WorldWideScience

Sample records for thruster plume simulation

  1. Particle Simulation of Pulsed Plasma Thruster Plumes

    National Research Council Canada - National Science Library

    Boyd, Ian

    2002-01-01

    .... Our modeling had made progress in al aspects of simulating these complex devices including Teflon ablation, plasma formation, electro-magnetic acceleration, plume expansion, and particulate transport...

  2. Three Dimensional Simulation of Ion Thruster Plume-Spacecraft Interaction Based on a Graphic Processor Unit

    International Nuclear Information System (INIS)

    Ren Junxue; Xie Kan; Qiu Qian; Tang Haibin; Li Juan; Tian Huabing

    2013-01-01

    Based on the three-dimensional particle-in-cell (PIC) method and Compute Unified Device Architecture (CUDA), a parallel particle simulation code combined with a graphic processor unit (GPU) has been developed for the simulation of charge-exchange (CEX) xenon ions in the plume of an ion thruster. Using the proposed technique, the potential and CEX plasma distribution are calculated for the ion thruster plume surrounding the DS1 spacecraft at different thrust levels. The simulation results are in good agreement with measured CEX ion parameters reported in literature, and the GPU's results are equal to a CPU's. Compared with a single CPU Intel Core 2 E6300, 16-processor GPU NVIDIA GeForce 9400 GT indicates a speedup factor of 3.6 when the total macro particle number is 1.1×10 6 . The simulation results also reveal how the back flow CEX plasma affects the spacecraft floating potential, which indicates that the plume of the ion thruster is indeed able to alleviate the extreme negative floating potentials of spacecraft in geosynchronous orbit

  3. An analysis of millimetre-wave interferometry on Hall thruster plumes by finite difference time domain simulations

    International Nuclear Information System (INIS)

    Lee, Jungpyo; Cappelli, Mark A

    2008-01-01

    In this paper, we present finite difference time domain (FDTD) simulations of millimetre-wave propagation through the near-field plasma plume of low power Hall thrusters. The simulations are intended to address potential issues (collisions, magnetic fields) that may affect the validity of simple theory used for phase shift determination in the recent measurements of plasma density using microwave interferometry (Cappelli et al 2006 J. Phys. D: Appl. Phys. 39 4582). One-dimensional plane wave FDTD simulations indicate that plasma non-uniformities along the direction of wave propagation have only a minor effect on the phase shifts estimated from collisionless, non-magnetized wave propagation through a path-length averaged plasma slab. Three-dimensional FDTD simulations that also account for electron collisions and magnetic fields indicate that the departure from the use of usual simple models is no more than about 15%, well within the limits of uncertainty in the experimental measurements taken within the near field of these plasma sources

  4. Modeling of the near field plume of a Hall thruster

    International Nuclear Information System (INIS)

    Boyd, Iain D.; Yim, John T.

    2004-01-01

    In this study, a detailed numerical model is developed to simulate the xenon plasma near-field plume from a Hall thruster. The model uses a detailed fluid model to describe the electrons and a particle-based kinetic approach is used to model the heavy xenon ions and atoms. The detailed model is applied to compute the near field plume of a small, 200 W Hall thruster. Results from the detailed model are compared with the standard modeling approach that employs the Boltzmann model. The usefulness of the model detailed is assessed through direct comparisons with a number of different measured data sets. The comparisons illustrate that the detailed model accurately predicts a number of features of the measured data not captured by the simpler Boltzmann approach

  5. Overview of NASA GRCs Green Propellant Infusion Mission Thruster Testing and Plume Diagnostics

    Science.gov (United States)

    Deans, Matthew C.; Reed, Brian D.; Yim, John T.; Arrington, Lynn A.; Williams, George J.; Kojima, Jun J.; McLean, Christopher H.

    2014-01-01

    The Green Propellant Infusion Mission (GPIM) is sponsored by NASA's Space Technology Mission Directorate (STMD) Technology Demonstration Mission (TDM) office. The goal of GPIM is to advance the technology readiness level of a green propulsion system, specifically, one using the monopropellant, AF-M315E, by demonstrating ground handling, spacecraft processing, and on-orbit operations. One of the risks identified for GPIM is potential contamination of sensitive spacecraft surfaces from the effluents in the plumes of AF-M315E thrusters. NASA Glenn Research Center (GRC) is conducting activities to characterize the effects of AF-M315E plume impingement and deposition. GRC has established individual plume models of the 22-N and 1-N thrusters that will be used on the GPIM spacecraft. The models describe the pressure, temperature, density, Mach number, and species concentration of the AF-M315E thruster exhaust plumes. The models are being used to assess the impingement effects of the AF-M315E thrusters on the GPIM spacecraft. The model simulations will be correlated with plume measurement data from Laboratory and Engineering Model 22-N, AF-M315E thrusters. The thrusters will be tested in a small rocket, altitude facility at NASA GRC. The GRC thruster testing will be conducted at duty cycles representatives of the planned GPIM maneuvers. A suite of laser-based diagnostics, including Raman spectroscopy, Rayleigh spectroscopy, Schlieren imaging, and physical probes will be used to acquire plume measurements of AFM315E thrusters. Plume data will include temperature, velocity, relative density, and species concentration. The plume measurement data will be compared to the corresponding simulations of the plume model. The GRC effort will establish a data set of AF-M315E plume measurements and a plume model that can be used for future AF-M315E applications.

  6. The Green Propellant Infusion Mission Thruster Performance Testing for Plume Diagnostics

    Science.gov (United States)

    Deans, Matthew C.; Reed, Brian D.; Arrington, Lynn A.; Williams, George J.; Kojima, Jun J.; Kinzbach, McKenzie I.; McLean, Christopher H.

    2014-01-01

    The Green Propellant Infusion Mission (GPIM) is sponsored by NASA's Space Technology Mission Directorate (STMD) Technology Demonstration Mission (TDM) office. The goal of GPIM is to advance the technology readiness level of a green propulsion system, specifically, one using the monopropellant, AF-M315E, by demonstrating ground handling, spacecraft processing, and on-orbit operations. One of the risks identified for GPIM is potential contamination of sensitive spacecraft surfaces from the effluents in the plumes of AF-M315E thrusters. NASA Glenn Research Center (GRC) is conducting activities to characterize the effects of AF-M315E plume impingement and deposition. GRC has established individual plume models of the 22-N and 1-N thrusters that will be used on the GPIM spacecraft. The model simulations will be correlated with plume measurement data from Laboratory and Engineering Model 22-N, AF-M315E thrusters. The thrusters are currently being tested in a small rocket, altitude facility at NASA GRC. A suite of diagnostics, including Raman spectroscopy, Rayleigh spectroscopy, and Schlieren imaging are being used to acquire plume measurements of AF-M315E thrusters. Plume data will include temperature, velocity, relative density, and species concentration. The plume measurement data will be compared to the corresponding simulations of the plume model. The GRC effort will establish a data set of AF-M315E plume measurements and a plume model that can be used for future AF-M315E applications.

  7. Plume Characterization of a Laboratory Model 22 N GPIM Thruster via High-Frequency Raman Spectroscopy

    Science.gov (United States)

    Williams, George J.; Kojima, Jun J.; Arrington, Lynn A.; Deans, Matthew C.; Reed, Brian D.; Kinzbach, McKenzie I.; McLean, Christopher H.

    2015-01-01

    The Green Propellant Infusion Mission (GPIM) will demonstrate the capability of a green propulsion system, specifically, one using the monopropellant, AF-M315E. One of the risks identified for GPIM is potential contamination of sensitive areas of the spacecraft from the effluents in the plumes of AF-M315E thrusters. Plume characterization of a laboratory-model 22 N thruster via optical diagnostics was conducted at NASA GRC in a space-simulated environment. A high-frequency pulsed laser was coupled with an electron-multiplied ICCD camera to perform Raman spectroscopy in the near-field, low-pressure plume. The Raman data yielded plume constituents and temperatures over a range of thruster chamber pressures and as a function of thruster (catalyst) operating time. Schlieren images of the near-field plume enabled calculation of plume velocities and revealed general plume structure of the otherwise invisible plume. The measured velocities are compared to those predicted by a two-dimensional, kinetic model. Trends in data and numerical results are presented from catalyst mid-life to end-of-life. The results of this investigation were coupled with the Raman and Schlieren data to provide an anchor for plume impingement analysis presented in a companion paper. The results of both analyses will be used to improve understanding of the nature of AF-M315E plumes and their impacts to GPIM and other future missions.

  8. Hybrid-Particle-In-Cell Simulation of Backsputtered Carbon Transport in the Near-Field Plume of a Hall Thruster

    Science.gov (United States)

    Choi, Maria; Yim, John T.; Williams, George J.; Herman, Daniel A.; Gilland, James H.

    2018-01-01

    Magnetic shielding has eliminated boron nitride erosion as the life limiting mechanism in a Hall thruster but has resulted in erosion of the front magnetic field pole pieces. Recent experiments show that the erosion of graphite pole covers, which are added to protect the magnetic field pole pieces, causes carbon to redeposit on other surfaces, such as boron nitride discharge channel and cathode keeper surfaces. As a part of the risk-reduction activities for Advanced Electric Propulsion System thruster development, this study models transport of backsputtered carbon from the graphite front pole covers and vacuum facility walls. Fluxes, energy distributions, and redeposition rates of backsputtered carbon on the anode, discharge channel, and graphite cathode keeper surfaces are predicted.

  9. Kinetic electron model for plasma thruster plumes

    Science.gov (United States)

    Merino, Mario; Mauriño, Javier; Ahedo, Eduardo

    2018-03-01

    A paraxial model of an unmagnetized, collisionless plasma plume expanding into vacuum is presented. Electrons are treated kinetically, relying on the adiabatic invariance of their radial action integral for the integration of Vlasov's equation, whereas ions are treated as a cold species. The quasi-2D plasma density, self-consistent electric potential, and electron pressure, temperature, and heat fluxes are analyzed. In particular, the model yields the collisionless cooling of electrons, which differs from the Boltzmann relation and the simple polytropic laws usually employed in fluid and hybrid PIC/fluid plume codes.

  10. Modeling an Iodine Hall Thruster Plume in the Iodine Satellite (ISAT)

    Science.gov (United States)

    Choi, Maria

    2016-01-01

    An iodine-operated 200-W Hall thruster plume has been simulated using a hybrid-PIC model to predict the spacecraft surface-plume interaction for spacecraft integration purposes. For validation of the model, the plasma potential, electron temperature, ion current flux, and ion number density of xenon propellant were compared with available measurement data at the nominal operating condition. To simulate iodine plasma, various collision cross sections were found and used in the model. While time-varying atomic iodine species (i.e., I, I+, I2+) information is provided by HPHall simulation at the discharge channel exit, the molecular iodine species (i.e., I2, I2+) are introduced as Maxwellian particles at the channel exit. Simulation results show that xenon and iodine plasma plumes appear to be very similar under the assumptions of the model. Assuming a sticking coefficient of unity, iodine deposition rate is estimated.

  11. Radioactive Plumes Monitoring Simulator

    International Nuclear Information System (INIS)

    Kapelushnik, I.; Sheinfeld, M.; Avida, R.; Kadmon, Y.; Ellenbogen, M.; Tirosh, D.

    1999-01-01

    The Airborne Radiation Monitoring System (ARMS) monitors air or ground radioactive contamination. The contamination source can be a radioactive plume or an area contaminated with radionuclides. The system is based on two major parts, an airborne unit carried by a helicopter and a ground station carried by a truck. The system enables real time measurement and analysis of radioactive plumes as well as post flight processing. The Radioactive Plumes Monitoring Simulator purpose is to create a virtual space where the trained operators experience full radiation field conditions, without real radiation hazard. The ARMS is based on a flying platform and hence the simulator allows a significant reduction of flight time costs

  12. Comparison study of exhaust plume impingement effects of small mono- and bipropellant thrusters using parallelized DSMC method.

    Directory of Open Access Journals (Sweden)

    Kyun Ho Lee

    Full Text Available A space propulsion system is important for the normal mission operations of a spacecraft by adjusting its attitude and maneuver. Generally, a mono- and a bipropellant thruster have been mainly used for low thrust liquid rocket engines. But as the plume gas expelled from these small thrusters diffuses freely in a vacuum space along all directions, unwanted effects due to the plume collision onto the spacecraft surfaces can dramatically cause a deterioration of the function and performance of a spacecraft. Thus, aim of the present study is to investigate and compare the major differences of the plume gas impingement effects quantitatively between the small mono- and bipropellant thrusters using the computational fluid dynamics (CFD. For an efficiency of the numerical calculations, the whole calculation domain is divided into two different flow regimes depending on the flow characteristics, and then Navier-Stokes equations and parallelized Direct Simulation Monte Carlo (DSMC method are adopted for each flow regime. From the present analysis, thermal and mass influences of the plume gas impingements on the spacecraft were analyzed for the mono- and the bipropellant thrusters. As a result, it is concluded that a careful understanding on the plume impingement effects depending on the chemical characteristics of different propellants are necessary for the efficient design of the spacecraft.

  13. Spectrum Diagnosis for Fuchsia Plume of Hall Effect Thruster with Xenon as Propellant

    International Nuclear Information System (INIS)

    Yu Daren; Ding Jiapeng; Dai Jingmin

    2006-01-01

    The colour of the Hall effect thruster's plume is often light-green, and sometimes a fuchsia plume appears during experiments. Based on a spectrum and colour analysis, and a comparison with normal plumes, a conclusion is made that the density of the Xe ions and the temperature of electrons are low when the plume appears fuchsia. In this condition, most of the components of the plume are Xe atoms, and the ionization rate of the propellant is low

  14. Magnetic Field Effects on the Plume of a Diverging Cusped-Field Thruster

    KAUST Repository

    Matlock, Taylor

    2010-07-25

    The Diverging Cusped-Field Thruster (DCFT) uses three permanent ring magnets of alternating polarity to create a unique magnetic topology intended to reduce plasma losses to the discharge chamber surfaces. The magnetic field strength within the DCFT discharge chamber (up to 4 kG on axis) is much higher than in thrusters of similar geometry, which is believed to be a driving factor in the high measured anode efficiencies. The field strength in the near plume region is large as well, which may bear on the high beam divergences measured, with peaks in ion current found at angles of around 30-35 from the thruster axis. Characterization of the DCFT has heretofore involved only one magnetic topology. It is then the purpose of this study to investigate changes to the near-field plume caused by altering the shape and strength of the magnetic field. A thick magnetic collar, encircling the thruster body, is used to lower the field strength outside of the discharge chamber and thus lessen any effects caused by the external field. Changes in the thruster plume with field topology are monitored by the use of normal Langmuir and emissive probes interrogating the near-field plasma. Results are related to other observations that suggest a unified conceptual framework for the important near-exit region of the thruster.

  15. Non-Maxwellian electron energy probability functions in the plume of a SPT-100 Hall thruster

    Science.gov (United States)

    Giono, G.; Gudmundsson, J. T.; Ivchenko, N.; Mazouffre, S.; Dannenmayer, K.; Loubère, D.; Popelier, L.; Merino, M.; Olentšenko, G.

    2018-01-01

    We present measurements of the electron density, the effective electron temperature, the plasma potential, and the electron energy probability function (EEPF) in the plume of a 1.5 kW-class SPT-100 Hall thruster, derived from cylindrical Langmuir probe measurements. The measurements were taken on the plume axis at distances between 550 and 1550 mm from the thruster exit plane, and at different angles from the plume axis at 550 mm for three operating points of the thruster, characterized by different discharge voltages and mass flow rates. The bulk of the electron population can be approximated as a Maxwellian distribution, but the measured distributions were seen to decline faster at higher energy. The measured EEPFs were best modelled with a general EEPF with an exponent α between 1.2 and 1.5, and their axial and angular characteristics were studied for the different operating points of the thruster. As a result, the exponent α from the fitted distribution was seen to be almost constant as a function of the axial distance along the plume, as well as across the angles. However, the exponent α was seen to be affected by the mass flow rate, suggesting a possible relationship with the collision rate, especially close to the thruster exit. The ratio of the specific heats, the γ factor, between the measured plasma parameters was found to be lower than the adiabatic value of 5/3 for each of the thruster settings, indicating the existence of non-trivial kinetic heat fluxes in the near collisionless plume. These results are intended to be used as input and/or testing properties for plume expansion models in further work.

  16. Effects of facility backpressure on the performance and plume of a Hall thruster

    Science.gov (United States)

    Walker, Mitchell Louis Ronald

    2005-07-01

    This dissertation presents research aimed at understanding the relationship between facility background pressure, Hall thruster performance, and plume characteristics. Due to the wide range of facilities used in Hall thruster testing, it is difficult for researchers to make adequate comparisons between data sets because of both dissimilar instrumentation and backpressures. The differences in the data sets are due to the ingestion of background gas into the Hall thruster discharge channel and charge-exchange collisions in the plume. Thus, this research aims to understand facility effects and to develop the tools needed to allow researchers to obtain relevant plume and performance data for a variety of chambers and backpressures. The first portion of this work develops a technique for calibrating a vacuum chamber in terms of pressure to account for elevated backpressures while testing Hall thrusters. Neutral gas background pressure maps of the Large Vacuum Test Facility are created at a series of cold anode flow rates and one hot flow rate at two UM/AFRL P5 5 kW Hall thruster operating conditions. These data show that a cold flow pressure map can be used to approximate the neutral background pressure in the chamber with the thruster in operation. In addition, the data are used to calibrate a numerical model that accurately predicts facility backpressure within a vacuum chamber of specified geometry and pumping speed. The second portion of this work investigates how facility backpressure influences the plume, plume diagnostics, and performance of the P5 Hall thruster. Measurements of the plume and performance characteristics over a wide range of pressures show that ingestion, a decrease in the downstream plasma potential, and broadening of the ion energy distribution function cause the increase in thrust with backpressure. Furthermore, a magnetically-filtered Faraday probe accurately measures ion current density at elevated operating pressures. The third portion of

  17. Numerical investigation of two interacting parallel thruster-plumes and comparison to experiment

    Science.gov (United States)

    Grabe, Martin; Holz, André; Ziegenhagen, Stefan; Hannemann, Klaus

    2014-12-01

    Clusters of orbital thrusters are an attractive option to achieve graduated thrust levels and increased redundancy with available hardware, but the heavily under-expanded plumes of chemical attitude control thrusters placed in close proximity will interact, leading to a local amplification of downstream fluxes and of back-flow onto the spacecraft. The interaction of two similar, parallel, axi-symmetric cold-gas model thrusters has recently been studied in the DLR High-Vacuum Plume Test Facility STG under space-like vacuum conditions, employing a Patterson-type impact pressure probe with slot orifice. We reproduce a selection of these experiments numerically, and emphasise that a comparison of numerical results to the measured data is not straight-forward. The signal of the probe used in the experiments must be interpreted according to the degree of rarefaction and local flow Mach number, and both vary dramatically thoughout the flow-field. We present a procedure to reconstruct the probe signal by post-processing the numerically obtained flow-field data and show that agreement to the experimental results is then improved. Features of the investigated cold-gas thruster plume interaction are discussed on the basis of the numerical results.

  18. The effects of 1 kW class arcjet thruster plumes on spacecraft charging and spacecraft thermal control materials

    Science.gov (United States)

    Bogorad, A.; Lichtin, D. A.; Bowman, C.; Armenti, J.; Pencil, E.; Sarmiento, C.

    1992-01-01

    Arcjet thrusters are soon to be used for north/south stationkeeping on commercial communications satellites. A series of tests was performed to evaluate the possible effects of these thrusters on spacecraft charging and the degradation of thermal control material. During the tests the interaction between arcjet plumes and both charged and uncharged surfaces did not cause any significant material degradation. In addition, firing an arcjet thruster benignly reduced the potential of charged surfaces to near zero.

  19. Velocity Plume Profiles for Hall Thrusters Using Laser Diagnostic

    Science.gov (United States)

    2010-06-01

    multiple ionization of the propellant or momentum imparted by neutral xenon. Beam divergence is the angular measurement of the plume as the diameter...A3200 can manually move the stages or operate from a script to automate movement. The program also allows the user to define a local coordinate...primer/ java /lasers/diodelasers/index.html [68] Shore Laser (n.d.) Laser Operation [Online]. http://www.shorelaser.com/Laser_Operation.html [69

  20. Effects of the Phoenix Lander descent thruster plume on the Martian surface

    Science.gov (United States)

    Plemmons, D. H.; Mehta, M.; Clark, B. C.; Kounaves, S. P.; Peach, L. L.; Renno, N. O.; Tamppari, L.; Young, S. M. M.

    2008-08-01

    The exhaust plume of Phoenix's hydrazine monopropellant pulsed descent thrusters will impact the surface of Mars during its descent and landing phase in the northern polar region. Experimental and computational studies have been performed to characterize the chemical compounds in the thruster exhausts. No undecomposed hydrazine is observed above the instrument detection limit of 0.2%. Forty-five percent ammonia is measured in the exhaust at steady state. Water vapor is observed at a level of 0.25%, consistent with fuel purity analysis results. Moreover, the dynamic interactions of the thruster plumes with the ground have been studied. Large pressure overshoots are produced at the ground during the ramp-up and ramp-down phases of the duty cycle of Phoenix's pulsed engines. These pressure overshoots are superimposed on the 10 Hz quasi-steady ground pressure perturbations with amplitude of about 5 kPa (at touchdown altitude) and have a maximum amplitude of about 20-40 kPa. A theoretical explanation for the physics that causes these pressure perturbations is briefly described in this article. The potential for soil erosion and uplifting at the landing site is also discussed. The objectives of the research described in this article are to provide empirical and theoretical data for the Phoenix Science Team to mitigate any potential problem. The data will also be used to ensure proper interpretation of the results from on-board scientific instrumentation when Martian soil samples are analyzed.

  1. Particle simulation of grid system for krypton ion thrusters

    Directory of Open Access Journals (Sweden)

    Maolin CHEN

    2018-04-01

    Full Text Available The transport processes of plasmas in grid systems of krypton (Kr ion thrusters at different acceleration voltages were simulated with a 3D-PIC model, and the result was compared with xenon (Xe ion thrusters. The variation of the screen grid transparency, the accelerator grid current ratio and the divergence loss were explored. It is found that the screen grid transparency increases with the acceleration voltage and decreases with the beam current, while the accelerator grid current ratio and divergence loss decrease first and then increase with the beam current. This result is the same with Xe ion thrusters. Simulation results also show that Kr ion thrusters have more advantages than Xe ion thrusters, such as higher screen grid transparency, smaller accelerator grid current ratio, larger cut-off current threshold, and better divergence loss characteristic. These advantages mean that Kr ion thrusters have the ability of operating in a wide range of current. Through comprehensive analyses, it can be concluded that using Kr as propellant is very suitable for a multi-mode ion thruster design. Keywords: Grid system, Ion thrusters, Krypton, Particle in cell method, Plasma

  2. 2D Electrostatic Potential Solver for Hall Thruster Simulation

    National Research Council Canada - National Science Library

    Koo, Justin W

    2006-01-01

    ...) for Hall thruster simulation. It is based on a finite volume discretization of a current conservation equation where the electron current density is described by a Generalized Ohm's law description...

  3. Hall-Effect Thruster Simulations with 2-D Electron Transport and Hydrodynamic Ions

    Science.gov (United States)

    Mikellides, Ioannis G.; Katz, Ira; Hofer, Richard H.; Goebel, Dan M.

    2009-01-01

    A computational approach that has been used extensively in the last two decades for Hall thruster simulations is to solve a diffusion equation and energy conservation law for the electrons in a direction that is perpendicular to the magnetic field, and use discrete-particle methods for the heavy species. This "hybrid" approach has allowed for the capture of bulk plasma phenomena inside these thrusters within reasonable computational times. Regions of the thruster with complex magnetic field arrangements (such as those near eroded walls and magnets) and/or reduced Hall parameter (such as those near the anode and the cathode plume) challenge the validity of the quasi-one-dimensional assumption for the electrons. This paper reports on the development of a computer code that solves numerically the 2-D axisymmetric vector form of Ohm's law, with no assumptions regarding the rate of electron transport in the parallel and perpendicular directions. The numerical challenges related to the large disparity of the transport coefficients in the two directions are met by solving the equations in a computational mesh that is aligned with the magnetic field. The fully-2D approach allows for a large physical domain that extends more than five times the thruster channel length in the axial direction, and encompasses the cathode boundary. Ions are treated as an isothermal, cold (relative to the electrons) fluid, accounting for charge-exchange and multiple-ionization collisions in the momentum equations. A first series of simulations of two Hall thrusters, namely the BPT-4000 and a 6-kW laboratory thruster, quantifies the significance of ion diffusion in the anode region and the importance of the extended physical domain on studies related to the impact of the transport coefficients on the electron flow field.

  4. Laser Induced Fluorescence Measurements in a Hall Thruster Plume as a Function of Background Pressure

    Science.gov (United States)

    Spektor, R.; Tighe, W. G.; Kamhawi, H.

    2016-01-01

    A set of Laser Induced Fluorescence (LIF) measurements in the near-field region of the NASA- 173M Hall thruster plume is presented at four background pressure conditions varying from 9.4 x 10(exp -6) torr to 3.3 x 10(exp -5) torr. The xenon ion velocity distribution function was measured simultaneously along the axial and radial directions. An ultimate exhaust velocity of 19.6+/-0.25 km/s achieved at a distance of 20 mm was measured, and that value was not sensitive to pressure. On the other hand, the ion axial velocity at the thruster exit was strongly influenced by pressure, indicating that the accelerating electric field moved inward with increased pressure. The shift in electric field corresponded to an increase in measured thrust. Pressure had a minor effect on the radial component of ion velocity, mainly affecting ions exiting close to the channel inner wall. At that radial location the radial component of ion velocity was approximately 1000 m/s greater at the lowest pressure than at the highest pressure. A reduction of the inner magnet coil current by 0.6 A resulted in a lower axial ion velocity at the channel exit while the radial component of ion velocity at the channel inner wall location increased by 1300 m/s, and at the channel outer wall location the radial ion velocity remained unaffected. The ultimate exhaust velocity was not significantly affected by the inner magnet current.

  5. Particle-in-cell simulations of Hall plasma thrusters

    Science.gov (United States)

    Miranda, Rodrigo; Ferreira, Jose Leonardo; Martins, Alexandre

    2016-07-01

    Hall plasma thrusters can be modelled using particle-in-cell (PIC) simulations. In these simulations, the plasma is described by a set of equations which represent a coupled system of charged particles and electromagnetic fields. The fields are computed using a spatial grid (i.e., a discretization in space), whereas the particles can move continuously in space. Briefly, the particle and fields dynamics are computed as follows. First, forces due to electric and magnetic fields are employed to calculate the velocities and positions of particles. Next, the velocities and positions of particles are used to compute the charge and current densities at discrete positions in space. Finally, these densities are used to solve the electromagnetic field equations in the grid, which are interpolated at the position of the particles to obtain the acting forces, and restart this cycle. We will present numerical simulations using software for PIC simulations to study turbulence, wave and instabilities that arise in Hall plasma thrusters. We have sucessfully reproduced a numerical simulation of a SPT-100 Hall thruster using a two-dimensional (2D) model. In addition, we are developing a 2D model of a cylindrical Hall thruster. The results of these simulations will contribute to improve the performance of plasma thrusters to be used in Cubesats satellites currenty in development at the Plasma Laboratory at University of Brasília.

  6. DSMC Simulations of Io's Pele Plume

    Science.gov (United States)

    McDoniel, William; Goldstein, D.; Varghese, P.; Trafton, L.

    2012-10-01

    Io’s Pele plume rises over 300km in altitude and leaves a deposition ring 1200km across on the surface of the moon. Material emerges from an irregularly-shaped vent, and this geometry gives rise to complex 3D flow features. The Direct Simulation Monte Carlo method is used to model the gas flow in the rarefied plume, demonstrating how the geometry of the source region is responsible for the asymmetric structure of the deposition ring and illustrating the importance of very small-scale vent geometry in explaining large observed features of interest. Simulations of small particles in the plume and comparisons to the black “butterfly wings” seen at Pele are used to constrain particle sizes and entrainment mechanisms. Preliminary results for the effects of plasma energy and momentum transfer to the plume will also be presented.

  7. Hybrid-PIC Computer Simulation of the Plasma and Erosion Processes in Hall Thrusters

    Science.gov (United States)

    Hofer, Richard R.; Katz, Ira; Mikellides, Ioannis G.; Gamero-Castano, Manuel

    2010-01-01

    HPHall software simulates and tracks the time-dependent evolution of the plasma and erosion processes in the discharge chamber and near-field plume of Hall thrusters. HPHall is an axisymmetric solver that employs a hybrid fluid/particle-in-cell (Hybrid-PIC) numerical approach. HPHall, originally developed by MIT in 1998, was upgraded to HPHall-2 by the Polytechnic University of Madrid in 2006. The Jet Propulsion Laboratory has continued the development of HPHall-2 through upgrades to the physical models employed in the code, and the addition of entirely new ones. Primary among these are the inclusion of a three-region electron mobility model that more accurately depicts the cross-field electron transport, and the development of an erosion sub-model that allows for the tracking of the erosion of the discharge chamber wall. The code is being developed to provide NASA science missions with a predictive tool of Hall thruster performance and lifetime that can be used to validate Hall thrusters for missions.

  8. Simulating Irregular Source Geometries for Ionian Plumes

    Science.gov (United States)

    McDoniel, W. J.; Goldstein, D. B.; Varghese, P. L.; Trafton, L. M.; Buchta, D. A.; Freund, J.; Kieffer, S. W.

    2011-05-01

    Volcanic plumes on Io respresent a complex rarefied flow into a near-vacuum in the presence of gravity. A 3D Direct Simulation Monte Carlo (DSMC) method is used to investigate the gas dynamics of such plumes, with a focus on the effects of source geometry on far-field deposition patterns. A rectangular slit and a semicircular half annulus are simulated to illustrate general principles, especially the effects of vent curvature on deposition ring structure. Then two possible models for the giant plume Pele are presented. One is a curved line source corresponding to an IR image of a particularly hot region in the volcano's caldera and the other is a large area source corresponding to the entire caldera. The former is seen to produce the features seen in observations of Pele's ring, but with an error in orientation. The latter corrects the error in orientation, but loses some structure. A hybrid simulation of 3D slit flow is also discussed.

  9. Simulating Irregular Source Geometries for Ionian Plumes

    International Nuclear Information System (INIS)

    McDoniel, W. J.; Goldstein, D. B.; Varghese, P. L.; Trafton, L. M.; Buchta, D. A.; Freund, J.; Kieffer, S. W.

    2011-01-01

    Volcanic plumes on Io respresent a complex rarefied flow into a near-vacuum in the presence of gravity. A 3D Direct Simulation Monte Carlo (DSMC) method is used to investigate the gas dynamics of such plumes, with a focus on the effects of source geometry on far-field deposition patterns. A rectangular slit and a semicircular half annulus are simulated to illustrate general principles, especially the effects of vent curvature on deposition ring structure. Then two possible models for the giant plume Pele are presented. One is a curved line source corresponding to an IR image of a particularly hot region in the volcano's caldera and the other is a large area source corresponding to the entire caldera. The former is seen to produce the features seen in observations of Pele's ring, but with an error in orientation. The latter corrects the error in orientation, but loses some structure. A hybrid simulation of 3D slit flow is also discussed.

  10. Numerical model simulation of atmospheric coolant plumes

    International Nuclear Information System (INIS)

    Gaillard, P.

    1980-01-01

    The effect of humid atmospheric coolants on the atmosphere is simulated by means of a three-dimensional numerical model. The atmosphere is defined by its natural vertical profiles of horizontal velocity, temperature, pressure and relative humidity. Effluent discharge is characterised by its vertical velocity and the temperature of air satured with water vapour. The subject of investigation is the area in the vicinity of the point of discharge, with due allowance for the wake effect of the tower and buildings and, where application, wind veer with altitude. The model equations express the conservation relationships for mometum, energy, total mass and water mass, for an incompressible fluid behaving in accordance with the Boussinesq assumptions. Condensation is represented by a simple thermodynamic model, and turbulent fluxes are simulated by introduction of turbulent viscosity and diffusivity data based on in-situ and experimental water model measurements. The three-dimensional problem expressed in terms of the primitive variables (u, v, w, p) is governed by an elliptic equation system which is solved numerically by application of an explicit time-marching algorithm in order to predict the steady-flow velocity distribution, temperature, water vapour concentration and the liquid-water concentration defining the visible plume. Windstill conditions are simulated by a program processing the elliptic equations in an axisymmetrical revolution coordinate system. The calculated visible plumes are compared with plumes observed on site with a view to validate the models [fr

  11. E × B electron drift instability in Hall thrusters: Particle-in-cell simulations vs. theory

    Science.gov (United States)

    Boeuf, J. P.; Garrigues, L.

    2018-06-01

    The E × B Electron Drift Instability (E × B EDI), also called Electron Cyclotron Drift Instability, has been observed in recent particle simulations of Hall thrusters and is a possible candidate to explain anomalous electron transport across the magnetic field in these devices. This instability is characterized by the development of an azimuthal wave with wavelength in the mm range and velocity on the order of the ion acoustic velocity, which enhances electron transport across the magnetic field. In this paper, we study the development and convection of the E × B EDI in the acceleration and near plume regions of a Hall thruster using a simplified 2D axial-azimuthal Particle-In-Cell simulation. The simulation is collisionless and the ionization profile is not-self-consistent but rather is given as an input parameter of the model. The aim is to study the development and properties of the instability for different values of the ionization rate (i.e., of the total ion production rate or current) and to compare the results with the theory. An important result is that the wavelength of the simulated azimuthal wave scales as the electron Debye length and that its frequency is on the order of the ion plasma frequency. This is consistent with the theory predicting destruction of electron cyclotron resonance of the E × B EDI in the non-linear regime resulting in the transition to an ion acoustic instability. The simulations also show that for plasma densities smaller than under nominal conditions of Hall thrusters the field fluctuations induced by the E × B EDI are no longer sufficient to significantly enhance electron transport across the magnetic field, and transit time instabilities develop in the axial direction. The conditions and results of the simulations are described in detail in this paper and they can serve as benchmarks for comparisons between different simulation codes. Such benchmarks would be very useful to study the role of numerical noise (numerical

  12. Electron energy distribution function in a low-power Hall thruster discharge and near-field plume

    Science.gov (United States)

    Tichý, M.; Pétin, A.; Kudrna, P.; Horký, M.; Mazouffre, S.

    2018-06-01

    Electron temperature and plasma density, as well as the electron energy distribution function (EEDF), have been obtained inside and outside the dielectric channel of a 200 W permanent magnet Hall thruster. Measurements were carried out by means of a cylindrical Langmuir probe mounted onto a compact fast moving translation stage. The 3D particle-in cell numerical simulations complement experiments. The model accounts for the crossed electric and magnetic field configuration in a weakly collisional regime where only electrons are magnetized. Since only the electron dynamics is of interest in this study, an artificial mass of ions corresponding to mi = 30 000me was used to ensure ions could be assumed at rest. The simulation domain is located at the thruster exit plane and does not include the cathode. The measured EEDF evidences a high-energy electron population that is superimposed onto the low energy bulk population outside the channel. Inside the channel, the EEDF is close to Maxwellian. Both the experimental and numerical EEDF depart from an equilibrium distribution at the channel exit plane, a region of high magnetic field. We therefore conclude that the fast electron group found in the experiment corresponds to the electrons emitted by the external cathode that reach the thruster discharge without experiencing collision events.

  13. Miniaturised Prandtl tube with integrated pressure sensors for micro-thruster plume characterisation

    NARCIS (Netherlands)

    Dijkstra, Marcel; Ma, Kechun; de Boer, Meint J.; Groenesteijn, Jarno; Lötters, Joost Conrad; Wiegerink, Remco J.

    2014-01-01

    A miniaturised Prandtl-tube sensor incorporating a 6 mm long 40 μm diameter microchannel with integrated pressure sensors has been realised. The sensor has been designed for the characterisation of rarefied plume flow from a MEMS-based monopropellant propulsion system for high-accuracy attitude

  14. Modelling of N2-Thruster Plumes Based on Experiments in STG

    National Research Council Canada - National Science Library

    Plaehn, Klaus

    2000-01-01

    ... (no chemical reactions, constant ratio of specific heats). The essential parameter to be varied was the nozzle flow Reynolds number, the quantities to be measured were the Pitot pressure at the nozzle exit and the molecule number flux in the plume...

  15. Numerical simulation of SMART-1 Hall-thruster plasma interactions

    NARCIS (Netherlands)

    Tajmar, Martin; Sedmik, René; Scharlemann, Carsten

    2009-01-01

    SMART-1 has been the first European mission using a Hall thruster to reach the moon. An onboard plasma diagnostic package allowed a detailed characterization of the thruster exhaust plasma and its interactions with the spacecraft. Analysis of in-flight data revealed, amongst others, an unpredicted

  16. Field emission electric propulsion thruster modeling and simulation

    Science.gov (United States)

    Vanderwyst, Anton Sivaram

    Electric propulsion allows space rockets a much greater range of capabilities with mass efficiencies that are 1.3 to 30 times greater than chemical propulsion. Field emission electric propulsion (FEEP) thrusters provide a specific design that possesses extremely high efficiency and small impulse bits. Depending on mass flow rate, these thrusters can emit both ions and droplets. To date, fundamental experimental work has been limited in FEEP. In particular, detailed individual droplet mechanics have yet to be understood. In this thesis, theoretical and computational investigations are conducted to examine the physical characteristics associated with droplet dynamics relevant to FEEP applications. Both asymptotic analysis and numerical simulations, based on a new approach combining level set and boundary element methods, were used to simulate 2D-planar and 2D-axisymmetric probability density functions of the droplets produced for a given geometry and electrode potential. The combined algorithm allows the simulation of electrostatically-driven liquids up to and after detachment. Second order accuracy in space is achieved using a volume of fluid correction. The simulations indicate that in general, (i) lowering surface tension, viscosity, and potential, or (ii) enlarging electrode rings, and needle tips reduce operational mass efficiency. Among these factors, surface tension and electrostatic potential have the largest impact. A probability density function for the mass to charge ratio (MTCR) of detached droplets is computed, with a peak around 4,000 atoms per electron. High impedance surfaces, strong electric fields, and large liquid surface tension result in a lower MTCR ratio, which governs FEEP droplet evolution via the charge on detached droplets and their corresponding acceleration. Due to the slow mass flow along a FEEP needle, viscosity is of less importance in altering the droplet velocities. The width of the needle, the composition of the propellant, the

  17. Simulation and laboratory validation of magnetic nozzle effects for the high power helicon thruster

    International Nuclear Information System (INIS)

    Winglee, R.; Ziemba, T.; Giersch, L.; Prager, J.; Carscadden, J.; Roberson, B. R.

    2007-01-01

    The efficiency of a plasma thruster can be improved if the plasma stream can be highly focused, so that there is maximum conversion of thermal energy to the directed energy. Such focusing can be potentially achieved through the use of magnetic nozzles, but this introduces the potential problem of detachment of plasma from the magnetic field lines tied to the nozzles. Simulations and laboratory testing are used to investigate these processes for the high power helicon (HPH) thruster, which has the capacity of producing a dense (10 18 -10 20 m -3 ) energetic (tens of eV) plasma stream which can be both supersonic and super-Alfvenic within a few antenna wavelengths. In its standard configuration, the plasma plume generated by this device has a large opening angle, due to relatively high thermal velocity and rapid divergence of the magnetic field. With the addition of a magnetic nozzle system, the plasma can be directed/collimated close to the pole of the nozzle system causing an increase in the axial velocity of the plasma, as well as an increase in the Alfven Mach number. As such the magnetic field of the nozzle is insufficient to pull the plasma back to the spacecraft, i.e., plasma attachment is not a problem for the system. Laboratory results show that the specific impulse (Isp) of the system can be increased by ∼30% by the addition of the nozzle due to the conversion of thermal energy into directed energy in association with a highly collimated profile. An interesting feature of the system is that self-collimation of the beam is expected to occur during continuous operation through plasma currents induced downstream from the magnetic nozzle. These currents lead to magnetic fields that have a smaller divergence than the original vacuum magnetic field so that the following plasma will be more collimated than the proceeding plasma. This self-focusing can lead to beam propagation over extended distances

  18. Hybrid 3D model for the interaction of plasma thruster plumes with nearby objects

    Science.gov (United States)

    Cichocki, Filippo; Domínguez-Vázquez, Adrián; Merino, Mario; Ahedo, Eduardo

    2017-12-01

    This paper presents a hybrid particle-in-cell (PIC) fluid approach to model the interaction of a plasma plume with a spacecraft and/or any nearby object. Ions and neutrals are modeled with a PIC approach, while electrons are treated as a fluid. After a first iteration of the code, the domain is split into quasineutral and non-neutral regions, based on non-neutrality criteria, such as the relative charge density and the Debye length-to-cell size ratio. At the material boundaries of the former quasineutral region, a dedicated algorithm ensures that the Bohm condition is met. In the latter non-neutral regions, the electron density and electric potential are obtained by solving the coupled electron momentum balance and Poisson equations. Boundary conditions for both the electric current and potential are finally obtained with a plasma sheath sub-code and an equivalent circuit model. The hybrid code is validated by applying it to a typical plasma plume-spacecraft interaction scenario, and the physics and capabilities of the model are finally discussed.

  19. Plasma simulation in space propulsion : the helicon plasma thruster

    OpenAIRE

    Navarro Cavallé, Jaume

    2017-01-01

    The Helicon Plasma Thruster (HPT) is an electrodynamic rocket proposed in the early 2000s. It matches an Helicon Plasma Source (HPS), which ionizes the neutral gas and heats up the plasma, with aMagneticNozzle (MN),where the plasma is supersonically accelerated resulting in thrust. Although the core of this thruster inherits the knowledge on Helicon Plasma sources, dated from the seventies, the HPT technology is still not developed and remains below TRL 4. A deep review of the HPT State-of-ar...

  20. Simulations of a Plasma Thruster Utilizing the FRC Configuration

    Energy Technology Data Exchange (ETDEWEB)

    Rognlien, T. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cohen, B. I. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-10

    This report describes work performed by LLNL to model the behavior and performance of a reverse-field configuration (FRC) type of plasma device as a plasma thruster as summarized by Razin et al. [1], which also describes the MNX device at PPPL used to study this concept.

  1. Particle-in-cell numerical simulations of a cylindrical Hall thruster with permanent magnets

    Science.gov (United States)

    Miranda, Rodrigo A.; Martins, Alexandre A.; Ferreira, José L.

    2017-10-01

    The cylindrical Hall thruster (CHT) is a propulsion device that offers high propellant utilization and performance at smaller dimensions and lower power levels than traditional Hall thrusters. In this paper we present first results of a numerical model of a CHT. This model solves particle and field dynamics self-consistently using a particle-in-cell approach. We describe a number of techniques applied to reduce the execution time of the numerical simulations. The specific impulse and thrust computed from our simulations are in agreement with laboratory experiments. This simplified model will allow for a detailed analysis of different thruster operational parameters and obtain an optimal configuration to be implemented at the Plasma Physics Laboratory at the University of Brasília.

  2. Optimization of Cylindrical Hall Thrusters

    International Nuclear Information System (INIS)

    Raitses, Yevgeny; Smirnov, Artem; Granstedt, Erik; Fisch, Nathaniel J.

    2007-01-01

    The cylindrical Hall thruster features high ionization efficiency, quiet operation, and ion acceleration in a large volume-to-surface ratio channel with performance comparable with the state-of-the-art annular Hall thrusters. These characteristics were demonstrated in low and medium power ranges. Optimization of miniaturized cylindrical thrusters led to performance improvements in the 50-200W input power range, including plume narrowing, increased thruster efficiency, reliable discharge initiation, and stable operation.

  3. Optimization of Cylindrical Hall Thrusters

    International Nuclear Information System (INIS)

    Raitses, Yevgeny; Smirnov, Artem; Granstedt, Erik; Fi, Nathaniel J.

    2007-01-01

    The cylindrical Hall thruster features high ionization efficiency, quiet operation, and ion acceleration in a large volume-to-surface ratio channel with performance comparable with the state-of-the-art annular Hall thrusters. These characteristics were demonstrated in low and medium power ranges. Optimization of miniaturized cylindrical thrusters led to performance improvements in the 50-200W input power range, including plume narrowing, increased thruster efficiency, reliable discharge initiation, and stable operation

  4. Small rocket exhaust plume data

    Science.gov (United States)

    Chirivella, J. E.; Moynihan, P. I.; Simon, W.

    1972-01-01

    During recent cryodeposit tests with an 0.18-N thruster, the mass flux in the plume back field was measured for the first time for nitrogen, carbon dioxide, and a mixture of nitrogen, hydrogen, and ammonia at various inlet pressures. This mixture simulated gases that would be generated by a hydrazine plenum attitude propulsion system. The measurements furnish a base upon which to build a mathematical model of plume back flow that will be used in predicting the mass distribution in the boundary region of other plumes. The results are analyzed and compared with existing analytical predictions.

  5. Simulation of plume dynamics by the Lattice Boltzmann Method

    Science.gov (United States)

    Mora, Peter; Yuen, David A.

    2017-09-01

    The Lattice Boltzmann Method (LBM) is a semi-microscopic method to simulate fluid mechanics by modelling distributions of particles moving and colliding on a lattice. We present 2-D simulations using the LBM of a fluid in a rectangular box being heated from below, and cooled from above, with a Rayleigh of Ra = 108, similar to current estimates of the Earth's mantle, and a Prandtl number of 5000. At this Prandtl number, the flow is found to be in the non-inertial regime where the inertial terms denoted I ≪ 1. Hence, the simulations presented lie within the regime of relevance for geodynamical problems. We obtain narrow upwelling plumes with mushroom heads and chutes of downwelling fluid as expected of a flow in the non-inertial regime. The method developed demonstrates that the LBM has great potential for simulating thermal convection and plume dynamics relevant to geodynamics, albeit with some limitations.

  6. Technology for Transient Simulation of Vibration during Combustion Process in Rocket Thruster

    Science.gov (United States)

    Zubanov, V. M.; Stepanov, D. V.; Shabliy, L. S.

    2018-01-01

    The article describes the technology for simulation of transient combustion processes in the rocket thruster for determination of vibration frequency occurs during combustion. The engine operates on gaseous propellant: oxygen and hydrogen. Combustion simulation was performed using the ANSYS CFX software. Three reaction mechanisms for the stationary mode were considered and described in detail. The way for obtaining quick CFD-results with intermediate combustion components using an EDM model was found. The way to generate the Flamelet library with CFX-RIF was described. A technique for modeling transient combustion processes in the rocket thruster was proposed based on the Flamelet library. A cyclic irregularity of the temperature field like vortex core precession was detected in the chamber. Frequency of flame precession was obtained with the proposed simulation technique.

  7. Simulating Fine-Scale Marine Pollution Plumes for Autonomous Robotic Environmental Monitoring

    Directory of Open Access Journals (Sweden)

    Muhammad Fahad

    2018-05-01

    Full Text Available Marine plumes exhibit characteristics such as intermittency, sinuous structure, shape and flow field coherency, and a time varying concentration profile. Due to the lack of experimental quantification of these characteristics for marine plumes, existing work often assumes marine plumes exhibit behavior similar to aerial plumes and are commonly modeled by filament based Lagrangian models. Our previous field experiments with Rhodamine dye plumes at Makai Research Pier at Oahu, Hawaii revealed that marine plumes show similar characteristics to aerial plumes qualitatively, but quantitatively they are disparate. Based on the field data collected, this paper presents a calibrated Eulerian plume model that exhibits the qualitative and quantitative characteristics exhibited by experimentally generated marine plumes. We propose a modified model with an intermittent source, and implement it in a Robot Operating System (ROS based simulator. Concentration time series of stationary sampling points and dynamic sampling points across cross-sections and plume fronts are collected and analyzed for statistical parameters of the simulated plume. These parameters are then compared with statistical parameters from experimentally generated plumes. The comparison validates that the simulated plumes exhibit fine-scale qualitative and quantitative characteristics similar to experimental plumes. The ROS plume simulator facilitates future evaluations of environmental monitoring strategies by marine robots, and is made available for community use.

  8. DSMC Simulations of Irregular Source Geometries for Io's Pele Plume

    Science.gov (United States)

    McDoniel, William; Goldstein, D. B.; Varghese, P. L.; Trafton, L. M.; Buchta, D. A.; Freund, J.; Kieffer, S. W.

    2010-10-01

    Volcanic plumes on Io represent a complex rarefied flow into a near-vacuum in the presence of gravity. A 3D rarefied gas dynamics method (DSMC) is used to investigate the gas dynamics of such plumes, with a focus on the effects of source geometry on far-field deposition patterns. These deposition patterns, such as the deposition ring's shape and orientation, as well as the presence and shape of ash deposits around the vent, are linked to the shape of the vent from which the plume material arises. We will present three-dimensional simulations for a variety of possible vent geometries for Pele based on observations of the volcano's caldera. One is a curved line source corresponding to a Galileo IR image of a particularly hot region in the volcano's caldera and the other is a large area source corresponding to the entire lava lake at the center of the plume. The curvature of the former is seen to be sufficient to produce the features seen in observations of Pele's deposition pattern, but the particular orientation of the source is found to be such that it cannot match the orientation of these features on Io's surface. The latter corrects the error in orientation while losing some of the structure, suggesting that the actual source may correspond well with part of the shore of the lava lake. In addition, we are collaborating with a group at the University of Illinois at Urbana-Champaign to develop a hybrid method to link the continuum flow beneath Io's surface and very close to the vent to the more rarefied flow in the large volcanic plumes. This work was funded by NASA-PATM grant NNX08AE72G.

  9. One-dimensional hybrid-direct kinetic simulation of the discharge plasma in a Hall thruster

    International Nuclear Information System (INIS)

    Hara, Kentaro; Boyd, Iain D.; Kolobov, Vladimir I.

    2012-01-01

    In order to model the non-equilibrium plasma within the discharge region of a Hall thruster, the velocity distribution functions (VDFs) must be obtained accurately. A direct kinetic (DK) simulation method that directly solves the plasma Boltzmann equation can achieve better resolution of VDFs in comparison to particle simulations, such as the particle-in-cell (PIC) method that inherently include statistical noise. In this paper, a one-dimensional hybrid-DK simulation, which uses a DK simulation for heavy species and a fluid model for electrons, is developed and compared to a hybrid-PIC simulation. Time-averaged results obtained from the hybrid-DK simulation are in good agreement with hybrid-PIC results and experimental data. It is shown from a comparison of using a kinetic simulation and solving the continuity equation that modeling of the neutral atoms plays an important role for simulations of the Hall thruster discharge plasma. In addition, low and high frequency plasma oscillations are observed. Although the kinetic nature of electrons is not resolved due to the use of a fluid model, the hybrid-DK model provides spatially and temporally well-resolved plasma properties and an improved resolution of VDFs for heavy species with less statistical noise in comparison to the hybrid-PIC method.

  10. Particle-in-cell simulation for the effect of segmented electrodes near the exit of an aton-type Hall thruster on ion focusing acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Yu, D.R.; Qing, S.W.; Liu, H.; Li, H. [Lab. of Plasma Propulsion, Harbin Institute of Technology (China)

    2011-12-15

    The effect of floating conductive electrodes near the channel exit of an Aton-type Hall thruster on ion focusing acceleration is studied by simulating the two-dimensional plasma flow with a fully kinetic Particle-in-Cell method for the gas flow rate j{sub a} ranged in 1{proportional_to}3 mg/s. Numerical results show that low-emissive electrodes can reduce plume divergence if the electrode length is less than 2 mm due to the low secondary electron emissive characteristic, but widen plume in all the gas flow rate range if the electrode length is greater than 2mm since the conductive property of segmented electrodes trends to make equipotential lines convex toward channel exit and is even parallel to the wall surface in the near-wall region. Further investigation predicts that the combination of high emissive dielectric wall and segmented low-emissive dielectric wall is a promising way to reduce plume divergence (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Simulating Regolith Excavation, Entrainment, Dispersal and Visibility Impairment due to Rocket Plume-Surface Interaction via a Hybrid Continuum-Rarefied Flow Solver

    Data.gov (United States)

    National Aeronautics and Space Administration — With NASA planning to redirect an asteroid and possible future missions to the Moon or Martian satellites, the effects of thruster plume impingement on the surfaces...

  12. Large-eddy simulation study of oil/gas plumes in stratified fluid with cross current

    Science.gov (United States)

    Yang, Di; Xiao, Shuolin; Chen, Bicheng; Chamecki, Marcelo; Meneveau, Charles

    2017-11-01

    Dynamics of the oil/gas plume from a subsea blowout are strongly affected by the seawater stratification and cross current. The buoyant plume entrains ambient seawater and lifts it up to higher elevations. During the rising process, the continuously increasing density difference between the entrained and ambient seawater caused by the stable stratification eventually results in a detrainment of the entrained seawater and small oil droplets at a height of maximum rise (peel height), forming a downward plume outside the rising inner plume. The presence of a cross current breaks the plume's axisymmetry and causes the outer plume to fall along the downstream side of the inner plume. The detrained seawater and oil eventually fall to a neutral buoyancy level (trap height), and disperse horizontally to form an intrusion layer. In this study, the complex plume dynamics is investigated using large-eddy simulation (LES). Various laboratory and field scale cases are simulated to explore the effect of cross current and stratification on the plume dynamics. Based on the LES data, various turbulence statistics of the plume are systematically quantified, leading to some useful insights for modeling the mean plume dynamics using integral plume models. This research is made possible by a RFP-V Grant from The Gulf of Mexico Research Initiative.

  13. AUV-Based Plume Tracking: A Simulation Study

    Directory of Open Access Journals (Sweden)

    Awantha Jayasiri

    2016-01-01

    Full Text Available This paper presents a simulation study of an autonomous underwater vehicle (AUV navigation system operating in a GPS-denied environment. The AUV navigation method makes use of underwater transponder positioning and requires only one transponder. A multirate unscented Kalman filter is used to determine the AUV orientation and position by fusing high-rate sensor data and low-rate information. The paper also proposes a gradient-based, efficient, and adaptive novel algorithm for plume boundary tracking missions. The algorithm follows a centralized approach and it includes path optimization features based on gradient information. The proposed algorithm is implemented in simulation on the AUV-based navigation system and successful boundary tracking results are obtained.

  14. Numerical simulation of ammonium dinitramide (ADN)-based non-toxic aerospace propellant decomposition and combustion in a monopropellant thruster

    International Nuclear Information System (INIS)

    Zhang, Tao; Li, Guoxiu; Yu, Yusong; Sun, Zuoyu; Wang, Meng; Chen, Jun

    2014-01-01

    Highlights: • Decomposition and combustion process of ADN-based thruster are studied. • Distribution of droplets is obtained during the process of spray hit on wire mesh. • Two temperature models are adopted to describe the heat transfer in porous media. • The influences brought by different mass flux and porosity are studied. - Abstract: Ammonium dinitramide (ADN) monopropellant is currently the most promising among all ‘green propellants’. In this paper, the decomposition and combustion process of liquid ADN-based ternary mixtures for propulsion are numerically studied. The R–R distribution model is used to study the initial boundary conditions of droplet distribution resulting from spray hit on a wire mesh based on PDA experiment. To simulate the heat-transfer characteristics between the gas–solid phases, a two-temperature porous medium model in a catalytic bed is used. An 11-species and 7-reactions chemistry model is used to study the catalytic and combustion processes. The final distribution of temperature, pressure, and other kinds of material component concentrations are obtained using the ADN thruster. The results of simulation conducted in the present study are well agree with previous experimental data, and the demonstration of the ADN thruster confirms that a good steady-state operation is achieved. The effects of spray inlet mass flux and porosity on monopropellant thruster performance are analyzed. The numerical results further show that a larger inlet mass flux results in better thruster performance and a catalytic bed porosity value of 0.5 can exhibit the best thruster performance. These findings can serve as a key reference for designing and testing non-toxic aerospace monopropellant thrusters

  15. Aging of plumes from emission sources based on chamber simulation

    Science.gov (United States)

    Wang, X.; Deng, W.; Fang, Z.; Bernard, F.; Zhang, Y.; Yu, J.; Mellouki, A.; George, C.

    2017-12-01

    Study on atmospheric aging of plumes from emission sources is essential to understand their contribution to both secondary and primary pollutants occurring in the ambient air. Here we directly introduced vehicle exhaust, biomass burning plume, industrial solvents and cooking plumes into a smog chamber with 30 m3 fluorinated ethylene propylene (FEP) Teflon film reactor housed in a temperature-controlled enclosure, for characterizing primarily emitted air pollutants and for investigating secondarily formed products during photo-oxidation. Moreover, we also initiated study on the formation of secondary aerosols when gasoline vehicle exhaust is mixed with typical coal combustion pollutant SO2 or typical agricultural-related pollutant NH3. Formation of secondary organic aerosols (SOA) from typical solvent toluene was also investigated in ambient air matrix in comparison with purified air matrix. Main findings include: 1) Except for exhaust from idling gasoline vehicles, traditional precursor volatile organic compounds could only explain a very small fraction of SOA formed from vehicle exhaust, biomass burning or cooking plumes, suggesting knowledge gap in SOA precursors; 2) There is the need to re-think vehicle emission standards with a combined primary and/or secondary contribution of vehicle exhaust to PM2.5 or other secondary pollutants such as ozone; 3) When mixed with SO2, the gasoline vehicle exhaust revealed an increase of SOA production factor by 60-200% and meanwhile SO2 oxidation rates increased about a factor of 2.7; when the aged gasoline vehicle exhaust were mixing with NH3, both particle number and mass concentrations were increasing explosively. These phenomenons implied the complex interaction during aging of co-existing source emissions. 4) For typical combination of "tolune+SO2+NOx", when compared to chamber simulation with purified air as matrix, both SOA formation and SO2 oxidation were greatly enhanced under ambient air matrix, and the enhancement

  16. Magnetically enhanced vacuum arc thruster

    International Nuclear Information System (INIS)

    Keidar, Michael; Schein, Jochen; Wilson, Kristi; Gerhan, Andrew; Au, Michael; Tang, Benjamin; Idzkowski, Luke; Krishnan, Mahadevan; Beilis, Isak I

    2005-01-01

    A hydrodynamic model of the vacuum arc thruster and its plume is described. Primarily an effect of the magnetic field on the plume expansion and plasma generation is considered. Two particular examples are investigated, namely the magnetically enhanced co-axial vacuum arc thruster (MVAT) and the vacuum arc thruster with ring electrodes (RVAT). It is found that the magnetic field significantly decreases the plasma plume radial expansion under typical conditions. Predicted plasma density profiles in the plume of the MVAT are compared with experimental profiles, and generally a good agreement is found. In the case of the RVAT the influence of the magnetic field leads to plasma jet deceleration, which explains the non-monotonic dependence of the ion current density, on an axial magnetic field observed experimentally

  17. Magnetically enhanced vacuum arc thruster

    Energy Technology Data Exchange (ETDEWEB)

    Keidar, Michael [University of Michigan, Ann Arbor 48109 MI (United States); Schein, Jochen [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Wilson, Kristi [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Gerhan, Andrew [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Au, Michael [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Tang, Benjamin [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Idzkowski, Luke [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Krishnan, Mahadevan [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Beilis, Isak I [Tel Aviv University, Tel Aviv (Israel)

    2005-11-01

    A hydrodynamic model of the vacuum arc thruster and its plume is described. Primarily an effect of the magnetic field on the plume expansion and plasma generation is considered. Two particular examples are investigated, namely the magnetically enhanced co-axial vacuum arc thruster (MVAT) and the vacuum arc thruster with ring electrodes (RVAT). It is found that the magnetic field significantly decreases the plasma plume radial expansion under typical conditions. Predicted plasma density profiles in the plume of the MVAT are compared with experimental profiles, and generally a good agreement is found. In the case of the RVAT the influence of the magnetic field leads to plasma jet deceleration, which explains the non-monotonic dependence of the ion current density, on an axial magnetic field observed experimentally.

  18. Enhanced Performance of Cylindrical Hall Thrusters

    International Nuclear Information System (INIS)

    Raitses, Y.; Smirnov, A.; Fisch, N.J.

    2007-01-01

    The cylindrical thruster differs significantly in its underlying physical mechanisms from the conventional annular Hall thruster. It features high ionization efficiency, quiet operation, ion acceleration in a large volume-to-surface ratio channel, and performance comparable with the state-of-the-art conventional Hall thrusters. Very significant plume narrowing, accompanied by the increase of the energetic ion fraction and improvement of ion focusing, led to 50-60% increase of the thruster anode efficiency. These improvements were achieved by overrunning the discharge current in the magnetized thruster plasma

  19. A Monte Carlo simulation method for assessing biotransformation effects on groundwater fuel hydrocarbon plume lengths

    International Nuclear Information System (INIS)

    McNab, W.W. Jr.

    2000-01-01

    Biotransformation of dissolved groundwater hydrocarbon plumes emanating from leaking underground fuel tanks should, in principle, result in plume length stabilization over relatively short distances, thus diminishing the environmental risk. However, because the behavior of hydrocarbon plumes is usually poorly constrained at most leaking underground fuel tank sites in terms of release history, groundwater velocity, dispersion, as well as the biotransformation rate, demonstrating such a limitation in plume length is problematic. Biotransformation signatures in the aquifer geochemistry, most notably elevated bicarbonate, may offer a means of constraining the relationship between plume length and the mean biotransformation rate. In this study, modeled plume lengths and spatial bicarbonate differences among a population of synthetic hydrocarbon plumes, generated through Monte Carlo simulation of an analytical solute transport model, are compared to field observations from six underground storage tank (UST) sites at military bases in California. Simulation results indicate that the relationship between plume length and the distribution of bicarbonate is best explained by biotransformation rates that are consistent with ranges commonly reported in the literature. This finding suggests that bicarbonate can indeed provide an independent means for evaluating limitations in hydrocarbon plume length resulting from biotransformation. (Author)

  20. Simulations of the Effects of Jupiter's Plasma Torus on Io's Pele Plume

    Science.gov (United States)

    McDoniel, William; Goldstein, David B.; Varghese, Philip L.; Trafton, Laurence M.

    2014-11-01

    Io’s plumes rise hundreds of kilometers above its surface and sublimation atmosphere, presenting large targets for incoming ions from Jupiter’s plasma torus. The direct simulation Monte Carlo method is used to model the gas plume at Pele and its interaction with the Jovian plasma torus. Chemical reactions resulting from ion impacts in a plume change its composition and energy from the impacts changes the plume’s structure (asymmetrically). The presence of non-condensible daughter species in a warmer plume canopy produces a more diffuse deposition ring on Io’s surface, compared to simulations without plasma. Energized molecules also escape from the plume, forming a diffuse cloud of fast particles above the plume’s canopy, which may function to resupply the plasma torus and which suggests a mechanism for lofting other species to very high altitudes.

  1. EM Modelling of RF Propagation Through Plasma Plumes

    Science.gov (United States)

    Pandolfo, L.; Bandinelli, M.; Araque Quijano, J. L.; Vecchi, G.; Pawlak, H.; Marliani, F.

    2012-05-01

    Electric propulsion is a commercially attractive solution for attitude and position control of geostationary satellites. Hall-effect ion thrusters generate a localized plasma flow in the surrounding of the satellite, whose impact on the communication system needs to be qualitatively and quantitatively assessed. An electromagnetic modelling tool has been developed and integrated into the Antenna Design Framework- ElectroMagnetic Satellite (ADF-EMS). The system is able to guide the user from the plume definition phases through plume installation and simulation. A validation activity has been carried out and the system has been applied to the plume modulation analysis of SGEO/Hispasat mission.

  2. Simulation of plume rise: Study the effect of stably stratified turbulence layer on the rise of a buoyant plume from a continuous source by observing the plume centroid

    Science.gov (United States)

    Bhimireddy, Sudheer Reddy; Bhaganagar, Kiran

    2016-11-01

    Buoyant plumes are common in atmosphere when there exists a difference in temperature or density between the source and its ambience. In a stratified environment, plume rise happens until the buoyancy variation exists between the plume and ambience. In a calm no wind ambience, this plume rise is purely vertical and the entrainment happens because of the relative motion of the plume with ambience and also ambient turbulence. In this study, a plume centroid is defined as the plume mass center and is calculated from the kinematic equation which relates the rate of change of centroids position to the plume rise velocity. Parameters needed to describe the plume are considered as the plume radius, plumes vertical velocity and local buoyancy of the plume. The plume rise velocity is calculated by the mass, momentum and heat conservation equations in their differential form. Our study focuses on the entrainment velocity, as it depicts the extent of plume growth. This entrainment velocity is made up as sum of fractions of plume's relative velocity and ambient turbulence. From the results, we studied the effect of turbulence on the plume growth by observing the variation in the plume radius at different heights and the centroid height reached before loosing its buoyancy.

  3. Cylindrical Hall Thrusters with Permanent Magnets

    International Nuclear Information System (INIS)

    Raitses, Yevgeny; Merino, Enrique; Fisch, Nathaniel J.

    2010-01-01

    The use of permanent magnets instead of electromagnet coils for low power Hall thrusters can offer a significant reduction of both the total electric power consumption and the thruster mass. Two permanent magnet versions of the miniaturized cylindrical Hall thruster (CHT) of different overall dimensions were operated in the power range of 50W-300 W. The discharge and plasma plume measurements revealed that the CHT thrusters with permanent magnets and electromagnet coils operate rather differently. In particular, the angular ion current density distribution from the permanent magnet thrusters has an unusual halo shape, with a majority of high energy ions flowing at large angles with respect to the thruster centerline. Differences in the magnetic field topology outside the thruster channel and in the vicinity of the channel exit are likely responsible for the differences in the plume characteristics measured for the CHTs with electromagnets and permanent magnets. It is shown that the presence of the reversing-direction or cusp-type magnetic field configuration inside the thruster channel without a strong axial magnetic field outside the thruster channel does not lead to the halo plasma plume from the CHT.

