov (United States)

    2012-03-09

    ... pea), cereal grains (except rice and wild rice), and rapeseed group. Contact: Dominic Schuler... Bacillus thuringiensis eCry3.1Ab protein and the genetic material necessary for its production (via... eCry3.1Ab protein and the genetic material necessary for its production (via elements of vector p...

  12. Evaluation of bioassays for testing Bt sweetpotato events against ...

    African Journals Online (AJOL)

    Sweetpotato weevil (Cylas puncticollis) Boheman is a serious pest throughout Sub-Saharan Africa region and is a big threat to sweetpotato cultivation. Ten transgenic sweetpotato events expressing Cry7Aa1, Cry3Ca1, and ET33-34 proteins from Bacillus thuringiensis (Bt) were evaluated for resistance against C.

  13. Increased long-flight activity triggered in beet armyworm by larval feeding on diet containing Cry1Ac protoxin.

    Directory of Open Access Journals (Sweden)

    Xing Fu Jiang

    Full Text Available Evaluating ecological safety and conducting pest risk analysis for transgenic crops are vitally important before their commercial planting. The beet armyworm, Spodoptera exigua, a long-distance migratory insect pest, is not a direct target of transgenic Cry1Ac-expressing cotton in China, but nevertheless it has recently become an important pest. Migrants leaving their natal field arrive in other appropriate habitat far away in a short time, often followed by larval outbreaks. S. exigua has low susceptibility to Cry1Ac. However, our results from laboratory experiments identified (i sublethal effects of Cry1Ac protoxin on larval development rate, larval and pupal weight, and adult lifetime fecundity, and (ii increased long-flight behavior triggered by Cry1Ac which may contribute to larval outbreaks elsewhere. No significant differences in larval mortality, pupation rate, adult emergence rate, longevity, pre-oviposition period, or oviposition period were observed between controls and larvae fed on artificial diet incorporating a low concentration of Cry1Ac protoxin. The negative sublethal effects on some developmental and reproductive traits and lack of effect on others suggest they do not contribute to the observed severity of S. exigua outbreaks after feeding on Cry1Ac cotton. Interestingly, the percentage of long fliers increased significantly when larvae were reared on diet containing either of two low-dose treatments of Cry1Ac, suggesting a possible increased propensity to disperse long distances triggered by Cry1Ac. We hypothesize that negative effects on development and reproduction caused by Cry1Ac in the diet are offset by increased flight propensity triggered by the poor food conditions, thereby improving the chances of escaping adverse local conditions before oviposition. Increased long-flight propensity in turn may amplify the area damaged by outbreak populations. This phenomenon might be common in other migratory insect pests receiving

  14. The psychophysiology of crying.

    Science.gov (United States)

    Gross, J J; Frederickson, B L; Levenson, R W

    1994-09-01

    Two conflicting views have emerged as to why people cry when they are sad. One suggests that crying serves homeostasis by facilitating recovery; the other suggests that crying produces an aversive high-arousal state that motivates behavior aimed at ending the tears. To test hypotheses drawn from these views, we showed a short film known to elicit sadness to 150 women. During this film, 33 subjects spontaneously cried and 117 did not. Subjects who cried exhibited more expressive behavior and reported feeling more sadness and pain than did subjects who did not cry. Crying also was associated with increases in somatic and autonomic nervous system activity. The increases in autonomic activity could not be accounted for solely by the increases in somatic activity. Crying is thus associated with an aversive state, including negative emotion and a complex mixture of sympathetic, parasympathetic, and somatic activation, and we speculate about the functional implications of these findings.

  15. Ecology and diversity of Bacillus thuringiensis in soil environment ...

    African Journals Online (AJOL)

    Bacillus thuringiensis populations ranged between 4.23 x 105, 6.52 x 105 cfu/g soil and consist of 11 types of isolates with 3 polymorphic, 7 spherical and 1 bipyramidal type of crystals. Polymorphic crystal containing isolates were further characterized. B. thuringiensis isolates were circular, white, flat and undulate or entire.

  16. In vivo and in vitro studies of Cry5B and nicotinic acetylcholine receptor agonist anthelmintics reveal a powerful and unique combination therapy against intestinal nematode parasites.

