WorldWideScience

Sample records for three-point green functions

  1. Three-point Green's function of massless QED in position space to lowest order

    International Nuclear Information System (INIS)

    Mitra, Indrajit

    2009-01-01

    The transverse part of the three-point Green's function of massless QED is determined to the lowest order in position space. Taken together with the evaluation of the longitudinal part in Mitra (2008) (J. Phys. A: Math. Theor. 41 315401), this gives a relation for QED which is analogous to the star-triangle relation. We relate our result to conformal-invariant three-point functions

  2. New results on holographic three-point functions

    International Nuclear Information System (INIS)

    Bianchi, Massimo; Prisco, Maurizio; Mueck, Wolfgang

    2003-01-01

    We exploit a gauge invariant approach for the analysis of the equations governing the dynamics of active scalar fluctuations coupled to the fluctuations of the metric along holographic RG flows. In the present approach, a second order ODE for the active scalar emerges rather simply and makes it possible to use the Green's function method to deal with (quadratic) interaction terms. We thus fill a gap for active scalar operators, whose three-point functions have been inaccessible so far, and derive a general, explicitly Bose symmetric formula thereof. As an application we compute the relevant three-point function along the GPPZ flow and extract the irreducible trilinear couplings of the corresponding super glueballs by amputating the external legs on-shell. (author)

  3. OPE-RχT matching at order αs: hard gluonic corrections to three-point Green functions

    International Nuclear Information System (INIS)

    Jamin, Matthias; Mateu, Vicent

    2008-01-01

    In this work we push the matching between the QCD operator product expansion (OPE) and resonance chiral theory (RχT) to order α s . To this end we compute two- and three-point QCD Green functions (GFs) in both theories and compare the results. GFs which are order parameters of chiral symmetry breaking make this matching more transparent and thus we concentrate on those. On the OPE side one needs to calculate the hard-gluon virtual corrections to the quark condensate, and in particular for three-point GFs this computation was hitherto missing. We also discuss the need for including the infinite tower of hadronic states in the hadronic representation of the GF when non-analytic terms such as logarithms are present in the OPE Wilson coefficients

  4. Use of Green's functions in the numerical solution of two-point boundary value problems

    Science.gov (United States)

    Gallaher, L. J.; Perlin, I. E.

    1974-01-01

    This study investigates the use of Green's functions in the numerical solution of the two-point boundary value problem. The first part deals with the role of the Green's function in solving both linear and nonlinear second order ordinary differential equations with boundary conditions and systems of such equations. The second part describes procedures for numerical construction of Green's functions and considers briefly the conditions for their existence. Finally, there is a description of some numerical experiments using nonlinear problems for which the known existence, uniqueness or convergence theorems do not apply. Examples here include some problems in finding rendezvous orbits of the restricted three body system.

  5. Green function for three-wave coupling problems

    International Nuclear Information System (INIS)

    Molevich, N E

    2001-01-01

    The Green function is found for three-wave coupling problems. The function was used for analysis of parametric amplification in dissipative and active media. It is shown that the parametric increment in active media can become exponential. As an example, the nonstationary stimulated scattering of electromagnetic waves by sound and temperatures waves is considered. (nonlinear optical phenomena)

  6. Green function of a three-dimensional Wick problem

    International Nuclear Information System (INIS)

    Matveev, V.A.

    1988-01-01

    An exact solution of a three-dimensional Coulomb Wick-Cutkovsky problem has been obtained which possesses the hidden 0(4)-symmetry. Here we shell give the derivation of the corresponding Green function and consider its connection with the asymptoric behaviour of the scattering amplitude. 9 refs

  7. Aspects of the generation of finite-difference Green's function sequences for arbitrary 3-D cubic lattice points

    NARCIS (Netherlands)

    de Hon, B.P.; Arnold, J.M.

    2015-01-01

    The robust and speedy evaluation of lattice Green's functions LGFs) is crucial to the effectiveness of finite-difference Green's function diakoptics schemes. We have recently determined a generic recurrence scheme for the construction of scalar LGF sequences at arbitrary points on a 3-D cubic

  8. METHOD OF GREEN FUNCTIONS IN MATHEMATICAL MODELLING FOR TWO-POINT BOUNDARY-VALUE PROBLEMS

    Directory of Open Access Journals (Sweden)

    E. V. Dikareva

    2015-01-01

    Full Text Available Summary. In many applied problems of control, optimization, system theory, theoretical and construction mechanics, for problems with strings and nods structures, oscillation theory, theory of elasticity and plasticity, mechanical problems connected with fracture dynamics and shock waves, the main instrument for study these problems is a theory of high order ordinary differential equations. This methodology is also applied for studying mathematical models in graph theory with different partitioning based on differential equations. Such equations are used for theoretical foundation of mathematical models but also for constructing numerical methods and computer algorithms. These models are studied with use of Green function method. In the paper first necessary theoretical information is included on Green function method for multi point boundary-value problems. The main equation is discussed, notions of multi-point boundary conditions, boundary functionals, degenerate and non-degenerate problems, fundamental matrix of solutions are introduced. In the main part the problem to study is formulated in terms of shocks and deformations in boundary conditions. After that the main results are formulated. In theorem 1 conditions for existence and uniqueness of solutions are proved. In theorem 2 conditions are proved for strict positivity and equal measureness for a pair of solutions. In theorem 3 existence and estimates are proved for the least eigenvalue, spectral properties and positivity of eigenfunctions. In theorem 4 the weighted positivity is proved for the Green function. Some possible applications are considered for a signal theory and transmutation operators.

  9. Two- and three-point functions in Liouville theory

    International Nuclear Information System (INIS)

    Dorn, H.; Otto, H.J.

    1994-04-01

    Based on our generalization of the Goulian-Li continuation in the power of the 2D cosmological term we construct the two and three-point correlation functions for Liouville exponentials with generic real coefficients. As a strong argument in favour of the procedure we prove the Liouville equation of motion on the level of three-point functions. The analytical structure of the correlation functions as well as some of its consequences for string theory are discussed. This includes a conjecture on the mass shell condition for excitations of noncritical strings. We also make a comment concerning the correlation functions of the Liouville field itself. (orig.)

  10. Computing three-point functions for short operators

    International Nuclear Information System (INIS)

    Bargheer, Till; Institute for Advanced Study, Princeton, NJ; Minahan, Joseph A.; Pereira, Raul

    2013-11-01

    We compute the three-point structure constants for short primary operators of N=4 super Yang.Mills theory to leading order in 1/√(λ) by mapping the problem to a flat-space string theory calculation. We check the validity of our procedure by comparing to known results for three chiral primaries. We then compute the three-point functions for any combination of chiral and non-chiral primaries, with the non-chiral primaries all dual to string states at the first massive level. Along the way we find many cancellations that leave us with simple expressions, suggesting that integrability is playing an important role.

  11. Computing three-point functions for short operators

    Energy Technology Data Exchange (ETDEWEB)

    Bargheer, Till [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Institute for Advanced Study, Princeton, NJ (United States). School of Natural Sciences; Minahan, Joseph A.; Pereira, Raul [Uppsala Univ. (Sweden). Dept. of Physics and Astronomy

    2013-11-15

    We compute the three-point structure constants for short primary operators of N=4 super Yang.Mills theory to leading order in 1/√(λ) by mapping the problem to a flat-space string theory calculation. We check the validity of our procedure by comparing to known results for three chiral primaries. We then compute the three-point functions for any combination of chiral and non-chiral primaries, with the non-chiral primaries all dual to string states at the first massive level. Along the way we find many cancellations that leave us with simple expressions, suggesting that integrability is playing an important role.

  12. Three-point functions in N=4 SYM: the hexagon proposal at three loops

    Energy Technology Data Exchange (ETDEWEB)

    Eden, Burkhard [Institut für Mathematik & Institut für Physik, Humboldt-Universität zu Berlin,Zum großen Windkanal 6, D-12489 Berlin (Germany); Sfondrini, Alessandro [Institut für Theoretische Physik, ETH Zürich,Wolfgang-Pauli-Str. 27, CH-8093 Zürich (Switzerland)

    2016-02-24

    Basso, Komatsu and Vieira recently proposed an all-loop framework for the computation of three-point functions of single-trace operators of N=4 super-Yang-Mills, the “hexagon program”. This proposal results in several remarkable predictions, including the three-point function of two protected operators with an unprotected one in the SU(2) and SL(2) sectors. Such predictions consist of an “asymptotic” part — similar in spirit to the asymptotic Bethe Ansatz of Beisert and Staudacher for two-point functions — as well as additional finite-size “wrapping” Lüscher-like corrections. The focus of this paper is on such wrapping corrections, which we compute at three-loops in the SL(2) sector. The resulting structure constants perfectly match the ones obtained in the literature from four-point correlators of protected operators.

  13. Three point functions in the large N=4 holography

    International Nuclear Information System (INIS)

    Ahn, Changhyun; Kim, Hyunsu

    2015-01-01

    Sixteen higher spin currents with spins (1,(3/2),(3/2),2), ((3/2),2,2,(5/2)), ((3/2),2,2,(5/2)), and (2,(5/2),(5/2),3) were previously obtained in an extension of the large N=4 ‘nonlinear’ superconformal algebra in two dimensions. By carefully analyzing the zero-mode eigenvalue equations, three-point functions of bosonic (higher spin) currents are obtained with two scalars for any finite N (where SU(N+2) is the group of coset) and k (the level of spin-1 Kac Moody current). Furthermore, these 16 higher spin currents are implicitly obtained in an extension of large N=4 ‘linear’ superconformal algebra for generic N and k. The corresponding three-point functions are also determined. Under the large N ’t Hooft limit, the two corresponding three-point functions in the nonlinear and linear versions coincide even though they are completely different for finite N and k.

  14. Modeling the NPE with finite sources and empirical Green`s functions

    Energy Technology Data Exchange (ETDEWEB)

    Hutchings, L.; Kasameyer, P.; Goldstein, P. [Lawrence Livermore National Lab., CA (United States)] [and others

    1994-12-31

    In order to better understand the source characteristics of both nuclear and chemical explosions for purposes of discrimination, we have modeled the NPE chemical explosion as a finite source and with empirical Green`s functions. Seismograms are synthesized at four sties to test the validity of source models. We use a smaller chemical explosion detonated in the vicinity of the working point to obtain empirical Green`s functions. Empirical Green`s functions contain all the linear information of the geology along the propagation path and recording site, which are identical for chemical or nuclear explosions, and therefore reduce the variability in modeling the source of the larger event. We further constrain the solution to have the overall source duration obtained from point-source deconvolution results. In modeling the source, we consider both an elastic source on a spherical surface and an inelastic expanding spherical volume source. We found that the spherical volume solution provides better fits to observed seismograms. The potential to identify secondary sources was examined, but the resolution is too poor to be definitive.

  15. Sourcewise represented green's function of the circular waveguide

    International Nuclear Information System (INIS)

    Prijmenko, S.D.; Bondarenko, L.A.

    2007-01-01

    Singular part of the Green's function of unbounded space is singled out in explicit form and contains all singularities, including a delta-shaped singularity. The problem of construction of Green's function for a field is solved, as a problem for diffraction of potential and rotational components electric field intensity of a point current source on the circular waveguide walls. The singling out of the electric field intensity singularity in an explicit form about a source enables to develop an effective algorithm of Green's function calculation at any distance between the source point and observation point in a circular waveguide

  16. On the regularization of extremal three-point functions involving giant gravitons

    Directory of Open Access Journals (Sweden)

    Charlotte Kristjansen

    2015-11-01

    Full Text Available In the AdS5/CFT4 set-up, extremal three-point functions involving two giant 1/2 BPS gravitons and one point-like 1/2 BPS graviton, when calculated using semi-classical string theory methods, match the corresponding three-point functions obtained in the tree-level gauge theory. The string theory computation relies on a certain regularization procedure whose justification is based on the match between gauge and string theory. We revisit the regularization procedure and reformulate it in a way which allows a generalization to the ABJM set-up where three-point functions of 1/2 BPS operators are not protected and where a match between tree-level gauge theory and semi-classical string theory is hence not expected.

  17. Semiclassical initial value approximation for Green's function.

    Science.gov (United States)

    Kay, Kenneth G

    2010-06-28

    A semiclassical initial value approximation is obtained for the energy-dependent Green's function. For a system with f degrees of freedom the Green's function expression has the form of a (2f-1)-dimensional integral over points on the energy surface and an integral over time along classical trajectories initiated from these points. This approximation is derived by requiring an integral ansatz for Green's function to reduce to Gutzwiller's semiclassical formula when the integrations are performed by the stationary phase method. A simpler approximation is also derived involving only an (f-1)-dimensional integral over momentum variables on a Poincare surface and an integral over time. The relationship between the present expressions and an earlier initial value approximation for energy eigenfunctions is explored. Numerical tests for two-dimensional systems indicate that good accuracy can be obtained from the initial value Green's function for calculations of autocorrelation spectra and time-independent wave functions. The relative advantages of initial value approximations for the energy-dependent Green's function and the time-dependent propagator are discussed.

  18. The Euclidean three-point function in loop and perturbative gravity

    International Nuclear Information System (INIS)

    Rovelli, Carlo; Zhang Mingyi

    2011-01-01

    We compute the leading order of the three-point function in loop quantum gravity, using the vertex expansion of the Euclidean version of the new spin foam dynamics, in the region of γ < 1. We find results consistent with Regge calculus in the limit γ → 0, j → ∞. We also compute the tree-level three-point function of perturbative quantum general relativity in position space and discuss the possibility of directly comparing the two results.

  19. Three-point correlation functions of giant magnons with finite size

    International Nuclear Information System (INIS)

    Ahn, Changrim; Bozhilov, Plamen

    2011-01-01

    We compute holographic three-point correlation functions or structure constants of a zero-momentum dilaton operator and two (dyonic) giant magnon string states with a finite-size length in the semiclassical approximation. We show that the semiclassical structure constants match exactly with the three-point functions between two su(2) magnon single trace operators with finite size and the Lagrangian in the large 't Hooft coupling constant limit. A special limit J>>√(λ) of our result is compared with the relevant result based on the Luescher corrections.

  20. Green's function for a generalized two-dimensional fluid.

    Science.gov (United States)

    Iwayama, Takahiro; Watanabe, Takeshi

    2010-09-01

    A Green's function for a generalized two-dimensional (2D) fluid in an unbounded domain (the so-called α turbulence system) is discussed. The generalized 2D fluid is characterized by a relationship between an advected quantity q and the stream function ψ : namely, q=-(-Δ){α/2}ψ . Here, α is a real number and q is referred to as the vorticity. In this study, the Green's function refers to the stream function produced by a delta-functional distribution of q , i.e., a point vortex with unit strength. The Green's function has the form G{(α)}(r)∝r{α-2} , except when α is an even number, where r is the distance from the point vortex. This functional form is known as the Riesz potential. When α is a positive even number, the logarithmic correction to the Riesz potential has the form G(r){(α)}∝r{α-2} ln r . In contrast, when α is a negative even number, G{(α)} is given by the higher-order Laplacian of the delta function. The transition of the small-scale behavior of q at α=2 , a well-known property of forced and dissipative α turbulence, is explained in terms of the Green's function. Moreover, the azimuthal velocity around the point vortex is derived from the Green's function. The functional form of the azimuthal velocity indicates that physically realizable systems for the generalized 2D fluid exist only when α≤3 . The Green's function and physically realizable systems for an anisotropic generalized 2D fluid are presented as an application of the present study.

  1. Green's functions through so(2,1) lie algebra in nonrelativistic quantum mechanics

    International Nuclear Information System (INIS)

    Boschi-Filho, H.; Vaidya, A.N.

    1991-01-01

    The authors discuss an algebraic technique to construct the Green's function for systems described by the noncompact so(2,1) Lie algebra. They show that this technique solves the one-dimensional linear oscillator and Coulomb potentials and also generates particular solutions for other one-dimensional potentials. Then they construct explicitly the Green's function for the three-dimensional oscillator and the three-dimensional Coulomb potential, which are generalizations of the one-dimensional cases, and the Coulomb plus an Aharanov-Bohm, potential. They discuss the dynamical algebra involved in each case and also find their wave functions and bound state spectra. Finally they introduce in each case and also find their wave functions and bound state spectra. Finally they introduce a point canonical transformation in the generators of so(2,10) Lie algebra, show that this procedure permits us to solve the one-dimensional Morse potential in addition to the previous cases, and construct its Green's function and find its energy spectrum and wave functions

  2. Two- and three-point functions in the D=1 matrix model

    International Nuclear Information System (INIS)

    Ben-Menahem, S.

    1991-01-01

    The critical behavior of the genus-zero two-point function in the D=1 matrix model is carefully analyzed for arbitrary embedding-space momentum. Kostov's result is recovered for momenta below a certain value P 0 (which is 1/√α' in the continuum language), with a non-universal form factor which is expressed simply in terms of the critical fermion trajectory. For momenta above P 0 , the Kostov scaling term is found to be subdominant. We then extend the large-N WKB treatment to calculate the genus-zero three-point function, and elucidate its critical behavior when all momenta are below P 0 . The resulting universal scaling behavior, as well as the non-universal form factor for the three-point function, are related to the two-point functions of the individual external momenta, through the factorization familiar from continuum conformal field theories. (orig.)

  3. Off-Shell Green Functions: One-Loop with Growing Legs

    International Nuclear Information System (INIS)

    Bashir, A.; Concha-Sanchez, Y.; Delbourgo, R.; Tejeda-Yeomans, M. E.

    2008-01-01

    One loop calculations in gauge theories in arbitrary gauge and dimensions become exceedingly hard with growing number of external off-shell legs. Let alone higher point functions, such a calculation for even the three point one-loop vertices for quantum electrodynamics (QED) and quantum chromodynamics (QCD) has been made available only recently. In this article, we discuss how Ward-Fradkin-Green-Takahashi identities (WFGTI) may provide a helpful tool in these computations. After providing a glimpse of our suggestion for the case of the 3-point vertex, we present our preliminary findings towards our similar efforts for the 4-point function. We restrict ourselves to the example of scalar quantum electrodynamics (SQED)

  4. Finite-difference Green's functions on a 3-D cubic lattice - Integer versus fixed-precision arithmetic recurrence schemes

    NARCIS (Netherlands)

    De Hon, B. P.; Arnold, J. M.

    2016-01-01

    Time-domain 3-D lattice Green's function (LGF) sequences can be evaluated using a single-lattice point recurrence scheme, and play an important role in finite-difference Green's function diakoptics. Asymptotically, at large distances, the LGFs in three dimensions can be described in terms of six

  5. The correlation function for density perturbations in an expanding universe. III The three-point and predictions of the four-point and higher order correlation functions

    Science.gov (United States)

    Mcclelland, J.; Silk, J.

    1978-01-01

    Higher-order correlation functions for the large-scale distribution of galaxies in space are investigated. It is demonstrated that the three-point correlation function observed by Peebles and Groth (1975) is not consistent with a distribution of perturbations that at present are randomly distributed in space. The two-point correlation function is shown to be independent of how the perturbations are distributed spatially, and a model of clustered perturbations is developed which incorporates a nonuniform perturbation distribution and which explains the three-point correlation function. A model with hierarchical perturbations incorporating the same nonuniform distribution is also constructed; it is found that this model also explains the three-point correlation function, but predicts different results for the four-point and higher-order correlation functions than does the model with clustered perturbations. It is suggested that the model of hierarchical perturbations might be explained by the single assumption of having density fluctuations or discrete objects all of the same mass randomly placed at some initial epoch.

  6. Three Point Functions in Higher Spin AdS3 Holography with 1/N Corrections

    Directory of Open Access Journals (Sweden)

    Yasuaki Hikida

    2017-10-01

    Full Text Available We examine three point functions with two scalar operators and a higher spin current in 2d W N minimal model to the next non-trivial order in 1 / N expansion. The minimal model was proposed to be dual to a 3d higher spin gauge theory, and 1 / N corrections should be interpreted as quantum effects in the dual gravity theory. We develop a simple and systematic method to obtain three point functions by decomposing four point functions of scalar operators with Virasoro conformal blocks. Applying the method, we reproduce known results at the leading order in 1 / N and obtain new ones at the next leading order. As confirmation, we check that our results satisfy relations among three point functions conjectured before.

  7. The Green's function method for critical heterogeneous slabs

    International Nuclear Information System (INIS)

    Kornreich, D.E.

    1996-01-01

    Recently, the Green's Function Method (GFM) has been employed to obtain benchmark-quality results for nuclear engineering and radiative transfer calculations. This was possible because of fast and accurate calculations of the Green's function and the associated Fourier and Laplace transform inversions. Calculations have been provided in one-dimensional slab geometries for both homogeneous and heterogeneous media. A heterogeneous medium is analyzed as a series of homogeneous slabs, and Placzek's lemma is used to extend each slab to infinity. This allows use of the infinite medium Green's function (the anisotropic plane source in an infinite homogeneous medium) in the solution. To this point, a drawback of the GFM has been the limitation to media with c 1; however, mathematical solutions exist which result in oscillating Green's functions. Such calculations are briefly discussing. The limitation to media with c < 1 has been relaxed so that the Green's function may also be calculated for media with c ≥ 1. Thus, materials that contain fissionable isotopes may be modeled

  8. Representation of the three-body Coulomb Green's function in parabolic coordinates: paths of integration

    International Nuclear Information System (INIS)

    Zaytsev, S A

    2010-01-01

    The possibility of using straight-line paths of integration in computing the integral representation of the three-body Coulomb Green's function is discussed. In our numerical examples two different kinds of integration contours in the complex energy planes are considered. It is demonstrated that straight-line paths, which cross the positive real axis, are suitable for numerical computation.

  9. Anomalies in Ward identities revisited. Explicit calculation of the three point functions

    International Nuclear Information System (INIS)

    Dalmolin, Fabricio Tronco

    2007-01-01

    others already performed within the same issue. In particular, in one of such investigation a pioneer and traditional reference has been revisited by using the alternative strategy mentioned above. In such study, a systematic treatment of purely fermionic one, two and three point functions, associated to scalar, pseudo-scalar, vector and axial-vector densities, has done. There, however, only the explicit expressions for one and two point functions were developed. The conclusions pointed out, in a very clear way, that the association between intrinsic ambiguities of the perturbative calculation and violations in symmetry properties is not consistent. At the same time, it was concluded that only in an investigation where the explicit forms for the three point functions involved are considered clean and sound conclusions can be extracted. This is due to the fact that, in the relevant symmetry properties, it is involved three ward identities and a low energy limit. This is precisely the main purpose of the present work: to promote a detailed investigation of the relations among green functions and ward identities, within the context of a model having only one specie of 1/2 spin fermionic field, that consider all the amplitudes having superficial degree of divergence higher than the logarithmic one, in a similar way as that made in the work of Gerstein and Jackiw, taking however the explicit form for the three point functions. This is one to get in the analysis, simultaneously, the ward identities and the low energy limits involved in the anomalous amplitudes as required by the Sutherland-Veltman theorem, in order to get an adequate understanding of the anomaly phenomena. We will show that our final results can be mapped in those found with the use of the Dimensional Regularization, in situation where this technique can be applied, or in those of Gerstein and Jackiw, however with conflicting interpretations. Finally, we will show that in the context of the adopted technique

  10. Binary operators and their Green's functions

    International Nuclear Information System (INIS)

    Sheff, J.R.

    1982-01-01

    Three topics are considered. First, the Langevin approach to neutron noise is used as a basis and guide to develop solutions and solution techniques for the ChapmanKolmogorov forward equation approach to neutron noise. The approach followed throughout this first part is that of solution by means of Green's functions. A particular form for the binary operator Green's function was picked on the basis of the Langevin method. Second, the basic solution technique using the particular Green's function form mentioned above is proven to be a correct and a general result. It is proven that the binary operator is always separable and that the Green's function could be written as the product of two single operator Green's functions. This is a new result. Third and finally, the forward equation approach of Chapman-Kolmogorov is generalized to include time allowing differential equations for second and higher order correlation functions to be developed directly. The principal result of the last section, the differential equation for correlation function of the neutron density, is new. Its derivation is really outside of or broader than the scope indicated by the title of the paper

  11. Time-domain Green's Function Method for three-dimensional nonlinear subsonic flows

    Science.gov (United States)

    Tseng, K.; Morino, L.

    1978-01-01

    The Green's Function Method for linearized 3D unsteady potential flow (embedded in the computer code SOUSSA P) is extended to include the time-domain analysis as well as the nonlinear term retained in the transonic small disturbance equation. The differential-delay equations in time, as obtained by applying the Green's Function Method (in a generalized sense) and the finite-element technique to the transonic equation, are solved directly in the time domain. Comparisons are made with both linearized frequency-domain calculations and existing nonlinear results.

  12. How to use retarded Green's functions in de Sitter spacetime

    International Nuclear Information System (INIS)

    Higuchi, Atsushi; Cheong, Lee Yen

    2008-01-01

    We demonstrate in examples that the covariant retarded Green's functions in electromagnetism and linearized gravity work as expected in de Sitter spacetime. We first clarify how retarded Green's functions should be used in spacetimes with spacelike past infinity such as de Sitter spacetime. In particular, we remind the reader of a general formula which gives the field for given initial data on a Cauchy surface and a given source (a charge or stress-energy tensor distribution) in its future. We then apply this formula to three examples: (i) electromagnetism in the future of a Cauchy surface in Minkowski spacetime, (ii) electromagnetism in de Sitter spacetime, and (iii) linearized gravity in de Sitter spacetime. In each example the field is reproduced correctly as predicted by the general argument. In the third example we construct a linearized gravitational field from two equal point masses located at the 'North and South Poles' which is nonsingular on the cosmological horizon and satisfies a covariant gauge condition and show that this field is reproduced by the retarded Green's function with corresponding gauge parameters.

  13. Green's function for anti--de Sitter space gravity

    International Nuclear Information System (INIS)

    Kleppe, G.

    1994-01-01

    We solve for the retarded Green's function for linearized gravity in a background with a negative cosmological constant, anti--de Sitter space. In this background, it is possible for a signal to reach spatial infinity in a finite time. Therefore the form of the Green's function depends on a choice of boundary condition at spatial infinity. We take as our condition that a signal which reaches infinity should be lost, not reflected back. We calculate the Green's function associated with this condition, and show that it reproduces the correct classical solution for a point mass at the origin, the anti--de Sitter--Schwarzschild solution

  14. POSITIVE SOLUTIONS OF A NONLINEAR THREE-POINT EIGENVALUE PROBLEM WITH INTEGRAL BOUNDARY CONDITIONS

    Directory of Open Access Journals (Sweden)

    FAOUZI HADDOUCHI

    2015-11-01

    Full Text Available In this paper, we study the existence of positive solutions of a three-point integral boundary value problem (BVP for the following second-order differential equation u''(t + \\lambda a(tf(u(t = 0; 0 0 is a parameter, 0 <\\eta < 1, 0 <\\alpha < 1/{\\eta}. . By using the properties of the Green's function and Krasnoselskii's fixed point theorem on cones, the eigenvalue intervals of the nonlinear boundary value problem are considered, some sufficient conditions for the existence of at least one positive solutions are established.

  15. Plant species and functional group combinations affect green roof ecosystem functions.

    Science.gov (United States)

    Lundholm, Jeremy; Macivor, J Scott; Macdougall, Zachary; Ranalli, Melissa

    2010-03-12

    Green roofs perform ecosystem services such as summer roof temperature reduction and stormwater capture that directly contribute to lower building energy use and potential economic savings. These services are in turn related to ecosystem functions performed by the vegetation layer such as radiation reflection and transpiration, but little work has examined the role of plant species composition and diversity in improving these functions. We used a replicated modular extensive (shallow growing- medium) green roof system planted with monocultures or mixtures containing one, three or five life-forms, to quantify two ecosystem services: summer roof cooling and water capture. We also measured the related ecosystem properties/processes of albedo, evapotranspiration, and the mean and temporal variability of aboveground biomass over four months. Mixtures containing three or five life-form groups, simultaneously optimized several green roof ecosystem functions, outperforming monocultures and single life-form groups, but there was much variation in performance depending on which life-forms were present in the three life-form mixtures. Some mixtures outperformed the best monocultures for water capture, evapotranspiration, and an index combining both water capture and temperature reductions. Combinations of tall forbs, grasses and succulents simultaneously optimized a range of ecosystem performance measures, thus the main benefit of including all three groups was not to maximize any single process but to perform a variety of functions well. Ecosystem services from green roofs can be improved by planting certain life-form groups in combination, directly contributing to climate change mitigation and adaptation strategies. The strong performance by certain mixtures of life-forms, especially tall forbs, grasses and succulents, warrants further investigation into niche complementarity or facilitation as mechanisms governing biodiversity-ecosystem functioning relationships in green

  16. Green function of the model two-centre quantum-mechanical problem

    International Nuclear Information System (INIS)

    Khoma, M.V.; Lazur, V.Yu.

    2002-01-01

    The expansions of a Green function for the Simmons molecular potential (SMP) in terms of spheroidal function are built. The solutions of degenerate hypergeometric equation are used as basis function system while expanding regular and irregular model spheroidal functions into series. Rather simple three-terms recurrence relations are obtained for the coefficients of these expansions. Much attentions is given to different asymptotic representation as well as Sturmian expansions of the Green function of the two-centre SMP wave functions. In all cases considered the Green function is reduced to the form similar to the Hostler's representation of the Coulomb Green function

  17. On toroidal Green close-quote s functions

    International Nuclear Information System (INIS)

    Bates, J.W.

    1997-01-01

    Green close-quote s functions are valuable analytical tools for solving a myriad of boundary-value problems in mathematical physics. Here, Green close-quote s functions of the Laplacian and biharmonic operators are derived for a three-dimensional toroidal domain. In some sense, the former result may be regarded as open-quotes standard,close quotes but the latter is most certainly not. It is shown that both functions can be constructed to have zero value on a specified toroidal surface with a circular cross section. Additionally, the Green close-quote s function of the biharmonic operator may be chosen to have the property that its normal derivative also vanishes there. A open-quotes torsionalclose quotes Green close-quote s function is derived for each operator which is useful in solving some boundary-value problems involving axisymmetric vector equations. Using this approach, the magnetic vector potential of a wire loop is computed as a simple example. copyright 1997 American Institute of Physics

  18. Surface green function matching for a three-dimensional non-local continuum

    International Nuclear Information System (INIS)

    Idiodi, J.O.A.

    1985-07-01

    With a view toward helping to bridge the gap, from the continuum side, between discrete and continuum models of crystalline, elastic solids, explicit results are presented for non-local stress tensors that describe exactly some lattice dynamical models that have been widely used in the literature for cubic lattices. The Surface Green Function Matching (SGFM) method, which has been used successfully for a variety of surface problems, is then extended, within a continuum approach, to a non-local continuum that models a three-dimensional discrete lattice. The practical use of the method is demonstrated by performing a fairly complete analytical study of the vibrational surface modes of the SCC semi-infinite medium. Some results are presented for the [100] direction of the (001) surface of the SCC lattice. (author)

  19. Unified double- and single-sided homogeneous Green's function representations

    Science.gov (United States)

    Wapenaar, Kees; van der Neut, Joost; Slob, Evert

    2016-06-01

    In wave theory, the homogeneous Green's function consists of the impulse response to a point source, minus its time-reversal. It can be represented by a closed boundary integral. In many practical situations, the closed boundary integral needs to be approximated by an open boundary integral because the medium of interest is often accessible from one side only. The inherent approximations are acceptable as long as the effects of multiple scattering are negligible. However, in case of strongly inhomogeneous media, the effects of multiple scattering can be severe. We derive double- and single-sided homogeneous Green's function representations. The single-sided representation applies to situations where the medium can be accessed from one side only. It correctly handles multiple scattering. It employs a focusing function instead of the backward propagating Green's function in the classical (double-sided) representation. When reflection measurements are available at the accessible boundary of the medium, the focusing function can be retrieved from these measurements. Throughout the paper, we use a unified notation which applies to acoustic, quantum-mechanical, electromagnetic and elastodynamic waves. We foresee many interesting applications of the unified single-sided homogeneous Green's function representation in holographic imaging and inverse scattering, time-reversed wave field propagation and interferometric Green's function retrieval.

  20. Classical integrability for three-point functions: cognate structure at weak and strong couplings

    Energy Technology Data Exchange (ETDEWEB)

    Kazama, Yoichi [Research Center for Mathematical Physics, Rikkyo University,Toshima-ku, Tokyo 171-8501 (Japan); Quantum Hadron Physics Laboratory, RIKEN Nishina Center, Wako 351-0198 (Japan); Institute of Physics, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902 (Japan); Komatsu, Shota [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, Ontario, N2L 2Y5 (Canada); Nishimura, Takuya [Institute of Physics, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902 (Japan)

    2016-10-10

    In this paper, we develop a new method of computing three-point functions in the SU(2) sector of the N=4 super Yang-Mills theory in the semi-classical regime at weak coupling, which closely parallels the strong coupling analysis. The structure threading two disparate regimes is the so-called monodromy relation, an identity connecting the three-point functions with and without the insertion of the monodromy matrix. We shall show that this relation can be put to use directly for the semi-classical regime, where the dynamics is governed by the classical Landau-Lifshitz sigma model. Specifically, it reduces the problem to a set of functional equations, which can be solved once the analyticity in the spectral parameter space is specified. To determine the analyticity, we develop a new universal logic applicable at both weak and strong couplings. As a result, compact semi-classical formulas are obtained for a general class of three-point functions at weak coupling including the ones whose semi-classical behaviors were not known before. In addition, the new analyticity argument applied to the strong coupling analysis leads to a modification of the integration contour, producing the results consistent with the recent hexagon bootstrap approach. This modification also makes the Frolov-Tseytlin limit perfectly agree with the weak coupling form.

  1. The method of images and Green's function for spherical domains

    International Nuclear Information System (INIS)

    Gutkin, Eugene; Newton, Paul K

    2004-01-01

    Motivated by problems in electrostatics and vortex dynamics, we develop two general methods for constructing Green's function for simply connected domains on the surface of the unit sphere. We prove a Riemann mapping theorem showing that such domains can be conformally mapped to the upper hemisphere. We then categorize all domains on the sphere for which Green's function can be constructed by an extension of the classical method of images. We illustrate our methods by several examples, such as the upper hemisphere, geodesic triangles, and latitudinal rectangles. We describe the point vortex motion in these domains, which is governed by a Hamiltonian determined by the Dirichlet Green's function

  2. R-current three-point functions in 4d $\\mathcal{N}=1$ superconformal theories arXiv

    CERN Document Server

    Manenti, Andrea; Vichi, Alessandro

    In 4d $\\mathcal{N}=1$ superconformal field theories (SCFTs) the R-symmetry current, the stress-energy tensor, and the supersymmetry currents are grouped into a single object, the Ferrara--Zumino multiplet. In this work we study the most general form of three-point functions involving two Ferrara--Zumino multiplets and a third generic multiplet. We solve the constraints imposed by conservation in superspace and show that non-trivial solutions can only be found if the third multiplet is R-neutral and transforms in suitable Lorentz representations. In the process we give a prescription for counting independent tensor structures in superconformal three-point functions. Finally, we set the Grassmann coordinates of the Ferrara--Zumino multiplets to zero and extract all three-point functions involving two R-currents and a third conformal primary. Our results pave the way for bootstrapping the correlation function of four R-currents in 4d $\\mathcal{N}=1$ SCFTs.

  3. Integrals of the motion, Green functions, and coherent states of dynamical systems

    International Nuclear Information System (INIS)

    Dodonov, V.V.; Malkin, I.A.; Man'ko, V.I.

    1975-01-01

    The connection between the integrals of the motion of a quantum system and its Green function is established. The Green function is shown to be the eigenfunction of the integrals of the motion which describe initial points of the system trajectory in the phase space of average coordinates and moments. The explicit expressions for the Green functions of the N-dimensional system with the Hamiltonians which is the most general quadratic form of coordinates and momenta with time-dependent coefficients is obtained in coordinate, momentum, and coherent states representations. The Green functions of the nonstationary singular oscillator and of the stationary Schroedinger equation are also obtained. (author)

  4. Appell functions and the scalar one-loop three-point integrals in Feynman diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Cabral-Rosetti, L G [Departamento de Posgrado, Centro Interdisciplinario de Investigacion y Docencia en Educacion Tecnica (CIIDET), Av. Universidad 282 Pte., Col. Centro, A. Postal 752, C.P. 76000, Santiago de Queretaro, Qro. (Mexico); Sanchis-Lozano, M A [Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, 46100 Burjassot, Valencia (Spain)

    2006-05-15

    The scalar three-point function appearing in one-loop Feynman diagrams is compactly expressed in terms of a generalized hypergeometric function of two variables. Use is made of the connection between such Appell function and dilogarithms coming from a previous investigation. Special cases are obtained for particular values of internal masses and external momenta.

  5. Green function on product networks

    OpenAIRE

    Arauz Lombardía, Cristina; Carmona Mejías, Ángeles; Encinas Bachiller, Andrés Marcos

    2012-01-01

    Our objective is to determine the Green function of product networks in terms of the Green function of one of the factor networks and the eigenvalues and eigenfunctions of the Schr odinger operator of the other factor network, which we consider that are known. Moreover, we use these results to obtain the Green function of spider networks in terms of Green functions over cicles and paths. Peer Reviewed

  6. On nonseparated three-point boundary value problems for linear functional differential equations

    Czech Academy of Sciences Publication Activity Database

    Rontó, András; Rontó, M.

    2011-01-01

    Roč. 2011, - (2011), s. 326052 ISSN 1085-3375 Institutional research plan: CEZ:AV0Z10190503 Keywords : functional-differential equation * three-point boundary value problem * nonseparated boundary condition Subject RIV: BA - General Mathematics Impact factor: 1.318, year: 2011 http://www.hindawi.com/journals/ aaa /2011/326052/

  7. Calculation of the Green functions by the coupling constant dispersion relations

    International Nuclear Information System (INIS)

    Bogomalny, E.B.

    1977-01-01

    The discontinuities of the Green functions on the cut in the complex plane of the coupling constant are calculated by the steepest descent method. The saddle points are given by the solutions of the classical field equations at those values of the coupling constant for which the classical theory has no ground state. The Green functions at the physical values of the coupling constant are determined by dispersion relations. (Auth.)

  8. A Monte Carlo Green's function method for three-dimensional neutron transport

    International Nuclear Information System (INIS)

    Gamino, R.G.; Brown, F.B.; Mendelson, M.R.

    1992-01-01

    This paper describes a Monte Carlo transport kernel capability, which has recently been incorporated into the RACER continuous-energy Monte Carlo code. The kernels represent a Green's function method for neutron transport from a fixed-source volume out to a particular volume of interest. This method is very powerful transport technique. Also, since kernels are evaluated numerically by Monte Carlo, the problem geometry can be arbitrarily complex, yet exact. This method is intended for problems where an ex-core neutron response must be determined for a variety of reactor conditions. Two examples are ex-core neutron detector response and vessel critical weld fast flux. The response is expressed in terms of neutron transport kernels weighted by a core fission source distribution. In these types of calculations, the response must be computed for hundreds of source distributions, but the kernels only need to be calculated once. The advance described in this paper is that the kernels are generated with a highly accurate three-dimensional Monte Carlo transport calculation instead of an approximate method such as line-of-sight attenuation theory or a synthesized three-dimensional discrete ordinates solution

  9. Scalar Green's functions in an Euclidean space with a conical-type line singularity

    International Nuclear Information System (INIS)

    Guimaraes, M.E.X.; Linet, B.

    1994-01-01

    In an Euclidean space with a conical-type line singularity, we determine the Green's function for a charged massive scalar field interacting with a magnetic flux running through the line singularity. We give an integral expression of the Green's function and a local form in the neighbourhood of the point source, where it is the sum of the usual Green's function in Euclidean space and a regular term. As an application, we derive the vacuum energy-momentum tensor in the massless case for an arbitrary magnetic flux. (orig.)

  10. On the vanishing of multiloop contributions to the 0-, 1-, 2-, 3-point functions in the Green-Schwarz formalism for heterotic strings

    International Nuclear Information System (INIS)

    Kallosh, R.; Morosov, A.

    1988-01-01

    We analyse the structure of insertions arising in multiloop calculations in the first-quantized version of the Green-Schwarz formalism. We show that at least four constant zero modes of grassmannian Θ-fields related to space-time supersymmetry are not removed by insertions. The occurrence of these zero modes straightforwardly leads to non-renormalization theorems, which imply that all 0-, 1-, 2-, 3-point functions vanish. (orig.)

  11. The three-point correlation function of the cosmic microwave background in inflationary models

    CERN Document Server

    Gangui, Alejandro; Matarrese, Sabino; Mollerach, Silvia

    1994-01-01

    We analyze the temperature three-point correlation function and the skewness of the Cosmic Microwave Background (CMB), providing general relations in terms of multipole coefficients. We then focus on applications to large angular scale anisotropies, such as those measured by the {\\em COBE} DMR, calculating the contribution to these quantities from primordial, inflation generated, scalar perturbations, via the Sachs--Wolfe effect. Using the techniques of stochastic inflation we are able to provide a {\\it universal} expression for the ensemble averaged three-point function and for the corresponding skewness, which accounts for all primordial second-order effects. These general expressions would moreover apply to any situation where the bispectrum of the primordial gravitational potential has a {\\em hierarchical} form. Our results are then specialized to a number of relevant models: power-law inflation driven by an exponential potential, chaotic inflation with a quartic and quadratic potential and a particular c...

  12. Dirac Coulomb Green's function and its application to relativistic Rayleigh scattering

    International Nuclear Information System (INIS)

    Wong, M.K.F.; Yeh, E.H.Y.

    1985-01-01

    The Dirac Coulomb Green's function is obtained in both coordinate and momentum space. The Green's function in coordinate space is obtained by the eigenfunction expansion method in terms of the wave functions obtained by Wong and Yeh. The result is simpler than those obtained previously by other authors, in that the radial part for each component contains one term only instead of four terms. Our Green's function reduces to the Schroedinger Green's function upon some simple conditions, chiefly by neglecting the spin and replacing lambda by l. The Green's function in momentum space is obtained as the Fourier transform of the coordinate space Green's function, and is expressed in terms of basically three types of functions: (1) F/sub A/ (α; β 1 β 2 β 3 ; γ 1 γ 2 γ 3 ; z 1 z 2 z 3 ), (2) the hypergeometric function, and (3) spherical harmonics. The matrix element for Rayleigh scattering, or elastic Compton scattering, from relativistically bound electrons is then obtained in analytically closed form. The matrix element is written basically in terms of the coordinate space Dirac Coulomb Green's function. The technique used in the evaluation of the matrix element is based on the calculation of the momentum space Dirac Coulomb Green's function. Finally the relativistic result is compared with the nonrelativistic result

  13. Green's function for a neutral particle of spin 1/2 in a magnetic field

    International Nuclear Information System (INIS)

    Rodrigues, Rafael de Lima; Vaidya, Arvind Narayan

    2001-12-01

    Using the spectral theorema in context of Green's function in momentum space of neutrons in the magnetic field of a linear conductor with current the bound state energy spectrum and eigenfunctions are deduced. It's also pointed out that this problem present a new scenary of Green's function in non-relativistic quantum mechanics. (author)

  14. From green architecture to architectural green

    DEFF Research Database (Denmark)

    Earon, Ofri

    2011-01-01

    that describes the architectural exclusivity of this particular architecture genre. The adjective green expresses architectural qualities differentiating green architecture from none-green architecture. Currently, adding trees and vegetation to the building’s facade is the main architectural characteristics...... they have overshadowed the architectural potential of green architecture. The paper questions how a green space should perform, look like and function. Two examples are chosen to demonstrate thorough integrations between green and space. The examples are public buildings categorized as pavilions. One......The paper investigates the topic of green architecture from an architectural point of view and not an energy point of view. The purpose of the paper is to establish a debate about the architectural language and spatial characteristics of green architecture. In this light, green becomes an adjective...

  15. Analysis of the phonon surface specific heat using Green function techniques

    International Nuclear Information System (INIS)

    Silva Carrico, A. da; Albuquerque, E.L. de

    1981-01-01

    Green functions are derived for the displacement associated with acoustic vibrations in isotropic elastic media and used to evaluate the surface specific heat in the harmonic approximation. Only the low-temperature limit case is considered since, provided K sub(B) T/h is very small, the dispersion relation for the three acoustic branches can be replaced by its long-wavelenght form. The contributions of surface elastic waves of the Rayleigh and Love types are pointed out and their features discussed. The nature of the result and their relations to previous work in this field is also presented and discussed. (Author) [pt

  16. Analysis of the phonon surface specific heat using Green function techniques

    International Nuclear Information System (INIS)

    Carrico, A.S.; Albuquerque, E.L.

    1980-01-01

    Green functions are derived for the displacement associated with acoustic vibrations in isotropic elastic media and used to evaluate the surface specific heat in the harmonic approximation. We consider only the low-temperature limit case since, provided K B 1/h is very samll, we can replace the dispersion relation for the three acoustic branches by its long-wavelenghts form. The contributions of surface elastic waves ot the Rayleigh and Love types are pointed out and their features discussed. The nature of the result and their relations to previous work in this field is also presented and discussed. (author) [pt

  17. Analytical determination of Kondo and Fano resonances of electron Green's function in a single-level quantum dot

    International Nuclear Information System (INIS)

    Nguyen Bich Ha; Nguyen Van Hop

    2009-01-01

    The Kondo and Fano resonances in the two-point Green's function of the single-level quantum dot were found and investigated in many previous works by means of different numerical calculation methods. In this work we present the derivation of the analytical expressions of resonance terms in the expression of the two-point Green's function. For that purpose the system of Dyson equations for the two-point nonequilibrium Green's functions in the complex-time Keldysh formalism was established in the second order with respect to the tunneling coupling constants and the mean field approximation. This system of Dyson equations was solved exactly and the analytical expressions of the resonance terms are derived. The conditions for the existence of Kondo or Fano resonances are found.

  18. Temporal quadratic expansion nodal Green's function method

    International Nuclear Information System (INIS)

    Liu Cong; Jing Xingqing; Xu Xiaolin

    2000-01-01

    A new approach is presented to efficiently solve the three-dimensional space-time reactor dynamics equation which overcomes the disadvantages of current methods. In the Temporal Quadratic Expansion Nodal Green's Function Method (TQE/NGFM), the Quadratic Expansion Method (QEM) is used for the temporal solution with the Nodal Green's Function Method (NGFM) employed for the spatial solution. Test calculational results using TQE/NGFM show that its time step size can be 5-20 times larger than that of the Fully Implicit Method (FIM) for similar precision. Additionally, the spatial mesh size with NGFM can be nearly 20 times larger than that using the finite difference method. So, TQE/NGFM is proved to be an efficient reactor dynamics analysis method

  19. Green's functions in quantum physics

    CERN Document Server

    Economou, Eleftherios N

    2006-01-01

    The main part of this book is devoted to the simplest kind of Green's functions, namely the solutions of linear differential equations with a -function source. It is shown that these familiar Green's functions are a powerful tool for obtaining relatively simple and general solutions of basic problems such as scattering and bound-level information. The bound-level treatment gives a clear physical understanding of "difficult" questions such as superconductivity, the Kondo effect, and, to a lesser degree, disorder-induced localization. The more advanced subject of many-body Green's functions is presented in the last part of the book.

  20. Green functions of vortex operators

    International Nuclear Information System (INIS)

    Polchinski, J.; California Univ., Berkeley

    1981-01-01

    We study the euclidean Green functions of the 't Hooft vortex operator, primarly for abelian gauge theories. The operator is written in terms of elementary fields, with emphasis on a form in which it appears as the exponential of a surface integral. We explore the requirement that the Green functions depend only on the boundary of this surface. The Dirac veto problem appears in a new guise. We present a two-dimensional solvable model of a Dirac string, which suggests a new solution of the veto problem. The renormalization of the Green functions of the abelian Wilson loop and abelian vortex operator is studied with the aid of the operator product expansion. In each case, an overall multiplication of the operator makes all Green functions finite; a surprising cancellation of divergences occurs with the vortex operator. We present a brief discussion of the relation between the nature of the vacuum and the cluster properties of the Green functions of the Wilson and vortex operators, for a general gauge theory. The surface-like cluster property of the vortex operator in an abelian Higgs theory is explored in more detail. (orig.)

  1. Green's functions potential fields on surfaces

    CERN Document Server

    Melnikov, Yuri A

    2017-01-01

    This book is comprehensive in its classical mathematical physics presentation, providing the reader with detailed instructions for obtaining Green's functions from scratch. Green's functions is an instrument easily accessible to practitioners who are engaged in design and exploitation of machines and structures in modern engineering practice. To date, there are no books available on the market that are devoted to the Green's function formalism for equations covered in this volume. The reader, with an undergraduate background in applied mathematics, can become an active user of the Green's function approach. For the first time, Green's functions are discussed for a specific class of problems dealing with potential fields induced in thin-wall structures and therefore, the reader will have first-hand access to a novel issue. This Work is accessible to researchers in applied mathematics, mechanics, and relevant disciplines such as engineering, as well as to upper level undergraduates and graduate students.

  2. The next 16 higher spin currents and three-point functions in the large N = 4 holography

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Changhyun; Kim, Dong-gyu; Kim, Man Hea [Kyungpook National University, Department of Physics, Taegu (Korea, Republic of)

    2017-08-15

    By using the known operator product expansions (OPEs) between the lowest 16 higher spin currents of spins (1, (3)/(2), (3)/(2), (3)/(2), (3)/(2), 2,2,2,2,2,2, (5)/(2), (5)/(2), (5)/(2), (5)/(2), 3) in an extension of the large N = 4 linear superconformal algebra, one determines the OPEs between the lowest 16 higher spin currents in an extension of the large N = 4 nonlinear superconformal algebra for generic N and k. The Wolf space coset contains the group G = SU(N + 2) and the affine Kac-Moody spin 1 current has the level k. The next 16 higher spin currents of spins (2, (5)/(2), (5)/(2), (5)/(2), (5)/(2), 3,3,3,3,3,3, (7)/(2), (7)/(2), (7)/(2), (7)/(2), 4) arise in the above OPEs. The most general lowest higher spin 2 current in this multiplet can be determined in terms of affine Kac-Moody spin (1)/(2), 1 currents. By careful analysis of the zero mode (higher spin) eigenvalue equations, the three-point functions of bosonic higher spin 2, 3, 4 currents with two scalars are obtained for finite N and k. Furthermore, we also analyze the three-point functions of bosonic higher spin 2, 3, 4 currents in the extension of the large N = 4 linear superconformal algebra. It turns out that the three-point functions of higher spin 2, 3 currents in the two cases are equal to each other at finite N and k. Under the large (N, k) 't Hooft limit, the two descriptions for the three-point functions of higher spin 4 current coincide with each other. The higher spin extension of SO(4) Knizhnik Bershadsky algebra is described. (orig.)

  3. Scalar field Green functions on causal sets

    International Nuclear Information System (INIS)

    Nomaan Ahmed, S; Surya, Sumati; Dowker, Fay

    2017-01-01

    We examine the validity and scope of Johnston’s models for scalar field retarded Green functions on causal sets in 2 and 4 dimensions. As in the continuum, the massive Green function can be obtained from the massless one, and hence the key task in causal set theory is to first identify the massless Green function. We propose that the 2d model provides a Green function for the massive scalar field on causal sets approximated by any topologically trivial 2-dimensional spacetime. We explicitly demonstrate that this is indeed the case in a Riemann normal neighbourhood. In 4d the model can again be used to provide a Green function for the massive scalar field in a Riemann normal neighbourhood which we compare to Bunch and Parker’s continuum Green function. We find that the same prescription can also be used for de Sitter spacetime and the conformally flat patch of anti-de Sitter spacetime. Our analysis then allows us to suggest a generalisation of Johnston’s model for the Green function for a causal set approximated by 3-dimensional flat spacetime. (paper)

  4. The scalar-scalar-tensor inflationary three-point function in the axion monodromy model

    Science.gov (United States)

    Chowdhury, Debika; Sreenath, V.; Sriramkumar, L.

    2016-11-01

    The axion monodromy model involves a canonical scalar field that is governed by a linear potential with superimposed modulations. The modulations in the potential are responsible for a resonant behavior which gives rise to persisting oscillations in the scalar and, to a smaller extent, in the tensor power spectra. Interestingly, such spectra have been shown to lead to an improved fit to the cosmological data than the more conventional, nearly scale invariant, primordial power spectra. The scalar bi-spectrum in the model too exhibits continued modulations and the resonance is known to boost the amplitude of the scalar non-Gaussianity parameter to rather large values. An analytical expression for the scalar bi-spectrum had been arrived at earlier which, in fact, has been used to compare the model with the cosmic microwave background anisotropies at the level of three-point functions involving scalars. In this work, with future applications in mind, we arrive at a similar analytical template for the scalar-scalar-tensor cross-correlation. We also analytically establish the consistency relation (in the squeezed limit) for this three-point function. We conclude with a summary of the main results obtained.

  5. The scalar-scalar-tensor inflationary three-point function in the axion monodromy model

    International Nuclear Information System (INIS)

    Chowdhury, Debika; Sriramkumar, L.; Sreenath, V.

    2016-01-01

    The axion monodromy model involves a canonical scalar field that is governed by a linear potential with superimposed modulations. The modulations in the potential are responsible for a resonant behavior which gives rise to persisting oscillations in the scalar and, to a smaller extent, in the tensor power spectra. Interestingly, such spectra have been shown to lead to an improved fit to the cosmological data than the more conventional, nearly scale invariant, primordial power spectra. The scalar bi-spectrum in the model too exhibits continued modulations and the resonance is known to boost the amplitude of the scalar non-Gaussianity parameter to rather large values. An analytical expression for the scalar bi-spectrum had been arrived at earlier which, in fact, has been used to compare the model with the cosmic microwave background anisotropies at the level of three-point functions involving scalars. In this work, with future applications in mind, we arrive at a similar analytical template for the scalar-scalar-tensor cross-correlation. We also analytically establish the consistency relation (in the squeezed limit) for this three-point function. We conclude with a summary of the main results obtained.

  6. The Green functions in curved spacetime

    International Nuclear Information System (INIS)

    Buchbinder, I.L.; Kirillova, E.N.; Odinstov, S.D.

    1987-01-01

    The theory of a free scalar field with conformal coupling in curved spacetime with some special metrics is considered. The integral representations for the green function G-tilde in the form of integrals with Schwinger-De Witt kernel over contours in the complex plane of proper time are obtained. It is shown how the transitions from a unique Green function in Euclidean space to different Green functions in Minkowski space and vice versa can be carried out. (author)

  7. Closed forms for conformally flat Green's functions

    International Nuclear Information System (INIS)

    Brown, M.R.; Grove, P.G.; Ottewill, A.C.

    1981-01-01

    A closed form is obtained for the massless scalar Green's function on Rindler space. This is related by conformal transformation to the Green's function for a massless, conformally coupled scalar field on the open Einstein universe. A closed form is also obtained for the corresponding Green's function on the Einstein static universe. (author)

  8. On Green's function retrieval by iterative substitution of the coupled Marchenko equations

    Science.gov (United States)

    van der Neut, Joost; Vasconcelos, Ivan; Wapenaar, Kees

    2015-11-01

    Iterative substitution of the coupled Marchenko equations is a novel methodology to retrieve the Green's functions from a source or receiver array at an acquisition surface to an arbitrary location in an acoustic medium. The methodology requires as input the single-sided reflection response at the acquisition surface and an initial focusing function, being the time-reversed direct wavefield from the acquisition surface to a specified location in the subsurface. We express the iterative scheme that is applied by this methodology explicitly as the successive actions of various linear operators, acting on an initial focusing function. These operators involve multidimensional crosscorrelations with the reflection data and truncations in time. We offer physical interpretations of the multidimensional crosscorrelations by subtracting traveltimes along common ray paths at the stationary points of the underlying integrals. This provides a clear understanding of how individual events are retrieved by the scheme. Our interpretation also exposes some of the scheme's limitations in terms of what can be retrieved in case of a finite recording aperture. Green's function retrieval is only successful if the relevant stationary points are sampled. As a consequence, internal multiples can only be retrieved at a subsurface location with a particular ray parameter if this location is illuminated by the direct wavefield with this specific ray parameter. Several assumptions are required to solve the Marchenko equations. We show that these assumptions are not always satisfied in arbitrary heterogeneous media, which can result in incomplete Green's function retrieval and the emergence of artefacts. Despite these limitations, accurate Green's functions can often be retrieved by the iterative scheme, which is highly relevant for seismic imaging and inversion of internal multiple reflections.