  4. Study of Ion Beam Forming Process in Electric Thruster Using 3D FEM Simulation

    Science.gov (United States)

    Huang, Tao; Jin, Xiaolin; Hu, Quan; Li, Bin; Yang, Zhonghai

    2015-11-01

    There are two algorithms to simulate the process of ion beam forming in electric thruster. The one is electrostatic steady state algorithm. Firstly, an assumptive surface, which is enough far from the accelerator grids, launches the ion beam. Then the current density is calculated by theory formula. Secondly these particles are advanced one by one according to the equations of the motions of ions until they are out of the computational region. Thirdly, the electrostatic potential is recalculated and updated by solving Poisson Equation. At the end, the convergence is tested to determine whether the calculation should continue. The entire process will be repeated until the convergence is reached. Another one is time-depended PIC algorithm. In a global time step, we assumed that some new particles would be produced in the simulation domain and its distribution of position and velocity were certain. All of the particles that are still in the system will be advanced every local time steps. Typically, we set the local time step low enough so that the particle needs to be advanced about five times to move the distance of the edge of the element in which the particle is located.

  5. The numerical simulation of plasma flow in cylindrical resonant cavity of microwave plasma thruster

    International Nuclear Information System (INIS)

    Tang, J.-L.; He, H.-Q; Mao, G.-W.

    2004-01-01

    Microwave Plasma Thruster (MPT) is an electro-thermal propulsive device. MPT consists of microwave generator, gas storing and supplying system, resonant cavity and accelerative nozzle. It generates free-floating plasma brought by the microwave discharge breakdown gas in the resonant cavity, and the plasma exhausted from nozzle produces thrust. MPT has prospective application in spacecraft because of its advantages of high thrust, moderate specific impulse and high efficiency. In this paper, the numerical simulation of the coupling flow field of microwave plasma in resonant cavity under different frequencies will be discussed. The results of numerical simulation are as follows: 1) When the resonant model TM 011 was used, the higher the microwave frequency was, the smaller the size of MPT. The distribution of the electromagnetic field in small cavity, however, remain unchanged. 2) When the resonant model was used, the distribution of the temperature, the pressure and the electronic density in the resonant cavity remained unchanged under different resonant frequencies. 3) When the resonant frequency was increased with a fixed pressure distribution in a small cavity, compare to the MPT with lower frequency, the gas flow rate, the microwave power and the nozzle throat diameter of MPT all decreased. 4) The electromagnetic field in the cylindrical resonant cavity for all MPT with different frequencies was disturbed by the plasma formation. The strong disturbance happened in the region close to the plasma. (author)

  6. Constraining Diameters of Ash Particles in Io's Pele Plume by DSMC Simulation

    Science.gov (United States)

    McDoniel, William; Goldstein, D. B.; Varghese, P. L.; Trafton, L. M.

    2013-10-01

    The black “butterfly wings” seen at Pele are produced by silicate ash which is to some extent entrained in the gas flow from very low altitudes. These particles are key to understanding the volcanism at Pele. However, the Pele plume is not nearly as dusty as Prometheus, and these are not the only particles in the plume, as the SO2 in the plume will also condense as it cools. It is therefore difficult to estimate a size distribution for the ash particles by observation, and the drag on ash particles from the plume flow is significant enough that ballistic models are also of limited use. Using Direct Simulation Monte Carlo, we can simulate a gas plume at Pele which demonstrates very good agreement with observations. By extending this model down to nearly the surface of the lava lake, ash particles can be included in the simulation by assuming that they are initially entrained in the very dense (for Io) gas immediately above the magma. Particles are seen to fall to the ground to the east and west of the vent, agreeing with the orientation of the “butterfly wings”, and particles with larger diameters fall to the ground closer to the lava lake. We present a model for mapping simulated deposition density to the coloration of the surface and we use it to estimate the size distribution of ash particles in the plume.

  7. Simulation of Main Plasma Parameters of a Cylindrical Asymmetric Capacitively Coupled Plasma Micro-Thruster using Computational Fluid Dynamics

    Directory of Open Access Journals (Sweden)

    Amelia eGreig

    2015-01-01

    Full Text Available Computational fluid dynamics (CFD simulations of a radio-frequency (13.56 MHz electro-thermal capacitively coupled plasma (CCP micro-thruster have been performed using the commercial CFD-ACE+ package. Standard operating conditions of a 10 W, 1.5 Torr argon discharge were used to compare with previously obtained experimental results for validation. Results show that the driving force behind plasma production within the thruster is ion-induced secondary electrons ejected from the surface of the discharge tube, accelerated through the sheath to electron temperatures up to 33.5 eV. The secondary electron coefficient was varied to determine the effect on the discharge, with results showing that full breakdown of the discharge did not occur for coefficients coefficients less than or equal to 0.01.

  8. SAMI3 Simulations of the Persistent May 1994 Plasmasphere Plume

    Science.gov (United States)

    Krall, J.; Huba, J.; Borovsky, J.

    2017-12-01

    We use the Naval Research Laboratory SAMI3 ionosphere/plasmasphere model[1] to explore the physics of a long-lived plasmasphere plume. A plasmasphere plume is a storm feature that extends the cold plasma that is normally trapped by the geomagnetic field (the plasmasphere) outward towards the bow shock. In the case of the May 1994 storm, the storm and the plume continued for 12 days. For the model storm, we imposed a Kp-driven Volland/Stern-Maynard/Chen potential [2-4]. Results are compared to measurements of the cold ion density from the 1989-046 spacecraft in geosynchronous orbit [5]. We find that many details of the observed plume are reproduced by SAMI3, but only if a background magnetosphere density is included as a boundary condition. We also find that high-speed, field aligned plasma flows contribute significantly to the observed plume density. [1] Huba, J. and J. Krall (2013), Modeling the plasmasphere with SAMI3, Geophys. Res. Lett., 40, 6-10, doi:10.1029/2012GL054300 [2] Volland, H. (1973), A semiempirical model of large-scale magnetospheric electric fields, Journal of Geophysical Research, 78, 171-180, doi:10.1029/JA078i001p00171 [3] Stern, D.P. (1975), The motion of a proton in the equatorial magnetosphere, Journal of Geophysical Research, 80, 595-599, doi:10.1029/JA080i004p00595 [4] Maynard, N.C., and A.J. Chen (1975), Isolated cold plasma regions: Observations and their relation to possible production mechanisms, Journal of Geophysical Research, 80, 1009-1013, doi:10.1029/JA080i007p01009 [5] Borovsky, J.E., D.T. Welling, M.F. Thomsen, and M.H. Denton (2014), Long-lived plasmaspheric drainage plumes: Where does the plasma come from?, Journal of Geophysical Research: Space Physics, 119, 6496-6520, doi:10.1002/2014JA020228 Research supported by NRL base funds.

  9. Numerical simulation of helicopter engine plume in forward flight

    Science.gov (United States)

    Dimanlig, Arsenio C. B.; Vandam, Cornelis P.; Duque, Earl P. N.

    1994-01-01

    Flowfields around helicopters contain complex flow features such as large separated flow regions, vortices, shear layers, blown and suction surfaces and an inherently unsteady flow imposed by the rotor system. Another complicated feature of helicopters is their infrared signature. Typically, the aircraft's exhaust plume interacts with the rotor downwash, the fuselage's complicated flowfield, and the fuselage itself giving each aircraft a unique IR signature at given flight conditions. The goal of this project was to compute the flow about a realistic helicopter fuselage including the interaction of the engine air intakes and exhaust plume. The computations solve the Think-Layer Navier Stokes equations using overset type grids and in particular use the OVERFLOW code by Buning of NASA Ames. During this three month effort, an existing grid system of the Comanche Helicopter was to be modified to include the engine inlet and the hot engine exhaust. The engine exhaust was to be modeled as hot air exhaust. However, considerable changes in the fuselage geometry required a complete regriding of the surface and volume grids. The engine plume computations have been delayed to future efforts. The results of the current work consists of a complete regeneration of the surface and volume grids of the most recent Comanche fuselage along with a flowfield computation.

  10. Simulation of the Intercontinental Transport, Aging, and Removal of a Boreal Fire Smoke Plume

    Science.gov (United States)

    Ghan, S. J.; Chapman, E. G.; Easter, R. C.; Reid, J. S.; Justice, C.

    2003-12-01

    Back trajectories suggest that an elevated absorbing aerosol plume observed over Oklahoma in May 2003 can be traced to intense forest fires in Siberia two weeks earlier. The Fire Locating and Modeling of Burning Emissions (FLAMBE) product is used to estimate smoke emissions from those fires. The Model for Integrated Research on Atmospheric Model Exchanges (MIRAGE) is used to simulate the transport, aging, radiative properties, and removal of the aerosol. The simulated aerosol optical depth is compared with satellite retrievals, and the vertical structure of the plume is compared with in situ measurements. Sensitivity experiments are performed to determine the sensitivity of the simulated plume to uncertainty in the emissions vertical profile, mass flux, size distribution, and composition.

  11. Experimental study of starting plumes simulating cumulus cloud flows in the atmosphere

    Science.gov (United States)

    Subrahmanyam, Duvvuri; Sreenivas, K. R.; Bhat, G. S.; Diwan, S. S.; Narasimha, Roddam

    2009-11-01

    Turbulent jets and plumes subjected to off-source volumetric heating have been studied experimentally and numerically by Narasimha and co-workers and others over the past two decades. The off-source heating attempts to simulate the latent heat release that occurs in cumulus clouds on condensation of water vapour. This heat release plays a crucial role in determining the overall cloud shape among other things. Previous studies investigated steady state jets and plumes that had attained similarity upstream of heat injection. A better understanding and appreciation of the fluid dynamics of cumulus clouds should be possible by study of starting plumes. Experiments have been set up at JNCASR (Bangalore) using experimental techniques developed previously but incorporating various improvements. Till date, experiments have been performed on plumes at Re of 1000 and 2250, with three different heating levels in each case. Axial sections of the flow have been studied using standard PLIF techniques. The flow visualization provides us with data on the temporal evolution of the starting plume. It is observed that the broad nature of the effect of off-source heating on the starting plumes is generally consistent with the results obtained previously on steady state flows. More complete results and a critical discussion will be presented at the upcoming meeting.

  12. Optimized Field Sampling and Monitoring of Airborne Hazardous Transport Plumes; A Geostatistical Simulation Approach

    International Nuclear Information System (INIS)

    Chen, DI-WEN

    2001-01-01

    Airborne hazardous plumes inadvertently released during nuclear/chemical/biological incidents are mostly of unknown composition and concentration until measurements are taken of post-accident ground concentrations from plume-ground deposition of constituents. Unfortunately, measurements often are days post-incident and rely on hazardous manned air-vehicle measurements. Before this happens, computational plume migration models are the only source of information on the plume characteristics, constituents, concentrations, directions of travel, ground deposition, etc. A mobile ''lighter than air'' (LTA) system is being developed at Oak Ridge National Laboratory that will be part of the first response in emergency conditions. These interactive and remote unmanned air vehicles will carry light-weight detectors and weather instrumentation to measure the conditions during and after plume release. This requires a cooperative computationally organized, GPS-controlled set of LTA's that self-coordinate around the objectives in an emergency situation in restricted time frames. A critical step before an optimum and cost-effective field sampling and monitoring program proceeds is the collection of data that provides statistically significant information, collected in a reliable and expeditious manner. Efficient aerial arrangements of the detectors taking the data (for active airborne release conditions) are necessary for plume identification, computational 3-dimensional reconstruction, and source distribution functions. This report describes the application of stochastic or geostatistical simulations to delineate the plume for guiding subsequent sampling and monitoring designs. A case study is presented of building digital plume images, based on existing ''hard'' experimental data and ''soft'' preliminary transport modeling results of Prairie Grass Trials Site. Markov Bayes Simulation, a coupled Bayesian/geostatistical methodology, quantitatively combines soft information

  13. Three-dimensional simulation of gas and dust in Io's Pele plume

    Science.gov (United States)

    McDoniel, William J.; Goldstein, David B.; Varghese, Philip L.; Trafton, Laurence M.

    2015-09-01

    Io's giant Pele plume rises high above the moon's surface and produces a complex deposition pattern. We use the direct simulation Monte Carlo (DSMC) method to model the flow of SO2 gas and silicate ash from the surface of the lava lake, into the umbrella-shaped canopy of the plume, and eventually onto the surface where the flow leaves black "butterfly wings" surrounded by a large red ring. We show how the geometry of the lava lake, from which the gas is emitted, is responsible for significant asymmetry in the plume and for the shape of the red deposition ring by way of complicated gas-dynamic interactions between parts of the gas flow arising from different areas in the lava lake. We develop a model for gas flow in the immediate vicinity of the lava lake and use it to show that the behavior of ash particles of less than about 2 μm in diameter in the plume is insensitive to the details of how they are introduced into the flow because they are coupled to the gas at low altitudes. We simulate dust particles in the plume to show how particle size determines the distance from the lava lake at which particles deposit on the surface, and we use this dependence to find a size distribution of black dust particles in the plume that provides the best explanation for the observed black fans to the east and west of the lava lake. This best-fit particle size distribution suggests that there may be two distinct mechanisms of black dust creation at Pele, and when two log-normal distributions are fit to our results we obtain a mean particle diameter of 88 nm. We also propose a mechanism by which the condensible plume gas might overlay black dust in areas where black coloration is not observed and compare this to the observed overlaying of Pillanian dust by Pele's red ring.

  14. Biological effects of simulated discharge plume entrainment at Indian Point Nuclear Power Station, Hudson River estuary, USA

    International Nuclear Information System (INIS)

    Lanza, G.R.; Lauer, G.J.; Ginn, T.C.; Storm, P.C.; Zubarik, L.; New York Univ., N.Y.

    1975-01-01

    Laboratory and field simulations of the discharge plume entrainment of phytoplankton, zooplankton and fish were carried out at the Indian Point Nuclear Station, Hudson River estuary, USA. Phytoplankton assemblages studied on two dates produced different response patterns measured as photosynthetic activity. Chlorophyll-a levels did not change following simulated entrainment. Possible explanations for the differences are discussed. The two abundant copepods Acartia tonsa and Eurytemorta affinis appear to tolerate exposure to discharge plume ΔT without adverse effects. Copepods subjected to plume entrainment may suffer considerable mortality during periods of condenser chlorination. In general, the amphipod Gammarus spp. did not appear to suffer significant mortality during simulated entrainment. Juvenile striped bass, Morone saxatilis, were not affected by simulated plume transit before and during plant condenser chlorination; however, a simulated ''worst possible case'' plume ΔT produced statistically significant moralities. (author)

  15. Simulation of regimes of convection and plume dynamics by the thermal Lattice Boltzmann Method

    Science.gov (United States)

    Mora, Peter; Yuen, David A.

    2018-02-01

    We present 2D simulations using the Lattice Boltzmann Method (LBM) of a fluid in a rectangular box being heated from below, and cooled from above. We observe plumes, hot narrow upwellings from the base, and down-going cold chutes from the top. We have varied both the Rayleigh numbers and the Prandtl numbers respectively from Ra = 1000 to Ra =1010 , and Pr = 1 through Pr = 5 ×104 , leading to Rayleigh-Bénard convection cells at low Rayleigh numbers through to vigorous convection and unstable plumes with pronounced vortices and eddies at high Rayleigh numbers. We conduct simulations with high Prandtl numbers up to Pr = 50, 000 to simulate in the inertial regime. We find for cases when Pr ⩾ 100 that we obtain a series of narrow plumes of upwelling fluid with mushroom heads and chutes of downwelling fluid. We also present simulations at a Prandtl number of 0.7 for Rayleigh numbers varying from Ra =104 through Ra =107.5 . We demonstrate that the Nusselt number follows power law scaling of form Nu ∼Raγ where γ = 0.279 ± 0.002 , which is consistent with published results of γ = 0.281 in the literature. These results show that the LBM is capable of reproducing results obtained with classical macroscopic methods such as spectral methods, and demonstrate the great potential of the LBM for studying thermal convection and plume dynamics relevant to geodynamics.

  16. Thermal plume above a simulated sitting person with different complexity of body geometry

    DEFF Research Database (Denmark)

    Zukowska, Daria; Melikov, Arsen Krikor; Popiolek, Zbigniew J.

    2007-01-01

    Occupants are one of the main heat sources in rooms. They generate thermal plumes with characteristics, which depend on geometry, surface temperature and area of the human body in contact with the surrounding air as well as temperature, velocity and turbulence intensity distribution in the room....... The characteristics of the thermal plume generated by a sitting person were studied using four human body simulators with different complexity of geometry but equal surface area: a vertical cylinder, a rectangular box, a dummy, and a thermal manikin. The results show that the dummy and the thermal manikin generate...

  17. Large-eddy simulation of plume dispersion within regular arrays of cubic buildings

    Science.gov (United States)

    Nakayama, H.; Jurcakova, K.; Nagai, H.

    2011-04-01

    There is a potential problem that hazardous and flammable materials are accidentally or intentionally released within populated urban areas. For the assessment of human health hazard from toxic substances, the existence of high concentration peaks in a plume should be considered. For the safety analysis of flammable gas, certain critical threshold levels should be evaluated. Therefore, in such a situation, not only average levels but also instantaneous magnitudes of concentration should be accurately predicted. In this study, we perform Large-Eddy Simulation (LES) of plume dispersion within regular arrays of cubic buildings with large obstacle densities and investigate the influence of the building arrangement on the characteristics of mean and fluctuating concentrations.

  18. Cathode Effects in Cylindrical Hall Thrusters

    Energy Technology Data Exchange (ETDEWEB)

    Granstedt, E.M.; Raitses, Y.; Fisch, N. J.

    2008-09-12

    Stable operation of a cylindrical Hall thruster (CHT) has been achieved using a hot wire cathode, which functions as a controllable electron emission source. It is shown that as the electron emission from the cathode increases with wire heating, the discharge current increases, the plasma plume angle reduces, and the ion energy distribution function shifts toward higher energies. The observed effect of cathode electron emission on thruster parameters extends and clarifies performance improvements previously obtained for the overrun discharge current regime of the same type of thruster, but using a hollow cathode-neutralizer. Once thruster discharge current saturates with wire heating, further filament heating does not affect other discharge parameters. The saturated values of thruster discharge parameters can be further enhanced by optimal placement of the cathode wire with respect to the magnetic field.

  19. DSMC simulation of two-phase plume flow with UV radiation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jie; Liu, Ying; Wang, Ning; Jin, Ling [College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, Hunan, 410073 (China)

    2014-12-09

    Rarefied gas-particle two-phase plume in which the phase of particles is liquid or solid flows from a solid propellant rocket of hypersonic vehicle flying at high altitudes, the aluminum oxide particulates not only impact the rarefied gas flow properties, but also make a great difference to plume radiation signature, so the radiation prediction of the rarefied gas-particle two-phase plume flow is very important for space target detection of hypersonic vehicles. Accordingly, this project aims to study the rarefied gas-particle two-phase flow and ultraviolet radiation (UV) characteristics. Considering a two-way interphase coupling of momentum and energy, the direct simulation Monte Carlo (DSMC) method is developed for particle phase change and the particle flow, including particulate collision, coalescence as well as separation, and a Monte Carlo ray trace model is implemented for the particulate UV radiation. A program for the numerical simulation of the gas-particle two-phase flow and radiation in which the gas flow nonequilibrium is strong is implemented as well. Ultraviolet radiation characteristics of the particle phase is studied based on the calculation of the flow field coupled with the radiation calculation, the radiation model for different size particles is analyzed, focusing on the effects of particle emission, absorption, scattering as well as the searchlight emission of the nozzle. A new approach may be proposed to describe the rarefied gas-particle two-phase plume flow and radiation transfer characteristics in this project.

  20. DSMC simulation of two-phase plume flow with UV radiation

    Science.gov (United States)

    Li, Jie; Liu, Ying; Wang, Ning; Jin, Ling

    2014-12-01

    Rarefied gas-particle two-phase plume in which the phase of particles is liquid or solid flows from a solid propellant rocket of hypersonic vehicle flying at high altitudes, the aluminum oxide particulates not only impact the rarefied gas flow properties, but also make a great difference to plume radiation signature, so the radiation prediction of the rarefied gas-particle two-phase plume flow is very important for space target detection of hypersonic vehicles. Accordingly, this project aims to study the rarefied gas-particle two-phase flow and ultraviolet radiation (UV) characteristics. Considering a two-way interphase coupling of momentum and energy, the direct simulation Monte Carlo (DSMC) method is developed for particle phase change and the particle flow, including particulate collision, coalescence as well as separation, and a Monte Carlo ray trace model is implemented for the particulate UV radiation. A program for the numerical simulation of the gas-particle two-phase flow and radiation in which the gas flow nonequilibrium is strong is implemented as well. Ultraviolet radiation characteristics of the particle phase is studied based on the calculation of the flow field coupled with the radiation calculation, the radiation model for different size particles is analyzed, focusing on the effects of particle emission, absorption, scattering as well as the searchlight emission of the nozzle. A new approach may be proposed to describe the rarefied gas-particle two-phase plume flow and radiation transfer characteristics in this project.

  1. Large-Eddy Simulation on Plume Dispersion within Regular Arrays of Cubic Buildings

    Science.gov (United States)

    Nakayama, H.; Jurcakova, K.; Nagai, H.

    2010-09-01

    There is a potential problem that hazardous and flammable materials are accidentally or intentionally released into the atmosphere, either within or close to populated urban areas. For the assessment of human health hazard from toxic substances, the existence of high concentration peaks in a plume should be considered. For the safety analysis of flammable gas, certain critical threshold levels should be evaluated. Therefore, in such a situation, not only average levels but also instantaneous magnitudes of concentration should be accurately predicted. However, plume dispersion is an extremely complicated process strongly influenced by the existence of buildings. In complex turbulent flows, such as impinging, separated and circulation flows around buildings, plume behaviors can be no longer accurately predicted using empirical Gaussian-type plume model. Therefore, we perform Large-Eddy Simulations (LES) on turbulent flows and plume dispersions within and over regular arrays of cubic buildings with various roughness densities and investigate the influence of the building arrangement pattern on the characteristics of mean and fluctuation concentrations. The basic equations for the LES model are composed of the spatially filtered continuity equation, Navier-Stokes equation and transport equation of concentration. The standard Smagorinsky model (Smagorinsky, 1963) that has enough potential for environment flows is used and its constant is set to 0.12 for estimating the eddy viscosity. The turbulent Schmidt number is 0.5. In our LES model, two computational regions are set up. One is a driver region for generation of inflow turbulence and the other is a main region for LES of plume dispersion within a regular array of cubic buildings. First, inflow turbulence is generated by using Kataoka's method (2002) in the driver region and then, its data are imposed at the inlet of the main computational region at each time step. In this study, the cubic building arrays with λf=0

  2. Plume-Free Stream Interaction Heating Effects During Orion Crew Module Reentry

    Science.gov (United States)

    Marichalar, J.; Lumpkin, F.; Boyles, K.

    2012-01-01

    During reentry of the Orion Crew Module (CM), vehicle attitude control will be performed by firing reaction control system (RCS) thrusters. Simulation of RCS plumes and their interaction with the oncoming flow has been difficult for the analysis community due to the large scarf angles of the RCS thrusters and the unsteady nature of the Orion capsule backshell environments. The model for the aerothermal database has thus relied on wind tunnel test data to capture the heating effects of thruster plume interactions with the freestream. These data are only valid for the continuum flow regime of the reentry trajectory. A Direct Simulation Monte Carlo (DSMC) analysis was performed to study the vehicle heating effects that result from the RCS thruster plume interaction with the oncoming freestream flow at high altitudes during Orion CM reentry. The study was performed with the DSMC Analysis Code (DAC). The inflow boundary conditions for the jets were obtained from Data Parallel Line Relaxation (DPLR) computational fluid dynamics (CFD) solutions. Simulations were performed for the roll, yaw, pitch-up and pitch-down jets at altitudes of 105 km, 125 km and 160 km as well as vacuum conditions. For comparison purposes (see Figure 1), the freestream conditions were based on previous DAC simulations performed without active RCS to populate the aerodynamic database for the Orion CM. Other inputs to the analysis included a constant Orbital reentry velocity of 7.5 km/s and angle of attack of 160 degrees. The results of the study showed that the interaction effects decrease quickly with increasing altitude. Also, jets with highly scarfed nozzles cause more severe heating compared to the nozzles with lower scarf angles. The difficulty of performing these simulations was based on the maximum number density and the ratio of number densities between the freestream and the plume for each simulation. The lowest altitude solutions required a substantial amount of computational resources

  3. Simulating Bubble Plumes from Breaking Waves with a Forced-Air Venturi

    Science.gov (United States)

    Long, M. S.; Keene, W. C.; Maben, J. R.; Chang, R. Y. W.; Duplessis, P.; Kieber, D. J.; Beaupre, S. R.; Frossard, A. A.; Kinsey, J. D.; Zhu, Y.; Lu, X.; Bisgrove, J.

    2017-12-01

    It has been hypothesized that the size distribution of bubbles in subsurface seawater is a major factor that modulates the corresponding size distribution of primary marine aerosol (PMA) generated when those bubbles burst at the air-water interface. A primary physical control of the bubble size distribution produced by wave breaking is the associated turbulence that disintegrates larger bubbles into smaller ones. This leads to two characteristic features of bubble size distributions: (1) the Hinze scale which reflects a bubble size above which disintegration is possible based on turbulence intensity and (2) the slopes of log-linear regressions of the size distribution on either side of the Hinze scale that indicate the state of plume evolution or age. A Venturi with tunable seawater and forced air flow rates was designed and deployed in an artificial PMA generator to produce bubble plumes representative of breaking waves. This approach provides direct control of turbulence intensity and, thus, the resulting bubble size distribution characterizable by observations of the Hinze scale and the simulated plume age over a range of known air detrainment rates. Evaluation of performance in different seawater types over the western North Atlantic demonstrated that the Venturi produced bubble plumes with parameter values that bracket the range of those observed in laboratory and field experiments. Specifically, the seawater flow rate modulated the value of the Hinze scale while the forced-air flow rate modulated the plume age parameters. Results indicate that the size distribution of sub-surface bubbles within the generator did not significantly modulate the corresponding number size distribution of PMA produced via bubble bursting.

  4. Studies of Non-Conventional Configuration Closed Electron Drift Thrusters

    International Nuclear Information System (INIS)

    Y. Raitses; D. Staack; A. Smirnov; A.A. Litvak; L.A. Dorf; T. Graves; N.J. Fisch

    2001-01-01

    In this paper, we review recent results obtained for segmented electrode and cylindrical Hall thrusters. A low sputtering graphite segmented electrode, placed at the exit of the annular thruster, is shown to affect the plasma potential distribution in the ceramic channel. This effect appears to be correlated with an observed plume reduction compared to a conventional, nonsegmented thruster. In preliminary experiments a 3-cm thruster was operated in the 50-200 W power range. Two operating regimes, stable and oscillating, were observed and investigated

  5. Computational simulation of coupled nonequilibrium discharge and compressible flow phenomena in a microplasma thruster

    International Nuclear Information System (INIS)

    Deconinck, Thomas; Mahadevan, Shankar; Raja, Laxminarayan L.

    2009-01-01

    The microplasma thruster (MPT) concept is a simple extension of a cold gas micronozzle propulsion device, where a direct-current microdischarge is used to preheat the gas stream to improve the specific impulse of the device. Here we study a prototypical MPT device using a detailed, self-consistently coupled plasma and flow computational model. The model describes the microdischarge power deposition, plasma dynamics, gas-phase chemical kinetics, coupling of the plasma phenomena with high-speed flow, and overall propulsion system performance. Compared to a cold gas micronozzle, a significant increase in specific impulse is obtained from the power deposition in the diverging section of the MPT nozzle. For a discharge voltage of 750 V, a power input of 650 mW, and an argon mass flow rate of 5 SCCM (SCCM denotes cubic centimeter per minute at STP), the specific impulse of the device is increased by a factor of ∼1.5 to about 74 s. The microdischarge remains mostly confined inside the micronozzle and operates in an abnormal glow discharge regime. Gas heating, primarily due to ion Joule heating, is found to have a strong influence on the overall discharge behavior. The study provides a validation of the MPT concept as a simple and effective approach to improve the performance of micronozzle cold gas propulsion devices.

  6. Numerical simulation of the impact of water-air fronts on radionuclides plumes in heterogeneous media

    International Nuclear Information System (INIS)

    Aquino, J.; Francisco, A.S.; Pereira, F.; Amaral Souto, H.P.

    2004-01-01

    The goal of this paper is to investigate the interaction of water-air fronts with radionuclide plumes in unsaturated heterogeneous porous media. This problem is modeled by a system of equations that describes both the water-air flow and the radionuclide transport. The water-air problem is solved numerically by a mixed finite element combined with a non-oscillatory central difference scheme. For the radionuclide transport equation we use the Modified Method of Characteristics (MMOC). We present the results of numerical simulations for heterogeneous permeability fields taking into account sorption effects. (author)

  7. 3D simulation of the thermal and chemical plumes using open source software

    International Nuclear Information System (INIS)

    Saenz Temino, J. L.; Lerones Martin, J.; Gonzalez Delgado, J.

    2013-01-01

    The interaction of thermal and chemical plumes in the region of the Irish Sea near the site has been simulated using a finite element model representative of the local hydrodynamic regime, concluding how the method of selected cooling, open cycle, is physically and environmentally feasible. Furthermore, tunnel lengths required for each scenario under discussion have been preliminarily defined, varying in a range from 1800 to 2300 meters for a unit (1 tunnel), 4400-6300 meters of two units (2 tunnels) and 8000 meters to three units (2 tunnels), depending on the chosen technology.

  8. Simulating the effects of phosphorus limitation in the Mississippi and Atchafalaya River plumes

    Directory of Open Access Journals (Sweden)

    A. Laurent

    2012-11-01

    Full Text Available The continental shelf of the northern Gulf of Mexico receives high dissolved inorganic nitrogen and phosphorus loads from the Mississippi and Atchafalaya rivers. The nutrient load results in high primary production in the river plumes and contributes to the development of hypoxia on the Louisiana shelf in summer. While phytoplankton growth is considered to be typically nitrogen-limited in marine waters, phosphorus limitation has been observed in this region during periods of peak river discharge in spring and early summer. Here we investigate the presence, spatio-temporal distribution and implications of phosphorus limitation in the plume region using a circulation model of the northern Gulf of Mexico coupled to a multi-nutrient ecosystem model. Results from a 7-yr simulation (2001–2007 compare well with several sources of observations and suggest that phosphorus limitation develops every year between the Mississippi and Atchafalaya deltas. Model simulations show that phosphorus limitation results in a delay and westward shift of a fraction of river-stimulated primary production. The consequence is a reduced flux of particulate organic matter to the sediment near the Mississippi delta, but slightly enhanced fluxes west of Atchafalaya Bay. Simulations with altered river phosphate concentrations (±50% show that significant variation in the spatial extent of phosphorus limitation (±40% in July results from changes in phosphate load.

  9. Numerical Simulation of Plume Transport in Channel Bend with Different Sediment Diameters

    Science.gov (United States)

    Kim, H. S.; Chen, H. C.

    2017-12-01

    The flow and transport of suspended sediment particles, in the form of plume, were simulated using an in-house Computational Fluid Dynamics (CFD) solver FANS3D (Finite Analytic Navier-Stokes code for 3D flow). The motivation for this investigation is to provide a means to simulate and visualize dispersal systems in a complex flow environment. The physical domain considered is a 90-degrees channel bend with wingwall abutments, which induces complex, three-dimensional flow characteristics. At the inlet of the channel, a sediment plume with the volumetric concentration of 1,000 parts per million (ppm) was constantly supplied. For simplicity, it was assumed that neither deposition nor erosion takes place inside the channel and settling sediment was made to pass through the bed surface. The effect of the sediment particle size was also analyzed using two different median diameters: 0.10 mm and 0.20 mm. It was shown that flow acceleration and vortices cause strong mixing inside the channel. The three-dimensional time series from the simulation captured increasing suspended sediment concentration downstream of the abutments, along the outer bank. When the median diameter was varied, the sediment concentration at certain locations differed by orders of magnitude, indicating that the settling velocity dominates the transport process for larger diameters.

  10. Los Alamos NEP research in advanced plasma thrusters

    Science.gov (United States)

    Schoenberg, Kurt; Gerwin, Richard

    1991-01-01

    Research was initiated in advanced plasma thrusters that capitalizes on lab capabilities in plasma science and technology. The goal of the program was to examine the scaling issues of magnetoplasmadynamic (MPD) thruster performance in support of NASA's MPD thruster development program. The objective was to address multi-megawatt, large scale, quasi-steady state MPD thruster performance. Results to date include a new quasi-steady state operating regime which was obtained at space exploration initiative relevant power levels, that enables direct coaxial gun-MPD comparisons of thruster physics and performance. The radiative losses are neglible. Operation with an applied axial magnetic field shows the same operational stability and exhaust plume uniformity benefits seen in MPD thrusters. Observed gun impedance is in close agreement with the magnetic Bernoulli model predictions. Spatial and temporal measurements of magnetic field, electric field, plasma density, electron temperature, and ion/neutral energy distribution are underway. Model applications to advanced mission logistics are also underway.

  11. Experimental test of 200 W Hall thruster with titanium wall

    Science.gov (United States)

    Ding, Yongjie; Sun, Hezhi; Peng, Wuji; Xu, Yu; Wei, Liqiu; Li, Hong; Li, Peng; Su, Hongbo; Yu, Daren

    2017-05-01

    We designed a 200 W Hall thruster based on the technology of pushing down a magnetic field with two permanent magnetic rings. Boron nitride (BN) is an important insulating wall material for Hall thrusters. The discharge characteristics of the designed Hall thruster were studied by replacing BN with titanium (Ti). Experimental results show that the designed Hall thruster can discharge stably for a long time under a Ti channel. Experiments were performed to determine whether the channel and cathode are electrically connected. When the channel wall and cathode are insulated, the divergence angle of the plume increases, but the performance of the Hall thruster is improved in terms of thrust, specific impulse, anode efficiency, and thrust-to-power ratio. Ti exhibits a powerful antisputtering capability, a low emanation rate of gas, and a large structural strength, making it a potential candidate wall material in the design of low-power Hall thrusters.

  12. Predicting Hall Thruster Operational Lifetime Using a Kinetic Plasma Model and a Molecular Dynamics Simulation Method, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Hall thrusters are being considered for many space missions because their high specific impulse delivers a larger payload mass fraction than chemical rockets. With a...

  13. A Steam Jet Plume Simulation in a Large Bulk Space with a System Code MARS

    International Nuclear Information System (INIS)

    Bae, Sung Won; Chung, Bub Dong

    2006-01-01

    From May 2002, the OECD-SETH group has launched the PANDA Project in order to provide an experimental data base for a multi-dimensional code assessment. OECD-SETH group expects the PANDA Project will meet the increasing needs for adequate experimental data for a 3D distribution of relevant variables like the temperature, velocity and steam-air concentrations that are measured with a sufficient resolution and accuracy. The scope of the PANDA Project is the mixture stratification and mixing phenomena in a large bulk space. Total of 24 test series are still being performed in PSI, Switzerland. The PANDA facility consists of 2 main large vessels and 1 connection pipe Within the large vessels, a steam injection nozzle and outlet vent are arranged for each test case. These tests are categorized into 3 modes, i.e. the high momentum, near wall plume, and free plume tests. KAERI has also participated in the SETH group since 1997 so that the multi-dimensional capability of the MARS code could be assessed and developed. Test 17, the high steam jet injection test, has already been simulated by MARS and shows promising results. Now, the test 9 and 9bis cases which use a low speed horizontal steam jet flow have been simulated and investigated

  14. Numerical simulation and PIV experimental analysis of electrohydrodynamic plumes induced by a blade electrode

    International Nuclear Information System (INIS)

    Traore, Ph; Daaboul, M; Louste, Ch

    2010-01-01

    In this paper a comparative study between numerical and experimental results from particle image velocimetry (PIV) measurements is presented in the case of two-dimensional electrohydrodynamic plumes that arise when a sharp metallic blade, submerged in non-conducting liquids, supports a high electric potential. Experiments and numerical simulations have been conducted in order to compare both the approaches. Very good agreement has been found through velocity profiles and velocity fields which proves the relevance of our numerical model. For high potentials the jet flow issued forth from the blade becomes unsteady and starts to flap on the vertical wall. Some snapshots of the temporal evolution of the isocontours of charge density which is not accessible from experiment are presented thanks to the numerical simulation.

  15. Arcjet space thrusters

    Science.gov (United States)

    Keefer, Dennis; Rhodes, Robert

    1993-05-01

    Electrically powered arc jets which produce thrust at high specific impulse could provide a substantial cost reduction for orbital transfer and station keeping missions. There is currently a limited understanding of the complex, nonlinear interactions in the plasma propellant which has hindered the development of high efficiency arc jet thrusters by making it difficult to predict the effect of design changes and to interpret experimental results. A computational model developed at the University of Tennessee Space Institute (UTSI) to study laser powered thrusters and radio frequency gas heaters has been adapted to provide a tool to help understand the physical processes in arc jet thrusters. The approach is to include in the model those physical and chemical processes which appear to be important, and then to evaluate our judgement by the comparison of numerical simulations with experimental data. The results of this study have been presented at four technical conferences. The details of the work accomplished in this project are covered in the individual papers included in the appendix of this report. We present a brief description of the model covering its most important features followed by a summary of the effort.

  16. Laser injection of ultra-short electron bursts for the diagnosis of Hall thruster plasma

    International Nuclear Information System (INIS)

    Albarede, L; Gibert, T; Lazurenko, A; Bouchoule, A

    2006-01-01

    The present developments of Hall thrusters for satellite control and space mission technologies represent a new step towards their routine use in place of conventional thermal thrusters. In spite of their long R and D history, the complex physics of the E x B discharge at work in these structures has prevented, up to now, the availability of predictive simulations. The electron transport in the accelerating layers of these thrusters is one of the remaining challenges in this direction. From the experimental point of view, any diagnostics of electron transport and electric field in this critical layer would be welcome for comparison with code predictions. Appropriate diagnostics are difficult, due to the very aggressive local plasma conditions. This paper presents the first step in the development of a new tool for characterization of the plasma electric field in the very near exhaust thruster plume and comparison with simulation code predictions. The main idea is to use very short bursts of electrons, probing local electron dynamics in this critical plume area. Such bursts can be obtained through photoelectric emission induced by a UV pulsed laser beam on a convenient target. A specific study, devoted to the characterization of the electron burst emission, is presented in the first section of the paper; the implementation and testing of the injection of electrons in the critical layer of Hall thruster plasma is described in the second section. The design and testing of a fast and sensitive system for characterizing the transport of injected bursts will be the next step of this program. It requires a preliminary evaluation of electron trajectories which was achieved by using simulation code. Simulation data are presented in the last section of the paper, with the full diagnostic design to be tested in the near future, when runs will be available in the renewed PIVOINE facility. The same electron burst injection could also be a valuable input in the present

  17. A Numerical Study on Hydrodynamic Interactions between Dynamic Positioning Thrusters

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Doo Hwa; Lee, Sang Wook [University of Ulsan, Ulsan (Korea, Republic of)

    2017-06-15

    In this study, we conducted computational fluid dynamics (CFD) simulations for the unsteady hydrodynamic interaction of multiple thrusters by solving Reynolds averaged Navier-Stokes equations. A commercial CFD software, STAR-CCM+ was used for all simulations by employing a ducted thruster model with combination of a propeller and No. 19a duct. A sliding mesh technique was used to treat dynamic motion of propeller rotation and non-conformal hexahedral grid system was considered. Four different combinations in tilting and azimuth angles of the thrusters were considered to investigate the effects on the propulsion performance. We could find that thruster-hull and thruster-thruster interactions has significant effect on propulsion performance and further study will be required for the optimal configurations with the best tilting and relative azimuth angle between thrusters.

  18. Non-equilibrium processes in ash-laden volcanic plumes: new insights from 3D multiphase flow simulations

    Science.gov (United States)

    Esposti Ongaro, Tomaso; Cerminara, Matteo

    2016-10-01

    In the framework of the IAVCEI (International Association of Volcanology and Chemistry of the Earth Interior) initiative on volcanic plume models intercomparison, we discuss three-dimensional numerical simulations performed with the multiphase flow model PDAC (Pyroclastic Dispersal Analysis Code). The model describes the dynamics of volcanic and atmospheric gases (in absence of wind) and two pyroclastic phases by adopting a non-equilibrium Eulerian-Eulerian formulation. Accordingly, gas and particulate phases are treated as interpenetrating fluids, interacting with each other through momentum (drag) and heat exchange. Numerical results describe the time-wise and spatial evolution of weak (mass eruption rate: 1.5 × 106 kg/s) and strong (mass eruption rate: 1.5 × 109 kg/s) plumes. The two tested cases display a remarkably different phenomenology, associated with the different roles of atmospheric stratification, compressibility and mechanism of buoyancy reversal, reflecting in a different structure of the plume, of the turbulent eddies and of the atmospheric circulation. This also brings about different rates of turbulent mixing and atmospheric air entrainment. The adopted multiphase flow model allows to quantify temperature and velocity differences between the gas and particles, including settling, preferential concentration by turbulence and thermal non-equilibrium, as a function of their Stokes number, i.e., the ratio between their kinetic equilibrium time and the characteristic large-eddy turnover time of the turbulent plume. As a result, the spatial and temporal distribution of coarse ash in the atmosphere significantly differs from that of the fine ash, leading to a modification of the plume shape. Finally, three-dimensional numerical results have been averaged in time and across horizontal slices in order to obtain a one-dimensional picture of the plume in a stationary regime. For the weak plume, the results are consistent with one-dimensional models, at

  19. Laser-Induced Fluorescence Measurements within a Laboratory Hall Thruster (Postprint)

    National Research Council Canada - National Science Library

    Hargus, Jr., W. A; Cappelli, M. A

    1999-01-01

    In this paper, we describe the results of a study of laser induced fluorescence velocimetry of ionic xenon in the plume and interior acceleration channel of a laboratory Hall type thruster operating...

  20. Single Cathode Ion Thruster

    Data.gov (United States)

    National Aeronautics and Space Administration — Objective is to design an electrostatic ion thruster that is more efficient, simpler, and lower cost than the current gridded ion thruster. Initial objective is to...

  1. ExB Measurements of a 200 W Xenon Hall Thruster (Preprint)

    National Research Council Canada - National Science Library

    Ekholm, Jared M; Hargus, Jr, William A

    2007-01-01

    Angularly resolved ion species fractions of Xe+1, Xe+2, and Xe+3 in a low power xenon Hall thruster Busek BHT-200 plume were measured using an ExB probe under a variety of thruster operating conditions and background pressures...

  2. Optimization of a coaxial electron cyclotron resonance plasma thruster with an analytical model

    Energy Technology Data Exchange (ETDEWEB)

    Cannat, F., E-mail: felix.cannat@onera.fr, E-mail: felix.cannat@gmail.com; Lafleur, T. [Physics and Instrumentation Department, Onera -The French Aerospace Lab, Palaiseau, Cedex 91123 (France); Laboratoire de Physique des Plasmas, CNRS, Sorbonne Universites, UPMC Univ Paris 06, Univ Paris-Sud, Ecole Polytechnique, 91128 Palaiseau (France); Jarrige, J.; Elias, P.-Q.; Packan, D. [Physics and Instrumentation Department, Onera -The French Aerospace Lab, Palaiseau, Cedex 91123 (France); Chabert, P. [Laboratoire de Physique des Plasmas, CNRS, Sorbonne Universites, UPMC Univ Paris 06, Univ Paris-Sud, Ecole Polytechnique, 91128 Palaiseau (France)

    2015-05-15

    A new cathodeless plasma thruster currently under development at Onera is presented and characterized experimentally and analytically. The coaxial thruster consists of a microwave antenna immersed in a magnetic field, which allows electron heating via cyclotron resonance. The magnetic field diverges at the thruster exit and forms a nozzle that accelerates the quasi-neutral plasma to generate a thrust. Different thruster configurations are tested, and in particular, the influence of the source diameter on the thruster performance is investigated. At microwave powers of about 30 W and a xenon flow rate of 0.1 mg/s (1 SCCM), a mass utilization of 60% and a thrust of 1 mN are estimated based on angular electrostatic probe measurements performed downstream of the thruster in the exhaust plume. Results are found to be in fair agreement with a recent analytical helicon thruster model that has been adapted for the coaxial geometry used here.

  3. Evaluations of NOx and highly reactive VOC emission inventories in Texas and their implications for ozone plume simulations during the Texas Air Quality Study 2006

    NARCIS (Netherlands)

    Kim, S.-W.; McKeen, S.A.; Frost, G.J.; Lee, S.-H.; Trainer, M.; Richter, A.; Angevine, W. M.; Atlas, E.; Bianco, L.; Boersma, K.F.; Brioude, J.; Burrow, J.P.; Gouw, de J.; Fried, A.; Gleason, J.F.; Hilboll, A.; Mellqvist, J.; Peischl, J.; Richter, D.; Rivera, C.; Ryerson, T.; Lintel Hekkert, te L.; Walega, J.; Warneke, C.; Weibring, P.; Williams, E.

    2011-01-01

    Satellite and aircraft observations made during the 2006 Texas Air Quality Study (TexAQS) detected strong urban, industrial and power plant plumes in Texas. We simulated these plumes using the Weather Research and Forecasting-Chemistry (WRF-Chem) model with input from the US EPA's 2005 National

  4. High Accuracy Positioning using Jet Thrusters for Quadcopter

    Directory of Open Access Journals (Sweden)

    Pi ChenHuan

    2018-01-01

    Full Text Available A quadcopter is equipped with four additional jet thrusters on its horizontal plane and vertical to each other in order to improve the maneuverability and positioning accuracy of quadcopter. A dynamic model of the quadcopter with jet thrusters is derived and two controllers are implemented in simulation, one is a dual loop state feedback controller for pose control and another is an auxiliary jet thruster controller for accurate positioning. Step response simulations showed that the jet thruster can control the quadcopter with less overshoot compared to the conventional one. Over 10s loiter simulation with disturbance, the quadcopter with jet thruster decrease 85% of RMS error of horizontal disturbance compared to a conventional quadcopter with only a dual loop state feedback controller. The jet thruster controller shows the possibility for further accurate in the field of quadcopter positioning.

  5. Simulations of microphysical, radiative, and dynamical processes in a continental-scale forest fire smoke plume

    Science.gov (United States)

    Westphal, Douglas L.; Toon, Owen B.

    1991-01-01

    The impact of a large forest fire smoke plume on atmospheric processes is studied through a numerical model of meteorology, aerosols, and radiative transfer. The simulated smoke optical depths at 0.63-micron wavelength are in agreement with analyses of satellite data and show values as high as 1.8. The smoke has an albedo of 35 percent, or more than double the clear-sky value, and cools the surface by as much as 5 K. An imaginary refractive index, n sub im, of 0.01 yields results which closely match the observed cooling, single scattering albedo, and the Angstrom wavelength exponent. An n exp im of 0.1, typical of smoke from urban fires, produces 9 K cooling. Coagulation causes the geometric mean radius by number to increase from the initial value of 0.08 micron to a final value of 0.15 micron, while the specific extinction and absorption increase by 40 and 25 percent, respectively.

  6. Interactive desktop analysis of high resolution simulations: application to turbulent plume dynamics and current sheet formation

    International Nuclear Information System (INIS)

    Clyne, John; Mininni, Pablo; Norton, Alan; Rast, Mark

    2007-01-01

    The ever increasing processing capabilities of the supercomputers available to computational scientists today, combined with the need for higher and higher resolution computational grids, has resulted in deluges of simulation data. Yet the computational resources and tools required to make sense of these vast numerical outputs through subsequent analysis are often far from adequate, making such analysis of the data a painstaking, if not a hopeless, task. In this paper, we describe a new tool for the scientific investigation of massive computational datasets. This tool (VAPOR) employs data reduction, advanced visualization, and quantitative analysis operations to permit the interactive exploration of vast datasets using only a desktop PC equipped with a commodity graphics card. We describe VAPORs use in the study of two problems. The first, motivated by stellar envelope convection, investigates the hydrodynamic stability of compressible thermal starting plumes as they descend through a stratified layer of increasing density with depth. The second looks at current sheet formation in an incompressible helical magnetohydrodynamic flow to understand the early spontaneous development of quasi two-dimensional (2D) structures embedded within the 3D solution. Both of the problems were studied at sufficiently high spatial resolution, a grid of 504 2 by 2048 points for the first and 1536 3 points for the second, to overwhelm the interactive capabilities of typically available analysis resources

  7. Simulation of the plume emitted by a municipal waste incinerator located in the Madeira island

    Energy Technology Data Exchange (ETDEWEB)

    Coutinho, M.; Ribeiro, C.; Pereira, M.; Borrego, C. [Campus Univ., AVEIRO (Portugal). IDAD - Inst. of Environment and Development

    2004-07-01

    The study of meteorological circulations in small islands has been quite limited with the majority of the research published concerning the analysis of the eolic potential for energy production. Other researchers focused on the description of the dispersion of gases emitted by volcanic activity. In this paper, a mesoscale meteorological and dispersion model was applied to simulate the behaviour of the plume of a municipal waste incinerator (MSW) that was constructed in the southern slope of the Madeira island at an altitude of 1380 m. Madeira is a Portuguese island located in the Atlantic Ocean at approximately 32 40'N and 16 52'W with a clear east-west development. The island is relatively small (60 x 20 km{sup 2}) but is characterized by very complex orography with maximum peaks reaching 1800 m. The fact that the orography has the same east-west development creates a very strong distinction between the northern and the southern slopes. The northern slope is strongly exposed to the prevalent synoptic flows and the southern slope is much warmer, quiet and where the majority of the population lives. The climate is very mild with small thermal amplitudes and maximum temperatures between 18 to 28 C. Sea temperature during summer rises to 22-23 C. (orig.)

  8. Investigation of natural gas plume dispersion using mobile observations and large eddy simulations

    Science.gov (United States)

    Caulton, Dana R.; Li, Qi; Golston, Levi; Pan, Da; Bou-Zeid, Elie; Fitts, Jeff; Lane, Haley; Lu, Jessica; Zondlo, Mark A.

    2016-04-01

    Recent work suggests the distribution of methane emissions from fracking operations is skewed with a small percentage of emitters contributing a large proportion of the total emissions. These sites are known as 'super-emitters.' The Marcellus shale, the most productive natural gas shale field in the United States, has received less intense focus for well-level emissions and is here used as a test site for targeted analysis between current standard trace-gas advection practices and possible improvements via advanced modeling techniques. The Marcellus shale is topographically complex, making traditional techniques difficult to implement and evaluate. For many ground based mobile studies, the inverse Gaussian plume method (IGM) is used to produce emission rates. This method is best applied to well-mixed plumes from strong point sources and may not currently be well-suited for use with disperse weak sources, short-time frame measurements or data collected in complex terrain. To assess the quality of IGM results and to improve source-strength estimations, a robust study that combines observational data with a hierarchy of models of increasing complexity will be presented. The field test sites were sampled with multiple passes using a mobile lab as well as a stationary tower. This mobile lab includes a Garmin GPS unit, Vaisala weather station (WTX520), LICOR 7700 CH4 open path sensor and LICOR 7500 CO2/H2O open path sensor. The sampling tower was constructed consisting of a Metek uSonic-3 Class A sonic anemometer, and an additional LICOR 7700 and 7500. Data were recorded for at least one hour at these sites. The modeling will focus on large eddy simulations (LES) of the wind and CH4 concentration fields for these test sites. The LES model used 2 m horizontal and 1 m vertical resolution and was integrated in time for 45 min for various test sites under stable, neutral and unstable conditions. It is here considered as the reference to which various IGM approaches can be

  9. Impact of Thermal Plumes Generated by Occupant Simulators with Different Complexity of Body Geometry on Airflow Pattern in Rooms

    DEFF Research Database (Denmark)

    Zukowska, Daria; Melikov, Arsen Krikor; Popiolek, Zbigniew

    2008-01-01

    The impact of thermal plumes generated by human body simulators with different geometry on the airflow pattern in a full scale room with displacement ventilation (supply air temperature 21.6°C, total flow rate 80 L/s) was studied when two seated occupants were simulated first by two thermal...... manikins resembling accurately human body shape and then by two heated cylinders. The manikins and the cylinders had the same surface area of 1.63 m2 and the same heat generation of 73 W. CO2 supplied from the top of the heat sources was used for simulating bio-effluents. CO2 concentration was measured...

  10. Electro-Kinetic Ice Gun for Frozen Ice Plume Simulations, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal evolved as a result of a conversation with a NASA scientist regarding plans for a mission to Europa to seek signs of life based on observed water plume...

  11. Operation of a Segmented Hall Thruster with Low-sputtering Carbon-velvet Electrodes

    International Nuclear Information System (INIS)

    Raitses, Y.; Staack, D.; Dunaevsky, A.; Fisch, N.J.

    2005-01-01

    Carbon fiber velvet material provides exceptional sputtering resistance properties exceeding those for graphite and carbon composite materials. A 2 kW Hall thruster with segmented electrodes made of this material was operated in the discharge voltage range of 200-700 V. The arcing between the floating velvet electrodes and the plasma was visually observed, especially, during the initial conditioning time, which lasted for about 1 h. The comparison of voltage versus current and plume characteristics of the Hall thruster with and without segmented electrodes indicates that the magnetic insulation of the segmented thruster improves with the discharge voltage at a fixed magnetic field. The observations reported here also extend the regimes wherein the segmented Hall thruster can have a narrower plume than that of the conventional nonsegmented thruster

  12. Oxygen-Methane Thruster

    Science.gov (United States)

    Pickens, Tim

    2012-01-01

    An oxygen-methane thruster was conceived with integrated igniter/injector capable of nominal operation on either gaseous or liquid propellants. The thruster was designed to develop 100 lbf (approximately 445 N) thrust at vacuum conditions and use oxygen and methane as propellants. This continued development included refining the design of the thruster to minimize part count and manufacturing difficulties/cost, refining the modeling tools and capabilities that support system design and analysis, demonstrating the performance of the igniter and full thruster assembly with both gaseous and liquid propellants, and acquiring data from this testing in order to verify the design and operational parameters of the thruster. Thruster testing was conducted with gaseous propellants used for the igniter and thruster. The thruster was demonstrated to work with all types of propellant conditions, and provided the desired performance. Both the thruster and igniter were tested, as well as gaseous propellants, and found to provide the desired performance using the various propellant conditions. The engine also served as an injector testbed for MSFC-designed refractory combustion chambers made of rhenium.

  13. Anomalous electron transport in Hall-effect thrusters: Comparison between quasi-linear kinetic theory and particle-in-cell simulations

    Science.gov (United States)

    Lafleur, T.; Martorelli, R.; Chabert, P.; Bourdon, A.

    2018-06-01

    Kinetic drift instabilities have been implicated as a possible mechanism leading to anomalous electron cross-field transport in E × B discharges, such as Hall-effect thrusters. Such instabilities, which are driven by the large disparity in electron and ion drift velocities, present a significant challenge to modelling efforts without resorting to time-consuming particle-in-cell (PIC) simulations. Here, we test aspects of quasi-linear kinetic theory with 2D PIC simulations with the aim of developing a self-consistent treatment of these instabilities. The specific quantities of interest are the instability growth rate (which determines the spatial and temporal evolution of the instability amplitude), and the instability-enhanced electron-ion friction force (which leads to "anomalous" electron transport). By using the self-consistently obtained electron distribution functions from the PIC simulations (which are in general non-Maxwellian), we find that the predictions of the quasi-linear kinetic theory are in good agreement with the simulation results. By contrast, the use of Maxwellian distributions leads to a growth rate and electron-ion friction force that is around 2-4 times higher, and consequently significantly overestimates the electron transport. A possible method for self-consistently modelling the distribution functions without requiring PIC simulations is discussed.

  14. Wildfire simulation using a chemically-reacting plume in a crossflow

    Science.gov (United States)

    Breidenthal, Robert; Alvarado, Travis; Potter, Brian

    2010-11-01

    Water tunnel experiments reveal the flame length of a chemically-reacting plume in a crossflow. Salt water containing a pH indicator and a base is slowly injected from above into the test section of a water tunnel containing an acidic solution. The flame length is measured optically as a function of the buoyancy flux, crossflow speed, and volume equivalence ratio of the chemical reaction. Based on earlier work of Broadwell with the transverse jet, a simple dilution model predicts the flame length of the transverse plume. The plume observations are in accord with the model. As with the jet, there is a minimum in the flame length of the plume at a transition between two self-similar regimes, corresponding to the formation of a pair of counter-rotating vortices at a certain crossflow speed. At the transition, there is a maximum in the entrainment and mixing rates. In an actual wildfire with variable winds, this transition may correspond to a dangerous condition for firefighters.

  15. Low power arcjet thruster pulse ignition

    Science.gov (United States)

    Sarmiento, Charles J.; Gruber, Robert P.

    1987-01-01

    An investigation of the pulse ignition characteristics of a 1 kW class arcjet using an inductive energy storage pulse generator with a pulse width modulated power converter identified several thruster and pulse generator parameters that influence breakdown voltage including pulse generator rate of voltage rise. This work was conducted with an arcjet tested on hydrogen-nitrogen gas mixtures to simulate fully decomposed hydrazine. Over all ranges of thruster and pulser parameters investigated, the mean breakdown voltages varied from 1.4 to 2.7 kV. Ignition tests at elevated thruster temperatures under certain conditions revealed occasional breakdowns to thruster voltages higher than the power converter output voltage. These post breakdown discharges sometimes failed to transition to the lower voltage arc discharge mode and the thruster would not ignite. Under the same conditions, a transition to the arc mode would occur for a subsequent pulse and the thruster would ignite. An automated 11 600 cycle starting and transition to steady state test demonstrated ignition on the first pulse and required application of a second pulse only two times to initiate breakdown.

  16. Simulations of momentum transfer process between solar wind plasma and bias voltage tethers of electric sail thruster

    Science.gov (United States)

    Xia, Guangqing; Han, Yajie; Chen, Liuwei; Wei, Yanming; Yu, Yang; Chen, Maolin

    2018-06-01

    The interaction between the solar wind plasma and the bias voltage of long tethers is the basic mechanism of the electric sail thruster. The momentum transfer process between the solar wind plasma and electric tethers was investigated using a 2D full particle PIC method. The coupled electric field distribution and deflected ion trajectory under different bias voltages were compared, and the influence of bias voltage on momentum transfer process was analyzed. The results show that the high potential of the bias voltage of long tethers will slow down, stagnate, reflect and deflect a large number of ions, so that ion cavities are formed in the vicinity of the tether, and the ions will transmit the axial momentum to the sail tethers to produce the thrust. Compared to the singe tether, double tethers show a better thrust performance.

  17. Large eddy simulation of fire-induced buoyancy driven plume dispersion in an urban street canyon under perpendicular wind flow

    Energy Technology Data Exchange (ETDEWEB)

    Hu, L.H., E-mail: hlh@ustc.edu.cn [State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026 (China); Huo, R.; Yang, D. [State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2009-07-15

    The dispersion of fire-induced buoyancy driven plume in and above an idealized street canyon of 18 m (width) x 18 m (height) x 40 m (length) with a wind flow perpendicular to its axis was investigated by Fire Dynamics Simulator (FDS), Large Eddy Simulation (LES). Former studies, such as that by Oka [T.R. Oke, Street design and urban canopy layer climate, Energy Build. 11 (1988) 103-113], Gayev and Savory [Y.A. Gayev, E. Savory, Influence of street obstructions on flow processes within street canyons. J. Wind Eng. Ind. Aerodyn. 82 (1999) 89-103], Xie et al. [S. Xie, Y. Zhang, L. Qi, X. Tang, Spatial distribution of traffic-related pollutant concentrations in street canyons. Atmos. Environ. 37 (2003) 3213-3224], Baker et al. [J. Baker, H. L. Walker, X. M. Cai, A study of the dispersion and transport of reactive pollutants in and above street canyons-a large eddy simulation, Atmos. Environ. 38 (2004) 6883-6892] and Baik et al. [J.-J. Baik, Y.-S. Kang, J.-J. Kim, Modeling reactive pollutant dispersion in an urban street canyon, Atmos. Environ. 41 (2007) 934-949], focus on the flow pattern and pollutant dispersion in the street canyon with no buoyancy effect. Results showed that with the increase of the wind flow velocity, the dispersion pattern of a buoyant plume fell into four regimes. When the wind flow velocity increased up to a certain critical level, the buoyancy driven upward rising plume was re-entrained back into the street canyon. This is a dangerous situation as the harmful fire smoke will accumulate to pollute the environment and thus threaten the safety of the people in the street canyon. This critical re-entrainment wind velocity, as an important parameter to be concerned, was further revealed to increase asymptotically with the heat/buoyancy release rate of the fire.

  18. Large eddy simulation of fire-induced buoyancy driven plume dispersion in an urban street canyon under perpendicular wind flow.

    Science.gov (United States)

    Hu, L H; Huo, R; Yang, D

    2009-07-15

    The dispersion of fire-induced buoyancy driven plume in and above an idealized street canyon of 18 m (width) x 18 m (height) x 40 m (length) with a wind flow perpendicular to its axis was investigated by Fire Dynamics Simulator (FDS), Large Eddy Simulation (LES). Former studies, such as that by Oka [T.R. Oke, Street design and urban canopy layer climate, Energy Build. 11 (1988) 103-113], Gayev and Savory [Y.A. Gayev, E. Savory, Influence of street obstructions on flow processes within street canyons. J. Wind Eng. Ind. Aerodyn. 82 (1999) 89-103], Xie et al. [S. Xie, Y. Zhang, L. Qi, X. Tang, Spatial distribution of traffic-related pollutant concentrations in street canyons. Atmos. Environ. 37 (2003) 3213-3224], Baker et al. [J. Baker, H. L. Walker, X. M. Cai, A study of the dispersion and transport of reactive pollutants in and above street canyons--a large eddy simulation, Atmos. Environ. 38 (2004) 6883-6892] and Baik et al. [J.-J. Baik, Y.-S. Kang, J.-J. Kim, Modeling reactive pollutant dispersion in an urban street canyon, Atmos. Environ. 41 (2007) 934-949], focus on the flow pattern and pollutant dispersion in the street canyon with no buoyancy effect. Results showed that with the increase of the wind flow velocity, the dispersion pattern of a buoyant plume fell into four regimes. When the wind flow velocity increased up to a certain critical level, the buoyancy driven upward rising plume was re-entrained back into the street canyon. This is a dangerous situation as the harmful fire smoke will accumulate to pollute the environment and thus threaten the safety of the people in the street canyon. This critical re-entrainment wind velocity, as an important parameter to be concerned, was further revealed to increase asymptotically with the heat/buoyancy release rate of the fire.

  19. Large eddy simulation of fire-induced buoyancy driven plume dispersion in an urban street canyon under perpendicular wind flow

    International Nuclear Information System (INIS)

    Hu, L.H.; Huo, R.; Yang, D.

    2009-01-01

    The dispersion of fire-induced buoyancy driven plume in and above an idealized street canyon of 18 m (width) x 18 m (height) x 40 m (length) with a wind flow perpendicular to its axis was investigated by Fire Dynamics Simulator (FDS), Large Eddy Simulation (LES). Former studies, such as that by Oka [T.R. Oke, Street design and urban canopy layer climate, Energy Build. 11 (1988) 103-113], Gayev and Savory [Y.A. Gayev, E. Savory, Influence of street obstructions on flow processes within street canyons. J. Wind Eng. Ind. Aerodyn. 82 (1999) 89-103], Xie et al. [S. Xie, Y. Zhang, L. Qi, X. Tang, Spatial distribution of traffic-related pollutant concentrations in street canyons. Atmos. Environ. 37 (2003) 3213-3224], Baker et al. [J. Baker, H. L. Walker, X. M. Cai, A study of the dispersion and transport of reactive pollutants in and above street canyons-a large eddy simulation, Atmos. Environ. 38 (2004) 6883-6892] and Baik et al. [J.-J. Baik, Y.-S. Kang, J.-J. Kim, Modeling reactive pollutant dispersion in an urban street canyon, Atmos. Environ. 41 (2007) 934-949], focus on the flow pattern and pollutant dispersion in the street canyon with no buoyancy effect. Results showed that with the increase of the wind flow velocity, the dispersion pattern of a buoyant plume fell into four regimes. When the wind flow velocity increased up to a certain critical level, the buoyancy driven upward rising plume was re-entrained back into the street canyon. This is a dangerous situation as the harmful fire smoke will accumulate to pollute the environment and thus threaten the safety of the people in the street canyon. This critical re-entrainment wind velocity, as an important parameter to be concerned, was further revealed to increase asymptotically with the heat/buoyancy release rate of the fire.

  20. Simulation of Deepwater Horizon oil plume reveals substrate specialization within a complex community of hydrocarbon degraders.

