WorldWideScience

Sample records for three-dimensional helical wiggler

  1. Helical magnetized wiggler for synchrotron radiation laser

    International Nuclear Information System (INIS)

    Wang Mei; Park, S.Y.; Hirshfield, J.L.

    1999-01-01

    A helical magnetized iron wiggler has been built for a novel infrared synchrotron radiation laser (SRL) experiment. The wiggler consists of four periods of helical iron structure immersed in a solenoid field. This wiggler is to impart transverse velocity to a prebunched 6 MeV electron beam, and thus to obtain a desired high orbit pitch ratio for the SRL. Field tapering at beam entrance is considered and tested on a similar wiggler. Analytic and simulated characteristics of wigglers of this type are discussed and the performance of the fabricated wigglers is demonstrated experimentally. A 4.7 kG peak field was measured for a 6.4 mm air gap and a 5.4 cm wiggler period at a 20 kG solenoid field. The measured helical fields compare favorably with the analytical solution. This type of helical iron wigglers has the potential to be scaled to small periods with strong field amplitude

  2. Helical magnetized wiggler for synchrotron radiation laser

    CERN Document Server

    Wang Mei; Hirshfield, J L

    1999-01-01

    A helical magnetized iron wiggler has been built for a novel infrared synchrotron radiation laser (SRL) experiment. The wiggler consists of four periods of helical iron structure immersed in a solenoid field. This wiggler is to impart transverse velocity to a prebunched 6 MeV electron beam, and thus to obtain a desired high orbit pitch ratio for the SRL. Field tapering at beam entrance is considered and tested on a similar wiggler. Analytic and simulated characteristics of wigglers of this type are discussed and the performance of the fabricated wigglers is demonstrated experimentally. A 4.7 kG peak field was measured for a 6.4 mm air gap and a 5.4 cm wiggler period at a 20 kG solenoid field. The measured helical fields compare favorably with the analytical solution. This type of helical iron wigglers has the potential to be scaled to small periods with strong field amplitude.

  3. Development of solenoid-induced helical wiggler with four poles per period

    International Nuclear Information System (INIS)

    Ohigashi, N.; Tsunawaki, Y.; Kiyochi, M.; Nakao, N.; Fujita, M.; Imasaki, K.; Nakai, S.; Mima, K.

    1999-01-01

    A new type of helical wiggler consisting of two staggered-iron arrays inserted into a solenoid field has been developed. The field measured by a test wiggler showed linear increment with the period. It was seen that 24% of the solenoid field contributed to the induced wiggler field when the gap length and the period of the wiggler were 16 and 24 mm, respectively. This wiggler would be useful for an FEL with a low-energy electron beam propagating in a strong axial guiding field

  4. Development of solenoid-induced helical wiggler with four poles per period

    CERN Document Server

    Ohigashi, N; Kiyochi, M; Nakao, N; Fujita, M; Imasaki, K; Nakai, S; Mima, K

    1999-01-01

    A new type of helical wiggler consisting of two staggered-iron arrays inserted into a solenoid field has been developed. The field measured by a test wiggler showed linear increment with the period. It was seen that 24% of the solenoid field contributed to the induced wiggler field when the gap length and the period of the wiggler were 16 and 24 mm, respectively. This wiggler would be useful for an FEL with a low-energy electron beam propagating in a strong axial guiding field.

  5. Construction of compact FEM using solenoid-induced helical wiggler

    International Nuclear Information System (INIS)

    Ohigashi, N.; Tsunawaki, Y.; Fujita, M.; Imasaki, K.; Mima, K.; Nakai, S.

    2003-01-01

    A prototype of compact Free-Electron Maser (FEM) has been designed for the operation in a usual small laboratory which does not have electric source capacity available enough. The electron energy is 60-120 keV. As it is lower, stronger guiding magnetic field is necessary in addition to wiggler field. To fulfil this condition a solenoid-induced helical wiggler is applied from the viewpoint of saving the electric power of restricted source capacity. The wiggler, for example, with the period of 12 mm creates the field of 92 G in the guiding field of 3.2 kG. The whole system of FEM has been just constructed in a small-scale laboratory. It is so small to occupy the area of 0.7x2.9 m 2

  6. Dispersion relation of Raman FEL with helical Wiggler and ion channel

    International Nuclear Information System (INIS)

    Hosseinalinezhad, M.; Bahmani, M.; Hasanbeigi, A.; Salehkoutahi, M.

    2012-01-01

    In this paper the theory of free electron laser with helical wiggler and ion channel guiding has been presented. The equations of motion for an electron have been analyzed. A formula for the dispersion relation is then derived in the low-gain-per-pass limit. The results of a numerical study of the growth rate enhancement due to the ion channel are presented and discussed.

  7. Symplectic integration for complex wigglers

    International Nuclear Information System (INIS)

    Forest, E.; Ohmi, K.

    1992-01-01

    Using the example of the helical wiggler proposed for the KEK photon factory, we show how to integrate the equation of motion through the wiggler. The integration is performed in cartesian coordinates. For the usual expanded Hamiltonian (without square root), we derive a first order symplectic integrator for the purpose of tracking through a wiggler in a ring. We also show how to include classical radiation for the computation of the damping decrement

  8. Synchrotron radiation from a Helical Wiggler

    International Nuclear Information System (INIS)

    Irani, A.A.

    1979-01-01

    The use of Wiggler magnets as an improved source of synchrotron radiation from high energy electron storage rings was proposed a few years ago. Since then it has also been suggested that synchrotron radiation from Wiggler magnets placed in proton machines can be used to monitor energy, dimensions and position of the beam and that this effect is even more interesting in proton storage rings where the need to see the beam is greater. Most of the calculations carried out so far consider radiation from a single particle in a Wiggler which is appropriate when the beam is radiating incoherently. In this paper a general formalism is developed for the case when the beam radiates coherently. These results are then applied to both electron and proton storage rings. For the electron case, an expression is derived for the length of the bunch to be used as a more intense coherent radiation source. For proton machines the radiation can be used to measure energy, current, transverse dimensions and longitudinal density variations in the beam

  9. Synchrotron radiation from a helical wiggler

    International Nuclear Information System (INIS)

    Irani, A.A.

    1979-01-01

    The use of wiggler magnets as an improved source of synchrotron radiation from high energy electron storage rings was proposed a few years age. Since then it has also been suggested that synchrotron radiation from wiggler magnets placed in proton machines can be used to monitor energy, dimensions and position of the beam and that this effect is even more interesting in proton storage rings where the need to see the beam is greater. Most of the calculations carried out so far consider radiation from a single particle in a wiggler which is appropriate when the beam is radiating incoherently. A general formalism is presented for the case when the beam radiates coherently. These results are applied to both electron and proton storage rings. For the electron case, an expression is derived for the length of the bunch to use it as a more intense coherent radiation source. For proton machines the radiation can be used to measure energy, current, transverse dimensions and longitudinal density variations in the beam

  10. Three-dimensional helical CT for treatment planning of breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hiramatsu, Hideko; Enomoto, Kohji; Ikeda, Tadashi [Keio Univ., Tokyo (Japan). School of Medicine] [and others

    1999-01-01

    The role of three-dimensional (3D) helical CT in the treatment planning of breast cancer was evaluated. Of 36 patients examined, 30 had invasive ductal carcinoma, three had invasive lobular carcinoma, one had DCIS, one had DCIS with minimal invasion, and 1 had Paget`s disease. Patients were examined in the supine position. The whole breast was scanned under about 25 seconds of breath-holding using helical CT (Proceed, Yokogawa Medical Systems, or High-speed Advantage, GE Medical Systems). 3D imaging was obtained with computer assistance (Advantage Windows, GE Medical Systems). Linear and/or spotty enhancement on helical CT was considered to suggest DCIS or intraductal spread in the area surrounding the invasive cancer. Of 36 patients, 24 showed linear and/or spotty enhancement on helical CT, and 22 of those 24 patients had DCIS or intraductal spread. In contrast, 12 of 36 patients were considered to have little or no intraductal spread on helical CT, and eight of the 12 patients had little or no intraductal spread on pathological examination. The sensitivity, specificity, and accuracy rates for detecting intraductal spread on MRI were 85%, 80%, and 83%, respectively. 3D helical CT was considered useful in detecting intraductal spread and planning surgery, however, a larger study using a precise correlation with pathology is necessary. (author)

  11. Three-dimensional helical (spiral) CT angiography. Visualization of vessels in the maxillofacial regions

    International Nuclear Information System (INIS)

    Hanawa, Shigeo; Sakamoto, Hidetomo; Mori, Shin-ichiro; Kagawa, Toyohiro; Seze, Ryosuke; Ishioka, Hisakazu; Tashiro, Himiko; Ogawa, Kazuhisa; Wada, Tadako

    1998-01-01

    Authors performed the contrast helical CT for tumors on the maxillofacial regions, and reconstituted these data into the three-dimensional helical (spiral) CT angiography (CTA). Furthermore the conditions of photographing and the clinical significance of CTA were discussed. The subjects were 24 cases (including 13 of malignant tumors, 4 of benign tumors, 4 of inflammation and 3 of malformations), to which the contrast helical CT was performed transvenously. The photographing condition was set in principal to 140 kV of the tube voltage, 160 (200) mA of the tube current, 3 mm of the X-ray beam width, 3 mm/sec (pitch=1) of the turn-table moving speed. The relationship between the beam width and the pitch was determined by the phantom experiments. The scanning was carried out maximally for continuous 60 sec as the scanning time of a turn/sec. Of all cases, CTA visualized three-dimensionally vessels, but it was hard in the total carotid arteries and the internal-external carotid arteries. Authors analyzed the axial and the multiplanar reconstitution (MPR) images as the two-dimensional display, and the surface rendering (SR), the volume rendering and the maximum intensity projections (MIP) as the three-dimensional display. The axial and MPR image of the facial arteries and the lingual arteries as the branched vessels from the external carotid arteries were recognized easily. By SR, it was easily to understand the anatomical relationship among vessels, gnathic bone and cervical vertebrae, and by MIP sufficiently observe the concentration dependent calcification of the vessel walls. Three-dimensional CTA is very useful to get the three-dimensional visual information about the anatomical structures of the maxillofacial regions which is necessary for oral surgeons to plan the pre-operational strategies. (K.H.)

  12. Utility of three-dimensional helical CT in the diagnosis of breast cancer

    International Nuclear Information System (INIS)

    Maeda, Yoshiaki; Hata, Yoshinobu; Matsuoka, Shinnichi; Nakajima, Nobuhisa; Ito, Toichi; Osada, Tadahiro; Sano, Fumio

    2004-01-01

    Although utility of three-dimensional (3D) helical CT for preoperative examination of breast cancer has been discussed, the accuracy of the helical CT in diagnosing breast cancer has not been fully evaluated. In this study 56 malignant and 28 benign breast tumors were evaluated preoperatively with 3D-helical CT, and their imaging results were compared with pathological findings of surgical specimens. Helical CT identified the presence of malignancy in 54 out of the 56 cancer cases tested and the sensitivity and specificity in distinguishing between malignant and benign tumors were 82% and 57%, respectively. The sensitivity and specificity in diagnosing the presence of metastatic axillary lymph nodes using helical CT were 70% and 80%, respectively. The sensitivity and specificity in diagnosing the presence of extensive intraductal component (EIC) using helical CT were 71% and 86%, respectively. Helical CT visualized all of the tumors in multifocal breast cancer cases. In conclusion, 3D-helical CT is a useful modality for preoperative examination of breast cancer, especially for assessing axillary lymph node status, and EIC, and will be helpful for conducting sentinel lymph node biopsy (SNLB) and breast-conserving surgery. (author)

  13. Theory of nonlinear harmonic generation in free-electron lasers with helical wigglers

    International Nuclear Information System (INIS)

    Geloni, G.; Saldin, E.; Schneidmiller, E.; Yurkov, M.

    2007-05-01

    CoherentHarmonicGeneration (CHG), and in particularNonlinearHarmonicGeneration (NHG), is of importance for both short wavelength Free-Electron Lasers (FELs), in relation with the achievement of shorter wavelengths with a fixed electron-beam energy, and high-average power FEL resonators, in relation with destructive effects of higher harmonics radiation on mirrors. In this paper we present a treatment of NHG from helical wigglers with particular emphasis on the second harmonic. Our study is based on an exact analytical solution of Maxwell's equations, derived with the help of a Green's function method. In particular, we demonstrate that nonlinear harmonic generation (NHG) fromhelicalwigglers vanishes on axis. Our conclusion is in open contrast with results in literature, that include a kinematical mistake in the description of the electron motion. (orig.)

  14. Dispersion relation and growth in a two-stream free electron laser with helical wiggler and ion channel guiding

    International Nuclear Information System (INIS)

    Mehdian, Hassan; Abbasi, Negar

    2008-01-01

    A linear theory of two-stream free electron laser (FEL) with helical wiggler and ion channel guiding is presented. The dispersion relation is obtained with the help of fluid theory and the growth rate is analyzed through the numerical solutions. The considerable enhancement of the growth rate is demonstrated due to the two-stream instability and continuous tuning of peak growth rate ratio, two-stream FEL compared to single-stream FEL, in terms of varying the ion channel frequency is illustrated

  15. Generalized theory of a free-electron laser in a helical wiggler and guide magnetic fields using the kinetic approach

    International Nuclear Information System (INIS)

    Misra, K.D.; Mishra, P.K.

    2002-01-01

    A self-consistent theory of a free-electron laser is developed by the kinetic approach, using the method of characteristics in helical wiggler and guide magnetic fields. The detailed relativistic particle trajectories obtained in wiggler and guide magnetic fields are used in linearized Vlasov-Maxwell equations having variations in perpendicular and parallel momenta to obtain the perturbed distribution function in terms of perturbed electric and magnetic fields deviating from the vector potential approach. The perturbed distribution function thus obtained, having variations in perpendicular and parallel momenta for an arbitrary distribution function, is used to obtain current, conductivity and dielectric tensors. The full dispersion relation (FDR) and Compton dispersion relation (CDR) have been obtained. The dispersion diagram has been obtained and the interaction of the negative longitudinal space charge with the electromagnetic wave has been shown. The temporal growth rates obtained from the full dispersion relation and Compton dispersion relation for the tenuous cold relativistic beam in microwave region have been discussed

  16. Conceptual design of a three-pole wiggler for the APS upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Abliz, M., E-mail: mabliz@aps.anl.gov; Grimmer, J., E-mail: grimmer@aps.anl.gov; Dejus, R.; Ramanathan, M., E-mail: mohan@aps.anl.gov [The Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2016-07-27

    The current design of the Advanced Photon Source Upgrade (APS-U) project is a multi-bend achromat (MBA) lattice, which incorporates three-pole wigglers as radiation sources for the bending magnet beamlines. They are located in the short section between the M4 dipole and Q8 quadrupole magnets. Due to space constraints, a hybrid permanent magnet design is necessary to provide the required magnetic field strength. A three-pole wiggler with a flat peak field profile along the beam axis was designed to enhance the photon flux and flatten the transverse flux density distributions. The magnetic peak field at the center pole reached 1.08 Tesla for a magnetic gap of 26 mm. The maximum power density, integrated over all vertical angles, is 3.1 W/mm{sup 2}, which is substantially higher than that of the existing bending magnets at the APS (0.86 W/mm{sup 2}). Detailed designs of the three-pole wiggler is presented, including calculated spectral-angular flux distributions.

  17. The usefulness of three-dimensional helical CT for the detection of abnormalities of the auditory ossicles

    International Nuclear Information System (INIS)

    Gong, Honghan; Hiraishi, Kumiko; Uesugi, Yasuo; Shimizu, Tadafumi; Narabayashi, Isamu

    1996-01-01

    To evaluate the usefulness of three-dimensional (3D) helical CT for the detection of abnormalities of the auditory ossicles, 3D helical CT of the middle ear was performed in seven patients with hearing disorder. It revealed that 4 patients had congenital deficiency of the auditory ossicles, 2 patients with chronic otitis media had shortening of the incus and one patient with head injury had doubtful fracture of the incus. This study indicated that 3D helical CT of the middle ear can represent the auditory ossicles objectively and can offer detailed diagnosis. (author)

  18. Dosimetric aspects of breast radiotherapy with three-dimensional and intensity-modulated radiotherapy helical tomotherapy planning modules

    International Nuclear Information System (INIS)

    Yadav, Poonam; Yan, Yue; Ignatowski, Tasha; Olson, Anna

    2017-01-01

    In this work, we investigated the dosimetric differences between the intensity-modulated radiotherapy (IMRT) plans and the three-dimensional (3D) helical plans based on the TomoTherapy system. A total of 15 patients with supine setup were randomly selected from the data base. For patients with lumpectomy planning target volume (PTV), regional lymph nodes were also included as part of the target. For dose sparing, the significant differences between the helical IMRT and helical 3D were only found in the heart and contralateral breast. For the dose to the heart, helical IMRT reduced the maximum point dose by 6.98 Gy compared to the helical 3D plan (p = 0.01). For contralateral breast, the helical IMRT plans significantly reduced the maximum point dose by 5.6 Gy compared to the helical 3D plan. However, compared to the helical 3D plan, the helical IMRT plan increased the volume for lower dose (13.08% increase in V 5 Gy , p = 0.01). In general, there are no significant differences in dose sparing between helical IMRT and helical 3D plans.

  19. Magnetic field generation by pointwise zero-helicity three-dimensional steady flow of an incompressible electrically conducting fluid

    Science.gov (United States)

    Rasskazov, Andrey; Chertovskih, Roman; Zheligovsky, Vladislav

    2018-04-01

    We introduce six families of three-dimensional space-periodic steady solenoidal flows, whose kinetic helicity density is zero at any point. Four families are analytically defined. Flows in four families have zero helicity spectrum. Sample flows from five families are used to demonstrate numerically that neither zero kinetic helicity density nor zero helicity spectrum prohibit generation of large-scale magnetic field by the two most prominent dynamo mechanisms: the magnetic α -effect and negative eddy diffusivity. Our computations also attest that such flows often generate small-scale field for sufficiently small magnetic molecular diffusivity. These findings indicate that kinetic helicity and helicity spectrum are not the quantities controlling the dynamo properties of a flow regardless of whether scale separation is present or not.

  20. Dosimetric aspects of breast radiotherapy with three-dimensional and intensity-modulated radiotherapy helical tomotherapy planning modules

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Poonam [Department of Human Oncology, University of Wisconsin-Madison, Madison, WI (United States); Service of Radiation Therapy, University of Wisconsin Aspirus Cancer Center, Wisconsin Rapids, WI (United States); Yan, Yue, E-mail: yyan5@mdanderson.org [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Ignatowski, Tasha [Service of Radiation Therapy, University of Wisconsin Aspirus Cancer Center, Wisconsin Rapids, WI (United States); Olson, Anna [Department of Human Oncology, University of Wisconsin-Madison, Madison, WI (United States); Service of Radiation Therapy, University of Wisconsin Aspirus Cancer Center, Wisconsin Rapids, WI (United States)

    2017-04-01

    In this work, we investigated the dosimetric differences between the intensity-modulated radiotherapy (IMRT) plans and the three-dimensional (3D) helical plans based on the TomoTherapy system. A total of 15 patients with supine setup were randomly selected from the data base. For patients with lumpectomy planning target volume (PTV), regional lymph nodes were also included as part of the target. For dose sparing, the significant differences between the helical IMRT and helical 3D were only found in the heart and contralateral breast. For the dose to the heart, helical IMRT reduced the maximum point dose by 6.98 Gy compared to the helical 3D plan (p = 0.01). For contralateral breast, the helical IMRT plans significantly reduced the maximum point dose by 5.6 Gy compared to the helical 3D plan. However, compared to the helical 3D plan, the helical IMRT plan increased the volume for lower dose (13.08% increase in V{sub 5} {sub Gy}, p = 0.01). In general, there are no significant differences in dose sparing between helical IMRT and helical 3D plans.

  1. Suppression and control of leakage field in electromagnetic helical microwiggler

    Energy Technology Data Exchange (ETDEWEB)

    Ohigashi, N. [Kansai Univ., Osaka (Japan); Tsunawaki, Y. [Osaka Sangyo Univ. (Japan); Imasaki, K. [Institute for Laser Technology, Osaka (Japan)] [and others

    1995-12-31

    Shortening the period of electromagnetic wiggler introduces both the radical increase of the leakage field and the decrease of the field in the gap region. The leakage field is severer problem in planar electromagnetic wiggler than in helical wiggler. Hence, in order to develop a short period electromagnetic wiggler, we have adopted {open_quotes}three poles per period{close_quotes} type electromagnetic helical microwiggler. In this work, we inserted the permanent magnet (PM) blocks with specific magnetized directions in the space between magnetic poles, for suppressing the leakage field flowing out from a pole face to the neighboring pole face. These PM-blocks must have higher intrinsic coersive force than saturation field of pole material. The gap field due to each pole is adjustable by controlling the leakage fields, that is, controlling the position of each iron screw set in each retainer fixing the PM-blocks. At present time, a test wiggler with period 7.8mm, periodical number 10 and gap length 4.6mm has been manufactured. Because the ratio of PM-block aperture to gap length is important parameter to suppress the leakage field, the parameter has been surveyed experimentally for PM-blocks with several dimensions of aperture. The field strength of 3-5kG (K=0.2-0.4) would be expected in the wiggler.

  2. Clinical applications for multiplanar- and three-dimensional-reconstructions by helical-CT for the diagnosis of acetabular fractures

    International Nuclear Information System (INIS)

    Stroszczynski, C.; Schedel, H.; Stoeckle, U.; Wellmann, A.; Beier, J.; Wicht, L.; Hoffmann, R.; Felix, R.

    1996-01-01

    This review describes recent visualizations of computed tomography for the diagnosis of acetabular fractures. The techniques of conventional and helical-CT for the imaging of the acetabulum are compared. Furthermore, the different methods of multiplaner and three-dimensional reconstructions e.g. shaded surface display, maximum intensity projection, and volume rendering are presented. Figures of multiplanar and three-dimensional imaging for fractures of the pelvis is discussed. (orig.) [de

  3. Three-dimensional printing of freeform helical microstructures: a review.

    Science.gov (United States)

    Farahani, R D; Chizari, K; Therriault, D

    2014-09-21

    Three-dimensional (3D) printing is a fabrication method that enables creation of structures from digital models. Among the different structures fabricated by 3D printing methods, helical microstructures attracted the attention of the researchers due to their potential in different fields such as MEMS, lab-on-a-chip systems, microelectronics and telecommunications. Here we review different types of 3D printing methods capable of fabricating 3D freeform helical microstructures. The techniques including two more common microfabrication methods (i.e., focused ion beam chemical vapour deposition and microstereolithography) and also five methods based on computer-controlled robotic direct deposition of ink filament (i.e., fused deposition modeling, meniscus-confined electrodeposition, conformal printing on a rotating mandrel, UV-assisted and solvent-cast 3D printings) and their advantages and disadvantages regarding their utilization for the fabrication of helical microstructures are discussed. Focused ion beam chemical vapour deposition and microstereolithography techniques enable the fabrication of very precise shapes with a resolution down to ∼100 nm. However, these techniques may have material constraints (e.g., low viscosity) and/or may need special process conditions (e.g., vacuum chamber) and expensive equipment. The five other techniques based on robotic extrusion of materials through a nozzle are relatively cost-effective, however show lower resolution and less precise features. The popular fused deposition modeling method offers a wide variety of printable materials but the helical microstructures manufactured featured a less precise geometry compared to the other printing methods discussed in this review. The UV-assisted and the solvent-cast 3D printing methods both demonstrated high performance for the printing of 3D freeform structures such as the helix shape. However, the compatible materials used in these methods were limited to UV-curable polymers and

  4. Electron cloud dynamics in the Cornell Electron Storage Ring Test Accelerator wiggler

    Directory of Open Access Journals (Sweden)

    C. M. Celata

    2011-04-01

    Full Text Available The interference of stray electrons (also called “electron clouds” with accelerator beams is important in modern intense-beam accelerators, especially those with beams of positive charge. In magnetic wigglers, used, for instance, for transverse emittance damping, the intense synchrotron radiation produced by the beam can generate an electron cloud of relatively high density. In this paper the complicated dynamics of electron clouds in wigglers is examined using the example of a wiggler in the Cornell Electron Storage Ring Test Accelerator experiment at the Cornell Electron Storage Ring. Three-dimensional particle-in-cell simulations with the WARP-POSINST computer code show different density and dynamics for the electron cloud at locations near the maxima of the vertical wiggler field when compared to locations near the minima. Dynamics in these regions, the electron cloud distribution vs longitudinal position, and the beam coherent tune shift caused by the wiggler electron cloud will be discussed.

  5. Directed batch assembly of three-dimensional helical nanobelts through angular winding and electroplating

    International Nuclear Information System (INIS)

    Bell, D J; Bauert, T E; Zhang, L; Dong, L X; Sun, Y; Gruetzmacher, D; Nelson, B J

    2007-01-01

    This paper presents a new technique for the directed batch assembly of rolled-up three-dimensional helical nanobelts. The wet etch time is controlled in order for the loose end of the self-formed SiGe/Si/Cr nanobelts to be located over an electrode by taking advantage of the additional angular winding motion in the lateral direction. In a subsequent Au electroplating step, contacts are electroformed and the batch assembly is completed, while at the same time the conductance of the structures is increased

  6. Adjustment of Adiabatic Transition Magnetic Field of Solenoid-Induced Helicla Wiggler

    CERN Document Server

    Tsunawaki, Y

    2005-01-01

    We have been constructed a solenoid-induced helical wiggler for a compact free electron maser operated in a usual small laboratory which does not have electric source capacity available enough. It consists of two staggered-iron arrays inserted perpendicularly to each other in a solenoid electromagnet. In order to lead/extract an electron beam into/from the wiggler, adiabatic transition (AT) field is necessary at both ends of the wiggler. In this work the AT field was produced by setting staggered-nickel plates with different thickness in the five periods. The thickness of each nickel plate was decided by the field analysis using the MAGTZ computational code based on a magnetic moment method. Exact thickness was, however, found by the precise measurement of the field distribution with the greatest circumspection to obtain a homogeneous increment of the AT field. The change of AT field distribution was studied by referring to an equivalent electric circuit of the wiggler.

  7. Making an Inexpensive Electromagnetic Wiggler Using Sheet Materials for the Coils

    CERN Document Server

    Herman-Biallas, George; Hiatt, Thomas; Neil, George; Snyder, Michael

    2004-01-01

    An inexpensive electromagnetic wiggler, made with twenty-eight, 4 cm periods with a K of 1 and gap of 2.6 cm was made within 10 weeks after receipt of order by an industrial machine shop. The coil design used sheet and plate materials cut to shapes using water jet cutting and was assembled in a simple stack design. The coil design extends the serpentine conductor design of the Duke OK4 to more and smaller conductors. The coils are conduction cooled to imbedded cooling plates. The wiggler features graded end pole fields, trim coil compensation for end field errors and mirror plates on the ends to avoid three dimensional end field effects. Details of the methods used in construction and the wiggler performance are presented.

  8. Focusing peculiarities of ion-channel guiding on a relativistic electron beam in a free-electron laser with a three-dimensional wiggler

    International Nuclear Information System (INIS)

    Ouyang, Zhengbiao; Zhang, Shi-Chang

    2014-01-01

    In a free-electron laser the ‘natural focusing’ effect of a three-dimensional wiggler is too weak to confine the transport of a relativistic electron beam when the beam has a high current and consequently an external focusing system is often needed. In this paper we study the focusing peculiarities of an ion-channel guide field on an electron beam. Nonlinear simulations of an electron beam transport show that, compared to an axial guide magnetic field, the ion-channel guide field results in smaller velocity–space and configuration–space spreads. The intrinsic mechanism of this physical phenomenon is that the ion-channel guide field confines the trajectory of the electron motion resulting in a smaller instantaneous curvature radius and a slighter curvature-center excursion than an axial guide magnetic field does. It is also found that, unlike with an axial guide magnetic field, over-focusing may occur if the ion-channel guide field is too strong. (paper)

  9. The 8 cm Period Electromagnetic Wiggler Magnet with Coils Made from Sheet Copper

    CERN Document Server

    Biallas, George H; Hiatt, Tommy; Neil, George R; Snyder, Michael D

    2005-01-01

    An electromagnetic wiggler, now lasing at the Jefferson Lab FEL, has 29 eight cm periods with K variable from 0.6 to1.1 and gap of 2.6 cm. The wiggler was made inexpensively in 11 weeks by an industrial machine shop. The conduction cooled coil design uses copper sheet material cut to forms using water jet cutting. The conductor is cut to serpentine shapes and the cooling plates are cut to ladder shape. The sheets are assembled in stacks insulated with polymer film, also cut with water jet. The coil design extends the serpentine conductor design of the Duke OK4 to more and smaller conductors. The wiggler features graded fields in the two poles at each end and trim coils on these poles to eliminate field errors caused by saturation. An added critical feature is mirror plates at the ends with integral trim coils to eliminate three dimensional end field effects and align the entrance and exit orbit with the axis of the wiggler. Details of construction, measurement methods and excellent wiggler performance are pre...

  10. A novel micro wiggler

    International Nuclear Information System (INIS)

    Liu Qingxiang; Xu Yong

    1995-01-01

    A novel structure of the micro-wiggler is presented. The authors developed a simplified theoretical model of the micro-wiggler. According to the model, an analytic formula of the magnetic field in two dimensions is got. A calculated program (PWMW-I) is developed from the formula. PWMW-I can calculate the field on the axis and the off-axis for the number of periods N, and the entrance or the exit of the micro-wiggler. Three model with different period (10 mm, 5 mm and 3 mm) is designed on the program. The 5T peak field for the period of 3 mm at the gap of 1 mm is got

  11. Three-dimensional magnetohydrodynamic simulations of the Helicity Injected Torus with Steady Inductive drive

    International Nuclear Information System (INIS)

    Izzo, V.A.; Jarboe, T.R.

    2005-01-01

    The Helicity Injected Torus with Steady Inductive drive (HIT-SI) [P. E. Sieck, W. T. Hamp, V. A. Izzo, T. R. Jarboe, B. A. Nelson, R. G. O'Neill, A. J. Redd, and R. J. Smith, IEEE Conference Record-Abstracts. 31st IEEE International Conference On Plasma Science (IEEE Catalog No. 04CH37537), 2004, p. 160] is a spheromak driven by steady inductive helicity injection (SIHI) and consists of the toroidally symmetric spheromak confinement region and two nonsymmetric helicity injectors. The three-dimensional (3D) magnetohydrodynamic code NIMROD [A. H. Glasser, C. R. Sovinec, R. A. Nebel, T. A. Gianakon, S. J. Plimpton, M. S. Chu, and D. D. Schnack, Plasma Phys. Controlled Fusion, 41, A747 (1999)] is used to simulate HIT-SI operation, but the code's toroidally symmetric boundary requires a creative treatment of the injectors. Sustained HIT-SI operation is simulated with nonaxisymmetric boundary conditions. In driven simulations at low Lundquist number S no n=0 fields are generated as a result of relaxation of the predominantly n=1 injector fields until the injectors are quickly shut off. At S=500, an n=0 component arises due to relaxation during sustainment. As S is increased further, the ratio of n=0 (equilibrium) fields to n=1 (injector) fields increases. The effects of a thin insulating boundary layer on the plasma decay time are also discussed

  12. Single wavelength standard wiggler for PEP

    International Nuclear Information System (INIS)

    Brunk, W.; Fischer, G.; Spencer, J.

    1979-03-01

    A 1lambda planar wiggler has been designed that will be used for the initial operation of the 4 to 18 GeV storage ring PEP. Three of these wigglers will be installed symmetrically around the ring at 120 0 intervals in three of six available 5 m straight sections with the purpose of providing: (1) beam size control to obtain better luminosities below 15 GeV, and (2) decreased damping times to obtain better injection rates at lower energies. Design goals are discussed and a description of the final system including cost estimates is given. Expected results and usage in PEP are discussed. Some possibilities for production of synchrotron radiation and beam monitoring with shorter wavelength, multiple-period wigglers at PEP energies are also discussed. Comparison to a wiggler now operating in SPEAR is given

  13. Standard Wiggler magnets

    International Nuclear Information System (INIS)

    Winick, H.; Helm, R.H.

    1977-09-01

    Interest in Wiggler magnets (a close sequence of transverse fields with alternating polarity) to extend and enhance the spectrum of synchrotron radiation from electron storage rings has increased significantly during the past few years. Standard wigglers, i.e., wigglers in which interference effects on the spectrum of synchrotron radiation are not important, are considered. In standard wigglers the spectrum of synchrotron radiation has the same general shape as the spectrum from ring bending magnets. However, the critical energy of the wiggler spectrum may be different. The critical energy of the wiggler spectrum is given by epsilon/sub CW/ = epsilon/sub CB/(B/sub W//B/sub B/) where epsilon/sub CB/ is the critical energy from the bending magnets and B/sub W/ and B/sub B/ are the magnetic field strengths of the wiggler magnet and bending magnets respectively. Since most electron storage rings operate with relatively low bending magnet fields (B/sub B/ less than or equal to 12 kG), even a modest wiggler magnet field (less than or equal to 18 kG) can significantly increase the critical energy. Such magnets are planned for ADONE and SPEAR. Higher field (30 to 50 kG) superconducting magnets are planned at Brookhaven, Daresbury, and Novosibirsk to produce even larger increase in the critical energy. For some standard wigglers a further enhancement of the spectrum is produced due tothe superposition of the radiation from the individual poles. Wiggler designs are discussed as well as the effect of wigglers on the synchrotron radiation spectrum and on the operation of storage rings

  14. The helical ventricular myocardial band: global, three-dimensional, functional architecture of the ventricular myocardium.

    Science.gov (United States)

    Kocica, Mladen J; Corno, Antonio F; Carreras-Costa, Francesc; Ballester-Rodes, Manel; Moghbel, Mark C; Cueva, Clotario N C; Lackovic, Vesna; Kanjuh, Vladimir I; Torrent-Guasp, Francisco

    2006-04-01

    We are currently witnessing the advent of new diagnostic tools and therapies for heart diseases, but, without serious scientific consensus on fundamental questions about normal and diseased heart structure and function. During the last decade, three successive, international, multidisciplinary symposia were organized in order to setup fundamental research principles, which would allow us to make a significant step forward in understanding heart structure and function. Helical ventricular myocardial band of Torrent-Guasp is the revolutionary new concept in understanding global, three-dimensional, functional architecture of the ventricular myocardium. This concept defines the principal, cumulative vectors, integrating the tissue architecture (i.e. form) and net forces developed (i.e. function) within the ventricular mass. Here we expose the compendium of Torrent-Guasp's half-century long functional anatomical investigations in the light of ongoing efforts to define the integrative approach, which would lead to new understanding of the ventricular form and function by linking across multiple scales of biological organization, as defined in ongoing Physiome project. Helical ventricular myocardial band of Torrent-Guasp may also, hopefully, allow overcoming some difficulties encountered in contemporary efforts to create a comprehensive mathematical model of the heart.

  15. A CHI wiggler ubitron amplifier experiment: Wiggler characterization

    Energy Technology Data Exchange (ETDEWEB)

    Taccetti, J.M.; Jackson, R.H.; Freund, H.P. [Naval Research Lab., Washington, DC (United States)] [and others

    1995-12-31

    A 35 GHz CHI (Coaxial Hybrid Iron) wiggler ubitron amplifier experiment is under construction at the Naval Research Laboratory. The CHI wiggler configuration has the potential of generating high wiggler magnetic fields at short periods with excellent beam focusing and transport properties. This makes it a desirable configuration for the generation of high power coherent radiation in relatively compact systems. The CHI wiggler consists of alternating rings of magnetic and non-magnetic materials concentric with a central rod of similar alternating design but shifted along the axis by half a period. Once inserted in a solenoidal magnetic field, the CHI structure deforms the axial field to create a radial field oscillating with the same periodicity as the rings. An annular electron beam is propagated through the coaxial gap where the oscillating radial field imparts an azimuthal wiggle motion. The principal goals of the experiment are to investigate the performance tradeoffs involved in the CHI configuration for high frequency amplifiers operating at low voltages with small wiggler periods. The nominal design parameters are a center frequency of 35 GHz, wiggler period of 0.75 cm, and beam voltage of approximately 150 kV. Calculations have shown an intrinsic (untapered) efficiency of {approximately} 7% when operating at 6.3 kG axial field (wiggler field, B{sub w}{approximately}1270 G). The calculated gain was 36 dB, saturating at a distance of 46 cm. These parameters yield an instantaneous amplifier bandwidth of {approximately} 25%. There appears to be room for further improvement in efficiency, a matter which will be scrutinized more closely in the final design. A prototype CHI wiggler is presently being fabricated for use in conjunction with an existing 30 kG superconducting solenoid. The performance properties of the prototype will be characterized and compared with linear and non-linear calculations.

  16. Dynamic evaluation of pelvic floor reconstructive surgery using radiopaque meshes and three-dimensional helical CT

    Directory of Open Access Journals (Sweden)

    Paulo Palma

    2010-04-01

    Full Text Available PURPOSE: This prospective study was performed to achieve visualization of the reestablishment of anatomy after reconstructive surgery in the different pelvic compartments with non-absorbable radiopaque meshes, providing valuable anatomic information for surgeons implanting meshes. MATERIALS AND METHODS: A total of 30 female patients with stress urinary incontinence (SUI, anterior and posterior vaginal wall prolapse, or both underwent surgical repair using radiopaque meshes after written informed consent. Patients with SUI underwent five different surgeries. Patients with anterior vaginal prolapse underwent a procedure using a combined pre-pubic and transobturator mesh, and those with posterior vaginal prolapse underwent posterior slingplasty. Three-dimensional reconstruction using helical CT was performed four weeks postoperatively. RESULTS: In all cases, the mesh was clearly visualized. Transobturator slings were shown at the midurethra, and the anchoring tails perforated the obturator foramen at the safety region. Mini-slings were in the proper place, and computed angiography revealed that the anchoring system was away from the obturator vessels. In patients undergoing procedure for anterior vaginal prolapse, both pre-pubic armpit and obturator slings were clearly seen and the mesh was in the proper position, supporting the bladder base and occluding the distal part of the urogenital hiatus. Transcoccygeal sacropexy revealed indirectly a well-supported "neo rectovaginal fascia" and the anchoring tails at the level of ischial spines. CONCLUSION: Three-dimensional helical tomography images of the female pelvis using radiopaque meshes have a potential role in improving our understanding of pelvic floor reconstructive surgeries. These radiopaque meshes might be the basis of a new investigative methodology.

  17. Wiggler magnets at SSRL

    International Nuclear Information System (INIS)

    Winick, H.

    1980-01-01

    A wiggler magnet has been installed in SPEAR and has been routinely used as a radiation source for Beam Line IV at SSRL since March, 1979. The magnets is 1.22 m long. It has five full central poles and two end half-poles producing a total of three complete small amplitude (<= 1 mm) oscillations of the electron beam in traversing the magnet. The magnet has been operated with the peak field in the central full poles at 17.2 kG and produces an intense beam of synchrotron radiation extending to 12 keV and beyond even at the lowest operating energies of SPEAR (1.5 GeV). It is compatible with all phases of colliding-beam operation of SPEAR and has improved the colliding-beam luminosity. The results of measurements on the spectrum and intensity of the radiation produced by the Wiggler will be presented. The measured effects of the wiggler on the stored beam tunes, energy spread and emittance will also be presented. Plans will also be described for installing additional high field wiggler magnets in SPEAR and also weak-field, many-period undulator magnets in both SPEAR and PEP. (orig.)

  18. Equilibrium: three-dimensional configurations

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    This chapter considers toroidal MHD configurations that are inherently three-dimensional. The motivation for investigation such complicated equilibria is that they possess the potential for providing toroidal confinement without the need of a net toroidal current. This leads to a number of advantages with respect to fusion power generation. First, the attractive feature of steady-state operation becomes more feasible since such configurations no longer require a toroidal current transformer. Second, with zero net current, one potentially dangerous class of MHD instabilities, the current-driven kink modes, is eliminated. Finally, three-dimensional configurations possess nondegenerate flux surfaces even in the absence of plasma pressure and plasma current. Although there is an enormous range of possible three-dimensional equilibria, the configurations of interest are accurately described as axisymmetric tori with superimposed helical fields; furthermore, they possess no net toroidal current. Instead, two different and less obvious restoring forces are developed: the helical sideband force and the toroidal dipole current force. Each is discussed in detail in Chapter 7. A detailed discussion of the parallel current constraint, including its physical significance, is given in section 7.2. A general analysis of helical sideband equilibria, along with a detailed description of the Elmo bumpy torus, is presented in sections 7.3 and 7.4. A general description of toroidal dipole-current equilibria, including a detailed discussion of stellarators, heliotrons, and torsatrons, is given in sections 7.5 and 7.6

  19. Numerical simulation of an excited round jet under helical disturbances by three-dimensional discrete vortex method; Helical kakuran ni yoru reiki enkei funryu no uzuho simulation

    Energy Technology Data Exchange (ETDEWEB)

    Izawa, S.; Kiya, M.; Mochizuki, O. [Hokkaido University, Sapporo (Japan)

    1998-09-25

    The evolution of vortical structure in an impulsively started round jet has been studied numerically by means of a three-dimensional vortex blob method. The viscous diffusion of vorticity is approximated by a core spreading model originally proposed by Leonard (1980). The jet is forced by axisymmetric, helical and multiple disturbances. The multiple disturbances are combinations of two helical disturbances of the same mode rotating in the opposite directions. The multiple disturbances are found to enhance both the generation of small-scale structures and the growth rate of the jet. The small-scale structures have highly organized spatial distributions. The core spreading method is effective in aquiring the core overlapping in regions of high extensional rate of strain. 21 refs., 12 figs.

  20. Three-dimensional CT endoscopic images of the larynx. Clinical application of helical CT

    International Nuclear Information System (INIS)

    Yumoto, Eiji; Sanuki, Tetsuji; Yasuhara, Yoshifumi; Ochi, Takashi

    1998-01-01

    Twenty-seven patients with several laryngeal ailments underwent helical computed tomography (CT) on 37 occasions. Ten of these 27 patients suffered from unilateral vocal fold paralysis (UVFP). Three-dimensional (3D) images of the laryngeal lumen viewed from various angles were produced for all sets of CT volumetric data, except for three which contained excessive motion artifacts. The present paper examined whether 3D endoscopic images could offer useful diagnostic and therapeutic information about UVFP. The 3D endoscopic images viewed from the tracheal side and the hemilaryngeal images viewed from the opposite side could delineate the vocal folds, ventricular fold and ventricle three-dimensionally. Atrophy and hypotonic changes to the vocal fold and expansion of the ventricle on the affected side were clearly shown. The 3D endoscopic images accurately showed the phonosurgical effects on the laryngeal structures. The 3D endoscopic images could be produced even when the vocal folds could not be observed with conventional endoscopy due to their overadduction. Multiplanar reconstruction (MPR) images in the coronal plane were reconstructed at a right angle to the glottic axis when the whole larynx was deviated. In addition, coronal MPR images showed a better resolution among the different layers of the vocal fold soft tissue than X-ray tomography. In conclusion, 3D endoscopic images combined with coronal MPR images can provide useful diagnostic an therapeutic information about UVFP, although motion artifacts may occur. (author)

  1. One-loop QCD and Higgs bosons to partons processes using six-dimensional helicity and generalized unitarity

    International Nuclear Information System (INIS)

    Davies, Scott

    2011-01-01

    We combine the six-dimensional helicity formalism of Cheung and O'Connell with D-dimensional generalized unitarity to obtain a new formalism for computing one-loop amplitudes in dimensionally regularized QCD. With this procedure, we simultaneously obtain the pieces that are constructible from four-dimensional unitarity cuts and the rational pieces that are missed by them, while retaining a helicity formalism. We illustrate the procedure using four- and five-point one-loop amplitudes in QCD, including examples with external fermions. We also demonstrate the technique's effectiveness in next-to-leading order QCD corrections to Higgs processes by computing the next-to-leading order correction to the Higgs plus three positive-helicity gluons amplitude in the large top-quark mass limit.

  2. Current driven wiggler

    Science.gov (United States)

    Tournes, C.; Aucouturier, J.; Arnaud, B.; Brasile, J. P.; Convert, G.; Simon, M.

    1992-07-01

    A current-driven wiggler is the cornerstone of an innovative, compact, high-efficiency, transportable tunable free-electron laser (FEL), the feasibility of which is currently being evaluated by Thomson-CSF. The salient advantages are: compactness of the FEL, along with the possibility to accelerate the beam through several successive passes through the accelerating section (the number of passes being defined by the final wavelength of the radiation; i.e. visible, MWIR, LWIR); the wiggler can be turned off and be transparent to the beam until the last pass. Wiggler periodicities as small as 5 mm can be achieved, hence contributing to FEL compactness. To achieve overall efficiencies in the range of 10% at visible wavelengths, not only the wiggler periodicity must be variable, but the strength of the magnetic field of each period can be adjusted separately and fine-tuned versus time during the macropulse, so as to take into account the growing contribution of the wave energy in the cavity to the total ponderomotive force. The salient theoretical point of this design is the optimization of the parameters defining each period of the wiggler for each micropacket of the macropulse. The salient technology point is the mechanical and thermal design of the wiggler which allows the required high currents to achieve magnetic fields up to 2T.

  3. Development of a two-dimensional imaging system for clinical applications of intravenous coronary angiography using intense synchrotron radiation produced by a multipole wiggler

    International Nuclear Information System (INIS)

    Hyodo, K.; Ando, M.; Oku, Y.; Yamamoto, S.; Takeda, T.; Itai, Y.; Ohtsuka, S.; Sugishita, Y.; Tada, J.

    1998-01-01

    A two-dimensional clinical intravenous coronary angiography system, comprising a large-size View area produced by asymmetrical reflection from a silicon crystal using intense synchrotron radiation from a multipole wiggler and a two-dimensional detector with an image intensifier, has been completed. An advantage of the imaging system is that two-dimensional dynamic imaging of the cardiovascular system can be achieved due to its two-dimensional radiation field. This world-first two-dimensional system has been successfully adapted to clinical applications. Details of the imaging system are described in this paper

  4. Development of a two-dimensional imaging system for clinical applications of intravenous coronary angiography using intense synchrotron radiation produced by a multipole wiggler

    Energy Technology Data Exchange (ETDEWEB)

    Hyodo, K.; Ando, M. [High Energy Accelerator Research Organization, Inst. of Material Structure Sciences, Tsukuba (Japan); Oku, Y.; Yamamoto, S. [Graduated School for Advanced Sciences, Tsukuba (Japan); Takeda, T.; Itai, Y.; Ohtsuka, S.; Sugishita, Y. [The Univ. of Tsukuba, Inst. of Clinical Medicine, Tsukuba (Japan); Tada, J. [The Univ. of Tsukuba, Inst. of Basic Medical Sciences, Tsukuba (Japan)

    1998-05-01

    A two-dimensional clinical intravenous coronary angiography system, comprising a large-size View area produced by asymmetrical reflection from a silicon crystal using intense synchrotron radiation from a multipole wiggler and a two-dimensional detector with an image intensifier, has been completed. An advantage of the imaging system is that two-dimensional dynamic imaging of the cardiovascular system can be achieved due to its two-dimensional radiation field. This world-first two-dimensional system has been successfully adapted to clinical applications. Details of the imaging system are described in this paper. 18 refs.

  5. Beam simulation of synchrotron radiation equipment. New method responsive to three dimensional magnetic field

    International Nuclear Information System (INIS)

    Tanaka, Hirofumi

    1999-01-01

    A new numerical analysis method capable of precise modeling of complex three dimensional magnetic field of superconducting wiggler and of long-term beam simulation without destroying property of Hamiltonian dynamics system was developed by using the above-mentioned method. Therefore, a fundamental design of a compact synchrotron radiation equipment with hexagonal column shape was also developed. Its main parameters had 1 GeV in energy, 36 m in circumference, 300 mA in stored current, and 184 nmrad in emittance. So as to enable to research the x-ray and vacuum UV regions, a superconducting wiggler with 7T in magnetic field strength and an undulator were set at straight section. It depends upon if beam around stable region on exciting the superconducting wiggler is wider than the required region whether this type of synchrotron radiation equipment can be realized or not. By using three orbit analysis methods containing the developed one, the circulating stable region was introduced. As a result, although shape of the stable region was different from used methods, it was found that considerably larger stable region was obtained than the required in circulation results of every three methods. That is to say, it was shown that the designed compact equipment can accumulate electron beams stably. (G.K.)

  6. A three-dimensional-weighted cone beam filtered backprojection (CB-FBP) algorithm for image reconstruction in volumetric CT-helical scanning

    International Nuclear Information System (INIS)

    Tang Xiangyang; Hsieh Jiang; Nilsen, Roy A; Dutta, Sandeep; Samsonov, Dmitry; Hagiwara, Akira

    2006-01-01

    Based on the structure of the original helical FDK algorithm, a three-dimensional (3D)-weighted cone beam filtered backprojection (CB-FBP) algorithm is proposed for image reconstruction in volumetric CT under helical source trajectory. In addition to its dependence on view and fan angles, the 3D weighting utilizes the cone angle dependency of a ray to improve reconstruction accuracy. The 3D weighting is ray-dependent and the underlying mechanism is to give a favourable weight to the ray with the smaller cone angle out of a pair of conjugate rays but an unfavourable weight to the ray with the larger cone angle out of the conjugate ray pair. The proposed 3D-weighted helical CB-FBP reconstruction algorithm is implemented in the cone-parallel geometry that can improve noise uniformity and image generation speed significantly. Under the cone-parallel geometry, the filtering is naturally carried out along the tangential direction of the helical source trajectory. By exploring the 3D weighting's dependence on cone angle, the proposed helical 3D-weighted CB-FBP reconstruction algorithm can provide significantly improved reconstruction accuracy at moderate cone angle and high helical pitches. The 3D-weighted CB-FBP algorithm is experimentally evaluated by computer-simulated phantoms and phantoms scanned by a diagnostic volumetric CT system with a detector dimension of 64 x 0.625 mm over various helical pitches. The computer simulation study shows that the 3D weighting enables the proposed algorithm to reach reconstruction accuracy comparable to that of exact CB reconstruction algorithms, such as the Katsevich algorithm, under a moderate cone angle (4 deg.) and various helical pitches. Meanwhile, the experimental evaluation using the phantoms scanned by a volumetric CT system shows that the spatial resolution along the z-direction and noise characteristics of the proposed 3D-weighted helical CB-FBP reconstruction algorithm are maintained very well in comparison to the FDK

  7. The three-dimensional model for helical columns on type-J synchronous counter-current chromatography.

    Science.gov (United States)

    Guan, Y H; van den Heuvel, Remco

    2011-08-05

    Unlike the existing 2-D pseudo-ring model for helical columns undergoing synchronous type-J planetary motion of counter-current chromatograph (CCC), the 3-D "helix" model developed in this work shows that there is a second normal force (i.e. the binormal force) applied virtually in the axial direction of the helical column. This force alternates in the two opposite directions and intensifies phase mixing with increasing the helix angle. On the contrary, the 2-D spiral column operated on the same CCC device lacks this third-dimensional mixing force. The (principal) normal force quantified by this "helix" model has been the same as that by the pseudo-ring model. With β>0.25, this normal centrifugal force has been one-directional and fluctuates cyclically. Different to the spiral column, this "helix" model shows that the centrifugal force (i.e. the hydrostatic force) does not contribute to stationary phase retention in the helical column. Between the popular helical columns and the emerging spiral columns for type-J synchronous CCC, this work has thus illustrated that the former is associated with better phase mixing yet poor retention for the stationary phase whereas the latter has potential for better retention for the stationary phase yet poor phase mixing. The methodology developed in this work may be regarded as a new platform for designing optimised CCC columns for analytical and engineering applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Design of a vertical wiggler with superconducting coils

    International Nuclear Information System (INIS)

    Huke, K.; Yamakawa, T.

    1980-01-01

    A vertical wiggler has been designed, which will be installed in the 2.5 GeV electron storage ring under construction at KEK-PF. The wiggler magnet with superconducting coils produces magnetic fields of 6 T and wiggles electron beams in a vertical plane. Synchrotron radiation generated by the wiggler has a critical wavelength of 0.5 Angstroem and has an electric field-vector in the vertical direction, which is very important for precise experiments in various fields of the material sciences. The wiggler consists of three pairs of superconducting coils, an iron magnetic shield, a beam pipe and a liquid helium cryogenic system and is contained in a vacuum vessel which can move up and down together with the wiggler. During the injection time, the vessel is pushed up, so that electron beams with a large spatial spread go through the lower part of the beam pipe, where the aperture of the beam pipe is large enough. After the beam size becomes small due to radiation damping, the vessel is pushed down so that the electron beams go through the narrow gap of the wiggler magnet. Using the iron magnetic shield with iron pole pieces, the ratio between the magnetic field in the gap and the maximum field on the superconductor coils is reduced to 1.1. (orig.)

  9. Investigation of betatron instability in a wiggler pumped ion-channel free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Raghavi, A [Physics Department, Payame Noor University, 19395-4697 (Iran, Islamic Republic of); Mehdian, H, E-mail: Raghavi@tmu.ac.ir, E-mail: Mehdian@tmu.ac.ir [Department of Physics, Teacher Training University, Tehran (Iran, Islamic Republic of)

    2011-10-15

    Betatron emission from an ion-channel free electron laser in the presence of a helical wiggler pump and in the high gain regime is studied. The dispersion relation and the frequency of betatron emission are derived. Growth rate is illustrated and maximum growth rate as a function of ion-channel density is considered. Finally, the relation between beam energy, the density of ion channel and the region of betatron emission is discussed.

  10. Analysis of the three-dimensional trajectories of dusts observed with a stereoscopic fast framing camera in the Large Helical Device

    Energy Technology Data Exchange (ETDEWEB)

    Shoji, M., E-mail: shoji@LHD.nifs.ac.jp [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Gifu (Japan); Masuzaki, S. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Gifu (Japan); Tanaka, Y. [Kanazawa University, Kakuma, Kanazawa 920-1192 (Japan); Pigarov, A.Yu.; Smirnov, R.D. [University of California at San Diego, La Jolla, CA 92093 (United States); Kawamura, G.; Uesugi, Y.; Yamada, H. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Gifu (Japan)

    2015-08-15

    The three-dimensional trajectories of dusts have been observed with two stereoscopic fast framing cameras installed in upper and outer viewports in the Large Helical Device (LHD). It shows that the dust trajectories locate in divertor legs and an ergodic layer around the main plasma confinement region. While it is found that most of the dusts approximately move along the magnetic field lines with acceleration, there are some dusts which have sharply curved trajectories crossing over the magnetic field lines. A dust transport simulation code was modified to investigate the dust trajectories in fully three dimensional geometries such as LHD plasmas. It can explain the general trend of most of observed dust trajectories by the effect of the plasma flow in the peripheral plasma. However, the behavior of the some dusts with sharply curved trajectories is not consistent with the simulations.

  11. Determination of optimal parameters for three-dimensional reconstruction images of central airways using helical CT

    International Nuclear Information System (INIS)

    Hirose, Takahumi; Akata, Soichi; Matsuno, Naoto; Nagao, Takeshi; Abe, Kimihiko

    2002-01-01

    Three-dimensional (3D) image reconstruction of central airways using helical CT requires several user-defined parameters that exceed the requirements of conventional CT. The purpose of this study was to evaluate the optimal parameters for 3D images of central airways using helical CT. In our experimental study using a piglet immediately after sacrifice, 3D images of the central airway were evaluated with changes of 3D imaging parameters, such as detector collimation (1, 2, 3 and 6 mm), table speed (1, 2, 3 and 5 mm/sec), tube electric current (50, 100, 150, 200 and 250 mA), reconstruction interval (0.3, 0.5, 1, 2 and 3 mm), algorithm (mediastinum and lung) and interpolation method (180 deg and 360 deg). To minimize detector collimation, table speed, and reconstruction interval could provide the best 3D images of the central airway. Stair-step artifacts could also be reduced with a slow table speed. However, decreasing the collimation and table speed decreases not only the effective section thickness but also the scan coverage that can be achieved with a helical CT. For routine diagnosis, we conclude that optimal parameters for 3D images of the central airway are to minimize the table speed necessary to cover the volume of interest and to set detector collimation to 1/2 of the table speed. The reconstruction intervals should also be selected at up to 1/2 of the detector collimation, but with trade-offs of increased image processing time, data storage requirements, and physician time for image review. Regarding to tube electric current, 200 mA or more was necessary. Pixel noise increased with the algorithm for the lung. The 180 deg interpolation is better than 360 deg interpolation due to thin effective section thickness. (author)

  12. The new CHESS wiggler

    International Nuclear Information System (INIS)

    Finkelstein, K.D.

    1992-01-01

    A 25-pole permanent magnet hybrid wiggler has been built at CHESS and installed on the CESR (Cornell Electron Storage Ring). This device has a magnetic period of 19.6 cm, a peak on-axis field of 1.2 T at the nominal operating gap of 4.0 cm, and a K parameter of 22. The wiggler has been designed to provide radiation for two new experimental stations with approximately four times the flux available from the present CHESS six-pole electromagnet wiggler. Under normal running conditions at 100 mA currents, the total power radiated should exceed 6 kW making this one of the highest flux x-ray sources below 1 A critical wavelength. In this paper an overview of the development of the wiggler is given, including the unique features in its design and construction as well as results of measurements obtained on its magnetic and spectral properties

  13. Polarized wiggler for NSLS X-ray ring

    International Nuclear Information System (INIS)

    Friedman, A.; Zhang, X.; Krinsky, S.; Blum, E.B.

    1993-01-01

    We examine the properties of an elliptically polarized wiggler that will generate circularly polarized photons with energy spectrum of 3--12 KeV. The vertical wiggler magnetic field is produced by permanent magnets while the horizontal wiggler field is generated by electric coils capable of AC excitation. The radiation parameters of the wiggler is discussed. We consider AC excitation of the wiggler to produce the time modulation of the elliptic polarization. The power is dissipated in the vacuum chamber due to the eddy current

  14. New wiggler beam line for SSRL

    International Nuclear Information System (INIS)

    Hoyer, E.

    1982-08-01

    A new high-intensity-beam line with a wiggler magnet source is described. This project, in final stages of design, is a joint effort between Lawrence Berkeley Laboratory (LBL), the Exxon Research and Engineering Company (EXXON), and the Stanford Synchrotron Radiation Laboratory (SSRL). Installation at SSRL will begin in the summer of 1982. The goal of this project is to provide extremely high-brightness synchrotron radiation beams over a broad spectral range from 50 eV to 40 keV. The radiation source is a 27 period (i.e., 55 pole) permanent magnet wiggler of a new design. The wiggler utilizes rare-earth cobalt (REC) material in the steel hybrid configuration to achieve high magnetic fields with short periods. An analysis has been made of the polarization, angular distribution and power density of the radiation produced by the wiggler. Details of the wiggler design are presented. The magnet is outside a thin walled (1mm) variable gap stainless steel vacuum chamber. The chamber gap will be opened to 1.8 cm for beam injection into SPEAR and then closed to 1.0 cm (or less) for operation. Five remotely controlled drives are provided; to change the wiggler gap, to change the vacuum chamber aperture and to position the wiggler. Details of the beam line optics and end stations are presented. Thermal loading on beam line components is severe. The peak power density at 7.5 m is 5 kW/cm 2 for the nominal wiggler field and present SPEAR beam currents and will approach 20 kW/cm 2 with the maximum wiggler field and projected SPEAR beam currents

  15. Nonlinear analysis of wiggler-imperfections in free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Freund, H.P. [Naval Research Lab., Washington, DC (United States); Yu, L.H. [Brookhaven National Lab., Upton, NY (United States)

    1995-12-31

    We present an analysis of the effect of wiggler imperfections in FELs using a variety of techniques. Our basic intention is to compare wiggler averaged nonlinear simulations to determine the effect of various approximations on the estimates of gain degradation due to wiggler imperfections. The fundamental assumption in the wiggler-averaged formulations is that the electrons are described by a random walk model, and an analytic representation of the orbits is made. This is fundamentally different from the approach taken for the non-wiggler-averaged formulation in which the wiggler imperfections are specified at the outset, and the orbits are integrated using a field model that is consistent with the Maxwell equations. It has been conjectured on the basis of prior studies using the non-wiggler-averaged formalism that electrons follow a {open_quotes}meander line{close_quotes} through the wiggler governed by the specific imperfections; hence, the electrons behave more as a ball-in-groove than as a random walk. This conjecture is tested by comparison of the wiggler-averaged and non-wiggler-averaged simulations. In addition, two different wiggler models are employed in the non-wiggler-averaged simulation: one based upon a parabolic pole face wiggler which is not curl and divergence free in the presence of wiggler imperfections, and a second model in which the divergence and z-component of the curl vanish identically. This will gauge the effect of inconsistencies in the wiggler model on the estimation of the effect of the imperfections. Preliminary results indicate that the inconsistency introduced by the non-vanishing curl and divergence result in an overestimation of the effect of wiggler imperfections on the orbit. The wiggler-averaged simulation is based upon the TDA code, and the non-wiggler-averaged simulation is a variant of the ARACHNE and WIGGLIN codes called MEDUSA developed to treat short-wavelength Gauss-Hermite modes.

  16. Field of a helical Siberian Snake

    Energy Technology Data Exchange (ETDEWEB)

    Luccio, A. [Brookhaven National Lab., Upton, NY (United States)

    1995-02-01

    To preserve the spin polarization of a beam of high energy protons in a circular accelerator, magnets with periodic magnetic field, called Siberian Snakes are being used. Recently, it was proposed to build Siberian Snakes with superconducting helical dipoles. In a helical, or twisted dipole, the magnetic field is perpendicular to the axis of the helix and rotates around it as one proceeds along the magnet. In an engineering study of a 4 Tesla helical snake, the coil geometry is derived, by twisting, from the geometry of a cosine superconducting dipole. While waiting for magnetic measurement data on such a prototype, an analytical expression for the field of the helice is important, to calculate the particle trajectories and the spin precession in the helix. This model will also allow to determine the optical characteristics of the snake, as an insertion in the lattice of the accelerator. In particular, one can calculate the integrated multipoles through the magnet and the equivalent transfer matrix. An expression for the field in the helix body, i.e., excluding the fringe field was given in a classical paper. An alternate expression can be found by elaborating on the treatment of the field of a transverse wiggler obtained under the rather general conditions that the variables are separable. This expression exactly satisfies Maxwell`s div and curl equations for a stationary field, {del} {center_dot} B = 0, {del} x B = 0. This approach is useful in that it will allow one to use much of the work already done on the problem of inserting wigglers and undulators in the lattice of a circular accelerator.

  17. Development of a strong electromagnet wiggler

    International Nuclear Information System (INIS)

    Burns, M.J.; Deis, G.A.; Holmes, R.H.; Van Maren, R.D.; Halbach, K.

    1987-01-01

    The Strong Electromagnet (SEM) wiggler is a permanent magnet-assisted electromagnet under development at the Lawrence Livermore National Laboratory (LLNL) as part of the Induction Linac Free-Electron-Laser (IFEL) program. This concept uses permanent magnets within the wiggler to provide a reverse bias flux in the iron and thus delay the onset of magnetic saturation. The electromagnet coils determine the wiggler field and operate at low current densities by virtue of their placement away from the midplane. We describe here the design approach used and test data from a 7-period wiggler prototype that includes curved pole tips to provide wiggle-plane focusing. 7 refs

  18. Three-Dimensional Numerical Analysis of an Operating Helical Rotor Pump at High Speeds and High Pressures including Cavitation

    Directory of Open Access Journals (Sweden)

    Zhou Yang

    2017-01-01

    Full Text Available High pressures, high speeds, low noise and miniaturization is the direction of development in hydraulic pump. According to the development trend, an operating helical rotor pump (HRP at high speeds and high pressures has been designed and produced, which rotational speed can reach 12000r/min and outlet pressure is as high as 25MPa. Three-dimensional simulation with and without cavitation inside the HRP is completed by the means of the computational fluid dynamics (CFD in this paper, which contributes to understand the complex fluid flow inside it. Moreover, the influences of the rotational speeds of the HRP with and without cavitation has been simulated at 25MPa.

  19. Analytic Electron Trajectories in an Extremely Relativistic Helical Wiggler an Application to the Proposed SLAC E166 Experiment.

    CERN Document Server

    ThomasDonohue, John

    2004-01-01

    The proposed experiment SLAC E166 intends to generate circularly polarized gamma rays of energy 10 MeV by passing a 15 GeV electron beam through a meter long wiggler with approximately 400 periods. Using an analytic model formulated by Rullier and me, I present calculations of electron trajectories. At this extremely high energy the trajectories are described quite well by the model, and an extremely simple picture emerges, even for trajectories that that fail to encircle the axis of the wiggler. Our calculations are successfully compared with standard numerical integration of the Lorentz force equations of motion. In addition, the calculation of the spectrum and angular distribution of the radiated photons is easily carried out.