  9. Disentangling interacting dark energy cosmologies with the three-point correlation function

    Science.gov (United States)

    Moresco, Michele; Marulli, Federico; Baldi, Marco; Moscardini, Lauro; Cimatti, Andrea

    2014-10-01

    We investigate the possibility of constraining coupled dark energy (cDE) cosmologies using the three-point correlation function (3PCF). Making use of the CODECS N-body simulations, we study the statistical properties of cold dark matter (CDM) haloes for a variety of models, including a fiducial ΛCDM scenario and five models in which dark energy (DE) and CDM mutually interact. We measure both the halo 3PCF, ζ(θ), and the reduced 3PCF, Q(θ), at different scales (2 values of the halo 3PCF for perpendicular (elongated) configurations. The effect is also scale-dependent, with differences between ΛCDM and cDE models that increase at large scales. We made use of these measurements to estimate the halo bias, that results in fair agreement with the one computed from the two-point correlation function (2PCF). The main advantage of using both the 2PCF and 3PCF is to break the bias-σ8 degeneracy. Moreover, we find that our bias estimates are approximately independent of the assumed strength of DE coupling. This study demonstrates the power of a higher order clustering analysis in discriminating between alternative cosmological scenarios, for both present and forthcoming galaxy surveys, such as e.g. Baryon Oscillation Spectroscopic Survey and Euclid.

  10. Green functions in Bianci-type spaces

    International Nuclear Information System (INIS)

    Bukhbinder, I.L.; Kirillova, E.N.

    1988-01-01

    The theory of free scalar field with conformal connection in distorted space - time with Bianci 1 type metrics is considered. The presentation of the Green functions G-tilde approximately in in in the form of integral from the Schwinger - De Witt kernel over the contour in the plane of complex values of eigentime is obtained. The way, in which the transfer from the Green function in space with Euclidean signature to the Green functions in space with Minkowski signature and vice versa is realized, has been shown

  11. Green close-quote s function method with energy-independent vertex functions

    International Nuclear Information System (INIS)

    Tsay Tzeng, S.Y.; Kuo, T.T.; Tzeng, Y.; Geyer, H.B.; Navratil, P.

    1996-01-01

    In conventional Green close-quote s function methods the vertex function Γ is generally energy dependent. However, a model-space Green close-quote s function method where the vertex function is manifestly energy independent can be formulated using energy-independent effective interaction theories based on folded diagrams and/or similarity transformations. This is discussed in general and then illustrated for a 1p1h model-space Green close-quote s function applied to a solvable Lipkin many-fermion model. The poles of the conventional Green close-quote s function are obtained by solving a self-consistent Dyson equation and model space calculations may lead to unphysical poles. For the energy-independent model-space Green close-quote s function only the physical poles of the model problem are reproduced and are in satisfactory agreement with the exact excitation energies. copyright 1996 The American Physical Society

  12. Diagonal form factors and heavy-heavy-light three-point functions at weak coupling

    Energy Technology Data Exchange (ETDEWEB)

    Hollo, Laszlo [MTA Lendület Holographic QFT Group, Wigner Research Centre for Physics,H-1525 Budapest 114, P.O.B. 49 (Hungary); Jiang, Yunfeng; Petrovskii, Andrei [Institut de Physique Théorique, DSM, CEA, URA2306 CNRS,Saclay, F-91191 Gif-sur-Yvette (France)

    2015-09-18

    In this paper we consider a special kind of three-point functions of HHL type at weak coupling in N=4 SYM theory and analyze its volume dependence. At strong coupling this kind of three-point functions were studied recently by Bajnok, Janik and Wereszczynski http://dx.doi.org/10.1007/JHEP09(2014)050. The authors considered some cases of HHL correlator in the su(2) sector and, relying on their explicit results, formulated a conjecture about the form of the volume dependence of the symmetric HHL structure constant to be valid at any coupling up to wrapping corrections. In order to test this hypothesis we considered the HHL correlator in su(2) sector at weak coupling and directly showed that, up to one loop, the finite volume dependence has exactly the form proposed in http://dx.doi.org/10.1007/JHEP09(2014)050. Another side of the conjecture suggests that computation of the symmetric structure constant is equivalent to computing the corresponding set of infinite volume form factors, which can be extracted as the coefficients of finite volume expansion. In this sense, extracting appropriate coefficients from our result gives a prediction for the corresponding infinite volume form factors.

  13. Diagonal form factors and heavy-heavy-light three-point functions at weak coupling

    International Nuclear Information System (INIS)

    Hollo, Laszlo; Jiang, Yunfeng; Petrovskii, Andrei

    2015-01-01

    In this paper we consider a special kind of three-point functions of HHL type at weak coupling in N=4 SYM theory and analyze its volume dependence. At strong coupling this kind of three-point functions were studied recently by Bajnok, Janik and Wereszczynski http://dx.doi.org/10.1007/JHEP09(2014)050. The authors considered some cases of HHL correlator in the su(2) sector and, relying on their explicit results, formulated a conjecture about the form of the volume dependence of the symmetric HHL structure constant to be valid at any coupling up to wrapping corrections. In order to test this hypothesis we considered the HHL correlator in su(2) sector at weak coupling and directly showed that, up to one loop, the finite volume dependence has exactly the form proposed in http://dx.doi.org/10.1007/JHEP09(2014)050. Another side of the conjecture suggests that computation of the symmetric structure constant is equivalent to computing the corresponding set of infinite volume form factors, which can be extracted as the coefficients of finite volume expansion. In this sense, extracting appropriate coefficients from our result gives a prediction for the corresponding infinite volume form factors.

  14. Functional equations and Green's functions for augmented scalar fields

    International Nuclear Information System (INIS)

    Klauder, J.R.

    1977-01-01

    Certain noncanonical self-coupled scalar quantum field theories, previously formulated by means of functional integration, are herein recast into the form of functional differential equations for the Green's functional. From these expressions the set of coupled equations relating the Green's functions is obtained. The new equations are compared with those of the conventional formulation, and are proposed as alternatives, especially for nonrenormalizable models when the conventional equations fail

  15. Green's functions of solitons in heat bath

    International Nuclear Information System (INIS)

    Smilga, A.V.

    1989-01-01

    Soliton Green's functions at nonzero temperature are studied. Considering various model example it is shown that the Green's function pole position does not coincide generally speaking with free energy of a soliton. The Froelich polaron and the t'Hooft-Polyakov monopole the Green's function for which is in general a poorly defined concept as it involves an infinite imaginary part connected to the infinite total cross section of monopole scattering by electric charge are discussed. The pole position of the Green's function of the collective sphaleron excitation in the Glashow-Weinberg-Salem model does not as well coincide with the sphaleron free energy. 24 refs.; 9 figs

  16. Many-Body Green Function of Degenerate Systems

    International Nuclear Information System (INIS)

    Brouder, Christian; Panati, Gianluca; Stoltz, Gabriel

    2009-01-01

    A rigorous nonperturbative adiabatic approximation of the evolution operator in the many-body physics of degenerate systems is derived. This approximation is used to solve the long-standing problem of the choice of the initial states of H 0 leading to eigenstates of H 0 +V for degenerate systems. These initial states are eigenstates of P 0 VP 0 , where P 0 is the projection onto a degenerate eigenspace of H 0 . This result is used to give the proper definition of the Green function, the statistical Green function and the nonequilibrium Green function of degenerate systems. The convergence of these Green functions is established.

  17. Algebraic and analyticity properties of the n-point function in quantum field theory

    International Nuclear Information System (INIS)

    Bros, Jacques

    1970-01-01

    The general theory of quantized fields (axiomatic approach) is investigated. A systematic study of the algebraic properties of all the Green functions of a local field, which generalize the ordinary retarded and advanced functions, is presented. The notion emerges of a primitive analyticity domain of the n-point function, and of the existence of auxiliary analytic functions into which the various Green functions can be decomposed. Certain processes of analytic completion are described, and then applied to enlarging the primitive domain, particularly for the case n = 4; among the results the crossing property for all scattering amplitudes which involve two incoming and two outgoing particles is proved. (author) [fr

  18. Green's function approach to the anisotropic Kondo-necklace lattice

    International Nuclear Information System (INIS)

    Rezania, H.; Langari, A.; Thalmeier, P.

    2007-01-01

    Full text: We have studied the effect of anisotropy on the quantum phase transition of the 2D anisotropic Kondo necklace lattice [1] within a Green's function approach [2]. In the disordered phase the ground state is the product of all singlet bonds between itinerant and localized spins. It is separated by a finite energy gap from the triplet excited states. The quantum phase transition to the antiferromagnetically ordered phase takes place where the gap vanishes. In this approach we use the bond operator formalism introduced in Ref.[3] where each bond is represented by the singlet and triplet operators. The Kondo necklace Hamiltonian in the bond operator representation is composed of the kinetic energy and pairing part (H2), the two particle interaction (H4) of the boson gas and a term which includes three boson operators (H3). In order to ensure that the physical states are either singlets or triplets we impose the hard-core condition by introducing an infinite on-site repulsion between triplet bosons (H U ). The scattering vertex in the ladder approximation satisfies the Bethe-Salpeter equation [4]. By calculating the scattering vertex function we obtain the self energy contribution of the Hamiltonian H U . We have added the second order contribution of the self energy of H3 to the self energy of H U . It should be noted that the non conservation of triplet boson numbers requires the inclusion of the anomalous Green's functions. We treat H 4 in mean-field theory, by splitting the quartic operator into all possible pairs. Finally we obtain the renormalization of coefficients in the H 2 Hamiltonian and calculate the energy gap. Indeed at the critical point a condensation of triplet bosons occurs. We have numerically found the critical point of this model and compared our results with the corresponding mean field values [5]. Moreover, the critical exponent of the energy gap can be obtained more accurately than the mean field results. (authors)

  19. Three-point statistics of cosmological stochastic gravitational waves

    International Nuclear Information System (INIS)

    Adshead, Peter; Lim, Eugene A.

    2010-01-01

    We consider the three-point function (i.e. the bispectrum or non-Gaussianity) for stochastic backgrounds of gravitational waves. We estimate the amplitude of this signal for the primordial inflationary background, gravitational waves generated during preheating, and for gravitational waves produced by self-ordering scalar fields following a global phase transition. To assess detectability, we describe how to extract the three-point signal from an idealized interferometric experiment and compute the signal to noise ratio as a function of integration time. The three-point signal for the stochastic gravitational wave background generated by inflation is unsurprisingly tiny. For gravitational radiation generated by purely causal, classical mechanisms we find that, no matter how nonlinear the process is, the three-point correlations produced vanish in direct detection experiments. On the other hand, we show that in scenarios where the B-mode of the cosmic microwave background is sourced by gravitational waves generated by a global phase transition, a strong three-point signal among the polarization modes is also produced. This may provide another method of distinguishing inflationary B-modes. To carry out this computation, we have developed a diagrammatic approach to the calculation of stochastic gravitational waves sourced by scalar fluids, which has applications beyond the present scenario.

  20. Leading effect of visual plant characteristics for functional uses of green spaces

    Directory of Open Access Journals (Sweden)

    Beyza Şat Güngör

    2016-07-01

    Full Text Available Plant materials have the ability to lead the people’s functional use purposes with their visual characteristics. In this study, we examined whether the functional use follows the plant materials’ visual characteristics like a big size tree’s shade use. As visual characteristics of the plants; size, texture, color, and planting design basics are considered. Six urban green spaces determined for this experimental field study in the center of Kırklareli Province, and then a site survey implemented to determine apparent visual characteristics of the plants and matched functional uses with their visual characteristics. Five functional use types determined according to the visual plant characteristics (sitting and resting, pedestrian transition, meeting point, walking and recreational uses. Best representing four photos of each green space’s plant materials are used in photo questionnaires. 89 photo questionnaires were conducted. Five functional use type options indicated in the questionnaire for each green space and one of the options were coinciding with the visual plant characteristics of that green space according to the site survey results. For the analyses of questionnaires; SPSS 17 statistical packages were used. As result; the hypothesis was confirmed by coinciding statistical analyses results with the site survey results.

  1. Green functions in an external electric field

    International Nuclear Information System (INIS)

    Gavrilov, S.P.; Gitman, D.M.; Shvartsman, Sh.M.

    1979-01-01

    In the framework of scalar quantum electrodynamics, when vacuum is unstable as to the birth of electron-positron couples, calculated have been Green functions for the case of stable homogeneous electric field. By summing corresponding solutions of the Klein-Gordon equation of the Green function are obtained in the form of contour integrals according to the proper time. Operation representations of all the calculated Green functions in the mentioned field are presented

  2. QCD Green's Functions and Phases of Strongly-Interacting Matter

    Directory of Open Access Journals (Sweden)

    Schaefer B.J.

    2011-04-01

    Full Text Available After presenting a brief summary of functional approaches to QCD at vanishing temperatures and densities the application of QCD Green's functions at non-vanishing temperature and vanishing density is discussed. It is pointed out in which way the infrared behavior of the gluon propagator reflects the (de-confinement transition. Numerical results for the quark propagator are given thereby verifying the relation between (de--confinement and dynamical chiral symmetry breaking (restoration. Last but not least some results of Dyson-Schwinger equations for the color-superconducting phase at large densities are shown.

  3. Constraints from conformal symmetry on the three point scalar correlator in inflation

    International Nuclear Information System (INIS)

    Kundu, Nilay; Shukla, Ashish; Trivedi, Sandip P.

    2015-01-01

    Using symmetry considerations, we derive Ward identities which relate the three point function of scalar perturbations produced during inflation to the scalar four point function, in a particular limit. The derivation assumes approximate conformal invariance, and the conditions for the slow roll approximation, but is otherwise model independent. The Ward identities allow us to deduce that the three point function must be suppressed in general, being of the same order of magnitude as in the slow roll model. They also fix the three point function in terms of the four point function, upto one constant which we argue is generically suppressed. Our approach is based on analyzing the wave function of the universe, and the Ward identities arise by imposing the requirements of spatial and time reparametrization invariance on it.

  4. Green's functions in quantum physics. 3. ed.

    International Nuclear Information System (INIS)

    Economou, E.N.

    2006-01-01

    The new edition of a standard reference will be of interest to advanced students wishing to become familiar with the method of Green's functions for obtaining simple and general solutions to basic problems in quantum physics. The main part is devoted to the simplest kind of Green's functions, namely the solutions of linear differential equations with a -function source. It is shown that these familiar Green's functions are a powerful tool for obtaining relatively simple and general solutions of basic problems such as scattering and bound level information. The bound-level treatment gives a clear physical understanding of ''difficult'' questions such as superconductivity, the Kondo effect, and, to a lesser degree, disorder-induced localization. The more advanced subject of many-body Green's functions is presented in the last part of the book. This third edition is 50% longer than the previous and offers end-of-chapter problems and solutions (40% are solved) and additional appendices to help it is to serve as an effective self-tutorial and self-sufficient reference. Throughout, it demonstrates the powerful and unifying formalism of Green's functions across many applications, including transport properties, carbon nanotubes, and photonics and photonic crystals. (orig.)

  5. Connected Green function approach to symmetry breaking in Φ1+14-theory

    International Nuclear Information System (INIS)

    Haeuser, J.M.; Cassing, W.; Peter, A.; Thoma, M.H.

    1995-01-01

    Using the cluster expansions for n-point Green functions we derive a closed set of dynamical equations of motion for connected equal-time Green functions by neglecting all connected functions higher than 4 th order for the λΦ 4 -theory in 1+1 dimensions. We apply the equations to the investigation of spontaneous symmetry breaking, i.e. to the evaluation of the effective potential at temperature T=0. Within our momentum space discretization we obtain a second order phase transition (in agreement with the Simon-Griffith theorem) and a critical coupling of λ crit /4m 2 =2.446 ascompared to a first order phase transition and λ crit /4m 2 =2.568 from the Gaussian effective potential approach. (orig.)

  6. Electromagnetically induced nuclear beta decay calculated by a Green's function method

    International Nuclear Information System (INIS)

    Reiss, H.R.

    1984-01-01

    The transition probability for enhancement of forbidden nuclear beta decay by an applied plane-wave electromagnetic field is calculated in a nonrelativistic spinless approximation by a Green's function method. The calculation involves a stationary-phase approximation. The stationary phase points in the presence of an intense field are located in very different positions than they are in the field-free case. In order-of-magnitude terms, the results are completely consistent with an earlier, much more complete wave-function calculation which includes spin and relativistic effects. Both the present Green's function calculation and the earlier wave function calculation give electromagnetic contributions in first-forbidden nuclear beta decay matrix elements which are of order (R 0 /lambda-dash-bar/sub C/) 2 with respect to allowed decays, where R 0 is the nuclear radius and lambda-dash-bar/sub C/ is the electron Compton wavelength

  7. About sign-constancy of Green's functions for impulsive second order delay equations

    Directory of Open Access Journals (Sweden)

    Alexander Domoshnitsky

    2014-01-01

    Full Text Available We consider the following second order differential equation with delay \\[\\begin{cases} (Lx(t\\equiv{x''(t+\\sum_{j=1}^p {b_{j}(tx(t-\\theta_{j}(t}}=f(t, \\quad t\\in[0,\\omega],\\\\ x(t_j=\\gamma_{j}x(t_j-0, x'(t_j=\\delta_{j}x'(t_j-0, \\quad j=1,2,\\ldots,r. \\end{cases}\\] In this paper we find necessary and sufficient conditions of positivity of Green's functions for this impulsive equation coupled with one or two-point boundary conditions in the form of theorems about differential inequalities. By choosing the test function in these theorems, we obtain simple sufficient conditions. For example, the inequality \\(\\sum_{i=1}^p{b_i(t\\left(\\frac{1}{4}+r\\right}\\lt \\frac{2}{\\omega^2}\\ is a basic one, implying negativity of Green's function of two-point problem for this impulsive equation in the case \\(0\\lt \\gamma_i\\leq{1}\\, \\(0\\lt \\delta_i\\leq{1}\\ for \\(i=1,\\ldots ,p\\.

  8. Green's function for a neutral particle of spin 1/2 in a magnetic field; Funcoes de Green para uma particula neutra de spin 1/2 num campo magnetico

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Rafael de Lima [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Vaidya, Arvind Narayan [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Fisica

    2001-12-01

    Using the spectral theorema in context of Green's function in momentum space of neutrons in the magnetic field of a linear conductor with current the bound state energy spectrum and eigenfunctions are deduced. It's also pointed out that this problem present a new scenary of Green's function in non-relativistic quantum mechanics. (author)

  9. Relativistic dynamics, Green function and pseudodifferential operators

    Energy Technology Data Exchange (ETDEWEB)

    Cirilo-Lombardo, Diego Julio [National Institute of Plasma Physics (INFIP), Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires 1428 (Argentina); Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation)

    2016-06-15

    The central role played by pseudodifferential operators in relativistic dynamics is known very well. In this work, operators like the Schrodinger one (e.g., square root) are treated from the point of view of the non-local pseudodifferential Green functions. Starting from the explicit construction of the Green (semigroup) theoretical kernel, a theorem linking the integrability conditions and their dependence on the spacetime dimensions is given. Relativistic wave equations with arbitrary spin and the causality problem are discussed with the algebraic interpretation of the radical operator and their relation with coherent and squeezed states. Also we perform by means of pure theoretical procedures (based in physical concepts and symmetry) the relativistic position operator which satisfies the conditions of integrability: it is a non-local, Lorentz invariant and does not have the same problems as the “local”position operator proposed by Newton and Wigner. Physical examples, as zitterbewegung and rogue waves, are presented and deeply analyzed in this theoretical framework.

  10. Recursive evaluation of space-time lattice Green's functions

    International Nuclear Information System (INIS)

    De Hon, Bastiaan P; Arnold, John M

    2012-01-01

    Up to a multiplicative constant, the lattice Green's function (LGF) as defined in condensed matter physics and lattice statistical mechanics is equivalent to the Z-domain counterpart of the finite-difference time-domain Green's function (GF) on a lattice. Expansion of a well-known integral representation for the LGF on a ν-dimensional hyper-cubic lattice in powers of Z −1 and application of the Chu–Vandermonde identity results in ν − 1 nested finite-sum representations for discrete space-time GFs. Due to severe numerical cancellations, these nested finite sums are of little practical use. For ν = 2, the finite sum may be evaluated in closed form in terms of a generalized hypergeometric function. For special lattice points, that representation simplifies considerably, while on the other hand the finite-difference stencil may be used to derive single-lattice-point second-order recurrence schemes for generating 2D discrete space-time GF time sequences on the fly. For arbitrary symbolic lattice points, Zeilberger's algorithm produces a third-order recurrence operator with polynomial coefficients of the sixth degree. The corresponding recurrence scheme constitutes the most efficient numerical method for the majority of lattice points, in spite of the fact that for explicit numeric lattice points the associated third-order recurrence operator is not the minimum recurrence operator. As regards the asymptotic bounds for the possible solutions to the recurrence scheme, Perron's theorem precludes factorial or exponential growth. Along horizontal lattices directions, rapid initial growth does occur, but poses no problems in augmented dynamic-range fixed precision arithmetic. By analysing long-distance wave propagation along a horizontal lattice direction, we have concluded that the chirp-up oscillations of the discrete space-time GF are the root cause of grid dispersion anisotropy. With each factor of ten increase in the lattice distance, one would have to roughly

  11. A single-sided homogeneous Green's function representation for holographic imaging, inverse scattering, time-reversal acoustics and interferometric Green's function retrieval

    Science.gov (United States)

    Wapenaar, Kees; Thorbecke, Jan; van der Neut, Joost

    2016-04-01

    Green's theorem plays a fundamental role in a diverse range of wavefield imaging applications, such as holographic imaging, inverse scattering, time-reversal acoustics and interferometric Green's function retrieval. In many of those applications, the homogeneous Green's function (i.e. the Green's function of the wave equation without a singularity on the right-hand side) is represented by a closed boundary integral. In practical applications, sources and/or receivers are usually present only on an open surface, which implies that a significant part of the closed boundary integral is by necessity ignored. Here we derive a homogeneous Green's function representation for the common situation that sources and/or receivers are present on an open surface only. We modify the integrand in such a way that it vanishes on the part of the boundary where no sources and receivers are present. As a consequence, the remaining integral along the open surface is an accurate single-sided representation of the homogeneous Green's function. This single-sided representation accounts for all orders of multiple scattering. The new representation significantly improves the aforementioned wavefield imaging applications, particularly in situations where the first-order scattering approximation breaks down.

  12. Multiconfigurational Green's function approaches in quantum chemistry

    International Nuclear Information System (INIS)

    Yeager, D.L.

    1984-01-01

    The author discusses multiconfigurational Green's function techniques and generalizations. In particular he is interested in developing and applying these techniques for isolated atoms and small molecules. Furthermore, he develops formalisms that are fairly clear, accurate, and capable of being applied to open-shell and highly-correlated systems as well as to closed-shell systems with little electronic correlation. The two kinds of Green's functions that this article discusses are the single-particle Green's function and the retarded two-time Green's function in the energy representation. The poles of the former give the ionization potentials and electron affinities while the poles of the latter give the excitation energies. The multiconfigurational approximations are known as the multiconfigurational electron propagator (MCEP) and the multiconfigurational time-dependent Hartree-Fock (MCTDHF) (also known as the multiconfigurational random phase approximation (MCRPA) or the multiconfigurational linear response), respectively. 44 references

  13. The three-point function as a probe of models for large-scale structure

    International Nuclear Information System (INIS)

    Frieman, J.A.; Gaztanaga, E.

    1993-01-01

    The authors analyze the consequences of models of structure formation for higher-order (n-point) galaxy correlation functions in the mildly non-linear regime. Several variations of the standard Ω = 1 cold dark matter model with scale-invariant primordial perturbations have recently been introduced to obtain more power on large scales, R p ∼20 h -1 Mpc, e.g., low-matter-density (non-zero cosmological constant) models, open-quote tilted close-quote primordial spectra, and scenarios with a mixture of cold and hot dark matter. They also include models with an effective scale-dependent bias, such as the cooperative galaxy formation scenario of Bower, et al. The authors show that higher-order (n-point) galaxy correlation functions can provide a useful test of such models and can discriminate between models with true large-scale power in the density field and those where the galaxy power arises from scale-dependent bias: a bias with rapid scale-dependence leads to a dramatic decrease of the hierarchical amplitudes Q J at large scales, r approx-gt R p . Current observational constraints on the three-point amplitudes Q 3 and S 3 can place limits on the bias parameter(s) and appear to disfavor, but not yet rule out, the hypothesis that scale-dependent bias is responsible for the extra power observed on large scales

  14. Scaling Green-Kubo Relation and Application to Three Aging Systems

    Directory of Open Access Journals (Sweden)

    A. Dechant

    2014-02-01

    Full Text Available The Green-Kubo formula relates the spatial diffusion coefficient to the stationary velocity autocorrelation function. We derive a generalization of the Green-Kubo formula that is valid for systems with long-range or nonstationary correlations for which the standard approach is no longer valid. For the systems under consideration, the velocity autocorrelation function ⟨v(t+τv(t⟩ asymptotically exhibits a certain scaling behavior and the diffusion is anomalous, ⟨x^{2}(t⟩≃2D_{ν}t^{ν}. We show how both the anomalous diffusion coefficient D_{ν} and the exponent ν can be extracted from this scaling form. Our scaling Green-Kubo relation thus extends an important relation between transport properties and correlation functions to generic systems with scale-invariant dynamics. This includes stationary systems with slowly decaying power-law correlations, as well as aging systems, systems whose properties depend on the age of the system. Even for systems that are stationary in the long-time limit, we find that the long-time diffusive behavior can strongly depend on the initial preparation of the system. In these cases, the diffusivity D_{ν} is not unique, and we determine its values, respectively, for a stationary or nonstationary initial state. We discuss three applications of the scaling Green-Kubo relation: free diffusion with nonlinear friction corresponding to cold atoms diffusing in optical lattices, the fractional Langevin equation with external noise recently suggested to model active transport in cells, and the Lévy walk with numerous applications, in particular, blinking quantum dots. These examples underline the wide applicability of our approach, which is able to treat very different mechanisms of anomalous diffusion.

  15. Construction of U-gauge Green's functions of gauge theories with spontaneous symmetry breaking and Slavnov identities

    International Nuclear Information System (INIS)

    Flume, R.

    1978-01-01

    The unitary (U) gauge Green's functions of the U(1) and SU(2) Higgs-Kibble models are constructed applying a renormalized point transformation and a non-local gauge changing transformation to a manifestly renormalizable (R gauge) version of the respective theory. It is shown that the cancellation mechanism known as 'tree graph unitarity' rendering in tree graph approximation a smooth high energy behaviour of the U gauge Green's functions on mass shell can in a natural way be extended to all orders of perturbation theory. The conditions imposed by this 'generalized tree graph unitarity' on the renormalization programme are shown to be equivalent with the requirement of renormalized Slavnov identities for the R gauge Green's functions

  16. Summable chains of instantons: Green's functions and the Prasad-Sommerfield limit

    International Nuclear Information System (INIS)

    Boutaleb-Joutei, H.; Chakrabarti, A.; Comtet, A.

    1981-01-01

    We construct, for each homotopy class, a type of instanton configuration which exhibits many special, simple properties. The basic reason behind such properties is indicated by deriving our configuration in the 't Hooft gauge, starting from a class of particularly simple, static, and self-dual solutions in de Sitter space. Apart from this we consider, in this paper, mostly results for flat Euclidean space. We show that the static solutions are equivalent to multiply charged instantons at the origin in Witten's sense. Green's functions for this class of instanton background are studied. The known flat-space results of Brown et al. are shown to be reducible, for our case, to totally explicit and relatively compact forms. The sums over different indices arising in their formalism are performed. The inversion of a matrix, necessary for the isospin-1 massless scalar field, is carried out explicitly, for our configuration, for arbitrary index of the background instanton field. Green's functions for the Prasad-Sommerfield case are obtained as limits of our results directly in summed-up forms. Green's functions are studied also in de Sitter space. Special features due to periodic time are pointed out

  17. Green's function and boundary elements of multifield materials

    CERN Document Server

    Qin, Qing-Hua

    2007-01-01

    Green's Function and Boundary Elements of Multifield Materials contains a comprehensive treatment of multifield materials under coupled thermal, magnetic, electric, and mechanical loads. Its easy-to-understand text clarifies some of the most advanced techniques for deriving Green's function and the related boundary element formulation of magnetoelectroelastic materials: Radon transform, potential function approach, Fourier transform. Our hope in preparing this book is to attract interested readers and researchers to a new field that continues to provide fascinating and technologically important challenges. You will benefit from the authors' thorough coverage of general principles for each topic, followed by detailed mathematical derivation and worked examples as well as tables and figures where appropriate. In-depth explanations of the concept of Green's function Coupled thermo-magneto-electro-elastic analysis Detailed mathematical derivation for Green's functions.

  18. Phonon conductivity and relaxation rate in solids with disturbances by the Green function method

    International Nuclear Information System (INIS)

    Singh, M.

    1980-09-01

    In this present article we have established an expression for the temperature dependence of the lattice thermal conductivity of solids with harmonic disturbances. The relaxation rate for scattering of phonons with point defect is also derived. We will apply the Kubo-correlation function formalism for the thermal conductivity, and the double time temperature dependent Green function technique for the evaluation of correlation functions

  19. Worldline Green functions for multiloop diagrams

    International Nuclear Information System (INIS)

    Schmidt, M.G.; Heidelberg Univ.; Schubert, C.

    1994-03-01

    We propose a multiloop generalization of the Bern-Kosower formalism, based on Strassler's approach of evaluating worldline path integrals by worldline Green functions. Those Green functions are explicitly constructed for the basic two-loop graph, and for a loop with an arbitrary number of propagator insertions. For scalar and abelian gauge theories, the resulting integral representations allow to combine whole classes of Feynman diagrams into compact expressions. (orig.)

  20. Four-point functions in N=4 SYM

    International Nuclear Information System (INIS)

    Heslop, Paul J.; Howe, Paul S.

    2003-01-01

    A new derivation is given of four-point functions of charge Q chiral primary multiplets in N=4 supersymmetric Yang-Mills theory. A compact formula, valid for arbitrary Q, is given which is manifestly superconformal and analytic in the internal bosonic coordinates of analytic superspace. This formula allows one to determine the spacetime four-point function of any four component fields in the multiplets in terms of the four-point function of the leading chiral primary fields. The leading term is expressed in terms of 1/2Q(Q-1) functions of two conformal invariants and a number of single variable functions. Crossing symmetry reduces the number of independent functions, while the OPE implies that the single-variable functions arise from protected operators and should therefore take their free form. This is the partial non-renormalisation property of such four-point functions which can be viewed as a consequence of the OPE and the non-renormalisation of three-point functions of protected operators. (author)

  1. Single-particle properties from Kohn-Sham Green's functions

    International Nuclear Information System (INIS)

    Bhattacharyya, Anirban; Furnstahl, R.J.

    2005-01-01

    An effective action approach to Kohn-Sham density functional theory is used to illustrate how the exact Green's function can be calculated in terms of the Kohn-Sham Green's function. An example based on Skyrme energy functionals shows that single-particle Kohn-Sham spectra can be improved by adding sources used to construct the energy functional

  2. Thermodynamic Green functions in theory of superconductivity

    Directory of Open Access Journals (Sweden)

    N.M.Plakida

    2006-01-01

    Full Text Available A general theory of superconductivity is formulated within the thermodynamic Green function method for various types of pairing mediated by phonons, spin fluctuations, and strong Coulomb correlations in the Hubbard and t-J models. A rigorous Dyson equation for matrix Green functions is derived in terms of a self-energy as a many-particle Green function. By applying the noncrossing approximation for the self-energy, a closed self-consistent system of equations is obtained, similar to the conventional Eliashberg equations. A brief discussion of superconductivity mediated by kinematic interaction with an estimation of a superconducting transition temperature in the Hubbard model is given.

  3. Relation between Euclidean and real time calculations of Green functions at finite temperature

    International Nuclear Information System (INIS)

    Bochkarev, A.

    1993-01-01

    We find a relation between the semiclassical approximation of the temperature (Matsubara) two-point correlator and the corresponding classical Green function in real time at finite temperature. The anharmonic oscillator at finite temperature is used to illustrate our statement, which is however of rather general origin

  4. Casimir energies in M4≥/sup N/ for even N. Green's-function and zeta-function techniques

    International Nuclear Information System (INIS)

    Kantowski, R.; Milton, K.A.

    1987-01-01

    The Green's-function technique developed in the first paper in this series is generalized to apply to massive scalar, vector, second-order tensor, and Dirac spinor fields, as a preliminary to a full graviton calculation. The Casimir energies are of the form u/sub Casimir/ = (1/a 4 )[α/sub N/lna/b)+β/sub N/], where N (even) is the dimension of the internal sphere, a is its radius, and b/sup -1/ is an ultraviolet cutoff (presumably at the Planck scale). The coefficient of the divergent logarithm, α/sub N/, is unambiguously obtained for each field considered. The Green's-function technique gives rise to no difficulties in the evaluation of imaginary-mass-mode contributions to the Casimir energy. In addition, a new, simplified zeta-function technique is presented which is very easily implemented by symbolic programs, and which, of course, gives the same results. An error in a previous zeta-function calculation of the Casimir energy for even N is pointed out

  5. Nonequilibrium Green's function formulation of quantum transport theory for multi-band semiconductors

    International Nuclear Information System (INIS)

    Zhao, Peiji; Horing, Norman J.M.; Woolard, Dwight L.; Cui, H.L.

    2003-01-01

    We present a nonequilibrium Green's function formulation of many-body quantum transport theory for multi-band semiconductor systems with a phonon bath. The equations are expressed exactly in terms of single particle nonequilibrium Green's functions and self-energies, treating the open electron-hole system in weak interaction with the bath. A decoupling technique is employed to separate the individual band Green's function equations of motion from one another, with the band-band interaction effects embedded in ''cross-band'' self-energies. This nonequilibrium Green's function formulation of quantum transport theory is amenable to solution by parallel computing because of its formal decoupling with respect to inter-band interactions. Moreover, this formulation also permits coding the simulator of an n-band semiconductor in terms of that for an (n-1)-band system, in step with the current tendency and development of programming technology. Finally, the focus of these equations on individual bands provides a relatively direct route for the determination of carrier motion in energy bands, and to delineate the influence of intra- and inter-band interactions. A detailed description is provided for three-band semiconductor systems

  6. Temperature dependence of three-point correlation functions of viscous liquids: the case of glycerol

    Energy Technology Data Exchange (ETDEWEB)

    Dalle-Ferrier, Cecile; Eibl, Stefan; Alba-Simionesco, Christiane [Laboratoire de Chimie Physique, UMR 8000, Batiment 349, Universite Paris-Sud, 91405 Orsay (France); Pappas, Catherine [BENSC, Hahn-Meitner-Institute, HMI Berlin, Glienicker Strasse 100, D-14109 Berlin (Germany)], E-mail: cecile.dalle-ferrier@lcp.u-psud.fr

    2008-12-10

    What causes the dramatic slowing down of flow and relaxation that leads to glass formation in liquids as temperature decreases is hardly understood so far and is the subject of intensive research work. It is tempting to ascribe the strong temperature dependence of the dynamics, irrespective of molecular details, to a collective or cooperative behavior characterized by a length scale that grows as one approaches the glass transition. To access this length experimentally, we use the recently introduced three-point dynamic susceptibility, from which the number of molecules dynamically correlated during the structural relaxation, N{sub corr}, can be extracted. The three-point functions are related to the sensitivity of the averaged two-time dynamics to external control parameters, such as temperature and density. We studied N{sub corr} values in an important temperature range for a large number of liquids, and found that it systematically grows when approaching the glass transition. Here we specially emphasize the case of glycerol for which we combined dielectric and neutron spin echo spectroscopy to cover more than 16 decades in relaxation time.

  7. A three-point Taylor algorithm for three-point boundary value problems

    NARCIS (Netherlands)

    J.L. López; E. Pérez Sinusía; N.M. Temme (Nico)

    2011-01-01

    textabstractWe consider second-order linear differential equations $\\varphi(x)y''+f(x)y'+g(x)y=h(x)$ in the interval $(-1,1)$ with Dirichlet, Neumann or mixed Dirichlet-Neumann boundary conditions given at three points of the interval: the two extreme points $x=\\pm 1$ and an interior point

  8. A comparison of the real-time and the imaginary-time formalisms of finite temperature field theory for 2,3, and 4-point Green's functions

    International Nuclear Information System (INIS)

    Aurenche, P.; Becherrawy, T.

    1991-07-01

    The predictions of the real-time and the imaginary-time formalisms of Finite Temperature Field Theory is compared. Retarded and advanced amplitudes are constructed in the real-time formalism which are linear combinations of the usual time-ordered thermo-field dynamics amplitudes. These amplitudes can be easily compared to the various analytically continued amplitudes of the imaginary-time formalism. Explicit calculation of the 2,3 and 4-point Green's functions in φ 3 field theory is done in the one and two-loop approximations, and the compatibility of the two formalisms is shown. (author) 17 refs., 12 figs

  9. Green Functions for the Radial Electric Component of the Monopole Wake Field in a Round Resistive Chamber

    International Nuclear Information System (INIS)

    Zimmermann, Frank

    1998-01-01

    We compare different approximations to the point-charge Green function for the radial electric monopole field excited by an ultrarelativistic particle propagating through a resistive pipe, and study the applicability of these approximations for calculating the field of a bunch with finite length. It has been speculated that the exact form of the electric field could be important for simulations of the electron-cloud instability. In this paper, we show, however, that the usual approximation of the Green function by a delta function is adequate, except for extremely short bunch lengths

  10. The Hadamard construction of Green's functions on a curved space-time: physics and explicit rigorous results

    International Nuclear Information System (INIS)

    John, R.W.

    1987-01-01

    First, in connection with their construction due to Hadamard, the mathematical and physical meaning of covariant Green's functions in relativistic gravitational fields - according to Einstein: on curved space-time - is discussed. Then, in the case of a general static spherically symmetric space-time the construction equations for a scalar Green's function are cast into symmetry-adapted form providing a convenient starting point for an explicit calculation of the Hadamard building elements. In applying the obtained basic scheme to a special one-parameter family of model metrics one succeeds in advancing to the explicit exact calculation of tail-term coefficients of a massless Green's function which are simultaneously coefficients in the Schwinger-De Witt expansion of the Feynman propagator for the corresponding massive Klein-Gordon equation on curved space-time. (author)

  11. Green Point residents' perceptions of the 2010 FIFA World Cup: A ...

    African Journals Online (AJOL)

    Green Point residents' perceptions of the 2010 FIFA World Cup: A post-event ... positive perceptions and attitudes towards South Africa's hosting of the event. ... longitudinal studies are recommended to gauge perceptual changes over time.

  12. Improved quasi-static nodal green's function method

    International Nuclear Information System (INIS)

    Li Junli; Jing Xingqing; Hu Dapu

    1997-01-01

    Improved Quasi-Static Green's Function Method (IQS/NGFM) is presented, as an new kinetic method. To solve the three-dimensional transient problem, improved Quasi-Static Method is adopted to deal with the temporal problem, which will increase the time step as long as possible so as to decrease the number of times of space calculation. The time step of IQS/NGFM can be increased to 5∼10 times longer than that of Full Implicit Differential Method. In spatial calculation, the NGFM is used to get the distribution of shape function, and it's spatial mesh can be nearly 20 times larger than that of Definite Differential Method. So the IQS/NGFM is considered as an efficient kinetic method

  13. Functional-derivative study of the Hubbard model. III. Fully renormalized Green's function

    International Nuclear Information System (INIS)

    Arai, T.; Cohen, M.H.

    1980-01-01

    The functional-derivative method of calculating the Green's function developed earlier for the Hubbard model is generalized and used to obtain a fully renormalized solution. Higher-order functional derivatives operating on the basic Green's functions, G and GAMMA, are all evaluated explicitly, thus making the solution applicable to the narrow-band region as well as the wide-band region. Correction terms Phi generated from functional derivatives of equal-time Green's functions of the type delta/sup n/ /deltaepsilon/sup n/, etc., with n > or = 2. It is found that the Phi's are, in fact, renormalization factors involved in the self-energy Σ and that the structure of the Phi's resembles that of Σ and contains the same renormalization factors Phi. The renormalization factors Phi are shown to satisfy a set of equations and can be evaluated self-consistently. In the presence of the Phi's, all difficulties found in the previous results (papers I and II) are removed, and the energy spectrum ω can now be evaluated for all occupations n. The Schwinger relation is the only basic relation used in generating this fully self-consistent Green's function, and the Baym-Kadanoff continuity condition is automatically satisfied

  14. A Green function of neutron transport equation

    International Nuclear Information System (INIS)

    Simovic, R.

    1993-01-01

    In this paper the angularly dependent Green function of the neutron transport equation is derived analytically and approximately. By applying the analytical FDPN approximation up to eighth order, numerical values of the Green functions are obtained with the accuracy of six significant figures in the whole range of parameter c, angle cosine μ and distances x up to the ten optical lengths from the neutron source. (author)

  15. Electromagnetic fields and Green functions in elliptical vacuum chambers

    CERN Document Server

    AUTHOR|(CDS)2084216; Biancacci, Nicolo; Migliorati, Mauro; Palumbo, Luigi; Vaccaro, Vittorio; CERN. Geneva. ATS Department

    2017-01-01

    In this paper, we discuss the electromagnetic interaction between a point charge travelling inside a waveguide of elliptical cross section, and the waveguide itself. By using a convenient expansion of the Mathieu functions, useful in particular for treating a variety of problems in applied mathematics and physics with elliptic geometry, we first obtain the longitudinal electromagnetic field of a point charge (Green function) in free space in terms of elliptical coordinates. This expression allows, then, to calculate the scattered field due to the boundary conditions in our geometry. By summing the contribution of the direct or primary field and the indirect field scattered by the boundary, after a careful choice of some expansion expressions, we derive a novel formula of the longitudinal electric field, in any transverse position of the elliptical cross section, generated by the charge moving along the longitudinal axis of the waveguide. The obtained expression is represented in a closed form, it can be diffe...

  16. Analytic properties for the honeycomb lattice Green function at the origin

    Science.gov (United States)

    Joyce, G. S.

    2018-05-01

    The analytic properties of the honeycomb lattice Green function are investigated, where is a complex variable which lies in a plane. This double integral defines a single-valued analytic function provided that a cut is made along the real axis from w  =  ‑3 to . In order to analyse the behaviour of along the edges of the cut it is convenient to define the limit function where . It is shown that and can be evaluated exactly for all in terms of various hypergeometric functions, where the argument function is always real-valued and rational. The second-order linear Fuchsian differential equation satisfied by is also used to derive series expansions for and which are valid in the neighbourhood of the regular singular points and . Integral representations are established for and , where with . In particular, it is proved that where J 0(z) and Y 0(z) denote Bessel functions of the first and second kind, respectively. The results derived in the paper are utilized to evaluate the associated logarithmic integral where w lies in the cut plane. A new set of orthogonal polynomials which are connected with the honeycomb lattice Green function are also briefly discussed. Finally, a link between and the theory of Pearson random walks in a plane is established.

  17. Cannabis intoxication in three Green iguanas (Iguana iguana).

    Science.gov (United States)

    Girling, S J; Fraser, M A

    2011-02-01

    This report describes clinical signs and plasma biochemical changes associated with significant cannabis consumption in three Green iguanas (Iguana iguana) which resulted in seizures, cardiovascular and digestive tract aberrations, elevated hepatic enzymes and bile acid concentrations for a number of weeks post recovery. One case required extensive antiseizuring therapy to recover. All Green iguanas eventually made a full recovery. © 2011 British Small Animal Veterinary Association.

  18. Two-point Green's functions in quantum electrodynamics at finite temperature and density

    International Nuclear Information System (INIS)

    Bechler, A.

    1981-01-01

    One-particle propagators of the relativistic electron--positron gas are systematically investigated. With the nonvanishing chemical potential the neutrality of the whole system is secured by a uniformly charged classical background described by a classical current J/sub μ/. Due to the translational invariance of this model it is natural to investigate the properties of the propagators in the momentum space. The Fourier-transforms of the Green's functions have been expressed in terms of the generalized spectral Lehmann representation and the second-order spectral functions of the photon and electron propagators have been found. The matter-dependent part of the propagator is finite and only the vacuum part has to be renormalized with the use of standard renormalization counterterms. The singularities of the gauge-independent photon propagator have been further investigated with the use of the spectral representation and nonperturbative expressions for the spectrum of collective excitations have been obtained. In the second order of perturbation they reproduce the asymptotic formulas at T→0 and T→infinity cited previously in the literature. In particular, the relativistic plasma frequency (photon effective mass) has been expressed in a simple form in terms of the integrals over the spectral functions. Our formulas for the relativistic plasmon mass squared Ω 2 exhibit an interesting property that at some temperature and density Ω 2 should become negative. However, simple estimates show that this phenomenon occurs at highly nonrealistic temperatures of the order of e 137 , i.e., in the region where the perturbation theory fails. The damping of the collective excitations is also considered

  19. Wrox SharePoint 2010 SharePoint911 three-pack

    CERN Document Server

    Klindt, Todd; Mason, Jennifer; Rogers, Laura; Drisgill, Randy; Ross, John; Riemann, Larry; Perran, Amanda; Perran, Shane; Sanford, Jacob J; Stubbs, Paul; Caravajal, Steve

    2012-01-01

    The Wrox SharePoint 2010 SharePoint911 Three-Pack combines the contents of three full e-books written by the experts from SharePoint911.  That's over 1800 pages of hands-on advice from Todd Klindt, Shane Young, Laura Rogers, Randy Drisgill, Jennifer Mason, John Ross, and Larry Riemann, among others. In Beginning SharePoint 2010: Building Business Solutions with SharePoint (ISBN 978-0-470-61789-2) by Amanda Perran, Shane Perran, Jennifer Mason, and Laura Rogers, readers learn the core concepts, terminology, and features of SharePoint 2010. In Professiona

  20. Green's function matching method for adjoining regions having different masses

    International Nuclear Information System (INIS)

    Morgenstern Horing, Norman J

    2006-01-01

    We present a primer on the method of Green's function matching for the determination of the global Schroedinger Green's function for all space subject to joining conditions at an interface between two (or more) separate parts of the region having different masses. The object of this technique is to determine the full space Schroedinger Green's function in terms of the individual Green's functions of the constituent parts taken as if they were themselves extended to all space. This analytical method has had successful applications in the theory of surface states, and remains of interest for nanostructures

  1. A fixed point approach to the Green's functions of PHI42: Local exsistence of the Borel transforms

    International Nuclear Information System (INIS)

    Bros, J.; Iagolnitzer, D.

    1981-01-01

    We prove the existence at small μ of a unique solution of the system B = M(B) to be satisfied by the set of Borel transformed euclidean Green's functions of a PHI 4 2 theory, μ being the Borel conjugate variable of the coupling lambda. As a byproduct, a new proof of convergence of the Borel transformed perturbative series is obtained. (orig.)

  2. Wave resistance calculation method combining Green functions based on Rankine and Kelvin source

    Directory of Open Access Journals (Sweden)

    LI Jingyu

    2017-12-01

    Full Text Available [Ojectives] At present, the Boundary Element Method(BEM of wave-making resistance mostly uses a model in which the velocity distribution near the hull is solved first, and the pressure integral is then calculated using the Bernoulli equation. However,the process of this model of wave-making resistance is complex and has low accuracy.[Methods] To address this problem, the present paper deduces a compound method for the quick calculation of ship wave resistance using the Rankine source Green function to solve the hull surface's source density, and combining the Lagally theorem concerning source point force calculation based on the Kelvin source Green function so as to solve the wave resistance. A case for the Wigley model is given.[Results] The results show that in contrast to the thin ship method of the linear wave resistance theorem, this method has higher precision, and in contrast to the method which completely uses the Kelvin source Green function, this method has better computational efficiency.[Conclusions] In general, the algorithm in this paper provides a compromise between precision and efficiency in wave-making resistance calculation.

  3. Scalar 3-point functions in CFT: renormalisation, beta functions and anomalies

    Science.gov (United States)

    Bzowski, Adam; McFadden, Paul; Skenderis, Kostas

    2016-03-01

    We present a comprehensive discussion of renormalisation of 3-point functions of scalar operators in conformal field theories in general dimension. We have previously shown that conformal symmetry uniquely determines the momentum-space 3-point functions in terms of certain integrals involving a product of three Bessel functions (triple- K integrals). The triple- K integrals diverge when the dimensions of operators satisfy certain relations and we discuss how to obtain renormalised 3-point functions in all cases. There are three different types of divergences: ultralocal, semilocal and nonlocal, and a given divergent triple- K integral may have any combination of them. Ultralocal divergences may be removed using local counterterms and this results in new conformal anomalies. Semilocal divergences may be removed by renormalising the sources, and this results in CFT correlators that satisfy Callan-Symanzik equations with beta functions. In the case of non-local divergences, it is the triple- K representation that is singular, not the 3-point function. Here, the CFT correlator is the coefficient of the leading nonlocal singularity, which satisfies all the expected conformal Ward identities. Such correlators exhibit enhanced symmetry: they are also invariant under dual conformal transformations where the momenta play the role of coordinates. When both anomalies and beta functions are present the correlators exhibit novel analytic structure containing products of logarithms of momenta. We illustrate our discussion with numerous examples, including free field realisations and AdS/CFT computations.

  4. A single-sided representation for the homogeneous Green's function of a unified scalar wave equation.

    Science.gov (United States)

    Wapenaar, Kees

    2017-06-01

    A unified scalar wave equation is formulated, which covers three-dimensional (3D) acoustic waves, 2D horizontally-polarised shear waves, 2D transverse-electric EM waves, 2D transverse-magnetic EM waves, 3D quantum-mechanical waves and 2D flexural waves. The homogeneous Green's function of this wave equation is a combination of the causal Green's function and its time-reversal, such that their singularities at the source position cancel each other. A classical representation expresses this homogeneous Green's function as a closed boundary integral. This representation finds applications in holographic imaging, time-reversed wave propagation and Green's function retrieval by cross correlation. The main drawback of the classical representation in those applications is that it requires access to a closed boundary around the medium of interest, whereas in many practical situations the medium can be accessed from one side only. Therefore, a single-sided representation is derived for the homogeneous Green's function of the unified scalar wave equation. Like the classical representation, this single-sided representation fully accounts for multiple scattering. The single-sided representation has the same applications as the classical representation, but unlike the classical representation it is applicable in situations where the medium of interest is accessible from one side only.

  5. The green's functions of superconductivity- A review | Imo | Global ...

    African Journals Online (AJOL)

    We present some basic Green's functions of superconductivity, making emphasis on their geneology and analytic properties. From calculations, we note that the temperature dependence of the Green's functions for fermionic (and bosonic) systems limits and defines the extent of their applications and results. Furthermore ...

  6. No-neighbours recurrence schemes for space-time Green's functions on a 3D simple cubic lattice

    NARCIS (Netherlands)

    De Hon, Bastiaan P.; Floris, Sander J.; Arnold, John M.

    2018-01-01

    Application of multivariate creative telescoping to a finite triple sum representation of the discrete space-time Green's function for an arbitrary numeric (non-symbolic) lattice point on a 3D simple cubic lattice produces a fast, no-neighbours, seventh-order, eighteenth-degree, discrete-time

  7. Nonlocal surface plasmons by Poisson Green's function matching

    International Nuclear Information System (INIS)

    Morgenstern Horing, Norman J

    2006-01-01

    The Poisson Green's function for all space is derived for the case in which an interface divides space into two separate semi-infinite media, using the Green's function matching method. Each of the separate semi-infinite constituent parts has its own dynamic, nonlocal polarizability, which is taken to be unaffected by the presence of the interface and is represented by the corresponding bulk response property. While this eliminates Friedel oscillatory phenomenology near the interface with p ∼ 2p F , it is nevertheless quite reasonable and useful for a broad range of lower (nonvanishing) wavenumbers, p F . The resulting full-space Poisson Green's function is dynamic, nonlocal and spatially inhomogeneous, and its frequency pole yields the surface plasmon dispersion relation, replete with dynamic and nonlocal features. It also accommodates an ambient magnetic field

  8. Point Climat no. 14 'Financing the transition to a green economy: their word is their (green) bond?'

    International Nuclear Information System (INIS)

    Morel, Romain; Bordier, Cecile

    2012-01-01

    Among the publications of CDC Climat Research, 'Climate Briefs' presents, in a few pages, hot topics in climate change policy. This issue addresses the following points: Responding to climate change involves the implementation of initiatives that require significant up-front capital investment. At a time when bank lending is squeezed, green bonds offer an alternative financing for initiatives with an environmental goal. Lately, the Ile-de-France Region's issuance of environmentally and socially responsible bonds on March 20 2012 demonstrates that an increasing number of players are taking interest in this tool. But green bonds are not, however, the panacea to access to finance issues that mainly depend on the bond issuer's characteristics

  9. 'Green-in-Three' IT Solutions Protecting Workers and the Environment - 12526

    Energy Technology Data Exchange (ETDEWEB)

    Eckman, Todd [MSA Hanford, Richland, Washington 99354 (United States)

    2012-07-01

    The U.S. Department of Energy (DOE), Environmental Management (EM), DOE Richland Operations Office (RL), Mission Support Alliance (MSA), and Lockheed Martin Services, Inc. (LMSI), Information Technology partnered in an effort to reduce environmental impacts, energy use, and operating costs and improve worker safety through consolidation, centralization, and standardization of Information Technology (IT) assets on the Hanford Site. Green-in-Three is an IT Value strategy, which is moving Hanford from an inefficient, antiquated 20. Century IT architecture to a smart, green, flexible 21. Century IT architecture that delivers information anywhere at any time to Hanford Mission partners. The 'Green-in-three' efforts to date have had a significant impact on meeting and exceeding the overall IT Value Strategy to decrease IT maintenance and delivery costs and move Hanford into a smart, green, and flexible 21. Century IT architecture. Some of the results and impacts are as follows: - Thirteen data centers were reduced to two, freeing up approximately 279 m{sup 2} (3000 ft{sup 2})) of space; - Reduced data center energy use 50%, from 120,000 to 60,000 kW; - Excessed 9 metric tons (10 tons) of server equipment; - Removed and properly disposed of 2871 kg (6,300 lb) lead acid batteries; - Projects saved over $1 M in fiber and copper cable installation through 2011; - Developed or improved partnerships with local, state, and federal agencies, Tribes, and Site contractors; - Increased wireless coverage for improved access to remote areas. Moving forward to 2012, the impact of these accomplishments will be realized in the years to come. IT services will be delivered in days instead of months. Field personnel will have access to information at the point of performance, reducing travel time. Remote monitoring, telemetry, and/or video can be conducted using the wireless network; reducing travel time for field inspections. Emergency personnel have access to critical

  10. GREEN TOWERS AND ICONIC DESIGN: Cases from Three Continents

    Directory of Open Access Journals (Sweden)

    Kheir M Al-Kodmany

    2014-03-01

    Full Text Available Recently, massive urbanization, increasingly denser cities and environmental consciousness are pushing architects to build “green” skyscraper. This paper examines the emergence of a notable type of skyscrapers which depart from purely image-driven structures, and emphasizes functionality and energy efficiency. It argues that breathtaking green design and practical clean technology are merged to give birth to green architectural aesthetics. Upon reviewing over 30 towers from various parts of the world, the paper identifies salient green design strategies that provide new iconicity including: structural efficiencies, renewable energy, façade technology, greeneries, and bioclimatic design. Findings suggest that a dynamic synergy among innovative green design strategies, new architectural languages and exciting aesthetics has constituted a trend that is more likely to prevail in the 21st Century.

  11. Non-perturbative Green functions in quantum gauge theories

    International Nuclear Information System (INIS)

    Shabanov, S.V.

    1991-01-01

    Non-perturbative Green functions for gauge invariant variables are considered. The Green functions are found to be modified as compared with the usual ones in a definite gauge because of a physical configuration space (PCS) reduction. In the Yang-Mills theory with fermions this phenomenon follows from the Singer theorem about the absence of a global gauge condition for the fields tensing to zero at spatial infinity. 20 refs

  12. Harmonic supergraphs. Green functions

    International Nuclear Information System (INIS)

    Galperin, A.; Ivanov, E.; Gievetsky, V.; Sokatchev, E.

    1985-01-01

    The quantization procedure in the harmonic superspace approach is worked out. Harmonic distributions are introduced and are used to construct the analytic superspace delta-functions and the Green functions for the hypermultiplet and the N=2 Yang-Mills superfields. The gauge fixing is described and the relevant Faddeev-Popov ghosts are defined. The corresponding BRST transformations are found. The harmonic superspace quantization of the N=2 gauge theory turns out to be rather simple and has many parallels with that for the standard (N=0) Yang-Mills theory. In particular, no ghosts-forghosts are needed

  13. Study of Ion Acoustic Wave Damping through Green's Functions

    DEFF Research Database (Denmark)

    Hsuan, H.C.S.; Jensen, Vagn Orla

    1973-01-01

    Green's function analyses of ion acoustic waves in streaming plasmas show that, in general, the waves damp algebraically rather than exponentially with distance from exciter.......Green's function analyses of ion acoustic waves in streaming plasmas show that, in general, the waves damp algebraically rather than exponentially with distance from exciter....

  14. Function parametrization by using 4-point transforms

    International Nuclear Information System (INIS)

    Dikusar, N.D.