    Science.gov (United States)

    Hu, Ping; Dubinsky, Eric A; Probst, Alexander J; Wang, Jian; Sieber, Christian M K; Tom, Lauren M; Gardinali, Piero R; Banfield, Jillian F; Atlas, Ronald M; Andersen, Gary L

    2017-07-11

    The Deepwater Horizon (DWH) accident released an estimated 4.1 million barrels of oil and 10 10 mol of natural gas into the Gulf of Mexico, forming deep-sea plumes of dispersed oil droplets and dissolved gases that were largely degraded by bacteria. During the course of this 3-mo disaster a series of different bacterial taxa were enriched in succession within deep plumes, but the metabolic capabilities of the different populations that controlled degradation rates of crude oil components are poorly understood. We experimentally reproduced dispersed plumes of fine oil droplets in Gulf of Mexico seawater and successfully replicated the enrichment and succession of the principal oil-degrading bacteria observed during the DWH event. We recovered near-complete genomes, whose phylogeny matched those of the principal biodegrading taxa observed in the field, including the DWH Oceanospirillales (now identified as a Bermanella species), multiple species of Colwellia , Cycloclasticus , and other members of Gammaproteobacteria, Flavobacteria, and Rhodobacteria. Metabolic pathway analysis, combined with hydrocarbon compositional analysis and species abundance data, revealed substrate specialization that explained the successional pattern of oil-degrading bacteria. The fastest-growing bacteria used short-chain alkanes. The analyses also uncovered potential cooperative and competitive relationships, even among close relatives. We conclude that patterns of microbial succession following deep ocean hydrocarbon blowouts are predictable and primarily driven by the availability of liquid petroleum hydrocarbons rather than natural gases.

  1. Electrostatic ion thrusters - towards predictive modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kalentev, O.; Matyash, K.; Duras, J.; Lueskow, K.F.; Schneider, R. [Ernst-Moritz-Arndt Universitaet Greifswald, D-17489 (Germany); Koch, N. [Technische Hochschule Nuernberg Georg Simon Ohm, Kesslerplatz 12, D-90489 Nuernberg (Germany); Schirra, M. [Thales Electronic Systems GmbH, Soeflinger Strasse 100, D-89077 Ulm (Germany)

    2014-02-15

    The development of electrostatic ion thrusters so far has mainly been based on empirical and qualitative know-how, and on evolutionary iteration steps. This resulted in considerable effort regarding prototype design, construction and testing and therefore in significant development and qualification costs and high time demands. For future developments it is anticipated to implement simulation tools which allow for quantitative prediction of ion thruster performance, long-term behavior and space craft interaction prior to hardware design and construction. Based on integrated numerical models combining self-consistent kinetic plasma models with plasma-wall interaction modules a new quality in the description of electrostatic thrusters can be reached. These open the perspective for predictive modeling in this field. This paper reviews the application of a set of predictive numerical modeling tools on an ion thruster model of the HEMP-T (High Efficiency Multi-stage Plasma Thruster) type patented by Thales Electron Devices GmbH. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Ion thruster design and analysis

    Science.gov (United States)

    Kami, S.; Schnelker, D. E.

    1976-01-01

    Questions concerning the mechanical design of a thruster are considered, taking into account differences in the design of an 8-cm and a 30-cm model. The components of a thruster include the thruster shell assembly, the ion extraction electrode assembly, the cathode isolator vaporizer assembly, the neutralizer isolator vaporizer assembly, ground screen and mask, and the main isolator vaporizer assembly. Attention is given to the materials used in thruster fabrication, the advanced manufacturing methods used, details of thruster performance, an evaluation of thruster life, structural and thermal design considerations, and questions of reliability and quality assurance.

  3. Chemistry in aircraft plumes

    Energy Technology Data Exchange (ETDEWEB)

    Kraabol, A.G.; Stordal, F.; Knudsen, S. [Norwegian Inst. for Air Research, Kjeller (Norway); Konopka, P. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere

    1997-12-31

    An expanding plume model with chemistry has been used to study the chemical conversion of NO{sub x} to reservoir species in aircraft plumes. The heterogeneous conversion of N{sub 2}O{sub 5} to HNO{sub 3}(s) has been investigated when the emissions take place during night-time. The plume from an B747 has been simulated. During a ten-hour calculation the most important reservoir species was HNO{sub 3} for emissions at noon. The heterogeneous reactions had little impact on the chemical loss of NO{sub x} to reservoir species for emissions at night. (author) 4 refs.

  4. Chemistry in aircraft plumes

    Energy Technology Data Exchange (ETDEWEB)

    Kraabol, A G; Stordal, F; Knudsen, S [Norwegian Inst. for Air Research, Kjeller (Norway); Konopka, P [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere

    1998-12-31

    An expanding plume model with chemistry has been used to study the chemical conversion of NO{sub x} to reservoir species in aircraft plumes. The heterogeneous conversion of N{sub 2}O{sub 5} to HNO{sub 3}(s) has been investigated when the emissions take place during night-time. The plume from an B747 has been simulated. During a ten-hour calculation the most important reservoir species was HNO{sub 3} for emissions at noon. The heterogeneous reactions had little impact on the chemical loss of NO{sub x} to reservoir species for emissions at night. (author) 4 refs.

  5. Investigation of Balcony Plume Entrainment

    OpenAIRE

    Liu, F.; Nielsen, Peter V.; Heiselberg, Per; Brohus, Henrik; Li, B. Z.

    2009-01-01

    An investigation on the scenarios of the spill plume and its equation was presented in this paper. The study includes two aspects, i.e., the small-scale experiment and the numerical simulation. Two balcony spill plume models are assessed by comparing with the FDS (Fire Dynamic Simulation) and small scale model experiment results. Besides validating the spill model by experiments, the effect of different fire location on balcony plume is also discussed.The results show that the balcony equatio...

  6. Thermal-environmental testing of a 30-cm engineering model thruster

    Science.gov (United States)

    Mirtich, M. J.

    1976-01-01

    An experimental test program was carried out to document all 30-cm electron bombardment Hg ion bombardment thruster functions and characteristics over the thermal environment of several proposed missions. An engineering model thruster was placed in a thermal test facility equipped with -196 C walls and solar simulation. The thruster was cold soaked and exposed to simulated eclipses lasting in duration from 17 to 72 minutes. The thruster was operated at quarter, to full beam power in various thermal configurations which simulated multiple thruster operation, and was also exposed to 1 and 2 suns solar simulation. Thruster control characteristics and constraints; performance, including thrust magnitude and direction; and structural integrity were evaluated over the range of thermal environments tested.

  7. Iodine Hall Thruster

    Science.gov (United States)

    Szabo, James

    2015-01-01

    Iodine enables dramatic mass and cost savings for lunar and Mars cargo missions, including Earth escape and near-Earth space maneuvers. The demonstrated throttling ability of iodine is important for a singular thruster that might be called upon to propel a spacecraft from Earth to Mars or Venus. The ability to throttle efficiently is even more important for missions beyond Mars. In the Phase I project, Busek Company, Inc., tested an existing Hall thruster, the BHT-8000, on iodine propellant. The thruster was fed by a high-flow iodine feed system and supported by an existing Busek hollow cathode flowing xenon gas. The Phase I propellant feed system was evolved from a previously demonstrated laboratory feed system. Throttling of the thruster between 2 and 11 kW at 200 to 600 V was demonstrated. Testing showed that the efficiency of iodine fueled BHT-8000 is the same as with xenon, with iodine delivering a slightly higher thrust-to-power (T/P) ratio. In Phase II, a complete iodine-fueled system was developed, including the thruster, hollow cathode, and iodine propellant feed system. The nominal power of the Phase II system is 8 kW; however, it can be deeply throttled as well as clustered to much higher power levels. The technology also can be scaled to greater than 100 kW per thruster to support megawatt-class missions. The target thruster efficiency for the full-scale system is 65 percent at high specific impulse (Isp) (approximately 3,000 s) and 60 percent at high thrust (Isp approximately 2,000 s).

  8. Fault-Tolerant Region-Based Control of an Underwater Vehicle with Kinematically Redundant Thrusters

    Directory of Open Access Journals (Sweden)

    Zool H. Ismail

    2014-01-01

    Full Text Available This paper presents a new control approach for an underwater vehicle with a kinematically redundant thruster system. This control scheme is derived based on a fault-tolerant decomposition for thruster force allocation and a region control scheme for the tracking objective. Given a redundant thruster system, that is, six or more pairs of thrusters are used, the proposed redundancy resolution and region control scheme determine the number of thruster faults, as well as providing the reference thruster forces in order to keep the underwater vehicle within the desired region. The stability of the presented control law is proven in the sense of a Lyapunov function. Numerical simulations are performed with an omnidirectional underwater vehicle and the results of the proposed scheme illustrate the effectiveness in terms of optimizing the thruster forces.

  9. Stochastic Plume Simulations for the Fukushima Accident and the Deep Water Horizon Oil Spill

    Science.gov (United States)

    Coelho, E.; Peggion, G.; Rowley, C.; Hogan, P.

    2012-04-01

    The Fukushima Dai-ichi power plant suffered damage leading to radioactive contamination of coastal waters. Major issues in characterizing the extent of the affected waters were a poor knowledge of the radiation released to the coastal waters and the rather complex coastal dynamics of the region, not deterministically captured by the available prediction systems. Equivalently, during the Gulf of Mexico Deep Water Horizon oil platform accident in April 2010, significant amounts of oil and gas were released from the ocean floor. For this case, issues in mapping and predicting the extent of the affected waters in real-time were a poor knowledge of the actual amounts of oil reaching the surface and the fact that coastal dynamics over the region were not deterministically captured by the available prediction systems. To assess the ocean regions and times that were most likely affected by these accidents while capturing the above sources of uncertainty, ensembles of the Navy Coastal Ocean Model (NCOM) were configured over the two regions (NE Japan and Northern Gulf of Mexico). For the Fukushima case tracers were released on each ensemble member; their locations at each instant provided reference positions of water volumes where the signature of water released from the plant could be found. For the Deep Water Horizon oil spill case each ensemble member was coupled with a diffusion-advection solution to estimate possible scenarios of oil concentrations using perturbed estimates of the released amounts as the source terms at the surface. Stochastic plumes were then defined using a Risk Assessment Code (RAC) analysis that associates a number from 1 to 5 to each grid point, determined by the likelihood of having tracer particle within short ranges (for the Fukushima case), hence defining the high risk areas and those recommended for monitoring. For the Oil Spill case the RAC codes were determined by the likelihood of reaching oil concentrations as defined in the Bonn Agreement

  10. Project of an ion thruster

    International Nuclear Information System (INIS)

    Perche, G.E.

    1983-07-01

    The mercury bombardment electrostatic ion thruster is the most successful electric thruster available today. This work describes a 5 cm diameter ion thruster with 3.000 s specific impulse and 5 mN thrust. The advantages of electric propulsion and the tests that will be performed are also presented. (Author) [pt

  11. East Asian SO2 pollution plume over Europe – Part 1: Airborne trace gas measurements and source identification by particle dispersion model simulations

    Directory of Open Access Journals (Sweden)

    A. Stohl

    2009-07-01

    Full Text Available A large SO2-rich pollution plume of East Asian origin was detected by aircraft based CIMS (Chemical Ionization Mass Spectrometry measurements at 3–7.5 km altitude over the North Atlantic. The measurements, which took place on 3 May 2006 aboard of the German research aircraft Falcon, were part of the INTEX-B (Intercontinental Chemical Transport Experiment-B campaign. Additional trace gases (NO, NOy, CO, H2O were measured and used for comparison and source identification. The atmospheric SO2 mole fraction was markedly increased inside the plume and reached up to 900 pmol/mol. Accompanying lagrangian FLEXPART particle dispersion model simulations indicate that the probed pollution plume originated at low altitudes from densely populated and industrialized regions of East Asia, primarily China, about 8–12 days prior to the measurements.

  12. Performance of a Permanent-Magnet Cylindrical Hall-Effect Thruster

    Science.gov (United States)

    Polzin, K. A.; Sooby, E. S.; Kimberlin, A. C.; Raites, Y.; Merino, E.; Fisch, N. J.

    2009-01-01

    The performance of a low-power cylindrical Hall thruster, which more readily lends itself to miniaturization and low-power operation than a conventional (annular) Hall thruster, was measured using a planar plasma probe and a thrust stand. The field in the cylindrical thruster was produced using permanent magnets, promising a power reduction over previous cylindrical thruster iterations that employed electromagnets to generate the required magnetic field topology. Two sets of ring-shaped permanent magnets are used, and two different field configurations can be produced by reorienting the poles of one magnet relative to the other. A plasma probe measuring ion flux in the plume is used to estimate the current utilization for the two magnetic topologies. The measurements indicate that electron transport is impeded much more effectively in one configuration, implying higher thrust efficiency. Thruster performance measurements on this configuration were obtained over a power range of 70-350 W and with the cathode orifice located at three different axial positions relative to the thruster exit plane. The thrust levels over this power range were 1.25-6.5 mN, with anode efficiencies and specific impulses spanning 4-21% and 400-1950 s, respectively. The anode efficiency of the permanent-magnet thruster compares favorable with the efficiency of the electromagnet thruster when the power consumed by the electromagnets is taken into account.

  13. Ion thruster performance model

    International Nuclear Information System (INIS)

    Brophy, J.R.

    1984-01-01

    A model of ion thruster performance is developed for high flux density cusped magnetic field thruster designs. This model is formulated in terms of the average energy required to produce an ion in the discharge chamber plasma and the fraction of these ions that are extracted to form the beam. The direct loss of high energy (primary) electrons from the plasma to the anode is shown to have a major effect on thruster performance. The model provides simple algebraic equations enabling one to calculate the beam ion energy cost, the average discharge chamber plasma ion energy cost, the primary electron density, the primary-to-Maxwellian electron density ratio and the Maxwellian electron temperature. Experiments indicate that the model correctly predicts the variation in plasma ion energy cost for changes in propellant gas (Ar, Kr, and Xe), grid transparency to neutral atoms, beam extraction area, discharge voltage, and discharge chamber wall temperature

  14. Inert gas thrusters

    Science.gov (United States)

    Kaufman, H. R.; Robinson, R. S.

    1980-01-01

    Some advances in component technology for inert gas thrusters are described. The maximum electron emission of a hollow cathode with Ar was increased 60-70% by the use of an enclosed keeper configuration. Operation with Ar, but without emissive oxide, was also obtained. A 30 cm thruster operated with Ar at moderate discharge voltages give double-ion measurements consistent with a double ion correlation developed previously using 15 cm thruster data. An attempt was made to reduce discharge losses by biasing anodes positive of the discharge plasma. The reason this attempt was unsuccessful is not yet clear. The performance of a single-grid ion-optics configuration was evaluated. The ion impingement on the single grid accelerator was found to approach the value expected from the projected blockage when the sheath thickness next to the accelerator was 2-3 times the aperture diameter.

  15. Krypton Ion Thruster Performance

    Science.gov (United States)

    Patterson, Michael J.; Williams, George J.

    1992-01-01

    Preliminary data were obtained from a 30 cm ion thruster operating on krypton propellant over the input power range of 0.4 to 5.5 kW. The data presented are compared and contrasted to the data obtained with xenon propellant over the same input power envelope. Typical krypton thruster efficiency was 70 percent at a specific impulse of approximately 5000 s, with a maximum demonstrated thrust to power ratio of approximately 42 mN/kW at 2090 s specific impulse and 1580 watts input power. Critical thruster performance and component lifetime issues were evaluated. Order of magnitude power throttling was demonstrated using a simplified power-throttling strategy.

  16. Magnesium Hall Thruster

    Science.gov (United States)

    Szabo, James J.

    2015-01-01

    This Phase II project is developing a magnesium (Mg) Hall effect thruster system that would open the door for in situ resource utilization (ISRU)-based solar system exploration. Magnesium is light and easy to ionize. For a Mars- Earth transfer, the propellant mass savings with respect to a xenon Hall effect thruster (HET) system are enormous. Magnesium also can be combusted in a rocket with carbon dioxide (CO2) or water (H2O), enabling a multimode propulsion system with propellant sharing and ISRU. In the near term, CO2 and H2O would be collected in situ on Mars or the moon. In the far term, Mg itself would be collected from Martian and lunar regolith. In Phase I, an integrated, medium-power (1- to 3-kW) Mg HET system was developed and tested. Controlled, steady operation at constant voltage and power was demonstrated. Preliminary measurements indicate a specific impulse (Isp) greater than 4,000 s was achieved at a discharge potential of 400 V. The feasibility of delivering fluidized Mg powder to a medium- or high-power thruster also was demonstrated. Phase II of the project evaluated the performance of an integrated, highpower Mg Hall thruster system in a relevant space environment. Researchers improved the medium power thruster system and characterized it in detail. Researchers also designed and built a high-power (8- to 20-kW) Mg HET. A fluidized powder feed system supporting the high-power thruster was built and delivered to Busek Company, Inc.

  17. The Plasmoid Thruster Experiment (PTX)

    Science.gov (United States)

    Eskridge, Richard; Martin, Adam; Koelfgen, Syri; Lee, Mike; Smith, James W.

    2003-01-01

    A plasmoid is a compact plasma structure with an integral magnetic field. They have been studied extensively in controlled fusion research and are categorized according to the relative strength of the poloidal and toroidal magnetic field (B(phi), and B(tau), respectively). An object with B(phi)/B(tau) >> 1 is classified as a Field Reverse Configuration (FRC); if B(phi) = B(tau), it is called a Spheromak. There are a number of possible advantages to using accelerated plasmoids for in-space propulsion. A thruster based on this concept would operate by repetitively producing plasmoids and ejecting them from the device at high velocity. The plasmoid is formed inside of a single turn conical theta-pinch coil; as this process is inductive, there are no life-limiting electrodes. Similar experiments have yielded plasmoid velocities of at least 50 km/s (l), and calculations indicate that velocities in excess of 100 km/s are possible. A thruster based on this concept would be capable of producing an I(sp) in the range of 5,000 - 10,OOO s, with thrust densities of order 10(exp 5) N/m(exp 2). The current experiment is designed to produce jet powers in the range of 5-10 kW, although the concept should be scalable to higher power. The purpose of this experiment is to determine the feasibility of this plasma propulsion concept. To accomplish this, it will be necessary to determine: a.) specific impulse and thrust, b.) efficiency and mass utilization, c.) which type of plasmoid (FRC-like or Spheromak-like) gives the best performance, and d.) the characteristics required of actual thruster components (i.e., switch and capacitor technology). The plasmoid mass and velocity will be measured with a variety of diagnostics, including internal and external B-dot probes, flux loops, Langmuir probes, high-speed cameras, and an interferometer. Simulations of the plasmoid thruster using MOQUI, a time dependent MHD code, will be carried out concurrently with experimental testing. The PTX

  18. 15 cm mercury multipole thruster

    Science.gov (United States)

    Longhurst, G. R.; Wilbur, P. J.

    1978-01-01

    A 15 cm multipole ion thruster was adapted for use with mercury propellant. During the optimization process three separable functions of magnetic fields within the discharge chamber were identified: (1) they define the region where the bulk of ionization takes place, (2) they influence the magnitudes and gradients in plasma properties in this region, and (3) they control impedance between the cathode and main discharge plasmas in hollow cathode thrusters. The mechanisms for these functions are discussed. Data from SERT II and cusped magnetic field thrusters are compared with those measured in the multipole thruster. The performance of this thruster is shown to be similar to that of the other two thrusters. Means of achieving further improvement in the performance of the multipole thruster are suggested.

  19. Monte Carlo simulation of ion-neutral charge exchange collisions and grid erosion in an ion thruster

    Science.gov (United States)

    Peng, Xiaohang; Ruyten, Wilhelmus M.; Keefer, Dennis

    1991-01-01

    A combined particle-in-cell (PIC)/Monte Carlo simulation model has been developed in which the PIC method is used to simulate the charge exchange collisions. It is noted that a number of features were reproduced correctly by this code, but that its assumption of two-dimensional axisymmetry for a single set of grid apertures precluded the reproduction of the most characteristic feature of actual test data; namely, the concentrated grid erosion at the geometric center of the hexagonal aperture array. The first results of a three-dimensional code, which takes into account the hexagonal symmetry of the grid, are presented. It is shown that, with this code, the experimentally observed erosion patterns are reproduced correctly, demonstrating explicitly the concentration of sputtering between apertures.

  20. Simulation of Mexico City plumes during the MIRAGE-Mex field campaign using the WRF-Chem model

    Directory of Open Access Journals (Sweden)

    X. Tie

    2009-07-01

    Full Text Available The quantification of tropospheric O3 production in the downwind of the Mexico City plume is a major objective of the MIRAGE-Mex field campaign. We used a regional chemistry-transport model (WRF-Chem to predict the distribution of O3 and its precursors in Mexico City and the surrounding region during March 2006, and compared the model with in-situ aircraft measurements of O3, CO, VOCs, NOx, and NOy concentrations. The comparison shows that the model is capable of capturing the timing and location of the measured city plumes, and the calculated variability along the flights is generally consistent with the measured results, showing a rapid increase in O3 and its precursors when city plumes are detected. However, there are some notable differences between the calculated and measured values, suggesting that, during transport from the surface of the city to the outflow plume, ozone mixing ratios are underestimated by about 0–25% during different flights. The calculated O3-NOx, O3-CO, and O3-NOz correlations generally agree with the measured values, and the analyses of these correlations suggest that photochemical O3 production continues in the plume downwind of the city (aged plume, adding to the O3 already produced in the city and exported with the plume. The model is also used to quantify the contributions to OH reactivity from various compounds in the aged plume. This analysis suggests that oxygenated organics (OVOCs have the highest OH reactivity and play important roles for the O3 production in the aging plume. Furthermore, O3 production per NOx molecule consumed (O3 production efficiency is more efficient in the aged plume than in the young plume near the city. The major contributor to the high O3 production efficiency in the aged plume is the

  1. 3D ion velocity distribution function measurement in an electric thruster using laser induced fluorescence tomography

    Science.gov (United States)

    Elias, P. Q.; Jarrige, J.; Cucchetti, E.; Cannat, F.; Packan, D.

    2017-09-01

    Measuring the full ion velocity distribution function (IVDF) by non-intrusive techniques can improve our understanding of the ionization processes and beam dynamics at work in electric thrusters. In this paper, a Laser-Induced Fluorescence (LIF) tomographic reconstruction technique is applied to the measurement of the IVDF in the plume of a miniature Hall effect thruster. A setup is developed to move the laser axis along two rotation axes around the measurement volume. The fluorescence spectra taken from different viewing angles are combined using a tomographic reconstruction algorithm to build the complete 3D (in phase space) time-averaged distribution function. For the first time, this technique is used in the plume of a miniature Hall effect thruster to measure the full distribution function of the xenon ions. Two examples of reconstructions are provided, in front of the thruster nose-cone and in front of the anode channel. The reconstruction reveals the features of the ion beam, in particular on the thruster axis where a toroidal distribution function is observed. These findings are consistent with the thruster shape and operation. This technique, which can be used with other LIF schemes, could be helpful in revealing the details of the ion production regions and the beam dynamics. Using a more powerful laser source, the current implementation of the technique could be improved to reduce the measurement time and also to reconstruct the temporal evolution of the distribution function.

  2. Performance prediction of electrohydrodynamic thrusters by the perturbation method

    International Nuclear Information System (INIS)

    Shibata, H.; Watanabe, Y.; Suzuki, K.

    2016-01-01

    In this paper, we present a novel method for analyzing electrohydrodynamic (EHD) thrusters. The method is based on a perturbation technique applied to a set of drift-diffusion equations, similar to the one introduced in our previous study on estimating breakdown voltage. The thrust-to-current ratio is generalized to represent the performance of EHD thrusters. We have compared the thrust-to-current ratio obtained theoretically with that obtained from the proposed method under atmospheric air conditions, and we have obtained good quantitative agreement. Also, we have conducted a numerical simulation in more complex thruster geometries, such as the dual-stage thruster developed by Masuyama and Barrett [Proc. R. Soc. A 469, 20120623 (2013)]. We quantitatively clarify the fact that if the magnitude of a third electrode voltage is low, the effective gap distance shortens, whereas if the magnitude of the third electrode voltage is sufficiently high, the effective gap distance lengthens.

  3. 3D simulation of the influence of internal mixing dynamics on the propagation of river plumes in Lake Constance

    Science.gov (United States)

    Pflugbeil, Thomas; Pöschke, Franziska; Noffke, Anna; Winde, Vera; Wolf, Thomas

    2017-04-01

    Lake Constance is one of most important drinking water resources in southern Germany. Furthermore, the lake and its catchment is a meaningful natural habitat as well as economical and cultural area. In this context, sustainable development and conservation of the lake ecosystem and drinking water quality is of high importance. However, anthropogenic pressures (e.g. waste water, land use, industry in catchment area) on the lake itself and its external inflows are high. The project "SeeZeichen" (ReWaM-project cluster by BMBF, funding number 02WRM1365) is investigating different immission pathways (groundwater, river, superficial inputs) and their impact on the water quality of Lake Constance. The investigation includes the direct inflow areas as well as the lake-wide context. The present simulation study investigates the mixing dynamics of Lake Constance and its impacts on river inflows and vice versa. It considers different seasonal (mixing and stratification periods), hydrological (flood events, average and low discharge) and transport conditions (sediment loads). The simulations are focused on two rivers: The River Alpenrhein delivers about 60 % of water and material input into Lake Constance. The River Schussen was chosen since it is highly anthropogenic influenced. For this purpose, a high-resolution three-dimensional hydrodynamic model of the Lake Constance is set up with Delft3D-Flow model system. The model is calibrated and validated with long term data sets of water levels, discharges and temperatures. The model results will be analysed for residence times of river water within the lake and particle distributions to evaluate potential impacts of river plume water constituents on the general water quality of the lake.

  4. HG ion thruster component testing

    Science.gov (United States)

    Mantenieks, M. A.

    1979-01-01

    Cathodes, isolators, and vaporizers are critical components in determining the performance and lifetime of mercury ion thrusters. The results of life tests of several of these components are reported. A 30-cm thruster CIV test in a bell jar has successfully accumulated over 26,000 hours. The cathode has undergone 65 restarts during the life test without requiring any appreciable increases in starting power. Recently, all restarts have been achieved with only the 44 volt keeper supply with no change required in the starting power. Another ongoing 30-cm Hg thruster cathode test has successfully passed the 10,000 hour mark. A solid-insert, 8-cm thruster cathode has accumulated over 4,000 hours of thruster operation. All starts have been achieved without the use of a high voltage ignitor. The results of this test indicate that the solid impregnated insert is a viable neutralizer cathode for the 8-cm thruster.

  5. Simulation of river plume behaviors in a tropical region: Case study of the Upper Gulf of Thailand

    Science.gov (United States)

    Yu, Xiaojie; Guo, Xinyu; Morimoto, Akihiko; Buranapratheprat, Anukul

    2018-02-01

    River plumes are a general phenomenon in coastal regions. Most previous studies focus on river plumes in middle and high latitudes with few studies examining those in low latitude regions. Here, we apply a numerical model to the Upper Gulf of Thailand (UGoT) to examine a river plume in low latitudes. Consistent with observational data, the modeled plume has seasonal variation dependent on monsoon conditions. During southwesterly monsoons, the plume extends northeastward to the head of the gulf; during northeasterly monsoons, it extends southwestward to the mouth of the gulf. To examine the effects of latitude, wind and river discharge on the river plume, we designed several numerical experiments. Using a middle latitude for the UGoT, the bulge close to the river mouth becomes smaller, the downstream current flows closer to the coast, and the salinity in the northern UGoT becomes lower. The reduction in the size of the bulge is consistent with the relationship between the offshore distance of a bulge and the Coriolis parameter. Momentum balance of the coastal current is maintained by advection, the Coriolis force, pressure gradient and internal stresses in both low and middle latitudes, with the Coriolis force and pressure gradient enlarged in the middle latitude. The larger pressure gradient in the middle latitude is induced by more offshore freshwater flowing with the coastal current, which induces lower salinity. The influence of wind on the river plume not only has the advection effects of changing the surface current direction and increasing the surface current speed, but also decreases the current speed due to enhanced vertical mixing. Changes in river discharge influence stratification in the UGoT but have little effect on the behavior of the river plume.

  6. A hybrid method for the simulation of radionuclide contaminant plumes in heterogeneous, unsaturated formations

    International Nuclear Information System (INIS)

    Aquino, J.; Pereira, T.J.; Souto, H.P. Amaral; Francisco, A.S.

    2009-01-01

    The decision concerning the location of sites for nuclear waste repositories in the subsurface depends upon the long-term containment capabilities of hydrogeological environments. The numerical simulation of the multiphase flow and contaminant transport that take place in this problem is an important tool to help engineers and scientists in selecting appropriate sites. In this paper, we employ a hybrid strategy that combines an Eulerian approximation scheme for the underlying two-phase flow problem with a locally conservative Lagrangian method to approximate the transport of radionuclide. This Lagrangian scheme is computationally efficient and virtually free of numerical diffusion. In order to face unsaturated and heterogeneous problems, four extensions in the Lagrangian scheme are implemented. To show the effectiveness of the improved version we perform a grid refinement study. (author)

  7. Anode sheath in Hall thrusters

    International Nuclear Information System (INIS)

    Dorf, L.; Semenov, V.; Raitses, Y.

    2003-01-01

    A set of hydrodynamic equations is used to describe quasineutral plasma in ionization and acceleration regions of a Hall thruster. The electron distribution function and Poisson equation are invoked for description of a near-anode region. Numerical solutions suggest that steady-state operation of a Hall thruster can be achieved at different anode sheath regimes. It is shown that the anode sheath depends on the thruster operating conditions, namely the discharge voltage and the mass flow rate

  8. Global sensitivity analysis using emulators, with an example analysis of large fire plumes based on FDS simulations

    Energy Technology Data Exchange (ETDEWEB)

    Kelsey, Adrian [Health and Safety Laboratory, Harpur Hill, Buxton (United Kingdom)

    2015-12-15

    Uncertainty in model predictions of the behaviour of fires is an important issue in fire safety analysis in nuclear power plants. A global sensitivity analysis can help identify the input parameters or sub-models that have the most significant effect on model predictions. However, to perform a global sensitivity analysis using Monte Carlo sampling might require thousands of simulations to be performed and therefore would not be practical for an analysis based on a complex fire code using computational fluid dynamics (CFD). An alternative approach is to perform a global sensitivity analysis using an emulator. Gaussian process emulators can be built using a limited number of simulations and once built a global sensitivity analysis can be performed on an emulator, rather than using simulations directly. Typically reliable emulators can be built using ten simulations for each parameter under consideration, therefore allowing a global sensitivity analysis to be performed, even for a complex computer code. In this paper we use an example of a large scale pool fire to demonstrate an emulator based approach to global sensitivity analysis. In that work an emulator based global sensitivity analysis was used to identify the key uncertain model inputs affecting the entrainment rates and flame heights in large Liquefied Natural Gas (LNG) fire plumes. The pool fire simulations were performed using the Fire Dynamics Simulator (FDS) software. Five model inputs were varied: the fire diameter, burn rate, radiative fraction, computational grid cell size and choice of turbulence model. The ranges used for these parameters in the analysis were determined from experiment and literature. The Gaussian process emulators used in the analysis were created using 127 FDS simulations. The emulators were checked for reliability, and then used to perform a global sensitivity analysis and uncertainty analysis. Large-scale ignited releases of LNG on water were performed by Sandia National

  9. On the Pollutant Plume Dispersion in the Urban Canopy Layer over 2D Idealized Street Canyons: A Large-Eddy Simulation Approach

    Science.gov (United States)

    Wong, Colman C. C.; Liu, Chun-Ho

    2010-05-01

    Anthropogenic emissions are the major sources of air pollutants in urban areas. To improve the air quality in dense and mega cities, a simple but reliable prediction method is necessary. In the last five decades, the Gaussian pollutant plume model has been widely used for the estimation of air pollutant distribution in the atmospheric boundary layer (ABL) in an operational manner. Whereas, it was originally designed for rural areas with rather open and flat terrain. The recirculating flows below the urban canopy layer substantially modify the near-ground urban wind environment and so does the pollutant distribution. Though the plume height and dispersion are often adjusted empirically, the accuracy of applying the Gaussian pollutant plume model in urban areas, of which the bottom of the flow domain consists of numerous inhomogeneous buildings, is unclear. To elucidate the flow and pollutant transport, as well as to demystify the uncertainty of employing the Gaussian pollutant plume model over urban roughness, this study was performed to examine how the Gaussian-shape pollutant plume in the urban canopy layer is modified by the idealized two-dimensional (2D) street canyons at the bottom of the ABL. The specific objective is to develop a parameterization so that the geometric effects of urban morphology on the operational pollutant plume dispersion models could be taken into account. Because atmospheric turbulence is the major means of pollutant removal from street canyons to the ABL, the large-eddy simulation (LES) was adopted to calculate explicitly the flows and pollutant transport in the urban canopy layer. The subgrid-scale (SGS) turbulent kinetic energy (TKE) conservation was used to model the SGS processes in the incompressible, isothermal conditions. The computational domain consists of 12 identical idealized street canyons of unity aspect ratio which were placed evenly in the streamwise direction. Periodic boundary conditions (BCs) for the flow were applied

  10. Simulation of ablation and plume dynamics under femtosecond double-pulse laser irradiation of aluminum: Comparison of atomistic and continual approaches

    Energy Technology Data Exchange (ETDEWEB)

    Fokin, Vladimir B.; Povarnitsyn, Mikhail E., E-mail: povar@ihed.ras; Levashov, Pavel R.

    2017-02-28

    Highlights: • We model double-pulse laser ablation of aluminum using microscopic and macroscopic approaches. • Both methods show decrease in depth of crater with increasing delay between pulses. • Both methods reveal the plume temperature growth with the increasing delay. • Good agreement between results is a step towards the development of combined model. - Abstract: We elaborated two numerical methods, two-temperature hydrodynamics and hybrid two-temperature molecular dynamics, which take into account basic mechanisms of a metal target response to ultrashort laser irradiation. The model used for the description of the electronic subsystem is identical for both approaches, while the ionic part is defined by an equation of state in hydrodynamics and by an interatomic potential in molecular dynamics. Since the phase diagram of the equation of state and corresponding potential match reasonably well, the dynamics of laser ablation obtained by both methods is quite similar. This correspondence can be considered as a first step towards the development of a self-consistent combined model. Two important processes are highlighted in simulations of double-pulse ablation: (1) the crater depth decrease as a result of recoil flux formation in the nascent plume when the delay between the pulses increases; (2) the plume reheating by the second pulse that gives rise to two- three-fold growth of the electron temperature with the delay varying from 0 to 200 ps.

  11. Buoyant plume calculations

    International Nuclear Information System (INIS)

    Penner, J.E.; Haselman, L.C.; Edwards, L.L.

    1985-01-01

    Smoke from raging fires produced in the aftermath of a major nuclear exchange has been predicted to cause large decreases in surface temperatures. However, the extent of the decrease and even the sign of the temperature change, depend on how the smoke is distributed with altitude. We present a model capable of evaluating the initial distribution of lofted smoke above a massive fire. Calculations are shown for a two-dimensional slab version of the model and a full three-dimensional version. The model has been evaluated by simulating smoke heights for the Hamburg firestorm of 1943 and a smaller scale oil fire which occurred in Long Beach in 1958. Our plume heights for these fires are compared to those predicted by the classical Morton-Taylor-Turner theory for weakly buoyant plumes. We consider the effect of the added buoyancy caused by condensation of water-laden ground level air being carried to high altitude with the convection column as well as the effects of background wind on the calculated smoke plume heights for several fire intensities. We find that the rise height of the plume depends on the assumed background atmospheric conditions as well as the fire intensity. Little smoke is injected into the stratosphere unless the fire is unusually intense, or atmospheric conditions are more unstable than we have assumed. For intense fires significant amounts of water vapor are condensed raising the possibility of early scavenging of smoke particles by precipitation. 26 references, 11 figures

  12. Optical Diagnostic Characterization of High-Power Hall Thruster Wear and Operation

    Science.gov (United States)

    Williams, George J., Jr.; Soulas, George C.; Kamhawi, Hani

    2012-01-01

    Optical emission spectroscopy is employed to correlate BN insulator erosion with high-power Hall thruster operation. Specifically, actinometry leveraging excited xenon states is used to normalize the emission spectra of ground state boron as a function of thruster operating condition. Trends in the strength of the boron signal are correlated with thruster power, discharge voltage, and discharge current. In addition, the technique is demonstrated on metallic coupons embedded in the walls of the HiVHAc EM thruster. The OES technique captured the overall trend in the erosion of the coupons which boosts credibility in the method since there are no data to which to calibrate the erosion rates of high-power Hall thrusters. The boron signals are shown to trend linearly with discharge voltage for a fixed discharge current as expected. However, the boron signals of the higher-power NASA 300M and NASA 457Mv2 trend with discharge current and show an unexpectedly weak to inverse dependence on discharge voltage. Electron temperatures measured optically in the near-field plume of the thruster agree well with Langmuir probe data. However, the optical technique used to determine Te showed unacceptable sensitivity to the emission intensities. Near-field, single-frequency imaging of the xenon neutrals is also presented as a function of operating condition for the NASA 457 Mv2.

  13. 3D simulation of the thermal and chemical plumes using open source software; Simulacion 3D de las plumas termica y quimica mediante software de codigo libre

    Energy Technology Data Exchange (ETDEWEB)

    Saenz Temino, J. L.; Lerones Martin, J.; Gonzalez Delgado, J.

    2013-07-01

    The interaction of thermal and chemical plumes in the region of the Irish Sea near the site has been simulated using a finite element model representative of the local hydrodynamic regime, concluding how the method of selected cooling, open cycle, is physically and environmentally feasible. Furthermore, tunnel lengths required for each scenario under discussion have been preliminarily defined, varying in a range from 1800 to 2300 meters for a unit (1 tunnel), 4400-6300 meters of two units (2 tunnels) and 8000 meters to three units (2 tunnels), depending on the chosen technology.

  14. Temperature Gradient in Hall Thrusters

    International Nuclear Information System (INIS)

    Staack, D.; Raitses, Y.; Fisch, N.J.

    2003-01-01

    Plasma potentials and electron temperatures were deduced from emissive and cold floating probe measurements in a 2 kW Hall thruster, operated in the discharge voltage range of 200-400 V. An almost linear dependence of the electron temperature on the plasma potential was observed in the acceleration region of the thruster both inside and outside the thruster. This result calls into question whether secondary electron emission from the ceramic channel walls plays a significant role in electron energy balance. The proportionality factor between the axial electron temperature gradient and the electric field is significantly smaller than might be expected by models employing Ohmic heating of electrons

  15. Investigation of excited states populations density of Hall thruster plasma in three dimensions by laser-induced fluorescence spectroscopy

    Science.gov (United States)

    Krivoruchko, D. D.; Skrylev, A. V.

    2018-01-01

    The article deals with investigation of the excited states populations distribution of a low-temperature xenon plasma in the thruster with closed electron drift at 300 W operating conditions were investigated by laser-induced fluorescence (LIF) over the 350-1100 nm range. Seven xenon ions (Xe II) transitions were analyzed, while for neutral atoms (Xe I) just three transitions were explored, since the majority of Xe I emission falls into the ultraviolet or infrared part of the spectrum and are difficult to measure. The necessary spontaneous emission probabilities (Einstein coefficients) were calculated. Measurements of the excited state distribution were made for points (volume of about 12 mm3) all over the plane perpendicular to thruster axis in four positions on it (5, 10, 50 and 100 mm). Measured LIF signal intensity have differences for each location of researched point (due to anisotropy of thruster plume), however the structure of states populations distribution persisted at plume and is violated at the thruster exit plane and cathode area. Measured distributions show that for describing plasma of Hall thruster one needs to use a multilevel kinetic model, classic model can be used just for far plume region or for specific electron transitions.

  16. Plume Characterization of Busek 600W Hall Thruster

    Science.gov (United States)

    2012-03-09

    of the exhaust channel [16]. Electrothermal works like a conventional chemical rocket. It relies on gas thermodynamics to produce the required...specific wavelength, the associated atom would absorb the laser‟s energy and reduces its energy. This reduction intensity governs by Beer ‟s law for

  17. In-Situ Measurement of Hall Thruster Erosion Using a Fiber Optic Regression Probe

    Science.gov (United States)

    Polzin, Kurt; Korman, Valentin

    2009-01-01

    One potential life-limiting mechanism in a Hall thruster is the erosion of the ceramic material comprising the discharge channel. This is especially true for missions that require long thrusting periods and can be problematic for lifetime qualification, especially when attempting to qualify a thruster by analysis rather than a test lasting the full duration of the mission. In addition to lifetime, several analytical and numerical models include electrode erosion as a mechanism contributing to enhanced transport properties. However, there is still a great deal of dispute over the importance of erosion to transport in Hall thrusters. The capability to perform an in-situ measurement of discharge channel erosion is useful in addressing both the lifetime and transport concerns. An in-situ measurement would allow for real-time data regarding the erosion rates at different operating points, providing a quick method for empirically anchoring any analysis geared towards lifetime qualification. Erosion rate data over a thruster s operating envelope would also be useful in the modeling of the detailed physics inside the discharge chamber. There are many different sensors and techniques that have been employed to quantify discharge channel erosion in Hall thrusters. Snapshots of the wear pattern can be obtained at regular shutdown intervals using laser profilometry. Many non-intrusive techniques of varying complexity and sensitivity have been employed to detect the time-varying presence of erosion products in the thruster plume. These include the use quartz crystal microbalances, emission spectroscopy, laser induced flourescence, and cavity ring-down spectroscopy. While these techniques can provide a very accurate picture of the level of eroded material in the thruster plume, it is more difficult to use them to determine the location from which the material was eroded. Furthermore, none of the methods cited provide a true in-situ measure of erosion at the channel surface while

  18. Study and Developement of Compact Permanent Magnet Hall Thrusters for Future Brazillian Space Missions

    Science.gov (United States)

    Ferreira, Jose Leonardo; Martins, Alexandre; Cerda, Rodrigo

    2016-07-01

    . The main difficulty to reach these minor bodies is related to their specific orbits with high eccentricity and inclination. A good example is the case for sample return missions to NEOs-Near Earth Objects. They are small bodies consisting of primitive left over building blocks of the Solar System formation processes. These missions can be accomplished by using low thrust trajectories with spacecrafts propelled by plasma thrusters with total thrust below 0.5 N, and a specific impulse around2500 s. In this work, we will show the brazilian contribution to the development of a compact electrical propulsion engine named PHALL III, designed with DCFH and foreseen to be used in future cubesats microsatellites but with possible applications in geostationary attitude control systems and on low thrust trajectory missions to the Near Earth Asteroids region. We will show a particular new permanent magnet field designed for PHALL III . Computer based simulation codes such as VSIM are also used on the design of this new proposed cuped magnet field Hall Thruster. Based on the first results wee believed PHALL III will also allow a good spacecraft performance of long duration space missions for small size spacecrafts with limited low electric source power consumption. The PHALL III plasma source characterization is presented together with the ejected plasma plume ion current intensity, ion energy and plasma flow velocity parameters measured by an integrated Plasma Diagnostic Bench (BID). Based on plasma source and plume ejected parameters a merit figure of PHALL III is constructed and compared to computer calculated low thrust transfer requirements. From these results it is goig to be possible to analyse the potential use of PHALL III on future brazillian space missions , its working parameters are compared with parameters of existing space tested plasma thrusters already used on moon , deep space missions and also on satellite geostationary positioning using low thrust orbit

  19. Electronegative Gas Thruster

    Science.gov (United States)

    Dankanich, John; Polzin, Kurt; Walker, Mitchell

    2015-01-01

    The project is an international collaboration and academic partnership to mature an innovative electric propulsion thruster concept to Technology Research Level-3 (TRL-3) through direct thrust measurement. The project includes application assessment of the technology ranging from small spacecraft to high power. The Plasma propulsion with Electronegative GASES(PEGASES) basic proof of concept has been matured to TRL-2 by Ane Aanesland of Laboratoire de Physique des Plasma at Ecole Polytechnique. The concept has advantages through eliminating the neutralizer requirement and should yield longer life and lower cost over conventional gridded ion engines. The objective of this research is to validate the proof of concept through the first direct thrust measurements and mature the concept to TRL-3.

  20. The direct wave-drive thruster

    Science.gov (United States)

    Feldman, Matthew Solomon

    A propulsion concept relying on the direct, steady-state acceleration of a plasma by an inductive wave-launching antenna is presented. By operating inductively in steady state, a Direct Wave-Drive Thruster avoids drawbacks associated with electrode erosion and pulsed acceleration. The generalized relations for the scaling of thrust and efficiency with the antenna current are derived analytically; thrust is shown to scale with current squared, and efficiency is shown to increase with increasing current or power. Two specific configurations are modeled to determine nondimensional parameters governing the antenna-plasma coupling: an annular antenna pushing against a finite-conductivity plasma, and a linear antenna targeting the magnetosonic wave. Calculations from the model show that total thrust improves for increasing excitation frequencies, wavenumbers, plasma densities, and device sizes. To demonstrate the magnetosonic wave as an ideal candidate to drive a DWDT, it is shown to be capable of carrying substantial momentum and able to drive a variable specific impulse. The magnetosonic wave-driven mass flow is compared to mass transport due to thermal effects and cross-field diffusion in order to derive critical power requirements that ensure the thruster channel is dominated by wave dynamics. A proof-of-concept experiment is constructed that consists of a separate plasma source, a confining magnetic field, and a wave-launching antenna. The scaling of the increase of exhaust velocity is analytically modeled and is dependent on a nondimensional characteristic wavenumber that is proportional to the excitation frequency and plasma density and inversely proportional to the magnetic field strength. Experimental validation of the derived scaling behavior is carried out using a Mach probe to measure the flow velocity in the plume. Increases in exhaust velocity are measured as the antenna current increases for varying excitation frequencies and applied magnetic field

  1. Electric arc discharge damage to ion thruster grids

    Science.gov (United States)

    Beebe, D. D.; Nakanishi, S.; Finke, R. C.

    1974-01-01

    Arcs representative of those occurring between the grids of a mercury ion thruster were simulated. Parameters affecting an arc and the resulting damage were studied. The parameters investigated were arc energy, arc duration, and grid geometry. Arc attenuation techniques were also investigated. Potentially serious damage occurred at all energy levels representative of actual thruster operating conditions. Of the grids tested, the lowest open-area configuration sustained the least damage for given conditions. At a fixed energy level a long duration discharge caused greater damage than a short discharge. Attenuation of arc current using various impedances proved to be effective in reducing arc damage. Faults were also deliberately caused using chips of sputtered materials formed during the operation of an actual thruster. These faults were cleared with no serious grid damage resulting using the principles and methods developed in this study.

  2. Continuous Wheel Momentum Dumping Using Magnetic Torquers and Thrusters

    Science.gov (United States)

    Oh, Hwa-Suk; Choi, Wan-Sik; Eun, Jong-Won

    1996-12-01

    Two momentum management schemes using magnetic torquers and thrusters are sug-gested. The stability of the momentum dumping logic is proved at a general attitude equilibrium. Both momentum dumping control laws are implemented with Pulse-Width- Pulse-Frequency Modulated on-off control, and shown working equally well with the original continuous and variable strength control law. Thrusters are assummed to be asymmetrically configured as a contingency case. Each thruster is fired following separated control laws rather than paired thrusting. Null torque thrusting control is added on the thrust control calculated from the momentum control law for the gener-ation of positive thrusting force. Both magnetic and thrusting control laws guarantee the momentum dumping, however, the wheel inner loop control is needed for the "wheel speed" dumping, The control laws are simulated on the KOrea Multi-Purpose SATellite (KOMPSAT) model.

  3. Magnetic Detachment and Plume Control in Escaping Magnetized Plasma

    International Nuclear Information System (INIS)

    Schmit, P.F.; Fisch, N.J.

    2008-01-01

    The model of two-fluid, axisymmetric, ambipolar magnetized plasma detachment from thruster guide fields is extended to include plasmas with non-zero injection angular velocity profiles. Certain plasma injection angular velocity profiles are shown to narrow the plasma plume, thereby increasing exhaust efficiency. As an example, we consider a magnetic guide field arising from a simple current ring and demonstrate plasma injection schemes that more than double the fraction of useful exhaust aperture area, more than halve the exhaust plume angle, and enhance magnetized plasma detachment

  4. Oxygen-Methane Thruster, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Orion Propulsion, Inc. proposes to develop an Oxygen and Methane RCS Thruster to advance the technology of alternate fuels. A successful Oxygen/CH4 RCS Thruster will...

  5. Comparison of in situ observations of air traffic emission signatures in the North Atlantic flight corridor with simulations using a Gaussian plume model

    Energy Technology Data Exchange (ETDEWEB)

    Konopka, P; Schlager, H; Schulte, P; Schumann, U; Ziereis, H [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere; Hagen, D; Whitefield, P [Missouri Univ., Rolla, MO (United States). Lab. for Cloud and Aerosol Science

    1998-12-31

    Focussed aircraft measurements including NO, NO{sub 2}, O{sub 3}, and aerosols (CN) have been carried out over the Eastern North Atlantic as part of the POLINAT (Pollution from Aircraft Emissions in the North Atlantic Flight Corridor) project to search for small and large scale signals of air traffic emissions in the corridor region. Here, the experimental data measured at cruising altitudes on November, 6, 1994 close to peak traffic hours are considered. Observed peak concentrations in small scale NO{sub x} spikes exceed background level of about 50 pptv by up to two orders of magnitude. The measured NO{sub x} concentration field is compared with simulations obtained with a plume dispersion model using collected air traffic data and wind measurements. Additionally, the measured and calculated NO/NO{sub x} ratios are considered. The comparison with the model shows that the observed (multiple-)peaks can be understood as a superposition of several aircraft plumes with ages up to 3 hours. (author) 12 refs.

  6. Comparison of in situ observations of air traffic emission signatures in the North Atlantic flight corridor with simulations using a Gaussian plume model

    Energy Technology Data Exchange (ETDEWEB)

    Konopka, P.; Schlager, H.; Schulte, P.; Schumann, U.; Ziereis, H. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere; Hagen, D.; Whitefield, P. [Missouri Univ., Rolla, MO (United States). Lab. for Cloud and Aerosol Science

    1997-12-31

    Focussed aircraft measurements including NO, NO{sub 2}, O{sub 3}, and aerosols (CN) have been carried out over the Eastern North Atlantic as part of the POLINAT (Pollution from Aircraft Emissions in the North Atlantic Flight Corridor) project to search for small and large scale signals of air traffic emissions in the corridor region. Here, the experimental data measured at cruising altitudes on November, 6, 1994 close to peak traffic hours are considered. Observed peak concentrations in small scale NO{sub x} spikes exceed background level of about 50 pptv by up to two orders of magnitude. The measured NO{sub x} concentration field is compared with simulations obtained with a plume dispersion model using collected air traffic data and wind measurements. Additionally, the measured and calculated NO/NO{sub x} ratios are considered. The comparison with the model shows that the observed (multiple-)peaks can be understood as a superposition of several aircraft plumes with ages up to 3 hours. (author) 12 refs.

  7. Facility Effect Characterization Test of NASA's HERMeS Hall Thruster

    Science.gov (United States)

    Huang, Wensheng; Kamhawi, Hani; Haag, Thomas W.; Ortega, Alejandro Lopez; Mikellides, Ioannis G.

    2016-01-01

    A test to characterize the effect of varying background pressure on NASA's 12.5-kW Hall Effect Rocket with Magnetic Shielding had being completed. This thruster is the baseline propulsion system for the Solar Electric Propulsion Technology Demonstration Mission (SEP TDM). Potential differences in thruster performance and oscillation characteristics when in ground facilities versus on-orbit are considered a primary risk for the propulsion system of the Asteroid Redirect Robotic Mission, which is a candidate for SEP TDM. The first primary objective of this test was to demonstrate that the tools being developed to predict the zero-background-pressure behavior of the thruster can provide self-consistent results. The second primary objective of this test was to provide data for refining a physics-based model of the thruster plume that will be used in spacecraft interaction studies. Diagnostics deployed included a thrust stand, Faraday probe, Langmuir probe, retarding potential analyzer, Wien filter spectrometer, and high-speed camera. From the data, a physics-based plume model was refined. Comparisons of empirical data to modeling results are shown.

  8. Experimental and theoretical studies of cylindrical Hall thrusters

    International Nuclear Information System (INIS)

    Smirnov, Artem; Raitses, Yegeny; Fisch, Nathaniel J.

    2007-01-01

    The Hall thruster is a mature electric propulsion device that holds considerable promise in terms of the propellant saving potential. The annular design of the conventional Hall thruster, however, does not naturally scale to low power. The efficiency tends to be lower and the lifetime issues are more aggravated. Cylindrical geometry Hall thrusters have lower surface-to-volume ratio than conventional thrusters and, thus, seem to be more promising for scaling down. The cylindrical Hall thruster (CHT) is fundamentally different from the conventional design in the way the electrons are confined and the ion space charge is neutralized. The performances of both the large (9-cm channel diameter, 600-1000 W) and miniaturized (2.6-cm channel diameter, 50-300 W) CHTs are comparable with those of the state-of-the-art conventional (annular) design Hall thrusters of similar sizes. A comprehensive experimental and theoretical study of the CHT physics has been conducted, addressing the questions of electron cross-field transport, propellant ionization, plasma-wall interaction, and formation of the electron distribution function. Probe measurements in the harsh plasma environment of the microthruster were performed. Several interesting effects, such as the unusually high ionization efficiency and enhanced electron transport, were observed. Kinetic simulations suggest the existence of the strong fluctuation-enhanced electron diffusion and predict the non-Maxwellian shape of the electron distribution function. Through the acquired understanding of the new physics, ways for further optimization of this means for low-power space propulsion are suggested. Substantial flexibility in the magnetic field configuration of the CHT is the key tool in achieving the high-efficiency operation

  9. Predictive fault-tolerant control of an all-thruster satellite in 6-DOF motion via neural network model updating

    Science.gov (United States)

    Tavakoli, M. M.; Assadian, N.

    2018-03-01

    The problem of controlling an all-thruster spacecraft in the coupled translational-rotational motion in presence of actuators fault and/or failure is investigated in this paper. The nonlinear model predictive control approach is used because of its ability to predict the future behavior of the system. The fault/failure of the thrusters changes the mapping between the commanded forces to the thrusters and actual force/torque generated by the thruster system. Thus, the basic six degree-of-freedom kinetic equations are separated from this mapping and a set of neural networks are trained off-line to learn the kinetic equations. Then, two neural networks are attached to these trained networks in order to learn the thruster commands to force/torque mappings on-line. Different off-nominal conditions are modeled so that neural networks can detect any failure and fault, including scale factor and misalignment of thrusters. A simple model of the spacecraft relative motion is used in MPC to decrease the computational burden. However, a precise model by the means of orbit propagation including different types of perturbation is utilized to evaluate the usefulness of the proposed approach in actual conditions. The numerical simulation shows that this method can successfully control the all-thruster spacecraft with ON-OFF thrusters in different combinations of thruster fault and/or failure.

  10. A New Method for Analyzing Near-Field Faraday Probe Data in Hall Thrusters

    Science.gov (United States)

    Huang, Wensheng; Shastry, Rohit; Herman, Daniel A.; Soulas, George C.; Kamhawi, Hani

    2013-01-01

    This paper presents a new method for analyzing near-field Faraday probe data obtained from Hall thrusters. Traditional methods spawned from far-field Faraday probe analysis rely on assumptions that are not applicable to near-field Faraday probe data. In particular, arbitrary choices for the point of origin and limits of integration have made interpretation of the results difficult. The new method, called iterative pathfinding, uses the evolution of the near-field plume with distance to provide feedback for determining the location of the point of origin. Although still susceptible to the choice of integration limits, this method presents a systematic approach to determining the origin point for calculating the divergence angle. The iterative pathfinding method is applied to near-field Faraday probe data taken in a previous study from the NASA-300M and NASA-457Mv2 Hall thrusters. Since these two thrusters use centrally mounted cathodes the current density associated with the cathode plume is removed before applying iterative pathfinding. A procedure is presented for removing the cathode plume. The results of the analysis are compared to far-field probe analysis results. This paper ends with checks on the validity of the new method and discussions on the implications of the results.

  11. Mathematical Modeling of Liquid-fed Pulsed Plasma Thruster

    Directory of Open Access Journals (Sweden)

    Kaartikey Misra

    2018-01-01

    Full Text Available Liquid propellants are fast becoming attractive for pulsed plasma thrusters due to their high efficiency and low contamination issues. However, the complete plasma interaction and acceleration processes are still not very clear. Present paper develops a multi-layer numerical model for liquid propellant PPTs (pulsed plasma thrusters. The model is based on a quasi-steady flow assumption. The model proposes a possible acceleration mechanism for liquid-fed pulsed plasma thrusters and accurately predicts the propellant utilization capabilities and estimations for the fraction of propellant gas that is completely ionized and accelerated to high exit velocities. Validation of the numerical model and the assumptions on which the model is based on is achieved by comparing the experimental results and the simulation results for two different liquid-fed thrusters developed at the University of Tokyo. Simulation results shows that up-to 50 % of liquid propellant injected is completely ionized and accelerated to high exit velocities (>50 Km/s, whereas, neutral gas contribute to only 7 % of the total specific impulse and accelerated to low exit velocity (<4 Km/s. The model shows an accuracy up-to 92 % . Optimization methods are briefly discussed to ensure efficient propellant utilization and performance. The model acts as a tool to understand the background physics and to optimize the performance for liquid-fed PPTs.

  12. Magnetoelectrostatic thruster physical geometry tests

    Science.gov (United States)

    Ramsey, W. D.

    1981-01-01

    Inert gas tests are conducted with several magnetoelectrostatic containment discharge chamber geometries. The configurations tested include three discharge chamber lengths; three boundary magnet patterns; two different flux density magnet materials; hemispherical and conical shaped thrusters having different surface-to-volume ratios; and two and three grid ion optics. Argon mass utilizations of 60 to 79% are attained at 210 to 280 eV/ion in different test configurations. Short hemi thruster configurations are found to produce 70 to 92% xenon mass utilization at 185 to 220 eV/ion.

  13. Experimental investigation of the effects of variable expanding channel on the performance of a low-power cusped field thruster

    Directory of Open Access Journals (Sweden)

    Hui Liu

    2018-04-01

    Full Text Available Due to a special magnetic field structure, the multi-cusped field thruster shows advantages of low wall erosion, low noise and high thrust density over a wide range of thrust. In this paper, expanding discharge channels are employed to make up for deficiencies on the range of thrust and plume divergence, which often emerges in conventional straight cylindrical channels. Three thruster geometries are fabricated with different expanding-angle channels, and a group of experiments are carried out to find out their influence on the performance and discharge characteristics of the thruster. A retarding potential analyzer and a Faraday probe are employed to analyze the structures of the plume in these three models. The results show that when the thrusters operate at low mass flow rate, the gradually-expanding channels exhibit lower propellant utilization and lower overall performance by amounts not exceeding 44.8% in ionization rate and 19.5% in anode efficiency, respectively. But the weakening of magnetic field intensity near the exit of expanding channels leads to an extended thrust throttling ability, a smaller plume divergence angle, and a relatively larger stable operating space without mode converting and the consequent performance degradation.

  14. Effects of cusped field thruster on the performance of drag-free control system

    Science.gov (United States)

    Cui, K.; Liu, H.; Jiang, W. J.; Sun, Q. Q.; Hu, P.; Yu, D. R.

    2018-03-01

    With increased measurement tasks of space science, more requirements for the spacecraft environment have been put forward. Those tasks (e.g. the measurement of Earth's steady state gravity field anomalies) lead to the desire for developing drag-free control. Higher requirements for the thruster performance are made due to the demand for the drag-free control system and real-time compensation for non-conservative forces. Those requirements for the propulsion system include wide continuous throttling ability, high resolution, rapid response, low noise and so on. As a promising candidate, the cusped field thruster has features such as the high working stability, the low erosion rate, a long lifetime and the simple structure, so that it is chosen as the thruster to be discussed in this paper. Firstly, the performance of a new cusped field thruster is tested and analyzed. Then a drag-free control scheme based on the cusped field thruster is designed to evaluate the performance of this thruster. Subsequently, the effects of the thrust resolution, transient response time and thrust uncertainty on the controller are calculated respectively. Finally, the performance of closed-loop system is analyzed, and the simulation results verify the feasibility of applying cusped field thruster to drag-free flight in the space science measurement tasks.

  15. Transit-time instability in Hall thrusters

    International Nuclear Information System (INIS)

    Barral, Serge; Makowski, Karol; Peradzynski, Zbigniew; Dudeck, Michel

    2005-01-01

    Longitudinal waves characterized by a phase velocity of the order of the velocity of ions have been recurrently observed in Hall thruster experiments and simulations. The origin of this so-called ion transit-time instability is investigated with a simple one-dimensional fluid model of a Hall thruster discharge in which cold ions are accelerated between two electrodes within a quasineutral plasma. A short-wave asymptotics applied to linearized equations shows that plasma perturbations in such a device consist of quasineutral ion acoustic waves superimposed on a background standing wave generated by discharge current oscillations. Under adequate circumstances and, in particular, at high ionization levels, acoustic waves are amplified as they propagate, inducing strong perturbation of the ion density and velocity. Responding to the subsequent perturbation of the column resistivity, the discharge current generates a standing wave, the reflection of which sustains the generation of acoustic waves at the inlet boundary. A calculation of the frequency and growth rate of this resonance mechanism for a supersonic ion flow is proposed, which illustrates the influence of the ionization degree on their onset and the approximate scaling of the frequency with the ion transit time. Consistent with experimental reports, the traveling wave can be observed on plasma density and velocity perturbations, while the plasma potential ostensibly oscillates in phase along the discharge

  16. Thruster allocation for dynamical positioning

    NARCIS (Netherlands)

    Poppe, K.; van den Berg, J.B.; Blank, E.; Archer, C.; Redeker, M.; Kutter, M.; Hemker, P.

    2010-01-01

    Positioning a vessel at a fixed position in deep water is of great importance when working offshore. In recent years a Dynamical Positioning (DP) system was developed at Marin [2]. After the measurement of the current position and external forces (like waves, wind etc.), each thruster of the vessel

  17. A Small Modular Laboratory Hall Effect Thruster

    Science.gov (United States)

    Lee, Ty Davis

    Electric propulsion technologies promise to revolutionize access to space, opening the door for mission concepts unfeasible by traditional propulsion methods alone. The Hall effect thruster is a relatively high thrust, moderate specific impulse electric propulsion device that belongs to the class of electrostatic thrusters. Hall effect thrusters benefit from an extensive flight history, and offer significant performance and cost advantages when compared to other forms of electric propulsion. Ongoing research on these devices includes the investigation of mechanisms that tend to decrease overall thruster efficiency, as well as the development of new techniques to extend operational lifetimes. This thesis is primarily concerned with the design and construction of a Small Modular Laboratory Hall Effect Thruster (SMLHET), and its operation on argon propellant gas. Particular attention was addressed at low-cost, modular design principles, that would facilitate simple replacement and modification of key thruster parts such as the magnetic circuit and discharge channel. This capability is intended to facilitate future studies of device physics such as anomalous electron transport and magnetic shielding of the channel walls, that have an impact on thruster performance and life. Preliminary results demonstrate SMLHET running on argon in a manner characteristic of Hall effect thrusters, additionally a power balance method was utilized to estimate thruster performance. It is expected that future thruster studies utilizing heavier though more expensive gases like xenon or krypton, will observe increased efficiency and stability.

  18. Performance of a Cylindrical Hall-Effect Thruster Using Permanent Magnets

    Science.gov (United States)

    Polzin, Kurt A.; Raitses, Y.; Merino, E.; Fisch, N. J.

    2009-01-01

    electromagnets. Data are presented to expose the effect different controllable parameters have on the discharge and to summarize performance measurements (thrust, Isp, efficiency) obtained using a thrust stand. In addition, beam current data are presented to show the effect of the magnetic field topology on the plume profile and current utilization and to gain insight into the thruster s operation. These data extend and improve upon the results previously presented by the authors in Ref. [1].

  19. Scaling for turbulent viscosity of buoyant plumes in stratified fluids: PIV measurement with implications for submarine hydrothermal plume turbulence

    Science.gov (United States)

    Zhang, Wei; He, Zhiguo; Jiang, Houshuo

    2017-11-01

    Time-resolved particle image velocimetry (PIV) has been used to measure instantaneous two-dimensional velocity vector fields of laboratory-generated turbulent buoyant plumes in linearly stratified saltwater over extended periods of time. From PIV-measured time-series flow data, characteristics of plume mean flow and turbulence have been quantified. To be specific, maximum plume penetration scaling and entrainment coefficient determined from the mean flow agree well with the theory based on the entrainment hypothesis for buoyant plumes in stratified fluids. Besides the well-known persistent entrainment along the plume stem (i.e., the 'plume-stem' entrainment), the mean plume velocity field shows persistent entrainment along the outer edge of the plume cap (i.e., the 'plume-cap' entrainment), thereby confirming predictions from previous numerical simulation studies. To our knowledge, the present PIV investigation provides the first measured flow field data in the plume cap region. As to measured plume turbulence, both the turbulent kinetic energy field and the turbulence dissipation rate field attain their maximum close to the source, while the turbulent viscosity field reaches its maximum within the plume cap region; the results also show that maximum turbulent viscosity scales as νt,max = 0.030(B/N)1/2, where B is source buoyancy flux and N is ambient buoyancy frequency. These PIV data combined with previously published numerical simulation results have implications for understanding the roles of hydrothermal plume turbulence, i.e. plume turbulence within the cap region causes the 'plume-cap' entrainment that plays an equally important role as the 'plume-stem' entrainment in supplying the final volume flux at the plume spreading level.