  20. Energetic ion driven Alfven eigenmodes in Large Helical Device plasmas with three-dimensional magnetic structure and their impact on energetic ion transport

    International Nuclear Information System (INIS)

    Toi, K; Yamamoto, S; Nakajima, N; Ohdachi, S; Sakakibara, S; Osakabe, M; Murakami, S; Watanabe, K Y; Goto, M; Kawahata, K; Kolesnichenko, Ya I; Masuzaki, S; Morita, S; Narihara, K; Narushima, Y; Takeiri, Y; Tanaka, K; Tokuzawa, T; Yamada, H; Yamada, I; Yamazaki, K

    2004-01-01

    In the Large Helical Device (LHD), energetic ion driven Alfven eigenmodes (AEs) and their impact on energetic ion transport have been studied. The magnetic configuration of the LHD is three-dimensional and has negative magnetic shear over a whole plasma radius in the low beta regime. These features introduce the characteristic structures of the shear Alfven spectrum. In particular, a core-localized type of toroidicity-induced AE (TAE) is most likely because the TAE gap frequency rapidly increases towards the plasma edge. Moreover, helicity-induced AEs (HAEs) can be generated through a toroidal mode coupling as well as poloidal one in the three-dimensional configuration. The following experimental results have been obtained in LHD plasmas heated by tangential neutral beam injection: (1) observation of core-localized TAEs having odd as well as even parity, (2) eigenmode transition of the core-localized TAE to global AEs (GAEs), which phenomenon is very similar to that in a reversed shear tokamak, (3) observation of HAEs of which the frequency is about eight times higher than the TAE gap frequency, (4) enhanced radial transport/loss of energetic ions caused by bursting TAEs in a relatively high beta regime, and (5) seed formation of internal transport barriers induced by TAE-induced energetic ion transport. These results will be important and interesting information for AE physics in toroidal plasmas

  1. Development of a laced electromagnetic wiggler

    International Nuclear Information System (INIS)

    Christensen, T.C.; Burns, M.J.; Deis, G.A.; Parkison, C.D.; Prosnitz, D.; Halbach, K.

    1987-01-01

    The laced electromagnetic wiggler is a new concept being developed to attain higher magnetic fields, shorter wavelengths, and larger gaps for the induction-linear accelerator, free-electron-laser (FEL) program. In the laced wiggler design, permanent magnets are located (''laced'') between the electromagnetic coils to increase the reverse-bias flux in the iron pole beyond that possible with only pole-edge (''side'') permanent magnets. This increase in reverse-bias flux allows wiggler operation at midplane magnetic field intensities comparable to those of a hybrid permanent magnet/steel wiggler, but with field adjustability over a specified range. The maximum field intensity and tuning range are selected, within limits, for specific design requirements. We have designed and tested a one-period prototype of this concept with promising results

  2. Pulse propagation in tapered wiggler free electron lasers

    International Nuclear Information System (INIS)

    Goldstein, J.C.; Colson, W.B.

    1981-01-01

    The one-dimensional theory of short pulse propagation in free electron lasers is extended to tapered wiggler devices and is used to study the behavior of an oscillator with parameter values close to those expected in forthcoming experiments. It is found that stable laser output is possible only over a small range of optical cavity lengths. Optical pulse characteristcs are presented and are found to change considerably over this range

  3. Polarized wiggler for NSLS x-ray ring design considerations

    International Nuclear Information System (INIS)

    Friedman, A.; Krinsky, S.; Blum, E.

    1992-03-01

    We examine the properties of an elliptically polarized wiggler that will generate circularly polarized photons with energy spectrum of 3--12 KeV. The vertical wiggler magnetic field is produced by permanent magnets while the horizontal wiggler field is generated by electric coils capable of AC excitation. The radiation parameters of the wiggler are presented, including photon flux, circular and linear polarization and spectrum. These parameters are compared to the synchrotron radiation from a bending magnet. Numerical values are calculated for radiation from the wiggler and bending magnet for the NSLS X-ray ring parameters. A conceptual design for such a wiggler is discussed and several different alternatives are analyzed. We consider AC excitation of the wiggler to produce the time modulation of the elliptic polarization, and also to produce time modulated linearly polarized radiation

  4. Three-dimensional-CT imaging of colorectal disease with thin collimation helical CT scanning

    International Nuclear Information System (INIS)

    Ogura, Toshihiro; Koizumi, Koichi; Sakai, Tatsuya; Kai, Shunkichi; Takatsu, Kazuaki; Maruyama, Masakazu

    1998-01-01

    We have conducted research on three-dimensional (3D)-CT-colonoscopy with thin collimation helical CT scanning over the past three years. This has lately become a subject of special interest. 3D-CT-colonoscopy has three kinds of visualizing methods depending on the threshold setting of CT values. The first one is the virtual endoscopy method which is displayed in a similar fashion to colonoscopic images. The second one is the air image method using the air in the digestive tract as a contrast medium. The third one is the pseudo-tract method which has characteristics of both virtual endoscopy and the air image method and visualizes in a shape of the digestive tract. The image visualized by 3D-CT-colonoscopy is similar to that of conventional colonoscopy and barium enema study, which is obtained with minimal invasion to patients. Obvious advanced carcinomas were easily visualized, and even a small flat polyp measuring 5 mm in size, was able to be observed retrospectively. The characteristics of our method are that we can easily make an examination in a short time and with little dependence on expert technique. Also patients have little discomfort compared to that experienced during colonoscopy and barium enema study. Important features are as follows; long calculation time, insufficient air insufflation, fecal material in the patient''s bowel, whole abdominal scan, and spatial resolution. In the near future, a multislice CT scanner system will have ability to overcome these problems. Therefore, 3D-CT-colonoscopy might be applied in the future for first line examination as a mass screening for colorectal carcinoma. (author)

  5. Brightness of synchrotron radiation from wigglers

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2014-12-01

    According to literature, while calculating the brightness of synchrotron radiation from wigglers, one needs to account for the so called 'depth-of-field' effects. In fact, the particle beam cross section varies along the wiggler. It is usually stated that the effective photon source size increases accordingly, while the brightness is reduced. Here we claim that this is a misconception originating from an analysis of the wiggler source based on geometrical arguments, regarded as almost self-evident. According to electrodynamics, depth-of-field effects do not exist: we demonstrate this statement both theoretically and numerically, using a well-known first-principle computer code. This fact shows that under the usually accepted approximations, the description of the wiggler brightness turns out to be inconsistent even qualitatively. Therefore, there is a need for a well-defined procedure for computing the brightness from a wiggler source. We accomplish this task based on the use of a Wigner function formalism. In the geometrical optics limit computations can be performed analytically. Within this limit, we restrict ourselves to the case of the beam size-dominated regime, which is typical for synchrotron radiation facilities in the X-ray wavelength range. We give a direct demonstration of the fact that the apparent horizontal source size is broadened in proportion to the beamline opening angle and to the length of the wiggler. While this effect is well-understood, a direct proof appears not to have been given elsewhere. We consider the problem of the calculation of the wiggler source size by means of numerical simulations alone, which play the same role of an experiment. We report a significant numerical disagreement between exact calculations and approximations currently used in literature.

  6. New system for wiggler fabrication and testing

    International Nuclear Information System (INIS)

    Warren, R.W.; Elliott, C.J.

    1988-01-01

    A system approach is taken for fabrication and testing of wigglers for free-electron lasers. Emphasis is placed on convenient, practical, assembly procedures that produce wigglers with high fields, two-plane focusing, and facilities for in-place adjustments. Equal emphasis is placed on rapid and precise techniques for measuring field errors, both before final assembly and afterward, during wiggler operation. (author). 10 refs, 12 figs

  7. Wigglers: the newest profession

    International Nuclear Information System (INIS)

    Spencer, J.E.

    1981-01-01

    Wiggler systems have been used in storage rings within the last year to increase the intensity of synchrotron radiation available for experiments as well as to increase the reaction rates in high energy physics experiments. Multiperiod wigglers or undulators have also been used recently to make quasi-monochromatic photon beams as well as amplify existing photon beams such as in the free electron laser. If one defines a wiggler to be any system of transverse, periodic electromagnetic fields, then recent results on photon production via charged particle channeling in crystals also fall within this sphere. Of course, any periodic modulation of a charge or magnetic moment (e.g., by a laser) could produce coherent radiation or, conversely, passage through a periodic aperture (e.g., a metal bellows). This discussion is limited to a typical, active, macroscopic device and how it provides some unique advantages which are practical to achieve in storage rings. As implied, the subject divides into two basic parts - one related to the radiation from the wiggler and the other related to machine physics applications, e.g., tailoring the phase space of the particle beam, modifying its damping rates or possibly optimizing a ring for production of radiation. Neither area is exhausted nor hopefully the reader, since our goal is only to present enough information to allow one to make reasonable estimates of some important effects

  8. Field correction for a one meter long permanent-magnet wiggler

    International Nuclear Information System (INIS)

    Fortgang, C.M.

    1992-01-01

    Field errors in wigglers are usually measured and corrected on-axis only, thus ignoring field error gradients. We find that gradient scale lengths are of the same order as electron beam size and therefore can be important. We report measurements of wiggler field errors in three dimensions and expansion of these errors out to first order (including two dipole and two quadrupole components). Conventional techniques for correcting on-axis errors (order zero) create new off-axis (first order) errors. We present a new approach to correcting wiggler fields out to first order. By correcting quadrupole errors in addition to the usual dipole correction, we minimize growth in electron beam size. Correction to first order yields better overlap between the electron and optical beams and should improve laser gain. (Author) 2 refs., 5 figs

  9. X-ray lithography using wiggler and undulator synchrotron-radiation sources

    International Nuclear Information System (INIS)

    Neureuther, A.R.; Kim, K.J.; Thompson, A.C.; Hoyer, E.

    1983-08-01

    A systems design approach is used to identify feasible options for wiggler and undulator beam lines for x-ray lithography in the 0.5 to 0.2 μm linewidth region over 5 cm by 5 cm fields. Typical parameters from the Wiggler and Undulator in the Advanced Light Source designed at the Lawrence Berkeley Laboratory are used as examples. Moving from the conventional wavelengths of 4 to 9 A to very soft wavelengths around 15 A is shown to be very promising. The mask absorber thickness can be reduced a factor of three so that 0.2 μm features can be made with a 1:1 mask aspect ratio. The mask heating limited exposure time is also reduced a factor of three to 3 sec/cm 2 . However, extremely thin beam line windows (1/4 mil Be) and mask supports (1 μm Si) must be used. A wiggler beam line design using a small slit window at a scanning mirror appears feasible. A unconventional, windowless differentially pumped beam line with dual deflecting mirrors could be used with an undulator source

  10. Three-dimensional calculation analysis of ICRF heating in LHD

    International Nuclear Information System (INIS)

    Seki, Tetsuo; Kumazawa, Ryuhei; Mutoh, Takashi

    2004-01-01

    Ion cyclotron range of frequencies (ICRF) heating is one of the heating methods for the fusion plasma experiments and also effective for the helical plasmas. For the purpose of analysis of the ICRF heating in the helical plasmas, the three-dimensional full-wave code has been developed. The feature of the helical system compared with the tokamak device is the strong coupling of the toroidal harmonic modes. They cannot be treated independently. Dependence of the power absorption on the position of the ion cyclotron resonance layer is calculated including all toroidal modes. Strong power absorption was obtained when the position of the resonance layer is slightly different from the experimental results. Difference of the position of the resonance layer in different toroidal angle is thought to be important to achieve the good heating efficiency in the ICRF heating for the helical plasmas. (author)

  11. Three-dimensional shape transformations of hydrogel sheets induced by small-scale modulation of internal stresses

    Science.gov (United States)

    Wu, Zi Liang; Moshe, Michael; Greener, Jesse; Therien-Aubin, Heloise; Nie, Zhihong; Sharon, Eran; Kumacheva, Eugenia

    2013-03-01

    Although Nature has always been a common source of inspiration in the development of artificial materials, only recently has the ability of man-made materials to produce complex three-dimensional (3D) structures from two-dimensional sheets been explored. Here we present a new approach to the self-shaping of soft matter that mimics fibrous plant tissues by exploiting small-scale variations in the internal stresses to form three-dimensional morphologies. We design single-layer hydrogel sheets with chemically distinct, fibre-like regions that exhibit differential shrinkage and elastic moduli under the application of external stimulus. Using a planar-to-helical three-dimensional shape transformation as an example, we explore the relation between the internal architecture of the sheets and their transition to cylindrical and conical helices with specific structural characteristics. The ability to engineer multiple three-dimensional shape transformations determined by small-scale patterns in a hydrogel sheet represents a promising step in the development of programmable soft matter.

  12. Self-organization in three-dimensional compressible magnetohydrodynamic flow

    International Nuclear Information System (INIS)

    Horiuchi, Ritoku; Sato, Tetsuya.

    1987-07-01

    A three-dimensional self-organization process of a compressible dissipative plasma with a velocity-magnetic field correlation is investigated in detail by means of a variational method and a magnetohydrodynamic simulation. There are two types of relaxation, i.e., fast relaxation in which the cross helicity is not conserved, and slow relaxation in which the cross helicity is approximately conserved. In the slow relaxation case the cross helicity consists of two components with opposite sign which have almost the same amplitude in the large wavenumber region. In both cases the system approaches a high correlation state, dependent on the initial condition. These results are consistent with an observational data of the solar wind. Selective dissipation of magnetic energy, normal cascade of magnetic energy spectrum and inverse cascade of magnetic helicity spectrum are observed for the sub-Alfvenic flow case as was previously observed for the zero flow case. When the flow velocity is super-Alfvenic, the relaxation process is significantly altered from the zero flow case. (author)

  13. Conceptual Design of ILC Damping Ring Wiggler Straight Vacuum System

    International Nuclear Information System (INIS)

    Marks, S.; Kennedy, K.; Plate, D.; Schlueter, R.D.; Zisman, M.

    2007-01-01

    The positron and electron damping rings for the International Linear Collider will contain long straight sections consisting of twenty wiggler/quadrupole pairs. The wigglers will be based upon the CESR superconducting design. There are a number of challenges associated with the design of the wiggler straight vacuum system, in particular, the absorption of photon power generated by the wigglers. This paper will present the overall conceptual design of the wiggler straight vacuum system developed for the ILC Reference Design Report. Particular emphasis will be placed on photon power load calculations and the absorber design

  14. Comparison of two-dimensional and three-dimensional MHD equilibrium and stability codes

    International Nuclear Information System (INIS)

    Herrnegger, F.; Merkel, P.; Johnson, J.L.

    1986-02-01

    Stability results obtained with the fully three-dimensional magnetohydrodynamic code BETA, the helically invariant code HERA, and the asymptotic stellarator expansion code STEP agree well for a straight l = 2, M = 5 stellarator model. This good agreement between the BETA and STEP codes persists as toroidal curvature is introduced. This validation provides justification for confidence in work with these models. 20 refs., 11 figs

  15. Modeling a horizontal wiggler in an electron storage ring

    International Nuclear Information System (INIS)

    Helm, R.H.

    1979-02-01

    The effects of a wiggler on the beam parameters depend on several integrals involving the machine functions and the field distribution in the wiggler. It is shown that these integrals are separable into sums of products of terms containing only the initial values of the machine functions, and terms containing integrals over the wiggler fields. The field-dependent integrals may be determined by numerical integrations based on measured field distribution. In typical wiggler designs, the energy and excitation dependencies of the integrals may be modeled mathematically by simple power series

  16. The value of three-dimensional helical computed tomography for the retrograde flexible ureteronephroscopy in the treatment of lower pole calyx stones

    Directory of Open Access Journals (Sweden)

    Yan Xu

    2016-03-01

    Full Text Available Objective: The aim of our study was to determine if there is any advantage of three-dimensional helical computed tomography (3D-HCT over intravenous urogram (IVU for the retrograde flexible ureteronephroscopy in the treatment of lower pole calyx stones. Methods: From June 2012 to January 2014, a total of 52 cases of lower pole renal stones underwent retrograde intrarenal surgery (RIRS in our center. All patients underwent a preoperative IVU and three-dimensional helical computed tomography urography (3D-CTU program to define the collecting system anatomy, manly concerning the following lower pole features; infundibu-lopelvic angle (IPA, infundibular length (IL, and infundibular width (IW. The examinations were performed in the same center of reference with a standardized method and with 3D-HCT Siemens Somaton Plus equipment. The measurements were performed by the same researcher, using a ruler and a square. Results: Based on clinical threshold difference of the anatomic factors on an IVU image to compare the difference between an IVU image and a 3D-CT image of 52 patients, the IPA was <30° when measured on intravenous pyelography (IVP for 21 patients. We found that with the IPA of <30° measured with IVP only 19% (4/21 were correctly classified in the same size category using 3D-HCT, whereas 81% (17/21 were upgraded to 40–50° on 3D-CT. This difference was significant between IVP and 3D-HCT. Conclusions: 3D-HCT has advantages over IVU when analyzing the morphometric and the morphological features of kidney lower pole spatial anatomy for the retrograde flexible ureteronephroscopy in the treatment of lower pole calyx stones. Keywords: Intravenous urogram, Computed tomography urography, Flexible ureterorenoscopy, Lower pole, Renal stones

  17. Three-dimensional simulation of thermal harmonic lasing free electron laser with detuning of the fundamental

    Science.gov (United States)

    Salehi, E.; Maraghechi, B.; Mirian, N. S.

    2016-03-01

    Detuning of the fundamental is a way to enhance harmonic generation. By this method, the wiggler is composed of two segments in such a way that the fundamental resonance of the second segment to coincide with the third harmonic of the first segment of the wiggler to generate extreme ultraviolet radiation and x-ray emission. A set of coupled, nonlinear, and first-order differential equations in three dimensions describing the evolution of the electron trajectories and the radiation field with warm beam is solved numerically by CYRUS 3D code in the steady-state for two models (1) seeded free electron laser (FEL) and (2) shot noise on the electron beam (self-amplified spontaneous emission FEL). Thermal effects in the form of longitudinal velocity spread are considered. Three-dimensional simulation describes self-consistently the longitudinal spatial dependence of radiation waists, curvatures, and amplitudes together with the evaluation of the electron beam. The evolutions of the transverse modes are investigated for the fundamental resonance and the third harmonic. Also, the effective modes of the third harmonic are studied. In this paper, we found that detuning of the fundamental with shot noise gives more optimistic result than the seeded FEL.

  18. Three-dimensional simulation of thermal harmonic lasing free electron laser with detuning of the fundamental

    International Nuclear Information System (INIS)

    Salehi, E.; Maraghechi, B.; Mirian, N. S.

    2016-01-01

    Detuning of the fundamental is a way to enhance harmonic generation. By this method, the wiggler is composed of two segments in such a way that the fundamental resonance of the second segment to coincide with the third harmonic of the first segment of the wiggler to generate extreme ultraviolet radiation and x-ray emission. A set of coupled, nonlinear, and first-order differential equations in three dimensions describing the evolution of the electron trajectories and the radiation field with warm beam is solved numerically by CYRUS 3D code in the steady-state for two models (1) seeded free electron laser (FEL) and (2) shot noise on the electron beam (self-amplified spontaneous emission FEL). Thermal effects in the form of longitudinal velocity spread are considered. Three-dimensional simulation describes self-consistently the longitudinal spatial dependence of radiation waists, curvatures, and amplitudes together with the evaluation of the electron beam. The evolutions of the transverse modes are investigated for the fundamental resonance and the third harmonic. Also, the effective modes of the third harmonic are studied. In this paper, we found that detuning of the fundamental with shot noise gives more optimistic result than the seeded FEL.

  19. Three-dimensional simulation of thermal harmonic lasing free electron laser with detuning of the fundamental

    Energy Technology Data Exchange (ETDEWEB)

    Salehi, E. [Department of Physics, Amirkabir University of Technology, 15875-4413 Tehran (Iran, Islamic Republic of); Maraghechi, B., E-mail: behrouz@aut.ac.ir [Department of Physics, Amirkabir University of Technology, 15875-4413 Tehran (Iran, Islamic Republic of); School of Particle and Accelerator Physics, Institute for Research in Fundamental Sciences (IPM), 19395-5531 Tehran (Iran, Islamic Republic of); Mirian, N. S. [School of Particle and Accelerator Physics, Institute for Research in Fundamental Sciences (IPM), 19395-5531 Tehran (Iran, Islamic Republic of); UVSOR Facility (UVSOR), Institute for Molecular Science, Myodaiji, Okazaki 444-8585 (Japan)

    2016-03-15

    Detuning of the fundamental is a way to enhance harmonic generation. By this method, the wiggler is composed of two segments in such a way that the fundamental resonance of the second segment to coincide with the third harmonic of the first segment of the wiggler to generate extreme ultraviolet radiation and x-ray emission. A set of coupled, nonlinear, and first-order differential equations in three dimensions describing the evolution of the electron trajectories and the radiation field with warm beam is solved numerically by CYRUS 3D code in the steady-state for two models (1) seeded free electron laser (FEL) and (2) shot noise on the electron beam (self-amplified spontaneous emission FEL). Thermal effects in the form of longitudinal velocity spread are considered. Three-dimensional simulation describes self-consistently the longitudinal spatial dependence of radiation waists, curvatures, and amplitudes together with the evaluation of the electron beam. The evolutions of the transverse modes are investigated for the fundamental resonance and the third harmonic. Also, the effective modes of the third harmonic are studied. In this paper, we found that detuning of the fundamental with shot noise gives more optimistic result than the seeded FEL.

  20. Experimental investigation of transverse mixing in porous media under helical flow conditions

    DEFF Research Database (Denmark)

    Ye, Yu; Chiogna, Gabriele; Cirpka, Olaf A.

    2016-01-01

    Plume dilution and transverse mixing can be considerably enhanced by helical flow occurring in three-dimensional heterogeneous anisotropic porous media. In this study, we perform tracer experiments in a fully three-dimensional flow-through chamber to investigate the effects of helical flow on plume...

  1. Coulomb double helical structure

    Science.gov (United States)

    Kamimura, Tetsuo; Ishihara, Osamu

    2012-01-01

    Structures of Coulomb clusters formed by dust particles in a plasma are studied by numerical simulation. Our study reveals the presence of various types of self-organized structures of a cluster confined in a prolate spheroidal electrostatic potential. The stable configurations depend on a prolateness parameter for the confining potential as well as on the number of dust particles in a cluster. One-dimensional string, two-dimensional zigzag structure and three-dimensional double helical structure are found as a result of the transition controlled by the prolateness parameter. The formation of stable double helical structures resulted from the transition associated with the instability of angular perturbations on double strings. Analytical perturbation study supports the findings of numerical simulations.

  2. Effects of wigglers and undulators on beam dynamics

    International Nuclear Information System (INIS)

    Smith, L.

    1986-08-01

    Synchrotron light facilities are making ever increasing use of wigglers and undulators, to the extent that these devices are becoming a significant part of the beam optical system of the storage ring itself. This paper presents a theoretical formulation for investigating the effect of wigglers and undulators on beam dynamics in the approximation that the wiggler parameter, K, divided by γ is a small number and that the number of wiggler periods in one device is large. In addition to the linear forces which must be taken into account when tuning and matching the ring, nonlinear stop bends are created, with even orders more serious than odd orders. Some numerical examples are given for devices similar to those proposed for the 1-2 GeV Synchrotron Radiation Source at Lawrence Berkeley Laboratory

  3. The generic geometry of helices and their close-packed structures

    DEFF Research Database (Denmark)

    Olsen, Kasper; Bohr, Jakob

    2010-01-01

    The formation of helices is an ubiquitous phenomenon for molecular structures whether they are biological, organic, or inorganic, in nature. Helical structures have geometrical constraints analogous to close packing of three-dimensional crystal structures. For helical packing the geometrical cons...

  4. Magnetic X-ray measurements using the elliptical multipole wiggler

    International Nuclear Information System (INIS)

    Montano, P. A.; Li, Y.; Beno, M. A.; Jennings, G.; Kimball, C. W.

    1999-01-01

    The EMW at the BESSRC beam lines at the APS provides high photon flux at high energies with the capability of producing circular polarization on axis. The authors observe a high degree of circularly polarized x-rays at such energies. The polarization and frequency tunability of the elliptical multipole wiggler (EMW) is an ideal source for many magnetic measurements from X-ray Magnetic Circular Dichroism (XMCD) to Compton scattering experiments. They performed Compton scattering measurements to determine the polarization and photon flux at the sample as a function of the deflection parameters K y and K x . They used for their measurements a Si (220) Laue monochromator providing simultaneous photon energies at 50 keV, 100 keV and 150 keV. Magnetic Compton Profiles were determined by either switching the magnet polarity or the photon helicity. The results obtained using Fe(110) single crystals were very similar

  5. Design of a superconducting wiggler system

    International Nuclear Information System (INIS)

    Shen, S.S.; Miller, J.R.; Heim, J.R.; Slack, D.S.

    1988-01-01

    We present a wiggler system based on currently available superconducting technology. The system is designed to provide maximum central field of 4.4 tesla with a specified period length of 160 mm and a gap of 40 mm, while meeting the field quality requirements along all axes. Also included are preliminary cost estimates and a survey of world-wide RandD efforts on superconducting wiggler systems. 12 refs., 6 figs., 3 tabs

  6. CESR-c Performance of a Wiggler-Dominated Storage Ring

    CERN Document Server

    Temnykh, Alexander

    2005-01-01

    CESR-c operates now as a Wiggler-Dominated Storage Ring extending the lowest operating energy to 1.5GeV/beam. To improve beam stability at low energy, 12 super-ferric wiggler magnets with total length of 15m and 2.1T maximum field were installed in the ring. They cause ~90% of total beam radiation lost and increase radiation damping rate by factor 10 from ~3 to 40 Hz. However, the field of the wiggler magnets not only initiates the radiation, but potentially affects beam dynamics. The latter was an issue of a great concern from the planning the CESR-c project. In this paper we describe general performance of CESR-c and report the results of an experimental study on some aspects of beam dynamics. Comparisons are made between the experimental data and the model prediction. We find that all parameters, which are critically dependent on wigglers, such as beam properties and ring nonlinearity, are in good agreement with those calculated from the model. This validates the ring and wiggler models and justifies our d...

  7. Performance of the SRRC storage ring and wiggler commissioning

    International Nuclear Information System (INIS)

    Kuo, C.C.; Hsu, K.T.; Luo, G.H.

    1995-01-01

    A 1.3 GeV synchrotron radiation storage ring at SRRC has been operated for more than a year since October 1993. Starting from April 1994, the machine has been open to the user community. In February 1995, the authors installed a wiggler magnet of 1.8 tesla 25-pole in the ring and successfully commissioned. The machine was scheduled for the users' runs from the middle of April this year. The authors describe the performance of the machine without wiggler magnet system and then report the wiggler effects on the beam dynamics of the storage ring, e.g., tune shift, beta-beating, orbit change, nonlinear dynamics effect, etc. Some measurements are compared with the model prediction and agreement between them was fairly good. Possible actions to minimize wiggler effects have been taken, such as orbit correction as a function wiggler gap change. The machine improvement projects, such as longitudinal and transverse damping systems as well as orbit stability feedback system are under construction and will be in use soon

  8. Three-dimensional image analysis of the skull using variable CT scanning protocols-effect of slice thickness on measurement in the three-dimensional CT images

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ho Gul; Kim, Kee Deog; Park, Hyok; Kim, Dong Ook; Jeong, Hai Jo; Kim, Hee Joung; Yoo, Sun Kook; Kim, Yong Oock; Park, Chang Seo [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2004-07-15

    To evaluate the quantitative accuracy of three-dimensional (3D) images by mean of comparing distance measurements on the 3D images with direct measurements of dry human skull according to slice thickness and scanning modes. An observer directly measured the distance of 21 line items between 12 orthodontic landmarks on the skull surface using a digital vernier caliper and each was repeated five times. The dry human skull was scanned with a Helical CT with various slice thickness (3, 5, 7 mm) and acquisition modes (Conventional and Helical). The same observer measured corresponding distance of the same items on reconstructed 3D images with the internal program of V-works 4.0 (Cybermed Inc., Seoul, Korea). The quantitative accuracy of distance measurements were statistically evaluated with Wilcoxons' two-sample test. 11 line items in Conventional 3 mm, 8 in Helical 3 mm, 11 in Conventional 5 mm, 10 in Helical 5 mm, 5 in Conventional 7 mm and 9 in Helical 7 mm showed no statistically significant difference. Average difference between direct measurements and measurements on 3D CT images was within 2 mm in 19 line items of Conventional 3 mm. 20 of Helical 3 mm, 15 of Conventional 5 mm, 18 of Helical 5 mm, 11 of Conventional 7 mm and 16 of Helical 7 mm. Considering image quality and patient's exposure time, scanning protocol of Helical 5 mm is recommended for 3D image analysis of the skull in CT.

  9. Split energy–helicity cascades in three-dimensional homogeneous and isotropic turbulence

    NARCIS (Netherlands)

    Biferale, L.; Musacchio, S.; Toschi, F.

    2013-01-01

    We investigate the transfer properties of energy and helicity fluctuations in fully developed homogeneous and isotropic turbulence by changing the nature of the nonlinear Navier–Stokes terms. We perform a surgery of all possible interactions, by keeping only those triads that have sign-definite

  10. Field distribution in a coaxial electrostatic wiggler

    Directory of Open Access Journals (Sweden)

    Shi-Chang Zhang

    2010-09-01

    Full Text Available The field distribution in a coaxial electrostatic wiggler corresponds to the special solution of a Laplace equation in a cylindrical coordinate system with a boundary value problem of sinusoidal ripples. This paper is devoted to the physical and mathematical treatment for an analytical solution of the field distribution in the coaxial electrostatic wiggler. The explicit expression of the solution indicates that the field distribution in the coaxial electrostatic wiggler varies according to a periodic function in the longitudinal direction, and is related to the first and second kinds of modified Bessel functions in the radial direction, respectively. Comparison shows excellent agreement between the analytical formula and the computer simulation technology (CST results. The physical application of the considered system and its analytical solution are discussed.

  11. Design of High Field Multipole Wiggler at PLS

    International Nuclear Information System (INIS)

    Kim, D. E.; Park, K. H.; Lee, H. G.; Suh, H. S.; Han, H. S.; Jung, Y. G.; Chung, C. W.

    2007-01-01

    Pohang Accelerator Laboratory (PAL) is developing a high field multipole wiggler for new EXAFS beamline. The beamline is planning to utilize very high photon energy (∼40keV) synchrotron radiation at Pohang Light Source (PLS). To achieve higher critical photon energy, the wiggler field need to be maximized. A magnetic structure with wedged pole and blocks with additional side blocks which are similar to asymmetric wiggler of ESRF are designed to achieve higher flux density. The end structures were designed to be asymmetric along the beam direction to ensure systematic zero 1st field integral. The thickness of the last magnets were adjusted to minimize the transition sequence to the fully developed periodic field. This approach is more convenient to control than adjusting the strength of the end magnets. The final design features 140mm period, 2.5 Tesla peak flux density at 12mm pole gap, 1205mm magnetic structure length with 16 full field poles. In this article, all the design, engineering efforts for the HFMSII wiggler will be described

  12. Helical CT for emergency patients with cerebrovascular diseases. Diagnosis of cerebral aneurysms with subarachnoid hemorrhage (SAH) by three-dimensional CT angiography (3D-CTA)

    International Nuclear Information System (INIS)

    Matsumoto, Masato; Satoh, Naoki; Kobayashi, Touru; Kodama, Namio; Nakano, Masayuki; Watanabe, Youichi; Fujii, Masayuki

    1996-01-01

    Recently, the usefulness of three-dimensional CT angiography (3D-CTA) using helical CT has been reported. Although 3D-CTA has been applied for neurosurgical diseases, especially for surgical planning, it has not done for emergency patients because of the long time required for image reconstruction and location of a helical CT scanner. We studied emergency patients with SAH, and compared the 3D-CTA with angiography and surgical findings, using TOSHIBA X vigor. Twenty-two patients with SAH were evaluated. The helical CT was performed for 55 seconds with a bolus injection of 90 ml non-ionic, iodinated contrast medium at a rate of 3 ml/sec with a delay of 20 sec. Angiography was carried out immediately after the helical CT. Eighteen of 22 cases were operated on urgently. We were able to create the 3D-CTA in about 7 minutes, and diagnose aneurysms by the 3D-CTA before angiography. The 3D-CTA was able to demonstrate 30 of 31 aneurysms including 9 unruptured aneurysms. An unruptured internal carotid-posterior communicating artery aneurysm 1.3 mm in diameter and associated with a ruptured aneurysm was not detected by either the 3D-CTA or angiography. On the other hand, an unruptured Acom aneurysm 0.8 mm in diameter and associated with a ruptured aneurysm could be detected by the: 3D-CTA, but not by angiography. The 3D-CTA gave us useful information concerning the anatomical relationship of the aneurysm, its neck and parent artery, and the surrounding branches. There were no complications or side effects associated with the helical CT scan. Although the 3D-CTA requires further development of visualization of small arteries less than 1 mm in diameter, such as perforating arteries, subtraction technique of bony structure, and a method for checking cervical arteries, it is useful for diagnosis of emergency patients with SAH and urgent operations. We believe that an operation might be performed by only the 3D-CTA without the angiography in the near future. (author)

  13. Helical CT for emergency patients with cerebrovascular diseases. Diagnosis of cerebral aneurysms with subarachnoid hemorrhage (SAH) by three-dimensional CT angiography (3D-CTA)

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Masato; Satoh, Naoki; Kobayashi, Touru; Kodama, Namio; Nakano, Masayuki; Watanabe, Youichi; Fujii, Masayuki [Fukushima Medical School (Japan)

    1996-05-01

    Recently, the usefulness of three-dimensional CT angiography (3D-CTA) using helical CT has been reported. Although 3D-CTA has been applied for neurosurgical diseases, especially for surgical planning, it has not done for emergency patients because of the long time required for image reconstruction and location of a helical CT scanner. We studied emergency patients with SAH, and compared the 3D-CTA with angiography and surgical findings, using TOSHIBA X vigor. Twenty-two patients with SAH were evaluated. The helical CT was performed for 55 seconds with a bolus injection of 90 ml non-ionic, iodinated contrast medium at a rate of 3 ml/sec with a delay of 20 sec. Angiography was carried out immediately after the helical CT. Eighteen of 22 cases were operated on urgently. We were able to create the 3D-CTA in about 7 minutes, and diagnose aneurysms by the 3D-CTA before angiography. The 3D-CTA was able to demonstrate 30 of 31 aneurysms including 9 unruptured aneurysms. An unruptured internal carotid-posterior communicating artery aneurysm 1.3 mm in diameter and associated with a ruptured aneurysm was not detected by either the 3D-CTA or angiography. On the other hand, an unruptured Acom aneurysm 0.8 mm in diameter and associated with a ruptured aneurysm could be detected by the: 3D-CTA, but not by angiography. The 3D-CTA gave us useful information concerning the anatomical relationship of the aneurysm, its neck and parent artery, and the surrounding branches. There were no complications or side effects associated with the helical CT scan. Although the 3D-CTA requires further development of visualization of small arteries less than 1 mm in diameter, such as perforating arteries, subtraction technique of bony structure, and a method for checking cervical arteries, it is useful for diagnosis of emergency patients with SAH and urgent operations. We believe that an operation might be performed by only the 3D-CTA without the angiography in the near future. (author)

  14. A three-dimensional magnetostatics computer code for insertion devices

    International Nuclear Information System (INIS)

    Chubar, O.; Elleaume, P.; Chavanne, J.

    1998-01-01

    RADIA is a three-dimensional magnetostatics computer code optimized for the design of undulators and wigglers. It solves boundary magnetostatics problems with magnetized and current-carrying volumes using the boundary integral approach. The magnetized volumes can be arbitrary polyhedrons with non-linear (iron) or linear anisotropic (permanent magnet) characteristics. The current-carrying elements can be straight or curved blocks with rectangular cross sections. Boundary conditions are simulated by the technique of mirroring. Analytical formulae used for the computation of the field produced by a magnetized volume of a polyhedron shape are detailed. The RADIA code is written in object-oriented C++ and interfaced to Mathematica (Mathematica is a registered trademark of Wolfram Research, Inc.). The code outperforms currently available finite-element packages with respect to the CPU time of the solver and accuracy of the field integral estimations. An application of the code to the case of a wedge-pole undulator is presented

  15. Preliminary design for a pierce wiggler beamstick and addendum

    International Nuclear Information System (INIS)

    Pirkle, D.

    1988-05-01

    Lawrence Livermore National Laboratory is developing a fast tunable microwave source for operation at 250 GHz and 10kW peak output power. This report presents the preliminary design of a Pierce gun and solenoid magnet that will be compatible with a Pierce-wiggler electron beam formation system (beamstick). The beamstick will be an appropriate power source for a tunable gyro-BWO at 250 GHz. Figure 1 presents the major components of the Pierce-wiggler beamstick: the electron gun, solenoid, beam tunnel, wiggler, and vacuum valve. Figure 2 shows an artistic conception of how the beamstick will interface with the interaction magnet, modulator and gyro-BWO circuit at MIT. 15 figs

  16. Dosimetric Comparison of Three Dimensional Conformal Radiation Radiotherapy and Helical Tomotherapy Partial Breast Cancer

    International Nuclear Information System (INIS)

    Kim, Dae Woong; Kim, Jong Won; Choi, Yun Kyeong; Kim, Jung Soo; Hwang, Jae Woong; Jeong, Kyeong Sik; Choi, Gye Suk

    2008-01-01

    The goal of radiation treatment is to deliver a prescribed radiation dose to the target volume accurately while minimizing dose to normal tissues. In this paper, we comparing the dose distribution between three dimensional conformal radiation radiotherapy (3D-CRT) and helical tomotherapy (TOMO) plan for partial breast cancer. Twenty patients were included in the study, and plans for two techniques were developed for each patient (left breast:10 patients, right breast:10 patients). For each patient 3D-CRT planning was using pinnacle planning system, inverse plan was made using Tomotherapy Hi-Art system and using the same targets and optimization goals. We comparing the Homogeneity index (HI), Conformity index (CI) and sparing of the organs at risk for dose-volume histogram. Whereas the HI, CI of TOMO was significantly better than the other, 3D-CRT was observed to have significantly poorer HI, CI. The percentage ipsilateral non-PTV breast volume that was delivered 50% of the prescribed dose was 3D-CRT (mean: 40.4%), TOMO (mean: 18.3%). The average ipsilateral lung volume percentage receiving 20% of the PD was 3D-CRT (mean: 4.8%), TOMO (mean: 14.2), concerning the average heart volume receiving 20% and 10% of the PD during treatment of left breast cancer 3D-CRT (mean: 1.6%, 3.0%), TOMO (mean: 9.7%, 26.3%) In summary, 3D-CRT and TOMO techniques were found to have acceptable PTV coverage in our study. However, in TOMO, high conformity to the PTV and effective breast tissue sparing was achieved at the expense of considerable dose exposure to the lung and heart.

  17. Magnetic field simulation of wiggler on LUCX accelerator facility using Radia

    Science.gov (United States)

    Sutygina, Y. N.; Harisova, A. E.; Shkitov, D. A.

    2016-11-01

    A flat wiggler consisting of NdFeB permanent magnets was installed on a compact linear electron accelerator LUCX (KEK) in Japan. After installing the wiggler on LUCX, the experiments on the generation of undulator radiation (UR) in the terahertz wavelength range is planned. To perform the detailed calculations and optimization of UR characteristics, it is necessary to know the parameters of the magnetic field generated in the wiggler. In this paper extended simulation results of wiggler magnetic field over the entire volume between the poles are presented. The obtained in the Radia simulation magnetic field is compared with the field calculated by another code, which is based on the finite element method.

  18. Clinical Application of colored three-dimensional CT (3D-CT) for brain tumors using helical scanning CT (HES-CT)

    International Nuclear Information System (INIS)

    Ogura, Yuko; Katada, Kazuhiro; Fujisawa, Kazuhisa; Imai, Fumihiro; Kawase, Tsukasa; Kamei, Yoshifumi; Kanno, Tetsuo; Takeshita, Gen; Koga, Sukehiko

    1995-01-01

    We applied colored three-dimensional CT (colored 3D-CT) images to distinguish brain tumors from the surrounding vascular and bony structures using a work station system and helical scanning CT (HES-CT). CT scanners with a slip-ring system were employed (TCT-900S and X vigor). A slice thickness of 2 mm and bed speed of 2 mm/s were used. The volume of contrast medium injected was 60 to 70 ml. Four to 8 colors were used for the tissue segmentation on the workstation system (xtension) using the data transferred from HES-CT. Tissue segmentation succeeded on the colored 3D-CT images in all 13 cases. The relationship between the tumors and the surrounding structures were easily recognized. The technique was useful to simulate operative fields, because deep structures could be visualized by cutting and drilling the colored 3D-CT volumetric data. On the basis of our findings, we suggest that colored 3D-CT images should be used as a supplementary aid for preoperative simulation. (author)

  19. CALCULATION OF THE COHERENT RADIATION IMPDENACE FROM A WIGGLER

    International Nuclear Information System (INIS)

    Wu, J

    2004-01-01

    Most studies of coherent synchrotron radiation (CSR) have considered only the radiation from independent dipole magnets. However, in the damping rings of future linear colliders and many high luminosity factories, a large fraction of the radiation power will be emitted in damping wigglers. In this paper, the longitudinal wakefield and impedance due to CSR in a wiggler are derived in the limit of a large wiggler parameter K. After an appropriate scaling, the results can be expressed in terms of universal functions, which are independent of K. Analytical asymptotic results are obtained for the wakefield in the limit of large and small distances, and for the impedance in the limit of small and high frequencies

  20. Dynamics and Structure of Three-Dimensional Trans-Alfvenic Jets. II. The Effect of Density and Winds

    OpenAIRE

    Hardee, Philip; Rosen, Alexander

    2002-01-01

    Two three-dimensional magnetohydrodynamical simulations of strongly magnetized conical jets, one with a poloidal and one with a helical magnetic field, have been performed. In the poloidal simulation a significant sheath (wind) of magnetized moving material developed and partially stabilized the jet to helical twisting. The fundamental pinch mode was not similarly affected and emission knots developed in the poloidal simulation. Thus, astrophysical jets surrounded by outflowing winds could de...

  1. Prenatal diagnosis of sirenomelia in the late second trimester with three-dimensional helical computed tomography.

    Science.gov (United States)

    Ono, Tetsuo; Katsura, Daisuke; Tsuji, Shunichiro; Yomo, Hiroko; Ishiko, Akiko; Inoue, Takashi; Kita, Nobuyuki; Takahashi, Kentaro; Murakami, Takashi

    2011-10-01

    Sirenomelia is a rare congenital syndrome that is characterized by the anomalous development of the caudal region of the body. The anomalies include bilateral renal agenesis or dysgenesis and the absence of the sacrum and other vertebral defects. Sirenomelia is also known as "mermaid syndrome," because of the one lower extremity. It is usually associated with severe oligohydramnios, and its prognosis is very poor due to pulmonary hypoplasia that is caused by severe oligohydramnios. The patient referred to our hospital at the gestational age of 27 weeks with fetal growth restriction and oligohydramnios. The estimated fetal body weight was 970 g (-4.9 S.D.). We could identify only one-side extremities, and could not identify kidneys by ultrasound examination. Because a single lower extremity and severe oligohydramnios are characteristics of the sirenomelia, we suspected sirenomelia. However, it could not be confirmed by ultrasound examination because of oligohydramnios. Therefore, we performed three-dimensional helical computed tomography (3D-CT), which is more accurate than ultrasound examinations for prenatal diagnosis of skeletal abnormalities. 3D-CT revealed an only one lower extremity. At 36 weeks and 5 days of gestation, the woman went into spontaneous labor and delivered an infant weighing 870 g. The infant has a single upper extremity and a single lower extremity. We provided supportive care for the neonate, who however died 1 hour 36 minutes after birth from severe respiratory distress. In summary, we report the correct diagnosis of sirenomelia with 3D-CT in the late second trimester.

  2. Electromagnetic wiggler technology development at the Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Deis, G.A.; Burns, M.J.; Christensen, T.C.; Coffield, F.E.; Kulke, B.; Prosnitz, D.; Scharlemann, E.T.; Halbach, K.

    1987-01-01

    As a part of the program at the Lawrence Livermore National Laboratory (LLNL) in induction-linac free-electron laser (IFEL) research, we are conducting a variety of activities addressing the unique requirements imposed on IFEL wiggler systems. We are actively developing improved dc iron-core electromagnetic wiggler designs to attain higher peak fields, greater tunability, and lower random error levels. We are pursuing specialized control systems, such as magnetic-field and beam-position controllers, which can relax requirements on the wiggler itself. We are also pursuing basic studies to establish the effect of radiation on permanent magnets

  3. Helicity conservation under quantum reconnection of vortex rings.

    Science.gov (United States)

    Zuccher, Simone; Ricca, Renzo L

    2015-12-01

    Here we show that under quantum reconnection, simulated by using the three-dimensional Gross-Pitaevskii equation, self-helicity of a system of two interacting vortex rings remains conserved. By resolving the fine structure of the vortex cores, we demonstrate that the total length of the vortex system reaches a maximum at the reconnection time, while both writhe helicity and twist helicity remain separately unchanged throughout the process. Self-helicity is computed by two independent methods, and topological information is based on the extraction and analysis of geometric quantities such as writhe, total torsion, and intrinsic twist of the reconnecting vortex rings.

  4. Wiggler as spin rotators for RHIC

    International Nuclear Information System (INIS)

    Luccio, A.; Conte, M.

    1993-01-01

    The spin of a polarized particle in a circular accelerator can be rotated with an arrangement of dipoles with field mutually perpendicular and perpendicular to the orbit. To achieve spin rotation, a given field integral value is required. The device must be designed in a way that the particle orbit is distorted as little as possible. It is shown that wigglers with many periods are suitable to achieve spin rotation with minimum orbit distortions. Wigglers are also more compact than more established structures and will use less electric power. Additional advantages include their use for non distructive beam diagnostics. Results are given for the Relativistic Heavy Ion Collider (RHIC) in the polarized proton mode

  5. Damping Wiggler Study at KEK-ATF

    CERN Document Server

    Naito, Takashi; Honda, Yosuke; Korostelev, Maxim S; Kubo, Kiyoshi; Kuriki, Masao; Kuroda, Shigeru; Muto, Toshiya; Nakamura, Norio; Ross, Marc; Sakai, Hiroshi; Terunuma, Nobuhiro; Urakawa, Junji; Zimmermann, Frank

    2005-01-01

    The effects by damping wiggler magnets have been studied at KEK-ATF. The damping ring of the KEK-ATF is a 1.3 GeV storage ring capable of producing ultra-low emittance electron beams. It is significant issue to realize fast damping in the damping ring. The tuning method with 4 sets of wiggler was investigated for the ultra-low emittance beam. The performance on the beam quality, which is related to the transverse (x and y) and the longitudinal (z and dp/p), has been measured by the SR monitor, the laser wire, the streak camera and the energy spread monitor at the extraction line. We report on the operation condition and the measurement results.

  6. A wiggler magnet for FEL low voltage operation

    Energy Technology Data Exchange (ETDEWEB)

    Al-Shamma`a, A.; Stuart, R.A.; Lucas, J.

    1995-12-31

    In low voltage FELs (ie, 200kV), operation is necessarily in the microwave frequency range for wiggler periods of the order of cms., so that a waveguide system is mandatory. Also, because of the relatively low velocity of the electron beam, the wiggle amplitude of the electron beam can be much larger than is normal for highly relativistic FELs. Both these factors mean that the electron trajectory must be carefully controlled to avoid beam collision with the waveguide walls. A wiggler system with half poles at entrance and exit is not an acceptable solution because of the offset is gives rise to the electron trajectory. Consequently, we have designed and constructed a wiggler magnet with exponential entrance and exit tapers for a minimal deflection and displacement of the electron beam. Simulations and experimental measurements showed that an on axis trajectory is easily obtainable.

  7. Commissioning of the LNLS 2 T Hybrid Wiggler

    CERN Document Server

    Farias, Ruy H A; Aparecida-Gouveia, Ana F; Cabral-Jahnel, Lucia; Citadini, James F; Ferreira, Marcelo J; Franco, J G; Liu, Lin; Neuenschwander, Regis; Resende, Ximenes R; Tavares, Pedro; Tosin, Giancarlo

    2005-01-01

    We present the results of the commissioning of a 28-pole 2 T Hybrid Wiggler at the 1.37 GeV electron storage ring of the Brazilian Synchrotron Light Source. The wiggler will be used mainly for protein crystallography and was optimized for the production of 12 keV photons. The very high field and relatively large gap (22 mm) of this insertion device led to a magnetic design that includes large main and side magnets and heavily saturated poles. We present the results of the commissioning with beam, with special attention to the correction of the large linear tune-shift perturbations produced by the wiggler as well as on the reduction of beam lifetime at full energy. Since the injection at the LNLS storage ring is performed at 500 MeV we also focus on the effects of non-linearities and their impact on injection efficiency.

  8. Ruby-Helix: an implementation of helical image processing based on object-oriented scripting language.

    Science.gov (United States)

    Metlagel, Zoltan; Kikkawa, Yayoi S; Kikkawa, Masahide

    2007-01-01

    Helical image analysis in combination with electron microscopy has been used to study three-dimensional structures of various biological filaments or tubes, such as microtubules, actin filaments, and bacterial flagella. A number of packages have been developed to carry out helical image analysis. Some biological specimens, however, have a symmetry break (seam) in their three-dimensional structure, even though their subunits are mostly arranged in a helical manner. We refer to these objects as "asymmetric helices". All the existing packages are designed for helically symmetric specimens, and do not allow analysis of asymmetric helical objects, such as microtubules with seams. Here, we describe Ruby-Helix, a new set of programs for the analysis of "helical" objects with or without a seam. Ruby-Helix is built on top of the Ruby programming language and is the first implementation of asymmetric helical reconstruction for practical image analysis. It also allows easier and semi-automated analysis, performing iterative unbending and accurate determination of the repeat length. As a result, Ruby-Helix enables us to analyze motor-microtubule complexes with higher throughput to higher resolution.

  9. Calculation of the Coherent Synchrotron Radiation Impedance from a Wiggler

    International Nuclear Information System (INIS)

    Wu, Juhao

    2003-01-01

    Most studies of Coherent Synchrotron Radiation (CSR) have only considered the radiation from independent dipole magnets. However, in the damping rings of future linear colliders, a large fraction of the radiation power will be emitted in damping wigglers. In this paper, the longitudinal wakefield and impedance due to CSR in a wiggler are derived in the limit of a large wiggler parameter K. After an appropriate scaling, the results can be expressed in terms of universal functions, which are independent of K. Analytical asymptotic results are obtained for the wakefield in the limit of large and small distances, and for the impedance in the limit of small and high frequencies

  10. Three-dimensional structure of interleukin 8 in solution

    International Nuclear Information System (INIS)

    Clore, G.M.; Appella, E.; Gronenborn, A.M.; Yamada, Masaki; Matsushima, Kouji

    1990-01-01

    The solution structure of the interleukin 8 (IL-8) dimer has been solved by nuclear magnetic resonance (NMR) spectroscopy and hybrid distance geometry-dynamical simulated annealing calculations. The structure determination is based on a total of 1,880 experimental distance restraints (of which 82 are intersubunit) and 362 torsion angle restraints (comprising φ, ψ, and χ 1 torsion angles). A total of 30 simulated annealing structures were calculated, and the atomic rms distribution about the mean coordinate positions (excluding residues 1-5 of each subunit) is 0.41 ± 0.08 angstrom for the backbone atoms and 0.90 ± 0.08 angstrom for all atoms. The three-dimensional solution structure of the IL-8 dimer reveals a structural motif in which two symmetry-related antiparallel α-helices, approximately 24 angstrom long and separated by about 14 angstrom, lie on top of six-stranded antiparallel β-sheet platform derived from two three-stranded Greek keys, one from each monomer unit. The general architecture is similar to that of the α1/α2 domains of the human class I histocompatibility antigen HLA-A2. It is suggested that the two α-helices form the binding site for the cellular receptor and that the specificity of IL-8, as well as that of a number of related proteins involved in cell-specific chemotaxis, mediation of cell growth, and the inflammatory response, is achieved by the distinct distribution of charged and polar residues at the surface of the helices

  11. Three-dimensional structure of interleukin 8 in solution.

    Science.gov (United States)

    Clore, G M; Appella, E; Yamada, M; Matsushima, K; Gronenborn, A M

    1990-02-20

    The solution structure of the interleukin 8 (IL-8) dimer has been solved by nuclear magnetic resonance (NMR) spectroscopy and hybrid distance geometry-dynamical simulated annealing calculations. The structure determination is based on a total of 1880 experimental distance restraints (of which 82 are intersubunit) and 362 torsion angle restraints (comprising phi, psi, and chi 1 torsion angles). A total of 30 simulated annealing structures were calculated, and the atomic rms distribution about the mean coordinate positions (excluding residues 1-5 of each subunit) is 0.41 +/- 0.08 A for the backbone atoms and 0.90 +/- 0.08 A for all atoms. The three-dimensional solution structure of the IL-8 dimer reveals a structural motif in which two symmetry-related antiparallel alpha-helices, approximately 24 A long and separated by about 14 A, lie on top of a six-stranded antiparallel beta-sheet platform derived from two three-stranded Greek keys, one from each monomer unit. The general architecture is similar to that of the alpha 1/alpha 2 domains of the human class I histocompatibility antigen HLA-A2. It is suggested that the two alpha-helices form the binding site for the cellular receptor and that the specificity of IL-8, as well as that of a number of related proteins involved in cell-specific chemotaxis, mediation of cell growth, and the inflammatory response, is achieved by the distinct distribution of charged and polar residues at the surface of the helices.

  12. Experimental and numerical studies of sheet electron beam propagation through a planar wiggler magnet

    International Nuclear Information System (INIS)

    Zhang, Ze Xiang; Granatstein, V.L.; Destler, W.W.; Rodgers, J.; Cheng, S.; Antonsen, T.M. Jr.; Levush, B.; Bidwell, S.W.

    1993-01-01

    Detailed experimental studies on sheet relativistic electron beam propagation through a long planar wiggler are reported and compared with numerical simulations. The planar wiggler has 56 periods with a period of 9.6 mm. Typically, the wiggler field peak amplitude is 5 kG. The experimental efforts have been focused on control of the deviation of the beam toward the side edge of the planar wiggler along the wide transverse direction. It is found that a suitably tapered magnetic field configuration at the wiggler entrance can considerably reduce the rate of the deviation. The effects of the following techniques on beam transport efficiency are also discussed: side focusing, beam transverse velocity tuning at the wiggler entrance, and beam spread limiting. High beam transport efficiency (almost 100%) of a 15 A beam has been obtained in some cases. The results are relevant to development of a free electron laser amplifier for application to stabilizing and heating of plasma in magnetic fusion research

  13. Superconducting wiggler magnets for beam-emittance damping rings

    CERN Document Server

    Schoerling, Daniel

    2012-01-01

    Ultra-low emittance beams with a high bunch charge are necessary for the luminosity performance of linear electron-positron colliders, such as the Compact Linear Collider (CLIC). An effective way to create ultra-low emittance beams with a high bunch charge is to use damping rings, or storage rings equipped with strong damping wiggler magnets. The remanent field of the permanent magnet materials and the ohmic losses in normal conductors limit the economically achievable pole field in accelerator magnets operated at around room temperature to below the magnetic saturation induction, which is 2.15 T for iron. In wiggler magnets, the pole field in the center of the gap is reduced further like the hyperbolic cosine of the ratio of the gap size and the period length multiplied by pi. Moreover, damping wiggler magnets require relatively large gaps because they have to accept the un-damped beam and to generate, at a small period length, a large magnetic flux density amplitude to effectively damp the beam emittance....

  14. A novel small-period wiggler for free-electron lasers

    International Nuclear Information System (INIS)

    Feng Bibo; Wang Mingchang; Wang Zhijiang

    1992-01-01

    A novel small-period wiggler configuration constructed by sheet of bifilar-helix with ferro-core for free-electron lasers is proposed. The performance characteristics of the wiggler prototype with 10 mm period are measured. The field as high as 500 G to 1 kG have been obtained. The amplifier designs for operation at 190 GHz using modest electron beam energies in the range of 400-500 keV are presented

  15. Analysis of the superconducting wiggler magnets for the ATF Harmonic Generation FEL experiment

    International Nuclear Information System (INIS)

    Zhang, X.; Ben-Zvi, I.; Ingold, G.; Krinsky, S.; Yu, L.H.

    1992-01-01

    In this paper, we consider the superconducting wiggler magnet under construction for the High Gain Harmonic Generation experiment (HGHG) at the Accelerator Test Facility (ATF) at BNL. This wiggler consists of an energy modulation section, a dispersion magnet and a radiator section. We present an analysis of the dispersion magnet and the end effects in the other wiggler sections. The purpose of the dispersion magnet is to convert energy modulation of the electron beam into spatial bunching. For the dispersion magnet, we discuss the physical requirements, analyze the magnetic design, determine the focusing properties, and consider the effect of departures from ideal behavior on the FEL gain. In the modulator and radiator wigglers we analyze the effects due to the ends of the wiggler and discuss their correction. In addition, the localized field produced by a trim coil for horizontal beam steering is investigated

  16. First operation of a wiggler-focused, sheet beam free electron laser amplifier

    International Nuclear Information System (INIS)

    Destler, W.W.; Cheng, S.; Zhang, Z.X.; Antonsen, T.M. Jr.; Granatstein, V.L.; Levush, B.; Rodgers, J.

    1994-01-01

    A wiggler-focused, sheet beam free electron laser (FEL) amplifier utilizing a short-period wiggler magnet has been proposed as a millimeter-wave source for current profile modification and/or electron cyclotron resonance heating of tokamak plasmas. As proposed, such an amplifier would operate at a frequency of approximately 100--200 GHz with an output power of 1--10 MW CW. Electron beam energy would be in the range 500--1000 keV. To test important aspects of this concept, an initial sheet beam FEL amplifier experiment has been performed using a 1 mmx2 cm sheet beam produced by a pulse line accelerator with a pulse duration of 100 ns. The 500--570 keV, 4--18 A sheet beam is propagated through a 56 period uniform wiggler (λ w =9.6 mm) with a peak wiggler amplitude of 2--5 kG. Linear amplification of a 5--10 W, 94 GHz signal injected in the TE 01 rectangular mode is observed. All features of the amplified signal, including pulse shape and duration, are in accordance with the predictions of numerical simulation. Amplified signal gain has been measured as a function of injected beam energy, current, and wiggler field amplitude and is also in good agreement with simulation results. Continuation of this experiment will involve studying nonlinear amplifier operation and adding a section of tapered wiggler

  17. Particle motion in the ELF wiggler

    International Nuclear Information System (INIS)

    Wurtele, J.S.; Sessler, A.M.

    1982-06-01

    Particle motion in the ELF wiggler was investigated numerically and analytically. A transport system was designed using continuous quadrupole focusing in the wiggle plane and natural wiggle focusing in the non-wiggle plane

  18. Assignment strategies in homonuclear three-dimensional 1H NMR spectra of proteins

    International Nuclear Information System (INIS)

    Vuister, G.W.; Boelens, R.; Padilla, A.; Kleywegt, G.J.; Kaptein, R.

    1990-01-01

    The increase in dimensionality of three-dimensional (3D) NMR greatly enhances the spectral resolution in comparison to 2D NMR. It alleviates the problem of resonance overlap and may extend the range of molecules amenable to structure determination by high-resolution NMR spectroscopy. Here, the authors present strategies for the assignment of protein resonances from homonuclear nonselective 3D NOE-HOHAHA spectra. A notation for connectivities between protons, corresponding to cross peaks in 3D spectra, is introduced. They show how spin systems can be identified by tracing cross-peak patterns in cross sections perpendicular to the three frequency axes. The observable 3D sequential connectivities in proteins are tabulated, and estimates for the relative intensities of the corresponding cross peaks are given for α-helical and β-sheet conformations. Intensities of the cross peaks in the 3D spectrum of pike III paravalbumin follow the predictions. The sequential-assignment procedure is illustrated for loop regions, extended and α-helical conformations for the residues Ala 54-Leu 63 of paravalbumin. NOEs that were not previously identified in 2D spectra of paravalbumin due to overlap are found

  19. The first steps towards a 7.5 T superconducting wiggler

    International Nuclear Information System (INIS)

    Werin, S.

    1988-01-01

    A 7.5 T superconducting wiggler is currently beeing constructed in cooperation between MAX-lab and the Institute of Technology in Tammerfors, Finland. The wiggler will be places at MAX-lab, either at the existing 550 MeV storage ring or at a future 1.2 GeV ring. In this paper some basic designs and calculations are described and discussed. (author)

  20. Wiggler magnetic field assisted third harmonic generation in expanding clusters

    Science.gov (United States)

    Vij, Shivani

    2018-04-01

    A simple theoretical model is constructed to study the wiggler magnetic field assisted third harmonic generation of intense short pulse laser in a cluster in its expanding phase. The ponderomotive force of laser causes density perturbations in cluster electron density which couples with wiggler magnetic field to produce a nonlinear current that generates transverse third harmonic. An intense short pulse laser propagating through a gas embedded with atomic clusters, converts it into hot plasma balls via tunnel ionization. Initially, the electron plasma frequency inside the clusters ω pe > \\sqrt{3}{ω }1 (with ω 1 being the frequency of the laser). As the cluster expands under Coulomb force and hydrodynamic pressure, ω pe decreases to \\sqrt{3}{ω }1. At this time, there is resonant enhancement in the efficiency of the third harmonic generation. The efficiency of third harmonic generation is enhanced due to cluster plasmon resonance and by phase matching due to wiggler magnetic field. The effect of cluster size on the expansion rate is studied to observe that the clusters of different radii would expand differently. The impact of laser intensity and wiggler magnetic field on the efficiency of third harmonic generation is also explored.

  1. Finite element analysis of helical flows in human aortic arch: A novel index

    OpenAIRE

    Lee, Cheng-Hung; Liu, Kuo-Sheng; Jhong, Guan-Heng; Liu, Shih-Jung; Hsu, Ming-Yi; Wang, Chao-Jan; Hung, Kuo-Chun

    2014-01-01

    This study investigates the helical secondary flows in the aortic arch using finite element analysis. The relationship between helical flow and the configuration of the aorta in patients of whose three-dimensional images constructed from computed tomography scans was examined. A finite element model of the pressurized root, arch, and supra-aortic vessels was developed to simulate the pattern of helical secondary flows. Calculations indicate that most of the helical secondary flow was formed i...

  2. Dynamic helical CT mammography of breast cancer

    International Nuclear Information System (INIS)

    Yamamoto, Akira; Fukushima, Hitoshi; Okamura, Ryuji; Nakamura, Yoshiaki; Morimoto, Taisuke; Urata, Yoji; Mukaihara, Sumio; Hayakawa, Katsumi

    2006-01-01

    The purpose of this study was to determine whether dynamic helical computed tomography (CT)-mammography could assist in selecting the most appropriate surgical method in women with breast cancer. Preoperative contrast-enhanced helical CT scanning of the breast was performed on 133 female patients with suspicion of breast cancer at the same time as clinical, mammographic, and/or ultrasonographic examinations. The patients were scanned in the prone position with a specially designed CT-compatible device. A helical scan was made with rapid intravenous bolus injection (3 ml/s) of 100 ml of iodine contrast material. Three-dimensional maximum intensity projection (MIP) images were reconstructed, and CT findings were correlated with surgical and histopathological findings. Histopathological analysis revealed 84 malignant lesions and seven benign lesions. The sensitivity, specificity, and accuracy levels of the CT scanning were 94.6%, 58.6%, and 78.9%. Helical scanning alone revealed additional contralateral carcinomas in three of four patients and additional ipsilateral carcinomas in three of five patients. However, the technique gave false-positive readings in 24 patients. The preoperative CT-mammogram altered the surgical method in six patients. Dynamic helical CT-mammography in the prone position may be one of the choices of adjunct imaging in patients with suspected breast cancer scheduled for surgery. (author)

  3. Radiotherapy for Adult Medulloblastoma: Evaluation of Helical Tomotherapy, Volumetric Intensity Modulated Arc Therapy, and Three-Dimensional Conformal Radiotherapy and the Results of Helical Tomotherapy Therapy

    Directory of Open Access Journals (Sweden)

    Sun Zong-wen

    2018-01-01

    Full Text Available Introduction. All adult medulloblastoma (AMB patients should be treated with craniospinal irradiation (CSI postoperatively. Because of the long irradiation range, multiple radiation fields must be designed for conventional radiotherapy technology. CSI can be completed in only one session with helical tomotherapy (HT. We evaluated the dose of HT, volumetric intensity modulated arc therapy (VMAT, and three-dimensional conformal radiotherapy (3D-CRT of AMB and the results of 5 cases of AMB treated with HT. Methods. Complete craniospinal and posterior cranial fossa irradiation with HT, VMAT, and 3D-CRT and dose evaluation were performed. And results of 5 cases of AMB treated with HT were evaluated. Results. A large volume of tissue was exposed to low dose radiation in the organs at risk (OAR, while a small volume was exposed to high dose radiation with HT. The conformity and uniformity of the targets were good with HT and VMAT, and the volume of targets exposed to high dose with VMAT was larger than that of HT. The uniformity of 3D-CRT was also good, but the dose conformity was poor. The main toxicity was hematologic toxicity, without 4th-degree bone marrow suppression. There was 3rd-degree inhibition in the white blood cells, hemoglobin, and platelets. The three female patients suffered menstrual disorders during the course of radiation. Two female patients with heavy menstruation suffered 3rd-degree anemia inhibition, and 2 patients suffered amenorrhea after radiotherapy. Although menstrual cycle was normal, the third patient was not pregnant. Conclusion. CSI with HT is convenient for clinical practice, and the side effects are mild. With good conformity and uniformity, VMAT can also be used for selection in CSI. For poor conformity, 3D-CRT should not be the priority selection for CSI. In female patients, the ovaries should be protected.