    Directory of Open Access Journals (Sweden)

    Yan Hu

    2018-05-01

    Full Text Available The soil-transmitted nematodes (STNs or helminths (hookworms, whipworms, large roundworms infect the intestines of ~1.5 billion of the poorest peoples and are leading causes of morbidity worldwide. Only one class of anthelmintic or anti-nematode drugs, the benzimidazoles, is currently used in mass drug administrations, which is a dangerous situation. New anti-nematode drugs are urgently needed. Bacillus thuringiensis crystal protein Cry5B is a powerful, promising new candidate. Drug combinations, when properly made, are ideal for treating infectious diseases. Although there are some clinical trials using drug combinations against STNs, little quantitative and systemic work has been performed to define the characteristics of these combinations in vivo.Working with the hookworm Ancylostoma ceylanicum-hamster infection system, we establish a laboratory paradigm for studying anti-nematode combinations in vivo using Cry5B and the nicotinic acetylcholine receptor (nAChR agonists tribendimidine and pyrantel pamoate. We demonstrate that Cry5B strongly synergizes in vivo with both tribendimidine and pyrantel at specific dose ratios against hookworm infections. For example, whereas 1 mg/kg Cry5B and 1 mg/kg tribendimidine individually resulted in only a 0%-6% reduction in hookworm burdens, the combination of the two resulted in a 41% reduction (P = 0.020. Furthermore, when mixed at synergistic ratios, these combinations eradicate hookworm infections at doses where the individual doses do not. Using cyathostomin nematode parasites of horses, we find based on inhibitory concentration 50% values that a strongylid parasite population doubly resistant to nAChR agonists and benzimidazoles is more susceptible or "hypersusceptible" to Cry5B than a cyathostomin population not resistant to nAChR agonists, consistent with previous Caenhorhabditis elegans results.Our study provides a powerful means by which anthelmintic combination therapies can be examined in vivo

  17. Investigations of immunogenic, allergenic and adjuvant properties of Cry1Ab protein after intragastric exposure in a food allergy model in mice.

    Science.gov (United States)

    Andreassen, Monica; Bøhn, Thomas; Wikmark, Odd-Gunnar; Bodin, Johanna; Traavik, Terje; Løvik, Martinus; Nygaard, Unni Cecilie

    2016-05-04

    In genetically modified (GM) crops there is a risk that the inserted genes may introduce new allergens and/or adjuvants into the food and feed chain. The MON810 maize, expressing the insecticidal Cry1Ab toxin, is grown in many countries worldwide. In animal models, intranasal and intraperitoneal immunisations with the purified Cry1Ab proteins have induced immune responses, and feeding trials with Cry1Ab-containing feed have revealed some altered immune responses. Previous investigations have primarily measured antibody responses to the protein, while investigations of clinical food allergy symptoms, or allergy promotion (adjuvant effect) associated with the Cry1Ab protein are largely missing. We aimed to investigate immunogenic, allergenic and adjuvant properties of purified Cry1Ab toxin (trypCry1Ab, i.e., trypsin activated Cry1Ab) in a mouse model of food allergy. Female C3H/HeJ mice were immunized by intragastric gavage of 10 μg purified, trypsin activated Cry1Ab toxin (trypCry1Ab) alone or together with the food allergen lupin. Cholera toxin was added as a positive control for adjuvant effect to break oral tolerance. Clinical symptoms (anaphylaxis) as well as humoral and cellular responses were assessed. In contrast to results from previous airway investigations, we observed no indication of immunogenic properties of trypCry1Ab protein after repeated intragastric exposures to one dose, with or without CT as adjuvant. Moreover, the results indicated that trypCry1Ab given by the intragastric route was not able to promote allergic responses or anaphylactic reactions against the co-administered allergen lupin at the given dose. The study suggests no immunogenic, allergenic or adjuvant capacity of the given dose of trypCry1Ab protein after intragastric exposure of prime aged mice.

  18. Ecological aspects of Bacillus thuringiensis in an Oxisol Ecologia do Bacillus thuringiensis num Latossolo

    Directory of Open Access Journals (Sweden)