  20. Real-Tme Boron Nitride Erosion Measurements of the HiVHAc Thruster via Cavity Ring-Down Spectroscopy

    Science.gov (United States)

    Lee, Brian C.; Yalin, Azer P.; Gallimore, Alec; Huang, Wensheng; Kamhawi, Hani

    2013-01-01

    Cavity ring-down spectroscopy was used to make real-time erosion measurements from the NASA High Voltage Hall Accelerator thruster. The optical sensor uses 250 nm light to measure absorption of atomic boron in the plume of an operating Hall thruster. Theerosion rate of the High Voltage Hall Accelerator thruster was measured for discharge voltages ranging from 330 to 600 V and discharge powers ranging from 1 to 3 kW. Boron densities as high as 6.5 x 10(exp 15) per cubic meter were found within the channel. Using a very simple boronvelocity model, approximate volumetric erosion rates between 5.0 x 10(exp -12) and 8.2 x 10(exp -12) cubic meter per second were found.

  1. Modeling Smoke Plume-Rise and Dispersion from Southern United States Prescribed Burns with Daysmoke

    Science.gov (United States)

    G L Achtemeier; S L Goodrick; Y Liu; F Garcia-Menendez; Y Hu; M. Odman

    2011-01-01

    We present Daysmoke, an empirical-statistical plume rise and dispersion model for simulating smoke from prescribed burns. Prescribed fires are characterized by complex plume structure including multiple-core updrafts which makes modeling with simple plume models difficult. Daysmoke accounts for plume structure in a three-dimensional veering/sheering atmospheric...

  2. Carbon Back Sputter Modeling for Hall Thruster Testing

    Science.gov (United States)

    Gilland, James H.; Williams, George J.; Burt, Jonathan M.; Yim, John T.

    2016-01-01

    In support of wear testing for the Hall Effect Rocket with Magnetic Shielding (HERMeS) program, the back sputter from a Hall effect thruster plume has been modeled for the NASA Glenn Research Centers Vacuum Facility 5. The predicted wear at a near-worst case condition of 600 V, 12.5 kW was found to be on the order of 3 4 mkhour in a fully carbon-lined chamber. A more detailed numerical monte carlo code was also modified to estimate back sputter for a detailed facility and pumping configuration. This code demonstrated similar back sputter rate distributions, but is not yet accurately modeling the magnitudes. The modeling has been benchmarked to recent HERMeS wear testing, using multiple microbalance measurements. These recent measurements have yielded values, on the order of 1.5- 2 microns/khour.

  3. Electric field measurement in microwave discharge ion thruster with electro-optic probe.

    Science.gov (United States)

    Ise, Toshiyuki; Tsukizaki, Ryudo; Togo, Hiroyoshi; Koizumi, Hiroyuki; Kuninaka, Hitoshi

    2012-12-01

    In order to understand the internal phenomena in a microwave discharge ion thruster, it is important to measure the distribution of the microwave electric field inside the discharge chamber, which is directly related to the plasma production. In this study, we proposed a novel method of measuring a microwave electric field with an electro-optic (EO) probe based on the Pockels effect. The probe, including a cooling system, contains no metal and can be accessed in the discharge chamber with less disruption to the microwave distribution. This method enables measurement of the electric field profile under ion beam acceleration. We first verified the measurement with the EO probe by a comparison with a finite-difference time domain numerical simulation of the microwave electric field in atmosphere. Second, we showed that the deviations of the reflected microwave power and the beam current were less than 8% due to inserting the EO probe into the ion thruster under ion beam acceleration. Finally, we successfully demonstrated the measurement of the electric-field profile in the ion thruster under ion beam acceleration. These measurements show that the electric field distribution in the thruster dramatically changes in the ion thruster under ion beam acceleration as the propellant mass flow rate increases. These results indicate that this new method using an EO probe can provide a useful guide for improving the propulsion of microwave discharge ion thrusters.

  4. Micropulsed Plasma Thrusters for Attitude Control of a Low-Earth-Orbiting CubeSat

    Science.gov (United States)

    Gatsonis, Nikolaos A.; Lu, Ye; Blandino, John; Demetriou, Michael A.; Paschalidis, Nicholas

    2016-01-01

    This study presents a 3-Unit CubeSat design with commercial-off-the-shelf hardware, Teflon-fueled micropulsed plasma thrusters, and an attitude determination and control approach. The micropulsed plasma thruster is sized by the impulse bit and pulse frequency required for continuous compensation of expected maximum disturbance torques at altitudes between 400 and 1000 km, as well as to perform stabilization of up to 20 deg /s and slew maneuvers of up to 180 deg. The study involves realistic power constraints anticipated on the 3-Unit CubeSat. Attitude estimation is implemented using the q method for static attitude determination of the quaternion using pairs of the spacecraft-sun and magnetic-field vectors. The quaternion estimate and the gyroscope measurements are used with an extended Kalman filter to obtain the attitude estimates. Proportional-derivative control algorithms use the static attitude estimates in order to calculate the torque required to compensate for the disturbance torques and to achieve specified stabilization and slewing maneuvers or combinations. The controller includes a thruster-allocation method, which determines the optimal utilization of the available thrusters and introduces redundancy in case of failure. Simulation results are presented for a 3-Unit CubeSat under detumbling, pointing, and pointing and spinning scenarios, as well as comparisons between the thruster-allocation and the paired-firing methods under thruster failure.

  5. Fire analog: a comparison between fire plumes and energy center cooling tower plumes

    Energy Technology Data Exchange (ETDEWEB)

    Orgill, M.M.

    1977-10-01

    Thermal plumes or convection columns associated with large fires are compared to thermal plumes from cooling towers and proposed energy centers to evaluate the fire analog concept. Energy release rates of mass fires are generally larger than for single or small groups of cooling towers but are comparable to proposed large energy centers. However, significant physical differences exist between cooling tower plumes and fire plumes. Cooling tower plumes are generally dominated by ambient wind, stability and turbulence conditions. Fire plumes, depending on burning rates and other factors, can transform into convective columns which may cause the fire behavior to become more violent. This transformation can cause strong inflow winds and updrafts, turbulence and concentrated vortices. Intense convective columns may interact with ambient winds to create significant downwind effects such as wakes and Karman vortex streets. These characteristics have not been observed with cooling tower plumes to date. The differences in physical characteristics between cooling tower and fire plumes makes the fire analog concept very questionable even though the approximate energy requirements appear to be satisfied in case of large energy centers. Additional research is suggested in studying the upper-level plume characteristics of small experimental fires so this information can be correlated with similar data from cooling towers. Numerical simulation of fires and proposed multiple cooling tower systems could also provide comparative data.

  6. A Plasmoid Thruster for Space Propulsion

    Science.gov (United States)

    Koelfgen, Syri J.; Hawk, Clark W.; Eskridge, Richard; Smith, James W.; Martin, Adam K.

    2003-01-01

    There are a number of possible advantages to using accelerated plasmoids for in-space propulsion. A plasmoid is a compact plasma structure with an integral magnetic field. They have been studied extensively in controlled fusion research and are classified according to the relative strength of the poloidal and toroidal magnetic field (B(sub p), and B(sub t), respectively). An object with B(sub p), / B(sub t) much greater than 1 is classified as a Field Reversed Configuration (FRC); if B(sub p) approximately equal to B(sub t), it is called a Spheromak. The plasmoid thruster operates by producing FRC-like plasmoids and subsequently ejecting them from the device at a high velocity. The plasmoid is formed inside of a single-turn conical theta-pinch coil. As this process is inductive, there are no electrodes. Similar experiments have yielded plasmoid velocities of at least 50 km/s, and calculations indicate that velocities in excess of 100 km/s should be possible. This concept should be capable of producing Isp's in the range of 5,000 - 15,000 s with thrust densities on the order of 10(exp 5) N per square meters. The current experiment is designed to produce jet powers in the range of 5 - 10 kW, although the concept should be scalable to several MW's. The plasmoid mass and velocity will be measured with a variety of diagnostics, including internal and external B-dot probes, flux loops, Langmuir probes, high-speed cameras and a laser interferometer. Also of key importance will be measurements of the efficiency and mass utilization. Simulations of the plasmoid thruster using MOQUI, a time-dependent MHD code, will be carried out concurrently with experimental testing.

  7. Lithosphere erosion atop mantle plumes

    Science.gov (United States)

    Agrusta, R.; Arcay, D.; Tommasi, A.

    2012-12-01

    Mantle plumes are traditionally proposed to play an important role in lithosphere erosion. Seismic images beneath Hawaii and Cape Verde show a lithosphere-asthenosphere-boundary (LAB) up to 50 km shallower than the surroundings. However, numerical models show that unless the plate is stationary the thermo-mechanical erosion of the lithosphere does not exceed 30 km. We use 2D petrological-thermo-mechanical numerical models based on a finite-difference method on a staggered grid and marker in cell method to study the role of partial melting on the plume-lithosphere interaction. A homogeneous peridotite composition with a Newtonian temperature- and pressure-dependent viscosity is used to simulate both the plate and the convective mantle. A constant velocity, ranging from 5 to 12.5 cm/yr, is imposed at the top of the plate. Plumes are created by imposing a thermal anomaly of 150 to 350 K on a 50 km wide domain at the base of the model (700 km depth); the plate right above the thermal anomaly is 40 Myr old. Partial melting is modeled using batch-melting solidus and liquidus in anhydrous conditions. We model the progressive depletion of peridotite and its effect on partial melting by assuming that the melting degree only strictly increases through time. Melt is accumulated until a porosity threshold is reached and the melt in excess is then extracted. The rheology of the partially molten peridotite is determined using viscous constitutive relationship based on a contiguity model, which enables to take into account the effects of grain-scale melt distribution. Above a threshold of 1%, melt is instantaneously extracted. The density varies as a function of partial melting degree and extraction. Besides, we analyze the kinematics of the plume as it impacts a moving plate, the dynamics of time-dependent small-scale convection (SSC) instabilities developing in the low-viscosity layer formed by spreading of hot plume material at the lithosphere base, and the resulting thermal

  8. Scale Model Thruster Acoustic Measurement Results

    Science.gov (United States)

    Vargas, Magda; Kenny, R. Jeremy

    2013-01-01

    The Space Launch System (SLS) Scale Model Acoustic Test (SMAT) is a 5% scale representation of the SLS vehicle, mobile launcher, tower, and launch pad trench. The SLS launch propulsion system will be comprised of the Rocket Assisted Take-Off (RATO) motors representing the solid boosters and 4 Gas Hydrogen (GH2) thrusters representing the core engines. The GH2 thrusters were tested in a horizontal configuration in order to characterize their performance. In Phase 1, a single thruster was fired to determine the engine performance parameters necessary for scaling a single engine. A cluster configuration, consisting of the 4 thrusters, was tested in Phase 2 to integrate the system and determine their combined performance. Acoustic and overpressure data was collected during both test phases in order to characterize the system's acoustic performance. The results from the single thruster and 4- thuster system are discussed and compared.

  9. Development of HAN-based Liquid Propellant Thruster

    Science.gov (United States)

    Hisatsune, K.; Izumi, J.; Tsutaya, H.; Furukawa, K.

    2004-10-01

    Many of propellants that are applied to the conventional spacecraft propulsion system are toxic propellants. Because of its toxicity, considering the environmental pollution or safety on handling, it will be necessary to apply the "green" propellant to the spacecraft propulsion system. The purpose of this study is to apply HAN based liquid propellant (LP1846) to mono propellant thruster. Compared to the hydrazine that is used in conventional mono propellant thruster, HAN based propellant is not only lower toxic but also can obtain higher specific impulse. Moreover, HAN based propellant can be decomposed by the catalyst. It means there are the possibility of applying to the mono propellant thruster that can leads to the high reliability of the propulsion system.[1],[2] However, there are two technical subjects, to apply HAN based propellant to the mono propellant thruster. One is the high combustion temperature. The catalyst will be damaged under high temperature condition. The other is the low catalytic activity. It is the serious problem on application of HAN based propellant to the mono propellant thruster that is used for attitude control of spacecraft. To improve the catalytic activity of HAN based propellant, it is necessary to screen the best catalyst for HAN based propellant. The adsorption analysis is conducted by Monte Carlo Simulation to screen the catalyst metal for HAN and TEAN. The result of analysis shows the Iridium is the best catalyst metal for HAN and TEAN. Iridium is the catalyst metal that is used at conventional mono propellant thruster catalyst Shell405. Then, to confirm the result of analysis, the reaction test about catalyst is conducted. The result of this test is the same as the result of adsorption analysis. That means the adsorption analysis is effective in screening the catalyst metal. At the evaluating test, the various types of carrier of catalyst are also compared to Shell 405 to improve catalytic activity. The test result shows the

  10. Mode transition of a Hall thruster discharge plasma

    International Nuclear Information System (INIS)

    Hara, Kentaro; Sekerak, Michael J.; Boyd, Iain D.; Gallimore, Alec D.

    2014-01-01

    A Hall thruster is a cross-field plasma device used for spacecraft propulsion. An important unresolved issue in the development of Hall thrusters concerns the effect of discharge oscillations in the range of 10–30 kHz on their performance. The use of a high speed Langmuir probe system and ultra-fast imaging of the discharge plasma of a Hall thruster suggests that the discharge oscillation mode, often called the breathing mode, is strongly correlated to an axial global ionization mode. Stabilization of the global oscillation mode is achieved as the magnetic field is increased and azimuthally rotating spokes are observed. A hybrid-direct kinetic simulation that takes into account the transport of electronically excited atoms is used to model the discharge plasma of a Hall thruster. The predicted mode transition agrees with experiments in terms of the mean discharge current, the amplitude of discharge current oscillation, and the breathing mode frequency. It is observed that the stabilization of the global oscillation mode is associated with reduced electron transport that suppresses the ionization process inside the channel. As the Joule heating balances the other loss terms including the effects of wall loss and inelastic collisions, the ionization oscillation is damped, and the discharge oscillation stabilizes. A wide range of the stable operation is supported by the formation of a space charge saturated sheath that stabilizes the electron axial drift and balances the Joule heating as the magnetic field increases. Finally, it is indicated from the numerical results that there is a strong correlation between the emitted light intensity and the discharge current.

  11. Entrainment by turbulent plumes

    Science.gov (United States)

    Parker, David; Burridge, Henry; Partridge, Jamie; Linden, Paul

    2017-11-01

    Plumes are of relevance to nature and real consequence to industry. While the Morton, Taylor & Turner (1956) plume model is able to estimate the mean physical flux parameters, the process of entrainment is only parametrised in a time-averaged sense and a deeper understanding is key to understanding how they evolve. Various flow configurations, resulting in different entrainment values, are considered; we perform simultaneous PIV and plume-edge detection on saline plumes in water resulting from a point source, a line source and a line source where a vertical wall is placed immediately adjacent. Of particular interest is the effect the large scale eddies, forming at the edge of the plume and engulfing ambient fluid, have on the entrainment process. By using velocity statistics in a coordinate system based on the instantaneous scalar edge of the plume the significance of this large scale engulfment is quantified. It is found that significant mass is transported outside the plumes, in particular in regions where large scale structures are absent creating regions of relatively high-momentum ambient fluid. This suggests that the large scale processes, whereby ambient fluid is engulfed into the plume, contribute significantly to the entrainment.

  12. Are splash plumes the origin of minor hotspots?

    Science.gov (United States)

    Davies, J. H.; Bunge, H.-P.

    2006-05-01

    It has been claimed that focused hot cylindrical upwelling plumes cause many of the surface volcanic hotspots on Earth. It has also been argued that they must originate from thermal boundary layers. In this paper, we present spherical simulations of mantle circulation at close to Earth-like vigor with significant internal heating. These show, in addition to thermal boundary layer plumes, a new class of plumes that are not rooted in thermal boundary layers. These plumes develop as instabilities from the edge of bowls of hot mantle, which are produced by cold downwelling material deforming hot sheets of mantle. The resulting bowl and plume structure can look a bit like the “splash” of a water droplet. These splash plumes might provide an explanation for some hotspots that are not underlain by thermal boundary layer sourced plumes and not initiated by large igneous provinces. We suggest that in Earth's mantle, lithospheric instabilities or small pieces of subducting slab could play the role of the model downwelling material in initiating splash plumes. Splash plumes would have implications for interpreting ocean-island basalt geochemistry, plume fixity, excess plume temperature, and estimating core heat flux. Improved seismic imaging will ultimately test this hypothesis.

  13. Numerical research of a 2D axial symmetry hybrid model for the radio-frequency ion thruster

    Science.gov (United States)

    Chenchen, WU; Xinfeng, SUN; Zuo, GU; Yanhui, JIA

    2018-04-01

    Since the high efficiency discharge is critical to the radio-frequency ion thruster (RIT), a 2D axial symmetry hybrid model has been developed to study the plasma evolution of RIT. The fluid method and the drift energy correction of the electron energy distribution function (EEDF) are applied to the analysis of the RIT discharge. In the meantime, the PIC-MCC method is used to investigate the ion beam current extraction character for the plasma plume region. The beam current simulation results, with the hybrid model, agree well with the experimental results, and the error is lower than 11%, which shows the validity of the model. The further study shows there is an optimal ratio for the radio-frequency (RF) power and the beam current extraction power under the fixed RIT configuration. And the beam extraction efficiency will decrease when the discharge efficiency beyond a certain threshold (about 87 W). As the input parameters of the hybrid model are all the design values, it can be directly used to the optimum design for other kinds of RITs and radio-frequency ion sources.

  14. Power processing systems for ion thrusters.

    Science.gov (United States)

    Herron, B. G.; Garth, D. R.; Finke, R. C.; Shumaker, H. A.

    1972-01-01

    The proposed use of ion thrusters to fulfill various communication satellite propulsion functions such as east-west and north-south stationkeeping, attitude control, station relocation and orbit raising, naturally leads to the requirement for lightweight, efficient and reliable thruster power processing systems. Collectively, the propulsion requirements dictate a wide range of thruster power levels and operational lifetimes, which must be matched by the power processing. This paper will discuss the status of such power processing systems, present system design alternatives and project expected near future power system performance.

  15. Advanced electrostatic ion thruster for space propulsion

    Science.gov (United States)

    Masek, T. D.; Macpherson, D.; Gelon, W.; Kami, S.; Poeschel, R. L.; Ward, J. W.

    1978-01-01

    The suitability of the baseline 30 cm thruster for future space missions was examined. Preliminary design concepts for several advanced thrusters were developed to assess the potential practical difficulties of a new design. Useful methodologies were produced for assessing both planetary and earth orbit missions. Payload performance as a function of propulsion system technology level and cost sensitivity to propulsion system technology level are among the topics assessed. A 50 cm diameter thruster designed to operate with a beam voltage of about 2400 V is suggested to satisfy most of the requirements of future space missions.

  16. Mechanical design of SERT 2 thruster system

    Science.gov (United States)

    Zavesky, R. J.; Hurst, E. B.

    1972-01-01

    The mechanical design of the mercury bombardment thruster that was tested on SERT is described. The report shows how the structural, thermal, electrical, material compatibility, and neutral mercury coating considerations affected the design and integration of the subsystems and components. The SERT 2 spacecraft with two thrusters was launched on February 3, 1970. One thruster operated for 3782 hours and the other for 2011 hours. A high voltage short resulting from buildup of loose eroded material was believed to be the cause of failure.

  17. Thrust performance, propellant ionization, and thruster erosion of an external discharge plasma thruster

    Science.gov (United States)

    Karadag, Burak; Cho, Shinatora; Funaki, Ikkoh

    2018-04-01

    It is quite a challenge to design low power Hall thrusters with a long lifetime and high efficiency because of the large surface area to volume ratio and physical limits to the magnetic circuit miniaturization. As a potential solution to this problem, we experimentally investigated the external discharge plasma thruster (XPT). The XPT produces and sustains a plasma discharge completely in the open space outside of the thruster structure through a magnetic mirror configuration. It eliminates the very fundamental component of Hall thrusters, discharge channel side walls, and its magnetic circuit consists solely of a pair of hollow cylindrical permanent magnets. Thrust, low frequency discharge current oscillation, ion beam current, and plasma property measurements were conducted to characterize the manufactured prototype thruster for the proof of concept. The thrust performance, propellant ionization, and thruster erosion were discussed. Thrust generated by the XPT was on par with conventional Hall thrusters [stationary plasma thruster (SPT) or thruster with anode layer] at the same power level (˜11 mN at 250 W with 25% anode efficiency without any optimization), and discharge current had SPT-level stability (Δ design and provide a successful proof of concept experiment of the XPT.

  18. Solar Coronal Plumes

    Directory of Open Access Journals (Sweden)

    Giannina Poletto

    2015-12-01

    Full Text Available Polar plumes are thin long ray-like structures that project beyond the limb of the Sun polar regions, maintaining their identity over distances of several solar radii. Plumes have been first observed in white-light (WL images of the Sun, but, with the advent of the space era, they have been identified also in X-ray and UV wavelengths (XUV and, possibly, even in in situ data. This review traces the history of plumes, from the time they have been first imaged, to the complex means by which nowadays we attempt to reconstruct their 3-D structure. Spectroscopic techniques allowed us also to infer the physical parameters of plumes and estimate their electron and kinetic temperatures and their densities. However, perhaps the most interesting problem we need to solve is the role they cover in the solar wind origin and acceleration: Does the solar wind emanate from plumes or from the ambient coronal hole wherein they are embedded? Do plumes have a role in solar wind acceleration and mass loading? Answers to these questions are still somewhat ambiguous and theoretical modeling does not provide definite answers either. Recent data, with an unprecedented high spatial and temporal resolution, provide new information on the fine structure of plumes, their temporal evolution and relationship with other transient phenomena that may shed further light on these elusive features.

  19. An integral model of plume rise from high explosive detonations

    International Nuclear Information System (INIS)

    Boughton, B.A.; De Laurentis, J.M.

    1987-01-01

    A numerical model has been developed which provides a complete description of the time evolution of both the physical and thermodynamic properties of the cloud formed when a high explosive is detonated. This simulation employs the integral technique. The model equations are derived by integrating the three-dimensional conservation equations of mass, momentum and energy over the plume cross section. Assumptions are made regarding (a) plume symmetry; (b) the shape of profiles of velocity, temperature, etc. across the plume; and (c) the methodology for simulating entrainment and the effects of the crossflow induced pressure drag force on the plume. With these assumptions, the integral equations can be reduced to a set of ordinary differential equations on the plume centerline variables. Only the macroscopic plume characteristics, e.g., plume radius, centerline height, temperature and density, are predicted; details of the plume intrastructure are ignored. The model explicitly takes into account existing meteorology and has been expanded to consider the alterations in plume behavior which occur when aqueous foam is used as a dispersal mitigating material. The simulation was tested by comparison with field measurements of cloud top height and diameter. Predictions were within 25% of field observations over a wide range of explosive yield and atmospheric stability

  20. Base pressure and heat transfer tests of the 0.0225-scale space shuttle plume simulation model (19-OTS) in yawed flight conditions in the NASA-Lewis 10x10-foot supersonic wind tunnel (test IH83)

    Science.gov (United States)

    Foust, J. W.

    1979-01-01

    Wind tunnel tests were performed to determine pressures, heat transfer rates, and gas recovery temperatures in the base region of a rocket firing model of the space shuttle integrated vehicle during simulated yawed flight conditions. First and second stage flight of the space shuttle were simulated by firing the main engines in conjunction with the SRB rocket motors or only the SSME's into the continuous tunnel airstream. For the correct rocket plume environment, the simulated altitude pressures were halved to maintain the rocket chamber/altitude pressure ratio. Tunnel freestream Mach numbers from 2.2 to 3.5 were simulated over an altitude range of 60 to 130 thousand feet with varying angle of attack, yaw angle, nozzle gimbal angle and SRB chamber pressure. Gas recovery temperature data derived from nine gas temperature probe runs are presented. The model configuration, instrumentation, test procedures, and data reduction are described.

  1. Contamination Study of Micro Pulsed Plasma Thruster

    National Research Council Canada - National Science Library

    Kesenek, Ceylan

    2008-01-01

    .... Micro-Pulsed Plasma Thrusters (PPTs) are highly reliable and simple micro propulsion systems that will offer attitude control, station keeping, constellation flying, and drag compensation for such satellites...

  2. Electronegative Gas Thruster - Direct Thrust Measurement

    Data.gov (United States)

    National Aeronautics and Space Administration — This effort is an international collaboration and academic partnership to mature an innovative electric propulsion (EP) thruster concept to TRL 3 through direct...

  3. Oxygen-Methane Thruster, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Two main innovations will be developed in the Phase II effort that are fundamentally associated with our gaseous oxygen/gaseous methane RCS thruster. The first...

  4. One-millipound mercury ion thruster

    Science.gov (United States)

    Hyman, J., Jr.; Dulgeroff, C. R.; Kami, S.; Williamson, W. S.

    1975-01-01

    A mercury ion thruster has been developed for efficient operation at the nominal 1-mlb thrust level with a specific impulse of about 3,000 sec and a total power consumption of about 120 W. At a beam voltage of 1,200 V and beam current of 72 mA, the discharge chamber operates with a propellant efficiency of 93.8% at an ion-generation energy of 276 eV/ion. The 8-cm diameter thruster advances proven component technology to assure the capability for thruster operation over an accumulated beam-on time in excess of 20,000 hours with a capability for 10,000 on-off duty cycles. Discharge chamber optimization has combined stable current-voltage characteristics with high performance efficiency by careful placement of the discharge cathode near the location of a magnetic-field zero just upstream of the thruster endplate.

  5. MPD thruster research issues, activities, strategies

    Science.gov (United States)

    1991-01-01

    The following activities and plans in the MPD thruster development are summarized: (1) experimental and theoretical research (magnetic nozzles at present and high power levels, MPD thrusters with applied fields extending into the thrust chamber, and improved electrode performance); and (2) tools (MACH2 code for MPD and nozzle flow calculation, laser diagnostics and spectroscopy for non-intrusive measurements of flow conditions, and extension to higher power). National strategies are also outlined.

  6. NSTAR Ion Thruster and Breadboard Power Processor Functional Integration Test Results

    Science.gov (United States)

    Hamley, John A.; Pinero, Luis R.; Rawlin, Vincent K.; Miller, John R.; Myers, Roger M.; Bowers, Glen E.

    1996-01-01

    A 2.3 kW Breadboard Power Processing Unit (BBPPU) was developed as part of the NASA Solar Electric Propulsion Technology Application Readiness (NSTAR) Program. The NSTAR program will deliver an electric propulsion system based on a 30 cm xenon ion thruster to the New Millennium (NM) program for use as the primary propulsion system for the initial NM flight. The final development test for the BBPPU, the Functional Integration Test, was carried out to demonstrate all aspects of BBPPU operation with an Engineering Model Thruster. Test objectives included: (1) demonstration and validation of automated thruster start procedures, (2) demonstration of stable closed loop control of the thruster beam current, (3) successful response and recovery to thruster faults, and (4) successful safing of the system during simulated spacecraft faults. These objectives were met over the specified 80-120 VDC input voltage range and 0.5-2.3 output power capability of the BBPPU. Two minor anomalies were noted in discharge and neutralizer keeper current. These anomalies did not affect the stability of the system and were successfully corrected.

  7. Q-Thruster Breadboard Campaign Project

    Science.gov (United States)

    White, Harold

    2014-01-01

    Dr. Harold "Sonny" White has developed the physics theory basis for utilizing the quantum vacuum to produce thrust. The engineering implementation of the theory is known as Q-thrusters. During FY13, three test campaigns were conducted that conclusively demonstrated tangible evidence of Q-thruster physics with measurable thrust bringing the TRL up from TRL 2 to early TRL 3. This project will continue with the development of the technology to a breadboard level by leveraging the most recent NASA/industry test hardware. This project will replace the manual tuning process used in the 2013 test campaign with an automated Radio Frequency (RF) Phase Lock Loop system (precursor to flight-like implementation), and will redesign the signal ports to minimize RF leakage (improves efficiency). This project will build on the 2013 test campaign using the above improvements on the test implementation to get ready for subsequent Independent Verification and Validation testing at Glenn Research Center (GRC) and Jet Propulsion Laboratory (JPL) in FY 2015. Q-thruster technology has a much higher thrust to power than current forms of electric propulsion (7x Hall thrusters), and can significantly reduce the total power required for either Solar Electric Propulsion (SEP) or Nuclear Electric Propulsion (NEP). Also, due to the high thrust and high specific impulse, Q-thruster technology will greatly relax the specific mass requirements for in-space nuclear reactor systems. Q-thrusters can reduce transit times for a power-constrained architecture.

  8. A cavity ring-down spectroscopy sensor for real-time Hall thruster erosion measurements

    International Nuclear Information System (INIS)

    Lee, B. C.; Huang, W.; Tao, L.; Yamamoto, N.; Yalin, A. P.; Gallimore, A. D.

    2014-01-01

    A continuous-wave cavity ring-down spectroscopy sensor for real-time measurements of sputtered boron from Hall thrusters has been developed. The sensor uses a continuous-wave frequency-quadrupled diode laser at 250 nm to probe ground state atomic boron sputtered from the boron nitride insulating channel. Validation results from a controlled setup using an ion beam and target showed good agreement with a simple finite-element model. Application of the sensor for measurements of two Hall thrusters, the H6 and SPT-70, is described. The H6 was tested at power levels ranging from 1.5 to 10 kW. Peak boron densities of 10 ± 2 × 10 14 m −3 were measured in the thruster plume, and the estimated eroded channel volume agreed within a factor of 2 of profilometry. The SPT-70 was tested at 600 and 660 W, yielding peak boron densities of 7.2 ± 1.1 × 10 14 m −3 , and the estimated erosion rate agreed within ∼20% of profilometry. Technical challenges associated with operating a high-finesse cavity in the presence of energetic plasma are also discussed

  9. Deposition of fluorocarbon films by Pulsed Plasma Thruster on the anode side

    International Nuclear Information System (INIS)

    Zhang, Rui; Zhang, Daixian; Zhang, Fan; He, Zhen; Wu, Jianjun

    2013-01-01

    Fluorocarbon thin films were deposited by Pulsed Plasma Thruster at different angles on the anode side of the thruster. Density and velocity of the plasma in the plume of the Pulsed Plasma Thruster were determined using double and triple Langmuir probe apparatus respectively. The deposited films were characterized by X-ray photoelectron spectroscopy (XPS), scanning probe microscope (SPM) and UV–vis spectrometer. Low F/C ratio (0.64–0.86) fluorocarbon films are deposited. The F/C ratio decreases with angle increasing from 0 degree to 30 degree; however it turns to increase with angle increasing from 45 degree to 90 degree. The films deposited at center angles appear rougher compared with that prepared at angles beyond 45 degree. These films basically show having strong absorption properties for wavelength below 600 nm and having enhanced reflective characteristics. Due to the influence of the chemical composition and the surface morphology of the films, the optical properties of these films also show significant angular dependence.

  10. Predicted and observed cooling tower plume rise and visible plume length at the John E. Amos power plant

    Energy Technology Data Exchange (ETDEWEB)

    Hanna, S R

    1976-01-01

    A one-dimensional numerical cloud growth model and several empirical models for plume rise and cloud growth are compared with twenty-seven sets of observations of cooling tower plumes from the 2900 MW John E. Amos power plant in West Virginia. The three natural draft cooling towers are 200 m apart. In a cross wind, the plumes begin to merge at a distance of about 500 m downwind. In calm conditions, with reduced entrainment, the plumes often do not merge until heights of 1000 m. The average plume rise, 750 m, is predicted well by the models, but day-to-day variations are simulated with a correlation coefficient of about 0.5. Model predictions of visible plume length agree, on the average, with observations for visible plumes of short to moderate length (less than about 1 km). The prediction of longer plumes is hampered by our lack of knowledge of plume spreading after the plumes level off. Cloud water concentrations predicted by the numerical model agree with those measured in natural cumulus clouds (about 0.1 to 1 g kg/sup -1/).

  11. Subsurface oil release field experiment - observations and modelling of subsurface plume behaviour

    International Nuclear Information System (INIS)

    Rye, H.; Brandvik, P.J.; Reed, M.

    1996-01-01

    An experiment was conducted at sea, in which oil was released from 107 metres depth, in order to study plume behaviour. The objective of the underwater release was to simulate a pipeline leakage without gas and high pressure and to study the behaviour of the rising plume. A numerical model for the underwater plume behaviour was used for comparison with field data. The expected path of the plume, the time expected for the plume to reach the sea surface and the width of the plume was modelled. Field data and the numerical model were in good agreement. 10 refs., 2 tabs., 9 figs

  12. Overview of the Development of the Solar Electric Propulsion Technology Demonstration Mission 12.5-kW Hall Thruster

    Science.gov (United States)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Yim, John; Chang, Li; Clayman, Lauren; Herman, Daniel; Shastry, Rohit; Thomas, Robert; Verhey, Timothy; hide

    2014-01-01

    NASA is developing mission concepts for a solar electric propulsion technology demonstration mission. A number of mission concepts are being evaluated including ambitious missions to near Earth objects. The demonstration of a high-power solar electric propulsion capability is one of the objectives of the candidate missions under consideration. In support of NASA's exploration goals, a number of projects are developing extensible technologies to support NASA's near and long term mission needs. Specifically, the Space Technology Mission Directorate Solar Electric Propulsion Technology Demonstration Mission project is funding the development of a 12.5-kilowatt magnetically shielded Hall thruster system to support future NASA missions. This paper presents the design attributes of the thruster that was collaboratively developed by the NASA Glenn Research Center and the Jet Propulsion Laboratory. The paper provides an overview of the magnetic, plasma, thermal, and structural modeling activities that were carried out in support of the thruster design. The paper also summarizes the results of the functional tests that have been carried out to date. The planned thruster performance, plasma diagnostics (internal and in the plume), thermal, wear, and mechanical tests are outlined.

  13. System analysis and test-bed for an atmosphere-breathing electric propulsion system using an inductive plasma thruster

    Science.gov (United States)

    Romano, F.; Massuti-Ballester, B.; Binder, T.; Herdrich, G.; Fasoulas, S.; Schönherr, T.

    2018-06-01

    Challenging space mission scenarios include those in low altitude orbits, where the atmosphere creates significant drag to the S/C and forces their orbit to an early decay. For drag compensation, propulsion systems are needed, requiring propellant to be carried on-board. An atmosphere-breathing electric propulsion system (ABEP) ingests the residual atmosphere particles through an intake and uses them as propellant for an electric thruster. Theoretically applicable to any planet with atmosphere, the system might allow to orbit for unlimited time without carrying propellant. A new range of altitudes for continuous operation would become accessible, enabling new scientific missions while reducing costs. Preliminary studies have shown that the collectible propellant flow for an ion thruster (in LEO) might not be enough, and that electrode erosion due to aggressive gases, such as atomic oxygen, will limit the thruster lifetime. In this paper an inductive plasma thruster (IPT) is considered for the ABEP system. The starting point is a small scale inductively heated plasma generator IPG6-S. These devices are electrodeless and have already shown high electric-to-thermal coupling efficiencies using O2 and CO2 . The system analysis is integrated with IPG6-S tests to assess mean mass-specific energies of the plasma plume and estimate exhaust velocities.

  14. Development of a Methodology for Conducting Hall Thruster EMI Tests in Metal Vacuum Chambers of Arbitrary Shape and Size

    Science.gov (United States)

    Gallimore, Alec D.

    2000-01-01

    While the closed-drift Hall thruster (CDT) offers significant improvement in performance over conventional chemical rockets and other advanced propulsion systems such as the arcjet, its potential impact on spacecraft communication signals must be carefully assessed before widespread use of this device can take place. To this end, many of the potentially unique issues that are associated with these thrusters center on its plume plasma characteristics and the its interaction with electromagnetic waves. Although a great deal of experiments have been made in characterizing the electromagnetic interference (EMI) potential of these thrusters, the interpretation of the resulting data is difficult because most of these measurements have been made in vacuum chambers with metal walls which reflect radio waves emanating from the thruster. This project developed a means of assessing the impact of metal vacuum chambers of arbitrary size or shape on EMI experiments, thereby allowing for test results to be interpreted properly. Chamber calibration techniques were developed and initially tested at RIAME using their vacuum chamber. Calibration experiments were to have been made at Tank 5 of NASA GRC and the 6 m by 9 m vacuum chamber at the University of Michigan to test the new procedure, however the subcontract to RIAME was cancelled by NASA memorandum on Feb. 26. 1999.

  15. Coaxial plasma thrusters for high specific impulse propulsion

    Science.gov (United States)

    Schoenberg, Kurt F.; Gerwin, Richard A.; Barnes, Cris W.; Henins, Ivars; Mayo, Robert; Moses, Ronald, Jr.; Scarberry, Richard; Wurden, Glen

    1991-01-01

    A fundamental basis for coaxial plasma thruster performance is presented and the steady-state, ideal MHD properties of a coaxial thruster using an annular magnetic nozzle are discussed. Formulas for power usage, thrust, mass flow rate, and specific impulse are acquired and employed to assess thruster performance. The performance estimates are compared with the observed properties of an unoptimized coaxial plasma gun. These comparisons support the hypothesis that ideal MHD has an important role in coaxial plasma thruster dynamics.

  16. Investigations of Probe Induced Perturbations in a Hall Thruster

    International Nuclear Information System (INIS)

    D. Staack; Y. Raitses; N.J. Fisch

    2002-01-01

    An electrostatic probe used to measure spatial plasma parameters in a Hall thruster generates perturbations of the plasma. These perturbations are examined by varying the probe material, penetration distance, residence time, and the nominal thruster conditions. The study leads us to recommendations for probe design and thruster operating conditions to reduce discharge perturbations, including metal shielding of the probe insulator and operation of the thruster at lower densities

  17. Measurements at cooling tower plumes. Pt. 1

    International Nuclear Information System (INIS)

    Gassmann, F.; Haschke, D.; Solfrian, W.

    1976-04-01

    Referring to the present status of knowledge model conceptions, assumptions and approaches are summarized, which can lead to mathematical models for the simulation of dry or wet cooling tower plumes. By developing a one-dimensional plume model (FOG) the most important problems are considered in detail. It is shown that for the calibration of the necessary parameters as well as for the development of models full scale measurements are of decisive importance. After a discussion of different possibilities of measurement the organisation of a campaign of measurement is described. (orig.) [de

  18. Diagnostics Systems for Permanent Hall Thrusters Development

    Science.gov (United States)

    Ferreira, Jose Leonardo; Soares Ferreira, Ivan; Santos, Jean; Miranda, Rodrigo; Possa, M. Gabriela

    This work describes the development of Permanent Magnet Hall Effect Plasma Thruster (PHALL) and its diagnostic systems at The Plasma Physics Laboratory of University of Brasilia. The project consists on the construction and characterization of plasma propulsion engines based on the Hall Effect. Electric thrusters have been employed in over 220 successful space missions. Two types stand out: the Hall-Effect Thruster (HET) and the Gridded Ion Engine (GIE). The first, which we deal with in this project, has the advantage of greater simplicity of operation, a smaller weight for the propulsion subsystem and a longer shelf life. It can operate in two configurations: magnetic layer and anode layer, the difference between the two lying in the positioning of the anode inside the plasma channel. A Hall-Effect Thruster-HET is a type of plasma thruster in which the propellant gas is ionized and accelerated by a magneto hydrodynamic effect combined with electrostatic ion acceleration. So the essential operating principle of the HET is that it uses a J x B force and an electrostatic potential to accelerate ions up to high speeds. In a HET, the attractive negative charge is provided by electrons at the open end of the Thruster instead of a grid, as in the case of the electrostatic ion thrusters. A strong radial magnetic field is used to hold the electrons in place, with the combination of the magnetic field and the electrostatic potential force generating a fast circulating electron current, the Hall current, around the axis of the Thruster, mainly composed by drifting electrons in an ion plasma background. Only a slow axial drift towards the anode occurs. The main attractive features of the Hall-Effect Thruster are its simple design and operating principles. Most of the Hall-Effect Thrusters use electromagnet coils to produce the main magnetic field responsible for plasma generation and acceleration. In this paper we present a different new concept, a Permanent Magnet Hall

  19. Pocket rocket: An electrothermal plasma micro-thruster

    Science.gov (United States)

    Greig, Amelia Diane

    Recently, an increase in use of micro-satellites constructed from commercial off the shelf (COTS) components has developed, to address the large costs associated with designing, testing and launching satellites. One particular type of micro-satellite of interest are CubeSats, which are modular 10 cm cubic satellites with total weight less than 1.33 kg. To assist with orbit boosting and attitude control of CubeSats, micro-propulsion systems are required, but are currently limited. A potential electrothermal plasma micro-thruster for use with CubeSats or other micro-satellites is under development at The Australian National University and forms the basis for this work. The thruster, known as ‘Pocket Rocket’, utilises neutral gas heating from ion-neutral collisions within a weakly ionised asymmetric plasma discharge, increasing the exhaust thermal velocity of the propellant gas, thereby producing higher thrust than if the propellant was emitted cold. In this work, neutral gas temperature of the Pocket Rocket discharge is studied in depth using rovibrational spectroscopy of the nitrogen (N2) second positive system (C3Πu → B3Πg), using both pure N2 and argon/N2 mixtures as the operating gas. Volume averaged steady state gas temperatures are measured for a range of operating conditions, with an analytical collisional model developed to verify experimental results. Results show that neutral gas heating is occurring with volume averaged steady state temperatures reaching 430 K in N2 and 1060 K for argon with 1% N2 at standard operating conditions of 1.5 Torr pressure and 10 W power input, demonstrating proof of concept for the Pocket Rocket thruster. Spatiotemporal profiles of gas temperature identify that the dominant heating mechanisms are ion-neutral collisions within the discharge and wall heating from ion bombardment of the thruster walls. To complement the experimental results, computational fluid dynamics (CFD) simulations using the commercial CFD

  20. Engineering Risk Assessment of Space Thruster Challenge Problem

    Science.gov (United States)

    Mathias, Donovan L.; Mattenberger, Christopher J.; Go, Susie

    2014-01-01

    The Engineering Risk Assessment (ERA) team at NASA Ames Research Center utilizes dynamic models with linked physics-of-failure analyses to produce quantitative risk assessments of space exploration missions. This paper applies the ERA approach to the baseline and extended versions of the PSAM Space Thruster Challenge Problem, which investigates mission risk for a deep space ion propulsion system with time-varying thruster requirements and operations schedules. The dynamic mission is modeled using a combination of discrete and continuous-time reliability elements within the commercially available GoldSim software. Loss-of-mission (LOM) probability results are generated via Monte Carlo sampling performed by the integrated model. Model convergence studies are presented to illustrate the sensitivity of integrated LOM results to the number of Monte Carlo trials. A deterministic risk model was also built for the three baseline and extended missions using the Ames Reliability Tool (ART), and results are compared to the simulation results to evaluate the relative importance of mission dynamics. The ART model did a reasonable job of matching the simulation models for the baseline case, while a hybrid approach using offline dynamic models was required for the extended missions. This study highlighted that state-of-the-art techniques can adequately adapt to a range of dynamic problems.

  1. Io Pele plume

    Science.gov (United States)

    2000-01-01

    Voyager 1 took this narrow-angle camera image on 5 March 1979 from a distance of 450,000 kilometers. At this geometry, the camera looks straight down through a volcanic plume at one of Io's most active volcanos, Pele. The large heart-shaped feature is the region where Pele's plume falls to the surface. At the center of the 'heart' is the small dark fissure that is the source of the eruption. The Voyager Project is managed by the Jet Propulsion Laboratory for NASA's Office of Space Science.

  2. 50 KW Class Krypton Hall Thruster Performance

    Science.gov (United States)

    Jacobson, David T.; Manzella, David H.

    2003-01-01

    The performance of a 50-kilowatt-class Hall thruster designed for operation on xenon propellant was measured using kryton propellant. The thruster was operated at discharge power levels ranging from 6.4 to 72.5 kilowatts. The device produced thrust ranging from 0.3 to 2.5 newtons. The thruster was operated at discharge voltages between 250 and 1000 volts. At the highest anode mass flow rate and discharge voltage and assuming a 100 percent singly charged condition, the discharge specific impulse approached the theoretical value. Discharge specific impulse of 4500 seconds was demonstrated at a discharge voltage of 1000 volts. The peak discharge efficiency was 64 percent at 650 volts.

  3. Dilution in Transition Zone between Rising Plumes and Surface Plumes

    DEFF Research Database (Denmark)

    Larsen, Torben

    2004-01-01

    The papers presents some physical experiments with the dilution of sea outfall plumes with emphasize on the transition zone where the relative fast flowing vertical plume turns to a horizontal surface plume following the slow sea surface currents. The experiments show that a considerable dilution...

  4. Retrofit and verification test of a 30-cm ion thruster

    Science.gov (United States)

    Dulgeroff, C. R.; Poeschel, R. L.

    1980-01-01

    Twenty modifications were found to be necessary and were approved by design review. These design modifications were incorporated in the thruster documents (drawings and procedures) to define the J series thruster. Sixteen of the design revisions were implemented in a 900 series thruster by retrofit modification. A standardized set of test procedures was formulated, and the retrofit J series thruster design was verified by test. Some difficulty was observed with the modification to the ion optics assembly, but the overall effect of the design modification satisfies the design objectives. The thruster was tested over a wide range of operating parameters to demonstrate its capabilities.

  5. Ion velocities in a micro-cathode arc thruster

    International Nuclear Information System (INIS)

    Zhuang Taisen; Shashurin, Alexey; Keidar, Michael; Beilis, Isak

    2012-01-01

    Ion velocities in the plasma jet generated by the micro-cathode arc thruster are studied by means of time-of-flight method using enhanced ion detection system (EIDS). The EIDS triggers perturbations (spikes) on arc current waveform, and the larger current in the spike generates denser plasma bunches propagating along with the mainstream plasma. The EIDS utilizes double electrostatic probes rather than single probes. The average Ti ion velocity is measured to be around 2×10 4 m/s without a magnetic field. It was found that the application of a magnetic field does not change ion velocities in the interelectrode region while leads to ion acceleration in the free expanding plasma plume by a factor of about 2. Ion velocities of about 3.5×10 4 m/s were detected for the magnetic field of about 300 mT at distance of about 100–200 mm from the cathode. It is proposed that plasma is accelerated due to Lorentz force. The average thrust is calculated using the ion velocity measurements and the cathode mass consumption rate, and its increase with the magnetic field is demonstrated.

  6. Evaluation of plume potential and plume abatement of evaporative cooling towers in a subtropical region

    International Nuclear Information System (INIS)

    Xu Xinhua; Wang Shengwei; Ma Zhenjun

    2008-01-01

    Hong Kong is a typical subtropical region with frequently high humidity in late spring and summer seasons. Plume from evaporative cooling towers, which service air-conditioning systems of civil buildings, has aroused public concerns since 2000 when the fresh water evaporative cooling towers were allowed to be used for high energy efficiency and environmental issues. This paper presents the evaluation of the plume potential and its effect on the sizing of the plume abatement system in a large commercial office building in Hong Kong for practical application. This evaluation was conducted based on a dynamic simulation platform using the typical meteorological year of Hong Kong since the occurrence of the plume heavily depends on the state conditions of the exhaust air from cooling towers and the ambient air, while the state condition of the exhaust air is determined by the total building cooling load and the control strategies of cooling towers employed mainly for improving energy efficiency. The results show that the control strategies have a significant effect on the plume potential and further affect the system design and sizing of the plume abatement system

  7. NW Iberia Shelf Dynamics. Study of the Douro River Plume.

    Directory of Open Access Journals (Sweden)

    Isabel Iglesias

    2014-06-01

    Full Text Available River plumes are one of the most important mechanisms that transport the terrestrial materials to the coast and the ocean. Some examples of those materials are pollutants, essential nutrients, which enhance the phytoplankton productivity or sediments, which settle on the seabed producing modifications on the bathymetry affecting the navigation channels. The mixing between the riverine and the oceanic waters can induce instabilities, which might generate bulges, filaments, and buoyant currents over the continental shelf. Offshore, the buoyant riverine water could form a front with the oceanic waters often related with the occurrence of current-jets, eddies and strong mixing. The study and modelling of the river plumes is a key factor for the complete understanding of sediment transport mechanisms and patterns, and of coastal physics and dynamic processes. On this study the Douro River plume will be simulated. The Douro River is located on the north-west Iberian coast and its daily averaged freshwater discharge can range values from 0 to 13000 m3/s. This variability impacts the formation of the river plumes and its dispersion along the continental shelf. This study builds on the long-term objective of generate a Douro River plume forecasting system as part of the RAIA and RAIA.co projects. Satellite imagery was analyzed showing that the river Douro is one of the main sources of suspended particles, dissolved material and chlorophyll in the NW Iberian Shelf. The Regional Oceanic Modeling System (ROMS model was selected to reproduce scenarios of plume generation, retention and dispersion. Whit this model, three types of simulations were performed: (i schematic winds simulations with prescribed river flow, wind speed and direction; (ii multi-year climatological simulation, with river flow and temperature change for each month; (iii extreme case simulation, based on the Entre-os-Rios accident situation. The schematic wind case-studies suggest that the

  8. Parametric Investigation of Miniaturized Cylindrical and Annular Hall Thrusters

    International Nuclear Information System (INIS)

    Smirnov, A.; Raitses, Y.; Fisch, N.J.

    2002-01-01

    Conventional annular Hall thrusters become inefficient when scaled to low power. An alternative approach, a 2.6-cm miniaturized cylindrical Hall thruster with a cusp-type magnetic field distribution, was developed and studied. Its performance was compared to that of a conventional annular thruster of the same dimensions. The cylindrical thruster exhibits discharge characteristics similar to those of the annular thruster, but it has a much higher propellant ionization efficiency. Significantly, a large fraction of multi-charged xenon ions might be present in the outgoing ion flux generated by the cylindrical thruster. The operation of the cylindrical thruster is quieter than that of the annular thruster. The characteristic peak in the discharge current fluctuation spectrum at 50-60 kHz appears to be due to ionization instabilities. In the power range 50-300 W, the cylindrical and annular thrusters have comparable efficiencies (15-32%) and thrusts (2.5-12 mN). For the annular configuration, a voltage less than 200 V was not sufficient to sustain the discharge at low propellant flow rates. The cylindrical thruster can operate at voltages lower than 200 V, which suggests that a cylindrical thruster can be designed to operate at even smaller power

  9. On predicting mantle mushroom plumes

    Directory of Open Access Journals (Sweden)

    Ka-Kheng Tan

    2011-04-01

    Top cooling may produce plunging plumes of diameter of 585 km and at least 195 Myr old. The number of cold plumes is estimated to be 569, which has not been observed by seismic tomography or as cold spots. The cold plunging plumes may overwhelm and entrap some of the hot rising plumes from CMB, so that together they may settle in the transition zone.

  10. Turbulent buoyant jets and plumes

    CERN Document Server

    Rodi, Wolfgang

    The Science & Applications of Heat and Mass Transfer: Reports, Reviews, & Computer Programs, Volume 6: Turbulent Buoyant Jets and Plumes focuses on the formation, properties, characteristics, and reactions of turbulent jets and plumes. The selection first offers information on the mechanics of turbulent buoyant jets and plumes and turbulent buoyant jets in shallow fluid layers. Discussions focus on submerged buoyant jets into shallow fluid, horizontal surface or interface jets into shallow layers, fundamental considerations, and turbulent buoyant jets (forced plumes). The manuscript then exami

  11. PLUME and research sotware

    Science.gov (United States)

    Baudin, Veronique; Gomez-Diaz, Teresa

    2013-04-01

    The PLUME open platform (https://www.projet-plume.org) has as first goal to share competences and to value the knowledge of software experts within the French higher education and research communities. The project proposes in its platform the access to more than 380 index cards describing useful and economic software for this community, with open access to everybody. The second goal of PLUME focuses on to improve the visibility of software produced by research laboratories within the higher education and research communities. The "development-ESR" index cards briefly describe the main features of the software, including references to research publications associated to it. The platform counts more than 300 cards describing research software, where 89 cards have an English version. In this talk we describe the theme classification and the taxonomy of the index cards and the evolution with new themes added to the project. We will also focus on the organisation of PLUME as an open project and its interests in the promotion of free/open source software from and for research, contributing to the creation of a community of shared knowledge.

  12. Advanced laboratory for testing plasma thrusters and Hall thruster measurement campaign

    Directory of Open Access Journals (Sweden)

    Szelecka Agnieszka

    2016-06-01

    Full Text Available Plasma engines are used for space propulsion as an alternative to chemical thrusters. Due to the high exhaust velocity of the propellant, they are more efficient for long-distance interplanetary space missions than their conventional counterparts. An advanced laboratory of plasma space propulsion (PlaNS at the Institute of Plasma Physics and Laser Microfusion (IPPLM specializes in designing and testing various electric propulsion devices. Inside of a special vacuum chamber with three performance pumps, an environment similar to the one that prevails in space is created. An innovative Micro Pulsed Plasma Thruster (LμPPT with liquid propellant was built at the laboratory. Now it is used to test the second prototype of Hall effect thruster (HET operating on krypton propellant. Meantime, an improved prototype of krypton Hall thruster is constructed.

  13. Modelling of coastal current and thermal plume dispersion - A case study off Nagapattinam, east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Babu, M.T.; Vethamony, P.; Suryanarayana, A.; Gouveia, A.D.

    representing the monsoons and the transition periods are selected to study the seasonal variability of simulated currents and thermal plumes. The plume showed northward spreading during March and July and southward during December. During October the spreading...

  14. Firing Control Optimization of Impulse Thrusters for Trajectory Correction Projectiles

    Directory of Open Access Journals (Sweden)

    Min Gao

    2015-01-01

    Full Text Available This paper presents an optimum control scheme of firing time and firing phase angle by taking impact point deviation as optimum objective function which takes account of the difference of longitudinal and horizontal correction efficiency, firing delay, roll rate, flight stability, and so forth. Simulations indicate that this control scheme can assure lateral impulse thrusters are activated at time and phase angle when the correction efficiency is higher. Further simulations show that the impact point dispersion is mainly influenced by the total impulse deployed, and the impulse, number, and firing interval need to be optimized to reduce the impact point dispersion of rockets. Live firing experiments with two trajectory correction rockets indicate that the firing control scheme works effectively.

  15. Rarefied gas electro jet (RGEJ) micro-thruster for space propulsion

    International Nuclear Information System (INIS)

    Blanco, Ariel; Roy, Subrata

    2017-01-01

    This article numerically investigates a micro-thruster for small satellites which utilizes plasma actuators to heat and accelerate the flow in a micro-channel with rarefied gas in the slip flow regime. The inlet plenum condition is considered at 1 Torr with flow discharging to near vacuum conditions (<0.05 Torr). The Knudsen numbers at the inlet and exit planes are ∼0.01 and ∼0.1, respectively. Although several studies have been performed in micro-hallow cathode discharges at constant pressure, to our knowledge, an integrated study of the glow discharge physics and resulting fluid flow of a plasma thruster under these low pressure and low Knudsen number conditions is yet to be reported. Numerical simulations of the charge distribution due to gas ionization processes and the resulting rarefied gas flow are performed using an in-house code. The mass flow rate, thrust, specific impulse, power consumption and the thrust effectiveness of the thruster are predicted based on these results. The ionized gas is modelled using local mean energy approximation. An electrically induced body force and a thermal heating source are calculated based on the space separated charge distribution and the ion Joule heating, respectively. The rarefied gas flow with these electric force and heating source is modelled using density-based compressible flow equations with slip flow boundary conditions. The results show that a significant improvement of specific impulse can be achieved over highly optimized cold gas thrusters using the same propellant. (paper)

  16. The FAST (FRC Acceleration Space Thruster) Experiment

    Science.gov (United States)

    Martin, Adam; Eskridge, R.; Lee, M.; Richeson, J.; Smith, J.; Thio, Y. C. F.; Slough, J.; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    The Field Reverse Configuration (FRC) is a magnetized plasmoid that has been developed for use in magnetic confinement fusion. Several of its properties suggest that it may also be useful as a thruster for in-space propulsion. The FRC is a compact toroid that has only poloidal field, and is characterized by a high plasma beta = (P)/(B (sup 2) /2Mu0), the ratio of plasma pressure to magnetic field pressure, so that it makes efficient use of magnetic field to confine a plasma. In an FRC thruster, plasmoids would be repetitively formed and accelerated to high velocity; velocities of = 250 km/s (Isp = 25,000s) have already been achieved in fusion experiments. The FRC is inductively formed and accelerated, and so is not subject to the problem of electrode erosion. As the plasmoid may be accelerated over an extended length, it can in principle be made very efficient. And the achievable jet powers should be scalable to the MW range. A 10 kW thruster experiment - FAST (FRC Acceleration Space Thruster) has just started at the Marshall Space Flight Center. The design of FAST and the status of construction and operation will be presented.

  17. Anode Fall Formation in a Hall Thruster

    International Nuclear Information System (INIS)

    Dorf, Leonid A.; Raitses, Yevgeny F.; Smirnov, Artem N.; Fisch, Nathaniel J.

    2004-01-01

    As was reported in our previous work, accurate, nondisturbing near-anode measurements of the plasma density, electron temperature, and plasma potential performed with biased and emissive probes allowed the first experimental identification of both electron-repelling (negative anode fall) and electron-attracting (positive anode fall) anode sheaths in Hall thrusters. An interesting new phenomenon revealed by the probe measurements is that the anode fall changes from positive to negative upon removal of the dielectric coating, which appears on the anode surface during the course of Hall thruster operation. As reported in the present work, energy dispersion spectroscopy analysis of the chemical composition of the anode dielectric coating indicates that the coating layer consists essentially of an oxide of the anode material (stainless steel). However, it is still unclear how oxygen gets into the thruster channel. Most importantly, possible mechanisms of anode fall formation in a Hall thruster with a clean and a coated anodes are analyzed in this work; practical implication of understanding the general structure of the electron-attracting anode sheath in the case of a coated anode is also discussed

  18. A concept of ferroelectric microparticle propulsion thruster

    International Nuclear Information System (INIS)

    Yarmolich, D.; Vekselman, V.; Krasik, Ya. E.

    2008-01-01

    A space propulsion concept using charged ferroelectric microparticles as a propellant is suggested. The measured ferroelectric plasma source thrust, produced mainly by microparticles emission, reaches ∼9x10 -4 N. The obtained trajectories of microparticles demonstrate that the majority of the microparticles are positively charged, which permits further improvement of the thruster

  19. High-Power Ion Thruster Technology

    Science.gov (United States)

    Beattie, J. R.; Matossian, J. N.

    1996-01-01

    Performance data are presented for the NASA/Hughes 30-cm-diam 'common' thruster operated over the power range from 600 W to 4.6 kW. At the 4.6-kW power level, the thruster produces 172 mN of thrust at a specific impulse of just under 4000 s. Xenon pressure and temperature measurements are presented for a 6.4-mm-diam hollow cathode operated at emission currents ranging from 5 to 30 A and flow rates of 4 sccm and 8 sccm. Highly reproducible results show that the cathode temperature is a linear function of emission current, ranging from approx. 1000 C to 1150 C over this same current range. Laser-induced fluorescence (LIF) measurements obtained from a 30-cm-diam thruster are presented, suggesting that LIF could be a valuable diagnostic for real-time assessment of accelerator-arid erosion. Calibration results of laminar-thin-film (LTF) erosion badges with bulk molybdenum are presented for 300-eV xenon, krypton, and argon sputtering ions. Facility-pressure effects on the charge-exchange ion current collected by 8-cm-diam and 30-cm-diam thrusters operated on xenon propellant are presented to show that accel current is nearly independent of facility pressure at low pressures, but increases rapidly under high-background-pressure conditions.

  20. Groundwater contaminant plume ranking

    International Nuclear Information System (INIS)

    1988-08-01

    Containment plumes at Uranium Mill Tailings Remedial Action (UMTRA) Project sites were ranked to assist in Subpart B (i.e., restoration requirements of 40 CFR Part 192) compliance strategies for each site, to prioritize aquifer restoration, and to budget future requests and allocations. The rankings roughly estimate hazards to the environment and human health, and thus assist in determining for which sites cleanup, if appropriate, will provide the greatest benefits for funds available. The rankings are based on the scores that were obtained using the US Department of Energy's (DOE) Modified Hazard Ranking System (MHRS). The MHRS and HRS consider and score three hazard modes for a site: migration, fire and explosion, and direct contact. The migration hazard mode score reflects the potential for harm to humans or the environment from migration of a hazardous substance off a site by groundwater, surface water, and air; it is a composite of separate scores for each of these routes. For ranking the containment plumes at UMTRA Project sites, it was assumed that each site had been remediated in compliance with the EPA standards and that relict contaminant plumes were present. Therefore, only the groundwater route was scored, and the surface water and air routes were not considered. Section 2.0 of this document describes the assumptions and procedures used to score the groundwater route, and Section 3.0 provides the resulting scores for each site. 40 tabs

  1. Pulsed Electrogasdynamic Thruster for Attitude Control and Orbit Maneuver, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A new pulsed electric thruster, named "pulsed electrogasdynamic thruster," for attitude control and orbit maneuver is proposed. In this thruster, propellant gas is...

  2. Numerical modeling of plasma plume evolution against ambient background gas in laser blow off experiments

    International Nuclear Information System (INIS)

    Patel, Bhavesh G.; Das, Amita; Kaw, Predhiman; Singh, Rajesh; Kumar, Ajai

    2012-01-01

    Two dimensional numerical modelling based on simplified hydrodynamic evolution for an expanding plasma plume (created by laser blow off) against an ambient background gas has been carried out. A comparison with experimental observations shows that these simulations capture most features of the plasma plume expansion. The plume location and other gross features are reproduced as per the experimental observation in quantitative detail. The plume shape evolution and its dependence on the ambient background gas are in good qualitative agreement with the experiment. This suggests that a simplified hydrodynamic expansion model is adequate for the description of plasma plume expansion.

  3. NASA's Evolutionary Xenon Thruster (NEXT) Project Qualification Propellant Throughput Milestone: Performance, Erosion, and Thruster Service Life Prediction After 450 kg

    Science.gov (United States)

    Herman, Daniel A.

    2010-01-01

    The NASA s Evolutionary Xenon Thruster (NEXT) program is tasked with significantly improving and extending the capabilities of current state-of-the-art NSTAR thruster. The service life capability of the NEXT ion thruster is being assessed by thruster wear test and life-modeling of critical thruster components, such as the ion optics and cathodes. The NEXT Long-Duration Test (LDT) was initiated to validate and qualify the NEXT thruster propellant throughput capability. The NEXT thruster completed the primary goal of the LDT; namely to demonstrate the project qualification throughput of 450 kg by the end of calendar year 2009. The NEXT LDT has demonstrated 28,500 hr of operation and processed 466 kg of xenon throughput--more than double the throughput demonstrated by the NSTAR flight-spare. Thruster performance changes have been consistent with a priori predictions. Thruster erosion has been minimal and consistent with the thruster service life assessment, which predicts the first failure mode at greater than 750 kg throughput. The life-limiting failure mode for NEXT is predicted to be loss of structural integrity of the accelerator grid due to erosion by charge-exchange ions.

  4. The impact force acting on a flat plate exposed normally to a rarefied plasma plume issuing from an annular or circular nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xi, E-mail: cx-dem@mail.tsinghua.edu.c [Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China)

    2010-08-11

    With the indirect thrust measurement of electric thrusters working at a low vacuum chamber pressure as the research background, this paper analyses the impact force acting on a flat plate exposed normally to a rarefied plasma plume issuing from a thruster with an annular or circular exit section for the free-molecule flow regime (at large Knudsen numbers). The constraint relation proposed by Cai and Boyd (2007 J. Spacecr. Rockets 44 619, 1326) about the velocity components of gas particles leaving a location on the nozzle exit section and arriving at a given spatial point outside the nozzle has been employed here to derive the analytical expressions for calculating the impact force. Sample calculation results show that if the flat plate is sufficiently large, the impact force acting on the flat plate calculated for the case without accounting for gas particle reflection at the plate surface agrees well with the axial momentum flux calculated at the thruster exit or the theoretical thrust force of the studied thruster, while accounting for the contribution of gas particles reflected from the plate surface to the impact force production may significantly increase the calculated impact force acting on the flat plate. For a Hall-effect thruster in which the thrust force is dominantly produced by the ions with high directional kinetic energy and the ions are not directly reflected from the plate surface, the contribution to the impact force production of atom species and of gas particles reflected from the plate surface is negligibly small and thus the measured axial impact force acting on a sufficiently large plate can well represent the thrust force of the thruster. On the other hand, if the contribution of the gas particles reflected from the plate surface to the impact force production cannot be neglected (e.g. for the electric thrusters with comparatively low thruster exit temperatures), appreciable error would appear in the indirect thrust measurement.

  5. New method for calculation of integral characteristics of thermal plumes

    DEFF Research Database (Denmark)

    Zukowska, Daria; Popiolek, Zbigniew; Melikov, Arsen Krikor

    2008-01-01

    A method for calculation of integral characteristics of thermal plumes is proposed. The method allows for determination of the integral parameters of plumes based on speed measurements performed with omnidirectional low velocity thermoanemometers. The method includes a procedure for calculation...... of the directional velocity (upward component of the mean velocity). The method is applied for determination of the characteristics of an asymmetric thermal plume generated by a sitting person. The method was validated in full-scale experiments in a climatic chamber with a thermal manikin as a simulator of a sitting...

  6. Effect of Anode Magnetic Shield on Magnetic Field and Ion Beam in Cylindrical Hall Thruster

    International Nuclear Information System (INIS)

    Zhao Jie; Wang Shiqing; Liu Jian; Xu Li; Tang Deli; Geng Shaofei

    2010-01-01

    Numerical simulation of the effect of the anode magnetic shielding on the magnetic field and ion beam in a cylindrical Hall thruster is presented. The results show that after the anode is shielded by the magnetic shield, the magnetic field lines near the anode surface are obviously convex curved, the ratio of the magnetic mirror is enhanced, the width of the positive magnetic field gradient becomes larger than that without the anode magnetic shielding, the radial magnetic field component is enhanced, and the discharge plasma turbulence is reduced as a result of keeping the original saddle field profile and the important role the other two saddle field profiles play in restricting electrons. The results of the particle in cell (PIC) numerical simulation show that both the ion number and the energy of the ion beam increase after the anode is shielded by the magnetic shield. In other words, the specific impulse of the cylindrical Hall thruster is enhanced.

