WorldWideScience

Sample records for three-dimensional breast mri

  1. A new background distribution-based active contour model for three-dimensional lesion segmentation in breast DCE-MRI

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hui; Liu, Yiping; Qiu, Tianshuang [Department of Biomedical Engineering, Dalian University of Technology, Dalian 116024 (China); Zhao, Zuowei, E-mail: liuhui@dlut.edu.cn [Second Affiliated Hospital, Dalian Medical University, Dalian 116027 (China); Zhang, Lina [Department of Radiology, First Affiliated Hospital, Dalian Medical University, Dalian 116027 (China)

    2014-08-15

    Purpose: To develop and evaluate a computerized semiautomatic segmentation method for accurate extraction of three-dimensional lesions from dynamic contrast-enhanced magnetic resonance images (DCE-MRIs) of the breast. Methods: The authors propose a new background distribution-based active contour model using level set (BDACMLS) to segment lesions in breast DCE-MRIs. The method starts with manual selection of a region of interest (ROI) that contains the entire lesion in a single slice where the lesion is enhanced. Then the lesion volume from the volume data of interest, which is captured automatically, is separated. The core idea of BDACMLS is a new signed pressure function which is based solely on the intensity distribution combined with pathophysiological basis. To compare the algorithm results, two experienced radiologists delineated all lesions jointly to obtain the ground truth. In addition, results generated by other different methods based on level set (LS) are also compared with the authors’ method. Finally, the performance of the proposed method is evaluated by several region-based metrics such as the overlap ratio. Results: Forty-two studies with 46 lesions that contain 29 benign and 17 malignant lesions are evaluated. The dataset includes various typical pathologies of the breast such as invasive ductal carcinoma, ductal carcinomain situ, scar carcinoma, phyllodes tumor, breast cysts, fibroadenoma, etc. The overlap ratio for BDACMLS with respect to manual segmentation is 79.55% ± 12.60% (mean ± s.d.). Conclusions: A new active contour model method has been developed and shown to successfully segment breast DCE-MRI three-dimensional lesions. The results from this model correspond more closely to manual segmentation, solve the weak-edge-passed problem, and improve the robustness in segmenting different lesions.

  2. Three-dimensional vascular mapping of the breast by using contrast-enhanced MRI: association of unilateral increased vascularity with ipsilateral breast cancer.

    Science.gov (United States)

    Orgüç, Şebnem; Başara, Işıl; Coşkun, Teoman; Pekindil, Gökhan

    2012-01-01

    We aimed to retrospectively compare three-dimensional vascular maps of both breasts obtained by dynamic magnetic resonance imaging (MRI) and determine the association of one-sided vascular prominence with ipsilateral breast cancer. MRI was performed using gadolinium in 194 cases. Two readers scored vascular density using maximum intensity projections (MIPs). Dynamic fat-saturated T1-weighted gradientecho MIPs were acquired. Two readers evaluated the MIPs, and vessels greater than 2 mm in diameter and longer than 3 cm were counted. The difference in vessel numbers detected in the two breasts determined the score. A total of 54 patients had malignant lesions (prevalence, 28%), including invasive ductal carcinoma (n=40), invasive mixed ductal-lobular carcinoma (n=5), invasive lobular carcinoma (n=3), ductal carcinoma in situ (n=3), mucinous carcinoma (n=1), medullary carcinoma (n=1), and leukemic metastasis (n=1). In 62 patients, there were benign lesions (fibroadenomas, fibrocysts), and four patients had inflammation (granulomatous mastitis in two patients, breast tuberculosis in two patients). There were 78 normal cases. When a difference of at least two vessels was scored as vascular asymmetry, the sensitivity, specificity, positive likelihood ratio (+LR), and negative (-LR) of unilaterally increased vascularity associated with ipsilateral malignancy were 69%, 92%, 8.72, and 0.34, respectively. When four infection and three post-operative cases with vascular asymmetry were excluded; prevalence, specificity, and +LR increased to 29%, 97%, and 22.8, respectively, with the same sensitivity and -LR. Differences in mean vascularity scores were evaluated with regard to tumor size. T1 and T2 tumors were not significantly different from each other. The mean score of T3 tumors differed significantly from T1 and T2 tumors. MRI vascular mapping is an effective method for determining breast tissue vascularization. Ipsilateral increased vascularity was commonly associated with

  3. Three-dimensional digital breast histopathology imaging

    Science.gov (United States)

    Clarke, G. M.; Peressotti, C.; Mawdsley, G. E.; Eidt, S.; Ge, M.; Morgan, T.; Zubovits, J. T.; Yaffe, M. J.

    2005-04-01

    We have developed a digital histology imaging system that has the potential to improve the accuracy of surgical margin assessment in the treatment of breast cancer by providing finer sampling and 3D visualization. The system is capable of producing a 3D representation of histopathology from an entire lumpectomy specimen. We acquire digital photomicrographs of a stack of large (120 x 170 mm) histology slides cut serially through the entire specimen. The images are then registered and displayed in 2D and 3D. This approach dramatically improves sampling and can improve visualization of tissue structures compared to current, small-format histology. The system consists of a brightfield microscope, adapted with a freeze-frame digital video camera and a large, motorized translation stage. The image of each slide is acquired as a mosaic of adjacent tiles, each tile representing one field-of-view of the microscope, and the mosaic is assembled into a seamless composite image. The assembly is done by a program developed to build image sets at six different levels within a multiresolution pyramid. A database-linked viewing program has been created to efficiently register and display the animated stack of images, which occupies about 80 GB of disk space per lumpectomy at full resolution, on a high-resolution (3840 x 2400 pixels) colour monitor. The scanning or tiling approach to digitization is inherently susceptible to two artefacts which disrupt the composite image, and which impose more stringent requirements on system performance. Although non-uniform illumination across any one isolated tile may not be discernible, the eye readily detects this non-uniformity when the entire assembly of tiles is viewed. The pattern is caused by deficiencies in optical alignment, spectrum of the light source, or camera corrections. The imaging task requires that features as small as 3.2 &mum in extent be seamlessly preserved. However, inadequate accuracy in positioning of the translation

  4. Three-dimensional MRI of the glenoid labrum

    International Nuclear Information System (INIS)

    Loehr, S.P.; Pope, T.L. Jr.; Martin, D.F.; Link, K.M.; Monu, J.U.V.; Hunter, M.; Reboussin, D.

    1995-01-01

    The objective of this study was to assess the accuracy of three-dimensional (3D) magnetic resonance imaging (MRI) reformation in the evaluation of tears of the glenoid labrum complex (GLC). Fifty-five shoulders were evaluated by MRI using standard spin-echo sequences. Gradient-refocused-echo axial projections were used to assess the GLC on the two-dimensional (2D) studies. Three-dimensional Fourier transform multiplanar gradient-recalled imaging with a resolution of 0.7 mm was also performed in all patients. Independent analyses of the anterior and posterior labra were performed in a blinded manner for both the 2D and 3D studies by three experienced musculoskeletal radiologists. Observations of the imaging studies were compared with the videoarthroscopic findings. The appearance of the GLC was rated on a scale of 0 to 4 (0-2=normal, 3, 4=abnormal or torn). The diagnostic confidence was averaged from the three reader's scores. Anterior labral tears were effectively detected with sensitivities of 89% and 96% and specificities of 96% and 100% (P<0.0001) for the 2D and 3D studies, respectively. For posterior labral tears, the sensitivity and specificity of the 2D method were 47% and 98%, respectively. The sensitivity and specificity of the 3D volume sequence were 53% and 98%, respectively. The lower sensitivity of both imaging methods for detecting posterior labral tears may be influenced by the smaller number (n=5) of arthroscopically confirmed cases in our study and reflects the difficulty of visualizing the posteroinferior borders of the GLC with present MRI techniques. (orig.)

  5. Three-dimensional brain mapping using fMRI

    International Nuclear Information System (INIS)

    Fukunaga, Masaki; Tanaka, Chuzo; Umeda, Masahiro; Ebisu, Toshihiko; Aoki, Ichio; Higuchi, Toshihiro; Naruse, Shoji.

    1997-01-01

    Functional mapping of the activated brain, the location and extent of the activated area were determined, during motor tasks and sensory stimulation using fMRI superimposed on 3D anatomical MRI. Twelve volunteers were studied. The fMR images were acquired using a 2D gradient echo echo planar imaging sequence. The 3D anatomical MR images of the whole brain were acquired using a conventional 3D gradient echo sequence. Motor tasks were sequential opposition of fingers, clenching a hand and elbow flexion. Somatosensory stimulation were administered by scrubbing the palm and sole with a washing sponge. Visual stimulation consisted of full visual field stimulation. Data were analyzed by the cross-correlation method. Transversal fMR images and anatomical images were reconstructed using both volume-, surface-rendering methods, and reconstructed for coronal and sagittal sections. Activated areas were expressed using the three primary colors. Motor tasks activated the contralateral primary motor area (M1), the primary somatosensory area (S1) and the supplementary motor area (SMA). Somatosensory tasks activated the contralateral S1, M1 and secondary sensory area (S2). Activated areas during full visual field stimulation was observed in the bilateral occipital lobe, including both the primary cortex. Three-dimensional brain mapping allowed visualization of the anatomical location and extent of the activated brain during both motor task and sensory stimulation. Using this method we could obtain a functional map similar to the Penfield's schema. (author)

  6. A three-dimensional breast software phantom for mammography simulation

    International Nuclear Information System (INIS)

    Bliznakova, K; Bliznakov, Z; Bravou, V; Kolitsi, Z; Pallikarakis, N

    2003-01-01

    This paper presents a methodology for three-dimensional (3D) computer modelling of the breast, using a combination of 3D geometrical primitives and voxel matrices that can be further subjected to simulated x-ray imaging, to produce synthetic mammograms. The breast phantom is a composite model of the breast and includes the breast surface, the duct system and terminal ductal lobular units, Cooper's ligaments, the pectoral muscle, the 3D mammographic background and breast abnormalities. A second analytical x-ray matter interaction modelling module is used to generate synthetic images from monoenergetic fan beams. Mammographic images of various synthesized breast models differing in size, shape and composition were produced. A preliminary qualitative assessment performed by three radiologists and a quantitative evaluation study using fractal and grey-level histogram analysis were conducted. A comparative study of extracted features with published data has also been performed. The evaluation results indicated good correlation of characteristics between synthetic and actual radiographs. Applications foreseen are not only in the area of breast imaging experimentation but also in education and training

  7. Three-dimensional conformal breast irradiation in the prone position

    Directory of Open Access Journals (Sweden)

    C. Kurtman

    2003-10-01

    Full Text Available The prone position can be used for the planning of adjuvant radiotherapy after conservative breast surgery in order to deliver less irradiation to lung and cardiac tissue. In the present study, we compared the results of three-dimensional conformal radiotherapy planning for five patients irradiated in the supine and prone position. Tumor stage was T1N0M0 in four patients and T1N1M0 in one. All patients had been previously submitted to conservative breast surgery. Breast size was large in three patients and moderate in the other two. Irradiation in the prone position was performed using an immobilization foam pad with a hole cut into it to accommodate the breast so that it would hang down away from the chest wall. Dose-volume histograms showed that mean irradiation doses reaching the ipsilateral lung were 8.3 ± 3.6 Gy with the patient in the supine position and 1.4 ± 1.0 Gy with the patient in the prone position (P = 0.043. The values for the contralateral lung were 1.3 ± 0.7 and 0.3 ± 0.1 Gy (P = 0.043 and the values for cardiac tissue were 4.6 ± 1.6 and 3.0 ± 1.7 Gy (P = 0.079, respectively. Thus, the dose-volume histograms demonstrated that lung tissue irradiation was significantly lower with the patient in the prone position than in the supine position. Large-breasted women appeared to benefit most from irradiation in the prone position. Prone position breast irradiation appears to be a simple and effective alternative to the conventional supine position for patients with large breasts, since they are subjected to lower pulmonary doses which may cause less pulmonary side effects in the future.