  4. Electron dynamics with radiation and nonlinear wigglers

    International Nuclear Information System (INIS)

    Jowett, J.M.

    1986-06-01

    The physics of electron motion in storage rings is described by supplementing the Hamiltonian equations of motion with fluctuating radiation reaction forces to describe the effects of synchrotron radiation. This leads to a description of radiation damping and quantum diffusion in single-particle phase-space by means of Fokker-Planck equations. For practical purposes, most storage rings remain in the regime of linear damping and diffusion; this is discussed in some detail with examples, concentrating on longitudinal phase space. However special devices such as nonlinear wigglers may permit the new generation of very large rings to go beyond this into regimes of nonlinear damping. It is shown how a special combined-function wiggler can be used to modify the energy distribution and current profile of electron bunches

  5. High-power free-electron laser amplifier using a scalloped electron beam and a two-stage wiggler

    Directory of Open Access Journals (Sweden)

    D. C. Nguyen

    2006-05-01

    Full Text Available High-power free-electron laser (FEL amplifiers present many practical design and construction problems. One such problem is possible damage to any optical beam control elements beyond the wiggler. The ability to increase the optical beam’s divergence angle after the wiggler, thereby reducing the intensity on the first optical element, is important to minimize such damage. One proposal to accomplish this optical beam spreading is to pinch the electron beam thereby focusing the radiation as well. In this paper, we analyze an approach that relies on the natural betatron motion to pinch the electron beam near the end of the wiggler. We also consider a step-tapered, two-stage wiggler to enhance the efficiency. The combination of a pinched electron beam and step-taper wiggler leads to additional optical guiding of the optical beam. This novel configuration is studied in simulation using the MEDUSA code. For a representative set of beam and wiggler parameters, we discuss (i the effect of the scalloped beam on the interaction in the FEL and on the focusing and propagation of the radiation, and (ii the efficiency enhancement in the two-stage wiggler.

  6. Impact of the Wiggler Coherent Synchrotron Radiation Impedance on the Beam Instability

    International Nuclear Information System (INIS)

    Wu, Juhao

    2003-01-01

    Coherent Synchrotron Radiation (CSR) can play an important role by not only increasing the energy spread and emittance of a beam, but also leading to a potential instability. Previous studies of the CSR induced longitudinal instability were carried out for the CSR impedance due to dipole magnets. However, many storage rings include long wigglers where a large fraction of the synchrotron radiation is emitted. This includes high-luminosity factories such as DAPHNE, PEP-II, KEK-B, and CESR-C as well as the damping rings of future linear colliders. In this paper, the instability due to the CSR impedance from a wiggler is studied assuming a large wiggler parameter K. The primary consideration is a low frequency microwave-like instability, which arises near the pipe cut-off frequency. Detailed results are presented on the growth rate and threshold for the damping rings of several linear collider designs. Finally, the optimization of the relative fraction of damping due to the wiggler systems is discussed for the damping rings

  7. Scale Dependence of Magnetic Helicity in the Solar Wind

    Science.gov (United States)

    Brandenburg, Axel; Subramanian, Kandaswamy; Balogh, Andre; Goldstein, Melvyn L.

    2011-01-01

    We determine the magnetic helicity, along with the magnetic energy, at high latitudes using data from the Ulysses mission. The data set spans the time period from 1993 to 1996. The basic assumption of the analysis is that the solar wind is homogeneous. Because the solar wind speed is high, we follow the approach first pioneered by Matthaeus et al. by which, under the assumption of spatial homogeneity, one can use Fourier transforms of the magnetic field time series to construct one-dimensional spectra of the magnetic energy and magnetic helicity under the assumption that the Taylor frozen-in-flow hypothesis is valid. That is a well-satisfied assumption for the data used in this study. The magnetic helicity derives from the skew-symmetric terms of the three-dimensional magnetic correlation tensor, while the symmetric terms of the tensor are used to determine the magnetic energy spectrum. Our results show a sign change of magnetic helicity at wavenumber k approximately equal to 2AU(sup -1) (or frequency nu approximately equal to 2 microHz) at distances below 2.8AU and at k approximately equal to 30AU(sup -1) (or nu approximately equal to 25 microHz) at larger distances. At small scales the magnetic helicity is positive at northern heliographic latitudes and negative at southern latitudes. The positive magnetic helicity at small scales is argued to be the result of turbulent diffusion reversing the sign relative to what is seen at small scales at the solar surface. Furthermore, the magnetic helicity declines toward solar minimum in 1996. The magnetic helicity flux integrated separately over one hemisphere amounts to about 10(sup 45) Mx(sup 2) cycle(sup -1) at large scales and to a three times lower value at smaller scales.

  8. γ -Ray Generation from Plasma Wakefield Resonant Wiggler

    Science.gov (United States)

    Lei, Bifeng; Wang, Jingwei; Kharin, Vasily; Zepf, Matt; Rykovanov, Sergey

    2018-03-01

    A flexible gamma-ray radiation source based on the resonant laser-plasma wakefield wiggler is proposed. The wiggler is achieved by inducing centroid oscillations of a short laser pulse in a plasma channel. Electrons (self-)injected in such a wakefield experience both oscillations due to the transverse electric fields and energy gain due to the longitudinal electric field. The oscillations are significantly enhanced when the laser pulse centroid oscillations are in resonance with the electron betatron oscillations, extending the radiation spectrum to the gamma-ray range. The polarization of the radiation can be easily controlled by adjusting the injection of the laser pulse into the plasma channel.

  9. A long electromagnetic wiggler for the paladin free-electron laser experiments

    International Nuclear Information System (INIS)

    Deis, G.A.; Harvey, A.R.; Parkison, C.D.; Prosnitz, D.; Rego, J.; Scharlemann, E.T.; Halbach, K.

    1987-01-01

    We have designed, built, and tested a 25.6-m-long wiggler for a free-electron-laser (FEL) experiment. It is a DC iron-core electromagnetic wiggler that incorporates a number of important and unique features. Permanent magnets are used to suppress saturation in the iron and extend the linear operating range. Steering-free excitation allows real-time adjustment of the field taper without causing beam steering. Wiggle-plane focusing is produced by curved pole tips. The magnitude of random pole-to-pole field errors is minimized by a mechanical design concept that reduces tolerance stackup in critical locations. To date, we have tested 15 m of this wiggler, and our measurements have shown exceptionally low levels of random errors. 8 refs

  10. Magnetic measurements of the 10 T superconducting wiggler for the SPring-8 storage ring

    CERN Document Server

    Batrakov, A; Bekhtenev, E A; Fedurin, M; Hara, M; Karpov, G; Kuzin, M; Mezentsev, N A; Miahara, Y; Shimada, T; Shkaruba, V A; Soutome, K; Tzumaki, K

    2001-01-01

    In 1999, in the frame of the project ISTC No. 767 'Budker INP/RIKEN Slow Positron Source', the Budker Institute of Nuclear Physics had made a 10 T Three-pole Superconducting Wiggler. The wiggler will be the keystone of this project by its installation on the SPring-8 storage ring for powerful gamma ray generation (lambda sub c =450 keV), that will be used for slow positron production (N subgamma(epsilon>1 MeV)approx 10 sup 1 sup 5 , gamma/s I sub e =0.1 A). A. Ando et al., Proposal of the high magnetic field super conducting WLS for slow positron source at SPring-8, presented at SR1 '97 Conference. In January, 2000, the wiggler was transported to SPring-8, where the last test and measurements were carried out in collaboration with Japan. In this article, the results of measurements of the magnetic field, finding the magnetic field amplitude by an NMR probe, the definition of feed current relations by stretch current wire method, the calibration of a Hall probe in the high magnetic field, and the measurement o...

  11. Drift mode calculations for the Large Helical Device

    International Nuclear Information System (INIS)

    Rewoldt, G.; Ku, L.-P.; Tang, W.M.; Sugama, H.; Nakajima, N.; Watanabe, K.Y.; Murakami, S.; Yamada, H.; Cooper, W.A.

    2000-01-01

    A fully kinetic assessment of the stability properties of toroidal drift modes has been obtained for a case for the Large Helical Device (LHD) [A.Iiyoshi, et al., Plasma Physics and Controlled Nuclear Fusion Research, 1998, Nucl.Fusion 39, 1245 (1999)]. This calculation retains the important effects in the linearized gyrokinetic equation, using the lowest-order ''ballooning representation'' for high toroidal mode number instabilities in the electrostatic limit. Results for toroidal drift waves destabilized by trapped particle dynamics and ion temperature gradients are presented, using three-dimensional magnetohydrodynamics equilibria reconstructed from experimental measurements. The effects of helically-trapped particles and helical curvature are investigated

  12. Equilibrium calculations for helical axis stellarators

    International Nuclear Information System (INIS)

    Hender, T.C.; Carreras, B.A.

    1984-04-01

    An average method based on a vacuum flux coordinate system is presented. This average method permits the study of helical axis stellarators with toroidally dominated shifts. An ordering is introduced, and to lowest order the toroidally averaged equilibrium equations are reduced to a Grad-Shafranov equation. Also, to lowest order, a Poisson-type equation is obtained for the toroidally varying corrections to the equilibium. By including these corrections, systems that are toroidally dominated, but with significant helical distortion to the equilibrium, may be studied. Numerical solutions of the average method equations are shown to agree well with three-dimensional calculations

  13. Three-dimensional imaging of acetabular dysplasia: diagnostic value and impact on surgical type classification

    Energy Technology Data Exchange (ETDEWEB)

    Smet, Maria-Helena E-mail: marleen.smet@uz.kuleuven.ac.be; Marchal, Guy J.; Baert, Albert L.; Hoe, Lieven van; Cleynenbreugel, Johan van; Daniels, Hans; Molenaers, Guy; Moens, Pierre; Fabry, Guy

    2000-04-01

    Objective: To investigate the diagnostic value and the impact on surgical type classification of three-dimensional (3D) images for pre-surgical evaluation of dysplastic hips. Materials and methods: Three children with a different surgical type of hip dysplasia were investigated with helical computed tomography. For each patient, two-dimensional (2D) images, 3D, and a stereolithographic model of the dysplastic hip were generated. In two separate sessions, 40 medical observers independently analyzed the 2D images (session 1), the 2D and 3D images (session 2), and tried to identify the corresponding stereolithographic hip model. The influence of both image presentation (2D versus 3D images) and observer (degree of experience, radiologist versus orthopedic surgeon) were statistically analyzed. The SL model choice reflected the impact on surgical type classification. Results: Image presentation was a significant factor whereas the individual observer was not. Three-dimensional images scored significantly better than 2D images (P=0.0003). Three-dimensional imaging increased the correct surgical type classification by 35%. Conclusion: Three-dimensional images significantly improve the pre-surgical diagnostic assessment and surgical type classification of dysplastic hips.

  14. Three-dimensional imaging of acetabular dysplasia: diagnostic value and impact on surgical type classification

    International Nuclear Information System (INIS)

    Smet, Maria-Helena; Marchal, Guy J.; Baert, Albert L.; Hoe, Lieven van; Cleynenbreugel, Johan van; Daniels, Hans; Molenaers, Guy; Moens, Pierre; Fabry, Guy

    2000-01-01

    Objective: To investigate the diagnostic value and the impact on surgical type classification of three-dimensional (3D) images for pre-surgical evaluation of dysplastic hips. Materials and methods: Three children with a different surgical type of hip dysplasia were investigated with helical computed tomography. For each patient, two-dimensional (2D) images, 3D, and a stereolithographic model of the dysplastic hip were generated. In two separate sessions, 40 medical observers independently analyzed the 2D images (session 1), the 2D and 3D images (session 2), and tried to identify the corresponding stereolithographic hip model. The influence of both image presentation (2D versus 3D images) and observer (degree of experience, radiologist versus orthopedic surgeon) were statistically analyzed. The SL model choice reflected the impact on surgical type classification. Results: Image presentation was a significant factor whereas the individual observer was not. Three-dimensional images scored significantly better than 2D images (P=0.0003). Three-dimensional imaging increased the correct surgical type classification by 35%. Conclusion: Three-dimensional images significantly improve the pre-surgical diagnostic assessment and surgical type classification of dysplastic hips

  15. General architecture of the alpha-helical globule.

    Science.gov (United States)

    Murzin, A G; Finkelstein, A V

    1988-12-05

    A model is presented for the arrangement of alpha-helices in globular proteins. In the model, helices are placed on certain ribs of "quasi-spherical" polyhedra. The polyhedra are chosen so as to allow the close packing of helices around a hydrophobic core and to stress the collective interactions of the individual helices. The model predicts a small set of stable architectures for alpha-helices in globular proteins and describes the geometries of the helix packings. Some of the predicted helix arrangements have already been observed in known protein structures; others are new. An analysis of the three-dimensional structures of all proteins for which co-ordinates are available shows that the model closely approximates the arrangements and packing of helices actually observed. The average deviations of the real helix axes from those in the model polyhedra is +/- 20 degrees in orientation and +/- 2 A in position (1 A = 0.1 nm). We also show that for proteins that are not homologous, but whose helix arrangements are described by the same polyhedron, the root-mean-square difference in the position of the C alpha atoms in the helices is 1.6 to 3.0 A.

  16. Predesign Study of a 4-5 tesla Superconducting Wiggler Magnet for the ESRF

    NARCIS (Netherlands)

    ten Kate, Herman H.J.; ter Avest, D.; ter Avest, D.; Ravex, A.; Lagnier, M.; Elleaume, P.

    1994-01-01

    The ESRF is currently setting up a beam line for very hard photons well above 250 keV. This requires the installation of a high field three polewavelength shifter. The nominal and target fields of the wiggler magnet are 4 and 5 tesla respectively while the nominal field integral over the central

  17. Conceptual designs for NLC ubitrons with permanent-magnet wigglers

    International Nuclear Information System (INIS)

    Phillips, R.

    1994-09-01

    This paper describes three embodiments of the ubitron (FEL) amplifier that will be analyzed for possible use on the NLC. The design frequency and power are 11.424 GHz and 200 MW peak rf output power. The baseline against which these conceptual designs are to be evaluated is the PPM-focused 50-MW SIAC klystron, which in simulation shows 65% efficiency. In order to remain competitive in cost and power consumption, only ubitron beam-wave configurations that can use permanent-magnet wigglers are considered

  18. Chiral Silver-Lanthanide Metal-Organic Frameworks Comprised of One-Dimensional Triple Right-Handed Helical Chains Based on [Ln7(μ3-OH)8]13+ Clusters.

    Science.gov (United States)

    Guo, Yan; Zhang, Lijuan; Muhammad, Nadeem; Xu, Yan; Zhou, Yunshan; Tang, Fang; Yang, Shaowei

    2018-02-05

    Three new isostructural chiral silver-lanthanide heterometal-organic frameworks [Ag 3 Ln 7 (μ 3 -OH) 8 (bpdc) 6 (NO 3 ) 3 (H 2 O) 6 ](NO 3 )·2H 2 O [Ln = Eu (1), Tb (2, Sm (3); H 2 bpdc = 2,2'-bipyridine-3,3'-dicarboxylic acid] based on heptanuclear lanthanide clusters [Ln 7 (μ 3 -OH) 8 ] 13+ comprised of one-dimensional triple right-handed helical chains were hydrothermally synthesized. Various means such as UV-vis spectroscopy, IR spectroscopy, elemental analysis, powder X-ray diffraction, and thermogravimetric/differential thermal analysis were used to characterize the compounds, wherein compound 3 was crystallographically characterized. In the structure of compound 3, eight μ 3 -OH - groups link seven Sm 3+ ions, forming a heptanuclear cluster, [Sm 7 (μ 3 -OH) 8 ] 13+ , and the adjacent [Sm 7 (μ 3 -OH) 8 ] 13+ clusters are linked by the carboxylic groups of bpdc 2- ligands, leading to the formation of a one-dimensional triple right-handed helical chain. The adjacent triple right-handed helical chains are further joined together by coordinating the pyridyl N atoms of the bpdc 2- ligands with Ag + , resulting in a chiral three-dimensional silver(I)-lanthanide(III) heterometal-organic framework with one-dimensional channels wherein NO 3 - anions and crystal lattice H 2 O molecules are trapped. The compounds were studied systematically with respect to their photoluminescence properties and energy-transfer mechanism, and it was found that H 2 bpdc (the energy level for the triplet states of the ligand H 2 bpdc is 21505 cm -1 ) can sensitize Eu 3+ luminescence more effectively than Tb 3+ and Sm 3+ luminescence because of effective energy transfer from bpdc 2- to Eu 3+ under excitation in compound 1.

  19. Extension of operation regimes and investigation of three-dimensional current-less plasmas in the Large Helical Device

    International Nuclear Information System (INIS)

    Kaneko, O.

    2012-11-01

    The Large Helical Device (LHD) has shown the advantages of heliotron plasma for fusion reactor from operational point of view not only such as disruption free and steady state operation, but also as high density and stable high beta operation. Since the last Fusion Energy Conference in Daejon in 2010 (Yamada, 2011 Nucl. Fusion 51 094021), physical understanding as well as parameter improvement of net-current free helical plasmas has progressed successively. The current efforts are focused on optimization of plasma edge condition to extend the operation regime towards higher ion temperature and more stable high density. In LHD a part of open helical divertors are being modified to the baffle-structured closed ones to aim at active control of the edge plasma. It has been demonstrated that the neutral pressure in the closed helical divertor was more than 10 times higher than that in the open helical divertor. The central ion temperature has exceeded 7 keV. This high-T i plasma was obtained by a carbon pellet injection and the kinetic-energy confinement was improved by a factor of 1.5. Transport analysis of the high-T i plasmas has shown that the ion-thermal conductivity and the viscosity reduced after the pellet injection. Study of physics in 3-D geometry is highlighted in the topics of the response to Resonant Magnetic Perturbation such as ELM mitigation and divertor detachment. Novel approaches of non-local and non-diffusive transport have also been advanced. In this paper, highlighted results in these two years are overviewed. (author)

  20. Harmonic generation with multiple wiggler schemes

    Energy Technology Data Exchange (ETDEWEB)

    Bonifacio, R.; De Salvo, L.; Pierini, P. [Universita degli Studi, Milano (Italy)

    1995-02-01

    In this paper the authors give a simple theoretical description of the basic physics of the single pass high gain free electron laser (FEL), describing in some detail the FEL bunching properties and the harmonic generation technique with a multiple-wiggler scheme or a high gain optical klystron configuration.

  1. Second crystal cooling on cryogenically cooled undulator and wiggler double crystal monochromators

    International Nuclear Information System (INIS)

    Knapp, G. S.

    1998-01-01

    Simple methods for the cooling of the second crystals of cryogenically cooled undulator and wiggler double crystal monochromators are described. Copper braids between the first and second crystals are used to cool the second crystals of the double crystal monochromators. The method has proved successful for an undulator monochromator and we describe a design for a wiggler monochromator

  2. Vorticity and helicity decompositions and dynamics with real Schur form of the velocity gradient

    Science.gov (United States)

    Zhu, Jian-Zhou

    2018-03-01

    The real Schur form (RSF) of a generic velocity gradient field ∇u is exploited to expose the structures of flows, in particular, our field decomposition resulting in two vorticities with only mutual linkage as the topological content of the global helicity (accordingly decomposed into two equal parts). The local transformation to the RSF may indicate alternative (co)rotating frame(s) for specifying the objective argument(s) of the constitutive equation. When ∇u is uniformly of RSF in a fixed Cartesian coordinate frame, i.e., ux = ux(x, y) and uy = uy(x, y), but uz = uz(x, y, z), the model, with the decomposed vorticities both frozen-in to u, is for two-component-two-dimensional-coupled-with-one-component-three-dimensional flows in between two-dimensional-three-component (2D3C) and fully three-dimensional-three-component ones and may help curing the pathology in the helical 2D3C absolute equilibrium, making the latter effectively work in more realistic situations.

  3. Global beta-beating compensation of the ALS W16 wiggler

    International Nuclear Information System (INIS)

    Robin, D.; Decking, W.; Nishimura, H.

    1997-05-01

    The W16 wiggler is the first wiggler and highest field insertion device to be installed in the ALS storage ring. When the gaps of the W16 wiggler are closed, the vertical tune increases by 0.065 and the vertical beta function is distorted by up to ±37%. There are 48 quadrupoles in the ring whose fields can be adjusted individually to restore the tunes and partially compensate the beta-beating. In order to adjust the quadrupole field strengths to accurately compensate the focusing, it is necessary to have a method to precisely determine the beta-beating. In this paper we compare measurements of the induced beta-beating using two methods: measuring the tune dependence on quadrupole field strength and fitting a lattice model with measured response matrices. The fitted model also allows us to predict quadrupole field strengths that will best compensate the beta beating. These quadrupole field strengths are then applied and the resultant beta-beating is measured

  4. Wigglers and single-particle dynamics in the NLC damping rings

    International Nuclear Information System (INIS)

    Venturini, Marco; Wolski, Andrzej; Dragt, Alex

    2003-01-01

    Wiggler insertions are expected to occupy a significant portion of the lattice of the Next Linear Collider (NLC) Main Damping Rings (MDR) and have a noticeable impact on the single-particle beam dynamics. Starting from a realistic 3D representation of the magnetic fields we calculate the transfer maps for the wigglers, accounting for linear and nonlinear effects, and we study the beam dynamics with particular attention paid to the Dynamic Aperture(DA). A DA reduction is observed but appears to remain within acceptable limits

  5. Three dimensional illustrating - three-dimensional vision and deception of sensibility

    Directory of Open Access Journals (Sweden)

    Anita Gánóczy

    2009-03-01

    Full Text Available The wide-spread digital photography and computer use gave the opportunity for everyone to make three-dimensional pictures and to make them public. The new opportunities with three-dimensional techniques give chance for the birth of new artistic photographs. We present in detail the biological roots of three-dimensional visualization, the phenomena of movement parallax, which can be used efficiently in making three-dimensional graphics, the Zöllner- and Corridor-illusion. There are present in this paper the visual elements, which contribute to define a plane two-dimensional image in three-dimension: coherent lines, the covering, the measurement changes, the relative altitude state, the abatement of detail profusion, the shadings and the perspective effects of colors.

  6. A new type of permanent magnet ondulator and wiggler

    International Nuclear Information System (INIS)

    Jianming, X.; Maosan, L.; Qing, X.

    1987-01-01

    A new type of permanent magnet ondulator and wiggler is discussed. In this new design the magnet is composed of permanent magnet segments with modulated thickness. The magnetization directions of the segments are all perpendicular to the symmetrical plane of the magnet gap. By modulating the thicknesses of the segments, the field distribution is a pure sinusoidal curve in the ideal 2-dimensional case. The spatial expressions of the magnet field in the ideal case and in the real case are given. The methods for reducing the undesirable harmonics in the magnet field in the real case are discussed. Because of the arrangement of the magnetization directions of the magnet segments, soft iron shield can be used to strenghten the magnet field. In some cases, the stregnthening factor is more than two. The strenghtening effect of the soft iron shield is analysed also

  7. Particle-in-cell simulation of helical structure onset in plasma fiber with dust grains

    International Nuclear Information System (INIS)

    Kulhanek, Petr; Bren, David; Kaizr, Vaclav; Pasek, Jan

    2002-01-01

    Fully three dimensional PIC program package for the helical pinch numerical simulation was developed in our department. Both electromagnetic and gravitational interactions are incorporated into the model. Collisions are treated via Monte Carlo methods. The program package enabled to prove the conditions of onset of spiral and helical structures in the pinch

  8. A Dosimetric Comparison of Accelerated Partial Breast Irradiation Techniques: Multicatheter Interstitial Brachytherapy, Three-Dimensional Conformal Radiotherapy, and Supine Versus Prone Helical Tomotherapy

    International Nuclear Information System (INIS)

    Patel, Rakesh R.; Becker, Stewart J.; Das, Rupak K.; Mackie, Thomas R.

    2007-01-01

    Purpose: To compare dosimetrically four different techniques of accelerated partial breast irradiation (APBI) in the same patient. Methods and Materials: Thirteen post-lumpectomy interstitial brachytherapy (IB) patients underwent imaging with preimplant computed tomography (CT) in the prone and supine position. These CT scans were then used to generate three-dimensional conformal radiotherapy (3D-CRT) and prone and supine helical tomotherapy (PT and ST, respectively) APBI plans and compared with the treated IB plans. Dose-volume histogram analysis and the mean dose (NTD mean ) values were compared. Results: Planning target volume coverage was excellent for all methods. Statistical significance was considered to be a p value mean dose of 1.3 Gy 3 and 1.2 Gy 3 , respectively. Both of these methods were statistically significantly lower than the supine external beam techniques. Overall, all four methods yielded similar low doses to the heart. Conclusions: The use of IB and PT resulted in greater normal tissue sparing (especially ipsilateral breast and lung) than the use of supine external beam techniques of 3D-CRT or ST. However, the choice of APBI technique must be tailored to the patient's anatomy, lumpectomy cavity location, and overall treatment goals

  9. Initial operation of SSRL wiggler in spear

    International Nuclear Information System (INIS)

    Berndt, M.; Brunk, W.; Cronin, R.; Jensen, D.; Johnson, R.; King, A.; Spencer, J.; Taylor, T.; Winick, H.

    1979-03-01

    A 3 lambda planar, magnetic wiggler has been designed, built, installed and operated in the SPEAR storage ring. Its primary purpose is to provide tunable synchrotron radiation (SR) with a higher energy and intensity than previously available for a new SR beam line just commissioned at the Stanford Synchrotron Radiation Laboratory. Because the magnet operates from 0-18 kG, it should also produce undulator radiation (UR). Since the wiggler influences storage ring operation in both single beam and colliding beam modes, measurements were made of tune changes, emittance changes and energy spreads which are compared to predictions. Significant improvements in luminosity for high energy physics experiments were observed. The ability to do x-ray experiments easily that were not previously feasible at low electron beam energies and currents has also been demonstrated. The basic design, some interesting characteristics of the magnetic measurements and initial operating experience and results are discussed

  10. Design and analysis of a wiggler magnet system for the PEP-II B-Factory LER

    International Nuclear Information System (INIS)

    Heim, J.; Kendall, M.; Bertolini, L.; Fackler, O.; O'Connor, T.; Swan, T.; Zholents, A.

    1996-01-01

    The Low Energy Ring (LER) of the PEP-II B-Factory will use a wiggler magnet system for emittance control and additional damping. The wiggler magnet system is a set of 11 individual iron core, water cooled, dipole magnets designed to operate at 1.6 T and generate 400 kW of synchrotron radiation. Space has been provided to add a second wiggler with an additional 400 kW of synchrotron radiation if more damping is needed in the future. A copper vacuum chamber is used with continuous antechambers connected to both sides of the beam chamber via slots. Synchrotron radiation dump surfaces and distributed vacuum pumping are located in both antechambers. The authors describe the design and analysis of the wiggler magnets and the salient features of the vacuum chamber and dumps

  11. Initial experiment of focusing wiggler of MM wave Free Electron Laser on LAX-1

    International Nuclear Information System (INIS)

    Sakamoto, Keishi; Maebara, Sunao; Watanabe, Akihiko; Kishimoto, Yasuaki; Nagashima, Takashi; Maeda, Hikosuke; Shiho, Makoto; Oda, Hisako; Kawasaki, Sunao.

    1991-03-01

    Initial results of Free Electron laser (FEL) Experiment in the mm wave region are presented. The experiment is carried out using a induction linac system (LAX-1: Large current Accelerator Experiment) of E b = 1 MeV, Ib = 1 ∼ 3 kA. The wiggler of FEL is composed of the curved surface magnets arrays (focusing wiggler), which is found to be effective for a transport of low energy and high current beam through the wiggler. The superradiance of the mm wave region (30 GHz ∼ 40 GHz) is observed. The growth rate of this radiation is 0.42 dB/cm. (author)

  12. In vacuum permanent magnet wiggler optimized for the production of hard x rays

    Directory of Open Access Journals (Sweden)

    O. Marcouille

    2013-05-01

    Full Text Available A new concept of wiggler has been designed and realized at SOLEIL to produce high energy photons in low/intermediate electron storage rings. Instead of using the superconducting technology which requires new equipment and instrumentation, heavy maintenance, and additional running costs, we have proposed to build a compact in-vacuum small gap short period wiggler that operates rather at moderate field than at high field. The wiggler composed of 38 periods of 50 mm produces 2.1 T at a gap of 5.5 mm. The moderate value of the magnetic field enables one to limit the effects on the beam dynamics and to avoid excessive power and magnetic forces. In this purpose, the narrow magnetic system has been equipped with a counterforce device made of nonmagnetic springs. The roll-off resulting from the small size of poles has been compensated in situ by permanent magnet magic fingers. This paper reports the phases of design, construction, magnetic measurements, and on-beam tests of the in-vacuum wiggler WSV50.

  13. Circular dichroism in a three-dimensional semiconductor chiral photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, S.; Ota, Y.; Tatebayashi, J. [Institute of Nano Quantum Information Electronics, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Tajiri, T. [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Iwamoto, S.; Arakawa, Y. [Institute of Nano Quantum Information Electronics, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan)

    2014-08-04

    Circular dichroism covering the telecommunication band is experimentally demonstrated in a semiconductor-based three-dimensional chiral photonic crystal (PhC). We design a rotationally stacked woodpile PhC structure where neighboring layers are rotated by 60° and three layers construct a single helical unit. The mirror-asymmetric PhC made from GaAs with sub-micron periodicity is fabricated by a micro-manipulation technique. Due to the large contrast of refractive indices between GaAs and air, the experimentally obtained circular dichroism extends over a wide wavelength range, with the transmittance of right-handed circularly polarized incident light being 85% and that of left-handed light being 15% at a wavelength of 1.3 μm. The obtained results show good agreement with numerical simulations.

  14. Simulations of the effects of a superconducting damping wiggler on a short bunched electron beam at ANKA

    Energy Technology Data Exchange (ETDEWEB)

    Gethmann, Julian; Bernhard, Axel; Blomley, Edmund; Hillenbrand, Steffen; Mueller, Anke-Susanne; Smale, Nigel [Karlsruher Institut fuer Technologie (KIT) (Germany); Zolotarev, Konstantin [Budker Institute of Nuclear Physics (Russian Federation)

    2016-07-01

    (As a part of the CLIC collaboration) A CLIC damping wiggler prototype has been installed at the ANKA synchrotron light source in order to validate the technical design of the 3 T superconducting conduction cooled wiggler and its cryostat and to cary out studies on beam dynamical aspects including collective effects. The latter one will be the main focus in this talk. Collective effects that will occur in damping rings are an issue in ANKA's short bunch operation as well. To simulate these effects the accelerator's model including its insertion device has to be very accurate. Such a model of the ANKA storage ring in short bunch operation mode has been developed in elegant. Simulations with the damping wiggler switched on and off have been performed in order to investigate effects of the wiggler on different machine parameters. These new results will be discussed with regard to the question if on the one hand the wiggler could be used for diagnostic purposes and if on the other hand the wiggler's impact on the beam dynamics is changed by the collective effects.

  15. Superconducting 63-Pole 2 Tesla Wiggler for Canadian Light Source

    International Nuclear Information System (INIS)

    Khruschev, S.V.; Kuper, E.A.; Lev, V.H.; Mezentsev, N.A.; Miginsky, E.G.; Repkov, V.V.; Shkaruba, B.A.; Syrovatin, V.M.; Tsukanov, V.M.

    2006-01-01

    A superconducting 63-pole wiggler with the average period 34 mm designed and fabricated at the Institute of Nuclear Physics in Novosibirsk for Synchrotron Radiation Center (CLS) in Canada is described. The maximum field 2.2 Tesla in the median plane has been achieved. The liquid helium consumption less than 0.03 liters per hour in operating mode has been reached. In January 2005, the wiggler was installed in the storage ring in CLS and now experiments are already underway. The main parameters of the magnet and the cryogenic systems as well as test results are presented

  16. Three-dimensional quantification of vorticity and helicity from 3D cine PC-MRI using finite-element interpolations.

    Science.gov (United States)

    Sotelo, Julio; Urbina, Jesús; Valverde, Israel; Mura, Joaquín; Tejos, Cristián; Irarrazaval, Pablo; Andia, Marcelo E; Hurtado, Daniel E; Uribe, Sergio

    2018-01-01

    We propose a 3D finite-element method for the quantification of vorticity and helicity density from 3D cine phase-contrast (PC) MRI. By using a 3D finite-element method, we seamlessly estimate velocity gradients in 3D. The robustness and convergence were analyzed using a combined Poiseuille and Lamb-Ossen equation. A computational fluid dynamics simulation was used to compared our method with others available in the literature. Additionally, we computed 3D maps for different 3D cine PC-MRI data sets: phantom without and with coarctation (18 healthy volunteers and 3 patients). We found a good agreement between our method and both the analytical solution of the combined Poiseuille and Lamb-Ossen. The computational fluid dynamics results showed that our method outperforms current approaches to estimate vorticity and helicity values. In the in silico model, we observed that for a tetrahedral element of 2 mm of characteristic length, we underestimated the vorticity in less than 5% with respect to the analytical solution. In patients, we found higher values of helicity density in comparison to healthy volunteers, associated with vortices in the lumen of the vessels. We proposed a novel method that provides entire 3D vorticity and helicity density maps, avoiding the used of reformatted 2D planes from 3D cine PC-MRI. Magn Reson Med 79:541-553, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  17. Helical Confinement Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Beidler, C; Brakel, R; Burhenn, R; Dinklage, A; Erckmann, V; Feng, Y; Geiger, J; Hartmann, D; Hirsch, M; Jaenicke, R; Koenig, R; Laqua, H P; Maassberg, H; Wagner, F; Weller, A; Wobig, H [Max-Planck Institut fuer Plasmaphysik, EURATOM Association, Greifswald (Germany)

    2012-09-15

    Stellarators, conceived 1951 by Lyman Spitzer in Princeton, are toroidal devices that confine a plasma in a magnetic field which originates from currents in coils outside the plasma. A plasma current driven by external means, for example by an ohmic transformer, is not required for confinement. Supplying the desired poloidal field component by external coils leads to a helically structured plasma topology. Thus stellarators - or helical confinement devices - are fully three-dimensional in contrast to the toroidal (rotational) symmetry of tokamaks. As stellarators can be free of an inductive current, whose radial distribution depends on the plasma parameters, their equilibrium must not be established via the evolving plasma itself, but to a first order already given by the vacuum magnetic field. They do not need an active control (like positional feedback) and therefore cannot suffer from its failure. The outstanding conceptual advantage of stellarators is the potential of steady state plasma operation without current drive. As there is no need for current drive, the recirculating power is expected to be smaller than in equivalent tokamaks. The lack of a net current avoids current driven instabilities; specifically, no disruptions, no resistive wall modes and no conventional or neoclassical tearing modes appear. Second order pressure-driven currents (Pfirsch-Schlueter, bootstrap) exist but they can be modified and even minimized by the magnetic design. The magnetic configuration of helical devices naturally possesses a separatrix, which allows the implementation of a helically structured divertor for exhaust and impurity control. (author)

  18. Self-assembled three dimensional network designs for soft electronics.

    Science.gov (United States)

    Jang, Kyung-In; Li, Kan; Chung, Ha Uk; Xu, Sheng; Jung, Han Na; Yang, Yiyuan; Kwak, Jean Won; Jung, Han Hee; Song, Juwon; Yang, Ce; Wang, Ao; Liu, Zhuangjian; Lee, Jong Yoon; Kim, Bong Hoon; Kim, Jae-Hwan; Lee, Jungyup; Yu, Yongjoon; Kim, Bum Jun; Jang, Hokyung; Yu, Ki Jun; Kim, Jeonghyun; Lee, Jung Woo; Jeong, Jae-Woong; Song, Young Min; Huang, Yonggang; Zhang, Yihui; Rogers, John A

    2017-06-21

    Low modulus, compliant systems of sensors, circuits and radios designed to intimately interface with the soft tissues of the human body are of growing interest, due to their emerging applications in continuous, clinical-quality health monitors and advanced, bioelectronic therapeutics. Although recent research establishes various materials and mechanics concepts for such technologies, all existing approaches involve simple, two-dimensional (2D) layouts in the constituent micro-components and interconnects. Here we introduce concepts in three-dimensional (3D) architectures that bypass important engineering constraints and performance limitations set by traditional, 2D designs. Specifically, open-mesh, 3D interconnect networks of helical microcoils formed by deterministic compressive buckling establish the basis for systems that can offer exceptional low modulus, elastic mechanics, in compact geometries, with active components and sophisticated levels of functionality. Coupled mechanical and electrical design approaches enable layout optimization, assembly processes and encapsulation schemes to yield 3D configurations that satisfy requirements in demanding, complex systems, such as wireless, skin-compatible electronic sensors.

  19. Self-assembled three dimensional network designs for soft electronics

    Science.gov (United States)

    Jang, Kyung-In; Li, Kan; Chung, Ha Uk; Xu, Sheng; Jung, Han Na; Yang, Yiyuan; Kwak, Jean Won; Jung, Han Hee; Song, Juwon; Yang, Ce; Wang, Ao; Liu, Zhuangjian; Lee, Jong Yoon; Kim, Bong Hoon; Kim, Jae-Hwan; Lee, Jungyup; Yu, Yongjoon; Kim, Bum Jun; Jang, Hokyung; Yu, Ki Jun; Kim, Jeonghyun; Lee, Jung Woo; Jeong, Jae-Woong; Song, Young Min; Huang, Yonggang; Zhang, Yihui; Rogers, John A.

    2017-06-01

    Low modulus, compliant systems of sensors, circuits and radios designed to intimately interface with the soft tissues of the human body are of growing interest, due to their emerging applications in continuous, clinical-quality health monitors and advanced, bioelectronic therapeutics. Although recent research establishes various materials and mechanics concepts for such technologies, all existing approaches involve simple, two-dimensional (2D) layouts in the constituent micro-components and interconnects. Here we introduce concepts in three-dimensional (3D) architectures that bypass important engineering constraints and performance limitations set by traditional, 2D designs. Specifically, open-mesh, 3D interconnect networks of helical microcoils formed by deterministic compressive buckling establish the basis for systems that can offer exceptional low modulus, elastic mechanics, in compact geometries, with active components and sophisticated levels of functionality. Coupled mechanical and electrical design approaches enable layout optimization, assembly processes and encapsulation schemes to yield 3D configurations that satisfy requirements in demanding, complex systems, such as wireless, skin-compatible electronic sensors.

  20. Design and manufacture of a 6-T wiggler magnet for the Daresbury SRS

    International Nuclear Information System (INIS)

    Ross, J.; Smith, K.

    1992-01-01

    The 6-T wiggler is an iron-cored, warm bore, superconducting dipole magnet destined for the SERC Daresbury Laboratory's 2-GeV Synchrotron Radiation Source to enhance the available radiation spectrum. The new wiggler will be inserted in the ring in addition to an existing 5-T wiggler, both of which will use the existing, although upgraded, refrigerator. The magnet is designed to provide a peak field of 6 T on the beam line. The design and manufacturing contract for this magnet was started in September 1989 and was preceded by a feasibility study, presented by Oxford Instruments in mid 1988. The major features of the magnet, along with a discussion of the early stages of manufacture, are described in the article

  1. New reconstruction algorithm in helical-volume CT

    International Nuclear Information System (INIS)

    Toki, Y.; Rifu, T.; Aradate, H.; Hirao, Y.; Ohyama, N.

    1990-01-01

    This paper reports on helical scanning that is an application of continuous scanning CT to acquire volume data in a short time for three-dimensional study. In a helical scan, the patient couch sustains movement during continuous-rotation scanning and then the acquired data is processed to synthesize a projection data set of vertical section by interpolation. But the synthesized section is not thin enough; also, the image may have artifacts caused by couch movement. A new reconstruction algorithm that helps resolve such problems has been developed and compared with the ordinary algorithm. The authors constructed a helical scan system based on TCT-900S, which can perform 1-second rotation continuously for 30 seconds. The authors measured section thickness using both algorithms on an AAPM phantom, and we also compared degree of artifacts on clinical data

  2. Kidney lower pole pelvicaliceal anatomy: comparative analysis between intravenous urogram and three-dimensional helical computed tomography.

    Science.gov (United States)

    Rachid Filho, Daibes; Favorito, Luciano A; Costa, Waldemar S; Sampaio, Francisco J B

    2009-12-01

    The aim of our study was to evaluate if there is any advantage of three-dimensional helical computed tomography (3D-HCT) over intravenous urogram (IVU) in the morphometric and morphological analysis of lower pole spatial anatomy of the kidney. We analyzed 52 renal collecting systems in 30 patients, ranging in age from 23 to 80 years. The study compared the following features: (1) the angle formed between the lower infundibulum and the renal pelvis (i.e., lower infundibulum-pelvic angle [IPA]), (2) the lower infundibulum diameter (ID), and (3) the spatial distribution and number of lower pole calices (i.e., caliceal distribution [CD]). The study started with the 3D-HCT images obtained for posterior reconstruction and analysis. Afterward, we obtained anteroposterior and oblique IVU images. For IPA (in degrees) we found a mean +/- standard deviation (SD) value of 75.79 +/- 15.3 with 3D-HCT and 77.4 +/- 17.17 with IVU, which were not statistically significant. For ID (in mm) we found a mean +/- SD value of 7.5 +/- 2.92 with 3D-HCT and 8.15 +/- 3.27 with IVU. For CD we found a mean +/- SD value of 2.37 +/- 0.75 calices with 3D-HCT and 2.43 +/- 0.67 calices with IVU. On analyzing the difference between 3D-HCT and IVU, we found a mean +/- SD value of 0.06 +/- 0.51, and we verified that 74.5% of the examinations compared did not present statistically significant difference, with a Wilcoxon p-value of 0.405. Although 3D-HCT is more precise to study calculus location, tumors, and vessels, IVU was also demonstrated to be as precise as 3D-HCT for studying the lower pole spatial anatomy. We did not observe any statistically significant difference in the measurements of IPA, ID, and CD obtained using 3D-HCT when compared with those obtained using IVU. Therefore, 3D-HCT does not present any advantage over IVU in the evaluation of lower pole caliceal anatomy.

  3. Three-dimensional structure of a schistosome serpin revealing an unusual configuration of the helical subdomain

    Energy Technology Data Exchange (ETDEWEB)

    Granzin, Joachim [Institute of Complex Systems, ICS-6: Structural Biochemistry, Forschungszentrum Jülich, 52425 Jülich (Germany); Huang, Ying; Topbas, Celalettin [Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 (United States); Huang, Wenying [Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 (United States); Wu, Zhiping [Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 (United States); Misra, Saurav [Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 (United States); Hazen, Stanley L. [Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 (United States); Blanton, Ronald E. [Department of Infectious Diseases, Case Western Reserve University, Cleveland, OH 44190 (United States); Lee, Xavier [Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 (United States); Weiergräber, Oliver H., E-mail: o.h.weiergraeber@fz-juelich.de [Institute of Complex Systems, ICS-6: Structural Biochemistry, Forschungszentrum Jülich, 52425 Jülich (Germany)

    2012-06-01

    The crystal structure of ShSPI, a serpin from the blood fluke S. haematobium, reveals some peculiar features of the helical subdomain which have not been observed previously in the serpin superfamily. Parasitic organisms are constantly challenged by the defence mechanisms of their respective hosts, which often depend on serine protease activities. Consequently, protease inhibitors such as those belonging to the serpin superfamily have emerged as protective elements that support the survival of the parasites. This report describes the crystal structure of ShSPI, a serpin from the trematode Schistosoma haematobium. The protein is exposed on the surface of invading cercaria as well as of adult worms, suggesting its involvement in the parasite–host interaction. While generally conforming to the well established serpin fold, the structure reveals several distinctive features, mostly concerning the helical subdomain of the protein. It is proposed that these peculiarities are related to the unique biological properties of a small serpin subfamily which is conserved among pathogenic schistosomes.

  4. Three-dimensional deformation response of a NiTi shape memory helical-coil actuator during thermomechanical cycling: experimentally validated numerical model

    Science.gov (United States)

    Dhakal, B.; Nicholson, D. E.; Saleeb, A. F.; Padula, S. A., II; Vaidyanathan, R.

    2016-09-01

    Shape memory alloy (SMA) actuators often operate under a complex state of stress for an extended number of thermomechanical cycles in many aerospace and engineering applications. Hence, it becomes important to account for multi-axial stress states and deformation characteristics (which evolve with thermomechanical cycling) when calibrating any SMA model for implementation in large-scale simulation of actuators. To this end, the present work is focused on the experimental validation of an SMA model calibrated for the transient and cyclic evolutionary behavior of shape memory Ni49.9Ti50.1, for the actuation of axially loaded helical-coil springs. The approach requires both experimental and computational aspects to appropriately assess the thermomechanical response of these multi-dimensional structures. As such, an instrumented and controlled experimental setup was assembled to obtain temperature, torque, degree of twist and extension, while controlling end constraints during heating and cooling of an SMA spring under a constant externally applied axial load. The computational component assesses the capabilities of a general, multi-axial, SMA material-modeling framework, calibrated for Ni49.9Ti50.1 with regard to its usefulness in the simulation of SMA helical-coil spring actuators. Axial extension, being the primary response, was examined on an axially-loaded spring with multiple active coils. Two different conditions of end boundary constraint were investigated in both the numerical simulations as well as the validation experiments: Case (1) where the loading end is restrained against twist (and the resulting torque measured as the secondary response) and Case (2) where the loading end is free to twist (and the degree of twist measured as the secondary response). The present study focuses on the transient and evolutionary response associated with the initial isothermal loading and the subsequent thermal cycles under applied constant axial load. The experimental

  5. Design of a 6 Tesla wiggler for the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Hsieh, H.; Krinsky, S.; Luccio, A.; van Steenbergen, A.

    1981-01-01

    A 6-pole, 6 Tesla wiggler with Nb-Ti superconducting windings has been designed, to be installed in a straight section of the 2.5 GeV x-ray storage ring of the NSLS. The technical problems of this magnet are discussed, in particular the optimization of the two-layer magnetic windings and the mechanical structure designed to counteract the strong magnetic forces. The effects of the insertion of the wiggler in the storage ring lattice are also studied

  6. Superconducting 63-pole 2 T wiggler for Canadian Light Source

    International Nuclear Information System (INIS)

    Khruschev, S.V.; Kuper, E.A.; Lev, V.H.; Mezentsev, N.A.; Miginsky, E.G.; Repkov, V.V.; Shkaruba, V.A.; Syrovatin, V.M.; Tsukanov, V.M.

    2007-01-01

    A superconducting 63-pole wiggler with the average period 34 mm designed and fabricated in the Institute of Nuclear Physics in Novosibirsk for Synchrotron Radiation Center Canadian Light Source (CLS) in Canada is described. The maximum field 2.2 T in the median plane has been achieved. The liquid helium consumption less than 0.03 L h in operating mode has been reached. It allows refilling liquid helium once a year. In January 2005, the wiggler was installed in the storage ring in CLS and now experiments are carried out. The main parameters of the magnet and the cryogenic systems as well as test results are presented

  7. Electron image reconstruction of helical protein assemblies

    International Nuclear Information System (INIS)

    Cremers, A.F.M.

    1980-01-01

    The analysis of projections of large ordered biological systems obtained by electron microscopy of negatively stained specimens is described. The biological structures amenable to this approach are constructed from a large number of identical protein molecules, which are arranged according to helical symmetry. Electron images of these structures generally contain sufficient information in order to calculate a three-dimensional density map. (Auth.)

  8. Three-dimensional fluid mechanics of particulate two-phase flows in U-bend and helical conduits

    Science.gov (United States)

    Tiwari, Prashant; Antal, Steven P.; Podowski, Michael Z.

    2006-04-01

    The results of numerous studies performed to date have shown that the performance of various hydraulic systems can be significantly improved by using curved conduit geometries instead of straight tubes. In particular, the formation of Dean vortices, which enhance the development of centrifugal instabilities, has been identified as a factor behind reducing the near-wall concentration buildup in particulate flow devices (e.g., in membrane filtration modules). Still, several issues regarding the effect of conduit curvature on local multidimensional phenomena governing fluid flow still remain open. A related issue is concerned with the impact that conduit geometry makes on the concentration distribution of a dispersed phase in two-phase flows in general, and in particulate flows (solid/liquid or solid/gas suspensions) in particular. It turns out that only very limited efforts have been made in the past to understand the fluid mechanics of such flows via advanced computer simulations. The purpose of this paper is to present the results of full three-dimensional (3D) theoretical and numerical analyses of single- and two-phase dilute particle/liquid flows in U-bend and helical curved conduits. The numerical analysis is based on computational fluid dynamics (CFD) simulations performed using a state-of-the-art multiphase flow computer code, NPHASE. The major issues discussed in the first part of the paper are concerned with the effect of curved/coiled geometry on the evolution of flow field and the associated wall shear. It has been demonstrated that the primary curvature (a common factor for both the U-bend and helix geometries) may cause a substantial asymmetry in the radial distribution of the main flow velocity. This, in turn, leads to a significant, albeit highly nonuniform, increase in the wall shear stress. Specifically, the wall shear around the outer half of tube circumference may become twice the corresponding value for a straight tube, and gradually decrease to

  9. The analysis of single-electron orbits in a free electron laser based upon a rectangular hybrid wiggler

    International Nuclear Information System (INIS)

    Kordbacheh, A.; Ghahremaninezhad, Roghayeh; Maraghechi, B.

    2012-01-01

    A three-dimensional analysis of a novel free-electron laser (FEL) based upon a rectangular hybrid wiggler (RHW) is presented. This RHW is designed in a configuration composed of rectangular rings with alternating ferrite and dielectric spacers immersed in a solenoidal magnetic field. An analytic model of RHW is introduced by solution of Laplace's equation for the magnetostatic fields under the appropriate boundary conditions. The single-electron orbits in combined RHW and axial guide magnetic fields are studied when only the first and the third spatial harmonic components of the RHW field are taken into account and the higher order terms are ignored. The results indicate that the third spatial harmonic leads to group III orbits with a strong negative mass regime particularly in large solenoidal magnetic fields. RHW is found to be a promising candidate with favorable characteristics to be used in microwave FEL.

  10. The analysis of single-electron orbits in a free electron laser based upon a rectangular hybrid wiggler

    Science.gov (United States)

    Kordbacheh, A.; Ghahremaninezhad, Roghayeh; Maraghechi, B.

    2012-09-01

    A three-dimensional analysis of a novel free-electron laser (FEL) based upon a rectangular hybrid wiggler (RHW) is presented. This RHW is designed in a configuration composed of rectangular rings with alternating ferrite and dielectric spacers immersed in a solenoidal magnetic field. An analytic model of RHW is introduced by solution of Laplace's equation for the magnetostatic fields under the appropriate boundary conditions. The single-electron orbits in combined RHW and axial guide magnetic fields are studied when only the first and the third spatial harmonic components of the RHW field are taken into account and the higher order terms are ignored. The results indicate that the third spatial harmonic leads to group III orbits with a strong negative mass regime particularly in large solenoidal magnetic fields. RHW is found to be a promising candidate with favorable characteristics to be used in microwave FEL.

  11. Prenatal diagnosis of sirenomelia by two-dimensional and three-dimensional skeletal imaging ultrasound.

    Science.gov (United States)

    Liu, Rong; Chen, Xin-lin; Yang, Xiao-hong; Ma, Hui-jing

    2015-12-01

    This study sought to evaluate the contribution of two-dimensional ultrasound (2D-US) and three-dimensional skeletal imaging ultrasound (3D-SUIS) in the prenatal diagnosis of sirenomelia. Between September 2010 and April 2014, a prospective study was conducted in a single referral center using 3D-SUIS performed after 2D-US in 10 cases of sirenomelia. Diagnostic accuracy and detailed findings were compared with postnatal three-dimensional helical computed tomography (3D-HCT), radiological findings and autopsy. Pregnancy was terminated in all 10 sirenomelia cases, including 9 singletons and 1 conjoined twin pregnancy, for a total of 5 males and 5 females. These cases of sirenomelia were determined by autopsy and/or chromosomal examination. Initial 2D-US showed that there were 10 cases of oligohydramnios, bilateral renal agenesis, bladder agenesis, single umbilical artery, fusion of the lower limbs and spinal abnormalities; 8 cases of dipus or monopus; 2 cases of apus; and 8 cases of cardiac abnormalities. Subsequent 3D-SUIS showed that there were 9 cases of scoliosis, 10 cases of sacrococcygeal vertebra dysplasia, 3 cases of hemivertebra, 1 case of vertebral fusion, 3 cases of spina bifida, and 5 cases of rib abnormalities. 3D-SUIS identified significantly more skeletal abnormalities than did 2D-US, and its accuracy was 79.5% (70/88) compared with 3D-HCT and radiography. 3D-SUIS seems to be a useful complementary method to 2D-US and may improve the accuracy of identifying prenatal skeletal abnormalities related to sirenomelia.

  12. Calculated and measured fields in superferric wiggler magnets

    Energy Technology Data Exchange (ETDEWEB)

    Blum, E.B.; Solomon, L. [Brookhaven National Lab., Upton, NY (United States)

    1995-02-01

    Although Klaus Halbach is widely known and appreciated as the originator of the computer program POISSON for electromagnetic field calculation, Klaus has always believed that analytical methods can give much more insight into the performance of a magnet than numerical simulation. Analytical approximations readily show how the different aspects of a magnet`s design such as pole dimensions, current, and coil configuration contribute to the performance. These methods yield accuracies of better than 10%. Analytical methods should therefore be used when conceptualizing a magnet design. Computer analysis can then be used for refinement. A simple model is presented for the peak on-axis field of an electro-magnetic wiggler with iron poles and superconducting coils. The model is applied to the radiator section of the superconducting wiggler for the BNL Harmonic Generation Free Electron Laser. The predictions of the model are compared to the measured field and the results from POISSON.

  13. The helical three-dimensional CT in the diagnosis of torticollis with occipitocondylar hypoplasia

    International Nuclear Information System (INIS)

    Ilkko, E.; Tikkakoski, T.; Pyhtinen, J.

    1998-01-01

    Congenital anomalies of the atlanto-occipital and atlantoaxial joints are rare. Those most commonly reported are atlantoaxial instability, basilar impression, anomalies of the odontoid process, laxity of the transverse atlantal ligament and atlanto-occipital fusion. Occipital condylar hypoplasia is infrequent and difficult to recognise. We recently diagnosed it using helical 3D CT in association with torticollis in two patients. The first patient had a several year history of torticollis. The second patient had acute cervical lymphadenitis associated with post-operative torticollis. 3D CT distinctly revealed atlantoaxial subluxation with hypoplasia of the occipital condyles in both cases

  14. New developments on the generation of arbitrary polarized radiation from insertion devices

    International Nuclear Information System (INIS)

    Elleaume, P.

    1991-01-01

    The complete description of the polarization of a beam of radiation is described in terms of the total energy and three polarization rates. The polarization characteristics from conventional undulators and wigglers is recalled. A presentation is made of some new insertion devices that were proposed and/or built to generate circular polarization and more generally to improve the control of polarization. They are the asymmetric and elliptical wigglers and the helical and crossed undulators

  15. An experimental study for qualitatively diagnosing stapes lesions by helical 3-dimensional CT

    International Nuclear Information System (INIS)

    Kawaue, Akifumi; Kuki, Kiyonori; Yamanaka, Noboru; Nishimura, Michihiko

    2001-01-01

    To evaluate qualitative diagnosis of stapes lesions by 3-dimensional computed tomography (3D-CT) combined with superselective image processing (3D-SS) of stapes, we studied helical 3D-CT on a phantom model of the temporal bone. Two stapes models were used-1 made from the bone filler, Celatite, consistent in bone density but changing in cross sectional area, and the other made from an apacerum rod used in quantitative computed tomography (QCT), consistent in cross sectional area but changing in bone density. These stapes models were put into a skull phantom and analyzed by helical 3D-CT. The influence of the tympanic cavity conditions on CT images of stapes was evaluated by filling the phantom model with Vaseline following 3D selective reconstruction. In all stapes models, lowering the lower CT window width threshold resulted in an enlarged cross-sectional area of the model. The higher the bone density, the lower the increase in cross-sectional area in the image. The stapes model with lower density had greater influence on the imaging by tympanic cavity conditions and was likely to be misdiagnosed as showing higher bone density. Based on the experimental study, 3D-SS by helical 3D-CT appears to be a useful measure for qualitatively diagnosing stapes lesions. (author)

  16. Design study of a normal conducting helical snake for AGS

    CERN Document Server

    Takano, Junpei; Okamura, Masahiro; Roser, Thomas; MacKay, William W; Luccio, Alfredo U; Takano, Koji

    2004-01-01

    A new normal conducting snake magnet is being fabricated for the Alternate Gradient Synchrotron (AGS) at Brookhaven National Laboratory (BNL). In the Relativistic Heavy Ion Collider (RHIC) project, a superconducting type helical dipole magnets had been developed and it performed successfully in high-energy polarized proton acceleration. The new AGS helical snake has the same basic magnetic structure but is more complicated. To achieve no beam shift and no beam deflection in one magnetic device, helical pitches and rotating angles were carefully calculated. Compared to a superconducting magnet, a normal warm magnet must have a large cross- sectional area of conductors which make it difficult to design a magnet with large helical pitch. We developed a modified window frame structure to accommodate the large number of conductors. Its three dimensional magnetic field was simulated by using OPERA3D/TOSCA. 3 Refs.

  17. Helical structures in vertically aligned dust particle chains in a complex plasma

    Science.gov (United States)

    Hyde, Truell W.; Kong, Jie; Matthews, Lorin S.

    2013-05-01

    Self-assembly of structures from vertically aligned, charged dust particle bundles within a glass box placed on the lower, powered electrode of a Gaseous Electronics Conference rf reference cell were produced and examined experimentally. Self-organized formation of one-dimensional vertical chains, two-dimensional zigzag structures, and three-dimensional helical structures of triangular, quadrangular, pentagonal, hexagonal, and heptagonal symmetries are shown to occur. System evolution is shown to progress from a one-dimensional chain structure, through a zigzag transition to a two-dimensional, spindlelike structure, and then to various three-dimensional, helical structures exhibiting multiple symmetries. Stable configurations are found to be dependent upon the system confinement, γ2=ω0h/ω0v2 (where ω0h,v are the horizontal and vertical dust resonance frequencies), the total number of particles within a bundle, and the rf power. For clusters having fixed numbers of particles, the rf power at which structural phase transitions occur is repeatable and exhibits no observable hysteresis. The critical conditions for these structural phase transitions as well as the basic symmetry exhibited by the one-, two-, and three-dimensional structures that subsequently develop are in good agreement with the theoretically predicted configurations of minimum energy determined employing molecular dynamics simulations for charged dust particles confined in a prolate, spheroidal potential as presented theoretically by Kamimura and Ishihara [Kamimura and Ishihara, Phys. Rev. EPLEEE81063-651X10.1103/PhysRevE.85.016406 85, 016406 (2012)].

  18. Three-dimensional turbulent swirling flow in a cylinder: Experiments and computations

    International Nuclear Information System (INIS)

    Gupta, Amit; Kumar, Ranganathan

    2007-01-01

    Dynamics of the three-dimensional flow in a cyclone with tangential inlet and tangential exit were studied using particle tracking velocimetry (PTV) and a three-dimensional computational model. The PTV technique is described in this paper and appears to be well suited for the current flow situation. The flow was helical in nature and a secondary recirculating flow was observed and well predicted by computations using the RNG k-ε turbulence model. The secondary flow was characterized by a single vortex which circulated around the axis and occupied a large fraction of the cylinder diameter. The locus of the vortex center meandered around the cylinder axis, making one complete revolution for a cylinder aspect ratio of 2. Tangential velocities from both experiments and computations were compared and found to be in good agreement. The general structure of the flow does not vary significantly as the Reynolds number is increased. However, slight changes in all components of velocity and pressure were seen as the inlet velocity is increased. By increasing the inlet aspect ratio it was observed that the vortex meandering changed significantly

  19. Three-dimensional turbulent swirling flow in a cylinder: Experiments and computations

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Amit [Department of Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States); Kumar, Ranganathan [Department of Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States)]. E-mail: rnkumar@mail.ucf.edu

    2007-04-15

    Dynamics of the three-dimensional flow in a cyclone with tangential inlet and tangential exit were studied using particle tracking velocimetry (PTV) and a three-dimensional computational model. The PTV technique is described in this paper and appears to be well suited for the current flow situation. The flow was helical in nature and a secondary recirculating flow was observed and well predicted by computations using the RNG k-{epsilon} turbulence model. The secondary flow was characterized by a single vortex which circulated around the axis and occupied a large fraction of the cylinder diameter. The locus of the vortex center meandered around the cylinder axis, making one complete revolution for a cylinder aspect ratio of 2. Tangential velocities from both experiments and computations were compared and found to be in good agreement. The general structure of the flow does not vary significantly as the Reynolds number is increased. However, slight changes in all components of velocity and pressure were seen as the inlet velocity is increased. By increasing the inlet aspect ratio it was observed that the vortex meandering changed significantly.

  20. Theoretical study of H- stripping with a wiggler magnet

    International Nuclear Information System (INIS)

    Hutson, R.L.

    1991-01-01

    The first step for injecting protons into the LAMPF Proton Storage Ring (PSR) at LANL is to strip a beam of 800-MeV H - ions to H 0 with a 1.8-T dipole magnet. Because of the finite lifetime of energetic H - ions in the magnetic field, their trajectories bend before stripping causing the angular spread of the beam, and therefore its emittance, to grow during the stripping process. In the case of the PSR, the horizontal beam emittance grows by a factor of roughly three during injection. As a consequence, beam losses in the ring are significantly greater than they would be if there were not emittance growth. A speculative technique is proposed in which the beam divergence growth and resulting emittance growth is reduced by stripping the H - in a wiggler magnet whose transverse field alternates in direction as a function of position along the beam axis. The wiggler field configuration is adjusted so that the angular beam spread introduced during passage through one unidirectional-field increment of path is relatively small and so that 99.99% of the beam is stripped after passing through the whole magnet. With careful field design the net added angular beam spread is reduced because the incremental angular spreads are painted back and forth over the same small range. In the hypothetical case described, the calculated emittance growth and beam loss increase are significantly smaller than those calculated for a conventional stripper magnet. 3 refs., 3 figs

  1. The helical three-dimensional CT in the diagnosis of torticollis with occipitocondylar hypoplasia

    International Nuclear Information System (INIS)

    Ilkko, E.; Tikkakoski, T.; Pyhtinen, J.

    1998-01-01

    Congenital anomalies of the atlanto-occipital and atlantoaxial joints are rare. Those most commonly reported are atlantoaxial instability, basilar impression, anomalies of the odontoid process, laxity of the transverse atlantal ligament and atlanto-occipital fusion. Occipital condylar hypoplasia is infrequent and difficult to recognise. We recently diagnosed it using helical 3D CT in association with torticollis in two patients. The first patient had a several year history of torticollis. The second patient had acute cervical lymphadenitis associated with post-operative torticollis. 3D CT distinctly revealed atlantoaxial subluxation with hypoplasia of the occipital condyles in both cases. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  2. A high-average power tapered FEL amplifier at submillimeter frequencies using sheet electron beams and short-period wigglers

    International Nuclear Information System (INIS)

    Bidwell, S.W.; Radack, D.J.; Antonsen, T.M. Jr.; Booske, J.H.; Carmel, Y.; Destler, W.W.; Granatstein, V.L.; Levush, B.; Latham, P.E.; Zhang, Z.X.