  7. High-Pressure Lightweight Thrusters

    Science.gov (United States)

    Holmes, Richard; McKechnie, Timothy; Shchetkovskiy, Anatoliy; Smirnov, Alexander

    2013-01-01

    interface realizes pseudo-plastic behavior with significant increase in the tensile strength. The investigation of high-temperature strength of C/Cs under high-rate heating (critical for thrust chambers) shows that tensile and compression strength increases from 70 MPa at room temperature to 110 MPa at 1,773 K, and up to 125 MPa at 2,473 K. Despite these unique properties, the use of C/Cs is limited by its high oxidation rate at elevated temperatures. Lining carbon/carbon chambers with a thin layer of iridium or iridium and rhenium is an innovative way to use proven refractory metals and provide the oxidation barrier necessary to enable the use of carbon/ carbon composites. Due to the lower density of C/Cs as compared to SiC/SiC composites, an iridium liner can be added to the C/C structure and still be below the overall thruster weight. Weight calculations show that C/C, C/C with 50 microns of Ir, and C/C with 100 microns of Ir are of less weight than alternative materials for the same construction.

  8. Carbon Nanotube Based Electric Propulsion Thruster with Low Power Consumption, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR project is to develop field emission electric propulsion (FEEP) thruster using carbon nanotubes (CNT) integrated anode. FEEP thrusters have gained...

  9. Thermo-mechanical design aspects of mercury bombardment ion thrusters.

    Science.gov (United States)

    Schnelker, D. E.; Kami, S.

    1972-01-01

    The mechanical design criteria are presented as background considerations for solving problems associated with the thermomechanical design of mercury ion bombardment thrusters. Various analytical procedures are used to aid in the development of thruster subassemblies and components in the fields of heat transfer, vibration, and stress analysis. Examples of these techniques which provide computer solutions to predict and control stress levels encountered during launch and operation of thruster systems are discussed. Computer models of specific examples are presented.

  10. Thermal plumes in ventilated rooms

    DEFF Research Database (Denmark)

    Kofoed, Peter; Nielsen, Peter V.

    1990-01-01

    The design of a displacement ventilation system involves determination of the flow rate in the thermal plumes. The flow rate in the plumes and the vertical temperature gradient influence each other, and they are influenced by many factors. This paper shows some descriptions of these effects. Free...... above a point heat source cannot be used. This is caused either by the way of generating the plume including a long intermediate region or by the environmental conditions where vertical temperature gradients are present. The flow has a larger angle of spread and the entrainment factor is greather than...... turbulent plumes from different heated bodies are investigated. The measurements have taken place in a full-scale test room where the vertical temperature gradient have been changed. The velocity and the temperature distribution in the plume are measured. Large scale plume axis wandering is taken...

  11. Seismic Imaging of Mantle Plumes

    Science.gov (United States)

    Nataf, Henri-Claude

    The mantle plume hypothesis was proposed thirty years ago by Jason Morgan to explain hotspot volcanoes such as Hawaii. A thermal diapir (or plume) rises from the thermal boundary layer at the base of the mantle and produces a chain of volcanoes as a plate moves on top of it. The idea is very attractive, but direct evidence for actual plumes is weak, and many questions remain unanswered. With the great improvement of seismic imagery in the past ten years, new prospects have arisen. Mantle plumes are expected to be rather narrow, and their detection by seismic techniques requires specific developments as well as dedicated field experiments. Regional travel-time tomography has provided good evidence for plumes in the upper mantle beneath a few hotspots (Yellowstone, Massif Central, Iceland). Beneath Hawaii and Iceland, the plume can be detected in the transition zone because it deflects the seismic discontinuities at 410 and 660 km depths. In the lower mantle, plumes are very difficult to detect, so specific methods have been worked out for this purpose. There are hints of a plume beneath the weak Bowie hotspot, as well as intriguing observations for Hawaii. Beneath Iceland, high-resolution tomography has just revealed a wide and meandering plume-like structure extending from the core-mantle boundary up to the surface. Among the many phenomena that seem to take place in the lowermost mantle (or D''), there are also signs there of the presence of plumes. In this article I review the main results obtained so far from these studies and discuss their implications for plume dynamics. Seismic imaging of mantle plumes is still in its infancy but should soon become a turbulent teenager.

  12. Control Valve for Miniature Xenon Ion Thruster, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is continuing its development of electric propulsion engines for various applications. Efforts have been directed toward both large and small thrusters,...

  13. Pressure History Measurement in a Microwave Beaming Thruster

    International Nuclear Information System (INIS)

    Oda, Yasuhisa; Ushio, Masato; Komurasaki, Kimiya; Takahashi, Koji; Kasugai, Atsushi; Sakamoto, Keishi

    2006-01-01

    In a microwave beaming thruster with a 1-dimensional nozzle, plasma and shock wave propagates in the nozzle absorbing microwave power. In this study, pressure histories in the thruster are measured using pressure gauges. Measured pressure history at the thruster wall shows constant pressure during plasma propagation in the nozzle. The result of measurement of the propagating velocities of shock wave and plasma shows that both propagate in the same velocity. These result shows that thrust producing model of analogy of pulse detonation engine is successful for the 1D thruster

  14. Effect of Anode Dielectric Coating on Hall Thruster Operation

    International Nuclear Information System (INIS)

    Dorf, L.; Raitses, Y.; Fisch, N.J.; Semenov, V.

    2003-01-01

    An interesting phenomenon observed in the near-anode region of a Hall thruster is that the anode fall changes from positive to negative upon removal of the dielectric coating, which is produced on the anode surface during the normal course of Hall thruster operation. The anode fall might affect the thruster lifetime and acceleration efficiency. The effect of the anode coating on the anode fall is studied experimentally using both biased and emissive probes. Measurements of discharge current oscillations indicate that thruster operation is more stable with the coated anode

  15. Hall Thruster Thermal Modeling and Test Data Correlation

    Science.gov (United States)

    Myers, James; Kamhawi, Hani; Yim, John; Clayman, Lauren

    2016-01-01

    The life of Hall Effect thrusters are primarily limited by plasma erosion and thermal related failures. NASA Glenn Research Center (GRC) in cooperation with the Jet Propulsion Laboratory (JPL) have recently completed development of a Hall thruster with specific emphasis to mitigate these limitations. Extending the operational life of Hall thursters makes them more suitable for some of NASA's longer duration interplanetary missions. This paper documents the thermal model development, refinement and correlation of results with thruster test data. Correlation was achieved by minimizing uncertainties in model input and recognizing the relevant parameters for effective model tuning. Throughout the thruster design phase the model was used to evaluate design options and systematically reduce component temperatures. Hall thrusters are inherently complex assemblies of high temperature components relying on internal conduction and external radiation for heat dispersion and rejection. System solutions are necessary in most cases to fully assess the benefits and/or consequences of any potential design change. Thermal model correlation is critical since thruster operational parameters can push some components/materials beyond their temperature limits. This thruster incorporates a state-of-the-art magnetic shielding system to reduce plasma erosion and to a lesser extend power/heat deposition. Additionally a comprehensive thermal design strategy was employed to reduce temperatures of critical thruster components (primarily the magnet coils and the discharge channel). Long term wear testing is currently underway to assess the effectiveness of these systems and consequently thruster longevity.

  16. Effect of plasma distribution on propulsion performance in electrodeless plasma thrusters

    Science.gov (United States)

    Takao, Yoshinori; Takase, Kazuki; Takahashi, Kazunori

    2016-09-01

    A helicon plasma thruster consisting of a helicon plasma source and a magnetic nozzle is one of the candidates for long-lifetime thrusters because no electrodes are employed to generate or accelerate plasma. A recent experiment, however, detected the non-negligible axial momentum lost to the lateral wall boundary, which degrades thruster performance, when the source was operated with highly ionized gases. To investigate this mechanism, we have conducted two-dimensional axisymmetric particle-in-cell (PIC) simulations with the neutral distribution obtained by Direct Simulation Monte Carlo (DSMC) method. The numerical results have indicated that the axially asymmetric profiles of the plasma density and potential are obtained when the strong decay of neutrals occurs at the source downstream. This asymmetric potential profile leads to the accelerated ion towards the lateral wall, leading to the non-negligible net axial force in the opposite direction of the thrust. Hence, to reduce this asymmetric profile by increasing the neutral density at downstream and/or by confining plasma with external magnetic field would result in improvement of the propulsion performance. These effects are also analyzed by PIC/DSMC simulations.

  17. Determination of the Hall Thruster Operating Regimes

    International Nuclear Information System (INIS)

    L. Dorf; V. Semenov; Y. Raitses; N.J. Fisch

    2002-04-01

    A quasi one-dimensional (1-D) steady-state model of the Hall thruster is presented. For the same discharge voltage two operating regimes are possible -- with and without the anode sheath. For given mass flow rate, magnetic field profile and discharge voltage a unique solution can be constructed, assuming that the thruster operates in one of the regimes. However, we show that for a given temperature profile the applied discharge voltage uniquely determines the operating regime: for discharge voltages greater than a certain value, the sheath disappears. That result is obtained over a wide range of incoming neutral velocities, channel lengths and widths, and cathode plane locations. It is also shown that a good correlation between the quasi 1-D model and experimental results can be achieved by selecting an appropriate electron mobility and temperature profile

  18. Chaotic waves in Hall thruster plasma

    International Nuclear Information System (INIS)

    Peradzynski, Zbigniew; Barral, S.; Kurzyna, J.; Makowski, K.; Dudeck, M.

    2006-01-01

    The set of hyperbolic equations of the fluid model describing the acceleration of plasma in a Hall thruster is analyzed. The characteristic feature of the flow is the existence of a trapped characteristic; i.e. there exists a characteristic line, which never intersects the boundary of the flow region in the thruster. To study the propagation of short wave perturbations, the approach of geometrical optics (like WKB) can be applied. This can be done in a linear as well as in a nonlinear version. The nonlinear version describes the waves of small but finite amplitude. As a result of such an approach one obtains so called transport equation, which are governing the wave amplitude. Due to the existence of trapped characteristics this transport equation appears to have chaotic (turbulent) solutions in both, linear and nonlinear versions

  19. Pickup ion processes associated with spacecraft thrusters: Implications for solar probe plus

    Energy Technology Data Exchange (ETDEWEB)

    Clemens, Adam, E-mail: a.j.clemens@qmul.ac.uk; Burgess, David [School of Physics and Astronomy, Queen Mary University of London, London (United Kingdom)

    2016-03-15

    Chemical thrusters are widely used in spacecraft for attitude control and orbital manoeuvres. They create an exhaust plume of neutral gas which produces ions via photoionization and charge exchange. Measurements of local plasma properties will be affected by perturbations caused by the coupling between the newborn ions and the plasma. A model of neutral expansion has been used in conjunction with a fully three-dimensional hybrid code to study the evolution and ionization over time of the neutral cloud produced by the firing of a mono-propellant hydrazine thruster as well as the interactions of the resulting ion cloud with the ambient solar wind. Results are presented which show that the plasma in the region near to the spacecraft will be perturbed for an extended period of time with the formation of an interaction region around the spacecraft, a moderate amplitude density bow wave bounding the interaction region and evidence of an instability at the forefront of the interaction region which causes clumps of ions to be ejected from the main ion cloud quasi-periodically.

  20. Electronegative Gas Thruster - Direct Thrust Measurement Project

    Science.gov (United States)

    Dankanich, John (Principal Investigator); Aanesland, Ane; Polzin, Kurt; Walker, Mitchell

    2015-01-01

    This effort is an international collaboration and academic partnership to mature an innovative electric propulsion (EP) thruster concept to TRL 3 through direct thrust measurement. The initial target application is for Small Satellites, but can be extended to higher power. The Plasma propulsion with Electronegative GASES (PEGASES) concept simplifies ion thruster operation, eliminates a neutralizer requirement and should yield longer life capabilities and lower cost implementation over conventional gridded ion engines. The basic proof-of concept has been demonstrated and matured to TRL 2 over the past several years by researchers at the Laboratoire de Physique des Plasma in France. Due to the low maturity of the innovation, there are currently no domestic investments in electronegative gas thrusters anywhere within NASA, industry or academia. The end product of this Center Innovation Fund (CIF) project will be a validation of the proof-of-concept, maturation to TRL 3 and technology assessment report to summarize the potential for the PEGASES concept to supplant the incumbent technology. Information exchange with the foreign national will be one-way with the exception of the test results. Those test results will first go through a standard public release ITAR/export control review, and the results will be presented in a public technical forum, and the results will be presented in a public technical forum.

  1. The microwave thermal thruster and its application to the launch problem

    Science.gov (United States)

    Parkin, Kevin L. G.

    Nuclear thermal thrusters long ago bypassed the 50-year-old specific impulse (Isp) limitation of conventional thrusters, using nuclear powered heat exchangers in place of conventional combustion to heat a hydrogen propellant. These heat exchanger thrusters experimentally achieved an Isp of 825 seconds, but with a thrust-to-weight ratio (T/W) of less than ten they have thus far been too heavy to propel rockets into orbit. This thesis proposes a new idea to achieve both high Isp and high T/W The Microwave Thermal Thruster. This thruster covers the underside of a rocket aeroshell with a lightweight microwave absorbent heat exchange layer that may double as a re-entry heat shield. By illuminating the layer with microwaves directed from a ground-based phased array, an Isp of 700--900 seconds and T/W of 50--150 is possible using a hydrogen propellant. The single propellant simplifies vehicle design, and the high Isp increases payload fraction and structural margins. These factors combined could have a profound effect on the economics of building and reusing rockets. A laboratory-scale microwave thermal heat exchanger is constructed using a single channel in a cylindrical microwave resonant cavity, and new type of coupled electromagnetic-conduction-convection model is developed to simulate it. The resonant cavity approach to small-scale testing reveals several drawbacks, including an unexpected oscillatory behavior. Stable operation of the laboratory-scale thruster is nevertheless successful, and the simulations are consistent with the experimental results. In addition to proposing a new type of propulsion and demonstrating it, this thesis provides three other principal contributions: The first is a new perspective on the launch problem, placing it in a wider economic context. The second is a new type of ascent trajectory that significantly reduces the diameter, and hence cost, of the ground-based phased array. The third is an eclectic collection of data, techniques, and

  2. Biodegradation at Dynamic Plume Fringes: Mixing Versus Reaction Control

    Science.gov (United States)

    Cirpka, O. A.; Eckert, D.; Griebler, C.; Haberer, C.; Kürzinger, P.; Bauer, R.; Mellage, A.

    2014-12-01

    Biodegradation of continuously emitted plumes is known to be most pronounced at the plume fringe, where mixing of contaminated water and ambient groundwater, containing dissolved electron acceptors, stimulates microbial activity. Under steady-state conditions, physical mixing of contaminant and electron acceptor by transverse dispersion was shown to be the major bottleneck for biodegradation, with plume lengths scaling inversely with the bulk transverse dispersivity in quasi two-dimensional settings. Under these conditions, the presence of suitable microbes is essential but the biokinetic parameters do not play an important role. When the location of the plume shifts (caused, e.g., by a fluctuating groundwater table), however, the bacteria are no more situated at the plume fringe and biomass growth, decay, activation and deactivation determine the time lag until the fringe-controlled steady state is approached again. During this time lag, degradation is incomplete. The objective of the presented study was to analyze to which extent flow and transport dynamics diminish effectiveness of fringe-controlled biodegradation and which microbial processes and related biokinetic parameters determine the system response in overall degradation to hydraulic fluctuations. We performed experiments in quasi-two-dimensional flow through microcosms on aerobic toluene degradation by Pseudomonas putida F1. Plume dynamics were simulated by vertical alteration of the toluene plume position and experimental results were analyzed by reactive-transport modeling. We found that, even after disappearance of the toluene plume for two weeks, the majority of microorganisms stayed attached to the sediment and regained their full biodegradation potential within two days after reappearance of the toluene plume. Our results underline that besides microbial growth and maintenance (often subsumed as "biomass decay") microbial dormancy (that is, change into a metabolically inactive state) and

  3. Experiments on Plume Spreading by Engineered Injection and Extraction

    Science.gov (United States)

    Mays, D. C.; Jones, M.; Tigera, R. G.; Neupauer, R.

    2014-12-01

    The notion that groundwater remediation is transport-limited emphasizes the coupling between physical (i.e., hydrodynamic), geochemical, and microbiological processes in the subsurface. Here we leverage this coupling to promote groundwater remediation using the approach of engineered injection and extraction. In this approach, inspired by the literature on chaotic advection, uncontaminated groundwater is injected and extracted through a manifold of wells surrounding the contaminated plume. The potential of this approach lies in its ability to actively manipulate the velocity field near the contaminated plume, generating plume spreading above and beyond that resulting from aquifer heterogeneity. Plume spreading, in turn, promotes mixing and reaction by chemical and biological processes. Simulations have predicted that engineered injection and extraction generates (1) chaotic advection whose characteristics depend on aquifer heterogeneity, and (2) faster rates and increased extent of groundwater remediation. This presentation focuses on a complimentary effort to experimentally demonstrate these predictions experimentally. In preparation for future work using refractive index matched (RIM) porous media, the experiments reported here use a Hele-Shaw apparatus containing silicone oil. Engineered injection and extraction is used to manipulate the geometry of an initially circular plume of black pigment, and photographs record the plume geometry after each step of injection of extraction. Image analysis, using complimentary Eulerian and Lagrangian approaches, reveals the thickness and variability of the dispersion zone surrounding the deformed plume of black pigment. The size, shape, and evolution of this dispersion zone provides insight into the interplay between engineered injection and extraction, which generates plume structure, and dispersion (here Taylor dispersion), which destroys plume structure. These experiments lay the groundwork for application of engineered

  4. Thermal Plumes in Ventilated Rooms

    DEFF Research Database (Denmark)

    Kofoed, Peter; Nielsen, Peter V.

    The design of a displacement ventilation system involves determination of the flow rate in the thermal plumes. The flow rate in the plumes and the vertical temperature gradient influence each other, and they are influenced by many factors. This paper shows some descriptions of these effects....

  5. Dispersion under low wind speed conditions using Gaussian Plume approach

    International Nuclear Information System (INIS)

    Rakesh, P.T.; Srinivas, C.V.; Baskaran, R.; Venkatesan, R.; Venkatraman, B.

    2018-01-01

    For radioactive dose computation due to atmospheric releases, dispersion models are essential requirement. For this purpose, Gaussian plume model (GPM) is used in the short range and advanced particle dispersion models are used in all ranges. In dispersion models, other than wind speed the most influential parameter which determines the fate of the pollutant is the turbulence diffusivity. In GPM the diffusivity is represented using empirical approach. Studies show that under low wind speed conditions, the existing diffusivity relationships are not adequate in estimating the diffusion. An important phenomenon that occurs during the low wind speed is the meandering motions. It is found that under meandering motions the extent of plume dispersion is more than the estimated value using conventional GPM and particle transport models. In this work a set of new turbulence parameters for the horizontal diffusion of the plume is suggested and using them in GPM, the plume is simulated and is compared against observation available from Hanford tracer release experiment

  6. Plume rise from multiple sources

    International Nuclear Information System (INIS)

    Briggs, G.A.

    1975-01-01

    A simple enhancement factor for plume rise from multiple sources is proposed and tested against plume-rise observations. For bent-over buoyant plumes, this results in the recommendation that multiple-source rise be calculated as [(N + S)/(1 + S)]/sup 1/3/ times the single-source rise, Δh 1 , where N is the number of sources and S = 6 (total width of source configuration/N/sup 1/3/ Δh 1 )/sup 3/2/. For calm conditions a crude but simple method is suggested for predicting the height of plume merger and subsequent behavior which is based on the geometry and velocity variations of a single buoyant plume. Finally, it is suggested that large clusters of buoyant sources might occasionally give rise to concentrated vortices either within the source configuration or just downwind of it

  7. Analysis and design of ion thruster for large space systems

    Science.gov (United States)

    Poeschel, R. L.; Kami, S.

    1980-01-01

    Design analyses showed that an ion thruster of approximately 50 cm in diameter will be required to produce a thrust of 0.5 N using xenon or argon as propellants, and operating the thruster at a specific impulse of 3530 sec or 6076 sec respectively. A multipole magnetic confinement discharge chamber was specified.

  8. Retrofit and acceptance test of 30-cm ion thrusters

    Science.gov (United States)

    Poeschel, R. L.

    1981-01-01

    Six 30 cm mercury thrusters were modified to the J-series design and evaluated using standardized test procedures. The thruster performance meets the design objectives (lifetime objective requires verification), and documentation (drawings, etc.) for the design is completed and upgraded. The retrofit modifications are described and the test data for the modifications are presented and discussed.

  9. NASA HERMeS Hall Thruster Electrical Configuration Characterization

    Science.gov (United States)

    Peterson, Peter; Kamhawi, Hani; Huang, Wensheng; Yim, John; Herman, Daniel; Williams, George; Gilland, James; Hofer, Richard

    2016-01-01

    NASAs Hall Effect Rocket with Magnetic Shielding (HERMeS) 12.5 kW Technology Demonstration Unit-1 (TDU-1) Hall thruster has been the subject of extensive technology maturation in preparation for development into a flight ready propulsion system. Part of the technology maturation was to test the TDU-1 thruster in several ground based electrical configurations to assess the thruster robustness and suitability to successful in-space operation. The ground based electrical configuration testing has recently been demonstrated as an important step in understanding and assessing how a Hall thruster may operate differently in space compared to ground based testing, and to determine the best configuration to conduct development and qualification testing. This presentation will cover the electrical configuration testing of the TDU-1 HERMeS Hall thruster in NASA Glenn Research Centers Vacuum Facility 5. The three electrical configurations examined are the thruster body tied to facility ground, thruster floating, and finally the thruster body electrically tied to cathode common. The TDU-1 HERMeS was configured with two different exit plane boundary conditions, dielectric and conducting, to examine the influence on the electrical configuration characterization.

  10. Development of local-scale high-resolution atmospheric dispersion model using large-eddy simulation. Part 3: turbulent flow and plume dispersion in building arrays

    Czech Academy of Sciences Publication Activity Database

    Nakayama, H.; Jurčáková, Klára; Nagai, H.

    2013-01-01

    Roč. 50, č. 5 (2013), s. 503-519 ISSN 0022-3131 Institutional support: RVO:61388998 Keywords : local-scale high-resolution dispersion model * nuclear emergency response system * large-eddy simulation * spatially developing turbulent boundary layer flow Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.452, year: 2013

  11. Magnetic Field Effects on Plasma Plumes

    Science.gov (United States)

    Ebersohn, F.; Shebalin, J.; Girimaji, S.; Staack, D.

    2012-01-01

    Here, we will discuss our numerical studies of plasma jets and loops, of basic interest for plasma propulsion and plasma astrophysics. Space plasma propulsion systems require strong guiding magnetic fields known as magnetic nozzles to control plasma flow and produce thrust. Propulsion methods currently being developed that require magnetic nozzles include the VAriable Specific Impulse Magnetoplasma Rocket (VASIMR) [1] and magnetoplasmadynamic thrusters. Magnetic nozzles are functionally similar to de Laval nozzles, but are inherently more complex due to electromagnetic field interactions. The two crucial physical phenomenon are thrust production and plasma detachment. Thrust production encompasses the energy conversion within the nozzle and momentum transfer to a spacecraft. Plasma detachment through magnetic reconnection addresses the problem of the fluid separating efficiently from the magnetic field lines to produce maximum thrust. Plasma jets similar to those of VASIMR will be studied with particular interest in dual jet configurations, which begin as a plasma loops between two nozzles. This research strives to fulfill a need for computational study of these systems and should culminate with a greater understanding of the crucial physics of magnetic nozzles with dual jet plasma thrusters, as well as astrophysics problems such as magnetic reconnection and dynamics of coronal loops.[2] To study this problem a novel, hybrid kinetic theory and single fluid magnetohydrodynamic (MHD) solver known as the Magneto-Gas Kinetic Method is used.[3] The solver is comprised of a "hydrodynamic" portion based on the Gas Kinetic Method and a "magnetic" portion that accounts for the electromagnetic behaviour of the fluid through source terms based on the resistive MHD equations. This method is being further developed to include additional physics such as the Hall effect. Here, we will discuss the current level of code development, as well as numerical simulation results

  12. Effects of Enhanced Eathode Electron Emission on Hall Thruster Operation

    International Nuclear Information System (INIS)

    Raitses, Y.; Smirnov, A.; Fisch, N.J.

    2009-01-01

    Interesting discharge phenomena are observed that have to do with the interaction between the magnetized Hall thruster plasma and the neutralizing cathode. The steadystate parameters of a highly ionized thruster discharge are strongly influenced by the electron supply from the cathode. The enhancement of the cathode electron emission above its self-sustained level affects the discharge current and leads to a dramatic reduction of the plasma divergence and a suppression of large amplitude, low frequency discharge current oscillations usually related to an ionization instability. These effects correlate strongly with the reduction of the voltage drop in the region with the fringing magnetic field between the thruster channel and the cathode. The measured changes of the plasma properties suggest that the electron emission affects the electron cross-field transport in the thruster discharge. These trends are generalized for Hall thrusters of various configurations.

  13. Theoretical and experimental study of a thruster discharging a weight

    Science.gov (United States)

    Michaels, Dan; Gany, Alon

    2014-06-01

    An innovative concept for a rocket type thruster that can be beneficial for spacecraft trajectory corrections and station keeping was investigated both experimentally and theoretically. It may also be useful for divert and attitude control systems (DACS). The thruster is based on a combustion chamber discharging a weight through an exhaust tube. Calculations with granular double-base propellant and a solid ejected weight reveal that a specific impulse based on the propellant mass of well above 400 s can be obtained. An experimental thruster was built in order to demonstrate the new idea and validate the model. The thruster impulse was measured both directly with a load cell and indirectly by using a pressure transducer and high speed photography of the weight as it exits the tube, with both ways producing very similar total impulse measurement. The good correspondence between the computations and the measured data validates the model as a useful tool for studying and designing such a thruster.

  14. Plume rise predictions

    International Nuclear Information System (INIS)

    Briggs, G.A.

    1976-01-01

    Anyone involved with diffusion calculations becomes well aware of the strong dependence of maximum ground concentrations on the effective stack height, h/sub e/. For most conditions chi/sub max/ is approximately proportional to h/sub e/ -2 , as has been recognized at least since 1936 (Bosanquet and Pearson). Making allowance for the gradual decrease in the ratio of vertical to lateral diffusion at increasing heights, the exponent is slightly larger, say chi/sub max/ approximately h/sub e/ - 2 . 3 . In inversion breakup fumigation, the exponent is somewhat smaller; very crudely, chi/sub max/ approximately h/sub e/ -1 . 5 . In any case, for an elevated emission the dependence of chi/sub max/ on h/sub e/ is substantial. It is postulated that a really clever ignorant theoretician can disguise his ignorance with dimensionless constants. For most sources the effective stack height is considerably larger than the actual source height, h/sub s/. For instance, for power plants with no downwash problems, h/sub e/ is more than twice h/sub s/ whenever the wind is less than 10 m/sec, which is most of the time. This is unfortunate for anyone who has to predict ground concentrations, for he is likely to have to calculate the plume rise, Δh. Especially when using h/sub e/ = h/sub s/ + Δh instead of h/sub s/ may reduce chi/sub max/ by a factor of anywhere from 4 to infinity. Factors to be considered in making plume rise predictions are discussed

  15. Electromagnetic Effects in the Near Field Plume Exhaust of a Micro-Pulsed Plasma Thruster

    National Research Council Canada - National Science Library

    Keidar, Michael

    2002-01-01

    ...). As a working example we consider a micro-PPT developed at the Air Force Research Laboratory. This is a miniaturized design of the axisymmetric PPT with a thrust in the 10 micro-N range that utilizes Teflon(Trademark(sup Trademark)) as a propellant...

  16. Ozone production efficiency of a ship-plume: ITCT 2K2 case study.

    Science.gov (United States)

    Kim, Hyun S; Kim, Yong H; Han, Kyung M; Kim, Jhoon; Song, Chul H

    2016-01-01

    Ozone production efficiency (OPE) of ship plume was first evaluated in this study, based on ship-plume photochemical/dynamic model simulations and the ship-plume composition data measured during the ITCT 2K2 (Intercontinental Transport and Chemical Transformation 2002) aircraft campaign. The averaged instantaneous OPEs (OPE(i)‾) estimated via the ship-plume photochemical/dynamic modeling for the ITCT 2K2 ship-plume ranged between 4.61 and 18.92, showing that the values vary with the extent of chemical evolution (or chemical stage) of the ship plume and the stability classes of the marine boundary layer (MBL). Together with OPE(i)‾, the equivalent OPEs (OPE(e)‾) for the entire ITCT 2K2 ship-plume were also estimated. The OPE(e)‾ values varied between 9.73 (for the stable MBL) and 12.73 (for the moderately stable MBL), which agreed well with the OPE(e)‾ of 12.85 estimated based on the ITCT 2K2 ship-plume observations. It was also found that both the model-simulated and observation-based OPE(e)‾ inside the ship-plume were 0.29-0.38 times smaller than the OPE(e)‾ calculated/measured outside the ITCT 2K2 ship-plume. Such low OPEs insides the ship plume were due to the high levels of NO and non-liner ship-plume photochemistry. Possible implications of this ship-plume OPE study in the global chemistry-transport modeling are also discussed. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Monitoring and forecasting Etna volcanic plumes

    Directory of Open Access Journals (Sweden)

    S. Scollo

    2009-09-01

    Full Text Available In this paper we describe the results of a project ongoing at the Istituto Nazionale di Geofisica e Vulcanologia (INGV. The objective is to develop and implement a system for monitoring and forecasting volcanic plumes of Etna. Monitoring is based at present by multispectral infrared measurements from the Spin Enhanced Visible and Infrared Imager on board the Meteosat Second Generation geosynchronous satellite, visual and thermal cameras, and three radar disdrometers able to detect ash dispersal and fallout. Forecasting is performed by using automatic procedures for: i downloading weather forecast data from meteorological mesoscale models; ii running models of tephra dispersal, iii plotting hazard maps of volcanic ash dispersal and deposition for certain scenarios and, iv publishing the results on a web-site dedicated to the Italian Civil Protection. Simulations are based on eruptive scenarios obtained by analysing field data collected after the end of recent Etna eruptions. Forecasting is, hence, supported by plume observations carried out by the monitoring system. The system was tested on some explosive events occurred during 2006 and 2007 successfully. The potentiality use of monitoring and forecasting Etna volcanic plumes, in a way to prevent threats to aviation from volcanic ash, is finally discussed.

  18. Rise of a cold plume

    International Nuclear Information System (INIS)

    Kakuta, Michio

    1977-06-01

    The rise of smoke from the stacks of two research reactors in normal operation was measured by photogrametric method. The temperature of effluent gas is less than 20 0 C higher than that of the ambient air (heat emission of the order 10 4 cal s -1 ), and the efflux velocity divided by the wind speed is between 0.5 and 2.8 in all 16 smoke runs. The field data obtained within downwind distance of 150m are compared with those by plume rise formulas presently available. Considering the shape of bending-over plume, the Briggs' formula for 'jet' gives a reasonable explanation of the observed plume rise. (auth.)

  19. Electromagnetic properties of a modular MHD thruster

    Science.gov (United States)

    Kom, C. H.; Brunet, Y.

    1999-04-01

    The magnetic field of an annular MHD thruster made of independent superconducting modules has been studied with analytical and numerical methods. This configuration allows to obtain large magnetized volumes and high induction levels with rapidly decreasing stray fields. When some inductors are out of order, the thruster remains still operational, but the stray fields increase in the vicinity of the failure. For given structural materials and superconductors, it is possible to determine the size of the conductor in order to reduce the electromagnetic forces and the peak field supported by the conductors. For an active field of 10 T in a 6 m ray annular active channel of a thruster with 24 modules, the peak field is exactly 15.6 T in the Nb3Sn conductors and the structure has to sustain 10^8 N/m forces. The necessity to place some magnetic or superconducting shield is discussed, particularly when the thruster is in a degraded regime. Nous présentons une étude analytique et numérique du champ magnétique d'un propulseur MHD naval annulaire, constitué de secteurs inducteurs supraconducteurs. Cette configuration nécessite des champs magnétiques élevés dans des volumes importants, et permet une décroissance rapide des champs de fuite. Lorsque quelques inducteurs sont en panne, le propulseur reste toujours opérationnel, mais les champs de fuite sont importants aux environs des modules hors service. Étant donné un matériau supraconducteur, il est possible de déterminer la forme des inducteurs dans le but de réduire à la fois les forces électromagnétiques et le surchamp supporté par le bobinage. Pour un propulseur annulaire constitué de 24 modules inducteurs, et un champ actif de 10 T au centre de la partie active du canal (r = 6 m) on obtient avec du Nb3Sn un champ maximun sur le conducteur de 15,5 T et la structure supporte une force de 10^8 N/m. De plus, la nécessité de placer des écrans magnétique ou supraconducteur en régime dégradé (mise

  20. Status of the J-series 30-cm mercury ion thruster

    Science.gov (United States)

    Kami, S.; Dulgeroff, C. R.; Bechtel, R. T.

    1982-01-01

    This paper describes the status of the 30-cm J-series mercury ion thruster. This thruster was baselined for the Solar Electric Propulsion System (SEPS) vehicle. This thruster is described and several modifications plus suggested modifications are presented. Some of the modifications resulted from tests performed with the thruster. The operational characteristics of eight J-series thrusters are presented. Isolator contamination and flake formation are also discussed.

  1. Hollow Cathode Assembly Development for the HERMeS Hall Thruster

    Science.gov (United States)

    Sarver-Verhey, Timothy R.; Kamhawi, Hani; Goebel, Dan M.; Polk, James E.; Peterson, Peter Y.; Robinson, Dale A.

    2016-01-01

    To support the operation of the HERMeS 12.5 kW Hall Thruster for NASA's Asteroid Redirect Robotic Mission, hollow cathodes using emitters based on barium oxide impregnate and lanthanum hexaboride are being evaluated through wear-testing, performance characterization, plasma modeling, and review of integration requirements. This presentation will present the development approach used to assess the cathode emitter options. A 2,000-hour wear-test of development model Barium Oxide (BaO) hollow cathode is being performed as part of the development plan. Specifically this test is to identify potential impacts cathode emitter life during operation in the HERMeS thruster. The cathode was operated with a magnetic field-equipped anode that simulates the HERMeS hall thruster operating environment. Cathode discharge performance has been stable with the device accumulating 743 hours at the time of this report. Observed voltage changes are attributed to keeper surface condition changes during testing. Cathode behavior during characterization sweeps exhibited stable behavior, including cathode temperature. The details of the cathode assembly operation of the wear-test will be presented.

  2. Plume rise measurements at Turbigo

    Energy Technology Data Exchange (ETDEWEB)

    Anfossi, D

    1982-01-01

    This paper presents analyses of plume measurements obtained during that campaign by the ENEL ground-based Lidar. The five stacks of Turbigo Power Plant have different heights and emission parameters and their plumes usually combine, so a model for multiple sources was used to predict the plume rises. These predictions are compared with the observations. Measurements of sigma/sub v/ and sigma/sub z/ over the first 1000 m are compared with the curves derived from other observations in the Po Valley, using the no-lift balloon technique over the same range of downwind distance. Skewness and kurtosis distributions are shown, both along the vertical and the horizontal directions. In order to show the plume structure in more detail, we present two examples of Lidar-derived cross sections and the corresponding vertically and horizontally integrated concentration profiles.

  3. Thermal Plumes in Ventilated Rooms

    DEFF Research Database (Denmark)

    Kofoed, Peter

    Axisymmeric circular buoyant jets are treated both theoretically and experimentally. From a literature study the author concludes that the state of experimental knowledge is less satisfactory. Further three different measuring methods have been established to investigate the thermal plumes from...

  4. Novel plume deflection concept testing

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed effort will explore the feasibility and effectiveness of utilizing an electrically driven thermal shield for use as part of rocket plume deflectors. To...

  5. Generation of dense plume fingers in saturated-unsaturated homogeneous porous media

    Science.gov (United States)

    Cremer, Clemens J. M.; Graf, Thomas

    2015-02-01

    Flow under variable-density conditions is widespread, occurring in geothermal reservoirs, at waste disposal sites or due to saltwater intrusion. The migration of dense plumes typically results in the formation of vertical plume fingers which are known to be triggered by material heterogeneity or by variations in source concentration that causes the density variation. Using a numerical groundwater model, six perturbation methods are tested under saturated and unsaturated flow conditions to mimic heterogeneity and concentration variations on the pore scale in order to realistically generate dense fingers. A laboratory-scale sand tank experiment is numerically simulated, and the perturbation methods are evaluated by comparing plume fingers obtained from the laboratory experiment with numerically simulated fingers. Dense plume fingering for saturated flow can best be reproduced with a spatially random, time-constant perturbation of the solute source. For unsaturated flow, a spatially and temporally random noise of solute concentration or a random conductivity field adequately simulate plume fingering.

  6. Smoke plumes: Emissions and effects

    Science.gov (United States)

    Susan O' Neill; Shawn Urbanski; Scott Goodrick; Sim Larkin

    2017-01-01

    Smoke can manifest itself as a towering plume rising against the clear blue sky-or as a vast swath of thick haze, with fingers that settle into valleys overnight. It comes in many forms and colors, from fluffy and white to thick and black. Smoke plumes can rise high into the atmosphere and travel great distances across oceans and continents. Or smoke can remain close...

  7. Volcanic eruption plumes on Io

    International Nuclear Information System (INIS)

    Strom, R.G.; Terrile, R.J.; Masursky, H.; Hansen, C.

    1979-01-01

    The detection of an umbrella-shaped plume extending about 280 km above the bright limb of Io was one of the most important discoveries made during the Voyager 1 encounter with the jovian system. This discovery proves that Io is volcanically active at present, and the number and magnitude of these eruptions indicate that Io is the most volcanically active body so far discovered in the Solar System. Preliminary analyses of these eruptive plumes are presented. (U.K.)

  8. Performance and flow characteristics of MHD seawater thruster

    Energy Technology Data Exchange (ETDEWEB)

    Doss, E.D.

    1990-01-01

    The main goal of the research is to investigate the effects of strong magnetic fields on the electrical and flow fields inside MHD thrusters. The results of this study is important in the assessment of the feasibility of MHD seawater propulsion for the Navy. To accomplish this goal a three-dimensional fluid flow computer model has been developed and applied to study the concept of MHD seawater propulsion. The effects of strong magnetic fields on the current and electric fields inside the MHD thruster and their interaction with the flow fields, particularly those in the boundary layers, have been investigated. The results of the three-dimensional computations indicate that the velocity profiles are flatter over the sidewalls of the thruster walls in comparison to the velocity profiles over the electrode walls. These nonuniformities in the flow fields give rise to nonuniform distribution of the skin friction along the walls of the thrusters, where higher values are predicted over the sidewalls relative to those over the electrode walls. Also, a parametric study has been performed using the three-dimensional MHD flow model to analyze the performance of continuous electrode seawater thrusters under different operating parameters. The effects of these parameters on the fluid flow characteristics, and on the thruster efficiency have been investigated. Those parameters include the magnetic field (10--20 T), thruster diameter, surface roughness, flow velocity, and the electric load factor. The results show also that the thruster performance improves with the strength of the magnetic field and thruster diameter, and the efficiency decreases with the flow velocity and surface roughness.

  9. Optimisation of a quantum pair space thruster

    Directory of Open Access Journals (Sweden)

    Valeriu DRAGAN

    2012-06-01

    Full Text Available The paper addresses the problem of propulsion for long term space missions. Traditionally a space propulsion unit has a propellant mass which is ejected trough a nozzle to generate thrust; this is also the case with inert gases energized by an on-board power unit. Unconventional methods for propulsion include high energy LASERs that rely on the momentum of photons to generate thrust. Anti-matter has also been proposed for energy storage. Although the momentum of ejected gas is significantly higher, the LASER propulsion offers the perspective of unlimited operational time – provided there is a power source. The paper will propose the use of the quantum pair formation for generating a working mass, this is different than conventional anti-matter thrusters since the material particles generated are used as propellant not as energy storage.Two methods will be compared: LASER and positron-electron, quantum pair formation. The latter will be shown to offer better momentum above certain energy levels.For the demonstrations an analytical solution is obtained and provided in the form of various coefficients. The implications are, for now, theoretical however the practicality of an optimized thruster using such particles is not to be neglected for long term space missions.

  10. Integrating wildfire plume rises within atmospheric transport models

    Science.gov (United States)

    Mallia, D. V.; Kochanski, A.; Wu, D.; Urbanski, S. P.; Krueger, S. K.; Lin, J. C.

    2016-12-01

    Wildfires can generate significant pyro-convection that is responsible for releasing pollutants, greenhouse gases, and trace species into the free troposphere, which are then transported a significant distance downwind from the fire. Oftentimes, atmospheric transport and chemistry models have a difficult time resolving the transport of smoke from these wildfires, primarily due to deficiencies in estimating the plume injection height, which has been highlighted in previous work as the most important aspect of simulating wildfire plume transport. As a result of the uncertainties associated with modeled wildfire plume rise, researchers face difficulties modeling the impacts of wildfire smoke on air quality and constraining fire emissions using inverse modeling techniques. Currently, several plume rise parameterizations exist that are able to determine the injection height of fire emissions; however, the success of these parameterizations has been mixed. With the advent of WRF-SFIRE, the wildfire plume rise and injection height can now be explicitly calculated using a fire spread model (SFIRE) that is dynamically linked with the atmosphere simulated by WRF. However, this model has only been tested on a limited basis due to computational costs. Here, we will test the performance of WRF-SFIRE in addition to several commonly adopted plume parameterizations (Freitas, Sofiev, and Briggs) for the 2013 Patch Springs (Utah) and 2012 Baker Canyon (Washington) fires, for both of which observations of plume rise heights are available. These plume rise techniques will then be incorporated within a Lagrangian atmospheric transport model (STILT) in order to simulate CO and CO2 concentrations during NASA's CARVE Earth Science Airborne Program over Alaska during the summer of 2012. Initial model results showed that STILT model simulations were unable to reproduce enhanced CO concentrations produced by Alaskan fires observed during 2012. Near-surface concentrations were drastically

  11. Merits of a Scenario Approach in Dredge Plume Modelling

    DEFF Research Database (Denmark)

    Pedersen, Claus; Chu, Amy Ling Chu; Hjelmager Jensen, Jacob

    2011-01-01

    Dredge plume modelling is a key tool for quantification of potential impacts to inform the EIA process. There are, however, significant uncertainties associated with the modelling at the EIA stage when both dredging methodology and schedule are likely to be a guess at best as the dredging...... contractor would rarely have been appointed. Simulation of a few variations of an assumed full dredge period programme will generally not provide a good representation of the overall environmental risks associated with the programme. An alternative dredge plume modelling strategy that attempts to encapsulate...... uncertainties associated with preliminary dredging programmes by using a scenario-based modelling approach is presented. The approach establishes a set of representative and conservative scenarios for key factors controlling the spill and plume dispersion and simulates all combinations of e.g. dredge, climatic...

  12. The effect of sediments on turbulent plume dynamics in a stratified fluid

    Science.gov (United States)

    Stenberg, Erik; Ezhova, Ekaterina; Brandt, Luca

    2017-11-01

    We report large eddy simulation results of sediment-loaded turbulent plumes in a stratified fluid. The configuration, where the plume is discharged from a round source, provides an idealized model of subglacial discharge from a submarine tidewater glacier and is a starting point for understanding the effect of sediments on the dynamics of the rising plume. The transport of sediments is modeled by means of an advection-diffusion equation where sediment settling velocity is taken into account. We initially follow the experimental setup of Sutherland (Phys. Rev. Fluids, 2016), considering uniformly stratified ambients and further extend the work to pycnocline-type stratifications typical of Greenland fjords. Apart from examining the rise height, radial spread and intrusion of the rising plume, we gain further insights of the plume dynamics by extracting turbulent characteristics and the distribution of the sediments inside the plume.

  13. Io's UV-V Eclipse Emission: Implications for Pele-type Plumes

    Science.gov (United States)

    Moore, C. H.; Goldstein, D. B.; Varghese, P. L.; Trafton, L. M.

    2010-03-01

    Simulations of Io's NUV-V emission in eclipse show that S2-rich giant plumes' S2 concentrations and activity levels effect the absolute brightness and the east/west intensity ratio across Io allowing for plume activity to be determined from observed spectra.

  14. Plasma-Sheath Instability in Hall Thrusters Due to Periodic Modulation of the Energy of Secondary Electrons in Cyclotron Motion

    International Nuclear Information System (INIS)

    Sydorenko, D.; Smolyakov, A.; Kaganovich, I.; Raitses, Y.

    2008-01-01

    Particle-in-cell simulation of Hall thruster plasmas reveals a plasma-sheath instability manifesting itself as a rearrangement of the plasma sheath near the thruster channel walls accompanied by a sudden change of many discharge parameters. The instability develops when the sheath current as a function of the sheath voltage is in the negative conductivity regime. The major part of the sheath current is produced by beams of secondary electrons counter-streaming between the walls. The negative conductivity is the result of nonlinear dependence of beam-induced secondary electron emission on the plasma potential. The intensity of such emission is defined by the beam energy. The energy of the beam in crossed axial electric and radial magnetic fields is a quasi-periodical function of the phase of cyclotron rotation, which depends on the radial profile of the potential and the thruster channel width. There is a discrete set of stability intervals determined by the final phase of the cyclotron rotation of secondary electrons. As a result, a small variation of the thruster channel width may result in abrupt changes of plasma parameters if the plasma state jumps from one stability interval to another

  15. Vapor plume oscillation mechanisms in transient keyhole during tandem dual beam fiber laser welding

    Science.gov (United States)

    Chen, Xin; Zhang, Xiaosi; Pang, Shengyong; Hu, Renzhi; Xiao, Jianzhong

    2018-01-01

    Vapor plume oscillations are common physical phenomena that have an important influence on the welding process in dual beam laser welding. However, until now, the oscillation mechanisms of vapor plumes remain unclear. This is primarily because mesoscale vapor plume dynamics inside a millimeter-scale, invisible, and time-dependent keyhole are difficult to quantitatively observe. In this paper, based on a developed three-dimensional (3D) comprehensive model, the vapor plume evolutions in a dynamical keyhole are directly simulated in tandem dual beam, short-wavelength laser welding. Combined with the vapor plume behaviors outside the keyhole observed by high-speed imaging, the vapor plume oscillations in dynamical keyholes at different inter-beam distances are the first, to our knowledge, to be quantitatively analyzed. It is found that vapor plume oscillations outside the keyhole mainly result from vapor plume instabilities inside the keyhole. The ejection velocity at the keyhole opening and dynamical behaviors outside the keyhole of a vapor plume both violently oscillate with the same order of magnitude of high frequency (several kHz). Furthermore, the ejection speed at the keyhole opening and ejection area outside the keyhole both decrease as the beam distance increases, while the degree of vapor plume instability first decreases and then increases with increasing beam distance from 0.6 to 1.0 mm. Moreover, the oscillation mechanisms of a vapor plume inside the dynamical keyhole irradiated by dual laser beams are investigated by thoroughly analyzing the vapor plume occurrence and flow process. The vapor plume oscillations in the dynamical keyhole are found to mainly result from violent local evaporations and severe keyhole geometry variations. In short, the quantitative method and these findings can serve as a reference for further understanding of the physical mechanisms in dual beam laser welding and of processing optimizations in industrial applications.

  16. Waves generated in the plasma plume of helicon magnetic nozzle

    International Nuclear Information System (INIS)

    Singh, Nagendra; Rao, Sathyanarayan; Ranganath, Praveen

    2013-01-01

    Experimental measurements have shown that the plasma plume created in a helicon plasma device contains a conical structure in the plasma density and a U-shaped double layer (US-DL) tightly confined near the throat where plasma begins to expand from the source. Recently reported two-dimensional particle-in-cell simulations verified these density and US-DL features of the plasma plume. Simulations also showed that the plasma in the plume develops non-thermal feature consisting of radial ion beams with large densities near the conical surface of the density structure. The plasma waves that are generated by the radial ion beams affecting the structure of the plasma plume are studied here. We find that most intense waves persist in the high-density regions of the conical density structure, where the transversely accelerated ions in the radial electric fields in the plume are reflected setting up counter-streaming. The waves generated are primarily ion Bernstein modes. The nonlinear evolution of the waves leads to magnetic field-aligned striations in the fields and the plasma near the conical surface of the density structure.

  17. Waves generated in the plasma plume of helicon magnetic nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Nagendra; Rao, Sathyanarayan; Ranganath, Praveen [Department of Electrical and Computer Engineering, University of Alabama, Huntsville, Alabama 35899 (United States)

    2013-03-15

    Experimental measurements have shown that the plasma plume created in a helicon plasma device contains a conical structure in the plasma density and a U-shaped double layer (US-DL) tightly confined near the throat where plasma begins to expand from the source. Recently reported two-dimensional particle-in-cell simulations verified these density and US-DL features of the plasma plume. Simulations also showed that the plasma in the plume develops non-thermal feature consisting of radial ion beams with large densities near the conical surface of the density structure. The plasma waves that are generated by the radial ion beams affecting the structure of the plasma plume are studied here. We find that most intense waves persist in the high-density regions of the conical density structure, where the transversely accelerated ions in the radial electric fields in the plume are reflected setting up counter-streaming. The waves generated are primarily ion Bernstein modes. The nonlinear evolution of the waves leads to magnetic field-aligned striations in the fields and the plasma near the conical surface of the density structure.

  18. Design of a Laboratory Hall Thruster with Magnetically Shielded Channel Walls, Phase III: Comparison of Theory with Experiment

    Science.gov (United States)

    Mikellides, Ioannis G.; Katz, Ira; Hofer, Richard R.; Goebel, Dan M.

    2012-01-01

    A proof-of-principle effort to demonstrate a technique by which erosion of the acceleration channel in Hall thrusters of the magnetic-layer type can be eliminated has been completed. The first principles of the technique, now known as "magnetic shielding," were derived based on the findings of numerical simulations in 2-D axisymmetric geometry. The simulations, in turn, guided the modification of an existing 6-kW laboratory Hall thruster. This magnetically shielded (MS) thruster was then built and tested. Because neither theory nor experiment alone can validate fully the first principles of the technique, the objective of the 2-yr effort was twofold: (1) to demonstrate in the laboratory that the erosion rates can be reduced by >order of magnitude, and (2) to demonstrate that the near-wall plasma properties can be altered according to the theoretical predictions. This paper concludes the demonstration of magnetic shielding by reporting on a wide range of comparisons between results from numerical simulations and laboratory diagnostics. Collectively, we find that the comparisons validate the theory. Near the walls of the MS thruster, theory and experiment agree: (1) the plasma potential has been sustained at values near the discharge voltage, and (2) the electron temperature has been lowered by at least 2.5-3 times compared to the unshielded (US) thruster. Also, based on carbon deposition measurements, the erosion rates at the inner and outer walls of the MS thruster are found to be lower by at least 2300 and 1875 times, respectively. Erosion was so low along these walls that the rates were below the resolution of the profilometer. Using a sputtering yield model with an energy threshold of 25 V, the simulations predict a reduction of 600 at the MS inner wall. At the outer wall ion energies are computed to be below 25 V, for which case we set the erosion to zero in the simulations. When a 50-V threshold is used the computed ion energies are below the threshold at both

  19. Magnesium Hall Thruster for Solar System Exploration, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation being developed in this program is a Mg Hall Effect Thruster system that would open the door for In-Situ Resource Utilization based solar system...

  20. Acoustic Resonance Reaction Control Thruster (ARCTIC), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop and demonstrate the innovative Acoustic Resonance Reaction Control Thruster (ARCTIC) to provide rapid and reliable in-space impulse...

  1. Micro-cathode Arc Thruster PhoneSat Experiment

    Data.gov (United States)

    National Aeronautics and Space Administration — The Micro-cathode Arc Thruster Phonesat Experiment  was a joint project between George Washington University and NASA Ames Research Center that successfully...

  2. Long Life Cold Cathodes for Hall effect Thrusters, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An electron source incorporating long life, high current density cold cathodes inside a microchannel plate for use with ion thrusters is proposed. Cathode lifetime...

  3. Enabling Ring-Cusp Ion Thruster Technology for NASA Missions

    Data.gov (United States)

    National Aeronautics and Space Administration — ESA is flying T6 Kaufman ion thrusters on the BepiColombo Mission to Mercury in 2018. They are planning to develop a longer life, higher performing, 30-cm ring-cusp...

  4. Dual Mode Low Power Hall Thruster, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Sample and return missions desire and missions like Saturn Observer require a low power Hall thruster that can operate at high thrust to power as well as high...

  5. Optimized Magnetic Nozzles for MPD Thrusters, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Magnetoplasmadynamic (MPD) thrusters can provide the high-specific impulse, high-power propulsion required to enable ambitious human and robotic exploration missions...

  6. High Input Voltage Hall Thruster Discharge Converter, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall scope of this Phase I/II effort is the development of a high efficiency 15kW (nominal) Hall thruster discharge converter. In Phase I, Busek Co. Inc. will...

  7. HiVHAc Thruster Wear and Structural Tests

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA GRC is developing a 4.5 kW-class Hall propulsion system. This system includes a long life high performance Hall Effect Thruster (HET), a highly efficient...

  8. A numerical study of the plume in Cape Fear River Estuary and adjacent coastal ocean

    Science.gov (United States)

    Xia, M.; Xia, L.; Pietrafesa, L. J.

    2006-12-01

    Cape Fear River Estuary (CFRE), located in southeast North Carolina, is the only river estuary system in the state which is directly connected to the Atlantic Ocean. It is also an important nursery for economically and ecologically important juvenile fish, crabs, shrimp, and other species because of the tidal influence and saline waters. In this study, Environmental Fluid Dynamic Code (EFDC) is used to simulate the salinity plume and trajectory distribution at the mouth of the CFRE and adjacent coastal ocean. Prescribed with the climatological freshwater discharge rates in the rivers, the modeling system was used to simulate the salinity plume and trajectory distribution distribution in the mouth of the CFRE under the influence of climatological wind conditions and tidal effect. We analyzed the plume formation processes and the strong relationship between the various plume distributions with respect to the wind and river discharge in the region. The simulations also indicate that strong winds tend to reduce the surface CFRE plume size and distorting the bulge region near the estuary mouth due to enhanced wind induced surface mixing. Even moderate wind speeds could fully reverse the buoyancy-driven plume structure in CFRE under normal river discharge conditions. Tide and the river discharge also are important factors to influence the plume structure. The comparions between the distribution of salinity plume and trajectory also are discussed in the study.

  9. Laser-generated plasma plume expansion: Combined continuous-microscopic modeling

    Science.gov (United States)

    Itina, Tatiana E.; Hermann, Jörg; Delaporte, Philippe; Sentis, Marc

    2002-12-01

    The physical phenomena involved in the interaction of a laser-generated plasma plume with a background gas are studied numerically. A three-dimensional combined model is developed to describe the plasma plume formation and its expansion in vacuum or into a background gas. The proposed approach takes advantages of both continuous and microscopic descriptions. The simulation technique is suitable for the simulation of high-rate laser ablation for a wide range of background pressure. The model takes into account the mass diffusion and the energy exchange between the ablated and background species, as well as the collective motion of the ablated species and the background-gas particles. The developed approach is used to investigate the influence of the background gas on the expansion dynamics of the plume obtained during the laser ablation of aluminum. At moderate pressures, both plume and gas compressions are weak and the process is mainly governed by the diffusive mixing. At higher pressures, the interaction is determined by the plume-gas pressure interplay, the plume front is strongly compressed, and its center exhibits oscillations. In this case, the snowplough effect takes place, leading to the formation of a compressed gas layer in front of the plume. The background pressure needed for the beginning of the snowplough effect is determined from the plume and gas density profiles obtained at various pressures. Simulation results are compared with experimentally measured density distributions. It is shown that the calculations suggest localized formation of molecules during reactive laser ablation.

  10. Laser-generated plasma plume expansion: Combined continuous-microscopic modeling

    International Nuclear Information System (INIS)

    Itina, Tatiana E.; Hermann, Joerg; Delaporte, Philippe; Sentis, Marc

    2002-01-01

    The physical phenomena involved in the interaction of a laser-generated plasma plume with a background gas are studied numerically. A three-dimensional combined model is developed to describe the plasma plume formation and its expansion in vacuum or into a background gas. The proposed approach takes advantages of both continuous and microscopic descriptions. The simulation technique is suitable for the simulation of high-rate laser ablation for a wide range of background pressure. The model takes into account the mass diffusion and the energy exchange between the ablated and background species, as well as the collective motion of the ablated species and the background-gas particles. The developed approach is used to investigate the influence of the background gas on the expansion dynamics of the plume obtained during the laser ablation of aluminum. At moderate pressures, both plume and gas compressions are weak and the process is mainly governed by the diffusive mixing. At higher pressures, the interaction is determined by the plume-gas pressure interplay, the plume front is strongly compressed, and its center exhibits oscillations. In this case, the snowplough effect takes place, leading to the formation of a compressed gas layer in front of the plume. The background pressure needed for the beginning of the snowplough effect is determined from the plume and gas density profiles obtained at various pressures. Simulation results are compared with experimentally measured density distributions. It is shown that the calculations suggest localized formation of molecules during reactive laser ablation

  11. Modeling of physical processes in radio-frequency plasma thrusters

    OpenAIRE

    Tian, Bin

    2017-01-01

    This Thesis presents an investigation of the plasma-wave interaction in Helicon Plasma Thrusters (HPT). The HPT is a new concept of electric space propulsion, which generates plasmas with RF heating and provides thrust by the electrodeless acceleration of plasmas in a magnetic nozzle. An in-depth and extensive literature review of the state of the art of the models and experiments of plasma-wave interaction in helicon plasma sources and thrusters is carried out. Then, a theoret...

  12. Thermal Modeling for Pulsed Inductive FRC Plasmoid Thrusters

    Science.gov (United States)

    Pfaff, Michael

    Due to the rising importance of space based infrastructure, long-range robotic space missions, and the need for active attitude control for spacecraft, research into Electric Propulsion is becoming increasingly important. Electric Propulsion (EP) systems utilize electric power to accelerate ions in order to produce thrust. Unlike traditional chemical propulsion, this means that thrust levels are relatively low. The trade-off is that EP thrusters have very high specific impulses (Isp), and can therefore make do with far less onboard propellant than cold gas, monopropellant, or bipropellant engines. As a consequence of the high power levels used to accelerate the ionized propellant, there is a mass and cost penalty in terms of solar panels and a power processing unit. Due to the large power consumption (and waste heat) from electric propulsion thrusters, accurate measurements and predictions of thermal losses are needed. Excessive heating in sensitive locations within a thruster may lead to premature failure of vital components. Between the fixed cost required to purchase these components, as well as the man-hours needed to assemble (or replace) them, attempting to build a high-power thruster without reliable thermal modeling can be expensive. This paper will explain the usage of FEM modeling and experimental tests in characterizing the ElectroMagnetic Plasmoid Thruster (EMPT) and the Electrodeless Lorentz Force (ELF) thruster at the MSNW LLC facility in Redmond, Washington. The EMPT thruster model is validated using an experimental setup, and steady state temperatures are predicted for vacuum conditions. Preliminary analysis of the ELF thruster indicates possible material failure in absence of an active cooling system for driving electronics and for certain power levels.

  13. Electric Propellant Solid Rocket Motor Thruster Results Enabling Small Satellites

    OpenAIRE

    Koehler, Frederick; Langhenry, Mark; Summers, Matt; Villarreal, James; Villarreal, Thomas

    2017-01-01

    Raytheon Missile Systems has developed and tested true on/off/restart solid propellant thrusters which are controlled only by electrical current. This new patented class of energetic rocket propellant is safe, controllable and simple. The range of applications for this game changing technology includes attitude control systems and a safe alternative to higher impulse space satellite thrusters. Described herein are descriptions and performance data for several small electric propellant solid r...

  14. Low-Cost, High-Performance Hall Thruster Support System

    Science.gov (United States)

    Hesterman, Bryce

    2015-01-01

    Colorado Power Electronics (CPE) has built an innovative modular PPU for Hall thrusters, including discharge, magnet, heater and keeper supplies, and an interface module. This high-performance PPU offers resonant circuit topologies, magnetics design, modularity, and a stable and sustained operation during severe Hall effect thruster current oscillations. Laboratory testing has demonstrated discharge module efficiency of 96 percent, which is considerably higher than current state of the art.

  15. Stability test and analysis of the Space Shuttle Primary Reaction Control Subsystem thruster

    Science.gov (United States)

    Applewhite, John; Hurlbert, Eric; Krohn, Douglas; Arndt, Scott; Clark, Robert

    1992-01-01

    The results are reported of a test program conducted on the Space Shuttle Primary Reaction Control Subsystem thruster in order to investigate the effects of trapped helium bubbles and saturated propellants on stability, determine if thruster-to-thruster stability variations are significant, and determine stability under STS-representative conditions. It is concluded that the thruster design is highly reliable in flight and that burn-through has not occurred. Significantly unstable thrusters are screened out, and wire wrap is found to protect against chamber burn-throughs and to provide a fail-safe thruster for this situation.

  16. Numerical investigation of a Hall thruster plasma

    International Nuclear Information System (INIS)

    Roy, Subrata; Pandey, B.P.

    2002-01-01

    The dynamics of the Hall thruster is investigated numerically in the framework of a one-dimensional, multifluid macroscopic description of a partially ionized xenon plasma using finite element formulation. The model includes neutral dynamics, inelastic processes, and plasma-wall interaction. Owing to disparate temporal scales, ions and neutrals have been described by set of time-dependent equations, while electrons are considered in steady state. Based on the experimental observations, a third order polynomial in electron temperature is used to calculate ionization rate. The results show that in the acceleration channel the increase in the ion number density is related to the decrease in the neutral number density. The electron and ion velocity profiles are consistent with the imposed electric field. The electron temperature remains uniform for nearly two-thirds of the channel; then sharply increases to a peak before dropping slightly at the exit. This is consistent with the predicted electron gyration velocity distribution

  17. Laser-Driven Mini-Thrusters

    International Nuclear Information System (INIS)

    Sterling, Enrique; Lin Jun; Sinko, John; Kodgis, Lisa; Porter, Simon; Pakhomov, Andrew V.; Larson, C. William; Mead, Franklin B. Jr.

    2006-01-01

    Laser-driven mini-thrusters were studied using Delrin registered and PVC (Delrin registered is a registered trademark of DuPont) as propellants. TEA CO2 laser (λ = 10.6 μm) was used as a driving laser. Coupling coefficients were deduced from two independent techniques: force-time curves measured with a piezoelectric sensor and ballistic pendulum. Time-resolved ICCD images of the expanding plasma and combustion products were analyzed in order to determine the main process that generates the thrust. The measurements were also performed in a nitrogen atmosphere in order to test the combustion effects on thrust. A pinhole transmission experiment was performed for the study of the cut-off time when the ablation/air breakdown plasma becomes opaque to the incoming laser pulse

  18. Laser-Driven Mini-Thrusters

    Science.gov (United States)

    Sterling, Enrique; Lin, Jun; Sinko, John; Kodgis, Lisa; Porter, Simon; Pakhomov, Andrew V.; Larson, C. William; Mead, Franklin B.

    2006-05-01

    Laser-driven mini-thrusters were studied using Delrin® and PVC (Delrin® is a registered trademark of DuPont) as propellants. TEA CO2 laser (λ = 10.6 μm) was used as a driving laser. Coupling coefficients were deduced from two independent techniques: force-time curves measured with a piezoelectric sensor and ballistic pendulum. Time-resolved ICCD images of the expanding plasma and combustion products were analyzed in order to determine the main process that generates the thrust. The measurements were also performed in a nitrogen atmosphere in order to test the combustion effects on thrust. A pinhole transmission experiment was performed for the study of the cut-off time when the ablation/air breakdown plasma becomes opaque to the incoming laser pulse.

  19. Calculation of cooling tower plumes for high pressure wintry situations

    International Nuclear Information System (INIS)

    Gassmann, F.; Tinguely, M.; Haschke, D.

    1982-12-01

    The diffusion of the plumes of the projected nuclear power plants at Kaiseraugst and Schwoerstadt, during high pressure wintry conditions, has been examined using a mathematical model to simulate the plumes. For these calculations, microaerological measurements were made in the proximity of Kaiseraugst and Schwoerstadt. These give a typical image of the weather during high pressure wintry conditions, which is normally associated with an inversion, sometimes strong, at a low height. Dry cooling towers with natural draught, which offer an alternative solution to the wet cooling towers proposed for Kasieraugst, are examined equally. (Auth./G.T.H.)

  20. NASA Brief: Q-Thruster Physics

    Science.gov (United States)

    White, Harold

    2013-01-01

    Q-thrusters are a low-TRL form of electric propulsion that operates on the principle of pushing off of the quantum vacuum. A terrestrial analog to this is to consider how a submarine uses its propeller to push a column of water in one direction, while the sub recoils in the other to conserve momentum -the submarine does not carry a "tank" of sea water to be used as propellant. In our case, we use the tools of Magnetohydrodynamics (MHD) to show how the thruster pushes off of the quantum vacuum which can be thought of as a sea of virtual particles -principally electrons and positrons that pop into and out of existence, and where fields are stronger, there are more virtual particles. The idea of pushing off the quantum vacuum has been in the technical literature for a few decades, but to date, the obstacle has been the magnitude of the predicted thrust which has been derived analytically to be very small, and therefore not likely to be useful for human spaceflight. Our recent theoretical model development and test data suggests that we can greatly increase the magnitude of the negative pressure of the quantum vacuum and generate a specific force such that technology based on this approach can be competitive for in-space propulsion approx. 0.1N/kW), and possibly for terrestrial applications (approx. 10N/kW). As an additional validation of the approach, the theory allows calculation of physics constants from first principles: Gravitational constant, Planck constant, Bohr radius, dark energy fraction, electron mass.