  8. Terahertz Imaging of Three-Dimensional Dehydrated Breast Cancer Tumors

    Science.gov (United States)

    Bowman, Tyler; Wu, Yuhao; Gauch, John; Campbell, Lucas K.; El-Shenawee, Magda

    2017-06-01

    This work presents the application of terahertz imaging to three-dimensional formalin-fixed, paraffin-embedded human breast cancer tumors. The results demonstrate the capability of terahertz for in-depth scanning to produce cross section images without the need to slice the tumor. Samples of tumors excised from women diagnosed with infiltrating ductal carcinoma and lobular carcinoma are investigated using a pulsed terahertz time domain imaging system. A time of flight estimation is used to obtain vertical and horizontal cross section images of tumor tissues embedded in paraffin block. Strong agreement is shown comparing the terahertz images obtained by electronically scanning the tumor in-depth in comparison with histopathology images. The detection of cancer tissue inside the block is found to be accurate to depths over 1 mm. Image processing techniques are applied to provide improved contrast and automation of the obtained terahertz images. In particular, unsharp masking and edge detection methods are found to be most effective for three-dimensional block imaging.

  9. Three-dimensional appearance of the lips muscles with three-dimensional isotropic MRI: in vivo study

    Energy Technology Data Exchange (ETDEWEB)

    Olszewski, Raphael; Reychler, H. [Universite Catholique de Louvain, Department of Oral and Maxillofacial Surgery, Cliniques Universitaires Saint Luc, Brussels (Belgium); Liu, Y.; Xu, T.M. [Peking University School and Hospital of Stomatology, Department of Orthodontics, Beijing (China); Duprez, T. [Universite Catholique de Louvain, Department of Radiology, Cliniques Universitaires Saint Luc, Brussels (Belgium)

    2009-06-15

    Our knowledge of facial muscles is based primarily on atlases and cadaveric studies. This study describes a non-invasive in vivo method (3D MRI) for segmenting and reconstructing facial muscles in a three-dimensional fashion. Three-dimensional (3D), T1-weighted, 3 Tesla, isotropic MRI was applied to a subject. One observer performed semi-automatic segmentation using the Editor module from the 3D Slicer software (Harvard Medical School, Boston, MA, USA), version 3.2. We were able to successfully outline and three-dimensionally reconstruct the following facial muscles: pars labialis orbicularis oris, m. levatro labii superioris alaeque nasi, m. levator labii superioris, m. zygomaticus major and minor, m. depressor anguli oris, m. depressor labii inferioris, m. mentalis, m. buccinator, and m. orbicularis oculi. 3D reconstruction of the lip muscles should be taken into consideration in order to improve the accuracy and individualization of existing 3D facial soft tissue models. More studies are needed to further develop efficient methods for segmentation in this field. (orig.)

  10. Three-dimensional appearance of the lips muscles with three-dimensional isotropic MRI: in vivo study.

    Science.gov (United States)

    Olszewski, Raphael; Liu, Y; Duprez, T; Xu, T M; Reychler, H

    2009-06-01

    Our knowledge of facial muscles is based primarily on atlases and cadaveric studies. This study describes a non-invasive in vivo method (3D MRI) for segmenting and reconstructing facial muscles in a three-dimensional fashion. Three-dimensional (3D), T1-weighted, 3 Tesla, isotropic MRI was applied to a subject. One observer performed semi-automatic segmentation using the Editor module from the 3D Slicer software (Harvard Medical School, Boston, MA, USA), version 3.2. We were able to successfully outline and three-dimensionally reconstruct the following facial muscles: pars labialis orbicularis oris, m. levatro labii superioris alaeque nasi, m. levator labii superioris, m. zygomaticus major and minor, m. depressor anguli oris, m. depressor labii inferioris, m. mentalis, m. buccinator, and m. orbicularis oculi. 3D reconstruction of the lip muscles should be taken into consideration in order to improve the accuracy and individualization of existing 3D facial soft tissue models. More studies are needed to further develop efficient methods for segmentation in this field.

  11. Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans

    Science.gov (United States)

    Corlu, Alper; Choe, Regine; Durduran, Turgut; Rosen, Mark A.; Schweiger, Martin; Arridge, Simon R.; Schnall, Mitchell D.; Yodh, Arjun G.

    2007-05-01

    We present three-dimensional (3D) in vivo images of human breast cancer based on fluorescence diffuse optical tomography (FDOT). To our knowledge, this work represents the first reported 3D fluorescence tomography of human breast cancer in vivo. In our protocol, the fluorophore Indocyanine Green (ICG) is injected intravenously. Fluorescence excitation and detection are accomplished in the soft-compression, parallel-plane, transmission geometry using laser sources at 786 nm and spectrally filtered CCD detection. Phantom and in vivo studies confirm the signals are due to ICG fluorescence, rather than tissue autofluorescence and excitation light leakage. Fluorescence images of breast tumors were in good agreement with those of MRI, and with DOT based on endogenous contrast. Tumorto- normal tissue contrast based on ICG fluorescence was two-to-four-fold higher than contrast based on hemoglobin and scattering parameters. In total the measurements demonstrate that FDOT of breast cancer is feasible and promising.

  12. Development of three-dimensional radiotherapy techniques in breast cancer

    Science.gov (United States)

    Coles, Charlotte E.

    Radiotherapy following conservation surgery decreases local relapse and death from breast cancer. Currently, the challenge is to minimise the morbidity caused by this treatment without losing efficacy. Despite many advances in radiation techniques in other sites of the body, the majority of breast cancer patients are still planned and treated using 2-dimensional simple radiotherapy techniques. In addition, breast irradiation currently consumes 30% of the UK's radiotherapy workload. Therefore, any change to more complex treatment should be of proven benefit. The primary objective of this research is to develop and evaluate novel radiotherapy techniques to decrease irradiation of normal structures and improve localisation of the tumour bed. I have developed a forward-planned intensity modulated (IMRT) breast radiotherapy technique, which has shown improved dosimetry results compared to standard breast radiotherapy. Subsequently, I have developed and implemented a phase III randomised controlled breast IMRT trial. This National Cancer Research Network adopted trial will answer an important question regarding the clinical benefit of breast IMRT. It will provide DNA samples linked with high quality clinical outcome data, for a national translational radiogenomics study investigating variation in normal tissue toxicity. Thus, patients with significant late normal tissue side effects despite good dose homogeneity will provide the best model for finding differences due to underlying genetics. I evaluated a novel technique using high definition free-hand 3-dimensional (3D) ultrasound in a phantom study, and the results suggested that this is an accurate and reproducible method for tumour bed localisation. I then compared recognised methods of tumour bed localisation with the 3D ultrasound method in a clinical study. The 3D ultrasound technique appeared to accurately represent the shape and spatial position of the tumour cavity. This tumour bed localisation research

  13. Three-dimensional intrafractional internal target motions in accelerated partial breast irradiation using three-dimensional conformal external beam radiotherapy.

    Science.gov (United States)

    Hirata, Kimiko; Yoshimura, Michio; Mukumoto, Nobutaka; Nakamura, Mitsuhiro; Inoue, Minoru; Sasaki, Makoto; Fujimoto, Takahiro; Yano, Shinsuke; Nakata, Manabu; Mizowaki, Takashi; Hiraoka, Masahiro

    2017-07-01

    We evaluated three-dimensional intrafractional target motion, divided into respiratory-induced motion and baseline drift, in accelerated partial breast irradiation (APBI). Paired fluoroscopic images were acquired simultaneously using orthogonal kV X-ray imaging systems at pre- and post-treatment for 23 patients who underwent APBI with external beam radiotherapy. The internal target motion was calculated from the surgical clips placed around the tumour cavity. The peak-to-peak respiratory-induced motions ranged from 0.6 to 1.5mm in all directions. A systematic baseline drift of 1.5mm towards the posterior direction and a random baseline drift of 0.3mm in the lateral-medial and cranial-caudal directions were observed. The baseline for an outer tumour cavity drifted towards the lateral and posterior directions, and that for an upper tumour cavity drifted towards the cranial direction. Moderate correlations were observed between the posterior baseline drift and the patients' physical characteristics. The posterior margin for intrafractional uncertainties was larger than 5mm in patients with greater fat thickness due to the baseline drift. The magnitude of the intrafractional motion was not uniform according to the direction, patients' physical characteristics, or tumour cavity location due to the baseline drift. Therefore, the intrafractional systematic movement should be properly managed. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Semi-automated delineation of breast cancer tumors and subsequent materialization using three-dimensional printing (rapid prototyping).

    Science.gov (United States)

    Schulz-Wendtland, Rüdiger; Harz, Markus; Meier-Meitinger, Martina; Brehm, Barbara; Wacker, Till; Hahn, Horst K; Wagner, Florian; Wittenberg, Thomas; Beckmann, Matthias W; Uder, Michael; Fasching, Peter A; Emons, Julius

    2017-03-01

    Three-dimensional (3D) printing has become widely available, and a few cases of its use in clinical practice have been described. The aim of this study was to explore facilities for the semi-automated delineation of breast cancer tumors and to assess the feasibility of 3D printing of breast cancer tumors. In a case series of five patients, different 3D imaging methods-magnetic resonance imaging (MRI), digital breast tomosynthesis (DBT), and 3D ultrasound-were used to capture 3D data for breast cancer tumors. The volumes of the breast tumors were calculated to assess the comparability of the breast tumor models, and the MRI information was used to render models on a commercially available 3D printer to materialize the tumors. The tumor volumes calculated from the different 3D methods appeared to be comparable. Tumor models with volumes between 325 mm 3 and 7,770 mm 3 were printed and compared with the models rendered from MRI. The materialization of the tumors reflected the computer models of them. 3D printing (rapid prototyping) appears to be feasible. Scenarios for the clinical use of the technology might include presenting the model to the surgeon to provide a better understanding of the tumor's spatial characteristics in the breast, in order to improve decision-making in relation to neoadjuvant chemotherapy or surgical approaches. J. Surg. Oncol. 2017;115:238-242. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Three-dimensional helical CT for treatment planning of breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hiramatsu, Hideko; Enomoto, Kohji; Ikeda, Tadashi [Keio Univ., Tokyo (Japan). School of Medicine] [and others

    1999-01-01

    The role of three-dimensional (3D) helical CT in the treatment planning of breast cancer was evaluated. Of 36 patients examined, 30 had invasive ductal carcinoma, three had invasive lobular carcinoma, one had DCIS, one had DCIS with minimal invasion, and 1 had Paget`s disease. Patients were examined in the supine position. The whole breast was scanned under about 25 seconds of breath-holding using helical CT (Proceed, Yokogawa Medical Systems, or High-speed Advantage, GE Medical Systems). 3D imaging was obtained with computer assistance (Advantage Windows, GE Medical Systems). Linear and/or spotty enhancement on helical CT was considered to suggest DCIS or intraductal spread in the area surrounding the invasive cancer. Of 36 patients, 24 showed linear and/or spotty enhancement on helical CT, and 22 of those 24 patients had DCIS or intraductal spread. In contrast, 12 of 36 patients were considered to have little or no intraductal spread on helical CT, and eight of the 12 patients had little or no intraductal spread on pathological examination. The sensitivity, specificity, and accuracy rates for detecting intraductal spread on MRI were 85%, 80%, and 83%, respectively. 3D helical CT was considered useful in detecting intraductal spread and planning surgery, however, a larger study using a precise correlation with pathology is necessary. (author)

  16. The value of MRI three-dimensional reconstruction in diagnosis and therapy of prostate cancer

    International Nuclear Information System (INIS)

    Li Feiyu; Wang Xiaoying; Xu Yufeng; Xiao Jiangxi; Jiang Xuexiang

    2006-01-01

    Objective: To evaluate three-dimensional reconstruction of MRI images in diagnosis and therapy of prostate cancer. Methods: Twenty-eight patients with proven prostate cancers were recruited in this study. Seventeen of them were diagnosed as having prostate cancer according to the ultrasound guided systemic biopsy. Their MR examinations showed fourteen lesions in the peripheral zone and three in the central gland of the prostate. The other eleven patients underwent MR examination after a period of treatment, including endocrinetherapy and brachytherapy. Using endorectal coil, a series of T 2 -weighted images were acquired on the axial plane. These source images were processed by 3D-Doctor software to reconstruct into three-dimensional images. Results: In the fourteen patients with peripheral zone cancer, reconstruction images could display the 3D regions of cancer and the involvement of capsular. The outspread of central gland and the compression of peripheral zone in patients with central gland cancer could be revealed in the same way. The volumetric changes of the lesion and the prostate after endocrinetherapy could also be perceived through these 3 D images. Similarly, radioactive seeds were revealed in a spatial manner that could be easily evaluated. Conclusion: Three-dimensional reconstruction images were obtained in all patients. They were able to provide stereotyped information about the lesions and their surrounding tissues. MRI three-dimensional reconstruction can be an adjunctive tool in the evaluation of prostate lesions. (authors)

  17. MRI of the lateral ankle ligaments: value of three-dimensional orientation

    International Nuclear Information System (INIS)

    Mayerhoefer, M.E.; Breitenseher, M.J.