    1996-01-01

    A continuous parametrization of the smooth curve f(x)=f(x;R) is suggested on a basis of four-point transformations. Coordinates of three reference points of the curve are chosen as parameters R. This approach allows to derive a number of advantages in function approximation and fitting of empiric data. The transformations have made possible to derive a new class of polynomials (monosplines) having the better approximation quality than monomials {x n }. A behaviour of an error of the approximation has a uniform character. A three-point model of the cubic spline (TPS) is proposed. The model allows to reduce a number of unknown parameters in twice and to obtain an advantage in a computing aspect. The new approach to the function approximation and fitting are shown on a number of examples. The proposed approach gives a new mathematical tool and a new possibility in both practical applications and theoretical research of numerical and computational methods. 13 refs., 13 figs., 2 tabs

  15. Finite-Source Inversion for the 2004 Parkfield Earthquake using 3D Velocity Model Green's Functions

    Science.gov (United States)

    Kim, A.; Dreger, D.; Larsen, S.

    2008-12-01

    .25 Hz but that the velocity model is fast at stations located very close to the fault. In this near-fault zone the model also underpredicts the amplitudes. This implies the need to include an additional low velocity zone in the fault zone to fit the data. For the finite fault modeling we use the same stations as in our previous study (Kim and Dreger 2008), and compare the results to investigate the effect of 3D Green's functions on kinematic source inversions. References: Brocher, T. M., (2005), Empirical relations between elastic wavespeeds and density in the Earth's crust, Bull. Seism. Soc. Am., 95, No. 6, 2081-2092. Eberhart-Phillips, D., and A.J. Michael, (1993), Three-dimensional velocity structure and seismicity in the Parkfield region, central California, J. Geophys. Res., 98, 15,737-15,758. Kim A., D. S. Dreger (2008), Rupture process of the 2004 Parkfield earthquake from near-fault seismic waveform and geodetic records, J. Geophys. Res., 113, B07308. Thurber, C., H. Zhang, F. Waldhauser, J. Hardebeck, A. Michaels, and D. Eberhart-Phillips (2006), Three- dimensional compressional wavespeed model, earthquake relocations, and focal mechanisms for the Parkfield, California, region, Bull. Seism. Soc. Am., 96, S38-S49. Larsen, S., and C. A. Schultz (1995), ELAS3D: 2D/3D elastic finite-difference wave propagation code, Technical Report No. UCRL-MA-121792, 19pp. Liu, P., and R. J. Archuleta (2004), A new nonlinear finite fault inversion with three-dimensional Green's functions: Application to the 1989 Loma Prieta, California, earthquake, J. Geophys. Res., 109, B02318.

  16. A cardy formula for three-point coefficients or how the black hole got its spots

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, Per [Department of Physics and Astronomy, University of California,Los Angeles, CA 90095 (United States); Maloney, Alexander [Physics Department, McGill University,Montréal, QC H3A 2T8 (Canada)

    2017-05-31

    Modular covariance of torus one-point functions constrains the three point function coefficients of a two dimensional CFT. This leads to an asymptotic formula for the average value of light-heavy-heavy three point coefficients, generalizing Cardy’s formula for the high energy density of states. The derivation uses certain asymptotic properties of one-point conformal blocks on the torus. Our asymptotic formula matches a dual AdS{sub 3} computation of one point functions in a black hole background. This is evidence that the BTZ black hole geometry emerges upon course-graining over a suitable family of heavy microstates.

  17. Green's functions on spheres and on closed Robertson--Walker spacetimes

    International Nuclear Information System (INIS)

    Hahne, G.E.

    1975-01-01

    The objective of this investigation was to carry the theory and calculations of certain Green functions as far as seemed possible toward applications, in particular toward the calculation of the rate of spontaneous creation of scalar particles by strong gravitational fields. The latter calculation has not yet been carried out in full on account of its apparent mathematical intractability. As an introduction to Green functions concern is with the Green function for the Laplacian operator Δ (or NABLA 2 ) and the Helmholtz operator DELTA + omega 2 on n-spheres, with a few examples worked out. Subsequently, Green's functions for massless particles on Einstein spacetimes of two (S 1 x T) and four (S 3 x T) dimensions are obtained. By a fortuitous circumstance the conformally invariant equation in the case of the 4-dimensional Einstein space could be worked out in detail. The conformally invariant case predicts no spontaneous creation of particles, however. In the final calculation a special kind of Green function associated with the Klein-Gordon equation was related to the particle creation amplitude for an Einstein universe. (Diss. Abstr. Int., B)

  18. Green functions in a super self-dual Yang-Mills background

    International Nuclear Information System (INIS)

    McArthur, I.N.

    1984-01-01

    In euclidean supersymmetric theories of chiral superfields and vector superfields coupled to a super-self-dual Yang-Mills background, we define Green functions for the Laplace-type differential operators which are obtained from the quadratic parot the action. These Green functions are expressed in terms of the Green function on the space of right chiral superfields, and an explicit expression for the right chiral Green function in the fundamental representation of an SU(n) gauge group is presented using the supersymmetric version of the ADHM formalism. The superfield kernels associated with the Laplace-type operators are used to obtain the one-loop quantum corrections to the super-self-dual Yang-Mills action, and also to provide a superfield version of the super-index theorems for the components of chiral superfields in a self-dual background. (orig.)

  19. ATRF Earns Three Green Globes, Exceeds NIH Building Standards | Poster

    Science.gov (United States)

    By Ashley DeVine, Staff Writer From project management and energy and water efficiency to emissions and the indoor environment, the Advanced Technology Research Facility (ATRF) was built with sustainability in mind, exceeding the National Institutes of Health’s (NIH’s) building standards and earning three Green Globes from the Green Building Initiative (GBI).

  20. Nonequilibrium Green function techniques applied to hot electron quantum transport

    International Nuclear Information System (INIS)

    Jauho, A.P.

    1989-01-01

    During the last few years considerable effort has been devoted to deriving quantum transport equations for semiconductors under extreme conditions (high electric fields, spatial quantization in one or two directions). Here we review the results obtained with nonequilibrium Green function techniques as formulated by Baym and Kadanoff, or by Keldysh. In particular, the following topics will be discussed: (i) Systematic approaches to reduce the transport equation governing the correlation function to a transport equation for the Wigner function; (ii) Approximations reducing the nonmarkovian quantum transport equation to a numerically tractable form, and results for model semiconductors; (iii) Recent progress in extending the formalism to inhomogeneous systems; and (iv) Nonequilibrium screening. In all sections we try to direct the reader's attention to points where the present understanding is (at best) incomplete, and indicate possible lines for future work. (orig.)

  1. Low-rank canonical-tensor decomposition of potential energy surfaces: application to grid-based diagrammatic vibrational Green's function theory

    Science.gov (United States)

    Rai, Prashant; Sargsyan, Khachik; Najm, Habib; Hermes, Matthew R.; Hirata, So

    2017-09-01

    A new method is proposed for a fast evaluation of high-dimensional integrals of potential energy surfaces (PES) that arise in many areas of quantum dynamics. It decomposes a PES into a canonical low-rank tensor format, reducing its integral into a relatively short sum of products of low-dimensional integrals. The decomposition is achieved by the alternating least squares (ALS) algorithm, requiring only a small number of single-point energy evaluations. Therefore, it eradicates a force-constant evaluation as the hotspot of many quantum dynamics simulations and also possibly lifts the curse of dimensionality. This general method is applied to the anharmonic vibrational zero-point and transition energy calculations of molecules using the second-order diagrammatic vibrational many-body Green's function (XVH2) theory with a harmonic-approximation reference. In this application, high dimensional PES and Green's functions are both subjected to a low-rank decomposition. Evaluating the molecular integrals over a low-rank PES and Green's functions as sums of low-dimensional integrals using the Gauss-Hermite quadrature, this canonical-tensor-decomposition-based XVH2 (CT-XVH2) achieves an accuracy of 0.1 cm-1 or higher and nearly an order of magnitude speedup as compared with the original algorithm using force constants for water and formaldehyde.

  2. Green's functions for off-shell electromagnetism and spacelike correlations

    International Nuclear Information System (INIS)

    Land, M.C.; Horwitz, L.P.

    1991-01-01

    The requirement of gauge invariance for the Schwinger-DeWitt equations, interpreted as a manifestly covariant quantum theory for the evolution of a system in spacetime, implies the existence of a five-dimensional pre-Maxwell field on the manifold of spacetime and proper time τ. The Maxwell theory is contained in this theory; integration of the field equations over τ restores the Maxwell equations with the usual interpretation of the sources. Following Schwinger's techniques, the authors study the Green's functions for the five dimensional hyperbolic field equations for both signatures ± [corresponding to O(4, 1) or O(3, 2) symmetry of the field equations] of the proper time derivative. The classification of the Green's functions follows that of the four-dimensional theory for massive fields, for which the mass squared may be positive or negative, respectively. The Green's function for the five-dimensional field are then given by the Fourier transform over the mass parameter. They derive the Green's functions corresponding to the principal part Δ P and the homogeneous function Δ t ; all of the Green's functions can be expressed in terms of these, as for the usual field equations with definite mass. In the O(3, 2) case, the principal part function has support for x 2 ≥ τ 2 , corresponding to spacelike propagation, as well as along the light cone X 2 = 0 (for τ = 0). There can be no transmission of information in spacelike directions, with this propagator, since the Maxwell field, obtained by integration over τ, does not contain this component of the support. Measurements are characterized by such an integration. The spacelike field therefore can dynamically establish spacelike correlations

  3. The non-equilibrium Green's function method for nanoscale device simulation

    CERN Document Server

    Pourfath, Mahdi

    2014-01-01

    For modeling the transport of carriers in nanoscale devices, a Green-function formalism is the most accurate approach. Due to the complexity of the formalism, one should have a deep understanding of the underlying principles and use smart approximations and numerical methods for solving the kinetic equations at a reasonable computational time. In this book the required concepts from quantum and statistical mechanics and numerical methods for calculating Green functions are presented. The Green function is studied in detail for systems both under equilibrium and under nonequilibrium conditions. Because the formalism enables rigorous modeling of different scattering mechanisms in terms of self-energies, but an exact evaluation of self-energies for realistic systems is not possible, their approximation and inclusion in the quantum kinetic equations of the Green functions are elaborated. All the elements of the kinetic equations, which are the device Hamiltonian, contact self-energies, and scattering self-energie...

  4. Einstein gravity 3-point functions from conformal field theory

    Science.gov (United States)

    Afkhami-Jeddi, Nima; Hartman, Thomas; Kundu, Sandipan; Tajdini, Amirhossein

    2017-12-01

    We study stress tensor correlation functions in four-dimensional conformal field theories with large N and a sparse spectrum. Theories in this class are expected to have local holographic duals, so effective field theory in anti-de Sitter suggests that the stress tensor sector should exhibit universal, gravity-like behavior. At the linearized level, the hallmark of locality in the emergent geometry is that stress tensor three-point functions 〈 T T T 〉, normally specified by three constants, should approach a universal structure controlled by a single parameter as the gap to higher spin operators is increased. We demonstrate this phenomenon by a direct CFT calculation. Stress tensor exchange, by itself, violates causality and unitarity unless the three-point functions are carefully tuned, and the unique consistent choice exactly matches the prediction of Einstein gravity. Under some assumptions about the other potential contributions, we conclude that this structure is universal, and in particular, that the anomaly coefficients satisfy a ≈ c as conjectured by Camanho et al. The argument is based on causality of a four-point function, with kinematics designed to probe bulk locality, and invokes the chaos bound of Maldacena, Shenker, and Stanford.

  5. Two-point functions in a holographic Kondo model

    Science.gov (United States)

    Erdmenger, Johanna; Hoyos, Carlos; O'Bannon, Andy; Papadimitriou, Ioannis; Probst, Jonas; Wu, Jackson M. S.

    2017-03-01

    We develop the formalism of holographic renormalization to compute two-point functions in a holographic Kondo model. The model describes a (0 + 1)-dimensional impurity spin of a gauged SU( N ) interacting with a (1 + 1)-dimensional, large- N , strongly-coupled Conformal Field Theory (CFT). We describe the impurity using Abrikosov pseudo-fermions, and define an SU( N )-invariant scalar operator O built from a pseudo-fermion and a CFT fermion. At large N the Kondo interaction is of the form O^{\\dagger}O, which is marginally relevant, and generates a Renormalization Group (RG) flow at the impurity. A second-order mean-field phase transition occurs in which O condenses below a critical temperature, leading to the Kondo effect, including screening of the impurity. Via holography, the phase transition is dual to holographic superconductivity in (1 + 1)-dimensional Anti-de Sitter space. At all temperatures, spectral functions of O exhibit a Fano resonance, characteristic of a continuum of states interacting with an isolated resonance. In contrast to Fano resonances observed for example in quantum dots, our continuum and resonance arise from a (0 + 1)-dimensional UV fixed point and RG flow, respectively. In the low-temperature phase, the resonance comes from a pole in the Green's function of the form - i2, which is characteristic of a Kondo resonance.

  6. Boundary conditions for quasiclassical Green's function for superfluid Fermi systems

    International Nuclear Information System (INIS)

    Nagai, K.; Hara, J.

    1988-01-01

    The authors show that the quasiclassical Green's Function for Fermi liquids can be constructed from the solutions of the Bogoliubov-de Gennes equation within the Andreev approximation and derive self-consistent relations to be satisfied by the quasiclassical Green's function at the surfaces. The so-called normalization condition for the quasiclassical Green's function is obtained from this self-consistent relation. They consider a specularly reflecting wall, a randomly rippled wall, and a proximity boundary as model surfaces. Their boundary condition for the randomly rippled wall is different from that derived by Buchholtz and Rainer and Buchholtz

  7. Functional Use Change in Green Spaces: A Case Study of Kirklareli Province

    Science.gov (United States)

    Sat Gungor, Beyza; Culha Ozanguc, Kadiriye

    2017-10-01

    Green spaces which are one of the most important public spaces in urban design have an important role on qualified daily urban life. People escape from intense work pressure and traffic jam of metropoles to those urban green areas to take a breath even they cover a small size. In time, people’s expectations from green spaces as functional and quantitative needs are changing. This change occurs due to increasing population and as the character of the urban life. This study examines the functional use and quantitative change of urban green spaces of Kırklareli Province from past to present. Kırklareli is a border city to Bulgaria which is located in north-west part of Turkey and this gives a transitional and a multicultural character to the city. The population is about 67360. In the course of time; green space needs have increased by the increasing population. In addition to this, green spaces’ functional use change has been identified. According to the results of the study; from the aspect of the green space standards, Kırklareli found above standards with 17.5 m2 per capita, but on the other hand, sport and playground areas found insufficient. The Oldest and the newest city plans of Kırklareli (1940s and 2012s cadastral plans) have been compared and site surveys implemented as the methodology. In site survey, current green spaces’ functional uses as sport or playground are observed and determined and also current quantitative measure of the green spaces are verified. Urban green spaces in Kırklareli Province evaluated through considering world’s most populated urban green space standards and Turkey’s standards. This study utilizes to compose a substructure of the urban green space. Determined deficiencies and inadequacies of green spaces and functional needs in this study, can guide to further studies and implementations of Kırklareli Municipality.

  8. Vector Green's function algorithm for radiative transfer in plane-parallel atmosphere

    International Nuclear Information System (INIS)

    Qin Yi; Box, Michael A.

    2006-01-01

    Green's function is a widely used approach for boundary value problems. In problems related to radiative transfer, Green's function has been found to be useful in land, ocean and atmosphere remote sensing. It is also a key element in higher order perturbation theory. This paper presents an explicit expression of the Green's function, in terms of the source and radiation field variables, for a plane-parallel atmosphere with either vacuum boundaries or a reflecting (BRDF) surface. Full polarization state is considered but the algorithm has been developed in such way that it can be easily reduced to solve scalar radiative transfer problems, which makes it possible to implement a single set of code for computing both the scalar and the vector Green's function

  9. Electrical tensor Green functions for cylindrical waveguides

    International Nuclear Information System (INIS)

    Prijmenko, S.D.; Papkovich, V.G.; Khizhnyak, N.A.

    1988-01-01

    Formation of electrical tensor Green functions for cylindrical waveguides is considered. Behaviour of these functions in the source region is studied. Cases of electrical tensor Green functions for vector potential G E (r-vector, r'-vector) and electric field G e (r-vector, r'-vector) are analysed. When forming G E (r-vector, r'-vector), its dependence on lateral coordinates is taken into account by means of two-dimensional fundamental vector Hansen functions, several methods are used to take into account the dependence on transverse coordinate. When forming G e (r-vector, r'-vector) we use the fact that G E (r-vector, r'-vector) and G e (r-vector, r'-vector) are the generalized functions. It is shown that G e (r-vector, r'-vector) behaviour in the source region is defined by a singular term, which properties are described by the delta-function. Two variants of solving the problem of defining singular and regular sides of tensor function G E (r-vector, r'-vector) are presented. 23 refs

  10. Gluon Green functions free of quantum fluctuations

    Directory of Open Access Journals (Sweden)

    A. Athenodorou

    2016-09-01

    Full Text Available This letter reports on how the Wilson flow technique can efficaciously kill the short-distance quantum fluctuations of 2- and 3-gluon Green functions, remove the ΛQCD scale and destroy the transition from the confining non-perturbative to the asymptotically-free perturbative sector. After the Wilson flow, the behavior of the Green functions with momenta can be described in terms of the quasi-classical instanton background. The same behavior also occurs, before the Wilson flow, at low-momenta. This last result permits applications as, for instance, the detection of instanton phenomenological properties or a determination of the lattice spacing only from the gauge sector of the theory.

  11. Green Functions For Multiple Scattering As Mathematical Tools For Dense Cloud Remote Sensing: Theory, With Passive And Active Applications

    International Nuclear Information System (INIS)

    Davis, A.B.; Marshak, A.; Cahalan, R.F.

    2001-01-01

    We survey radiative Green function theory (1) in linear transport theory where numerical procedures are required to obtain specific results and (2) in the photon diffusion limit (large optical depths) where it is analytically tractable, at least for homogeneous plane-parallel media. We then describe two recent applications of Green function theory to passive cloud remote sensing in the presence of strong three-dimensional transport effects. Finally, we describe recent instrumental breakthroughs in 'off-beam' cloud lidar which is based on direct measurements of radiative Green functions with special attention to the data collected during the Shuttle-based Lidar In-space Technology Experiment (LITE) mission.

  12. Two-point correlation functions in inhomogeneous and anisotropic cosmologies

    International Nuclear Information System (INIS)

    Marcori, Oton H.; Pereira, Thiago S.

    2017-01-01

    Two-point correlation functions are ubiquitous tools of modern cosmology, appearing in disparate topics ranging from cosmological inflation to late-time astrophysics. When the background spacetime is maximally symmetric, invariance arguments can be used to fix the functional dependence of this function as the invariant distance between any two points. In this paper we introduce a novel formalism which fixes this functional dependence directly from the isometries of the background metric, thus allowing one to quickly assess the overall features of Gaussian correlators without resorting to the full machinery of perturbation theory. As an application we construct the CMB temperature correlation function in one inhomogeneous (namely, an off-center LTB model) and two spatially flat and anisotropic (Bianchi) universes, and derive their covariance matrices in the limit of almost Friedmannian symmetry. We show how the method can be extended to arbitrary N -point correlation functions and illustrate its use by constructing three-point correlation functions in some simple geometries.

  13. Two-point correlation functions in inhomogeneous and anisotropic cosmologies

    Energy Technology Data Exchange (ETDEWEB)

    Marcori, Oton H.; Pereira, Thiago S., E-mail: otonhm@hotmail.com, E-mail: tspereira@uel.br [Departamento de Física, Universidade Estadual de Londrina, 86057-970, Londrina PR (Brazil)

    2017-02-01

    Two-point correlation functions are ubiquitous tools of modern cosmology, appearing in disparate topics ranging from cosmological inflation to late-time astrophysics. When the background spacetime is maximally symmetric, invariance arguments can be used to fix the functional dependence of this function as the invariant distance between any two points. In this paper we introduce a novel formalism which fixes this functional dependence directly from the isometries of the background metric, thus allowing one to quickly assess the overall features of Gaussian correlators without resorting to the full machinery of perturbation theory. As an application we construct the CMB temperature correlation function in one inhomogeneous (namely, an off-center LTB model) and two spatially flat and anisotropic (Bianchi) universes, and derive their covariance matrices in the limit of almost Friedmannian symmetry. We show how the method can be extended to arbitrary N -point correlation functions and illustrate its use by constructing three-point correlation functions in some simple geometries.

  14. Superconformal field theory in three dimensions: correlation functions of conserved currents

    Energy Technology Data Exchange (ETDEWEB)

    Buchbinder, Evgeny I.; Kuzenko, Sergei M.; Samsonov, Igor B. [School of Physics M013, The University of Western Australia,35 Stirling Highway, Crawley W.A. 6009 (Australia)

    2015-06-22

    For N-extended superconformal field theories in three spacetime dimensions (3D), with 1≤N≤3, we compute the two- and three-point correlation functions of the supercurrent and the flavour current multiplets. We demonstrate that supersymmetry imposes additional restrictions on the correlators of conserved currents as compared with the non-supersymmetric case studied by Osborn and Petkou in hep-th/9307010. It is shown that the three-point function of the supercurrent is determined by a single functional form consistent with the conservation equation and all the symmetry properties. Similarly, the three-point function of the flavour current multiplets is also determined by a single functional form in the N=1 and N=3 cases. The specific feature of the N=2 case is that two independent structures are allowed for the three-point function of flavour current multiplets, but only one of them contributes to the three-point function of the conserved currents contained in these multiplets. Since the supergravity and super-Yang-Mills Ward identities are expected to relate the coefficients of the two- and three-point functions under consideration, the results obtained for 3D superconformal field theory are analogous to those in 2D conformal field theory. In addition, we present a new supertwistor construction for compactified Minkowski superspace. It is suitable for developing superconformal field theory on 3D spacetimes other than Minkowski space, such as S{sup 1}×S{sup 2} and its universal covering space ℝ×S{sup 2}.

  15. Floquet-Green function formalism for harmonically driven Hamiltonians

    International Nuclear Information System (INIS)

    Martinez, D F

    2003-01-01

    A method is proposed for the calculation of the Floquet-Green function of a general Hamiltonian with harmonic time dependence. We use matrix continued fractions to derive an expression for the 'dynamical effective potential' that can be used to calculate the Floquet-Green function of the system. We demonstrate the formalism for the simple case of a space-periodic (in the tight-binding approximation) Hamiltonian with a defect whose on-site energy changes harmonically with time. We study the local density of states for this system and the behaviour of the localized states as a function of the different parameters that characterize the system

  16. Modeling photonic crystal waveguides with noncircular geometry using green function method

    International Nuclear Information System (INIS)

    Uvarovaa, I.; Tsyganok, B.; Bashkatov, Y.; Khomenko, V.

    2012-01-01

    Currently in the field of photonics is an acute problem fast and accurate simulation photonic crystal waveguides with complex geometry. This paper describes an improved method of Green's functions for non-circular geometries. Based on comparison of selected efficient numerical method for finding the eigenvalues for the Green's function method for non-circular holes chosen effective method for our purposes. Simulation is realized in Maple environment. The simulation results confirmed experimentally. Key words: photonic crystal, waveguide, modeling, Green function, complex geometry

  17. Green's function method and its application to verification of diffusion models of GASFLOW code

    International Nuclear Information System (INIS)

    Xu, Z.; Travis, J.R.; Breitung, W.

    2007-07-01

    To validate the diffusion model and the aerosol particle model of the GASFLOW computer code, theoretical solutions of advection diffusion problems are developed by using the Green's function method. The work consists of a theory part and an application part. In the first part, the Green's functions of one-dimensional advection diffusion problems are solved in infinite, semi-infinite and finite domains with the Dirichlet, the Neumann and/or the Robin boundary conditions. Novel and effective image systems especially for the advection diffusion problems are made to find the Green's functions in a semi-infinite domain. Eigenfunction method is utilized to find the Green's functions in a bounded domain. In the case, key steps of a coordinate transform based on a concept of reversed time scale, a Laplace transform and an exponential transform are proposed to solve the Green's functions. Then the product rule of the multi-dimensional Green's functions is discussed in a Cartesian coordinate system. Based on the building blocks of one-dimensional Green's functions, the multi-dimensional Green's function solution can be constructed by applying the product rule. Green's function tables are summarized to facilitate the application of the Green's function. In the second part, the obtained Green's function solutions benchmark a series of validations to the diffusion model of gas species in continuous phase and the diffusion model of discrete aerosol particles in the GASFLOW code. Perfect agreements are obtained between the GASFLOW simulations and the Green's function solutions in case of the gas diffusion. Very good consistencies are found between the theoretical solutions of the advection diffusion equations and the numerical particle distributions in advective flows, when the drag force between the micron-sized particles and the conveying gas flow meets the Stokes' law about resistance. This situation is corresponding to a very small Reynolds number based on the particle

  18. A hybrid method for the parallel computation of Green's functions

    International Nuclear Information System (INIS)

    Petersen, Dan Erik; Li Song; Stokbro, Kurt; Sorensen, Hans Henrik B.; Hansen, Per Christian; Skelboe, Stig; Darve, Eric

    2009-01-01

    Quantum transport models for nanodevices using the non-equilibrium Green's function method require the repeated calculation of the block tridiagonal part of the Green's and lesser Green's function matrices. This problem is related to the calculation of the inverse of a sparse matrix. Because of the large number of times this calculation needs to be performed, this is computationally very expensive even on supercomputers. The classical approach is based on recurrence formulas which cannot be efficiently parallelized. This practically prevents the solution of large problems with hundreds of thousands of atoms. We propose new recurrences for a general class of sparse matrices to calculate Green's and lesser Green's function matrices which extend formulas derived by Takahashi and others. We show that these recurrences may lead to a dramatically reduced computational cost because they only require computing a small number of entries of the inverse matrix. Then, we propose a parallelization strategy for block tridiagonal matrices which involves a combination of Schur complement calculations and cyclic reduction. It achieves good scalability even on problems of modest size.

  19. On Green's function for 3-D wave-body interaction in a channel

    DEFF Research Database (Denmark)

    Xia, Jinzhu

    1997-01-01

    series of images is evaluated accurately based on an asmptotic analysis. It is demonstrated that the Green's function has a square-root singular behaviour due to the side walls when the wave frequency approaches one of the resonant frequencies. The numerical results for the Green's function has a square......An analytical and numerical study is presented for efficient evaluation of the Green's function that satisfies the linear free surface condition and the non-penetration condition on the channel bottomand the side walls. the formulation is based on the open-sea green's function and the complete......-root singular behaviour due to the side walls when the wave frequency approaches one of the resonant frequencies. The numerical results for the Green's funciton presented in the present paper are believed to have an absolute accuracy of 10-5....

  20. Euclidean scalar Green's functions near the black hole and black brane horizons

    International Nuclear Information System (INIS)

    Haba, Z

    2009-01-01

    We discuss approximations of the Riemannian geometry near the horizon. If a (D + 1)-dimensional manifold N has a bifurcate Killing horizon then we approximate N by a product of the two-dimensional Rindler space R 2 and a (D - 1)-dimensional Riemannian manifold M. We obtain approximate formulae for scalar Green's functions. We study the behavior of the Green's functions near the horizon and their dimensional reduction. We show that if M is compact then the Green's function near the horizon can be approximated by the Green's function of the two-dimensional quantum field theory. The correction term is exponentially small away from the horizon. We extend the results to black brane solutions of supergravity in 10 and 11 dimensions. The near-horizon geometry can be approximated by N=AdS p xS q . We discuss the Euclidean Green's functions on N and their behavior near the horizon.

  1. Nonequilibrium statistical Zubarev's operator and Green's functions for an inhomogeneous electron gas

    Directory of Open Access Journals (Sweden)

    P.Kostrobii

    2006-01-01

    Full Text Available Nonequilibrium properties of an inhomogeneous electron gas are studied using the method of the nonequilibrium statistical operator by D.N. Zubarev. Generalized transport equations for the mean values of inhomogeneous operators of the electron number density, momentum density, and total energy density for weakly and strongly nonequilibrium states are obtained. We derive a chain of equations for the Green's functions, which connects commutative time-dependent Green's functions "density-density", "momentum-momentum", "enthalpy-enthalpy" with reduced Green's functions of the generalized transport coefficients and with Green's functions for higher order memory kernels in the case of a weakly nonequilibrium spatially inhomogeneous electron gas.

  2. Quantum-mechanical Green's functions and nonlinear superposition law

    International Nuclear Information System (INIS)

    Nassar, A.B.; Bassalo, J.M.F.; Antunes Neto, H.S.; Alencar, P. de T.S.

    1986-01-01

    The quantum-mechanical Green's function is derived for the problem of a time-dependent variable mass particle subject to a time-dependent forced harmonic oscillator potential by taking direct recourse of the corresponding Schroedinger equation. Through the usage of the nonlinear superposition law of Ray and Reid, it is shown that such a Green's function can be obtained from that for the problem of a particle with unit (constant) mass subject to either a forced harmonic potential with constant frequency or only to a time-dependent linear field. (Author) [pt

  3. Quantum-mechanical Green's function and nonlinear superposition law

    International Nuclear Information System (INIS)

    Nassar, A.B.; Bassalo, J.M.F.; Antunes Neto, H.S.; Alencar, P.T.S.

    1986-01-01

    It is derived the quantum-mechanical Green's function for the problem of a time-dependent variable mass particle subject to a time-dependent forced harmonic-oscillator potential by taking direct recourse of the corresponding Schroedinger equation. Through the usage of the nonlinear superposition law of Ray and Reid, it is shown that such a Green's function can be obtained from that for the problem of a particle with unit (constant) mass subject to either a forced harmonic potential with constant frequency or only to a time-dependent linear field

  4. Toda 3-point functions from topological strings

    International Nuclear Information System (INIS)

    Mitev, Vladimir; Pomoni, Elli; National Technical Univ. of Athens

    2014-09-01

    We consider the long-standing problem of obtaining the 3-point functions of Toda CFT. Our main tools are topological strings and the AGT-W relation between gauge theories and 2D CFTs. In (L. Bao, V. Mitev, E. Pomoni, M. Taki, and F. Yagi, JHEP 1401 (2014), 175) we computed the partition function of 5D T N theories on S 4 x S 1 and suggested that they should be interpreted as the three-point structure constants of q-deformed Toda. In this paper, we provide the exact AGT-W dictionary for this relation and rewrite the 5D T N partition function in a form that makes taking the 4D limit possible. Thus, we obtain a prescription for the computation of the partition function of the 4D T N theories on S 4 , or equivalently the undeformed 3-point Toda structure constants. Our formula, has the correct symmetry properties, the zeros that it should and, for N=2, gives the known answer for Liouville CFT.

  5. Toda 3-point functions from topological strings

    Energy Technology Data Exchange (ETDEWEB)

    Mitev, Vladimir [Institut für Mathematik und Institut für Physik, Humboldt-Universität zu Berlin,IRIS Haus, Zum Großen Windkanal 6, 12489 Berlin (Germany); Pomoni, Elli [DESY Hamburg, Theory Group, Notkestrasse 85, D-22607 Hamburg (Germany); Physics Division, National Technical University of Athens,15780 Zografou Campus, Athens (Greece)

    2015-06-08

    We consider the long-standing problem of obtaining the 3-point functions of Toda CFT. Our main tools are topological strings and the AGT-W relation between gauge theories and 2D CFTs. In http://dx.doi.org/10.1007/JHEP01(2014)175 we computed the partition function of 5D T{sub N} theories on S{sup 4}×S{sup 1} and suggested that they should be interpreted as the three-point structure constants of q-deformed Toda. In this paper, we provide the exact AGT-W dictionary for this relation and rewrite the 5D T{sub N} partition function in a form that makes taking the 4D limit possible. Thus, we obtain a prescription for the computation of the partition function of the 4D T{sub N} theories on S{sup 4}, or equivalently the undeformed 3-point Toda structure constants. Our formula, has the correct symmetry properties, the zeros that it should and, for N=2, gives the known answer for Liouville CFT.

  6. Toda 3-point functions from topological strings

    Energy Technology Data Exchange (ETDEWEB)

    Mitev, Vladimir [Humboldt-Univ., Berlin (Germany). Inst. fuer Mathematik und Inst. fuer Physik; Pomoni, Elli [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group; National Technical Univ. of Athens (Greece). Physics Div.

    2014-09-15

    We consider the long-standing problem of obtaining the 3-point functions of Toda CFT. Our main tools are topological strings and the AGT-W relation between gauge theories and 2D CFTs. In (L. Bao, V. Mitev, E. Pomoni, M. Taki, and F. Yagi, JHEP 1401 (2014), 175) we computed the partition function of 5D T{sub N} theories on S{sup 4} x S{sup 1} and suggested that they should be interpreted as the three-point structure constants of q-deformed Toda. In this paper, we provide the exact AGT-W dictionary for this relation and rewrite the 5D T{sub N} partition function in a form that makes taking the 4D limit possible. Thus, we obtain a prescription for the computation of the partition function of the 4D T{sub N} theories on S{sup 4}, or equivalently the undeformed 3-point Toda structure constants. Our formula, has the correct symmetry properties, the zeros that it should and, for N=2, gives the known answer for Liouville CFT.

  7. Anomalies in Ward identities revisited. Explicit calculation of the three point functions; Anomalias em identidades de Ward revisitadas. Calculo explicito das funcoes de tres pontos

    Energy Technology Data Exchange (ETDEWEB)

    Dalmolin, Fabricio Tronco

    2007-07-01

    others already performed within the same issue. In particular, in one of such investigation a pioneer and traditional reference has been revisited by using the alternative strategy mentioned above. In such study, a systematic treatment of purely fermionic one, two and three point functions, associated to scalar, pseudo-scalar, vector and axial-vector densities, has done. There, however, only the explicit expressions for one and two point functions were developed. The conclusions pointed out, in a very clear way, that the association between intrinsic ambiguities of the perturbative calculation and violations in symmetry properties is not consistent. At the same time, it was concluded that only in an investigation where the explicit forms for the three point functions involved are considered clean and sound conclusions can be extracted. This is due to the fact that, in the relevant symmetry properties, it is involved three ward identities and a low energy limit. This is precisely the main purpose of the present work: to promote a detailed investigation of the relations among green functions and ward identities, within the context of a model having only one specie of 1/2 spin fermionic field, that consider all the amplitudes having superficial degree of divergence higher than the logarithmic one, in a similar way as that made in the work of Gerstein and Jackiw, taking however the explicit form for the three point functions. This is one to get in the analysis, simultaneously, the ward identities and the low energy limits involved in the anomalous amplitudes as required by the Sutherland-Veltman theorem, in order to get an adequate understanding of the anomaly phenomena. We will show that our final results can be mapped in those found with the use of the Dimensional Regularization, in situation where this technique can be applied, or in those of Gerstein and Jackiw, however with conflicting interpretations. Finally, we will show that in the context of the adopted technique

  8. Cerebral xanthomatosis in three green water dragons (Physignathus cocincinus).

    Science.gov (United States)

    Kummrow, Maya S; Berkvens, Charlene N; Paré, Jean A; Smith, Dale A

    2010-03-01

    Cerebral xanthomatosis was diagnosed in three female green water dragons (Physignathus cocincinus), all of which presented with progressive neurologic signs. No antemortem evidence for xanthomatosis was identified, but on postmortem examination cholesterol granulomas, composed of cholesterol clefts surrounded by macrophages and multinucleated giant cells, were found in the forebrain of each animal and were associated with significant displacement and pressure on the adjacent brain. Although the cause of xanthomatosis in these animals is unknown, nutrition and trauma may be involved in the pathogenesis of this condition. Cerebrum, cholesterol, green water dragon, Physignathus cocincinus, xanthoma.

  9. A relationship between scalar Green functions on hyperbolic and Euclidean Rindler spaces

    International Nuclear Information System (INIS)

    Haba, Z

    2007-01-01

    We derive a formula connecting in any dimension the Green function on the (D + 1)-dimensional Euclidean Rindler space and the one for a minimally coupled scalar field with a mass m in the D-dimensional hyperbolic space. The relation takes a simple form in the momentum space where the Green functions are equal at the momenta (p 0 , p) for Rindler and (m,p-hat) for hyperbolic space with a simple additive relation between the squares of the mass and the momenta. The formula has applications to finite temperature Green functions, Green functions on the cone and on the (compactified) Milne spacetime. Analytic continuations and interacting quantum fields are briefly discussed

  10. Axioms for Euclidean Green's functions. Pt. 2

    International Nuclear Information System (INIS)

    Osterwalder, K.; Schrader, R.

    1975-01-01

    We give new (necessary and) sufficient conditions for Euclidean Green's functions to have analytic continuations to a relativistic field theory. These results extend and correct a previous paper. (orig.) [de

  11. Nonequilibrium Green's function theory for nonadiabatic effects in quantum electron transport

    Science.gov (United States)

    Kershaw, Vincent F.; Kosov, Daniel S.

    2017-12-01

    We develop nonequilibrium Green's function-based transport theory, which includes effects of nonadiabatic nuclear motion in the calculation of the electric current in molecular junctions. Our approach is based on the separation of slow and fast time scales in the equations of motion for Green's functions by means of the Wigner representation. Time derivatives with respect to central time serve as a small parameter in the perturbative expansion enabling the computation of nonadiabatic corrections to molecular Green's functions. Consequently, we produce a series of analytic expressions for non-adiabatic electronic Green's functions (up to the second order in the central time derivatives), which depend not solely on the instantaneous molecular geometry but likewise on nuclear velocities and accelerations. An extended formula for electric current is derived which accounts for the non-adiabatic corrections. This theory is concisely illustrated by the calculations on a model molecular junction.

  12. A passive inverse filter for Green's function retrieval.

    Science.gov (United States)

    Gallot, Thomas; Catheline, Stefan; Roux, Philippe; Campillo, Michel

    2012-01-01

    Passive methods for the recovery of Green's functions from ambient noise require strong hypotheses, including isotropic distribution of the noise sources. Very often, this distribution is nonisotropic, which introduces bias in the Green's function reconstruction. To minimize this bias, a spatiotemporal inverse filter is proposed. The method is tested on a directive noise field computed from an experimental active seismic data set. The results indicate that the passive inverse filter allows the manipulation of the spatiotemporal degrees of freedom of a complex wave field, and it can efficiently compensate for the noise wavefield directivity. © 2012 Acoustical Society of America.

  13. Multiloop world-line Green functions from string theory

    International Nuclear Information System (INIS)

    Roland, K.; Sato, H.T.

    1996-01-01

    We show how the multiloop bosonic Green function of closed string theory reduces to the world-line Green function as defined by Schmidt and Schubert in the limit where the string world-sheet degenerates into a Φ 3 particle diagram. To obtain this correspondence we have to make an appropriate choice of the local coordinates defined on the degenerate string world sheet. We also present a set of simple rules that specify, in the explicit setting of the Schottky parametrization, which is the corner of moduli space corresponding to a given multiloop Φ 3 diagram. (orig.)

  14. Development of thermal stress screening method. Application of green function method

    International Nuclear Information System (INIS)

    Furuhashi, Ichiro; Shibamoto, Hiroshi; Kasahara, Naoto

    2004-01-01

    This work was achieved for the development of the screening method of thermal transient stresses in FBR components. We proposed an approximation method for evaluations of thermal stress under variable heat transfer coefficients (non-linear problems) using the Green functions of thermal stresses with constant heat transfer coefficients (linear problems). Detailed thermal stress analyses provided Green functions for a skirt structure and a tube-sheet of Intermediate Heat Exchanger. The upper bound Green functions were obtained by the analyses using those upper bound heat transfer coefficients. The medium and the lower bound Green functions were got by the analyses of those under medium and the lower bound heat transfer coefficients. Conventional evaluations utilized the upper bound Green functions. On the other hand, we proposed a new evaluation method by using the upper bound, medium and the lower bound Green functions. The comparison of above results gave the results as follows. The conventional evaluations were conservative and appropriate for the cases under one fluid thermal transient structure such as the skirt. The conventional evaluations were generally conservative for the complicated structures under two or more fluids thermal transients such as the tube-sheet. But the danger locations could exists for the complicated structures under two or more fluids transients, namely the conventional evaluations were non-conservative. The proposed evaluations gave good estimations for these complicated structures. Though above results, we have made the basic documents of the screening method of thermal transient stresses using the conventional method and the new method. (author)

  15. Finite medium Green's function solutions to nuclide transport in porous media

    International Nuclear Information System (INIS)

    Oston, S.G.

    1979-01-01

    Current analytical techniques for predicting the transport of nuclides in porous materials center on the Green's function approach - i.e., determining the response characteristics of a geologic pathway to an impulse function input. To data, the analyses all have set the boundary conditions needed to solve the 1-D transport equation as though each pathway were infinite in length. The purpose of this work is to critically examine the effect that this infinite pathway assumption has on Green's function models of nuclide transport in porous media. The work described herein has directly attacked the more difficult problem of obtaining suitable Green's functions for finite pathways whose dimensions, in fact, may not be much greater than the diffusion length. Two different finite media Green's functions describing the nuclide mass flux have been determined, depending on whether the pathway is terminated by a high or a low flow resistance at the outlet end. Pulse shapes and peak amplitudes have been computed for each Green's function over a wide range of geohydrologic parameters. These results have been compared to both infinite and semi-infinite medium solutions. It was found that predicted pulse shapes are quite sensitive to selection of a Green's function model for short pathways only. For long pathways all models tend toward a symmetric Gaussian flux-time history at the outlet. Thus, the results of our previous waste transport studies using the infinite pathway assumption are still generally valid because they always included at least one long pathway. It was also found that finite medium models offer some unique computational advantages for evaluating nuclide transport in a series of connecting pathways

  16. Zero-point energy of confined fermions

    International Nuclear Information System (INIS)

    Milton, K.A.

    1980-01-01

    A closed form for the reduced Green's function of massless fermions in the interior of a spherical bag is obtained. In terms of this Green's function, the corresponding zero-point or Casimir energy is computed. It is proposed that a resulting quadratic divergence can be absorbed by renormalizing a suitable parameter in the bag model (that is, absorbed by a contact term). The residual Casimir stress is attractive, but smaller than the repulsive Casimir stress of gluons in the model. The result for the total zero-point energy is in substantial disagreement with bag model phenomenological values

  17. GREEN: A program package for docking studies in rational drug design

    Science.gov (United States)

    Tomioka, Nobuo; Itai, Akiko

    1994-08-01

    A program package, GREEN, has been developed that enables docking studies between ligand molecules and a protein molecule. Based on the structure of the protein molecule, the physical and chemical environment of the ligand-binding site is expressed as three-dimensional grid-point data. The grid-point data are used for the real-time evaluation of the protein-ligand interaction energy, as well as for the graphical representation of the binding-site environment. The interactive docking operation is facilitated by various built-in functions, such as energy minimization, energy contribution analysis and logging of the manipulation trajectory. Interactive modeling functions are incorporated for designing new ligand molecules while considering the binding-site environment and the protein-ligand interaction. As an example of the application of GREEN, a docking study is presented on the complex between trypsin and a synthetic trypsin inhibitor. The program package will be useful for rational drug design, based on the 3D structure of the target protein.

  18. Four point functions in the SL(2,R) WZW model

    Energy Technology Data Exchange (ETDEWEB)

    Minces, Pablo [Instituto de Astronomia y Fisica del Espacio (IAFE), C.C. 67 Suc. 28, 1428 Buenos Aires (Argentina)]. E-mail: minces@iafe.uba.ar; Nunez, Carmen [Instituto de Astronomia y Fisica del Espacio (IAFE), C.C. 67 Suc. 28, 1428 Buenos Aires (Argentina) and Physics Department, University of Buenos Aires, Ciudad Universitaria, Pab. I, 1428 Buenos Aires (Argentina)]. E-mail: carmen@iafe.uba.ar

    2007-04-19

    We consider winding conserving four point functions in the SL(2,R) WZW model for states in arbitrary spectral flow sectors. We compute the leading order contribution to the expansion of the amplitudes in powers of the cross ratio of the four points on the worldsheet, both in the m- and x-basis, with at least one state in the spectral flow image of the highest weight discrete representation. We also perform certain consistency check on the winding conserving three point functions.

  19. Four point functions in the SL(2,R) WZW model

    International Nuclear Information System (INIS)

    Minces, Pablo; Nunez, Carmen

    2007-01-01

    We consider winding conserving four point functions in the SL(2,R) WZW model for states in arbitrary spectral flow sectors. We compute the leading order contribution to the expansion of the amplitudes in powers of the cross ratio of the four points on the worldsheet, both in the m- and x-basis, with at least one state in the spectral flow image of the highest weight discrete representation. We also perform certain consistency check on the winding conserving three point functions

  20. Source analysis using regional empirical Green's functions: The 2008 Wells, Nevada, earthquake

    Science.gov (United States)

    Mendoza, C.; Hartzell, S.

    2009-01-01

    We invert three-component, regional broadband waveforms recorded for the 21 February 2008 Wells, Nevada, earthquake using a finite-fault methodology that prescribes subfault responses using eight MW∼4 aftershocks as empirical Green's functions (EGFs) distributed within a 20-km by 21.6-km fault area. The inversion identifies a seismic moment of 6.2 x 1024 dyne-cm (5.8 MW) with slip concentrated in a compact 6.5-km by 4-km region updip from the hypocenter. The peak slip within this localized area is 88 cm and the stress drop is 72 bars, which is higher than expected for Basin and Range normal faults in the western United States. The EGF approach yields excellent fits to the complex regional waveforms, accounting for strong variations in wave propagation and site effects. This suggests that the procedure is useful for studying moderate-size earthquakes with limited teleseismic or strong-motion data and for examining uncertainties in slip models obtained using theoretical Green's functions.

  1. Plant functional traits predict green roof ecosystem services.

    Science.gov (United States)

    Lundholm, Jeremy; Tran, Stephanie; Gebert, Luke

    2015-02-17

    Plants make important contributions to the services provided by engineered ecosystems such as green roofs. Ecologists use plant species traits as generic predictors of geographical distribution, interactions with other species, and ecosystem functioning, but this approach has been little used to optimize engineered ecosystems. Four plant species traits (height, individual leaf area, specific leaf area, and leaf dry matter content) were evaluated as predictors of ecosystem properties and services in a modular green roof system planted with 21 species. Six indicators of ecosystem services, incorporating thermal, hydrological, water quality, and carbon sequestration functions, were predicted by the four plant traits directly or indirectly via their effects on aggregate ecosystem properties, including canopy density and albedo. Species average height and specific leaf area were the most useful traits, predicting several services via effects on canopy density or growth rate. This study demonstrates that easily measured plant traits can be used to select species to optimize green roof performance across multiple key services.

  2. Dual number algebra method for Green's function derivatives in 3D magneto-electro-elasticity

    Science.gov (United States)

    Dziatkiewicz, Grzegorz

    2018-01-01

    The Green functions are the basic elements of the boundary element method. To obtain the boundary integral formulation the Green function and its derivative should be known for the considered differential operator. Today the interesting group of materials are electronic composites. The special case of the electronic composite is the magnetoelectroelastic continuum. The mentioned continuum is a model of the piezoelectric-piezomagnetic composites. The anisotropy of their physical properties makes the problem of Green's function determination very difficult. For that reason Green's functions for the magnetoelectroelastic continuum are not known in the closed form and numerical methods should be applied to determine such Green's functions. These means that the problem of the accurate and simply determination of Green's function derivatives is even harder. Therefore in the present work the dual number algebra method is applied to calculate numerically the derivatives of 3D Green's functions for the magnetoelectroelastic materials. The introduced method is independent on the step size and it can be treated as a special case of the automatic differentiation method. Therefore, the dual number algebra method can be applied as a tool for checking the accuracy of the well-known finite difference schemes.

  3. Maximum entropy formalism for the analytic continuation of matrix-valued Green's functions

    Science.gov (United States)

    Kraberger, Gernot J.; Triebl, Robert; Zingl, Manuel; Aichhorn, Markus

    2017-10-01

    We present a generalization of the maximum entropy method to the analytic continuation of matrix-valued Green's functions. To treat off-diagonal elements correctly based on Bayesian probability theory, the entropy term has to be extended for spectral functions that are possibly negative in some frequency ranges. In that way, all matrix elements of the Green's function matrix can be analytically continued; we introduce a computationally cheap element-wise method for this purpose. However, this method cannot ensure important constraints on the mathematical properties of the resulting spectral functions, namely positive semidefiniteness and Hermiticity. To improve on this, we present a full matrix formalism, where all matrix elements are treated simultaneously. We show the capabilities of these methods using insulating and metallic dynamical mean-field theory (DMFT) Green's functions as test cases. Finally, we apply the methods to realistic material calculations for LaTiO3, where off-diagonal matrix elements in the Green's function appear due to the distorted crystal structure.

  4. Hidden symmetry of four-point correlation functions and amplitudes in N=4 SYM

    CERN Document Server

    Eden, Burkhard; Korchemsky, Gregory P; Sokatchev, Emery

    2012-01-01

    We study the four-point correlation function of stress-tensor supermultiplets in N=4 SYM using the method of Lagrangian insertions. We argue that, as a corollary of N=4 superconformal symmetry, the resulting all-loop integrand possesses an unexpected complete symmetry under the exchange of the four external and all the internal (integration) points. This alone allows us to predict the integrand of the three-loop correlation function up to four undetermined constants. Further, exploiting the conjectured amplitude/correlation function duality, we are able to fully determine the three-loop integrand in the planar limit. We perform an independent check of this result by verifying that it is consistent with the operator product expansion, in particular that it correctly reproduces the three-loop anomalous dimension of the Konishi operator. As a byproduct of our study, we also obtain the three-point function of two half-BPS operators and one Konishi operator at three-loop level. We use the same technique to work ou...

  5. Construction of Green's functions for the Black-Scholes equation

    Directory of Open Access Journals (Sweden)

    Yuri A. Melnikov

    2007-11-01

    Full Text Available A technique is proposed for the construction of Green's functions for terminal-boundary value problems of the Black-Scholes equation. The technique permits an application to a variety of problems that vary by boundary conditions imposed. This is possible by extension of an approach that was earlier developed for partial differential equations in applied mechanics. The technique is based on the method of integral Laplace transform and the method of variation of parameters. It provides closed form analytic representations for the constructed Green's functions.

  6. Replacing leads by self-energies using non-equilibrium Green's functions

    International Nuclear Information System (INIS)

    Michael, Fredrick; Johnson, M.D.

    2003-01-01

    Open quantum systems consist of semi-infinite leads which transport electrons to and from the device of interest. We show here that within the non-equilibrium Green's function technique for continuum systems, the leads can be replaced by simple c-number self-energies. Our starting point is an approach for continuum systems developed by Feuchtwang. The reformulation developed here is simpler to understand and carry out than the somewhat unwieldly manipulations typical in the Feuchtwang method. The self-energies turn out to have a limited variability: the retarded self-energy Σ r depends on the arbitrary choice of internal boundary conditions, but the non-equilibrium self-energy or scattering function Σ which determines transport is invariant for a broad class of boundary conditions. Expressed in terms of these self-energies, continuum non-equilibrium transport calculations take a particularly simple form similar to that developed for discrete systems

  7. Using galaxy pairs to investigate the three-point correlation function in the squeezed limit

    Science.gov (United States)

    Yuan, Sihan; Eisenstein, Daniel J.; Garrison, Lehman H.

    2017-11-01

    We investigate the three-point correlation function (3PCF) in the squeezed limit by considering galaxy pairs as discrete objects and cross-correlating them with the galaxy field. We develop an efficient algorithm using fast Fourier transforms to compute such cross-correlations and their associated pair-galaxy bias bp, g and the squeezed 3PCF coefficient Qeff. We implement our method using N-body cosmological simulations and a fiducial halo occupation distribution (HOD) and present the results in both the real space and redshift space. In real space, we observe a peak in bp, g and Qeff at pair separation of ∼2 Mpc, attributed to the fact that galaxy pairs at 2 Mpc separation trace the most massive dark matter haloes. We also see strong anisotropy in the bp, g and Qeff signals that track the large-scale filamentary structure. In redshift space, both the 2 Mpc peak and the anisotropy are significantly smeared out along the line of sight due to finger-of-God effect. In both the real space and redshift space, the squeezed 3PCF shows a factor of 2 variation, contradicting the hierarchical ansatz, but offering rich information on the galaxy-halo connection. Thus, we explore the possibility of using the squeezed 3PCF to constrain the HOD. When we compare two simple HOD models that are closely matched in their projected two-point correlation function (2PCF), we do not yet see a strong variation in the 3PCF that is clearly disentangled from variations in the projected 2PCF. Nevertheless, we propose that more complicated HOD models, e.g. those incorporating assembly bias, can break degeneracies in the 2PCF and show a distinguishable squeezed 3PCF signal.

  8. Green's theorem and Green's functions for the steady-state cosmic-ray equation of transport

    International Nuclear Information System (INIS)

    Webb, G.M.; Gleeson, L.J.

    1977-01-01

    Green's Theorem is developed for the spherically-symmetric steady-state cosmic-ray equation of transport in interplanetary space. By means of it the momentum distribution function F 0 (r,p), (r=heliocentric distance, p=momentum) can be determined in a region rsub(a) 0 . Examples of Green's functions are given for the case rsub(a)=0, rsub(b)=infinity and derived for the cases of finite rsub(a) and rsub(b). The diffusion coefficient kappa is assumed of the form kappa=kappa 0 (p)rsup(b). The treatment systematizes the development of all analytic solutions for steady-state solar and galactic cosmic-ray propagation and previous solutions form a subset of the present solutions. (Auth.)

  9. Study of the stochastic point reactor kinetic equation

    International Nuclear Information System (INIS)

    Gotoh, Yorio

    1980-01-01

    Diagrammatic technique is used to solve the stochastic point reactor kinetic equation. The method gives exact results which are derived from Fokker-Plank theory. A Green's function dressed with the clouds of noise is defined, which is a transfer function of point reactor with fluctuating reactivity. An integral equation for the correlation function of neutron power is derived using the following assumptions: 1) Green's funntion should be dressed with noise, 2) The ladder type diagrams only contributes to the correlation function. For a white noise and the one delayed neutron group approximation, the norm of the integral equation and the variance to mean-squared ratio are analytically obtained. (author)

  10. The one-loop Green's functions of dimensionally reduced gauge theories

    International Nuclear Information System (INIS)

    Ketov, S.V.; Prager, Y.S.

    1988-01-01

    The dimensional regularization technique as well as that by dimensional reduction is applied to the calculation of the regularized one-loop Green's functions in dsub(o)-dimensional Yang-Mills theory with real massless scalars and spinors in arbitrary (real) representations of a gauge group G. As a particular example, the super-symmetrically regularized one-loop Green's functions of the N=4 supersymmetric Yang-Mills model are derived. (author). 17 refs

  11. THE GREEN'S FUNCTIONS OF SUPERCONDUCTIVITY- A REVIEW

    African Journals Online (AJOL)

    users

    2013-02-21

    Feb 21, 2013 ... We present some basic Green's functions of superconductivity, ... show that the Gorkov interaction under a certain condition sustains .... We may then apply Wick's theorem(Lifshitz and Pitayevsky,1980) to the eqn(18) to have.

  12. Use of time space Green's functions in the computation of transient eddy current fields

    International Nuclear Information System (INIS)

    Davey, K.; Turner, L.

    1988-01-01

    The utility of integral equations to solve eddy current problems has been borne out by numerous computations in the past few years, principally in sinusoidal steady-state problems. This paper attempts to examine the applicability of the integral approaches in both time and space for the more generic transient problem. The basic formulation for the time space Green's function approach is laid out. A technique employing Gauss-Laguerre integration is employed to realize the temporal solution, while Gauss--Legendre integration is used to resolve the spatial field character. The technique is then applied to the fusion electromagnetic induction experiments (FELIX) cylinder experiments in both two and three dimensions. It is found that quite accurate solutions can be obtained using rather coarse time steps and very few unknowns; the three-dimensional field solution worked out in this context used basically only four unknowns. The solution appears to be somewhat sensitive to the choice of time step, a consequence of a numerical instability imbedded in the Green's function near the origin

  13. Exact solutions for fermionic Green's functions in the Bloch-Nordsieck approximation of QED

    International Nuclear Information System (INIS)

    Kernemann, A.; Stefanis, N.G.

    1989-01-01

    A set of new closed-form solutions for fermionic Green's functions in the Bloch-Nordsieck approximation of QED is presented. A manifestly covariant phase-space path-integral method is applied for calculating the n-fermion Green's function in a classical external field. In the case of one and two fermions, explicit expressions for the full Green's functions are analytically obtained, with renormalization carried out in the modified minimal subtraction scheme. The renormalization constants and the corresponding anomalous dimensions are determined. The mass-shell behavior of the two-fermion Green's function is investigated in detail. No assumptions are made concerning the structure of asymptotic states and no IR cutoff is used in the calculations

  14. Root finding in the complex plane for seismo-acoustic propagation scenarios with Green's function solutions.

    Science.gov (United States)

    McCollom, Brittany A; Collis, Jon M

    2014-09-01

    A normal mode solution to the ocean acoustic problem of the Pekeris waveguide with an elastic bottom using a Green's function formulation for a compressional wave point source is considered. Analytic solutions to these types of waveguide propagation problems are strongly dependent on the eigenvalues of the problem; these eigenvalues represent horizontal wavenumbers, corresponding to propagating modes of energy. The eigenvalues arise as singularities in the inverse Hankel transform integral and are specified by roots to a characteristic equation. These roots manifest themselves as poles in the inverse transform integral and can be both subtle and difficult to determine. Following methods previously developed [S. Ivansson et al., J. Sound Vib. 161 (1993)], a root finding routine has been implemented using the argument principle. Using the roots to the characteristic equation in the Green's function formulation, full-field solutions are calculated for scenarios where an acoustic source lies in either the water column or elastic half space. Solutions are benchmarked against laboratory data and existing numerical solutions.