  1. Design and model experiments on thruster assisted mooring system; Futaishiki kaiyo kozobutsu no thruster ni yoru choshuki doyo seigyo

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, M; Koterayama, W [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics; Kajiwara, H [Kyushu Institute of Technology, Kitakyushu (Japan). Faculty of Computer Science and System Engineering; Hyakudome, T [Kyushu University, Fukuoka (Japan)

    1997-12-31

    Described herein are dynamics and model experiments of the system in which positioning of a floating marine structure by mooring is combined with thruster-controlled positioning. Coefficients of dynamic forces acting on a floating structure model are determined experimentally and by the three-dimensional singularity distribution method, and the controller is designed by the PID, LQI and H{infinity} control theories. A model having a scale ratio of 1/100 was used for the experiments, where 2 thrusters were arranged in a diagonal line, one on the X-axis. It is found that the LQI and H{infinity} controllers of the thruster can control long-cycle rolling of the floating structure. They allow thruster control which is insensitive to wave cycle motion, and efficiently reduce positioning energy. The H{infinity} control regulates frequency characteristics of a closed loop more finely than the LQI control, and exhibits better controllability. 25 refs., 25 figs.

  2. Design and model experiments on thruster assisted mooring system; Futaishiki kaiyo kozobutsu no thruster ni yoru choshuki doyo seigyo

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, M.; Koterayama, W. [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics; Kajiwara, H. [Kyushu Institute of Technology, Kitakyushu (Japan). Faculty of Computer Science and System Engineering; Hyakudome, T. [Kyushu University, Fukuoka (Japan)

    1996-12-31

    Described herein are dynamics and model experiments of the system in which positioning of a floating marine structure by mooring is combined with thruster-controlled positioning. Coefficients of dynamic forces acting on a floating structure model are determined experimentally and by the three-dimensional singularity distribution method, and the controller is designed by the PID, LQI and H{infinity} control theories. A model having a scale ratio of 1/100 was used for the experiments, where 2 thrusters were arranged in a diagonal line, one on the X-axis. It is found that the LQI and H{infinity} controllers of the thruster can control long-cycle rolling of the floating structure. They allow thruster control which is insensitive to wave cycle motion, and efficiently reduce positioning energy. The H{infinity} control regulates frequency characteristics of a closed loop more finely than the LQI control, and exhibits better controllability. 25 refs., 25 figs.

  3. Recent activities in the development of the MOA thruster

    Science.gov (United States)

    Frischauf, Norbert; Hettmer, Manfred; Grassauer, Andreas; Bartusch, Tobias; Koudelka, Otto

    2008-07-01

    More than 60 years after the later Nobel laureate Hannes Alfvén had published a letter stating that oscillating magnetic fields can accelerate ionised matter via magneto-hydrodynamic interactions in a wave like fashion, the technical implementation of Alfvén waves for propulsive purposes has been proposed, patented and examined for the first time by a group of inventors. The name of the concept, utilising Alfvén waves to accelerate ionised matter for propulsive purposes, is MOA-magnetic field oscillating amplified thruster. Alfvén waves are generated by making use of two coils, one being permanently powered and serving also as magnetic nozzle, the other one being switched on and off in a cyclic way, deforming the field lines of the overall system. It is this deformation that generates Alfvén waves, which are in the next step used to transport and compress the propulsive medium, in theory leading to a propulsion system with a much higher performance than any other electric propulsion system. Based on computer simulations, which were conducted to get a first estimate on the performance of the system, MOA is a corrosion free and highly flexible propulsion system, whose performance parameters might easily be adapted in flight, by changing the mass flow and/or the power level. As such the system is capable to deliver a maximum specific impulse of 13 116 s (12.87 mN) at a power level of 11.16 kW, using Xe as propellant, but can also be attuned to provide a thrust of 236.5 mN (2411 s) at 6.15 kW of power. First tests-that are further described in this paper-have been conducted successfully and underline the feasibility of the concept. While space propulsion is expected to be the prime application for MOA and is supported by numerous applications such as Solar and/or Nuclear Electric Propulsion or even as an "afterburner system" for nuclear thermal propulsion, other terrestrial applications can be thought of as well, making the system highly suited for a common space

  4. Clearance of short circuited ion optics electrodes by capacitive discharge. [in ion thrusters

    Science.gov (United States)

    Poeschel, R. L.

    1976-01-01

    The ion optics electrodes of low specific impulse (3000 sec) mercury electron bombardment ion thrusters are vulnerable to short circuits by virtue of their relatively small interelectrode spacing (0.5 mm). Metallic flakes from backsputtered deposits are the most probable cause of such 'shorts' and 'typical' flakes have been simulated here using refractory wire that has a representative, but controllable, cross section. Shorting wires can be removed by capacitive discharge without significant damage to the electrodes. This paper describes an evaluation of 'short' removal versus electrode damage for several combinations of capacitor voltage, stored energy, and short circuit conditions.

  5. Lidar sounding of volcanic plumes

    Science.gov (United States)

    Fiorani, Luca; Aiuppa, Alessandro; Angelini, Federico; Borelli, Rodolfo; Del Franco, Mario; Murra, Daniele; Pistilli, Marco; Puiu, Adriana; Santoro, Simone

    2013-10-01

    Accurate knowledge of gas composition in volcanic plumes has high scientific and societal value. On the one hand, it gives information on the geophysical processes taking place inside volcanos; on the other hand, it provides alert on possible eruptions. For this reasons, it has been suggested to monitor volcanic plumes by lidar. In particular, one of the aims of the FP7 ERC project BRIDGE is the measurement of CO2 concentration in volcanic gases by differential absorption lidar. This is a very challenging task due to the harsh environment, the narrowness and weakness of the CO2 absorption lines and the difficulty to procure a suitable laser source. This paper, after a review on remote sensing of volcanic plumes, reports on the current progress of the lidar system.

  6. Biogeochemistry of landfill leachate plumes

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Kjeldsen, Peter; Bjerg, Poul Løgstrup

    2001-01-01

    are relatively narrow and do not in terms of width exceed the width of the landfill. The concept of redox zones being present in the plume has been confirmed by the reported composition of the leachate contaminated groundwater at several landfills and constitutes an important framework for understanding...... the behavior of the contaminants in the plume as the leachate migrates away from the landfill. Diverse microbial communities have been identified in leachate plumes and are believed to be responsible for the redox processes. Dissolved organic C in the leachate, although it appears to be only slowly degradable...... to be subject to anaerobic oxidation, but the mechanisms are not yet understood. Heavy metals do not seem to constitute a significant pollution problem at landfills, partly because the heavy metal concentrations in the leachate often are low, and partly because of strong attenuation by sorption...

  7. Post-Test Inspection of NASA's Evolutionary Xenon Thruster Long-Duration Test Hardware: Discharge and Neutralizer Cathodes

    Science.gov (United States)

    Shastry, Rohit; Soulas, George C.

    2016-01-01

    The NEXT Long-Duration Test is part of a comprehensive thruster service life assessment intended to demonstrate overall throughput capability, validate service life models, quantify wear rates as a function of time and operating condition, and identify any unknown life-limiting mechanisms. The test was voluntarily terminated in February 2014 after demonstrating 51,184 hours of high-voltage operation, 918 kg of propellant throughput, and 35.5 MN-s of total impulse. The post-test inspection of the thruster hardware began shortly afterwards with a combination of non-destructive and destructive analysis techniques, and is presently nearing completion. This paper presents relevant results of the post-test inspection for both discharge and neutralizer cathodes. Discharge keeper erosion was found to be significantly reduced from what was observed in the NEXT 2 kh wear test and NSTAR Extended Life Test, providing adequate protection of vital cathode components throughout the test with ample lifetime remaining. The area of the discharge cathode orifice plate that was exposed by the keeper orifice exhibited net erosion, leading to cathode plate material building up in the cathode-keeper gap and causing a thermally-induced electrical short observed during the test. Significant erosion of the neutralizer cathode orifice was also found and is believed to be the root cause of an observed loss in flow margin. Deposition within the neutralizer keeper orifice as well as on the downstream surface was thicker than expected, potentially resulting in a facility-induced impact on the measured flow margin from plume mode. Neutralizer keeper wall erosion on the beam side was found to be significantly lower compared to the NEXT 2 kh wear test, likely due to the reduction in beam extraction diameter of the ion optics that resulted in decreased ion impingement. Results from the post-test inspection have led to some minor thruster design improvements.

  8. Mobile Bay turbidity plume study

    Science.gov (United States)

    Crozier, G. F.

    1976-01-01

    Laboratory and field transmissometer studies on the effect of suspended particulate material upon the appearance of water are reported. Quantitative correlations were developed between remotely sensed image density, optical sea truth data, and actual sediment load. Evaluation of satellite image sea truth data for an offshore plume projects contours of transmissivity for two different tidal phases. Data clearly demonstrate the speed of change and movement of the optical plume for water patterns associated with the mouth of Mobile bay in which relatively clear Gulf of Mexico water enters the bay on the eastern side. Data show that wind stress in excess of 15 knots has a marked impact in producing suspended sediment loads.

  9. The Entrainment Rate for Buoyant Plumes in a Crossflow

    Science.gov (United States)

    Devenish, B. J.; Rooney, G. G.; Webster, H. N.; Thomson, D. J.

    2010-03-01

    We consider large-eddy simulations (LES) of buoyant plumes from a circular source with initial buoyancy flux F 0 released into a stratified environment with constant buoyancy frequency N and a uniform crossflow with velocity U. We make a systematic comparison of the LES results with the mathematical theory of plumes in a crossflow. We pay particular attention to the limits {tilde{U}≪1} and {tilde{U}≫ 1}, where {tilde{U}=U/(F_0 N)^{1/4}}, for which analytical results are possible. For {tilde{U}≫ 1}, the LES results show good agreement with the well-known two-thirds law for the rise in height of the plume. Sufficiently far above the source, the centreline vertical velocity of the LES plumes is consistent with the analytical z -1/3 and z -1/2 scalings for respectively {tilde{U}≪ 1} and {tilde{U}≫ 1}. In the general case, where the entrainment is assumed to be the sum of the contributions from the horizontal and vertical velocity components, we find that the discrepancy between the LES data and numerical solutions of the plume equations is largest for {tilde{U}=O(1)}. We propose a modified additive entrainment assumption in which the contributions from the horizontal and vertical velocity components are not equally weighted. We test this against observations of the plume generated by the Buncefield fire in the U.K. in December 2005 and find that the results compare favourably. We also show that the oscillations of the plume as it settles down to its final rise height may be attenuated by the radiation of gravity waves. For {tilde{U}≪ 1} the oscillations decay rapidly due to the transport of energy away from the plume by gravity waves. For {tilde{U}>rsim 1} the gravity waves travel in the same direction and at the same speed as the flow. In this case, the oscillations of the plume do not decay greatly by radiation of gravity waves.

  10. Thermal Plumes in Ventilated Rooms

    DEFF Research Database (Denmark)

    Kofoed, P.; Nielsen, Peter Vilhelm

    The main objective of ventilation is to provide good air quality for the occupants. For this purpose the necessary ventilating air change rate must be determined. Within displacement ventilation the estimation is closely related to the air flow rate in the thermal plumes when an air quality based...

  11. Ship exhaust gas plume cooling

    NARCIS (Netherlands)

    Schleijpen, H.M.A.; Neele, P.P.

    2004-01-01

    The exhaust gas plume is an important and sometimes dominating contributor to the infrared signature of ships. Suppression of the infrared ship signatures has been studied by TNO for the Royal Netherlands Navy over considerable time. This study deals with the suppression effects, which can be

  12. Characterization of redox conditions in pollution plumes

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Bjerg, Poul Løgstrup; Banwart, Steven A.

    2000-01-01

    Evalution of redox conditions in groundwater pollution plumes is often a prerequisite for understanding the behviour of the pollutants in the plume and for selecting remediation approaches. Measuring of redox conditions in pollution plumes is, however, a fairly recent issue and yet relative few...

  13. Chesapeake Bay plume dynamics from LANDSAT

    Science.gov (United States)

    Munday, J. C., Jr.; Fedosh, M. S.

    1981-01-01

    LANDSAT images with enhancement and density slicing show that the Chesapeake Bay plume usually frequents the Virginia coast south of the Bay mouth. Southwestern (compared to northern) winds spread the plume easterly over a large area. Ebb tide images (compared to flood tide images) show a more dispersed plume. Flooding waters produce high turbidity levels over the shallow northern portion of the Bay mouth.

  14. A numerical model for buoyant oil jets and smoke plumes

    International Nuclear Information System (INIS)

    Zheng, L.; Yapa, P. D.

    1997-01-01

    Development of a 3-D numerical model to simulate the behaviour of buoyant oil jets from underwater accidents and smoke plumes from oil burning was described. These jets/plumes can be oil-in-water, oil/gas mixture in water, gas in water, or gas in air. The ambient can have a 3-D flow structure, and spatially/temporally varying flow conditions. The model is based on the Lagrangian integral technique. The model formulation of oil jet includes the diffusion and dissolution of oil from the jet to the ambient environment. It is suitable to simulate well blowout accidents that can occur in deep waters, including that of the North Sea. The model has been thoroughly tested against a variety of data, including data from both laboratory and field experiments. In all cases the simulation data compared very well with experimental data. 26 refs., 10 figs

  15. Turbulent forces within river plumes affect spread

    Science.gov (United States)

    Bhattacharya, Atreyee

    2012-08-01

    When rivers drain into oceans through narrow mouths, hydraulic forces squeeze the river water into buoyant plumes that are clearly visible in satellite images. Worldwide, river plumes not only disperse freshwater, sediments, and nutrients but also spread pollutants and organisms from estuaries into the open ocean. In the United States, the Columbia River—the largest river by volume draining into the Pacific Ocean from North America—generates a plume at its mouth that transports juvenile salmon and other fish into the ocean. Clearly, the behavior and spread of river plumes, such as the Columbia River plume, affect the nation's fishing industry as well as the global economy.

  16. Liquid Booster Module (LBM) plume flowfield model

    Science.gov (United States)

    Smith, S. D.

    1981-01-01

    A complete definition of the LBM plume is important for many Shuttle design criteria. The exhaust plume shape has a significant effect on the vehicle base pressure. The LBM definition is also important to the Shuttle base heating, aerodynamics and the influence of the exhaust plume on the launch stand and environment. For these reasons a knowledge of the LBM plume characteristics is necessary. A definition of the sea level LBM plume as well as at several points along the Shuttle trajectory to LBM, burnout is presented.

  17. Tidally induced lateral dispersion of the Storfjorden overflow plume

    Directory of Open Access Journals (Sweden)

    F. Wobus

    2013-10-01

    Full Text Available We investigate the flow of brine-enriched shelf water from Storfjorden (Svalbard into Fram Strait and onto the western Svalbard Shelf using a regional set-up of NEMO-SHELF, a 3-D numerical ocean circulation model. The model is set up with realistic bathymetry, atmospheric forcing, open boundary conditions and tides. The model has 3 km horizontal resolution and 50 vertical levels in the sh-coordinate system which is specially designed to resolve bottom boundary layer processes. In a series of modelling experiments we focus on the influence of tides on the propagation of the dense water plume by comparing results from tidal and non-tidal model runs. Comparisons of non-tidal to tidal simulations reveal a hotspot of tidally induced horizontal diffusion leading to the lateral dispersion of the plume at the southernmost headland of Spitsbergen which is in close proximity to the plume path. As a result the lighter fractions in the diluted upper layer of the plume are drawn into the shallow coastal current that carries Storfjorden water onto the western Svalbard Shelf, while the dense bottom layer continues to sink down the slope. This bifurcation of the plume into a diluted shelf branch and a dense downslope branch is enhanced by tidally induced shear dispersion at the headland. Tidal effects at the headland are shown to cause a net reduction in the downslope flux of Storfjorden water into the deep Fram Strait. This finding contrasts previous results from observations of a dense plume on a different shelf without abrupt topography.

  18. Teaching the Mantle Plumes Debate

    Science.gov (United States)

    Foulger, G. R.

    2010-12-01

    There is an ongoing debate regarding whether or not mantle plumes exist. This debate has highlighted a number of issues regarding how Earth science is currently practised, and how this feeds into approaches toward teaching students. The plume model is an hypothesis, not a proven fact. And yet many researchers assume a priori that plumes exist. This assumption feeds into teaching. That the plume model is unproven, and that many practising researchers are skeptical, may be at best only mentioned in passing to students, with most teachers assuming that plumes are proven to exist. There is typically little emphasis, in particular in undergraduate teaching, that the origin of melting anomalies is currently uncertain and that scientists do not know all the answers. Little encouragement is given to students to become involved in the debate and to consider the pros and cons for themselves. Typically teachers take the approach that “an answer” (or even “the answer”) must be taught to students. Such a pedagogic approach misses an excellent opportunity to allow students to participate in an important ongoing debate in Earth sciences. It also misses the opportunity to illustrate to students several critical aspects regarding correct application of the scientific method. The scientific method involves attempting to disprove hypotheses, not to prove them. A priori assumptions should be kept uppermost in mind and reconsidered at all stages. Multiple working hypotheses should be entertained. The predictions of a hypothesis should be tested, and unpredicted observations taken as weakening the original hypothesis. Hypotheses should not be endlessly adapted to fit unexpected observations. The difficulty with pedagogic treatment of the mantle plumes debate highlights a general uncertainty about how to teach issues in Earth science that are not yet resolved with certainty. It also represents a missed opportunity to let students experience how scientific theories evolve, warts

  19. Oceanic magmatic evolution during ocean opening under influence of mantle plume

    Science.gov (United States)

    Sushchevskaya, Nadezhda; Melanholina, Elena; Belyatsky, Boris; Krymsky, Robert; Migdisova, Natalya

    2015-04-01

    Petrology, geochemistry and geophysics as well as numerical simulation of spreading processes in plume impact environments on examples of Atlantic Ocean Iceland and the Central Atlantic plumes and Kerguelen plume in the Indian Ocean reveal: - under interaction of large plume and continental landmass the plume can contribute to splitting off individual lithosphere blocks, and their subsequent movement into the emergent ocean. At the same time enriched plume components often have geochemical characteristics of the intact continental lithosphere by early plume exposure. This is typical for trap magmatism in Antarctica, and for magmatism of North and Central Atlantic margins; - in the course of the geodynamic reconstruction under the whole region of the South Atlantic was formed (not in one step) metasomatized enriched sub-oceanic mantle with pyroxenite mantle geochemical characteristics and isotopic composition of enriched HIMU and EM-2 sources. That is typical for most of the islands in the West Antarctic. This mantle through spreading axes jumping involved in different proportions in the melting under the influence of higher-temperature rising asthenospheric lherzolite mantle; - CAP activity was brief enough (200 ± 2 Ma), but Karoo-Maud plume worked for a longer time and continued from 180 to 170 Ma ago in the main phase. Plume impact within Antarctica distributed to the South and to the East, leading to the formation of extended igneous provinces along the Transantarctic Mountains and along the east coast (Queen Maud Land province and Schirmacher Oasis). Moreover, this plume activity may be continued later on, after about 40 million years cessation, as Kerguelen plume within the newly-formed Indian Ocean, significantly affects the nature of the rift magmatism; - a large extended uplift in the eastern part of the Indian Ocean - Southeastern Indian Ridge (SEIR) was formed on the ancient spreading Wharton ridge near active Kerguelen plume. The strongest plume

  20. Plasma property and performance prediction for mercury ion thrusters

    Science.gov (United States)

    Longhurst, G. R.; Wilbur, P. J.

    1979-01-01

    The discharge chambers of mercury ion thrusters are modelled so the principal effects and processes which govern discharge plasma properties and thruster performance are described. The conservation relations for mass, charge and energy when applied to the Maxwellian electron population in the ion production region yield equations which may be made one-dimensional by the proper choice of coordinates. Solutions to these equations with the appropriate boundary conditions give electron density and temperature profiles which agree reasonably well with measurements. It is then possible to estimate plasma properties from thruster design data and those operating parameters which are directly controllable. By varying the operating parameter inputs to the computer code written to solve these equations, perfromance curves are obtained which agree quite well with measurements.

  1. Prediction of plasma properties in mercury ion thrusters

    Science.gov (United States)

    Longhurst, G. R.

    1978-01-01

    A simplified theoretical model was developed which obtains to first order the plasma properties in the discharge chamber of a mercury ion thruster from basic thruster design and controllable operating parameters. The basic operation and design of ion thrusters is discussed, and the important processes which influence the plasma properties are described in terms of the design and control parameters. The conservation for mass, charge and energy were applied to the ion production region, which was defined as the region of the discharge chamber having as its outer boundary the surface of revolution of the innermost field line to intersect the anode. Mass conservation and the equations describing the various processes involved with mass addition and removal from the ion production region are satisfied by a Maxwellian electron density spatial distribution in that region.

  2. Performance optimization of 20 cm xenon ion thruster discharge chamber

    International Nuclear Information System (INIS)

    Chen Juanjuan; Zhang Tianping; Jia Yanhui; Li Xiaoping

    2012-01-01

    This paper describes the performance of the LIPS-200 ion thruster discharge chamber which was developed by Lanzhou Institute of Physics. Based on the discharge chamber geometric configuration and magnetic field, the completely self-consistent analytical model is utilized to discuss performance optimization of the discharge chamber of the LIPS-200. The thrust is enhanced from 40 mN up to 60 mN at rated impulse and efficiency. The results show that the 188.515 W/A beam ion production cost at a propellant flow rate of 2.167 × 10 17 m -3 requires that the thruster runs at a discharge current of 6.9 A to produce 1.2 A ion beam current. Also, during the process of LIPS-200 ion thruster discharge chamber performance optimization, the sheath potential is always within 3.80 ∼ 6.65 eV. (authors)

  3. Thermal Environmental Testing of NSTAR Engineering Model Ion Thrusters

    Science.gov (United States)

    Rawlin, Vincent K.; Patterson, Michael J.; Becker, Raymond A.

    1999-01-01

    NASA's New Millenium program will fly a xenon ion propulsion system on the Deep Space 1 Mission. Tests were conducted under NASA's Solar Electric Propulsion Technology Applications Readiness (NSTAR) Program with 3 different engineering model ion thrusters to determine thruster thermal characteristics over the NSTAR operating range in a variety of thermal environments. A liquid nitrogen-cooled shroud was used to cold-soak the thruster to -120 C. Initial tests were performed prior to a mature spacecraft design. Those results and the final, severe, requirements mandated by the spacecraft led to several changes to the basic thermal design. These changes were incorporated into a final design and tested over a wide range of environmental conditions.

  4. Towards LES Models of Jets and Plumes

    Science.gov (United States)

    Webb, A. T.; Mansour, N. N.

    2000-01-01

    As pointed out by Rodi standard integral solutions for jets and plumes developed for discharge into infinite, quiescent ambient are difficult to extend to complex situations, particularly in the presence of boundaries such as the sea floor or ocean surface. In such cases the assumption of similarity breaks down and it is impossible to find a suitable entrainment coefficient. The models are also incapable of describing any but the most slowly varying unsteady motions. There is therefore a need for full time-dependent modeling of the flow field for which there are three main approaches: (1) Reynolds averaged numerical simulation (RANS), (2) large eddy simulation (LES), and (3) direct numerical simulation (DNS). Rodi applied RANS modeling to both jets and plumes with considerable success, the test being a match with experimental data for time-averaged velocity and temperature profiles as well as turbulent kinetic energy and rms axial turbulent velocity fluctuations. This model still relies on empirical constants, some eleven in the case of the buoyant jet, and so would not be applicable to a partly laminar plume, may have limited use in the presence of boundaries, and would also be unsuitable if one is after details of the unsteady component of the flow (the turbulent eddies). At the other end of the scale DNS modeling includes all motions down to the viscous scales. Boersma et al. have built such a model for the non-buoyant case which also compares well with measured data for mean and turbulent velocity components. The model demonstrates its versatility by application to a laminar flow case. As its name implies, DNS directly models the Navier-Stokes equations without recourse to subgrid modeling so for flows with a broad spectrum of motions (high Re) the cost can be prohibitive - the number of required grid points scaling with Re(exp 9/4) and the number of time steps with Re(exp 3/4). The middle road is provided by LES whereby the Navier-Stokes equations are formally

  5. Modelling thermal plume impacts - Kalpakkam approach

    International Nuclear Information System (INIS)

    Rao, T.S.; Anup Kumar, B.; Narasimhan, S.V.

    2002-01-01

    A good understanding of temperature patterns in the receiving waters is essential to know the heat dissipation from thermal plumes originating from coastal power plants. The seasonal temperature profiles of the Kalpakkam coast near Madras Atomic Power Station (MAPS) thermal out fall site are determined and analysed. It is observed that the seasonal current reversal in the near shore zone is one of the major mechanisms for the transport of effluents away from the point of mixing. To further refine our understanding of the mixing and dilution processes, it is necessary to numerically simulate the coastal ocean processes by parameterising the key factors concerned. In this paper, we outline the experimental approach to achieve this objective. (author)

  6. Infrared Imagery of Solid Rocket Exhaust Plumes

    Science.gov (United States)

    Moran, Robert P.; Houston, Janice D.

    2011-01-01

    The Ares I Scale Model Acoustic Test program consisted of a series of 18 solid rocket motor static firings, simulating the liftoff conditions of the Ares I five-segment Reusable Solid Rocket Motor Vehicle. Primary test objectives included acquiring acoustic and pressure data which will be used to validate analytical models for the prediction of Ares 1 liftoff acoustics and ignition overpressure environments. The test article consisted of a 5% scale Ares I vehicle and launch tower mounted on the Mobile Launch Pad. The testing also incorporated several Water Sound Suppression Systems. Infrared imagery was employed during the solid rocket testing to support the validation or improvement of analytical models, and identify corollaries between rocket plume size or shape and the accompanying measured level of noise suppression obtained by water sound suppression systems.

  7. Electron temperature measurement in Maxwellian non-isothermal beam plasma of an ion thruster

    International Nuclear Information System (INIS)

    Zhang, Zun; Tang, Haibin; Kong, Mengdi; Zhang, Zhe; Ren, Junxue

    2015-01-01

    Published electron temperature profiles of the beam plasma from ion thrusters reveal many divergences both in magnitude and radial variation. In order to know exactly the radial distributions of electron temperature and understand the beam plasma characteristics, we applied five different experimental approaches to measure the spatial profiles of electron temperature and compared the agreement and disagreement of the electron temperature profiles obtained from these techniques. Experimental results show that the triple Langmuir probe and adiabatic poly-tropic law methods could provide more accurate space-resolved electron temperature of the beam plasma than other techniques. Radial electron temperature profiles indicate that the electrons in the beam plasma are non-isothermal, which is supported by a radial decrease (∼2 eV) of electron temperature as the plume plasma expands outward. Therefore, the adiabatic “poly-tropic law” is more appropriate than the isothermal “barometric law” to be used in electron temperature calculations. Moreover, the calculation results show that the electron temperature profiles derived from the “poly-tropic law” are in better agreement with the experimental data when the specific heat ratio (γ) lies in the range of 1.2-1.4 instead of 5/3

  8. Recycle Requirements for NASA's 30 cm Xenon Ion Thruster

    Science.gov (United States)

    Pinero, Luis R.; Rawlin, Vincent K.

    1994-01-01

    Electrical breakdowns have been observed during ion thruster operation. These breakdowns, or arcs, can be caused by several conditions. In flight systems, the power processing unit must be designed to handle these faults autonomously. This has a strong impact on power processor requirements and must be understood fully for the power processing unit being designed for the NASA Solar Electric Propulsion Technology Application Readiness program. In this study, fault conditions were investigated using a NASA 30 cm ion thruster and a power console. Power processing unit output specifications were defined based on the breakdown phenomena identified and characterized.

  9. Modeling of micro thrusters for gravity probe B

    Science.gov (United States)

    Jones, Kenneth M.

    1996-01-01

    The concept of testing Einstein's general theory of relativity by means of orbiting gyroscopes was first proposed in 1959, which lead to the development of the Gravity Probe B experiment. Einstein's theory concerns the predictions of the relativistic precession of a gyroscope in orbit around earth. According to his theory, there will be two precessions due to the warping of space-time by the earth's gravitational field: the geodetic precession in the plane of the orbit, and the frame-dragging effect, in the direction of earth rotation. For a polar orbit, these components are orthogonal. In order to simplify the measurement of the precessions, Gravity Probe B (GP-B) will be placed in a circular polar orbit at 650 km, for which the predicted precessions will be 6.6 arcsec/year (geodetic) and 42 milli-arcsec/year (frame-dragging). As the gyroscope precesses, the orientation of its spin-axis will be measured with respect to the line-of-sight to Rigel, a star whose proper motion is known to be within the required accuracy. The line-of-sight to Rigel will be established using a telescope, and the orientation of the gyroscope spin axis will be measured using very sensitive SQUID (Superconducting Quantum Interference Device) magnetometers. The four gyroscopes will be coated with niobium. Below 2K, the niobium becomes superconducting and a dipole field will be generated which is precisely aligned with the gyroscope spin-axis. The change in orientation of these fields, as well as the spin-axis, is sensed by the SQUID magnetometers. In order to attain the superconducting temperatures for the gyroscopes and the SQUID's, the experiment package will be housed in a dewar filled with liquid helium. The helium flow through a GP-B micro thruster and into a vacuum is investigated using the Direct Simulation Monte Carlo method.

  10. Analysis of state-of-the-art single-thruster attitude control techniques for spinning penetrator

    Science.gov (United States)

    Raus, Robin; Gao, Yang; Wu, Yunhua; Watt, Mark

    2012-07-01

    The attitude dynamics and manoeuvre survey in this paper is performed for a mission scenario involving a penetrator-type spacecraft: an axisymmetric prolate spacecraft spinning around its minor axis of inertia performing a 90° spin axis reorientation manoeuvre. In contrast to most existing spacecraft only one attitude control thruster is available, providing a control torque perpendicular to the spin axis. Having only one attitude thruster on a spinning spacecraft could be preferred for spacecraft simplicity (lower mass, lower power consumption etc.), or it could be imposed in the context of redundancy/contingency operations. This constraint does yield restrictions on the thruster timings, depending on the ratio of minor to major moments of inertia among other parameters. The Japanese Lunar-A penetrator spacecraft proposal is a good example of such a single-thruster spin-stabilised prolate spacecraft. The attitude dynamics of a spinning rigid body are first investigated analytically, then expanded for the specific case of a prolate and axisymmetric rigid body and finally a cursory exploration of non-rigid body dynamics is made. Next two well-known techniques for manoeuvring a spin-stabilised spacecraft, the Half-cone/Multiple Half-cone and the Rhumb line slew, are compared with two new techniques, the Sector-Arc Slew developed by Astrium Satellites and the Dual-cone developed at Surrey Space Centre. Each technique is introduced and characterised by means of simulation results and illustrations based on the penetrator mission scenario and a brief robustness analysis is performed against errors in moments of inertia and spin rate. Also, the relative benefits of each slew algorithm are discussed in terms of slew accuracy, energy (propellant) efficiency and time efficiency. For example, a sequence of half-cone manoeuvres (a Multi-half-cone manoeuvre) tends to be more energy-efficient than one half-cone for the same final slew angle, but more time-consuming. As another

  11. Trade Study of Multiple Thruster Options for the Mars Airplane Concept

    Science.gov (United States)

    Kuhl, Christopher A.; Gayle, Steven W.; Hunter, Craig A.; Kenney, Patrick S.; Scola, Salvatore; Paddock, David A.; Wright, Henry S.; Gasbarre, Joseph F.

    2009-01-01

    A trade study was performed at NASA Langley Research Center under the Planetary Airplane Risk Reduction (PARR) project (2004-2005) to examine the option of using multiple, smaller thrusters in place of a single large thruster on the Mars airplane concept with the goal to reduce overall cost, schedule, and technical risk. The 5-lbf (22N) thruster is a common reaction control thruster on many satellites. Thousands of these types of thrusters have been built and flown on numerous programs, including MILSTAR and Intelsat VI. This study has examined the use of three 22N thrusters for the Mars airplane propulsion system and compared the results to those of the baseline single thruster system.

  12. The importance of vertical resolution in the free troposphere for modeling intercontinental plumes

    Science.gov (United States)

    Zhuang, Jiawei; Jacob, Daniel J.; Eastham, Sebastian D.

    2018-05-01

    Chemical plumes in the free troposphere can preserve their identity for more than a week as they are transported on intercontinental scales. Current global models cannot reproduce this transport. The plumes dilute far too rapidly due to numerical diffusion in sheared flow. We show how model accuracy can be limited by either horizontal resolution (Δx) or vertical resolution (Δz). Balancing horizontal and vertical numerical diffusion, and weighing computational cost, implies an optimal grid resolution ratio (Δx / Δz)opt ˜ 1000 for simulating the plumes. This is considerably higher than current global models (Δx / Δz ˜ 20) and explains the rapid plume dilution in the models as caused by insufficient vertical resolution. Plume simulations with the Geophysical Fluid Dynamics Laboratory Finite-Volume Cubed-Sphere Dynamical Core (GFDL-FV3) over a range of horizontal and vertical grid resolutions confirm this limiting behavior. Our highest-resolution simulation (Δx ≈ 25 km, Δz ≈ 80 m) preserves the maximum mixing ratio in the plume to within 35 % after 8 days in strongly sheared flow, a drastic improvement over current models. Adding free tropospheric vertical levels in global models is computationally inexpensive and would also improve the simulation of water vapor.

  13. The importance of vertical resolution in the free troposphere for modeling intercontinental plumes

    Directory of Open Access Journals (Sweden)

    J. Zhuang

    2018-05-01

    Full Text Available Chemical plumes in the free troposphere can preserve their identity for more than a week as they are transported on intercontinental scales. Current global models cannot reproduce this transport. The plumes dilute far too rapidly due to numerical diffusion in sheared flow. We show how model accuracy can be limited by either horizontal resolution (Δx or vertical resolution (Δz. Balancing horizontal and vertical numerical diffusion, and weighing computational cost, implies an optimal grid resolution ratio (Δx ∕ Δzopt ∼ 1000 for simulating the plumes. This is considerably higher than current global models (Δx ∕ Δz ∼ 20 and explains the rapid plume dilution in the models as caused by insufficient vertical resolution. Plume simulations with the Geophysical Fluid Dynamics Laboratory Finite-Volume Cubed-Sphere Dynamical Core (GFDL-FV3 over a range of horizontal and vertical grid resolutions confirm this limiting behavior. Our highest-resolution simulation (Δx ≈ 25 km, Δz  ≈  80 m preserves the maximum mixing ratio in the plume to within 35 % after 8 days in strongly sheared flow, a drastic improvement over current models. Adding free tropospheric vertical levels in global models is computationally inexpensive and would also improve the simulation of water vapor.

  14. Hydrogen chloride heterogeneous chemistry on frozen water particles in subsonic aircraft plume. Laboratory studies and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Persiantseva, N.V.; Popovitcheva, O.B.; Rakhimova, T.V. [Moscow State Univ. (Russian Federation)

    1997-12-31

    Heterogeneous chemistry of HCl, as a main reservoir of chlorine content gases, has been considered after plume cooling and ice particle formation. The HCl, HNO{sub 3}, N{sub 2}O{sub 5} uptake efficiencies by frozen water were obtained in a Knudsen-cell flow reactor at the subsonic cruise conditions. The formation of ice particles in the plume of subsonic aircraft is simulated to describe the kinetics of gaseous HCl loss due to heterogeneous processes. It is shown that the HCl uptake by frozen water particles may play an important role in the gaseous HCl depletion in the aircraft plume. (author) 14 refs.

  15. Hydrogen chloride heterogeneous chemistry on frozen water particles in subsonic aircraft plume. Laboratory studies and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Persiantseva, N V; Popovitcheva, O B; Rakhimova, T V [Moscow State Univ. (Russian Federation)

    1998-12-31

    Heterogeneous chemistry of HCl, as a main reservoir of chlorine content gases, has been considered after plume cooling and ice particle formation. The HCl, HNO{sub 3}, N{sub 2}O{sub 5} uptake efficiencies by frozen water were obtained in a Knudsen-cell flow reactor at the subsonic cruise conditions. The formation of ice particles in the plume of subsonic aircraft is simulated to describe the kinetics of gaseous HCl loss due to heterogeneous processes. It is shown that the HCl uptake by frozen water particles may play an important role in the gaseous HCl depletion in the aircraft plume. (author) 14 refs.

  16. Mantle plumes on Venus revisited

    Science.gov (United States)

    Kiefer, Walter S.

    1992-01-01

    The Equatorial Highlands of Venus consist of a series of quasicircular regions of high topography, rising up to about 5 km above the mean planetary radius. These highlands are strongly correlated with positive geoid anomalies, with a peak amplitude of 120 m at Atla Regio. Shield volcanism is observed at Beta, Eistla, Bell, and Atla Regiones and in the Hathor Mons-Innini Mons-Ushas Mons region of the southern hemisphere. Volcanos have also been mapped in Phoebe Regio and flood volcanism is observed in Ovda and Thetis Regiones. Extensional tectonism is also observed in Ovda and Thetis Regiones. Extensional tectonism is also observed in many of these regions. It is now widely accepted that at least Beta, Atla, Eistla, and Bell Regiones are the surface expressions of hot, rising mantel plumes. Upwelling plumes are consistent with both the volcanism and the extensional tectonism observed in these regions. The geoid anomalies and topography of these four regions show considerable variation. Peak geoid anomalies exceed 90 m at Beta and Atla, but are only 40 m at Eistla and 24 m at Bell. Similarly, the peak topography is greater at Beta and Atla than at Eistla and Bell. Such a range of values is not surprising because terrestrial hotspot swells also have a side range of geoid anomalies and topographic uplifts. Kiefer and Hager used cylindrical axisymmetric, steady-state convection calculations to show that mantle plumes can quantitatively account for both the amplitude and the shape of the long-wavelength geoid and topography at Beta and Atla. In these models, most of the topography of these highlands is due to uplift by the vertical normal stress associated with the rising plume. Additional topography may also be present due to crustal thickening by volcanism and crustal thinning by rifting. Smrekar and Phillips have also considered the geoid and topography of plumes on Venus, but they restricted themselves to considering only the geoid-topography ratio and did not

  17. CFD investigation of balcony spill plumes in atria

    International Nuclear Information System (INIS)

    McCartney, C.J.; Lougheed, G.D.; Weckman, E.J.

    2004-01-01

    Smoke management in buildings during fire events often uses mechanical ventilation systems to maintain smoke layer elevation above a safe evacuation path. Design of these systems requires accurate correlations for the smoke production rate of the buoyant fire plume. One design issue is the smoke production rate of fire plumes which spill out from a fire compartment, under a balcony and up through an atrium or other large volume. Current engineering correlations for these balcony spill plumes are based on a combination of one-tenth scale test data and theoretical analysis. Questions have arisen over the suitability of these correlations for real-scale designs. A combined program of full-scale experimentation and CFD modeling is being conducted to analyze the accuracy of these correlations. A full-scale experimental facility was constructed with a 5 m by 5 m by 15 m fire compartment connected to a four-story atrium. Propane fires in the compartment produce balcony spill plumes which form steady-state smoke layers in the atrium. Experimental variables include fire size, compartment opening width, balcony depth and compartment fascia depth. A variable exhaust system was used to achieve various smoke layer heights for each of 100 compartment configurations. Temperature, smoke obscuration and gas concentrations were measured in the compartment, atrium and exhaust system. The experimental data was used to determine the atrium smoke layer elevation and balcony spill plume smoke production rate for each configuration and fire size. Comparison of this data with zone model results and design correlations for atrium smoke management systems will be performed to evaluate their accuracy. A CFD model of the experimental facility was implemented using the Fire Dynamics Simulator software (Version 3). Large-eddy simulations of the flow were performed with a constant radiative fraction and an infinitely fast mixture fraction combustion model. A grid sensitivity analysis was

  18. The effect of magnetic mirror on near wall conductivity in Hall thrusters

    International Nuclear Information System (INIS)

    Yu, D.; Liu, H.; Fu, H.; Cao, Y.

    2008-01-01

    The effect of magnetic mirror on near wall conductivity is studied in the acceleration region of Hall thrusters. The electron dynamics process in the plasma is described by test particle method, in which electrons are randomly emitted from the centerline towards the inner wall of the channel. It is found that the effective collision coefficient, i.e. the rate of electrons colliding with the wall, changes dramatically with the magnetic mirror effect being considered; and that it decreases further with the increase of magnetic mirror ratio to enhance the electron mobility accordingly. In particular, under anistropic electron velocity distribution conditions, the magnetic mirror effect becomes even more prominent. Furthermore, due to decrease in magnetic mirror ratio from the exhaust plane to the anode in Hall thrusters, the axial gradient of electron mobility with magnetic mirror effect is greater than without it. The magnetic mirror effects on electron mobility are derived analytically and the results are found in agreement with the simulation. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. The Thermal Plume above a Standing Human Body Exposed to Different Air Distribution Strategies

    DEFF Research Database (Denmark)

    Liu, Li; Nielsen, Peter V.; Li, Yuguo

    2009-01-01

    This study compares the impact of air distribution on the thermal plume above a human body in indoor environment. Three sets of measurements are conducted in a full-scale test room with different ventilation conditions. One breathing thermal manikin standing in the room is used to simulate...... the human body. Long-time average air velocity profiles at locations closely above the manikin are taken to identify the wandering thermal plume....

  20. Improvement of Flow Characteristics for an Advanced Plasma Thruster

    International Nuclear Information System (INIS)

    Inutake, M.; Hosokawa, Y.; Sato, R.; Ando, A.; Tobari, H.; Hattori, K.

    2005-01-01

    A higher specific impulse and a larger thrust are required for a manned interplanetary space thruster. Until the realization of a fusion-plasma thruster, a magneto-plasma-dynamic arcjet (MPDA) powered by a fission reactor is one of the promising candidates for a manned Mars space thruster. The MPDA plasma is accelerated axially by a self-induced j x B force. Thrust performance of the MPDA is expected to increase by applying a magnetic nozzle instead of a solid nozzle. In order to get a much higher thruster performance, two methods have been investigated in the HITOP device, Tohoku University. One is to use a magnetic Laval nozzle in the vicinity of the MPDA muzzle for converting the high ion thermal energy to the axial flow energy. The other is to heat ions by use of an ICRF antenna in the divergent magnetic nozzle. It is found that by use of a small-sized Laval-type magnetic nozzle, the subsonic flow near the muzzle is converted to be supersonic through the magnetic Laval nozzle. A fast-flowing plasma is successfully heated by use of an ICRF antenna in the magnetic beach configuration

  1. Fabrication of LTCC based Micro Thruster for Precision Controlled Spaceflight

    DEFF Research Database (Denmark)

    Larsen, Jack; Jørgensen, John Leif

    2011-01-01

    The paper at hand presents the initial investigations on the development and fabrication of a micro thruster based on LTCC technology, delivering a thrust in the micro Newton regime. Using smaller segments of an observation system distributed on two or more spacecrafts, one can realize an observa...

  2. Thermal stability of the krypton Hall effect thruster

    Directory of Open Access Journals (Sweden)

    Szelecka Agnieszka

    2017-03-01

    Full Text Available The Krypton Large IMpulse Thruster (KLIMT ESA/PECS project, which has been implemented in the Institute of Plasma Physics and Laser Microfusion (IPPLM and now is approaching its final phase, was aimed at incremental development of a ~500 W class Hall effect thruster (HET. Xenon, predominantly used as a propellant in the state-of-the-art HETs, is extremely expensive. Krypton has been considered as a cheaper alternative since more than fifteen years; however, to the best knowledge of the authors, there has not been a HET model especially designed for this noble gas. To address this issue, KLIMT has been geared towards operation primarily with krypton. During the project, three subsequent prototype versions of the thruster were designed, manufactured and tested, aimed at gradual improvement of each next exemplar. In the current paper, the heat loads in new engine have been discussed. It has been shown that thermal equilibrium of the thruster is gained within the safety limits of the materials used. Extensive testing with both gases was performed to compare KLIMT’s thermal behaviour when supplied with krypton and xenon propellants.

  3. STS-39: OMS Pod Thruster Removal/Replace

    Science.gov (United States)

    1991-01-01

    Shown is the removal and replacement of the Discovery's orbital maneuvering systems (OMS) pod thruster. The OMS engine will be used to propel Discovery north, off of its previous orbital groundtrack, without changing the spacecraft's altitude. A burn with this lateral effect is known as "out-of-plane."

  4. Parametric studies of the Hall Thruster at Soreq

    International Nuclear Information System (INIS)

    Ashkenazy, J.; Rattses, Y.; Appelbaum, G.

    1997-01-01

    An electric propulsion program was initiated at Soreq a few years ago, aiming at the research and development of advanced Hall thrusters for various space applications. The Hall thruster accelerates a plasma jet by an axial electric field and an applied radial magnetic field in an annular ceramic channel. A relatively large current density (> 0.1 A/cm 2 ) can be obtained, since the acceleration mechanism is not limited by space charge effects. Such a device can be used as a small rocket engine onboard spacecraft with the advantage of a large jet velocity compared with conventional rocket engines (10,000-30,000 m/s vs. 2,000-4,800 m/s). An experimental Hall thruster was constructed at Soreq and operated under a broad range of operating conditions and under various configurational variations. Electrical, magnetic and plasma diagnostics, as well as accurate thrust and gas flow rate measurements, have been used to investigate the dependence of thruster behavior on the applied voltage, gas flow rate, magnetic field, channel geometry and wall material. Representative results highlighting the major findings of the studies conducted so far are presented

  5. Mission and System Advantages of Iodine Hall Thrusters

    Science.gov (United States)

    Dankanich, John W.; Szabo, James; Pote, Bruce; Oleson, Steve; Kamhawi, Hani

    2014-01-01

    The exploration of alternative propellants for Hall thrusters continues to be of interest to the community. Investments have been made and continue for the maturation of iodine based Hall thrusters. Iodine testing has shown comparable performance to xenon. However, iodine has a higher storage density and resulting higher ?V capability for volume constrained systems. Iodine's vapor pressure is low enough to permit low-pressure storage, but high enough to minimize potential adverse spacecraft-thruster interactions. The low vapor pressure also means that iodine does not condense inside the thruster at ordinary operating temperatures. Iodine is safe, it stores at sub-atmospheric pressure, and can be stored unregulated for years on end; whether on the ground or on orbit. Iodine fills a niche for both low power (10kW) electric propulsion regimes. A range of missions have been evaluated for direct comparison of Iodine and Xenon options. The results show advantages of iodine Hall systems for both small and microsatellite application and for very large exploration class missions.

  6. Detecting Volcanic Ash Plumes with GNSS Signals

    Science.gov (United States)

    Rainville, N.; Larson, K. M.; Palo, S. E.; Mattia, M.; Rossi, M.; Coltelli, M.; Roesler, C.; Fee, D.

    2016-12-01

    Global Navigation Satellite Systems (GNSS) receivers are commonly placed near volcanic sites to measure ground deformation. In addition to the carrier phase data used to measure ground position, these receivers also record Signal to Noise ratio (SNR) data. Larson (2013) showed that attenuations in SNR data strongly correlate with ash emissions at a series of eruptions of Redoubt Volcano. This finding has been confirmed at eruptions for Tongariro, Mt Etna, Mt Shindake, and Sakurajima. In each of these detections, very expensive geodetic quality GNSS receivers were used. If low-cost GNSS instruments could be used instead, a networked array could be deployed and optimized for plume detection and tomography. The outputs of this sensor array could then be used by both local volcanic observatories and Volcano Ash Advisory Centers. Here we will describe progress in developing such an array. The sensors we are working with are intended for navigation use, and thus lack the supporting power and communications equipment necessary for a networked system. Reliably providing those features is major challenge for the overall sensor design. We have built prototypes of our Volcano Ash Plume Receiver (VAPR), with solar panels, lithium-ion batteries and onboard data storage for preliminary testing. We will present results of our field tests of both receivers and antennas. A second critical need for our array is a reliable detection algorithm. We have tested our algorithm on data from recent eruptions and have incorporated the noise characteristics of the low-cost GNSS receiver. We have also developed a simulation capability so that the receivers can be deployed to optimize vent crossing GNSS signals.

  7. Investigation of CO, C2H6 and aerosols in a boreal fire plume over eastern Canada during BORTAS 2011 using ground- and satellite-based observations and model simulations

    Directory of Open Access Journals (Sweden)

    D. Griffin

    2013-10-01

    Full Text Available We present the results of total column measurements of CO, C2H6 and fine-mode aerosol optical depth (AOD during the "Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites" (BORTAS-B campaign over eastern Canada. Ground-based observations, using Fourier transform spectrometers (FTSs and sun photometers, were carried out in July and August 2011. These measurements were taken in Halifax, Nova Scotia, which is an ideal location to monitor the outflow of boreal fires from North America, and also in Toronto, Ontario. Measurements of fine-mode AOD enhancements were highly correlated with enhancements in coincident trace gas (CO and C2H6 observations between 19 and 21 July 2011, which is typical for a smoke plume event. In this paper, we focus on the identification of the origin and the transport of this smoke plume. We use back trajectories calculated by the Canadian Meteorological Centre as well as FLEXPART forward trajectories to demonstrate that the enhanced CO, C2H6 and fine-mode AOD seen near Halifax and Toronto originated from forest fires in northwestern Ontario that occurred between 17 and 19 July 2011. In addition, total column measurements of CO from the satellite-borne Infrared Atmospheric Sounding Interferometer (IASI have been used to trace the smoke plume and to confirm the origin of the CO enhancement. Furthermore, the enhancement ratio – that is, in this case equivalent to the emission ratio (ERC2H6/CO – was estimated from these ground-based observations. These C2H6 emission results from boreal fires in northwestern Ontario agree well with C2H6 emission measurements from other boreal regions, and are relatively high compared to fires from other geographical regions. The ground-based CO and C2H6 observations were compared with outputs from the 3-D global chemical transport model GEOS-Chem, using the Fire Locating And Modeling of Burning Emissions (FLAMBE inventory

  8. Investigation of CO, C2H6 and aerosols in a boreal fire plume over eastern Canada during BORTAS 2011 using ground- and satellite-based observations and model simulations

    Science.gov (United States)

    Griffin, D.; Walker, K. A.; Franklin, J. E.; Parrington, M.; Whaley, C.; Hopper, J.; Drummond, J. R.; Palmer, P. I.; Strong, K.; Duck, T. J.; Abboud, I.; Bernath, P. F.; Clerbaux, C.; Coheur, P.-F.; Curry, K. R.; Dan, L.; Hyer, E.; Kliever, J.; Lesins, G.; Maurice, M.; Saha, A.; Tereszchuk, K.; Weaver, D.

    2013-10-01

    We present the results of total column measurements of CO, C2H6 and fine-mode aerosol optical depth (AOD) during the "Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites" (BORTAS-B) campaign over eastern Canada. Ground-based observations, using Fourier transform spectrometers (FTSs) and sun photometers, were carried out in July and August 2011. These measurements were taken in Halifax, Nova Scotia, which is an ideal location to monitor the outflow of boreal fires from North America, and also in Toronto, Ontario. Measurements of fine-mode AOD enhancements were highly correlated with enhancements in coincident trace gas (CO and C2H6) observations between 19 and 21 July 2011, which is typical for a smoke plume event. In this paper, we focus on the identification of the origin and the transport of this smoke plume. We use back trajectories calculated by the Canadian Meteorological Centre as well as FLEXPART forward trajectories to demonstrate that the enhanced CO, C2H6 and fine-mode AOD seen near Halifax and Toronto originated from forest fires in northwestern Ontario that occurred between 17 and 19 July 2011. In addition, total column measurements of CO from the satellite-borne Infrared Atmospheric Sounding Interferometer (IASI) have been used to trace the smoke plume and to confirm the origin of the CO enhancement. Furthermore, the enhancement ratio - that is, in this case equivalent to the emission ratio (ERC2H6/CO) - was estimated from these ground-based observations. These C2H6 emission results from boreal fires in northwestern Ontario agree well with C2H6 emission measurements from other boreal regions, and are relatively high compared to fires from other geographical regions. The ground-based CO and C2H6 observations were compared with outputs from the 3-D global chemical transport model GEOS-Chem, using the Fire Locating And Modeling of Burning Emissions (FLAMBE) inventory. Agreement within the

  9. Plume spread and atmospheric stability

    Energy Technology Data Exchange (ETDEWEB)

    Weber, R O [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The horizontal spread of a plume in atmospheric dispersion can be described by the standard deviation of horizontal direction. The widely used Pasquill-Gifford classes of atmospheric stability have assigned typical values of the standard deviation of horizontal wind direction and of the lapse rate. A measured lapse rate can thus be used to estimate the standard deviation of wind direction. It is examined by means of a large dataset of fast wind measurements how good these estimates are. (author) 1 fig., 2 refs.

  10. Lidar measurements of plume statistics

    DEFF Research Database (Denmark)

    Ejsing Jørgensen, Hans; Mikkelsen, T.

    1993-01-01

    of measured crosswind concentration profiles, the following statistics were obtained: 1) Mean profile, 2) Root mean square profile, 3) Fluctuation intensities,and 4)Intermittency factors. Furthermore, some experimentally determined probability density functions (pdf's) of the fluctuations are presented. All...... the measured statistics are referred to a fixed and a 'moving' frame of reference, the latter being defined as a frame of reference from which the (low frequency) plume meander is removed. Finally, the measured statistics are compared with statistics on concentration fluctuations obtained with a simple puff...

  11. Comparisons in Performance of Electromagnet and Permanent-Magnet Cylindrical Hall-Effect Thrusters

    Science.gov (United States)

    Polzin, K. A.; Raitses, Y.; Gayoso, J. C.; Fisch, N. J.

    2010-01-01

    Three different low-power cylindrical Hall thrusters, which more readily lend themselves to miniaturization and low-power operation than a conventional (annular) Hall thruster, are compared to evaluate the propulsive performance of each. One thruster uses electromagnet coils to produce the magnetic field within the discharge channel while the others use permanent magnets, promising power reduction relative to the electromagnet thruster. A magnetic screen is added to the permanent magnet thruster to improve performance by keeping the magnetic field from expanding into space beyond the exit of the thruster. The combined dataset spans a power range from 50-350 W. The thrust levels over this range were 1.3-7.3 mN, with thruster efficiencies and specific impulses spanning 3.5-28.7% and 400-1940 s, respectively. The efficiency is generally higher for the permanent magnet thruster with the magnetic screen, while That thruster s specific impulse as a function of discharge voltage is comparable to the electromagnet thruster.

  12. Hardware in the Loop Testing of an Iodine-Fed Hall Thruster

    Science.gov (United States)

    Polzin, Kurt A.; Peeples, Steven R.; Cecil, Jim; Lewis, Brandon L.; Molina Fraticelli, Jose C.; Clark, James P.

    2015-01-01

    chamber (it is under 10(exp -6) torr at -75 C), making it possible to 'cryopump' the propellant with lower-cost recirculating refrigerant-based systems as opposed to using liquid nitrogen or low temperature gaseous helium cryopanels. In the present paper, we describe testing performed using an iodine-fed 200 W Hall thruster mounted to a thrust stand and operated in conjunction with MSFCs Small Projects Rapid Integration and Test Environment (SPRITE) Portable Hardware In the Loop (PHIL) hardware. This work is performed in support of the iodine satellite (iSAT) project, which aims to fly a 200-W iodine-fed thruster on a 12-U CubeSat. The SPRITE PHIL hardware allows a given vehicle to do a checkout of its avionics algorithm by allowing it to monitor and feed data to simulated sensors and effectors in a digital environment. These data are then used to determine the attitude of the vehicle and a separate computer is used to interpret the data set and visualize it using a 3D graphical interface. The PHIL hardware allows the testing of the vehicles bus by providing 'real' hardware interfaces (in the case of this test a real RS422 bus) and specific components can be modeled to show their interactions with the avionics algorithm (e.g. a thruster model). For the iSAT project the PHIL is used to visualize the operating cycle of the thruster and the subsequent effect this thrusting has on the attitude of the satellite over a given period of time. The test is controlled using software running on an Andrews Space Cortex 160 flight computer. This computer is the current baseline for a full iSAT mission. While the test could be conducted with a lab computer and software, the team chose to exercise the propulsion system with a representative CubeSat-class computer. For purposes of this test, the "flight" software monitored the propulsion and PPU systems, controlled operation of the thruster, and provided thruster state data to the PHIL simulation. Commands to operate the thruster were

  13. Characteristics of bubble plumes, bubble-plume bubbles and waves from wind-steepened wave breaking

    NARCIS (Netherlands)

    Leifer, I.; Caulliez, G.; Leeuw, G. de

    2007-01-01

    Observations of breaking waves, associated bubble plumes and bubble-plume size distributions were used to explore the coupled evolution of wave-breaking, wave properties and bubble-plume characteristics. Experiments were made in a large, freshwater, wind-wave channel with mechanical wind-steepened

  14. Automated recognition and tracking of aerosol threat plumes with an IR camera pod

    Science.gov (United States)

    Fauth, Ryan; Powell, Christopher; Gruber, Thomas; Clapp, Dan

    2012-06-01

    Protection of fixed sites from chemical, biological, or radiological aerosol plume attacks depends on early warning so that there is time to take mitigating actions. Early warning requires continuous, autonomous, and rapid coverage of large surrounding areas; however, this must be done at an affordable cost. Once a potential threat plume is detected though, a different type of sensor (e.g., a more expensive, slower sensor) may be cued for identification purposes, but the problem is to quickly identify all of the potential threats around the fixed site of interest. To address this problem of low cost, persistent, wide area surveillance, an IR camera pod and multi-image stitching and processing algorithms have been developed for automatic recognition and tracking of aerosol plumes. A rugged, modular, static pod design, which accommodates as many as four micro-bolometer IR cameras for 45deg to 180deg of azimuth coverage, is presented. Various OpenCV1 based image-processing algorithms, including stitching of multiple adjacent FOVs, recognition of aerosol plume objects, and the tracking of aerosol plumes, are presented using process block diagrams and sample field test results, including chemical and biological simulant plumes. Methods for dealing with the background removal, brightness equalization between images, and focus quality for optimal plume tracking are also discussed.

  15. Plume Particle Collection and Sizing from Static Firing of Solid Rocket Motors

    Science.gov (United States)

    Sambamurthi, Jay K.

    1995-01-01

    Thermal radiation from the plume of any solid rocket motor, containing aluminum as one of the propellant ingredients, is mainly from the microscopic, hot aluminum oxide particles in the plume. The plume radiation to the base components of the flight vehicle is primarily determined by the plume flowfield properties, the size distribution of the plume particles, and their optical properties. The optimum design of a vehicle base thermal protection system is dependent on the ability to accurately predict this intense thermal radiation using validated theoretical models. This article describes a successful effort to collect reasonably clean plume particle samples from the static firing of the flight simulation motor (FSM-4) on March 10, 1994 at the T-24 test bed at the Thiokol space operations facility as well as three 18.3% scaled MNASA motors tested at NASA/MSFC. Prior attempts to collect plume particles from the full-scale motor firings have been unsuccessful due to the extremely hostile thermal and acoustic environment in the vicinity of the motor nozzle.

  16. Proceedings of plumes, plates and mineralisation symposium: an introduction

    CSIR Research Space (South Africa)

    Hatton, CJ

    1997-12-01

    Full Text Available of plume-theory. Mechanisms of magma formation are identified and plume positions and distances to their surface expression considered. Mantle plumes are considered as a heat and fluid source for the Witwatersrand gold deposits....

  17. Quantifying dust plume formation and aerosol size distribution during the Saharan Mineral Dust Experiment in North Africa

    KAUST Repository

    Khan, Basit Ali; Stenchikov, Georgiy L.; Weinzierl, Bernadett; Kalenderski, Stoitchko; Osipov, Sergey

    2015-01-01

    outflow are key mechanisms that form a surface--detached aerosol plume over the ocean. Comparisons of simulated dust size distributions with airplane and ground--based observations are generally good, but suggest that more detailed treatment

  18. Io with Loki Plume on Bright Limb

    Science.gov (United States)

    1990-01-01

    Voyager 1 image of Io showing active plume of Loki on limb. Heart-shaped feature southeast of Loki consists of fallout deposits from active plume Pele. The images that make up this mosaic were taken from an average distance of approximately 490,000 kilometers (340,000 miles).

  19. The Alberta smoke plume observation study

    Directory of Open Access Journals (Sweden)

    K. Anderson

    2018-02-01

    Full Text Available A field project was conducted to observe and measure smoke plumes from wildland fires in Alberta. This study used handheld inclinometer measurements and photos taken at lookout towers in the province. Observations of 222 plumes were collected from 21 lookout towers over a 6-year period from 2010 to 2015. Observers reported the equilibrium and maximum plume heights based on the plumes' final levelling heights and the maximum lofting heights, respectively. Observations were tabulated at the end of each year and matched to reported fires. Fire sizes at assessment times and forest fuel types were reported by the province. Fire weather conditions were obtained from the Canadian Wildland Fire Information System (CWFIS. Assessed fire sizes were adjusted to the appropriate size at plume observation time using elliptical fire-growth projections. Though a logical method to collect plume observations in principle, many unanticipated issues were uncovered as the project developed. Instrument limitations and environmental conditions presented challenges to the investigators, whereas human error and the subjectivity of observations affected data quality. Despite these problems, the data set showed that responses to fire behaviour conditions were consistent with the physical processes leading to plume rise. The Alberta smoke plume observation study data can be found on the Canadian Wildland Fire Information System datamart (Natural Resources Canada, 2018 at http://cwfis.cfs.nrcan.gc.ca/datamart.

  20. The Alberta smoke plume observation study

    Science.gov (United States)

    Anderson, Kerry; Pankratz, Al; Mooney, Curtis; Fleetham, Kelly

    2018-02-01

    A field project was conducted to observe and measure smoke plumes from wildland fires in Alberta. This study used handheld inclinometer measurements and photos taken at lookout towers in the province. Observations of 222 plumes were collected from 21 lookout towers over a 6-year period from 2010 to 2015. Observers reported the equilibrium and maximum plume heights based on the plumes' final levelling heights and the maximum lofting heights, respectively. Observations were tabulated at the end of each year and matched to reported fires. Fire sizes at assessment times and forest fuel types were reported by the province. Fire weather conditions were obtained from the Canadian Wildland Fire Information System (CWFIS). Assessed fire sizes were adjusted to the appropriate size at plume observation time using elliptical fire-growth projections. Though a logical method to collect plume observations in principle, many unanticipated issues were uncovered as the project developed. Instrument limitations and environmental conditions presented challenges to the investigators, whereas human error and the subjectivity of observations affected data quality. Despite these problems, the data set showed that responses to fire behaviour conditions were consistent with the physical processes leading to plume rise. The Alberta smoke plume observation study data can be found on the Canadian Wildland Fire Information System datamart (Natural Resources Canada, 2018) at http://cwfis.cfs.nrcan.gc.ca/datamart.

  1. Experimental Investigation of Large-Scale Bubbly Plumes

    Energy Technology Data Exchange (ETDEWEB)

    Zboray, R.; Simiano, M.; De Cachard, F

    2004-03-01

    Carefully planned and instrumented experiments under well-defined boundary conditions have been carried out on large-scale, isothermal, bubbly plumes. The data obtained is meant to validate newly developed, high-resolution numerical tools for 3D transient, two-phase flow modelling. Several measurement techniques have been utilised to collect data from the experiments: particle image velocimetry, optical probes, electromagnetic probes, and visualisation. Bubble and liquid velocity fields, void-fraction distributions, bubble size and interfacial-area-concentration distributions have all been measured in the plume region, as well as recirculation velocities in the surrounding pool. The results obtained from the different measurement techniques have been compared. In general, the two-phase flow data obtained from the different techniques are found to be consistent, and of high enough quality for validating numerical simulation tools for 3D bubbly flows. (author)

  2. Experimental Investigation of Large-Scale Bubbly Plumes

    International Nuclear Information System (INIS)

    Zboray, R.; Simiano, M.; De Cachard, F.

    2004-01-01

    Carefully planned and instrumented experiments under well-defined boundary conditions have been carried out on large-scale, isothermal, bubbly plumes. The data obtained is meant to validate newly developed, high-resolution numerical tools for 3D transient, two-phase flow modelling. Several measurement techniques have been utilised to collect data from the experiments: particle image velocimetry, optical probes, electromagnetic probes, and visualisation. Bubble and liquid velocity fields, void-fraction distributions, bubble size and interfacial-area-concentration distributions have all been measured in the plume region, as well as recirculation velocities in the surrounding pool. The results obtained from the different measurement techniques have been compared. In general, the two-phase flow data obtained from the different techniques are found to be consistent, and of high enough quality for validating numerical simulation tools for 3D bubbly flows. (author)

  3. Turbulent structure of concentration plumes through application of video imaging

    Energy Technology Data Exchange (ETDEWEB)

    Dabberdt, W.F.; Martin, C. [National Center for Atmospheric Research, Boulder, CO (United States); Hoydysh, W.G.; Holynskyj, O. [Environmental Science & Services Corp., Long Island City, NY (United States)

    1994-12-31

    Turbulent flows and dispersion in the presence of building wakes and terrain-induced local circulations are particularly difficult to simulate with numerical models or measure with conventional fluid modeling and ambient measurement techniques. The problem stems from the complexity of the kinematics and the difficulty in making representative concentration measurements. New laboratory video imaging techniques are able to overcome many of these limitations and are being applied to study a range of difficult problems. Here the authors apply {open_quotes}tomographic{close_quotes} video imaging techniques to the study of the turbulent structure of an ideal elevated plume and the relationship of short-period peak concentrations to long-period average values. A companion paper extends application of the technique to characterization of turbulent plume-concentration fields in the wake of a complex building configuration.