    1990-01-01

    A high-average-power FEL amplifier operating at submillimeter frequencies is under development at the University of Maryland. Program goals are to produce a CW, ∼1 MW, FEL amplifier source at frequencies between 280 GHz and 560 GHz. To this end, a high-gain, high-efficiency, tapered FEL amplifier using a sheet electron beam and a short-period (superconducting) wiggler has been chosen. Development of this amplifier is progressing in three stages: (1) beam propagation through a long length (∼1 m) of short period (λ ω = 1 cm) wiggler, (2) demonstration of a proof-of-principle amplifier experiment at 98 GHz, and (3) designs of a superconducting tapered FEL amplifier meeting the ultimate design goal specifications. 17 refs., 1 fig., 1 tab

  3. Self-consistent nonlinear simulations of high-power free-electron lasers

    International Nuclear Information System (INIS)

    Freund, H.P.; Jackson, R.H.

    1993-01-01

    Two 3-D nonlinear formulations of FEL amplifiers are described which treat both planar and helical wiggler geometries. For convenience, the authors refer to the planar (helical) formulation and simulation code as WIGGLIN (ARACHNE). These formulations are slow-time-scale models for FEL amplifiers in which the electron dynamics are treated using the complete 3-D Lorentz force equations without recourse to a wiggler period average. The application of these codes to the description of a collective reversed-field FEL experiment and to random wiggler field errors is described

  4. ELECTRON TRAPPING IN WIGGLER AND QUADRUPOLE MAGNETS OF CESRTA

    International Nuclear Information System (INIS)

    Wang, Lanfa

    2010-01-01

    The Cornell Electron Storage Ring (CESR) has been reconfigured as an ultra low emittance damping ring for use as a test accelerator (CesrTA) for International Linear Collider (ILC) damping ring R and D (1). One of the primary goals of the CesrTA program is to investigate the interaction of the electron cloud with low emittance positron beam to explore methods to suppress the electron cloud, develop suitable advanced instrumentation required for these experimental studies and benchmark predictions by simulation codes. This paper reports the simulation of the electron-cloud formation in the wiggler and quadrupole magnets using the 3D code CLOUDLAND. We found that electrons can be trapped with long lifetime in a quadrupole magnet due to the mirror field trapping mechanism and photoelectrons produced in the wiggler zero field zone have long lifetime due to their complicated trajectory.

  5. A Prospective Evaluation of Helical Tomotherapy

    International Nuclear Information System (INIS)

    Bauman, Glenn; Yartsev, Slav; Rodrigues, George; Lewis, Craig; Venkatesan, Varagur M.; Yu, Edward; Hammond, Alex; Perera, Francisco; Ash, Robert; Dar, A. Rashid; Lock, Michael; Baily, Laura; Coad, Terry C; Trenka, Kris C.; Warr, Barbara; Kron, Tomas; Battista, Jerry; Van Dyk, Jake

    2007-01-01

    Purpose: To report results from two clinical trials evaluating helical tomotherapy (HT). Methods and Materials: Patients were enrolled in one of two prospective trials of HT (one for palliative and one for radical treatment). Both an HT plan and a companion three-dimensional conformal radiotherapy (3D-CRT) plan were generated. Pretreatment megavoltage computed tomography was used for daily image guidance. Results: From September 2004 to January 2006, a total of 61 sites in 60 patients were treated. In all but one case, a clinically acceptable tomotherapy plan for treatment was generated. Helical tomotherapy plans were subjectively equivalent or superior to 3D-CRT in 95% of plans. Helical tomotherapy was deemed equivalent or superior in two thirds of dose-volume point comparisons. In cases of inferiority, differences were either clinically insignificant and/or reflected deliberate tradeoffs to optimize the HT plan. Overall imaging and treatment time (median) was 27 min (range, 16-91 min). According to a patient questionnaire, 78% of patients were satisfied to very satisfied with the treatment process. Conclusions: Helical tomotherapy demonstrated clear advantages over conventional 3D-CRT in this diverse patient group. The prospective trials were helpful in deploying this technology in a busy clinical setting

  6. Three dimensional CT of stapes. Stapedial imagings in dry temporal bone and clinical applications

    Energy Technology Data Exchange (ETDEWEB)

    Edamatsu, Hideo; Kubota, Osamu; Yamashita, Koichi [Kanazawa Medical Univ., Ishikawa (Japan)

    1995-03-01

    This study was performed to evaluate the usefulness and limitations of three dimensional (3-D) imagings of stapes in the middle ear by high speed helical CT. One dissected human temporal bone, ten normal and diseased ears were scanned with a slice of 1.0 mm and reconstructed in a thickness of 0.2-0.5 mm. Every specimen of 3-D can be observed in any plane and from any direction. Ossicular imagings of the temporal bone in 3-D were reconstructed as if the malleus, incus and stapes were observed under microscope. The whole structure of stapes was impossible to be represented by two dimensional CT heretofore in use, but 3-D in our study showed the head, crus and foot plate of the stapes in detail. Stapedial imagings of 3-D CT in normal ears showed the same findings as those recorded in temporal bone. Preoperative diagnostic findings of ossicles in the affected ears were very useful. Especially in ossicular anomalies, 3-D CT was positive in diagnosis and its accuracies were confirmed with operative observation. For the postoperative evaluation concerning the ossicular reconstruction, i.e. TORP and PORP, 3-D CT was also important method. It could present an anatomical relation between those prosthesis and the oval window. High speed helical CT can scan an object more quickly and clearly than formerly used CT, and its biological damage for human is less than that of the others. 3-D CT can be more clearly reconstructed with helical CT than former CT. (author).

  7. Kinetic description of self-field effects on laser and betatron emission in wiggler-pumped ion-channel free electron lasers

    International Nuclear Information System (INIS)

    Alimohamadi, M; Mehdian, H; Hasanbeigi, A

    2011-01-01

    The effects of self-fields on the free electron lasers (FELs) with a helical wiggler and ion-channel guiding are considered. The steady-state orbits for a single electron in this configuration are obtained. The rate of change of axial velocity with energy, the characteristic function Φ, is derived and studied numerically. A kinetic approach has been used to get the effects of self-field on the FEL and betatron gain formula in the low-gain-pre-pass limit. It is shown that betatron gain is smaller than FEL gain. We also found a gain decrement (enhancement), arising from diamagnetism (paramagnetism) generated by the self-magnetic field for group I (group II) orbits. It is interesting that the gain enhancement is found for the non-relativistic part of group II orbits. The FEL gain and betatron gain have also been investigated for different relativistic factors γ.

  8. Numerical analysis of fluid flow and heat transfer in a helical ...

    African Journals Online (AJOL)

    DR OKE

    combustion gases to convergent divergent nozzles of a liquid propellant rocket engine. Lin et al. (1997)conducted a fully elliptic numerical study to investigate three-dimensional turbulent developing convective heat transfer in helical pipes with finite pitches. Results discuss the developments of effective thermal conductivity, ...

  9. Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures.

    Science.gov (United States)

    Shen, Xibo; Song, Chen; Wang, Jinye; Shi, Dangwei; Wang, Zhengang; Liu, Na; Ding, Baoquan

    2012-01-11

    Construction of three-dimensional (3D) plasmonic architectures using structural DNA nanotechnology is an emerging multidisciplinary area of research. This technology excels in controlling spatial addressability at sub-10 nm resolution, which has thus far been beyond the reach of traditional top-down techniques. In this paper, we demonstrate the realization of 3D plasmonic chiral nanostructures through programmable transformation of gold nanoparticle (AuNP)-dressed DNA origami. AuNPs were assembled along two linear chains on a two-dimensional rectangular DNA origami sheet with well-controlled positions and particle spacing. By rational rolling of the 2D origami template, the AuNPs can be automatically arranged in a helical geometry, suggesting the possibility of achieving engineerable chiral nanomaterials in the visible range. © 2011 American Chemical Society

  10. Structure of the electromagnetic field in three-dimensional Hall magnetohydrodynamic turbulence

    International Nuclear Information System (INIS)

    Dmitruk, Pablo; Matthaeus, W.H.

    2006-01-01

    Numerical simulations of freely evolving three-dimensional compressible magnetohydrodynamics (MHD) are performed, with and without the Hall term in Ohm's law. The parameter controlling the presence of the Hall term is the ratio of the ion skin depth to the macroscopic scale of the turbulence. The ion skin depth is set to be slightly larger than the dissipation length scale (controlled by the resistivity) for the Hall MHD simulations, while it is set to zero for non-Hall MHD simulations. Small initial cross helicity, hybrid helicity, and magnetic helicity are considered. The system is left to evolve for a few turbulent characteristic times and the magnetic field and electric field are analyzed in real and wavenumber space. Distributions (histograms) of the fields are also computed. It is found that the turbulent magnetic field (as well as the velocity field) is almost unaffected by the presence of the Hall term, while the electric field is affected at scales smaller than the ion skin depth, that is, close to the dissipation range in these simulations. The importance of each term in Ohm's law for the electric field is analyzed in wavenumber space. Furthermore, reconnection-like zones are identified, where the importance of each term in Ohm's law can be seen in real space. Reconnection-like zones with magnetic field B=0 (or small) and B≠0 are found within the turbulent state of the system

  11. Beam Line VI REC-steel hybrid wiggler for SSRL

    International Nuclear Information System (INIS)

    Hoyer, E.; Chan, T.; Chin, J.W.G.; Halbach, K.; Kim, K.J.; Winick, H.; Yang, J.

    1983-03-01

    A wiggler magnet with 27 periods, each 7 cm long which reaches 1.21 T at a 1.2 cm gap and 1.64 T at 0.8 cm gap has been designed and is in fabrication. Installation in SPEAR is scheduled for mid 1983. This new wiggler will be the radiation source for a new high intensity synchrotron radiation beam line at SSRL. The magnet utilizes rare-earth cobalt (REC) material and steel in a hybrid configuration to achieve simultaneously a high magnetic field with a short period. The magnet is external to a thin walled variable gap stainless steel vacuum chamber which is opened to provide beam aperture of 1.8 cm gap at injection and then closed to a smaller aperture (< 1.0 cm). Five independent drive systems are provided to adjust the magnet and chamber gaps and alignment. Magnetic design, construction details and magnetic measurements are presented

  12. Three-dimensional ICT reconstruction

    International Nuclear Information System (INIS)

    Zhang Aidong; Li Ju; Chen Fa; Sun Lingxia

    2005-01-01

    The three-dimensional ICT reconstruction method is the hot topic of recent ICT technology research. In the context, qualified visual three-dimensional ICT pictures are achieved through multi-piece two-dimensional images accumulation by, combining with thresholding method and linear interpolation. Different direction and different position images of the reconstructed pictures are got by rotation and interception respectively. The convenient and quick method is significantly instructive to more complicated three-dimensional reconstruction of ICT images. (authors)

  13. Three-dimensional ICT reconstruction

    International Nuclear Information System (INIS)

    Zhang Aidong; Li Ju; Chen Fa; Sun Lingxia

    2004-01-01

    The three-dimensional ICT reconstruction method is the hot topic of recent ICT technology research. In the context qualified visual three-dimensional ICT pictures are achieved through multi-piece two-dimensional images accumulation by order, combining with thresholding method and linear interpolation. Different direction and different position images of the reconstructed pictures are got by rotation and interception respectively. The convenient and quick method is significantly instructive to more complicated three-dimensional reconstruction of ICT images. (authors)

  14. Three-dimensional analysis of craniofacial bones using three-dimensional computer tomography

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Ichiro; Ohura, Takehiko; Kimura, Chu (Hokkaido Univ., Sapporo (Japan). School of Medicine) (and others)

    1989-08-01

    Three-dimensional computer tomography (3DCT) was performed in patients with various diseases to visualize stereoscopically the deformity of the craniofacial bones. The data obtained were analyzed by the 3DCT analyzing system. A new coordinate system was established using the median sagittal plane of the face (a plane passing through sella, nasion and basion) on the three-dimensional image. Three-dimensional profilograms were prepared for detailed analysis of the deformation of craniofacial bones for cleft lip and palate, mandibular prognathia and hemifacial microsomia. For patients, asymmetry in the frontal view and twist-formed complicated deformities were observed, as well as deformity of profiles in the anteroposterior and up-and-down directions. A newly developed technique allows three-dimensional visualization of changes in craniofacial deformity. It would aid in determining surgical strategy, including crani-facial surgery and maxillo-facial surgery, and in evaluating surgical outcome. (N.K.).

  15. Three-dimensional analysis of craniofacial bones using three-dimensional computer tomography

    International Nuclear Information System (INIS)

    Ono, Ichiro; Ohura, Takehiko; Kimura, Chu

    1989-01-01

    Three-dimensional computer tomography (3DCT) was performed in patients with various diseases to visualize stereoscopically the deformity of the craniofacial bones. The data obtained were analyzed by the 3DCT analyzing system. A new coordinate system was established using the median sagittal plane of the face (a plane passing through sella, nasion and basion) on the three-dimensional image. Three-dimensional profilograms were prepared for detailed analysis of the deformation of craniofacial bones for cleft lip and palate, mandibular prognathia and hemifacial microsomia. For patients, asymmetry in the frontal view and twist-formed complicated deformities were observed, as well as deformity of profiles in the anteroposterior and up-and-down directions. A newly developed technique allows three-dimensional visualization of changes in craniofacial deformity. It would aid in determining surgical strategy, including crani-facial surgery and maxillo-facial surgery, and in evaluating surgical outcome. (N.K.)

  16. Decreasing the emittance using a multi-period Robinson wigglers in TPS

    Energy Technology Data Exchange (ETDEWEB)

    Huamg, C. W., E-mail: huang.zw@nsrrc.org.tw [Department of Physics, National Tsing Hua University Hsinchu 30043, Taiwan (China); Hwang, C. S., E-mail: cshwang@nsrrc.org.tw [NSRRC, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan (China); Department of Electrophysics, National Chiao Tung University, Hsinchu 300, Taiwan (China); Lee, S. Y., E-mail: shylee@indiana.edu [Department of Physics, Indiana University (United States)

    2016-07-27

    The Taiwan Photon Source (TPS) has been successfully commissioned. However, the minimum emittance in the TPS lattice is 1.6 nm rad. In the existing TPS storage ring lattice, it is imperative to reduce the emittance to below 1 nm rad. Therefore, a feasibility study for reducing the effective emittance of the TPS storage ring by using a Robinson wiggler was launched; the reduction is necessary to enhance the photon brilliance. In this study, a permanent-magnet multiperiod Robinson wiggler (MRW) was developed for use instead of the single-period Robinson wiggler. In general, the quadruple field of a combined function magnet in the storage ring is approximately few tesla per meter. According to beam dynamic analysis, we found that it is necessary to adopt a high gradient (40 T/m) combined-function MRW magnet to reduce the emittance effectively. Therefore, a high gradient field strength is required in the combined function MRW magnet. In this study, the quadrupole field strength of the MRW magnet was allowed to be approximately 40 T/m at a magnet gap of 20 mm. The period length of the MRW magnet was 300 mm and the period number was 16. The of MRWs is discussed in regard to the possibility of increasing the photon brilliance from IU22.

  17. Nematic order on the surface of a three-dimensional topological insulator

    Science.gov (United States)

    Lundgren, Rex; Yerzhakov, Hennadii; Maciejko, Joseph

    2017-12-01

    We study the spontaneous breaking of rotational symmetry in the helical surface state of three-dimensional topological insulators due to strong electron-electron interactions, focusing on time-reversal invariant nematic order. Owing to the strongly spin-orbit coupled nature of the surface state, the nematic order parameter is linear in the electron momentum and necessarily involves the electron spin, in contrast with spin-degenerate nematic Fermi liquids. For a chemical potential at the Dirac point (zero doping), we find a first-order phase transition at zero temperature between isotropic and nematic Dirac semimetals. This extends to a thermal phase transition that changes from first to second order at a finite-temperature tricritical point. At finite doping, we find a transition between isotropic and nematic helical Fermi liquids that is second order even at zero temperature. Focusing on finite doping, we discuss various observable consequences of nematic order, such as anisotropies in transport and the spin susceptibility, the partial breakdown of spin-momentum locking, collective modes and induced spin fluctuations, and non-Fermi-liquid behavior at the quantum critical point and in the nematic phase.

  18. Design of the 1.8 Tesla wiggler for the DAΦNE Main Rings

    International Nuclear Information System (INIS)

    Sanelli, C.; Hsieh, H.

    1992-01-01

    The electromagnetic and mechanical design of the eight wiggler magnets for DAΦNE Main Rings is described. The wigglers have a large 1.8 Tesla flat top magnetic field, 64 cm period and 4 cm gap. The magnetic 3-D calculations, the electromagnetic design and the adopted mechanical solutions, with particular attention to the vacuum chamber problems are described. A full scale prototype (5 full poles and two half pole) will be constructed in order to verify the accuracy of magnetic calculations, the end pole design and the multipole content. (author) 4 figs.; 1 tab

  19. Investigation of mixing enhancement in porous media under helical flow conditions: 3-D bench-scale experiments

    DEFF Research Database (Denmark)

    Chiogna, Gabriele; Ye, Yu; Cirpka, Olaf A.

    2017-01-01

    us to quantify spreading and dilution of the solute plumes at the outlet cross section. Moreover, we collected direct evidence of plume spiraling and visual proof of helical flow by freezing and slicing the porous medium at different cross sections and observing the dye-tracer distribution. Model...... performed steady-state conservative tracer experiments in a fully three-dimensional flow-through chamber to investigate the effects of helical flow on plume spiraling and deformation, as well as on its dilution [4]. Helical flow was created by packing the porous medium in angled stripes of materials...

  20. Three dimensional strained semiconductors

    Science.gov (United States)

    Voss, Lars; Conway, Adam; Nikolic, Rebecca J.; Leao, Cedric Rocha; Shao, Qinghui

    2016-11-08

    In one embodiment, an apparatus includes a three dimensional structure comprising a semiconductor material, and at least one thin film in contact with at least one exterior surface of the three dimensional structure for inducing a strain in the structure, the thin film being characterized as providing at least one of: an induced strain of at least 0.05%, and an induced strain in at least 5% of a volume of the three dimensional structure. In another embodiment, a method includes forming a three dimensional structure comprising a semiconductor material, and depositing at least one thin film on at least one surface of the three dimensional structure for inducing a strain in the structure, the thin film being characterized as providing at least one of: an induced strain of at least 0.05%, and an induced strain in at least 5% of a volume of the structure.

  1. Spiking mode operation for a uniform-period wiggler

    International Nuclear Information System (INIS)

    Warren, R.W.; Goldstein, J.C.; Newnam, B.E.

    1985-01-01

    The onset of saturation in a uniform-period wiggler has been examined experimentally and through numerical simulations. Models have been constructed that explain the observations in simple and consistent ways. The models are based upon the development of strong frequency and amplitude modulation of the optical wave as a way to increase extraction efficiency and optical power

  2. Three dimensional considerations in thermal-hydraulics of helical cruciform fuel rods for LWR power uprates

    Energy Technology Data Exchange (ETDEWEB)

    Shirvan, Koroush, E-mail: kshirvan@mit.edu; Kazimi, Mujid S.

    2014-04-01

    Highlights: • We benchmarked the 4 × 4 helical cruciform fuel (HCF) bundle pressure drop experimental data with CFD. • We also benchmarked the 4 × 4 HCF mixing experimental data with CFD. • We derived new friction factors for PWR and BWR designs at PWR and BWR operating conditions from CFD. • We showed the importance of modeling the 3D conduction in HCF in steady state and transient conditions. - Abstract: In order to increase the power density of current and new light water reactor designs, the helical cruciform fuel (HCF) rods have been proposed. The HCF rod is equivalent to a thin cylindrical rod, with 4 fuel containing vanes, wrapped around it. The HCF rods increase the surface area to volume ratio of the fuel and enhance the inter-subchannel mixing due to their helical shape. The rods do not need supporting grids, as they are packed to periodically contact their neighbors along the flow direction, enabling a higher power density in the core. The HCF rods were reported to have the potential to uprate existing PWRs by 45% and BWRs by 20%. In order to quantify the mixing behavior of the HCF rods based on their twist pitch, experiments were previously performed at atmospheric pressures with single phase water in a 4 by 4 HCF and cylindrical rod bundles. In this paper, the experimental results on pressure drop and mixing are benchmarked with computational fluid dynamic (CFD) using steady state the Reynolds average Navier–Stokes (RANS) turbulence model. The sensitivity of the CFD approach to computational domain, mesh size, mesh shape and RANS turbulence models are examined against the experimental conditions. Due to the refined radial velocity profile from the HCF rods twist, the turbulence models showed little sensitivity to the domain. Based on the CFD simulations, the total pressure drops under the PWR and BWR conditions are expected to be about 10% higher than the values previously reported solely from an empirical correlation based on the

  3. Magnetic configuration dependence of the shafranov shift in the Large Helical Device

    Energy Technology Data Exchange (ETDEWEB)

    Kobuchi, T; Ida, K; Yamada, H; Yokoyama, M; Watanabe, K Y; Sakakibara, S; Yoshinuma, M [National Institute for Fusion Science, 322-6 Oroshi-Cho, Toki-City, 509-5292 (Japan)

    2006-06-15

    The dependence of the Shafranov shift on magnetic field configuration, toroidicity and central rotational transform {iota}(0) in neutral beam heated plasma has been experimentally investigated in the Large Helical Device. The toroidicity of the plasma is controlled by the quadrupole field, while the central {iota}(0) is controlled by changing the distance of the current centre of the helical coil to the plasma. It is experimentally confirmed that both the lower toroidicity and the higher {iota}(0) contribute to the reduction of the Shafranov shift as predicted by the three-dimensional equilibrium code, VMEC.

  4. Permanent magnets including undulators and wigglers

    CERN Document Server

    Bahrdt, J

    2010-01-01

    After a few historic remarks on magnetic materials we introduce the basic definitions related to permanent magnets. The magnetic properties of the most common materials are reviewed and the production processes are described. Measurement techniques for the characterization of macroscopic and microscopic properties of permanent magnets are presented. Field simulation techniques for permanent magnet devices are discussed. Today, permanent magnets are used in many fields. This article concentrates on the applications of permanent magnets in accelerators starting from dipoles and quadrupoles on to wigglers and undulators.

  5. Effects of laser-polarization and wiggler magnetic fields on electron acceleration in laser-cluster interaction

    Science.gov (United States)

    Singh Ghotra, Harjit; Kant, Niti

    2018-06-01

    We examine the electron dynamics during laser-cluster interaction. In addition to the electrostatic field of an individual cluster and laser field, we consider an external transverse wiggler magnetic field, which plays a pivotal role in enhancing the electron acceleration. Single-particle simulation has been presented with a short pulse linearly polarized as well as circularly polarized laser pulses for electron acceleration in a cluster. The persisting Coulomb field allows the electron to absorb energy from the laser field. The stochastically heated electron finds a weak electric field at the edge of the cluster from where it is ejected. The wiggler magnetic field connects the regions of the stochastically heated, ejected electron from the cluster and high energy gain by the electron from the laser field outside the cluster. This increases the field strength and hence supports the electron to meet the phase of the laser field for enhanced acceleration. A long duration resonance appears with an optimized magnetic wiggler field of about 3.4 kG. Hence, the relativistic energy gain by the electron is enhanced up to a few 100 MeV with an intense short pulse laser with an intensity of about 1019 W cm‑2 in the presence of a wiggler magnetic field.

  6. Intrinsic two-dimensional states on the pristine surface of tellurium

    Science.gov (United States)

    Li, Pengke; Appelbaum, Ian

    2018-05-01

    Atomic chains configured in a helical geometry have fascinating properties, including phases hosting localized bound states in their electronic structure. We show how the zero-dimensional state—bound to the edge of a single one-dimensional helical chain of tellurium atoms—evolves into two-dimensional bands on the c -axis surface of the three-dimensional trigonal bulk. We give an effective Hamiltonian description of its dispersion in k space by exploiting confinement to a virtual bilayer, and elaborate on the diminished role of spin-orbit coupling. These intrinsic gap-penetrating surface bands were neglected in the interpretation of seminal experiments, where two-dimensional transport was otherwise attributed to extrinsic accumulation layers.

  7. Control System of the Superconducting 63-Pole 2-Tesla Wiggler for Canadian Light Source

    International Nuclear Information System (INIS)

    Kuper, E.A.; Mezentsev, N.A.; Miginsky, E.G.; Repkov, V.V.; Tsukanov, V.M.

    2006-01-01

    A control system of the superconducting 63-pole wiggler fabricated at the Institute of Nuclear Physics in Novosibirsk (BINP) for Synchrotron Radiation Center in Canada (CLS) is described. Specific electronics and software which provide continuos monitoring of all the superconducting wiggler parameters as well as full control and monitoring of power suppliers and cryogenics machines, have been designed. The control system is VME-based. A client/server architecture of the software allowed us to integrate easily this system into the CLS distributed control system

  8. l=1 helical axis heliotron device in Kyoto university

    International Nuclear Information System (INIS)

    Nagasaki, K.; Sano, F.; Mizuuchi, T.; Hanatani, K.; Okada, H.; Obiki, T.

    1999-01-01

    Helical systems are an attractive candidate for magnetic fusion reactor. Recently, there has been great progress in theoretical research of three dimensional magnetic field structures, resulting in several kinds of confinement optimization being proposed for toroidal magnetic confinement system. For example, some sophisticated ideas have appeared on stage such as quasi-helical symmetry and quasi-isodynamic system. To find experimentally which way is the best Optimisation, a new helical axis heliotron device, so called 'Heliotron J', is under construction in the Institute of Advanced Energy, Kyoto University, Japan. In this conference, the basic concept and the present status will be presented. In the conventional plane axis helical system, it was difficult to have both good particle confinement and good MHD stability simultaneously. The goal of Heliotron J project is to clarify their compatibility in the spatial axis toroidal device. The best way for Optimising the helical magnetic field configuration will be explored by investigating the plasma response to the change in the field components. The main subjects for plasma experiment are: demonstration of the existence of good magnetic flux surfaces, reduction of neoclassical transport in collisionless regime, MHD Stabilisation in high β plasma, controllability of bootstrap current, good confinement of high energy particles

  9. Seismic analysis of a helical coil type heat exchanger

    International Nuclear Information System (INIS)

    Nishiguchi, I.; Baba, O.; Yatabe, H.

    1984-01-01

    The intermediate heat exchanger (IHX) which forms the reactor coolant pressure boundary is one of the most important components of the Multi-purpose Experimental Very High Temperature Gas-cooled Reactor (ex. VHTR) under development at Japan Atomic Energy Research Institute. This paper presents the results of the finite element modeling, eigenvalue analysis and dynamic response analysis of the IHX. For the modeling, the structure of the IHX was separated into a helical tube bundle, inner and outer vessels, and a center pipe. The eigenvalue analysis was made for each structure with a detailed three-dimensional finite element model. Then the simplified model of the whole structure of the IHX was constructed using the result of the eigenvalue analysis. A dynamic response analysis was made for the simplified model with and without stoppers of the helical tube bundle supports and the center pipe. The effect of stoppers on the behavior of the center pipe, the helical tube, and the connecting tube is discussed. (author)

  10. Electron energy and electron trajectories in an inverse free-electron laser accelerator based on a novel electrostatic wiggler

    Science.gov (United States)

    Nikrah, M.; Jafari, S.

    2016-06-01

    We expand here a theory of a high-gradient laser-excited electron accelerator based on an inverse free-electron laser (inverse-FEL), but with innovations in the structure and design. The electrostatic wiggler used in our scheme, namely termed the Paul wiggler, is generated by segmented cylindrical electrodes with applied oscillatory voltages {{V}\\text{osc}}(t) over {{90}\\circ} segments. The inverse-FEL interaction can be described by the equations that govern the electron motion in the combined fields of both the laser pulse and Paul wiggler field. A numerical study of electron energy and electron trajectories has been made using the fourth-order Runge-Kutta method. The results indicate that the electron attains a considerable energy at short distances in this device. It is found that if the electron has got sufficient suitable wiggler amplitude intensities, it can not only gain higher energy in longer distances, but also can retain it even after the passing of the laser pulse. In addition, the results reveal that the electron energy gains different peaks for different initial axial velocities, so that a suitable small initial axial velocity of e-beam produces substantially high energy gain. With regard to the transverse confinement of the electron beam in a Paul wiggler, there is no applied axial guide magnetic field in this device.

  11. Three-dimensional, three-component wall-PIV

    Science.gov (United States)

    Berthe, André; Kondermann, Daniel; Christensen, Carolyn; Goubergrits, Leonid; Garbe, Christoph; Affeld, Klaus; Kertzscher, Ulrich

    2010-06-01

    This paper describes a new time-resolved three-dimensional, three-component (3D-3C) measurement technique called wall-PIV. It was developed to assess near wall flow fields and shear rates near non-planar surfaces. The method is based on light absorption according to Beer-Lambert’s law. The fluid containing a molecular dye and seeded with buoyant particles is illuminated by a monochromatic, diffuse light. Due to the dye, the depth of view is limited to the near wall layer. The three-dimensional particle positions can be reconstructed by the intensities of the particle’s projection on an image sensor. The flow estimation is performed by a new algorithm, based on learned particle trajectories. Possible sources of measurement errors related to the wall-PIV technique are analyzed. The accuracy analysis was based on single particle experiments and a three-dimensional artificial data set simulating a rotating sphere.

  12. LHD helical divertor

    International Nuclear Information System (INIS)

    Ohyabu, N.; Watanabe, T.; Ji Hantao

    1993-07-01

    The Large Helical Device (LHD) now under construction is a heliotron/torsatron device with a closed divertor system. The edge LHD magnetic structure has been studied in detail. A peculiar feature of the configuration is existence of edge surface layers, a complicated three dimensional magnetic structure which does not, however, seem to hamper the expected divertor functions. Two divertor operational modes are being considered for the LHD experiment, high density, cold radiative divertor operation as a safe heat removal scheme and high temperature divertor plasma operation. In the latter operation, a divertor plasma with temperature of a few kev, generated by efficient pumping, expects to lead to significant improvement in core plasma confinement. Conceptual designs of the LHD divertor components are under way. (author)

  13. Self-fields in free-electron lasers with planar wiggler and ion-channel guiding

    International Nuclear Information System (INIS)

    Farokhi, B; Jafary, F B; Maraghechi, B

    2006-01-01

    A theory of self-electric and self-magnetic fields of a relativistic electron beam passing through a one-dimensional planar wiggler and an ion-channel is presented. The equilibrium orbits and their stability, under the influence of self-electric and self-magnetic fields, are analysed. New unstable orbits, in the first part of the group I orbits, are found. It is shown that for a low energy and high density beam the self-fields can produce very large effects. Stabilities of quasi-steady-state orbits are investigated by analytical and numerical methods and perfect agreement was found. The theory of small signal gain is used to derive a formula for the gain with the self-field effects included. A numerical analysis is conducted to study the self-field effects on the quasi-steady-state orbits and the gain

  14. High-resolution crystal structures of protein helices reconciled with three-centered hydrogen bonds and multipole electrostatics.

    Science.gov (United States)

    Kuster, Daniel J; Liu, Chengyu; Fang, Zheng; Ponder, Jay W; Marshall, Garland R

    2015-01-01

    Theoretical and experimental evidence for non-linear hydrogen bonds in protein helices is ubiquitous. In particular, amide three-centered hydrogen bonds are common features of helices in high-resolution crystal structures of proteins. These high-resolution structures (1.0 to 1.5 Å nominal crystallographic resolution) position backbone atoms without significant bias from modeling constraints and identify Φ = -62°, ψ = -43 as the consensus backbone torsional angles of protein helices. These torsional angles preserve the atomic positions of α-β carbons of the classic Pauling α-helix while allowing the amide carbonyls to form bifurcated hydrogen bonds as first suggested by Némethy et al. in 1967. Molecular dynamics simulations of a capped 12-residue oligoalanine in water with AMOEBA (Atomic Multipole Optimized Energetics for Biomolecular Applications), a second-generation force field that includes multipole electrostatics and polarizability, reproduces the experimentally observed high-resolution helical conformation and correctly reorients the amide-bond carbonyls into bifurcated hydrogen bonds. This simple modification of backbone torsional angles reconciles experimental and theoretical views to provide a unified view of amide three-centered hydrogen bonds as crucial components of protein helices. The reason why they have been overlooked by structural biologists depends on the small crankshaft-like changes in orientation of the amide bond that allows maintenance of the overall helical parameters (helix pitch (p) and residues per turn (n)). The Pauling 3.6(13) α-helix fits the high-resolution experimental data with the minor exception of the amide-carbonyl electron density, but the previously associated backbone torsional angles (Φ, Ψ) needed slight modification to be reconciled with three-atom centered H-bonds and multipole electrostatics. Thus, a new standard helix, the 3.6(13/10)-, Némethy- or N-helix, is proposed. Due to the use of constraints from

  15. An Influence of 7.5 T Superconducting Wiggler on Beam Parameters of Siberia-2 Storage Ring

    International Nuclear Information System (INIS)

    Korchuganov, Vladimir; Valentinov, Alexander; Mezentsev, Nikolai

    2007-01-01

    At present the dedicated synchrotron radiation source Siberia-2 in Kurchatov Institute operates with electron energy 2.5 GeV and current up to 200 mA. In order to expand spectral range of SR and to increase brightness an installation of 7.5 T 19-pole superconducting wiggler is planned at the end of 2006. Now the wiggler is under fabrication in BINP, Novosibirsk. Such high level of a magnetic field in the wiggler will have a great influence on electron beam parameters of Siberia-2. Changes of these parameters (betatron tunes, horizontal emittance of the electron beam, momentum compaction, energy spread etc.) are discussed in the report. Different methods of compensation (global and local) of betatron functions distortion are presented. Much attention is paid to dynamic aperture calculations using analytical approximation of magnetic field behavior in transverse horizontal direction

  16. Operation of a five-pole superconducting wiggler in the DCI positron ring and design of the beamline

    International Nuclear Information System (INIS)

    Bazin, C.; Dubuisson, J.M.; Labeque, A.; Level, M.P.; Raoux, D.; Sommer, M.; Zyngier, H.; Chomillier, J.; Frouin, J.; Garreau, Y.; Loupias, G.; Tarbes, J.

    1989-01-01

    A five-pole superconducting wiggler has been installed in the DCI positron ring and operated without disturbing the machine characteristics at full energy (1.85 GeV) and maximum current (300 mA). Three beamlines have been built which feed six beam ports. The first two-crystal monochromator to be used for Compton scattering has been commissioned although the sagittal focusing has not yet been tested

  17. Deceleration of arginine kinase refolding by induced helical structures.

    Science.gov (United States)

    Li, Hai-Long; Zhou, Sheng-Mei; Park, Daeui; Jeong, Hyoung Oh; Chung, Hae Young; Yang, Jun-Mo; Meng, Fan-Guo; Hu, Wei-Jiang

    2012-04-01

    Arginine kinase (AK) is a key metabolic enzyme for keeping energy balance in invertebrates. Therefore, regulation of the enzymatic activity and the folding studies of AK from the various invertebrates have been the focus of investigation. We studied the effects of helical structures by using hexafluoroisopropanol (HFIP) on AK folding. Folding kinetic studies showed that the folding rates of the urea-denatured AKs were significantly decelerated after being induced in various concentrations of HFIP. AK lost its activity completely at concentrations greater than 60%. The results indicated that the HFIP-induced helical structures in the denatured state play a negative role in protein folding, and the helical structures induced in 5% (v/v) HFIP act as the most effective barrier against AK taking its native structure. The computational docking simulations (binding energies for -2.19 kcal/mol for AutoDock4.2 and -20.47 kcal/mol for Dock6.3) suggested that HFIP interacts with the several important residues that are predicted by both programs. The excessively pre-organized helical structures not only hampered the folding process, but also ultimately brought about changes in the three-dimensional conformation and biological function of AK.

  18. Effect of the helicity injection rate and the Lundquist number on spheromak sustainment

    Science.gov (United States)

    García-Martínez, Pablo Luis; Lampugnani, Leandro Gabriel; Farengo, Ricardo

    2014-12-01

    The dynamics of the magnetic relaxation process during the sustainment of spheromak configurations at different helicity injection rates is studied. The three-dimensional activity is recovered using time-dependent resistive magnetohydrodynamic simulations. A cylindrical flux conserver with concentric electrodes is used to model configurations driven by a magnetized coaxial gun. Magnetic helicity is injected by tangential boundary flows. Different regimes of sustainment are identified and characterized in terms of the safety factor profile. The spatial and temporal behavior of fluctuations is described. The dynamo action is shown to be in close agreement with existing experimental data. These results are relevant to the design and operation of helicity injected devices, as well as to basic understanding of the plasma relaxation mechanism in quasi-steady state.

  19. Effect of the helicity injection rate and the Lundquist number on spheromak sustainment

    Energy Technology Data Exchange (ETDEWEB)

    García-Martínez, Pablo Luis, E-mail: pablogm@cab.cnea.gov.ar [Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Sede Andina—Universidad Nacional de Río Negro (UNRN), Av. Bustillo 9500, 8400 San Carlos de Bariloche, Río Negro (Argentina); Lampugnani, Leandro Gabriel; Farengo, Ricardo [Instituto Balseiro and Centro Atómico Bariloche (CAB-CNEA), Av. Bustillo 9500, 8400 San Carlos de Bariloche, Río Negro (Argentina)

    2014-12-15

    The dynamics of the magnetic relaxation process during the sustainment of spheromak configurations at different helicity injection rates is studied. The three-dimensional activity is recovered using time-dependent resistive magnetohydrodynamic simulations. A cylindrical flux conserver with concentric electrodes is used to model configurations driven by a magnetized coaxial gun. Magnetic helicity is injected by tangential boundary flows. Different regimes of sustainment are identified and characterized in terms of the safety factor profile. The spatial and temporal behavior of fluctuations is described. The dynamo action is shown to be in close agreement with existing experimental data. These results are relevant to the design and operation of helicity injected devices, as well as to basic understanding of the plasma relaxation mechanism in quasi-steady state.

  20. Nonlinear Dynamics in Spear Wigglers

    International Nuclear Information System (INIS)

    2002-01-01

    BL11, the most recently installed wiggler in the SPEAR storage ring at SSRL, produces a large nonlinear perturbation of the electron beam dynamics, which was not directly evident in the integrated magnetic field measurements. Measurements of tune shifts with betatron oscillation amplitude and with closed orbit shifts were used to characterize the nonlinear fields of the SPEAR insertion devices (IDs). Because of the narrow pole width in BL11, the nonlinear fields seen along the wiggling electron trajectory are dramatically different than the flip coil measurements made along a straight line. This difference explains the tune shift measurements and the observed degradation in dynamic aperture. Corrector magnets to cancel the BL11 nonlinear fields are presently under construction

  1. Gyrokinetic Vlasov code including full three-dimensional geometry of experiments

    International Nuclear Information System (INIS)

    Nunami, Masanori; Watanabe, Tomohiko; Sugama, Hideo

    2010-03-01

    A new gyrokinetic Vlasov simulation code, GKV-X, is developed for investigating the turbulent transport in magnetic confinement devices with non-axisymmetric configurations. Effects of the magnetic surface shapes in a three-dimensional equilibrium obtained from the VMEC code are accurately incorporated. Linear simulations of the ion temperature gradient instabilities and the zonal flows in the Large Helical Device (LHD) configuration are carried out by the GKV-X code for a benchmark test against the GKV code. The frequency, the growth rate, and the mode structure of the ion temperature gradient instability are influenced by the VMEC geometrical data such as the metric tensor components of the Boozer coordinates for high poloidal wave numbers, while the difference between the zonal flow responses obtained by the GKV and GKV-X codes is found to be small in the core LHD region. (author)

  2. The Beam Line X NdFe-steel hybrid wiggler for SSRL

    International Nuclear Information System (INIS)

    Hoyer, E.; Halbach, K.; Humphries, D.; Marks, S.; Plate, D.; Shuman, D.; Karpenko, V.P.; Kulkarni, S.; Tirsell, K.G.

    1987-01-01

    A wiggler magnet with 15 periods, each 12.85 cm long, which achieves 1.40 T at a 2.1 cm gap (2.26T at 0.8 cm) has been designed and is now in fabrication at LBL. This wiggler will be the radiation source of the high intensity synchrotron radiation beam line for the Beam Line X PRT facility at SSRL. The magnet utilizes Neodymium-Iron (NdFe) material and Vanadium Permendur (steel) in the hybrid configuration to achieve simultaneously a high magnetic field and short period. Magnetic field adjustment is with a driven chain and ball screw drive system. The magnetic structure is external to an s.s. vacuum chamber which has thin walls, 0.76 mm thickness, at each pole tip for higher field operation. Magnetic design, construction details and magnetic measurements are presented

  3. Three-dimensional effects in fracture mechanics

    International Nuclear Information System (INIS)

    Benitez, F.G.

    1991-01-01

    An overall view of the pioneering theories and works, which enlighten the three-dimensional nature of fracture mechanics during the last years is given. the main aim is not an exhaustive reviewing but the displaying of the last developments on this scientific field in a natural way. This work attempts to envisage the limits of disregarding the three-dimensional behaviour in theories, analyses and experiments. Moreover, it tries to draw attention on the scant fervour, although increasing, this three-dimensional nature of fracture has among the scientific community. Finally, a constructive discussion is presented on the use of two-dimensional solutions in the analysis of geometries which bear a three-dimensional configuration. the static two-dimensional solutions and its applications fields are reviewed. also, the static three-dimensional solutions, wherein a comparative analysis with elastoplastic and elastostatic solutions are presented. to end up, the dynamic three-dimensional solutions are compared to the asymptotic two-dimensional ones under the practical applications point of view. (author)

  4. Competition of electron-cyclotron maser and free-electron laser modes with combined solenoidal and longitudinal wiggler fields

    International Nuclear Information System (INIS)

    Lin, A.T.; Lin, C.

    1986-01-01

    A relativistic electron beam with a finite transverse dc momentum (β/sub perpendicular/ = 1/γ 0 ) passing through a region of combined uniform solenoidal and longitudinal wiggler magnetic fields is observed to convert 25% of its kinetic energy into coherent radiation at frequency ω = γ 2 0 (k/sub w/V 0 +Ω/sub c//γ 0 ) if the phase velocity of the generated wave is slightly above the speed of light. In this situation, the bunchings of the slow electron-cyclotron mode and free-electron laser modes with combined solenoidal and longitudinal wiggler fields (lowbitron) are observed to compensate each other, which gives rise to a finite threshold for lowbitron operation. In order to attain high efficiency, the wiggler strength of a lowbitron must substantially exceed the threshold

  5. Electron tomography, three-dimensional Fourier analysis and colour prediction of a three-dimensional amorphous biophotonic nanostructure

    Science.gov (United States)

    Shawkey, Matthew D.; Saranathan, Vinodkumar; Pálsdóttir, Hildur; Crum, John; Ellisman, Mark H.; Auer, Manfred; Prum, Richard O.

    2009-01-01

    Organismal colour can be created by selective absorption of light by pigments or light scattering by photonic nanostructures. Photonic nanostructures may vary in refractive index over one, two or three dimensions and may be periodic over large spatial scales or amorphous with short-range order. Theoretical optical analysis of three-dimensional amorphous nanostructures has been challenging because these structures are difficult to describe accurately from conventional two-dimensional electron microscopy alone. Intermediate voltage electron microscopy (IVEM) with tomographic reconstruction adds three-dimensional data by using a high-power electron beam to penetrate and image sections of material sufficiently thick to contain a significant portion of the structure. Here, we use IVEM tomography to characterize a non-iridescent, three-dimensional biophotonic nanostructure: the spongy medullary layer from eastern bluebird Sialia sialis feather barbs. Tomography and three-dimensional Fourier analysis reveal that it is an amorphous, interconnected bicontinuous matrix that is appropriately ordered at local spatial scales in all three dimensions to coherently scatter light. The predicted reflectance spectra from the three-dimensional Fourier analysis are more precise than those predicted by previous two-dimensional Fourier analysis of transmission electron microscopy sections. These results highlight the usefulness, and obstacles, of tomography in the description and analysis of three-dimensional photonic structures. PMID:19158016

  6. Color-coded volume rendering for three-dimensional reconstructions of CT data

    International Nuclear Information System (INIS)

    Rieker, O.; Mildenberger, P.; Thelen, M.

    1999-01-01

    Purpose: To evaluate a technique of colored three-dimensional reconstructions without segmentation. Material and methods: Color-coded volume rendered images were reconstructed from the volume data of 25 thoracic, abdominal, musculoskeletal, and vascular helical CT scans using commercial software. The CT volume rendered voxels were encoded with color in the following manner. Opacity, hue, lightness, and chroma were assigned to each of four classes defined by CT number. Color-coded reconstructions were compared to the corresponding grey-scale coded reconstructions. Results: Color-coded volume rendering enabled realistic visualization of pathologic findings when there was sufficient difference in CT density. Segmentation was necessary in some cases to demonstrate small details in a complex volume. Conclusion: Color-coded volume rendering allowed lifelike visualisation of CT volumes without the need of segmentation in most cases. (orig.) [de

  7. Studies of energetic-ion-driven MHD instabilities in helical plasmas with low magnetic shear

    International Nuclear Information System (INIS)

    Yamamoto, S.; Ascasibar, E.; Jimenez-Gomez, R.

    2012-11-01

    We discuss the features of energetic-ion-driven MHD instabilities such as Alfvén eigenmodes (AEs) in three-dimensional magnetic configuration with low magnetic shear and low toroidal field period number (N p ) that are characteristic of advanced helical plasmas. Comparison of experimental and numerical studies in Heliotron J with those in TJ-II indicates that the most unstable AE is global AE (GAE) in low magnetic shear configuration in spite of the iota and the helicity-induced AE (HAE) is also the most unstable AE in the high iota configuration. (author)

  8. Traveling waves in a free-electron laser with an electromagnetic wiggler

    International Nuclear Information System (INIS)

    Olumi, Mohsen; Maraghechi, B; Rouhani, M H

    2011-01-01

    The propagation of electromagnetic traveling wave in a free-electron laser (FEL) with an electromagnetic wiggler is investigated using the relativistic fluid-Maxwell formulation. By adapting the traveling-wave ansatz, three coupled, nonlinear ordinary differential equations are obtained describing the nonlinear propagation of the coupled wave. These equations may be used to study saturation in FELs. By linearizing the nonlinear equations dispersion relations for the traveling wave are obtained. Numerical solution of the small-signal traveling dispersion relation reveals the coupling of radiation to both slow and fast space-charge waves. It is shown that the traveling wave, which is not a normal mode in a laboratory frame, becomes a normal mode in terms of a transformed variable.

  9. Selective decay in a helicity-injected spheromak

    International Nuclear Information System (INIS)

    MartInez, P L Garcia; Farengo, R

    2009-01-01

    The non-linear evolution of several unstable equilibria, representative of helicity-injected spheromak configurations inside a cylindrical flux conserver, is studied by means of three dimensional resistive MHD simulations. These equilibria are force-free (∇ x B = λ(ψ)B) but do not correspond to minimum energy states, having linear λ(ψ) profiles with negative slope. Several aspects of this process are studied (magnetic energy relaxation, selective helicity decay, relaxed profiles) for different initial A slopes. The stability threshold predicted by linear theory is recovered. The results show that complete plasma relaxation leading to a uniform A, is achieved only if the initial profile is hollow enough. The evolution for cases just above the stability threshold is more gentle and does not end in a Taylor state. The final state in these cases has a linear λ(ψ) profile, as the initial condition, but with a smaller slope.

  10. Self-assembly of a double-helical complex of sodium.

    Science.gov (United States)

    Bell, T W; Jousselin, H

    1994-02-03

    Spontaneous self-organization of helical and multiple-helical molecular structures occurs on several levels in living organisms. Key examples are alpha-helical polypeptides, double-helical nucleic acids and helical protein structures, including F-actin, microtubules and the protein sheath of the tobacco mosaic virus. Although the self-assembly of double-helical transition-metal complexes bears some resemblance to the molecular organization of double-stranded DNA, selection between monohelical, double-helical and triple-helical structures is determined largely by the size and geometrical preference of the tightly bound metal. Here we present an example of double-helical assembly induced by the weaker and non-directional interactions of an alkali-metal ion with an organic ligand that is pre-organized into a coil. We have characterized the resulting complex by two-dimensional NMR and fast-atom-bombardment mass spectrometry. These results provide a step toward the creation of molecular tubes or ion channels consisting of intertwined coils.

  11. TIME EVOLUTION OF CORONAL MAGNETIC HELICITY IN THE FLARING ACTIVE REGION NOAA 10930

    International Nuclear Information System (INIS)

    Park, Sung-Hong; Jing, Ju; Wang Haimin; Chae, Jongchul; Tan, Changyi

    2010-01-01

    To study the three-dimensional (3D) magnetic field topology and its long-term evolution associated with the X3.4 flare of 2006 December 13, we investigate the coronal relative magnetic helicity in the flaring active region (AR) NOAA 10930 during the time period of December 8-14. The coronal helicity is calculated based on the 3D nonlinear force-free magnetic fields reconstructed by the weighted optimization method of Wiegelmann, and is compared with the amount of helicity injected through the photospheric surface of the AR. The helicity injection is determined from the magnetic helicity flux density proposed by Pariat et al. using Solar and Heliospheric Observatory/Michelson Doppler Imager magnetograms. The major findings of this study are the following. (1) The time profile of the coronal helicity shows a good correlation with that of the helicity accumulation by injection through the surface. (2) The coronal helicity of the AR is estimated to be -4.3 x 10 43 Mx 2 just before the X3.4 flare. (3) This flare is preceded not only by a large increase of negative helicity, -3.2 x 10 43 Mx 2 , in the corona over ∼1.5 days but also by noticeable injections of positive helicity through the photospheric surface around the flaring magnetic polarity inversion line during the time period of the channel structure development. We conjecture that the occurrence of the X3.4 flare is involved with the positive helicity injection into an existing system of negative helicity.

  12. Three-dimensional biomedical imaging

    International Nuclear Information System (INIS)

    Robb, R.A.

    1985-01-01

    Scientists in biomedical imaging provide researchers, physicians, and academicians with an understanding of the fundamental theories and practical applications of three-dimensional biomedical imaging methodologies. Succinct descriptions of each imaging modality are supported by numerous diagrams and illustrations which clarify important concepts and demonstrate system performance in a variety of applications. Comparison of the different functional attributes, relative advantages and limitations, complementary capabilities, and future directions of three-dimensional biomedical imaging modalities are given. Volume 1: Introductions to Three-Dimensional Biomedical Imaging Photoelectronic-Digital Imaging for Diagnostic Radiology. X-Ray Computed Tomography - Basic Principles. X-Ray Computed Tomography - Implementation and Applications. X-Ray Computed Tomography: Advanced Systems and Applications in Biomedical Research and Diagnosis. Volume II: Single Photon Emission Computed Tomography. Position Emission Tomography (PET). Computerized Ultrasound Tomography. Fundamentals of NMR Imaging. Display of Multi-Dimensional Biomedical Image Information. Summary and Prognostications

  13. Endoscopic mode for three-dimensional CT display of normal and pathologic laryngeal structures

    International Nuclear Information System (INIS)

    Sanuki, Tetsuji; Hyodo, Masamitsu; Yumoto, Eiji; Yasuhara, Yoshifumi; Ochi, Takashi

    1997-01-01

    The recent development of helical (spiral) computed tomography allows collection of volumetric data to obtain high quality three-dimensional (3D) reconstructed images. The authors applied the 3D CT endoscopic imaging technique to asses normal and pathologic laryngeal structures. The latter included trauma, vocal fold atrophy, cancer of the larynx and recurrent nerve palsy. This technique was able to show normal laryngeal structures and characteristic findings of each pathology. The 3D CT endoscopic images can be rotated around any axis, allowing optimal depiction of pathologic lesion. The use of 3D CT endoscopic technique provides the display of the location and extent of pathology and affords accurate therapeutic planning. (author)

  14. Enhanced THz radiation generation by photo-mixing of tophat lasers in rippled density plasma with a planar magnetostatic wiggler and s-parameter

    Science.gov (United States)

    Abedi-Varaki, M.

    2018-02-01

    In this paper, the effects of planar magnetostatic wiggler and s-parameter on the terahertz (THz) radiation generation through rippled plasma have been investigated. Efficient THz radiation generation by photo-mixing of tophat lasers for rippled density plasma in the presence of the wiggler field has been presented. Fundamental equations for the analysis of the non-linear current density and THz radiation generation by wiggler magnetostatic field have been derived. It is shown that for the higher order of the tophat lasers, the values of THz amplitude are greater. In fact, the higher order of the tophat lasers has a sharp gradient in the intensity of lasers, which leads to a stronger nonlinear ponderomotive force and, consequently, a stronger current density. In addition, it is seen that by increasing s-parameter, the normalized transverse profile becomes more focused near the axis of y. Furthermore, it is observed that the normalized laser efficiency has a decreasing trend with increasing normalized THz frequency for different values of the wiggler field. Also, it is shown that by employing a greater order of the tophat lasers and a stronger wiggler field, the efficiency of order of 30% can be achieved. Moreover, it is found that we can control focus and intensity of THz radiation emitted in rippled plasma by choosing the appropriate order of the tophat lasers and tuning of the wiggler field.

  15. Three-dimensional neuroimaging

    International Nuclear Information System (INIS)

    Toga, A.W.

    1990-01-01

    This book reports on new neuroimaging technologies that are revolutionizing the study of the brain be enabling investigators to visualize its structure and entire pattern of functional activity in three dimensions. The book provides a theoretical and practical explanation of the new science of creating three-dimensional computer images of the brain. The coverage includes a review of the technology and methodology of neuroimaging, the instrumentation and procedures, issues of quantification, analytic protocols, and descriptions of neuroimaging systems. Examples are given to illustrate the use of three-dimensional enuroimaging to quantitate spatial measurements, perform analysis of autoradiographic and histological studies, and study the relationship between brain structure and function

  16. How reverse turns may mediate the formation of helical segments in proteins: an x-ray model.

    OpenAIRE

    Perczel, A; Foxman, B M; Fasman, G D

    1992-01-01

    The three-dimensional structure of a protein is the assembly of different secondary structural elements, such as alpha-helices, beta-pleated sheets, and beta-turns. Although the conformation of hundreds of proteins has been elaborated in the solid state, only a vague understanding of the mechanism of their conformational folding is known. One facet of this topic is the conformational interconversion of one or more beta-turns to a helical structure (and vice versa), which may also be related t...

  17. Numerical modeling of formation of helical structures in reversed-field-pinch plasma

    International Nuclear Information System (INIS)

    Mizuguchi, N.; Ichiguchi, K.; Todo, Y.; Sanpei, A.; Oki, K.; Masamune, S.; Himura, H.

    2012-11-01

    Nonlinear three-dimensional magnetohydrodynamic(MHD) simulations have been executed for the low-aspect-ratio reversed-field-pinch (RFP) plasma to reveal the physical mechanism of the formation processes of helical structures. The simulation results show a clear formation of n=4 structure as a result of dominant growth of resistive modes, where n represents the toroidal mode number. The resultant relaxed helical state consists of a unique bean-shaped and hollow pressure profile in the poloidal cross section for both cases of resonant and non-resonant triggering instability modes. The results are partially comparable to the experimental observations. The physical mechanisms of those processes are examined. (author)

  18. Influence of helical external driven current on nonlinear resistive tearing mode evolution and saturation in tokamaks

    Science.gov (United States)

    Zhang, W.; Wang, S.; Ma, Z. W.

    2017-06-01

    The influences of helical driven currents on nonlinear resistive tearing mode evolution and saturation are studied by using a three-dimensional toroidal resistive magnetohydrodynamic code (CLT). We carried out three types of helical driven currents: stationary, time-dependent amplitude, and thickness. It is found that the helical driven current is much more efficient than the Gaussian driven current used in our previous study [S. Wang et al., Phys. Plasmas 23(5), 052503 (2016)]. The stationary helical driven current cannot persistently control tearing mode instabilities. For the time-dependent helical driven current with f c d = 0.01 and δ c d < 0.04 , the island size can be reduced to its saturated level that is about one third of the initial island size. However, if the total driven current increases to about 7% of the total plasma current, tearing mode instabilities will rebound again due to the excitation of the triple tearing mode. For the helical driven current with time dependent strength and thickness, the reduction speed of the radial perturbation component of the magnetic field increases with an increase in the driven current and then saturates at a quite low level. The tearing mode is always controlled even for a large driven current.

  19. Three-fluid, three-dimensional magnetohydrodynamic solar wind model with eddy viscosity and turbulent resistivity

    Energy Technology Data Exchange (ETDEWEB)

    Usmanov, Arcadi V.; Matthaeus, William H. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Goldstein, Melvyn L., E-mail: arcadi.usmanov@nasa.gov [Code 672, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2014-06-10

    We have developed a three-fluid, three-dimensional magnetohydrodynamic solar wind model that incorporates turbulence transport, eddy viscosity, turbulent resistivity, and turbulent heating. The solar wind plasma is described as a system of co-moving solar wind protons, electrons, and interstellar pickup protons, with separate energy equations for each species. Numerical steady-state solutions of Reynolds-averaged solar wind equations coupled with turbulence transport equations for turbulence energy, cross helicity, and correlation length are obtained by the time relaxation method in the corotating with the Sun frame of reference in the region from 0.3 to 100 AU (but still inside the termination shock). The model equations include the effects of electron heat conduction, Coulomb collisions, photoionization of interstellar hydrogen atoms and their charge exchange with the solar wind protons, turbulence energy generation by pickup protons, and turbulent heating of solar wind protons and electrons. The turbulence transport model is based on the Reynolds decomposition and turbulence phenomenologies that describe the conversion of fluctuation energy into heat due to a turbulent cascade. In addition to using separate energy equations for the solar wind protons and electrons, a significant improvement over our previous work is that the turbulence model now uses an eddy viscosity approximation for the Reynolds stress tensor and the mean turbulent electric field. The approximation allows the turbulence model to account for driving of turbulence by large-scale velocity gradients. Using either a dipole approximation for the solar magnetic field or synoptic solar magnetograms from the Wilcox Solar Observatory for assigning boundary conditions at the coronal base, we apply the model to study the global structure of the solar wind and its three-dimensional properties, including embedded turbulence, heating, and acceleration throughout the heliosphere. The model results are

  20. Use of helicity methods in evaluating loop integrals: a QCD example

    International Nuclear Information System (INIS)

    Koerner, J.G.; Sieben, P.

    1991-01-01

    We discuss the use of helicity methods in evaluating loop diagrams by analyzing a specific example: the one-loop concentration to e + e - → qanti qg in massless QCD. By using covariant helicity representations for the spinor and vector wave functins we obtain the helicity amplitudes directly from the Feynman loop diagrams by covariant contraction. The necessary loop integrations are considerably simplified since one encounters only scalar loop integrals after contraction. We discuss crossing relations that allow one to obtain the corresponding one-loop helicity amplitudes for the crossed processes as e.g. qanti q → (W, Z, γ * ) + g including the real photon cases. As we treat the spin degrees of freedom in four dimensions and only continue momenta to n dimensions (dimensional reduction scheme) we explicate how our results are related to the usual dimensional regularization results. (orig.)

  1. Ergodization of magnetic surfaces due to finite beta effect in a helical system

    International Nuclear Information System (INIS)

    Hayashi, Takaya.

    1989-04-01

    Breaking of magnetic surfaces due to finite beta effect in a l=2 heliotron/torsatron configuration is studied by using a newly developed three dimensional equilibrium code. Breaking can be suppressed by a larger aspect ratio configuration, shaping of magnetic surface (inward shift or prolate shape), pitch modulation of helical coils, or pressure profile control. (author)

  2. Three dimensional canonical transformations

    International Nuclear Information System (INIS)

    Tegmen, A.

    2010-01-01

    A generic construction of canonical transformations is given in three-dimensional phase spaces on which Nambu bracket is imposed. First, the canonical transformations are defined as based on cannonade transformations. Second, it is shown that determination of the generating functions and the transformation itself for given generating function is possible by solving correspondent Pfaffian differential equations. Generating functions of type are introduced and all of them are listed. Infinitesimal canonical transformations are also discussed as the complementary subject. Finally, it is shown that decomposition of canonical transformations is also possible in three-dimensional phase spaces as in the usual two-dimensional ones.

  3. Helical axis stellarator equilibrium model

    International Nuclear Information System (INIS)

    Koniges, A.E.; Johnson, J.L.

    1985-02-01

    An asymptotic model is developed to study MHD equilibria in toroidal systems with a helical magnetic axis. Using a characteristic coordinate system based on the vacuum field lines, the equilibrium problem is reduced to a two-dimensional generalized partial differential equation of the Grad-Shafranov type. A stellarator-expansion free-boundary equilibrium code is modified to solve the helical-axis equations. The expansion model is used to predict the equilibrium properties of Asperators NP-3 and NP-4. Numerically determined flux surfaces, magnetic well, transform, and shear are presented. The equilibria show a toroidal Shafranov shift

  4. Influence of external 3D magnetic fields on helical equilibrium and plasma flow in RFX-mod

    International Nuclear Information System (INIS)

    Piovesan, P; Bonfiglio, D; Bonomo, F; Cappello, S; Carraro, L; Cavazzana, R; Gobbin, M; Marrelli, L; Martin, P; Martines, E; Momo, B; Piron, L; Puiatti, M E; Soppelsa, A; Valisa, M; Zanca, P; Zaniol, B

    2011-01-01

    A spontaneous transition to a helical equilibrium with an electron internal transport barrier is observed in RFX-mod as the plasma current is raised above 1 MA (Lorenzini R et al 2009 Nature Phys. 5 570). The helical magnetic equilibrium can be controlled with external three-dimensional (3D) magnetic fields applied by 192 active coils, providing proper helical boundary conditions either rotating or static. The persistence of the helical equilibrium is strongly increased in this way. A slight reduction in the energy confinement time of about 15% is observed, likely due to the increased plasma-wall interaction associated with the finite radial magnetic field imposed at the edge. A global helical flow develops in these states and is expected to play a role in the helical self-organization. In particular, its shear may contribute to the ITB formation and is observed to increase with the externally applied radial field. The possible origins of this flow, from nonlinear visco-resistive magnetohydrodynamic (MHD) and/or ambipolar electric fields, will be discussed.

  5. Three-dimensional microbubble streaming flows

    Science.gov (United States)

    Rallabandi, Bhargav; Marin, Alvaro; Rossi, Massimiliano; Kaehler, Christian; Hilgenfeldt, Sascha

    2014-11-01

    Streaming due to acoustically excited bubbles has been used successfully for applications such as size-sorting, trapping and focusing of particles, as well as fluid mixing. Many of these applications involve the precise control of particle trajectories, typically achieved using cylindrical bubbles, which establish planar flows. Using astigmatic particle tracking velocimetry (APTV), we show that, while this two-dimensional picture is a useful description of the flow over short times, a systematic three-dimensional flow structure is evident over long time scales. We demonstrate that this long-time three-dimensional fluid motion can be understood through asymptotic theory, superimposing secondary axial flows (induced by boundary conditions at the device walls) onto the two-dimensional description. This leads to a general framework that describes three-dimensional flows in confined microstreaming systems, guiding the design of applications that profit from minimizing or maximizing these effects.

  6. Three-dimensional flow phenomena in a wire-wrapped 37-pin fuel bundle for SFR

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jae Ho; Yoo, Jin; Lee, Kwi Lim; Ha, Kwi Seok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-08-15

    Three-dimensional flow phenomena in a wire-wrapped 37-pin fuel assembly mock-up of a Japanese loop-type sodium-cooled fast reactor, Monju, were investigated with a numerical analysis using a general-purpose commercial computational fluid dynamics code, CFX. Complicated and vortical flow phenomena in the wire-wrapped 37-pin fuel assembly were captured by a Reynolds-averaged Navier-Stokes flow simulation using a shear stress transport turbulence model. The main purpose of the current study is to understand the three-dimensional complex flow phenomena in a wire-wrapped fuel assembly to support the license issue for the core design. Computational fluid dynamics results show good agreement with friction factor correlation models. The secondary flow in the corner and edge subchannels is much stronger than that in an interior subchannel. The axial velocity averaged in the corner and edge subchannels is higher than that averaged in the interior subchannels. Three-dimensional multiscale vortex structures start to be formed by an interaction between secondary flows around each wire-wrapped pin. Behavior of the large-scale vortex structures in the corner and edge subchannels is closely related to the relative position between the hexagonal duct wall and the helically wrapped wire spacer. The small-scale vortex is axially developed in the interior subchannels. Furthermore, a driving force on each wire spacer surface is closely related to the relative position between the hexagonal duct wall and the wire spacer.