    Lessandra Heck Paes Leme Ferreira

    2003-02-01

    Full Text Available Bacillus thuringiensis is a Gram positive, sporangial bacterium, known for its insecticidal habilities. Survival and conjugation ability of B. thuringiensis strains were investigated; vegetative cells were evaluated in non-sterile soil. Vegetative cells decreased rapidly in number, and after 48 hours the population was predominantly spores. No plasmid transfer was observed in non-sterile soil, probably because the cells died and the remaining cells sporulated quickly. Soil is not a favorable environment for B. thuringiensis multiplication and conjugation. The fate of purified B. thuringiensis toxin was analyzed by extractable toxin quantification using ELISA. The extractable toxin probably declined due to binding on surface-active particles in the soil.O comportamento de células vegetativas do Bacillus thuringiensis foi estudado em solo não esterilizado. Após o inóculo grande parte das células morrem e o restante esporula em 24 horas. Não foi observada conjugação provavelmente porque poucas células sobrevivem no solo e rapidamente esporulam, mostrando que este não é o ambiente propício para a multiplicação e conjugação desta bactéria. A toxina purificada, portanto livre de células, diminui rapidamente sua quantidade em solo não esterilizado. Provavelmente a ligação da toxina na fração argilosa do solo é a principal responsável por este fenômeno.

  19. Apparent digestibility coefficients and consumption of corn silage with and without Bt gene in sheep

    Directory of Open Access Journals (Sweden)

    Camila Memari Trava

    2012-12-01

    .05 confirming the values found by several authors in studies with sheep fed to corn silage. The CDA of CP had an effect only for GMO (p>0.05 in which the lowest result was observed for GMO (40.42 than their isogenic counterparts without the gene (47.58%, this because transgenic hybrids had lower CP content in the sheet (p<0.005, with values of 12.15 for GMO and 13.04 to varieties without the gene, one possible explanation for this fact are the production of Cry1Ab protein by gene Bt in the plant, which would lead to a decrease in protein content of plant components.

  20. Detection by real-time PCR and pyrosequencing of the cry1Ab and cry1Ac genes introduced in genetically modified (GM) constructs.

    Science.gov (United States)

    Debode, Frederic; Janssen, Eric; Bragard, Claude; Berben, Gilbert

    2017-08-01

    The presence of genetically modified organisms (GMOs) in food and feed is mainly detected by the use of targets focusing on promoters and terminators. As some genes are frequently used in genetically modified (GM) construction, they also constitute excellent screening elements and their use is increasing. In this paper we propose a new target for the detection of cry1Ab and cry1Ac genes by real-time polymerase chain reaction (PCR) and pyrosequencing. The specificity, sensitivity and robustness of the real-time PCR method were tested following the recommendations of international guidelines and the method met the expected performance criteria. This paper also shows how the robustness testing was assessed. This new cry1Ab/Ac method can provide a positive signal with a larger number of GM events than do the other existing methods using double dye-probes. The method permits the analysis of results with less ambiguity than the SYBRGreen method recommended by the European Reference Laboratory (EURL) GM Food and Feed (GMFF). A pyrosequencing method was also developed to gain additional information thanks to the sequence of the amplicon. This method of sequencing-by-synthesis can determine the sequence between the primers used for PCR. Pyrosequencing showed that the sequences internal to the primers present differences following the GM events considered and three different sequences were observed. The sensitivity of the pyrosequencing was tested on reference flours with a low percentage GM content and different copy numbers. Improvements in the pyrosequencing protocol provided correct sequences with 50 copies of the target. Below this copy number, the quality of the sequence was more random.

  1. Selection of Bacillus thuringiensis strains toxic to cotton boll weevil (Anthonomus grandis, Coleoptera: Curculionidae) larvae.

    Science.gov (United States)

    Pérez, Melisa P; Sauka, Diego H; Onco, María I; Berretta, Marcelo F; Benintende, Graciela B

    Preliminary bioassays with whole cultures (WC) of 124 Bacillus thuringiensis strains were performed with neonate larvae of Anthonomus grandis, a major cotton pest in Argentina and other regions of the Americas. Three exotic and four native strains were selected for causing more than 50% mortality. All of them were β-exotoxin producers. The native strains shared similar morphology of parasporal crystals, similar protein pattern and identical insecticidal gene profiles. These features resembled Lepidoptera-toxic strains. Furthermore, these strains showed a Rep-PCR pattern identical to lepidoptericidal strain HD-1, suggesting that these strains may belong to serovar kurstaki. However, some differences were observed in the plasmid profiles and in the production of β-exotoxin. To determine the culture fractions where the insecticidal metabolites were present, bioassays including resuspended spore-crystal pellets, filtered supernatants (FS) were compared with those of WC. Both fractions tested showed some level of insecticidal activity. The results may suggest that the main toxic factors can be found in FS and could be directly correlated with the presence of β-exotoxin. Based on the bioassays with FS and autoclaved FS, the participation of thermolabile virulence factors such as Cry1I in toxicity is neither discarded. In the selected strains, β-exotoxin would be the major associated virulence factor; therefore, their use in biological control of A. grandis should be restricted. Nevertheless, these strains could be the source of genes (e.g., cry1Ia) to produce transgenic cotton plants resistant to this pest. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. Acute, sublethal and combination effects of azadirachtin and Bacillus thuringiensis toxins on Helicoverpa armigera (Lepidoptera: Noctuidae) larvae.