  4. Modeling Macro- and Micro-Scale Turbulent Mixing and Chemistry in Engine Exhaust Plumes

    Science.gov (United States)

    Menon, Suresh

    1998-01-01

    Simulation of turbulent mixing and chemical processes in the near-field plume and plume-vortex regimes has been successfully carried out recently using a reduced gas phase kinetics mechanism which substantially decreased the computational cost. A detailed mechanism including gas phase HOx, NOx, and SOx chemistry between the aircraft exhaust and the ambient air in near-field aircraft plumes is compiled. A reduced mechanism capturing the major chemical pathways is developed. Predictions by the reduced mechanism are found to be in good agreement with those by the detailed mechanism. With the reduced chemistry, the computer CPU time is saved by a factor of more than 3.5 for the near-field plume modeling. Distributions of major chemical species are obtained and analyzed. The computed sensitivities of major species with respect to reaction step are deduced for identification of the dominant gas phase kinetic reaction pathways in the jet plume. Both the near field plume and the plume-vortex regimes were investigated using advanced mixing models. In the near field, a stand-alone mixing model was used to investigate the impact of turbulent mixing on the micro- and macro-scale mixing processes using a reduced reaction kinetics model. The plume-vortex regime was simulated using a large-eddy simulation model. Vortex plume behind Boeing 737 and 747 aircraft was simulated along with relevant kinetics. Many features of the computed flow field show reasonable agreement with data. The entrainment of the engine plumes into the wing tip vortices and also the partial detrainment of the plume were numerically captured. The impact of fluid mechanics on the chemical processes was also studied. Results show that there are significant differences between spatial and temporal simulations especially in the predicted SO3 concentrations. This has important implications for the prediction of sulfuric acid aerosols in the wake and may partly explain the discrepancy between past numerical studies

  5. Magnetotelluric Detection Thresholds as a Function of Leakage Plume Depth, TDS and Volume

    Energy Technology Data Exchange (ETDEWEB)

    Yang, X. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Buscheck, T. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mansoor, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Carroll, S. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-04-21

    We conducted a synthetic magnetotelluric (MT) data analysis to establish a set of specific thresholds of plume depth, TDS concentration and volume for detection of brine and CO2 leakage from legacy wells into shallow aquifers in support of Strategic Monitoring Subtask 4.1 of the US DOE National Risk Assessment Partnership (NRAP Phase II), which is to develop geophysical forward modeling tools. 900 synthetic MT data sets span 9 plume depths, 10 TDS concentrations and 10 plume volumes. The monitoring protocol consisted of 10 MT stations in a 2×5 grid laid out along the flow direction. We model the MT response in the audio frequency range of 1 Hz to 10 kHz with a 50 Ωm baseline resistivity and the maximum depth up to 2000 m. Scatter plots show the MT detection thresholds for a trio of plume depth, TDS concentration and volume. Plumes with a large volume and high TDS located at a shallow depth produce a strong MT signal. We demonstrate that the MT method with surface based sensors can detect a brine and CO2 plume so long as the plume depth, TDS concentration and volume are above the thresholds. However, it is unlikely to detect a plume at a depth larger than 1000 m with the change of TDS concentration smaller than 10%. Simulated aquifer impact data based on the Kimberlina site provides a more realistic view of the leakage plume distribution than rectangular synthetic plumes in this sensitivity study, and it will be used to estimate MT responses over simulated brine and CO2 plumes and to evaluate the leakage detectability. Integration of the simulated aquifer impact data and the MT method into the NRAP DREAM tool may provide an optimized MT survey configuration for MT data collection. This study presents a viable approach for sensitivity study of geophysical monitoring methods for leakage detection. The results come in handy for rapid assessment of leakage detectability.

  6. High Power MPD Thruster Development at the NASA Glenn Research Center

    Science.gov (United States)

    LaPointe, Michael R.; Mikellides, Pavlos G.; Reddy, Dhanireddy (Technical Monitor)

    2001-01-01

    Propulsion requirements for large platform orbit raising, cargo and piloted planetary missions, and robotic deep space exploration have rekindled interest in the development and deployment of high power electromagnetic thrusters. Magnetoplasmadynamic (MPD) thrusters can effectively process megawatts of power over a broad range of specific impulse values to meet these diverse in-space propulsion requirements. As NASA's lead center for electric propulsion, the Glenn Research Center has established an MW-class pulsed thruster test facility and is refurbishing a high-power steady-state facility to design, build, and test efficient gas-fed MPD thrusters. A complimentary numerical modeling effort based on the robust MACH2 code provides a well-balanced program of numerical analysis and experimental validation leading to improved high power MPD thruster performance. This paper reviews the current and planned experimental facilities and numerical modeling capabilities at the Glenn Research Center and outlines program plans for the development of new, efficient high power MPD thrusters.

  7. Modeling investigation of the nutrient and phytoplankton variability in the Chesapeake Bay outflow plume

    Science.gov (United States)

    Jiang, Long; Xia, Meng

    2018-03-01

    The Chesapeake Bay outflow plume (CBOP) is the mixing zone between Chesapeake Bay and less eutrophic continental shelf waters. Variations in phytoplankton distribution in the CBOP are critical to the fish nursery habitat quality and ecosystem health; thus, an existing hydrodynamic-biogeochemical model for the bay and the adjacent coastal ocean was applied to understand the nutrient and phytoplankton variability in the plume and the dominant environmental drivers. The simulated nutrient and chlorophyll a distribution agreed well with field data and real-time satellite imagery. Based on the model calculation, the net dissolved inorganic nitrogen (DIN) and phosphorus (DIP) flux at the bay mouth was seaward and landward during 2003-2012, respectively. The CBOP was mostly nitrogen-limited because of the relatively low estuarine DIN export. The highest simulated phytoplankton biomass generally occurred in spring in the near field of the plume. Streamflow variations could regulate the estuarine residence time, and thus modulate nutrient export and phytoplankton biomass in the plume area; in comparison, changing nutrient loading with fixed streamflow had a less extensive impact, especially in the offshore and far-field regions. Correlation analyses and numerical experiments revealed that southerly winds on the shelf were effective in promoting the offshore plume expansion and phytoplankton accumulation. Climate change including precipitation and wind pattern shifts is likely to complicate the driving mechanisms of phytoplankton variability in the plume region.

  8. Measurements on cooling tower plumes. Pt. 3

    International Nuclear Information System (INIS)

    Fortak, H.

    1975-11-01

    In this paper an extended field experiment is described in which cooling tower plumes were investigated by means of three-dimensional in situ measurements. The goal of this program was to obtain input data for numerical models of cooling tower plumes. Data for testing or developing assumptions for sub-grid parametrizations were of special interest. Utilizing modern systems for high-resolution aerology and small aircraft, four measuring campaigns were conducted: two campaigns (1974) at the cooling towers of the RWE power station at Neurath and also two (1975) at the single cooling tower of the RWE power station at Meppen. Because of the broad spectrum of weather situations, it can be assumed that the results are representative with regard to the interrelationship between the structure of cooling tower plumes and the large-scale meteorological situation. A large number of flights with a powered glider ASK 16 (more than 100 flight hours) crossing the plumes on orthogonal tracks was performed. All flights showed that the plume could be identified up to large downwind distances by discontinuous jumps of temperature and vapour pressure. Therefore a definite geometry of the plume could always be defined. In all cross sections a vertical circulation could be observed. At the plumes boundaries, which could be defined by the mentioned jumps of temperature and vapour pressure, a maximum of downward vertical motion was observed in most cases. Entrainment along the boundary of a cross section seems to be very small, except at the lower part of the plume. There, the mass entrainment is maximum and is responsible for plume rise as well as for enlargement of the cross section. The visible part of the plume (cloud) was only a small fraction of the whole plume. The discontinuities of temperature and vapour pressure show that the plume fills the space below the visible plume down to the ground. However, all effects decrease rapidly towards the ground. It turned out that high

  9. Follow the plume: the habitability of Enceladus.

    Science.gov (United States)

    McKay, Christopher P; Anbar, Ariel D; Porco, Carolyn; Tsou, Peter

    2014-04-01

    The astrobiological exploration of other worlds in our Solar System is moving from initial exploration to more focused astrobiology missions. In this context, we present the case that the plume of Enceladus currently represents the best astrobiology target in the Solar System. Analysis of the plume by the Cassini mission indicates that the steady plume derives from a subsurface liquid water reservoir that contains organic carbon, biologically available nitrogen, redox energy sources, and inorganic salts. Furthermore, samples from the plume jetting out into space are accessible to a low-cost flyby mission. No other world has such well-studied indications of habitable conditions. Thus, the science goals that would motivate an Enceladus mission are more advanced than for any other Solar System body. The goals of such a mission must go beyond further geophysical characterization, extending to the search for biomolecular evidence of life in the organic-rich plume. This will require improved in situ investigations and a sample return.

  10. An evaluation of krypton propellant in Hall thrusters

    Science.gov (United States)

    Linnell, Jesse Allen

    Due to its high specific impulse and low price, krypton has long sparked interest as an alternate Hall thruster propellant. Unfortunately at the moment, krypton's relatively poor performance precludes it as a legitimate option. This thesis presents a detailed investigation into krypton operation in Hall thrusters. These findings suggest that the performance gap can be decreased to 4% and krypton can finally become a realistic propellant option. Although krypton has demonstrated superior specific impulse, the xenon-krypton absolute efficiency gap ranges between 2 and 15%. A phenomenological performance model indicates that the main contributors to the efficiency gap are propellant utilization and beam divergence. Propellant utilization and beam divergence have relative efficiency deficits of 5 and 8%, respectively. A detailed characterization of internal phenomena is conducted to better understand the xenon-krypton efficiency gap. Krypton's large beam divergence is found to be related to a defocusing equipotential structure and a weaker magnetic field topology. Ionization processes are shown to be linked to the Hall current, the magnetic mirror topology, and the perpendicular gradient of the magnetic field. Several thruster design and operational suggestions are made to optimize krypton efficiency. Krypton performance is optimized for discharge voltages above 500 V and flow rates corresponding to an a greater than 0.015 mg/(mm-s), where alpha is a function of flow rate and discharge channel dimensions (alpha = m˙alphab/Ach). Performance can be further improved by increasing channel length or decreasing channel width for a given flow rate. Also, several magnetic field design suggestions are made to enhance ionization and beam focusing. Several findings are presented that improve the understanding of general Hall thruster physics. Excellent agreement is shown between equipotential lines and magnetic field lines. The trim coil is shown to enhance beam focusing

  11. Integrated Stirling Convertor and Hall Thruster Test Conducted

    Science.gov (United States)

    Mason, Lee S.

    2002-01-01

    An important aspect of implementing Stirling Radioisotope Generators on future NASA missions is the integration of the generator and controller with potential spacecraft loads. Some recent studies have indicated that the combination of Stirling Radioisotope Generators and electric propulsion devices offer significant trip time and payload fraction benefits for deep space missions. A test was devised to begin to understand the interactions between Stirling generators and electric thrusters. An electrically heated RG- 350 (350-W output) Stirling convertor, designed and built by Stirling Technology Company of Kennewick, Washington, under a NASA Small Business Innovation Research agreement, was coupled to a 300-W SPT-50 Hall-effect thruster built for NASA by the Moscow Aviation Institute (RIAME). The RG-350 and the SPT-50 shown, were installed in adjacent vacuum chamber ports at NASA Glenn Research Center's Electric Propulsion Laboratory, Vacuum Facility 8. The Stirling electrical controller interfaced directly with the Hall thruster power-processing unit, both of which were located outside of the vacuum chamber. The power-processing unit accepted the 48 Vdc output from the Stirling controller and distributed the power to all the loads of the SPT-50, including the magnets, keeper, heater, and discharge. On February 28, 2001, the Glenn test team successfully operated the Hall-effect thruster with the Stirling convertor. This is the world's first known test of a dynamic power source with electric propulsion. The RG-350 successfully managed the transition from the purely resistive load bank within the Stirling controller to the highly capacitive power-processing unit load. At the time of the demonstration, the Stirling convertor was operating at a hot temperature of 530 C and a cold temperature of -6 C. The linear alternator was producing approximately 250 W at 109 Vac, while the power-processing unit was drawing 175 W at 48 Vdc. The majority of power was delivered to the

  12. Post-Test Inspection of Nasa's Evolutionary Xenon Thruster Long Duration Test Hardware: Ion Optics

    Science.gov (United States)

    Soulas, George C.; Shastry, Rohit

    2016-01-01

    A Long Duration Test (LDT) was initiated in June 2005 as a part of NASAs Evolutionary Xenon Thruster (NEXT) service life validation approach. Testing was voluntarily terminated in February 2014, with the thruster accumulating 51,184 hours of operation, processing 918 kg of xenon propellant, and delivering 35.5 MN-s of total impulse. This presentation will present the post-test inspection results to date for the thrusters ion optics.

  13. Characteristics of the LeRC/Hughes J-series 30-cm engineering model thruster

    Science.gov (United States)

    Collett, C. R.; Poeschel, R. L.; Kami, S.

    1981-01-01

    As a consequence of endurance and structural tests performed on 900-series engineering model thrusters (EMT), several modifications in design were found to be necessary for achieving performance goals. The modified thruster is known as the J-series EMT. The most important of the design modifications affect the accelerator grid, gimbal mount, cathode polepiece, and wiring harness. The paper discusses the design modifications incorporated, the condition(s) they corrected, and the characteristics of the modified thruster.

  14. Galileo observations of volcanic plumes on Io

    Science.gov (United States)

    Geissler, P.E.; McMillan, M.T.

    2008-01-01

    Io's volcanic plumes erupt in a dazzling variety of sizes, shapes, colors and opacities. In general, the plumes fall into two classes, representing distinct source gas temperatures. Most of the Galileo imaging observations were of the smaller, more numerous Prometheus-type plumes that are produced when hot flows of silicate lava impinge on volatile surface ices of SO2. Few detections were made of the giant, Pele-type plumes that vent high temperature, sulfur-rich gases from the interior of Io; this was partly because of the insensitivity of Galileo's camera to ultraviolet wavelengths. Both gas and dust spout from plumes of each class. Favorably located gas plumes were detected during eclipse, when Io was in Jupiter's shadow. Dense dust columns were imaged in daylight above several Prometheus-type eruptions, reaching heights typically less than 100 km. Comparisons between eclipse observations, sunlit images, and the record of surface changes show that these optically thick dust columns are much smaller in stature than the corresponding gas plumes but are adequate to produce the observed surface deposits. Mie scattering calculations suggest that these conspicuous dust plumes are made up of coarse grained “ash” particles with radii on the order of 100 nm, and total masses on the order of 106 kg per plume. Long exposure images of Thor in sunlight show a faint outer envelope apparently populated by particles small enough to be carried along with the gas flow, perhaps formed by condensation of sulfurous “snowflakes” as suggested by the plasma instrumentation aboard Galileo as it flew through Thor's plume [Frank, L.A., Paterson, W.R., 2002. J. Geophys. Res. (Space Phys.) 107, doi:10.1029/2002JA009240. 31-1]. If so, the total mass of these fine, nearly invisible particles may be comparable to the mass of the gas, and could account for much of Io's rapid resurfacing.

  15. Diagnosis and Fault-Tolerant Control for Thruster-Assisted Position Mooring System

    DEFF Research Database (Denmark)

    Nguyen, Trong Dong; Blanke, Mogens; Sørensen, Asgeir

    2007-01-01

    Development of fault-tolerant control systems is crucial to maintain safe operation of o®shore installations. The objective of this paper is to develop a fault- tolerant control for thruster-assisted position mooring (PM) system with faults occurring in the mooring lines. Faults in line......'s pretension or line breaks will degrade the performance of the positioning of the vessel. Faults will be detected and isolated through a fault diagnosis procedure. When faults are detected, they can be accommodated through the control action in which only parameter of the controlled plant has to be updated...... to cope with the faulty condition. Simulations will be carried out to verify the advantages of the fault-tolerant control strategy for the PM system....

  16. Fuzzy based attitude controller for flexible spacecraft with on/off thrusters

    Science.gov (United States)

    Knapp, Roger Glenn

    1993-05-01

    A fuzzy-based attitude controller is designed for attitude control of a generic spacecraft with on/off thrusters. The controller is comprised of packages of rules dedicated to addressing different objectives (e.g., disturbance rejection, low fuel consumption, avoiding the excitation of flexible appendages, etc.). These rule packages can be inserted or removed depending on the requirements of the particular spacecraft and are parameterized based on vehicle parameters such as inertia or operational parameters such as the maneuvering rate. Individual rule packages can be 'weighted' relative to each other to emphasize the importance of one objective relative to another. Finally, the fuzzy controller and rule packages are demonstrated using the high-fidelity Space Shuttle Interactive On-Orbit Simulator (IOS) while performing typical on-orbit operations and are subsequently compared with the existing shuttle flight control system performance.

  17. Radiative modeling and characterization of aerosol plumes hyper-spectral imagery

    International Nuclear Information System (INIS)

    Alakian, A.

    2008-03-01

    This thesis aims at characterizing aerosols from plumes (biomass burning, industrial discharges, etc.) with hyper-spectral imagery. We want to estimate the optical properties of emitted particles and also their micro-physical properties such as number, size distribution and composition. To reach our goal, we have built a forward semi-analytical model, named APOM (Aerosol Plume Optical Model), which allows to simulate the radiative effects of aerosol plumes in the spectral range [0,4-2,5 μm] for nadir viewing sensors. Mathematical formulation and model coefficients are obtained from simulations performed with the radiative transfer code COMANCHE. APOM is assessed on simulated data and proves to be accurate with modeling errors between 1% and 3%. Three retrieval methods using APOM have been developed: L-APOM, M-APOM and A-APOM. These methods take advantage of spectral and spatial dimensions in hyper-spectral images. L-APOM and M-APOM assume a priori knowledge on particles but can estimate their optical and micro-physical properties. Their performances on simulated data are quite promising. A-APOM method does not require any a priori knowledge on particles but only estimates their optical properties. However, it still needs improvements before being usable. On real images, inversion provides satisfactory results for plumes above water but meets some difficulties for plumes above vegetation, which underlines some possibilities of improvement for the retrieval algorithm. (author)

  18. Colloid Thruster for Attitude Control Systems (ACS) and Tip-off Control Applications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek proposes to develop and deliver a complete engineering model colloid thruster system, capable of thrust levels and lifetimes required for spacecraft...

  19. Carbon Nanotube Based Electric Propulsion Thruster with Low Power Consumption, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Field emission electric propulsion (FEEP) thrusters have gained considerable attention for spacecrafts disturbance compensation because of excellent characteristics....

  20. Low Frequency Plasma Oscillations in a 6-kW Magnetically Shielded Hall Thruster

    Science.gov (United States)

    Jorns, Benjamin A.; Hofery, Richard R.

    2013-01-01

    The oscillations from 0-100 kHz in a 6-kW magnetically shielded thruster are experimen- tally characterized. Changes in plasma parameters that result from the magnetic shielding of Hall thrusters have the potential to significantly alter thruster transients. A detailed investigation of the resulting oscillations is necessary both for the purpose of determin- ing the underlying physical processes governing time-dependent behavior in magnetically shielded thrusters as well as for improving thruster models. In this investigation, a high speed camera and a translating ion saturation probe are employed to examine the spatial extent and nature of oscillations from 0-100 kHz in the H6MS thruster. Two modes are identified at 8 kHz and 75-90 kHz. The low frequency mode is azimuthally uniform across the thruster face while the high frequency oscillation is concentrated close to the thruster centerline with an m = 1 azimuthal dependence. These experimental results are discussed in the context of wave theory as well as published observations from an unshielded variant of the H6MS thruster.

  1. Design and Testing of a Hall Effect Thruster with Additively Manufactured Components

    Science.gov (United States)

    Hopping, Ethan

    The UAH-78AM is a low-power Hall effect thruster developed at the University of Alabama in Huntsville to study the application of low-cost additive manufacturing in the design and fabrication of Hall thrusters. The goal of this project is to assess the feasibility of using unconventional materials to produce a low-cost functioning Hall effect thruster and consider how additive manufacturing can expand the design space and provide other benefits. The thruster features channel walls and a propellant distributor that were manufactured using 3D printing with a variety of materials including ABS, ULTEM, and glazed ceramic. A version of the thruster was tested at NASA Glenn Research Center to obtain performance metrics and to validate the ability of the thruster to produce thrust and sustain a discharge. The design of the thruster and the transient performance measurements are presented here. Measured thrust ranged from 17.2 mN to 30.4 mN over a discharge power of 280 W to 520 W with an anode Isp range of 870 s to 1450 s. Temperature limitations of materials used for the channel walls and propellant distributor limit the ability to run the thruster at thermal steady-state. While the current thruster design is not yet ready for continuous operation, revisions to the device that could enable longer duration tests are discussed.

  2. Plasma Characterization of Hall Thruster with Active and Passive Segmented Electrodes

    International Nuclear Information System (INIS)

    Raitses, Y.; Staack, D.; Fisch, N.J.

    2002-01-01

    Non-emissive electrodes and ceramic spacers placed along the Hall thruster channel are shown to affect the plasma potential distribution and the thruster operation. These effects are associated with physical properties of the electrode material and depend on the electrode configuration, geometry and the magnetic field distribution. An emissive segmented electrode was able to maintain thruster operation by supplying an additional electron flux to sustain the plasma discharge between the anode and cathode neutralizer. These results indicate the possibility of new configurations for segmented electrode Hall thruster

  3. Long Life Miniature Hall Thruster Enabling Low Cost Human Precursor Missions

    Data.gov (United States)

    National Aeronautics and Space Administration — Key and Central Objectives: This investigation aims to demonstrate that the application of magnetic shielding technology on miniature Hall thrusters will...

  4. Modeling Laser and e-Beam Generated Plasma-Plume Experiments Using LASNEX

    CERN Document Server

    Ho, D

    1999-01-01

    The hydrodynamics code LASNEX is used to model the laser and e-beam generated plasma-plume experiments. The laser used has a wavelength of 1 (micro)m and the FWHM spot size is 1 mm. The total laser energy is 160 mJ. The simulation shows that the plume expands at a velocity of about 6 cm/(micro)s. The e-beam generated from the Experimental Test Accelerator (ETA) has 5.5 MeV and FWHM spot size ranges from 2 to 3.3 mm. From the simulations, the plasma plume expansion velocity ranges from about 3 to 6 mm/(micro)s and the velocity increases with decreasing spot size. All the simulation results reported here are in close agreement with experimental data.

  5. Fractal analysis: A new tool in transient volcanic ash plume characterization.

    Science.gov (United States)

    Tournigand, Pierre-Yves; Peña Fernandez, Juan Jose; Taddeucci, Jacopo; Perugini, Diego; Sesterhenn, Jörn

    2017-04-01

    Transient volcanic plumes are time-dependent features generated by unstable eruptive sources. They represent a threat to human health and infrastructures, and a challenge to characterize due to their intrinsic instability. Plumes have been investigated through physical (e.g. visible, thermal, UV, radar imagery), experimental and numerical studies in order to provide new insights about their dynamics and better anticipate their behavior. It has been shown experimentally that plume dynamics is strongly dependent to source conditions and that plume shape evolution holds key to retrieve these conditions. In this study, a shape evolution analysis is performed on thermal high-speed videos of volcanic plumes from three different volcanoes Sakurajima (Japan), Stromboli (Italy) and Fuego (Guatemala), recorded with a FLIR SC655 thermal camera during several field campaigns between 2012 and 2016. To complete this dataset, three numerical gas-jet simulations at different Reynolds number (2000, 5000 and 10000) have been used in order to set reference values to the natural cases. Turbulent flow shapes are well known to feature scale-invariant structures and a high degree of complexity. For this reason we characterized the bi-dimensional shape of natural and synthetic plumes by using a fractal descriptor. Such method has been applied in other studies on experimental turbulent jets as well as on atmospheric clouds and have shown promising results. At each time-step plume contour has been manually outlined and measured using the box-counting method. This method consists in covering the image with squares of variable sizes and counting the number of squares containing the plume outline. The negative slope of the number of squares in function of their size in a log-log plot gives the fractal dimension of the plume at a given time. Preliminary results show an increase over time of the fractal dimension for natural volcanic plume as well as for the numerically simulated ones, but at

  6. Geometrical characterization and performance optimization of monopropellant thruster injector

    Directory of Open Access Journals (Sweden)

    T.R. Nada

    2012-12-01

    Full Text Available The function of the injector in a monopropellant thruster is to atomize the liquid hydrazine and to distribute it over the catalyst bed as uniformly as possible. A second objective is to place the maximum amount of catalyst in contact with the propellant in as short time as possible to minimize the starting transient time. Coverage by the spray is controlled mainly by cone angle and diameter of the catalyst bed, while atomization quality is measured by the Sauter Mean Diameter, SMD. These parameters are evaluated using empirical formulae. In this paper, two main types of injectors are investigated; plain orifice and full cone pressure swirl injectors. The performance of these two types is examined for use with blow down monopropellant propulsion system. A comprehensive characterization is given and design charts are introduced to facilitate optimizing the performance of the injector. Full-cone injector is a more suitable choice for monopropellant thruster and it might be available commercially.

  7. Determination of the Hall Thruster Operating Regimes; TOPICAL

    International Nuclear Information System (INIS)

    L. Dorf; V. Semenov; Y. Raitses; N.J. Fisch

    2002-01-01

    A quasi one-dimensional (1-D) steady-state model of the Hall thruster is presented. For the same discharge voltage two operating regimes are possible - with and without the anode sheath. For given mass flow rate, magnetic field profile and discharge voltage a unique solution can be constructed, assuming that the thruster operates in one of the regimes. However, we show that for a given temperature profile the applied discharge voltage uniquely determines the operating regime: for discharge voltages greater than a certain value, the sheath disappears. That result is obtained over a wide range of incoming neutral velocities, channel lengths and widths, and cathode plane locations. It is also shown that a good correlation between the quasi 1-D model and experimental results can be achieved by selecting an appropriate electron mobility and temperature profile

  8. Advanced-technology 30-cm-diameter mercury ion thruster

    Science.gov (United States)

    Beattie, J. R.; Kami, S.

    1982-01-01

    An advanced-technology mercury ion thruster designed for operation at high thrust and high thrust-to-power ratio is described. The laboratory-model thruster employs a highly efficient discharge-chamber design that uses high-field-strength samarium-cobalt magnets arranged in a ring-cusp configuration. Ion extraction is achieved using an advanced three-grid ion-optics assembly which utilizes flexible mounts for supporting the screen, accel, and decel electrodes. Performance results are presented for operation at beam currents in the range from 1 to 5 A. The baseline specific discharge power is shown to be about 125 eV/ion, and the acceptable range of net-to-total accelerating-voltage ratio is shown to be in the range of 0.2-0.8 for beam currents in the range of 1-5 A.

  9. Hall Thruster Modeling with a Given Temperature Profile

    International Nuclear Information System (INIS)

    Dorf, L.; Semenov, V.; Raitses, Y.; Fisch, N.J.

    2002-01-01

    A quasi one-dimensional steady-state model of the Hall thruster is presented. For given mass flow rate, magnetic field profile, and discharge voltage the unique solution can be constructed, assuming that the thruster operates in one of the two regimes: with or without the anode sheath. It is shown that for a given temperature profile, the applied discharge voltage uniquely determines the operating regime; for discharge voltages greater than a certain value, the sheath disappears. That result is obtained over a wide range of incoming neutral velocities, channel lengths and widths, and cathode plane locations. A good correlation between the quasi one-dimensional model and experimental results can be achieved by selecting an appropriate temperature profile. We also show how the presented model can be used to obtain a two-dimensional potential distribution

  10. Vacuum arc plasma thrusters with inductive energy storage driver

    Science.gov (United States)

    Krishnan, Mahadevan (Inventor)

    2009-01-01

    A plasma thruster with a cylindrical inner and cylindrical outer electrode generates plasma particles from the application of energy stored in an inductor to a surface suitable for the formation of a plasma and expansion of plasma particles. The plasma production results in the generation of charged particles suitable for generating a reaction force, and the charged particles are guided by a magnetic field produced by the same inductor used to store the energy used to form the plasma.

  11. Orbital Dynamics of a Simple Solar Photon Thruster

    Directory of Open Access Journals (Sweden)

    Anna D. Guerman

    2009-01-01

    Full Text Available We study orbital dynamics of a compound solar sail, namely, a Simple Solar Photon Thruster and compare its behavior to that of a common version of sailcraft. To perform this analysis, development of a mathematical model for force created by light reflection on all sailcraft elements is essential. We deduce the equations of sailcraft's motion and compare performance of two schemes of solar propulsion for two test time-optimal control problems of trajectory transfer.

  12. Orbital Dynamics of a Simple Solar Photon Thruster

    OpenAIRE

    Guerman, Anna D.; Smirnov, Georgi V.; Pereira, Maria Cecilia

    2009-01-01

    We study orbital dynamics of a compound solar sail, namely, a Simple Solar Photon Thruster and compare its behavior to that of a common version of sailcraft. To perform this analysis, development of a mathematical model for force created by light reflection on all sailcraft elements is essential. We deduce the equations of sailcraft's motion and compare performance of two schemes of solar propulsion for two test time-optimal control problems of trajectory transfer.

  13. The timescales of plume generation caused by continental aggregation

    Science.gov (United States)

    Honda, Satoru; Yoshida, Masaki; Ootorii, Sakie; Iwase, Yasuyuki

    2000-02-01

    To understand the thermal evolution of the mantle following the aggregation of non-subductable thick continental lithosphere, we study a numerical model in which a supercontinent, simulated by high viscosity raft, HVR, covers a part of the top surface of a convection layer. We model infinite Prandtl number convection either in a three-dimensional (3D) spherical shell, 3D rectangular box (aspect ratios: 8 and 4) or two-dimensional (2D) rectangular box (aspect ratio: 8) and except for the HVR, we specify a constant viscosity. The HVR, which has a viscosity higher than that of its surrounding, is instantaneously placed on the top surface of a well-developed convection layer and its position is fixed. Our results from 3D spherical shell cases with and without phase transitions show the emergence of a large plume characterized by a long wavelength thermal anomaly (a degree one pattern) for a Pangea-like geometry. We analyze the volume averaged temperature under the HVR (=) the remaining (oceanic) area (=) and total area (=) to determine the timescale of plume generation. The difference between and (=Δ TCO) and show the existence of two characteristic timescales.Δ TCO exhibits an initial rapid increase and may become constant or continue to gradually increase. Meanwhile, shows a similar behavior but with a longer timescale. We find that these timescales associated with the increase of Δ TCO and can be attributed to the formation of large scale flow (i.e. plume) and response of the whole system to the emplacement of the HVR, respectively. For 3D spherical cases, we find that the timescale of plume generation is 1-2 Gyr, if the Rayleigh number is 10 6. To determine the effects of the viscosity of the HVR, 2D versus 3D modeling and the effects of the internal heating, we have also studied 2D and 3D rectangular box cases. A factor of about two variation exists in the timescale of plume generation. It appears that the timescale becomes greater for a smaller amount of

  14. Io's Active Eruption Plumes: Insights from HST

    Science.gov (United States)

    Jessup, K. L.; Spencer, J. R.

    2011-10-01

    Taking advantage of the available data, we recently [10] completed a detailed analysis of the spectral signature of Io's Pele-type Tvashtar plume as imaged by the HST Wide Field and Planetary Camera 2 (HST/WFPC2) via absorption during Jupiter transit and via reflected sunlight in 2007, as well as HST/WFPC2 observations of the 1997 eruption of Io's Prometheus-type Pillan plume (Fig. 1). These observations were obtained in the 0.24-0.42 μm range, where the plumes gas absorption and aerosol scattering properties are most conspicuous. By completing a detailed analysis of these observations, several key aspects of the reflectance and the absorption properties of the two plumes have been revealed. Additionally, by considering the analysis of the HST imaging data in light of previously published spectral analysis of Io's Prometheus and Pele-type plumes several trends in the plume properties have been determined, allowing us to define the relative significance of each plume on the rate of re-surfacing occurring on Io and providing the measurements needed to better assess the role the volcanoes play in the stability of Io's tenuous atmosphere.

  15. A numerical study of the Magellan Plume

    Science.gov (United States)

    Palma, Elbio D.; Matano, Ricardo P.

    2012-05-01

    In this modeling study we investigate the dynamical mechanisms controlling the spreading of the Magellan Plume, which is a low-salinity tongue that extends along the Patagonian Shelf. Our results indicate that the overall characteristics of the plume (width, depth, spreading rate, etc.) are primarily influenced by tidal forcing, which manifests through tidal mixing and tidal residual currents. Tidal forcing produces a homogenization of the plume's waters and an offshore displacement of its salinity front. The interaction between tidal and wind-forcing reinforces the downstream and upstream buoyancy transports of the plume. The influence of the Malvinas Current on the Magellan Plume is more dominant north of 50°S, where it increases the along-shelf velocities and generates intrusions of saltier waters from the outer shelf, thus causing a reduction of the downstream buoyancy transport. Our experiments also indicate that the northern limit of the Magellan Plume is set by a high salinity discharge from the San Matias Gulf. Sensitivity experiments show that increments of the wind stress cause a decrease of the downstream buoyancy transport and an increase of the upstream buoyancy transport. Variations of the magnitude of the discharge produce substantial modifications in the downstream penetration of the plume and buoyancy transport. The Magellan discharge generates a northeastward current in the middle shelf, a recirculation gyre south of the inlet and a region of weak currents father north.

  16. The Power Supply And Control Unit For The HEMP Thruster

    Science.gov (United States)

    Brag, Rafael; Lenz, Werner; Huther, Andreas; Herty, Frank

    2011-10-01

    In the recent years, Astrium GmbH started to develop electronics to control and supply Electric Propulsion systems or corresponding components. One of the developments is a Power Supply and Control Unit (PSCU) for the Thales Electron Devices development "High Efficiency Multistage Plasma Thruster" (HEMP- T). The PSCU is developed, manufactured and tested on the Astrium southern Germany site in Friedrichshafen. The first application is the SGEO Satellite (HISPASAT- 1), where the In-Orbit Demonstration (IOD) of the HEMP Thruster system will prove the success of the product. Astrium conducted several coupling tests during the PSCU development especially concentrated on *Thruster electrical I/F parameters *Neutralizer electrical I/F parameters *Flow Control I/F parameters Results of these tests were used to refine the specification and adapt the PSCU drivers and control algorithms. Furthermore, the tests results gave Thales and Astrium the possibility for a deep understanding of the interaction between the physics and the electronics. The paper presents an overview of the PSCU topology, key features, technical and development logic details as well as a view into the control capabilities of the PSCU.

  17. Proposal for Testing and Validation of Vacuum Ultra-Violet Atomic Laser-Induced Fluorescence as a Method to Analyze Carbon Grid Erosion in Ion Thrusters

    Science.gov (United States)

    Stevens, Richard

    2003-01-01

    Previous investigation under award NAG3-25 10 sought to determine the best method of LIF to determine the carbon density in a thruster plume. Initial reports from other groups were ambiguous as to the number of carbon clusters that might be present in the plume of a thruster. Carbon clusters would certainly affect the ability to LIF; if they were the dominant species, then perhaps the LIF method should target clusters. The results of quadrupole mass spectroscopy on sputtered carbon determined that minimal numbers of clusters were sputtered from graphite under impact from keV Krypton. There were some investigations in the keV range by other groups that hinted at clusters, but at the time the proposal was presented to NASA, there was no data from low-energy sputtering available. Thus, the proposal sought to develop a method to characterize the population only of atoms sputtered from a graphite target in a test cell. Most of the ground work had been established by the previous two years of investigation. The proposal covering 2003 sought to develop an anti-Stokes Raman shifting cell to generate VUW light and test this cell on two different laser systems, ArF and YAG- pumped dye. The second goal was to measure the lowest detectable amounts of carbon atoms by 156.1 nm and 165.7 nm LIF. If equipment was functioning properly, it was expected that these goals would be met easily during the timeframe of the proposal, and that is the reason only modest funding was requested. The PI was only funded at half- time by Glenn during the summer months. All other work time was paid for by Whitworth College. The college also funded a student, Charles Shawley, who worked on the project during the spring.

  18. Methane Emission Estimates from Landfills Obtained with Dynamic Plume Measurements

    International Nuclear Information System (INIS)

    Hensen, A.; Scharff, H.

    2001-01-01

    Methane emissions from 3 different landfills in the Netherlands were estimated using a mobile Tuneable Diode Laser system (TDL). The methane concentration in the cross section of the plume is measured downwind of the source on a transect perpendicular to the wind direction. A gaussian plume model was used to simulate the concentration levels at the transect. The emission from the source is calculated from the measured and modelled concentration levels.Calibration of the plume dispersion model is done using a tracer (N 2 O) that is released from the landfill and measured simultaneously with the TDL system. The emission estimates for the different locations ranged from 3.6 to 16 m 3 ha -1 hr -1 for the different sites. The emission levels were compared to emission estimates based on the landfill gas production models. This comparison suggests oxidation rates that are up to 50% in spring and negligible in November. At one of the three sites measurements were performed in campaigns in 3 consecutive years. Comparison of the emission levels in the first and second year showed a reduction of the methane emission of about 50% due to implementation of a gas extraction system. From the second to the third year emissions increased by a factor of 4 due to new land filling. Furthermore measurements were performed in winter when oxidation efficiency was reduced. This paper describes the measurement technique used, and discusses the results of the experimental sessions that were performed

  19. Fossil plume head beneath the Arabian lithosphere?

    Science.gov (United States)

    Stein, Mordechai; Hofmann, Albrecht W.

    1992-12-01

    Phanerozoic alkali basalts from Israel, which have erupted over the past 200 Ma, have isotopic compositions similar to PREMA ("prevalent mantle") with narrow ranges of initial ɛ Nd(T) = +3.9-+5.9; 87Sr/ 86Sr(T)= 0.70292-0.70334; 206Pb/ 204Pb(T)= 18.88-19.99; 207Pb/ 204Pb(T)= 15.58-15.70; and 208Pb/ 204Pb(T)= 38.42-39.57. Their Nb/U(43 ± 9) and Ce/Pb(26 ± 6) ratios are identical to those of normal oceanic basalts, demonstrating that the basalts are essentially free of crustal contamination. Overall, the basalts are chemically and isotopically indistinguishable from many ordinary plume basalts, but no plume track can be identified. We propose that these and other, similar, magmas from the Arabian plate originated from a "fossilized" head of a mantle plume, which was unable to penetrate the continental lithosphere and was therefore trapped and stored beneath it. The plume head was emplaced some time between the late Proterozoic crust formation and the initiation of the Phanerozoic magmatic cycles. Basalts from rift environments in other continental localities show similar geochemistry to that of the Arabian basalts and their sources may also represent fossil plume heads trapped below the continents. We suggest that plume heads are, in general, characterized by the PREMA isotopic mantle signature, because the original plume sources (which may have HIMU or EM-type composition) have been diluted by overlying mantle material, which has been entrained by the plume heads during ascent. On the Arabian plate, rifting and thinning of the lithosphere caused partial melting of the stored plume, which led to periodic volcanism. In the late Cenozoic, the lithosphere broke up and the Red Sea opened. N-MORB tholeiites are now erupting in the central trough of the Red Sea, where the lithosphere has moved apart and the fossil plume has been exhausted, whereas E-MORBs are erupting in the northern and southern troughs, still tapping the plume reservoir. Fossil plumes, which are

  20. Simplified scheme or radioactive plume calculations

    International Nuclear Information System (INIS)

    Gibson, T.A.; Montan, D.N.

    1976-01-01

    A simplified mathematical scheme to estimate external whole-body γ radiation exposure rates from gaseous radioactive plumes was developed for the Rio Blanco Gas Field Nuclear Stimulation Experiment. The method enables one to calculate swiftly, in the field, downwind exposure rates knowing the meteorological conditions and γ radiation exposure rates measured by detectors positioned near the plume source. The method is straightforward and easy to use under field conditions without the help of mini-computers. It is applicable to a wide range of radioactive plume situations. It should be noted that the Rio Blanco experiment was detonated on May 17, 1973, and no seep or release of radioactive material occurred

  1. The physics, performance and predictions of the PEGASES ion-ion thruster

    Science.gov (United States)

    Aanesland, Ane

    2014-10-01

    Electric propulsion (EP) is now used systematically in space applications (due to the fuel and lifetime economy) to the extent that EP is now recognized as the next generation space technology. The uses of EP systems have though been limited to attitude control of GEO-stationary satellites and scientific missions. Now, the community envisages the use of EP for a variety of other applications as well; such as orbit transfer maneuvers, satellites in low altitudes, space debris removal, cube-sat control, challenging scientific missions close to and far from earth etc. For this we need a platform of EP systems providing much more variety in performance than what classical Hall and Gridded thrusters can provide alone. PEGASES is a gridded thruster that can be an alternative for some new applications in space, in particular for space debris removal. Unlike classical ion thrusters, here positive and negative ions are alternately accelerated to produce thrust. In this presentation we will look at the fundamental aspects of PEGASES. The emphasis will be put on our current understanding, obtained via analytical models, PIC simulations and experimental measurements, of the alternate extraction and acceleration process. We show that at low grid bias frequencies (10 s of kHz), the system can be described as a sequence of negative and positive ions accelerated as packets within a classical DC mode. Here secondary electrons created in the downstream chamber play an important role in the beam space charge compensation. At higher frequencies (100 s of kHz) the transit time of the ions in the grid gap becomes comparable to the bias period, leading to an ``AC acceleration mode.'' Here the beam is fully space charge compensated and the ion energy and current are functions of the applied frequency and waveform. A generalization of the Child-Langmuir space charge limited law is developed for pulsed voltages and allows evaluating the optimal parameter space and performance of PEGASES

  2. Nuclear thermal rocket plume interactions with spacecraft. Final report

    International Nuclear Information System (INIS)

    Mauk, B.H.; Gatsonis, N.A.; Buzby, J.; Yin, X.

    1997-01-01

    This is the first study that has treated the Nuclear Thermal Rocket (NTR) effluent problem in its entirety, beginning with the reactor core, through the nozzle flow, to the plume backflow. The summary of major accomplishments is given below: (1) Determined the NTR effluents that include neutral, ionized and radioactive species, under typical NTR chamber conditions. Applied an NTR chamber chemistry model that includes conditions and used nozzle geometries and chamber conditions typical of NTR configurations. (2) Performed NTR nozzle flow simulations using a Navier-Stokes solver. We assumed frozen chemistry at the chamber conditions and used nozzle geometries and chamber conditions typical of NTR configurations. (3) Performed plume simulations using a Direct Simulation Monte Carlo (DSMC) code with chemistry. In order to account for radioactive trace species that may be important for contamination purposes we developed a multi-weighted DSMC methodology. The domain in our simulations included large regions downstream and upstream of the exit. Inputs were taken from the Navier-Stokes solutions

  3. Aquatic dispersion modelling of a tritium plume in Lake Ontario

    International Nuclear Information System (INIS)

    Klukas, M.H.; Moltyaner, G.L.

    1996-05-01

    Approximately 2900 kg of tritiated water, containing 2.3E+15 Bq of tritium, were released to Lake Ontario via the cooling water discharge when a leak developed in a moderator heat exchanger in Unit 1 at the Pickering Nuclear Generating Station (PNGS) on 1992 August 2. The release provided the opportunity to study the dispersion of a tritium plume in the coastal zone of Lake Ontario. Current direction over the two-week period following the release was predominantly parallel to the shore, and elevated tritium concentrations were observed up to 20 km east and 85 km west of the PNGS. Predictions of the tritium plume movement were made using current velocity measurements taken at 8-m depth, 2.5 km offshore from Darlington and using a empirical relationship where alongshore current speed is assumed to be proportional to the alongshore component of the wind speed. The tritium migration was best described using current velocity measurements. The tritium plume dispersion is modelled using the one-dimensional advection-dispersion equation. Transport parameters are the alongshore current speed and longitudinal dispersion coefficient. Longitudinal dispersion coefficients, estimated by fitting the solution of the advection-dispersion equation to measured concentration distance profiles ranged from 3.75 to 10.57 m 2 s -1 . Simulations using the fitted values of the dispersion coefficient were able to describe maximum tritium concentrations measured at water supply plants located within 25 km of Pickering to within a factor of 3. The dispersion coefficient is a function of spatial and temporal variability in current velocity and the fitted dispersion coefficients estimated here may not be suitable for predicting tritium plume dispersion under different current conditions. The sensitivity of the dispersion coefficient to variability in current conditions should be evaluated in further field experiments. (author). 13 refs., 7 tabs., 12 figs

  4. Frontal dynamics at the edge of the Columbia River plume

    Science.gov (United States)

    Akan, Çiğdem; McWilliams, James C.; Moghimi, Saeed; Özkan-Haller, H. Tuba

    2018-02-01

    In the tidal ebb-cycle at the Mouth of the Columbia River, strong density and velocity fronts sometimes form perpendicular to the coast at the edges of the freshwater plume. They are distinct from previously analyzed fronts at the offshore western edge of the plume that evolve as a gravity-wave bore. We present simulation results to demonstrate their occurrence and investigate the mechanisms behind their frontogenesis and evolution. Tidal velocities on average ranged between 1.5 m s-1 in flood and 2.5 m s-1 in ebb during the brief hindcast period. The tidal fronts exhibit strong horizontal velocity and buoyancy gradients on a scale ∼ 100 m in width with normalized relative vorticity (ζz/f) values reaching up to 50. We specifically focus on the front on the northern edge of the plume and examine the evolution in plume characteristics such as its water mass gradients, horizontal and vertical velocity structure, vertical velocity, turbulent vertical mixing, horizontal propagation, cross-front momentum balance, and Lagrangian frontogenetic tendencies in both buoyancy and velocity gradients. Advective frontogenesis leads to a very sharp front where lateral mixing near the grid-resolution limit arrests its further contraction. The negative vorticity within the front is initiated by the positive bottom drag curl on the north side of the Columbia estuary and against the north jetty. Because of the large negative vorticity and horizontal vorticity gradient, centrifugal and lateral shear instability begins to develop along the front, but frontal fragmentation and decay set in only after the turn of the tide because of the briefness of the ebb interval.

  5. Study of Plume Impingement Effects in the Lunar Lander Environment

    Science.gov (United States)

    Marichalar, Jeremiah; Prisbell, A.; Lumpkin, F.; LeBeau, G.

    2010-01-01

    Plume impingement effects from the descent and ascent engine firings of the Lunar Lander were analyzed in support of the Lunar Architecture Team under the Constellation Program. The descent stage analysis was performed to obtain shear and pressure forces on the lunar surface as well as velocity and density profiles in the flow field in an effort to understand lunar soil erosion and ejected soil impact damage which was analyzed as part of a separate study. A CFD/DSMC decoupled methodology was used with the Bird continuum breakdown parameter to distinguish the continuum flow from the rarefied flow. The ascent stage analysis was performed to ascertain the forces and moments acting on the Lunar Lander Ascent Module due to the firing of the main engine on take-off. The Reacting and Multiphase Program (RAMP) method of characteristics (MOC) code was used to model the continuum region of the nozzle plume, and the Direct Simulation Monte Carlo (DSMC) Analysis Code (DAC) was used to model the impingement results in the rarefied region. The ascent module (AM) was analyzed for various pitch and yaw rotations and for various heights in relation to the descent module (DM). For the ascent stage analysis, the plume inflow boundary was located near the nozzle exit plane in a region where the flow number density was large enough to make the DSMC solution computationally expensive. Therefore, a scaling coefficient was used to make the DSMC solution more computationally manageable. An analysis of the effectiveness of this scaling technique was performed by investigating various scaling parameters for a single height and rotation of the AM. Because the inflow boundary was near the nozzle exit plane, another analysis was performed investigating three different inflow contours to determine the effects of the flow expansion around the nozzle lip on the final plume impingement results.

  6. Cross-flow shearing effects on the trajectory of highly buoyant bent-over plumes

    Science.gov (United States)

    Tohidi, Ali; Kaye, Nigel Berkeley; Gollner, Michael J.

    2017-11-01

    The dynamics of highly buoyant plumes in cross-flow is ubiquitous throughout both industrial and environmental phenomena. The rise of smoke from a chimney, wastewater discharge into river currents, and dispersion of wildfire plumes are only a few instances. There have been many previous studies investigating the behavior of jets and highly buoyant plumes in cross-flow. So far, however, very little attention has been paid to the role of shearing effects in the boundary layer on the plume trajectory, particularly on the rise height. Numerical simulations and dimensional analysis are conducted to characterize the near- and far-field behavior of a highly buoyant plume in a boundary layer cross-flow. The results show that shear in the cross-flow leads to large differences in the rise height of the plume in relation to a uniform cross-flow, especially at far-field. This material is based upon work supported by the National Science Foundation under Grant No.1200560. Any opinions, findings, and conclusions or recommendations expressed in the material are of the authors and do not necessarily reflect the views of NSF.

  7. Numerical study of single and two interacting turbulent plumes in atmospheric cross flow

    Science.gov (United States)

    Mokhtarzadeh-Dehghan, M. R.; König, C. S.; Robins, A. G.

    The paper presents a numerical study of two interacting full-scale dry plumes issued into neutral boundary layer cross flow. The study simulates plumes from a mechanical draught cooling tower. The plumes are placed in tandem or side-by-side. Results are first presented for plumes with a density ratio of 0.74 and plume-to-crosswind speed ratio of 2.33, for which data from a small-scale wind tunnel experiment were available and were used to assess the accuracy of the numerical results. Further results are then presented for the more physically realistic density ratio of 0.95, maintaining the same speed ratio. The sensitivity of the results with respect to three turbulence models, namely, the standard k- ɛ model, the RNG k- ɛ model and the Differential Flux Model (DFM) is presented. Comparisons are also made between the predicted rise height and the values obtained from existing integral models. The formation of two counter-rotating vortices is well predicted. The results show good agreement for the rise height predicted by different turbulence models, but the DFM predicts temperature profiles more accurately. The values of predicted rise height are also in general agreement. However, discrepancies between the present results for the rise height for single and multiple plumes and the values obtained from known analytical relations are apparent and possible reasons for these are discussed.

  8. Geochemical evolution of highly alkaline and saline tank waste plumes during seepage through vadose zone sediments

    International Nuclear Information System (INIS)

    Wan, Jiamin; Tokunaga, Tetsu K.; Larsen, Joern T.; Serne, R. JEFFREY

    2004-01-01

    Leakage of highly saline and alkaline radioactive waste from storage tanks into underlying sediments is a serious environmental problem at the Hanford Site in Washington State. This study focuses on geochemical evolution of tank waste plumes resulting from interactions between the waste solution and sediment. A synthetic tank waste solution was infused into unsaturated Hanford sediment columns (0.2, 0.6, and 2 m) maintained at 70C to simulate the field contamination process. Spatially and temporally resolved geochemical profiles of the waste plume were obtained. Thorough OH neutralization (from an initial pH 14 down to 6.3) was observed. Three broad zones of pore solutions were identified to categorize the dominant geochemical reactions: the silicate dissolution zone (pH > 10), pH-neutralized zone (pH 10 to 6.5), and displaced native sediment pore water (pH 6.5 to 8). Elevated concentrations of Si, Fe, and K in plume fluids and their depleted concentrations in plume sediments reflected dissolution of primary minerals within the silicate dissolution zone. The very high Na concentrations in the waste solution resulted in rapid and complete cation exchange, reflected in high concentrations of Ca and Mg at the plume front. The plume-sediment profiles also showed deposition of hydrated solids and carbonates. Fair correspondence was obtained between these results and analyses of field borehole samples from a waste plume at the Hanford Site. Results of this study provide a well-defined framework for understanding waste plumes in the more complex field setting and for understanding geochemical factors controlling transport of contaminant species carried in waste solutions that leaked from single-shell storage tanks in the past

  9. Ozone Depletion in Tropospheric Volcanic Plumes: From Halogen-Poor to Halogen-Rich Emissions

    Directory of Open Access Journals (Sweden)

    Tjarda J. Roberts

    2018-02-01

    Full Text Available Volcanic halogen emissions to the troposphere undergo a rapid plume chemistry that destroys ozone. Quantifying the impact of volcanic halogens on tropospheric ozone is challenging, only a few observations exist. This study presents measurements of ozone in volcanic plumes from Kīlauea (HI, USA, a low halogen emitter. The results are combined with published data from high halogen emitters (Mt Etna, Italy; Mt Redoubt, AK, USA to identify controls on plume processes. Ozone was measured during periods of relatively sustained Kīlauea plume exposure, using an Aeroqual instrument deployed alongside Multi-Gas SO2 and H2S sensors. Interferences were accounted for in data post-processing. The volcanic H2S/SO2 molar ratio was quantified as 0.03. At Halema‘uma‘u crater-rim, ozone was close to ambient in the emission plume (at 10 ppmv SO2. Measurements in grounding plume (at 5 ppmv SO2 about 10 km downwind of Pu‘u ‘Ō‘ō showed just slight ozone depletion. These Kīlauea observations contrast with substantial ozone depletion reported at Mt Etna and Mt Redoubt. Analysis of the combined data from these three volcanoes identifies the emitted Br/S as a strong but non-linear control on the rate of ozone depletion. Model simulations of the volcanic plume chemistry highlight that the proportion of HBr converted into reactive bromine is a key control on the efficiency of ozone depletion. This underlines the importance of chemistry in the very near-source plume on the fate and atmospheric impacts of volcanic emissions to the troposphere.

  10. Study of the key factors affecting the triple grid lifetime of the LIPS-300 ion thruster

    Science.gov (United States)

    Mingming, SUN; Liang, WANG; Juntai, YANG; Xiaodong, WEN; Yongjie, HUANG; Meng, WANG

    2018-04-01

    In order to ascertain the key factors affecting the lifetime of the triple grids in the LIPS-300 ion thruster, the thermal deformation, upstream ion density and component lifetime of the grids are simulated with finite element analysis, fluid simulation and charged-particle tracing simulation methods on the basis of a 1500 h short lifetime test. The key factor affecting the lifetime of the triple grids in the LIPS-300 ion thruster is obtained and analyzed through the test results. The results show that ion sputtering erosion of the grids in 5 kW operation mode is greater than in the case of 3 kW. In 5 kW mode, the decelerator grid shows the most serious corrosion, the accelerator grid shows moderate corrosion, and the screen grid shows the least amount of corrosion. With the serious corrosion of the grids in 5 kW operation mode, the intercept current of the acceleration and deceleration grids increases substantially. Meanwhile, the cold gap between the accelerator grid and the screen grid decreases from 1 mm to 0.7 mm, while the cold gap between the accelerator grid and the decelerator grid increases from 1 mm to 1.25 mm after 1500 h of thruster operation. At equilibrium temperature with 5 kW power, the finite element method (FEM) simulation results show that the hot gap between the screen grid and the accelerator grid reduces to 0.2 mm. Accordingly, the hot gap between the accelerator grid and the decelerator grid increases to 1.5 mm. According to the fluid method, the plasma density simulated in most regions of the discharge chamber is 1 × 1018‑8 × 1018 m‑3. The upstream plasma density of the screen grid is in the range 6 × 1017‑6 × 1018 m‑3 and displays a parabolic characteristic. The charged particle tracing simulation method results show that the ion beam current without the thermal deformation of triple grids has optimal perveance status. The ion sputtering rates of the accelerator grid hole and the decelerator hole are 5.5 × 10‑14 kg s‑1 and

  11. Current Driven Instabilities and Anomalous Mobility in Hall-effect Thrusters

    Science.gov (United States)

    Tran, Jonathan; Eckhardt, Daniel; Martin, Robert

    2017-10-01

    Due to the extreme cost of fully resolving the Debye length and plasma frequency, hybrid plasma simulations utilizing kinetic ions and quasi-steady state fluid electrons have long been the principle workhorse methodology for Hall-effect thruster (HET) modeling. Plasma turbulence and the resulting anomalous electron transport in HETs is a promising candidate for developing predictive models for the observed anomalous transport. In this work, we investigate the implementation of an anomalous electron cross field transport model for hybrid HET simulations such a HPHall. A theory for anomalous transport in HETs and current driven instabilities has been recently studied by Lafleur et al. This work has shown collective electron-wave scattering due to large amplitude azimuthal fluctuations of the electric field. We will further adapt the previous results for related current driven instabilities to electric propulsion relevant mass ratios and conduct a preliminary study of resolving this instability with a modified hybrid (fluid electron and kinetic ion) simulation with the hope of integration with established hybrid HET simulations. This work is supported by the Air Force Office of Scientific Research award FA9950-17RQCOR465.

  12. Diagnostics of laser ablated plasma plumes

    DEFF Research Database (Denmark)

    Amoruso, S.; Toftmann, B.; Schou, Jørgen

    2004-01-01

    The effect of an ambient gas on the expansion dynamics of laser ablated plasmas has been studied for two systems by exploiting different diagnostic techniques. First, the dynamics of a MgB2 laser produced plasma plume in an Ar atmosphere has been investigated by space-and time-resolved optical...... of the laser ablated plasma plume propagation in a background gas. (C) 2003 Elsevier B.V All rights reserved....

  13. Electromagnetic Spacecraft Propulsion Motor and a Permanent Magnet (PM-Drive) Thruster

    Science.gov (United States)

    Ahmadov, B. A.

    2018-04-01

    Ion thrusters are designed to be used for realization of a Mars Sample Return mission. The competing technologies with ion thrusters are electromagnetic spacecraft propulsion motors. I'm an engineer and engage in the creation of the new electromagnetic propulsion motors.

  14. Combined tunable diode laser absorption spectroscopy and monochromatic radiation thermometry in ammonium dinitramide-based thruster

    Science.gov (United States)

    Zeng, Hui; Ou, Dongbin; Chen, Lianzhong; Li, Fei; Yu, Xilong

    2018-02-01

    Nonintrusive temperature measurements for a real ammonium dinitramide (ADN)-based thruster by using tunable diode laser absorption spectroscopy and monochromatic radiation thermometry are proposed. The ADN-based thruster represents a promising future space propulsion employing green, nontoxic propellant. Temperature measurements in the chamber enable quantitative thermal analysis for the thruster, providing access to evaluate thermal properties of the thruster and optimize thruster design. A laser-based sensor measures temperature of combustion gas in the chamber, while a monochromatic thermometry system based on thermal radiation is utilized to monitor inner wall temperature in the chamber. Additional temperature measurements of the outer wall temperature are conducted on the injector, catalyst bed, and combustion chamber of the thruster by using thermocouple, respectively. An experimental ADN thruster is redesigned with optimizing catalyst bed length of 14 mm and steady-state firing tests are conducted under various feed pressures over the range from 5 to 12 bar at a typical ignition temperature of 200°C. A threshold of feed pressure higher than 8 bar is required for the thruster's normal operation and upstream movement of the heat release zone is revealed in the combustion chamber out of temperature evolution in the chamber.

  15. DESIGN AND DEVELOPMENT OF AUTO DEPTH CONTROL OF REMOTELY OPERATED VEHICLE USING THRUSTER SYSTEM

    Directory of Open Access Journals (Sweden)

    F.A. Ali

    2014-12-01

    Full Text Available Remotely Operated Vehicles are underwater robots designed specifically for surveillance, monitoring and collecting data for underwater activities. In the underwater vehicle industries, the thruster is an important part in controlling the direction, depth and speed of the ROV. However, there are some ROVs that cannot be maintained at the specified depth for a long time because of disturbance. This paper proposes an auto depth control using a thruster system. A prototype of a thruster with an auto depth control is developed and attached to the previously fabricated UTeM ROV. This paper presents the operation of auto depth control as well as thrusters for submerging and emerging purposes and maintaining the specified depth. The thruster system utilizes a microcontroller as its brain, a piezoresistive strain gauge pressure sensor and a DC brushless motor to run the propeller. Performance analysis of the auto depth control system is conducted to identify the sensitivity of the pressure sensor, and the accuracy and stability of the system. The results show that the thruster system performs well in maintaining a specified depth as well as stabilizing itself when a disturbanceoccurs even with a simple proportional controller used to control the thruster, where the thruster is an important component of the ROV.

  16. Experimental investigation of bubble plume structure instability

    Energy Technology Data Exchange (ETDEWEB)

    Marco Simiano; Robert Zboray; Francois de Cachard [Thermal-Hydraulics Laboratory, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Djamel Lakehal; George Yadigaroglu [Institute of Energy Technology, Swiss Federal Institute of Technology, ETH-Zentrum/CLT, 8092 Zurich (Switzerland)

    2005-07-01

    Full text of publication follows: The hydrodynamic properties of a 3D bubble plume in a large water pool are investigated experimentally. Bubble plumes are present in various industrial processes, including chemical plants, stirred reactors, and nuclear power plants, e.g. in BWR suppression pools. In these applications, the main issue is to predict the currents induced by the bubbles in the liquid phase, and to determine the consequent mixing. Bubble plumes, especially large and unconfined ones, present strong 3D effects and a superposition of different characteristic length scales. Thus, they represent relevant test cases for assessment and verification of 3D models in thermal-hydraulic codes. Bubble plumes are often unsteady, with fluctuations in size and shape of the bubble swarm, and global movements of the plume. In this case, local time-averaged data are not sufficient to characterize the flow. Additional information regarding changes in plume shape and position is required. The effect of scale on the 3D flow structure and stability being complex, there was a need to conduct studies in a fairly large facility, closer to industrial applications. Air bubble plumes, up to 30 cm in base diameter and 2 m in height were extensively studied in a 2 m diameter water pool. Homogeneously sized bubbles were obtained using a particular injector. The main hydrodynamic parameters. i.e., gas and liquid velocities, void fraction, bubble shape and size, plume shape and position, were determined experimentally. Photographic and image processing techniques were used to characterize the bubble shape, and double-tip optical probes to measure bubble size and void fraction. Electromagnetic probes measured the recirculation velocity in the pool. Simultaneous two-phase flow particle image velocimetry (STPFPIV) in a vertical plane containing the vessel axis provided instantaneous velocity fields for both phases and therefore the relative velocity field. Video recording using two CCD

  17. Electron Cross-field Transport in a Miniaturized Cylindrical Hall Thruster

    International Nuclear Information System (INIS)

    Smirnov Artem; Raitses Yevgeny; Fisch Nathaniel J

    2005-01-01

    Conventional annular Hall thrusters become inefficient when scaled to low power. Cylindrical Hall thrusters, which have lower surface-to-volume ratio, are more promising for scaling down. They presently exhibit performance comparable with conventional annular Hall thrusters. The present paper gives a review of the experimental and numerical investigations of electron crossfield transport in the 2.6 cm miniaturized cylindrical Hall thruster (100 W power level). We show that, in order to explain the discharge current observed for the typical operating conditions, the electron anomalous collision frequency ν b has to be on the order of the Bohm value, ν B ∼ ω c /16. The contribution of electron-wall collisions to cross-field transport is found to be insignificant. The optimal regimes of thruster operation at low background pressure (below 10 -5 Torr) in the vacuum tank appear to be different from those at higher pressure (∼ 10 -4 Torr)

  18. Study on Endurance and Performance of Impregnated Ruthenium Catalyst for Thruster System.

    Science.gov (United States)

    Kim, Jincheol; Kim, Taegyu

    2018-02-01

    Performance and endurance of the Ru catalyst were studied for nitrous oxide monopropellant thruster system. The thermal decomposition of N2O requires a considerably high temperature, which make it difficult to be utilized as a thruster propellant, while the propellant decomposition temperature can be reduced by using the catalyst through the decomposition reaction with the propellant. However, the catalyst used for the thruster was frequently exposed to high temperature and high-pressure environment. Therefore, the state change of the catalyst according to the thruster operation was analyzed. Characterization of catalyst used in the operation condition of the thruster was performed using FE-SEM and EDS. As a result, performance degradation was occurred due to the volatilization of Ru catalyst and reduction of the specific surface area according to the phase change of Al2O3.

  19. Experimental Studies of Anode Sheath Phenomena in a Hall Thruster Discharge

    International Nuclear Information System (INIS)

    Dorf, L.; Raitses, Y.; Fisch, N.J.

    2004-01-01

    Both electron-repelling and electron-attracting anode sheaths in a Hall thruster were characterized by measuring the plasma potential with biased and emissive probes [L. Dorf, Y. Raitses, V. Semenov, and N.J. Fisch, Appl. Phys. Let. 84 (2004) 1070]. In the present work, two-dimensional structures of the plasma potential, electron temperature, and plasma density in the near-anode region of a Hall thruster with clean and dielectrically coated anodes are identified. Possible mechanisms of anode sheath formation in a Hall thruster are analyzed. The path for current closure to the anode appears to be the determining factor in the anode sheath formation process. The main conclusion of this work is that the anode sheath formation in Hall thrusters differs essentially from that in the other gas discharge devices, like a glow discharge or a hollow anode, because the Hall thruster utilizes long electron residence times to ionize rather than high neutral pressures

  20. Measurements at cooling tower plumes. Part 3. Three-dimensional measurements at cooling tower plumes

    International Nuclear Information System (INIS)

    Fortak, H.