    2003-01-01

    Purpose: To determine the three-dimensional orientation of the lateral ankle ligaments with MRI. Materials and Methods: Twenty healthy volunteers without previous injury to the ankle were included in the study. With the right ankle in the normal anatomic position stabilized in a splint, coronal T2-weighted spin-echo sequences (TSE) were obtained. The three-dimensional orientation was determined by placing paths through the ligaments and by measuring the angles between corresponding tangents and the three main imaging planes. Results: Using the calculated angles, full-length visualization of the lateral ligaments of the ankle was achieved. The angles deviating from the axial imaging plane were 18.0 degrees for the anterior talofibular ligament, 52.3 degrees for the calcaneofibular ligament and 28.2 degrees for the posterior talofibular ligament. Conclusion: MRI enables the exact determination of the three-dimensional orientation of the lateral ankle ligaments. Orienting the imaging planes according to the calculated angular deviation allows the full-length visualization of the ligaments and is the basis for optimal imaging of the lateral ankle ligaments. (orig.) [de

  18. Three-dimensional imaging, an important factor of decision in breast augmentation.

    Science.gov (United States)

    de Runz, A; Boccara, D; Bertheuil, N; Claudot, F; Brix, M; Simon, E

    2018-04-01

    Since the beginning of the 21st century, three-dimensional imaging systems have been used more often in plastic surgery, especially during preoperative planning for breast surgery and to simulate the postoperative appearance of the implant in the patient's body. The main objective of this study is to assess the patients' attitudes regarding 3D simulation for breast augmentation. A study was conducted, which included women who were operated on for primary breast augmentation. During the consultation, a three-dimensional simulation with Crisalix was done and different sized implants were fitted in the bra. Thirty-eight women were included. The median age was 29.4, and the median prosthesis volume was 310mL. The median rank given regarding the final result was 9 (IQR: 8-9). Ninety percent of patients agreed (66% absolutely agreed, and 24% partially agreed) that the final product after breast augmentations was similar to the Crisalix simulation. Ninety-three percent of the patients believed that the three-dimensional simulation helped them choose their prosthesis (61% a lot and 32% a little). After envisaging a breast enlargement, patients estimated that the Crisalix system was absolutely necessary (21%), very useful (32%), useful (45%), or unnecessary (3%). Regarding prosthesis choice, an equal number of women preferred the 3D simulation (19 patients) as preferred using different sizes of implants in the bra (19 patients). The present study demonstrated that 3D simulation is actually useful for patients in order to envisage a breast augmentation. But it should be used as a complement to the classic method of trying different sized breast implants in the bra. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Three-dimensional contrasted visualization of pancreas in rats using clinical MRI and CT scanners.

    Science.gov (United States)

    Yin, Ting; Coudyzer, Walter; Peeters, Ronald; Liu, Yewei; Cona, Marlein Miranda; Feng, Yuanbo; Xia, Qian; Yu, Jie; Jiang, Yansheng; Dymarkowski, Steven; Huang, Gang; Chen, Feng; Oyen, Raymond; Ni, Yicheng

    2015-01-01

    The purpose of this work was to visualize the pancreas in post-mortem rats with local contrast medium infusion by three-dimensional (3D) magnetic resonance imaging (MRI) and computed tomography (CT) using clinical imagers. A total of 16 Sprague Dawley rats of about 300 g were used for the pancreas visualization. Following the baseline imaging, a mixed contrast medium dye called GadoIodo-EB containing optimized concentrations of Gd-DOTA, iomeprol and Evens blue was infused into the distally obstructed common bile duct (CBD) for post-contrast imaging with 3.0 T MRI and 128-slice CT scanners. Images were post-processed with the MeVisLab software package. MRI findings were co-registered with CT scans and validated with histomorphology, with relative contrast ratios quantified. Without contrast enhancement, the pancreas was indiscernible. After infusion of GadoIodo-EB solution, only the pancreatic region became outstandingly visible, as shown by 3D rendering MRI and CT and proven by colored dissection and histological examinations. The measured volume of the pancreas averaged 1.12 ± 0.04 cm(3) after standardization. Relative contrast ratios were 93.28 ± 34.61% and 26.45 ± 5.29% for MRI and CT respectively. We have developed a multifunctional contrast medium dye to help clearly visualize and delineate rat pancreas in situ using clinical MRI and CT scanners. The topographic landmarks thus created with 3D demonstration may help to provide guidelines for the next in vivo pancreatic MRI research in rodents. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Evaluation of anterior pituitary gland volume in childhood using three-dimensional MRI

    International Nuclear Information System (INIS)

    Marziali, Simone; Gaudiello, Fabrizio; Ferone, Ernesto; Colangelo, Vittorio; Floris, Roberto; Simonetti, Giovanni; Bozzao, Alessandro; Scire, Giuseppe; Simonetti, Alessandra; Boscherini, Brunetto

    2004-01-01

    Background: Three-dimensional MRI (3D-MRI) is a reliable tool for the evaluation of anatomical volumes. Volumetric measurement of the normal anterior pituitary gland in childhood has been performed in the past by 2D-MRI calculations, but has inherent inaccuracies. Objective: To obtain accurate normal anterior pituitary gland volume in childhood using 3D-MRI coronal sections. Materials and methods: The anterior pituitary gland was measured using coronal T1-weighted 3D-gradient-echo sequences (section thickness 0.75 mm). The study group was composed of 95 prepubertal children (age range 2 months-10 years) with clinically normal pituitary function and no pituitary or brain abnormalities. Results: A measurement error of 0.2-0.4% was assessed by using a phantom study. Volumetric evaluation of the anterior pituitary gland showed progressive growth of the gland from a mean 131±24 mm 3 at 2-12 months, to 249±25 mm 3 at 1-4 years and 271±29 mm 3 at 5-10 years. Conclusions: These data may be useful for paediatricians in the evaluation of patients with neuroendocrine diseases, in particular growth hormone deficiency. (orig.)

  1. MRI of the Breast

    Science.gov (United States)

    ... in evaluating women at high risk for breast cancer. MRI can successfully image the dense breast tissue common in younger women, and it can successfully image breast implants. Both of these are difficult to image using ...

  2. Three dimensional gel dosimetry by use of nuclear magnetic resonance imaging (MRI)

    International Nuclear Information System (INIS)

    De Deene, Y.; De Wagter, C.; Van Duyse, B.; Achten, E.; De Neve, W.; De Poorter, J.

    1995-01-01

    As co-monomers are found to polymerize by radiation, they are eligible for constructing a three dimensional dosimeter. Another kind of three dimensional dosimeter, based on the radiation sensitivity of the ferrous ions in a Fricke solution, was tested in a previous study. However, a major problem that occurs in this kind of gel dosimeters is the diffusion of the ferric and ferrous ions. The co-monomer gels are more stable. The degree of polymerisation is visualized with a clinical MRI system. Acrylamide and N,N-methylene-bis-acrylamide are dissolved in a gel composed of gelatin and water. By irradiation the co-monomers are polymerized to polyacrylamide. The gel is casted in humanoid forms. As such, a simulation of the irradiation of the patient can be performed. Magnetic resonance relaxivity images of the irradiated gel display the irradiation dose. The images of the gel are fused with the radiological images of the patient. Quantitation of the dose response of the co-monomer gel is obtained through calibration by test tubes

  3. Three dimensional gel dosimetry by use of nuclear magnetic resonance imaging (MRI)

    Energy Technology Data Exchange (ETDEWEB)

    De Deene, Y; De Wagter, C; Van Duyse, B; Achten, E; De Neve, W [Ghent Rijksuniversiteit (Belgium). Kliniek voor Radiotherapie en Kerngeneeskunde; De Poorter, J [Ghent Univ. (Belgium). Dept. of Magnetic Resonance

    1995-12-01

    As co-monomers are found to polymerize by radiation, they are eligible for constructing a three dimensional dosimeter. Another kind of three dimensional dosimeter, based on the radiation sensitivity of the ferrous ions in a Fricke solution, was tested in a previous study. However, a major problem that occurs in this kind of gel dosimeters is the diffusion of the ferric and ferrous ions. The co-monomer gels are more stable. The degree of polymerisation is visualized with a clinical MRI system. Acrylamide and N,N-methylene-bis-acrylamide are dissolved in a gel composed of gelatin and water. By irradiation the co-monomers are polymerized to polyacrylamide. The gel is casted in humanoid forms. As such, a simulation of the irradiation of the patient can be performed. Magnetic resonance relaxivity images of the irradiated gel display the irradiation dose. The images of the gel are fused with the radiological images of the patient. Quantitation of the dose response of the co-monomer gel is obtained through calibration by test tubes.

  4. Three-dimensional dictionary-learning reconstruction of (23)Na MRI data.

    Science.gov (United States)

    Behl, Nicolas G R; Gnahm, Christine; Bachert, Peter; Ladd, Mark E; Nagel, Armin M

    2016-04-01

    To reduce noise and artifacts in (23)Na MRI with a Compressed Sensing reconstruction and a learned dictionary as sparsifying transform. A three-dimensional dictionary-learning compressed sensing reconstruction algorithm (3D-DLCS) for the reconstruction of undersampled 3D radial (23)Na data is presented. The dictionary used as the sparsifying transform is learned with a K-singular-value-decomposition (K-SVD) algorithm. The reconstruction parameters are optimized on simulated data, and the quality of the reconstructions is assessed with peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). The performance of the algorithm is evaluated in phantom and in vivo (23)Na MRI data of seven volunteers and compared with nonuniform fast Fourier transform (NUFFT) and other Compressed Sensing reconstructions. The reconstructions of simulated data have maximal PSNR and SSIM for an undersampling factor (USF) of 10 with numbers of averages equal to the USF. For 10-fold undersampling, the PSNR is increased by 5.1 dB compared with the NUFFT reconstruction, and the SSIM by 24%. These results are confirmed by phantom and in vivo (23)Na measurements in the volunteers that show markedly reduced noise and undersampling artifacts in the case of 3D-DLCS reconstructions. The 3D-DLCS algorithm enables precise reconstruction of undersampled (23)Na MRI data with markedly reduced noise and artifact levels compared with NUFFT reconstruction. Small structures are well preserved. © 2015 Wiley Periodicals, Inc.