  15. Green's function approach to neutron flux discontinuities

    International Nuclear Information System (INIS)

    Saad, E.A.; El-Wakil, S.A.

    1980-01-01

    The present work is devoted to the presentation of analytical method for the calculation of elastically and inelastically slowed down neutrons in an infinite non-absorbing medium. On the basis of the central limit theory (CLT) and the integral transform technique the slowing down equation including inelastic scattering, in terms of the Green function of elastic scattering, is solved. The Green function is decomposed according to the number of collisions. Placzec discontinuity associated with elastic scattering in addition to two discontinuities due to inelastic scattering are investigated. Numerical calculations for Fe 56 show that the elastic discontinuity produces about 41.8% change in the collision density whilst the ratio of the inelastic collision density discontinuity at qsub(o)sup(+) to the Placzec discontinuity at usub(o) + 1n 1/oc gives 55.7 percent change. (author)

  16. Electronic diffraction tomography by Green's functions and singular values decompositions

    International Nuclear Information System (INIS)

    Mayer, A.

    2001-01-01

    An inverse scattering technique is developed to enable a three-dimensional sample reconstruction from the diffraction figures obtained for different sample orientations by electronic projection microscopy, thus performing a diffraction tomography. In its Green's-functions formulation, this technique takes account of all orders of diffraction by performing an iterative reconstruction of the wave function on the observation screen and in the sample. In a final step, these quantities enable a reconstruction of the potential-energy distribution, which is assumed real valued. The method relies on the use of singular values decomposition techniques, thus providing the best least-squares solutions and enabling a reduction of noise. The technique is applied to the analysis of a three-dimensional nanometric sample that is observed in Fresnel conditions with an electron energy of 40 eV. The algorithm turns out to provide results with a mean relative error around 3% and to be stable against random noise

  17. Green's functions for spin half field theory in Rindler space

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, B R; Kumar, Arvind [Birla Inst. of Tech., Ranchi (India). Dept. of Physics

    1977-11-01

    The solutions of Dirac equation in different regions of the complete extension of Rindler space are obtained near the event horizons and in the asymptotic limits. Continuity of these solutions across the event horizons is established. The Green's functions are written down in the two casually disconnected regions, continued in the future (F) and past (P) regions using the techniques a la Boulware and a consistent scheme of Green's functions in all regions is exhibited.

  18. Computing the real-time Green's Functions of large Hamiltonian matrices

    OpenAIRE

    Iitaka, Toshiaki

    1998-01-01

    A numerical method is developed for calculating the real time Green's functions of very large sparse Hamiltonian matrices, which exploits the numerical solution of the inhomogeneous time-dependent Schroedinger equation. The method has a clear-cut structure reflecting the most naive definition of the Green's functions, and is very suitable to parallel and vector supercomputers. The effectiveness of the method is illustrated by applying it to simple lattice models. An application of this method...

  19. The Green-function transform and wave propagation

    Directory of Open Access Journals (Sweden)

    Colin eSheppard

    2014-11-01

    Full Text Available Fourier methods well known in signal processing are applied to three-dimensional wave propagation problems. The Fourier transform of the Green function, when written explicitly in terms of a real-valued spatial frequency, consists of homogeneous and inhomogeneous components. Both parts are necessary to result in a pure out-going wave that satisfies causality. The homogeneous component consists only of propagating waves, but the inhomogeneous component contains both evanescent and propagating terms. Thus we make a distinction between inhomogeneous waves and evanescent waves. The evanescent component is completely contained in the region of the inhomogeneous component outside the k-space sphere. Further, propagating waves in the Weyl expansion contain both homogeneous and inhomogeneous components. The connection between the Whittaker and Weyl expansions is discussed. A list of relevant spherically symmetric Fourier transforms is given.

  20. Low-rank canonical-tensor decomposition of potential energy surfaces: application to grid-based diagrammatic vibrational Green's function theory

    International Nuclear Information System (INIS)

    Rai, Prashant; Sargsyan, Khachik; Najm, Habib; Hermes, Matthew R.; Hirata, So

    2017-01-01

    Here, a new method is proposed for a fast evaluation of high-dimensional integrals of potential energy surfaces (PES) that arise in many areas of quantum dynamics. It decomposes a PES into a canonical low-rank tensor format, reducing its integral into a relatively short sum of products of low-dimensional integrals. The decomposition is achieved by the alternating least squares (ALS) algorithm, requiring only a small number of single-point energy evaluations. Therefore, it eradicates a force-constant evaluation as the hotspot of many quantum dynamics simulations and also possibly lifts the curse of dimensionality. This general method is applied to the anharmonic vibrational zero-point and transition energy calculations of molecules using the second-order diagrammatic vibrational many-body Green's function (XVH2) theory with a harmonic-approximation reference. In this application, high dimensional PES and Green's functions are both subjected to a low-rank decomposition. Evaluating the molecular integrals over a low-rank PES and Green's functions as sums of low-dimensional integrals using the Gauss–Hermite quadrature, this canonical-tensor-decomposition-based XVH2 (CT-XVH2) achieves an accuracy of 0.1 cm -1 or higher and nearly an order of magnitude speedup as compared with the original algorithm using force constants for water and formaldehyde.

  1. On the $a$-points of the derivatives of the Riemann zeta function

    OpenAIRE

    Onozuka, Tomokazu

    2016-01-01

    We prove three results on the $a$-points of the derivatives of the Riemann zeta function. The first result is a formula of the Riemann-von Mangoldt type; we estimate the number of the $a$-points of the derivatives of the Riemann zeta function. The second result is on certain exponential sum involving $a$-points. The third result is an analogue of the zero density theorem. We count the $a$-points of the derivatives of the Riemann zeta function in $1/2-(\\log\\log T)^2/\\log T

  2. Accurate calculation of Green functions on the d-dimensional hypercubic lattice

    International Nuclear Information System (INIS)

    Loh, Yen Lee

    2011-01-01

    We write the Green function of the d-dimensional hypercubic lattice in a piecewise form covering the entire real frequency axis. Each piece is a single integral involving modified Bessel functions of the first and second kinds. The smoothness of the integrand allows both real and imaginary parts of the Green function to be computed quickly and accurately for any dimension d and any real frequency, and the computational time scales only linearly with d.

  3. Preequilibrium decay models and the quantum Green function method

    International Nuclear Information System (INIS)

    Zhivopistsev, F.A.; Rzhevskij, E.S.; Gosudarstvennyj Komitet po Ispol'zovaniyu Atomnoj Ehnergii SSSR, Moscow. Inst. Teoreticheskoj i Ehksperimental'noj Fiziki)

    1977-01-01

    The nuclear process mechanism and preequilibrium decay involving complex particles are expounded on the basis of the Green function formalism without the weak interaction assumptions. The Green function method is generalized to a general nuclear reaction: A+α → B+β+γ+...rho, where A is the target nucleus, α is a complex particle in the initial state, B is the final nucleus, and β, γ, ... rho are nuclear fragments in the final state. The relationship between the generalized Green function and Ssub(fi)-matrix is established. The resultant equations account for: 1) direct and quasi-direct processes responsible for the angular distribution asymmetry of the preequilibrium component; 2) the appearance of addends corresponding to the excitation of complex states of final nucleus; and 3) the relationship between the preequilibrium decay model and the general models of nuclear reaction theories (Lippman-Schwinger formalism). The formulation of preequilibrium emission via the S(T) matrix allows to account for all the differential terms in succession important to an investigation of the angular distribution assymetry of emitted particles

  4. Recent Advances in the Korringa-Kohn-Rostoker Green Function Method

    Directory of Open Access Journals (Sweden)

    Zeller Rudolf

    2014-01-01

    Full Text Available The Korringa-Kohn-Rostoker (KKR Green function (GF method is a technique for all-electron full-potential density-functional calculations. Similar to the historical Wigner-Seitz cellular method, the KKR-GF method uses a partitioning of space into atomic Wigner-Seitz cells. However, the numerically demanding wave-function matching at the cell boundaries is avoided by use of an integral equation formalism based on the concept of reference Green functions. The advantage of this formalism will be illustrated by the recent progress made for very large systems with thousands of inequivalent atoms and for very accurate calculations of atomic forces and total energies.

  5. Application of the Green's function method for 2- and 3-dimensional steady transonic flows

    Science.gov (United States)

    Tseng, K.

    1984-01-01

    A Time-Domain Green's function method for the nonlinear time-dependent three-dimensional aerodynamic potential equation is presented. The Green's theorem is being used to transform the partial differential equation into an integro-differential-delay equation. Finite-element and finite-difference methods are employed for the spatial and time discretizations to approximate the integral equation by a system of differential-delay equations. Solution may be obtained by solving for this nonlinear simultaneous system of equations in time. This paper discusses the application of the method to the Transonic Small Disturbance Equation and numerical results for lifting and nonlifting airfoils and wings in steady flows are presented.

  6. Retention performance of green roofs in three different climate regions

    Science.gov (United States)

    Sims, Andrew W.; Robinson, Clare E.; Smart, Charles C.; Voogt, James A.; Hay, Geoffrey J.; Lundholm, Jeremey T.; Powers, Brandon; O'Carroll, Denis M.

    2016-11-01

    Green roofs are becoming increasingly popular for moderating stormwater runoff in urban areas. This study investigated the impact different climates have on the retention performance of identical green roofs installed in London Ontario (humid continental), Calgary Alberta (semi-arid, continental), and Halifax Nova Scotia (humid, maritime). Drier climates were found to have greater percent cumulative stormwater retention with Calgary (67%) having significantly better percent retention than both London (48%) and Halifax (34%). However, over the same study period the green roof in London retained the greatest depth of stormwater (598 mm), followed by the green roof in Halifax (471 mm) and then Calgary (411 mm). The impact of climate was largest for medium sized storms where the antecedent moisture condition (AMC) at the beginning of a rainfall event governs retention performance. Importantly AMC was a very good predictor of stormwater retention, with similar retention at all three sites for a given AMC, emphasizing that AMC is a relevant indicator of retention performance in any climate. For large rainfall events (i.e., >45 mm) green roof average retention ranged between 16% and 29% in all cities. Overall, drier climates have superior retention due to lower AMC in the media. However, moderate and wet climates still provide substantial total volume reduction benefits.

  7. Green's functions for spin half field theory in Rindler space

    International Nuclear Information System (INIS)

    Iyer, B.R.; Kumar, Arvind

    1977-01-01

    The solutions of Dirac equation in different regions of the complete extension of Rindler space are obtained near the event horizons and in the asymptotic limits. Continuity of these solutions across the event horizons is established. The Green's functions are written down in the two casually disconnected regions, continued in the future (F) and past (P) regions using the techniques a la Boulware and a consistent scheme of Green's functions in all regions is exhibited. (author)

  8. Bi-conformal symmetry and static Green functions in the Schwarzschild-Tangherlini spacetimes

    International Nuclear Information System (INIS)

    Frolov, Valeri P.; Zelnikov, Andrei

    2015-01-01

    We study a static massless minimally coupled scalar field created by a source in a static D-dimensional spacetime. We demonstrate that the corresponding equation for this field is invariant under a special transformation of the background metric. This transformation consists of the static conformal transformation of the spatial part of the metric accompanied by a properly chosen transformation of the red-shift factor. Both transformations are determined by one function Ω of the spatial coordinates. We show that in a case of higher dimensional spherically symmetric black holes one can find such a bi-conformal transformation that the symmetry of the D-dimensional metric is enhanced after its application. Namely, the metric becomes a direct sum of the metric on a unit sphere and the metric of 2D anti-de Sitter space. The method of the heat kernels is used to find the Green function in this new space, which allows one, after dimensional reduction, to obtain a static Green function in the original space of the static black hole. The general useful representation of static Green functions is obtained in the Schwarzschild-Tangherlini spacetimes of arbitrary dimension. The exact explicit expressions for the static Green functions are obtained in such metrics for D<6. It is shown that in the four dimensional case the corresponding Green function coincides with the Copson solution.

  9. Dyadic Green's function of a cluster of spheres.

    Science.gov (United States)

    Moneda, Angela P; Chrissoulidis, Dimitrios P

    2007-11-01

    The electric dyadic Green's function (dGf) of a cluster of spheres is obtained by application of the superposition principle, dyadic algebra, and the indirect mode-matching method. The analysis results in a set of linear equations for the unknown, vector, wave amplitudes of the dGf; that set is solved by truncation and matrix inversion. The theory is exact in the sense that no simplifying assumptions are made in the analytical steps leading to the dGf, and it is general in the sense that any number, position, size and electrical properties can be considered for the spheres that cluster together. The point source can be anywhere, even within one of the spheres. Energy conservation, reciprocity, and other tests prove that this solution is correct. Numerical results are presented for an electric Hertz dipole radiating in the presence of an array of rexolite spheres, which manifests lensing and beam-forming capabilities.

  10. Dyadic Green's function of an eccentrically stratified sphere.

    Science.gov (United States)

    Moneda, Angela P; Chrissoulidis, Dimitrios P

    2014-03-01

    The electric dyadic Green's function (dGf) of an eccentrically stratified sphere is built by use of the superposition principle, dyadic algebra, and the addition theorem of vector spherical harmonics. The end result of the analytical formulation is a set of linear equations for the unknown vector wave amplitudes of the dGf. The unknowns are calculated by truncation of the infinite sums and matrix inversion. The theory is exact, as no simplifying assumptions are required in any one of the analytical steps leading to the dGf, and it is general in the sense that any number, position, size, and electrical properties can be considered for the layers of the sphere. The point source can be placed outside of or in any lossless part of the sphere. Energy conservation, reciprocity, and other checks verify that the dGf is correct. A numerical application is made to a stratified sphere made of gold and glass, which operates as a lens.

  11. Completely mixed state is a critical point for three-qubit entanglement

    International Nuclear Information System (INIS)

    Tamaryan, Sayatnova

    2011-01-01

    Pure three-qubit states have five algebraically independent and one algebraically dependent polynomial invariants under local unitary transformations and an arbitrary entanglement measure is a function of these six invariants. It is shown that if the reduced density operator of a some qubit is a multiple of the unit operator, than the geometric entanglement measure of the pure three-qubit state is absolutely independent of the polynomial invariants and is a constant for such tripartite states. Hence a one-particle completely mixed state is a critical point for the geometric measure of entanglement. -- Highlights: → Geometric measure of pure three-qubits is expressed in terms of polynomial invariants. → When one Bloch vector is zero the measure is independent of the remaining invariants. → Hence a one-particle completely mixed state is a critical point for the geometric measure. → The existence of the critical points is an inherent feature of the entanglement.

  12. Completely mixed state is a critical point for three-qubit entanglement

    Energy Technology Data Exchange (ETDEWEB)

    Tamaryan, Sayatnova, E-mail: sayat@mail.yerphi.am [Department of Theoretical Physics, A. Alikhanyan National Laboratory, Yerevan (Armenia)

    2011-06-06

    Pure three-qubit states have five algebraically independent and one algebraically dependent polynomial invariants under local unitary transformations and an arbitrary entanglement measure is a function of these six invariants. It is shown that if the reduced density operator of a some qubit is a multiple of the unit operator, than the geometric entanglement measure of the pure three-qubit state is absolutely independent of the polynomial invariants and is a constant for such tripartite states. Hence a one-particle completely mixed state is a critical point for the geometric measure of entanglement. -- Highlights: → Geometric measure of pure three-qubits is expressed in terms of polynomial invariants. → When one Bloch vector is zero the measure is independent of the remaining invariants. → Hence a one-particle completely mixed state is a critical point for the geometric measure. → The existence of the critical points is an inherent feature of the entanglement.

  13. A calculation method for finite depth free-surface green function

    Directory of Open Access Journals (Sweden)

    Yingyi Liu

    2015-03-01

    Full Text Available An improved boundary element method is presented for numerical analysis of hydrodynamic behavior of marine structures. A new algorithm for numerical solution of the finite depth free-surface Green function in three dimensions is developed based on multiple series representations. The whole range of the key parameter R/h is divided into four regions, within which different representation is used to achieve fast convergence. The well-known epsilon algorithm is also adopted to accelerate the convergence. The critical convergence criteria for each representation are investigated and provided. The proposed method is validated by several well-documented benchmark problems.

  14. Correlations in Many-Body systems from two-time Greens functions

    International Nuclear Information System (INIS)

    Morawetz, K.; Kohler, H.S.

    2000-01-01

    The Kadanoff-Baym (KB) equations are solved numerically for infinite nuclear matter. In particular we calculate correlation energies and correlation times. Approximating the Green's functions in the KB collision kernel by the free Green's functions the Levinson equation is obtained. This approximation is valid for weak interactions and/or low densities. It relates to the extended quasi-particle approximation for the spectral function. The Levinson correlation energy reduces for large times to a second order Born approximation for the energy. Comparing the Levinson, Born and KB calculations allows for an estimate of higher order spectral corrections to the correlations. (authors)

  15. The Nielsen identities for the two-point functions of QED and QCD

    International Nuclear Information System (INIS)

    Breckenridge, J.C.; Sasketchewan Univ., Saskatoon, SK; Lavelle, M.J.; Steele, T.G.; Sasketchewan Univ., Saskatoon, SK

    1995-01-01

    We consider the Nielsen identities for the two-point functions of full QCD and QED in the class of Lorentz gauges. For pedagogical reasons the identities are first derived in QED to demonstrate the gauge independence of the photon self-energy, and of the electron mass shell. In QCD we derive the general identity and hence the identities for the quark, gluon and ghost propagators. The explicit contributions to the gluon and ghost identities are calculated to one-loop order, and then we show that the quark identity requires that in on-shell schemes the quark mass renormalisation must be gauge independent. Furthermore, we obtain formal solutions for the gluon self-energy and ghost propagator in terms of the gauge dependence of other, independent Green functions. (orig.)

  16. Vector Green's function algorithm for radiative transfer in plane-parallel atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Qin Yi [School of Physics, University of New South Wales (Australia)]. E-mail: yi.qin@csiro.au; Box, Michael A. [School of Physics, University of New South Wales (Australia)

    2006-01-15

    Green's function is a widely used approach for boundary value problems. In problems related to radiative transfer, Green's function has been found to be useful in land, ocean and atmosphere remote sensing. It is also a key element in higher order perturbation theory. This paper presents an explicit expression of the Green's function, in terms of the source and radiation field variables, for a plane-parallel atmosphere with either vacuum boundaries or a reflecting (BRDF) surface. Full polarization state is considered but the algorithm has been developed in such way that it can be easily reduced to solve scalar radiative transfer problems, which makes it possible to implement a single set of code for computing both the scalar and the vector Green's function.

  17. Green-function description of dense polymeric systems

    NARCIS (Netherlands)

    Schoot, van der P.P.A.M.

    2000-01-01

    A self-consistent Green-function description of concentrated polymer solutions and dense polymeric melts is presented. The method, which applies to both uniform and nonuniform systems, is used in this work to calculate the static structure factor of a homogeneous fluid of Gaussian model chains.

  18. Verification and Improvement of the Three-Dimensional Basin Velocity Structure Model in the Osaka Sedimentary Basin, Japan Using Interstation Green's Functions and H/V Spectral Ratios of Microtremors

    Science.gov (United States)

    Asano, K.; Iwata, T.; Sekiguchi, H.; Somei, K.; Nishimura, T.; Miyakoshi, K.; Aoi, S.; Kunugi, T.

    2012-12-01

    The Osaka sedimentary basin is filled by the Plio-Pleistocene Osaka group, terrace deposits, and alluvium deposits with thickness of 1 to 2 km over the bedrock, and it is surrounded by active fault systems. The Uemachi active fault system underlies the Osaka urban area. In order to predict the strong ground motions for future events of the Uemachi fault and others, the precise basin velocity structure model is indispensable as well as the detailed source fault model. The velocity structure of the Osaka basin has been extensively investigated by using various techniques such as gravity anomaly measurements, reflection surveys, boring explorations, and microtremor measurements. Based on these surveys and ground motion simulations for observed events, the three-dimensional velocity structure models of the Osaka basin have been developed and improved for decades (e.g., Kagawa et al., 1993; Horikawa et al., 2003; Iwata et al., 2008; Iwaki and Iwata, 2011). Now we are trying to verify the velocity structure model of the Osaka basin and to improve it incorporating new data sets. We have conducted two kinds of observations in the Osaka basin. The first observation is continuous microtremor observation. We have temporarily installed three-component velocity sensors at 15 sites covering the Osaka basin to record microtremors continuously for more than one year. The seismic interferometry technique (e.g. Shapiro and Campillo, 2004) is applied to retrieve interstation Green's function for analyzing the wave propagation characteristics inside the sedimentary basin. Both Rayleigh- and Love-wave type signals are identified in 0.1-0.5 Hz from observed interstation Green's functions. The group velocities of Rayleigh and Love waves propagating between two stations are estimated from them using the multiple filter analysis method, and they are compared with the theoretical group-velocities of the model. For example, estimated Love-wave group velocity along a line inside the basin is

  19. Assessment of platelet function in healthy cats in response to commonly prescribed antiplatelet drugs using three point-of-care platelet function tests.

    Science.gov (United States)

    Ho, Kimberly K; Abrams-Ogg, Anthony Cg; Wood, R Darren; O'Sullivan, M Lynne; Kirby, Gordon M; Blois, Shauna L

    2017-06-01

    Objectives The objective was to determine if decreased platelet function could be detected after treatment with aspirin and/or clopidogrel in healthy cats using three point-of-care platelet function tests that evaluate platelet function by different methods: Multiplate (by impedance), Platelet Function Analyzer 100 (by mechanical aperture closure) and Plateletworks (by platelet counting). Methods Thirty-six healthy cats were randomly assigned to receive one of three oral treatments over an 8 day period: (1) aspirin 5 mg q72h; (2) aspirin 20.25 mg q72h; or (3) clopidogrel 18.75 mg q24h. Cats treated with 5 and 20.25 mg aspirin also received clopidogrel on days 4-8. Platelet aggregation in response to adenosine diphosphate and collagen ± arachidonic acid was assessed on days 1 (baseline), 4 and 8. Aspirin and clopidogrel metabolites were measured by high-performance liquid chromatography. Platelet function in response to treatment was analyzed by ANCOVA, linear regression and Spearman correlation. Results The only solitary aspirin effect was detected using Plateletworks with collagen in cats treated with 20.25 mg. The only effect detected by Multiplate was using arachidonic acid in cats treated with both aspirin 20.25 mg and clopidogrel. All clopidogrel treatment effects were detected by Platelet Function Analyzer 100, Plateletworks (adenosine diphosphate) and Plateletworks (collagen). Drug metabolites were present in all cats, but concentrations were minimally correlated to platelet function test results. Conclusions and relevance Platelet Function Analyzer 100 and Plateletworks using adenosine diphosphate ± collagen agonists may be used to detect decreased platelet function in response to clopidogrel treatment. Either aspirin is not as effective an antiplatelet drug as clopidogrel, or the tests used were not optimal to measure aspirin effect. Cats with heart disease are commonly prescribed antiplatelet drugs to decrease the risk of aortic thromboembolism

  20. Design of three-well indirect pumping terahertz quantum cascade lasers for high optical gain based on nonequilibrium Green's function analysis

    Science.gov (United States)

    Liu, Tao; Kubis, Tillmann; Jie Wang, Qi; Klimeck, Gerhard

    2012-03-01

    The nonequilibrium Green's function approach is applied to the design of three-well indirect pumping terahertz (THz) quantum cascade lasers (QCLs) based on a resonant phonon depopulation scheme. The effects of the anticrossing of the injector states and the dipole matrix element of the laser levels on the optical gain of THz QCLs are studied. The results show that a design that results in a more pronounced anticrossing of the injector states will achieve a higher optical gain in the indirect pumping scheme compared to the traditional resonant-tunneling injection scheme. This offers in general a more efficient coherent resonant-tunneling transport of electrons in the indirect pumping scheme. It is also shown that, for operating temperatures below 200 K and low lasing frequencies, larger dipole matrix elements, i.e., vertical optical transitions, offer a higher optical gain. In contrast, in the case of high lasing frequencies, smaller dipole matrix elements, i.e., diagonal optical transitions are better for achieving a higher optical gain.

  1. Momentum-space representation of Green's functions with modified dispersion on ultrastatic space-time

    International Nuclear Information System (INIS)

    Rinaldi, Massimiliano

    2007-01-01

    We consider Green's functions associated to a scalar field propagating on a curved, ultrastatic background, in the presence of modified dispersion relations. The usual proper-time DeWitt-Schwinger procedure to obtain a series representation of Green's functions is doomed to failure because of higher order spatial derivatives in the Klein-Gordon operator. We show how to overcome this difficulty by considering a preferred frame, associated to a unit timelike vector. With respect to this frame, we can express Green's functions as an integral over all frequencies of a space-dependent function. The latter can be expanded in momentum space, as a series with geometric coefficients similar to the DeWitt-Schwinger ones. By integrating over all frequencies, we finally find the expansion of Green's function up to four derivatives of the metric tensor. The relation with the proper-time formalism is also discussed

  2. Green's functions in Bianchi type-I spaces. Relation between Minkowski and Euclidean approaches

    International Nuclear Information System (INIS)

    Bukhbinder, I.L.; Kirillova, E.N.

    1988-01-01

    A theory is considered for a free scalar field with a conformal connection in a curved space-time with a Bianchi type-I metric. A representation is obtained for the Green's function G∼ in in in the form of an integral of a Schwinger-DeWitt kernel along a contour in a plane of complex-valued proper time. It is shown how as transition may be accomplished from Green's functions in space with the Euclidean signature to Green's functions in space with Minkowski signature and vice versa

  3. Thermodynamical and Green function many-body Wick theorems

    International Nuclear Information System (INIS)

    Westwanski, B.

    1987-01-01

    The thermodynamical and Green function many-body reduction theorems of Wick type are proved for the arbitrary mixtures of the fermion, boson and spin systems. ''Many-body'' means that the operators used are the products of the arbitrary number of one-body standard basis operators [of the fermion or (and) spin types] with different site (wave vector) indices, but having the same ''time'' (in the interaction representation). The method of proving is based on'' 1) the first-order differential equation of Schwinger type for: 1a) anti T-product of operators; 1b) its average value; 2) KMS boundary conditions for this average. It is shown that the fermion, boson and spin systems can be unified in the many-body formulation (bosonification of the fermion systems). It is impossible in the one-body approach. Both of the many-body versions of the Wick theorem have the recurrent feature: nth order moment diagrams for the free energy or Green functions can be expressed by the (n-1)th order ones. This property corresponds to the automatic realization of: (i) summations over Bose-Einstein or (and) Fermi-Dirac frequencies; (ii) elimination of Bose-Einstein or (and) Fermi-Dirac distributions. The procedures (i) and (ii), being the results of using the Green function one-body reduction theorem, have constituted the significant difficulty up to now in the treatment of quantum systems. (orig.)

  4. The P(phi)2 Green's functions; asymptotic perturbation expansion

    International Nuclear Information System (INIS)

    Dimock, J.

    1976-01-01

    The real time Green's functions in the P(phi) 2 quantum field theory are infinitely differentiable functions of the coupling constant lambda up to and including lamba=0. It follows that the perturbation series are asymptotic as lambda→0 + . (Auth.)

  5. Remote Sensing of Sub-Surface Suspended Sediment Concentration by Using the Range Bias of Green Surface Point of Airborne LiDAR Bathymetry

    Directory of Open Access Journals (Sweden)

    Xinglei Zhao

    2018-04-01

    Full Text Available Suspended sediment concentrations (SSCs have been retrieved accurately and effectively through waveform methods by using green-pulse waveforms of airborne LiDAR bathymetry (ALB. However, the waveform data are commonly difficult to analyze. Thus, this paper proposes a 3D point-cloud method for remote sensing of SSCs in calm waters by using the range biases of green surface points of ALB. The near water surface penetrations (NWSPs of green lasers are calculated on the basis of the green and reference surface points. The range biases (ΔS are calculated by using the corresponding NWSPs and beam-scanning angles. In situ measured SSCs (C and range biases (ΔS are used to establish an empirical C-ΔS model at SSC sampling stations. The SSCs in calm waters are retrieved by using the established C-ΔS model. The proposed method is applied to a practical ALB measurement performed by Optech Coastal Zone Mapping and Imaging LiDAR. The standard deviations of the SSCs retrieved by the 3D point-cloud method are less than 20 mg/L.

  6. Functional analysis of three type-2 DGAT homologue genes for triacylglycerol production in the green microalga Chlamydomonas reinhardtii.

    Science.gov (United States)

    La Russa, M; Bogen, C; Uhmeyer, A; Doebbe, A; Filippone, E; Kruse, O; Mussgnug, J H

    2012-11-30

    Photosynthetic organisms like plants and algae can use sunlight to produce lipids as important metabolic compounds. Plant-derived triacylglycerols (TAGs) are valuable for human and animal nutrition because of their high energy content and are becoming increasingly important for the production of renewable biofuels. Acyl-CoA:diacylglycerol acyltransferases (DGATs) have been demonstrated to play an important role in the accumulation of TAG compounds in higher plants. DGAT homologue genes have been identified in the genome of the green alga Chlamydomonas reinhardtii, however their function in vivo is still unknown. In this work, the three most promising type-2 DGAT candidate genes potentially involved in TAG lipid accumulation (CrDGAT2a, b and c) were investigated by constructing overexpression strains. For each of the genes, three strains were identified which showed enhanced mRNA levels of between 1.7 and 29.1 times that of the wild type (wt). Total lipid contents, neutral lipids and fatty acid profiles were determined and showed that an enhanced mRNA expression level of the investigated DGAT genes did not boost the intracellular TAG accumulation or resulted in alterations of the fatty acid profiles compared to wild type during standard growth condition or during nitrogen or sulfur stress conditions. We conclude that biotechnological efforts to enhance cellular TAG amount in microalgae need further insights into the complex network of lipid biosynthesis to identify potential bottlenecks of neutral lipid production. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Coulomb Green's function and image potential near a cylindrical diffuse interface

    Science.gov (United States)

    Xue, Changfeng; Huang, Qiongwei; Deng, Shaozhong

    2015-12-01

    In a preceding paper [Comput. Phys. Commun. 184 (1): 51-59, 2013], we revisited the problem of calculating Coulomb Green's function and image potential near a planar diffuse interface within which the dielectric permittivity of the inhomogeneous medium changes continuously along one Cartesian direction in a transition layer between two dissimilar dielectric materials. In the present paper, we consider a cylindrical diffuse interface within which the dielectric permittivity changes continuously along the radial direction instead. First we propose a specific cylindrical diffuse interface model, termed the quasi-harmonic diffuse interface model, that can admit analytical solution for the Green's function in terms of the modified Bessel functions. Then and more importantly we develop a robust numerical method for building Green's functions for any cylindrical diffuse interface models. The main idea of the numerical method is, after dividing a diffuse interface into multiple sublayers, to approximate the dielectric permittivity profile in each one of the sublayers by one of the quasi-harmonic functional form rather than simply by a constant value as one would normally do. Next we describe how to efficiently compute well-behaved ratios, products, and logarithmic derivatives of the modified Bessel functions so as to avoid direct evaluations of individual modified Bessel functions in our formulations. Finally we conduct numerical experiments to show the effectiveness of the quasi-harmonic diffuse interface model in overcoming the divergence of the image potential, to validate the numerical method in terms of its accuracy and convergence, and to demonstrate its capability for computing Green's functions for any cylindrical diffuse interface models.

  8. Examining the consistency relations describing the three-point functions involving tensors

    International Nuclear Information System (INIS)

    Sreenath, V.; Sriramkumar, L.

    2014-01-01

    It is well known that the non-Gaussianity parameter f NL characterizing the scalar bi-spectrum can be expressed in terms of the scalar spectral index in the squeezed limit, a property that is referred to as the consistency relation. In contrast to the scalar bi-spectrum, the three-point cross-correlations involving scalars and tensors and the tensor bi-spectrum have not received adequate attention, which can be largely attributed to the fact that the tensors had remained undetected at the level of the power spectrum until very recently. The detection of the imprints of the primordial tensor perturbations by BICEP2 and its indication of a rather high tensor-to-scalar ratio, if confirmed, can open up a new window for understanding the tensor perturbations, not only at the level of the power spectrum, but also in the realm of non-Gaussianities. In this work, we consider the consistency relations associated with the three-point cross-correlations involving scalars and tensors as well as the tensor bi-spectrum in inflationary models driven by a single, canonical, scalar field. Characterizing the cross-correlations in terms of the dimensionless non-Gaussianity parameters C NL R and C NL γ that we had introduced earlier, we express the consistency relations governing the cross-correlations as relations between these non-Gaussianity parameters and the scalar or tensor spectral indices, in a fashion similar to that of the purely scalar case. We also discuss the corresponding relation for the non-Gaussianity parameter h NL used to describe the tensor bi-spectrum. We analytically establish these consistency relations explicitly in the following two situations: a simple example involving a specific case of power law inflation and a non-trivial scenario in the so-called Starobinsky model that is governed by a linear potential with a sharp change in its slope. We also numerically verify the consistency relations in three types of inflationary models that permit deviations from

  9. One-particle many-body Green's function theory: Algebraic recursive definitions, linked-diagram theorem, irreducible-diagram theorem, and general-order algorithms.

    Science.gov (United States)

    Hirata, So; Doran, Alexander E; Knowles, Peter J; Ortiz, J V

    2017-07-28

    A thorough analytical and numerical characterization of the whole perturbation series of one-particle many-body Green's function (MBGF) theory is presented in a pedagogical manner. Three distinct but equivalent algebraic (first-quantized) recursive definitions of the perturbation series of the Green's function are derived, which can be combined with the well-known recursion for the self-energy. Six general-order algorithms of MBGF are developed, each implementing one of the three recursions, the ΔMPn method (where n is the perturbation order) [S. Hirata et al., J. Chem. Theory Comput. 11, 1595 (2015)], the automatic generation and interpretation of diagrams, or the numerical differentiation of the exact Green's function with a perturbation-scaled Hamiltonian. They all display the identical, nondivergent perturbation series except ΔMPn, which agrees with MBGF in the diagonal and frequency-independent approximations at 1≤n≤3 but converges at the full-configuration-interaction (FCI) limit at n=∞ (unless it diverges). Numerical data of the perturbation series are presented for Koopmans and non-Koopmans states to quantify the rate of convergence towards the FCI limit and the impact of the diagonal, frequency-independent, or ΔMPn approximation. The diagrammatic linkedness and thus size-consistency of the one-particle Green's function and self-energy are demonstrated at any perturbation order on the basis of the algebraic recursions in an entirely time-independent (frequency-domain) framework. The trimming of external lines in a one-particle Green's function to expose a self-energy diagram and the removal of reducible diagrams are also justified mathematically using the factorization theorem of Frantz and Mills. Equivalence of ΔMPn and MBGF in the diagonal and frequency-independent approximations at 1≤n≤3 is algebraically proven, also ascribing the differences at n = 4 to the so-called semi-reducible and linked-disconnected diagrams.

  10. Green's function approach to calculate spin injection in quantum dot

    International Nuclear Information System (INIS)

    Tan, S.G.; Jalil, M.B.A.; Liew, Thomas; Teo, K.L.

    2006-01-01

    We present a theoretical model to study spin injection (η) through a quantum dot system sandwiched by two ferromagnetic contacts. The effect of contact magnetization on η was studied using Green's function descriptions of the density of states. Green's function models have the advantages that coherent effects of temperature, electron occupation in the QD, and lead perturbation on the state wave function and hence the current can be formally included in the calculations. In addition, self-consistent treatment of current with applied electrochemical potential or lead conductivity, a necessary step which has not been considered in previous works, has also been implemented in our model

  11. Fermionic green function and functional determinant in QCD2

    International Nuclear Information System (INIS)

    Nielsen, N.K.; Rothe, K.D.; Schroer, B.

    1979-01-01

    We obtain a closed representation for the QCD 2 fermion determinant, euclidean Green functions and induced current in generic external fields. In the absence of zero modes the results are representable as sums over tree diagrams which as we show, can also be obtained from the original Feynman perturbation series via resummation and integration over loop variables. We also investigate the modifications due to the presence of zero modes. (orig.)

  12. Green's function in the color field of a large nucleus

    International Nuclear Information System (INIS)

    McLerran, L.; Venugopalan, R.

    1994-01-01

    We compute the Green's function for scalars, fermions, and vectors in the color field associated with the infinite momentum frame wave function of a large nucleus. Expectation values of this wave function can be computed by integrating over random orientations of the valence quark charge density. This relates the Green's functions to correlation functions of a two-dimensional, ultraviolet finite, field theory. We show how one can compute the sea quark distribution functions and explicitly compute them in the kinematic range of transverse momenta, α s 2 μ 2 much-lt k t 2 much-lt μ 2 , where μ 2 is the average color charge squared per unit area. When m quark 2 much-lt μ 2 ∼A 1/3 , the sea quark contribution to the infinite momentum frame wave function saturates at a value that is the same as that for massless sea quarks

  13. Proof of the relativistic covariance of the fermion Green function in QED

    International Nuclear Information System (INIS)

    Nguyen Suan Han.

    1995-02-01

    This paper is devoted to the calculation of the fermion Green function in QED in the framework of the Minimal Quantization Method, based on an explicit solution of the constraint equations and the gauge-invariance principle. The relativistic invariant expression for the fermion Green function which has the right analytical properties is obtained. (author). 24 refs

  14. Fast and accurate three-dimensional point spread function computation for fluorescence microscopy.

    Science.gov (United States)

    Li, Jizhou; Xue, Feng; Blu, Thierry

    2017-06-01

    The point spread function (PSF) plays a fundamental role in fluorescence microscopy. A realistic and accurately calculated PSF model can significantly improve the performance in 3D deconvolution microscopy and also the localization accuracy in single-molecule microscopy. In this work, we propose a fast and accurate approximation of the Gibson-Lanni model, which has been shown to represent the PSF suitably under a variety of imaging conditions. We express the Kirchhoff's integral in this model as a linear combination of rescaled Bessel functions, thus providing an integral-free way for the calculation. The explicit approximation error in terms of parameters is given numerically. Experiments demonstrate that the proposed approach results in a significantly smaller computational time compared with current state-of-the-art techniques to achieve the same accuracy. This approach can also be extended to other microscopy PSF models.

  15. Relationship Between Non-Point Source Pollution and Korean Green Factor

    Directory of Open Access Journals (Sweden)

    Seung Chul Lee

    2015-01-01

    Full Text Available In determining the relationship between the rational event mean concentration (REMC which is a volume-weighted mean of event mean concentrations (EMCs as a non-point source (NPS pollution indicator and the green factor (GF as a low impact development (LID land use planning indicator, we constructed at runoff database containing 1483 rainfall events collected from 107 different experimental catchments from 19 references in Korea. The collected data showed that EMCs were not correlated with storm factors whereas they showed significant differences according to the land use types. The calculated REMCs for BOD, COD, TSS, TN, and TP showed negative correlations with the GFs. However, even though the GFs of the agricultural area were concentrated in values of 80 like the green areas, the REMCs for TSS, TN, and TP were especially high. There were few differences in REMC runoff characteristics according to the GFs such as recreational facilities areas in suburbs and highways and trunk roads that connect to major roads between major cities. Except for those areas, the REMCs for BOD and COD were significantly related to the GFs. The REMCs for BOD and COD decreased when the rate of natural green area increased. On the other hand, some of the REMCs for TSS, TN, and TP were still high where the catchments encountered mixed land use patterns, especially public facility areas with bare ground and artificial grassland areas. The GF could therefore be used as a major planning indicator when establishing land use planning aimed at sustainable development with NPS management in urban areas if the weighted GF values will be improved.

  16. Three new BL Lacertae objects in the Palomar-Green survey

    Science.gov (United States)

    Fleming, Thomas A.; Green, Richard F.; Jannuzi, Buell T.; Liebert, James; Smith, Paul S.; Fink, Henner

    1993-01-01

    We have identified three BL Lacertae objects in the Palomar-Green Survey which were previously misclassified as DC white dwarfs, namely PG 1246+586, PG 1424+240, and PG 1437+398. Our reclassification is based on the detection of these objects as x-ray sources in the ROSAT all-sky survey and upon our subsequent detection of intrinsic linearly polarized and variable optical emission from these sources. As a result of the ROSAT survey, the number of identified BL Lac objects in the Palomar-Green catalog of UV excess objects has been doubled. Corrected optical positions are presented for PG 1246+586 and PG 1437+398.

  17. Multiquark masses and wave functions through modified Green's function Monte Carlo method

    International Nuclear Information System (INIS)

    Kerbikov, B.O.; Polikarpov, M.I.; Shevchenko, L.V.

    1987-01-01

    The Modified Green's function Monte Carlo method (MGFMC) is used to calculate the masses and ground-state wave functions of multiquark systems in the potential model. The previously developed MGFMC is generalized in order to treat systems containing quarks with inequal masses. The obtained results are presented with the Cornell potential for the masses and the wave functions of light and heavy flavoured baryons and multiquark states (N=6, 9, 12) made of light quarks

  18. Mitigating and adapting to climate change: multi-functional and multi-scale assessment of green urban infrastructure.

    Science.gov (United States)

    Demuzere, M; Orru, K; Heidrich, O; Olazabal, E; Geneletti, D; Orru, H; Bhave, A G; Mittal, N; Feliu, E; Faehnle, M

    2014-12-15

    In order to develop climate resilient urban areas and reduce emissions, several opportunities exist starting from conscious planning and design of green (and blue) spaces in these landscapes. Green urban infrastructure has been regarded as beneficial, e.g. by balancing water flows, providing thermal comfort. This article explores the existing evidence on the contribution of green spaces to climate change mitigation and adaptation services. We suggest a framework of ecosystem services for systematizing the evidence on the provision of bio-physical benefits (e.g. CO2 sequestration) as well as social and psychological benefits (e.g. improved health) that enable coping with (adaptation) or reducing the adverse effects (mitigation) of climate change. The multi-functional and multi-scale nature of green urban infrastructure complicates the categorization of services and benefits, since in reality the interactions between various benefits are manifold and appear on different scales. We will show the relevance of the benefits from green urban infrastructures on three spatial scales (i.e. city, neighborhood and site specific scales). We will further report on co-benefits and trade-offs between the various services indicating that a benefit could in turn be detrimental in relation to other functions. The manuscript identifies avenues for further research on the role of green urban infrastructure, in different types of cities, climates and social contexts. Our systematic understanding of the bio-physical and social processes defining various services allows targeting stressors that may hamper the provision of green urban infrastructure services in individual behavior as well as in wider planning and environmental management in urban areas. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Thermal properties of Green's functions in Rindler, de Sitter, and Schwarzschild spaces

    International Nuclear Information System (INIS)

    Dowker, J.S.

    1978-01-01

    The conventional massless scalar Green's functions in the Minkowski, de Sitter, and two-dimensional Schwarzschild spaces are reinterpreted as finite-temperature Green's functions and the corresponding averages of the stress-energy operator are calculated. The renormalization adopted consists of subtracting the zero-temperature quantities. In all cases the averages give the stress tensor of a purely Planck-type perfect gas

  20. Three-dimensional free boundary calculations using a spectral Green's function method

    International Nuclear Information System (INIS)

    Hirshman, S.P.; van Rij, W.I.; Merkel, P.

    1986-01-01

    The plasma energy W/sub p/ = integral Ω/sub p/(1/2B 2 + p)dV is minimized over a toroidal domain Ω/sub p/ using an inverse representation for the cylindrical coordinates R = ΣR/sub mn/(s)cos(mθ - n zeta) and Z = ΣZ/sub mn/(s)sin(mθ - n zeta), where (s,θ,zeta) are radial, poloidal, and toroidal flux coordinates, respectively. The radial resolution of the MHD equations is significantly improved by separating R and Z into contributions from even and odd poloidal harmonics which are individually analytic near the magnetic axis. A free boundary equilibrium results when Ω/sub p/ is varied to make the total pressure 1/2B 2 + p continuous at the plasma surface Σ/sub p/ and when the vacuum magnetic field B/sub ν/ satisfies the Neumann condition B/sub ν/ x dΣ/sub p/ = 0. The vacuum field is decomposed as B/sub ν/ = B 0 + del Phi, where B 0 is the field arising from plasma currents and external coils and Phi is a single-valued potential necessary to satisfy B/sub ν/ x dΣ/sub p/ = 0 when p not equal to 0. A Green's function method is used to obtain an integral equation over Σ/sub p/ for the scalar magnetic potential Phi = ΣPhi/sub mn/sin(mθ - n zeta). A linear matrix equation is solved for Phi/sub mn/ to determine 1/2 B/sub ν/ 2 on the boundary. Real experimental conditions are simulated by keeping the external and net plasma currents constant during the iteration. Applications to l = 2 stellarator equilibria are presented

  1. Asymptotic Green's function in homogeneous anisotropic viscoelastic media

    Czech Academy of Sciences Publication Activity Database

    Vavryčuk, Václav

    2007-01-01

    Roč. 463, č. 2086 (2007), s. 2689-2707 ISSN 1364-5021 Institutional research plan: CEZ:AV0Z30120515 Keywords : anisotropy * attenuation * Green's function * viscoelasticity Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.523, year: 2007

  2. The algorithms for calculating synthetic seismograms from a dipole source using the derivatives of Green's function

    Science.gov (United States)

    Pavlov, V. M.

    2017-07-01

    The problem of calculating complete synthetic seismograms from a point dipole with an arbitrary seismic moment tensor in a plane parallel medium composed of homogeneous elastic isotropic layers is considered. It is established that the solutions of the system of ordinary differential equations for the motion-stress vector have a reciprocity property, which allows obtaining a compact formula for the derivative of the motion vector with respect to the source depth. The reciprocity theorem for Green's functions with respect to the interchange of the source and receiver is obtained for a medium with cylindrical boundary. The differentiation of Green's functions with respect to the coordinates of the source leads to the same calculation formulas as the algorithm developed in the previous work (Pavlov, 2013). A new algorithm appears when the derivatives with respect to the horizontal coordinates of the source is replaced by the derivatives with respect to the horizontal coordinates of the receiver (with the minus sign). This algorithm is more transparent, compact, and economic than the previous one. It requires calculating the wavenumbers associated with Bessel function's roots of order 0 and order 1, whereas the previous algorithm additionally requires the second order roots.

  3. Green`s function of Maxwell`s equations and corresponding implications for iterative methods

    Energy Technology Data Exchange (ETDEWEB)

    Singer, B.S. [Macquarie Univ., Sydney (Australia); Fainberg, E.B. [Inst. of Physics of the Earth, Moscow (Russian Federation)

    1996-12-31

    Energy conservation law imposes constraints on the norm and direction of the Hilbert space vector representing a solution of Maxwell`s equations. In this paper, we derive these constrains and discuss the corresponding implications for the Green`s function of Maxwell`s equations in a dissipative medium. It is shown that Maxwell`s equations can be reduced to an integral equation with a contracting kernel. The equation can be solved using simple iterations. Software based on this algorithm have successfully been applied to a wide range of problems dealing with high contrast models. The matrix corresponding to the integral equation has a well defined spectrum. The equation can be symmetrized and solved using different approaches, for instance one of the conjugate gradient methods.

  4. Water hammer prediction and control: the Green's function method

    Science.gov (United States)

    Xuan, Li-Jun; Mao, Feng; Wu, Jie-Zhi

    2012-04-01

    By Green's function method we show that the water hammer (WH) can be analytically predicted for both laminar and turbulent flows (for the latter, with an eddy viscosity depending solely on the space coordinates), and thus its hazardous effect can be rationally controlled and minimized. To this end, we generalize a laminar water hammer equation of Wang et al. (J. Hydrodynamics, B2, 51, 1995) to include arbitrary initial condition and variable viscosity, and obtain its solution by Green's function method. The predicted characteristic WH behaviors by the solutions are in excellent agreement with both direct numerical simulation of the original governing equations and, by adjusting the eddy viscosity coefficient, experimentally measured turbulent flow data. Optimal WH control principle is thereby constructed and demonstrated.

  5. Reassessing Function Points

    Directory of Open Access Journals (Sweden)

    G.R. Finnie

    1997-05-01

    Full Text Available Accurate estimation of the size and development effort for software projects requires estimation models which can be used early enough in the development life cycle to be of practical value. Function Point Analysis (FPA has become possibly the most widely used estimation technique in practice. However the technique was developed in the data processing environment of the 1970's and, despite undergoing considerable reassessment and formalisation, still attracts criticism for the weighting scoring it employs and for the way in which the function point score is adapted for specific system characteristics. This paper reviews the validity of the weighting scheme and the value of adjusting for system characteristics by studying their effect in a sample of 299 software developments. In general the value adjustment scheme does not appear to cater for differences in productivity. The weighting scheme used to adjust system components in terms of being simple, average or complex also appears suspect and should be redesigned to provide a more realistic estimate of system functionality.

  6. Evaluation of three Monte Carlo estimation schemes for flux at a point

    International Nuclear Information System (INIS)

    Kalli, H.J.; Cashwell, E.D.

    1977-09-01

    Three Monte Carlo estimation schemes were studied to avoid the difficulties caused by the (1/r 2 ) singularity in the expression of the normal next-event estimator (NEE) for the flux at a point. A new, fast, once-more collided flux estimator (OMCFE) scheme, based on a very simple probability density function (p.d.f.) of the distance to collision in the selection of the intermediate collision points, is proposed. This kind of p.d.f. of the collision distance is used in two nonanalog schemes using the NEE. In these two schemes, which have principal similarities to some schemes proposed earlier in the literature, the (1/r 2 ) singularity is canceled by incorporating the singularity into the p.d.f. of the collision points. This is achieved by playing a suitable nonanalog game in the neighborhood of the detector points. The three schemes were tested in a monoenergetic, homogeneous infinite-medium problem, then were evaluated in a point-cross-section problem by using the Monte Carlo code MCNG. 10 figures

  7. Patched Green's function techniques for two-dimensional systems

    DEFF Research Database (Denmark)

    Settnes, Mikkel; Power, Stephen; Lin, Jun

    2015-01-01

    We present a numerically efficient technique to evaluate the Green's function for extended two-dimensional systems without relying on periodic boundary conditions. Different regions of interest, or “patches,” are connected using self-energy terms which encode the information of the extended parts...

  8. Frequency-domain Green's functions for radar waves in heterogeneous 2.5D media

    Science.gov (United States)

    Ellefsen, K.J.; Croize, D.; Mazzella, A.T.; McKenna, J.R.

    2009-01-01

    Green's functions for radar waves propagating in heterogeneous 2.5D media might be calculated in the frequency domain using a hybrid method. The model is defined in the Cartesian coordinate system, and its electromagnetic properties might vary in the x- and z-directions, but not in the y-direction. Wave propagation in the x- and z-directions is simulated with the finite-difference method, and wave propagation in the y-direction is simulated with an analytic function. The absorbing boundaries on the finite-difference grid are perfectly matched layers that have been modified to make them compatible with the hybrid method. The accuracy of these numerical Greens functions is assessed by comparing them with independently calculated Green's functions. For a homogeneous model, the magnitude errors range from -4.16% through 0.44%, and the phase errors range from -0.06% through 4.86%. For a layered model, the magnitude errors range from -2.60% through 2.06%, and the phase errors range from -0.49% through 2.73%. These numerical Green's functions might be used for forward modeling and full waveform inversion. ?? 2009 Society of Exploration Geophysicists. All rights reserved.

  9. Sum-over-histories representation for the causal Green function of free scalar field theory

    International Nuclear Information System (INIS)

    Rudolph, O.

    1993-10-01

    A set of Green functions G α (x-y), α element of [0, 2π], for free scalar field theory is introduced, varying between the Hadamard Green function Δ 1 (x-y) triple bond 0vertical stroke {φ(x), φ(y)}vertical stroke 0> and the causal Green function G π (x-y)=iΔ(x-y) triple bond [φ(x), φ(y)]. For every α element of [0, 2π] a path-integral representation for G α is obtained both in the configuration space and in the phase space of the classical relativistic particle. Especially setting α=π a sum-over-histories representation for the causal Green function is obtained. Furthermore using BRST theory an alternative path-integral representation for G α is presented. From these path integral representations the composition laws for the G α 's are derived using a modified path decomposition expansion. (orig.)

  10. Euclidean scalar Green function in a higher dimensional global monopole space-time

    International Nuclear Information System (INIS)

    Bezerra de Mello, E.R.

    2002-01-01

    We construct the explicit Euclidean scalar Green function associated with a massless field in a higher dimensional global monopole space-time, i.e., a (1+d)-space-time with d≥3 which presents a solid angle deficit. Our result is expressed in terms of an infinite sum of products of Legendre functions with Gegenbauer polynomials. Although this Green function cannot be expressed in a closed form, for the specific case where the solid angle deficit is very small, it is possible to develop the sum and obtain the Green function in a more workable expression. Having this expression it is possible to calculate the vacuum expectation value of some relevant operators. As an application of this formalism, we calculate the renormalized vacuum expectation value of the square of the scalar field, 2 (x)> Ren , and the energy-momentum tensor, μν (x)> Ren , for the global monopole space-time with spatial dimensions d=4 and d=5

  11. Ambient Noise Green's Function Simulation of Long-Period Ground Motions for Reverse Faulting

    Science.gov (United States)

    Miyake, H.; Beroza, G. C.

    2009-12-01

    Long-time correlation of ambient seismic noise has been demonstrated as a useful tool for strong ground motion prediction [Prieto and Beroza, 2008]. An important advantage of ambient noise Green's functions is that they can be used for ground motion simulation without resorting to either complex 3-D velocity structure to develop theoretical Green’s functions, or aftershock records for empirical Green’s function analysis. The station-to-station approach inherent to ambient noise Green’s functions imposes some limits to its application, since they are band-limited, applied at the surface, and for a single force. We explore the applicability of this method to strong motion prediction using the 2007 Chuetsu-oki, Japan, earthquake (Mw 6.6, depth = 9 km), which excited long-period ground motions in and around the Kanto basin almost 200 km from the epicenter. We test the performance of ambient noise Green's function for long-period ground motion simulation. We use three components of F-net broadband data at KZK station, which is located near the source region, as a virtual source, and three components of six F-net stations in and around the Kanto basin to calculate the response. An advantage to applying this approach in Japan is that ambient-noise sources are active in diverse directions. The dominant period of the ambient noise for the F-net datasets is mostly 7 s over the year, and amplitudes are largest in winter. This period matches the dominant periods of the Kanto and Niigata basins. For the 9 components of the ambient noise Green’s functions, we have confirmed long-period components corresponding to Love wave and Rayleigh waves that can be used for simulation of the 2007 Chuetsu-oki earthquake. The relative amplitudes, phases, and durations of the ambient noise Green’s functions at the F-net stations in and around the Kanto basin respect to F-net KZK station are fairly well matched with those of the observed ground motions for the 2007 Chuetsu

  12. Study on application of green's function method in thermal stress rapid calculation

    International Nuclear Information System (INIS)

    Zhang Guihe; Duan Yuangang; Xu Xiao; Chen Rong

    2013-01-01

    This paper presents a quick and accuracy thermal stress calculation method, the Green's Function Method, which is a combination of finite element method and numerical algorithm method. Thermal stress calculation of Safe Injection Nozzle of Reactor Coolant Line of PWR plant is performed with Green's function method for heatup and cooldown thermal transients as a demonstration example, and the result is compared with finite element method to verify the rationality and accuracy of this method. The advantage and disadvantage of the Green's function method and the finite element method are also compared. (authors)

  13. Regularity of p(ṡ)-superharmonic functions, the Kellogg property and semiregular boundary points

    Science.gov (United States)

    Adamowicz, Tomasz; Björn, Anders; Björn, Jana

    2014-11-01

    We study various boundary and inner regularity questions for $p(\\cdot)$-(super)harmonic functions in Euclidean domains. In particular, we prove the Kellogg property and introduce a classification of boundary points for $p(\\cdot)$-harmonic functions into three disjoint classes: regular, semiregular and strongly irregular points. Regular and especially semiregular points are characterized in many ways. The discussion is illustrated by examples. Along the way, we present a removability result for bounded $p(\\cdot)$-harmonic functions and give some new characterizations of $W^{1, p(\\cdot)}_0$ spaces. We also show that $p(\\cdot)$-superharmonic functions are lower semicontinuously regularized, and characterize them in terms of lower semicontinuously regularized supersolutions.

  14. Current singularities at finitely compressible three-dimensional magnetic null points

    International Nuclear Information System (INIS)

    Pontin, D.I.; Craig, I.J.D.