    Science.gov (United States)

    Singh, G; Rup, P J; Koul, Opender

    2007-08-01

    The efficacy of neem (1500 ppm azadirachtin (AI)), Delfin WG, a biological insecticide based on selected strain of Bacillus thuringiensis Berliner (Bt) subspecies kurstaki, and Cry1Ac protein, either individually or in combination, were examined against first to fourth instar Helicoverpa armigera (Hübner) larvae. Using an oral administration method, various growth inhibitory concentrations (EC) and lethal concentrations (LC) were determined for each bioagent. Combinations of sublethal concentrations of Bt spray formulation with azadirachtin at EC50 or EC95 levels not only enhanced the toxicity, but also reduced the duration of action when used in a mixture. The LC20 and LC50 values for Cry1Ac toxin were 0.06 and 0.22 microg ml-1, respectively. Bt-azadirachtin combinations of LC50+EC20 and LC50+EC50 result in 100% mortality. The mortality also was significant in LC20+EC20 and LC20+EC50 mixtures. These studies imply that the combined action is not synergistic but complimentary, with azadirachtin particularly facilitating the action of Bt. The Bt spray-azadirachtin combination is more economical than combinations that involve isolating the toxic protein, as the Bt spray formulations can be combined in a spray mixture with neem. These combinations may be useful for controlling bollworm populations that have acquired resistance to Bt as they may not survive the effect of mixture. Azadirachtin may be useful as a means of reducing the endotoxin concentrations in a mixture, to promote increased economic savings and further reduce the probability of resistance development to either insect control agent.

  3. Lost P1 allele in sh2 sweet corn: quantitative effects of p1 and a1 genes on concentrations of maysin, apimaysin, methoxymaysin, and chlorogenic acid in maize silk.

    Science.gov (United States)

    Guo, B Z; Zhang, Z J; Butrón, A; Widstrom, N W; Snook, M E; Lynch, R E; Plaisted, D

    2004-12-01

    In the United States, insecticide is used extensively in the production of sweet corn due to consumer demand for zero damage to ears and to a sweet corn genetic base with little or no resistance to ear-feeding insects. Growers in the southern United States depend on scheduled pesticide applications to control ear-feeding insects. In a study of quantitative genetic control over silk maysin, AM-maysin (apimaysin and methoxymaysin), and chlorogenic acid contents in an F2 population derived from GE37 (dent corn, P1A1) and 565 (sh2 sweet corn, p1a1), we demonstrate that the P1 allele from field corn, which was selected against in the development of sweet corn, has a strong epistatic interaction with the a1 allele in sh2 sweet corn. We detected that the p1 gene has significant effects (P silk maysin concentrations but also on AM-maysin, and chlorogenic acid concentrations. The a1 gene also has significant (P silk antibiotic chemicals. Successful selection from the fourth and fifth selfed backcrosses for high-maysin individuals of sweet corn homozygous for the recessive a1 allele (tightly linked to sh2) and the dominant P1 allele has been demonstrated. These selected lines have much higher (2 to 3 times) concentrations of silk maysin and other chemicals (AM-maysin and chlorogenic acid) than the donor parent GE37 and could enhance sweet corn resistance to corn earworm and reduce the number of applications of insecticide required to produce sweet corn.

  4. Expression of a Synthetic Gene for the Major Cytotoxin (Cyt1Aa of Bacillus thuringiensis subsp. israelensis in the Chloroplast of Wild-Type Chlamydomonas

    Directory of Open Access Journals (Sweden)

    Seongjoon Kang

    2018-05-01

    Full Text Available Chlamydomonas reinhardtii (Chlamydomonas strains that are toxic to mosquito larvae because they express chloroplast transgenes that are based on the mosquitocidal proteins of Bacillus thuringiensis subsp. israelensis (Bti could be very useful in mosquito control. Chlamydomonas has several advantages for this approach, including genetic controls not ge