  5. Ventricular enlargement in multiple sclerosis: a comparison of three-dimensional and linear MRI estimates

    International Nuclear Information System (INIS)

    Turner, B.; Blumhardt, L.D.; Ramli, N.; Jaspan, T.

    2001-01-01

    Atrophy of central white matter is related to irreversible clinical disability in multiple sclerosis (MS) and ventricular enlargement may be a sensitive marker of this tissue loss. Therapeutic trials in MS have provided MRI data for investigation of cerebral atrophy in MS. These studies use almost exclusively two-dimensional (2-D) images, which may be limited in the assessment of three-dimensional (3-D) structures. We used 3-D MRI data to estimate ventricular volumes in 40 patients with MS and 10 healthy controls, to look at associations with clinical disability and the stage of the disease. We then compared simple linear measures of ventricular size from conventional 2-D images, with 3-D volume estimates to establish the best available linear indices of ventricular volume. Mean ventricular volumes were increased in the patients and significantly larger in the more disabled patients. The estimated volume of the third ventricle obtained from 3-D MRI showed the strongest association with the clinical stage of the disease, duration of symptoms and levels of disability. Finally, we confirmed that in patients with MS accurate data on ventricular size can be obtained from 2-D images by two simple and convenient linear measures, the width of the third ventricle and of the anterior horn of the lateral ventricle. (orig.)

  6. Three-dimensional liver motion tracking using real-time two-dimensional MRI.

    Science.gov (United States)

    Brix, Lau; Ringgaard, Steffen; Sørensen, Thomas Sangild; Poulsen, Per Rugaard

    2014-04-01

    Combined magnetic resonance imaging (MRI) systems and linear accelerators for radiotherapy (MR-Linacs) are currently under development. MRI is noninvasive and nonionizing and can produce images with high soft tissue contrast. However, new tracking methods are required to obtain fast real-time spatial target localization. This study develops and evaluates a method for tracking three-dimensional (3D) respiratory liver motion in two-dimensional (2D) real-time MRI image series with high temporal and spatial resolution. The proposed method for 3D tracking in 2D real-time MRI series has three steps: (1) Recording of a 3D MRI scan and selection of a blood vessel (or tumor) structure to be tracked in subsequent 2D MRI series. (2) Generation of a library of 2D image templates oriented parallel to the 2D MRI image series by reslicing and resampling the 3D MRI scan. (3) 3D tracking of the selected structure in each real-time 2D image by finding the template and template position that yield the highest normalized cross correlation coefficient with the image. Since the tracked structure has a known 3D position relative to each template, the selection and 2D localization of a specific template translates into quantification of both the through-plane and in-plane position of the structure. As a proof of principle, 3D tracking of liver blood vessel structures was performed in five healthy volunteers in two 5.4 Hz axial, sagittal, and coronal real-time 2D MRI series of 30 s duration. In each 2D MRI series, the 3D localization was carried out twice, using nonoverlapping template libraries, which resulted in a total of 12 estimated 3D trajectories per volunteer. Validation tests carried out to support the tracking algorithm included quantification of the breathing induced 3D liver motion and liver motion directionality for the volunteers, and comparison of 2D MRI estimated positions of a structure in a watermelon with the actual positions. Axial, sagittal, and coronal 2D MRI series

  7. Three-dimensional liver motion tracking using real-time two-dimensional MRI

    Energy Technology Data Exchange (ETDEWEB)

    Brix, Lau, E-mail: lau.brix@stab.rm.dk [Department of Procurement and Clinical Engineering, Region Midt, Olof Palmes Allé 15, 8200 Aarhus N, Denmark and MR Research Centre, Aarhus University Hospital, Skejby, Brendstrupgaardsvej 100, 8200 Aarhus N (Denmark); Ringgaard, Steffen [MR Research Centre, Aarhus University Hospital, Skejby, Brendstrupgaardsvej 100, 8200 Aarhus N (Denmark); Sørensen, Thomas Sangild [Department of Computer Science, Aarhus University, Aabogade 34, 8200 Aarhus N, Denmark and Department of Clinical Medicine, Aarhus University, Brendstrupgaardsvej 100, 8200 Aarhus N (Denmark); Poulsen, Per Rugaard [Department of Clinical Medicine, Aarhus University, Brendstrupgaardsvej 100, 8200 Aarhus N, Denmark and Department of Oncology, Aarhus University Hospital, Nørrebrogade 44, 8000 Aarhus C (Denmark)

    2014-04-15

    Purpose: Combined magnetic resonance imaging (MRI) systems and linear accelerators for radiotherapy (MR-Linacs) are currently under development. MRI is noninvasive and nonionizing and can produce images with high soft tissue contrast. However, new tracking methods are required to obtain fast real-time spatial target localization. This study develops and evaluates a method for tracking three-dimensional (3D) respiratory liver motion in two-dimensional (2D) real-time MRI image series with high temporal and spatial resolution. Methods: The proposed method for 3D tracking in 2D real-time MRI series has three steps: (1) Recording of a 3D MRI scan and selection of a blood vessel (or tumor) structure to be tracked in subsequent 2D MRI series. (2) Generation of a library of 2D image templates oriented parallel to the 2D MRI image series by reslicing and resampling the 3D MRI scan. (3) 3D tracking of the selected structure in each real-time 2D image by finding the template and template position that yield the highest normalized cross correlation coefficient with the image. Since the tracked structure has a known 3D position relative to each template, the selection and 2D localization of a specific template translates into quantification of both the through-plane and in-plane position of the structure. As a proof of principle, 3D tracking of liver blood vessel structures was performed in five healthy volunteers in two 5.4 Hz axial, sagittal, and coronal real-time 2D MRI series of 30 s duration. In each 2D MRI series, the 3D localization was carried out twice, using nonoverlapping template libraries, which resulted in a total of 12 estimated 3D trajectories per volunteer. Validation tests carried out to support the tracking algorithm included quantification of the breathing induced 3D liver motion and liver motion directionality for the volunteers, and comparison of 2D MRI estimated positions of a structure in a watermelon with the actual positions. Results: Axial, sagittal

  8. Three-dimensional liver motion tracking using real-time two-dimensional MRI

    International Nuclear Information System (INIS)

    Brix, Lau; Ringgaard, Steffen; Sørensen, Thomas Sangild; Poulsen, Per Rugaard

    2014-01-01

    Purpose: Combined magnetic resonance imaging (MRI) systems and linear accelerators for radiotherapy (MR-Linacs) are currently under development. MRI is noninvasive and nonionizing and can produce images with high soft tissue contrast. However, new tracking methods are required to obtain fast real-time spatial target localization. This study develops and evaluates a method for tracking three-dimensional (3D) respiratory liver motion in two-dimensional (2D) real-time MRI image series with high temporal and spatial resolution. Methods: The proposed method for 3D tracking in 2D real-time MRI series has three steps: (1) Recording of a 3D MRI scan and selection of a blood vessel (or tumor) structure to be tracked in subsequent 2D MRI series. (2) Generation of a library of 2D image templates oriented parallel to the 2D MRI image series by reslicing and resampling the 3D MRI scan. (3) 3D tracking of the selected structure in each real-time 2D image by finding the template and template position that yield the highest normalized cross correlation coefficient with the image. Since the tracked structure has a known 3D position relative to each template, the selection and 2D localization of a specific template translates into quantification of both the through-plane and in-plane position of the structure. As a proof of principle, 3D tracking of liver blood vessel structures was performed in five healthy volunteers in two 5.4 Hz axial, sagittal, and coronal real-time 2D MRI series of 30 s duration. In each 2D MRI series, the 3D localization was carried out twice, using nonoverlapping template libraries, which resulted in a total of 12 estimated 3D trajectories per volunteer. Validation tests carried out to support the tracking algorithm included quantification of the breathing induced 3D liver motion and liver motion directionality for the volunteers, and comparison of 2D MRI estimated positions of a structure in a watermelon with the actual positions. Results: Axial, sagittal

  9. A recapitulative three-dimensional model of breast carcinoma requires perfusion for multi-week growth

    Directory of Open Access Journals (Sweden)

    Kayla F Goliwas

    2016-07-01

    Full Text Available Breast carcinomas are complex, three-dimensional tissues composed of cancer epithelial cells and stromal components, including fibroblasts and extracellular matrix. In vitro models that more faithfully recapitulate this dimensionality and stromal microenvironment should more accurately elucidate the processes driving carcinogenesis, tumor progression, and therapeutic response. Herein, novel in vitro breast carcinoma surrogates, distinguished by a relevant dimensionality and stromal microenvironment, are described and characterized. A perfusion bioreactor system was used to deliver medium to surrogates containing engineered microchannels and the effects of perfusion, medium composition, and the method of cell incorporation and density of initial cell seeding on the growth and morphology of surrogates were assessed. Perfused surrogates demonstrated significantly greater cell density and proliferation and were more histologically recapitulative of human breast carcinoma than surrogates maintained without perfusion. Although other parameters of the surrogate system, such as medium composition and cell seeding density, affected cell growth, perfusion was the most influential parameter.

  10. Three-dimensional versus two-dimensional sonography of the temporomandibular joint in comparison to MRI

    Energy Technology Data Exchange (ETDEWEB)

    Landes, Constantin A. [Oral, Maxillofacial and Plastic Facial Surgery, Frankfurt University Medical Centre, Theodor-Stern-Kai 7, 60596 Frankfurt (Germany)]. E-mail: c.landes@lycos.com; Goral, Wojciech A. [Oral, Maxillofacial and Plastic Facial Surgery, Frankfurt University Medical Centre, Theodor-Stern-Kai 7, 60596 Frankfurt (Germany)]. E-mail: w.goral@gmx.de; Sader, Robert [Oral, Maxillofacial and Plastic Facial Surgery, Frankfurt University Medical Centre, Theodor-Stern-Kai 7, 60596 Frankfurt (Germany)]. E-mail: r.sader@em.uni-frankfurt.de; Mack, Martin G. [Department of Diagnostic and Interventional Radiology, Frankfurt University Medical Centre, Theodor-Stern-Kai 7, 60596 Frankfurt (Germany)]. E-mail: martinmack@arcor.de

    2007-02-15

    Aim: To compare clinical feasibility of static two-dimensional (2D) to three-dimensional (3D) sonography of the temporomandibular joint (TMJ) in assessment of disk dislocation and joint degeneration compared to magnetic resonance imaging (MRI). Method: Thirty-three patients, 66 TMJ were prospectively sonographed 2D and 3D (8-12.5 MHz step motor scan), in occlusion and maximum opening with a probe position parallel inferior to the zygomatic arch. Axial 2D images were judged independent from the 3D scans; 3D volumes were cut axial, sagittal, frontal and rotated in real-time. Disk position and joint degeneration were assessed and compared to a subsequent MRI examination. Results: The specific appearance of the disk was hypoechogenic overlying a hyperechogenic condyle in axial (2D) or sagittal and frontal (3D) viewing. Specificity of 2D sonography for disk dislocation was 63%, sensitivity 58%, accuracy 64%, positive predictive value 46%, negative predictive value 73%; for joint degeneration synonymously 59/68/61/38/83%. 3D sonography for disk displacement reached synonymously 68/60/69/51/76%, for joint degeneration 75/65/73/48/86%. 2D sonographic diagnoses of disk dislocation in the closed mouth position and of joint degeneration showed significantly different results from the expected values (MRI) in {chi} {sup 2} testing; 3D diagnoses of disk dislocation in closed mouth position, of joint degeneration, 2D and 3D diagnoses in open mouth position were nonsignificant. Conclusions: Acceptable was the overall negative predictive value, as specificity and accuracy for joint degeneration in 3D. 3D appears superior diagnosing disk dislocation in closed mouth position as for overall joint degeneration. Sensitivity, accuracy and positive predictive value will have to ameliorate with future equipment of higher resolution in real-time 2D and 3D, if sonographic screening shall be clinically applied prior to MRI.