  7. Comparison study of the partial-breast irradiation techniques: Dosimetric analysis of three-dimensional conformal radiation therapy, electron beam therapy, and helical tomotherapy depending on various tumor locations

    International Nuclear Information System (INIS)

    Kim, Min-Joo; Park, So-Hyun; Son, Seok-Hyun; Cheon, Keum-Seong; Choi, Byung-Ock; Suh, Tae-Suk

    2013-01-01

    The partial-breast irradiation (PBI) technique, an alternative to whole-breast irradiation, is a beam delivery method that uses a limited range of treatment volume. The present study was designed to determine the optimal PBI treatment modalities for 8 different tumor locations. Treatment planning was performed on computed tomography (CT) data sets of 6 patients who had received lumpectomy treatments. Tumor locations were classified into 8 subsections according to breast quadrant and depth. Three-dimensional conformal radiation therapy (3D-CRT), electron beam therapy (ET), and helical tomotherapy (H-TOMO) were utilized to evaluate the dosimetric effect for each tumor location. Conformation number (CN), radical dose homogeneity index (rDHI), and dose delivered to healthy tissue were estimated. The Kruskal-Wallis, Mann-Whitney U, and Bonferroni tests were used for statistical analysis. The ET approach showed good sparing effects and acceptable target coverage for the lower inner quadrant—superficial (LIQ-S) and lower inner quadrant—deep (LIQ-D) locations. The H-TOMO method was the least effective technique as no evaluation index achieved superiority for all tumor locations except CN. The ET method is advisable for treating LIQ-S and LIQ-D tumors, as opposed to 3D-CRT or H-TOMO, because of acceptable target coverage and much lower dose applied to surrounding tissue

  8. Generation of Supramolecular Chirality around Twofold Rotational or Helical Axes in Crystalline Assemblies of Achiral Components

    Directory of Open Access Journals (Sweden)

    Mikiji Miyata

    2015-10-01

    Full Text Available A multi-point approximation method clarifies supramolecular chirality of twofold rotational or helical assemblies as well as bundles of the one-dimensional (1D assemblies. While one-point approximation of materials claims no chirality generation of such assemblies, multi-point approximations do claim possible generation in the 1D assemblies of bars and plates. Such chirality derives from deformations toward three-axial directions around the helical axes. The chiral columns are bundled in chiral ways through symmetry operations. The preferable right- or left-handed columns are bundled together to yield chiral crystals with right- or left-handedness, respectively, indicating that twofold helix symmetry operations cause chiral crystals composed of achiral components via a three-stepwise and three-directional process.

  9. Neutronics investigation of advanced self-cooled liquid blanket systems in helical reactor

    International Nuclear Information System (INIS)

    Tanaka, T.; Sagara, A.; Muroga, T.; Youssef, M.Z.

    2006-10-01

    Neutronics performances of advanced self-cooled liquid blanket systems have been investigated in design activity of the helical-type reactor FFHR2. In the present study, a new three-dimensional (3-D) neutronics calculation system has been developed for the helical-type reactor to enhance quick feedback between neutronics evaluation and design modification. Using this new calculation system, advanced Flibe-cooled and Li-cooled liquid blanket systems proposed for FFHR2 have been evaluated to make clear design issues to enhance neutronics performance. Based on calculated results, modification of the blanket dimensions and configuration have been attempted to achieve the adequate tritium breeding ability and neutron shielding performance in the helical reactor. The total tritium breeding ratios (TBRs) obtained after modifying the blanket dimensions indicated that all the advanced blanket systems proposed for FFHR2 would achieve adequate tritium self-sufficiency by dimension adjustment and optimization of structures in the breeder layers. Issues in neutron shielding performance have been investigated quantitatively using 3-D geometry of the helical blanket system, support structures, poloidal coils etc. Shielding performance of the helical coils against direct neutrons from core plasma would achieve design target by further optimization of shielding materials. However, suppression of the neutron streaming and reflection through the divertor pumping areas in the original design is important issue to protect the poloidal coils and helical coils, respectively. Investigation of the neutron wall loading indicated that the peaking factor of the neutron wall load distribution would be moderated by the toroidal and helical effect of the plasma distribution in the helical reactor. (author)

  10. RECONSTRUCTING THREE-DIMENSIONAL JET GEOMETRY FROM TWO-DIMENSIONAL IMAGES

    Science.gov (United States)

    Avachat, Sayali; Perlman, Eric S.; Li, Kunyang; Kosak, Katie

    2018-01-01

    Relativistic jets in AGN are one of the most interesting and complex structures in the Universe. Some of the jets can be spread over hundreds of kilo parsecs from the central engine and display various bends, knots and hotspots. Observations of the jets can prove helpful in understanding the emission and particle acceleration processes from sub-arcsec to kilo parsec scales and the role of magnetic field in it. The M87 jet has many bright knots as well as regions of small and large bends. We attempt to model the jet geometry using the observed 2 dimensional structure. The radio and optical images of the jet show evidence of presence of helical magnetic field throughout. Using the observed structure in the sky frame, our goal is to gain an insight into the intrinsic 3 dimensional geometry in the jets frame. The structure of the bends in jet's frame may be quite different than what we see in the sky frame. The knowledge of the intrinsic structure will be helpful in understanding the appearance of the magnetic field and hence polarization morphology. To achieve this, we are using numerical methods to solve the non-linear equations based on the jet geometry. We are using the Log Likelihood method and algorithm based on Markov Chain Monte Carlo (MCMC) simulations.

  11. Study of Pelvicaliceal Anatomy by Helical Computerized Tomography

    International Nuclear Information System (INIS)

    Al-Qahtani, Fahd N.; Ali, Gaber A.; Kamal, Baher A.; Taha, Saud A.

    2003-01-01

    To evaluate the role of 3-dimensional images produced by computerized tomography (CT), using intravenous contrast, to study pelvicaliceal anatomy.This might be of help in endourological procedure. The study was conducted in the King Fahd Hospital of the University, King Faisal University. Dammam,Kingdom of Saudi Arabia. The study took place from July 2002 through to October 2002 .Helical CT was carried for patients who were investigated using excretory urography for any reason. A CT was carried out to the kidneys only within 10 minutes ( between 5 and 15 minute films of excretory urography).Images were reprocessed by 3-dimension construction after subtracting all structures except for the palvicaliceal system. Thity-six normal kidneys were studied. The upper pole was drained by a single caliceal infundibulum in all 36(100%) kidneys.the middle segement of the kidney was drained by 2 infundibula in 32 (89%) kidneys. Four (11%) kidneys have no middle caliceal infudibula. The lower pole was drained by 2 caliceal infundibula in 23 (64%) and a single infundibulum in 13 (36%) kidneys. The minor calices draining each renal segment were seen clearly. Three-dimensional images derived by helical CT are feasible for evaluating the anatomy of palvicaliceal system,and, can be of help in endourological procedures. (author)/

  12. SRS Behaviour with a superconducting 5-Tesla wiggler insertion

    International Nuclear Information System (INIS)

    Suller, V.P.; Marks, N.; Poole, M.W.; Walker, R.P.

    1983-01-01

    A 5 Tesla superconducting wavelength shifting wiggler magnet has been inserted into the SRS lattice. Observations have been made of the behaviour of the stored electron beam with the magnet powered. Betatron tune shifts and modulation of the betatron function have been measured and good agreement obtained with theory. Closed orbit changes have been examined and the stored beam lifetime optimised. The magnet is fully operational and is producing intense x-ray beams for users

  13. Panoramic three-dimensional CT imaging

    International Nuclear Information System (INIS)

    Kawamata, Akitoshi; Fujishita, Masami

    1998-01-01

    Panoramic radiography is a unique projection technique for producing a single image of both maxillary and mandibular arches and many other anatomical structures. To obtain a similar panoramic image without panoramic radiography system, a modified three-dimensional (3D) CT imaging technique was designed. A set of CT slice image data extending from the chin to the orbit was used for 3D reconstruction. The CT machine used in this study was the X-Vision (TOSHIBA, Japan). The helical scan technique was used. The slice thickness of reconstructed image was one or 1.5 mm. The occlusal plane or Frankfort horizontal (FH) plane was used as the reference line. The resultant slice image data was stored on a magnetic optical disk and then used to create panoramic 3D-CT images on a Macintosh computer systems (Power Macintosh 8600/250, Apple Computer Inc., USA). To create the panoramic 3D-CT image, the following procedure was designed: Design a curved panoramic 3D-CT imaging layer using the imaging layer and the movement of the x-ray beam in panoramic radiography system as a template; Cut this imaging layer from each slice image, then the trimmed image was transformed to a rectangular layer using the ''still image warping'' special effect in the Elastic Reality special effects system (Elastic Reality Inc., USA); Create panoramic 3D-CT image using the Voxel View (Vital Images Inc., USA) rendering system and volume rendering technique. Although the image quality was primitive, a panoramic view of maxillofacial region was obtained by this technique. (author)

  14. THREE-DIMENSIONAL RELATIVISTIC MAGNETOHYDRODYNAMIC SIMULATIONS OF CURRENT-DRIVEN INSTABILITY. I. INSTABILITY OF A STATIC COLUMN

    International Nuclear Information System (INIS)

    Mizuno, Yosuke; Nishikawa, Ken-Ichi; Lyubarsky, Yuri; Hardee, Philip E.

    2009-01-01

    We have investigated the development of current-driven (CD) kink instability through three-dimensional relativistic magnetohydrodynamic simulations. A static force-free equilibrium helical magnetic configuration is considered in order to study the influence of the initial configuration on the linear and nonlinear evolution of the instability. We found that the initial configuration is strongly distorted but not disrupted by the kink instability. The instability develops as predicted by linear theory. In the nonlinear regime, the kink amplitude continues to increase up to the terminal simulation time, albeit at different rates, for all but one simulation. The growth rate and nonlinear evolution of the CD kink instability depend moderately on the density profile and strongly on the magnetic pitch profile. The growth rate of the kink mode is reduced in the linear regime by an increase in the magnetic pitch with radius and reaches the nonlinear regime at a later time than the case with constant helical pitch. On the other hand, the growth rate of the kink mode is increased in the linear regime by a decrease in the magnetic pitch with radius and reaches the nonlinear regime sooner than the case with constant magnetic pitch. Kink amplitude growth in the nonlinear regime for decreasing magnetic pitch leads to a slender helically twisted column wrapped by magnetic field. On the other hand, kink amplitude growth in the nonlinear regime nearly ceases for increasing magnetic pitch.

  15. Three-dimensional magnetospheric equilibrium with isotropic pressure

    International Nuclear Information System (INIS)

    Cheng, C.Z.

    1995-05-01

    In the absence of the toroidal flux, two coupled quasi two-dimensional elliptic equilibrium equations have been derived to describe self-consistent three-dimensional static magnetospheric equilibria with isotropic pressure in an optimal (Ψ,α,χ) flux coordinate system, where Ψ is the magnetic flux function, χ is a generalized poloidal angle, α is the toroidal angle, α = φ - δ(Ψ,φ,χ) is the toroidal angle, δ(Ψ,φ,χ) is periodic in φ, and the magnetic field is represented as rvec B = ∇Ψ x ∇α. A three-dimensional magnetospheric equilibrium code, the MAG-3D code, has been developed by employing an iterative metric method. The main difference between the three-dimensional and the two-dimensional axisymmetric solutions is that the field-aligned current and the toroidal magnetic field are finite for the three-dimensional case, but vanish for the two-dimensional axisymmetric case. With the same boundary flux surface shape, the two-dimensional axisymmetric results are similar to the three-dimensional magnetosphere at each local time cross section

  16. Three dimensional visualization of medical images

    International Nuclear Information System (INIS)

    Suto, Yasuzo

    1992-01-01

    Three dimensional visualization is a stereoscopic technique that allows the diagnosis and treatment of complicated anatomy site of the bone and organ. In this article, the current status and technical application of three dimensional visualization are introduced with special reference to X-ray CT and MRI. The surface display technique is the most common for three dimensional visualization, consisting of geometric model, voxel element, and stereographic composition techniques. Recent attention has been paid to display method of the content of the subject called as volume rendering, whereby information on the living body is provided accurately. The application of three dimensional visualization is described in terms of diagnostic imaging and surgical simulation. (N.K.)

  17. (Weakly) three-dimensional caseology

    International Nuclear Information System (INIS)

    Pomraning, G.C.

    1996-01-01

    The singular eigenfunction technique of Case for solving one-dimensional planar symmetry linear transport problems is extended to a restricted class of three-dimensional problems. This class involves planar geometry, but with forcing terms (either boundary conditions or internal sources) which are weakly dependent upon the transverse spatial variables. Our analysis involves a singular perturbation about the classic planar analysis, and leads to the usual Case discrete and continuum modes, but modulated by weakly dependent three-dimensional spatial functions. These functions satisfy parabolic differential equations, with a different diffusion coefficient for each mode. Representative one-speed time-independent transport problems are solved in terms of these generalised Case eigenfunctions. Our treatment is very heuristic, but may provide an impetus for more rigorous analysis. (author)

  18. Particle-in-Cell Calculations of the Electron Cloud in the ILC Positron Damping Ring Wigglers

    International Nuclear Information System (INIS)

    Celata, C.M.; Furman, M.A.; Vay, J.-L.; Grote, D.P.

    2007-01-01

    The self-consistent code suite WARP-POSINST is being used to study electron cloud effects in the ILC positron damping ring wiggler. WARP is a parallelized, 3D particle-in-cell code which is fully self-consistent for all species. The POSINST models for the production of photoelectrons and secondary electrons are used to calculate electron creation. Mesh refinement and a moving reference frame for the calculation will be used to reduce the computer time needed by several orders of magnitude. We present preliminary results for cloud buildup showing 3D electron effects at the nulls of the vertical wiggler field. First results from a benchmark of WARP-POSINST vs. POSINST are also discussed

  19. Right-Handed Helical Foldamers Consisting of De Novo d -AApeptides

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Peng; Ma, Ning; Cerrato, Darrell Cole; She, Fengyu; Odom, Timothy; Wang, Xiang; Ming, Li-June; van der Vaart, Arjan; Wojtas, Lukasz; Xu, Hai; Cai, Jianfeng

    2017-05-16

    New types of foldamer scaffolds are formidably challenging to design and synthesize, yet highly desirable as structural mimics of peptides/proteins with a wide repertoire of functions. In particular, the development of peptidomimetic helical foldamers holds promise for new biomaterials, catalysts, and drug molecules. Unnatural l-sulfono-γ-AApeptides were recently developed and shown to have potential applications in both biomedical and material sciences. However, d-sulfono-γ-AApeptides, the enantiomers of l-sulfono-γ-AApeptides, have never been studied due to the lack of high-resolution three-dimensional structures to guide structure-based design. Herein, we report the first synthesis and X-ray crystal structures of a series of 2:1 l-amino acid/d-sulfono-γ-AApeptide hybrid foldamers, and elucidate their folded conformation at the atomic level. Single-crystal X-ray crystallography indicates that this class of oligomers folds into well-defined right-handed helices with unique helical parameters. The helical structures were consistent with data obtained from solution 2D NMR, CD studies, and molecular dynamics simulations. Our findings are expected to inspire the structure-based design of this type of unique folding biopolymers for biomaterials and biomedical applications.

  20. Dispersion of helically corrugated waveguides: Analytical, numerical, and experimental study

    International Nuclear Information System (INIS)

    Burt, G.; Ronald, K.; Young, A.R.; Phelps, A.D.R.; Cross, A.W.; Konoplev, I.V.; He, W.; Thomson, J.; Whyte, C.G.; Samsonov, S.V.; Denisov, G.G.; Bratman, V.L.

    2004-01-01

    Helically corrugated waveguides have recently been studied for use in various applications such as interaction regions in gyrotron traveling-wave tubes and gyrotron backward-wave oscillators and as a dispersive medium for passive microwave pulse compression. The paper presents a summary of various methods that can be used for analysis of the wave dispersion of such waveguides. The results obtained from an analytical approach, simulations with the three-dimensional numerical code MAGIC, and cold microwave measurements are analyzed and compared

  1. Rapid Arc, helical tomotherapy, sliding window intensity modulated radiotherapy and three dimensional conformal radiation for localized prostate cancer: A dosimetric comparison

    Directory of Open Access Journals (Sweden)

    Rajesh A Kinhikar

    2014-01-01

    Full Text Available Objective: The objective of this study was to investigate the potential role of RapidArc (RA compared with helical tomotherapy (HT, sliding window intensity modulated radiotherapy (SW IMRT and three-dimensional conformal radiation therapy (3D CRT for localized prostate cancer. Materials and Methods: Prescription doses ranged from 60 Gy to planning target volume (PTV and 66.25 Gy for clinical target volume prostate (CTV-P over 25-30 fractions. PTV and CTV-P coverage were evaluated by conformity index (CI and homogeneity index (HI. Organ sparing comparison was done with mean doses to rectum and bladder. Results: CI 95 were 1.0 ± 0.01 (RA, 0.99 ± 0.01 (HT, 0.97 ± 0.02 (IMRT, 0.98 ± 0.02 (3D CRT for PTV and 1.0 ± 0.00 (RA, HT, SW IMRT and 3D CRT for CTV-P. HI was 0.11 ± 0.03 (RA, 0.16 ± 0.08 (HT, 0.12 ± 0.03 (IMRT, 0.06 ± 0.01 (3D CRT for PTV and 0.03 ± 0.00 (RA, 0.05 ± 0.01 (HT, 0.03 ± 0.01 (SW IMRT and 3D CRT for CTV-P. Mean dose to bladder were 23.68 ± 13.23 Gy (RA, 24.55 ± 12.51 Gy (HT, 19.82 ± 11.61 Gy (IMRT and 23.56 ± 12.81 Gy (3D CRT, whereas mean dose to rectum was 36.85 ± 12.92 Gy (RA, 33.18 ± 11.12 Gy (HT, IMRT and 38.67 ± 12.84 Gy (3D CRT. Conclusion: All studied intensity-modulated techniques yield treatment plans of significantly improved quality when compared with 3D CRT, with HT providing best organs at risk sparing and RA being the most efficient treatment option, reducing treatment time to 1.45-3.7 min and monitor unit to <400 for a 2 Gy fraction.

  2. Improved Riccati Transfer Matrix Method for Free Vibration of Non-Cylindrical Helical Springs Including Warping

    Directory of Open Access Journals (Sweden)

    A.M. Yu

    2012-01-01

    Full Text Available Free vibration equations for non-cylindrical (conical, barrel, and hyperboloidal types helical springs with noncircular cross-sections, which consist of 14 first-order ordinary differential equations with variable coefficients, are theoretically derived using spatially curved beam theory. In the formulation, the warping effect upon natural frequencies and vibrating mode shapes is first studied in addition to including the rotary inertia, the shear and axial deformation influences. The natural frequencies of the springs are determined by the use of improved Riccati transfer matrix method. The element transfer matrix used in the solution is calculated using the Scaling and Squaring method and Pad'e approximations. Three examples are presented for three types of springs with different cross-sectional shapes under clamped-clamped boundary condition. The accuracy of the proposed method has been compared with the FEM results using three-dimensional solid elements (Solid 45 in ANSYS code. Numerical results reveal that the warping effect is more pronounced in the case of non-cylindrical helical springs than that of cylindrical helical springs, which should be taken into consideration in the free vibration analysis of such springs.

  3. CT-based three-dimensional kinematic comparison of dart-throwing motion between wrists with malunited distal radius and contralateral normal wrists

    International Nuclear Information System (INIS)

    Lee, S.; Kim, Y.S.; Park, C.S.; Kim, K.G.; Lee, Y.H.; Gong, H.S.; Lee, H.J.; Baek, G.H.

    2014-01-01

    Aim: To compare motion of the capitate, scaphoid, and lunate in wrists with a malunited distal radius and contralateral normal wrists during dart-throwing motion (DTM) by three-dimensional kinematic studies using computed tomography (CT) images. Materials and methods: CT was performed simultaneously on both wrists in six patients with a unilateral distal radius malunion at three stepwise positions simulating DTM. Using volume registration technique, the kinematic variables of helical axis motion of the capitate, scaphoid, and lunate were calculated and compared between both wrists. The helical motion of the capitate was also evaluated in a scaphoid- and lunate-based coordinate system. Results: Among the average rotation and translation of the scaphoid, lunate, and capitate during DTM, only the average rotation of the capitate was significantly different between the uninjured (88.9°) and the injured (70°) wrist (p = 0.0075). Rotation of the capitate relative to the scaphoid (26.3° versus 37.8°, p = 0.029) or lunate (39.2° versus 59.3°, p = 0.028) was smaller in the malunited wrist. The centres of helical axis motion of the three carpal bones were located more dorsally and radially in the injured wrist. Conclusions: The present study showed that decreased DTM in wrists with a distal radius malunion resulted from decreased midcarpal motion. The present study of the capitate, scaphoid, and lunate in wrists with distal radius malunion might be the first to present a 3D kinematic analysis of the effect of distal radius malunion on the carpal bones

  4. Utility of the three-dimensional reconstruction by means of helical scanography in the study of stringed instruments

    International Nuclear Information System (INIS)

    Morillo Zarate, Anibal Jose; Uriza Carrasco, Luis Felipe

    1998-01-01

    The evaluation of stringed instruments with axial computerized tomography (CT) sections has been described as a reliable method for the study of its internal components and for the detection of damaged instruments. We present the application of helical CT with thin sections and 3-D reconstructions in a series of violins, for an anatomical study of the instrument. The 3-D images offer complementary information and permit a better evaluation of the internal structure of the violin that can be useful for the understanding of the secrets of its construction and for the diagnosis of structural lesions that can affect its acoustic performance

  5. Dynamic apeerture in damping rings with realistic wigglers

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yunhai; /SLAC

    2005-05-04

    The International Linear Collider based on superconducting RF cavities requires the damping rings to have extremely small equilibrium emittance, huge circumference, fast damping time, and large acceptance. To achieve all of these requirements is a very challenging task. In this paper, we will present a systematic approach to designing the damping rings using simple cells and non-interlaced sextupoles. The designs of the damping rings with various circumferences and shapes, including dogbone, are presented. To model realistic wigglers, we have developed a new hybrid symplectic integrator for faster and accurate evaluation of dynamic aperture of the lattices.

  6. Advanced optimization of permanent magnet wigglers using a genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Hajima, Ryoichi [Univ. of Tokyo (Japan)

    1995-12-31

    In permanent magnet wigglers, magnetic imperfection of each magnet piece causes field error. This field error can be reduced or compensated by sorting magnet pieces in proper order. We showed a genetic algorithm has good property for this sorting scheme. In this paper, this optimization scheme is applied to the case of permanent magnets which have errors in the direction of field. The result shows the genetic algorithm is superior to other algorithms.

  7. Advanced optimization of permanent magnet wigglers using a genetic algorithm

    International Nuclear Information System (INIS)

    Hajima, Ryoichi

    1995-01-01

    In permanent magnet wigglers, magnetic imperfection of each magnet piece causes field error. This field error can be reduced or compensated by sorting magnet pieces in proper order. We showed a genetic algorithm has good property for this sorting scheme. In this paper, this optimization scheme is applied to the case of permanent magnets which have errors in the direction of field. The result shows the genetic algorithm is superior to other algorithms

  8. The three-dimensional structures of bacterial reaction centers.

    Science.gov (United States)

    Olson, T L; Williams, J C; Allen, J P

    2014-05-01

    This review presents a broad overview of the research that enabled the structure determination of the bacterial reaction centers from Blastochloris viridis and Rhodobacter sphaeroides, with a focus on the contributions from Duysens, Clayton, and Feher. Early experiments performed in the laboratory of Duysens and others demonstrated the utility of spectroscopic techniques and the presence of photosynthetic complexes in both oxygenic and anoxygenic photosynthesis. The laboratories of Clayton and Feher led efforts to isolate and characterize the bacterial reaction centers. The availability of well-characterized preparations of pure and stable reaction centers allowed the crystallization and subsequent determination of the structures using X-ray diffraction. The three-dimensional structures of reaction centers revealed an overall arrangement of two symmetrical branches of cofactors surrounded by transmembrane helices from the L and M subunits, which also are related by the same twofold symmetry axis. The structure has served as a framework to address several issues concerning bacterial photosynthesis, including the directionality of electron transfer, the properties of the reaction center-cytochrome c 2 complex, and the coupling of proton and electron transfer. Together, these research efforts laid the foundation for ongoing efforts to address an outstanding question in oxygenic photosynthesis, namely the molecular mechanism of water oxidation.

  9. Relativistic helicity and link in Minkowski space-time

    International Nuclear Information System (INIS)

    Yoshida, Z.; Kawazura, Y.; Yokoyama, T.

    2014-01-01

    A relativistic helicity has been formulated in the four-dimensional Minkowski space-time. Whereas the relativistic distortion of space-time violates the conservation of the conventional helicity, the newly defined relativistic helicity conserves in a barotropic fluid or plasma, dictating a fundamental topological constraint. The relation between the helicity and the vortex-line topology has been delineated by analyzing the linking number of vortex filaments which are singular differential forms representing the pure states of Banach algebra. While the dimension of space-time is four, vortex filaments link, because vorticities are primarily 2-forms and the corresponding 2-chains link in four dimension; the relativistic helicity measures the linking number of vortex filaments that are proper-time cross-sections of the vorticity 2-chains. A thermodynamic force yields an additional term in the vorticity, by which the vortex filaments on a reference-time plane are no longer pure states. However, the vortex filaments on a proper-time plane remain to be pure states, if the thermodynamic force is exact (barotropic), thus, the linking number of vortex filaments conserves

  10. Robust integer and fractional helical modes in the quantum Hall effect

    Science.gov (United States)

    Ronen, Yuval; Cohen, Yonatan; Banitt, Daniel; Heiblum, Moty; Umansky, Vladimir

    2018-04-01

    Electronic systems harboring one-dimensional helical modes, where spin and momentum are locked, have lately become an important field of their own. When coupled to a conventional superconductor, such systems are expected to manifest topological superconductivity; a unique phase hosting exotic Majorana zero modes. Even more interesting are fractional helical modes, yet to be observed, which open the route for realizing generalized parafermions. Possessing non-Abelian exchange statistics, these quasiparticles may serve as building blocks in topological quantum computing. Here, we present a new approach to form protected one-dimensional helical edge modes in the quantum Hall regime. The novel platform is based on a carefully designed double-quantum-well structure in a GaAs-based system hosting two electronic sub-bands; each tuned to the quantum Hall effect regime. By electrostatic gating of different areas of the structure, counter-propagating integer, as well as fractional, edge modes with opposite spins are formed. We demonstrate that, due to spin protection, these helical modes remain ballistic over large distances. In addition to the formation of helical modes, this platform can serve as a rich playground for artificial induction of compounded fractional edge modes, and for construction of edge-mode-based interferometers.

  11. Flow-through polymerase chain reaction inside a seamless 3D helical microreactor fabricated utilizing a silicone tube and a paraffin mold.

    Science.gov (United States)

    Wu, Wenming; Trinh, Kieu The Loan; Lee, Nae Yoon

    2015-03-07

    We introduce a new strategy for fabricating a seamless three-dimensional (3D) helical microreactor utilizing a silicone tube and a paraffin mold. With this method, various shapes and sizes of 3D helical microreactors were fabricated, and a complicated and laborious photolithographic process, or 3D printing, was eliminated. With dramatically enhanced portability at a significantly reduced fabrication cost, such a device can be considered to be the simplest microreactor, developed to date, for performing the flow-through polymerase chain reaction (PCR).

  12. Three-dimensional particle image velocimetry measurement technique

    International Nuclear Information System (INIS)

    Hassan, Y.A.; Seeley, C.H.; Henderson, J.A.; Schmidl, W.D.

    2004-01-01

    The experimental flow visualization tool, Particle Image Velocimetry (PIV), is being used to determine the velocity field in two-dimensional fluid flows. In the past few years, the technique has been improved to allow the capture of flow fields in three dimensions. This paper describes changes which were made to two existing two-dimensional tracking algorithms to enable them to track three-dimensional PIV data. Results of the tests performed on these three-dimensional routines with synthetic data are presented. Experimental data was also used to test the tracking algorithms. The test setup which was used to acquire the three-dimensional experimental data is described, along with the results from both of the tracking routines which were used to analyze the experimental data. (author)

  13. Tile-based self-assembly of a triple-helical polysaccharide into cell wall-like mesoporous nanocapsules.

    Science.gov (United States)

    Wu, Chaoxi; Wang, Xiaoying; Wang, Jianjing; Zhang, Zhen; Wang, Zhiping; Wang, Yifei; Tang, Shunqing

    2017-07-20

    Tile-based self-assembly is a robust system in the construction of three-dimensional DNA nanostructures but it has been rarely applied to other helical biopolymers. β-Glucan is an immunoactive natural polymer which exists in a triple helical conformation. Herein, we report that β-glucan, after modification using two types of short chain acyl groups, can self-assemble into tiles with inactivated sticky ends at the interface of two solvents. These tiles consist of a single layer of helices laterally aligned, and the sticky ends can be activated when a few acyl groups at the ends are removed; these tiles can further pack into mesoporous nanocapsules, in a similar process as the sticky DNA tiles pack into complex polyhedral nano-objects. These nanocapsules were found to have targeted effects to antigen presenting cells in a RAW264.7 cell model. Our study suggests that tile-based self-assembly can be a general strategy for helical biopolymers, and on fully exploiting this strategy, various new functional nanostructures will become accessible in the future.

  14. Structures of two-dimensional three-body systems

    International Nuclear Information System (INIS)

    Ruan, W.Y.; Liu, Y.Y.; Bao, C.G.

    1996-01-01

    Features of the structure of L = 0 states of a two-dimensional three-body model system have been investigated. Three types of permutation symmetry of the spatial part, namely symmetric, antisymmetric, and mixed, have been considered. A comparison has been made between the two-dimensional system and the corresponding three-dimensional one. The effect of symmetry on microscopic structures is emphasized. (author)

  15. Bearing capacity of helical pile foundation in peat soil from different, diameter and spacing of helical plates

    Science.gov (United States)

    Fatnanta, F.; Satibi, S.; Muhardi

    2018-03-01

    In an area dominated by thick peat soil layers, driven piles foundation is often used. These piles are generally skin friction piles where the pile tips do not reach hard stratum. Since the bearing capacity of the piles rely on the resistance of their smooth skin, the bearing capacity of the piles are generally low. One way to increase the bearing capacity of the piles is by installing helical plates around the pile tips. Many research has been performed on helical pile foundation. However, literature on the use of helical pile foundation on peat soil is still hardly found. This research focus on the study of axial bearing capacity of helical pile foundation in peat soil, especially in Riau Province. These full-scale tests on helical pile foundation were performed in a rectangular box partially embedded into the ground. The box is filled with peat soil, which was taken from Rimbo Panjang area in the district of Kampar, Riau Province. Several helical piles with different number, diameter and spacing of the helical plates have been tested and analysed. The tests result show that helical pile with three helical plates of uniform diameter has better bearing capacity compared to other helical piles with varying diameter and different number of helical plates. The bearing capacity of helical pile foundation is affected by the spacing between helical plates. It is found that the effective helical plates spacing for helical pile foundation with diameter of 15cm to 35cm is between 20cm to 30cm. This behaviour may be considered to apply to other type of helical pile foundations in peat soil.

  16. Biot-Savart helicity versus physical helicity: A topological description of ideal flows

    Science.gov (United States)

    Sahihi, Taliya; Eshraghi, Homayoon

    2014-08-01

    For an isentropic (thus compressible) flow, fluid trajectories are considered as orbits of a family of one parameter, smooth, orientation-preserving, and nonsingular diffeomorphisms on a compact and smooth-boundary domain in the Euclidian 3-space which necessarily preserve a finite measure, later interpreted as the fluid mass. Under such diffeomorphisms the Biot-Savart helicity of the pushforward of a divergence-free and tangent to the boundary vector field is proved to be conserved and since these circumstances present an isentropic flow, the conservation of the "Biot-Savart helicity" is established for such flows. On the other hand, the well known helicity conservation in ideal flows which here we call it "physical helicity" is found to be an independent constant with respect to the Biot-Savart helicity. The difference between these two helicities reflects some topological features of the domain as well as the velocity and vorticity fields which is discussed and is shown for simply connected domains the two helicities coincide. The energy variation of the vorticity field is shown to be formally the same as for the incompressible flow obtained before. For fluid domains consisting of several disjoint solid tori, at each time, the harmonic knot subspace of smooth vector fields on the fluid domain is found to have two independent base sets with a special type of orthogonality between these two bases by which a topological description of the vortex and velocity fields depending on the helicity difference is achieved since this difference is shown to depend only on the harmonic knot parts of velocity, vorticity, and its Biot-Savart vector field. For an ideal magnetohydrodynamics (MHD) flow three independent constant helicities are reviewed while the helicity of magnetic potential is generalized for non-simply connected domains by inserting a special harmonic knot field in the dynamics of the magnetic potential. It is proved that the harmonic knot part of the vorticity

  17. Elastocapillary fabrication of three-dimensional microstructures

    NARCIS (Netherlands)

    van Honschoten, J.W.; Berenschot, Johan W.; Ondarcuhu, T.; Sanders, Remco G.P.; Sundaram, J.; Elwenspoek, Michael Curt; Tas, Niels Roelof

    2010-01-01

    We describe the fabrication of three-dimensional microstructures by means of capillary forces. Using an origami-like technique, planar silicon nitride structures of various geometries are folded to produce three-dimensional objects of 50–100 m. Capillarity is a particularly effective mechanism since

  18. Applications of 2D helical vortex dynamics

    DEFF Research Database (Denmark)

    Okulov, Valery; Sørensen, Jens Nørkær

    2010-01-01

    In the paper, we show how the assumption of helical symmetry in the context of 2D helical vortices can be exploited to analyse and to model various cases of rotating flows. From theory, examples of three basic applications of 2D dynamics of helical vortices embedded in flows with helical symmetry...... of the vorticity field are addressed. These included some of the problems related to vortex breakdown, instability of far wakes behind rotors and vortex theory of ideal rotors....

  19. Manipulation of wavefront using helical metamaterials.

    Science.gov (United States)

    Yang, Zhenyu; Wang, Zhaokun; Tao, Huan; Zhao, Ming

    2016-08-08

    Helical metamaterials, a kind of 3-dimensional structure, has relatively strong coupling effect among the helical nano-wires. Therefore, it is expected to be a good candidate for generating phase shift and controlling wavefront with high efficiency. In this paper, using the finite-difference time-domain (FDTD) method, we studied the phase shift properties in the helical metamaterials. It is found that the phase shift occurs for both transmitted and reflected light waves. And the maximum of reflection coefficients can reach over 60%. In addition, the phase shift (φ) is dispersionless in the range of 600 nm to 860 nm, that is, it is only dominated by the initial angle (θ) of the helix. The relationship between them is φ = ± 2θ. Using Jones calculus we give a further explanation for these properties. Finally, by arranging the helixes in an array with a constant phase gradient, the phenomenon of anomalous refraction was also observed in a broad wavelength range.

  20. Three-dimensional printing and pediatric liver disease.

    Science.gov (United States)

    Alkhouri, Naim; Zein, Nizar N

    2016-10-01

    Enthusiastic physicians and medical researchers are investigating the role of three-dimensional printing in medicine. The purpose of the current review is to provide a concise summary of the role of three-dimensional printing technology as it relates to the field of pediatric hepatology and liver transplantation. Our group and others have recently demonstrated the feasibility of printing three-dimensional livers with identical anatomical and geometrical landmarks to the native liver to facilitate presurgical planning of complex liver surgeries. Medical educators are exploring the use of three-dimensional printed organs in anatomy classes and surgical residencies. Moreover, mini-livers are being developed by regenerative medicine scientist as a way to test new drugs and, eventually, whole livers will be grown in the laboratory to replace organs with end-stage disease solving the organ shortage problem. From presurgical planning to medical education to ultimately the bioprinting of whole organs for transplantation, three-dimensional printing will change medicine as we know in the next few years.

  1. Visual Interpretation with Three-Dimensional Annotations (VITA): Three-Dimensional Image Interpretation Tool for Radiological Reporting

    OpenAIRE

    Roy, Sharmili; Brown, Michael S.; Shih, George L.

    2013-01-01

    This paper introduces a software framework called Visual Interpretation with Three-Dimensional Annotations (VITA) that is able to automatically generate three-dimensional (3D) visual summaries based on radiological annotations made during routine exam reporting. VITA summaries are in the form of rotating 3D volumes where radiological annotations are highlighted to place important clinical observations into a 3D context. The rendered volume is produced as a Digital Imaging and Communications i...

  2. Three-dimensional reconstruction of functional brain images

    International Nuclear Information System (INIS)

    Inoue, Masato; Shoji, Kazuhiko; Kojima, Hisayoshi; Hirano, Shigeru; Naito, Yasushi; Honjo, Iwao

    1999-01-01

    We consider PET (positron emission tomography) measurement with SPM (Statistical Parametric Mapping) analysis to be one of the most useful methods to identify activated areas of the brain involved in language processing. SPM is an effective analytical method that detects markedly activated areas over the whole brain. However, with the conventional presentations of these functional brain images, such as horizontal slices, three directional projection, or brain surface coloring, makes understanding and interpreting the positional relationships among various brain areas difficult. Therefore, we developed three-dimensionally reconstructed images from these functional brain images to improve the interpretation. The subjects were 12 normal volunteers. The following three types of images were constructed: routine images by SPM, three-dimensional static images, and three-dimensional dynamic images, after PET images were analyzed by SPM during daily dialog listening. The creation of images of both the three-dimensional static and dynamic types employed the volume rendering method by VTK (The Visualization Toolkit). Since the functional brain images did not include original brain images, we synthesized SPM and MRI brain images by self-made C++ programs. The three-dimensional dynamic images were made by sequencing static images with available software. Images of both the three-dimensional static and dynamic types were processed by a personal computer system. Our newly created images showed clearer positional relationships among activated brain areas compared to the conventional method. To date, functional brain images have been employed in fields such as neurology or neurosurgery, however, these images may be useful even in the field of otorhinolaryngology, to assess hearing and speech. Exact three-dimensional images based on functional brain images are important for exact and intuitive interpretation, and may lead to new developments in brain science. Currently, the surface

  3. Three-dimensional reconstruction of functional brain images

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Masato; Shoji, Kazuhiko; Kojima, Hisayoshi; Hirano, Shigeru; Naito, Yasushi; Honjo, Iwao [Kyoto Univ. (Japan)

    1999-08-01

    We consider PET (positron emission tomography) measurement with SPM (Statistical Parametric Mapping) analysis to be one of the most useful methods to identify activated areas of the brain involved in language processing. SPM is an effective analytical method that detects markedly activated areas over the whole brain. However, with the conventional presentations of these functional brain images, such as horizontal slices, three directional projection, or brain surface coloring, makes understanding and interpreting the positional relationships among various brain areas difficult. Therefore, we developed three-dimensionally reconstructed images from these functional brain images to improve the interpretation. The subjects were 12 normal volunteers. The following three types of images were constructed: routine images by SPM, three-dimensional static images, and three-dimensional dynamic images, after PET images were analyzed by SPM during daily dialog listening. The creation of images of both the three-dimensional static and dynamic types employed the volume rendering method by VTK (The Visualization Toolkit). Since the functional brain images did not include original brain images, we synthesized SPM and MRI brain images by self-made C++ programs. The three-dimensional dynamic images were made by sequencing static images with available software. Images of both the three-dimensional static and dynamic types were processed by a personal computer system. Our newly created images showed clearer positional relationships among activated brain areas compared to the conventional method. To date, functional brain images have been employed in fields such as neurology or neurosurgery, however, these images may be useful even in the field of otorhinolaryngology, to assess hearing and speech. Exact three-dimensional images based on functional brain images are important for exact and intuitive interpretation, and may lead to new developments in brain science. Currently, the surface

  4. Low-frequency quadrupole impedance of undulators and wigglers

    Directory of Open Access Journals (Sweden)

    A. Blednykh

    2016-10-01

    Full Text Available An analytical expression of the low-frequency quadrupole impedance for undulators and wigglers is derived and benchmarked against beam-based impedance measurements done at the 3 GeV NSLS-II storage ring. The adopted theoretical model, valid for an arbitrary number of electromagnetic layers with parallel geometry, allows to calculate the quadrupole impedance for arbitrary values of the magnetic permeability μ_{r}. In the comparison of the analytical results with the measurements for variable magnet gaps, two limit cases of the permeability have been studied: the case of perfect magnets (μ_{r}→∞, and the case in which the magnets are fully saturated (μ_{r}=1.

  5. Point contacts and localization in generic helical liquids

    Science.gov (United States)

    Orth, Christoph P.; Strübi, Grégory; Schmidt, Thomas L.

    2013-10-01

    We consider two helical liquids on opposite edges of a two-dimensional topological insulator, which are connected by one or several local tunnel junctions. In the presence of spatially inhomogeneous Rashba spin-orbit coupling, the spin of the helical edge states is momentum dependent, and this spin texture can be different on opposite edges. We demonstrate that this has a strong impact on the electron transport between the edges. In particular, in the case of many random tunnel contacts, the localization length depends strongly on the spin textures of the edge states.

  6. Application of Simulated Three Dimensional CT Image in Orthognathic Surgery

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Don; Park, Chang Seo [Dept. of Dental Radiology, College of Dentistry, Yensei University, Seoul (Korea, Republic of); Yoo, Sun Kook; Lee, Kyoung Sang [Dept. of Medical Engineering, College of Medicine, Yensei University, Seoul (Korea, Republic of)

    1998-08-15

    In orthodontics and orthognathic surgery, cephalogram has been routine practice in diagnosis and treatment evaluation of craniofacial deformity. But its inherent distortion of actual length and angles during projecting three dimensional object to two dimensional plane might cause errors in quantitative analysis of shape and size. Therefore, it is desirable that three dimensional object is diagnosed and evaluated three dimensionally and three dimensional CT image is best for three dimensional analysis. Development of clinic necessitates evaluation of result of treatment and comparison before and after surgery. It is desirable that patient that was diagnosed and planned by three dimensional computed tomography before surgery is evaluated by three dimensional computed tomography after surgery, too. But Because there is no standardized normal values in three dimension now and three dimensional Computed Tomography needs expensive equipment and because of its expenses and amount of exposure to radiation, limitations still remain to be solved in its application to routine practice. If postoperative three dimensional image is constructed by pre and postoperative lateral and postero-anterior cephalograms and preoperative three dimensional computed tomogram, pre and postoperative image will be compared and evaluated three dimensionally without three dimensional computed tomography after surgery and that will contribute to standardize normal values in three dimension. This study introduced new method that computer-simulated three dimensional image was constructed by preoperative three dimensional computed tomogram and pre and postoperative lateral and postero-anterior cephalograms, and for validation of new method, in four cases of dry skull that position of mandible was displaced and four patients of orthognathic surgery, computer-simulated three dimensional image and actual postoperative three dimensional image were compared. The results were as follows. 1. In four cases of

  7. Application of Simulated Three Dimensional CT Image in Orthognathic Surgery

    International Nuclear Information System (INIS)

    Kim, Hyun Don; Park, Chang Seo; Yoo, Sun Kook; Lee, Kyoung Sang

    1998-01-01

    In orthodontics and orthognathic surgery, cephalogram has been routine practice in diagnosis and treatment evaluation of craniofacial deformity. But its inherent distortion of actual length and angles during projecting three dimensional object to two dimensional plane might cause errors in quantitative analysis of shape and size. Therefore, it is desirable that three dimensional object is diagnosed and evaluated three dimensionally and three dimensional CT image is best for three dimensional analysis. Development of clinic necessitates evaluation of result of treatment and comparison before and after surgery. It is desirable that patient that was diagnosed and planned by three dimensional computed tomography before surgery is evaluated by three dimensional computed tomography after surgery, too. But Because there is no standardized normal values in three dimension now and three dimensional Computed Tomography needs expensive equipment and because of its expenses and amount of exposure to radiation, limitations still remain to be solved in its application to routine practice. If postoperative three dimensional image is constructed by pre and postoperative lateral and postero-anterior cephalograms and preoperative three dimensional computed tomogram, pre and postoperative image will be compared and evaluated three dimensionally without three dimensional computed tomography after surgery and that will contribute to standardize normal values in three dimension. This study introduced new method that computer-simulated three dimensional image was constructed by preoperative three dimensional computed tomogram and pre and postoperative lateral and postero-anterior cephalograms, and for validation of new method, in four cases of dry skull that position of mandible was displaced and four patients of orthognathic surgery, computer-simulated three dimensional image and actual postoperative three dimensional image were compared. The results were as follows. 1. In four cases of

  8. Conceptual design of once-through helical steam generator for SMART

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Wan; Kim, J. I.; Kim, J. H. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-12-01

    Conceptual design of once-through helical steam generator for the integral reactor SMART is developed. The once-through helical steam generator requires quite different design concepts from the steam generators used in loop type commercial reactors. In this study the design requirements satisfying the operating conditions of the steam generator are derived, and the arrangements and the dimensions of the major parts are determined. By describing the design procedure, the cost of redesign and the costs of developments of similar new steam generators are minimized. The three dimensional models developed make it possible to preview the interferences of the steam generator components and to minimize the possibility of significant design changes in the next design stage by the preliminary strength analysis of the major parts. A methodology for evaluation of flow induced vibration of steam generator tubes has been developed and a preliminary flow induced vibration analysis has been performed. 24 refs., 54 figs., 9 tabs. (Author)

  9. Helical 3D-CT images of soft tissue tumors in the hand

    Energy Technology Data Exchange (ETDEWEB)

    Otani, Kazuhiro; Kikuchi, Hiraku; Tan, Akihiro; Hamanishi, Chiaki; Tanaka, Seisuke [Kinki Univ., Osaka-Sayama (Japan). School of Medicine

    2000-02-01

    X-ray, ultrasonograph CT, MRI and angiography are used to detect tumoral lesions. Recently, helical CT has been revealed to be a useful method for the diagnosis and preoperative evaluation of soft tissue tumors, by which high quality and accurate three dimensional (3D) images can be obtained quickly. We analyzed the preoperative 3D-CT images of soft tissue tumors in the hands of 11 cases (hemangioma in 6 cases, giant cell tumor, lipoma, angiofibroma, chondrosarcoma and malignant fibro-histiocytoma in one case each). Enhanced 3D-CT clearly visualized hemangiomas and solid tumors from the surrounding tissues. The tumors could easily be observed from any direction and color-coded according to the CT number. Helical 3D-CT was thus confirmed to be useful for the diagnosis and preoperative planning by indicating the details of tumor expansion into surrounding tissues. (author)

  10. Investigation of the nonlinear effects of Wiggler and undulator fields on the beam dynamics of particle storage rings in the case of DORIS III

    International Nuclear Information System (INIS)

    Decking, W.

    1995-11-01

    In this thesis I analyze the effects of wiggler and undulator magnetic fields on the beam dynamics of electron/positron storage rings. DORIS III, DESY's synchrotron radiation source is taken as an example. Wigglers and undulators are used for the production of synchrotron radiation or to control beam sizes in storage rings. Their introduction in the lattices of storage rings causes some problems due to the strong nonlinearities of the magnetic fields. Therefore a detailed analysis of the particle dynamics under the influence of wiggler magnetic fields and their field errors is necessary. This thesis provides such an analysis. The problem will be attacked analytically, numerically and experimentally. The analytic approach is based on the treatment of the appropriate Hamiltonian with perturbation theory. The magnetic fields are described with a Fourier series, which covers the main characteristics of wiggler and undulator fields. The main effect of wigglers and undulators is the excitation of fourth order synchro-betatron resonances. The description of field errors and other details of the magnetic fields is achieved by integrating over appropriately distributed current sheets. This allows the modeling of different parameters such as magnet pole width, periodicity errors and errors in the field gradients. (orig./WL)ons of motion in the fields calculated with this method can only be integrated numerically. This would be much too slow to be used in particle tracking codes. Therefore a transfer map b

  11. Three-dimensional low-energy topological invariants

    International Nuclear Information System (INIS)

    Bakalarska, M.; Broda, B.

    2000-01-01

    A description of the one-loop approximation formula for the partition function of a three-dimensional abelian version of the Donaldson-Witten theory is proposed. The one-loop expression is shown to contain such topological invariants of a three-dimensional manifold M like the Reidemeister-Ray-Singer torsion τ R and Betti numbers. (orig.)

  12. Intermittency and geometrical statistics of three-dimensional homogeneous magnetohydrodynamic turbulence: A wavelet viewpoint

    International Nuclear Information System (INIS)

    Yoshimatsu, Katsunori; Kawahara, Yasuhiro; Schneider, Kai; Okamoto, Naoya; Farge, Marie

    2011-01-01

    Scale-dependent and geometrical statistics of three-dimensional incompressible homogeneous magnetohydrodynamic turbulence without mean magnetic field are examined by means of the orthogonal wavelet decomposition. The flow is computed by direct numerical simulation with a Fourier spectral method at resolution 512 3 and a unit magnetic Prandtl number. Scale-dependent second and higher order statistics of the velocity and magnetic fields allow to quantify their intermittency in terms of spatial fluctuations of the energy spectra, the flatness, and the probability distribution functions at different scales. Different scale-dependent relative helicities, e.g., kinetic, cross, and magnetic relative helicities, yield geometrical information on alignment between the different scale-dependent fields. At each scale, the alignment between the velocity and magnetic field is found to be more pronounced than the other alignments considered here, i.e., the scale-dependent alignment between the velocity and vorticity, the scale-dependent alignment between the magnetic field and its vector potential, and the scale-dependent alignment between the magnetic field and the current density. Finally, statistical scale-dependent analyses of both Eulerian and Lagrangian accelerations and the corresponding time-derivatives of the magnetic field are performed. It is found that the Lagrangian acceleration does not exhibit substantially stronger intermittency compared to the Eulerian acceleration, in contrast to hydrodynamic turbulence where the Lagrangian acceleration shows much stronger intermittency than the Eulerian acceleration. The Eulerian time-derivative of the magnetic field is more intermittent than the Lagrangian time-derivative of the magnetic field.

  13. Magnetotransport and induced superconductivity in Bi based three-dimensional topological insulators

    International Nuclear Information System (INIS)

    Veldhorst, M.; Snelder, M.; Hoek, M.; Molenaar, C.G.; Leusink, D.P.; Golubov, A.A.; Hilgenkamp, H.; Brinkman, A.

    2013-01-01

    The surface of a three-dimensional (3D) topological insulator is conducting and the topologically nontrivial nature of the surface states is observed in experiments. It is the aim of this paper to review and analyze experimental observations with respect to the magnetotransport in Bi-based 3D topological insulators, as well as the superconducting transport properties of hybrid structures consisting of superconductors and these topological insulators. The helical spin-momentum coupling of the surface state electrons becomes visible in quantum corrections to the conductivity and magnetoresistance oscillations. An analysis will be provided of the reported magnetoresistance, also in the presence of bulk conductivity shunts. Special attention is given to the large and linear magnetoresistance. Superconductivity can be induced in topological superconductors by means of the proximity effect. The induced supercurrents, Josephson effects and current-phase relations will be reviewed. These materials hold great potential in the field of spintronics and the route towards Majorana devices. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Magnetotransport and induced superconductivity in Bi based three-dimensional topological insulators

    Energy Technology Data Exchange (ETDEWEB)

    Veldhorst, M.; Snelder, M.; Hoek, M.; Molenaar, C.G.; Leusink, D.P.; Golubov, A.A.; Hilgenkamp, H.; Brinkman, A. [MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands)

    2013-02-15

    The surface of a three-dimensional (3D) topological insulator is conducting and the topologically nontrivial nature of the surface states is observed in experiments. It is the aim of this paper to review and analyze experimental observations with respect to the magnetotransport in Bi-based 3D topological insulators, as well as the superconducting transport properties of hybrid structures consisting of superconductors and these topological insulators. The helical spin-momentum coupling of the surface state electrons becomes visible in quantum corrections to the conductivity and magnetoresistance oscillations. An analysis will be provided of the reported magnetoresistance, also in the presence of bulk conductivity shunts. Special attention is given to the large and linear magnetoresistance. Superconductivity can be induced in topological superconductors by means of the proximity effect. The induced supercurrents, Josephson effects and current-phase relations will be reviewed. These materials hold great potential in the field of spintronics and the route towards Majorana devices. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Modeling the effects of a flat wiggler on a storage ring beam

    International Nuclear Information System (INIS)

    Helm, R.H.

    1978-06-01

    The purpose of the present note is to show how the various effects of the wiggler may be modeled in a simple way suitable for use in machine control. It will be seen that in general a total of about 17 functions are involved. However, in typical designs many of these functions vanish identically because of symmetries, and others are neglibly small. Furthermore, each of the functions may be modeled quite accurately by a single power law in (B/sub o//E)/sup n/ where B is a measure of the field excitation. E is the beam energy, and n is an integer which takes on values of either 0, 2, 3, 4, for 5 for the different functions. Magnet saturation may cause the field distribution to vary with excitation so that the series coefficients would vary slowly with B/sub o/. A computer program has been used to obtain numerical results for typical wiggler designs. In practice, the required functions could be determined either by computer analysis of the measured field data, or by experimental calibration using the stored beam in the ring. 9 refs., 3 figs., 11 tabs

  16. A calculation of the three-loop helicity-dependent splitting functions in QCD

    International Nuclear Information System (INIS)

    Vogt, A.

    2014-05-01

    We have calculated the complete matrix of three-loop helicity-difference ('polarized') splitting functions ΔP ik (2) (x), i,k=q,g, in massless perturbative QCD. In this note we briefly discuss some properties of the polarized splitting functions and our non-standard determination of the hitherto missing lower-row quantities ΔP gq (2) and ΔP gg (2) . The resulting next-to-next-to-leading order (NNLO) corrections to the evolution of polarized parton distributions are illustrated and found to be small even at rather large values of the strong coupling constant α s .

  17. Standardization of MIP technique in three-dimensional CT portography: usefulness in evaluation of portosystemic collaterals in cirrhotic patients

    International Nuclear Information System (INIS)

    Kim, Jong Gi; Kim, Yong; Kim, Chang Won; Lee, Jun Woo; Lee, Suk Hong

    2003-01-01

    To assess the usefulness of three-dimensional CT portography using a standardized maximum intensity projection (MIP) technique for the evaluation of portosystemic collaterals in cirrhotic patients. In 25 cirrhotic patients with portosystemic collaterals, three-phase CT using a multide-tector-row helical CT scanner was performed to evaluate liver disease. Late arterial-phase images were transferred to an Advantage Windows 3.1 workstation (Gener Electric). Axial images were reconstructed by means of three-dimensional CT portography, using both a standardized and a non-standardized MIP technique, and the respective reconstruction times were determined. Three-dimensional CT portography with the standardized technique involved eight planes, namely the spleno-portal confluence axis (coronal, lordotic coronal, lordotic coronal RAO 30 .deg. C, and lordotic coronal LAO 30 .deg. C), the left renal vein axis (lordotic coronal), and axial MIP images (lower esophagus level, gastric fundus level and splenic hilum). The eight MIP images obtained in each case were interpreted by two radiologists, who reached a consensus in their evaluation. The portosystemic collaterals evaluated were as follows: left gastric vein dilatation; esophageal, paraesophageal, gastric, and splenic varix; paraumbilical vein dilatation; gastro-renal, spleno-renal, and gastro-spleno-renal shunt; mesenteric, retroperitoneal, and omental collaterals. The average reconstruction time using the non-standardized MIP technique was 11 minutes 23 seconds, and with the standardized technique, the time was 6 minutes 5 seconds. Three-dimensional CT portography with the standardized technique demonstrated left gastric vein dilatation (n=25), esophageal varix (n=18), paraesophageal varix (n=13), gastric varix (n=4), splenic varix (n=4), paraumbilical vein dilatation (n=4), gastro-renal shunt (n=3), spleno-renal shunt (n=3), and gastro-spleno-renal shunt (n=1). Using three-dimensional CT protography and the non

  18. [Bone drilling simulation by three-dimensional imaging].

    Science.gov (United States)

    Suto, Y; Furuhata, K; Kojima, T; Kurokawa, T; Kobayashi, M

    1989-06-01

    The three-dimensional display technique has a wide range of medical applications. Pre-operative planning is one typical application: in orthopedic surgery, three-dimensional image processing has been used very successfully. We have employed this technique in pre-operative planning for orthopedic surgery, and have developed a simulation system for bone-drilling. Positive results were obtained by pre-operative rehearsal; when a region of interest is indicated by means of a mouse on the three-dimensional image displayed on the CRT, the corresponding region appears on the slice image which is displayed simultaneously. Consequently, the status of the bone-drilling is constantly monitored. In developing this system, we have placed emphasis on the quality of the reconstructed three-dimensional images, on fast processing, and on the easy operation of the surgical planning simulation.

  19. Three-Dimensional Printing Surgical Applications.

    Science.gov (United States)

    AlAli, Ahmad B; Griffin, Michelle F; Butler, Peter E

    2015-01-01

    Three-dimensional printing, a technology used for decades in the industrial field, gains a lot of attention in the medical field for its potential benefits. With advancement of desktop printers, this technology is accessible and a lot of research is going on in the medical field. To evaluate its application in surgical field, which may include but not limited to surgical planning, surgical education, implants, and prosthesis, which are the focus of this review. Research was conducted by searching PubMed, Web of science, and other reliable sources. We included original articles and excluded articles based on animals, those more than 10 years old, and those not in English. These articles were evaluated, and relevant studies were included in this review. Three-dimensional printing shows a potential benefit in surgical application. Printed implants were used in patient in a few cases and show successful results; however, longer follow-up and more trials are needed. Surgical and medical education is believed to be more efficient with this technology than the current practice. Printed surgical instrument and surgical planning are also believed to improve with three-dimensional printing. Three-dimensional printing can be a very powerful tool in the near future, which can aid the medical field that is facing a lot of challenges and obstacles. However, despite the reported results, further research on larger samples and analytical measurements should be conducted to ensure this technology's impact on the practice.

  20. Dispersion relation and growth rate of a relativistic electron beam propagating through a Langmuir wave wiggler

    Science.gov (United States)

    Zirak, H.; Jafari, S.

    2015-06-01

    In this study, a theory of free-electron laser (FEL) with a Langmuir wave wiggler in the presence of an axial magnetic field has been presented. The small wavelength of the plasma wave (in the sub-mm range) allows obtaining higher frequency than conventional wiggler FELs. Electron trajectories have been obtained by solving the equations of motion for a single electron. In addition, a fourth-order Runge-Kutta method has been used to simulate the electron trajectories. Employing a perturbation analysis, the dispersion relation for an electromagnetic and space-charge waves has been derived by solving the momentum transfer, continuity, and wave equations. Numerical calculations show that the growth rate increases with increasing the e-beam energy and e-beam density, while it decreases with increasing the strength of the axial guide magnetic field.

  1. Three-dimensional structure of the human immunodeficiency virus type 1 matrix protein.

    Science.gov (United States)

    Massiah, M A; Starich, M R; Paschall, C; Summers, M F; Christensen, A M; Sundquist, W I

    1994-11-25

    The HIV-1 matrix protein forms an icosahedral shell associated with the inner membrane of the mature virus. Genetic analyses have indicated that the protein performs important functions throughout the viral life-cycle, including anchoring the transmembrane envelope protein on the surface of the virus, assisting in viral penetration, transporting the proviral integration complex across the nuclear envelope, and localizing the assembling virion to the cell membrane. We now report the three-dimensional structure of recombinant HIV-1 matrix protein, determined at high resolution by nuclear magnetic resonance (NMR) methods. The HIV-1 matrix protein is the first retroviral matrix protein to be characterized structurally and only the fourth HIV-1 protein of known structure. NMR signal assignments required recently developed triple-resonance (1H, 13C, 15N) NMR methodologies because signals for 91% of 132 assigned H alpha protons and 74% of the 129 assignable backbone amide protons resonate within chemical shift ranges of 0.8 p.p.m. and 1 p.p.m., respectively. A total of 636 nuclear Overhauser effect-derived distance restraints were employed for distance geometry-based structure calculations, affording an average of 13.0 NMR-derived distance restraints per residue for the experimentally constrained amino acids. An ensemble of 25 refined distance geometry structures with penalties (sum of the squares of the distance violations) of 0.32 A2 or less and individual distance violations under 0.06 A was generated; best-fit superposition of ordered backbone heavy atoms relative to mean atom positions afforded root-mean-square deviations of 0.50 (+/- 0.08) A. The folded HIV-1 matrix protein structure is composed of five alpha-helices, a short 3(10) helical stretch, and a three-strand mixed beta-sheet. Helices I to III and the 3(10) helix pack about a central helix (IV) to form a compact globular domain that is capped by the beta-sheet. The C-terminal helix (helix V) projects away

  2. The Three-dimensional Digital Factory for Shipbuilding Technology Research

    Directory of Open Access Journals (Sweden)

    Xu Wei

    2016-01-01

    Full Text Available The three-dimensional digital factory technology research is the hotspot in shipbuilding recently. The three-dimensional digital factory technology not only focus on design the components of the product, but also discuss on the simulation and analyses of the production process.Based on the three-dimensional model, the basic data layer, application control layer and the presentation layer of hierarchical structure are established in the three-dimensional digital factory of shipbuilding in this paper. And the key technologies of three-dimensional digital factory of shipbuilding are analysed. Finally, a case study is applied and the results show that the three-dimensional digital factory will play an important role in the future.

  3. 3D CT versus axial helical CT versus conventional tomography in the classification of acetabular fractures: A ROC analysis

    International Nuclear Information System (INIS)

    Kickuth, Ralph; Laufer, Ulf; Hartung, Guido; Gruening, Christian; Stueckle, Christoph; Kirchner, Johannes

    2002-01-01

    AIM: To assess the diagnostic power of three-dimensional computed tomography (3D CT), axial helical computed tomography (CT) and conventional tomography in the classification of acetabular fractures by interdisciplinary review. MATERIALS AND METHODS: Receiver operating characteristics (ROCs) were assessed for two radiologists and two surgeons blinded to the presence of acetabular fractures in an animal model (a total of 62 porcine hips, 40 of them with artificial acetabular fractures). Main target parameter was the diagnostic accuracy in the classification of the artificial fractures following Judet et al. RESULTS: ROC analysis for radiologists showed A z values of 0·83 for 3D CT, 0·81 for axial helical CT, and 0·78 for conventional tomography; differences between the three techniques were not significant (P = 0·46-0·73). A z values for the surgeons were 0·87 for 3D CT, 0·68 for axial helical CT, and 0·60 for conventional tomography; 3D CT was significantly better than axial helical CT (P = 0·01) and conventional tomography (P = 0·001). The differences between axial helical CT and conventional tomography were not significant (P = 0·37). CONCLUSION: Acetabular fractures are best classified by 3D CT, followed by axial helical CT and conventional tomography when assessed by surgeons. 3D CT did not provide any additional significant benefit in the classification performed by radiologists. Kickuth, R. et al. (2002)

  4. Towards three-dimensional optical metamaterials

    Science.gov (United States)

    Tanaka, Takuo; Ishikawa, Atsushi

    2017-12-01

    Metamaterials have opened up the possibility of unprecedented and fascinating concepts and applications in optics and photonics. Examples include negative refraction, perfect lenses, cloaking, perfect absorbers, and so on. Since these metamaterials are man-made materials composed of sub-wavelength structures, their development strongly depends on the advancement of micro- and nano-fabrication technologies. In particular, the realization of three-dimensional metamaterials is one of the big challenges in this research field. In this review, we describe recent progress in the fabrication technologies for three-dimensional metamaterials, as well as proposed applications.

  5. Equilibrium: two-dimensional configurations

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    In Chapter 6, the problem of toroidal force balance is addressed in the simplest, nontrivial two-dimensional geometry, that of an axisymmetric torus. A derivation is presented of the Grad-Shafranov equation, the basic equation describing axisymmetric toroidal equilibrium. The solutions to equations provide a complete description of ideal MHD equilibria: radial pressure balance, toroidal force balance, equilibrium Beta limits, rotational transform, shear, magnetic wall, etc. A wide number of configurations are accurately modeled by the Grad-Shafranov equation. Among them are all types of tokamaks, the spheromak, the reversed field pinch, and toroidal multipoles. An important aspect of the analysis is the use of asymptotic expansions, with an inverse aspect ratio serving as the expansion parameter. In addition, an equation similar to the Grad-Shafranov equation, but for helically symmetric equilibria, is presented. This equation represents the leading-order description low-Beta and high-Beta stellarators, heliacs, and the Elmo bumpy torus. The solutions all correspond to infinitely long straight helices. Bending such a configuration into a torus requires a full three-dimensional calculation and is discussed in Chapter 7

  6. FEL gain optimisation and spontaneous radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bali, L.M.; Srivastava, A.; Pandya, T.P. [Lucknow Univ. (India)] [and others

    1995-12-31

    Colson have evaluated FEL gains for small deviations from perfect electron beam injection, with radiation of the same polarisation as that of the wiggler fields. We find that for optimum gain the polarisation of the optical field should be the same as that of the spontaneous emission under these conditions. With a helical wiggler the axial oscillations resulting from small departures from perfect electron beam injection lead to injection dependent unequal amplitudes and phases of the spontaneous radiation in the two transverse directions. Viewed along the axis therefore the spontaneous emission is elliptically polarised. The azimuth of the ellipse varies with the difference of phase of the two transverse components of spontaneous emission but the eccentricity remains the same. With planar wigglers the spontaneous emission viewed in the axial direction is linearly polarised, again with an injection dependent azimuth. For optimum coherent gain of a radiation field its polarisation characteristics must be the same as those of the spontaneous radiation with both types of wiggler. Thus, with a helical wiggler and the data reported earlier, an increase of 10% in the FEL gain at the fundamental frequency and of 11% at the fifth harmonic has been calculated in the small gain per pass limit. Larger enhancements in gain may result from more favourable values of input parameters.