    2005-01-01

    The formation of current singularities at line-tied two- and three-dimensional (2D and 3D, respectively) magnetic null points in a nonresistive magnetohydrodynamic environment is explored. It is shown that, despite the different separatrix structures of 2D and 3D null points, current singularities may be initiated in a formally equivalent manner. This is true no matter whether the collapse is triggered by flux imbalance within closed, line-tied null points or driven by externally imposed velocity fields in open, incompressible geometries. A Lagrangian numerical code is used to investigate the finite amplitude perturbations that lead to singular current sheets in collapsing 2D and 3D null points. The form of the singular current distribution is analyzed as a function of the spatial anisotropy of the null point, and the effects of finite gas pressure are quantified. It is pointed out that the pressure force, while never stopping the formation of the singularity, significantly alters the morphology of the current distribution as well as dramatically weakening its strength. The impact of these findings on 2D and 3D magnetic reconnection models is discussed

  15. Habitat connectivity and local conditions shape taxonomic and functional diversity of arthropods on green roofs.

    Science.gov (United States)

    Braaker, Sonja; Obrist, Martin Karl; Ghazoul, Jaboury; Moretti, Marco

    2017-05-01

    Increasing development of urban environments creates high pressure on green spaces with potential negative impacts on biodiversity and ecosystem services. There is growing evidence that green roofs - rooftops covered with vegetation - can contribute mitigate the loss of urban green spaces by providing new habitats for numerous arthropod species. Whether green roofs can contribute to enhance taxonomic and functional diversity and increase connectivity across urbanized areas remains, however, largely unknown. Furthermore, only limited information is available on how environmental conditions shape green roof arthropod communities. We investigated the community composition of arthropods (Apidae, Curculionidae, Araneae and Carabidae) on 40 green roofs and 40 green sites at ground level in the city of Zurich, Switzerland. We assessed how the site's environmental variables (such as area, height, vegetation, substrate and connectivity among sites) affect species richness and functional diversity using generalized linear models. We used an extension of co-inertia analysis (RLQ) and fourth-corner analysis to highlight the mechanism underlying community assemblages across taxonomic groups on green roof and ground communities. Species richness was higher at ground-level sites, while no difference in functional diversity was found between green roofs and ground sites. Green roof arthropod diversity increased with higher connectivity and plant species richness, irrespective of substrate depth, height and area of green roofs. The species trait analysis reviewed the mechanisms related to the environmental predictors that shape the species assemblages of the different taxa at ground and roof sites. Our study shows the important contribution of green roofs in maintaining high functional diversity of arthropod communities across different taxonomic groups, despite their lower species richness compared with ground sites. Species communities on green roofs revealed to be characterized

  16. The Euclidean scalar Green function in the five-dimensional Kaluza-Klein magnetic monopole space-time

    International Nuclear Information System (INIS)

    Bezerra de Mello, E.R.

    2006-01-01

    In this paper we present, in a integral form, the Euclidean Green function associated with a massless scalar field in the five-dimensional Kaluza-Klein magnetic monopole superposed to a global monopole, admitting a nontrivial coupling between the field with the geometry. This Green function is expressed as the sum of two contributions: the first one related with uncharged component of the field, is similar to the Green function associated with a scalar field in a four-dimensional global monopole space-time. The second contains the information of all the other components. Using this Green function it is possible to study the vacuum polarization effects on this space-time. Explicitly we calculate the renormalized vacuum expectation value * (x)Φ(x)> Ren , which by its turn is also expressed as the sum of two contributions

  17. Sum-over-histories representation for the causal Green function of free scalar field theory

    International Nuclear Information System (INIS)

    Rudolph, O.

    1995-01-01

    A set of Green functions scrG α (x-y), α element-of[0,2π] for free scalar field theory is introduced, varying between the Hadamard Green function Δ 1 (x-y)==left-angle 0|{cphi(x),cphi(y)}|0 right-angle and the causal Green function scrG π (x-y)=iΔ(x-y)==[cphi(x),cphi(y)]. For every α element-of[0,2π] a path integral representation for scrG α is obtained both in configuration space and in the phase space of the classical relativistic particle. Setting α=π a sum-over-histories representation for the causal Green function is obtained. Furthermore, a reduced phase space integral representation for the scrG α 's is stated and an alternative BRST path integral representation for scrG α is presented. From these path integral representations the composition laws for the scrG α 's are derived using a modified path decomposition expansion

  18. Brazilian Green Propolis Improves Antioxidant Function in Patients with Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Liting Zhao

    2016-05-01

    Full Text Available Propolis contains a variety of bioactive components and possesses many biological properties. This study was designed to evaluate potential effects of Brazilian green propolis on glucose metabolism and antioxidant function in patients with type 2 diabetes mellitus (T2DM. In the 18-week randomized controlled study, enrolled patients with T2DM were randomly assigned to Brazilian green propolis group (900 mg/day (n = 32 and control group (n = 33. At the end of the study, no significant difference was found in serum glucose, glycosylated hemoglobin, insulin, aldose reductase or adiponectin between the two groups. However, serum GSH and total polyphenols were significantly increased, and serum carbonyls and lactate dehydrogenase activity were significantly reduced in the Brazilian green propolis group. Serum TNF-α was significantly decreased, whereas serum IL-1β and IL-6 were significantly increased in the Brazilian green propolis group. It is concluded that Brazilian green propolis is effective in improving antioxidant function in T2DM patients.

  19. High frequency green function for aerodynamic noise in moving media. I - General theory. II - Noise from a spreading jet

    Science.gov (United States)

    Durbin, P. A.

    1983-01-01

    It is shown how a high frequency analysis can be made for general problems involving flow-generated noise. In the parallel shear flow problem treated by Balsa (1976) and Goldstein (1982), the equation governing sound propagation in the moving medium could be transformed into a wave equation for a stationary medium with an inhomogeneous index of refraction. It is noted that the procedure of Avila and Keller (1963) was then used to construct a high frequency Green function. This procedure involves matching a solution valid in an inner region around the point source to an outer, ray-acoustics solution. This same procedure is used here to construct the Green function for a source in an arbitrary mean flow. In view of the fact that there is no restriction to parallel flow, the governing equations cannot be transformed into a wave equation; the analysis therefore proceeds from the equations of motion themselves.

  20. Analytic and numeric Green's functions for a two-dimensional electron gas in an orthogonal magnetic field

    International Nuclear Information System (INIS)

    Cresti, Alessandro; Grosso, Giuseppe; Parravicini, Giuseppe Pastori

    2006-01-01

    We have derived closed analytic expressions for the Green's function of an electron in a two-dimensional electron gas threaded by a uniform perpendicular magnetic field, also in the presence of a uniform electric field and of a parabolic spatial confinement. A workable and powerful numerical procedure for the calculation of the Green's functions for a large infinitely extended quantum wire is considered exploiting a lattice model for the wire, the tight-binding representation for the corresponding matrix Green's function, and the Peierls phase factor in the Hamiltonian hopping matrix element to account for the magnetic field. The numerical evaluation of the Green's function has been performed by means of the decimation-renormalization method, and quite satisfactorily compared with the analytic results worked out in this paper. As an example of the versatility of the numerical and analytic tools here presented, the peculiar semilocal character of the magnetic Green's function is studied in detail because of its basic importance in determining magneto-transport properties in mesoscopic systems

  1. A naturally large four-point function in single field inflation

    International Nuclear Information System (INIS)

    Senatore, Leonardo; Zaldarriaga, Matias

    2011-01-01

    Non-Gaussianities of the primordial density perturbations have emerged as a very powerful possible signal to test the dynamics that drove the period of inflation. While in general the most sensitive observable is the three-point function in this paper we show that there are technically natural inflationary models where the leading source of non-Gaussianity is the four-point function. Using the recently developed Effective Field Theory of Inflation, we are able to show that it is possible to impose an approximate parity symmetry and an approximate continuos shift symmetry on the inflaton fluctuations that allow, when the dispersion relation if of the form ω ∼ c s k, for a unique quartic operator, while approximately forbidding all the cubic ones. The resulting shape for the four-point function is unique. In the models where the dispersion relation is of the form ω ∼ k 2 /M a similar construction can be carried out and additional shapes are possible

  2. Software to compute elastostatic Green's functions for sources in 3D homogeneous elastic layers above a (visco)elastic halfspace

    Science.gov (United States)

    Bradley, A. M.; Segall, P.

    2012-12-01

    We describe software, in development, to calculate elastostatic displacement Green's functions and their derivatives for point and polygonal dislocations in three-dimensional homogeneous elastic layers above an elastic or a viscoelastic halfspace. The steps to calculate a Green's function for a point source at depth zs are as follows. 1. A grid in wavenumber space is chosen. 2. A six-element complex rotated stress-displacement vector x is obtained at each grid point by solving a two-point boundary value problem (2P-BVP). If the halfspace is viscoelastic, the solution is inverse Laplace transformed. 3. For each receiver, x is propagated to the receiver depth zr (often zr = 0) and then, 4, inverse Fourier transformed, with the Fourier component corresponding to the receiver's horizontal position. 5. The six elements are linearly combined into displacements and their derivatives. The dominant work is in step 2. The grid is chosen to represent the wavenumber-space solution with as few points as possible. First, the wavenumber space is transformed to increase sampling density near 0 wavenumber. Second, a tensor-product grid of Chebyshev points of the first kind is constructed in each quadrant of the transformed wavenumber space. Moment-tensor-dependent symmetries further reduce work. The numerical solution of the 2P-BVP problem in step 2 involves solving a linear equation A x = b. Half of the elements of x are of geophysical interest; the subset depends on whether zr ≤ zs. Denote these \\hat x. As wavenumber k increases, \\hat x can become inaccurate in finite precision arithmetic for two reasons: 1. The condition number of A becomes too large. 2. The norm-wise relative error (NWRE) in \\hat x is large even though it is small in x. To address this problem, a number of researchers have used determinants to obtain x. This may be the best approach for 6-dimensional or smaller 2P-BVP, where the combinatorial increase in work is still moderate. But there is an alternative

  3. Discrete state perturbation theory via Green's functions

    International Nuclear Information System (INIS)

    Rubinson, W.

    1975-01-01

    The exposition of stationary-state perturbation theory via the Green's function method in Goldberger and Watson's Collision Theory is reworked in a way that makes explicit its mathematical basis. It is stressed that the theory consists of the construction of, and manipulations on, a mathematical identity. The perturbation series fall out of the identity almost immediately. The logical status of the method is commented on

  4. Exact 2-point function in Hermitian matrix model

    International Nuclear Information System (INIS)

    Morozov, A.; Shakirov, Sh.

    2009-01-01

    J. Harer and D. Zagier have found a strikingly simple generating function [1,2] for exact (all-genera) 1-point correlators in the Gaussian Hermitian matrix model. In this paper we generalize their result to 2-point correlators, using Toda integrability of the model. Remarkably, this exact 2-point correlation function turns out to be an elementary function - arctangent. Relation to the standard 2-point resolvents is pointed out. Some attempts of generalization to 3-point and higher functions are described.

  5. Coupled-cluster representation of Green function employing modified spectral resolutions of similarity transformed Hamiltonians

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, K., E-mail: karol.kowalski@pnnl.gov; Bhaskaran-Nair, K.; Shelton, W. A. [William R. Wiley Environmental Molecular Sciences Laboratory, Battelle, Pacific Northwest National Laboratory, K8-91, P.O. Box 999, Richland, Washington 99352 (United States)

    2014-09-07

    In this paper we discuss a new formalism for producing an analytic coupled-cluster (CC) Green's function for an N-electron system by shifting the poles of similarity transformed Hamiltonians represented in N − 1 and N + 1 electron Hilbert spaces. Simple criteria are derived for the states in N − 1 and N + 1 electron spaces that are then corrected in the spectral resolution of the corresponding matrix representations of the similarity transformed Hamiltonian. The accurate description of excited state processes within a Green's function formalism would be of significant importance to a number of scientific communities ranging from physics and chemistry to engineering and the biological sciences. This is because the Green's function methodology provides a direct path for not only calculating properties whose underlying origins come from coupled many-body interactions but also provides a straightforward path for calculating electron transport, response, and correlation functions that allows for a direct link with experiment. As a special case of this general formulation, we discuss the application of this technique for Green's function defined by the CC with singles and doubles representation of the ground-state wave function.

  6. Coupled-cluster representation of Green function employing modified spectral resolutions of similarity transformed Hamiltonians

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, K. [William R. Wiley Environmental Molecular Sciences Laboratory, Battelle, Pacific Northwest National Laboratory, K8-91, P.O. Box 999, Richland, Washington 99352, USA; Bhaskaran-Nair, K. [William R. Wiley Environmental Molecular Sciences Laboratory, Battelle, Pacific Northwest National Laboratory, K8-91, P.O. Box 999, Richland, Washington 99352, USA; Shelton, W. A. [William R. Wiley Environmental Molecular Sciences Laboratory, Battelle, Pacific Northwest National Laboratory, K8-91, P.O. Box 999, Richland, Washington 99352, USA

    2014-09-07

    In this paper we discuss a new formalism for producing an analytic coupled-cluster (CC) Green's function for an N-electron system by shifting the poles of similarity transformed Hamiltonians represented in N - 1 and N + 1 electron Hilbert spaces. Simple criteria are derived for the states in N - 1 and N + 1 electron spaces that are then corrected in the spectral resolution of the corresponding matrix representations of the similarity transformed Hamiltonian. The accurate description of excited state processes within a Green's function formalism would be of significant importance to a number of scientific communities ranging from physics and chemistry to engineering and the biological sciences. This is because the Green's function methodology provides a direct path for not only calculating properties whose underlying origins come from coupled many-body interactions but also provides a straightforward path for calculating electron transport, response, and correlation functions that allows for a direct link with experiment. Finally, as a special case of this general formulation, we discuss the application of this technique for Green's function defined by the CC with singles and doubles representation of the ground-state wave function.

  7. Coupled-cluster representation of Green function employing modified spectral resolutions of similarity transformed Hamiltonians

    International Nuclear Information System (INIS)

    Kowalski, K.; Bhaskaran-Nair, K.; Shelton, W. A.

    2014-01-01

    In this paper we discuss a new formalism for producing an analytic coupled-cluster (CC) Green's function for an N-electron system by shifting the poles of similarity transformed Hamiltonians represented in N − 1 and N + 1 electron Hilbert spaces. Simple criteria are derived for the states in N − 1 and N + 1 electron spaces that are then corrected in the spectral resolution of the corresponding matrix representations of the similarity transformed Hamiltonian. The accurate description of excited state processes within a Green's function formalism would be of significant importance to a number of scientific communities ranging from physics and chemistry to engineering and the biological sciences. This is because the Green's function methodology provides a direct path for not only calculating properties whose underlying origins come from coupled many-body interactions but also provides a straightforward path for calculating electron transport, response, and correlation functions that allows for a direct link with experiment. As a special case of this general formulation, we discuss the application of this technique for Green's function defined by the CC with singles and doubles representation of the ground-state wave function

  8. Green functions and scattering amplitudes in many-dimensional space

    International Nuclear Information System (INIS)

    Fabre de la Ripelle, M.

    1993-01-01

    Methods for solving scattering are studied in many-dimensional space. Green function and scattering amplitudes are given in terms of the required asymptotic behaviour of the wave function. The Born approximation and the optical theorem are derived in many-dimensional space. Phase-shift analyses are performed for hypercentral potentials and for non-hypercentral potentials by use of the hyperspherical adiabatic approximation. (author)

  9. Green's functions, states and renormalisation

    International Nuclear Information System (INIS)

    Brown, M.R.; Ottewill, A.C.

    1982-01-01

    The significance that is to be attached to different operator orderings of free quantum field theories in curved space-time is examined. It is hoped thus to elucidate the renormalization of such theories. It is argued that as in flat space, these theories should be rendered finite by normal ordering with respect to a local geometrical vacuum state. Flat space is considered first, then an analogous local, geometrical Green's function for curved space-time is defined. Examples given are the Einstein static universe, the open Einstein universe and the de Sitter universe. It is observed that normalization provides some insight into the nature of vacuum stress. (U.K.)

  10. Rapid finite-fault inversions in Southern California using Cybershake Green's functions

    Science.gov (United States)

    Thio, H. K.; Polet, J.

    2017-12-01

    We have developed a system for rapid finite fault inversion for intermediate and large Southern California earthquakes using local, regional and teleseismic seismic waveforms as well as geodetic data. For modeling the local seismic data, we use 3D Green's functions from the Cybershake project, which were made available to us courtesy of the Southern California Earthquake Center (SCEC). The use of 3D Green's functions allows us to extend the inversion to higher frequency waveform data and smaller magnitude earthquakes, in addition to achieving improved solutions in general. The ultimate aim of this work is to develop the ability to provide high quality finite fault models within a few hours after any damaging earthquake in Southern California, so that they may be used as input to various post-earthquake assessment tools such as ShakeMap, as well as by the scientific community and other interested parties. Additionally, a systematic determination of finite fault models has value as a resource for scientific studies on detailed earthquake processes, such as rupture dynamics and scaling relations. We are using an established least-squares finite fault inversion method that has been applied extensively both on large as well as smaller regional earthquakes, in conjunction with the 3D Green's functions, where available, as well as 1D Green's functions for areas for which the Cybershake library has not yet been developed. We are carrying out validation and calibration of this system using significant earthquakes that have occurred in the region over the last two decades, spanning a range of locations and magnitudes (5.4 and higher).

  11. The Green function in the secondary model of thermalization; La funcion de GREEN en el Modelo secundario de Termalizacion

    Energy Technology Data Exchange (ETDEWEB)

    Guasp, J

    1972-07-01

    The Green Function of the thermalization problem is studied in the secondary model case through the spatial Fourier transform. A relation between singularities and eigenvalues allows the determination of the analyticity dominion. The eigenvalue spectrum has a purely discrete part, laying on an interval of the imaginary axis of the K complex plane (the Fourier parameter), and another part, purely continuous, laying in the reminder of the imaginary axis. A correspondence between discrete eigenvalues and exponential modes of the Green Function, extemal properties for the eigenvalues and some remarkable properties of the eigenfunctions are established. (Author) 32 refs.

  12. Teaching Green Chemistry with Epoxidized Soybean Oil

    Science.gov (United States)

    Barcena, Homar; Tuachi, Abraham; Zhang, Yuanzhuo

    2017-01-01

    The synthesis of epoxidized soybean oil (ESO) provides students a vantage point on the application of green chemistry principles in a series of experiments. Qualitative tests review the reactions of alkenes, whereas spectroscopic analyses provide insight in monitoring functional group transformations.

  13. Green Grape Detection and Picking-Point Calculation in a Night-Time Natural Environment Using a Charge-Coupled Device (CCD Vision Sensor with Artificial Illumination

    Directory of Open Access Journals (Sweden)

    Juntao Xiong

    2018-03-01

    Full Text Available Night-time fruit-picking technology is important to picking robots. This paper proposes a method of night-time detection and picking-point positioning for green grape-picking robots to solve the difficult problem of green grape detection and picking in night-time conditions with artificial lighting systems. Taking a representative green grape named Centennial Seedless as the research object, daytime and night-time grape images were captured by a custom-designed visual system. Detection was conducted employing the following steps: (1 The RGB (red, green and blue. Color model was determined for night-time green grape detection through analysis of color features of grape images under daytime natural light and night-time artificial lighting. The R component of the RGB color model was rotated and the image resolution was compressed; (2 The improved Chan–Vese (C–V level set model and morphological processing method were used to remove the background of the image, leaving out the grape fruit; (3 Based on the character of grape vertical suspension, combining the principle of the minimum circumscribed rectangle of fruit and the Hough straight line detection method, straight-line fitting for the fruit stem was conducted and the picking point was calculated using the stem with an angle of fitting line and vertical line less than 15°. The visual detection experiment results showed that the accuracy of grape fruit detection was 91.67% and the average running time of the proposed algorithm was 0.46 s. The picking-point calculation experiment results showed that the highest accuracy for the picking-point calculation was 92.5%, while the lowest was 80%. The results demonstrate that the proposed method of night-time green grape detection and picking-point calculation can provide technical support to the grape-picking robots.

  14. A Green's function solution for a rectangular heat source on an infinite plate

    International Nuclear Information System (INIS)

    Bainbridge, B.L.

    1989-01-01

    The applications associated with a rectangular heat source on an infinite plate range from integrated circuits to thin film heat flux sensors on thin substrates. The particular problem from which the solution is developed concerns the use of a resistive strip for monitoring currents generated in circuits exposed to electromagnetic fields. The Green's function formulation is solved by using early and late time approximations for which analytical solutions can be derived. In this paper expressions are developed for three sets of boundary conditions and compared to the experimental performance of a physical device

  15. A time-dependent Green's function-based model for stream ...

    African Journals Online (AJOL)

    DRINIE

    2003-07-03

    Jul 3, 2003 ... applications, this Green's function has found use primarily in linear heat transfer and flow ... based on the mathematical description of the flow with the nonlinear .... i∂/∂x + j∂/∂y is the two-dimensional gradient operator,.

  16. convergent methods for calculating thermodynamic Green functions

    OpenAIRE

    Bowen, S. P.; Williams, C. D.; Mancini, J. D.

    1984-01-01

    A convergent method of approximating thermodynamic Green functions is outlined briefly. The method constructs a sequence of approximants which converges independently of the strength of the Hamiltonian's coupling constants. Two new concepts associated with the approximants are introduced: the resolving power of the approximation, and conditional creation (annihilation) operators. These ideas are illustrated on an exactly soluble model and a numerical example. A convergent expression for the s...

  17. One-loop calculations of photon splitting in relativistic quantum plasma by Green's function technique

    International Nuclear Information System (INIS)

    De la Incera, V.; Ferrer, E.; Shalad, A.Y.

    1987-01-01

    A homogeneous and isotropic plasma made up of electrons and positrons is examined. The coefficients of the covariant expansion of the three-photon vertex are calculated in the one-loop approximation of the Green's function technique, together with the probability amplitudes of various processes involving three photons that produce information on the probability of the polarization states of the incoming and outgoing photons in the splitting process. The calculation results are used to verify the consequences of all exact symmetries which must be done for the vertex tensor. The case of a charge-symmetric plasma is considered together with the special case of photon collinearity

  18. Self-consistent green function calculations for isospin asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Mansour, Hesham; Gad, Khalaf; Hassaneen, Khaled S.A.

    2010-01-01

    The one-body potentials for protons and neutrons are obtained from the self-consistent Green-function calculations of asymmetric nuclear matter, in particular their dependence on the degree of proton/neutron asymmetry. Results of the binding energy per nucleon as a function of the density and asymmetry parameter are presented for the self-consistent Green function approach using the CD-Bonn potential. For the sake of comparison, the same calculations are performed using the Brueckner-Hartree-Fock approximation. The contribution of the hole-hole terms leads to a repulsive contribution to the energy per nucleon which increases with the nuclear density. The incompressibility for asymmetric nuclear matter has been also investigated in the framework of the self-consistent Green-function approach using the CD-Bonn potential. The behavior of the incompressibility is studied for different values of the nuclear density and the neutron excess parameter. The nuclear symmetry potential at fixed nuclear density is also calculated and its value decreases with increasing the nucleon energy. In particular, the nuclear symmetry potential at saturation density changes from positive to negative values at nucleon kinetic energy of about 200 MeV. For the sake of comparison, the same calculations are performed using the Brueckner-Hartree-Fock approximation. The proton/neutron effective mass splitting in neutron-rich matter has been studied. The predicted isospin splitting of the proton/neutron effective mass splitting in neutron-rich matter is such that m n * ≥ m p * . (author)

  19. Applications of Green's functions in science and engineering

    CERN Document Server

    Greenberg, Michael D

    2015-01-01

    Concise and highly regarded, this treatment of Green's functions and their applications in science and engineering is geared toward undergraduate and graduate students with only a moderate background in ordinary differential equations and partial differential equations. The text also includes a wealth of information of a more general nature on boundary value problems, generalized functions, eigenfunction expansions, partial differential equations, and acoustics. The two-part treatment begins with an overview of applications to ordinary differential equations. Topics include the adjoint operato

  20. Green function and scattering amplitudes in many dimensional space

    International Nuclear Information System (INIS)

    Fabre de la Ripelle, M.

    1991-06-01

    Methods for solving scattering are studied in many dimensional space. Green function and scattering amplitudes are given in terms of the requested asymptotic behaviour of the wave function. The Born approximation and the optical theorem are derived in many dimensional space. Phase-shift analysis are developed for hypercentral potentials and for non-hypercentral potentials with the hyperspherical adiabatic approximation. (author) 16 refs., 3 figs

  1. The effects of the Green House nursing home model on ADL function trajectory: A retrospective longitudinal study.

    Science.gov (United States)

    Yoon, Ju Young; Brown, Roger L; Bowers, Barbara J; Sharkey, Siobhan S; Horn, Susan D

    2016-01-01

    Growing attention in the past few decades has focused on improving care quality and quality of life for nursing home residents. Many traditional nursing homes have attempted to transform themselves to become more homelike emphasizing individualized care. This trend is referred to as nursing home culture change in the U.S. A promising culture change nursing home model, the Green House nursing home model, has shown positive psychological outcomes. However, little is known about whether the Green House nursing home model has positive effects on physical function compared to traditional nursing homes. To examine the longitudinal effects of the Green House nursing home model by comparing change patterns of activities of daily living function over time between Green House home residents and traditional nursing home residents. A retrospective longitudinal study. Four Green House organizations (nine Green House units and four traditional units). A total of 242 residents (93 Green House residents and 149 traditional home residents) who had stayed in the nursing home at least 6 months from admission. The outcome was activities of daily living function, and the main independent variable was the facility type in which the resident stayed: a Green House or traditional unit. Age, gender, comorbidity score, cognitive function, and depressive symptoms at baseline were controlled. All of these measures were from a minimum dataset. Growth curve modeling and growth mixture modeling were employed in this study for longitudinal analyses. The mean activities of daily living function showed deterioration over time, and the rates of deterioration between Green House and traditional home residents were not different over time. Four different activities of daily living function trajectories were identified for 18 months, but there was no statistical difference in the likelihood of being in one of the four trajectory classes between the two groups. Although Green House nursing homes are

  2. Two-time temperature Green functions in kinetic theory and molecular hydrodynamics. 3. Account of interactions of hydrodynamic fluctuations

    International Nuclear Information System (INIS)

    Tserkovnikov, Yu.A.

    2001-01-01

    The regular method for deriving the equations for the Green functions in the tasks on the molecular hydrodynamics and kinetics, making it possible to account consequently the contribution into the generalized kinetics coefficients, conditioned by interaction of two, three and more hydrodynamic modes. In contrast to the general theory of perturbations by the interaction constant the consequent approximations are accomplished by the degree of accounting for the higher correlations, described by the irreducible functions [ru

  3. ["Point by point" approach to structure-function correlation of glaucoma on the ganglion cell complex in the posterior pole].

    Science.gov (United States)

    Zeitoun, M

    2017-01-01

    To try to establish a "point by point" relationship between the local thickness of the retinal ganglion cell complex and its sensitivity. In total, 104 glaucomatous eyes of 89 patients with a confirmed 24-2 visual field, were measured by superimposing the visual field, using imaging software, with the Wide 40° by 30° measurements of retinal ganglion cell complex obtained from the Topcon © 3D 2000 OCT, after upward adjustment, inversion and scaling. Visual fields were classified into two groups according to the extent of the disease: 58 mild to moderate (MD up to -12dB), and 46 severe (MD beyond -12dB). The 6mm by 6mm central region, equipped with a normative database, was studied, corresponding to 16 points in the visual field. These points were individually matched one by one to the local ganglion cell complex, which was classified into 2 groups depending on whether it was greater or less than 70 microns. The normative database confirmed the pathological nature of the thin areas, with a significance of 95 to 99%. Displacement of central retinal ganglion cells was compensated for. Of 1664 points (16 central points for 104 eyes), 283 points were found to be "borderline" and excluded. Of the 1381 analyzed points, 727 points were classified as "over 70 microns" and 654 points "under 70 microns". (1) For all stages combined, 85.8% of the 727 points which were greater than 70 microns had a deviation between -3 and +3dB: areas above 70 microns had no observable loss of light sensitivity. (2) In total, 92.5% of the 428 points having a gap ranging from -6 to -35dB were located on ganglion cell complex areas below 70 microns: functional visual loss was identified in thin areas, which were less than 70 microns. (3) Areas which were less than 70 microns, that is 654 points, had quite variable sensitivity and can be divided into three groups: the first with preserved sensitivity, another with obliterated sensitivity, and an intermediate group connecting

  4. Tsunami excitation by inland/coastal earthquakes: the Green function approach

    Directory of Open Access Journals (Sweden)

    T. B. Yanovskaya

    2003-01-01

    Full Text Available In the framework of the linear theory, the representation theorem is derived for an incompressible liquid layer with a boundary of arbitrary shape and in a homogeneous gravity field. In addition, the asymptotic representation for the Green function, in a layer of constant thickness is obtained. The validity of the approach for the calculation of the tsunami wavefield based on the Green function technique is verified comparing the results with those obtained from the modal theory, for a liquid layer of infinite horizontal dimensions. The Green function approach is preferable for the estimation of the excitation spectra, since in the case of an infinite liquid layer it leads to simple analytical expressions. From this analysis it is easy to describe the peculiarities of tsunami excitation by different sources. The method is extended to the excitation of tsunami in a semiinfinite layer with a sloping boundary. Numerical modelling of the tsunami wavefield, excited by point sources at different distances from the coastline, shows that when the source is located at a distance from the coastline equal or larger than the source depth, the shore presence does not affect the excitation of the tsunami. When the source is moved towards thecoastline, the low frequency content in the excitation spectrum ecreases, while the high frequencies content increases dramatically. The maximum of the excitation spectra from inland sources, located at a distance from the shore like the source depth, becomes less than 10% of that radiated if the same source is located in the open ocean. The effect of the finiteness of the source is also studied and the excitation spectrum is obtained by integration over the fault area. Numerical modelling of the excitation spectra for different source models shows that, for a given seismic moment, the spectral level, as well as the maximum value of the spectra, decreases with increasing fault size. When the sources are located in the

  5. Correlation functions of warped CFT

    Science.gov (United States)

    Song, Wei; Xu, Jianfei

    2018-04-01

    Warped conformal field theory (WCFT) is a two dimensional quantum field theory whose local symmetry algebra consists of a Virasoro algebra and a U(1) Kac-Moody algebra. In this paper, we study correlation functions for primary operators in WCFT. Similar to conformal symmetry, warped conformal symmetry is very constraining. The form of the two and three point functions are determined by the global warped conformal symmetry while the four point functions can be determined up to an arbitrary function of the cross ratio. The warped conformal bootstrap equation are constructed by formulating the notion of crossing symmetry. In the large central charge limit, four point functions can be decomposed into global warped conformal blocks, which can be solved exactly. Furthermore, we revisit the scattering problem in warped AdS spacetime (WAdS), and give a prescription on how to match the bulk result to a WCFT retarded Green's function. Our result is consistent with the conjectured holographic dualities between WCFT and WAdS.

  6. Application of Micro-cloud point extraction for spectrophotometric determination of Malachite green, Crystal violet and Rhodamine B in aqueous samples

    Science.gov (United States)

    Ghasemi, Elham; Kaykhaii, Massoud

    2016-07-01

    A novel, green, simple and fast method was developed for spectrophotometric determination of Malachite green, Crystal violet, and Rhodamine B in water samples based on Micro-cloud Point extraction (MCPE) at room temperature. This is the first report on the application of MCPE on dyes. In this method, to reach the cloud point at room temperature, the MCPE procedure was carried out in brine using Triton X-114 as a non-ionic surfactant. The factors influencing the extraction efficiency were investigated and optimized. Under the optimized condition, calibration curves were found to be linear in the concentration range of 0.06-0.60 mg/L, 0.10-0.80 mg/L, and 0.03-0.30 mg/L with the enrichment factors of 29.26, 85.47 and 28.36, respectively for Malachite green, Crystal violet, and Rhodamine B. Limit of detections were between 2.2 and 5.1 μg/L.

  7. Gender Differences in Laser Acupuncture—Results of a Crossover Study with Green and Yellow Laser at the Ear Point Shenmen

    Science.gov (United States)

    Litscher, Daniela; Wang, Junying; Li, Guangzong; Bosch, Peggy; Wang, Lu

    2018-01-01

    Background: One of the most commonly used auricular acupuncture points selected for different pain treatment regimens is Shenmen. This point on the ear has been recognized as having a wide number of applications, as found by scientific investigation. Methods: Within this crossover study, the ear acupoint Shenmen was stimulated with two different kinds of laser (green, 532 nm and yellow, 589 nm) in 22 healthy volunteers (13 female, 9 male; mean age ± SD = 25.3 ± 4.1 years; range 21–36 years). Both green and yellow lasers were used for 15 min in the same volunteers in two different sessions. Results: The most prominent finding was that systolic blood pressure decreased significantly (p = 0.048) after yellow laser stimulation. Heart rate also decreased significantly (p laser acupuncture. However, a comparison with other publications was impossible because this is the first study using green and yellow laser stimulation on the ear. PMID:29543742

  8. Relativistic Green function for atomic and molecular systems

    Energy Technology Data Exchange (ETDEWEB)

    Gruzdev, P.F.; Sherstyuk, A.I.

    1981-12-01

    The problem on Green function construction of Dirac equation is solved for a wide class of single electron potentials in the atom and molecule theory. The solution is obtained in the form of a spectrum analysis according to the total system of eigenfuctions of the generalized Dirac problem for eigenvalues. The problem possesses a purely discrete spectrum.

  9. Non-equilibrium Green function method: theory and application in simulation of nanometer electronic devices

    International Nuclear Information System (INIS)

    Do, Van-Nam

    2014-01-01

    We review fundamental aspects of the non-equilibrium Green function method in the simulation of nanometer electronic devices. The method is implemented into our recently developed computer package OPEDEVS to investigate transport properties of electrons in nano-scale devices and low-dimensional materials. Concretely, we present the definition of the four real-time Green functions, the retarded, advanced, lesser and greater functions. Basic relations among these functions and their equations of motion are also presented in detail as the basis for the performance of analytical and numerical calculations. In particular, we review in detail two recursive algorithms, which are implemented in OPEDEVS to solve the Green functions defined in finite-size opened systems and in the surface layer of semi-infinite homogeneous ones. Operation of the package is then illustrated through the simulation of the transport characteristics of a typical semiconductor device structure, the resonant tunneling diodes. (review)

  10. Green's functions of the induction equation on regions with boundary. 1

    International Nuclear Information System (INIS)

    Braeuer, H.J.; Raedler, K.H.

    1986-01-01

    The evolution of a magnetic field is considered which pervades an electrically conducting fluid and its non-conducting surroundings under the influence of electromotive forces due to internal motion and other causes. The governing equations - among which the induction equation of magnetohydrodynamics is the most prominent - pose an initial value problem for the magnetic flux density. Properties of this initial value problem and of the solving Green's function are reviewed and a general construction principle for the Green's function is given. Detailed treatment of cases where the fluid occupies a sphere or an evenly bounded half-space are presented in two subsequent papers. (author)

  11. Extraction of thermal Green's function using diffuse fields: a passive approach applied to thermography

    Science.gov (United States)

    Capriotti, Margherita; Sternini, Simone; Lanza di Scalea, Francesco; Mariani, Stefano

    2016-04-01

    In the field of non-destructive evaluation, defect detection and visualization can be performed exploiting different techniques relying either on an active or a passive approach. In the following paper the passive technique is investigated due to its numerous advantages and its application to thermography is explored. In previous works, it has been shown that it is possible to reconstruct the Green's function between any pair of points of a sensing grid by using noise originated from diffuse fields in acoustic environments. The extraction of the Green's function can be achieved by cross-correlating these random recorded waves. Averaging, filtering and length of the measured signals play an important role in this process. This concept is here applied in an NDE perspective utilizing thermal fluctuations present on structural materials. Temperature variations interacting with thermal properties of the specimen allow for the characterization of the material and its health condition. The exploitation of the thermographic image resolution as a dense grid of sensors constitutes the basic idea underlying passive thermography. Particular attention will be placed on the creation of a proper diffuse thermal field, studying the number, placement and excitation signal of heat sources. Results from numerical simulations will be presented to assess the capabilities and performances of the passive thermal technique devoted to defect detection and imaging of structural components.

  12. Thermo-elastic Green's functions for an infinite bi-material of one-dimensional hexagonal quasi-crystals

    International Nuclear Information System (INIS)

    Li, P.D.; Li, X.Y.; Zheng, R.F.

    2013-01-01

    This Letter is concerned with thermo-elastic fundamental solutions of an infinite space, which is composed of two half-infinite bodies of different one-dimensional hexagonal quasi-crystals. A point thermal source is embedded in a half-space. The interface can be either perfectly bonded or smoothly contacted. On the basis of the newly developed general solution, the temperature-induced elastic field in full space is explicitly presented in terms of elementary functions. The interactions among the temperature, phonon and phason fields are revealed. The present work can play an important role in constructing farther analytical solutions for crack, inclusion and dislocation problems. -- Highlights: ► Green's functions are constructed in terms of 10 quasi-harmonic functions. ► Thermo-elastic field of a 1D hexagonal QC bi-material body is expressed explicitly. ► Both perfectly bonded and smoothly contacted interfaces are considered

  13. Green urbanity

    Directory of Open Access Journals (Sweden)

    Alenka Fikfak

    2012-01-01

    Full Text Available Tourism and other culture-based types of small business, which are the leitmotif in the planning of the Europark Ruardi, are becoming the guiding motif in the spatial development of urban centres that are influenced by dynamic transformation processes. The system should build upon the exploitation of both local and regional environmental features. This would encourage the quest for special environmental features, with an emphasis on their conservation, i.e. sustainable development, and connections in a wider context.The Europark is seen as a new strategic point of the Zasavje Region (the region of the central Sava Valley, which is linked to other important points in a region relevant for tourism. Due to the "smallness" of the region and/or the proximity of such points, development can be fast and effective. The interaction of different activities in space yields endless opportunities for users, who choose their own goals and priorities in the use of space. Four theme areas of the Europark area planning are envisaged. The organisation of activities is based on the composition of the mosaic field patterns, where green fields intertwine with areas of different, existing and new, urban functions. The fields of urban and recreation programmes are connected with a network of green areas and walking trails, along which theme park settings are arranged.

  14. Evaluating green infrastructure in urban environments using a multi-taxa and functional diversity approach.

    Science.gov (United States)

    Pinho, Pedro; Correia, Otília; Lecoq, Miguel; Munzi, Silvana; Vasconcelos, Sasha; Gonçalves, Paula; Rebelo, Rui; Antunes, Cristina; Silva, Patrícia; Freitas, Catarina; Lopes, Nuno; Santos-Reis, Margarida; Branquinho, Cristina

    2016-05-01

    Forested areas within cities host a large number of species, responsible for many ecosystem services in urban areas. The biodiversity in these areas is influenced by human disturbances such as atmospheric pollution and urban heat island effect. To ameliorate the effects of these factors, an increase in urban green areas is often considered sufficient. However, this approach assumes that all types of green cover have the same importance for species. Our aim was to show that not all forested green areas are equal in importance for species, but that based on a multi-taxa and functional diversity approach it is possible to value green infrastructure in urban environments. After evaluating the diversity of lichens, butterflies and other-arthropods, birds and mammals in 31 Mediterranean urban forests in south-west Europe (Almada, Portugal), bird and lichen functional groups responsive to urbanization were found. A community shift (tolerant species replacing sensitive ones) along the urbanization gradient was found, and this must be considered when using these groups as indicators of the effect of urbanization. Bird and lichen functional groups were then analyzed together with the characteristics of the forests and their surroundings. Our results showed that, contrary to previous assumptions, vegetation density and more importantly the amount of urban areas around the forest (matrix), are more important for biodiversity than forest quantity alone. This indicated that not all types of forested green areas have the same importance for biodiversity. An index of forest functional diversity was then calculated for all sampled forests of the area. This could help decision-makers to improve the management of urban green infrastructures with the goal of increasing functionality and ultimately ecosystem services in urban areas. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Green tea effects on cognition, mood and human brain function: A systematic review.

    Science.gov (United States)

    Mancini, Edele; Beglinger, Christoph; Drewe, Jürgen; Zanchi, Davide; Lang, Undine E; Borgwardt, Stefan

    2017-10-15

    Green tea (Camellia sinensis) is a beverage consumed for thousands of years. Numerous claims about the benefits of its consumption were stated and investigated. As green tea is experiencing a surge in popularity in Western culture and as millions of people all over the world drink it every day, it is relevant to understand its effects on the human brain. To assess the current state of knowledge in the literature regarding the effects of green tea or green tea extracts, l-theanine and epigallocatechin gallate both components of green tea-on general neuropsychology, on the sub-category cognition and on brain functions in humans. We systematically searched on PubMed database and selected studies by predefined eligibility criteria. We then assessed their quality and extracted data. We structured our effort according to the PRISMA statement. We reviewed and assessed 21 studies, 4 of which were randomised controlled trials, 12 cross-over studies (both assessed with an adapted version of the DELPHI-list), 4 were cross-sectional studies and one was a cohort study (both assessed with an adapted version of the Newcastle-Ottawa assessment scale). The average study quality as appraised by means of the DELPHI-list was good (8.06/9); the studies evaluated with the Newcastle-Ottawa-scale were also good (6.7/9). The reviewed studies presented evidence that green tea influences psychopathological symptoms (e.g. reduction of anxiety), cognition (e.g. benefits in memory and attention) and brain function (e.g. activation of working memory seen in functional MRI). The effects of green tea cannot be attributed to a single constituent of the beverage. This is exemplified in the finding that beneficial green tea effects on cognition are observed under the combined influence of both caffeine and l-theanine, whereas separate administration of either substance was found to have a lesser impact. Copyright © 2017. Published by Elsevier GmbH.

  16. Baryonic and mesonic 3-point functions with open spin indices

    Science.gov (United States)

    Bali, Gunnar S.; Collins, Sara; Gläßle, Benjamin; Heybrock, Simon; Korcyl, Piotr; Löffler, Marius; Rödl, Rudolf; Schäfer, Andreas

    2018-03-01

    We have implemented a new way of computing three-point correlation functions. It is based on a factorization of the entire correlation function into two parts which are evaluated with open spin-(and to some extent flavor-) indices. This allows us to estimate the two contributions simultaneously for many different initial and final states and momenta, with little computational overhead. We explain this factorization as well as its efficient implementation in a new library which has been written to provide the necessary functionality on modern parallel architectures and on CPUs, including Intel's Xeon Phi series.

  17. Exploring the squeezed three-point galaxy correlation function with generalized halo occupation distribution models

    Science.gov (United States)

    Yuan, Sihan; Eisenstein, Daniel J.; Garrison, Lehman H.

    2018-04-01

    We present the GeneRalized ANd Differentiable Halo Occupation Distribution (GRAND-HOD) routine that generalizes the standard 5 parameter halo occupation distribution model (HOD) with various halo-scale physics and assembly bias. We describe the methodology of 4 different generalizations: satellite distribution generalization, velocity bias, closest approach distance generalization, and assembly bias. We showcase the signatures of these generalizations in the 2-point correlation function (2PCF) and the squeezed 3-point correlation function (squeezed 3PCF). We identify generalized HOD prescriptions that are nearly degenerate in the projected 2PCF and demonstrate that these degeneracies are broken in the redshift-space anisotropic 2PCF and the squeezed 3PCF. We also discuss the possibility of identifying degeneracies in the anisotropic 2PCF and further demonstrate the extra constraining power of the squeezed 3PCF on galaxy-halo connection models. We find that within our current HOD framework, the anisotropic 2PCF can predict the squeezed 3PCF better than its statistical error. This implies that a discordant squeezed 3PCF measurement could falsify the particular HOD model space. Alternatively, it is possible that further generalizations of the HOD model would open opportunities for the squeezed 3PCF to provide novel parameter measurements. The GRAND-HOD Python package is publicly available at https://github.com/SandyYuan/GRAND-HOD.

  18. A review of Green's function methods in computational fluid mechanics: Background, recent developments and future directions

    International Nuclear Information System (INIS)

    Dorning, J.

    1981-01-01

    The research and development over the past eight years on local Green's function methods for the high-accuracy, high-efficiency numerical solution of nuclear engineering problems is reviewed. The basic concepts and key ideas are presented by starting with an expository review of the original fully two-dimensional local Green's function methods developed for neutron diffusion and heat conduction, and continuing through the progressively more complicated and more efficient nodal Green's function methods for neutron diffusion, heat conduction and neutron transport to establish the background for the recent development of Green's function methods in computational fluid mechanics. Some of the impressive numerical results obtained via these classes of methods for nuclear engineering problems are briefly summarized. Finally, speculations are proffered on future directions in which the development of these types of methods in fluid mechanics and other areas might lead. (orig.) [de

  19. Quantum thermodynamics: a nonequilibrium Green's function approach.

    Science.gov (United States)

    Esposito, Massimiliano; Ochoa, Maicol A; Galperin, Michael

    2015-02-27

    We establish the foundations of a nonequilibrium theory of quantum thermodynamics for noninteracting open quantum systems strongly coupled to their reservoirs within the framework of the nonequilibrium Green's functions. The energy of the system and its coupling to the reservoirs are controlled by a slow external time-dependent force treated to first order beyond the quasistatic limit. We derive the four basic laws of thermodynamics and characterize reversible transformations. Stochastic thermodynamics is recovered in the weak coupling limit.

  20. Band-limited Green's Functions for Quantitative Evaluation of Acoustic Emission Using the Finite Element Method

    Science.gov (United States)

    Leser, William P.; Yuan, Fuh-Gwo; Leser, William P.

    2013-01-01

    A method of numerically estimating dynamic Green's functions using the finite element method is proposed. These Green's functions are accurate in a limited frequency range dependent on the mesh size used to generate them. This range can often match or exceed the frequency sensitivity of the traditional acoustic emission sensors. An algorithm is also developed to characterize an acoustic emission source by obtaining information about its strength and temporal dependence. This information can then be used to reproduce the source in a finite element model for further analysis. Numerical examples are presented that demonstrate the ability of the band-limited Green's functions approach to determine the moment tensor coefficients of several reference signals to within seven percent, as well as accurately reproduce the source-time function.

  1. Greens of the European Green Capitals

    Science.gov (United States)

    Cömertler, Seval

    2017-10-01

    Well established and maintained green areas have a key role on reaching the high quality of life and sustainability in urban environments. Therefore, green areas must be carefully accounted and evaluated in the urban planning affairs. In this context, the European Green Capitals, which attach a great importance to the green areas, have a great potential to act as a role model for both small and big cities in all around the world. These leading cities (chronologically, Stockholm, Hamburg, Vitoria-Gasteiz, Nantes, Copenhagen, Bristol, Ljubljana, Essen and Nijmegen) are inspiring for the other cities which seek to achieve more sustainable and environmentally friendly places through green areas. From this point of view, the aim of this paper was to investigate the green areas of the European Green Capitals. The paper covered whole European Green Capitals, and the application form of each Green Capital was used as a primary data source. Consequently, the paper put forwarded that the European Green Capitals have considerably large amount and high proportion of green areas. Further, these cities provide an excellent access to the public green areas. As a result of abundant provision and proper distribution, the almost all citizens in most of the Green Capitals live within a distance of 300 meters to a green area. For further researches, the paper suggested that these green capitals should be investigated in terms of their efforts, measures, goals and plans, policies and implications to administer, to protect, to enhance and to expand the green areas.

  2. Thermal one- and two-graviton Green's functions in the temporal gauge

    International Nuclear Information System (INIS)

    Brandt, F.T.; Cuadros-Melgar, B.; Machado, F.R.

    2003-01-01

    The thermal one- and two-graviton Green's functions are computed using a temporal gauge. In order to handle the extra poles which are present in the propagator, we employ an ambiguity-free technique in the imaginary-time formalism. For temperatures T high compared with the external momentum, we obtain the leading T 4 as well as the subleading T 2 and log(T) contributions to the graviton self-energy. The gauge fixing independence of the leading T 4 terms as well as the Ward identity relating the self-energy with the one-point function are explicitly verified. We also verify the 't Hooft identities for the subleading T 2 terms and show that the logarithmic part has the same structure as the residue of the ultraviolet pole of the zero temperature graviton self-energy. We explicitly compute the extra terms generated by the prescription poles and verify that they do not change the behavior of the leading and sub-leading contributions from the hard thermal loop region. We discuss the modification of the solutions of the dispersion relations in the graviton plasma induced by the subleading T 2 contributions

  3. Simulations of Coulomb systems confined by polarizable surfaces using periodic Green functions.

    Science.gov (United States)

    Dos Santos, Alexandre P; Girotto, Matheus; Levin, Yan

    2017-11-14

    We present an efficient approach for simulating Coulomb systems confined by planar polarizable surfaces. The method is based on the solution of the Poisson equation using periodic Green functions. It is shown that the electrostatic energy arising from the surface polarization can be decoupled from the energy due to the direct Coulomb interaction between the ions. This allows us to combine an efficient Ewald summation method, or any other fast method for summing over the replicas, with the polarization contribution calculated using Green function techniques. We apply the method to calculate density profiles of ions confined between the charged dielectric and metal surfaces.

  4. One-loop calculations of photon splitting in a relativistic quantum plasma by the Green function method

    International Nuclear Information System (INIS)

    De Lya Insera, V.; Ferrer, Eh.; Shabad, A.E.

    1986-01-01

    Homogeneous and isotopic plasma of electrons and positrons is considered. Coefficients of covariant expansion of three-photon vertex in one-loop approximation of a technique of the Green temperature functions have been calculated and as a result amplitudes of different processes probability with the participation of three photons giving the data on the polarization state probability of incoming and outgoing photons in the splitting process. Sequences of all exact symmetries, which must be accomplished for vertex tensor, have been checked from calculational results. A case of charge-symmetrical plasma and a special case of photon collinearity have been considered

  5. Few-particle quantum dynamics–comparing nonequilibrium Green functions with the generalized Kadanoff–Baym ansatz to density operator theory

    International Nuclear Information System (INIS)

    Hermanns, S; Bonitz, M; Balzer, K

    2013-01-01

    The nonequilibrium description of quantum systems requires, for more than two or three particles, the use of a reduced description to be numerically tractable. Two possible approaches are based on either reduced density matrices or nonequilibrium Green functions (NEGF). Both concepts are formulated in terms of hierarchies of coupled equations—the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy for the reduced density operators and the Martin-Schwinger-hierarchy (MS) for the Green functions, respectively. In both cases, similar approximations are introduced to decouple the hierarchy, yet still many questions regarding the correspondence of both approaches remain open. Here we analyze this correspondence by studying the generalized Kadanoff–Baym ansatz (GKBA) that reduces the NEGF to a single-time theory. Starting from the BBGKY-hierarchy we present the approximations that are necessary to recover the GKBA result both, with Hartree-Fock propagators (HF-GKBA) and propagators in second Born approximation. To test the quality of the HF-GKBA, we study the dynamics of a 4-electron Hubbard nanocluster starting from a strong nonequilibrium initial state and compare to exact results and the Wang-Cassing approximation to the BBGKY hierarchy presented recently by Akbari et al. [1].

  6. Point Climat no. 19 'Assessing the financial efficiency of the Green Climate Fund: leverage ratios - from theory to practice'

    International Nuclear Information System (INIS)

    Morel, Romain; Delbosc, Anais

    2012-01-01

    Among the publications of CDC Climat Research, 'Climate Briefs' presents, in a few pages, hot topics in climate change policy. This issue addresses the following points: The Green Climat Fund's first Board meeting was held between August 23 and 25 2012. It is now time to specify how this organisation responsible for financing climate initiatives in developing countries will operate in practise. The current budgetary environment specifically requires the Green Fund to raise private funding in order to boost the efficiency of the public funds received from developed countries. This 'leverage effect' of public finance will need to be accurately defined, and be accompanied by other key indicators, in order to avoid the development of practices that are contrary to the Green Fund's original purpose

  7. Calculus on Surfaces with General Closest Point Functions

    KAUST Repository

    Mä rz, Thomas; Macdonald, Colin B.

    2012-01-01

    The closest point method for solving partial differential equations (PDEs) posed on surfaces was recently introduced by Ruuth and Merriman [J. Comput. Phys., 227 (2008), pp. 1943- 1961] and successfully applied to a variety of surface PDEs. In this paper we study the theoretical foundations of this method. The main idea is that surface differentials of a surface function can be replaced with Cartesian differentials of its closest point extension, i.e., its composition with a closest point function. We introduce a general class of these closest point functions (a subset of differentiable retractions), show that these are exactly the functions necessary to satisfy the above idea, and give a geometric characterization of this class. Finally, we construct some closest point functions and demonstrate their effectiveness numerically on surface PDEs. © 2012 Society for Industrial and Applied Mathematics.

  8. Green's function of an infinite slot printed between two homogeneous dielectrics - Part II: Uniform asymptotic solution

    NARCIS (Netherlands)

    Maci, S.; Neto, A.

    2004-01-01

    This second part of a two-paper sequence deals with the uniform asymptotic description of the Green's function of an infinite slot printed between two different homogeneous dielectric media. Starting from the magnetic current derived in Part I, the dyadic green's function is first formulated in

  9. Leaf development and photosynthetic properties of three tropical tree species with delayed greening

    NARCIS (Netherlands)

    Cai, Z.Q.; Slot, M.; Fan, Z.X.

    2005-01-01

    Leaf developmental patterns were characterized for three tropical tree species with delayed greening. Changes in the pigment contents, photosynthetic capacity, stomata development, photosystem 2 efficiency, rate of energy dissipation, and the activity of partial protective enzymes were followed in

  10. A Floquet-Green's function approach to mesoscopic transport under ac bias

    International Nuclear Information System (INIS)

    Wu, B H; Cao, J C

    2008-01-01

    The current response of a mesoscopic system under a periodic ac bias is investigated by combining the Floquet theorem and the nonequilibrium Green's function method. The band structure of the lead under ac bias is fully taken into account by using appropriate self-energies in an enlarged Floquet space. Both the retarded and lesser Green's functions are obtained in the Floquet basis to account for the interference and interaction effects. In addition to the external ac bias, the time-varying Coulomb interaction, which is treated at the self-consistent Hartree-Fock level, provides another internal ac field. The numerical results show that the time-varying Coulomb field yields decoherence and reduces the ringing behavior of the current response to a harmonic bias

  11. Lap belts and three-point belts.

    NARCIS (Netherlands)

    Kampen, L.T.B. van & Edelman, A.

    1975-01-01

    Results of the swov-accident investigation prove that if there are any differences in the effectiveness of lap belts and three-point belts, these are so small that they cannot form a basis for giving preference to one type over the other. Furthermore, in spite of the results of this investigation

  12. Green's functions for a graphene sheet and quantum dot in a normal magnetic field

    International Nuclear Information System (INIS)

    Horing, Norman J Morgenstern; Liu, S Y

    2009-01-01

    This paper is concerned with the derivation of the retarded Green's function for a two-dimensional graphene layer in a perpendicular magnetic field in two explicit, analytic forms, which we employ in obtaining a closed-form solution for the Green's function of a tightly confined magnetized graphene quantum dot. The dot is represented by a δ (2) (r)-potential well and the system is subject to Landau quantization in the normal magnetic field

  13. Green's functions and trace formulas for generalized Sturm-Liouville problems related by Darboux transformations

    International Nuclear Information System (INIS)

    Schulze-Halberg, Axel

    2010-01-01

    We study Green's functions of the generalized Sturm-Liouville problems that are related to each other by Darboux -equivalently, supersymmetrical - transformations. We establish an explicit relation between the corresponding Green's functions and derive a simple formula for their trace. The class of equations considered here includes the conventional Schroedinger equation and generalizations, such as for position-dependent mass and with linearly energy-dependent potential, as well as the stationary Fokker-Planck equation.

  14. On the infrared behaviour of Yang-Mills Greens functions

    International Nuclear Information System (INIS)

    Olesen, P.

    1976-01-01

    Making certain assumptions (valid to any finite order of perturbation theory), it is shown that non-perturbatively pure Yang-Mills Greens functions are power behaved in the momenta in a limit related to the infrared limit. It is also shown that the fundamental vertices have a more singular behaviour than indicated by perturbation theory. (Auth.)

  15. Mehler's formulae for isotropic harmonic oscillator wave functions and application in the Green function calculus

    International Nuclear Information System (INIS)

    Caetano Neto, E.S.

    1976-01-01

    A stationary Green function is calculated for the Schroedinger Hamiltonian of the multidimensional isotropic harmonic oscillator and for physical systems, which may, somehow, have their Hamiltonian reduced to one in the form of a harmonic oscillator, for any dimension [pt

  16. Green Building Pro-Environment Behaviors: Are Green Users Also Green Buyers?

    Directory of Open Access Journals (Sweden)

    Xiaohuan Xie

    2017-09-01

    Full Text Available Pro-environment behaviors play a key role in advancing the development of green buildings. This study investigated the link between two green building pro-environment behaviors that require dissimilar resources: energy savings that do not require money in order to be more environmentally friendly and willingness to pay that involves economic resources including spending money in order to be more environmentally friendly. This study points out that the two pro-environment behaviors can be positively linked to each other. People who behave in an environmentally friendly manner at work would also be likely to pay an extra cost for a green building when buying a new home. The consistency of the two pro-environment behaviors can be explained by their common environmental beliefs: limits to growth and eco-crisis. The green building movement should prioritize pro-environmental behaviors and associated environmental beliefs to support green building policies, guidelines, and tools.