  11. Toxicity and cosmetic outcome of three-dimensional conformal radiotherapy for accelerated partial breast irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Gatti, M.; Bresciani, S.; Ponzone, R.; Panaia, R.; Salatino, A.; Stasi, M.; Gabriele, P. [IRCC, Candiolo (Italy)

    2011-10-15

    Full text of publication follows: Purpose.- To analyse the incidence and severity of acute and late normal tissue toxicity and cosmetic outcome using three - dimensional conformal radiotherapy to deliver accelerated partial breast irradiation. Patients and Methods.- 70 patients with stage I disease were treated with three-dimensional conformal radiotherapy for accelerated partial breast irradiation, in an approved protocol. The prescribed dose was 34 Gy in all patients delivered in 10 fractions over 5 consecutive days. On all CT scans gross tumor volume (GTV ) was defined around surgical clips. A 1.5 cm margin was added in order to account for clinical target volume (CTV) . A margin of 1 cm was added to CTI to define the planning target volume (PTV). The dose-volume constraints were followed in accordance with the specifications as dictated in the NSABP/RTOG protocol. After treatment, patients underwent a clinical and cosmetic evaluation every 3 months. Late toxicity was evaluated according to the RTOG grading schema. The cosmetic assessment was performed by the physicians using the controlateral untreated breast as the reference (Harvard scale). Results.- Median patient age was 66 years (range 51-80). Median follow-up was 15 months (range 6-46). Tumor size was < 10 mm in 33 patients (53%) and > 2 cm in 4(6%). The mean value of the ratio between the PTV and the whole ipsilateral breast volume was 38 % and the median percentage whole breast volume that received 95 % of prescribed dose was 34% (range 16%-55%). The rate of G1 and G2 acute skin toxicity was 28% and 2% respectively and the late toxicity was 17% (G1). G2 or greater toxicities were not observed. The most pronounced G1 late toxicity was subcutaneous fibrosis, developed in 3 patients. The cosmetic outcome was excellent in 83% and good in 17%. Conclusion.- Accelerated partial breast irradiation using three-dimensional conformal radiotherapy is technically feasible with very low acute and late toxicity. Long

  12. Toxicity and cosmetic outcome of three-dimensional conformal radiotherapy for accelerated partial breast irradiation

    International Nuclear Information System (INIS)

    Gatti, M.; Bresciani, S.; Ponzone, R.; Panaia, R.; Salatino, A.; Stasi, M.; Gabriele, P.

    2011-01-01

    Full text of publication follows: Purpose.- To analyse the incidence and severity of acute and late normal tissue toxicity and cosmetic outcome using three - dimensional conformal radiotherapy to deliver accelerated partial breast irradiation. Patients and Methods.- 70 patients with stage I disease were treated with three-dimensional conformal radiotherapy for accelerated partial breast irradiation, in an approved protocol. The prescribed dose was 34 Gy in all patients delivered in 10 fractions over 5 consecutive days. On all CT scans gross tumor volume (GTV ) was defined around surgical clips. A 1.5 cm margin was added in order to account for clinical target volume (CTV) . A margin of 1 cm was added to CTI to define the planning target volume (PTV). The dose-volume constraints were followed in accordance with the specifications as dictated in the NSABP/RTOG protocol. After treatment, patients underwent a clinical and cosmetic evaluation every 3 months. Late toxicity was evaluated according to the RTOG grading schema. The cosmetic assessment was performed by the physicians using the controlateral untreated breast as the reference (Harvard scale). Results.- Median patient age was 66 years (range 51-80). Median follow-up was 15 months (range 6-46). Tumor size was 2 cm in 4(6%). The mean value of the ratio between the PTV and the whole ipsilateral breast volume was 38 % and the median percentage whole breast volume that received 95 % of prescribed dose was 34% (range 16%-55%). The rate of G1 and G2 acute skin toxicity was 28% and 2% respectively and the late toxicity was 17% (G1). G2 or greater toxicities were not observed. The most pronounced G1 late toxicity was subcutaneous fibrosis, developed in 3 patients. The cosmetic outcome was excellent in 83% and good in 17%. Conclusion.- Accelerated partial breast irradiation using three-dimensional conformal radiotherapy is technically feasible with very low acute and late toxicity. Long-term results are needed to assess

  13. A computational model to generate simulated three-dimensional breast masses

    Energy Technology Data Exchange (ETDEWEB)

    Sisternes, Luis de; Brankov, Jovan G.; Zysk, Adam M.; Wernick, Miles N., E-mail: wernick@iit.edu [Medical Imaging Research Center, Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, Illinois 60616 (United States); Schmidt, Robert A. [Kurt Rossmann Laboratories for Radiologic Image Research, Department of Radiology, The University of Chicago, Chicago, Illinois 60637 (United States); Nishikawa, Robert M. [Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213 (United States)

    2015-02-15

    Purpose: To develop algorithms for creating realistic three-dimensional (3D) simulated breast masses and embedding them within actual clinical mammograms. The proposed techniques yield high-resolution simulated breast masses having randomized shapes, with user-defined mass type, size, location, and shape characteristics. Methods: The authors describe a method of producing 3D digital simulations of breast masses and a technique for embedding these simulated masses within actual digitized mammograms. Simulated 3D breast masses were generated by using a modified stochastic Gaussian random sphere model to generate a central tumor mass, and an iterative fractal branching algorithm to add complex spicule structures. The simulated masses were embedded within actual digitized mammograms. The authors evaluated the realism of the resulting hybrid phantoms by generating corresponding left- and right-breast image pairs, consisting of one breast image containing a real mass, and the opposite breast image of the same patient containing a similar simulated mass. The authors then used computer-aided diagnosis (CAD) methods and expert radiologist readers to determine whether significant differences can be observed between the real and hybrid images. Results: The authors found no statistically significant difference between the CAD features obtained from the real and simulated images of masses with either spiculated or nonspiculated margins. Likewise, the authors found that expert human readers performed very poorly in discriminating their hybrid images from real mammograms. Conclusions: The authors’ proposed method permits the realistic simulation of 3D breast masses having user-defined characteristics, enabling the creation of a large set of hybrid breast images containing a well-characterized mass, embedded within real breast background. The computational nature of the model makes it suitable for detectability studies, evaluation of computer aided diagnosis algorithms, and

  14. A computational model to generate simulated three-dimensional breast masses

    International Nuclear Information System (INIS)

    Sisternes, Luis de; Brankov, Jovan G.; Zysk, Adam M.; Wernick, Miles N.; Schmidt, Robert A.; Nishikawa, Robert M.

    2015-01-01

    Purpose: To develop algorithms for creating realistic three-dimensional (3D) simulated breast masses and embedding them within actual clinical mammograms. The proposed techniques yield high-resolution simulated breast masses having randomized shapes, with user-defined mass type, size, location, and shape characteristics. Methods: The authors describe a method of producing 3D digital simulations of breast masses and a technique for embedding these simulated masses within actual digitized mammograms. Simulated 3D breast masses were generated by using a modified stochastic Gaussian random sphere model to generate a central tumor mass, and an iterative fractal branching algorithm to add complex spicule structures. The simulated masses were embedded within actual digitized mammograms. The authors evaluated the realism of the resulting hybrid phantoms by generating corresponding left- and right-breast image pairs, consisting of one breast image containing a real mass, and the opposite breast image of the same patient containing a similar simulated mass. The authors then used computer-aided diagnosis (CAD) methods and expert radiologist readers to determine whether significant differences can be observed between the real and hybrid images. Results: The authors found no statistically significant difference between the CAD features obtained from the real and simulated images of masses with either spiculated or nonspiculated margins. Likewise, the authors found that expert human readers performed very poorly in discriminating their hybrid images from real mammograms. Conclusions: The authors’ proposed method permits the realistic simulation of 3D breast masses having user-defined characteristics, enabling the creation of a large set of hybrid breast images containing a well-characterized mass, embedded within real breast background. The computational nature of the model makes it suitable for detectability studies, evaluation of computer aided diagnosis algorithms, and

  15. Utility of three-dimensional helical CT in the diagnosis of breast cancer

    International Nuclear Information System (INIS)

    Maeda, Yoshiaki; Hata, Yoshinobu; Matsuoka, Shinnichi; Nakajima, Nobuhisa; Ito, Toichi; Osada, Tadahiro; Sano, Fumio

    2004-01-01

    Although utility of three-dimensional (3D) helical CT for preoperative examination of breast cancer has been discussed, the accuracy of the helical CT in diagnosing breast cancer has not been fully evaluated. In this study 56 malignant and 28 benign breast tumors were evaluated preoperatively with 3D-helical CT, and their imaging results were compared with pathological findings of surgical specimens. Helical CT identified the presence of malignancy in 54 out of the 56 cancer cases tested and the sensitivity and specificity in distinguishing between malignant and benign tumors were 82% and 57%, respectively. The sensitivity and specificity in diagnosing the presence of metastatic axillary lymph nodes using helical CT were 70% and 80%, respectively. The sensitivity and specificity in diagnosing the presence of extensive intraductal component (EIC) using helical CT were 71% and 86%, respectively. Helical CT visualized all of the tumors in multifocal breast cancer cases. In conclusion, 3D-helical CT is a useful modality for preoperative examination of breast cancer, especially for assessing axillary lymph node status, and EIC, and will be helpful for conducting sentinel lymph node biopsy (SNLB) and breast-conserving surgery. (author)

  16. Electrospinning PCL Scaffolds Manufacture for Three-Dimensional Breast Cancer Cell Culture

    Directory of Open Access Journals (Sweden)

    Marc Rabionet

    2017-08-01

    Full Text Available In vitro cell culture is traditionally performed within two-dimensional (2D environments, providing a quick and cheap way to study cell properties in a laboratory. However, 2D systems differ from the in vivo environment and may not mimic the physiological cell behavior realistically. For instance, 2D culture models are thought to induce cancer stem cells (CSCs differentiation, a rare cancer cell subpopulation responsible for tumor initiation and relapse. This fact hinders the development of therapeutic strategies for tumors with a high relapse percentage, such as triple negative breast cancer (TNBC. Thus, three-dimensional (3D scaffolds have emerged as an attractive alternative to monolayer culture, simulating the extracellular matrix structure and maintaining the differentiation state of cells. In this work, scaffolds were fabricated through electrospinning different poly(ε-caprolactone-acetone solutions. Poly(ε-caprolactone (PCL meshes were seeded with triple negative breast cancer (TNBC cells and 15% PCL scaffolds displayed significantly (p < 0.05 higher cell proliferation and elongation than the other culture systems. Moreover, cells cultured on PCL scaffolds exhibited higher mammosphere forming capacity and aldehyde dehydrogenase activity than 2D-cultured cells, indicating a breast CSCs enrichment. These results prove the powerful capability of electrospinning technology in terms of poly(ε-caprolactone nanofibers fabrication. In addition, this study has demonstrated that electrospun 15% PCL scaffolds are suitable tools to culture breast cancer cells in a more physiological way and to expand the niche of breast CSCs. In conclusion, three-dimensional cell culture using PCL scaffolds could be useful to study cancer stem cell behavior and may also trigger the development of new specific targets against such malignant subpopulation.