  7. Three-dimensional imaging modalities in endodontics

    Science.gov (United States)

    Mao, Teresa

    2014-01-01

    Recent research in endodontics has highlighted the need for three-dimensional imaging in the clinical arena as well as in research. Three-dimensional imaging using computed tomography (CT) has been used in endodontics over the past decade. Three types of CT scans have been studied in endodontics, namely cone-beam CT, spiral CT, and peripheral quantitative CT. Contemporary endodontics places an emphasis on the use of cone-beam CT for an accurate diagnosis of parameters that cannot be visualized on a two-dimensional image. This review discusses the role of CT in endodontics, pertaining to its importance in the diagnosis of root canal anatomy, detection of peri-radicular lesions, diagnosis of trauma and resorption, presurgical assessment, and evaluation of the treatment outcome. PMID:25279337

  8. Three-dimensional imaging modalities in endodontics

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Teresa; Neelakantan, Prasanna [Dept. of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha University, Chennai (India)

    2014-09-15

    Recent research in endodontics has highlighted the need for three-dimensional imaging in the clinical arena as well as in research. Three-dimensional imaging using computed tomography (CT) has been used in endodontics over the past decade. Three types of CT scans have been studied in endodontics, namely cone-beam CT, spiral CT, and peripheral quantitative CT. Contemporary endodontics places an emphasis on the use of cone-beam CT for an accurate diagnosis of parameters that cannot be visualized on a two-dimensional image. This review discusses the role of CT in endodontics, pertaining to its importance in the diagnosis of root canal anatomy, detection of peri-radicular lesions, diagnosis of trauma and resorption, presurgical assessment, and evaluation of the treatment outcome.

  9. Three-dimensional imaging modalities in endodontics

    International Nuclear Information System (INIS)

    Mao, Teresa; Neelakantan, Prasanna

    2014-01-01

    Recent research in endodontics has highlighted the need for three-dimensional imaging in the clinical arena as well as in research. Three-dimensional imaging using computed tomography (CT) has been used in endodontics over the past decade. Three types of CT scans have been studied in endodontics, namely cone-beam CT, spiral CT, and peripheral quantitative CT. Contemporary endodontics places an emphasis on the use of cone-beam CT for an accurate diagnosis of parameters that cannot be visualized on a two-dimensional image. This review discusses the role of CT in endodontics, pertaining to its importance in the diagnosis of root canal anatomy, detection of peri-radicular lesions, diagnosis of trauma and resorption, presurgical assessment, and evaluation of the treatment outcome

  10. A three-dimensional field solutions of Halbach

    International Nuclear Information System (INIS)

    Chen Jizhong; Xiao Jijun; Zhang Yiming; Xu Chunyan

    2008-01-01

    A three-dimensional field solutions are presented for Halback cylinder magnet. Based on Ampere equivalent current methods, the permanent magnets are taken as distributing of current density. For getting the three-dimensional field solution of ideal polarized permanent magnets, the solution method entails the use of the vector potential and involves the closed-form integration of the free-space Green's function. The programmed field solution are ideal for performing rapid parametric studies of the dipole Halback cylinder magnets made from rare earth materials. The field solutions are verified by both an analytical two-dimensional algorithm and three-dimensional finite element software. A rapid method is presented for extensive analyzing and optimizing Halbach cylinder magnet. (authors)

  11. Three Dimensional Dirac Semimetals

    Science.gov (United States)

    Zaheer, Saad

    2014-03-01

    Dirac points on the Fermi surface of two dimensional graphene are responsible for its unique electronic behavior. One can ask whether any three dimensional materials support similar pseudorelativistic physics in their bulk electronic spectra. This possibility has been investigated theoretically and is now supported by two successful experimental demonstrations reported during the last year. In this talk, I will summarize the various ways in which Dirac semimetals can be realized in three dimensions with primary focus on a specific theory developed on the basis of representations of crystal spacegroups. A three dimensional Dirac (Weyl) semimetal can appear in the presence (absence) of inversion symmetry by tuning parameters to the phase boundary separating a bulk insulating and a topological insulating phase. More generally, we find that specific rules governing crystal symmetry representations of electrons with spin lead to robust Dirac points at high symmetry points in the Brillouin zone. Combining these rules with microscopic considerations identifies six candidate Dirac semimetals. Another method towards engineering Dirac semimetals involves combining crystal symmetry and band inversion. Several candidate materials have been proposed utilizing this mechanism and one of the candidates has been successfully demonstrated as a Dirac semimetal in two independent experiments. Work carried out in collaboration with: Julia A. Steinberg, Steve M. Young, J.C.Y. Teo, C.L. Kane, E.J. Mele and Andrew M. Rappe.

  12. Three-dimensional instability of standing waves

    Science.gov (United States)

    Zhu, Qiang; Liu, Yuming; Yue, Dick K. P.

    2003-12-01

    We investigate the three-dimensional instability of finite-amplitude standing surface waves under the influence of gravity. The analysis employs the transition matrix (TM) approach and uses a new high-order spectral element (HOSE) method for computation of the nonlinear wave dynamics. HOSE is an extension of the original high-order spectral method (HOS) wherein nonlinear wave wave and wave body interactions are retained up to high order in wave steepness. Instead of global basis functions in HOS, however, HOSE employs spectral elements to allow for complex free-surface geometries and surface-piercing bodies. Exponential convergence of HOS with respect to the total number of spectral modes (for a fixed number of elements) and interaction order is retained in HOSE. In this study, we use TM-HOSE to obtain the stability of general three-dimensional perturbations (on a two-dimensional surface) on two classes of standing waves: plane standing waves in a rectangular tank; and radial/azimuthal standing waves in a circular basin. For plane standing waves, we confirm the known result of two-dimensional side-bandlike instability. In addition, we find a novel three-dimensional instability for base flow of any amplitude. The dominant component of the unstable disturbance is an oblique (standing) wave oriented at an arbitrary angle whose frequency is close to the (nonlinear) frequency of the original standing wave. This finding is confirmed by direct long-time simulations using HOSE which show that the nonlinear evolution leads to classical Fermi Pasta Ulam recurrence. For the circular basin, we find that, beyond a threshold wave steepness, a standing wave (of nonlinear frequency Omega) is unstable to three-dimensional perturbations. The unstable perturbation contains two dominant (standing-wave) components, the sum of whose frequencies is close to 2Omega. From the cases we consider, the critical wave steepness is found to generally decrease/increase with increasing radial

  13. Cylindrical Three-Dimensional Porous Anodic Alumina Networks

    Directory of Open Access Journals (Sweden)

    Pedro M. Resende

    2016-11-01

    Full Text Available The synthesis of a conformal three-dimensional nanostructure based on porous anodic alumina with transversal nanopores on wires is herein presented. The resulting three-dimensional network exhibits the same nanostructure as that obtained on planar geometries, but with a macroscopic cylindrical geometry. The morphological analysis of the nanostructure revealed the effects of the initial defects on the aluminum surface and the mechanical strains on the integrity of the three-dimensional network. The results evidence the feasibility of obtaining 3D porous anodic alumina on non-planar aluminum substrates.

  14. Three-dimensional block copolymer nanostructures by the solvent-annealing-induced wetting in anodic aluminum oxide templates.

    Science.gov (United States)

    Chu, Chiang-Jui; Chung, Pei-Yun; Chi, Mu-Huan; Kao, Yi-Huei; Chen, Jiun-Tai

    2014-09-01

    Block copolymers have been extensively studied over the last few decades because they can self-assemble into well-ordered nanoscale structures. The morphologies of block copolymers in confined geometries, however, are still not fully understood. In this work, the fabrication and morphologies of three-dimensional polystyrene-block-polydimethylsiloxane (PS-b-PDMS) nanostructures confined in the nanopores of anodic aluminum oxide (AAO) templates are studied. It is discovered that the block copolymers can wet the nanopores using a novel solvent-annealing-induced nanowetting in templates (SAINT) method. The unique advantage of this method is that the problem of thermal degradation can be avoided. In addition, the morphologies of PS-b-PDMS nanostructures can be controlled by changing the wetting conditions. Different solvents are used as the annealing solvent, including toluene, hexane, and a co-solvent of toluene and hexane. When the block copolymer wets the nanopores in toluene vapors, a perpendicular morphology is observed. When the block copolymer wets the nanopores in co-solvent vapors (toluene/hexane = 3:2), unusual circular and helical morphologies are obtained. These three-dimensional nanostructures can serve as naontemplates for refilling with other functional materials, such as Au, Ag, ZnO, and TiO2 . © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Multiparallel Three-Dimensional Optical Microscopy

    Science.gov (United States)

    Nguyen, Lam K.; Price, Jeffrey H.; Kellner, Albert L.; Bravo-Zanoquera, Miguel

    2010-01-01

    Multiparallel three-dimensional optical microscopy is a method of forming an approximate three-dimensional image of a microscope sample as a collection of images from different depths through the sample. The imaging apparatus includes a single microscope plus an assembly of beam splitters and mirrors that divide the output of the microscope into multiple channels. An imaging array of photodetectors in each channel is located at a different distance along the optical path from the microscope, corresponding to a focal plane at a different depth within the sample. The optical path leading to each photodetector array also includes lenses to compensate for the variation of magnification with distance so that the images ultimately formed on all the photodetector arrays are of the same magnification. The use of optical components common to multiple channels in a simple geometry makes it possible to obtain high light-transmission efficiency with an optically and mechanically simple assembly. In addition, because images can be read out simultaneously from all the photodetector arrays, the apparatus can support three-dimensional imaging at a high scanning rate.

  16. Two conceptual designs of helical fusion reactor FFHR-d1A based on ITER technologies and challenging ideas

    Science.gov (United States)

    Sagara, A.; Miyazawa, J.; Tamura, H.; Tanaka, T.; Goto, T.; Yanagi, N.; Sakamoto, R.; Masuzaki, S.; Ohtani, H.; The FFHR Design Group

    2017-08-01

    The Fusion Engineering Research Project (FERP) at the National Institute for Fusion Science (NIFS) is conducting conceptual design activities for the LHD-type helical fusion reactor FFHR-d1A. This paper newly defines two design options, ‘basic’ and ‘challenging.’ Conservative technologies, including those that will be demonstrated in ITER, are chosen in the basic option in which two helical coils are made of continuously wound cable-in-conduit superconductors of Nb3Sn strands, the divertor is composed of water-cooled tungsten monoblocks, and the blanket is composed of water-cooled ceramic breeders. In contrast, new ideas that would possibly be beneficial for making the reactor design more attractive are boldly included in the challenging option in which the helical coils are wound by connecting high-temperature REBCO superconductors using mechanical joints, the divertor is composed of a shower of molten tin jets, and the blanket is composed of molten salt FLiNaBe including Ti powers to increase hydrogen solubility. The main targets of the challenging option are early construction and easy maintenance of a large and three-dimensionally complicated helical structure, high thermal efficiency, and, in particular, realistic feasibility of the helical reactor.

  17. Backlund transformations and three-dimensional lattice equations

    NARCIS (Netherlands)

    Nijhoff, F.W.; Capel, H.W.; Wiersma, G.L.; Quispel, G.R.W.

    1984-01-01

    A (nonlocal) linear integral equation is studied, which allows for Bäcklund transformations in the measure. The compatibility of three of these transformations leads to an integrable nonlinear three-dimensional lattice equation. In appropriate continuum limits the two-dimensional Toda-lattice

  18. Arching in three-dimensional clogging

    Science.gov (United States)

    Török, János; Lévay, Sára; Szabó, Balázs; Somfai, Ellák; Wegner, Sandra; Stannarius, Ralf; Börzsönyi, Tamás

    2017-06-01

    Arching in dry granular material is a long established concept, however it remains still an open question how three-dimensional orifices clog. We investigate by means of numerical simulations and experimental data how the outflow creates a blocked configuration of particles. We define the concave surface of the clogged dome by two independent methods (geometric and density based). The average shape of the cupola for spheres is almost a hemisphere but individual samples have large holes in the structure indicating a blocked state composed of two-dimensional force chains rather than three-dimensional objects. The force chain structure justifies this assumption. For long particles the clogged configurations display large variations, and in certain cases the empty region reaches a height of 5 hole diameters. These structures involve vertical walls consisting of horizontally placed stable stacking of particles.

  19. Three-dimensional reconstruction of the biliary tract using spiral computed tomography. Three-dimensional cholangiography

    International Nuclear Information System (INIS)

    Gon, Masanori; Ogura, Norihiro; Uetsuji, Shouji; Ueyama, Yasuo

    1995-01-01

    In this study, 310 patients with benign biliary diseases, 20 with gallbladder cancer, and 8 with biliary tract carcinoma underwent spiral CT (SCT) scanning at cholangiography. Depiction rate of the shape of the conjunction site of the gallbladder and biliary tract was 27.5% by conventional intravenous cholangiography (DIC), 92.5% by ERC, and 90.0% by DIC-SCT. Abnormal cystic duct course was admitted in 14.1%. Multiplanar reconstruction by DIC-SCT enabled identification of the common bile duct and intrahepatic bile duct stone. Three-dimensional reconstruction of DIC-SCT was effective in evaluating obstruction of the anastomosis or passing condition of after hepatico-jejunostomy. Two-dimensional SCT images through PTCD tube enabled degree of hepatic invasion in bile duct cancer, and three-dimensional images were useful in grasping the morphology of the bile duct branches near the obstruction site. DIC-SCT is therefore considered a useful procedure as non-invasive examination of bile duct lesions. (S.Y.)

  20. Cylindrical Taylor states conserving total absolute magnetic helicity

    Science.gov (United States)

    Low, B. C.; Fang, F.

    2014-09-01

    The Taylor state of a three-dimensional (3D) magnetic field in an upright cylindrical domain V is derived from first principles as an extremum of the total magnetic energy subject to a conserved, total absolute helicity Habs. This new helicity [Low, Phys. Plasmas 18, 052901 (2011)] is distinct from the well known classical total helicity and relative total helicity in common use to describe wholly-contained and anchored fields, respectively. A given field B, tangential along the cylindrical side of V, may be represented as a unique linear superposition of two flux systems, an axially extended system along V and a strictly transverse system carrying information on field-circulation. This specialized Chandrasekhar-Kendall representation defines Habs and permits a neat formulation of the boundary-value problem (BVP) for the Taylor state as a constant-α force-free field, treating 3D wholly-contained and anchored fields on the same conceptual basis. In this formulation, the governing equation is a scalar integro-partial differential equation (PDE). A family of series solutions for an anchored field is presented as an illustration of this class of BVPs. Past treatments of the constant-α field in 3D cylindrical geometry are based on a scalar Helmholtz PDE as the governing equation, with issues of inconsistency in the published field solutions discussed over time in the journal literature. The constant-α force-free equation reduces to a scalar Helmholtz PDE only as special cases of the 3D integro-PDE derived here. In contrast, the constant-α force-free equation and the scalar Helmholtz PDE are absolutely equivalent in the spherical domain as discussed in Appendix. This theoretical study is motivated by the investigation of the Sun's corona but the results are also relevant to laboratory plasmas.

  1. Numerical simulation of the dynamic recrystallization behaviour in hot precision forging helical gears

    Directory of Open Access Journals (Sweden)

    Feng Wei

    2015-01-01

    Full Text Available In hot precision forging helical gears, the dynamic recrystallization phenomena will occur, which affect the microstructure of the formed part and in turn decide their mechanical properties. To investigate the effect of deformation temperature on the dynamic recrystallization in hot precision forging helical gears, a three dimensional (3D finite element (FE model was created by coupling the thermo-mechanical model with the microstructure evolution model developed based on the hot compressive experimental data of 20CrMnTiH steel. The hot precision forging process was simulated and the effect laws of the deformation temperature on the microstructure evolution the formed part were investigated. The results show that the dynamic recrystallization volume fraction and the average grain sizes increased with the increasing deformation temperature and the higher deformation temperature is beneficial to dynamic recrystallization and grain refinement.

  2. Three-dimensional appearance of the lips muscles with three-dimensional isotropic MRI: in vivo study

    Energy Technology Data Exchange (ETDEWEB)

    Olszewski, Raphael; Reychler, H. [Universite Catholique de Louvain, Department of Oral and Maxillofacial Surgery, Cliniques Universitaires Saint Luc, Brussels (Belgium); Liu, Y.; Xu, T.M. [Peking University School and Hospital of Stomatology, Department of Orthodontics, Beijing (China); Duprez, T. [Universite Catholique de Louvain, Department of Radiology, Cliniques Universitaires Saint Luc, Brussels (Belgium)

    2009-06-15

    Our knowledge of facial muscles is based primarily on atlases and cadaveric studies. This study describes a non-invasive in vivo method (3D MRI) for segmenting and reconstructing facial muscles in a three-dimensional fashion. Three-dimensional (3D), T1-weighted, 3 Tesla, isotropic MRI was applied to a subject. One observer performed semi-automatic segmentation using the Editor module from the 3D Slicer software (Harvard Medical School, Boston, MA, USA), version 3.2. We were able to successfully outline and three-dimensionally reconstruct the following facial muscles: pars labialis orbicularis oris, m. levatro labii superioris alaeque nasi, m. levator labii superioris, m. zygomaticus major and minor, m. depressor anguli oris, m. depressor labii inferioris, m. mentalis, m. buccinator, and m. orbicularis oculi. 3D reconstruction of the lip muscles should be taken into consideration in order to improve the accuracy and individualization of existing 3D facial soft tissue models. More studies are needed to further develop efficient methods for segmentation in this field. (orig.)

  3. Three-dimensional appearance of the lips muscles with three-dimensional isotropic MRI: in vivo study.

    Science.gov (United States)

    Olszewski, Raphael; Liu, Y; Duprez, T; Xu, T M; Reychler, H

    2009-06-01

    Our knowledge of facial muscles is based primarily on atlases and cadaveric studies. This study describes a non-invasive in vivo method (3D MRI) for segmenting and reconstructing facial muscles in a three-dimensional fashion. Three-dimensional (3D), T1-weighted, 3 Tesla, isotropic MRI was applied to a subject. One observer performed semi-automatic segmentation using the Editor module from the 3D Slicer software (Harvard Medical School, Boston, MA, USA), version 3.2. We were able to successfully outline and three-dimensionally reconstruct the following facial muscles: pars labialis orbicularis oris, m. levatro labii superioris alaeque nasi, m. levator labii superioris, m. zygomaticus major and minor, m. depressor anguli oris, m. depressor labii inferioris, m. mentalis, m. buccinator, and m. orbicularis oculi. 3D reconstruction of the lip muscles should be taken into consideration in order to improve the accuracy and individualization of existing 3D facial soft tissue models. More studies are needed to further develop efficient methods for segmentation in this field.

  4. Materials science. Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling.

    Science.gov (United States)

    Xu, Sheng; Yan, Zheng; Jang, Kyung-In; Huang, Wen; Fu, Haoran; Kim, Jeonghyun; Wei, Zijun; Flavin, Matthew; McCracken, Joselle; Wang, Renhan; Badea, Adina; Liu, Yuhao; Xiao, Dongqing; Zhou, Guoyan; Lee, Jungwoo; Chung, Ha Uk; Cheng, Huanyu; Ren, Wen; Banks, Anthony; Li, Xiuling; Paik, Ungyu; Nuzzo, Ralph G; Huang, Yonggang; Zhang, Yihui; Rogers, John A

    2015-01-09

    Complex three-dimensional (3D) structures in biology (e.g., cytoskeletal webs, neural circuits, and vasculature networks) form naturally to provide essential functions in even the most basic forms of life. Compelling opportunities exist for analogous 3D architectures in human-made devices, but design options are constrained by existing capabilities in materials growth and assembly. We report routes to previously inaccessible classes of 3D constructs in advanced materials, including device-grade silicon. The schemes involve geometric transformation of 2D micro/nanostructures into extended 3D layouts by compressive buckling. Demonstrations include experimental and theoretical studies of more than 40 representative geometries, from single and multiple helices, toroids, and conical spirals to structures that resemble spherical baskets, cuboid cages, starbursts, flowers, scaffolds, fences, and frameworks, each with single- and/or multiple-level configurations. Copyright © 2015, American Association for the Advancement of Science.

  5. Three-Dimensional Messages for Interstellar Communication

    Science.gov (United States)

    Vakoch, Douglas A.

    One of the challenges facing independently evolved civilizations separated by interstellar distances is to communicate information unique to one civilization. One commonly proposed solution is to begin with two-dimensional pictorial representations of mathematical concepts and physical objects, in the hope that this will provide a foundation for overcoming linguistic barriers. However, significant aspects of such representations are highly conventional, and may not be readily intelligible to a civilization with different conventions. The process of teaching conventions of representation may be facilitated by the use of three-dimensional representations redundantly encoded in multiple formats (e.g., as both vectors and as rasters). After having illustrated specific conventions for representing mathematical objects in a three-dimensional space, this method can be used to describe a physical environment shared by transmitter and receiver: a three-dimensional space defined by the transmitter--receiver axis, and containing stars within that space. This method can be extended to show three-dimensional representations varying over time. Having clarified conventions for representing objects potentially familiar to both sender and receiver, novel objects can subsequently be depicted. This is illustrated through sequences showing interactions between human beings, which provide information about human behavior and personality. Extensions of this method may allow the communication of such culture-specific features as aesthetic judgments and religious beliefs. Limitations of this approach will be noted, with specific reference to ETI who are not primarily visual.

  6. Three-dimensional topological insulators and bosonization

    Energy Technology Data Exchange (ETDEWEB)

    Cappelli, Andrea [INFN, Sezione di Firenze,Via G. Sansone 1, 50019 Sesto Fiorentino - Firenze (Italy); Randellini, Enrico [INFN, Sezione di Firenze,Via G. Sansone 1, 50019 Sesto Fiorentino - Firenze (Italy); Dipartimento di Fisica e Astronomia, Università di Firenze,Via G. Sansone 1, 50019 Sesto Fiorentino - Firenze (Italy); Sisti, Jacopo [Scuola Internazionale Superiore di Studi Avanzati (SISSA),Via Bonomea 265, 34136 Trieste (Italy)

    2017-05-25

    Massless excitations at the surface of three-dimensional time-reversal invariant topological insulators possess both fermionic and bosonic descriptions, originating from band theory and hydrodynamic BF theory, respectively. We analyze the corresponding field theories of the Dirac fermion and compactified boson and compute their partition functions on the three-dimensional torus geometry. We then find some non-dynamic exact properties of bosonization in (2+1) dimensions, regarding fermion parity and spin sectors. Using these results, we extend the Fu-Kane-Mele stability argument to fractional topological insulators in three dimensions.

  7. High-resolution three-dimensional mapping of semiconductor dopant potentials

    DEFF Research Database (Denmark)

    Twitchett, AC; Yates, TJV; Newcomb, SB

    2007-01-01

    Semiconductor device structures are becoming increasingly three-dimensional at the nanometer scale. A key issue that must be addressed to enable future device development is the three-dimensional mapping of dopant distributions, ideally under "working conditions". Here we demonstrate how a combin......Semiconductor device structures are becoming increasingly three-dimensional at the nanometer scale. A key issue that must be addressed to enable future device development is the three-dimensional mapping of dopant distributions, ideally under "working conditions". Here we demonstrate how...... a combination of electron holography and electron tomography can be used to determine quantitatively the three-dimensional electrostatic potential in an electrically biased semiconductor device with nanometer spatial resolution....

  8. Helicity content and tokamak applications of helicity

    International Nuclear Information System (INIS)

    Boozer, A.H.

    1986-05-01

    Magnetic helicity is approximately conserved by the turbulence associated with resistive instabilities of plasmas. To generalize the application of the concept of helicity, the helicity content of an arbitrary bounded region of space will be defined. The definition has the virtues that both the helicity content and its time derivative have simple expressions in terms of the poloidal and toroidal magnetic fluxes, the average toroidal loop voltage and the electric potential on the bounding surface, and the volume integral of E-B. The application of the helicity concept to tokamak plasmas is illustrated by a discussion of so-called MHD current drive, an example of a stable tokamak q profile with q less than one in the center, and a discussion of the possibility of a natural steady-state tokamak due to the bootstrap current coupling to tearing instabilities

  9. Volume scanning three-dimensional display with an inclined two-dimensional display and a mirror scanner

    Science.gov (United States)

    Miyazaki, Daisuke; Kawanishi, Tsuyoshi; Nishimura, Yasuhiro; Matsushita, Kenji

    2001-11-01

    A new three-dimensional display system based on a volume-scanning method is demonstrated. To form a three-dimensional real image, an inclined two-dimensional image is rapidly moved with a mirror scanner while the cross-section patterns of a three-dimensional object are displayed sequentially. A vector-scan CRT display unit is used to obtain a high-resolution image. An optical scanning system is constructed with concave mirrors and a galvanometer mirror. It is confirmed that three-dimensional images, formed by the experimental system, satisfy all the criteria for human stereoscopic vision.

  10. An experimental investigation of pneumatic swirl flow induced by a three lobed helical pipe

    International Nuclear Information System (INIS)

    Fokeer, S.; Lowndes, I.; Kingman, S.

    2009-01-01

    This paper presents a discussion of the results and conclusions drawn from a series of experiments conducted to investigate the swirl flow that are generated by a three lobed helical pipe mounted within a laboratory scale pneumatic conveying rig. The experiments employed Laser Doppler Anemometry (LDA) to quantify the strength of the induced vortex formations and the decay rates of the observed downstream swirl flows over a range of Reynolds number in the turbulent regime. Instantaneous point velocity measurements were resolved in three directions across regular measurement grids transcribed across parallel planes located at four distances downstream of the swirl inducing pipe section. The equivalent axial, radial and tangential velocities were subsequently computed at these grids points. The degree of swirl measured across each measurement plane was expressed in terms of a defined swirl number. It was concluded that the three lobed helical pipe gave rise to a wall jet type of swirl whose rate of observed downstream decay is related to the Reynolds number of the upstream flow and the distance downstream of the swirl pipe. The decay rates for the swirl flows were found to be inversely proportional to the Reynolds number of the upstream flow. The swirl pipe was observed to create a redistribution of the downstream velocity field from axial to tangential, accompanied by a transfer of axial to angular momentum. The findings of this paper are believed to improve understanding to assist the selective use of swirl flow within lean phase particles pneumatic transport systems.

  11. An experimental investigation of pneumatic swirl flow induced by a three lobed helical pipe

    Energy Technology Data Exchange (ETDEWEB)

    Fokeer, S. [Department of Aeronautical and Automotive Engineering, University of Loughborough LE11 3TU (United Kingdom)], E-mail: S.Fokeer@lboro.ac.uk; Lowndes, I.; Kingman, S. [Division of Process and Environmental Engineering, University of Nottingham, Nottingham NG7 2RD (United Kingdom)

    2009-04-15

    This paper presents a discussion of the results and conclusions drawn from a series of experiments conducted to investigate the swirl flow that are generated by a three lobed helical pipe mounted within a laboratory scale pneumatic conveying rig. The experiments employed Laser Doppler Anemometry (LDA) to quantify the strength of the induced vortex formations and the decay rates of the observed downstream swirl flows over a range of Reynolds number in the turbulent regime. Instantaneous point velocity measurements were resolved in three directions across regular measurement grids transcribed across parallel planes located at four distances downstream of the swirl inducing pipe section. The equivalent axial, radial and tangential velocities were subsequently computed at these grids points. The degree of swirl measured across each measurement plane was expressed in terms of a defined swirl number. It was concluded that the three lobed helical pipe gave rise to a wall jet type of swirl whose rate of observed downstream decay is related to the Reynolds number of the upstream flow and the distance downstream of the swirl pipe. The decay rates for the swirl flows were found to be inversely proportional to the Reynolds number of the upstream flow. The swirl pipe was observed to create a redistribution of the downstream velocity field from axial to tangential, accompanied by a transfer of axial to angular momentum. The findings of this paper are believed to improve understanding to assist the selective use of swirl flow within lean phase particles pneumatic transport systems.

  12. Three-dimensional bio-printing.

    Science.gov (United States)

    Gu, Qi; Hao, Jie; Lu, YangJie; Wang, Liu; Wallace, Gordon G; Zhou, Qi

    2015-05-01

    Three-dimensional (3D) printing technology has been widely used in various manufacturing operations including automotive, defence and space industries. 3D printing has the advantages of personalization, flexibility and high resolution, and is therefore becoming increasingly visible in the high-tech fields. Three-dimensional bio-printing technology also holds promise for future use in medical applications. At present 3D bio-printing is mainly used for simulating and reconstructing some hard tissues or for preparing drug-delivery systems in the medical area. The fabrication of 3D structures with living cells and bioactive moieties spatially distributed throughout will be realisable. Fabrication of complex tissues and organs is still at the exploratory stage. This review summarize the development of 3D bio-printing and its potential in medical applications, as well as discussing the current challenges faced by 3D bio-printing.

  13. Acid-base properties of complexes with three-dimensional polyligands. Complexes with three-dimensional polyphosphoric acids

    International Nuclear Information System (INIS)

    Kopylova, V.D.; Bojko, Eh.T.; Saldadze, K.M.

    1985-01-01

    By the method of potentiometric titration acid-base properties of uranyl (2) complexes with three-dimensional polyphosphoric acids, KRF-8p, KF-1, KF-7 prepared by phosphorylation of copolymer of styrene and divinylbenzene or saponification of the copolymers of di-2,2'-chloroethyl ester of vinylphosphonic acid with divinyl benzene are studied. It is shown that in case of formation in the phase of three-dimensional polyphosphoric acids of UO 2 2+ complexes with the growth of bond covalence of metal ion-phosphonic group the acidjty of the second hydroxyl of the phosphonic group increases

  14. Three dimensional periodic foundations for base seismic isolation

    International Nuclear Information System (INIS)

    Yan, Y; Mo, Y L; Cheng, Z; Shi, Z; Menq, F; Tang, Y

    2015-01-01

    Based on the concept of phononic crystals, periodic foundations made of periodic materials are investigated in this paper. The periodic foundations can provide low frequency band gaps, which cover the main frequency ranges of seismic waves. Therefore, the periodic foundations are able to protect the upper structures during earthquake events. In this paper, the basic theory of three dimensional periodic foundations is studied and the finite element method was used to conduct the sensitivity study. A simplified three-dimensional periodic foundation with a superstructure was tested in the field and the feasibility of three dimensional periodic foundations was proved. The test results showed that the response of the upper structure with the three dimensional periodic foundation was reduced under excitation waves with the main frequency falling in the attenuation zones. The finite element analysis results are consistent with the experimental data, indicating that three dimensional periodic foundations are a feasible way of reducing seismic vibrations. (paper)

  15. Simulation on three dimensional bubble formation using MARS

    International Nuclear Information System (INIS)

    Kunugi, Tomoaki

    1997-01-01

    This paper describes a numerical simulation on three-dimensional bubble formation by means of the MARS (Multi-interfaces Advection and Reconstruction Solver) developed by the author. The comparison between two-dimensional and three-dimensional simulation on an agglomeration of two bubbles is discussed. Moreover, some simulation results regarding a phase change phenomena such as a boiling and condensation in a two dimensional enclosure with heated and cooled walls are presented. (author)

  16. Meso-Helical Ag(I) Coordination Polymer Based on a Pyridylimidazole Ligand

    International Nuclear Information System (INIS)

    Kang, Youngjin; Kim, Jinho; Lee, Eunji; Park, Ki-Min; Moon, Suk-Hee

    2016-01-01

    In the fields of material science and metallosupramolecular chemistry, coordination polymers with various helical types have been extensively explored because of their charming structures, and their potential applications in material chemistry. Among them, meso-helical coordination polymers consisting of achiral 1D strands, which are generally constructed by a crystallographic inversion symmetry, are relatively rare. The coordination polymer 1 exhibits a rare one-dimensional meso-helical chain topology constructed by its internal inversion symmetry. The skeleton of this meso-helical chain is preserved up to 300°C. The complexation of silver(I) ion to the free pyim ligand give rise to the enhanced photoluminescence intensity and slightly blue-shifted emission maximum, originated from intraligand (IL) π[BOND]π* transition and rigidochromic effect. Further exploration of complexation of this ligand with other transition metal ions is currently in progress

  17. Helically linked mirror arrangement

    International Nuclear Information System (INIS)

    Ranjan, P.

    1986-08-01

    A scheme is described for helical linking of mirror sections, which endeavors to combine the better features of toroidal and mirror devices by eliminating the longitudinal loss of mirror machines, having moderately high average β and steady state operation. This scheme is aimed at a device, with closed magnetic surfaces having rotational transform for equilibrium, one or more axisymmetric straight sections for reduced radial loss, a simple geometrical axis for the links and an overall positive magnetic well depth for stability. We start by describing several other attempts at linking of mirror sections, made both in the past and the present. Then a description of our helically linked mirror scheme is given. This example has three identical straight sections connected by three sections having helical geometric axes. A theoretical analysis of the magnetic field and single-particle orbits in them leads to the conclusion that most of the passing particles would be confined in the device and they would have orbits independent of pitch angle under certain conditions. Numerical results are presented, which agree well with the theoretical results as far as passing particle orbits are concerned

  18. The management of helical rim keloids with excision, split thickness skin graft and intralesional triamcinolone acetonide

    Directory of Open Access Journals (Sweden)

    Ibrahim Abdul Rasheed

    2014-01-01

    Full Text Available Keloids of the helical rim are disfiguring. A cosmetically acceptable reconstruction is difficult especially in moderate to large sized lesions because the helical rim is a 3-dimensional structure with curved and thin cartilage. We report our experience in the management of moderate (4-10 cm and large (>10 cm helical rim keloids in five patients. Six helical rim keloids were reconstructed. There were four moderate (4-10 cm and two large (>10 cm helical rim keloids. Four were on the right helix and two on the left helix. One patient had bilateral helical rim keloids. The follow-up period ranged from 6 months to 4 years. No secondary surgical revision was required to improve the contour of the reconstructed helical rim. The aesthetic results were satisfactory in all the patients.

  19. Three-dimensional tori and Arnold tongues

    Energy Technology Data Exchange (ETDEWEB)

    Sekikawa, Munehisa, E-mail: sekikawa@cc.utsunomiya-u.ac.jp [Department of Mechanical and Intelligent Engineering, Utsunomiya University, Utsunomiya-shi 321-8585 (Japan); Inaba, Naohiko [Organization for the Strategic Coordination of Research and Intellectual Property, Meiji University, Kawasaki-shi 214-8571 (Japan); Kamiyama, Kyohei [Department of Electronics and Bioinformatics, Meiji University, Kawasaki-shi 214-8571 (Japan); Aihara, Kazuyuki [Institute of Industrial Science, the University of Tokyo, Meguro-ku 153-8505 (Japan)

    2014-03-15

    This study analyzes an Arnold resonance web, which includes complicated quasi-periodic bifurcations, by conducting a Lyapunov analysis for a coupled delayed logistic map. The map can exhibit a two-dimensional invariant torus (IT), which corresponds to a three-dimensional torus in vector fields. Numerous one-dimensional invariant closed curves (ICCs), which correspond to two-dimensional tori in vector fields, exist in a very complicated but reasonable manner inside an IT-generating region. Periodic solutions emerge at the intersections of two different thin ICC-generating regions, which we call ICC-Arnold tongues, because all three independent-frequency components of the IT become rational at the intersections. Additionally, we observe a significant bifurcation structure where conventional Arnold tongues transit to ICC-Arnold tongues through a Neimark-Sacker bifurcation in the neighborhood of a quasi-periodic Hopf bifurcation (or a quasi-periodic Neimark-Sacker bifurcation) boundary.

  20. Self-assembly of Janus particles into helices with tunable pitch

    Science.gov (United States)

    Fernández, M. Sobrino; Misko, V. R.; Peeters, F. M.

    2015-10-01

    Janus particles present an important class of building blocks for directional assembly. These are compartmentalized colloids with two different hemispheres. In this work we consider a three-dimensional model of Janus spheres that contain one hydrophobic and one charged hemisphere. Using molecular dynamics simulations, we study the morphology of these particles when confined in a channel-like environment. The interplay between the attractive and repulsive forces on each particle gives rise to a rich phase space where the relative orientation of each particle plays a dominant role in the formation of large-scale clusters. The interest in this system is primarily due to the fact that it could give a better understanding of the mechanisms of the formation of polar membranes. A variety of ordered membranelike morphologies is found consisting of single and multiple connected chain configurations. The helicity of these chains can be chosen by simply changing the salt concentration of the solution. Special attention is given to the formation of Bernal spirals. These helices are composed of regular tetrahedra and are known to exhibit nontrivial translational and rotational symmetry.

  1. Buckling of anisotropic films on cylindrical substrates: insights for self-assembly fabrication of 3D helical gears

    International Nuclear Information System (INIS)

    Yin Jie; Chen Xi

    2010-01-01

    We propose an effective way of fabricating true three-dimensional helical gear-like structures (with inclined gear teeth) by using self-assembled stress-driven buckling of anisotropic films on compliant cylindrical substrates. Key parameters characterizing the helical undulation profile, in particular the gear teeth number and the inclined teeth angle, are investigated numerically using finite element simulations. Based on the insights from numerical calculations, a simplified theoretical model is established to effectively predict the teeth number. The results show that the anisotropic modulus ratio has a larger effect on the teeth number than the anisotropy angle. The orientation of gear teeth is related to the coupled effects of the anisotropic modulus ratio, anisotropy angle, substrate curvature and substrate aspect ratio. In general, the undulation orientation tends to be perpendicular to the direction of minimum bending stiffness in the film. The findings in this paper provide useful guidance for the self-assembly fabrication of helical gears and other 3D structures at various length scales.

  2. Synthetic display of three-dimensional CT and MPR for gastric neoplasm

    International Nuclear Information System (INIS)

    Ogura, Toshihiro; Maruyama, Masakazu

    1998-01-01

    We attempted to obtain synthesized three dimensional (3D) and MPR (Multi Planar Reconstruction) helical CT scans (3D-MPR-CT) of gastric neoplasm by using the air as a contrast medium, and we assessed the usefulness of 3D-MPR-CT gastroendoscopy in the diagnosis of gastric neoplasm. Five minutes before the scan, 20 mg Scopolamine Butylbromide (Buscopan) was injected intramuscularly to minimize gastric peristalsis. An effervescent agent (bubble-make granules) was fed to extend the stomach wall. Non-ionic contrast material (100 mL) was power injected immediately before the scan start. Axial images were obtained with an intersection gap of 5-mm, a 5-mm/sec table speed, and 1-mm reconstruction intervals. 3D-MPR-CT images were reconstructed from these images. In abdominal study, 3D-MPR-CT images enabled the visualization of neoplasm and its adjacent structures in versatile directions, including a view similar to endoscopic observation, proximal aspect of narrowing by tumor and also could get the information about invasive depth of gastric neoplasm. Reports on some clinical cases and the advantages and disadvantages of 3D-MPR-CT gastroendoscopy were discussed. (author)

  3. Kinetic description of a wiggler pumped ion-channel free electron laser

    International Nuclear Information System (INIS)

    Mehdian, H; Raghavi, A

    2006-01-01

    The wiggler pumped ion-channel free electron laser (WPIC-FEL) is treated and the classes of possible single-particle electron trajectories in this configuration are discussed in the paper. A new region of orbital stability is seen in the negative mass regime. A kinetic description of WPIC-FEL is given. Vlasov-Maxwell equations are solved to get the linear gain in a tenuous-beam limit, where the beam plasma frequency is much less than the radiation frequency and the self-field effects can be ignored

  4. Topological helical edge states in water waves over a topographical bottom

    KAUST Repository

    Wu, Shi qiao

    2017-11-27

    We present the discovery of topologically protected helical edge states in water wave systems, which are realized in water wave propagating over a topographical bottom whose height is modulated periodically in a two-dimensional triangular pattern. We develop an effective Hamiltonian to characterize the dispersion relation and use spin Chern numbers to classify the topology. Through full wave simulations we unambiguously demonstrate the robustness of the helical edge states which are immune to defects and disorders so that the backscattering loss is significantly reduced. A spin splitter is designed for water wave systems, where helical edge states with different spin orientations are spatially separated with each other, and potential applications are discussed.

  5. Topological helical edge states in water waves over a topographical bottom

    KAUST Repository

    Wu, Shi qiao; Wu, Ying; Mei, Jun

    2017-01-01

    We present the discovery of topologically protected helical edge states in water wave systems, which are realized in water wave propagating over a topographical bottom whose height is modulated periodically in a two-dimensional triangular pattern. We develop an effective Hamiltonian to characterize the dispersion relation and use spin Chern numbers to classify the topology. Through full wave simulations we unambiguously demonstrate the robustness of the helical edge states which are immune to defects and disorders so that the backscattering loss is significantly reduced. A spin splitter is designed for water wave systems, where helical edge states with different spin orientations are spatially separated with each other, and potential applications are discussed.

  6. Three-dimensional CT of the pediatric spine

    International Nuclear Information System (INIS)

    Starshak, R.J.; Crawford, C.R.; Waisman, R.C.; Sty, J.R.

    1987-01-01

    CT of the spine has been shown to be useful in evaluating congenital, neoplastic, inflammatory, and traumatic lesions. Any portion of the neural arch may be involved by these disease processes. However, the complex nature of the spinal column can make evaluation of these abnormalities difficult on axial CT. This is especially true if the spine is distorted by scoliosis, kyphosis, or lordosis. The principal advantage of three-dimensional CT is its ability to display the surface relationships of complicated objects. The complexity of the spinal axis makes it ideal for study with three-dimensional CT. This presentation illustrates the advantages and drawbacks of three-dimensional CT in spinal abnormalities in children

  7. Usefulness of preoperative three dimensional CT in laparoscopic cholecystectomy. Especially, its comparison to ERC

    International Nuclear Information System (INIS)

    Machida, Hiromichi; Nakaya, Yuzou; Kojima, Kojirou

    1996-01-01

    We studied the usefulness of three dimensional helical CT (3D-CT) combined with drip infusion cholangiography for determining the application of laparoscopic cholecystectomy (LC) and evaluating the cholecyst severity. The subjects were 56 patients who underwent LC with preoperative 3D-CT. Particularly, in 42 patients undergoing endoscopic retrograde cholangiography (ERC) and 3D-CT simultaneously, the results with both methods were compared. The detection rates of the original site, forward and backward direction, and left and right direction in the confluence form of the cystic duct by means of 3D-CT versus ERC were 100% vs. 92.9% 92.9% vs. 71.4%, and 92.9% vs. 88.1%, respectively. Abnormal biliary distribution was visualized in 5 cases and all of them were depicted by 3D-CT. The 3D-CT was superior to ERC in terms of X-ray dose and cost. These results indicate the usefulness of 3D-CT as a LC preoperative examination. (author)

  8. Three-dimensional deformation of orthodontic brackets

    Science.gov (United States)

    Melenka, Garrett W; Nobes, David S; Major, Paul W

    2013-01-01

    Braces are used by orthodontists to correct the misalignment of teeth in the mouth. Archwire rotation is a particular procedure used to correct tooth inclination. Wire rotation can result in deformation to the orthodontic brackets, and an orthodontic torque simulator has been designed to examine this wire–bracket interaction. An optical technique has been employed to measure the deformation due to size and geometric constraints of the orthodontic brackets. Images of orthodontic brackets are collected using a stereo microscope and two charge-coupled device cameras, and deformation of orthodontic brackets is measured using a three-dimensional digital image correlation technique. The three-dimensional deformation of orthodontic brackets will be evaluated. The repeatability of the three-dimensional digital image correlation measurement method was evaluated by performing 30 archwire rotation tests using the same bracket and archwire. Finally, five Damon 3MX and five In-Ovation R self-ligating brackets will be compared using this technique to demonstrate the effect of archwire rotation on bracket design. PMID:23762201

  9. Three-dimensional deformation of orthodontic brackets.

    Science.gov (United States)

    Melenka, Garrett W; Nobes, David S; Major, Paul W; Carey, Jason P

    2013-01-01

    Braces are used by orthodontists to correct the misalignment of teeth in the mouth. Archwire rotation is a particular procedure used to correct tooth inclination. Wire rotation can result in deformation to the orthodontic brackets, and an orthodontic torque simulator has been designed to examine this wire-bracket interaction. An optical technique has been employed to measure the deformation due to size and geometric constraints of the orthodontic brackets. Images of orthodontic brackets are collected using a stereo microscope and two charge-coupled device cameras, and deformation of orthodontic brackets is measured using a three-dimensional digital image correlation technique. The three-dimensional deformation of orthodontic brackets will be evaluated. The repeatability of the three-dimensional digital image correlation measurement method was evaluated by performing 30 archwire rotation tests using the same bracket and archwire. Finally, five Damon 3MX and five In-Ovation R self-ligating brackets will be compared using this technique to demonstrate the effect of archwire rotation on bracket design.

  10. Free-boundary equilibrium studies for the large helical device

    International Nuclear Information System (INIS)

    Gardner, H.J.; Ichiguchi, K.

    1993-06-01

    A free-boundary version of the VMEC three-dimensional equilibrium code, together with a code, DIAGNO, to determine the response to a set of magnetic diagnostic coils has been applied to the Large Helical Device. Two sequences of equilibria were considered: one where an external vertical field was used to keep the plasma centered and another where the outwardly shifting plasma was truncated by a limiter. The predictions of a simple cylindrical model have been verified for a diamagnetic loop. A set of simple response curves has been obtained which should be useful for the analysis and control of the finite plasma. The ideal Mercier criterion suggests that the centered plasma might be more stable. (author)

  11. Three-dimensional plasma equilibrium near a separatrix

    International Nuclear Information System (INIS)

    Reiman, A.H.; Pomphrey, N.; Boozer, A.H.

    1988-08-01

    The limiting behavior of a general three-dimensional MHD equilibrium near a separatrix is calculated explicitly. No expansions in β or assumptions about island widths are made. Implications of the results for the numerical calculation of such equilibria, are discussed, as well as for issues concerning the existence of three-dimensional MHD equilibria. 16 refs., 2 figs

  12. Godbillon Vey Helicity and Magnetic Helicity in Magnetohydrodynamics

    Science.gov (United States)

    Webb, G. M.; Hu, Q.; Anco, S.; Zank, G. P.

    2017-12-01

    The Godbillon-Vey invariant arises in homology theory, and algebraic topology, where conditions for a layered family of 2D surfaces forms a 3D manifold were elucidated. The magnetic Godbillon-Vey helicity invariant in magnetohydrodynamics (MHD) is a helicity invariant that occurs for flows, in which the magnetic helicity density hm= A\\cdotB=0 where A is the magnetic vector potential and B is the magnetic induction. Our purpose is to elucidate the evolution of the magnetic Godbillon-Vey field η =A×B/|A|2 and the Godbillon-Vey helicity hgv}= η \\cdot∇ × η in general MHD flows in which the magnetic helicity hm≠q 0. It is shown that hm acts as a source term in the Godbillon-Vey helicity transport equation, in which hm is coupled to hgv via the shear tensor of the background flow. The transport equation for hgv depends on the electric field potential ψ , which is related to the gauge for A, which takes its simplest form for the advected A gauge in which ψ =A\\cdot u where u is the fluid velocity.

  13. Advancing three-dimensional MEMS by complimentary laser micro manufacturing

    Science.gov (United States)

    Palmer, Jeremy A.; Williams, John D.; Lemp, Tom; Lehecka, Tom M.; Medina, Francisco; Wicker, Ryan B.

    2006-01-01

    This paper describes improvements that enable engineers to create three-dimensional MEMS in a variety of materials. It also provides a means for selectively adding three-dimensional, high aspect ratio features to pre-existing PMMA micro molds for subsequent LIGA processing. This complimentary method involves in situ construction of three-dimensional micro molds in a stand-alone configuration or directly adjacent to features formed by x-ray lithography. Three-dimensional micro molds are created by micro stereolithography (MSL), an additive rapid prototyping technology. Alternatively, three-dimensional features may be added by direct femtosecond laser micro machining. Parameters for optimal femtosecond laser micro machining of PMMA at 800 nanometers are presented. The technical discussion also includes strategies for enhancements in the context of material selection and post-process surface finish. This approach may lead to practical, cost-effective 3-D MEMS with the surface finish and throughput advantages of x-ray lithography. Accurate three-dimensional metal microstructures are demonstrated. Challenges remain in process planning for micro stereolithography and development of buried features following femtosecond laser micro machining.

  14. Imploding to equilibrium of helically symmetric theta pinches

    International Nuclear Information System (INIS)

    Sharky, N.N.

    1978-01-01

    The time-dependent, single-fluid, dissipative magnetohydrodynamic equations are solved in helical coordinates (r,phi), where phi = THETA-kz, k = 2π/L and L is the periodicity length in the z-direction. The two-dimensional numerical calculations simulate theta pinches which have an l = 1 helical field added to them. Given the applied magnetic fields and the initial state of the plasma, we study the time evolution of the system. The plasma is found to experience two kinds of oscillations, occurring on different time scales. These are the radial compression oscillations, and the slower helical oscillations of the plasma column. The plasma motion is followed until these oscillations disappear and an equilibrium is nearly reached. Hence given the amplitude and the rise time of the applied magnetic fields, the calculations allow one to relate the initial state of a cold, homogeneous plasma to its final equilibrium state where it is heated and compressed

  15. UTILIZATION OF MULTIPLE MEASUREMENTS FOR GLOBAL THREE-DIMENSIONAL MAGNETOHYDRODYNAMIC SIMULATIONS

    International Nuclear Information System (INIS)

    Wang, A. H.; Wu, S. T.; Tandberg-Hanssen, E.; Hill, Frank

    2011-01-01

    Magnetic field measurements, line of sight (LOS) and/or vector magnetograms, have been used in a variety of solar physics studies. Currently, the global transverse velocity measurements near the photosphere from the Global Oscillation Network Group (GONG) are available. We have utilized these multiple observational data, for the first time, to present a data-driven global three-dimensional and resistive magnetohydrodynamic (MHD) simulation, and to investigate the energy transport across the photosphere to the corona. The measurements of the LOS magnetic field and transverse velocity reflect the effects of convective zone dynamics and provide information from the sub-photosphere to the corona. In order to self-consistently include the observables on the lower boundary as the inputs to drive the model, a set of time-dependent boundary conditions is derived by using the method of characteristics. We selected GONG's global transverse velocity measurements of synoptic chart CR2009 near the photosphere and SOLIS full-resolution LOS magnetic field maps of synoptic chart CR2009 on the photosphere to simulate the equilibrium state and compute the energy transport across the photosphere. To show the advantage of using both observed magnetic field and transverse velocity data, we have studied two cases: (1) with the inputs of the LOS magnetic field and transverse velocity measurements, and (2) with the input of the LOS magnetic field and without the input of transverse velocity measurements. For these two cases, the simulation results presented here are a three-dimensional coronal magnetic field configuration, density distributions on the photosphere and at 1.5 solar radii, and the solar wind in the corona. The deduced physical characteristics are the total current helicity and the synthetic emission. By comparing all the physical parameters of case 1 and case 2 and their synthetic emission images with the EIT image, we find that using both the measured magnetic field and the

  16. On two-dimensionalization of three-dimensional turbulence in shell models

    DEFF Research Database (Denmark)

    Chakraborty, Sagar; Jensen, Mogens Høgh; Sarkar, A.

    2010-01-01

    Applying a modified version of the Gledzer-Ohkitani-Yamada (GOY) shell model, the signatures of so-called two-dimensionalization effect of three-dimensional incompressible, homogeneous, isotropic fully developed unforced turbulence have been studied and reproduced. Within the framework of shell m......-similar PDFs for longitudinal velocity differences are also presented for the rotating 3D turbulence case....

  17. Mediastinal fibrosis with pulmonary artery obstruction; diagnosis and investigation with helical CT imaging including 3-dimensional reconstructions; Pulomonalarterienstenose bei aggresiver Mediastinalfibrose; Diagnostik und 3D-Darstellung mittels helikaler CT-Untersuchung

    Energy Technology Data Exchange (ETDEWEB)

    Kolbe, M. [Inst. fuer Diagnostische Radiologie, Kantonsspital Basel (Switzerland); Helwig, A. [Inst. fuer Diagnostische Radiologie, Kantonsspital Basel (Switzerland); Habicht, J.M. [Klinik fuer Herz-Torax-Chirurgie, Universitaetskliniken Basel (Switzerland); Steinbruch, W. [Inst. fuer Diagnostische Radiologie, Kantonsspital Basel (Switzerland)

    1997-07-01

    An aggressive mediastinal fibrosis was found in a 42-year-old female, suffering from dysphagia, stabbing pain in the chest, and an unclear weight loss. In this case, the rare combination of esophageal involvement, bronchial narrowing, and pulmonary artery obstruction could easily be demonstrated with a barium study and a helical CT examination including three-dimensional reconstructions. (orig.) [Deutsch] Wir stellen den Fall einer 42jaehrigen Patientin vor, welche zur Abklaerung einer zunehmenden Dysphagie, stechender Thoraxschmerzen und eines Gewichtsverlustes hospitalisiert wurde. Mittels klinischer und radiologischer Abklaerung konnte eine aggressive Mediastinalfibrose diagnostiziert werden. Die seltene Kombination einer Oesophaguseinengung mit Pulmonalarterienstenosen sowie einer Bronchuskompression konnte nichtinvasiv mittels Oesophagogramm und helikaler CT-Untersuchung zuverlaessig und schnell dargestellt werden. (orig.)

  18. Magnetic Helicity Conservation and Inverse Energy Cascade in Electron Magnetohydrodynamic Wave Packets

    International Nuclear Information System (INIS)

    Cho, Jungyeon

    2011-01-01

    Electron magnetohydrodynamics (EMHD) provides a fluidlike description of small-scale magnetized plasmas. An EMHD wave propagates along magnetic field lines. The direction of propagation can be either parallel or antiparallel to the magnetic field lines. We numerically study propagation of three-dimensional (3D) EMHD wave packets moving in one direction. We obtain two major results. (1) Unlike its magnetohydrodynamic (MHD) counterpart, an EMHD wave packet is dispersive. Because of this, EMHD wave packets traveling in one direction create opposite-traveling wave packets via self-interaction and cascade energy to smaller scales. (2) EMHD wave packets traveling in one direction clearly exhibit inverse energy cascade. We find that the latter is due to conservation of magnetic helicity. We compare inverse energy cascade in 3D EMHD turbulence and two-dimensional (2D) hydrodynamic turbulence.

  19. Magnetic helicity conservation and inverse energy cascade in electron magnetohydrodynamic wave packets.

    Science.gov (United States)

    Cho, Jungyeon

    2011-05-13

    Electron magnetohydrodynamics (EMHD) provides a fluidlike description of small-scale magnetized plasmas. An EMHD wave propagates along magnetic field lines. The direction of propagation can be either parallel or antiparallel to the magnetic field lines. We numerically study propagation of three-dimensional (3D) EMHD wave packets moving in one direction. We obtain two major results. (1) Unlike its magnetohydrodynamic (MHD) counterpart, an EMHD wave packet is dispersive. Because of this, EMHD wave packets traveling in one direction create opposite-traveling wave packets via self-interaction and cascade energy to smaller scales. (2) EMHD wave packets traveling in one direction clearly exhibit inverse energy cascade. We find that the latter is due to conservation of magnetic helicity. We compare inverse energy cascade in 3D EMHD turbulence and two-dimensional (2D) hydrodynamic turbulence.

  20. Synthesis and crystal structures of three isophthalato-bridged ...

    Indian Academy of Sciences (India)

    dral environments, and the isophthalato ligand bridges two Ni(II) centres in a bis bidentate fashion to form dimers in all three complexes. ... building blocks to construct supramolecular isomers, and one-dimensional left-handed helical chains of ... region using KBr pellets and a Bruker. EQUINOX 55 spectrometer. The solid ...

  1. Measurements of electron cloud growth and mitigation in dipole, quadrupole, and wiggler magnets

    Energy Technology Data Exchange (ETDEWEB)

    Calvey, J.R., E-mail: jrc97@cornell.edu; Hartung, W.; Li, Y.; Livezey, J.A.; Makita, J.; Palmer, M.A.; Rubin, D.

    2015-01-11

    Retarding field analyzers (RFAs), which provide a localized measurement of the electron cloud, have been installed throughout the Cornell Electron Storage Ring (CESR), in different magnetic field environments. This paper describes the RFA designs developed for dipole, quadrupole, and wiggler field regions, and provides an overview of measurements made in each environment. The effectiveness of electron cloud mitigations, including coatings, grooves, and clearing electrodes, are assessed with the RFA measurements.

  2. Ignition access in a D-3He helical reactor

    International Nuclear Information System (INIS)

    Mitarai, Osamu

    2003-01-01

    Ignition access in a D- 3 He helical reactor is studied based on 0-dimensional particle and power balance equations for deuterium, tritium, helium-3, alpha ash, proton ash, electron density and temperature. The calculations are based on the following experimental facts observed in LHD. (author)

  3. Computational study of three-dimensional wake structure

    International Nuclear Information System (INIS)

    Himeno, R.; Shirayama, S.; Kamo, K.; Kuwahara, K.

    1986-01-01

    Three-dimensional wake structure is studied by numerically solving the incompressible Navier-Stokes equations. Results are visualized by a three-dimensional color graphic system. It was found that a pair of vortex tubes separated from a body plays the most important role in the wake. Near the body vortex tubes are rather stable, however, they gradually become unsteady as they flow down

  4. Standalone visualization tool for three-dimensional DRAGON geometrical models

    International Nuclear Information System (INIS)

    Lukomski, A.; McIntee, B.; Moule, D.; Nichita, E.

    2008-01-01

    DRAGON is a neutron transport and depletion code able to solve one-, two- and three-dimensional problems. To date DRAGON provides two visualization modules, able to represent respectively two- and three-dimensional geometries. The two-dimensional visualization module generates a postscript file, while the three dimensional visualization module generates a MATLAB M-file with instructions for drawing the tracks in the DRAGON TRACKING data structure, which implicitly provide a representation of the geometry. The current work introduces a new, standalone, tool based on the open-source Visualization Toolkit (VTK) software package which allows the visualization of three-dimensional geometrical models by reading the DRAGON GEOMETRY data structure and generating an axonometric image which can be manipulated interactively by the user. (author)

  5. SNAP - a three dimensional neutron diffusion code

    International Nuclear Information System (INIS)

    McCallien, C.W.J.

    1993-02-01

    This report describes a one- two- three-dimensional multi-group diffusion code, SNAP, which is primarily intended for neutron diffusion calculations but can also carry out gamma calculations if the diffusion approximation is accurate enough. It is suitable for fast and thermal reactor core calculations and for shield calculations. SNAP can solve the multi-group neutron diffusion equations using finite difference methods. The one-dimensional slab, cylindrical and spherical geometries and the two-dimensional case are all treated as simple special cases of three-dimensional geometries. Numerous reflective and periodic symmetry options are available and may be used to reduce the number of mesh points necessary to represent the system. Extrapolation lengths can be specified at internal and external boundaries. (Author)

  6. Design of end magnetic structures for the Advanced Light Source wigglers

    International Nuclear Information System (INIS)

    Humphries, D.; Akre, J.; Hoyer, E.; Marks, S.; Minamihara, Y.; Pipersky, P.; Plate, D.; Schlueter, R.

    1995-01-01

    The vertical magnetic structures for the Advanced Light planar wiggler and 20 cm period elliptical hybrid permanent magnet design. The ends of these structures are characterized by diminishing scalar potential distributions the poles which control beam trajectories. They incorporate electromagnetic correction coils to dynamically correct for variations in the first integral of the field as a function of gap. A permanent magnet trim mechanism is incorporated to minimize the transverse integrated error field distribution. The ends were designed using analytic and computer modeling techniques. The design and modeling results are presented

  7. Three-dimensional fluorescence lifetime tomography

    International Nuclear Information System (INIS)

    Godavarty, Anuradha; Sevick-Muraca, Eva M.; Eppstein, Margaret J.

    2005-01-01

    Near-infrared fluorescence tomography using molecularly targeted lifetime-sensitive, fluorescent contrast agents have applications for early-stage cancer diagnostics. Yet, although the measurement of fluorescent lifetime imaging microscopy (FLIM) is extensively used in microscopy and spectroscopy applications, demonstration of fluorescence lifetime tomography for medical imaging is limited to two-dimensional studies. Herein, the feasibility of three-dimensional fluorescence-lifetime tomography on clinically relevant phantom volumes is established, using (i) a gain-modulated intensified charge coupled device (CCD) and modulated laser diode imaging system, (ii) two fluorescent contrast agents, e.g., Indocyanine green and 3-3'-Diethylthiatricarbocyanine iodide differing in their fluorescence lifetime by 0.62 ns, and (iii) a two stage approximate extended Kalman filter reconstruction algorithm. Fluorescence measurements of phase and amplitude were acquired on the phantom surface under different target to background fluorescence absorption (70:1, 100:1) and fluorescence lifetime (1:1, 2.1:1) contrasts at target depths of 1.4-2 cm. The Bayesian tomography algorithm was employed to obtain three-dimensional images of lifetime and absorption owing to the fluorophores

  8. Development of three dimensional solid modeler

    International Nuclear Information System (INIS)

    Zahoor, R.M.A.

    1999-01-01

    The work presented in this thesis is aimed at developing a three dimensional solid modeler employing computer graphics techniques using C-Language. Primitives have been generated, by combination of plane surfaces, for various basic geometrical shapes including cylinder, cube and cone. Back face removal technique for hidden surface removal has also been incorporated. Various transformation techniques such as scaling, translation, and rotation have been included for the object animation. Three dimensional solid modeler has been created by the union of two primitives to demonstrate the capabilities of the developed program. (author)

  9. Polycrystalline diamond detectors with three-dimensional electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Lagomarsino, S., E-mail: lagomarsino@fi.infn.it [University of Florence, Department of Physics, Via Sansone 1, 50019 Sesto Fiorentino (Italy); INFN Firenze, Via B. Rossi 1, 50019 Sesto Fiorentino (Italy); Bellini, M. [INO-CNR Firenze, Largo E. Fermi 6, 50125 Firenze (Italy); Brianzi, M. [INFN Firenze, Via B. Rossi 1, 50019 Sesto Fiorentino (Italy); Carzino, R. [Smart Materials-Nanophysics, Istituto Italiano di Tecnologia, Genova, Via Morego 30, 16163 Genova (Italy); Cindro, V. [Joseph Stefan Institute, Jamova Cesta 39, 1000 Ljubljana (Slovenia); Corsi, C. [University of Florence, Department of Physics, Via Sansone 1, 50019 Sesto Fiorentino (Italy); LENS Firenze, Via N. Carrara 1, 50019 Sesto Fiorentino (Italy); Morozzi, A.; Passeri, D. [INFN Perugia, Perugia (Italy); Università degli Studi di Perugia, Dipartimento di Ingegneria, via G. Duranti 93, 06125 Perugia (Italy); Sciortino, S. [University of Florence, Department of Physics, Via Sansone 1, 50019 Sesto Fiorentino (Italy); INFN Firenze, Via B. Rossi 1, 50019 Sesto Fiorentino (Italy); Servoli, L. [INFN Perugia, Perugia (Italy)

    2015-10-01

    The three-dimensional concept in diamond detectors has been applied, so far, to high quality single-crystal material, in order to test this technology in the best available conditions. However, its application to polycrystalline chemical vapor deposited diamond could be desirable for two reasons: first, the short inter-electrode distance of three-dimensional detectors should improve the intrinsically lower collection efficiency of polycrystalline diamond, and second, at high levels of radiation damage the performances of the poly-crystal material are not expected to be much lower than those of the single crystal one. We report on the fabrication and test of three-dimensional polycrystalline diamond detectors with several inter-electrode distances, and we demonstrate that their collection efficiency is equal or higher than that obtained with conventional planar detectors fabricated with the same material. - Highlights: • Pulsed laser fabrication of polycristalline diamond detectors with 3D electrodes. • Measurement of the charge collection efficiency (CCE) under beta irradiation. • Comparation between the CCE of 3D and conventional planar diamond sensors. • A rationale for the behavior of three-dimensional and planar sensors is given.

  10. Three dimensional diffusion calculations of nuclear reactors

    International Nuclear Information System (INIS)

    Caspo, N.

    1981-07-01

    This work deals with the three dimensional calculation of nuclear reactors using the code TRITON. The purposes of the work were to perform three-dimensional computations of the core of the Soreq nuclear reactor and of the power reactor ZION and to validate the TRITON code. Possible applications of the TRITON code in Soreq reactor calculations and in power reactor research are suggested. (H.K.)