  17. Gauge-fixing parameter dependence of two-point gauge-variant correlation functions

    International Nuclear Information System (INIS)

    Zhai, C.

    1996-01-01

    The gauge-fixing parameter ξ dependence of two-point gauge-variant correlation functions is studied for QED and QCD. We show that, in three Euclidean dimensions, or for four-dimensional thermal gauge theories, the usual procedure of getting a general covariant gauge-fixing term by averaging over a class of covariant gauge-fixing conditions leads to a nontrivial gauge-fixing parameter dependence in gauge-variant two-point correlation functions (e.g., fermion propagators). This nontrivial gauge-fixing parameter dependence modifies the large-distance behavior of the two-point correlation functions by introducing additional exponentially decaying factors. These factors are the origin of the gauge dependence encountered in some perturbative evaluations of the damping rates and the static chromoelectric screening length in a general covariant gauge. To avoid this modification of the long-distance behavior introduced by performing the average over a class of covariant gauge-fixing conditions, one can either choose a vanishing gauge-fixing parameter or apply an unphysical infrared cutoff. copyright 1996 The American Physical Society

  18. Green Imidazolium Ionics-From Truly Sustainable Reagents to Highly Functional Ionic Liquids.

    Science.gov (United States)

    Tröger-Müller, Steffen; Brandt, Jessica; Antonietti, Markus; Liedel, Clemens

    2017-09-04

    We report the synthesis of task-specific imidazolium ionic compounds and ionic liquids with key functionalities of organic molecules from electro-, polymer-, and coordination chemistry. Such products are highly functional and potentially suitable for technology applications even though they are formed without elaborate reactions and from cheap and potentially green reagents. We further demonstrate the versatility of the used synthetic approach by introducing different functional and green counterions to the formed ionic liquids directly during the synthesis or after metathesis reactions. The influence of different cation structures and different anions on the thermal and electrochemical properties of the resulting ionic liquids is discussed. Our goal is to make progress towards economically competitive and sustainable task-specific ionic liquids. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Mass corrections to Green functions in instanton vacuum model

    International Nuclear Information System (INIS)

    Esaibegyan, S.V.; Tamaryan, S.N.

    1987-01-01

    The first nonvanishing mass corrections to the effective Green functions are calculated in the model of instanton-based vacuum consisting of a superposition of instanton-antiinstanton fluctuations. The meson current correlators are calculated with account of these corrections; the mass spectrum of pseudoscalar octet as well as the value of the kaon axial constant are found. 7 refs

  20. Existence of Green's functions in perturbative Q.E.D

    International Nuclear Information System (INIS)

    Seneor, R.

    1976-01-01

    A report is made on some work done in collaboration with P. Blanchard which shows how, in the framework developped by H.Epstein and V.Glaser, one can prove the existence of Green's functions in quantum electrodynamics (Q.E.D.). The proof can be extended, in principle, to any theory involving massive and non massive particles. (Auth.)

  1. Estimating Function Approaches for Spatial Point Processes

    Science.gov (United States)

    Deng, Chong

    Spatial point pattern data consist of locations of events that are often of interest in biological and ecological studies. Such data are commonly viewed as a realization from a stochastic process called spatial point process. To fit a parametric spatial point process model to such data, likelihood-based methods have been widely studied. However, while maximum likelihood estimation is often too computationally intensive for Cox and cluster processes, pairwise likelihood methods such as composite likelihood, Palm likelihood usually suffer from the loss of information due to the ignorance of correlation among pairs. For many types of correlated data other than spatial point processes, when likelihood-based approaches are not desirable, estimating functions have been widely used for model fitting. In this dissertation, we explore the estimating function approaches for fitting spatial point process models. These approaches, which are based on the asymptotic optimal estimating function theories, can be used to incorporate the correlation among data and yield more efficient estimators. We conducted a series of studies to demonstrate that these estmating function approaches are good alternatives to balance the trade-off between computation complexity and estimating efficiency. First, we propose a new estimating procedure that improves the efficiency of pairwise composite likelihood method in estimating clustering parameters. Our approach combines estimating functions derived from pairwise composite likeli-hood estimation and estimating functions that account for correlations among the pairwise contributions. Our method can be used to fit a variety of parametric spatial point process models and can yield more efficient estimators for the clustering parameters than pairwise composite likelihood estimation. We demonstrate its efficacy through a simulation study and an application to the longleaf pine data. Second, we further explore the quasi-likelihood approach on fitting

  2. Customers’ Intention to Use Green Products: the Impact of Green Brand Dimensions and Green Perceived Value

    Directory of Open Access Journals (Sweden)

    Doszhanov Aibek

    2015-01-01

    Full Text Available This study aimed to identify the relationships between green brand dimension (green brand awareness, green brand image, and green brand trust, green perceived value and customer’s intention to use green products. Data was collected through structured survey questionnaire from 384 customers of three hypermarkets in Kuala-Lumpur. Data was analyzed based on multiple regression analysis. The results indicate that there are significant relationships between green brand awareness, green brand trust, green perceived value, and customer’s intention to use green products. However, green brand image was not found to have significant relationship with customer’s intention to use green products. The discussion presented suggestions for marketers and researchers interested in green branding.

  3. Comprehensive Interpretation of a Three-Point Gauss Quadrature with Variable Sampling Points and Its Application to Integration for Discrete Data

    Directory of Open Access Journals (Sweden)

    Young-Doo Kwon

    2013-01-01

    Full Text Available This study examined the characteristics of a variable three-point Gauss quadrature using a variable set of weighting factors and corresponding optimal sampling points. The major findings were as follows. The one-point, two-point, and three-point Gauss quadratures that adopt the Legendre sampling points and the well-known Simpson’s 1/3 rule were found to be special cases of the variable three-point Gauss quadrature. In addition, the three-point Gauss quadrature may have out-of-domain sampling points beyond the domain end points. By applying the quadratically extrapolated integrals and nonlinearity index, the accuracy of the integration could be increased significantly for evenly acquired data, which is popular with modern sophisticated digital data acquisition systems, without using higher-order extrapolation polynomials.

  4. A logistic regression estimating function for spatial Gibbs point processes

    DEFF Research Database (Denmark)

    Baddeley, Adrian; Coeurjolly, Jean-François; Rubak, Ege

    We propose a computationally efficient logistic regression estimating function for spatial Gibbs point processes. The sample points for the logistic regression consist of the observed point pattern together with a random pattern of dummy points. The estimating function is closely related to the p......We propose a computationally efficient logistic regression estimating function for spatial Gibbs point processes. The sample points for the logistic regression consist of the observed point pattern together with a random pattern of dummy points. The estimating function is closely related...

  5. Grid-Based Moment Tensor Inversion Technique by Using 3-D Green's Functions Database: A Demonstration of the 23 October 2004 Taipei Earthquake

    Directory of Open Access Journals (Sweden)

    Shiann-Jong Lee

    2010-01-01

    Full Text Available Moment tensor inversion is a routine procedure to obtain information on an earthquake source for moment magnitude and focal mechanism. However, the inversion quality is usually controlled by factors such as knowledge of an earthquake location and the suitability of a 1-D velocity model used. Here we present an improved method to invert the moment tensor solution for local earthquakes. The proposed method differs from routine centroid-moment-tensor inversion of the Broadband Array in Taiwan for Seismology in three aspects. First, the inversion is repeated in the neighborhood of an earthquake_?s hypocenter on a grid basis. Second, it utilizes Green_?s functions based on a true three-dimensional velocity model. And third, it incorporates most of the input waveforms from strong-motion records. The proposed grid-based moment tensor inversion is applied to a local earthquake that occurred near the Taipei basin on 23 October 2004 to demonstrate its effectiveness and superiority over methods used in previous studies. By using the grid-based moment tensor inversion technique and 3-D Green_?s functions, the earthquake source parameters, including earthquake location, moment magnitude and focal mechanism, are accurately found that are sufficiently consistent with regional ground motion observations up to a frequency of 1.0 Hz. This approach can obtain more precise source parameters for other earthquakes in or near a well-modeled basin and crustal structure.

  6. Worldsheet four-point functions in AdS{sub 3}/CFT{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Cardona, Carlos A. [Instituto de Astronomia y Fisica del Espacio (CONICET-UBA), Buenos Aires (Argentina); Kirsch, Ingo [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2010-07-15

    We calculate some extremal and non-extremal four-point functions on the sphere of certain chiral primary operators for strings on AdS{sub 3} x S{sup 3} x T{sup 4}. The computation is done for small values of the spacetime cross-ratio where global SL(2) and SU(2) descendants may be neglected in the intermediate channel. Ignoring also current algebra descendants, we find that in the non-extremal case the integrated worldsheet correlators factorize into spacetime three-point functions, which is non-trivial due to the integration over the moduli space. We then restrict to the extremal case and compare our results with the four-point correlators recently computed in the dual boundary theory. We also discuss a particular non-extremal correlator involving two chiral and two anti-chiral operators. (orig)

  7. Quantum statistical field theory an introduction to Schwinger's variational method with Green's function nanoapplications, graphene and superconductivity

    CERN Document Server

    Morgenstern Horing, Norman J

    2017-01-01

    This book provides an introduction to the methods of coupled quantum statistical field theory and Green's functions. The methods of coupled quantum field theory have played a major role in the extensive development of nonrelativistic quantum many-particle theory and condensed matter physics. This introduction to the subject is intended to facilitate delivery of the material in an easily digestible form to advanced undergraduate physics majors at a relatively early stage of their scientific development. The main mechanism to accomplish this is the early introduction of variational calculus and the Schwinger Action Principle, accompanied by Green's functions. Important achievements of the theory in condensed matter and quantum statistical physics are reviewed in detail to help develop research capability. These include the derivation of coupled field Green's function equations-of-motion for a model electron-hole-phonon system, extensive discussions of retarded, thermodynamic and nonequilibrium Green's functions...

  8. Step-by-Step Simulation of Radiation Chemistry Using Green Functions for Diffusion-Influenced Reactions

    Science.gov (United States)

    Plante, Ianik; Cucinotta, Francis A.

    2011-01-01

    Radiolytic species are formed approximately 1 ps after the passage of ionizing radiation through matter. After their formation, they diffuse and chemically react with other radiolytic species and neighboring biological molecules, leading to various oxidative damage. Therefore, the simulation of radiation chemistry is of considerable importance to understand how radiolytic species damage biological molecules [1]. The step-by-step simulation of chemical reactions is difficult, because the radiolytic species are distributed non-homogeneously in the medium. Consequently, computational approaches based on Green functions for diffusion-influenced reactions should be used [2]. Recently, Green functions for more complex type of reactions have been published [3-4]. We have developed exact random variate generators of these Green functions [5], which will allow us to use them in radiation chemistry codes. Moreover, simulating chemistry using the Green functions is which is computationally very demanding, because the probabilities of reactions between each pair of particles should be evaluated at each timestep [2]. This kind of problem is well adapted for General Purpose Graphic Processing Units (GPGPU), which can handle a large number of similar calculations simultaneously. These new developments will allow us to include more complex reactions in chemistry codes, and to improve the calculation time. This code should be of importance to link radiation track structure simulations and DNA damage models.

  9. What is a green building?

    NARCIS (Netherlands)

    Vreenegoor, R.C.P.; Krikke, T.; Mierlo, van B.P.; Pluijm, van der W.M.P.; Poortvliet, R.; Hensen, J.L.M.; Loomans, M.G.L.C.

    2009-01-01

    What is a green building? A large amount of definitions and green rating tools prove that an exact definition is still a point of discussion. To research the differences between green rating tools, four different buildings are assessed with: EPN, BREEAM, LEED, GreenCalc+ and EcoQuantum. These tools

  10. Green Polymer Chemistry: Enzyme Catalysis for Polymer Functionalization

    Directory of Open Access Journals (Sweden)

    Sanghamitra Sen

    2015-05-01

    Full Text Available Enzyme catalyzed reactions are green alternative approaches to functionalize polymers compared to conventional methods. This technique is especially advantageous due to the high selectivity, high efficiency, milder reaction conditions, and recyclability of enzymes. Selected reactions can be conducted under solventless conditions without the application of metal catalysts. Hence this process is becoming more recognized in the arena of biomedical applications, as the toxicity created by solvents and metal catalyst residues can be completely avoided. In this review we will discuss fundamental aspects of chemical reactions biocatalyzed by Candida antarctica lipase B, and their application to create new functionalized polymers, including the regio- and chemoselectivity of the reactions.

  11. Green polymer chemistry: enzyme catalysis for polymer functionalization.

    Science.gov (United States)

    Sen, Sanghamitra; Puskas, Judit E

    2015-05-21

    Enzyme catalyzed reactions are green alternative approaches to functionalize polymers compared to conventional methods. This technique is especially advantageous due to the high selectivity, high efficiency, milder reaction conditions, and recyclability of enzymes. Selected reactions can be conducted under solventless conditions without the application of metal catalysts. Hence this process is becoming more recognized in the arena of biomedical applications, as the toxicity created by solvents and metal catalyst residues can be completely avoided. In this review we will discuss fundamental aspects of chemical reactions biocatalyzed by Candida antarctica lipase B, and their application to create new functionalized polymers, including the regio- and chemoselectivity of the reactions.

  12. Green function study of a mixed spin-((3)/(2)) and spin-((1)/(2)) Heisenberg ferrimagnetic model

    International Nuclear Information System (INIS)

    Li Jun; Wei Guozhu; Du An

    2004-01-01

    The magnetic properties of a mixed spin-((3)/(2)) and spin-((1)/(2)) Heisenberg ferrimagnetic system on a square lattice are investigated theoretically by a multisublattice Green-function technique which takes into account the quantum nature of Heisenberg spins. This model can be relevant for understanding the magnetic behavior of the new class of organometallic materials that exhibit spontaneous magnetic moments at room temperature. We discuss the spontaneous magnetic moments and the finite-temperature phase diagram. We find that there is no compensation point at finite temperature when only the nearest-neighbor interaction and the single-ion anisotropy are included. When the next-nearest-neighbor interaction between spin-((1)/(2)) is taken into account and exceeds a minimum value, a compensation point appears and it is basically unchanged for other values in Hamiltonian fixed. The next-nearest-neighbor interaction between spin-((3)/(2)) has the effect of changing the compensation temperature

  13. The function of green belt Jatibarang as quality control for the environment of Semarang city

    Science.gov (United States)

    Murtini, Titien Woro; Harani, Arnis Rochma; Ernadia, Loretta

    2017-06-01

    The quality of the healthy environment in a neighborhood city is decreasing in number. According to the government regulation, Act No. 26 of 2007, a city should have 20% of green areas from the total area of the city. Now, Semarang only has 7.5% of green areas from the total city area. One of the efforts made by the Government of Semarang is the establishment of a greenbelt in Jatibarang area. It consists of several parts, namely, the reservoirs in the green belt area and also the plant zone in other sectors. The reservoir has a function as the controller of water resources sustainability where the crops serve as the balance for the combination. Thus, it is interesting to study how the interplay of these two functions in a green belt area. The primary data used in this study was obtained from the locus of research by direct observation, interview, and physical data collection. Based on the data collection, data was then processed and analyzed in accordance with the indicators that had been compiled based on theories of reservoirs, green belts, and the quality of the urban environment. Government regulations regarding with the greenbelt and tanks were also used as references in the discussion. The research found out that the presence of the reservoir and the plants in the green belt of Jatibarang can improve the function of the green belt optimally which is a real influence for the improvement of the environment quality, especially water. The Greenbelt was divided into four zones, namely the Arboretum, Argo - Forestry, Ecotourism, Buffer - Zone also made the region became a beautiful greenbelt that brought a positive influence to environmental quality.

  14. Infra-red asymptotic behaviour of the one-fermion Green's function in a scalar model with isospin

    International Nuclear Information System (INIS)

    Popov, V.N.; Wu, T.T.

    1979-01-01

    In a theory where massive fermions interact with a massless scalar field of isospin 1, the behaviour of the one-fermion Green's function is found to differ from the free Green's function by a factor (1 - (2g 2 /π 2 )ln mmod(x-y))sup(-3/8), in the limit of large separation mod(x-y). (Auth.)

  15. Green function iterative solution of ground state wave function for Yukawa potential

    International Nuclear Information System (INIS)

    Zhang Zhao

    2003-01-01

    The newly developed single trajectory quadrature method is applied to solve central potentials. First, based on the series expansion method an exact analytic solution of the ground state for Hulthen potential and an approximate solution for Yukawa potential are obtained respectively. Second, the newly developed iterative method based on Green function defined by quadratures along the single trajectory is applied to solve Yukawa potential using the Coulomb solution and Hulthen solution as the trial functions respectively. The results show that a more proper choice of the trial function will give a better convergence. To further improve the convergence the iterative method is combined with the variational method to solve the ground state wave function for Yukawa potential, using variational solutions of the Coulomb and Hulthen potentials as the trial functions. The results give much better convergence. Finally, the obtained critical screen coefficient is applied to discuss the dissociate temperature of J/ψ in high temperature QGP

  16. Simulation of ultrasonic surface waves with multi-Gaussian and point source beam models

    International Nuclear Information System (INIS)

    Zhao, Xinyu; Schmerr, Lester W. Jr.; Li, Xiongbing; Sedov, Alexander

    2014-01-01

    In the past decade, multi-Gaussian beam models have been developed to solve many complicated bulk wave propagation problems. However, to date those models have not been extended to simulate the generation of Rayleigh waves. Here we will combine Gaussian beams with an explicit high frequency expression for the Rayleigh wave Green function to produce a three-dimensional multi-Gaussian beam model for the fields radiated from an angle beam transducer mounted on a solid wedge. Simulation results obtained with this model are compared to those of a point source model. It is shown that the multi-Gaussian surface wave beam model agrees well with the point source model while being computationally much more efficient

  17. Detection of baryon acoustic oscillation features in the large-scale three-point correlation function of SDSS BOSS DR12 CMASS galaxies

    Science.gov (United States)

    Slepian, Zachary; Eisenstein, Daniel J.; Brownstein, Joel R.; Chuang, Chia-Hsun; Gil-Marín, Héctor; Ho, Shirley; Kitaura, Francisco-Shu; Percival, Will J.; Ross, Ashley J.; Rossi, Graziano; Seo, Hee-Jong; Slosar, Anže; Vargas-Magaña, Mariana

    2017-08-01

    We present the large-scale three-point correlation function (3PCF) of the Sloan Digital Sky Survey DR12 Constant stellar Mass (CMASS) sample of 777 202 Luminous Red Galaxies, the largest-ever sample used for a 3PCF or bispectrum measurement. We make the first high-significance (4.5σ) detection of baryon acoustic oscillations (BAO) in the 3PCF. Using these acoustic features in the 3PCF as a standard ruler, we measure the distance to z = 0.57 to 1.7 per cent precision (statistical plus systematic). We find DV = 2024 ± 29 Mpc (stat) ± 20 Mpc (sys) for our fiducial cosmology (consistent with Planck 2015) and bias model. This measurement extends the use of the BAO technique from the two-point correlation function (2PCF) and power spectrum to the 3PCF and opens an avenue for deriving additional cosmological distance information from future large-scale structure redshift surveys such as DESI. Our measured distance scale from the 3PCF is fairly independent from that derived from the pre-reconstruction 2PCF and is equivalent to increasing the length of BOSS by roughly 10 per cent; reconstruction appears to lower the independence of the distance measurements. Fitting a model including tidal tensor bias yields a moderate-significance (2.6σ) detection of this bias with a value in agreement with the prediction from local Lagrangian biasing.

  18. Three-dimensional Reconstruction and Homogenization of Heterogeneous Materials Using Statistical Correlation Functions and FEM

    Energy Technology Data Exchange (ETDEWEB)

    Baniassadi, Majid; Mortazavi, Behzad; Hamedani, Amani; Garmestani, Hamid; Ahzi, Said; Fathi-Torbaghan, Madjid; Ruch, David; Khaleel, Mohammad A.

    2012-01-31

    In this study, a previously developed reconstruction methodology is extended to three-dimensional reconstruction of a three-phase microstructure, based on two-point correlation functions and two-point cluster functions. The reconstruction process has been implemented based on hybrid stochastic methodology for simulating the virtual microstructure. While different phases of the heterogeneous medium are represented by different cells, growth of these cells is controlled by optimizing parameters such as rotation, shrinkage, translation, distribution and growth rates of the cells. Based on the reconstructed microstructure, finite element method (FEM) was used to compute the effective elastic modulus and effective thermal conductivity. A statistical approach, based on two-point correlation functions, was also used to directly estimate the effective properties of the developed microstructures. Good agreement between the predicted results from FEM analysis and statistical methods was found confirming the efficiency of the statistical methods for prediction of thermo-mechanical properties of three-phase composites.

  19. Generalized relations among N-dimensional Coulomb Green's functions using fractional derivatives

    International Nuclear Information System (INIS)

    Blinder, S.M.; Pollock, E.L.

    1989-01-01

    Hostler [J. Math. Phys. 11, 2966 (1970)] has shown that Coulomb Green's functions of different dimensionality N are related by G (N+2) =OG (N) , where O is a first-order derivative operator in the variables x and y. Thus all the even-dimensional functions are connected, as are analogously the odd-dimensional functions. It is shown that the operations of functional differentiation and integration can further connect the even- to the odd-dimensional functions, so that Hostler's relation can be extended to give G (N+1) =O 1/2 G (N)

  20. Four points function fitted and first derivative procedure for determining the end points in potentiometric titration curves: statistical analysis and method comparison.

    Science.gov (United States)

    Kholeif, S A

    2001-06-01

    A new method that belongs to the differential category for determining the end points from potentiometric titration curves is presented. It uses a preprocess to find first derivative values by fitting four data points in and around the region of inflection to a non-linear function, and then locate the end point, usually as a maximum or minimum, using an inverse parabolic interpolation procedure that has an analytical solution. The behavior and accuracy of the sigmoid and cumulative non-linear functions used are investigated against three factors. A statistical evaluation of the new method using linear least-squares method validation and multifactor data analysis are covered. The new method is generally applied to symmetrical and unsymmetrical potentiometric titration curves, and the end point is calculated using numerical procedures only. It outperforms the "parent" regular differential method in almost all factors levels and gives accurate results comparable to the true or estimated true end points. Calculated end points from selected experimental titration curves compatible with the equivalence point category of methods, such as Gran or Fortuin, are also compared with the new method.

  1. Fine-scale habitat preference of green sturgeon (Acipenser medirostris) within three spawning locations in the Sacramento River, California

    Science.gov (United States)

    Wyman, Megan T.; Thomas, Michael J.; McDonald, Richard R.; Hearn, Alexander R.; Battleson, Ryan D.; Chapman, Eric D.; Kinzel, Paul J.; Minear, J. Tobey; Mora, Ethan A.; Nelson, Jonathan M.; Pagel, Matthew D.; Klimley, A. Peter

    2018-01-01

    Vast sections of the Sacramento River have been listed as critical habitat by the National Marine Fisheries Service for green sturgeon spawning (Acipenser medirostris), yet spawning is known to occur at only a few specific locations. This study reveals the range of physical habitat variables selected by adult green sturgeon during their spawning period. We integrated fine-scale fish positions, physical habitat characteristics, discharge, bathymetry, and simulated velocity and depth using a 2-dimensional hydraulic model (FaSTMECH). The objective was to create habitat suitability curves for depth, velocity, and substrate type within three known spawning locations over two years. An overall cumulative habitat suitability score was calculated that averaged the depth, velocity, and substrate scores over all fish, sites, and years. A weighted usable area (WUA) index was calculated throughout the sampling periods for each of the three sites. Cumulative results indicate that the microhabitat characteristics most preferred by green sturgeon in these three spawning locations were velocities between 1.0-1.1 m/s, depths of 8-9 m, and gravel and sand substrate. This study provides guidance for those who may in the future want to increase spawning habitat for green sturgeon within the Sacramento River.

  2. The statistical error of Green's function Monte Carlo

    International Nuclear Information System (INIS)

    Ceperley, D.M.

    1986-01-01

    The statistical error in the ground state energy as calculated by Green's Function Monte Carlo (GFMC) is analyzed and a simple approximate formula is derived which relates the error to the number of steps of the random walk, the variational energy of the trial function, and the time step of the random walk. Using this formula it is argued that as the thermodynamic limit is approached with N identical molecules, the computer time needed to reach a given error per molecule increases as N/sup n/ where 0.5 < b < 1.5 and as the nuclear charge Z of a system is increased the computer time necessary to reach a given error grows as Z/sup 5.5/. Thus GFMC simulations will be most useful for calculating the properties of low Z elements. The implications for choosing the optimal trial function from a series of trial functions is also discussed

  3. Conformal four point functions and the operator product expansion

    International Nuclear Information System (INIS)

    Dolan, F.A.; Osborn, H.

    2001-01-01

    Various aspects of the four point function for scalar fields in conformally invariant theories are analysed. This depends on an arbitrary function of two conformal invariants u,v. A recurrence relation for the function corresponding to the contribution of an arbitrary spin field in the operator product expansion to the four point function is derived. This is solved explicitly in two and four dimensions in terms of ordinary hypergeometric functions of variables z,x which are simply related to u,v. The operator product expansion analysis is applied to the explicit expressions for the four point function found for free scalar, fermion and vector field theories in four dimensions. The results for four point functions obtained by using the AdS/CFT correspondence are also analysed in terms of functions related to those appearing in the operator product discussion

  4. Estimates for the mixed derivatives of the Green functions on homogeneous manifolds of negative curvature

    Directory of Open Access Journals (Sweden)

    Roman Urban

    2004-12-01

    Full Text Available We consider the Green functions for second-order left-invariant differential operators on homogeneous manifolds of negative curvature, being a semi-direct product of a nilpotent Lie group $N$ and $A=mathbb{R}^+$. We obtain estimates for mixed derivatives of the Green functions both in the coercive and non-coercive case. The current paper completes the previous results obtained by the author in a series of papers [14,15,16,19].

  5. The security of energy supply. The European Commission's Green Paper stimulates debate

    International Nuclear Information System (INIS)

    2000-01-01

    The growing dependence of the European Union (EU) on external supplies of energy is the central focus of a ''Green Paper'' issued in late November 2000 by the Commission of the European Communities in Brussels. Entitled ''Towards a European Strategy for the Security of Energy Supply'', the Green Paper is intended to stimulate debate on the EU's energy policies and strategies. European member States are ''interdependent'', the Green Paper states, ''both because of climate change issues and the creation of the internal energy market. Any energy policy decision taken by a Member State will inevitably have repercussions on the functioning of the market in other Member States. Energy policy has assumed a new, Community dimension.'' Three main points emerge from the Green Paper: The EU will become increasingly dependent on external energy sources; its enlargement will not change this situation. Based on current forecasts, energy dependence will reach 70% by the year 2030. - The EU has very limited scope to influence energy supply conditions; it is essentially on the demand side that the EU can intervene, mainly by promoting energy saving in buildings and the transport sector. - The EU presently is not in a position to respond to the challenge of climate change and to meet its commitments, notably under the Kyoto Protocol. Featured here is the Executive Summary of the Green Paper

  6. Toda 3-point functions from topological strings II

    Energy Technology Data Exchange (ETDEWEB)

    Isachenkov, Mikhail [DESY Hamburg, Theory Group,Notkestrasse 85, D-22607 Hamburg (Germany); Mitev, Vladimir [Institut für Mathematik und Institut für Physik, Humboldt-Universität zu Berlin,IRIS Haus, Zum Großen Windkanal 6, 12489 Berlin (Germany); Pomoni, Elli [DESY Hamburg, Theory Group,Notkestrasse 85, D-22607 Hamburg (Germany); Physics Division, National Technical University of Athens,15780 Zografou Campus, Athens (Greece)

    2016-08-09

    In http://dx.doi.org/10.1007/JHEP06(2015)049 we proposed a formula for the 3-point structure constants of generic primary fields in the Toda field theory, derived using topological strings and the AGT-W correspondence from the partition functions of the non-Lagrangian T{sub N} theories on S{sup 4}. In this article, we obtain from it the well-known formula by Fateev and Litvinov and show that the degeneration on a first level of one of the three primary fields on the Toda side corresponds to a particular Higgsing of the T{sub N} theories.

  7. SIMPLE MODELS OF THREE COUPLED PT -SYMMETRIC WAVE GUIDES ALLOWING FOR THIRD-ORDER EXCEPTIONAL POINTS

    Directory of Open Access Journals (Sweden)

    Jan Schnabel

    2017-12-01

    Full Text Available We study theoretical models of three coupled wave guides with a PT-symmetric distribution of gain and loss. A realistic matrix model is developed in terms of a three-mode expansion. By comparing with a previously postulated matrix model it is shown how parameter ranges with good prospects of finding a third-order exceptional point (EP3 in an experimentally feasible arrangement of semiconductors can be determined. In addition it is demonstrated that continuous distributions of exceptional points, which render the discovery of the EP3 difficult, are not only a feature of extended wave guides but appear also in an idealised model of infinitely thin guides shaped by delta functions.

  8. Numerical simulation of electromagnetic waves in Schwarzschild space-time by finite difference time domain method and Green function method

    Science.gov (United States)

    Jia, Shouqing; La, Dongsheng; Ma, Xuelian

    2018-04-01

    The finite difference time domain (FDTD) algorithm and Green function algorithm are implemented into the numerical simulation of electromagnetic waves in Schwarzschild space-time. FDTD method in curved space-time is developed by filling the flat space-time with an equivalent medium. Green function in curved space-time is obtained by solving transport equations. Simulation results validate both the FDTD code and Green function code. The methods developed in this paper offer a tool to solve electromagnetic scattering problems.

  9. Sickly slaves, soldiers and sailors. Contextualising the Cape's 18th–19th century Green Point burials through isotope investigation

    NARCIS (Netherlands)

    Mbeki, Linda; Kootker, Lisette M.; Kars, Henk; Davies, Gareth R.

    2017-01-01

    Strontium isotope data of multiple dental enamel samples, and carbon and nitrogen isotope data of dentine and bone collagen samples from 27 individuals excavated from the mid-18th to mid-19th century Victoria & Albert Marina Residence paupers burial ground in the vicinity of Green Point, Cape Town,

  10. Stable evaluation of Green's functions in cylindrically stratified regions with uniaxial anisotropic layers

    Science.gov (United States)

    Moon, H.; Donderici, B.; Teixeira, F. L.

    2016-11-01

    We present a robust algorithm for the computation of electromagnetic fields radiated by point sources (Hertzian dipoles) in cylindrically stratified media where each layer may exhibit material properties (permittivity, permeability, and conductivity) with uniaxial anisotropy. Analytical expressions are obtained based on the spectral representation of the tensor Green's function based on cylindrical Bessel and Hankel eigenfunctions, and extended for layered uniaxial media. Due to the poor scaling of these eigenfunctions for extreme arguments and/or orders, direct numerical evaluation of such expressions can produce numerical instability, i.e., underflow, overflow, and/or round-off errors under finite precision arithmetic. To circumvent these problems, we develop a numerically stable formulation through suitable rescaling of various expressions involved in the computational chain, to yield a robust algorithm for all parameter ranges. Numerical results are presented to illustrate the robustness of the formulation including cases of practical interest.

  11. Order- N Green's Function Technique for Local Environment Effects in Alloys

    DEFF Research Database (Denmark)

    Abrikosov, I. A.; Niklasson, A. M. N.; Simak, S. I.

    1996-01-01

    We have developed a new approach to the calculations of ground state properties of large crystalline systems with arbitrary atomic configurations based on a Green's function technique in conjunction with a self-consistent effective medium for the underlying randomly occupied lattice. The locally...

  12. Gender Differences in Laser Acupuncture—Results of a Crossover Study with Green and Yellow Laser at the Ear Point Shenmen

    Directory of Open Access Journals (Sweden)

    Daniela Litscher

    2018-03-01

    Full Text Available Background: One of the most commonly used auricular acupuncture points selected for different pain treatment regimens is Shenmen. This point on the ear has been recognized as having a wide number of applications, as found by scientific investigation. Methods: Within this crossover study, the ear acupoint Shenmen was stimulated with two different kinds of laser (green, 532 nm and yellow, 589 nm in 22 healthy volunteers (13 female, 9 male; mean age ± SD = 25.3 ± 4.1 years; range 21–36 years. Both green and yellow lasers were used for 15 min in the same volunteers in two different sessions. Results: The most prominent finding was that systolic blood pressure decreased significantly (p = 0.048 after yellow laser stimulation. Heart rate also decreased significantly (p < 0.001, whereas heart rate variability ratio low frequency (LF/high frequency (HF (p < 0.001 increased. The effects were significantly more pronounced in females than in males. In addition, the temperature was measured, and temperature increases were demonstrated at different locations on the ear using imaging methods. Conclusions: This study shows evidence of the effect of auricular laser acupuncture. However, a comparison with other publications was impossible because this is the first study using green and yellow laser stimulation on the ear.

  13. Optimum Design of Multi-Function Robot Arm Gripper for Varying Shape Green Product

    Directory of Open Access Journals (Sweden)

    Razali Zol Bahri

    2016-01-01

    Full Text Available The project focuses on thorough experimentally studies of the optimum design of Multi-function Robot Arm Gripper for varying shape green product. The purpose of this project is to design a few of robot arm gripper for multi-functionally grip a green product with varying shape. The main character of the gripper is that it can automated adjust its finger to suit with the shape of the product. An optimum design of multi-function robot arm gripper is verified through experimental study. The expected result is a series of analytical results on the proposal of gripper design and material that will be selected for the gripper. The analysis of the gripper design proposal by using ANSYS and CATIA software is described in detail in this paper.

  14. Stability by fixed point theory for functional differential equations

    CERN Document Server

    Burton, T A

    2006-01-01

    This book is the first general introduction to stability of ordinary and functional differential equations by means of fixed point techniques. It contains an extensive collection of new and classical examples worked in detail and presented in an elementary manner. Most of this text relies on three principles: a complete metric space, the contraction mapping principle, and an elementary variation of parameters formula. The material is highly accessible to upper-level undergraduate students in the mathematical sciences, as well as working biologists, chemists, economists, engineers, mathematicia

  15. Two-point correlation function for Dirichlet L-functions

    Science.gov (United States)

    Bogomolny, E.; Keating, J. P.

    2013-03-01

    The two-point correlation function for the zeros of Dirichlet L-functions at a height E on the critical line is calculated heuristically using a generalization of the Hardy-Littlewood conjecture for pairs of primes in arithmetic progression. The result matches the conjectured random-matrix form in the limit as E → ∞ and, importantly, includes finite-E corrections. These finite-E corrections differ from those in the case of the Riemann zeta-function, obtained in Bogomolny and Keating (1996 Phys. Rev. Lett. 77 1472), by certain finite products of primes which divide the modulus of the primitive character used to construct the L-function in question.

  16. Two-point correlation function for Dirichlet L-functions

    International Nuclear Information System (INIS)

    Bogomolny, E; Keating, J P

    2013-01-01

    The two-point correlation function for the zeros of Dirichlet L-functions at a height E on the critical line is calculated heuristically using a generalization of the Hardy–Littlewood conjecture for pairs of primes in arithmetic progression. The result matches the conjectured random-matrix form in the limit as E → ∞ and, importantly, includes finite-E corrections. These finite-E corrections differ from those in the case of the Riemann zeta-function, obtained in Bogomolny and Keating (1996 Phys. Rev. Lett. 77 1472), by certain finite products of primes which divide the modulus of the primitive character used to construct the L-function in question. (paper)

  17. Green functions for an electron in an external electromagnetic field

    International Nuclear Information System (INIS)

    Khokhlov, I.A.

    1982-01-01

    New representations permitting to considerably simplify their calculation have been obtained for the Green functions of electron. These representations are based on an idea, used in the quantum electrodynamics formulation in variables of a zero plane, of writing down the Dirac field operator psi through its part psisub((-)). It is shown that T product of psi and psi + operators can be expressed through T product of their parts psisub((-)) and psisub((-))sup(+). At that, if the anticommutator of the operators psisub((-)) and psisub((-))sup(+) satisfies the initial condition, the operations of the chronological ordering of the operator product psi(-) and psisub((-))sup(+) with respect to variable x 0 and variable u 0 playing a part of time in the formulation of the zero plane (Pu 0 product) coincide. In correspondence with this fact all the Green functions of electron can be expressed depending on the convenience of concrete calculations through vacuum averages of either from T product or from Pu 0 product of psisub((-)) and psisub((-))sup(+) operators only [ru

  18. Green's function method for perturbed Korteweg-de Vries equation

    International Nuclear Information System (INIS)

    Cai Hao; Huang Nianning

    2003-01-01

    The x-derivatives of squared Jost solution are the eigenfunctions with the zero eigenvalue of the linearized equation derived from the perturbed Korteweg-de Vries equation. A method similar to Green's function formalism is introduced to show the completeness of the squared Jost solutions in multi-soliton cases. It is not related to Lax equations directly, and thus it is beneficial to deal with the nonlinear equations with complicated Lax pair

  19. The Impact of Green Open Space on Community Attachment—A Case Study of Three Communities in Beijing

    Directory of Open Access Journals (Sweden)

    Yuemei Zhu

    2017-04-01

    Full Text Available With the development of urbanization in China, the quality of urban life and community attachment have attracted increasing attention of the governments and society. Existing research on community attachment has mainly examined how individual characteristics affect community attachment, such as their length of residence and socioeconomic status. However, some scholars have become interested in exploring the effects of green open space on community attachment. This research examined whether the distribution of green open space in communities had significant effects on community attachment, and both the impact and path were also investigated. Through a questionnaire survey, relevant data in three communities of Beijing were collected. The impact of green open space layout on community attachment was evaluated by using hierarchical regression, and the impact path was examined by using a structural equation model. The results showed that green open space in a community had significant effects on the community attachment, with centralized green open space layout having a greater effect than that of dispersed green open space. Moreover, the more complex the shape of green open space is, the greater the impact is. The degree of satisfaction with the green open space had direct effects on the community attachment. The accessibility and perceived area of green open space could indirectly have an impact on the community attachment by affecting the degree of satisfaction with the green open space. Nevertheless, residents’ perceived importance of green open space could affect the community attachment directly and indirectly, as it affects the degree of satisfaction.

  20. Green's function Monte Carlo calculations of /sup 4/He

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, J.A.

    1988-01-01

    Green's Function Monte Carlo methods have been developed to study the ground state properties of light nuclei. These methods are shown to reproduce results of Faddeev calculations for A = 3, and are then used to calculate ground state energies, one- and two-body distribution functions, and the D-state probability for the alpha particle. Results are compared to variational Monte Carlo calculations for several nuclear interaction models. 31 refs.

  1. An integral transform of Green's function, off-shell Jost solution and T ...

    Indian Academy of Sciences (India)

    integral transform of the Green's function for motion in Coulomb–Yamaguchi potential is derived via the r-space ... use in the calculation of the corresponding off-shell quantities without the explicit use of two-potential theorem and ..... (x), spherical Bessel function and gli(βli,r)s, the form factors of the sep- arable potential the ...

  2. Development of multi-functional streetscape green infrastructure using a performance index approach

    Czech Academy of Sciences Publication Activity Database

    Tiwary, A.; Williams, L. D.; Heidrich, O.; Namdeo, A.; Bandaru, V.; Calfapietra, Carlo

    2016-01-01

    Roč. 208, jan (2016), s. 209-220 ISSN 0269-7491 Institutional support: RVO:67179843 Keywords : Green infrastructure * Multi-functional * Pollution * Performance index * Streetscape Subject RIV: EH - Ecology, Behaviour Impact factor: 5.099, year: 2016

  3. Three loop anomalous dimensions of higher moments of the non-singlet twist-2 Wilson and transversity operators in the M-bar S-bar and RI' schemes

    International Nuclear Information System (INIS)

    Gracey, John A.

    2006-01-01

    We compute the anomalous dimension of the third and fourth moments of the flavour non-singlet twist-2 Wilson and transversity operators at three loops in both the M-bar S-bar and RI' schemes. To assist with the extraction of estimates of matrix elements computed using lattice regularization, the finite parts of the Green's function where the operator is inserted in a quark 2-point function are also provided at three loops in both schemes

  4. An extended diffraction tomography method for quantifying structural damage using numerical Green's functions.

    Science.gov (United States)

    Chan, Eugene; Rose, L R Francis; Wang, Chun H

    2015-05-01

    Existing damage imaging algorithms for detecting and quantifying structural defects, particularly those based on diffraction tomography, assume far-field conditions for the scattered field data. This paper presents a major extension of diffraction tomography that can overcome this limitation and utilises a near-field multi-static data matrix as the input data. This new algorithm, which employs numerical solutions of the dynamic Green's functions, makes it possible to quantitatively image laminar damage even in complex structures for which the dynamic Green's functions are not available analytically. To validate this new method, the numerical Green's functions and the multi-static data matrix for laminar damage in flat and stiffened isotropic plates are first determined using finite element models. Next, these results are time-gated to remove boundary reflections, followed by discrete Fourier transform to obtain the amplitude and phase information for both the baseline (damage-free) and the scattered wave fields. Using these computationally generated results and experimental verification, it is shown that the new imaging algorithm is capable of accurately determining the damage geometry, size and severity for a variety of damage sizes and shapes, including multi-site damage. Some aspects of minimal sensors requirement pertinent to image quality and practical implementation are also briefly discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. A Radiation Chemistry Code Based on the Greens Functions of the Diffusion Equation

    Science.gov (United States)

    Plante, Ianik; Wu, Honglu

    2014-01-01

    Ionizing radiation produces several radiolytic species such as.OH, e-aq, and H. when interacting with biological matter. Following their creation, radiolytic species diffuse and chemically react with biological molecules such as DNA. Despite years of research, many questions on the DNA damage by ionizing radiation remains, notably on the indirect effect, i.e. the damage resulting from the reactions of the radiolytic species with DNA. To simulate DNA damage by ionizing radiation, we are developing a step-by-step radiation chemistry code that is based on the Green's functions of the diffusion equation (GFDE), which is able to follow the trajectories of all particles and their reactions with time. In the recent years, simulations based on the GFDE have been used extensively in biochemistry, notably to simulate biochemical networks in time and space and are often used as the "gold standard" to validate diffusion-reaction theories. The exact GFDE for partially diffusion-controlled reactions is difficult to use because of its complex form. Therefore, the radial Green's function, which is much simpler, is often used. Hence, much effort has been devoted to the sampling of the radial Green's functions, for which we have developed a sampling algorithm This algorithm only yields the inter-particle distance vector length after a time step; the sampling of the deviation angle of the inter-particle vector is not taken into consideration. In this work, we show that the radial distribution is predicted by the exact radial Green's function. We also use a technique developed by Clifford et al. to generate the inter-particle vector deviation angles, knowing the inter-particle vector length before and after a time step. The results are compared with those predicted by the exact GFDE and by the analytical angular functions for free diffusion. This first step in the creation of the radiation chemistry code should help the understanding of the contribution of the indirect effect in the

  6. Self-similar motion of three point vortices

    DEFF Research Database (Denmark)

    Aref, Hassan

    2010-01-01

    One of the counter-intuitive results in the three-vortex problem is that the vortices can converge on and meet at a point in a finite time for certain sets of vortex circulations and for certain initial conditions. This result was already included in Groumlbli's thesis of 1877 and has since been ...

  7. The Impact of Working in a Green Certified Building on Cognitive Function and Health.

    Science.gov (United States)

    MacNaughton, Piers; Satish, Usha; Laurent, Jose Guillermo Cedeno; Flanigan, Skye; Vallarino, Jose; Coull, Brent; Spengler, John D; Allen, Joseph G

    2017-03-01

    Thirty years of public health research have demonstrated that improved indoor environmental quality is associated with better health outcomes. Recent research has demonstrated an impact of the indoor environment on cognitive function. We recruited 109 participants from 10 high-performing buildings (i.e. buildings surpassing the ASHRAE Standard 62.1-2010 ventilation requirement and with low total volatile organic compound concentrations) in five U.S. cities. In each city, buildings were matched by week of assessment, tenant, type of worker and work functions. A key distinction between the matched buildings was whether they had achieved green certification. Workers were administered a cognitive function test of higher order decision-making performance twice during the same week while indoor environmental quality parameters were monitored. Workers in green certified buildings scored 26.4% (95% CI: [12.8%, 39.7%]) higher on cognitive function tests, controlling for annual earnings, job category and level of schooling, and had 30% fewer sick building symptoms than those in non-certified buildings. These outcomes may be partially explained by IEQ factors, including thermal conditions and lighting, but the findings suggest that the benefits of green certification standards go beyond measureable IEQ factors. We describe a holistic "buildingomics" approach for examining the complexity of factors in a building that influence human health.

  8. Mass effects in three-point chronological current correlators in n-dimensional multifermion models

    International Nuclear Information System (INIS)

    Kucheryavyj, V.I.

    1991-01-01

    Three-types of quantities associated with three-point chronological fermion-current correlators having arbitrary Lorentz and internal structure are calculated in the n-dimensional multifermion models with different masses. The analysis of vector and axial-vector Ward identities for regular (finite) and dimensionally regularized values of these quantities is carried out. Quantum corrections to the canonical Ward identities are obtained. These corrections are generally homogenious functions of zeroth order in masses and under some definite conditions they are reduced to known axial-vector anomalies. The structure and properties of quantum corrections to AVV and AAA correlators in the four-dimension space-time are investigated in detail

  9. A three critical point theorem for non-smooth functionals with ...

    Indian Academy of Sciences (India)

    1Department of Mathematics, Faculty of Mathematics Sciences, ... In many applications, we encounter problems with non-smooth energy functionals. These .... The next lemma shows that a locally Lipschitz functional with a compact gradient, is.

  10. The bosonic thermal Green function, its dual, and the fermion correlators of the massive Thirring model at finite temperature

    International Nuclear Information System (INIS)

    Mondaini, Leonardo; Marino, E.C.

    2011-01-01

    Full text: Despite the fact that quantum field theories are usually formulated in coordinate space, calculations, in both T = 0 and T ≠ 0 cases, are almost always performed in momentum space. However, when we are faced with the exact calculation of correlation functions we are naturally led to the problem of finding closed-form expressions for Green functions in coordinate space. In the present work, we derive an exact closed-form representation for the Euclidian thermal Green function of the two-dimensional (2D) free massless scalar field in coordinate space. This can be interpreted as the real part of a complex analytic function of a variable that conformally maps the infinite strip -∞ < x < ∞ (0 < τ < β of the z = x + iτ (τ: imaginary time) plane into the upper-half-plane. Use of the Cauchy-Riemann conditions, then allows us to identify the dual thermal Green function as the imaginary part of that function. Using both the thermal Green function and its dual, we obtain an explicit series expression for the fermionic correlation functions of the massive Thirring model (MTM) at a finite temperature. (author)

  11. A hybrid method for the parallel computation of Green's functions

    DEFF Research Database (Denmark)

    Petersen, Dan Erik; Li, Song; Stokbro, Kurt

    2009-01-01

    of the large number of times this calculation needs to be performed, this is computationally very expensive even on supercomputers. The classical approach is based on recurrence formulas which cannot be efficiently parallelized. This practically prevents the solution of large problems with hundreds...... of thousands of atoms. We propose new recurrences for a general class of sparse matrices to calculate Green's and lesser Green's function matrices which extend formulas derived by Takahashi and others. We show that these recurrences may lead to a dramatically reduced computational cost because they only...... require computing a small number of entries of the inverse matrix. Then. we propose a parallelization strategy for block tridiagonal matrices which involves a combination of Schur complement calculations and cyclic reduction. It achieves good scalability even on problems of modest size....

  12. Estimation and Simulation of Inter-station Green's Functions in the Beppu-Bay Area, Oita Prefecture, Southwest Japan: the Effect of Sedimentary Basin

    Science.gov (United States)

    Hayashida, T.; Yoshimi, M.; Komatsu, M.; Takenaka, H.

    2017-12-01

    Continuous long-term observations of ambient noise (microseisms) were performed from August 2014 to February 2017 in the Beppu-Bay area, Oita prefecture, to investigate S-wave velocity structure of deep sedimentary basin (Hayashida et al., 2015SSJ; Yoshimi and Hayashida, 2017WCEE). The observation array consists of 12 broadband stations with an average spacing of 12 km. We applied the seismic interferometry technique to the ambient noise data and derived nine-component ambient noise cross-correlation functions (Z-R, Z-T, Z-Z, R-R, R-T, R-Z, T-R, T-T, and T-Z components) between 66 pairs of stations (distance of 6.4 km to 65.2 km). We assumed the stacked cross-correlation functions as "observed Green's functions" between two stations and estimated group velocities of Rayleigh and Love waves in the frequency between 0.2 and 0.5 Hz (Hayashida et al., 2017AGU-JpGU). Theoretical Green's functions for all stations pairs were also calculated using the finite difference method (HOT-FDM, Nakamura et al., 2012BSSA), with an existing three-dimensional basin structure model (J-SHIS V2) with land and seafloor topography and a seawater layer (Okunaka et al., 2016JpGU) and a newly constructed basin structure model of the target area (Yoshimi et al., 2017AGU). The comparisons between observed and simulated Green's functions generally show good agreements in the frequency range between 0.2 and 0.5 Hz. On the other hand, both observed and simulated Green's functions for some station pairs whose traverse lines run across the deeper part of the sedimentary basin (> 2000 m) show prominent later phases that might be generated and propagated inside the basin. This indicates that the understanding of the phase generation and propagation processes can be a key factor to validate the basin structure model and we investigated the characteristics of the later phases, such as its particle motions and arrival times, using observed and simulated Green's functions in detail. Acknowledgements

  13. Higher-order superclustering in the Ostriker explosion scenario I. Three-point correlation functions of clusters in the constant and power-law models

    International Nuclear Information System (INIS)

    Jing Yipeng.

    1989-08-01

    We study the three-point correlation functions ρ(r, u, v) of clusters in the two types of explosion models by numerical simulations. The clusters are identified as the ''knots'' where three shells intersect. The shells are assumed to have the constant radii (the constant models) or have the power law radius distributions (the power law models). In both kinds of models, we find that ρ can be approximately expressed by the scaling form: ρ = Q(ξ 1 ξ 2 + ξ 2 ξ 3 + ξ 3 ξ 1 ), and Q is about 1, which are consistent with the observations. More detailed studies of r-, u- and v-dependences of Q show that Q remains constant in the constant models. In the power-law models, Q is independent of the shape parameters u and v, while it has some moderate r-dependences (variations with r about a factor of 1 or 2). (author). 27 refs, 9 figs

  14. Discontinuities of Green functions in field theory at finite temperature and density

    International Nuclear Information System (INIS)

    Kobes, R.L.; Semenoff, G.W.

    1985-01-01

    We derive systematic rules for calculating the imaginary parts of Minkowski space Green functions in quantum field theory at finite temperature and density. Self-energy corrections are used as an example of the application of these rules. (orig.)

  15. The greening of higher education: A case study in three institutions in Medellin, Colombia

    International Nuclear Information System (INIS)

    Gomez, Catherine; Botero, Camilo M

    2012-01-01

    Incorporation of environmental variable (greening) in the daily routine of universities has taken force from the ends of the 20th century and nowadays its implementation in Colombia is a fact. This research project evaluated the grade of incorporation of such a variable in mission purposes of three higher education institutions in Medellin (Colombia). It included two different education levels (professional and technical) and used qualitative techniques (interviews to two teachers in each institution, one hour visits to two courses in each institution, and checklists for every visit as well as for the institutional analysis). In all the three study cases the environment is part of the institutional commitments, including their education, research, management processes, as well as activities with the society. This was reflected in the integration of greening in the curricula, the promotion of the research in environmental topics, the interdisciplinary cooperation and the adoption of internal policies. This work identifies some elements to develop the environmental education as a tool to comprehend the society and its environment as a whole; it constitutes a base for discussions, shows the advance of the three studied institutions, and discovers that shortcomings, that should be addressed, still exist.

  16. Solving two-dimensions heat conduction problem for fuel elements in reactor by nodal green's function method

    International Nuclear Information System (INIS)

    Tang Jian; Peng Muzhang; Cao Dongxing

    1989-01-01

    A new numerical method-nodal green's function method is used for solving heat conduction function. A heat conduction problem in cylindrical geometry with axial conduction is solved in this paper. The Kirchhoff transformation is used to deal with the problem with temperature dependent conductivity. Therefor, the calculation for the function is simplified. On the basis of the formulas developed, the code named NGMEFC is programmed. A sample problem which has been calculated by the code COBRA-IV is chosen as checking. A good agreement between both codes is achieved. The calculation shows that the calculation efficiency of the nodel green's function method is much higher than that of finite difference method

  17. Point interactions in two- and three-dimensional Riemannian manifolds

    International Nuclear Information System (INIS)

    Erman, Fatih; Turgut, O Teoman

    2010-01-01

    We present a non-perturbative renormalization of the bound state problem of n bosons interacting with finitely many Dirac-delta interactions on two- and three-dimensional Riemannian manifolds using the heat kernel. We formulate the problem in terms of a new operator called the principal or characteristic operator Φ(E). In order to investigate the problem in more detail, we then restrict the problem to one particle sector. The lower bound of the ground state energy is found for a general class of manifolds, e.g. for compact and Cartan-Hadamard manifolds. The estimate of the bound state energies in the tunneling regime is calculated by perturbation theory. Non-degeneracy and uniqueness of the ground state is proven by the Perron-Frobenius theorem. Moreover, the pointwise bounds on the wave function is given and all these results are consistent with the one given in standard quantum mechanics. Renormalization procedure does not lead to any radical change in these cases. Finally, renormalization group equations are derived and the β function is exactly calculated. This work is a natural continuation of our previous work based on a novel approach to the renormalization of point interactions, developed by Rajeev.

  18. Time Eigenstates for Potential Functions without Extremal Points

    Directory of Open Access Journals (Sweden)

    Gabino Torres-Vega

    2013-09-01

    Full Text Available In a previous paper, we introduced a way to generate a time coordinate system for classical and quantum systems when the potential function has extremal points. In this paper, we deal with the case in which the potential function has no extremal points at all, and we illustrate the method with the harmonic and linear potentials.

  19. Urban green areas as the starting point for planning hydroelectric and urban developments: The case of the Sava River in the City of Ljubljana

    Directory of Open Access Journals (Sweden)

    Aleš Mlakar

    2008-01-01

    Full Text Available The article deals with the landscape and urbanistic layout of the Sava River space and North part of the Bežigrad stretch of Ljubljana. Focus is on methodological and content starting points for the layout preparation and development of urban green areas of the wider Sava River space, which as a connecting link and simultaneously independent spatial and functional entity represents the starting point for planning hydro-energetic and urban arrangements. The necessity of recognising and resolving real spatial planning issues, formulation of clear goals and concepts, confrontation of different spatial systems and interests, as well as the sensibility of devising alternative development scenarios are emphasised. One of the most important starting points of the proposed layout is comprehensive design of public open spaces and green areas. The urbanistic solution relies on a programmatically strong, distinct and structured Dunajska Street, which should transform into the public space of a modern urban artery, with a clear ending that simultaneously gradually adapts to the morphology akin to the surroundings and Sava River space. Because of its natural characteristics, preserved cultural landscape and good accessibility, this area has great potential for development of leisure activities. The proposed solution stems from the fact that the chain of hydro-electric plants shouldn't be seen as buildings with negative environmental effects, but also as development opportunities – the actual execution of a recreation area along the Sava River and a method for rehabilitating the degraded spaces. Comprehensive solutions along the river have been proposed as parts of the hydro-electric developments, with special attention focusing on active design of various riverbank types.

  20. Green's functions of one-dimensional quasicrystal bi-material with piezoelectric effect

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Liangliang [College of Engineering, China Agricultural University, Beijing 100083 (China); Sinomatech Wind Power Blade Co., Ltd, Beijing 100092 (China); Wu, Di [College of Engineering, China Agricultural University, Beijing 100083 (China); Xu, Wenshuai [College of Science, China Agricultural University, Beijing 100083 (China); Yang, Lianzhi [Civil and Environmental Engineering School, University of Science and Technology Beijing, Beijing 100083 (China); Ricoeur, Andreas; Wang, Zhibin [Institute of Mechanics, University of Kassel, 34125 Kassel (Germany); Gao, Yang, E-mail: gaoyangg@gmail.com [College of Science, China Agricultural University, Beijing 100083 (China)

    2016-09-16

    Based on the Stroh formalism of one-dimensional quasicrystals with piezoelectric effect, the problems of an infinite plane composed of two different quasicrystal half-planes are taken into account. The solutions of the internal and interfacial Green's functions of quasicrystal bi-material are obtained. Moreover, numerical examples are analyzed for a quasicrystal bi-material subjected to line forces or line dislocations, showing the contour maps of the coupled fields. The impacts of changing material constants on the coupled field components are investigated. - Highlights: • Green's functions of 1D piezoelectric quasicrystal bi-material are studied. • The coupled fields subjected to line forces or line dislocations are obtained. • Mechanical behavior under the effect of different material constants is researched.