  17. Hormonal regulation of epithelial organization in a three-dimensional breast tissue culture model.

    Science.gov (United States)

    Speroni, Lucia; Whitt, Gregory S; Xylas, Joanna; Quinn, Kyle P; Jondeau-Cabaton, Adeline; Barnes, Clifford; Georgakoudi, Irene; Sonnenschein, Carlos; Soto, Ana M

    2014-01-01

    The establishment of hormone target breast cells in the 1970's resulted in suitable models for the study of hormone control of cell proliferation and gene expression using two-dimensional (2D) cultures. However, to study mammogenesis and breast tumor development in vitro, cells must be able to organize in three-dimensional (3D) structures like in the tissue. We now report the development of a hormone-sensitive 3D culture model for the study of mammogenesis and neoplastic development. Hormone-sensitive T47D breast cancer cells respond to estradiol in a dose-dependent manner by forming complex epithelial structures. Treatment with the synthetic progestagen promegestone, in the presence of estradiol, results in flat epithelial structures that display cytoplasmic projections, a phenomenon reported to precede side-branching. Additionally, as in the mammary gland, treatment with prolactin in the presence of estradiol induces budding structures. These changes in epithelial organization are accompanied by collagen remodeling. Collagen is the major acellular component of the breast stroma and an important player in tumor development and progression. Quantitative analysis of second harmonic generation of collagen fibers revealed that collagen density was more variable surrounding budding and irregularly shaped structures when compared to more regular structures; suggesting that fiber organization in the former is more anisotropic than in the latter. In sum, this new 3D model recapitulates morphogenetic events modulated by mammogenic hormones in the breast, and is suitable for the evaluation of therapeutic agents.

  18. Three-Dimensional Conformal Simultaneously Integrated Boost Technique for Breast-Conserving Radiotherapy

    International Nuclear Information System (INIS)

    Laan, Hans Paul van der; Dolsma, Wil V.; Maduro, John H.; Korevaar, Erik W.; Hollander, Miranda; Langendijk, Johannes A.

    2007-01-01

    Purpose: To compare the target coverage and normal tissue dose with the simultaneously integrated boost (SIB) and the sequential boost technique in breast cancer, and to evaluate the incidence of acute skin toxicity in patients treated with the SIB technique. Methods and Materials: Thirty patients with early-stage left-sided breast cancer underwent breast-conserving radiotherapy using the SIB technique. The breast and boost planning target volumes (PTVs) were treated simultaneously (i.e., for each fraction, the breast and boost PTVs received 1.81 Gy and 2.3 Gy, respectively). Three-dimensional conformal beams with wedges were shaped and weighted using forward planning. Dose-volume histograms of the PTVs and organs at risk with the SIB technique, 28 x (1.81 + 0.49 Gy), were compared with those for the sequential boost technique, 25 x 2 Gy + 8 x 2 Gy. Acute skin toxicity was evaluated for 90 patients treated with the SIB technique according to Common Terminology Criteria for Adverse Events, version 3.0. Results: PTV coverage was adequate with both techniques. With SIB, more efficiently shaped boost beams resulted in smaller irradiated volumes. The mean volume receiving ≥107% of the breast dose was reduced by 20%, the mean volume outside the boost PTV receiving ≥95% of the boost dose was reduced by 54%, and the mean heart and lung dose were reduced by 10%. Of the evaluated patients, 32.2% had Grade 2 or worse toxicity. Conclusion: The SIB technique is proposed for standard use in breast-conserving radiotherapy because of its dose-limiting capabilities, easy implementation, reduced number of treatment fractions, and relatively low incidence of acute skin toxicity

  19. Dosimetric Comparison of Three Dimensional Conformal Radiation Radiotherapy and Helical Tomotherapy Partial Breast Cancer

    International Nuclear Information System (INIS)

    Kim, Dae Woong; Kim, Jong Won; Choi, Yun Kyeong; Kim, Jung Soo; Hwang, Jae Woong; Jeong, Kyeong Sik; Choi, Gye Suk

    2008-01-01

    The goal of radiation treatment is to deliver a prescribed radiation dose to the target volume accurately while minimizing dose to normal tissues. In this paper, we comparing the dose distribution between three dimensional conformal radiation radiotherapy (3D-CRT) and helical tomotherapy (TOMO) plan for partial breast cancer. Twenty patients were included in the study, and plans for two techniques were developed for each patient (left breast:10 patients, right breast:10 patients). For each patient 3D-CRT planning was using pinnacle planning system, inverse plan was made using Tomotherapy Hi-Art system and using the same targets and optimization goals. We comparing the Homogeneity index (HI), Conformity index (CI) and sparing of the organs at risk for dose-volume histogram. Whereas the HI, CI of TOMO was significantly better than the other, 3D-CRT was observed to have significantly poorer HI, CI. The percentage ipsilateral non-PTV breast volume that was delivered 50% of the prescribed dose was 3D-CRT (mean: 40.4%), TOMO (mean: 18.3%). The average ipsilateral lung volume percentage receiving 20% of the PD was 3D-CRT (mean: 4.8%), TOMO (mean: 14.2), concerning the average heart volume receiving 20% and 10% of the PD during treatment of left breast cancer 3D-CRT (mean: 1.6%, 3.0%), TOMO (mean: 9.7%, 26.3%) In summary, 3D-CRT and TOMO techniques were found to have acceptable PTV coverage in our study. However, in TOMO, high conformity to the PTV and effective breast tissue sparing was achieved at the expense of considerable dose exposure to the lung and heart.

  20. Three-dimensional textural features of conventional MRI improve diagnostic classification of childhood brain tumours.

    Science.gov (United States)

    Fetit, Ahmed E; Novak, Jan; Peet, Andrew C; Arvanitits, Theodoros N

    2015-09-01

    The aim of this study was to assess the efficacy of three-dimensional texture analysis (3D TA) of conventional MR images for the classification of childhood brain tumours in a quantitative manner. The dataset comprised pre-contrast T1 - and T2-weighted MRI series obtained from 48 children diagnosed with brain tumours (medulloblastoma, pilocytic astrocytoma and ependymoma). 3D and 2D TA were carried out on the images using first-, second- and higher order statistical methods. Six supervised classification algorithms were trained with the most influential 3D and 2D textural features, and their performances in the classification of tumour types, using the two feature sets, were compared. Model validation was carried out using the leave-one-out cross-validation (LOOCV) approach, as well as stratified 10-fold cross-validation, in order to provide additional reassurance. McNemar's test was used to test the statistical significance of any improvements demonstrated by 3D-trained classifiers. Supervised learning models trained with 3D textural features showed improved classification performances to those trained with conventional 2D features. For instance, a neural network classifier showed 12% improvement in area under the receiver operator characteristics curve (AUC) and 19% in overall classification accuracy. These improvements were statistically significant for four of the tested classifiers, as per McNemar's tests. This study shows that 3D textural features extracted from conventional T1 - and T2-weighted images can improve the diagnostic classification of childhood brain tumours. Long-term benefits of accurate, yet non-invasive, diagnostic aids include a reduction in surgical procedures, improvement in surgical and therapy planning, and support of discussions with patients' families. It remains necessary, however, to extend the analysis to a multicentre cohort in order to assess the scalability of the techniques used. Copyright © 2015 John Wiley & Sons, Ltd.

  1. MRI definition of target volumes using fuzzy logic method for three-dimensional conformal radiation therapy

    International Nuclear Information System (INIS)

    Caudrelier, Jean-Michel; Vial, Stephane; Gibon, David; Kulik, Carine; Fournier, Charles; Castelain, Bernard; Coche-Dequeant, Bernard; Rousseau, Jean

    2003-01-01

    Purpose: Three-dimensional (3D) volume determination is one of the most important problems in conformal radiation therapy. Techniques of volume determination from tomographic medical imaging are usually based on two-dimensional (2D) contour definition with the result dependent on the segmentation method used, as well as on the user's manual procedure. The goal of this work is to describe and evaluate a new method that reduces the inaccuracies generally observed in the 2D contour definition and 3D volume reconstruction process. Methods and Materials: This new method has been developed by integrating the fuzziness in the 3D volume definition. It first defines semiautomatically a minimal 2D contour on each slice that definitely contains the volume and a maximal 2D contour that definitely does not contain the volume. The fuzziness region in between is processed using possibility functions in possibility theory. A volume of voxels, including the membership degree to the target volume, is then created on each slice axis, taking into account the slice position and slice profile. A resulting fuzzy volume is obtained after data fusion between multiorientation slices. Different studies have been designed to evaluate and compare this new method of target volume reconstruction and a classical reconstruction method. First, target definition accuracy and robustness were studied on phantom targets. Second, intra- and interobserver variations were studied on radiosurgery clinical cases. Results: The absolute volume errors are less than or equal to 1.5% for phantom volumes calculated by the fuzzy logic method, whereas the values obtained with the classical method are much larger than the actual volumes (absolute volume errors up to 72%). With increasing MRI slice thickness (1 mm to 8 mm), the phantom volumes calculated by the classical method are increasing exponentially with a maximum absolute error up to 300%. In contrast, the absolute volume errors are less than 12% for phantom

  2. Breast fibroblasts modulate epithelial cell proliferation in three-dimensional in vitro co-culture

    International Nuclear Information System (INIS)

    Sadlonova, Andrea; Novak, Zdenek; Johnson, Martin R; Bowe, Damon B; Gault, Sandra R; Page, Grier P; Thottassery, Jaideep V; Welch, Danny R; Frost, Andra R

    2005-01-01

    Stromal fibroblasts associated with in situ and invasive breast carcinoma differ phenotypically from fibroblasts associated with normal breast epithelium, and these alterations in carcinoma-associated fibroblasts (CAF) may promote breast carcinogenesis and cancer progression. A better understanding of the changes that occur in fibroblasts during carcinogenesis and their influence on epithelial cell growth and behavior could lead to novel strategies for the prevention and treatment of breast cancer. To this end, the effect of CAF and normal breast-associated fibroblasts (NAF) on the growth of epithelial cells representative of pre-neoplastic breast disease was assessed. NAF and CAF were grown with the nontumorigenic MCF10A epithelial cells and their more transformed, tumorigenic derivative, MCF10AT cells, in direct three-dimensional co-cultures on basement membrane material. The proliferation and apoptosis of MCF10A cells and MCF10AT cells were assessed by 5-bromo-2'-deoxyuridine labeling and TUNEL assay, respectively. Additionally, NAF and CAF were compared for expression of insulin-like growth factor II as a potential mediator of their effects on epithelial cell growth, by ELISA and by quantitative, real-time PCR. In relatively low numbers, both NAF and CAF suppressed proliferation of MCF10A cells. However, only NAF and not CAF significantly inhibited proliferation of the more transformed MCF10AT cells. The degree of growth inhibition varied among NAF or CAF from different individuals. In greater numbers, NAF and CAF have less inhibitory effect on epithelial cell growth. The rate of epithelial cell apoptosis was not affected by NAF or CAF. Mean insulin-like growth factor II levels were not significantly different in NAF versus CAF and did not correlate with the fibroblast effect on epithelial cell proliferation. Both NAF and CAF have the ability to inhibit the growth of pre-cancerous breast epithelial cells. NAF have greater inhibitory capacity than CAF

  3. Three-dimensional breast image reconstruction from a limited number of views

    Science.gov (United States)

    McCauley, Thomas G.; Stewart, Alexander X.; Stanton, Martin J.; Wu, Tao; Phillips, Walter C.