    An extended field experiment is described in which cooling tower plumes were studied by means of three-dimensional in situ measurements. The goal was to obtain input data for numerical models of cooling tower plumes. Of special interest were data for testing or developing assumptions for sub-grid parametrizations. Utilizing modern systems for high-resolution aerology and small aircraft, four measuring campaigns were conducted: two campaigns (1974) at the cooling towers of the RWE power station Neurath and also two (1975) at the single cooling tower of the RWE power station Meppen. Because of the broad spectrum of weather situations it can be assumed that the results are representative with regard to the interrelationship between structure of cooling tower plume and large-scale meteorological situation. A large number of flights with a powered glider crossing the plumes on orthogonal tracks was performed. All flights showed that the plume could be identified up to large downwind distances by discontinuous jumps of temperature and vapor pressure. Therefore, a definite geometry of the plume could always be defined. In all cross sections a vertical circulation could be observed. At the boundary, which could be defined by the mentioned jumps of temperature and vapor pressure, a maximum of downward vertical motion could be observed in most cases. Entrainment along the boundary of a cross section seems to be very small, except at the lower part of the plume. There, the mass entrainment is maximum and is responsible for plume rise as well as for enlargement of the cross section. The visible part of the plume (cloud) was only a small fraction of the whole plume. High-resolution aerology is necessary in order to explain the structure and behavior of such plumes. This is especially the case in investigations regarding the dynamic break-through of temperature inversions. Such cases were observed frequently under various meteorological conditions and are described

  1. The Ensemble Kalman Filter for Groundwater Plume Characterization: A Case Study.

    Science.gov (United States)

    Ross, James L; Andersen, Peter F

    2018-04-17

    The Kalman filter is an efficient data assimilation tool to refine an estimate of a state variable using measured data and the variable's correlations in space and/or time. The ensemble Kalman filter (EnKF) (Evensen, 2004, 2009) is a Kalman filter variant that employs Monte Carlo analysis to define the correlations that help to refine the updated state. While use of EnKF in hydrology is somewhat limited, it has been successfully applied in other fields of engineering (e.g. oil reservoir modeling, weather forecasting). Here, EnKF is used to refine a simulated groundwater TCE plume that underlies the Tooele Army Depot-North (TEAD-N) in Utah, based on observations of TCE in the aquifer. The resulting EnKF-based assimilated plume is simulated forward in time to predict future plume migration. The correlations that underpin EnKF updating implicitly contain information about how the plume developed over time under the influence of complex site hydrology and variable source history, as they are predicated on multiple realizations of a well-calibrated numerical groundwater flow and transport model. The EnKF methodology is compared to an ordinary kriging-based assimilation method with respect to the accurate representation of plume concentrations in order to determine the relative efficacy of EnKF for water quality data assimilation. This article is protected by copyright. All rights reserved.

  2. Driving Solar Giant Cells through the Self-organization of Near-surface Plumes

    Science.gov (United States)

    Nelson, Nicholas J.; Featherstone, Nicholas A.; Miesch, Mark S.; Toomre, Juri

    2018-06-01

    Global 3D simulations of solar giant-cell convection have provided significant insight into the processes which yield the Sun’s observed differential rotation and cyclic dynamo action. However, as we move to higher-resolution simulations a variety of codes have encountered what has been termed the convection conundrum. As these simulations increase in resolution and hence the level of turbulence achieved, they tend to produce weak or even anti-solar differential rotation patterns associated with a weak rotational influence (high Rossby number) due to large convective velocities. One potential culprit for this convection conundrum is the upper boundary condition applied in most simulations, which is generally impenetrable. Here we present an alternative stochastic plume boundary condition which imposes small-scale convective plumes designed to mimic near-surface convective downflows, thus allowing convection to carry the majority of the outward solar energy flux up to and through our simulated upper boundary. The use of a plume boundary condition leads to significant changes in the convective driving realized in the simulated domain and thus to the convective energy transport, the dominant scale of the convective enthalpy flux, and the relative strength of the strongest downflows, the downflow network, and the convective upflows. These changes are present even far from the upper boundary layer. Additionally, we demonstrate that, in spite of significant changes, giant cell morphology in the convective patterns is still achieved with self-organization of the imposed boundary plumes into downflow lanes, cellular patterns, and even rotationally aligned banana cells in equatorial regions. This plume boundary presents an alternative pathway for 3D global convection simulations where driving is non-local and may provide a new approach toward addressing the convection conundrum.

  3. Lévy-taxis: a novel search strategy for finding odor plumes in turbulent flow-dominated environments

    Science.gov (United States)

    Pasternak, Zohar; Bartumeus, Frederic; Grasso, Frank W.

    2009-10-01

    Locating chemical plumes in aquatic or terrestrial environments is important for many economic, conservation, security and health related human activities. The localization process is composed mainly of two phases: finding the chemical plume and then tracking it to its source. Plume tracking has been the subject of considerable study whereas plume finding has received little attention. We address here the latter issue, where the searching agent must find the plume in a region often many times larger than the plume and devoid of the relevant chemical cues. The probability of detecting the plume not only depends on the movements of the searching agent but also on the fluid mechanical regime, shaping plume intermittency in space and time; this is a basic, general problem when exploring for ephemeral resources (e.g. moving and/or concealing targets). Here we present a bio-inspired search strategy named Lévy-taxis that, under certain conditions, located odor plumes significantly faster and with a better success rate than other search strategies such as Lévy walks (LW), correlated random walks (CRW) and systematic zig-zag. These results are based on computer simulations which contain, for the first time ever, digitalized real-world water flow and chemical plume instead of their theoretical model approximations. Combining elements of LW and CRW, Lévy-taxis is particularly efficient for searching in flow-dominated environments: it adaptively controls the stochastic search pattern using environmental information (i.e. flow) that is available throughout the course of the search and shows correlation with the source providing the cues. This strategy finds natural application in real-world search missions, both by humans and autonomous robots, since it accomodates the stochastic nature of chemical mixing in turbulent flows. In addition, it may prove useful in the field of behavioral ecology, explaining and predicting the movement patterns of various animals searching for

  4. Levy-taxis: a novel search strategy for finding odor plumes in turbulent flow-dominated environments

    International Nuclear Information System (INIS)

    Pasternak, Zohar; Grasso, Frank W; Bartumeus, Frederic

    2009-01-01

    Locating chemical plumes in aquatic or terrestrial environments is important for many economic, conservation, security and health related human activities. The localization process is composed mainly of two phases: finding the chemical plume and then tracking it to its source. Plume tracking has been the subject of considerable study whereas plume finding has received little attention. We address here the latter issue, where the searching agent must find the plume in a region often many times larger than the plume and devoid of the relevant chemical cues. The probability of detecting the plume not only depends on the movements of the searching agent but also on the fluid mechanical regime, shaping plume intermittency in space and time; this is a basic, general problem when exploring for ephemeral resources (e.g. moving and/or concealing targets). Here we present a bio-inspired search strategy named Levy-taxis that, under certain conditions, located odor plumes significantly faster and with a better success rate than other search strategies such as Levy walks (LW), correlated random walks (CRW) and systematic zig-zag. These results are based on computer simulations which contain, for the first time ever, digitalized real-world water flow and chemical plume instead of their theoretical model approximations. Combining elements of LW and CRW, Levy-taxis is particularly efficient for searching in flow-dominated environments: it adaptively controls the stochastic search pattern using environmental information (i.e. flow) that is available throughout the course of the search and shows correlation with the source providing the cues. This strategy finds natural application in real-world search missions, both by humans and autonomous robots, since it accommodates the stochastic nature of chemical mixing in turbulent flows. In addition, it may prove useful in the field of behavioral ecology, explaining and predicting the movement patterns of various animals searching for food

  5. Levy-taxis: a novel search strategy for finding odor plumes in turbulent flow-dominated environments

    Energy Technology Data Exchange (ETDEWEB)

    Pasternak, Zohar; Grasso, Frank W [BioMimetic and Cognitive Robotics Laboratory, Department of Psychology, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn 11210, NY (United States); Bartumeus, Frederic [Department of Ecology and Evolutionary Biology and Princeton Environmental Institute, 106 Guyot Hall, Princeton University, Princeton 08544, NJ (United States)], E-mail: zpast@yahoo.com

    2009-10-30

    Locating chemical plumes in aquatic or terrestrial environments is important for many economic, conservation, security and health related human activities. The localization process is composed mainly of two phases: finding the chemical plume and then tracking it to its source. Plume tracking has been the subject of considerable study whereas plume finding has received little attention. We address here the latter issue, where the searching agent must find the plume in a region often many times larger than the plume and devoid of the relevant chemical cues. The probability of detecting the plume not only depends on the movements of the searching agent but also on the fluid mechanical regime, shaping plume intermittency in space and time; this is a basic, general problem when exploring for ephemeral resources (e.g. moving and/or concealing targets). Here we present a bio-inspired search strategy named Levy-taxis that, under certain conditions, located odor plumes significantly faster and with a better success rate than other search strategies such as Levy walks (LW), correlated random walks (CRW) and systematic zig-zag. These results are based on computer simulations which contain, for the first time ever, digitalized real-world water flow and chemical plume instead of their theoretical model approximations. Combining elements of LW and CRW, Levy-taxis is particularly efficient for searching in flow-dominated environments: it adaptively controls the stochastic search pattern using environmental information (i.e. flow) that is available throughout the course of the search and shows correlation with the source providing the cues. This strategy finds natural application in real-world search missions, both by humans and autonomous robots, since it accommodates the stochastic nature of chemical mixing in turbulent flows. In addition, it may prove useful in the field of behavioral ecology, explaining and predicting the movement patterns of various animals searching for food

  6. Hubble Captures Volcanic Eruption Plume From Io

    Science.gov (United States)

    1997-01-01

    The Hubble Space Telescope has snapped a picture of a 400-km-high (250-mile-high) plume of gas and dust from a volcanic eruption on Io, Jupiter's large innermost moon.Io was passing in front of Jupiter when this image was taken by the Wide Field and Planetary Camera 2 in July 1996. The plume appears as an orange patch just off the edge of Io in the eight o'clock position, against the blue background of Jupiter's clouds. Io's volcanic eruptions blasts material hundreds of kilometers into space in giant plumes of gas and dust. In this image, material must have been blown out of the volcano at more than 2,000 mph to form a plume of this size, which is the largest yet seen on Io.Until now, these plumes have only been seen by spacecraft near Jupiter, and their detection from the Earth-orbiting Hubble Space Telescope opens up new opportunities for long-term studies of these remarkable phenomena.The plume seen here is from Pele, one of Io's most powerful volcanos. Pele's eruptions have been seen before. In March 1979, the Voyager 1 spacecraft recorded a 300-km-high eruption cloud from Pele. But the volcano was inactive when the Voyager 2 spacecraft flew by Jupiter in July 1979. This Hubble observation is the first glimpse of a Pele eruption plume since the Voyager expeditions.Io's volcanic plumes are much taller than those produced by terrestrial volcanos because of a combination of factors. The moon's thin atmosphere offers no resistance to the expanding volcanic gases; its weak gravity (one-sixth that of Earth) allows material to climb higher before falling; and its biggest volcanos are more powerful than most of Earth's volcanos.This image is a contrast-enhanced composite of an ultraviolet image (2600 Angstrom wavelength), shown in blue, and a violet image (4100 Angstrom wavelength), shown in orange. The orange color probably occurs because of the absorption and/or scattering of ultraviolet light in the plume. This light from Jupiter passes through the plume and is

  7. Pele Plume Deposit on Io

    Science.gov (United States)

    1997-01-01

    The varied effects of Ionian volcanism can be seen in this false color infrared composite image of Io's trailing hemisphere. Low resolution color data from Galileo's first orbit (June, 1996) have been combined with a higher resolution clear filter picture taken on the third orbit (November, 1996) of the spacecraft around Jupiter.A diffuse ring of bright red material encircles Pele, the site of an ongoing, high velocity volcanic eruption. Pele's plume is nearly invisible, except in back-lit photographs, but its deposits indicate energetic ejection of sulfurous materials out to distances more than 600 kilometers from the central vent. Another bright red deposit lies adjacent to Marduk, also a currently active ediface. High temperature hot spots have been detected at both these locations, due to the eruption of molten material in lava flows or lava lakes. Bright red deposits on Io darken and disappear within years or decades of deposition, so the presence of bright red materials marks the sites of recent volcanism.This composite was created from data obtained by the Solid State Imaging (CCD) system aboard NASA's Galileo spacecraft. The region imaged is centered on 15 degrees South, 224 degrees West, and is almost 2400 kilometers across. The finest details that can be discerned in this picture are about 3 kilometers across. North is towards the top of the picture and the sun illuminates the surface from the west.The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  8. Microbial populations in contaminant plumes

    Science.gov (United States)

    Haack, Sheridan K.; Bekins, Barbara A.

    Efficient biodegradation of subsurface contaminants requires two elements: (1) microbial populations with the necessary degradative capabilities, and (2) favorable subsurface geochemical and hydrological conditions. Practical constraints on experimental design and interpretation in both the hydrogeological and microbiological sciences have resulted in limited knowledge of the interaction between hydrogeological and microbiological features of subsurface environments. These practical constraints include: (1) inconsistencies between the scales of investigation in the hydrogeological and microbiological sciences, and (2) practical limitations on the ability to accurately define microbial populations in environmental samples. However, advances in application of small-scale sampling methods and interdisciplinary approaches to site investigations are beginning to significantly improve understanding of hydrogeological and microbiological interactions. Likewise, culture-based and molecular analyses of microbial populations in subsurface contaminant plumes have revealed significant adaptation of microbial populations to plume environmental conditions. Results of recent studies suggest that variability in subsurface geochemical and hydrological conditions significantly influences subsurface microbial-community structure. Combined investigations of site conditions and microbial-community structure provide the knowledge needed to understand interactions between subsurface microbial populations, plume geochemistry, and contaminant biodegradation. La biodégradation efficace des polluants souterrains requiert deux éléments: des populations microbiennes possédant les aptitudes nécessaires à la dégradation, et des conditions géochimiques et hydrologiques souterraines favorables. Des contraintes pratiques sur la conception et l'interprétation des expériences à la fois en microbiologie et en hydrogéologie ont conduit à une connaissance limitée des interactions entre les

  9. Human Outer Solar System Exploration via Q-Thruster Technology

    Science.gov (United States)

    Joosten, B. Kent; White, Harold G.

    2014-01-01

    Propulsion technology development efforts at the NASA Johnson Space Center continue to advance the understanding of the quantum vacuum plasma thruster (QThruster), a form of electric propulsion. Through the use of electric and magnetic fields, a Q-thruster pushes quantum particles (electrons/positrons) in one direction, while the Qthruster recoils to conserve momentum. This principle is similar to how a submarine uses its propeller to push water in one direction, while the submarine recoils to conserve momentum. Based on laboratory results, it appears that continuous specific thrust levels of 0.4 - 4.0 N/kWe are achievable with essentially no onboard propellant consumption. To evaluate the potential of this technology, a mission analysis tool was developed utilizing the Generalized Reduced Gradient non-linear parameter optimization engine contained in the Microsoft Excel® platform. This tool allowed very rapid assessments of "Q-Ship" minimum time transfers from earth to the outer planets and back utilizing parametric variations in thrust acceleration while enforcing constraints on planetary phase angles and minimum heliocentric distances. A conservative Q-Thruster specific thrust assumption (0.4 N/kWe) combined with "moderate" levels of space nuclear power (1 - 2 MWe) and vehicle specific mass (45 - 55 kg/kWe) results in continuous milli-g thrust acceleration, opening up realms of human spaceflight performance completely unattainable by any current systems or near-term proposed technologies. Minimum flight times to Mars are predicted to be as low as 75 days, but perhaps more importantly new "retro-phase" and "gravity-augmented" trajectory shaping techniques were revealed which overcome adverse planetary phasing and allow virtually unrestricted departure and return opportunities. Even more impressively, the Jovian and Saturnian systems would be opened up to human exploration with round-trip times of 21 and 32 months respectively including 6 to 12 months of

  10. Improvement of the low frequency oscillation model for Hall thrusters

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chunsheng, E-mail: wangcs@hit.edu.cn; Wang, Huashan [Yanshan University, College of Vehicles and Energy, Qinhuangdao 066004, Hebei (China)

    2016-08-15

    The low frequency oscillation of the discharge current in Hall thrusters is a major aspect of these devices that requires further study. While the existing model captures the ionization mechanism of the low frequency oscillation, it unfortunately fails to express the dynamic characteristics of the ion acceleration. The analysis in this paper shows this is because of the simplification of the electron equation, which affects both the electric field distribution and the ion acceleration process. Additionally, the electron density equation is revised and a new model that is based on the physical properties of ion movement is proposed.

  11. Test Results of a 200 W Class Hall Thruster

    Science.gov (United States)

    Jacobson, David; Jankovsky, Robert S.

    1999-01-01

    The performance of a 200 W class Hall thruster was evaluated. Performance measurements were taken at power levels between 90 W and 250 W. At the nominal 200 W design point, the measured thrust was 11.3 mN. and the specific impulse was 1170 s excluding cathode flow in the calculation. A laboratory model 3 mm diameter hollow cathode was used for all testing. The engine was operated on laboratory power supplies in addition to a breadboard power processing unit fabricated from commercially available DC to DC converters.

  12. Modelling of transport and biogeochemical processes in pollution plumes: Vejen landfill, Denmark

    DEFF Research Database (Denmark)

    Brun, A.; Engesgaard, Peter Knudegaard; Christensen, Thomas Højlund

    2002-01-01

    A biogeochemical transport code is used to simulate leachate attenuation. biogeochemical processes. and development of redox zones in a pollution plume downstream of the Vejen landfill in Denmark. Calibration of the degradation parameters resulted in a good agreement with the observed distribution...

  13. Reactive transport modelling of biogeochemical processes and carbon isotope geochemistry inside a landfill leachate plume.

    NARCIS (Netherlands)

    van Breukelen, B.M.; Griffioen, J.; Roling, W.F.M.; van Verseveld, H.W.

    2004-01-01

    The biogeochemical processes governing leachate attenuation inside a landfill leachate plume (Banisveld, the Netherlands) were revealed and quantified using the 1D reactive transport model PHREEQC-2. Biodegradation of dissolved organic carbon (DOC) was simulated assuming first-order oxidation of two

  14. The role of periodically varying discharge on river plume structure and transport

    Science.gov (United States)

    Yuan, Yeping; Horner-Devine, Alexander R.; Avener, Margaret; Bevan, Shaun

    2018-04-01

    We present results from laboratory experiments that simulate the effects of periodically varying discharge on buoyant coastal plumes. Freshwater is discharged into a two meter diameter tank filled with saltwater on a rotating table. The mean inflow rate, tank rotation period and density of the ambient salt water are varied to simulate a range of inflow Froude and Rossby numbers. The amplitude and the period of the inflow modulation are varied across a range that simulates variability due to tides and storms. Using the optical thickness method, we measure the width and depth of the plume, plume volume and freshwater retention rate in the plume. With constant discharge, freshwater is retained in a growing anticyclonic bulge circulation near the river mouth, as observed in previous studies. When the discharge is varied, the bulge geometry oscillates between a circular plume structure that extends mainly in the offshore direction, and a compressed plume structure that extends mainly in the alongshore direction. The oscillations result in periodic variations in the width and depth of the bulge and the incidence angle formed where the bulge flow re-attaches with the coastal wall. The oscillations are more pronounced for longer modulation periods, but are relatively insensitive to the modulation amplitude. A phase difference between the time varying transport within the bulge and bulge geometry determines the fraction of the bulge flow discharged into the coastal current. As a result, the modulation period determines the variations in amount of freshwater that returns to the bulge. Freshwater retention in the bulge is increased in longer modulation periods and more pronounced for larger modulation amplitudes.

  15. Thermal radiation from large bolides and impact plumes

    Science.gov (United States)

    Svetsov, V.; Shuvalov, V.

    2017-09-01

    Numerical simulations of the impacts of asteroids and comets from 20 m to 3 km in diameter have been carried out and thermal radiation fluxes on the ground and luminous efficiencies of the impacts have been calculated. It was assumed that the cosmic objects have no strength, deform, fragment, and vaporize in the atmosphere. After the impact on the ground, formation of craters and plumes was simulated taking into account internal friction of destroyed rocks and a wake formed in the atmosphere. The equations of radiative transfer, added to the equations of gas dynamics, were used in the approximation of radiative heat diffusion or, if the Rosseland optical depth of a radiating volume of gas and vapor was less than unity, in the approximation of volume emission. Radiation fluxes on the Earth's surface were calculated by integrating the equation of radiative transfer along rays passing through a luminous area. Direct thermal radiation from fireballs and impact plumes produced by asteroids and comets larger than 50 m in diameter is dangerous for people, animals, plants, economic objects. Forest fires can be ignited on the ground within a radius of roughly 1000 times the body's diameter (for diameters of the order or smaller than 1 km), 50-m-diameter bodies can ignite forest fires within a radius of up to 40 km and 3-km asteroids - within 1700 km.

  16. PLUMED 2: New feathers for an old bird

    Science.gov (United States)

    Tribello, Gareth A.; Bonomi, Massimiliano; Branduardi, Davide; Camilloni, Carlo; Bussi, Giovanni

    2014-02-01

    Enhancing sampling and analyzing simulations are central issues in molecular simulation. Recently, we introduced PLUMED, an open-source plug-in that provides some of the most popular molecular dynamics (MD) codes with implementations of a variety of different enhanced sampling algorithms and collective variables (CVs). The rapid changes in this field, in particular new directions in enhanced sampling and dimensionality reduction together with new hardware, require a code that is more flexible and more efficient. We therefore present PLUMED 2 here—a complete rewrite of the code in an object-oriented programming language (C++). This new version introduces greater flexibility and greater modularity, which both extends its core capabilities and makes it far easier to add new methods and CVs. It also has a simpler interface with the MD engines and provides a single software library containing both tools and core facilities. Ultimately, the new code better serves the ever-growing community of users and contributors in coping with the new challenges arising in the field.

  17. The 2016 Case for Mantle Plumes and a Plume-Fed Asthenosphere (Augustus Love Medal Lecture)

    Science.gov (United States)

    Morgan, Jason P.

    2016-04-01

    The process of science always returns to weighing evidence and arguments for and against a given hypothesis. As hypotheses can only be falsified, never universally proved, doubt and skepticism remain essential elements of the scientific method. In the past decade, even the hypothesis that mantle plumes exist as upwelling currents in the convecting mantle has been subject to intense scrutiny; from geochemists and geochronologists concerned that idealized plume models could not fit many details of their observations, and from seismologists concerned that mantle plumes can sometimes not be 'seen' in their increasingly high-resolution tomographic images of the mantle. In the place of mantle plumes, various locally specific and largely non-predictive hypotheses have been proposed to explain the origins of non-plate boundary volcanism at Hawaii, Samoa, etc. In my opinion, this debate has now passed from what was initially an extremely useful restorative from simply 'believing' in the idealized conventional mantle plume/hotspot scenario to becoming an active impediment to our community's ability to better understand the dynamics of the solid Earth. Having no working hypothesis at all is usually worse for making progress than having an imperfect and incomplete but partially correct one. There continues to be strong arguments and strong emerging evidence for deep mantle plumes. Furthermore, deep thermal plumes should exist in a mantle that is heated at its base, and the existence of Earth's (convective) geodynamo clearly indicates that heat flows from the core to heat the mantle's base. Here I review recent seismic evidence by French, Romanowicz, and coworkers that I feel lends strong new observational support for the existence of deep mantle plumes. I also review recent evidence consistent with the idea that secular core cooling replenishes half the mantle's heat loss through its top surface, e.g. that the present-day mantle is strongly bottom heated. Causes for

  18. Plume Impingement to the Lunar Surface: A Challenging Problem for DSMC

    Science.gov (United States)

    Lumpkin, Forrest; Marichalar, Jermiah; Piplica, Anthony

    2007-01-01

    The President's Vision for Space Exploration calls for the return of human exploration of the Moon. The plans are ambitious and call for the creation of a lunar outpost. Lunar Landers will therefore be required to land near predeployed hardware, and the dust storm created by the Lunar Lander's plume impingement to the lunar surface presents a hazard. Knowledge of the number density, size distribution, and velocity of the grains in the dust cloud entrained into the flow is needing to develop mitigation strategies. An initial step to acquire such knowledge is simulating the associated plume impingement flow field. The following paper presents results from a loosely coupled continuum flow solver/Direct Simulation Monte Carlo (DSMC) technique for simulating the plume impingement of the Apollo Lunar module on the lunar surface. These cases were chosen for initial study to allow for comparison with available Apollo video. The relatively high engine thrust and the desire to simulate interesting cases near touchdown result in flow that is nearly entirely continuum. The DSMC region of the flow field was simulated using NASA's DSMC Analysis Code (DAC) and must begin upstream of the impingement shock for the loosely coupled technique to succeed. It was therefore impossible to achieve mean free path resolution with a reasonable number of molecules (say 100 million) as is shown. In order to mitigate accuracy and performance issues when using such large cells, advanced techniques such as collision limiting and nearest neighbor collisions were employed. The final paper will assess the benefits and shortcomings of such techniques. In addition, the effects of plume orientation, plume altitude, and lunar topography, such as craters, on the flow field, the surface pressure distribution, and the surface shear stress distribution are presented.

  19. MEMS-Based Solid Propellant Rocket Array Thruster

    Science.gov (United States)

    Tanaka, Shuji; Hosokawa, Ryuichiro; Tokudome, Shin-Ichiro; Hori, Keiichi; Saito, Hirobumi; Watanabe, Masashi; Esashi, Masayoshi

    The prototype of a solid propellant rocket array thruster for simple attitude control of a 10 kg class micro-spacecraft was completed and tested. The prototype has 10×10 φ0.8 mm solid propellant micro-rockets arrayed at a pitch of 1.2 mm on a 20×22 mm substrate. To realize such a dense array of micro-rockets, each ignition heater is powered from the backside of the thruster through an electrical feedthrough which passes along a propellant cylinder wall. Boron/potassium nitrate propellant (NAB) is used with/without lead rhodanide/potassium chlorate/nitrocellulose ignition aid (RK). Impulse thrust was measured by a pendulum method in air. Ignition required electric power of at least 3 4 W with RK and 4 6 W without RK. Measured impulse thrusts were from 2×10-5 Ns to 3×10-4 Ns after the calculation of compensation for air dumping.

  20. Experimental Investigations of a Krypton Stationary Plasma Thruster

    Directory of Open Access Journals (Sweden)

    A. I. Bugrova

    2013-01-01

    Full Text Available Stationary plasma thrusters are attractive electric propulsion systems for spacecrafts. The usual propellant is xenon. Among the other suggested propellants, krypton could be one of the best candidates. Most studies have been carried out with a Hall effect thruster previously designed for xenon. The ATON A-3 developed by MSTU MIREA (Moscow initially defined for xenon has been optimized for krypton. The stable high-performance ATON A-3 operation in Kr has been achieved after optimization of its magnetic field configuration and its optimization in different parameters: length and width of the channel, buffer volume dimensions, mode of the cathode operation, and input parameters. For a voltage of 400 V and the anode mass flow rate of 2.5 mg/s the anode efficiency reaches 60% and the specific impulse reaches 2900 s under A-3 operating with Kr. The achieved performances under operation A-3 with Kr are presented and compared with performances obtained with Xe.

  1. Hall Thruster Thermal Modeling and Test Data Correlation

    Science.gov (United States)

    Myers, James

    2016-01-01

    HERMeS - Hall Effect Rocket with Magnetic Shielding. Developed through a joint effort by NASA/GRC and the Jet Propulsion Laboratory (JPL). Design goals: High power (12.5 kW) high Isp (3000 sec), high efficiency (> 60%), high throughput (10,000 kg), reduced plasma erosion and increased life (5 yrs) to support Asteroid Redirect Robotic Mission (ARRM). Further details see "Performance, Facility Pressure Effects and Stability Characterization Tests of NASAs HERMeS Thruster" by H. Kamhawi and team. Hall Thrusters (HT) inherently operate at elevated temperatures approx. 600 C (or more). Due to electric magnetic (E x B) fields used to ionize and accelerate propellant gas particles (i.e., plasma). Cooling is largely limited to radiation in vacuum environment.Thus the hardware components must withstand large start-up delta-T's. HT's are constructed of multiple materials; assorted metals, non-metals and ceramics for their required electrical and magnetic properties. To mitigate thermal stresses HT design must accommodate the differential thermal growth from a wide range of material Coef. of Thermal Expansion (CTEs). Prohibiting the use of some bolted/torqued interfaces.Commonly use spring loaded interfaces, particularly at the metal-to-ceramic interfaces to allow for slippage.However most component interfaces must also effectively conduct heat to the external surfaces for dissipation by radiation.Thus contact pressure and area are important.

  2. Effect of the Thruster Configurations on a Laser Ignition Microthruster

    Science.gov (United States)

    Koizumi, Hiroyuki; Hamasaki, Kyoichi; Kondo, Ryo; Okada, Keisuke; Nakano, Masakatsu; Arakawa, Yoshihiro

    Research and development of small spacecraft have advanced extensively throughout the world and propulsion devices suitable for the small spacecraft, microthruster, is eagerly anticipated. The authors proposed a microthruster using 1—10-mm-size solid propellant. Small pellets of solid propellant are installed in small combustion chambers and ignited by the irradiation of diode laser beam. This thruster is referred as to a laser ignition microthruster. Solid propellant enables large thrust capability and compact propulsion system. To date theories of a solid-propellant rocket have been well established. However, those theories are for a large-size solid propellant and there are a few theories and experiments for a micro-solid rocket of 1—10mm class. This causes the difficulty of the optimum design of a micro-solid rocket. In this study, we have experimentally investigated the effect of thruster configurations on a laser ignition microthruster. The examined parameters are aperture ratio of the nozzle, length of the combustion chamber, area of the nozzle throat, and divergence angle of the nozzle. Specific impulse dependences on those parameters were evaluated. It was found that large fraction of the uncombusted propellant was the main cause of the degrading performance. Decreasing the orifice diameter in the nozzle with a constant open aperture ratio was an effective method to improve this degradation.

  3. Infrared signature modelling of a rocket jet plume - comparison with flight measurements

    International Nuclear Information System (INIS)

    Rialland, V; Perez, P; Roblin, A; Guy, A; Gueyffier, D; Smithson, T

    2016-01-01

    The infrared signature modelling of rocket plumes is a challenging problem involving rocket geometry, propellant composition, combustion modelling, trajectory calculations, fluid mechanics, atmosphere modelling, calculation of gas and particles radiative properties and of radiative transfer through the atmosphere. This paper presents ONERA simulation tools chained together to achieve infrared signature prediction, and the comparison of the estimated and measured signatures of an in-flight rocket plume. We consider the case of a solid rocket motor with aluminized propellant, the Black Brant sounding rocket. The calculation case reproduces the conditions of an experimental rocket launch, performed at White Sands in 1997, for which we obtained high quality infrared signature data sets from DRDC Valcartier. The jet plume is calculated using an in-house CFD software called CEDRE. The plume infrared signature is then computed on the spectral interval 1900-5000 cm -1 with a step of 5 cm -1 . The models and their hypotheses are presented and discussed. Then the resulting plume properties, radiance and spectra are detailed. Finally, the estimated infrared signature is compared with the spectral imaging measurements. The discrepancies are analyzed and discussed. (paper)

  4. N Reactor thermal plume characterization during Pu-only mode of operation

    Energy Technology Data Exchange (ETDEWEB)

    Ecker, R.M.; Thompson, F.L.; Whelan, G.

    1983-04-01

    Pacific Northwest Laboratories (PNL) performed field and modeling studies -from March 1982 through June 1983 to characterize the thermal plume from the N Reactor heated water outfall while the N Reactor operated in the Pu-only mode. Part 1 of this report deals with the field studies conducted to characterize the N Reactor thermal plume while in the Pu-only mode of operation. It includes a description of the study area, a description of field tasks and procedures, and data collection results and discussion. Part 2 describes the computer simulation of the thermal plume under different flow conditions and the calibration of the model used. It includes a description of the computer model and the assumptions on which it is based, a presentation of the input data used in this application, and a discussion of modeling results. Because the field studies were restricted by the NPOES permit variance to the spring months when high Columbia River flows prevail the mathematical modeling of the N Reactor thermal plume while the reactor operates in the Pu-only mode is instrumental in characterizing the plume during low Columbia River flows.

  5. Empirical electron cross-field mobility in a Hall effect thruster

    International Nuclear Information System (INIS)

    Garrigues, L.; Perez-Luna, J.; Lo, J.; Hagelaar, G. J. M.; Boeuf, J. P.; Mazouffre, S.

    2009-01-01

    Electron transport across the magnetic field in Hall effect thrusters is still an open question. Models have so far assumed 1/B 2 or 1/B scaling laws for the 'anomalous' electron mobility, adjusted to reproduce the integrated performance parameters of the thruster. We show that models based on such mobility laws predict very different ion velocity distribution functions (IVDF) than measured by laser induced fluorescence (LIF). A fixed spatial mobility profile, obtained by analysis of improved LIF measurements, leads to much better model predictions of thruster performance and IVDF than 1/B 2 or 1/B mobility laws for discharge voltages in the 500-700 V range.

  6. Development of a 30-cm ion thruster thermal-vacuum power processor

    Science.gov (United States)

    Herron, B. G.

    1976-01-01

    The 30-cm Hg electron-bombardment ion thruster presently under development has reached engineering model status and is generally accepted as the prime propulsion thruster module to be used on the earliest solar electric propulsion missions. This paper presents the results of a related program to develop a transistorized 3-kW Thermal-Vacuum Breadboard (TVBB) Power Processor for this thruster. Emphasized in the paper are the implemented electrical and mechanical designs as well as the resultant system performance achieved over a range of test conditions. In addition, design modifications affording improved performance are identified and discussed.

  7. A buoyant plume adjacent to a headland-Observations of the Elwha River plume

    Science.gov (United States)

    Warrick, J.A.; Stevens, A.W.

    2011-01-01

    Small rivers commonly discharge into coastal settings with topographic complexities - such as headlands and islands - but these settings are underrepresented in river plume studies compared to more simplified, straight coasts. The Elwha River provides a unique opportunity to study the effects of coastal topography on a buoyant plume, because it discharges into the Strait of Juan de Fuca on the western side of its deltaic headland. Here we show that this headland induces flow separation and transient eddies in the tidally dominated currents (O(100. cm/s)), consistent with other headlands in oscillatory flow. These flow conditions are observed to strongly influence the buoyant river plume, as predicted by the "small-scale" or "narrow" dynamical classification using Garvine's (1995) system. Because of the transient eddies and the location of the river mouth on the headland, flow immediately offshore of the river mouth is directed eastward twice as frequently as it is westward. This results in a buoyant plume that is much more frequently "bent over" toward the east than the west. During bent over plume conditions, the plume was attached to the eastern shoreline while having a distinct, cuspate front along its westernmost boundary. The location of the front was found to be related to the magnitude and direction of local flow during the preceding O(1. h), and increases in alongshore flow resulted in deeper freshwater mixing, stronger baroclinic anomalies, and stronger hugging of the coast. During bent over plume conditions, we observed significant convergence of river plume water toward the frontal boundary within 1. km of the river mouth. These results show how coastal topography can strongly influence buoyant plume behavior, and they should assist with understanding of initial coastal sediment dispersal pathways from the Elwha River during a pending dam removal project. ?? 2010.

  8. Measurement of sheath thickness by lining out grooves in the Hall-type stationary plasma thrusters

    International Nuclear Information System (INIS)

    Yu Daren; Wu Zhiwen; Ning Zhongxi; Wang Xiaogang

    2007-01-01

    Using grooves created along the axial direction of the discharge channel, a method for measuring sheath thickness in Hall-type stationary plasma thrusters has been developed. By distorting the wall surface using these grooves, it is possible to numerically study the effect of the wall surface on the sheath and near wall conductivity. Monte Carlo method is applied to calculate the electron temperature variation with different groove depths. The electron dynamic process in the plasma is described by a test particle method with the electron randomly entering the sheath from the discharge channel and being reflected back. Numerical results show that the reflected electron temperature is hardly affected by the wall surface if the groove depth is much less than the sheath thickness. On the other hand, the reflected electron temperature increases if the groove depth is much greater than the sheath thickness. The reflected electron temperature has a sharp jump when the depth of groove is on the order of the sheath thickness. The simulation is repeated with different sheath thicknesses and the results are the same. Therefore, a diagnosis mean of the sheath thickness can be developed based on the method. Also the simulation results are in accord with the experimental data. Besides, the measurement method may be applicable to other plasma device with similar orthogonal steady state electrical and magnetic fields

  9. Meteorology of the Southern Global Plume: African and South American Fires Pollute the South Pacific

    Science.gov (United States)

    Guo, Z.; Chatfield, R. B.

    1999-01-01

    An immense global plume of CO meanders widely around the world in the Southern Hemisphere. It arises over Southern America and Africa and flows eastward. The first emissions are in tropical Brazil, and the plume circulates around the world to South America again. The plume was largely unexpected until there were aircraft studies made in NASA's Pacific Exploratory Mission - Tropics (Part A). This paper describes the meteorology of the Global Plume, as our simulation, with a synoptic model adapted to global transport, reveals it with a tracer-CO simulation. The observations and their simulation require a particular set of conditions of pollutant accumulation, cumulonimbus venting with required strengths at a narrow range of altitude. Additionally, a particular subtropical conduction region, over the Indian Ocean, Australia, and the westeRNmost South Pacific, relatively free of storms, appears to be a key part of the mechanism. These conclusions are the results of a synoptic reconstruction of the PEMT-A period, September- October, 1996.

  10. Simulations

    CERN Document Server

    Ngada, Narcisse

    2015-06-15

    The complexity and cost of building and running high-power electrical systems make the use of simulations unavoidable. The simulations available today provide great understanding about how systems really operate. This paper helps the reader to gain an insight into simulation in the field of power converters for particle accelerators. Starting with the definition and basic principles of simulation, two simulation types, as well as their leading tools, are presented: analog and numerical simulations. Some practical applications of each simulation type are also considered. The final conclusion then summarizes the main important items to keep in mind before opting for a simulation tool or before performing a simulation.

  11. Performance, Facility Pressure Effects, and Stability Characterization Tests of NASA's Hall Effect Rocket with Magnetic Shielding Thruster

    Science.gov (United States)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Yim, John; Herman, Daniel; Williams, George; Gilland, James; Peterson, Peter; Hofer, Richard; Mikellides, Ioannis

    2016-01-01

    NASAs Hall Effect Rocket with Magnetic Shielding (HERMeS) 12.5 kW Technology Demonstration Unit-1 (TDU-1) Hall thruster has been the subject of extensive technology maturation in preparation for flight system development. Part of the technology maturation effort included experimental evaluation of the TDU-1 thruster with conducting and dielectric front pole cover materials in two different electrical configurations. A graphite front pole cover thruster configuration with the thruster body electrically tied to cathode and an alumina front pole cover thruster configuration with the thruster body floating were evaluated. Both configurations were also evaluated at different facility background pressure conditions to evaluate background pressure effects on thruster operation. Performance characterization tests found that higher thruster performance was attained with the graphite front pole cover configuration with the thruster electrically tied to cathode. A total thrust efficiency of 68 and a total specific impulse of 2,820 s was demonstrated at a discharge voltage of 600 V and a discharge power of 12.5 kW. Thruster stability regimes were characterized with respect to the thruster discharge current oscillations and with maps of the current-voltage-magnetic field (IVB). Analysis of TDU-1 discharge current waveforms found that lower normalized discharge current peak-to-peak and root mean square magnitudes were attained when the thruster was electrically floated with alumina front pole covers. Background pressure effects characterization tests indicated that the thruster performance and stability was mostly invariant to changes in the facility background pressure for vacuum chamber pressure below 110-5 Torr-Xe (for thruster flow rate above 8 mgs). Power spectral density analysis of the discharge current waveform showed that increasing the vacuum chamber background pressure resulted in a higher discharge current dominant frequency. Finally the IVB maps of the TDU-1

  12. East Asian SO2 pollution plume over Europe – Part 2: Evolution and potential impact

    Directory of Open Access Journals (Sweden)

    A. Stohl

    2009-07-01

    Full Text Available We report on the first observation-based case study of an aged East Asian anthropogenic SO2 pollution plume over Europe. Our airborne measurements in that plume detected highly elevated SO2 mole fractions (up to 900 pmol/mol between about 5000 and 7000 m altitude. Here, we focus on investigations of the origin, dispersion, evolution, conversion, and potential impact of the observed excess SO2. In particular, we investigate SO2 conversion to gas-phase sulfuric acid and sulfuric acid aerosols. Our FLEXPART and LAGRANTO model simulations, along with additional trace gas measurements, suggest that the plume originated from East Asian fossil fuel combustion sources and, 8–7 days prior to its arrival over Europe, ascended over the coast region of central East Asia to 9000 m altitude, probably in a cyclonic system with an associated warm conveyor belt. During this initial plume ascent a substantial fraction of the initially available SO2 must have escaped from removal by cloud processes. Hereafter, while mostly descending slowly, the plume experienced advection across the North Pacific, North America and the North Atlantic. During its upper troposphere travel, clouds were absent in and above the plume and OH-induced gas-phase conversion of SO2 to gas-phase sulfuric acid (GSA was operative, followed by GSA nucleation and condensation leading to sulfuric acid aerosol formation and growth. Our AEROFOR model simulations indicate that numerous large sulfuric acid aerosol particles were formed, which at least tempora-rily, caused substantial horizontal visibility degradation, and which have the potential to act as water vapor condensation nuclei in liquid water cloud formation, already at water vapor supersaturations as low as about 0.1%. Our AEROFOR model simulations also indicate that those fossil fuel combustion generated soot particles, which have survived cloud induced removal during the initial plume ascent, have experienced extensive H2SO4/H2O

  13. Plume dynamics in quasi-2D turbulent convection

    International Nuclear Information System (INIS)

    Bizon, C.; Werne, J.; Predtechensky, A.A.; Julien, K.; McCormick, W.D.; Swift, J.B.; Swinney, H.L.

    1997-01-01

    We have studied turbulent convection in a vertical thin (Hele-Shaw) cell at very high Rayleigh numbers (up to 7x10 4 times the value for convective onset) through experiment, simulation, and analysis. Experimentally, convection is driven by an imposed concentration gradient in an isothermal cell. Model equations treat the fields in two dimensions, with the reduced dimension exerting its influence through a linear wall friction. Linear stability analysis of these equations demonstrates that as the thickness of the cell tends to zero, the critical Rayleigh number and wave number for convective onset do not depend on the velocity conditions at the top and bottom boundaries (i.e., no-slip or stress-free). At finite cell thickness δ, however, solutions with different boundary conditions behave differently. We simulate the model equations numerically for both types of boundary conditions. Time sequences of the full concentration fields from experiment and simulation display a large number of solutal plumes that are born in thin concentration boundary layers, merge to form vertical channels, and sometimes split at their tips via a Rayleigh-Taylor instability. Power spectra of the concentration field reveal scaling regions with slopes that depend on the Rayleigh number. We examine the scaling of nondimensional heat flux (the Nusselt number, Nu) and rms vertical velocity (the Pacute eclet number, Pe) with the Rayleigh number (Ra * ) for the simulations. Both no-slip and stress-free solutions exhibit the scaling NuRa * ∼Pe 2 that we develop from simple arguments involving dynamics in the interior, away from cell boundaries. In addition, for stress-free solutions a second relation, Nu∼√(nPe), is dictated by stagnation-point flows occurring at the horizontal boundaries; n is the number of plumes per unit length. (Abstract Truncated)

  14. Numerical studies of pulsating buoyant plume in isothermal and non isothermal situations

    International Nuclear Information System (INIS)

    Sharma, Pavan K.; Singh, R.K.; Mohanty, Ananya; Das, D.

    2014-01-01

    A computational study has been carried out for predicting the behaviour of buoyant plume in isothermal and non isothermal configuration. General simulation objectives of any buoyant flow simulation are macroscopic in nature and deals with the grass data in respect of buoyancy induced scalar transport. However, the accuracy of predicting such macroscopic parameters is a strong function of several other microscopic parameters which govern the overall macroscopic behaviour. Some of the microscopic parameters for analysis could be buoyancy induced stable/unstable flows, relative plume behaviour, baroclinic velocity distribution etc. Only the CFD based flow modelling approach is capable of calculating several of these aspects. LES based modelling scores over the conventional RANS based computational modelling. The primary objective of the present study was to model buoyant plume simulation of different types in order to explore the details regarding plume and flow structure, instabilities and puffing behaviour. One of the influencing parameters on the overall plume behaviour is the buoyancy resolution index i.e. fineness of chosen grid in relation to the buoyancy intensity and other hydrodynamic parameters. The grid sensitivity studies have been carried out to find out the optimum value grid size by way of buoyant pool fire simulations. Comparative simulation has also been made for a square and round pool fire and it was found that for engineering simulations equivalent area square pool modeling is sufficient. Using the optimum value of grid size and square pool shape simulations have been carried out for different value of fire intensity. The flame puffing frequency as calculated by the reported correlation was compared against the computationally observed puffing frequency and the agreement was generally found to be excellent. Besides these results the comparisons of predicted peak flames temperatures data for various case studies with the available experimental data

  15. The evolution of photochemical smog in a power plant plume

    Science.gov (United States)

    Luria, Menachem; Valente, Ralph J.; Tanner, Roger L.; Gillani, Noor V.; Imhoff, Robert E.; Mueller, Stephen F.; Olszyna, Kenneth J.; Meagher, James F. Present address: Aeronomy Laboratory, NOAA, 325 Broadway, Boulder CO 80303, USA.)

    The evolution of photochemical smog in a plant plume was investigated with the aid of an instrumented helicopter. Air samples were taken in the plume of the Cumberland Power Plant, located in central Tennessee, during the afternoon of 16 July 1995 as part of the Southern Oxidants Study - Nashville Middle Tennessee Ozone Study. Twelve cross-wind air sampling traverses were made at six distance groups from 35 to 116 km from the source. During the sampling period the winds were from the west-northwest and the plume drifted towards the city of Nashville TN. Ten of the traverses were made upwind of the city, where the power plant plume was isolated, and two traverses downwind of the city when the plumes were possibly mixed. The results revealed that even six hours after the release, excess ozone production was limited to the edges of the plume. Only when the plume was sufficiently dispersed, but still upwind of Nashville, was excess ozone (up to 109 ppbv, 50-60 ppbv above background levels) produced in the center of the plume. The concentrations image of the plume and a Lagrangian particle model suggests that portions of the power plant plume mixed with the urban plume. The mixed urban power plant plume began to regenerate O 3 that peaked at 120 ppbv at a short distance (15-25 km) downwind of Nashville. Ozone productivity (the ratio of excess O 3 to NO y and NO z) in the isolated plume was significantly lower compared with that found in the city plume. The production of nitrate, a chain termination product, was significantly higher in the power plant plume compared to the mixed plume, indicating shorter chain length of the photochemical smog chain reaction mechanism.

  16. The evolution of photochemical smog in a power plant plume

    International Nuclear Information System (INIS)

    Luria, M.; The Hebrew University, Jerusalem; Valente, R.J.; Tanner, R.L.; Imhoff, R.E.; Mueller, S.F.; Olszyna, K.J.; Meagher, J.F.; Gillani, N.V.; University of Alabama, Huntsville, AL

    1999-01-01

    The evolution of photochemical smog in a plant plume was investigated with the aid of an instrumented helicopter. Air samples were taken in the plume of the Cumberland Power Plant, located in central Tennessee, during the afternoon of 16 July 1995 as part of the Southern Oxidants Study - Nashville Middle Tennessee Ozone Study. Twelve cross-wind air sampling traverses were made at six distance groups from 35 to 116 km from the source. During the sampling period the winds were from the west-northwest and the plume drifted towards the city of Nashville TN. Ten of the traverses were made upwind of the city, where the power plant plume was isolated, and two traverses downwind of the city when the plumes were possibly mixed. The results revealed that even six hours after the release, excess ozone production was limited to the edges of the plume. Only when the plume was sufficiently dispersed, but still upwind of Nashville, was excess ozone (up to 109 ppbv, 50-60 ppbv above background levels) produced in the center of the plume. The concentrations image of the plume and a Lagrangian particle model suggests that portions of the power plant plume mixed with the urban plume. The mixed urban power plant plume began to regenerate O 3 that peaked at 120 ppbv at a short distance (15-25 km) downwind of Nashville. Ozone productivity (the ratio of excess O 3 to NO y and NO z ) in the isolated plume was significantly lower compared with that found in the city plume. The production of nitrate, a chain termination product, was significantly higher in the power plant plume compared to the mixed plume, indicating shorter chain length of the photochemical smog chain reaction mechanism. (author)

  17. Smoke plume behavior - what the data say

    Science.gov (United States)

    Gary L. Achtemeier; Luke Naeher

    2005-01-01

    a comprehensive smoke project, now ongoing for four years, is designed in part to investigate plume behavior from southern prescribed burns with respect to atmospheric stability and to document ground-level smoke concentrations with PM2.5 data from a network of samplers specially constructed for the project. Project management goals are to find ways to increase the...

  18. Dispersion of Chernobyl radioactive plume over Europe

    International Nuclear Information System (INIS)

    Albergel, A.

    1988-01-01

    A long-range pollutant transport and removal model, is used to analyse the Chernobyl radioactive plume dispersion over the Europe Continent. Model predictions are compared to field measurements of Cs-137 activity in the air from April 26th, to May 5th 1986 [fr

  19. Reed Watkins: A Passion for Plume Moths

    Science.gov (United States)

    Reed Watkins has curated the nationl Pterophordiae or plume moth collection at the National Museum of Natural History, Smithsonian Institution, for the past 13 years. He has decreased the number of specimens of unsorted and unidentified material and has expanded the collection from 3 to 6 cabinets....

  20. Ablation plume dynamics in a background gas

    DEFF Research Database (Denmark)

    Amoruso, Salvatore; Schou, Jørgen; Lunney, James G.

    2010-01-01

    The expansion of a plume in a background gas of pressure comparable to that used in pulsed laser deposition (PLD) has been analyzed in terms of the model of Predtechensky and Mayorov (PM). This approach gives a relatively clear and simple description of the essential hydrodynamics during the expa......The expansion of a plume in a background gas of pressure comparable to that used in pulsed laser deposition (PLD) has been analyzed in terms of the model of Predtechensky and Mayorov (PM). This approach gives a relatively clear and simple description of the essential hydrodynamics during...... the expansion. The model also leads to an insightful treatment of the stopping behavior in dimensionless units for plumes and background gases of different atomic/molecular masses. The energetics of the plume dynamics can also be treated with this model. Experimental time-of-flight data of silver ions in a neon...... background gas show a fair agreement with predictions from the PM-model. Finally we discuss the validity of the model, if the work done by the pressure of the background gas is neglected....

  1. Hot-Fire Testing of a 1N AF-M315E Thruster

    Science.gov (United States)

    Burnside, Christopher G.; Pedersen, Kevin; Pierce, Charles W.

    2015-01-01

    This hot-fire test continues NASA investigation of green propellant technologies for future missions. To show the potential for green propellants to replace some hydrazine systems in future spacecraft, NASA Marshall Space Flight Center (MSFC) is continuing to embark on hot-fire test campaigns with various green propellant blends. NASA completed a hot-fire test of a 1N AF-M315E monopropellant thruster at the Marshall Space Flight Center in the small altitude test stand located in building 4205. The thruster is a ground test article used for basic performance determination and catalyst studies. The purpose of the hot-fire testing was for performance determination of a 1N size thruster and form a baseline from which to study catalyst performance and life with follow-on testing to be conducted at a later date. The thruster performed as expected. The result of the hot-fire testing are presented in this paper and presentation.

  2. Satellite Integration of a PhoneSat-EDSN Bus with a Micro Cathode Arc Thruster

    Data.gov (United States)

    National Aeronautics and Space Administration —  NASA Ames Research Center and GWU are investigating applications of Micro-Cathode Arc Thrusters (μCAT) sub-systems for attitude and orbit correction of a PhoneSat...

  3. Microfluidic Array of Externally Fed Electrospray Thrusters for Micro-Propulsion

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this proposal is to design an electrospray micropropulsion thruster that utilizes a novel propellant transport mechanism. This project is a collaboration...

  4. Pulsed inductive thruster performance data base for megawatt-class engine applications

    International Nuclear Information System (INIS)

    Dailey, C.L.; Lovberg, R.H.

    1993-01-01

    The pulsed inductive thruster (PIT) is an electrodeless plasma accelerator employing a large (1m diameter) spiral coil energized by a capacitor bank discharge. The bank can be repetitively recharged by a nuclear electric generator for continuous MW level operation. The coil can be designed as a transformer that permits thruster operation at the generator voltage, which results in a low thruster specific mass. Specific impulse (I sp ) can be readily altered by changing the propellant valve plenum pressure. Performance curves generated from mesausred impulse, injected mass and capacitor bank energy are presented for argon, ammonia, hydrazine, carbon dioxide and helium. The highest performance measured to date is 48% efficiency at 4000 seconds I sp with ammonia. The development of a theoretical model of the thruster, which assumes a fully ionized plasma, is presented in an appendix

  5. Ultra-Compact Center-Mounted Hollow Cathodes for Hall Effect Thrusters, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a long lifetime, compact hollow cathode that can be mounted along the axis of a 600 W-class Hall effect thruster. Testing at kilowatt...

  6. Effect of Ambipolar Potential on the Propulsive Performance of the GDM Plasma Thruster, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Gasdynamic Mirror (GDM) thruster is an electric propulsion device, without electrodes, that will magnetically confine a plasma with such density and temperature...

  7. Effect of Ambipolar Potential on the Propulsive Performance of the GDM Plasma Thruster, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The gasdynamic mirror (GDM) plasma thruster has the ability to confine high-density plasma for the length of time required to heat it to the temperatures...

  8. Feasibility of a 5mN Laser-Driven Mini-Thruster, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We have developed a next-generation thruster under a Phase II SBIR which we believe can meet NASA requirements after some modifications and improvements. It is the...

  9. HIGH ENERGY REPLACEMENT FOR TEFLON PROPELLANT IN PULSED PLASMA THRUSTERS, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This program will utilize a well-characterized Pulsed Plasma Thruster (PPT) to test experimental high-energy extinguishable solid propellants (HE), instead of...

  10. Vacuum Chamber Construction and Contamination Study of A Micro Pulsed Plasma Thruster

    National Research Council Canada - National Science Library

    Debevec, Jacob H

    2006-01-01

    .... This study examines the deposition profile and rate of particle emission from the thruster so that satellite designers understand any potential contamination issues with sensitive instruments and solar panels...

  11. Volcanic Plume Measurements with UAV (Invited)

    Science.gov (United States)

    Shinohara, H.; Kaneko, T.; Ohminato, T.

    2013-12-01

    Volatiles in magmas are the driving force of volcanic eruptions and quantification of volcanic gas flux and composition is important for the volcano monitoring. Recently we developed a portable gas sensor system (Multi-GAS) to quantify the volcanic gas composition by measuring volcanic plumes and obtained volcanic gas compositions of actively degassing volcanoes. As the Multi-GAS measures variation of volcanic gas component concentrations in the pumped air (volcanic plume), we need to bring the apparatus into the volcanic plume. Commonly the observer brings the apparatus to the summit crater by himself but such measurements are not possible under conditions of high risk of volcanic eruption or difficulty to approach the summit due to topography etc. In order to overcome these difficulties, volcanic plume measurements were performed by using manned and unmanned aerial vehicles. The volcanic plume measurements by manned aerial vehicles, however, are also not possible under high risk of eruption. The strict regulation against the modification of the aircraft, such as installing sampling pipes, also causes difficulty due to the high cost. Application of the UAVs for the volcanic plume measurements has a big advantage to avoid these problems. The Multi-GAS consists of IR-CO2 and H2O gas analyzer, SO2-H2O chemical sensors and H2 semiconductor sensor and the total weight ranges 3-6 kg including batteries. The necessary conditions of the UAV for the volcanic plumes measurements with the Multi-GAS are the payloads larger than 3 kg, maximum altitude larger than the plume height and installation of the sampling pipe without contamination of the exhaust gases, as the exhaust gases contain high concentrations of H2, SO2 and CO2. Up to now, three different types of UAVs were applied for the measurements; Kite-plane (Sky Remote) at Miyakejima operated by JMA, Unmanned airplane (Air Photo Service) at Shinomoedake, Kirishima volcano, and Unmanned helicopter (Yamaha) at Sakurajima

  12. PLUME DEVELOPMENT OF THE SHOEMAKER-LEVY 9 COMET IMPACT

    International Nuclear Information System (INIS)

    Palotai, Csaba; Harrington, Joseph; Rebeli, Noemi; Gabriel, Travis; Korycansky, Donald G.

    2011-01-01

    We have studied the plume formation after a Jovian comet impact using the ZEUS-MP 2 hydrodynamics code. The three-dimensional models followed objects with 500, 750, and 1000 m diameters. Our simulations show the development of a fast, upward-moving component of the plume in the wake of the impacting comet that 'pinches off' from the bulk of the cometary material ∼50 km below the 1 bar pressure level, ∼100 km above the depth of the greatest mass and energy deposition. The fast-moving component contains about twice the mass of the initial comet, but consists almost entirely (>99.9%) of Jovian atmosphere rather than cometary material. The ejecta rise mainly along the impact trajectory, but an additional vertical velocity component due to buoyancy establishes itself within seconds of impact, leading to an asymmetry in the ejecta with respect to the entry trajectory. The mass of the upward-moving component follows a velocity distribution M(>v) approximately proportional to v -1.4 (v -1.6 for the 750 m and 500 m cases) in the velocity range 0.1 km s -1 -1 .

  13. Thermally-Driven Mantle Plumes Reconcile Hot-spot Observations

    Science.gov (United States)

    Davies, D.; Davies, J.

    2008-12-01

    Hot-spots are anomalous regions of magmatism that cannot be directly associated with plate tectonic processes (e.g. Morgan, 1972). They are widely regarded as the surface expression of upwelling mantle plumes. Hot-spots exhibit variable life-spans, magmatic productivity and fixity (e.g. Ito and van Keken, 2007). This suggests that a wide-range of upwelling structures coexist within Earth's mantle, a view supported by geochemical and seismic evidence, but, thus far, not reproduced by numerical models. Here, results from a new, global, 3-D spherical, mantle convection model are presented, which better reconcile hot-spot observations, the key modification from previous models being increased convective vigor. Model upwellings show broad-ranging dynamics; some drift slowly, while others are more mobile, displaying variable life-spans, intensities and migration velocities. Such behavior is consistent with hot-spot observations, indicating that the mantle must be simulated at the correct vigor and in the appropriate geometry to reproduce Earth-like dynamics. Thermally-driven mantle plumes can explain the principal features of hot-spot volcanism on Earth.

  14. 氪气工质霍尔推力器束聚焦特性研究%Research on Beam Focusing Characteristics of Krypton Hall Thruster

    Institute of Scientific and Technical Information of China (English)

    夏国俊; 宁中喜; 欧阳磊; 王亚楠; 黎润; 于达仁

    2017-01-01

    以研究氪气替代氙气作为霍尔推力器工质时,等离子体束发散程度大等束聚焦特性问题为目的,通过以霍尔推力器磁场参数、放电电压和阳极工质流量分别作为单一变量进行实验研究,考察其对推力器等离子体束聚焦影响情况.使用HET-P70霍尔推力器进行相关实验,通过改变磁场参数来研究磁场位形对氪气工质推力器性能的影响,最终发现合适磁场位形形成的磁聚焦状态,即实验一中的工况3,可以使羽流发散角达到11.5°,此时推力器放电电压在400V,阳极工质流量3mg/s.另外,通过实验二和实验三,考察阳极工质流量和放电电压对氪等离子体束聚焦的影响机理,发现两个放电参数的变化主要改变了中性气体主电离区位置,进而影响等离子体束聚焦状态.电离位置在设定工况下外移9%,会使得羽流发散半角增大约12°.所以,磁场位形和中性气体的电离位置是影响氪等离子体束聚焦的重要因素,在对氪气霍尔推力器进行设计优化时应予重点考虑.%For the purpose to study the problems of plasma beam focusing,like bad spreading state of plas-ma beam,when krypton is used to replace xenon as the propellant of the electric propulsion,regarding magnet-ic field parameters,discharge voltage and propellant flow of anode as a single variable respectively,three exper-imental researches have been carried out to investigate their effects on beam focusing of the thruster. Experiments was made by the HET-P70 hall thruster to study the effects of magnetic field configuration on krypton thruster performance by changing the parameters of magnetic field,finally finding that the appropriate field configuration can form magnetic focusing state,as case 3 of the first experiment,it can make the plume divergence angle to be 11.5°. And the discharge voltage is 400V,while the propellant flow of anode is 3mg/s at the moment. In addi-tion,the influencing mechanism of

  15. High Fidelity Modeling of Field-Reversed Configuration (FRC) Thrusters (Briefing Charts)

    Science.gov (United States)

    2017-05-24

    THRUSTERS (Briefing Charts) Robert Martin , Eder Sousa, Jonathan Tran Air Force Research Laboratory (AFMC) AFRL/RQRS 1 Ara Drive Edwards AFB, CA 93524... Martin N/A HIGH FIDELITY MODELING OF FIELD-REVERSED CONFIGURATION (FRC) THRUSTERS Robert Martin1, Eder Sousa2, Jonathan Tran2 1AIR FORCE RESEARCH...Distribution is unlimited. PA Clearance No. 17314 MARTIN , SOUSA, TRAN (AFRL/RQRS) DISTRIBUTION A - APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA

  16. Plasma Reactors and Plasma Thrusters Modeling by Ar Complete Global Models

    Directory of Open Access Journals (Sweden)

    Chloe Berenguer

    2012-01-01

    Full Text Available A complete global model for argon was developed and adapted to plasma reactor and plasma thruster modeling. It takes into consideration ground level and excited Ar and Ar+ species and the reactor and thruster form factors. The electronic temperature, the species densities, and the ionization percentage, depending mainly on the pressure and the absorbed power, have been obtained and commented for various physical conditions.

  17. Space Charge Saturated Sheath Regime and Electron Temperature Saturation in Hall Thrusters

    International Nuclear Information System (INIS)

    Raitses, Y.; Staack, D.; Smirnov, A.; Fisch, N.J.

    2005-01-01

    Secondary electron emission in Hall thrusters is predicted to lead to space charge saturated wall sheaths resulting in enhanced power losses in the thruster channel. Analysis of experimentally obtained electron-wall collision frequency suggests that the electron temperature saturation, which occurs at high discharge voltages, appears to be caused by a decrease of the Joule heating rather than by the enhancement of the electron energy loss at the walls due to a strong secondary electron emission

  18. The planet beyond the plume hypothesis

    Science.gov (United States)

    Smith, Alan D.; Lewis, Charles

    1999-12-01

    Acceptance of the theory of plate tectonics was accompanied by the rise of the mantle plume/hotspot concept which has come to dominate geodynamics from its use both as an explanation for the origin of intraplate volcanism and as a reference frame for plate motions. However, even with a large degree of flexibility permitted in plume composition, temperature, size, and depth of origin, adoption of any limited number of hotspots means the plume model cannot account for all occurrences of the type of volcanism it was devised to explain. While scientific protocol would normally demand that an alternative explanation be sought, there have been few challenges to "plume theory" on account of a series of intricate controls set up by the plume model which makes plumes seem to be an essential feature of the Earth. The hotspot frame acts not only as a reference but also controls plate tectonics. Accommodating plumes relegates mantle convection to a weak, sluggish effect such that basal drag appears as a minor, resisting force, with plates having to move themselves by boundary forces and continents having to be rifted by plumes. Correspondingly, the geochemical evolution of the mantle is controlled by the requirement to isolate subducted crust into plume sources which limits potential buffers on the composition of the MORB-source to plume- or lower mantle material. Crustal growth and Precambrian tectonics are controlled by interpretations of greenstone belts as oceanic plateaus generated by plumes. Challenges to any aspect of the plume model are thus liable to be dismissed unless a counter explanation is offered across the geodynamic spectrum influenced by "plume theory". Nonetheless, an alternative synthesis can be made based on longstanding petrological evidence for derivation of intraplate volcanism from volatile-bearing sources (wetspots) in conjunction with concepts dismissed for being incompatible or superfluous to "plume theory". In the alternative Earth, the sources for

  19. Attitude Dynamics and Stability of a Simple Solar Photon Thruster

    Directory of Open Access Journals (Sweden)

    Anna D. Guerman

    2013-01-01

    Full Text Available This paper is dedicated to the development of a model of the attitude dynamics for a nonideal Simple Solar Photon Thruster (SSPT and to the analysis of sailcraft motions with respect to their centre of mass. Derivation of the expressions for force and torque due to solar radiation that is valid for the case, when there is a misalignment of the SSPT axis with the sun direction, is followed by study of sailcraft dynamics and stability properties. Analysis of stability shows that an ideally reflecting sail is unstable, while for a sailcraft with nonideal collector, the symmetry axis is stable with respect to the Sun direction for large variety of system parameters. The motion around symmetry axis is always unstable and requires an active stabilizer.

  20. RHETT2/EPDM Hall Thruster Propulsion System Electromagnetic Compatibility Evaluation

    Science.gov (United States)

    Sarmiento, Charles J.; Sankovic, John M.; Freitas, Joseph; Lynn, Peter R.

    1997-01-01

    Electromagnetic compatibility measurements were obtained as part of the Electric Propulsion Demonstration Module (EPDM) flight qualification program. Tests were conducted on a Hall thruster system operating at a nominal 66O W discharge power. Measurements of conducted and radiated susceptibility and emissions were obtained and referenced to MEL-STD-461 C. The power processor showed some conducted susceptibility below 4 kHz for the magnet current and discharge voltage. Radiated susceptibility testing yielded a null result. Conducted emissions showed slight violations of the specified limit for MIL-461C CE03. Radiated emissions exceeded the RE02 standard at low frequencies, below 300 MHz, by up to 40 dB RV/m/MHz.