  1. Adaptation of light-harvesting functions of unicellular green algae to different light qualities.

    Science.gov (United States)

    Ueno, Yoshifumi; Aikawa, Shimpei; Kondo, Akihiko; Akimoto, Seiji

    2018-05-28

    Oxygenic photosynthetic organisms perform photosynthesis efficiently by distributing captured light energy to photosystems (PSs) at an appropriate balance. Maintaining photosynthetic efficiency under changing light conditions requires modification of light-harvesting and energy-transfer processes. In the current study, we examined how green algae regulate their light-harvesting functions in response to different light qualities. We measured low-temperature time-resolved fluorescence spectra of unicellular green algae Chlamydomonas reinhardtii and Chlorella variabilis cells grown under different light qualities. By observing the delayed fluorescence spectra, we demonstrated that both types of green algae primarily modified the associations between light-harvesting chlorophyll protein complexes (LHCs) and PSs (PSII and PSI). Under blue light, Chlamydomonas transferred more energy from LHC to chlorophyll (Chl) located far from the PSII reaction center, while energy was transferred from LHC to PSI via different energy-transfer pathways in Chlorella. Under green light, both green algae exhibited enhanced energy transfer from LHCs to both PSs. Red light induced fluorescence quenching within PSs in Chlamydomonas and LHCs in Chlorella. In Chlorella, energy transfer from PSII to PSI appears to play an important role in balancing excitation between PSII and PSI.

  2. The closed time-path Green function formalism in many-body theory

    International Nuclear Information System (INIS)

    Guang-zhao Zhou; Zhao-bin Su; Bai-lin Hao; Lu Yu.

    1983-09-01

    The closed time-path Green function formalism, developed by our group during recent years, is briefly reviewed. The generating functional technique, the coupled equations for the order parameter and the elementary excitations as well as the systematic loop expansion are outlined. The applications to critical dynamics, quenched random systems, nonlinear response theory, superconductivity, laser system and quasi-one-dimensional conductors are described. The theoretical approach developed can be applied to both equilibrium and non-equilibrium many-body systems. (author)

  3. Magnetic field effects on the quantum wire energy spectrum and Green's function

    International Nuclear Information System (INIS)

    Morgenstern Horing, Norman J.

    2010-01-01

    We analyze the energy spectrum and propagation of electrons in a quantum wire on a 2D host medium in a normal magnetic field, representing the wire by a 1D Dirac delta function potential which would support just a single subband state in the absence of the magnetic field. The associated Schroedinger Green's function for the quantum wire is derived in closed form in terms of known functions and the Landau quantized subband energy spectrum is examined.

  4. GreenTalks at Boston Green Academy: Student Reflections on Performance Assessment

    Science.gov (United States)

    Kuriacose, Christina

    2017-01-01

    In spring 2017, for the third year running, 10th graders at Boston Green Academy (BGA) presented GreenTalks, a showcase of research on food justice issues. The day Christina Kuriacose visited the school, students were presenting the PowerPoints they had put together. All of them included a map plotting out the proximity of their neighborhood or…

  5. Analytic continuation of massless two-loop four-point functions

    International Nuclear Information System (INIS)

    Gehrmann, T.; Remiddi, E.

    2002-01-01

    We describe the analytic continuation of two-loop four-point functions with one off-shell external leg and internal massless propagators from the Euclidean region of space-like 1→3 decay to Minkowskian regions relevant to all 1→3 and 2→2 reactions with one space-like or time-like off-shell external leg. Our results can be used to derive two-loop master integrals and unrenormalized matrix elements for hadronic vector-boson-plus-jet production and deep inelastic two-plus-one-jet production, from results previously obtained for three-jet production in electron-positron annihilation. (author)

  6. Computation of Green function of the Schroedinger-like partial differential equations by the numerical functional integration

    International Nuclear Information System (INIS)

    Lobanov, Yu.Yu.; Shahbagian, R.R.; Zhidkov, E.P.

    1991-01-01

    A new method for numerical solution of the boundary problem for Schroedinger-like partial differential equations in R n is elaborated. The method is based on representation of multidimensional Green function in the form of multiple functional integral and on the use of approximation formulas which are constructed for such integrals. The convergence of approximations to the exact value is proved, the remainder of the formulas is estimated. Method reduces the initial differential problem to quadratures. 16 refs.; 7 tabs

  7. A J–function for inhomogeneous point processes

    NARCIS (Netherlands)

    M.N.M. van Lieshout (Marie-Colette)

    2010-01-01

    htmlabstractWe propose new summary statistics for intensity-reweighted moment stationary point processes that generalise the well known J-, empty space, and nearest-neighbour distance dis- tribution functions, represent them in terms of generating functionals and conditional intensities, and relate

  8. A line source in Minkowski for the de Sitter spacetime scalar Green's function: Massless minimally coupled case

    International Nuclear Information System (INIS)

    Chu, Yi-Zen

    2014-01-01

    Motivated by the desire to understand the causal structure of physical signals produced in curved spacetimes – particularly around black holes – we show how, for certain classes of geometries, one might obtain its retarded or advanced minimally coupled massless scalar Green's function by using the corresponding Green's functions in the higher dimensional Minkowski spacetime where it is embedded. Analogous statements hold for certain classes of curved Riemannian spaces, with positive definite metrics, which may be embedded in higher dimensional Euclidean spaces. The general formula is applied to (d ≥ 2)-dimensional de Sitter spacetime, and the scalar Green's function is demonstrated to be sourced by a line emanating infinitesimally close to the origin of the ambient (d + 1)-dimensional Minkowski spacetime and piercing orthogonally through the de Sitter hyperboloids of all finite sizes. This method does not require solving the de Sitter wave equation directly. Only the zero mode solution to an ordinary differential equation, the “wave equation” perpendicular to the hyperboloid – followed by a one-dimensional integral – needs to be evaluated. A topological obstruction to the general construction is also discussed by utilizing it to derive a generalized Green's function of the Laplacian on the (d ≥ 2)-dimensional sphere

  9. Sequential function approximation on arbitrarily distributed point sets

    Science.gov (United States)

    Wu, Kailiang; Xiu, Dongbin

    2018-02-01

    We present a randomized iterative method for approximating unknown function sequentially on arbitrary point set. The method is based on a recently developed sequential approximation (SA) method, which approximates a target function using one data point at each step and avoids matrix operations. The focus of this paper is on data sets with highly irregular distribution of the points. We present a nearest neighbor replacement (NNR) algorithm, which allows one to sample the irregular data sets in a near optimal manner. We provide mathematical justification and error estimates for the NNR algorithm. Extensive numerical examples are also presented to demonstrate that the NNR algorithm can deliver satisfactory convergence for the SA method on data sets with high irregularity in their point distributions.

  10. A theoretical approach to dynamical diffraction of X-rays in the Bragg case with the Green's function method

    International Nuclear Information System (INIS)

    Ishida, Hidenobu

    2015-01-01

    The dynamical diffraction theory of X-rays for a distorted crystal with the Green's function method is applied to the Bragg case. The transmitted and diffracted crystal waves are represented as the solutions of the integral equations using the Green's function. For a perfect crystal, the most exact form of the solution of the equations is given by the Green's function and its derivatives, and the waves are analytically expressed by using them. The results can be applied in a general case where the amplitude modulation of the incident wave is not negligibly small compared with the wave vector. If the amplitude modulation is small, those results are reduced essentially to the same as those given by Takagi's theory. (author)

  11. Genus one super-Green function revisited and superstring amplitudes with non-maximal supersymmetry

    International Nuclear Information System (INIS)

    Itoyama, H.; Yano, Kohei

    2016-01-01

    We reexamine genus one super-Green functions with general boundary conditions twisted by (α,β) for (σ,τ) directions in the eigenmode expansion and derive expressions as infinite series of hypergeometric functions. Using these, we compute one-loop superstring amplitudes with non-maximal supersymmetry, taking the example of massless vector emissions of open string type I Z 2 orbifold

  12. Quantum criticality of a spin-1 XY model with easy-plane single-ion anisotropy via a two-time Green function approach avoiding the Anderson-Callen decoupling

    Science.gov (United States)

    Mercaldo, M. T.; Rabuffo, I.; De Cesare, L.; Caramico D'Auria, A.

    2016-04-01

    In this work we study the quantum phase transition, the phase diagram and the quantum criticality induced by the easy-plane single-ion anisotropy in a d-dimensional quantum spin-1 XY model in absence of an external longitudinal magnetic field. We employ the two-time Green function method by avoiding the Anderson-Callen decoupling of spin operators at the same sites which is of doubtful accuracy. Following the original Devlin procedure we treat exactly the higher order single-site anisotropy Green functions and use Tyablikov-like decouplings for the exchange higher order ones. The related self-consistent equations appear suitable for an analysis of the thermodynamic properties at and around second order phase transition points. Remarkably, the equivalence between the microscopic spin model and the continuous O(2) -vector model with transverse-Ising model (TIM)-like dynamics, characterized by a dynamic critical exponent z=1, emerges at low temperatures close to the quantum critical point with the single-ion anisotropy parameter D as the non-thermal control parameter. The zero-temperature critic anisotropy parameter Dc is obtained for dimensionalities d > 1 as a function of the microscopic exchange coupling parameter and the related numerical data for different lattices are found to be in reasonable agreement with those obtained by means of alternative analytical and numerical methods. For d > 2, and in particular for d=3, we determine the finite-temperature critical line ending in the quantum critical point and the related TIM-like shift exponent, consistently with recent renormalization group predictions. The main crossover lines between different asymptotic regimes around the quantum critical point are also estimated providing a global phase diagram and a quantum criticality very similar to the conventional ones.

  13. Design and Development of A Three-Point Auto Hitch Dynamometer for An Agricultural Tractor

    Directory of Open Access Journals (Sweden)

    A. F. Kheiralla

    2017-12-01

    Full Text Available This paper describes the design, development and calibration of a three-point auto hitch dynamometer for measuring the horizontal and vertical forces that existed at the three-point hitch of an agricultural tractor.  The design concept of the dynamometer was based on an instrumented inverted U frame assembly that was mounted between tractor links and implement. The design incorporates for both lower point hitch spread and mast height adjustments, and quick hitch capability in accordance with category 1 and II three-point hitch system.  The force sensing elements were comprised of three steel extended octagonal ring transducers that were located between the inverted U frame and hook brackets.  Electrical resistance strain gauges were mounted on the extended octagonal ring transducer at strain angle nodes to independently monitor strains that were proportional to the horizontal and vertical forces at the ring center. Each transducer was designed for maximum horizontal and vertical forces of 25 kN and 10 kN at measurement mean sensitivities of 25.19 µStrain/kN and 25.60 µStrain/kN, respectively. However, the complete dynamometer has been designed to measure the maximum resultant horizontal and vertical forces of 50 kN and 20 kN, respectively.  Field demonstration tests on the dynamometer and data acquisition system showed that they were able to function effectively as intended.  The data acquisition system was able to successfully scan and record the dynamometer signals as programmed.  This dynamometer was part of the complete instrumentation system to be developed onboard a Massey Ferguson 3060 tractor for the generation of a comprehensive database on the power and energy requirements of the tractor and its working implement in the field.

  14. Effects of self-consistency in a Green's function description of saturation in nuclear matter

    International Nuclear Information System (INIS)

    Dewulf, Y.; Neck, D. van; Waroquier, M.

    2002-01-01

    The binding energy in nuclear matter is evaluated within the framework of self-consistent Green's function theory, using a realistic nucleon-nucleon interaction. The two-body dynamics is solved at the level of summing particle-particle and hole-hole ladders. We go beyond the on-shell approximation and use intermediary propagators with a discrete-pole structure. A three-pole approximation is used, which provides a good representation of the quasiparticle excitations, as well as reproducing the zeroth- and first-order energy-weighted moments in both the nucleon removal and addition domains of the spectral function. Results for the binding energy are practically independent of the details of the discretization scheme. The main effect of the increased self-consistency is to introduce an additional density dependence, which causes a shift towards lower densities and smaller binding energies, as compared to a (continuous choice) Brueckner calculation with the same interaction. Particle number conservation and the Hugenholz-Van Hove theorem are satisfied with reasonable accuracy

  15. Solving Schwinger-Dyson equations by truncation in zero-dimensional scalar quantum field theory

    International Nuclear Information System (INIS)

    Okopinska, A.

    1991-01-01

    Three sets of Schwinger-Dyson equations, for all Green's functions, for connected Green's functions, and for proper vertices, are considered in scalar quantum field theory. A truncation scheme applied to the three sets gives three different approximation series for Green's functions. For the theory in zero-dimensional space-time the results for respective two-point Green's functions are compared with the exact value calculated numerically. The best convergence of the truncation scheme is obtained for the case of proper vertices

  16. Efficient use of green taxes in the CHP sector

    International Nuclear Information System (INIS)

    Skovsgaard Nielsen, L.; Mognesen, Martin Frank; Pade, L.L.

    2007-06-01

    Since 1977 green taxes have been used in the Danish power and heat sector. Green taxes principally assure an efficient, market-based reduction of pollution by reducing the energy consumption or increasing the share of renewable energy in power and heat production. This report takes its point of departure in four potential barriers which prevent a marketbased, cost-effective increase of the proportion of renewable energy in power and heat production. We primarily concentrate on three policy measures. 5. green and lessgreen taxes; 6. mandatory combined heat and power production; 7. fuel restrictions. Furthermore, we analyse a fourth characteristic in the law: 8. high transactions costs connected to the enlargement of renewable energy. The purpose of the report is to describe how the four potential barriers contradict the theoretically efficient application of green taxes in the power and heat sector. We do this: 1) by clarifying how legislation in the power and heat sector affects the extension of renewable energy; and 2) by evaluating the theoretically efficient application of green taxes in the power and heat sector in relation to legislation. (au)

  17. The Role of Stakeholders Related to the Management of Ecological Function of Urban Green Open Space. Case Study: City of Depok, Indonesia

    Science.gov (United States)

    Mangopa Malik, Andy Anton

    2017-12-01

    Urban green open space is one of the assets that provide substantial benefits to the urban community. One important function of urban green open space is a function of ecology. This study will provide initial explanation on the various studies related to the ecological function of urban green open space. The study of urban space management approach related to ecological function will explain the extent of the role of stakeholders in the urban areas that will further strengthen the importance of the existence of green open space, especially in city of Depok. With so many problems related to the supply and use of green open space in the city of Depok. This approach was originally applied by the private sector and many applications made a great contribution, so it began to be used by the government in managing public assets there. This study will use descriptive method, at the beginning of the study will explain the existence of the reality of urban green open space as part of the urban space by viewing it from theoretical overview of space, function and role of the various problems that occur in it. The results of this study indicate there are six problems in the management of green open spaces in city of Depok. Using the stages in asset management will provide space for participation of existing stakeholders in the management of green open spaces in city of Depok.

  18. The Development of Three Questionnaires to Assess Beliefs about Green Exercise.

    Science.gov (United States)

    Flowers, Elliott P; Freeman, Paul; Gladwell, Valerie F

    2017-10-04

    Green exercise is physical activity that takes place in the presence of natural environments. Despite the promising evidence of the benefits, little is known about how individuals' thoughts and feelings influence participation in green exercise and subsequent outcomes. The aim of the current research was to develop questionnaires using the Theory of Planned Behaviour as a framework that could both directly and indirectly assess attitudes, subjective norms and perceived behaviour control, along with intention toward green exercise. Confirmatory factor analyses confirmed that the indirect, direct, and intention measures all had good overall model fits when tested on a refinement (n = 253) and validation (n = 230) sample. The questionnaires will contribute towards helping to better understanding individuals' beliefs about green exercise, how these influence behaviour, and ultimately to enable the development of effective interventions promoting green exercise.

  19. On the zero-crossing of the three-gluon Green's function from lattice simulations

    Energy Technology Data Exchange (ETDEWEB)

    Athenodorou, Andreas [Univ. of Cyprus, Nicosia, Cyprus; Boucaud, Philippe [Univ. Paris-Sud, Orsay (France); de Soto, Feliciano [Univ. Pablo de Olavide, 41013 Sevilla; Spain; Univ. of Granada (Spain); Rodriguez-Quintero, Jose [Universidad de Huelva, 21071 Huelva; Spain; Univ. of Granada (Spain); Zafeiropoulos, Savvas [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); College of William and Mary, Williamsburg, VA (United States); Heidelberg Univ. (Germany). Inst. for Theoretische Physik

    2018-04-01

    We report on some efforts recently made in order to gain a better understanding of some IR properties of the 3-point gluon Green’s function by exploiting results from large-volume quenched lattice simulations. These lattice results have been obtained by using both tree-level Symanzik and the standard Wilson action, in the aim of assessing the possible impact of effects presumably resulting from a particular choice for the discretization of the action. The main resulting feature is the existence of a negative log-aritmic divergence at zero-momentum, which pulls the 3-gluon form factors down at low momenta and, consequently, yields a zero-crossing at a given deep IR momentum. The results can be correctly explained by analyzing the relevant Dyson-Schwinger equations and appropriate truncation schemes.

  20. Numerical analysis of sandwich beam with corrugated core under three-point bending

    Energy Technology Data Exchange (ETDEWEB)

    Wittenbeck, Leszek [Poznan University of Technology, Institute of Mathematics Piotrowo Street No. 5, 60-965 Poznan (Poland); Grygorowicz, Magdalena; Paczos, Piotr [Poznan University of Technology, Institute of Applied Mechanics Jana Pawla IIStreet No. 24, 60-965 Poznan (Poland)

    2015-03-10

    The strength problem of sandwich beam with corrugated core under three-point bending is presented.The beam are made of steel and formed by three mutually orthogonal corrugated layers. The finite element analysis (FEA) of the sandwich beam is performed with the use of the FEM system - ABAQUS. The relationship between the applied load and deflection in three-point bending is considered.

  1. Stability and periodicity in the Sitnikov three-body problem when primaries are oblate spheroids

    Science.gov (United States)

    Rahman, M. A.; Garain, D. N.; Hassan, M. R.

    2015-05-01

    This paper deals with the effect of oblateness of the primaries of equal masses on the series solutions of the Sitnikov problem of three bodies. Effects of oblateness have also been shown on the stability of libration points and Poincare surface of section. Here series solutions have been developed with the help of iteration process of Green's function and by the Lindstedt-Poincare method. Following Murray and Dermott (Solar System Dynamics, Cambridge University Press, Cambridge, 1999) we have checked the stability of the equilibrium points in the Sitnikov problem. Periodicity and quasi-periodicity have been examined by drawing the Poincare surfaces of section using the mathematical software.

  2. Time-dependent inversions of slow slip at the Hikurangi subduction zone, New Zealand, using numerical Green's functions

    Science.gov (United States)

    Williams, C. A.; Wallace, L. M.; Bartlow, N. M.

    2017-12-01

    Slow slip events (SSEs) have been observed throughout the world, and the existence of these events has fundamentally altered our understanding of the possible ranges of slip behavior at subduction plate boundaries. In New Zealand, SSEs occur along the Hikurangi Margin, with shallower events in the north and deeper events to the south. In a recent study, Williams and Wallace (2015) found that static SSE inversions that consider elastic property variations provided significantly different results than those based on an elastic half-space. For deeper events, the heterogeneous models predicted smaller amounts of slip, while for shallower events the heterogeneous model predicted larger amounts of slip. In this study, we extend our initial work to examine the temporal variations in slip. We generate Green's functions using the PyLith finite element code (Aagaard et al., 2013) to allow consideration of elastic property variations provided by the New Zealand-wide seismic velocity model (Eberhart-Phillips et al., 2010). These Green's functions are then integrated to provide Green's functions compatible with the Network Inversion Filter (NIF, Segall and Matthews,1997; McGuire and Segall, 2003; Miyazaki et al.,2006). We examine 12 SSEs occurring along the Hikurangi Margin during 2010 and 2011, and compare the results using heterogeneous Green's functions with those of Bartlow et al. (2014), who examined the same set of SSEs with the NIF using a uniform elastic half-space model. The use of heterogeneous Green's functions should provide a more accurate picture of the slip distribution and evolution of the SSEs. This will aid in understanding the correlations between SSEs and seismicity and/or tremor and the role of SSEs in the accommodation of plate motion budgets in New Zealand.

  3. Evaluation of spatial dependence of point spread function-based PET reconstruction using a traceable point-like 22Na source

    Directory of Open Access Journals (Sweden)

    Taisuke Murata

    2016-10-01

    Full Text Available Abstract Background The point spread function (PSF of positron emission tomography (PET depends on the position across the field of view (FOV. Reconstruction based on PSF improves spatial resolution and quantitative accuracy. The present study aimed to quantify the effects of PSF correction as a function of the position of a traceable point-like 22Na source over the FOV on two PET scanners with a different detector design. Methods We used Discovery 600 and Discovery 710 (GE Healthcare PET scanners and traceable point-like 22Na sources (<1 MBq with a spherical absorber design that assures uniform angular distribution of the emitted annihilation photons. The source was moved in three directions at intervals of 1 cm from the center towards the peripheral FOV using a three-dimensional (3D-positioning robot, and data were acquired over a period of 2 min per point. The PET data were reconstructed by filtered back projection (FBP, the ordered subset expectation maximization (OSEM, OSEM + PSF, and OSEM + PSF + time-of-flight (TOF. Full width at half maximum (FWHM was determined according to the NEMA method, and total counts in regions of interest (ROI for each reconstruction were quantified. Results The radial FWHM of FBP and OSEM increased towards the peripheral FOV, whereas PSF-based reconstruction recovered the FWHM at all points in the FOV of both scanners. The radial FWHM for PSF was 30–50 % lower than that of OSEM at the center of the FOV. The accuracy of PSF correction was independent of detector design. Quantitative values were stable across the FOV in all reconstruction methods. The effect of TOF on spatial resolution and quantitation accuracy was less noticeable. Conclusions The traceable 22Na point-like source allowed the evaluation of spatial resolution and quantitative accuracy across the FOV using different reconstruction methods and scanners. PSF-based reconstruction reduces dependence of the spatial resolution on the

  4. Origin of the tail in Green's functions in odd-dimensional space-times

    Science.gov (United States)

    Dai, De-Chang; Stojkovic, Dejan

    2013-10-01

    It is well known that the scalar field Green's function in odd dimensions has a tail, i.e. a non-zero support inside the light cone, which in turn implies that the Huygens' principle is violated. However, the reason behind this behavior is still not quite clear. In this paper we shed more light on the physical origin of the tail by regularizing the term which is usually ignored in the literature since it vanishes due to the action of the delta function. With this extra term the Green's function does not satisfy the source-free wave equation (in the region outside of the source). We show that this term corresponds to a charge imprinted on the light-cone shell. Unlike the vector field charge, a moving scalar field charge is not Lorentz invariant and is contracted by a factor. If a scalar charge is moving at the speed of light, it appears to be zero in the static (with respect to the original physical charge) observer's frame. However, the field it sources is not entirely on the light cone. Thus, it is likely that this hidden charge sources the mysterious tail in odd dimensions.

  5. Metaphysical green

    DEFF Research Database (Denmark)

    Earon, Ofri

    2011-01-01

    example is a tiny Danish summer house from 1918 . The second example is ‘House before House’ , in Tokyo. The third example is a prefabricated house ‘CHU’ . The analysis evaluates the characteristics of diverse tones of green – from green image to green sensation. The analysis is based on the original...... of Sensation of Green is created by a physical interaction between the language of space and the language of nature” The notion of Sensation of Green was developed through a previous study ‘Learning from the Summer House’ investigating the unique architectural characteristics of the Danish summer houses...... the Sensation of Green? Three existing examples are agents to this discussion. The first example is a Danish summer house. The other two are international urban examples. While the summer house articulates the original meaning of Sensation of Green, the urban examples illustrate its urban context. The first...

  6. Green's function for the scalar field in the early Universe

    International Nuclear Information System (INIS)

    Chowdhury, A.; Mallik, S.

    1987-01-01

    We derive the thermal Green's function for the scalar field in a de Sitter space-time and apply it to the problem of the early Universe. Field fluctuations relevant for inflation arise predominantly from wavelengths of the order of the inverse Hubble constant. Sufficient inflation is obtained in a Coleman-Weinberg model, provided the coupling constant is small enough. The results are insensitive to the choice of the vacuum of the field theory

  7. Unitarity or asymptotic completeness equations and analytic structure of the S matrix and Green functions

    International Nuclear Information System (INIS)

    Iagolnitzer, D.

    1983-11-01

    Recent axiomatic results on the (non holonomic) analytic structure of the multiparticle S matrix and Green functions are reviewed and related general conjectures are described: (i) formal expansions of Green functions in terms of (holonomic) Feynman-type integrals in which each vertex represents an irreducible kernel, and (ii) ''graph by graph unitarity'' and other discontinuity formulae of the latter. These conjectures are closely linked with unitarity or asymptotic completeness equations, which they yield in a formal sense. In constructive field theory, a direct proof of the first conjecture (together with an independent proof of the second) would thus imply, as a first step, asymptotic completeness in that sense

  8. Density-functional method for nonequilibrium electron transport

    DEFF Research Database (Denmark)

    Brandbyge, Mads; Mozos, J.L.; Ordejon, P.

    2002-01-01

    the contact and the electrodes on the same footing. The effect of the finite bias (including self-consistency and the solution of the electrostatic problem) is taken into account using nonequilibrium Green's functions. We relate the nonequilibrium Green's function expressions to the more transparent scheme...... wires connected to aluminum electrodes with extended or finite cross section, (ii) single atom gold wires, and finally (iii) large carbon nanotube systems with point defects....

  9. Cryptochrome photoreceptors in green algae: Unexpected versatility of mechanisms and functions.

    Science.gov (United States)

    Kottke, Tilman; Oldemeyer, Sabine; Wenzel, Sandra; Zou, Yong; Mittag, Maria

    2017-10-01

    Green algae have a highly complex and diverse set of cryptochrome photoreceptor candidates including members of the following subfamilies: plant, plant-like, animal-like, DASH and cryptochrome photolyase family 1 (CPF1). While some green algae encode most or all of them, others lack certain members. Here we present an overview about functional analyses of so far investigated cryptochrome photoreceptors from the green algae Chlamydomonas reinhardtii (plant and animal-like cryptochromes) and Ostreococcus tauri (CPF1) with regard to their biological significance and spectroscopic properties. Cryptochromes of both algae have been demonstrated recently to be involved to various extents in circadian clock regulation and in Chlamydomonas additionally in life cycle control. Moreover, CPF1 even performs light-driven DNA repair. The plant cryptochrome and CPF1 are UVA/blue light receptors, whereas the animal-like cryptochrome responds to almost the whole visible spectrum including red light. Accordingly, plant cryptochrome, animal-like cryptochrome and CPF1 differ fundamentally in their structural response to light as revealed by their visible and infrared spectroscopic signatures, and in the role of the flavin neutral radical acting as dark form or signaling state. Copyright © 2017 Elsevier GmbH. All rights reserved.

  10. Hazard assessment of inorganics to three endangered fish in the Green River, Utah

    Science.gov (United States)

    Hamilton, S.J.

    1995-01-01

    Acute toxicity tests were conducted with three life stages of Colorado squawfish (Ptychocheilus lucius), razorback sucker (Xyrauchen texanus), and bonytail (Gila elegans) in a reconstituted water quality simulating the middle part of the Green River of Utah. Tests were conducted with boron, lithium, selenate, selenite, uranium, vanadium, and zinc. The overall rank order of toxicity to all species and life stages combined from most to least toxic was vanadium = zinc > selenite > lithium = uranium > selenate > boron. There was no difference between the three species in their sensitivity to the seven inorganics based on a rank-order evaluation at the species level. Colorado squawfish were 2-5 times more sensitive to selenate and selenite at the swimup life stage than older stages, whereas razorback suckers displayed equal sensitivity among life stages. Bonytail exhibited equal sensitivity to selenite, but were five times more sensitive to selenate at the swimup life stage than the older stages. Comparison of 96-hr LC50 values with a limited number of environmental water concentrations in Ashley Creek, Utah, which receives irrigation drainwater, revealed moderate hazard ratios for boron, selenate, selenite, and zinc, low hazard ratios for uranium and vanadium, but unknown ratios for lithium. These inorganic contaminants in drainwaters may adversely affect endangered fish in the Green River.

  11. {alpha}{sub s} from the non-perturbatively renormalised lattice three-gluon vertex

    Energy Technology Data Exchange (ETDEWEB)

    Alles, B. [Pisa Univ. (Italy). Dipt. di Fisica; Henty, D.S. [Department of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom); Panagopoulos, H. [Department of Natural Sciences, University of Cyprus, CY-1678 Nicosia (Cyprus); Parrinello, C. [Department of Mathematical Sciences, University of Liverpool, Liverpool L69 3BX (United Kingdom); Pittori, C. [L.P.T.H.E., Universite de Paris Sud, Centre d`Orsay, 91405 Orsay (France); Richards, D.G. [Department of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom)]|[Fermilab, P.O. Box 500, Batavia, IL 60510 (United States)

    1997-09-29

    We compute the running QCD coupling on the lattice by evaluating two-point and three-point off-shell gluon Green`s functions in a fixed gauge and imposing non-perturbative renormalisation conditions on them. Our exploratory study is performed in the quenched approximation at {beta}=6.0 on 16{sup 4} and 24{sup 4} lattices. We show that, for momenta in the range 1.8-2.3 GeV, our coupling runs according to the two-loop asymptotic formula, allowing a precise determination of the corresponding {Lambda} parameter. The role of lattice artifacts and finite-volume effects is carefully analysed and these appear to be under control in the momentum range of interest. Our renormalisation procedure corresponds to a momentum subtraction scheme in continuum field theory, and therefore lattice perturbation theory is not needed in order to match our results to the anti M anti S scheme, thus eliminating a major source of uncertainty in the determination of {alpha} {sub anti} {sub M} {sub anti} {sub S}. Our method can be applied directly to the unquenched case. (orig.). 20 refs.

  12. MUSIC ALGORITHM FOR LOCATING POINT-LIKE SCATTERERS CONTAINED IN A SAMPLE ON FLAT SUBSTRATE

    Institute of Scientific and Technical Information of China (English)

    Dong Heping; Ma Fuming; Zhang Deyue

    2012-01-01

    In this paper,we consider a MUSIC algorithm for locating point-like scatterers contained in a sample on flat substrate.Based on an asymptotic expansion of the scattering amplitude proposed by Ammari et al.,the reconstruction problem can be reduced to a calculation of Green function corresponding to the background medium.In addition,we use an explicit formulation of Green function in the MUSIC algorithm to simplify the calculation when the cross-section of sample is a half-disc.Numerical experiments are included to demonstrate the feasibility of this method.

  13. Green function simulation of Hamiltonian lattice models with stochastic reconfiguration

    International Nuclear Information System (INIS)

    Beccaria, M.

    2000-01-01

    We apply a recently proposed Green function Monte Carlo procedure to the study of Hamiltonian lattice gauge theories. This class of algorithms computes quantum vacuum expectation values by averaging over a set of suitable weighted random walkers. By means of a procedure called stochastic reconfiguration the long standing problem of keeping fixed the walker population without a priori knowledge of the ground state is completely solved. In the U(1) 2 model, which we choose as our theoretical laboratory, we evaluate the mean plaquette and the vacuum energy per plaquette. We find good agreement with previous works using model-dependent guiding functions for the random walkers. (orig.)

  14. Three points of view in transport theory

    International Nuclear Information System (INIS)

    Ruben, Panta Pazos; Tilio de Vilhena, M.

    2001-01-01

    A lot of efforts in Transport Theory is used to develop numerical methods or hybrid numerical-analytical techniques. We present in this work three points of view about transport problems. First the C0 semigroup approach, in which the free transport operator ψ → μ ∇ generates an strongly continuous semigroup. The operators operator ψ → σt and operator ψ → ∫ ∇ k(x,μ,μ' ψ(x,μ') dμ' are bounded operators, and by perturbation the transport operator ψ → μ ∇ ψ + σt ψ - K ψ also generates an strongly continuous semigroup. To prove the convergence of the approximations of a numerical methods to the exact solution we use the approximation theorem of C0 semi-groups in canonical form. In other way, the discrete schemes theory is employed in searching the rate of convergence of numerical techniques in transport theory. For 1D dependent of time transport problem and two-dimensional steady state problem we summarize some estimates, incorporating different boundary conditions. Finally we give a survey about the dynamical behavior of the SN approximations. In order to give a unified approach, some results illustrates the equivalence of the three points of views for the case of the steady-state transport problem for slab geometry. (author)

  15. Analysis of point source size on measurement accuracy of lateral point-spread function of confocal Raman microscopy

    Science.gov (United States)

    Fu, Shihang; Zhang, Li; Hu, Yao; Ding, Xiang

    2018-01-01

    Confocal Raman Microscopy (CRM) has matured to become one of the most powerful instruments in analytical science because of its molecular sensitivity and high spatial resolution. Compared with conventional Raman Microscopy, CRM can perform three dimensions mapping of tiny samples and has the advantage of high spatial resolution thanking to the unique pinhole. With the wide application of the instrument, there is a growing requirement for the evaluation of the imaging performance of the system. Point-spread function (PSF) is an important approach to the evaluation of imaging capability of an optical instrument. Among a variety of measurement methods of PSF, the point source method has been widely used because it is easy to operate and the measurement results are approximate to the true PSF. In the point source method, the point source size has a significant impact on the final measurement accuracy. In this paper, the influence of the point source sizes on the measurement accuracy of PSF is analyzed and verified experimentally. A theoretical model of the lateral PSF for CRM is established and the effect of point source size on full-width at half maximum of lateral PSF is simulated. For long-term preservation and measurement convenience, PSF measurement phantom using polydimethylsiloxane resin, doped with different sizes of polystyrene microspheres is designed. The PSF of CRM with different sizes of microspheres are measured and the results are compared with the simulation results. The results provide a guide for measuring the PSF of the CRM.

  16. Single-site Green function of the Dirac equation for full-potential electron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Kordt, Pascal

    2012-05-30

    I present an elaborated analytical examination of the Green function of an electron scattered at a single-site potential, for both the Schroedinger and the Dirac equation, followed by an efficient numerical solution, in both cases for potentials of arbitrary shape without an atomic sphere approximation. A numerically stable way to calculate the corresponding regular and irregular wave functions and the Green function is via the angular Lippmann-Schwinger integral equations. These are solved based on an expansion in Chebyshev polynomials and their recursion relations, allowing to rewrite the Lippmann-Schwinger equations into a system of algebraic linear equations. Gonzales et al. developed this method for the Schroedinger equation, where it gives a much higher accuracy compared to previous perturbation methods, with only modest increase in computational effort. In order to apply it to the Dirac equation, I developed relativistic Lippmann-Schwinger equations, based on a decomposition of the potential matrix into spin spherical harmonics, exploiting certain properties of this matrix. The resulting method was embedded into a Korringa-Kohn-Rostoker code for density functional calculations. As an example, the method is applied by calculating phase shifts and the Mott scattering of a tungsten impurity. (orig.)

  17. Single-site Green function of the Dirac equation for full-potential electron scattering

    International Nuclear Information System (INIS)

    Kordt, Pascal

    2012-01-01

    I present an elaborated analytical examination of the Green function of an electron scattered at a single-site potential, for both the Schroedinger and the Dirac equation, followed by an efficient numerical solution, in both cases for potentials of arbitrary shape without an atomic sphere approximation. A numerically stable way to calculate the corresponding regular and irregular wave functions and the Green function is via the angular Lippmann-Schwinger integral equations. These are solved based on an expansion in Chebyshev polynomials and their recursion relations, allowing to rewrite the Lippmann-Schwinger equations into a system of algebraic linear equations. Gonzales et al. developed this method for the Schroedinger equation, where it gives a much higher accuracy compared to previous perturbation methods, with only modest increase in computational effort. In order to apply it to the Dirac equation, I developed relativistic Lippmann-Schwinger equations, based on a decomposition of the potential matrix into spin spherical harmonics, exploiting certain properties of this matrix. The resulting method was embedded into a Korringa-Kohn-Rostoker code for density functional calculations. As an example, the method is applied by calculating phase shifts and the Mott scattering of a tungsten impurity. (orig.)

  18. Stable evaluation of Green's functions in cylindrically stratified regions with uniaxial anisotropic layers

    Energy Technology Data Exchange (ETDEWEB)

    Moon, H., E-mail: haksu.moon@gmail.com [ElectroScience Laboratory, The Ohio State University, Columbus, OH 43212 (United States); Donderici, B., E-mail: burkay.donderici@halliburton.com [Sensor Physics & Technology, Halliburton Energy Services, Houston, TX 77032 (United States); Teixeira, F.L., E-mail: teixeira@ece.osu.edu [ElectroScience Laboratory, The Ohio State University, Columbus, OH 43212 (United States)

    2016-11-15

    We present a robust algorithm for the computation of electromagnetic fields radiated by point sources (Hertzian dipoles) in cylindrically stratified media where each layer may exhibit material properties (permittivity, permeability, and conductivity) with uniaxial anisotropy. Analytical expressions are obtained based on the spectral representation of the tensor Green's function based on cylindrical Bessel and Hankel eigenfunctions, and extended for layered uniaxial media. Due to the poor scaling of these eigenfunctions for extreme arguments and/or orders, direct numerical evaluation of such expressions can produce numerical instability, i.e., underflow, overflow, and/or round-off errors under finite precision arithmetic. To circumvent these problems, we develop a numerically stable formulation through suitable rescaling of various expressions involved in the computational chain, to yield a robust algorithm for all parameter ranges. Numerical results are presented to illustrate the robustness of the formulation including cases of practical interest.

  19. Point-source inversion techniques

    Science.gov (United States)

    Langston, Charles A.; Barker, Jeffrey S.; Pavlin, Gregory B.

    1982-11-01

    A variety of approaches for obtaining source parameters from waveform data using moment-tensor or dislocation point source models have been investigated and applied to long-period body and surface waves from several earthquakes. Generalized inversion techniques have been applied to data for long-period teleseismic body waves to obtain the orientation, time function and depth of the 1978 Thessaloniki, Greece, event, of the 1971 San Fernando event, and of several events associated with the 1963 induced seismicity sequence at Kariba, Africa. The generalized inversion technique and a systematic grid testing technique have also been used to place meaningful constraints on mechanisms determined from very sparse data sets; a single station with high-quality three-component waveform data is often sufficient to discriminate faulting type (e.g., strike-slip, etc.). Sparse data sets for several recent California earthquakes, for a small regional event associated with the Koyna, India, reservoir, and for several events at the Kariba reservoir have been investigated in this way. Although linearized inversion techniques using the moment-tensor model are often robust, even for sparse data sets, there are instances where the simplifying assumption of a single point source is inadequate to model the data successfully. Numerical experiments utilizing synthetic data and actual data for the 1971 San Fernando earthquake graphically demonstrate that severe problems may be encountered if source finiteness effects are ignored. These techniques are generally applicable to on-line processing of high-quality digital data, but source complexity and inadequacy of the assumed Green's functions are major problems which are yet to be fully addressed.

  20. Multiscale simulations of anisotropic particles combining molecular dynamics and Green's function reaction dynamics

    NARCIS (Netherlands)

    Vijaykumar, A.; Ouldridge, T.E.; ten Wolde, P.R.; Bolhuis, P.G.

    2017-01-01

    The modeling of complex reaction-diffusion processes in, for instance, cellular biochemical networks or self-assembling soft matter can be tremendously sped up by employing a multiscale algorithm which combines the mesoscopic Green's Function Reaction Dynamics (GFRD) method with explicit stochastic

  1. Hexagon functions and the three-loop remainder function

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Lance J.; Drummond, James M.; von Hippel, Matt; Pennington, Jeffrey

    2013-12-01

    We present the three-loop remainder function, which describes the scattering of six gluons in the maximally-helicity-violating configuration in planar NN = 4 super-Yang-Mills theory, as a function of the three dual conformal cross ratios. The result can be expressed in terms of multiple Goncharov polylogarithms. We also employ a more restricted class of hexagon functions which have the correct branch cuts and certain other restrictions on their symbols. We classify all the hexagon functions through transcendental weight five, using the coproduct for their Hopf algebra iteratively, which amounts to a set of first-order differential equations. The three-loop remainder function is a particular weight-six hexagon function, whose symbol was determined previously. The differential equations can be integrated numerically for generic values of the cross ratios, or analytically in certain kinematic limits, including the near-collinear and multi-Regge limits. These limits allow us to impose constraints from the operator product expansion and multi-Regge factorization directly at the function level, and thereby to fix uniquely a set of Riemann ζ valued constants that could not be fixed at the level of the symbol. The near-collinear limits agree precisely with recent predictions by Basso, Sever and Vieira based on integrability. The multi-Regge limits agree with the factorization formula of Fadin and Lipatov, and determine three constants entering the impact factor at this order. We plot the three-loop remainder function for various slices of the Euclidean region of positive cross ratios, and compare it to the two-loop one. For large ranges of the cross ratios, the ratio of the three-loop to the two-loop remainder function is relatively constant, and close to -7.

  2. Empirical Green's function analysis: Taking the next step

    Science.gov (United States)

    Hough, S.E.

    1997-01-01

    An extension of the empirical Green's function (EGF) method is presented that involves determination of source parameters using standard EGF deconvolution, followed by inversion for a common attenuation parameter for a set of colocated events. Recordings of three or more colocated events can thus be used to constrain a single path attenuation estimate. I apply this method to recordings from the 1995-1996 Ridgecrest, California, earthquake sequence; I analyze four clusters consisting of 13 total events with magnitudes between 2.6 and 4.9. I first obtain corner frequencies, which are used to infer Brune stress drop estimates. I obtain stress drop values of 0.3-53 MPa (with all but one between 0.3 and 11 MPa), with no resolved increase of stress drop with moment. With the corner frequencies constrained, the inferred attenuation parameters are very consistent; they imply an average shear wave quality factor of approximately 20-25 for alluvial sediments within the Indian Wells Valley. Although the resultant spectral fitting (using corner frequency and ??) is good, the residuals are consistent among the clusters analyzed. Their spectral shape is similar to the the theoretical one-dimensional response of a layered low-velocity structure in the valley (an absolute site response cannot be determined by this method, because of an ambiguity between absolute response and source spectral amplitudes). I show that even this subtle site response can significantly bias estimates of corner frequency and ??, if it is ignored in an inversion for only source and path effects. The multiple-EGF method presented in this paper is analogous to a joint inversion for source, path, and site effects; the use of colocated sets of earthquakes appears to offer significant advantages in improving resolution of all three estimates, especially if data are from a single site or sites with similar site response.

  3. Rigorous derivation of the mean-field green functions of the two-band Hubbard model of superconductivity

    International Nuclear Information System (INIS)

    Adam, G.; Adam, S.

    2007-01-01

    The Green function (GF) equation of motion technique for solving the effective two-band Hubbard model of high-T c superconductivity in cuprates rests on the Hubbard operator (HO) algebra. We show that, if we take into account the invariance to translations and spin reversal, the HO algebra results in invariance properties of several specific correlation functions. The use of these properties allows rigorous derivation and simplification of the expressions of the frequency matrix (FM) and of the generalized mean-field approximation (GMFA) Green functions (GFs) of the model. For the normal singlet hopping and anomalous exchange pairing correlation functions which enter the FM and GMFA-GFs, the use of spectral representations allows the identification and elimination of exponentially small quantities. This procedure secures the reduction of the correlation order to the GMFA-GF expressions

  4. Second feature of the matter two-point function

    Science.gov (United States)

    Tansella, Vittorio

    2018-05-01

    We point out the existence of a second feature in the matter two-point function, besides the acoustic peak, due to the baryon-baryon correlation in the early Universe and positioned at twice the distance of the peak. We discuss how the existence of this feature is implied by the well-known heuristic argument that explains the baryon bump in the correlation function. A standard χ2 analysis to estimate the detection significance of the second feature is mimicked. We conclude that, for realistic values of the baryon density, a SKA-like galaxy survey will not be able to detect this feature with standard correlation function analysis.

  5. Outdoor surviving experiment with three green house enchytraeid species (Oligochaeta: Enchytraeidae

    Directory of Open Access Journals (Sweden)

    Boros, G.

    2011-10-01

    Full Text Available Some enchytraeid species of tropical, subtropical or Mediterranean origin can appear in artificial environments,e.g. green houses due to the worldwide commercial network. Since the used soil from green houses is often disposed outdoors, aquestion raised that these exotic enchytraeid species could survive under continental climate conditions. In this experiment two ofthe resettled green house species survived outdoors the winter frost and the arid summer season in Hungary.

  6. Long and short time quantum dynamics: I. Between Green's functions and transport equations

    Czech Academy of Sciences Publication Activity Database

    Špička, Václav; Velický, Bedřich; Kalvová, Anděla

    2005-01-01

    Roč. 29, - (2005), s. 154-174 ISSN 1386-9477 R&D Projects: GA ČR(CZ) GA202/04/0585; GA AV ČR(CZ) IAA1010404 Institutional research plan: CEZ:AV0Z10100521; CEZ:AV0Z10100520 Keywords : non-equilibrium * Green functions * quantum transport * density functional the ory Subject RIV: BE - The oretical Physics Impact factor: 0.946, year: 2005

  7. Role of green spaces in spatial and functional conception of block 23 in Bela Crkva

    Directory of Open Access Journals (Sweden)

    Manić Božidar

    2011-01-01

    Full Text Available In this paper we examine the possibilities of improving urban settlement structure by interpolation of passive protection concepts against global climate changes, as a measure of bioclimatic design and town planning. As a kind of passive protection concept described in this paper, the way of applying green areas in urban fabric planning is pointed out. The research applies the method of analyses of subject matter - existing legislation, planning documents, professional literature, the available foreign practice, as well as scanning in situ. The case study shows the concept of planning solution to the block 23 in Bela Crkva, with special emphasis on the role of green areas. It points to the specific position of the block in the urban fabric, where the planned use - housing - is located in proximity to the existing use - industry. Then we analyze the possibility to affirm the existing, spontaneously developed agriculture activity in the block, through some planning guidelines, based on the presented comparative examples of urban agriculture in foreign countries.

  8. Three key points along an intrinsic reaction coordinate

    Indian Academy of Sciences (India)

    Unknown

    Abstract. The concept of the reaction force is presented and discussed in detail. For typical processes with energy barriers, it has a universal form which defines three key points along an intrinsic reaction co- ordinate: the force minimum, zero and maximum. We suggest that the resulting four zones be interpreted as involving ...

  9. Point Set Denoising Using Bootstrap-Based Radial Basis Function.

    Science.gov (United States)

    Liew, Khang Jie; Ramli, Ahmad; Abd Majid, Ahmad

    2016-01-01

    This paper examines the application of a bootstrap test error estimation of radial basis functions, specifically thin-plate spline fitting, in surface smoothing. The presence of noisy data is a common issue of the point set model that is generated from 3D scanning devices, and hence, point set denoising is one of the main concerns in point set modelling. Bootstrap test error estimation, which is applied when searching for the smoothing parameters of radial basis functions, is revisited. The main contribution of this paper is a smoothing algorithm that relies on a bootstrap-based radial basis function. The proposed method incorporates a k-nearest neighbour search and then projects the point set to the approximated thin-plate spline surface. Therefore, the denoising process is achieved, and the features are well preserved. A comparison of the proposed method with other smoothing methods is also carried out in this study.

  10. EIA and green procurement: Opportunities for strengthening their coordination

    Energy Technology Data Exchange (ETDEWEB)

    Uttam, Kedar, E-mail: kedar@kth.se [Department of Land and Water Resources Engineering, Royal Institute of Technology, Stockholm (Sweden); Faith-Ell, Charlotta, E-mail: charlotta.faith-ell@WSPGroup.se [WSP Sweden (Sweden); Balfors, Berit, E-mail: balfors@kth.se [Department of Land and Water Resources Engineering, Royal Institute of Technology, Stockholm (Sweden)

    2012-02-15

    EIA plays an important role in enhancing the environmental performance of the construction sector. In recent years, the construction sector has been developing green procurement practices. Green procurement is a process that involves the incorporation of environmental requirements during the procurement of services and products. However, discussion on green procurement is rarely seen during the EIA phase. This paper addresses possible opportunities for improving the coordination between EIA and green procurement within the construction sector. The linking of EIA and green procurement has been postulated in the paper as an aid to strengthen the coordination between project planning and implementation. The paper is based on a literature review and is an outcome of an on-going research project concerning EIA and green procurement. This study indicated that it would be appropriate to introduce green procurement during the pre-decision phase of an EIA. In the present study, the opportunities for integrating green procurement at the stage of EIA are associated with the integration of project planning and EIA. Future research should investigate the mechanism through which the link can be established. - Highlights: Black-Right-Pointing-Pointer This paper identifies opportunities to link EIA and green procurement. Black-Right-Pointing-Pointer Pre-decision phase of EIA could be appropriate for planning green procurement. Black-Right-Pointing-Pointer Future research should investigate the mechanism for establishing the link.

  11. Nonthermal fixed points and the functional renormalization group

    International Nuclear Information System (INIS)

    Berges, Juergen; Hoffmeister, Gabriele

    2009-01-01

    Nonthermal fixed points represent basic properties of quantum field theories, in addition to vacuum or thermal equilibrium fixed points. The functional renormalization group on a closed real-time path provides a common framework for their description. For the example of an O(N) symmetric scalar theory it reveals a hierarchy of fixed point solutions, with increasing complexity from vacuum and thermal equilibrium to nonequilibrium

  12. Environmental Concerns, Environmental Policy and Green Investment.

    Science.gov (United States)

    Gao, Xuexian; Zheng, Haidong

    2017-12-13

    Environmental regulators often use environmental policy to induce green investment by firms. However, if an environmental policy fails to exert a long-run effect on regulating the economic agents' behavior, it may be more reasonable to think of the firm as the leader in the game, since the investment in green technology is usually a strategic decision. In this paper, we consider a three-stage Stackelberg game to address the interaction between a profit-maximizing firm (Stackelberg leader) facing emission-dependent demand, and the environmental regulator (Stackelberg follower). The firm decides on the green technology level in the first stage of the game based on its understanding of the regulator's profits function, especially an environmental concern that is introduced as an exogenous variable. In the current research, we show that high levels of the regulator's environmental concerns do not necessarily lead to the choice of green technology by the firm, and green investment level depends on the combined effects of the market and operational factors for a given level of the regulator's environmental concerns. The result also shows that increasing environmental awareness amongst the consumers is an effective way to drive the firm's green investment.

  13. On the irrationality of Ramanujan's mock theta functions and other q-series at an infinite number of points

    OpenAIRE

    Mingarelli, Angelo B.

    2007-01-01

    We show that all of Ramanujan's mock theta functions of order 3, Watson's three additional mock theta functions of order 3, the Rogers-Ramanujan q-series, and 6 mock theta functions of order 5 take on irrational values at the points q=\\pm 1/2,\\pm 1/3,\\pm 1/4,...

  14. Three-dimensional digital imaging based on shifted point-array encoding.

    Science.gov (United States)

    Tian, Jindong; Peng, Xiang

    2005-09-10

    An approach to three-dimensional (3D) imaging based on shifted point-array encoding is presented. A kind of point-array structure light is projected sequentially onto the reference plane and onto the object surface to be tested and thus forms a pair of point-array images. A mathematical model is established to formulize the imaging process with the pair of point arrays. This formulation allows for a description of the relationship between the range image of the object surface and the lateral displacement of each point in the point-array image. Based on this model, one can reconstruct each 3D range image point by computing the lateral displacement of the corresponding point on the two point-array images. The encoded point array can be shifted digitally along both the lateral and the longitudinal directions step by step to achieve high spatial resolution. Experimental results show good agreement with the theoretical predictions. This method is applicable for implementing 3D imaging of object surfaces with complex topology or large height discontinuities.

  15. Passive detection and localization of fatigue cracking in aluminum plates using Green's function reconstruction from ambient noise.

    Science.gov (United States)

    Yang, Yang; Xiao, Li; Qu, Wenzhong; Lu, Ye

    2017-11-01

    Recent theoretical and experimental studies have demonstrated that a local Green's function can be retrieved from the cross-correlation of ambient noise field. This technique can be used to detect fatigue cracking in metallic structures, owing to the fact that the presence of crack can lead to a change in Green's function. This paper presents a method of structural fatigue cracking characterization method by measuring Green's function reconstruction from noise excitation and verifies the feasibility of crack detection in poor noise source distribution. Fatigue cracks usually generate nonlinear effects, in which different wave amplitudes and frequency compositions can cause different nonlinear responses. This study also undertakes analysis of the capacity of the proposed approach to identify fatigue cracking under different noise amplitudes and frequency ranges. Experimental investigations of an aluminum plate are conducted to assess the cross-correlations of received noise between sensor pairs and finally to detect the introduced fatigue crack. A damage index is proposed according to the variation between cross-correlations obtained from the pristine crack closed state and the crack opening-closure state when sufficient noise amplitude is used to generate nonlinearity. A probability distribution map of damage is calculated based on damage indices. The fatigue crack introduced in the aluminum plate is successfully identified and oriented, verifying that a fatigue crack can be detected by reconstructing Green's functions from an imperfect diffuse field in which ambient noise sources exist locally. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Point Set Denoising Using Bootstrap-Based Radial Basis Function.

    Directory of Open Access Journals (Sweden)

    Khang Jie Liew

    Full Text Available This paper examines the application of a bootstrap test error estimation of radial basis functions, specifically thin-plate spline fitting, in surface smoothing. The presence of noisy data is a common issue of the point set model that is generated from 3D scanning devices, and hence, point set denoising is one of the main concerns in point set modelling. Bootstrap test error estimation, which is applied when searching for the smoothing parameters of radial basis functions, is revisited. The main contribution of this paper is a smoothing algorithm that relies on a bootstrap-based radial basis function. The proposed method incorporates a k-nearest neighbour search and then projects the point set to the approximated thin-plate spline surface. Therefore, the denoising process is achieved, and the features are well preserved. A comparison of the proposed method with other smoothing methods is also carried out in this study.

  17. Improvements on non-equilibrium and transport Green function techniques: The next-generation TRANSIESTA

    OpenAIRE

    Papior, Nick Rübner; Lorente, Nicolás; Frederiksen, Thomas; García, Alberto; Brandbyge, Mads

    2017-01-01

    We present novel methods implemented within the non-equilibrium Green function code (NEGF) TRANSIESTA based on density functional theory (DFT). Our flexible, next-generation DFT–NEGF code handles devices with one or multiple electrodes (Ne≥1) with individual chemical potentials and electronic temperatures. We describe its novel methods for electrostatic gating, contour optimizations, and assertion of charge conservation, as well as the newly implemented algorithms for optimized and scalable m...

  18. Green's Function and Stress Fields in Stochastic Heterogeneous Continua

    Science.gov (United States)

    Negi, Vineet

    Many engineering materials used today are heterogenous in composition e.g. Composites - Polymer Matrix Composites, Metal Matrix Composites. Even, conventional engineering materials - metals, plastics, alloys etc. - may develop heterogeneities, like inclusions and residual stresses, during the manufacturing process. Moreover, these materials may also have intrinsic heterogeneities at a nanoscale in the form of grain boundaries in metals, crystallinity in amorphous polymers etc. While, the homogenized constitutive models for these materials may be satisfactory at a macroscale, recent studies of phenomena like fatigue failure, void nucleation, size-dependent brittle-ductile transition in polymeric nanofibers reveal a major play of micro/nanoscale physics in these phenomena. At this scale, heterogeneities in a material may no longer be ignored. Thus, this demands a study into the effects of various material heterogeneities. In this work, spatial heterogeneities in two material properties - elastic modulus and yield stress - have been investigated separately. The heterogeneity in the elastic modulus is studied in the context of Green's function. The Stochastic Finite Element method is adopted to get the mean statistics of the Green's function defined on a stochastic heterogeneous 2D infinite space. A study of the elastic-plastic transition in a domain having stochastic heterogenous yield stress was done using Mont-Carlo methods. The statistics for various stress and strain fields during the transition were obtained. Further, the effects of size of the domain and the strain-hardening rate on the stress fields during the heterogeneous elastic-plastic transition were investigated. Finally, a case is made for the role of the heterogenous elastic-plastic transition in damage nucleation and growth.