    2000-04-01

    Typically in three-dimensional (3D) computed tomography (CT) imaging, hundreds or thousands of x-ray projection images are recorded. The image-collection time and patient dose required rule out conventional CT as a tool for screening mammography. We have developed a CT method that overcomes these limitations by using (1) a novel image collection geometry, (2) new digital electronic x-ray detector technology, and (3) modern image reconstruction procedures. The method, which we call Computed Planar Mammography (CPM), is made possible by the full-field, low-noise, high-resolution CCD-based detector design that we have previously developed. With this method, we need to record only a limited number (10 - 50) of low-dose x- ray images of the breast. The resulting 3D full breast image has a resolution in two orientations equal to the full detector resolution (47 microns), and a lower, variable resolution (0.5 - 10 mm) in the third orientation. This 3D reconstructed image can then be viewed as a series of cross- sectional layers, or planes, each at the full detector resolution. Features due to overlapping tissue, which could not be differentiated in a conventional mammogram, are separated into layers at different depths. We demonstrate the features and capabilities of this method by presenting reconstructed images of phantoms and mastectomy specimens. Finally, we discuss outstanding issues related to the further development of this procedure, as well as considerations for its clinical implementation.

  4. Comparison of normal tissue dose with three-dimensional conformal techniques for breast cancer irradiation including the internal mammary nodes

    NARCIS (Netherlands)

    van der Laan, Hans Paul; Dolsma, Willemtje; van t Veld, Aart; Bijl, HP; Langendijk, JA

    2005-01-01

    PURPOSE: To compare the Para Mixed technique for irradiation of the internal mammary nodes (IMN) with three commonly used strategies, by analyzing the dose to the heart and other organs at risk. METHODS AND MATERIALS: Four different three-dimensional conformal dose plans were created for 30 breast

  5. Three-Dimensional Computer-Aided Detection of Microcalcification Clusters in Digital Breast Tomosynthesis

    Directory of Open Access Journals (Sweden)

    Ji-wook Jeong

    2016-01-01

    Full Text Available We propose computer-aided detection (CADe algorithm for microcalcification (MC clusters in reconstructed digital breast tomosynthesis (DBT images. The algorithm consists of prescreening, MC detection, clustering, and false-positive (FP reduction steps. The DBT images containing the MC-like objects were enhanced by a multiscale Hessian-based three-dimensional (3D objectness response function and a connected-component segmentation method was applied to extract the cluster seed objects as potential clustering centers of MCs. Secondly, a signal-to-noise ratio (SNR enhanced image was also generated to detect the individual MC candidates and prescreen the MC-like objects. Each cluster seed candidate was prescreened by counting neighboring individual MC candidates nearby the cluster seed object according to several microcalcification clustering criteria. As a second step, we introduced bounding boxes for the accepted seed candidate, clustered all the overlapping cubes, and examined. After the FP reduction step, the average number of FPs per case was estimated to be 2.47 per DBT volume with a sensitivity of 83.3%.

  6. Two-dimensional versus three-dimensional treatment planning of tangential breast irradiation

    International Nuclear Information System (INIS)

    Damen, E.M.F.; Bruinvis, I.A.D.; Mijnheer, B.J.

    1995-01-01

    Purpose: Full three-dimensional (3-D) treatment planning requires 3-D patient contours and density information, derived either from CT scanning or from other 3-D contouring methods. These contouring techniques are time consuming, and are often not available or cannot be used. Two-dimensional (2-D) treatment planning can be performed using only a few patient contours, made with much simpler techniques, in combination with simulator images for estimating the lung position. In order to investigate the need for full 3-D planning, we compared the performance of both a 2-D and a 3-D planning system in calculating absolute dose values and relative dose distributions in tangential breast irradiation. Methods: Two breast-shaped phantoms were used in this study. The first phantom consists of a polyethylene mould, filled with water and cork to mimic the lung. An ionization chamber can be inserted in the phantom at fixed positions. The second phantom is made of 25 transverse slices of polystyrene and cork, made with a computerized milling machine from CT information. In this phantom, films can be inserted in three sagittal planes. Both phantoms have been irradiated with two tangential 8 MV photon beams. The measured dose distribution has been compared with the dose distribution predicted by the two planning systems. Results: In the central plane, the 3-D planning system predicts the absolute dose with an accuracy of 0.5 - 4%. The dose at the isocentre of the beams agrees within 0.5% with the measured dose. The 2-D system predicts the dose with an accuracy of 0.9 - 3%. The dose calculated at the isocentre is 2.6% higher than the measured dose, because missing lateral scatter is not taken into account in this planning system. In off-axis planes, the calculated absolute dose agrees with the measured dose within 4% for the 2-D system and within 6% for the 3-D system. However, the relative dose distribution is predicted better by the 3-D planning system. Conclusions: This study

  7. Three-Dimensional Volumetric Analysis of Irradiated Lung With Adjuvant Breast Irradiation

    International Nuclear Information System (INIS)

    Teh, Amy Yuen Meei; Park, Eileen J.H.; Shen Liang; Chung, Hans T.

    2009-01-01

    Purpose: To retrospectively evaluate the dose-volume histogram data of irradiated lung in adjuvant breast radiotherapy (ABR) using a three-dimensional computed tomography (3D-CT)-guided planning technique; and to investigate the relationship between lung dose-volume data and traditionally used two-dimensional (2D) parameters, as well as their correlation with the incidence of steroid-requiring radiation pneumonitis (SRRP). Methods and Materials: Patients beginning ABR between January 2005 and February 2006 were retrospectively reviewed. Patients included were women aged ≥18 years with ductal carcinoma in situ or Stage I-III invasive carcinoma, who received radiotherapy using a 3D-CT technique to the breast or chest wall (two-field radiotherapy [2FRT]) with or without supraclavicular irradiation (three-field radiotherapy [3FRT]), to 50 Gy in 25 fractions. A 10-Gy tumor-bed boost was allowed. Lung dose-volume histogram parameters (V 10 , V 20 , V 30 , V 40 ), 2D parameters (central lung depth [CLD], maximum lung depth [MLD], and lung length [LL]), and incidence of SRRP were reported. Results: A total of 89 patients met the inclusion criteria: 51 had 2FRT, and 38 had 3FRT. With 2FRT, mean ipsilateral V 10 , V 20 , V 30 , V 40 and CLD, MLD, LL were 20%, 14%, 11%, and 8% and 2.0 cm, 2.1 cm, and 14.6 cm, respectively, with strong correlation between CLD and ipsilateral V 10-V40 (R 2 = 0.73-0.83, p 10 , V 20 , V 30 , and V 40 were 30%, 22%, 17%, and 11%, but its correlation with 2D parameters was poor. With a median follow-up of 14.5 months, 1 case of SRRP was identified. Conclusions: With only 1 case of SRRP observed, our study is limited in its ability to provide definitive guidance, but it does provide a starting point for acceptable lung irradiation during ABR. Further prospective studies are warranted.

  8. Computer-assisted three-dimensional reconstruction of the corticospinal system as a reference for CT and MRI

    Energy Technology Data Exchange (ETDEWEB)

    Buhmann, C. [Department of Neuroanatomy, Hannover Medical School (Germany)]|[University Hospital Eppendorf, Hamburg (Germany); Kretschmann, H.J. [Department of Neuroanatomy, Hannover Medical School (Germany)

    1998-09-01

    We present a three-dimensional (3D) anatomical computer-graphics model of the corticospinal system acquired from equidistant serial anatomical slices of six intracranially-fixed human brains. This model is part of a neuroanatomical reference system (NeuRef) which enables 3D visualization of the brain and shows the relationship of its components such as anatomical structures, functional fibre tracts and arteries. Sections through the models can be matched with corresponding CT or MR images. This allows the probable localisation of corticospinal fibres on CT or MRI. (orig.) (orig.) With 18 figs., 3 tabs., 40 refs.

  9. Computer-assisted three-dimensional reconstruction of the corticospinal system as a reference for CT and MRI

    International Nuclear Information System (INIS)

    Buhmann, C.; Kretschmann, H.J.

    1998-01-01

    We present a three-dimensional (3D) anatomical computer-graphics model of the corticospinal system acquired from equidistant serial anatomical slices of six intracranially-fixed human brains. This model is part of a neuroanatomical reference system (NeuRef) which enables 3D visualization of the brain and shows the relationship of its components such as anatomical structures, functional fibre tracts and arteries. Sections through the models can be matched with corresponding CT or MR images. This allows the probable localisation of corticospinal fibres on CT or MRI. (orig.) (orig.)

  10. Three-dimensional evaluation of lumbar disc hernia and prediction of absorption by enhanced MRI

    International Nuclear Information System (INIS)

    Kawaji, Youichi; Uchiyama, Seiji; Yagi, Eiichi

    2001-01-01

    Both the spontaneous shrinkage and the disappearance of disc hernia have been confirmed through the use of computed tomography (CT) and magnetic resonance imaging (MRI). There is, however, no practical method to predict the likely absorption of the herniated mass. The objective of this study was to predict the spontaneous absorption of disc hernia by MRI, and to select the optimum treatment. The study involved 65 patients with lumbar disc hernias. Conservative treatment was carried out in 21 patients, while 44 patients underwent herniotomy. In the nonoperated patients, an MRI was taken both during the painful period, and shortly after pain remission. Hernial shrinkage was evaluated according to the decrease in the calculated volume, in addition to the decrease in hernial area, calculated by MRI. In the operated group, preoperative MRI enhancement, type of hernia, and invasion of granulation tissue in the histological specimens were studied. In the 21 nonoperated patients, the volume (mean ±SD) was 0.488±208 cm 3 (range, 0.197-0.931 cm 3 ) in the painful period and 0.214±0.181 cm 3 (range, 0.0-0.744 cm 3 ) in the remission period. This decrease in volume was statistically significant. There was also a greater decrease in hernias exhibiting positive enhancement by MRI. In the operated patients, hernias that penetrated the posterior longitudinal ligament (PLL) had high rates of preoperative enhancement, and these hernias showed invasion of granulation tissue with marked neovascularization. Positive enhancement by MRI confirms an ongoing absorption process. Enhanced MRI can be a good method for the prediction of spontaneous absorption of lumbar disc hernias. (author)

  11. Three-dimensional evaluation of lumbar disc hernia and prediction of absorption by enhanced MRI

    Energy Technology Data Exchange (ETDEWEB)

    Kawaji, Youichi; Uchiyama, Seiji [Niigata Univ. (Japan). School of Medicine; Yagi, Eiichi

    2001-07-01

    Both the spontaneous shrinkage and the disappearance of disc hernia have been confirmed through the use of computed tomography (CT) and magnetic resonance imaging (MRI). There is, however, no practical method to predict the likely absorption of the herniated mass. The objective of this study was to predict the spontaneous absorption of disc hernia by MRI, and to select the optimum treatment. The study involved 65 patients with lumbar disc hernias. Conservative treatment was carried out in 21 patients, while 44 patients underwent herniotomy. In the nonoperated patients, an MRI was taken both during the painful period, and shortly after pain remission. Hernial shrinkage was evaluated according to the decrease in the calculated volume, in addition to the decrease in hernial area, calculated by MRI. In the operated group, preoperative MRI enhancement, type of hernia, and invasion of granulation tissue in the histological specimens were studied. In the 21 nonoperated patients, the volume (mean {+-}SD) was 0.488{+-}208 cm{sup 3} (range, 0.197-0.931 cm{sup 3}) in the painful period and 0.214{+-}0.181 cm{sup 3} (range, 0.0-0.744 cm{sup 3}) in the remission period. This decrease in volume was statistically significant. There was also a greater decrease in hernias exhibiting positive enhancement by MRI. In the operated patients, hernias that penetrated the posterior longitudinal ligament (PLL) had high rates of preoperative enhancement, and these hernias showed invasion of granulation tissue with marked neovascularization. Positive enhancement by MRI confirms an ongoing absorption process. Enhanced MRI can be a good method for the prediction of spontaneous absorption of lumbar disc hernias. (author)

  12. A three-dimensional stereotaxic MRI brain atlas of the cichlid fish Oreochromis mossambicus.

    Science.gov (United States)

    Simões, José M; Teles, Magda C; Oliveira, Rui F; Van der Linden, Annemie; Verhoye, Marleen

    2012-01-01

    The African cichlid Oreochromis mossambicus (Mozambique tilapia) has been used as a model system in a wide range of behavioural and neurobiological studies. The increasing number of genetic tools available for this species, together with the emerging interest in its use for neurobiological studies, increased the need for an accurate hodological mapping of the tilapia brain to supplement the available histological data. The goal of our study was to elaborate a three-dimensional, high-resolution digital atlas using magnetic resonance imaging, supported by Nissl staining. Resulting images were viewed and analysed in all orientations (transverse, sagittal, and horizontal) and manually labelled to reveal structures in the olfactory bulb, telencephalon, diencephalon, optic tectum, and cerebellum. This high resolution tilapia brain atlas is expected to become a very useful tool for neuroscientists using this fish model and will certainly expand their use in future studies regarding the central nervous system.