  11. Study of three-dimensional image display by systemic CT

    International Nuclear Information System (INIS)

    Fujioka, Tadao; Ebihara, Yoshiyuki; Unei, Hiroshi; Hayashi, Masao; Shinohe, Tooru; Wada, Yuji; Sakai, Takatsugu; Kashima, Kenji; Fujita, Yoshihiro

    1989-01-01

    A head phantom for CT was scanned at 2 mm intervals from the cervix to the vertex in an attempt to obtain a three-dimensional image display of bones and facial epidermis from an ordinary axial image. Clinically, three-dimensional images were formed at eye sockets and hip joints. With the three-dimensional image using the head phantom, the entire head could be displayed at any angle. Clinically, images were obtained that could not be attained by ordinary CT scanning, such as broken bones in eye sockets and stereoscopic structure at the bottom of a cranium. The three-dimensional image display is considered to be useful in clinical diagnosis. (author)

  12. Continuum modeling of three-dimensional truss-like space structures

    Science.gov (United States)

    Nayfeh, A. H.; Hefzy, M. S.

    1978-01-01

    A mathematical and computational analysis capability has been developed for calculating the effective mechanical properties of three-dimensional periodic truss-like structures. Two models are studied in detail. The first, called the octetruss model, is a three-dimensional extension of a two-dimensional model, and the second is a cubic model. Symmetry considerations are employed as a first step to show that the specific octetruss model has four independent constants and that the cubic model has two. The actual values of these constants are determined by averaging the contributions of each rod element to the overall structure stiffness. The individual rod member contribution to the overall stiffness is obtained by a three-dimensional coordinate transformation. The analysis shows that the effective three-dimensional elastic properties of both models are relatively close to each other.

  13. Computer-aided diagnosis workstation and database system for chest diagnosis based on multi-helical CT images

    Science.gov (United States)

    Satoh, Hitoshi; Niki, Noboru; Mori, Kiyoshi; Eguchi, Kenji; Kaneko, Masahiro; Kakinuma, Ryutarou; Moriyama, Noriyuki; Ohmatsu, Hironobu; Masuda, Hideo; Machida, Suguru; Sasagawa, Michizou

    2006-03-01

    Multi-helical CT scanner advanced remarkably at the speed at which the chest CT images were acquired for mass screening. Mass screening based on multi-helical CT images requires a considerable number of images to be read. It is this time-consuming step that makes the use of helical CT for mass screening impractical at present. To overcome this problem, we have provided diagnostic assistance methods to medical screening specialists by developing a lung cancer screening algorithm that automatically detects suspected lung cancers in helical CT images and a coronary artery calcification screening algorithm that automatically detects suspected coronary artery calcification. We also have developed electronic medical recording system and prototype internet system for the community health in two or more regions by using the Virtual Private Network router and Biometric fingerprint authentication system and Biometric face authentication system for safety of medical information. Based on these diagnostic assistance methods, we have now developed a new computer-aided workstation and database that can display suspected lesions three-dimensionally in a short time. This paper describes basic studies that have been conducted to evaluate this new system. The results of this study indicate that our computer-aided diagnosis workstation and network system can increase diagnostic speed, diagnostic accuracy and safety of medical information.

  14. Diffusion with finite-helicity field tensor: A mechanism of generating heterogeneity

    Science.gov (United States)

    Sato, N.; Yoshida, Z.

    2018-02-01

    Topological constraints on a dynamical system often manifest themselves as breaking of the Hamiltonian structure; well-known examples are nonholonomic constraints on Lagrangian mechanics. The statistical mechanics under such topological constraints is the subject of this study. Conventional arguments based on phase spaces, Jacobi identity, invariant measure, or the H theorem are no longer applicable since all these notions stem from the symplectic geometry underlying canonical Hamiltonian systems. Remembering that Hamiltonian systems are endowed with field tensors (canonical 2-forms) that have zero helicity, our mission is to extend the scope toward the class of systems governed by finite-helicity field tensors. Here, we introduce a class of field tensors that are characterized by Beltrami vectors. We prove an H theorem for this Beltrami class. The most general class of energy-conserving systems are non-Beltrami, for which we identify the "field charge" that prevents the entropy to maximize, resulting in creation of heterogeneous distributions. The essence of the theory can be delineated by classifying three-dimensional dynamics. We then generalize to arbitrary (finite) dimensions.

  15. Experimental and theoretical studies on a novel helical architecture ...

    Indian Academy of Sciences (India)

    A novel two-dimensional (2D), layered, helical supramolecular architecture constructed via cooperative hydrogen bond and halogen bonds was synthesized and characterized: [(BMBA)₂(TPB)]n (1) [BMBA= 3-bromo-2-methylbenzoic acid, TPB = 1,2,3,4-tetra-(4-pyridyl)-butane]. Density functional theory (DFT) calculations ...

  16. On the motion of multiple helical vortices

    Science.gov (United States)

    Wood, D. H.; Boersma, J.

    2001-11-01

    The analysis of the self-induced velocity of a single helical vortex (Boersma & Wood 1999) is extended to include equally spaced multiple vortices. This arrangement approximates the tip vortices in the far wake of multi-bladed wind turbines, propellers, or rotors in ascending, descending, or hovering flight. The problem is reduced to finding, from the Biot Savart law, the additional velocity of a helix due to an identical helix displaced azimuthally. The resulting Biot Savart integral is further reduced to a Mellin Barnes integral representation which allows the asymptotic expansions to be determined for small and for large pitch. The Biot Savart integral is also evaluated numerically for a total of two, three and four vortices over a range of pitch values. The previous finding that the self-induced velocity at small pitch is dominated by a term inversely proportional to the pitch carries over to multiple vortices. It is shown that a far wake dominated by helical tip vortices is consistent with the one-dimensional representation that leads to the Betz limit on the power output of wind turbines. The small-pitch approximation then allows the determination of the blade&s bound vorticity for optimum power extraction. The present analysis is shown to give reasonable estimates for the vortex circulation in experiments using a single hovering rotor and a four-bladed propeller.

  17. Three-dimensional simulations of resistance spot welding

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Zhang, Wenqi; Perret, William

    2014-01-01

    This paper draws from the fundamentals of electro-thermo-mechanical coupling to the main aspects of finite element implementation and three-dimensional modelling of resistance welding. A new simulation environment is proposed in order to perform three-dimensional simulations and optimization...... of resistance welding together with the simulations of conventional and special-purpose quasi-static mechanical tests. Three-dimensional simulations of resistance welding consider the electrical, thermal, mechanical and metallurgical characteristics of the material as well as the operating conditions...... of the welding machines. Simulations of the mechanical tests take into account material softening due to the accumulation of ductile damage and cover conventional tests, such as tensile–shear tests, cross-tension test and peel tests, as well as the possibility of special-purpose tests designed by the users...

  18. Anterior glenoid rim fracture: the value of helical CT with threedimensional reconstruction and electronic humeral disarticulation

    Directory of Open Access Journals (Sweden)

    Heverton César de Oliveira

    2003-06-01

    Full Text Available Objectives: To show a new three-dimensional reconstructiontechnique based on helical computed tomography images withelectronic humeral disarticulation in anterior glenoid rim fractures,correlating the anatomic specimen with simulation of an anteriorglenoid rim fracture, as well as evaluating the extension of thefracture, the bone fragment position and distance in relation to theglenoid cavity in six patients. Methods: One scapula and onehumerus with no signs of fracture or congenital malformationswere placed in anatomical position using an adhesive tape aftersimulating an anterior glenoid rim fracture made by an osteotome.Helical CT imaging was acquired and three-dimensionalreconstructions were made based on these images, with andwithout electronic humeral disarticulation. The bone fragment waslocated, measured and its position in relation to the glenoid cavitywas assessed. Six patients with anterior glenoid rim fracture weresubmitted to CT of the shoulder using the same parameters asthose applied to the anatomic specimen. Results: In the anatomicspecimen and in all six patients the bone fragment was clearlydemonstrated; bone fragment measurements in the anatomicspecimen and in three-dimensional reconstructions wereequivalent. The fragment was better demonstrated in the imagestaken with electronic humeral disarticulation, particularly in thefrontal view of the glenoid cavity as observed in all six patients.Conclusion: We concluded that our experiment with the anatomicspecimen and the study of six patients allow us to state that thistechnique is safe and accurate to demonstrate the extension, sizeand location of the bone fragment in anterior glenoid rim fractures,and it provides essential elements for therapeutic planning.

  19. Quantum SASE FEL with a Laser Wiggler

    CERN Document Server

    Bonifacio, R

    2005-01-01

    Quantum effects in high-gain FELs become relevant when ρ'=ρ(mcγ/ ћ k)<1. The quantum FEL parameter ρ' rules the maximum number of photons emitted per electrons. It has been shown that when ρ'<1 a "quantum purification" of the SASE regime occurs: in fact, the spectrum of the emitted radiation (randomly spiky in the usual classical SASE regime) shrinks to a very narrow single line, leading to a high degree of temporal coherence. From the definition of ρ it appears that in order to achieve the quantum regime, small values of ρ, beam energy and radiation wavelength are necessary. These requirements can be met only using a laser wiggler. In this work we state the scaling laws necessary to operate a SASE FEL in the Angstrom region. All physical quantities are expressed in terms of the normalized emittance and of two parameters: the ratio between laser and electron beam spot sizes and the ratio between Rayleigh range and electron ...

  20. Depth-enhanced three-dimensional-two-dimensional convertible display based on modified integral imaging.

    Science.gov (United States)

    Park, Jae-Hyeung; Kim, Hak-Rin; Kim, Yunhee; Kim, Joohwan; Hong, Jisoo; Lee, Sin-Doo; Lee, Byoungho

    2004-12-01

    A depth-enhanced three-dimensional-two-dimensional convertible display that uses a polymer-dispersed liquid crystal based on the principle of integral imaging is proposed. In the proposed method, a lens array is located behind a transmission-type display panel to form an array of point-light sources, and a polymer-dispersed liquid crystal is electrically controlled to pass or to scatter light coming from these point-light sources. Therefore, three-dimensional-two-dimensional conversion is accomplished electrically without any mechanical movement. Moreover, the nonimaging structure of the proposed method increases the expressible depth range considerably. We explain the method of operation and present experimental results.

  1. An algorithm for three-dimensional imaging in the positron camera

    International Nuclear Information System (INIS)

    Chen Kun; Ma Mei; Xu Rongfen; Shen Miaohe

    1986-01-01

    A mathematical algorithm of back-projection filtered for image reconstructions using two-dimensional signals detected from parallel multiwire proportional chambers is described. The approaches of pseudo three-dimensional and full three-dimensional image reconstructions are introduced, and the available point response functions are defined as well. The designing parameters and computation procedure of the full three-dimensional method is presented

  2. Two- and three-dimensional CT analysis of ankle fractures

    International Nuclear Information System (INIS)

    Magid, D.; Fishman, E.K.; Ney, D.R.; Kuhlman, J.E.

    1988-01-01

    CT with coronal and sagittal reformatting (two-dimensional CT) and animated volumetric image rendering (three-dimensional CT) was used to assess ankle fractures. Partial volume limits transaxial CT in assessments of horizontally oriented structures. Two-dimensional CT, being orthogonal to the plafond, superior mortise, talar dome, and tibial epiphysis, often provides the most clinically useful images. Two-dimensional CT is most useful in characterizing potentially confusing fractures, such as Tillaux (anterior tubercle), triplane, osteochondral talar dome, or nondisplaced talar neck fractures, and it is the best study to confirm intraarticular fragments. Two-and three-dimensional CT best indicate the percentage of articular surface involvement and best demonstrate postoperative results or complications (hardware migration, residual step-off, delayed union, DJD, AVN, etc). Animated three-dimensional images are the preferred means of integrating the two-dimensional findings for surgical planning, as these images more closely simulate the clinical problem

  3. Microinstability Studies for the Large Helical Device

    International Nuclear Information System (INIS)

    Rewoldt, G.; Ku, L.-P.; Tang, W.M.; Sugama, H.; Nakajima, N.; Watanabe, K.Y.; Murakami, S.; Yamada, H.; Cooper, W.A.

    2002-01-01

    Fully kinetic assessments of the stability properties of toroidal drift modes have been obtained for cases for the Large Helical Device (LHD). This calculation employs the comprehensive linear microinstability code FULL, as recently extended for nonaxisymmetric systems. The code retains the important effects in the linearized gyrokinetic equation, using the lowest-order ''ballooning representation'' for high toroidal mode number instabilities in the electrostatic limit. These effects include trapped particles, FLR, transit and bounce and magnetic drift frequency resonances, etc., for any number of plasma species. Results for toroidal drift waves destabilized by trapped electrons and ion temperature gradients are presented, using numerically-calculated three-dimensional MHD equilibria. These are reconstructed from experimental measurements. Quasilinear fluxes of particles and energy for each species are also calculated. Pairs of LHD discharges with different magnetic axis positions and with and without pellet injection are compared

  4. Evaluation of three-dimensional virtual perception of garments

    Science.gov (United States)

    Aydoğdu, G.; Yeşilpinar, S.; Erdem, D.

    2017-10-01

    In recent years, three-dimensional design, dressing and simulation programs came into prominence in the textile industry. By these programs, the need to produce clothing samples for every design in design process has been eliminated. Clothing fit, design, pattern, fabric and accessory details and fabric drape features can be evaluated easily. Also, body size of virtual mannequin can be adjusted so more realistic simulations can be created. Moreover, three-dimensional virtual garment images created by these programs can be used while presenting the product to end-user instead of two-dimensional photograph images. In this study, a survey was carried out to investigate the visual perception of consumers. The survey was conducted for three different garment types, separately. Questions about gender, profession etc. was asked to the participants and expected them to compare real samples and artworks or three-dimensional virtual images of garments. When survey results were analyzed statistically, it is seen that demographic situation of participants does not affect visual perception and three-dimensional virtual garment images reflect the real sample characteristics better than artworks for each garment type. Also, it is reported that there is no perception difference depending on garment type between t-shirt, sweatshirt and tracksuit bottom.

  5. Three-dimensional reconstruction and visualization system for medical images

    International Nuclear Information System (INIS)

    Preston, D.F.; Batnitzky, S.; Kyo Rak Lee; Cook, P.N.; Cook, L.T.; Dwyer, S.J.

    1982-01-01

    A three-dimensional reconstruction and visualization system could be of significant advantage in medical application such as neurosurgery and radiation treatment planning. The reconstructed anatomic structures from CT head scans could be used in a head stereotactic system to help plan the surgical procedure and the radiation treatment for a brain lesion. Also, the use of three-dimensional reconstruction algorithm provides for quantitative measures such as volume and surface area estimation of the anatomic features. This aspect of the three-dimensional reconstruction system may be used to monitor the progress or staging of a disease and the effects of patient treatment. Two cases are presented to illustrate the three-dimensional surface reconstruction and visualization system

  6. Three-dimensional labeling program for elucidation of the geometric properties of biological particles in three-dimensional space.

    Science.gov (United States)

    Nomura, A; Yamazaki, Y; Tsuji, T; Kawasaki, Y; Tanaka, S

    1996-09-15

    For all biological particles such as cells or cellular organelles, there are three-dimensional coordinates representing the centroid or center of gravity. These coordinates and other numerical parameters such as volume, fluorescence intensity, surface area, and shape are referred to in this paper as geometric properties, which may provide critical information for the clarification of in situ mechanisms of molecular and cellular functions in living organisms. We have established a method for the elucidation of these properties, designated the three-dimensional labeling program (3DLP). Algorithms of 3DLP are so simple that this method can be carried out through the use of software combinations in image analysis on a personal computer. To evaluate 3DLP, it was applied to a 32-cell-stage sea urchin embryo, double stained with FITC for cellular protein of blastomeres and propidium iodide for nuclear DNA. A stack of optical serial section images was obtained by confocal laser scanning microscopy. The method was found effective for determining geometric properties and should prove applicable to the study of many different kinds of biological particles in three-dimensional space.

  7. Analysis and validation of carbohydrate three-dimensional structures

    International Nuclear Information System (INIS)

    Lütteke, Thomas

    2009-01-01

    The article summarizes the information that is gained from and the errors that are found in carbohydrate structures in the Protein Data Bank. Validation tools that can locate these errors are described. Knowledge of the three-dimensional structures of the carbohydrate molecules is indispensable for a full understanding of the molecular processes in which carbohydrates are involved, such as protein glycosylation or protein–carbohydrate interactions. The Protein Data Bank (PDB) is a valuable resource for three-dimensional structural information on glycoproteins and protein–carbohydrate complexes. Unfortunately, many carbohydrate moieties in the PDB contain inconsistencies or errors. This article gives an overview of the information that can be obtained from individual PDB entries and from statistical analyses of sets of three-dimensional structures, of typical problems that arise during the analysis of carbohydrate three-dimensional structures and of the validation tools that are currently available to scientists to evaluate the quality of these structures

  8. Progress of radiotherapy by three-dimensional treatment planning

    International Nuclear Information System (INIS)

    Imada, Hajime; Nomoto, Satoshi; Takahashi, Hiroyuki; Nakata, Hajime

    1998-01-01

    The recent progress of three-dimensional radiation treatment planning was reviewed. And clinical cases such as lung cancer and breast cancer are introduced. In the University of Occupational and Development Health, the treatment system FOCUS which is made up of CT simulator and linac was used mainly. Three-dimensional treatment planning was carried for about 90% of 330 patients who underwent radiotherapy for one year. The target becomes to be accurate and dose distribution with all CT slices in radiation field can be confirmed by using three-dimensional radiation treatment planning apparatus. High dose irradiation localized to tumor part is possible. Relations between total dose and volume of normal tissue and/or tumor can be estimated numerically and easily by DVH. A prediction of indication and affection became possible by this procedure. In conclusion, generalization of three-dimensional radiation treatment planning will bring progress of more effective radiotherapy with less adverse reaction. (K.H.). 21 refs

  9. Three Dimensional Polarimetric Neutron Tomography of Magnetic Fields

    DEFF Research Database (Denmark)

    Sales, Morten; Strobl, Markus; Shinohara, Takenao

    2018-01-01

    Through the use of Time-of-Flight Three Dimensional Polarimetric Neutron Tomography (ToF 3DPNT) we have for the first time successfully demonstrated a technique capable of measuring and reconstructing three dimensional magnetic field strengths and directions unobtrusively and non-destructively wi......Through the use of Time-of-Flight Three Dimensional Polarimetric Neutron Tomography (ToF 3DPNT) we have for the first time successfully demonstrated a technique capable of measuring and reconstructing three dimensional magnetic field strengths and directions unobtrusively and non...... and reconstructed, thereby providing the proof-of-principle of a technique able to reveal hitherto unobtainable information on the magnetic fields in the bulk of materials and devices, due to a high degree of penetration into many materials, including metals, and the sensitivity of neutron polarisation to magnetic...... fields. The technique puts the potential of the ToF time structure of pulsed neutron sources to full use in order to optimise the recorded information quality and reduce measurement time....

  10. Preoperative evaluation of renal anatomy and renal masses with helical CT, 3D-CT and 3D-CT angiography.

    Science.gov (United States)

    Toprak, Uğur; Erdoğan, Aysun; Gülbay, Mutlu; Karademir, Mehmet Alp; Paşaoğlu, Eşref; Akar, Okkeş Emrah

    2005-03-01

    The aim of this prospective study was to determine the efficacy of three-dimensional computed tomography (3D-CT) and three-dimensional computed tomographic angiography (3D-CTA) that were reconstructed by using the axial images of the multiphasic helical CT in the preoperative evaluation of renal masses and demonstration of renal anatomy. Twenty patients that were suspected of having renal masses upon initial physical examination and ultrasonographic evaluation were examined through multiphasic helical CT. Two authors executed CT evaluations. Axial images were first examined and then used to reconstruct 3D-CT and 3D- CTA images. Number, location and size of the renal masses and other findings were noted. Renal vascularization and relationships of the renal masses with the neighboring renal structures were further investigated with 3D-CT and 3D-CTA images. Out of 20 patients, 13 had histopathologically proven renal cell carcinoma. The diagnoses of the remaining seven patients were xanthogranulomatous pyelonephritis, abscess, simple cyst, infected cyst, angiomyolipoma, oncocytoma and arteriovenous fistula. In the renal cell carcinoma group, 3 patients had stage I, 7 patients had stage II, and 3 patients had stage III disease. Sizes of renal cell carcinoma masses were between 23 mm to 60 mm (mean, 36 mm). Vascular invasion was shown in 2 renal cell carcinoma patients. Collecting system invasion was identified in 11 of 13 renal cell patients. These radiologic findings were confirmed with surgical specimens. Three-dimensional CT and 3D-CTA are non-invasive, effective imaging techniques for the preoperative evaluation of renal masses.

  11. Inorganic-organic hybrid polyoxometalate containing supramolecular helical chains: Preparation, characterization and application in chemically bulk-modified electrode

    International Nuclear Information System (INIS)

    Han Zhangang; Zhao Yulong; Peng Jun; Liu Qun; Wang Enbo

    2005-01-01

    An inorganic-organic hybrid polyoxometalate (POM) (Hbpy) 4 [SiMo 12 O 40 ] (1) (bpy = 2,4-bipyridine), has been prepared and characterized. X-ray diffraction study reveals that compound 1 contains interesting organic double helical chains. The hybrid nanoparticles was used as a solid bulkmodifier to fabricate a three-dimensional chemically modified carbon paste electrode (1-CPE) by direct mixing. The electrochemical behavior and electrocatalysis of 1-CPE has been studied in detail. The results indicate that 1-CPE has a good electrocatalytic activity toward the reduction of nitrite in 1 M H 2 SO 4 aqueous solution. 1-CPE shows remarkable stability that can be ascribed to the interactions existed between POM anions and organic double helical bpy chains, which are very important for practical applications in electrode modification

  12. Application of three-dimensional CT reconstruction cranioplasty

    International Nuclear Information System (INIS)

    Yan Shuli; Yun Yongxing; Wan Kunming; Qiu Jian

    2011-01-01

    Objective: To study the application of three-dimensional CT reconstruction in cranioplasty. Methods: 46 patients with skull defect were divided into two group. One group underwent CT examination and three-dimensional reconstruction, and then the Titanium nets production company manufactured corresponding titanium meshes were shaped those data before the operation. The other group received traditional operation in which titanium meshes were shaped during operation. The average time of operation were compared. Results: The average time of operation of the first group is 86.6±13.6 mins, and that of the second group is 115±15.0 mins. The difference of average operation time between the two groups was statistically significant. Conclusion: Three-dimensional CT reconstruction techniques contribute to shorten the average operation time, reduce the intensity of neurosurgeon's work and the patien's risk. (authors)

  13. Computational methods for three-dimensional microscopy reconstruction

    CERN Document Server

    Frank, Joachim

    2014-01-01

    Approaches to the recovery of three-dimensional information on a biological object, which are often formulated or implemented initially in an intuitive way, are concisely described here based on physical models of the object and the image-formation process. Both three-dimensional electron microscopy and X-ray tomography can be captured in the same mathematical framework, leading to closely-related computational approaches, but the methodologies differ in detail and hence pose different challenges. The editors of this volume, Gabor T. Herman and Joachim Frank, are experts in the respective methodologies and present research at the forefront of biological imaging and structural biology.   Computational Methods for Three-Dimensional Microscopy Reconstruction will serve as a useful resource for scholars interested in the development of computational methods for structural biology and cell biology, particularly in the area of 3D imaging and modeling.

  14. Three-dimensional tokamak equilibria and stellarators with two-dimensional magnetic symmetry

    International Nuclear Information System (INIS)

    Garabedian, P.R.

    1997-01-01

    Three-dimensional computer codes have been developed to simulate equilibrium, stability and transport in tokamaks and stellarators. Bifurcated solutions of the tokamak problem suggest that three-dimensional effects may be more important than has generally been thought. Extensive calculations have led to the discovery of a stellarator configuration with just two field periods and with aspect ratio 3.2 that has a magnetic field spectrum B mn with toroidal symmetry. Numerical studies of equilibrium, stability and transport for this new device, called the Modular Helias-like Heliac 2 (MHH2), will be presented. (author)

  15. Evaluation of diagnostic quality in musculoskeletal three-dimensional CT scans

    International Nuclear Information System (INIS)

    Vannier, M.W.; Hildebolt, C.F.; Gilula, L.A.; Sutherland, C.J.; Offutt, C.J.; Drebin, R.; Mantle, M.; Giordono, T.A.

    1988-01-01

    A major application of three-dimensional computed tomography (CT) is in the imaging of the skeleton. Three-dimensional CT has an important role in determining the presence and extent of congenital and acquired orthopedic abnormalities. The objective of this study was to compare the diagnostic sensitivity and specificity of three-dimensional CT, planar CT, and plain radiography in the detection and characterization of orthopedic abnormalities. Three-dimensional CT scan reconstructions were obtained by two methods, surface reconstruction and volumetric techniques. Seventy patients were imaged with CT, three-dimensional CT, and plain radiography. The consensus opinion of experts with access to all images plus clinical history, surgical findings, and follow-up findings were taken as truth. Expert radiologists read these cases in a blinded fashion. The results were compared using receiver operating characteristic (ROC) analysis. The diagnostic value of each three-dimensional reconstruction method and the parameters used to perform the reconstructions were evaluated

  16. Effects of Magnetic and Kinetic Helicities on the Growth of Magnetic Fields in Laminar and Turbulent Flows by Helical Fourier Decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Linkmann, Moritz; Sahoo, Ganapati; Biferale, Luca [Department of Physics and INFN, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, I-00133 Rome (Italy); McKay, Mairi; Berera, Arjun [School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, EH9 3FD, Edinburgh (United Kingdom)

    2017-02-10

    We present a numerical and analytical study of incompressible homogeneous conducting fluids using a helical Fourier representation. We analytically study both small- and large-scale dynamo properties, as well as the inverse cascade of magnetic helicity, in the most general minimal subset of interacting velocity and magnetic fields on a closed Fourier triad. We mainly focus on the dependency of magnetic field growth as a function of the distribution of kinetic and magnetic helicities among the three interacting wavenumbers. By combining direct numerical simulations of the full magnetohydrodynamics equations with the helical Fourier decomposition, we numerically confirm that in the kinematic dynamo regime the system develops a large-scale magnetic helicity with opposite sign compared to the small-scale kinetic helicity, a sort of triad-by-triad α -effect in Fourier space. Concerning the small-scale perturbations, we predict theoretically and confirm numerically that the largest instability is achived for the magnetic component with the same helicity of the flow, in agreement with the Stretch–Twist–Fold mechanism. Vice versa, in the presence of Lorentz feedback on the velocity, we find that the inverse cascade of magnetic helicity is mostly local if magnetic and kinetic helicities have opposite signs, while it is more nonlocal and more intense if they have the same sign, as predicted by the analytical approach. Our analytical and numerical results further demonstrate the potential of the helical Fourier decomposition to elucidate the entangled dynamics of magnetic and kinetic helicities both in fully developed turbulence and in laminar flows.

  17. CesrTA Retarding Field Analyzer Measurements in Drifts, Dipoles, Quadrupoles and Wigglers

    International Nuclear Information System (INIS)

    Calvey, J.R.; Li, Y.; Livezey, J.A.; Makita, J.; Meller, R.E.; Palmer, M.A.; Schwartz, R.M.; Strohman, C.R.; Harkay, K.; Calatroni, S.; Rumolo, G.; Kanazawa, K.; Suetsugu, Y.; Pivi, M.; Wang, L.

    2010-01-01

    Over the course of the CesrTA program, the Cornell Electron Storage Ring (CESR) has been instrumented with several retarding field analyzers (RFAs), which measure the local density and energy distribution of the electron cloud. These RFAs have been installed in drifts, dipoles, quadrupoles, and wigglers; and data have been taken in a variety of beam conditions and bunch configurations. This paper will provide an overview of these results, and give a preliminary evaluation of the efficacy of cloud mitigation techniques implemented in the instrumented vacuum chambers.

  18. Depth-of-field effects in wiggler radiation sources: Geometrical versus wave optics

    Directory of Open Access Journals (Sweden)

    Richard P. Walker

    2017-02-01

    Full Text Available A detailed analysis is carried out of the optical properties of synchrotron radiation emitted by multipole wigglers, concentrating on the effective source size and brightness and the so-called “depth of field” effects, concerning which there has been some controversy in the literature. By comparing calculations made with both geometrical optics and wave optics methods we demonstrate that the two approaches are not at variance, and that the wave optics results tend towards those of geometrical optics under well-defined conditions.

  19. Three-dimensional echocardiography of normal and pathologic mitral valve: a comparison with two-dimensional transesophageal echocardiography

    NARCIS (Netherlands)

    Salustri, A.; Becker, A. E.; van Herwerden, L.; Vletter, W. B.; ten Cate, F. J.; Roelandt, J. R.

    1996-01-01

    This study was done to ascertain whether three-dimensional echocardiography can facilitate the diagnosis of mitral valve abnormalities. The value of the additional information provided by three-dimensional echocardiography compared with two-dimensional multiplane transesophageal echocardiography for

  20. The ETA-II linear induction accelerator and IMP wiggler: A high-average-power millimeter-wave free-electron-laser for plasma heating

    International Nuclear Information System (INIS)

    Allen, S.L.; Scharlemann, E.T.

    1992-05-01

    We have constructed a 140-GHz free-electron laser to generate high-average-power microwaves for heating the MTX tokamak plasma. A 5.5-m steady-state wiggler (intense Microwave Prototype-IMP) has been installed at the end of the upgraded 60-cell ETA-II accelerator, and is configured as an FEL amplifier for the output of a 140-GHz long-pulse gyrotron. Improvements in the ETA-II accelerator include a multicable-feed power distribution network, better magnetic alignment using a stretched-wire alignment technique (SWAT). and a computerized tuning algorithm that directly minimizes the transverse sweep (corkscrew motion) of the electron beam. The upgrades were first tested on the 20-cell, 3-MeV front end of ETA-II and resulted in greatly improved energy flatness and reduced corkscrew motion. The upgrades were then incorporated into the full 60-cell configuration of ETA-II, along with modifications to allow operation in 50-pulse bursts at pulse repetition frequencies up to 5 kHz. The pulse power modifications were developed and tested on the High Average Power Test Stand (HAPTS), and have significantly reduced the voltage and timing jitter of the MAG 1D magnetic pulse compressors. The 2-3 kA. 6-7 MeV beam from ETA-II is transported to the IMP wiggler, which has been reconfigured as a laced wiggler, with both permanent magnets and electromagnets, for high magnetic field operation. Tapering of the wiggler magnetic field is completely computer controlled and can be optimized based on the output power. The microwaves from the FEL are transmitted to the MTX tokamak by a windowless quasi-optical microwave transmission system. Experiments at MTX are focused on studies of electron-cyclotron-resonance heating (ECRH) of the plasma. We summarize here the accelerator and pulse power modifications, and describe the status of ETA-II, IMP, and MTX operations

  1. The ETA-II linear induction accelerator and IMP wiggler: A high-average-power millimeter-wave free-electron laser for plasma heating

    International Nuclear Information System (INIS)

    Allen, S.L.; Scharlemann, E.T.

    1993-01-01

    The authors have constructed a 140-GHz free-electron laser to generate high-average-power microwaves for heating the MTX tokamak plasma. A 5.5-m steady-state wiggler (Intense Microwave, Prototype-IMP) has been installed at the end of the upgraded 60-cell ETA-II accelerator, and is configured as an FEL amplifier for the output of a 140-GHz long-pulse gyrotron. Improvements in the ETA-II accelerator include a multicable-feed power distribution network, better magnetic alignment using a stretched-wire alignment technique (SWAT), and a computerized tuning algorithm that directly minimizes the transverse sweep (corkscrew motion) of the electron beam. The upgrades were first tested on the 20-cell, 3-MeV front end of ETA-II and resulted in greatly improved energy flatness and reduced corkscrew motion. The upgrades were then incorporated into the full 60-cell configuration of ETA-II, along with modifications to allow operation in 50-pulse bursts at pulse repetition frequencies up to 5 kHz. The pulse power modifications were developed and tested on the High Average Power Test Stand (HAPTS), and have significantly reduced the voltage and timing jitter of the MAG 1D magnetic pulse compressors. The 2-3 kA, 6-7 MeV beam from ETA-II is transported to the IMP wiggler, which has been reconfigured as a laced wiggler, with both permanent magnets and electromagnets, for high magnetic field operation. Tapering of the wiggler magnetic field is completely computer controlled and can be optimized based on the output power. The microwaves from the FEL are transmitted to the MTX tokamak by a windowless quasi-optical microwave transmission system. Experiments at MTX are focused on studies of electron-cyclotron-resonance heating (ECRH) of the plasma. The authors summarize here the accelerator and pulse power modifications, and describe the status of ETA-II, IMP, and MTX operations

  2. Study of the nonlinear three-dimensional Debye screening in plasmas

    International Nuclear Information System (INIS)

    Lin Chang; Zhao Jinbao; Zhang Xiulian

    2000-01-01

    The nonlinear three-dimensional Debye screening in plasmas is investigated. New analytical solutions for the three-dimensional Poisson equation have been obtained for the nonlinear Debye potential for the first time. We derive exact analytical expression for the special case of the nonlinear three-dimensional Debye screening in plasmas. (orig.)

  3. Heat engine in the three-dimensional spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Mo, Jie-Xiong [Institute of Theoretical Physics, Lingnan Normal University,Zhanjiang, 524048, Guangdong (China); Department of Physics, Lingnan Normal University,Zhanjiang, 524048, Guangdong (China); Liang, Feng [Department of Physics, Lingnan Normal University,Zhanjiang, 524048, Guangdong (China); Li, Gu-Qiang [Institute of Theoretical Physics, Lingnan Normal University,Zhanjiang, 524048, Guangdong (China); Department of Physics, Lingnan Normal University,Zhanjiang, 524048, Guangdong (China)

    2017-03-02

    We define a kind of heat engine via three-dimensional charged BTZ black holes. This case is quite subtle and needs to be more careful. The heat flow along the isochores does not equal to zero since the specific heat C{sub V}≠0 and this point completely differs from the cases discussed before whose isochores and adiabats are identical. So one cannot simply apply the paradigm in the former literatures. However, if one introduces a new thermodynamic parameter associated with the renormalization length scale, the above problem can be solved. We obtain the analytical efficiency expression of the three-dimensional charged BTZ black hole heat engine for two different schemes. Moreover, we double check with the exact formula. Our result presents the first specific example for the sound correctness of the exact efficiency formula. We argue that the three-dimensional charged BTZ black hole can be viewed as a toy model for further investigation of holographic heat engine. Furthermore, we compare our result with that of the Carnot cycle and extend the former result to three-dimensional spacetime. In this sense, the result in this paper would be complementary to those obtained in four-dimensional spacetime or ever higher. Last but not the least, the heat engine efficiency discussed in this paper may serve as a criterion to discriminate the two thermodynamic approaches introduced in ref. https://www.doi.org/10.1103/PhysRevD.92.124069 and our result seems to support the approach which introduces a new thermodynamic parameter R=r{sub 0}.

  4. Subjective figure reversal in two- and three-dimensional perceptual space.

    Science.gov (United States)

    Radilová, J; Radil-Weiss, T

    1984-08-01

    A permanently illuminated pattern of Mach's truncated pyramid can be perceived according to the experimental instruction given, either as a three-dimensional reversible figure with spontaneously changing convex and concave interpretation (in one experiment), or as a two-dimensional reversible figure-ground pattern (in another experiment). The reversal rate was about twice as slow, without the subjects being aware of it, if it was perceived as a three-dimensional figure compared to the situation when it was perceived as two-dimensional. It may be hypothetized that in the three-dimensional case, the process of perception requires more sequential steps than in the two-dimensional one.

  5. Three-Dimensional Reconstruction of Sandpile Interiors

    Science.gov (United States)

    Seidler, G. T.

    2001-03-01

    The granular bed, or sandpile, has become one of the condensed matter physicist's favorite systems. In addition to conceptual appeal, the simplest sandpile of monodisperse hard spheres is a valuable model system for understanding powders, liquids, and metallic glasses. Any fundamental approach to the transport and mechanical properties of three-dimensional mesoscale disordered materials must follow from a thorough understanding of their structure. However, in the overwhelming majority of cases, structure measurements have been limited to the mean filling fraction and the structural autocorrelation function. This is particularly unfortunate in the ongoing sandpile renaissance, where some of the most interesting questions concern structure and the relationship between structure and dynamics. I will discuss the combination of synchrotron x-ray microtomography and computer vision algorithms to perform three-dimensional virtual reconstructions of real sandpiles. This technique is rapid and noninvasive, and is applicable to samples large enough to separate bulk and boundary properties. The resulting complete knowledge of structure can be used to calculate otherwise inaccessible correlation functions. I will present results for several measures of the bond-orientational order in three-dimensional sandpiles, including fabric tensors and nematic order parameters.

  6. A plastic surgery application in evolution: three-dimensional printing.

    Science.gov (United States)

    Gerstle, Theodore L; Ibrahim, Ahmed M S; Kim, Peter S; Lee, Bernard T; Lin, Samuel J

    2014-02-01

    Three-dimensional printing represents an evolving technology still in its infancy. Currently, individuals and small business entities have the ability to manufacture physical objects from digital renderings, computer-aided design, and open source files. Design modifications and improvements in extrusion methods have made this technology much more affordable. This article explores the potential uses of three-dimensional printing in plastic surgery. A review was performed detailing the known uses of three-dimensional printing in medicine. The potential applications of three-dimensional printing in plastic surgery are discussed. Various applications for three-dimensional printing technology have emerged in medicine, including printing organs, printing body parts, bio-printing, and computer-aided tissue engineering. In plastic surgery, these tools offer various prospective applications for surgical planning, resident education, and the development of custom prosthetics. Numerous applications exist in medicine, including the printing of devices, implants, tissue replacements, and even whole organs. Plastic surgeons may likely find this technology indispensable in surgical planning, education, and prosthetic device design and development in the near future.

  7. Three-dimensional (3D) analysis of the temporomandibular joint

    DEFF Research Database (Denmark)

    Kitai, N.; Kreiborg, S.; Murakami, S.

    Symposium Orthodontics 2001: Where are We Now? Where are We Going?, three-dimensional analysis, temporomandibular joint......Symposium Orthodontics 2001: Where are We Now? Where are We Going?, three-dimensional analysis, temporomandibular joint...

  8. Study on three dimensional seismic isolation system

    International Nuclear Information System (INIS)

    Morishita, Masaki; Kitamura, Seiji

    2003-01-01

    Japan Nuclear Cycle Development Institute (JNC) and Japan Atomic Power Company (JAPC) launched joint research programs on structural design and three-dimensional seismic isolation technologies, as part of the supporting R and D activities for the feasibility studies on commercialized fast breeder reactor cycle systems. A research project by JAPC under the auspices of the Ministry of Economy, Trade, and Industry (METI) with technical support by JNC is included in this joint study. This report contains the results of the research on the three-dimensional seismic isolation technologies, and the results of this year's study are summarized in the following five aspects. (1) Study on Earthquake Condition for Developing 3-dimensional Base Isolation System. The case study S2 is one of the maximum ground motions, of which the records were investigated up to this time. But a few observed near the fault exceed the case study S2 in the long period domain, depending on the fault length and conditions. Generally it is appropriate that the response spectra ratio (vertical/horizontal) is 0.6. (2) Performance Requirement for 3-dimensional Base Isolation System and Devices. Although the integrity map of main equipment/piping dominate the design criteria for the 3-dimensional base isolation system, the combined integrity map is the same as those of FY 2000, which are under fv=1Hz and over hv=20%. (3) Developing Targets and Schedule for 3-dimensional Isolation Technology. The target items for 3-dimensional base isolation system were rearranged into a table, and developing items to be examined concerning the device were also adjusted. A development plan until FY 2009 was made from the viewpoint of realization and establishment of a design guideline on 3-dimensional base isolation system. (4) Study on 3-dimensional Entire Building Base Isolation System. Three ideas among six ideas that had been proposed in FY2001, i.e., '3-dimensional base isolation system incorporating hydraulic

  9. Three-dimensional imaging utilizing energy discrimination

    International Nuclear Information System (INIS)

    Gunter, D.L.; Hoffman, K.R.; Beck, R.N.

    1990-01-01

    An algorithm is proposed for three-dimensional image reconstruction in nuclear medicine which uses scattered radiation rather than multiple projected images to determine the source depth within the body. Images taken from numerous energy windows are combined to construct the source distribution in the body. The gamma-ray camera is not moved during the imaging process. Experiments with both Tc-99m and Ga-67 demonstrate that two channels of depth information can be extracted from the low energy images produced by scattered radiation. By combining this technique with standard SPECT reconstruction using multiple projections the authors anticipate much improved spatial resolution in the overall three-dimensional reconstruction

  10. Magnet design with 100-kA HTS STARS conductors for the helical fusion reactor

    Science.gov (United States)

    Yanagi, N.; Terazaki, Y.; Ito, S.; Tamura, H.; Hamaguchi, S.; Mito, T.; Hashizume, H.; Sagara, A.

    2016-12-01

    The high-temperature superconducting (HTS) option is employed for the conceptual design of the LHD-type helical fusion reactor FFHR-d1. The 100-kA-class STARS (Stacked Tapes Assembled in Rigid Structure) conductor is used for the magnet system including the continuously wound helical coils. Protection of the magnet system in case of a quench is a crucial issue and the hot-spot temperature during an emergency discharge is estimated based on the zero-dimensional and one-dimensional analyses. The number of division of the coil winding package is examined to limit the voltage generation. For cooling the HTS magnet, helium gas flow is considered and its feasibility is examined by simple analysis as a first step.

  11. Doppler Velocimetry of Current Driven Spin Helices in a Two-Dimensional Electron Gas

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Luyi [Univ. of California, Berkeley, CA (United States)

    2013-05-17

    Spins in semiconductors provide a pathway towards the development of spin-based electronics. The appeal of spin logic devices lies in the fact that the spin current is even under time reversal symmetry, yielding non-dissipative coupling to the electric field. To exploit the energy-saving potential of spin current it is essential to be able to control it. While recent demonstrations of electrical-gate control in spin-transistor configurations show great promise, operation at room temperature remains elusive. Further progress requires a deeper understanding of the propagation of spin polarization, particularly in the high mobility semiconductors used for devices. This dissertation presents the demonstration and application of a powerful new optical technique, Doppler spin velocimetry, for probing the motion of spin polarization at the level of 1 nm on a picosecond time scale. We discuss experiments in which this technique is used to measure the motion of spin helices in high mobility n-GaAs quantum wells as a function of temperature, in-plane electric field, and photoinduced spin polarization amplitude. We find that the spin helix velocity changes sign as a function of wave vector and is zero at the wave vector that yields the largest spin lifetime. This observation is quite striking, but can be explained by the random walk model that we have developed. We discover that coherent spin precession within a propagating spin density wave is lost at temperatures near 150 K. This finding is critical to understanding why room temperature operation of devices based on electrical gate control of spin current has so far remained elusive. We report that, at all temperatures, electron spin polarization co-propagates with the high-mobility electron sea, even when this requires an unusual form of separation of spin density from photoinjected electron density. Furthermore, although the spin packet co-propagates with the two-dimensional electron gas, spin diffusion is strongly

  12. Three dimensional analysis of laterally loaded piles

    International Nuclear Information System (INIS)

    Yilmaz, C.

    1987-01-01

    In this study static analysis of laterally loaded pile is studied by the three models. The first model is the beam on discrete elastic springs. This model is analyzed using a flexibility method. The second model is the beam on a two-parameter elastic foundation. This model is analyzed using the linear finite element method. The third model is the finite element model, using the three-dimensional iso-parametric parabolic brick element. Three-dimensional pile group analysis is also performed using elastic constants of single pile obtained by any one of the above analyses. The main objective is to develop computer programs for each model related to single piles and to group analysis. Then, the deflections, rotations, moments, shears, stresses and strains of the single pile are obtained at any arbitrary point. Comparison is made between each model and with other studies such as Poulos 1971, Desai and Appel 1976. In addition, to provide a benchmark of three-dimensional finite element analysis, the Boussinesq problem is analyzed. (orig.)

  13. Three-dimensional attached viscous flow basic principles and theoretical foundations

    CERN Document Server

    Hirschel, Ernst Heinrich; Kordulla, Wilhelm

    2014-01-01

    Viscous flow is usually treated in the frame of boundary-layer theory and as a two-dimensional flow. At best, books on boundary layers provide the describing equations for three-dimensional boundary layers, and solutions only for certain special cases.   This book presents the basic principles and theoretical foundations of three-dimensional attached viscous flows as they apply to aircraft of all kinds. Though the primary flight speed range is that of civil air transport vehicles, flows past other flying vehicles up to hypersonic speeds are also considered. Emphasis is put on general three-dimensional attached viscous flows and not on three-dimensional boundary layers, as this wider scope is necessary in view of the theoretical and practical problems that have to be overcome in practice.   The specific topics covered include weak, strong, and global interaction; the locality principle; properties of three-dimensional viscous flows; thermal surface effects; characteristic properties; wall compatibility con...

  14. Three-Dimensional parton structure of light nuclei

    Science.gov (United States)

    Scopetta, Sergio; Del Dotto, Alessio; Kaptari, Leonid; Pace, Emanuele; Rinaldi, Matteo; Salmè, Giovanni

    2018-03-01

    Two promising directions beyond inclusive deep inelastic scattering experiments, aimed at unveiling the three dimensional structure of the bound nucleon, are reviewed, considering in particular the 3He nuclear target. The 3D structure in coordinate space can be accessed through deep exclusive processes, whose non-perturbative part is encoded in generalized parton distributions. In this way, the distribution of partons in the transverse plane can be obtained. As an example of a deep exclusive process, coherent deeply virtual Compton scattering off 3He nuclei, important to access the neutron generalized parton distributions (GPDs), will be discussed. In Impulse Approximation (IA), the sum of the two leading twist, quark helicity conserving GPDs of 3He, H and E, at low momentum transfer, turns out to be dominated by the neutron contribution. Besides, a technique, able to take into account the nuclear effects included in the Impulse Approximation analysis, has been developed. The spin dependent GPD \\tilde H of 3He is also found to be largely dominated, at low momentum transfer, by the neutron contribution. The knowledge of the GPDs H,E and \\tilde H of 3He is relevant for the planning of coherent DVCS off 3He measurements. Semi-inclusive deep inelastic scattering processes access the momentum space 3D structure parameterized through transverse momentum dependent parton distributions. A distorted spin-dependent spectral function has been recently introduced for 3He, in a non-relativistic framework, to take care of the final state interaction between the observed pion and the remnant in semi-inclusive deep inelastic electron scattering off transversely polarized 3He. The calculation of the Sivers and Collins single spin asymmetries for 3He, and a straightforward procedure to effectively take into account nuclear dynamics and final state interactions, will be reviewed. The Light-front dynamics generalization of the analysis is also addressed.

  15. A numerical study of the stabilitiy of helical vortices using vortex methods

    International Nuclear Information System (INIS)

    Walther, J H; Guenot, M; Machefaux, E; Rasmussen, J T; Chatelain, P; Okulov, V L; Soerensen, J N; Bergdorf, M; Koumoutsakos, P

    2007-01-01

    We present large-scale parallel direct numerical simulations using particle vortex methods of the instability of the helical vortices. We study the instability of a single helical vortex and find good agreement with inviscid theory. We outline equilibrium configurations for three double helical vortices-similar to those produced by three blade wind turbines. The simulations confirm the stability of the inviscid model, but predict a breakdown of the vortical system due to viscosity

  16. A numerical study of the stabilitiy of helical vortices using vortex methods

    Energy Technology Data Exchange (ETDEWEB)

    Walther, J H [Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Lyngby (Denmark); Guenot, M [Enginering College in Industrial Systems, FR-17041, La Rochelle (France); Machefaux, E [Enginering College in Industrial Systems, FR-17041, La Rochelle (France); Rasmussen, J T [Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Lyngby (Denmark); Chatelain, P [Computational Laboratory, ETH Zurich, CH-8092 Zurich (Switzerland); Okulov, V L [Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Lyngby (Denmark); Soerensen, J N [Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Lyngby (Denmark); Bergdorf, M [Computational Laboratory, ETH Zurich, CH-8092 Zurich (Switzerland); Koumoutsakos, P [Computational Laboratory, ETH Zurich, CH-8092 Zurich (Switzerland)

    2007-07-15

    We present large-scale parallel direct numerical simulations using particle vortex methods of the instability of the helical vortices. We study the instability of a single helical vortex and find good agreement with inviscid theory. We outline equilibrium configurations for three double helical vortices-similar to those produced by three blade wind turbines. The simulations confirm the stability of the inviscid model, but predict a breakdown of the vortical system due to viscosity.

  17. Free electron laser with small period wiggler and sheet electron beam: A study of the feasibility of operation at 300 GHz with 1 MW CW output power

    International Nuclear Information System (INIS)

    Booske, J.H.; Granatstein, V.L.; Antonsen, T.M. Jr.

    1988-01-01

    The use of a small period wiggler (/ell//sub ω/ 2 ). Based on these encouraging results, a proof-of-principle experiment is being assembled, and is aimed at demonstrating FEL operating at 120 GHz with 300 kW output power in 1 μs pulses: electron energy would be 410 keV. Preliminary design of a 300 GHz 1 MW FEL with an untapered wiggler is also presented. 10 refs., 5 figs., 3 tabs

  18. Conversion from mutual helicity to self-helicity observed with IRIS

    Science.gov (United States)

    Li, L. P.; Peter, H.; Chen, F.; Zhang, J.

    2014-10-01

    Context. In the upper atmosphere of the Sun observations show convincing evidence for crossing and twisted structures, which are interpreted as mutual helicity and self-helicity. Aims: We use observations with the new Interface Region Imaging Spectrograph (IRIS) to show the conversion of mutual helicity into self-helicity in coronal structures on the Sun. Methods: Using far UV spectra and slit-jaw images from IRIS and coronal images and magnetograms from SDO, we investigated the evolution of two crossing loops in an active region, in particular, the properties of the Si IV line profile in cool loops. Results: In the early stage two cool loops cross each other and accordingly have mutual helicity. The Doppler shifts in the loops indicate that they wind around each other. As a consequence, near the crossing point of the loops (interchange) reconnection sets in, which heats the plasma. This is consistent with the observed increase of the line width and of the appearance of the loops at higher temperatures. After this interaction, the two new loops run in parallel, and in one of them shows a clear spectral tilt of the Si IV line profile. This is indicative of a helical (twisting) motion, which is the same as to say that the loop has self-helicity. Conclusions: The high spatial and spectral resolution of IRIS allowed us to see the conversion of mutual helicity to self-helicity in the (interchange) reconnection of two loops. This is observational evidence for earlier theoretical speculations. Movie associated with Fig. 1 and Appendix A are available in electronic form at http://www.aanda.org

  19. Static and dynamic properties of three-dimensional dot-type magnonic crystals

    International Nuclear Information System (INIS)

    Maksymov, Artur; Spinu, Leonard

    2016-01-01

    The static and dynamic magnetization of three-dimensional magnonic metamaterials has been investigated. By numerical means it was analyzed the impact of space dimensionality on the properties of magnonic crystal with unit cell consisting of four dots. It is find out the possibility of multi-vortex core formation which is related to the increasing of the crystal height by three-dimensional periodicity of single crystal layer. Additionally is provided the analysis of ferromagnetic resonance phenomenon for two-dimensional and three-dimensional structures. For the unsaturated magnetization of three-dimensional crystal the several pronounced resonance frequencies were detected.

  20. Static and dynamic properties of three-dimensional dot-type magnonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Maksymov, Artur, E-mail: maxyartur@gmail.com [Advanced Materials Research Institute, University of New Orleans, LA 70148 (United States); Department of General Physics, Chernivtsi National University, Chernivtsi 58012 (Ukraine); Spinu, Leonard [Advanced Materials Research Institute, University of New Orleans, LA 70148 (United States); Department of Physics, University of New Orleans, New Orleans, LA 70148 (United States)

    2016-04-01

    The static and dynamic magnetization of three-dimensional magnonic metamaterials has been investigated. By numerical means it was analyzed the impact of space dimensionality on the properties of magnonic crystal with unit cell consisting of four dots. It is find out the possibility of multi-vortex core formation which is related to the increasing of the crystal height by three-dimensional periodicity of single crystal layer. Additionally is provided the analysis of ferromagnetic resonance phenomenon for two-dimensional and three-dimensional structures. For the unsaturated magnetization of three-dimensional crystal the several pronounced resonance frequencies were detected.

  1. Three-Dimensional Flows

    CERN Document Server

    Araujo, Vitor; Viana, Marcelo

    2010-01-01

    In this book, the authors present the elements of a general theory for flows on three-dimensional compact boundaryless manifolds, encompassing flows with equilibria accumulated by regular orbits. The book aims to provide a global perspective of this theory and make it easier for the reader to digest the growing literature on this subject. This is not the first book on the subject of dynamical systems, but there are distinct aspects which together make this book unique. Firstly, this book treats mostly continuous time dynamical systems, instead of its discrete counterpart, exhaustively treated

  2. Three-diemensional materials science: An intersection of three-dimensional reconstructions and simulations

    DEFF Research Database (Denmark)

    Thornton, Katsuyo; Poulsen, Henning Friis

    2008-01-01

    The recent development of experimental techniques that rapidly reconstruct the three-dimensional microstructures of solids has given rise to new possibilities for developing a deeper understanding of the evolution of microstructures and the effects of microstructures on materials properties. Comb...... an overview of this emerging field of materials science, as well as brief descriptions of selected methods and their applicability.......The recent development of experimental techniques that rapidly reconstruct the three-dimensional microstructures of solids has given rise to new possibilities for developing a deeper understanding of the evolution of microstructures and the effects of microstructures on materials properties....... Combined with three-dimensional (3D) simulations and analyses that are capable of handling the complexity of these microstructures, 3D reconstruction, or tomography, has become a powerful tool that provides clear insights into materials processing and properties. This introductory article provides...

  3. New method for solving three-dimensional Schroedinger equation

    International Nuclear Information System (INIS)

    Melezhik, V.S.

    1990-01-01

    The method derived recently for solving a multidimensional scattering problem is applied to a three-dimensional Schroedinger equation. As compared with direct three-dimensional calculations of finite elements and finite differences, this approach gives sufficiently accurate upper and lower approximations to the helium-atom binding energy, which demonstrates its efficiency. 15 refs.; 1 fig.; 2 tabs

  4. Chicane and wiggler based bunch compressors for future linear colliders

    International Nuclear Information System (INIS)

    Raubenheimer, T.O.; Emma, P.; Kheifets, S.

    1993-05-01

    In this paper, we discuss bunch compressors for future linear colliders. In the past, the bunch compression optics has been based upon achromatic cells using strong sextupoles to correct the dispersive and betatron chromaticity. To preserve the very small emittances required in most future collider designs, these schemes tend to have very tight alignment tolerances. Here, we describe bunch compressors based upon magnetic chicanes or wigglers which do need sextupoles to correct the chromatic emittance dilution. The dispersive chromaticity cancels naturally and the betatron chromaticity is not a significant source of emittance dilution. Thus, these schemes allow for substantially reduced alignment tolerances. Finally, we present a detailed design for the NLC linear collider

  5. Resonance fluorescence based two- and three-dimensional atom localization

    Science.gov (United States)

    Wahab, Abdul; Rahmatullah; Qamar, Sajid

    2016-06-01

    Two- and three-dimensional atom localization in a two-level atom-field system via resonance fluorescence is suggested. For the two-dimensional localization, the atom interacts with two orthogonal standing-wave fields, whereas for the three-dimensional atom localization, the atom interacts with three orthogonal standing-wave fields. The effect of the detuning and phase shifts associated with the corresponding standing-wave fields is investigated. A precision enhancement in position measurement of the single atom can be noticed via the control of the detuning and phase shifts.

  6. CSEM-steel hybrid wiggler/undulator magnetic field studies

    International Nuclear Information System (INIS)

    Halbach, K.; Hoyer, E.; Marks, S.; Plate, D.; Shuman, D.

    1985-05-01

    Current design of permanent magnet wiggler/undulators use either pure charge sheet equivalent material (CSEM) or the CSEM-Steel hybrid configuration. Hybrid configurations offer higher field strength at small gaps, field distributions dominated by the pole surfaces and pole tuning. Nominal performance of the hybrid is generally predicted using a 2-D magnetic design code neglecting transverse geometry. Magnetic measurements are presented showing transverse configuration influence on performance, from a combination of models using CSEMs, REC (H/sub c/ = 9.2 kOe) and NdFe (H/sub c/ = 10.7 kOe), different pole widths and end configurations. Results show peak field improvement using NdFe in place of REC in identical models, gap peak field decrease with pole width decrease (all results less than computed 2-D fields), transverse gap field distributions, and importance of CSEM material overhanging the poles in the transverse direction for highest gap fields

  7. Gyrotactic suppression and emergence of chaotic trajectories of swimming particles in three-dimensional flows

    Science.gov (United States)

    Richardson, S. I. Heath; Baggaley, A. W.; Hill, N. A.

    2018-02-01

    We study the effects of imposed three-dimensional flows on the trajectories and mixing of gyrotactic swimming microorganisms and identify phenomena not seen in flows restricted to two dimensions. Through numerical simulation of Taylor-Green and Arnold-Beltrami-Childress (ABC) flows, we explore the role that the flow and the cell shape play in determining the long-term configuration of the cells' trajectories, which often take the form of multiple sinuous and helical "plumelike" structures, even in the chaotic ABC flow. This gyrotactic suppression of Lagrangian chaos persists even in the presence of random noise. Analytical solutions for a number of cases reveal the how plumes form and the nature of the competition between torques acting on individual cells. Furthermore, studies of Lyapunov exponents reveal that, as the ratio of cell swimming speed relative to the flow speed increases from zero, the initial chaotic trajectories are first suppressed and then give way to a second unexpected window of chaotic trajectories at speeds greater than unity, before suppression of chaos at high relative swimming speeds.

  8. Statistical properties of three-dimensional two-fluid plasma model

    Energy Technology Data Exchange (ETDEWEB)

    Qaisrani, M. Hasnain [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, WuHan, Hubei 430074 (China); Xia, ZhenWei [Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China); Zou, Dandan, E-mail: ddzou@hust.edu.cn [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, WuHan, Hubei 430074 (China); School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023 (China)

    2015-09-15

    The nonlinear dynamics of incompressible non-dissipative two-fluid plasma model is investigated through classical Gibbs ensemble methods. Liouville's theorem of phase space for each wave number is proved, and the absolute equilibrium spectra for Galerkin truncated two-fluid model are calculated. In two-fluid theory, the equilibrium is built on the conservation of three quadratic invariants: the total energy and the self-helicities for ions and electrons fluid, respectively. The implications of statistic equilibrium spectra with arbitrary ratios of conserved invariants are discussed.

  9. Method for coupling two-dimensional to three-dimensional discrete ordinates calculations

    International Nuclear Information System (INIS)

    Thompson, J.L.; Emmett, M.B.; Rhoades, W.A.; Dodds, H.L. Jr.

    1985-01-01

    A three-dimensional (3-D) discrete ordinates transport code, TORT, has been developed at the Oak Ridge National Laboratory for radiation penetration studies. It is not feasible to solve some 3-D penetration problems with TORT, such as a building located a large distance from a point source, because (a) the discretized 3-D problem is simply too big to fit on the computer or (b) the computing time (and corresponding cost) is prohibitive. Fortunately, such problems can be solved with a hybrid approach by coupling a two-dimensional (2-D) description of the point source, which is assumed to be azimuthally symmetric, to a 3-D description of the building, the region of interest. The purpose of this paper is to describe this hybrid methodology along with its implementation and evaluation in the DOTTOR (Discrete Ordinates to Three-dimensional Oak Ridge Transport) code

  10. Installation of a second superconducting wiggler at SAGA-LS

    Energy Technology Data Exchange (ETDEWEB)

    Kaneyasu, T., E-mail: kaneyasu@saga-ls.jp; Takabayashi, Y.; Iwasaki, Y.; Koda, S. [SAGA Light Source, 8-7 Yayoigaoka, Tosu 841-0005 (Japan)

    2016-07-27

    The SAGA Light Source is a synchrotron radiation facility consisting of a 255 MeV injector linac and a 1.4 GeV storage ring with a circumference of 75.6 m. A superconducting wiggler (SCW) with a peak magnetic field of 4 T has been routinely operating for generating hard X-rays since its installation in 2010. In light of this success, it was decided to install a second SCW as a part of the beamline construction by Sumitomo Electric Industries. To achieve this, machine modifications including installation of a new magnet power supply, improvement of the magnet control system, and replacement of the vacuum chambers in the storage ring were carried out. Along with beamline construction, installation and commissioning of the second SCW are scheduled to take place in 2015.

  11. Identification, Characterization, and Three-Dimensional Structure of the Novel Circular Bacteriocin, Enterocin NKR-5-3B, from Enterococcus faecium.

    Science.gov (United States)

    Himeno, Kohei; Rosengren, K Johan; Inoue, Tomoko; Perez, Rodney H; Colgrave, Michelle L; Lee, Han Siean; Chan, Lai Y; Henriques, Sónia Troeira; Fujita, Koji; Ishibashi, Naoki; Zendo, Takeshi; Wilaipun, Pongtep; Nakayama, Jiro; Leelawatcharamas, Vichien; Jikuya, Hiroyuki; Craik, David J; Sonomoto, Kenji

    2015-08-11

    Enterocin NKR-5-3B, one of the multiple bacteriocins produced by Enterococcus faecium NKR-5-3, is a 64-amino acid novel circular bacteriocin that displays broad-spectrum antimicrobial activity. Here we report the identification, characterization, and three-dimensional nuclear magnetic resonance solution structure determination of enterocin NKR-5-3B. Enterocin NKR-5-3B is characterized by four helical segments that enclose a compact hydrophobic core, which together with its circular backbone impart high stability and structural integrity. We also report the corresponding structural gene, enkB, that encodes an 87-amino acid precursor peptide that undergoes a yet to be described enzymatic processing that involves adjacent cleavage and ligation of Leu(24) and Trp(87) to yield the mature (circular) enterocin NKR-5-3B.

  12. Helicity, Reconnection, and Dynamo Effects

    International Nuclear Information System (INIS)

    Ji, Hantao

    1998-01-01

    The inter-relationships between magnetic helicity, magnetic reconnection, and dynamo effects are discussed. In laboratory experiments, where two plasmas are driven to merge, the helicity content of each plasma strongly affects the reconnection rate, as well as the shape of the diffusion region. Conversely, magnetic reconnection events also strongly affect the global helicity, resulting in efficient helicity cancellation (but not dissipation) during counter-helicity reconnection and a finite helicity increase or decrease (but less efficiently than dissipation of magnetic energy) during co-helicity reconnection. Close relationships also exist between magnetic helicity and dynamo effects. The turbulent electromotive force along the mean magnetic field (alpha-effect), due to either electrostatic turbulence or the electron diamagnetic effect, transports mean-field helicity across space without dissipation. This has been supported by direct measurements of helicity flux in a laboratory plasma. When the dynamo effect is driven by electromagnetic turbulence, helicity in the turbulent field is converted to mean-field helicity. In all cases, however, dynamo processes conserve total helicity except for a small battery effect, consistent with the observation that the helicity is approximately conserved during magnetic relaxation

  13. Three-dimensional imagery by encoding sources of X rays

    International Nuclear Information System (INIS)

    Magnin, Isabelle

    1987-01-01

    This research thesis addresses the theoretical and practical study of X ray coded sources, and thus notably aims at exploring whether it would be possible to transform a standard digital radiography apparatus (as those operated in radiology hospital departments) into a low cost three-dimensional imagery system. The author first recalls the principle of conventional tomography and improvement attempts, and describes imagery techniques based on the use of encoding openings and source encoding. She reports the modelling of an imagery system based on encoded sources of X ray, and addresses the original notion of three-dimensional response for such a system. The author then addresses the reconstruction method by considering the reconstruction of a plane object, of a multi-plane object, and of real three-dimensional object. The frequency properties and the tomographic capacities of various types of source codes are analysed. She describes a prototype tomography apparatus, and presents and discusses three-dimensional actual phantom reconstructions. She finally introduces a new principle of dynamic three-dimensional radiography which implements an acquisition technique by 'gating code'. The acquisition principle should allow the reconstruction of volumes animated by periodic deformations, such as the heart for example [fr

  14. Three-dimensional oscillator and Coulomb systems reduced from Kaehler spaces

    International Nuclear Information System (INIS)

    Nersessian, Armen; Yeranyan, Armen

    2004-01-01

    We define the oscillator and Coulomb systems on four-dimensional spaces with U(2)-invariant Kaehler metric and perform their Hamiltonian reduction to the three-dimensional oscillator and Coulomb systems specified by the presence of Dirac monopoles. We find the Kaehler spaces with conic singularity, where the oscillator and Coulomb systems on three-dimensional sphere and two-sheet hyperboloid originate. Then we construct the superintegrable oscillator system on three-dimensional sphere and hyperboloid, coupled to a monopole, and find their four-dimensional origins. In the latter case the metric of configuration space is a non-Kaehler one. Finally, we extend these results to the family of Kaehler spaces with conic singularities

  15. Supersymmetric quantum mechanics in three-dimensional space, 1

    International Nuclear Information System (INIS)

    Ui, Haruo

    1984-01-01

    As a direct generalization of the model of supersymmetric quantum mechanics by Witten, which describes the motion of a spin one-half particle in the one-dimensional space, we construct a model of the supersymmetric quantum mechanics in the three-dimensional space, which describes the motion of a spin one-half particle in central and spin-orbit potentials in the context of the nonrelativistic quantum mechanics. With the simplest choice of the (super) potential, this model is shown to reduce to the model of the harmonic oscillator plus constant spin-orbit potential of unit strength of both positive and negative signs, which was studied in detail in our recent paper in connection with ''accidental degeneracy'' as well as the ''graded groups''. This simplest model is discussed in some detail as an example of the three-dimensional supersymmetric quantum mechanical system, where the supersymmetry is an exact symmetry of the system. More general choice of a polynomial superpotential is also discussed. It is shown that the supersymmetry cannot be spontaneously broken for any polynomial superpotential in our three-dimensional model; this result is contrasted to the corresponding one in the one-dimensional model. (author)

  16. Electron acceleration from rest to GeV energy by chirped axicon Gaussian laser pulse in vacuum in the presence of wiggler magnetic field

    Science.gov (United States)

    Kant, Niti; Rajput, Jyoti; Singh, Arvinder

    2018-03-01

    This paper presents a scheme of electron energy enhancement by employing frequency - chirped lowest order axicon focussed radially polarised (RP) laser pulse in vacuum under the influence of wiggler magnetic field. Terawatt RP laser can be focussed down to ∼5μm by an axicon optical element, which produces an intense longitudinal electric field. This unique property of axicon focused Gaussian RP laser pulse is employed for direct electron acceleration in vacuum. A linear frequency chirp increases the time duration of laser-electron interaction, whereas, the applied magnetic wiggler helps in improving the strength of ponderomotive force v→ ×B→ and periodically deflects electron in order to keep it traversing in the accelerating phase up to longer distance. Numerical simulations have been carried out to investigate the influence of laser, frequency chirp and magnetic field parameters on electron energy enhancement. It is noticed that an electron from rest can be accelerated up to GeV energy under optimized laser and magnetic field parameters. Significant enhancement in the electron energy gain of the order of 11.2 GeV is observed with intense chirped laser pulse in the presence of wiggler magnetic field of strength 96.2 kG.