  19. Three points of view in transport theory

    Energy Technology Data Exchange (ETDEWEB)

    Ruben, Panta Pazos [Faculdade de Matematica, PUCRS, Porto Alegre, RS (Brazil); Tilio de Vilhena, M. [Instituto de Matematica, UFRGS, Porto Alegre, RS (Brazil)

    2001-07-01

    A lot of efforts in Transport Theory is used to develop numerical methods or hybrid numerical-analytical techniques. We present in this work three points of view about transport problems. First the C0 semigroup approach, in which the free transport operator {psi} {yields} {mu} {nabla} generates an strongly continuous semigroup. The operators operator {psi} {yields} {sigma}t and operator {psi} {yields} {integral} {nabla} k(x,{mu},{mu}') {psi}(x,{mu}') d{mu}' are bounded operators, and by perturbation the transport operator {psi} {yields} {mu} {nabla} {psi} + {sigma}t {psi} - K {psi} also generates an strongly continuous semigroup. To prove the convergence of the approximations of a numerical methods to the exact solution we use the approximation theorem of C0 semi-groups in canonical form. In other way, the discrete schemes theory is employed in searching the rate of convergence of numerical techniques in transport theory. For 1D dependent of time transport problem and two-dimensional steady state problem we summarize some estimates, incorporating different boundary conditions. Finally we give a survey about the dynamical behavior of the SN approximations. In order to give a unified approach, some results illustrates the equivalence of the three points of views for the case of the steady-state transport problem for slab geometry. (author)

  20. Green's functions for stress-intensity-factors for through cracks emanating from holes

    International Nuclear Information System (INIS)

    Bhandari, S.; Dubeaux, P.

    1981-01-01

    We conducted a parametric study of cracks at various elliptical openings in plates. We used five values of ellipticity and ten values of crack lengths at the edge of these holes. The computer program used is based on the Boundary Integral Equation method which requires only the contour of the structure to be segmented. The results concerning the stress distribution in the uncracked structure were verified for the cases where analytical results were available. Moreover the values of the S.I.F. for certain cases were checked through the use of some of the methods available in the literature. The final aim of this parametric study is to come up with simple Green's functions for cracks at holes. This has been possible through: (a) The use of the stress distribution in the uncracked structure (b) The Green's function for a crack in an infinite medium and (c) The principles underlying the Schwarz alternating technique used in the potential theory to resolve problems of finite regions. Finally the procedure is applied to treat a practical case of cracks as fastner holes. (orig.)

  1. Proposal for the award of two contracts for the maintenance of green areas and roads on the CERN site

    CERN Document Server

    2006-01-01

    This document concerns the award of two contracts for the maintenance of green areas and roads, i) on the CERN site of Meyrin, LHC Point 1 and SPS Points BA5 and BA6 and ii) on the CERN site of Prévessin, all the LHC Points except Point 1 and all the SPS Points except Points BA5 and BA6. The Finance Committee is invited to agree to the negotiation of contracts with: - PAYSAGE CONCEPT (FR), the lowest bidder, for the maintenance of green areas and roads on the CERN's Meyrin site, LHC Point 1 and SPS Points BA5 and BA6 for two years for a total amount of 903 532 Swiss francs, not subject to revision until 30 June 2008. - WIESMANN (FR), the lowest bidder, for the maintenance of green areas and roads on the CERN's Prévessin site, all the LHC Points except Point 1 and all the SPS Points except Points BA5 and BA6 for two years for a total amount of 671 529 Swiss francs, not subject to revision until 30 June 2008. Both contracts will include options for three one-year extensions beyond the initial two-year period....

  2. Effect of a diet enriched with green-lipped mussel on pain behavior and functioning in dogs with clinical osteoarthritis

    OpenAIRE

    Rialland, Pascale; Bichot, Sylvain; Lussier, Bertrand; Moreau, Maxim; Beaudry, Francis; del Castillo, Jérôme RE; Gauvin, Dominique; Troncy, Eric

    2013-01-01

    This study aimed to establish the effect of a diet enriched with green-lipped mussel (GLM) on pain and functional outcomes in osteoarthritic dogs. Twenty-three client-owned dogs with osteoarthritis (OA) were fed a balanced control diet for 30 d and then a GLM-enriched balanced diet for the next 60 d. We assessed peak vertical force (PVF), which is considered to be the gold standard method, at Day (D)0 (start), D30 (end of control diet), and D90 (end of GLM-enriched diet). The owners completed...

  3. Green roofs: roof system reducing heating and cooling costs

    Directory of Open Access Journals (Sweden)

    Konasova, Sarka

    2016-06-01

    Full Text Available Green roofs are among the passive building systems that contribute to the thermal stability of the rooms under the roof in both summer and winter. Green roofs can provide a significant contribution to the thermal balance of the protected space. Over the past ten years, many studies have been carried out to investigate the energy benefits of green roofs in terms of the energy performance of buildings. These studies show that the installation of vegetated cover can achieve energy savings for both winter heating and summer cooling. The green roof, as a thermal insulation, reduces the amount of building operating energy costs and reduces heat losses. This article summarizes current literature and points to situations in which green roofs can play an important role in saving energy for heating and cooling due to improved thermal insulating function of the roof, in case of extensive vegetation coverage without significant overloading of the roof structure and associated over-dimensioning. It is important to note that these energy savings always depend on the particular climate, the type of building and the availability and the type of roof structure.

  4. New results for 5-point functions

    International Nuclear Information System (INIS)

    Gluza, J.

    2007-12-01

    Bhabha scattering is one of the processes at the ILC where high precision data will be expected. The complete NNLO corrections include radiative loop corrections, with contributions from Feynman diagrams with five external legs. We take these diagrams as an example and discuss several features of the evaluation of pentagon diagrams. The tensor functions are usually reduced to simpler scalar functions. Here we study, as an alternative, the application of Mellin-Barnes representations to 5-point functions. There is no evidence for an improved numerical evaluation of their finite, physical parts. However, the approach gives interesting insights into the treatment of the IR- singularities. (orig.)

  5. Green function formalism for nonlinear acoustic waves in layered media

    International Nuclear Information System (INIS)

    Lobo, A.; Tsoy, E.; De Sterke, C.M.

    2000-01-01

    Full text: The applications of acoustic waves in identifying defects in adhesive bonds between metallic plates have received little attention at high intensities where the media respond nonlinearly. However, the effects of reduced bond strength are more distinct in the nonlinear response of the structure. Here we assume a weak nonlinearity acting as a small perturbation, thereby reducing the problem to a linear one. This enables us to develop a specialized Green function formalism for calculating acoustic fields in layered media

  6. Three-point phase correlations: A new measure of non-linear large-scale structure

    CERN Document Server

    Wolstenhulme, Richard; Obreschkow, Danail

    2015-01-01

    We derive an analytical expression for a novel large-scale structure observable: the line correlation function. The line correlation function, which is constructed from the three-point correlation function of the phase of the density field, is a robust statistical measure allowing the extraction of information in the non-linear and non-Gaussian regime. We show that, in perturbation theory, the line correlation is sensitive to the coupling kernel F_2, which governs the non-linear gravitational evolution of the density field. We compare our analytical expression with results from numerical simulations and find a very good agreement for separations r>20 Mpc/h. Fitting formulae for the power spectrum and the non-linear coupling kernel at small scales allow us to extend our prediction into the strongly non-linear regime. We discuss the advantages of the line correlation relative to standard statistical measures like the bispectrum. Unlike the latter, the line correlation is independent of the linear bias. Furtherm...

  7. Model and methods to assess hepatic function from indocyanine green fluorescence dynamical measurements of liver tissue.

    Science.gov (United States)

    Audebert, Chloe; Vignon-Clementel, Irene E

    2018-03-30

    The indocyanine green (ICG) clearance, presented as plasma disappearance rate is, presently, a reliable method to estimate the hepatic "function". However, this technique is not instantaneously available and thus cannot been used intra-operatively (during liver surgery). Near-infrared spectroscopy enables to assess hepatic ICG concentration over time in the liver tissue. This article proposes to extract more information from the liver intensity dynamics by interpreting it through a dedicated pharmacokinetics model. In order to account for the different exchanges between the liver tissues, the proposed model includes three compartments for the liver model (sinusoids, hepatocytes and bile canaliculi). The model output dependency to parameters is studied with sensitivity analysis and solving an inverse problem on synthetic data. The estimation of model parameters is then performed with in-vivo measurements in rabbits (El-Desoky et al. 1999). Parameters for different liver states are estimated, and their link with liver function is investigated. A non-linear (Michaelis-Menten type) excretion rate from the hepatocytes to the bile canaliculi was necessary to reproduce the measurements for different liver conditions. In case of bile duct ligation, the model suggests that this rate is reduced, and that the ICG is stored in the hepatocytes. Moreover, the level of ICG remains high in the blood following the ligation of the bile duct. The percentage of retention of indocyanine green in blood, which is a common test for hepatic function estimation, is also investigated with the model. The impact of bile duct ligation and reduced liver inflow on the percentage of ICG retention in blood is studied. The estimation of the pharmacokinetics model parameters may lead to an evaluation of different liver functions. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Green functions of graphene: An analytic approach

    Energy Technology Data Exchange (ETDEWEB)

    Lawlor, James A., E-mail: jalawlor@tcd.ie [School of Physics, Trinity College Dublin, Dublin 2 (Ireland); Ferreira, Mauro S. [School of Physics, Trinity College Dublin, Dublin 2 (Ireland); CRANN, Trinity College Dublin, Dublin 2 (Ireland)

    2015-04-15

    In this article we derive the lattice Green Functions (GFs) of graphene using a Tight Binding Hamiltonian incorporating both first and second nearest neighbour hoppings and allowing for a non-orthogonal electron wavefunction overlap. It is shown how the resulting GFs can be simplified from a double to a single integral form to aid computation, and that when considering off-diagonal GFs in the high symmetry directions of the lattice this single integral can be approximated very accurately by an algebraic expression. By comparing our results to the conventional first nearest neighbour model commonly found in the literature, it is apparent that the extended model leads to a sizeable change in the electronic structure away from the linear regime. As such, this article serves as a blueprint for researchers who wish to examine quantities where these considerations are important.

  9. Influence of Signal-to-Noise Ratio and Point Spread Function on Limits of Super-Resolution

    NARCIS (Netherlands)

    Pham, T.Q.; Vliet, L.J. van; Schutte, K.

    2005-01-01

    This paper presents a method to predict the limit of possible resolution enhancement given a sequence of low resolution images. Three important parameters influence the outcome of this limit: the total Point Spread Function (PSF), the Signal-to-Noise Ratio (SNR) and the number of input images.

  10. Influence of signal-to-noise ratio and point spread function on limits of super-resolution

    NARCIS (Netherlands)

    Pham, T.Q.; Van Vliet, L.; Schutte, K.

    2005-01-01

    This paper presents a method to predict the limit of possible resolution enhancement given a sequence of lowresolution images. Three important parameters influence the outcome of this limit: the total Point Spread Function (PSF), the Signal-to-Noise Ratio (SNR) and the number of input images.

  11. Use of Green functions in line shape problems in nuclear Magnetic resonance

    International Nuclear Information System (INIS)

    Martin, M.; Moreno, J.A.

    1982-01-01

    A method based on the two times Green function formalism is presented. It permits the straightforward determination of the line shape in Magnetic Resonance experiments together with its temperature behavior. Model calculations are made on a two-spin system attached to a one-dimensional rotor obtaining the temperature dependence of its Magnetic Resonance line shape and second moment

  12. Numerical solution of the potential problem by integral equations without Green's functions

    International Nuclear Information System (INIS)

    De Mey, G.

    1977-01-01

    An integral equation technique will be presented to solve Laplace's equation in a two-dimensional area S. The Green's function has been replaced by a particular solution of Laplace equation in order to establish the integral equation. It is shown that accurate results can be obtained provided the pivotal elimination method is used to solve the linear algebraic set

  13. Bifurcations and degenerate periodic points in a three dimensional chaotic fluid flow

    International Nuclear Information System (INIS)

    Smith, L. D.; Rudman, M.; Lester, D. R.; Metcalfe, G.

    2016-01-01

    Analysis of the periodic points of a conservative periodic dynamical system uncovers the basic kinematic structure of the transport dynamics and identifies regions of local stability or chaos. While elliptic and hyperbolic points typically govern such behaviour in 3D systems, degenerate (parabolic) points also play an important role. These points represent a bifurcation in local stability and Lagrangian topology. In this study, we consider the ramifications of the two types of degenerate periodic points that occur in a model 3D fluid flow. (1) Period-tripling bifurcations occur when the local rotation angle associated with elliptic points is reversed, creating a reversal in the orientation of associated Lagrangian structures. Even though a single unstable point is created, the bifurcation in local stability has a large influence on local transport and the global arrangement of manifolds as the unstable degenerate point has three stable and three unstable directions, similar to hyperbolic points, and occurs at the intersection of three hyperbolic periodic lines. The presence of period-tripling bifurcation points indicates regions of both chaos and confinement, with the extent of each depending on the nature of the associated manifold intersections. (2) The second type of bifurcation occurs when periodic lines become tangent to local or global invariant surfaces. This bifurcation creates both saddle–centre bifurcations which can create both chaotic and stable regions, and period-doubling bifurcations which are a common route to chaos in 2D systems. We provide conditions for the occurrence of these tangent bifurcations in 3D conservative systems, as well as constraints on the possible types of tangent bifurcation that can occur based on topological considerations.

  14. Green engineering: Green composite material, biodiesel from waste coffee grounds, and polyurethane bio-foam

    Science.gov (United States)

    Cheng, Hsiang-Fu

    In this thesis we developed several ways of producing green materials and energy resources. First, we developed a method to fabricate natural fibers composites, with the purpose to develop green textile/woven composites that could potentially serve as an alternative to materials derived from non-renewable sources. Flax and hemp fabrics were chosen because of their lightweight and exceptional mechanical properties. To make these textile/woven composites withstand moist environments, a commercially available marine resin was utilized as a matrix. The tensile, three-point bending, and edgewise compression strengths of these green textile/woven composites were measured using ASTM protocols. Secondly, we developed a chemical procedure to obtain oil from waste coffee grounds; we did leaching and liquid extractions to get liquid oil from the solid coffee. This coffee oil was used to produce bio-diesel that could be used as a substitute for petroleum-based diesel. Finally, polyurethane Bio-foam formation utilized glycerol that is the by-product from the biodiesel synthesis. A chemical synthesis procedure from the literature was used as the reference system: a triol and isocynate are mixed to produce polyurethane foam. Moreover, we use a similar triol, a by-product from bio-diesel synthesis, to reproduce polyurethane foam.

  15. Towards green loyalty: the influences of green perceived risk, green image, green trust and green satisfaction

    Science.gov (United States)

    Chrisjatmiko, K.

    2018-01-01

    The paper aims to present a comprehensive framework for the influences of green perceived risk, green image, green trust and green satisfaction to green loyalty. The paper also seeks to account explicitly for the differences in green perceived risk, green image, green trust, green satisfaction and green loyalty found among green products customers. Data were obtained from 155 green products customers. Structural equation modeling was used in order to test the proposed hypotheses. The findings show that green image, green trust and green satisfaction has positive effects to green loyalty. But green perceived risk has negative effects to green image, green trust and green satisfaction. However, green perceived risk, green image, green trust and green satisfaction also seems to be a good device to gain green products customers from competitors. The contributions of the paper are, firstly, a more complete framework of the influences of green perceived risk, green image, green trust and green satisfaction to green loyalty analyses simultaneously. Secondly, the study allows a direct comparison of the difference in green perceived risk, green image, green trust, green satisfaction and green loyalty between green products customers.

  16. Orbital classical solutions, non-perturbative phenomena and singularity at the zero coupling constant point

    International Nuclear Information System (INIS)

    Vourdas, A.

    1982-01-01

    We try to extend previous arguments on orbital classical solutions in non-relativistic quantum mechanics to the 1/4lambda vertical stroke phi vertical stroke 4 complex relativistic field theory. The single valuedness of the Green function in the semiclassical (Planksche Konstante → 0) limit leads to a Bohr-Sommerfeld quantization. A path integral formalism for the Green functions analogous to that in non-relativistic quantum mechanics is employed and a semiclassical approach which uses our classical solutions indicates non-perturbative effects. They reflect an esub(1/lambda) singularity at the zero coupling constant point. (orig.)

  17. Frugal Innovation and Green Business Models

    DEFF Research Database (Denmark)

    Andersen, Maj Munch

    2015-01-01

    The literature on ‘green business models’ is rapidly developing these years. This paper suggests that much existing work on green business models lacks a deeper theoretical understanding of eco-innovation and the green economy. The paper forwards an evolutionary economic perspective on green...... business models. This perspective departs in important ways from other approaches to green business models the implications of which are sought clarified and discussed in the paper. The paper argues for the need to link up green business model innovation to aggregate green economic change. The paper posits...... that the greening of the economy has reached such a stage of maturity where a generic ‘green business model’ is apparent. The paper points to eight characteristics of eco-innovation on the basis of which key changes to the business model are identified and schematised for the different stages of the green economic...

  18. Shear viscosity of the Lennard-Jones fluid near the triple point: Green-Kubo results

    International Nuclear Information System (INIS)

    Erpenbeck, J.J.

    1988-01-01

    The long-standing disagreement over the shear viscosity coefficient of the Lennard-Jones fluid near the triple point is reexamined through a series of very extensive Monte Carlo molecular-dynamics calculations of this transport coefficient based on the Green-Kubo theory. The stress autocorrelation function is shown to exhibit a slow decay, principally in the kinetic-potential and the potential-potential terms, which is large compared with the kinetic-kinetic long-time tail predicted by simple mode-coupling theory. Nonetheless, the viscosity coefficient, exclusive of any correction for this tail for times greater than are accessible numerically, is found to agree with that of Schoen and Hoheisel (who discounted the existence of such a tail) as well as nonequilibrium molecular-dynamics calculations. The large value of the viscosity coefficient found by Levesque and co-workers for 864 particles is brought into statistical agreement with the present results by a modest, but not unrealistic, increase in its statistical uncertainty. The pressure is found to exhibit an anomalous dependence on the size of the system, but the viscosity as well as the self-diffusion constant appear to be linear in the inverse of the number of particles, within the precision of our calculations. The viscosity coefficient, including a long-time-tail contribution based on the extended mode-coupling theory is (3.796 +- 0.068)σepsilon-c/m)/sup 1/2/ for the Lennard-Jones potential, fitted to a cubic spline, and (3.345 +- 0.068)σepsilon-c/m)/sup 1/2/ for the potential truncated at 2.5σ

  19. Neutral-point current modeling and control for Neutral-Point Clamped three-level converter drive with small DC-link capacitors

    DEFF Research Database (Denmark)

    Maheshwari, Ram Krishan; Munk-Nielsen, Stig; Busquets-Monge, Sergio

    2011-01-01

    A Neutral-Point-Clamped (NPC) three-level inverter with small DC-link capacitors is presented in this paper. This inverter requires zero average neutral-point current for stable neutral-point potential. A simple carrier based modulation strategy is proposed for achieving zero average neutral...... drive with only 14 μF DC-link capacitors. A fast and stable performance of the neutral-point voltage controller is achieved and verified by experiments....

  20. Quantal and thermal zero point motion formulae of barrier transmission probability

    International Nuclear Information System (INIS)

    Takigawa, N.; Alhassid, Y.; Balantekin, A.B.

    1992-01-01

    A Green's function method is developed to derive quantal zero point motion formulae for the barrier transmission probability in heavy ion fusion reactions corresponding to various nuclear intrinsic degrees of freedom. In order to apply to the decay of a hot nucleus, the formulae are then generalized to the case where the intrinsic degrees of freedom are in thermal equilibrium with a heat bath. A thermal zero point motion formula for vibrational coupling previously obtained through the use of influence functional methods naturally follows, and the effects of rotational coupling are found to be independent of temperature if the deformation is rigid

  1. On the Reliability of Source Time Functions Estimated Using Empirical Green's Function Methods

    Science.gov (United States)

    Gallegos, A. C.; Xie, J.; Suarez Salas, L.

    2017-12-01

    The Empirical Green's Function (EGF) method (Hartzell, 1978) has been widely used to extract source time functions (STFs). In this method, seismograms generated by collocated events with different magnitudes are deconvolved. Under a fundamental assumption that the STF of the small event is a delta function, the deconvolved Relative Source Time Function (RSTF) yields the large event's STF. While this assumption can be empirically justified by examination of differences in event size and frequency content of the seismograms, there can be a lack of rigorous justification of the assumption. In practice, a small event might have a finite duration when the RSTF is retrieved and interpreted as the large event STF with a bias. In this study, we rigorously analyze this bias using synthetic waveforms generated by convolving a realistic Green's function waveform with pairs of finite-duration triangular or parabolic STFs. The RSTFs are found using a time-domain based matrix deconvolution. We find when the STFs of smaller events are finite, the RSTFs are a series of narrow non-physical spikes. Interpreting these RSTFs as a series of high-frequency source radiations would be very misleading. The only reliable and unambiguous information we can retrieve from these RSTFs is the difference in durations and the moment ratio of the two STFs. We can apply a Tikhonov smoothing to obtain a single-pulse RSTF, but its duration is dependent on the choice of weighting, which may be subjective. We then test the Multi-Channel Deconvolution (MCD) method (Plourde & Bostock, 2017) which assumes that both STFs have finite durations to be solved for. A concern about the MCD method is that the number of unknown parameters is larger, which would tend to make the problem rank-deficient. Because the kernel matrix is dependent on the STFs to be solved for under a positivity constraint, we can only estimate the rank-deficiency with a semi-empirical approach. Based on the results so far, we find that the

  2. ``Green's function'' approach & low-mode asymmetries

    Science.gov (United States)

    Masse, Laurent; Clark, Dan; Salmonson, Jay; MacLaren, Steve; Ma, Tammy; Khan, Shahab; Pino, Jesse; Ralph, Jo; Czajka, C.; Tipton, Robert; Landen, Otto; Kyrala, Georges; 2 Team; 1 Team

    2017-10-01

    Long wavelength, low mode asymmetries are believed to play a leading role in limiting the performance of current ICF implosions on NIF. These long wavelength modes are initiated and driven by asymmetries in the x-ray flux from the hohlraum; however, the underlying hydrodynamics of the implosion also act to amplify these asymmetries. The work presented here aim to deepen our understanding of the interplay of the drive asymmetries and the underlying implosion hydrodynamics in determining the final imploded configuration. This is accomplished through a synthesis of numerical modeling, analytic theory, and experimental data. In detail, we use a Green's function approach to connect the drive asymmetry seen by the capsule to the measured inflight and hot spot symmetries. The approach has been validated against a suite of numerical simulations. Ultimately, we hope this work will identify additional measurements to further constrain the asymmetries and increase hohlraum illumination design flexibility on the NIF. The technique and derivation of associated error bars will be presented. LLC, (LLNS) Contract No. DE-AC52-07NA27344.

  3. Scheme for ab initio calculation of the Green function in large disordered systems with application to transport properties

    Science.gov (United States)

    Tanaka, Hiroshi

    1998-01-01

    A real-space scheme is developed to calculate matrix elements of the Green function from first principles for large disordered systems. The scheme is an extension of the particle source method, combined with the tight-binding linear muffin-tin orbitals and has the following advantages: (i) It is possible to evaluate both the diagonal and off-diagonal parts of the Green function and also their products with other quantum operators, (ii) it allows for an explicit control of the numerical accuracy and clear-cut physical interpretations of the results on the basis of the definition of the Green function, and (iii) the scheme is suitable for both vector and parallel processing and requires CPU time and memory size proportional only to the system size. The method is applied to the densities of states of bcc and amorphous Fe. The dc conductivity is also evaluated for the latter from the Kubo-Greenwood formula.

  4. Spin-hydrodynamic equations with external disturbances and suitable Green's functions for superfluid 3He-B. New Onsager relations

    International Nuclear Information System (INIS)

    Galasiewicz, Z.M.

    1984-01-01

    The spin-hydrodynamic equations for superfluid 3 He-B are obtained for the case of external, time-dependent fields. On the basis of a microscopic approach, expressions are found for additional terms in equations containing these fields. Considering the linear response of the system to the switching on of external fields, formulas are found for suitable Green's functions (magnetization-magnetization, rotation-rotation, magnetization-rotation , rotation-magnetization). The rotation-rotation Green's function has the 1/q 2 singularity characteristic of superfluid systems. Connections between Green's functions lead to relations among kinetic coefficients nu, μ 1 , and μ 2 . It is also shown that there is a conserved quantity Q/sup (B)/ = div nu/sub s//sup (B)/ that describes sources or magnetic type charges (monopoles) of the superfluid velocity nu/sub s//sup (B)/. Comparison with the phenomenological approach suggests that Q/sup (B)/ is proportional to a pseudoscalar giving the projection of the spin density onto the vector describing that axis of rotation. 14 references

  5. Transient difference solutions of the inhomogeneous wave equation - Simulation of the Green's function

    Science.gov (United States)

    Baumeister, K. J.

    1983-01-01

    A time-dependent finite difference formulation to the inhomogeneous wave equation is derived for plane wave propagation with harmonic noise sources. The difference equation and boundary conditions are developed along with the techniques to simulate the Dirac delta function associated with a concentrated noise source. Example calculations are presented for the Green's function and distributed noise sources. For the example considered, the desired Fourier transformed acoustic pressures are determined from the transient pressures by use of a ramping function and an integration technique, both of which eliminates the nonharmonic pressure associated with the initial transient.

  6. Transient difference solutions of the inhomogeneous wave equation: Simulation of the Green's function

    Science.gov (United States)

    Baumeiste, K. J.

    1983-01-01

    A time-dependent finite difference formulation to the inhomogeneous wave equation is derived for plane wave propagation with harmonic noise sources. The difference equation and boundary conditions are developed along with the techniques to simulate the Dirac delta function associated with a concentrated noise source. Example calculations are presented for the Green's function and distributed noise sources. For the example considered, the desired Fourier transformed acoustic pressures are determined from the transient pressures by use of a ramping function and an integration technique, both of which eliminates the nonharmonic pressure associated with the initial transient.

  7. Green's function method with consideration of temperature dependent material properties for fatigue monitoring of nuclear power plants

    International Nuclear Information System (INIS)

    Koo, Gyeong-Hoi; Kwon, Jong-Jooh; Kim, Wanjae

    2009-01-01

    In this paper, a method to consider temperature dependent material properties when using the Green's function method is proposed by using a numerical weight function approach. This is verified by using detailed finite element analyses for a pressurizer spray nozzle with various assumed thermal transient load cases. From the results, it is found that the temperature dependent material properties can significantly affect the maximum peak stresses and the proposed method can resolve this problem with the weight function approach. Finally, it is concluded that the temperature dependency of the material properties affects the maximum stress ranges for a fatigue evaluation. Therefore, it is necessary to consider this effect to monitor fatigue damage when using a Green's function method for the real operating conditions in a nuclear power plant

  8. Generation of data base for on-line fatigue life monitoring of Indian nuclear power plant components: Part I - Generation of Green's functions for end fitting

    International Nuclear Information System (INIS)

    Mukhopadhyay, N.K.; Dutta, B.K.; Kushwaha, H.S.

    1994-01-01

    Green's function technique is the heart of the on- line fatigue monitoring methodology. The plant transients are converted to stress and temperature response using this technique. To implement this methodology in a nuclear power plant, Green's functions are to be generated in advance. For structures of complex geometries, Green's functions are to be stored in a data base to convert on-line, the plant data to temperature/stress response, using a personal computer. End fitting, end shield, pressurizer, steam generator tube sheet are few such components of PHWR where fatigue monitoring is needed. In the present paper, Green's functions are generated for end fitting of a 235 MWe Indian PHWR using finite element method. End fitting has been analysed using both 3-D and 2-D (axisymmetric) finite element models. Temperature and stress Green's functions are generated at few critical locations using the code ABAQUS. (author). 10 refs., 11 figs

  9. New results for the Liebau phenomenon via fixed point index

    Czech Academy of Sciences Publication Activity Database

    Cid, J.A.; Infante, G.; Tvrdý, Milan; Zima, M.

    2017-01-01

    Roč. 35, June (2017), s. 457-469 ISSN 1468-1218 R&D Projects: GA ČR(CZ) GA14-06958S Institutional support: RVO:67985840 Keywords : cone * fixed point index * Green's function Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.659, year: 2016 http://www.sciencedirect.com/science/article/pii/S1468121816301511

  10. An algebraic construction of the Green functions for P(φ)2 theory with source

    International Nuclear Information System (INIS)

    Houard, J.C.; Irac-Astaud, M.

    1987-01-01

    The retarded solutions of nonlinear forced wave equations in two-dimensional space-time are diagrammatically expanded in a new way, different from the Feynman method. The Green functions associated with these diagrams are obtained in an explicit form. (author). 4 refs

  11. Acoustical case studies of three green buildings

    Science.gov (United States)

    Siebein, Gary; Lilkendey, Robert; Skorski, Stephen

    2005-04-01

    Case studies of 3 green buildings with LEED certifications that required extensive acoustical retrofit work to become satisfactory work environments for their intended user groups will be used to define areas where green building design concepts and acoustical design concepts require reconciliation. Case study 1 is an office and conference center for a city environmental education agency. Large open spaces intended to collect daylight through clerestory windows provided large, reverberant volumes with few acoustic finishes that rendered them unsuitable as open office space and a conference room/auditorium. Case Study 2 describes one of the first gold LEED buildings in the southeast whose primary design concepts were so narrowly focused on thermal and lighting issues that they often worked directly against basic acoustical requirements resulting in sound levels of NC 50-55 in classrooms and faculty offices, crosstalk between classrooms and poor room acoustics. Case study 3 is an environmental education and conference center with open public areas, very high ceilings, and all reflective surfaces made from wood and other environmentally friendly materials that result in excessive loudness when the building is used by the numbers of people which it was intended to serve.

  12. Quantum field theory in non-stationary coordinate systems and Green functions

    International Nuclear Information System (INIS)

    Svaiter, B.F.; Svaiter, N.F.

    1988-01-01

    In this paper we studied a neutral massive scalar field in a bi-dimensional Milne space time. The quantization is made on hyperboles which are Lorentz invariant surfaces. The expansion for the field operator was carried on using a complete set of orthonormal modes which have definite positive and negative dilatation frequence. We have calculated the advanced and retarded Green function and proved that the Feynman propagator diverges in the usual sense. (author) [pt

  13. Progress in Non-equilibrium Green's Functions (PNGF VI)

    International Nuclear Information System (INIS)

    2016-01-01

    The sixth interdisciplinary conference 'Progress in Non-equilibrium Green's Functions' (PNGF6) took place at Lund University, Sweden, on 17-21 August 2015. The conference was attended by 60 scientists, from Europe and overseas, sharing an interest in Green's function methods and/or non-equilibrium phenomena. At the conference, 34 invited and contributed talks were given, together with a poster session with 17 contributions. As its predecessors (Rostock 1999, Dresden 2002, Kiel 2005, Glasgow 2009, Jyväskylä 2012) did, the conference succeeded in gathering different communities for the exchange of recent developments and results. Among the topics of the conference, we mention approaches for strongly correlated systems, improvements of existing perturbative many-body schemes, electron-phonon/-photon interactions in time-dependent treatments, numerical scalability of NEGF approaches, connections with other non-equilibrium methods and concrete physical applications. For the latter, we mention quantum transport, semiconductor kinetics, multiply excited states in atoms and ions, nuclear reactions, high energy physics, quantum cascade lasers, strongly correlated model systems, graphene-nanostructures, optoelectronics, superconductors, spin-dynamics, photovoltaics, excitations in atoms and ions and time-resolved spectroscopy. The present volume contains 20 articles from participants of PNGF6, devoted to these topics. Compared to previous conferences, a completely novel and successful aspect of PNGF6 was the participation of experimentalists among the invited speakers, to establish a connection between emerging experimental techniques (for example, time-dependent spectroscopies) and the theoretical NEGF community. As at the previous PNGF conferences, the atmosphere was friendly and exciting at the same time, favoring vivid and stimulating discussions among experienced scientists, young researchers and students. The conference would not have been

  14. Allometric scaling of kidney function in green iguanas.

    Science.gov (United States)

    Maxwell, Lara K; Jacobson, Elliott R

    2004-07-01

    Numerous physiological parameters, such as metabolic rate and glomerular filtration rate (GFR), are allometrically related to body mass. Whereas the interspecific relationships between metabolic rate and body mass have been extensively studied in vertebrates, intraspecific studies of renal function have been limited. Therefore, kidney function was studied in 16 green iguanas, (Iguana iguana; 322-4764 g), by using nuclear scintigraphy to measure the renal uptake of 99mTc-diethylenetriamine pentaacetic acid (99mTc-DTPA), following either intravenous or intraosseous administration. Route of 99mTc-DTPA administration did not affect the percentage of the dose that accumulated in the kidney (P > 0.05). Renal uptake of 99mTc-DTPA was related to body mass (W, g) as: %Dose Kidney (min-1) = 11.09W(-0.235). Although not directly measured, the apparent renal clearance of 99mTc-DTPA could be described as: Renal CL 99mTc-DTPA (ml.min-1) = 0.005W(0.759), and the mass exponent did not differ from either the 2/3 or 3/4 values (P > 0.05). The similarity of the mass exponents relating both renal function and metabolic rate to body mass suggests a common mechanism underlying these allometric relationships. As this study also demonstrated that renal scintigraphy can be used to quantify kidney function in iguanas, this technique may be a useful research and diagnostic tool.

  15. Environmental Concerns, Environmental Policy and Green Investment

    Directory of Open Access Journals (Sweden)

    Xuexian Gao

    2017-12-01

    Full Text Available Environmental regulators often use environmental policy to induce green investment by firms. However, if an environmental policy fails to exert a long-run effect on regulating the economic agents’ behavior, it may be more reasonable to think of the firm as the leader in the game, since the investment in green technology is usually a strategic decision. In this paper, we consider a three-stage Stackelberg game to address the interaction between a profit-maximizing firm (Stackelberg leader facing emission-dependent demand, and the environmental regulator (Stackelberg follower. The firm decides on the green technology level in the first stage of the game based on its understanding of the regulator’s profits function, especially an environmental concern that is introduced as an exogenous variable. In the current research, we show that high levels of the regulator’s environmental concerns do not necessarily lead to the choice of green technology by the firm, and green investment level depends on the combined effects of the market and operational factors for a given level of the regulator’s environmental concerns. The result also shows that increasing environmental awareness amongst the consumers is an effective way to drive the firm’s green investment.

  16. Green nesting material has a function in mate attraction in the European starling

    NARCIS (Netherlands)

    Komdeur, J

    The function of fresh green nest material has long been debated. It has been suggested that it reduces the number of ectoparasites in nests and on nestlings (nest protection hypothesis), or is used by males to signal condition and paternal quality (male quality hypothesis) or is used as a sexually

  17. The Application of Neutron Transport Green's Functions to Threat Scenario Simulation

    Science.gov (United States)

    Thoreson, Gregory G.; Schneider, Erich A.; Armstrong, Hirotatsu; van der Hoeven, Christopher A.

    2015-02-01

    Radiation detectors provide deterrence and defense against nuclear smuggling attempts by scanning vehicles, ships, and pedestrians for radioactive material. Understanding detector performance is crucial to developing novel technologies, architectures, and alarm algorithms. Detection can be modeled through radiation transport simulations; however, modeling a spanning set of threat scenarios over the full transport phase-space is computationally challenging. Previous research has demonstrated Green's functions can simulate photon detector signals by decomposing the scenario space into independently simulated submodels. This paper presents decomposition methods for neutron and time-dependent transport. As a result, neutron detector signals produced from full forward transport simulations can be efficiently reconstructed by sequential application of submodel response functions.

  18. Inverse electronic scattering by Green's functions and singular values decomposition

    International Nuclear Information System (INIS)

    Mayer, A.; Vigneron, J.-P.

    2000-01-01

    An inverse scattering technique is developed to enable a sample reconstruction from the diffraction figures obtained by electronic projection microscopy. In its Green's functions formulation, this technique takes account of all orders of diffraction by performing an iterative reconstruction of the wave function on the observation screen. This scattered wave function is then backpropagated to the sample to determine the potential-energy distribution, which is assumed real valued. The method relies on the use of singular values decomposition techniques, thus providing the best least-squares solutions and enabling a reduction of noise. The technique is applied to the analysis of a two-dimensional nanometric sample that is observed in Fresnel conditions with an electronic energy of 25 eV. The algorithm turns out to provide results with a mean relative error of the order of 5% and to be very stable against random noise

  19. ADVANTAGES OF GREEN TECHNOLOGY

    OpenAIRE

    Ghanshyam Das Soni

    2017-01-01

    Technology is application of knowledge to practical requirements. Green technologies encompass various aspects of technology which help us reduce the human impact on the environment and create ways of sustainable development. Social equitability, economic feasibility and sustainability are the key parameters for green technologies. Today the environment is racing towards the tipping point at which we would have done permanent irreversible damage to the planet earth. Our current actions are pu...

  20. Green's functions for a scalar fields in a class of Robertson-Walker space-times

    International Nuclear Information System (INIS)

    Mankin, Romi; Ainsaar, Ain

    1997-01-01

    The retarded and advanced Green's functions for a massless non conformally-coupled scalar field in a class of Robertson-Walker space-times are calculated analytically. The results are applied to the calculation of the Hadamard fundamental solutions in some special cases. (author)

  1. The Green-Kubo formula, autocorrelation function and fluctuation spectrum for finite Markov chains with continuous time

    International Nuclear Information System (INIS)

    Chen Yong; Chen Xi; Qian Minping

    2006-01-01

    A general form of the Green-Kubo formula, which describes the fluctuations pertaining to all the steady states whether equilibrium or non-equilibrium, for a system driven by a finite Markov chain with continuous time (briefly, MC) {ξ t }, is shown. The equivalence of different forms of the Green-Kubo formula is exploited. We also look at the differences in terms of the autocorrelation function and the fluctuation spectrum between the equilibrium state and the non-equilibrium steady state. Also, if the MC is in the non-equilibrium steady state, we can always find a complex function ψ, such that the fluctuation spectrum of {φ(ξ t )} is non-monotonous in [0, + ∞)

  2. Characteristics and functionality of appetite-reducing thylakoid powders produced by three different drying processes.

    Science.gov (United States)

    Östbring, Karolina; Sjöholm, Ingegerd; Sörenson, Henrietta; Ekholm, Andrej; Erlanson-Albertsson, Charlotte; Rayner, Marilyn

    2018-03-01

    Thylakoids, a chloroplast membrane extracted from green leaves, are a promising functional ingredient with appetite-reducing properties via their lipase-inhibiting effect. Thylakoids in powder form have been evaluated in animal and human models, but no comprehensive study has been conducted on powder characteristics. The aim was to investigate the effects of different isolation methods and drying techniques (drum-drying, spray-drying, freeze-drying) on thylakoids' physicochemical and functional properties. Freeze-drying yielded thylakoid powders with the highest lipase-inhibiting capacity. We hypothesize that the specific macromolecular structures involved in lipase inhibition were degraded to different degrees by exposure to heat during spray-drying and drum-drying. We identified lightness (Hunter's L-value), greenness (Hunter's a-value), chlorophyll content and emulsifying capacity to be correlated to lipase-inhibiting capacity. Thus, to optimize the thylakoids functional properties, the internal membrane structure indicated by retained green colour should be preserved. This opens possibilities to use chlorophyll content as a marker for thylakoid functionality in screening processes during process optimization. Thylakoids are heat sensitive, and a mild drying technique should be used in industrial production. Strong links between physicochemical parameters and lipase inhibition capacity were found that can be used to predict functionality. The approach from this study can be applied towards production of standardized high-quality functional food ingredients. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. The infinite medium Green's function for neutron transport in plane geometry 40 years later

    International Nuclear Information System (INIS)

    Ganapol, B.D.

    1993-01-01

    In 1953, the first of what was supposed to be two volumes on neutron transport theory was published. The monograph, entitled open-quotes Introduction to the Theory of Neutron Diffusionclose quotes by Case et al., appeared as a Los Alamos National Laboratory report and was to be followed by a second volume, which never appeared as intended because of the death of Placzek. Instead, Case and Zweifel collaborated on the now classic work entitled Linear Transport Theory 2 in which the underlying mathematical theory of linear transport was presented. The initial monograph, however, represented the coming of age of neutron transport theory, which had its roots in radiative transfer and kinetic theory. In addition, it provided the first benchmark results along with the mathematical development for several fundamental neutron transport problems. In particular, one-dimensional infinite medium Green's functions for the monoenergetic transport equation in plane and spherical geometries were considered complete with numerical results to be used as standards to guide code development for applications. Unfortunately, because of the limited computational resources of the day, some numerical results were incorrect. Also, only conventional mathematics and numerical methods were used because the transport theorists of the day were just becoming acquainted with more modern mathematical approaches. In this paper, Green's function solution is revisited in light of modern numerical benchmarking methods with an emphasis on evaluation rather than theoretical results. The primary motivation for considering the Green's function at this time is its emerging use in solving finite and heterogeneous media transport problems

  4. An Application of Green Quality Function Deployment to Designing an Air Conditioner

    OpenAIRE

    Peetam Kumar Dehariya; Dr. Devendra Singh Verma

    2015-01-01

    The paper tackles a systematic and operational approach to Green Quality Function Deployment (GQFD), a customer oriented survey based quality management system with regular improvement in product development. GQFD shows balance between product development and environmental protection. GQFD is not used to determine their attributes and their levels. GQFD captures what product developers “think” would best satisfy customer needs considering Environmental factor. This research used A...

  5. Hysteresis of Soil Point Water Retention Functions Determined by Neutron Radiography

    Science.gov (United States)

    Perfect, E.; Kang, M.; Bilheux, H.; Willis, K. J.; Horita, J.; Warren, J.; Cheng, C.

    2010-12-01

    Soil point water retention functions are needed for modeling flow and transport in partially-saturated porous media. Such functions are usually determined by inverse modeling of average water retention data measured experimentally on columns of finite length. However, the resulting functions are subject to the appropriateness of the chosen model, as well as the initial and boundary condition assumptions employed. Soil point water retention functions are rarely measured directly and when they are the focus is invariably on the main drying branch. Previous direct measurement methods include time domain reflectometry and gamma beam attenuation. Here we report direct measurements of the main wetting and drying branches of the point water retention function using neutron radiography. The measurements were performed on a coarse sand (Flint #13) packed into 2.6 cm diameter x 4 cm long aluminum cylinders at the NIST BT-2 (50 μm resolution) and ORNL-HFIR CG1D (70 μm resolution) imaging beamlines. The sand columns were saturated with water and then drained and rewetted under quasi-equilibrium conditions using a hanging water column setup. 2048 x 2048 pixel images of the transmitted flux of neutrons through the column were acquired at each imposed suction (~10-15 suction values per experiment). Volumetric water contents were calculated on a pixel by pixel basis using Beer-Lambert’s law in conjunction with beam hardening and geometric corrections. The pixel rows were averaged and combined with information on the known distribution of suctions within the column to give 2048 point drying and wetting functions for each experiment. The point functions exhibited pronounced hysteresis and varied with column height, possibly due to differences in porosity caused by the packing procedure employed. Predicted point functions, extracted from the hanging water column volumetric data using the TrueCell inverse modeling procedure, showed very good agreement with the range of point

  6. Green roofs and the LEED green building rating system

    Energy Technology Data Exchange (ETDEWEB)

    Kula, R. [Sustainable Solutions Inc., Wagoner, OK (United States)

    2005-07-01

    The sustainable building industry is becoming increasingly aware of the host of public and private benefits that green roofs can provide in built environments. In dense urban environments, green roofs function to reduce stormwater runoff, urban heat island effects, and particulate matter (PM) pollution. The emerging green roof industry is now poised to support the efforts of green building networks in North America. This paper discussed the general benefits of green roofs, and their recognition within the Leadership in Energy and Environmental Design (LEED) Green Building Rating System. A case study of Mountain Equipment Co-op's Winnipeg site was presented. The building's green roof was directly responsible for earning 5 credits and contributing to the achievement of an additional 2 credits under the LEEDS certification process. Credits were earned for reduced site disturbance; landscape design to reduce heat islands; and water efficiency. The green roof at the site provided the vast majority of the building's cooling needs through an evaporative cooling trough. A photovoltaic pump was used to feed the building's irrigation system, as well as to pump ground water through cooling valances. It was concluded that the rise of sustainable building practices and the LEED Green Building Rating System will revolutionize the way new buildings are constructed.

  7. The tourism potential for birdwatching in three green areas in the city of Campo Grande, MS

    Directory of Open Access Journals (Sweden)

    Emilia Alibio Oppliger

    2016-05-01

    Full Text Available The objective of this study was to evaluate the tourism potential of birds found in three public green areas (a park, a square and a pond, in the city of Campo Grande. The qualitative survey of avifauna totaled 55 observation hours, by the method of direct observation by points. The species were recorded and the frequency of occurrence (FO of each species by analyzed area was calculated. We recorded 107 species, totaling 12% of the Cerrado biome and blue-and-gold macaws were the species with absolute frequency of occurrence in the three areas. Each of the areas presented exclusive species and the park, the largest number of recorded species, standing out as an appropriate place to hold the birdwatch. However, the tourism potential for observing these birds should be strengthened by other actions such as check for complementarity between supply and demand, planning and building elements themselves to the observation activities, organize and present the practical arrangements for the birds observation in accordance with the supply constraints and the level of involvement and expertise of birdwatchers. Local people should be mobilized and motivated to know about the birds that are part of the landscape; the private sector can use a formatted tourism product and create new products or needs, such as crafts or printed guides; and the participation of the government is essential in promoting the 'birdwatching urban script ' product, as in the maintenance of urban nature reserves.

  8. Current experience concerning Romanian green certificates market functioning

    International Nuclear Information System (INIS)

    Vladescu, Gherghina; Lupului, Luminita; Vasilevschi, Constantin; Ghinea, Smaranda

    2006-01-01

    The renewable energy sources are promoted by their beneficial use, namely: - diversification of energy sources for producing electric power; - reduction of pollution produced by fossil fuel burning; - reduction of gas releases producing the greenhouse effects, etc. Currently, most of the renewable energy sources cannot concur on electric power free market because of the high costs of implied investments. To ensure an efficient use of renewable energy sources in electricity production and to maintain the installations implied on the electric power market, it is necessary to implement a system able to produce an output greater than that obtained from electric energy selling. The Romanian Government chose to promote the electric energy production by renewable energy sources by using the green certificate trading system. This system ensures the progress in developing the technologies employed in electric energy production from renewable energy sources and, at the same time the costs implied by their promotion can be adjusted by market mechanisms what will reduce the effects upon the electric energy consumers. The paper presents the legislation frame existing in Romania for promoting the electric energy produced from renewable energy sources, the green certificate trading system applied in Romania, as well as, the role shared by the entities implied in operation and development of the system. In November 2005, a first transaction with green certificates on controlled green certificate market in Romania took place. Analyzed is the evolution of the green certificate market registered so far from its inception, as well as, the lessons learned so far from the experience acquired

  9. Effect of two different forms of three-point line on game actions in ...

    African Journals Online (AJOL)

    The aim of this study was to compare two different designs of the three-point line to analyze which one allows for a higher frequency of motor actions that, according to the literature, should be strengthened when including a three-point line in youth basketball. In the first of two championships, female mini-basketball players ...

  10. Building Envelope Thermal Performance Assessment Using Visual Programming and BIM, based on ETTV requirement of Green Mark and GreenRE

    OpenAIRE

    Taki Eddine Seghier; Lim Yaik Wah; Mohd Hamdan Ahmad; Williams Opeyemi Samuel

    2017-01-01

    Accomplishment of green building design requirements and the achievement of the targeted credit points under a specific green rating system are known to be a task that is very challenging. Building Information Modeling (BIM) design process and tools have already made considerable advancements in green building design and performance analysis. However, Green building design process is still lack of tools and workflows that can provide real-time feedback of building sustainability and rating du...

  11. Performance of dryland and wetland plant species on extensive green roofs.

    Science.gov (United States)

    MacIvor, J Scott; Ranalli, Melissa A; Lundholm, Jeremy T

    2011-04-01

    Green roofs are constructed ecosystems where plants perform valuable services, ameliorating the urban environment through roof temperature reductions and stormwater interception. Plant species differ in functional characteristics that alter ecosystem properties. Plant performance research on extensive green roofs has so far indicated that species adapted to dry conditions perform optimally. However, in moist, humid climates, species typical of wetter soils might have advantages over dryland species. In this study, survival, growth and the performance of thermal and stormwater capture functions of three pairs of dryland and wetland plant species were quantified using an extensive modular green roof system. Seedlings of all six species were germinated in a greenhouse and planted into green roof modules with 6 cm of growing medium. There were 34 treatments consisting of each species in monoculture and all combinations of wet- and dryland species in a randomized block design. Performance measures were survival, vegetation cover and roof surface temperature recorded for each module over two growing seasons, water loss (an estimate of evapotranspiration) in 2007, and albedo and water capture in 2008. Over two seasons, dryland plants performed better than wetland plants, and increasing the number of dryland species in mixtures tended to improve functioning, although there was no clear effect of species or habitat group diversity. All species had survival rates >75 % after the first winter; however, dryland species had much greater cover, an important indicator of green roof performance. Sibbaldiopsis tridentata was the top performing species in monoculture, and was included in the best treatments. Although dryland species outperformed wetland species, planting extensive green roofs with both groups decreased performance only slightly, while increasing diversity and possibly habitat value. This study provides further evidence that plant composition and diversity can

  12. Soil-structure interaction analysis by Green function

    International Nuclear Information System (INIS)

    Muto, Kiyoshi; Kobayashi, Toshio; Nakahara, Mitsuharu.

    1985-01-01

    Using the method of discretized Green function which had been suggested by the authors, the parametric study of the effects of base mat foundation thickness and soil stiffness were conducted. There was no upper structure effects from the response and reaction stress of the soil by employing different base mat foundation thicknesses. However, the response stress of base mat itself had considerable effect on the base mat foundation stress. The harder the soil, became larger accelerations, and smaller displacements on the upper structure. The upper structure lines of force were directed onto the soil. In the case of soft soil, the reaction soil stress were distributed evenly over the entire reactor building area. Common characteristics of all cases, in-plane shear deformation of the upper floor occured and in-plane acceleration and displacement at the center of the structure become larger. Also, the soil stresses around the shield wall of the base mat foundation became large cecause of the effect of the shield wall bending. (Kubozono, M.)

  13. Quantum field theory in the presence of a medium: Green's function expansions

    Energy Technology Data Exchange (ETDEWEB)

    Kheirandish, Fardin [Department of Physics, Islamic Azad University, Shahreza-Branch, Shahreza (Iran, Islamic Republic of); Salimi, Shahriar [Department of Physics, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)

    2011-12-15

    Starting from a Lagrangian and using functional-integration techniques, series expansions of Green's function of a real scalar field and electromagnetic field, in the presence of a medium, are obtained. The parameter of expansion in these series is the susceptibility function of the medium. Relativistic and nonrelativistic Langevin-type equations are derived. Series expansions for Lifshitz energy in finite temperature and for an arbitrary matter distribution are derived. Covariant formulations for both scalar and electromagnetic fields are introduced. Two illustrative examples are given.

  14. Green paper with green electricity? Greening strategies of Nordic pulp and paper industry

    International Nuclear Information System (INIS)

    Luukkanen, Jyrki

    2003-01-01

    The article studies the opinions of paper producers in Finland and Norway and Finnish power producers about the eco-labelling of electricity and its possible effects on pulp and paper industry. The point of departure in the study is how large industrial consumers mediate concerns of environmental issues to the producers. Based on interviews of environmental, energy/power and marketing sector representatives of the companies the article analyses different views related to the criteria of green labelling, green electricity and papermaking, energy sources as image sources, environmental image of papermaking and the threats and opportunities the companies face in the changing international context. The analysis of the interviews is contextualised in the endogenous market based regulation framework of electricity market regulation

  15. Planning multifunctional green infrastructure for compact cities

    DEFF Research Database (Denmark)

    Hansen, Rieke; Olafsson, Anton Stahl; van der Jagt, Alexander P.N.

    2018-01-01

    green space functions or the purposive design and management of multifunctional parks. Based on the findings, we arrive at five recommendations for promoting multifunctional urban green infrastructure in densifying urban areas: 1) undertake systematic spatial assessments of all urban green (and blue....... Further, spatial assessment, strategic planning and site design need to 4) consider synergies, trade-offs and the capacity of urban green spaces to provide functions as part of the wider green infrastructure network; and 5) largely benefit from cooperation between different sectors and public departments......Urban green infrastructure planning aims to develop green space networks on limited space in compact cities. Multifunctionality is considered key to achieving this goal as it supports planning practice that considers the ability of green spaces to provide multiple benefits concurrently. However...

  16. Borel summability in the disorder parameter of the averaged Green's function for Gaussian disorder

    International Nuclear Information System (INIS)

    Constantinescu, F.; Kloeckner, K.; Scharffenberger, U.

    1985-01-01

    In this note we prove Borel summability in the disorder parameter of the averaged Green's function of tight binding models Hsub(v)=-Δ+V with Gaussian disorder. Using this, we can reconstruct the density of states rho(E)sub(γ) from the Borel sums. (orig./WL)

  17. Analysis and research on Maximum Power Point Tracking of Photovoltaic Array with Fuzzy Logic Control and Three-point Weight Comparison Method

    Institute of Scientific and Technical Information of China (English)

    LIN; Kuang-Jang; LIN; Chii-Ruey

    2010-01-01

    The Photovoltaic Array has a best optimal operating point where the array operating can obtain the maximum power.However, the optimal operating point can be compromised by the strength of solar radiation,angle,and by the change of environment and load.Due to the constant changes in these conditions,it has become very difficult to locate the optimal operating point by following a mathematical model.Therefore,this study will focus mostly on the application of Fuzzy Logic Control theory and Three-point Weight Comparison Method in effort to locate the optimal operating point of solar panel and achieve maximum efficiency in power generation. The Three-point Weight Comparison Method is the comparison between the characteristic curves of the voltage of photovoltaic array and output power;it is a rather simple way to track the maximum power.The Fuzzy Logic Control,on the other hand,can be used to solve problems that cannot be effectively dealt with by calculation rules,such as concepts,contemplation, deductive reasoning,and identification.Therefore,this paper uses these two kinds of methods to make simulation successively. The simulation results show that,the Three-point Comparison Method is more effective under the environment with more frequent change of solar radiation;however,the Fuzzy Logic Control has better tacking efficiency under the environment with violent change of solar radiation.

  18. The mere green effect: An fMRI study of pro-environmental advertisements.

    Science.gov (United States)

    Vezich, I Stephanie; Gunter, Benjamin C; Lieberman, Matthew D

    2017-08-01

    Self-report evidence suggests that consumers prefer green products (i.e., pro-environmental) to standard products, but this is not reflected in purchase behaviors. To understand this disconnect, we exposed participants in a magnetic resonance imaging (MRI) scanner to green and standard ads. After viewing each ad, participants rated liking and perceived sustainability. Ratings were more favorable for green ads than for control ads, but the functional MRI data suggested an opposite pattern-participants showed greater activation in regions associated with personal value and reward (ventromedial prefrontal cortex and ventral striatum) in response to control ads relative to green ads. In addition, participants showed greater activity in these regions to the extent that they reported liking control ads, but there was no such trend for green ads. In line with a neuroeconomic account, we suggest that activity in these regions may be indexing a value signal computed during message exposure that may influence downstream purchase decisions, in contrast to self-reported evaluations that may reflect social desirability concerns absent at the point of purchase.

  19. Surface Functionalization of “Rajshahi Silk” Using Green Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Sakil Mahmud

    2017-09-01

    Full Text Available In this study, a novel functionalization approach has been addressed by using sodium alginate (Na-Alg assisted green silver nanoparticles (AgNPs on traditional “Rajshahi silk” fabric via an exhaustive method. The synthesized nanoparticles and coated silk fabrics were characterized by different techniques, including ultraviolet–visible spectroscopy (UV–vis spectra, scanning electron microscopy (SEM, transmission electron microscopy (TEM, energy dispersive X-ray spectroscopy (EDS, X-ray diffraction (XRD, thermogravimetric analysis (TGA, and Fourier transform infrared spectroscopy (FT-IR, which demonstrated that AgNPs with an average size of 6–10 nm were consistently deposited in the fabric surface under optimized conditions (i.e., pH 4, temperature 40 °C, and time 40 min. The silk fabrics treated with AgNPs showed improved colorimetric values and color fastness properties. Moreover, the UV-protection ability and antibacterial activity, as well as other physical properties—including tensile properties, the crease recovery angle, bending behavior, the yellowness index, and wettability (surface contact angle of the AgNPs-coated silk were distinctly augmented. Therefore, green AgNPs-coated traditional silk with multifunctional properties has high potential in the textile industry.

  20. One-point functions in defect CFT and integrability

    Energy Technology Data Exchange (ETDEWEB)

    Leeuw, Marius de; Kristjansen, Charlotte [The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, Copenhagen Ø, DK-2100 (Denmark); Zarembo, Konstantin [NORDITA, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, Stockholm, SE-106 91 (Sweden); Department of Physics and Astronomy, Uppsala University, Uppsala, SE-751 08 (Sweden)

    2015-08-19

    We calculate planar tree level one-point functions of non-protected operators in the defect conformal field theory dual to the D3-D5 brane system with k units of the world volume flux. Working in the operator basis of Bethe eigenstates of the Heisenberg XXX{sub 1/2} spin chain we express the one-point functions as overlaps of these eigenstates with a matrix product state. For k=2 we obtain a closed expression of determinant form for any number of excitations, and in the case of half-filling we find a relation with the Néel state. In addition, we present a number of results for the limiting case k→∞.