  17. Tokamak startup using point-source dc helicity injection.

    Science.gov (United States)

    Battaglia, D J; Bongard, M W; Fonck, R J; Redd, A J; Sontag, A C

    2009-06-05

    Startup of a 0.1 MA tokamak plasma is demonstrated on the ultralow aspect ratio Pegasus Toroidal Experiment using three localized, high-current density sources mounted near the outboard midplane. The injected open field current relaxes via helicity-conserving magnetic turbulence into a tokamaklike magnetic topology where the maximum sustained plasma current is determined by helicity balance and the requirements for magnetic relaxation.

  18. Three-dimensional theory for light-matter interaction

    DEFF Research Database (Denmark)

    Sørensen, Martin Westring; Sørensen, Anders Søndberg

    2008-01-01

    We present a full quantum mechanical three dimensional theory describing an electromagnetic field interacting with an ensemble of identical atoms. The theory is constructed such that it describes recent experiments on light-matter quantum interfaces, where the quantum fluctuations of light...... to a dressed state picture, where the light modes are solutions to the diffraction problem, and develop a perturbative expansion in the fluctuations. The fluctuations are due to quantum fluctuations as well as the random positions of the atoms. In this perturbative expansion we show how the quantum...... fluctuations are mapped between atoms and light while the random positioning of the atoms give rise to decay due to spontaneous emission. Furthermore we identify limits, where the full three dimensional theory reduce to the one dimensional theory typically used to describe the interaction....

  19. Six-dimensional muon beam cooling using a homogeneous absorber: Concepts, beam dynamics, cooling decrements, and equilibrium emittances in a helical dipole channel

    Directory of Open Access Journals (Sweden)

    Yaroslav Derbenev

    2005-04-01

    Full Text Available The fast reduction of the six-dimensional phase space of muon beams is an essential requirement for muon colliders and also of great importance for neutrino factories based on accelerated muon beams. Ionization cooling, where all momentum components are degraded by an energy absorbing material and only the longitudinal momentum is restored by rf cavities, provides a means to quickly reduce transverse beam sizes. However, the beam energy spread cannot be reduced by this method unless the longitudinal emittance can be transformed or exchanged into the transverse emittance. Emittance exchange plans until now have been accomplished by using magnets to disperse the beam along the face of a wedge-shaped absorber such that higher momentum particles pass through thicker parts of the absorber and thus suffer larger ionization energy loss. In the scheme advocated in this paper, a special magnetic channel designed such that higher momentum corresponds to a longer path length, and therefore larger ionization energy loss, provides the desired emittance exchange in a homogeneous absorber without special edge shaping. Normal-conducting rf cavities imbedded in the magnetic field regenerate the energy lost in the absorber. One very attractive example of a cooling channel based on this principle uses a series of high-gradient rf cavities filled with dense hydrogen gas, where the cavities are in a magnetic channel composed of a solenoidal field with superimposed helical transverse dipole and quadrupole fields. In this scheme, the energy loss, the rf energy regeneration, the emittance exchange, and the transverse cooling happen simultaneously. The theory of this helical channel is described in some detail to support the analytical prediction of almost a factor of 10^{6} reduction in six-dimensional phase space volume in a channel about 56 m long. Equations describing the particle beam dynamics are derived and beam stability conditions are explored. Equations

  20. Three dimensional contact/impact methodology

    International Nuclear Information System (INIS)

    Kulak, R.F.

    1987-01-01

    The simulation of three-dimensional interface mechanics between reactor components and structures during static contact or dynamic impact is necessary to realistically evaluate their structural integrity to off-normal loads. In our studies of postulated core energy release events, we have found that significant structure-structure interactions occur in some reactor vessel head closure designs and that fluid-structure interactions occur within the reactor vessel. Other examples in which three-dimensional interface mechanics play an important role are: (1) impact response of shipping casks containing spent fuel, (2) whipping pipe impact on reinforced concrete panels or pipe-to-pipe impact after a pipe break, (3) aircraft crash on secondary containment structures, (4) missiles generated by turbine failures or tornados, and (5) drops of heavy components due to lifting accidents. The above is a partial list of reactor safety problems that require adequate treatment of interface mechanics and are discussed in this paper

  1. Three-dimensional friction measurement during hip simulation.

    Directory of Open Access Journals (Sweden)

    Robert Sonntag

    Full Text Available Wear of total hip replacements has been the focus of many studies. However, frictional effects, such as high loading on intramodular connections or the interface to the bone, as well as friction associated squeaking have recently increased interest about the amount of friction that is generated during daily activities. The aim of this study was thus to establish and validate a three-dimensional friction setup under standardized conditions.A standard hip simulator was modified to allow for high precision measurements of small frictional effects in the hip during three-dimensional hip articulation. The setup was verified by an ideal hydrostatic bearing and validated with a static-load physical pendulum and an extension-flexion rotation with a dynamic load profile. Additionally, a pendulum model was proposed for screening measurement of frictional effects based on the damping behavior of the angular oscillation without the need for any force/moment transducer. Finally, three-dimensional friction measurements have been realized for ceramic-on-polyethylene bearings of three different sizes (28, 36 and 40 mm.A precision of less than 0.2 Nm during three-dimensional friction measurements was reported, while increased frictional torque (resultant as well as taper torque was measured for larger head diameters. These effects have been confirmed by simple pendulum tests and the theoretical model. A comparison with current literature about friction measurements is presented.This investigation of friction is able to provide more information about a field that has been dominated by the reduction of wear. It should be considered in future pre-clinical testing protocols given by international organizations of standardization.

  2. Diffraction limited focusing with controllable arbitrary three-dimensional polarization

    International Nuclear Information System (INIS)

    Chen, Weibin; Zhan, Qiwen

    2010-01-01

    We propose a new approach that enables full control over the three-dimensional state of polarization and the field distribution near the focus of a high numerical aperture objective lens. By combining the electric dipole radiation and a vectorial diffraction method, the input field at the pupil plane for generating arbitrary three-dimensionally oriented linear polarization at the focal point with a diffraction limited spot size is found analytically by solving the inverse problem. Arbitrary three-dimensional elliptical polarization can be obtained by introducing a second electric dipole oriented in the orthogonal plane with appropriate amplitude and phase differences

  3. Three-dimensional CT imaging of soft-tissue anatomy

    International Nuclear Information System (INIS)

    Fishman, E.K.; Ney, D.R.; Magid, D.; Kuhlman, J.E.

    1988-01-01

    Three-dimensional display of computed tomographic data has been limited to skeletal structures. This was in part related to the reconstruction algorithm used, which relied on a binary classification scheme. A new algorithm, volumetric rendering with percentage classification, provides the ability to display three-dimensional images of muscle and soft tissue. A review was conducted of images in 35 cases in which muscle and/or soft tissue were part of the clinical problem. In all cases, individual muscle groups could be clearly identified and discriminated. Branching vessels in the range of 2.3 mm could be identified. Similarly, lymph nodes could be clearly defined. High-resolution three-dimensional images were found to be useful both in providing an increased understanding of complex muscle and soft tissue anatomy and in surgical planning

  4. Simulation of impurity transport in the peripheral plasma due to the emission of dust in long pulse discharges on the Large Helical Device

    Directory of Open Access Journals (Sweden)

    M. Shoji

    2017-08-01

    Full Text Available Two different plasma termination processes by dust emission were observed in long pulse discharges in the Large Helical Device. One is a plasma termination caused by large amounts of carbon dust released from a lower divertor region. The other is termination caused by stainless steel (iron dust emission from the surface of a helical coil can. The effect of the dust emission on the sustainment of the long pulse discharges are investigated using a three-dimensional edge plasma transport code (EMC3-EIRENE coupled with a dust transport code (DUSTT. The simulation shows that the plasma is more influenced by the iron dust emission from the helical coil can than by the carbon dust emission from the divertor region. The simulation revealed that the plasma flow in divertor legs is quite effective for preventing dust from terminating the long pulse discharges.

  5. Association of achondroplasia with Down syndrome: difficulty in prenatal diagnosis by sonographic and 3-D helical computed tomographic analyses.

    Science.gov (United States)

    Kaga, Akimune; Murotsuki, Jun; Kamimura, Miki; Kimura, Masato; Saito-Hakoda, Akiko; Kanno, Junko; Hoshi, Kazuhiko; Kure, Shigeo; Fujiwara, Ikuma

    2015-05-01

    Achondroplasia and Down syndrome are relatively common conditions individually. But co-occurrence of both conditions in the same patient is rare and there have been no reports of fetal analysis of this condition by prenatal sonographic and three-dimensional (3-D) helical computed tomography (CT). Prenatal sonographic findings seen in persons with Down syndrome, such as a thickened nuchal fold, cardiac defects, and echogenic bowel were not found in the patient. A prenatal 3-D helical CT revealed a large head with frontal bossing, metaphyseal flaring of the long bones, and small iliac wings, which suggested achondroplasia. In a case with combination of achondroplasia and Down syndrome, it may be difficult to diagnose the co-occurrence prenatally without typical markers of Down syndrome. © 2014 Japanese Teratology Society.

  6. THREE DIMENSIONAL GRAPHICAL REPRESENTATION OF QUALITY

    Directory of Open Access Journals (Sweden)

    Vineet V. Kumar

    2014-03-01

    Full Text Available Quality is an important aspect for every firm in modern era of competition. Every product has tough competition in terms of market reach. The factor, which actually makes any product long run in market, is quality and hence quality is the stepping-stone for success of any firm. For everyone meaning of quality is different. We have seen several economists who have defined quality by considering different factors, but what all of them have common in them is Customer satisfaction. Customer satisfaction is the ultimate result of quality. In three-dimensional graphical representation of quality, optimum quality is obtained by using three-dimensional graph by considering some important factors governing quality of any product, limiting factor, and customer satisfaction.

  7. Numerical simulation of thermal-dynamic characteristics through a helical coiled tube with annular cross section for laminar flow

    International Nuclear Information System (INIS)

    Wu Shuangying; Chen Sujun; Li Yourong; Li Longjian

    2009-01-01

    A numerical method for simulating three-dimensional laminar forced convective heat transfer in a helical coiled passage with annular cross section under uniform wall temperature condition is presented. The helical coiled passage is fabricated by bending a 0.03 m inner diameter and 0.05 m outer diameter straight tube into a helical-coil of two turns. The results presented in this paper cover a Reynolds number range of 200 ∼ 1000, a pitch range of 0.1 ∼ 0.2 and a curvature ratio range of 0.1 ∼ 0.3. The numerical computations reveal the development and distribution of heat transfer and flow fields in the helical coiled passage when the inner annular wall is heated and the outer annular wall is insulated. In addition, the effects of Reynolds number, curvature ratio, and coil pitch on the average friction factor, average Nusselt number at different axial cross-section have been discussed. The results show that the secondary flow is weak and can be neglected at the entrance region, but the effect of the secondary flow is enhanced, the maximum velocity perpendicular to axial cross section shifts toward the outer side of helical coiled passage. Furthermore, the average Nusselt number and friction factor at every different axial location present different characteristics when the Reynolds number, curvature ratio and pitch change. Compared with the curvature ratio, the pitch has relatively little influence on the heat transfer and flow performance. (authors)

  8. Application status of three-dimensional CT reconstruction in hepatobiliary surgery

    Directory of Open Access Journals (Sweden)

    JIANG Chao

    2017-02-01

    Full Text Available With the development of imaging technology, three-dimensional CT reconstruction has been widely used in hepatobiliary surgery. Three-dimensional CT reconstruction can divide and reconstruct two-dimensional images into three-dimensional images and clearly show the location of lesion and its relationship with the intrahepatic bile duct system. It has an important value in the preoperative assessment of liver volume, diagnosis and treatment decision-making process, intraoperative precise operation, and postoperative individualized management, and promotes the constant development of hepatobiliary surgery and minimally invasive technology, and therefore, it holds promise for clinical application.

  9. Utility of three-dimensional method for diagnosing meniscal lesions

    International Nuclear Information System (INIS)

    Ohshima, Suguru; Nomura, Kazutoshi; Hirano, Mako; Hashimoto, Noburo; Fukumoto, Tetsuya; Katahira, Kazuhiro

    1998-01-01

    MRI of the knee is a useful method for diagnosing meniscal tears. Although the spin echo method is usually used for diagnosing meniscal tears, we examined the utility of thin slice scan with the three-dimensional method. We reviewed 70 menisci in which arthroscopic findings were confirmed. In this series, sensitivity was 90.9% for medial meniscal injuries and 68.8% for lateral meniscal injuries. There were 3 meniscal tears in which we could not detect tears on preoperative MRI. We could find tears in two of these cases when re-evaluated using the same MRI. In conclusion, we can get the same diagnostic rate with the three-dimensional method compared with the spin echo method. Scan time of the three-dimensional method is 3 minutes, on the other hand that of spin echo method in 17 minutes. This slice scan with three-dimensional method is useful for screening meniscal injuries before arthroscopy. (author)

  10. Three-dimensional features on oscillating microbubbles streaming flows

    Science.gov (United States)

    Rossi, Massimiliano; Marin, Alvaro G.; Wang, Cheng; Hilgenfeldt, Sascha; Kähler, Christian J.

    2013-11-01

    Ultrasound-driven oscillating micro-bubbles have been used as active actuators in microfluidic devices to perform manifold tasks such as mixing, sorting and manipulation of microparticles. A common configuration consists in side-bubbles, created by trapping air pockets in blind channels perpendicular to the main channel direction. This configuration results in bubbles with a semi-cylindrical shape that creates a streaming flow generally considered quasi two-dimensional. However, recent experiments performed with three-dimensional velocimetry methods have shown how microparticles can present significant three-dimensional trajectories, especially in regions close to the bubble interface. Several reasons will be discussed such as boundary effects of the bottom/top wall, deformation of the bubble interface leading to more complex vibrational modes, or bubble-particle interactions. In the present investigation, precise measurements of particle trajectories close to the bubble interface will be performed by means of 3D Astigmatic Particle Tracking Velocimetry. The results will allow us to characterize quantitatively the three-dimensional features of the streaming flow and to estimate its implications in practical applications as particle trapping, sorting or mixing.

  11. Integration of Computed Tomography and Three-Dimensional Echocardiography for Hybrid Three-Dimensional Printing in Congenital Heart Disease.

    Science.gov (United States)

    Gosnell, Jordan; Pietila, Todd; Samuel, Bennett P; Kurup, Harikrishnan K N; Haw, Marcus P; Vettukattil, Joseph J

    2016-12-01

    Three-dimensional (3D) printing is an emerging technology aiding diagnostics, education, and interventional, and surgical planning in congenital heart disease (CHD). Three-dimensional printing has been derived from computed tomography, cardiac magnetic resonance, and 3D echocardiography. However, individually the imaging modalities may not provide adequate visualization of complex CHD. The integration of the strengths of two or more imaging modalities has the potential to enhance visualization of cardiac pathomorphology. We describe the feasibility of hybrid 3D printing from two imaging modalities in a patient with congenitally corrected transposition of the great arteries (L-TGA). Hybrid 3D printing may be useful as an additional tool for cardiologists and cardiothoracic surgeons in planning interventions in children and adults with CHD.

  12. Three-dimensional image reconstruction from stereo DSA

    International Nuclear Information System (INIS)

    Sakamoto, Kiyoshi; Kotoura, Noriko; Umehara, Takayoshi; Yamada, Eiji; Inaba, Tomohiro; Itou, Hiroshi

    1999-01-01

    The technique of interventional radiology has spread rapidly in recent years, and three-dimensional information from blood vessel images is being sought to enhance examinations. Stereo digital subtraction angiography (DSA) and rotational DSA were developed for that purpose. However, it is difficult with stereo DSA to observe the image pair during examination and to obtain positional information on blood vessels. Further, the exposure dose is increased in rotational DSA when many mask images need to be collected, and the patient is required to hold his or her breath for a long duration. We therefore devised a technique to construct three-dimensional blood vessel images by employing geometrical information extracted from stereo DSA images using the right and left images. We used a judgment method based on the correlation coefficient, although we had to extract an equal blood vessel from the right and left images to determine the three-dimensional coordinates of the blood vessel. The reconstructed three-dimensional blood vessels were projected from various angles, again by using a virtual focus, and new images were created. These image groups were displayed as rotational images by the animation display function incorporated in the DSA device. This system can observe blood vessel images of the same phase at a free angle, although the image quality is inferior to that of rotational DSA. In addition, because collection of the mask images is reduced, exposure dose can be decreased. Further, the system offers enhanced safety because no mechanical movement of the imaging system is involved. (author)

  13. Helical type vacuum container

    International Nuclear Information System (INIS)

    Owada, Kimio.

    1989-01-01

    Helical type vacuum containers in the prior art lack in considerations for thermal expansion stresses to helical coils, and there is a possibility of coil ruptures. The object of the present invention is to avoid the rupture of helical coils wound around the outer surface of a vacuum container against heat expansion if any. That is, bellows or heat expansion absorbing means are disposed to a cross section of a helical type vacuum container. With such a constitution, thermal expansion of helical coils per se due to temperature elevation of the coils during electric supply can be absorbed by expansion of the bellows or absorption of the heat expansion absorbing means. Further, this can be attained by arranging shear pins in the direction perpendicular to the bellows axis so that the bellows are not distorted when the helical coils are wound around the helical type vacuum container. (I.S.)

  14. Two-dimensionally confined topological edge states in photonic crystals

    International Nuclear Information System (INIS)

    Barik, Sabyasachi; Miyake, Hirokazu; DeGottardi, Wade; Waks, Edo; Hafezi, Mohammad

    2016-01-01

    We present an all-dielectric photonic crystal structure that supports two-dimensionally confined helical topological edge states. The topological properties of the system are controlled by the crystal parameters. An interface between two regions of differing band topologies gives rise to topological edge states confined in a dielectric slab that propagate around sharp corners without backscattering. Three-dimensional finite-difference time-domain calculations show these edges to be confined in the out-of-plane direction by total internal reflection. Such nanoscale photonic crystal architectures could enable strong interactions between photonic edge states and quantum emitters. (paper)

  15. A DETERMINISTIC METHOD FOR TRANSIENT, THREE-DIMENSIONAL NUETRON TRANSPORT

    International Nuclear Information System (INIS)

    S. GOLUOGLU, C. BENTLEY, R. DEMEGLIO, M. DUNN, K. NORTON, R. PEVEY I.SUSLOV AND H.L. DODDS

    1998-01-01

    A deterministic method for solving the time-dependent, three-dimensional Boltzmam transport equation with explicit representation of delayed neutrons has been developed and evaluated. The methodology used in this study for the time variable of the neutron flux is known as the improved quasi-static (IQS) method. The position, energy, and angle-dependent neutron flux is computed deterministically by using the three-dimensional discrete ordinates code TORT. This paper briefly describes the methodology and selected results. The code developed at the University of Tennessee based on this methodology is called TDTORT. TDTORT can be used to model transients involving voided and/or strongly absorbing regions that require transport theory for accuracy. This code can also be used to model either small high-leakage systems, such as space reactors, or asymmetric control rod movements. TDTORT can model step, ramp, step followed by another step, and step followed by ramp type perturbations. It can also model columnwise rod movement can also be modeled. A special case of columnwise rod movement in a three-dimensional model of a boiling water reactor (BWR) with simple adiabatic feedback is also included. TDTORT is verified through several transient one-dimensional, two-dimensional, and three-dimensional benchmark problems. The results show that the transport methodology and corresponding code developed in this work have sufficient accuracy and speed for computing the dynamic behavior of complex multidimensional neutronic systems

  16. Three-dimensional model of a selective theophylline-binding RNA molecule

    Energy Technology Data Exchange (ETDEWEB)

    Tung, Chang-Shung; Oprea, T.I.; Hummer, G.; Garcia, A.E.

    1995-07-01

    We propose a three-dimensional (3D) model for an RNA molecule that selectively binds theophylline but not caffeine. This RNA, which was found using SELEX [Jenison, R.D., et al., Science (1994) 263:1425] is 10,000 times more specific for theophylline (Kd=320 nM) than for caffeine (Kd=3.5 mM), although the two ligands are identical except for a methyl group substituted at N7 (present only in caffeine). The binding affinity for ten xanthine-based ligands was used to derive a Comparative Molecular Field Analysis (CoMFA) model (R{sup 2} = 0.93 for 3 components, with cross-validated R{sup 2} of 0.73), using the SYBYL and GOLPE programs. A pharmacophoric map was generated to locate steric and electrostatic interactions between theophylline and the RNA binding site. This information was used to identify putative functional groups of the binding pocket and to generate distance constraints. Based on a model for the secondary structure (Jenison et al., idem), the 3D structure of this RNA was then generated using the following method: each helical region of the RNA molecule was treated as a rigid body; single-stranded loops with specific end-to-end distances were generated. The structures of RNA-xanthine complexes were studied using a modified Monte Carlo algorithm. The detailed structure of an RNA-ligand complex model, as well as possible explanations for the theophylline selectivity will be discussed.

  17. Summary of three-dimensional animation creation based on ethnic culture element

    Directory of Open Access Journals (Sweden)

    Shao Zhaopo

    2016-01-01

    Full Text Available three-dimensional animation is a product combined by technology and art. It is an artistic ex-pression form combining painting, film & television, digital technology, music, and literature. As an audio and visual art, three-dimensional animation has its own unique culture-loading function, technical aesthetic charac-teristics, and requirements for national art expression. This paper aims to find the method to combine digital technology and national art in combination of three-dimensional animation short film creation, and hopes to clear the road for the cultivation of domestic three-dimensional animation quality project.

  18. Zebrafish cardiac muscle thick filaments: isolation technique and three-dimensional structure.

    Science.gov (United States)

    González-Solá, Maryví; Al-Khayat, Hind A; Behra, Martine; Kensler, Robert W

    2014-04-15

    To understand how mutations in thick filament proteins such as cardiac myosin binding protein-C or titin, cause familial hypertrophic cardiomyopathies, it is important to determine the structure of the cardiac thick filament. Techniques for the genetic manipulation of the zebrafish are well established and it has become a major model for the study of the cardiovascular system. Our goal is to develop zebrafish as an alternative system to the mammalian heart model for the study of the structure of the cardiac thick filaments and the proteins that form it. We have successfully isolated thick filaments from zebrafish cardiac muscle, using a procedure similar to those for mammalian heart, and analyzed their structure by negative-staining and electron microscopy. The isolated filaments appear well ordered with the characteristic 42.9 nm quasi-helical repeat of the myosin heads expected from x-ray diffraction. We have performed single particle image analysis on the collected electron microscopy images for the C-zone region of these filaments and obtained a three-dimensional reconstruction at 3.5 nm resolution. This reconstruction reveals structure similar to the mammalian thick filament, and demonstrates that zebrafish may provide a useful model for the study of the changes in the cardiac thick filament associated with disease processes. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Reduced bispectrum seeded by helical primordial magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Hortúa, Héctor Javier [Universidad Nacional de Colombia-Bogotá, Facultad de Ciencias, Departamento de Física, Carrera 30 Calle 45-03, C.P. 111321 Bogotá (Colombia); Castañeda, Leonardo, E-mail: hjhortuao@unal.edu.co, E-mail: lcastanedac@unal.edu.co [Grupo de Gravitación y Cosmología, Observatorio Astronómico Nacional, Universidad Nacional de Colombia, cra 45 No 26-85, Edificio Uriel Gutierréz, Bogotá, D.C. (Colombia)

    2017-06-01

    In this paper, we investigate the effects of helical primordial magnetic fields (PMFs) on the cosmic microwave background (CMB) reduced bispectrum. We derive the full three-point statistics of helical magnetic fields and numerically calculate the even contribution in the collinear configuration. We then numerically compute the CMB reduced bispectrum induced by passive and compensated PMF modes on large angular scales. There is a negative signal on the bispectrum due to the helical terms of the fields and we also observe that the biggest contribution to the bispectrum comes from the non-zero IR cut-off for causal fields, unlike the two-point correlation case. For negative spectral indices, the reduced bispectrum is enhanced by the passive modes. This gives a lower value of the upper limit for the mean amplitude of the magnetic field on a given characteristic scale. However, high values of IR cut-off in the bispectrum, and the helical terms of the magnetic field relaxes this bound. This demonstrates the importance of the IR cut-off and helicity in the study of the nature of PMFs from CMB observations.

  20. Three-dimensional spiral CT during arterial portography: comparison of three rendering techniques.

    Science.gov (United States)

    Heath, D G; Soyer, P A; Kuszyk, B S; Bliss, D F; Calhoun, P S; Bluemke, D A; Choti, M A; Fishman, E K

    1995-07-01

    The three most common techniques for three-dimensional reconstruction are surface rendering, maximum-intensity projection (MIP), and volume rendering. Surface-rendering algorithms model objects as collections of geometric primitives that are displayed with surface shading. The MIP algorithm renders an image by selecting the voxel with the maximum intensity signal along a line extended from the viewer's eye through the data volume. Volume-rendering algorithms sum the weighted contributions of all voxels along the line. Each technique has advantages and shortcomings that must be considered during selection of one for a specific clinical problem and during interpretation of the resulting images. With surface rendering, sharp-edged, clear three-dimensional reconstruction can be completed on modest computer systems; however, overlapping structures cannot be visualized and artifacts are a problem. MIP is computationally a fast technique, but it does not allow depiction of overlapping structures, and its images are three-dimensionally ambiguous unless depth cues are provided. Both surface rendering and MIP use less than 10% of the image data. In contrast, volume rendering uses nearly all of the data, allows demonstration of overlapping structures, and engenders few artifacts, but it requires substantially more computer power than the other techniques.

  1. Three-dimensional reconstruction of the pigeon inner ear

    NARCIS (Netherlands)

    Hofman, R.; Segenhout, J. M.; Wit, H. P.

    2009-01-01

    Three-dimensional reconstructions of the inner ear of the pigeon (Columba livia domestica), from two-dimensional images, obtained with (conventional) light microscopy or orthogonal-plane fluorescence optical sectioning (OPFOS), are presented. The results are compared with available information on

  2. Surface representations of two- and three-dimensional fluid flow topology

    Science.gov (United States)

    Helman, James L.; Hesselink, Lambertus

    1990-01-01

    We discuss our work using critical point analysis to generate representations of the vector field topology of numerical flow data sets. Critical points are located and characterized in a two-dimensional domain, which may be either a two-dimensional flow field or the tangential velocity field near a three-dimensional body. Tangent curves are then integrated out along the principal directions of certain classes of critical points. The points and curves are linked to form a skeleton representing the two-dimensional vector field topology. When generated from the tangential velocity field near a body in a three-dimensional flow, the skeleton includes the critical points and curves which provide a basis for analyzing the three-dimensional structure of the flow separation. The points along the separation curves in the skeleton are used to start tangent curve integrations to generate surfaces representing the topology of the associated flow separations.

  3. Three-dimensional magnetophotonic crystals based on artificial opals

    Science.gov (United States)

    Baryshev, A. V.; Kodama, T.; Nishimura, K.; Uchida, H.; Inoue, M.

    2004-06-01

    We fabricated and experimentally investigated three-dimensional magnetophotonic crystals (3D MPCs) based on artificial opals. Opal samples with three-dimensional dielectric lattices were impregnated with different types of magnetic material. Magnetic and structural properties of 3D MPCs were studied by field emission scanning electron microscopy, x-ray diffraction analysis, and vibrating sample magnetometer. We have shown that magnetic materials synthesized in voids of opal lattices and the composites obtained have typical magnetic properties.

  4. Three-dimensional magnetophotonic crystals based on artificial opals

    International Nuclear Information System (INIS)

    Baryshev, A.V.; Kodama, T.; Nishimura, K.; Uchida, H.; Inoue, M.

    2004-01-01

    We fabricated and experimentally investigated three-dimensional magnetophotonic crystals (3D MPCs) based on artificial opals. Opal samples with three-dimensional dielectric lattices were impregnated with different types of magnetic material. Magnetic and structural properties of 3D MPCs were studied by field emission scanning electron microscopy, x-ray diffraction analysis, and vibrating sample magnetometer. We have shown that magnetic materials synthesized in voids of opal lattices and the composites obtained have typical magnetic properties

  5. Three-dimensional structural analysis of the group B polysaccharide of Neisseria meningitidis 6275 by two-dimensional NMR: The polysaccharide is suggested to exist in helical conformations in solution

    Energy Technology Data Exchange (ETDEWEB)

    Yamasaki, Ryohei; Bacon, B. (Univ. of California, San Francisco (USA) Veterans Administration Medical Center, San Francisco, CA (USA))

    1991-01-22

    The solution conformations of the group B polysaccharide of Neisseria meningitidis were analyzed by DQF-COSY and pure absorption 2D NOE NMR with three mixing times. The pyranose ring of the sialic acid residue was found to be in the {sup 2}C{sub 5} conformation. The DQF-COSY analysis indicated that the orientations of H6 and H7 and of H7 and H8 are both gauche. In order to overcome the difficulties in analyzing the NOE data due to the two sets of proton overlaps, molecular modeling of {alpha}-2,8-linked sialic acid oligomers was carried out to investigate possible conformers, and theoretical NOE calculations were performed by using CORMA (complete relaxation matrix analysis). The analysis suggests that the polysaccharide adopts helical structures for which the {phi} (defined by O6-C2-O8-C8) and {psi} (C2-O8-C8-C7) angles are in the following ranges: {phi}-60 to 0{degree}, {psi} 115-175{degree} or {phi} 90-120{degree}, {psi}55-175{degree}. The weak affinity of anti-B antibodies for smaller {alpha}-2,8-linked oligosaccharides may be due to the fact that such oligomers are more flexible and may not form an ordered structure as the poly(sialic acid) does.

  6. Magnetohydrodynamic study of three-dimensional instability of the spontaneous fast magnetic reconnection

    International Nuclear Information System (INIS)

    Shimizu, T.; Kondoh, K.; Ugai, M.; Shibata, K.

    2009-01-01

    Three-dimensional instability of the spontaneous fast magnetic reconnection is studied with magnetohydrodynamic (MHD) simulation, where the two-dimensional model of the spontaneous fast magnetic reconnection is destabilized in three dimension. Generally, in two-dimensional magnetic reconnection models, every plasma condition is assumed to be uniform in the sheet current direction. In such two-dimensional MHD simulations, the current sheet destabilized by the initial resistive disturbance can be developed to fast magnetic reconnection by a current driven anomalous resistivity. In this paper, the initial resistive disturbance includes a small amount of fluctuations in the sheet current direction, i.e., along the magnetic neutral line. The other conditions are the same as that of previous two-dimensional MHD studies for fast magnetic reconnection. Accordingly, we may expect that approximately two-dimensional fast magnetic reconnection occurs in the MHD simulation. In fact, the fast magnetic reconnection activated on the first stage of the simulation is two dimensional. However, on the subsequent stages, it spontaneously becomes three dimensional and is strongly localized in the sheet current direction. The resulting three-dimensional fast magnetic reconnection intermittently ejects three-dimensional magnetic loops. Such intermittent ejections of the three-dimensional loops are similar to the intermittent downflows observed in the solar flares. The ejection of the three-dimensional loops seems to be random but, numerically and theoretically, it is shown that the aspect ratio of the ejected loops is limited under a criterion.

  7. Possibility of estimating three-dimensional mandibular morphology by cephalogram analysis

    International Nuclear Information System (INIS)

    Kim, S.; Motegi, Etsuko; Kikuchi, Yu; Yamaguchi, Hideharu; Takaki, Takashi; Shibahara, Takahiko

    2007-01-01

    The purpose of this study was to investigate the possibility of a surmise of three-dimensional mandibular morphology by two-dimensional cephalogram analysis. The materials were three-dimensional CT and cephalogram of 20 female mandibular prognathism patients (average age: 25.20±7.49) before there orthognathic surgery. Mandibular bone volume and sponge bone width were calculated from three-dimensional images constructed from CT images using imaging software (Real Intage, KGT inc.). There was a positive correlation (r=0.72) between mandibular volume value and mandibular ramus width. There was a positive correlation between sponge bone width at the site of the mandibular cuspid and mandibular ramus width and SNB angle (r=0.80), and between sponge bone width at the site of the mandibular molar and symphysis height and mandibular ramus width (r=0.81). It was thought that these results will be useful for a surmise of three-dimensional mandibular morphology by cephalogram analysis. (author)

  8. Three-dimensional interpretation of TEM soundings

    Science.gov (United States)

    Barsukov, P. O.; Fainberg, E. B.

    2013-07-01

    We describe the approach to the interpretation of electromagnetic (EM) sounding data which iteratively adjusts the three-dimensional (3D) model of the environment by local one-dimensional (1D) transformations and inversions and reconstructs the geometrical skeleton of the model. The final 3D inversion is carried out with the minimal number of the sought parameters. At each step of the interpretation, the model of the medium is corrected according to the geological information. The practical examples of the suggested method are presented.

  9. Three-dimensional teletherapy treatment planning

    International Nuclear Information System (INIS)

    Panthaleon van Eck, R.B. van.

    1986-01-01

    This thesis deals with physical/mathematical backgrounds of computerized teletherapy treatment planning. The subjects discussed in this thesis can be subdivided into three main categories: a) Three-dimensional treatment planning. A method is evaluated which can be used for the purpose of simulation and optimization of dose distributions in three dimensions. b) The use of Computed Tomography. The use of patient information obtained from Computed Tomography for the purpose of dose computations is evaluated. c) Dose computational models for photon- and electron beams. Models are evaluated which provide information regarding the way in which the radiation dose is distributed in the patient (viz. is absorbed and/or dispersed). (Auth.)

  10. Three-dimensional imaging technology offers promise in medicine.

    Science.gov (United States)

    Karako, Kenji; Wu, Qiong; Gao, Jianjun

    2014-04-01

    Medical imaging plays an increasingly important role in the diagnosis and treatment of disease. Currently, medical equipment mainly has two-dimensional (2D) imaging systems. Although this conventional imaging largely satisfies clinical requirements, it cannot depict pathologic changes in 3 dimensions. The development of three-dimensional (3D) imaging technology has encouraged advances in medical imaging. Three-dimensional imaging technology offers doctors much more information on a pathology than 2D imaging, thus significantly improving diagnostic capability and the quality of treatment. Moreover, the combination of 3D imaging with augmented reality significantly improves surgical navigation process. The advantages of 3D imaging technology have made it an important component of technological progress in the field of medical imaging.

  11. Three-dimensional distortions of the tokamak plasma boundary: boundary displacements in the presence of saturated MHD instabilities

    International Nuclear Information System (INIS)

    Chapman, I.T.; Harrison, J.R.; Holgate, J.; Brunetti, D.; Cooper, W.A.; Graves, J.P.; Buratti, P.; Jardin, S.; Sabbagh, S.A.; Tritz, K.

    2014-01-01

    The three-dimensional plasma boundary displacement induced by long-lasting core magnetohydrodynamic (MHD) instabilities has been measured in JET, MAST and NSTX. Only saturated instabilities are considered here since transient rapidly growing modes which degrade confinement and act as potential triggers for disruptions bring more fundamental concerns than boundary displacements. The measured displacements are usually small, although in extreme cases in MAST when the rotation braking is strong, a significant global displacement can be observed. The instability most likely to saturate and exist for many energy confinement times whilst distorting the boundary of ITER is the saturated internal kink, or helical core, which can be found in plasmas with a wide region of low magnetic shear such as the hybrid scenario. This mode can lead to non-negligible boundary displacements. Nonetheless, the boundary displacement resultant from core MHD instabilities in ITER is predicted to be less than ±1.5% of the minor radius, well within tolerable limits for heat loads to plasma-facing components. (paper)

  12. Self-field effects on electron dynamics in free-electron lasers with axial magnetic field

    International Nuclear Information System (INIS)

    Mirzanejhad, S.; Maraghechi, B.; Mohsenpour, T.

    2004-01-01

    A self-consistent method for the analysis of self-magnetic field for a free-electron laser with a one-dimensional helical wiggler and an axial guide magnetic field is presented. The equilibrium orbits and their stability, under the influence of self-electric and self-magnetic fields, are analyzed. New unstable orbits, in the first part of the Group I orbits and in the resonance region of the Group II orbits, are found. It is shown that an increase in the defocusing effect of self-fields will widen the unstable orbits. An anomalous self-field regime is found where an increase in the defocusing effect of self-fields can have stabilizing effect on the resonance region

  13. Three-dimensional echocardiographic assessment of the repaired mitral valve.

    Science.gov (United States)

    Maslow, Andrew; Mahmood, Feroze; Poppas, Athena; Singh, Arun

    2014-02-01

    This study examined the geometric changes of the mitral valve (MV) after repair using conventional and three-dimensional echocardiography. Prospective evaluation of consecutive patients undergoing mitral valve repair. Tertiary care university hospital. Fifty consecutive patients scheduled for elective repair of the mitral valve for regurgitant disease. Intraoperative transesophageal echocardiography. Assessments of valve area (MVA) were performed using two-dimensional planimetry (2D-Plan), pressure half-time (PHT), and three-dimensional planimetry (3D-Plan). In addition, the direction of ventricular inflow was assessed from the three-dimensional imaging. Good correlations (r = 0.83) and agreement (-0.08 +/- 0.43 cm(2)) were seen between the MVA measured with 3D-Plan and PHT, and were better than either compared to 2D-Plan. MVAs were smaller after repair of functional disease repaired with an annuloplasty ring. After repair, ventricular inflow was directed toward the lateral ventricular wall. Subgroup analysis showed that the change in inflow angle was not different after repair of functional disease (168 to 171 degrees) as compared to those presenting with degenerative disease (168 to 148 degrees; p<0.0001). Three-dimensional imaging provides caregivers with a unique ability to assess changes in valve function after mitral valve repair. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Tactical Routing Using Two-Dimensional and Three-Dimensional Views of Terrain

    National Research Council Canada - National Science Library

    St

    2001-01-01

    Consoles for military and civilian occupations such as air warfare, command and control, air traffic control, piloting, and meteorological forecasting will be capable of displaying three-dimensional (3-D) perspective views...

  15. Crystallization of a self-assembled three-dimensional DNA nanostructure

    International Nuclear Information System (INIS)

    Rendek, Kimberly N.; Fromme, Raimund; Grotjohann, Ingo; Fromme, Petra

    2013-01-01

    In this work, the crystallization of a self-assembling three-dimensional B-DNA nanostructure is described. The powerful and specific molecular-recognition system present in the base-pairing of DNA allows for the design of a plethora of nanostructures. In this work, the crystallization of a self-assembling three-dimensional B-DNA nanostructure is described. The DNA nanostructure consists of six single-stranded oligonucleotides that hybridize to form a three-dimensional tetrahedron of 80 kDa in molecular mass and 20 bp on each edge. Crystals of the tetrahedron have been successfully produced and characterized. These crystals may form the basis for an X-ray structure of the tetrahedron in the future. Nucleotide crystallography poses many challenges, leading to the fact that only 1352 X-ray structures of nucleic acids have been solved compared with more than 80 000 protein structures. In this work, the crystallization optimization for three-dimensional tetrahedra is also described, with the eventual goal of producing nanocrystals to overcome the radiation-damage obstacle by the use of free-electron laser technology in the future

  16. Starch Catabolism by a Prominent Human Gut Symbiont Is Directed by the Recognition of Amylose Helices

    Energy Technology Data Exchange (ETDEWEB)

    Koropatkin, Nicole M.; Martens, Eric C.; Gordon, Jeffrey I.; Smith, Thomas J. (WU); (Danforth)

    2009-01-12

    The human gut microbiota performs functions that are not encoded in our Homo sapiens genome, including the processing of otherwise undigestible dietary polysaccharides. Defining the structures of proteins involved in the import and degradation of specific glycans by saccharolytic bacteria complements genomic analysis of the nutrient-processing capabilities of gut communities. Here, we describe the atomic structure of one such protein, SusD, required for starch binding and utilization by Bacteroides thetaiotaomicron, a prominent adaptive forager of glycans in the distal human gut microbiota. The binding pocket of this unique {alpha}-helical protein contains an arc of aromatic residues that complements the natural helical structure of starch and imposes this conformation on bound maltoheptaose. Furthermore, SusD binds cyclic oligosaccharides with higher affinity than linear forms. The structures of several SusD/oligosaccharide complexes reveal an inherent ligand recognition plasticity dominated by the three-dimensional conformation of the oligosaccharides rather than specific interactions with the composite sugars.

  17. Salt-bridging effects on short amphiphilic helical structure and introducing sequence-based short beta-turn motifs.

    Science.gov (United States)

    Guarracino, Danielle A; Gentile, Kayla; Grossman, Alec; Li, Evan; Refai, Nader; Mohnot, Joy; King, Daniel

    2018-02-01

    Determining the minimal sequence necessary to induce protein folding is beneficial in understanding the role of protein-protein interactions in biological systems, as their three-dimensional structures often dictate their activity. Proteins are generally comprised of discrete secondary structures, from α-helices to β-turns and larger β-sheets, each of which is influenced by its primary structure. Manipulating the sequence of short, moderately helical peptides can help elucidate the influences on folding. We created two new scaffolds based on a modestly helical eight-residue peptide, PT3, we previously published. Using circular dichroism (CD) spectroscopy and changing the possible salt-bridging residues to new combinations of Lys, Arg, Glu, and Asp, we found that our most helical improvements came from the Arg-Glu combination, whereas the Lys-Asp was not significantly different from the Lys-Glu of the parent scaffold, PT3. The marked 3 10 -helical contributions in PT3 were lessened in the Arg-Glu-containing peptide with the beginning of cooperative unfolding seen through a thermal denaturation. However, a unique and unexpected signature was seen for the denaturation of the Lys-Asp peptide which could help elucidate the stages of folding between the 3 10 and α-helix. In addition, we developed a short six-residue peptide with β-turn/sheet CD signature, again to help study minimal sequences needed for folding. Overall, the results indicate that improvements made to short peptide scaffolds by fine-tuning the salt-bridging residues can enhance scaffold structure. Likewise, with the results from the new, short β-turn motif, these can help impact future peptidomimetic designs in creating biologically useful, short, structured β-sheet-forming peptides.

  18. Three Dimensional Energy Transmitting Boundary in the Time Domain

    Directory of Open Access Journals (Sweden)

    Naohiro eNakamura

    2015-11-01

    Full Text Available Although the energy transmitting boundary is accurate and efficient for the FEM earthquake response analysis, it could be applied in the frequency domain only. In the previous papers, the author proposed an earthquake response analysis method using the time domain energy transmitting boundary for two dimensional problems. In this paper, this technique is expanded for three dimensional problems. The inner field is supposed to be a hexahedron shape and the approximate time domain boundary is explained, first. Next, two dimensional anti-plane time domain boundary is studied for a part of the approximate three dimensional boundary method. Then, accuracy and efficiency of the proposed method are confirmed by example problems.

  19. A method of image improvement in three-dimensional imaging

    International Nuclear Information System (INIS)

    Suto, Yasuzo; Huang, Tewen; Furuhata, Kentaro; Uchino, Masafumi.

    1988-01-01

    In general, image interpolation is required when the surface configurations of such structures as bones and organs are three-dimensionally constructed from the multi-sliced images obtained by CT. Image interpolation is a processing method whereby an artificial image is inserted between two adjacent slices to make spatial resolution equal to slice resolution in appearance. Such image interpolation makes it possible to increase the image quality of the constructed three-dimensional image. In our newly-developed algorithm, we have converted the presently and subsequently sliced images to distance images, and generated the interpolation images from these two distance images. As a result, compared with the previous method, three-dimensional images with better image quality have been constructed. (author)

  20. Usefulness Of Three-Dimensional Printing Models for Patients with Stoma Construction

    Directory of Open Access Journals (Sweden)

    Tetsuro Tominaga

    2016-04-01

    Full Text Available The use of patient-specific organ models in three-dimensional printing systems could be helpful for the education of patients and medical students. The aim of this study was to clarify whether the use of patient-specific stoma models is helpful for patient education. From January 2014 to September 2014, 5 patients who underwent colorectal surgery and for whom a temporary or permanent stoma had been created were involved in this study. Three-dimensional stoma models and three-dimensional face plates were created. The patients’ ages ranged from 59 to 81 years. Four patients underwent stoma construction because of rectal cancer, and 1 underwent stoma construction because of colon stenosis secondary to recurrent cancer. All patients were educated about their stoma and potential stoma-associated problems using three-dimensional stoma models, and all practiced cutting face plates using three-dimensional face plates. The models were also used during medical staff conferences to discuss current issues. All patients understood their problems and finally became self-reliant. The recent availability of three-dimensional printers has enabled the creation of many organ models, and full-scale stoma and face plate models are now available for patient education on cutting an appropriately individualized face plate. Thus, three-dimensional printers could enable fewer skin problems than are currently associated with daily stomal care.

  1. Stability of twisted rods, helices and buckling solutions in three dimensions

    KAUST Repository

    Majumdar, Apala; Raisch, Alexander

    2014-01-01

    © 2014 IOP Publishing Ltd & London Mathematical Society. We study stability problems for equilibria of a naturally straight, inextensible, unshearable Kirchhoff rod allowed to deform in three dimensions (3D), subject to terminal loads. We investigate the stability of the twisted, straight state in 3D for three different boundary-value problems, cast in terms of Dirichlet and Neumann boundary conditions for the Euler angles, with and without isoperimetric constraints. In all cases, we obtain explicit stability estimates in terms of the twist, external load and elastic constants and in the Dirichlet case, we compute bifurcation diagrams for the Euler angles as a function of the external load. In the same vein, we obtain explicit stability estimates for a family of prototypical helical equilibria in 3D and demonstrate that they are stable for a range of tensile and compressive forces. We propose a numerical L2-gradient flow model to study the stability and dynamical evolution (in viscous model situations) of Kirchhoff rod equilibria. In Nizette and Goriely 1999 J. Math. Phys. 40 2830-66, the authors construct a family of localized buckling solutions. We apply our L2-gradient flow model to these localized buckling solutions, demonstrate that they are unstable, study their evolution and the simulations demonstrate rich spatio oral patterns that strongly depend on the boundary conditions and imposed isoperimetric constraints.

  2. Stability of twisted rods, helices and buckling solutions in three dimensions

    KAUST Repository

    Majumdar, Apala

    2014-11-03

    © 2014 IOP Publishing Ltd & London Mathematical Society. We study stability problems for equilibria of a naturally straight, inextensible, unshearable Kirchhoff rod allowed to deform in three dimensions (3D), subject to terminal loads. We investigate the stability of the twisted, straight state in 3D for three different boundary-value problems, cast in terms of Dirichlet and Neumann boundary conditions for the Euler angles, with and without isoperimetric constraints. In all cases, we obtain explicit stability estimates in terms of the twist, external load and elastic constants and in the Dirichlet case, we compute bifurcation diagrams for the Euler angles as a function of the external load. In the same vein, we obtain explicit stability estimates for a family of prototypical helical equilibria in 3D and demonstrate that they are stable for a range of tensile and compressive forces. We propose a numerical L2-gradient flow model to study the stability and dynamical evolution (in viscous model situations) of Kirchhoff rod equilibria. In Nizette and Goriely 1999 J. Math. Phys. 40 2830-66, the authors construct a family of localized buckling solutions. We apply our L2-gradient flow model to these localized buckling solutions, demonstrate that they are unstable, study their evolution and the simulations demonstrate rich spatio oral patterns that strongly depend on the boundary conditions and imposed isoperimetric constraints.

  3. Three-dimensional ultrasound strain imaging of skeletal muscles

    NARCIS (Netherlands)

    Gijsbertse, Kaj; Sprengers, Andre M.; Nillesen, Maartje; Hansen, Hendrik H.G.; Verdonschot, Nico; De Korte, Chris L.

    2015-01-01

    Muscle contraction is characterized by large deformation and translation, which requires a multi-dimensional imaging modality to reveal its behavior. Previous work on ultrasound strain imaging of the muscle contraction was limited to 2D and bi-plane techniques. In this study, a three-dimensional

  4. Development of Integrated Simulation System for Helical Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Y.; Yokoyama, M.; Nakajima, N.; Fukuyama, A.; Watanabe, K. Y.; Funaba, H.; Suzuki, Y.; Murakami, S.; Ida, K.; Sakakibara, S.; Yamada, H.

    2005-07-01

    Recent progress of computers (parallel/vector-parallel computers, PC clusters, for example) and numerical codes for helical plasmas like three-dimensional MHD equilibrium codes, combined with the development of the plasma diagnostics technique, enable us to do the detailed theoretical analyses of the individual experimental observations. Now, it is pointed out that the experimental data analysis from the viewpoints of integrated physics is an important issue to understand the confinement physics globally. In addition to that, there are international movements towards the integrated numerical simulation study. One is several proposals of integrated modeling of burning tokamak plasmas, motivated by the ITER activity. The integrated numerical simulation will be a good help to draw up new experimental plans especially for burning plasma experiments. Another movement is international collaborations on the confinement database and neoclassical transport in helical plasmas/stellarators. These backgrounds motivate us to start the development of the integrated simulation system which has a modular structure and user-friendly interfaces. The integrated simulation system, which is based on the hierarchical and multi-scale (time and space) modeling, will also be a platform for theoreticians to test their own model such as turbulent transport model. In this paper, we will show the strategy of developing the integrated simulation system and present status of the development. Especially, we discuss the modeling of the time evolution of the plasma net current profile, which is equivalent to the time evolution of the rotational transform profile, in the resistive time scale. (Author)

  5. Plasma transport simulation modeling for helical confinement systems

    International Nuclear Information System (INIS)

    Yamazaki, K.; Amano, T.

    1991-08-01

    New empirical and theoretical transport models for helical confinement systems are developed based on the neoclassical transport theory including the effect of radial electric field and multi-helicity magnetic components, and the drift wave turbulence transport for electrostatic and electromagnetic modes, or the anomalous semi-empirical transport. These electron thermal diffusivities are compared with CHS (Compact Helical System) experimental data, which indicates that the central transport coefficient of the ECH plasma agrees with the neoclassical axi-symmetric value and the transport outside the half radius is anomalous. On the other hand, the transport of NBI-heated plasmas is anomalous in the whole plasma region. This anomaly is not explained by the electrostatic drift wave turbulence models in these flat-density-profile discharges. For the detailed prediction of plasma parameters in LHD (Large Helical Device), 3-D(dimensional) equilibrium/1-D transport simulations including empirical or drift wave turbulence models are carried out, which suggests that the global confinement time of LHD is determined mainly by the electron anomalous transport near the plasma edge region rather than the helical ripple transport in the core region. Even if the ripple loss can be eliminated, the increase of the global confinement is 10%. However, the rise in the central ion temperature is more than 20%. If the anomalous loss can be reduced to the half level of the present scaling, like so-called 'H-mode' of the tokamak discharge, the neoclassical ripple loss through the ion channel becomes important even in the plasma core. The 5% radial inward shift of the plasma column with respect to the major radius is effective for improving plasma confinement and raising more than 50% of the fusion product by reducing this neoclassical asymmetric ion transport loss and increasing 10% in the plasma radius. (author)

  6. Exact solutions in three-dimensional gravity

    CERN Document Server

    Garcia-Diaz, Alberto A

    2017-01-01

    A self-contained text, systematically presenting the determination and classification of exact solutions in three-dimensional Einstein gravity. This book explores the theoretical framework and general physical and geometrical characteristics of each class of solutions, and includes information on the researchers responsible for their discovery. Beginning with the physical character of the solutions, these are identified and ordered on the basis of their geometrical invariant properties, symmetries, and algebraic classifications, or from the standpoint of their physical nature, for example electrodynamic fields, fluid, scalar field, or dilaton. Consequently, this text serves as a thorough catalogue on 2+1 exact solutions to the Einstein equations coupled to matter and fields, and on vacuum solutions of topologically massive gravity with a cosmological constant. The solutions are also examined from different perspectives, enabling a conceptual bridge between exact solutions of three- and four-dimensional gravit...

  7. Three-dimensional reacting shock–bubble interaction

    NARCIS (Netherlands)

    Diegelmann, Felix; Hickel, S.; Adams, Nikolaus A.

    2017-01-01

    We investigate a reacting shock–bubble interaction through three-dimensional numerical simulations with detailed chemistry. The convex shape of the bubble focuses the shock and generates regions of high pressure and temperature, which are sufficient to ignite the diluted stoichiometric

  8. Theory and design of a harmonic Ubitron/Free-Electron laser

    International Nuclear Information System (INIS)

    Freund, H.P.; Bluem, H.

    1989-01-01

    A fully three-dimensional nonlinear analysis of the harmonic Ubitrono/Free-Election laser is discussed which is valid for arbitrary harmonic number. The analysis has been performed for a configuration consisting of a beam propagating through a loss-free rectangular waveguide in the presence of a planar wiggler field. The wiggler model includes an adiabatic entry taper to model the injection of the beam into the wiggler, parabolic pole pieces to provide additional focussing in the plane normal to the wiggler, and an amplitude taper downstream from the entry region for efficiency enhancement. The advantage of harmonic operation is that relatively high operating frequencies may be obtained with relatively modest beam energies; however, this occurs at the expense of a greater sensitivity to beam thermal effects. In addition to enhancing the extraction efficiency, a tapered wiggler has been shown to reduce the sensitivity of the interaction to thermal effects. Thus, the tapered wiggler is designed to counter the increased thermal sensitivity of the harmonic interaction. Suppression of the fundamental is accomplished by the careful choice of the beam energy, waveguide radius, and wiggler period in order to ensure that no resonance is possible at the fundamental. Specific design criteria for a third harmonic experiment operating at 15 GHz with a 55 keV electron beam are discussed

  9. Collapse in a forced three-dimensional nonlinear Schrodinger equation

    DEFF Research Database (Denmark)

    Lushnikov, P.M.; Saffman, M.

    2000-01-01

    We derive sufficient conditions for the occurrence of collapse in a forced three-dimensional nonlinear Schrodinger equation without dissipation. Numerical studies continue the results to the case of finite dissipation.......We derive sufficient conditions for the occurrence of collapse in a forced three-dimensional nonlinear Schrodinger equation without dissipation. Numerical studies continue the results to the case of finite dissipation....

  10. Eustachian tube three-dimensional reconstruction of secretory otitis media

    International Nuclear Information System (INIS)

    Yu Yafeng; Zhou Weirong; Bao Xueping; Li Min; Hu Zhenmin

    2006-01-01

    Objective: To study relationship between Eustachian tube and secretory otitis media and to explore the pathogeny of secretory otitis by three-dimensional reconstruction of Eustachian tube. Methods: Thirty cases of secretory otitis media (male 19, female 11) were selected randomly. Everyone was checked by otoscope and audiometry. Their bilateral Eustachian tubes were scanning by helix CT while making Valsalva's action. All images were passed on to work station to make three-dimensional reconstruction. Results: Four patients were found have Eustachian tube diseases, while most of patients' Eustachian tubes ventilated normally. Conclusions: Three-dimensional reconstruction of Eustachian tube can open out some pathogens of some secretory otitis medias. It will be helpful to diagnosis and therapy of secretory otitis media. (authors)

  11. Computerized three-dimensional normal atlas

    International Nuclear Information System (INIS)

    Mano, Isamu; Suto, Yasuzo; Suzuki, Masataka; Iio, Masahiro.

    1990-01-01

    This paper presents our ongoing project in which normal human anatomy and its quantitative data are systematically arranged in a computer. The final product, the Computerized Three-Dimensional Normal Atlas, will be able to supply tomographic images in any direction, 3-D images, and coded information on organs, e.g., anatomical names, CT numbers, and T 1 and T 2 values. (author)

  12. Three-Dimensional Shallow Water Acoustics

    Science.gov (United States)

    2016-03-30

    medium properties, so horizontal refraction and reflection of sound can occur and produce significant three-dimensional (3-D) sound propagation ...by the environmental factors existing commonly in the continental shelf and shelfbreak areas, such as slopes, submarine canyons, sub-bottom layers ...surface waves, internal waves and shelfbreak fronts. 15. SUBJECT TERMS Continental Shelf; 3-D Acoustics , Surface Waves, Sound Propagation 16

  13. Experimental and numerical investigations of shape memory alloy helical springs

    International Nuclear Information System (INIS)

    Aguiar, Ricardo A A; Pacheco, Pedro M C L; Savi, Marcelo A

    2010-01-01

    Shape memory alloys (SMAs) belong to the class of smart materials and have been used in numerous applications. Solid phase transformations induced either by stress or temperature are behind the remarkable properties of SMAs that motivate the concept of innovative smart actuators for different purposes. The SMA element used in these actuators can assume different forms and a spring is an element usually employed for this aim. This contribution deals with the modeling, simulation and experimental analysis of SMA helical springs. Basically, a one-dimensional constitutive model is assumed to describe the SMA thermomechanical shear behavior and, afterwards, helical springs are modeled by considering a classical approach for linear-elastic springs. A numerical method based on the operator split technique is developed. SMA helical spring thermomechanical behavior is investigated through experimental tests performed with different thermomechanical loadings. Shape memory and pseudoelastic effects are treated. Numerical simulations show that the model results are in close agreement with those obtained by experimental tests, revealing that the proposed model captures the general thermomechanical behavior of SMA springs

  14. Plural three-wave resonances of space charge wave harmonics in transit section of klystron-type two-stream FEL with helical electron beam

    DEFF Research Database (Denmark)

    Lysenko, Alexander; Volk, Iurii; Serozhko, Anastasia

    2017-01-01

    We have carried out the research of plural three-wave resonances of space charge wave (SCW) harmonics in the transit section of the klystron type two-stream superheterodyne free-electron laser (TSFEL) with helical electron beam in cubic non-linear approximation. We have found out that two...

  15. Three dimensional CT imaging of ossicular chain: a preliminary study

    International Nuclear Information System (INIS)

    Hu Chunhong; Zhong Shenbin; Fu Yindi; Zhu Wei; Wang Xueyuan; Chen Jianhua; Ding Yi

    2001-01-01

    Objective: To analysis the features of normal and abnormal ossicular chain in three dimensional images and asses the best parameters and its usefulness in diagnosis and treatment of chronic otitis media (COM). Methods: All patients, including 43 patients with normal ears and 24 ears with COM, were examined using spiral CT with inner ear software, 1-mm slice width and 1 pitch. SSD method was used in three dimensional reconstruction and the threshold was 100-300 Hu. Results: In normal cases, Malleus, incus, stapes crura, incudomalleal joints and incudostapedial joints were displayed well, but stapes footplate unsatisfactorily. The disruption of the ossicular chain showed in three-dimensional images in cases of chronic otitis media was in accord with that seen in the operation. Conclusion: It is very important for imaging with high quality through selecting proper parameters, and three-dimensional image can provide valuable information for surgery

  16. Three dimensional digital imaging of environmental data

    International Nuclear Information System (INIS)

    Nichols, R.L.; Eddy, C.A.

    1991-01-01

    The Environmental Sciences Section (ESS) of the Savannah River Laboratory has recently acquired the computer hardware (Silicon Graphics Personal Iris Workstations) and software (Dynamic Graphics, Interactive Surface and Volume Modeling) to perform three dimensional analysis of hydrogeologic data. Three dimensional digital imaging of environmental data is a powerful technique that can be used to incorporate field, analytical, and modeling results from geologic, hydrologic, ecologic, and chemical studies into a comprehensive model for visualization and interpretation. This report covers the contamination of four different sites of the Savannah River Plant. Each section of this report has a computer graphic display of the concentration of contamination in the groundwater and/or sediments of each site

  17. Three-dimensional Imaging, Visualization, and Display

    CERN Document Server

    Javidi, Bahram; Son, Jung-Young

    2009-01-01

    Three-Dimensional Imaging, Visualization, and Display describes recent developments, as well as the prospects and challenges facing 3D imaging, visualization, and display systems and devices. With the rapid advances in electronics, hardware, and software, 3D imaging techniques can now be implemented with commercially available components and can be used for many applications. This volume discusses the state-of-the-art in 3D display and visualization technologies, including binocular, multi-view, holographic, and image reproduction and capture techniques. It also covers 3D optical systems, 3D display instruments, 3D imaging applications, and details several attractive methods for producing 3D moving pictures. This book integrates the background material with new advances and applications in the field, and the available online supplement will include full color videos of 3D display systems. Three-Dimensional Imaging, Visualization, and Display is suitable for electrical engineers, computer scientists, optical e...

  18. Three-dimensional radiation treatment planning

    International Nuclear Information System (INIS)

    Mohan, R.

    1989-01-01

    A major aim of radiation therapy is to deliver sufficient dose to the tumour volume to kill the cancer cells while sparing the nearby health organs to prevent complications. With the introduction of devices such as CT and MR scanners, radiation therapy treatment planners have access to full three-dimensional anatomical information to define, simulate, and evaluate treatments. There are a limited number of prototype software systems that allow 3D treatment planning currently in use. In addition, there are more advanced tools under development or still in the planning stages. They require sophisticated graphics and computation equipment, complex physical and mathematical algorithms, and new radiation treatment machines that deliver dose very precisely under computer control. Components of these systems include programs for the identification and delineation of the anatomy and tumour, the definition of radiation beams, the calculation of dose distribution patterns, the display of dose on 2D images and as three dimensional surfaces, and the generation of computer images to verify proper patient positioning in treatment. Some of these functions can be performed more quickly and accurately if artificial intelligence or expert systems techniques are employed. 28 refs., figs

  19. Three-dimensional cooling of muons

    CERN Document Server

    Vsevolozhskaya, T A

    2000-01-01

    The simultaneous ionization cooling of muon beams in all three - the longitudinal and two transverse - directions is considered in a scheme, based on bent lithium lenses with dipole constituent of magnetic field in them, created by a special configuration of current-carrying rod. An analysis of three-dimensional cooling is performed with the use of kinetic equation method. Results of numerical calculation for a specific beam line configuration are presented together with results of computer simulation using the Moliere distribution to describe the Coulomb scattering and the Vavilov distribution used to describe the ionization loss of energy.

  20. Vibrational spectra and thermal rectification in three-dimensional anharmonic lattices

    International Nuclear Information System (INIS)

    Lan Jinghua; Li Baowen

    2007-01-01

    We study thermal rectification in a three-dimensional model consisting of two segments of anharmonic lattices. One segment consists of layers of harmonic oscillator arrays coupled to a substrate potential, which is a three-dimensional Frenkel-Kontorova model, and the other segment is a three-dimensional Fermi-Pasta-Ulam model. We study the vibrational bands of the two lattices analytically and numerically, and find that, by choosing the system parameters properly, the rectification can be as high as a few thousands, which is high enough to be observed in experiment. Possible experiments in nanostructures are discussed