  13. Three-dimensional motion analysis of an improved head immobilization system for simulation, CT, MRI, and PET imaging

    International Nuclear Information System (INIS)

    Thornton, A.F. Jr.; Ten Haken, R.K.; Gerhardsson, A.; Correll, M.

    1991-01-01

    A mask/marker immobilization system for the routine radiation therapy treatment of head and neck disease is described, utilizing a commercially available thermoplastic mesh, indexed and mounted for a rigid frame attached to the therapy couch. Designed to permit CT, MRI, and PET diagnostics scans of the patient to be performed in the simulation and treatment position employing the same mask, the system has been tested in order to demonstrate the reproducibility of immobilization throughout a radical course of irradiation. Three-dimensional analysis of patient position over an 8-week course of daily radiation treatment has been performed for 9 patients from digitization of anatomic points identified on orthogonal radiographs. Studies employing weekly constructed system permits rapid mask formation to be performed on the treatment simulator, resulting in an immobilization device comparable to masks produced with vacuum-forming techniques. Details of motion analysis and central axis CT, MRI, and PET markers are offered. (author). 16 refs.; 3 figs

  14. Experimental validation of a three-dimensional linear system model for breast tomosynthesis

    International Nuclear Information System (INIS)

    Zhao Bo; Zhou Jun; Hu Yuehoung; Mertelmeier, Thomas; Ludwig, Jasmina; Zhao Wei

    2009-01-01

    A three-dimensional (3D) linear model for digital breast tomosynthesis (DBT) was developed to investigate the effects of different imaging system parameters on the reconstructed image quality. In the present work, experimental validation of the model was performed on a prototype DBT system equipped with an amorphous selenium (a-Se) digital mammography detector and filtered backprojection (FBP) reconstruction methods. The detector can be operated in either full resolution with 85 μm pixel size or 2x1 pixel binning mode to reduce acquisition time. Twenty-five projection images were acquired with a nominal angular range of ±20 deg. The images were reconstructed using a slice thickness of 1 mm with 0.085x0.085 mm in-plane pixel dimension. The imaging performance was characterized by spatial frequency-dependent parameters including a 3D noise power spectrum (NPS) and in-plane modulation transfer function (MTF). Scatter-free uniform x-ray images were acquired at four different exposure levels for noise analysis. An aluminum (Al) edge phantom with 0.2 mm thickness was imaged to measure the in-plane presampling MTF. The measured in-plane MTF and 3D NPS were both in good agreement with the model. The dependence of DBT image quality on reconstruction filters was investigated. It was found that the slice thickness (ST) filter, a Hanning window to limit the high-frequency components in the slice thickness direction, reduces noise aliasing and improves 3D DQE. An ACR phantom was imaged to investigate the effects of angular range and detector operational modes on reconstructed image quality. It was found that increasing the angular range improves the MTF at low frequencies, resulting in better detection of large-area, low-contrast mass lesions in the phantom. There is a trade-off between noise and resolution for pixel binning and full resolution modes, and the choice of detector mode will depend on radiation dose and the targeted lesion.

  15. Experimental validation of a three-dimensional linear system model for breast tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Bo; Zhou Jun; Hu Yuehoung; Mertelmeier, Thomas; Ludwig, Jasmina; Zhao Wei [Department of Radiology, State University of New York at Stony Brook, L-4 120 Health Sciences Center, Stony Brook, New York 11794-8460 (United States); Siemens AG Healthcare, Henkestrasse 127, D-91052 Erlangen (Germany); Department of Radiology, State University of New York at Stony Brook, L-4 120 Health Sciences Center, Stony Brook, New York 11794-8460 (United States)

    2009-01-15

    A three-dimensional (3D) linear model for digital breast tomosynthesis (DBT) was developed to investigate the effects of different imaging system parameters on the reconstructed image quality. In the present work, experimental validation of the model was performed on a prototype DBT system equipped with an amorphous selenium (a-Se) digital mammography detector and filtered backprojection (FBP) reconstruction methods. The detector can be operated in either full resolution with 85 {mu}m pixel size or 2x1 pixel binning mode to reduce acquisition time. Twenty-five projection images were acquired with a nominal angular range of {+-}20 deg. The images were reconstructed using a slice thickness of 1 mm with 0.085x0.085 mm in-plane pixel dimension. The imaging performance was characterized by spatial frequency-dependent parameters including a 3D noise power spectrum (NPS) and in-plane modulation transfer function (MTF). Scatter-free uniform x-ray images were acquired at four different exposure levels for noise analysis. An aluminum (Al) edge phantom with 0.2 mm thickness was imaged to measure the in-plane presampling MTF. The measured in-plane MTF and 3D NPS were both in good agreement with the model. The dependence of DBT image quality on reconstruction filters was investigated. It was found that the slice thickness (ST) filter, a Hanning window to limit the high-frequency components in the slice thickness direction, reduces noise aliasing and improves 3D DQE. An ACR phantom was imaged to investigate the effects of angular range and detector operational modes on reconstructed image quality. It was found that increasing the angular range improves the MTF at low frequencies, resulting in better detection of large-area, low-contrast mass lesions in the phantom. There is a trade-off between noise and resolution for pixel binning and full resolution modes, and the choice of detector mode will depend on radiation dose and the targeted lesion.

  16. Does Three-Dimensional External Beam Partial Breast Irradiation Spare Lung Tissue Compared With Standard Whole Breast Irradiation?

    International Nuclear Information System (INIS)

    Jain, Anudh K.; Vallow, Laura A.; Gale, Ashley A.; Buskirk, Steven J.

    2009-01-01

    Purpose: To determine whether three-dimensional conformal partial breast irradiation (3D-PBI) spares lung tissue compared with whole breast irradiation (WBI) and to include the biologically equivalent dose (BED) to account for differences in fractionation. Methods and Materials: Radiotherapy treatment plans were devised for WBI and 3D-PBI for 25 consecutive patients randomized on the NSABP B-39/RTOG 0413 protocol at Mayo Clinic in Jacksonville, Florida. WBI plans were for 50 Gy in 25 fractions, and 3D-PBI plans were for 38.5 Gy in 10 fractions. Volume of ipsilateral lung receiving 2.5, 5, 10, and 20 Gy was recorded for each plan. The linear quadratic equation was used to calculate the corresponding dose delivered in 10 fractions and volume of ipsilateral lung receiving these doses was recorded for PBI plans. Ipsilateral mean lung dose was recorded for each plan and converted to BED. Results: There was a significant decrease in volume of lung receiving 20 Gy with PBI (median, 4.4% vs. 7.5%; p 3 vs 4.85 Gy 3 , p = 0.07). PBI plans exposed more lung to 2.5 and 5 Gy. Conclusions: 3D-PBI exposes greater volumes of lung tissue to low doses of radiation and spares the amount of lung receiving higher doses when compared with WBI.

  17. Dynamic Three-Dimensional Shoulder Mri during Active Motion for Investigation of Rotator Cuff Diseases.

    Directory of Open Access Journals (Sweden)

    Christine Tempelaere

    Full Text Available MRI is the standard methodology in diagnosis of rotator cuff diseases. However, many patients continue to have pain despite treatment, and MRI of a static unloaded shoulder seems insufficient for best diagnosis and treatment. This study evaluated if Dynamic MRI provides novel kinematic data that can be used to improve the understanding, diagnosis and best treatment of rotator cuff diseases.Dynamic MRI provided real-time 3D image series and was used to measure changes in the width of subacromial space, superior-inferior translation and anterior-posterior translation of the humeral head relative to the glenoid during active abduction. These measures were investigated for consistency with the rotator cuff diseases classifications from standard MRI.The study included: 4 shoulders with massive rotator cuff tears, 5 shoulders with an isolated full-thickness supraspinatus tear, 5 shoulders with tendinopathy and 6 normal shoulders. A change in the width of subacromial space greater than 4mm differentiated between rotator cuff diseases with tendon tears (massive cuff tears and supraspinatus tear and without tears (tendinopathy (p = 0.012. The range of the superior-inferior translation was higher in the massive cuff tears group (6.4mm than in normals (3.4mm (p = 0.02. The range of the anterior-posterior translation was higher in the massive cuff tears (9.2 mm and supraspinatus tear (9.3 mm shoulders compared to normals (3.5mm and tendinopathy (4.8mm shoulders (p = 0.05.The Dynamic MRI enabled a novel measure; 'Looseness', i.e. the translation of the humeral head on the glenoid during an abduction cycle. Looseness was better able at differentiating different forms of rotator cuff disease than a simple static measure of relative glenohumeral position.

  18. A three-dimensional MRI atlas of the zebra finch brain in stereotaxic coordinates

    DEFF Research Database (Denmark)

    Poirier, Colline; Vellema, Michiel; Verhoye, Marleen

    2008-01-01

    of different brain areas (nuclei) involved in the sensory and motor control of song. Until now, the only published atlases of songbird brains consisted in drawings based on histological slices of the canary and of the zebra finch brain. Taking advantage of high-magnetic field (7 Tesla) MRI technique, we...

  19. Three-dimensional (3D) MRI of the knee. IRM tridimensionnelle du genou

    Energy Technology Data Exchange (ETDEWEB)

    Shahabpour, M.; Spruyt, D.; Leroux, G.B.; Osteaux, M. (Vrije Univ., Brussels (Belgium))

    1993-01-01

    Three-dimensional gradient echo T2-weighted sequences have a number of advantages over spin echo T2-weighted sequences (or even 2D gradient echo T2-weighted sequences) for assessment of the knee. They allow a multidimensional analysis based on a single acquisition sequence usually obtained in the sagittal plane. Image reconstructions can be performed secondarily in the coronal, axial and oblique planes, particularly along the specific path of the anterior cruciate ligament. By providing ultrathin serial sections, decreasing the partial volume effect, small lesions, such as cartilaginous fissures or flaps and radial meniscal lesions can be detected in the axial plane, for example. This advantage, combined with the marked sensitivity of gradient echo sequences to alterations in the tissue water content, allows the detection of partial tendon ruptures. The reduction of the partial volume effect and chemical shift artefact probably participate in the capacity of these sequences to visualize the two surfaces of the cartilage of the femorotibial joint. Flow artefacts are less of a problem than with 2D imaging, which eliminates the need for techniques such as saturation of the vascular signal or cardiac gating. A disadvantage of these gradient echo sequences (3D or 2D) is their sensitivity to the presence of metallic material, limiting their application in operated knees.

  20. MRI-three dimensional reconstruction of biliary system in choledochal cyst

    International Nuclear Information System (INIS)

    Kaji, Tatsuru; Takamatsu, Hideo; Noguchi, Hiroyuki; Tahara, Hiroyuki; Fukushige, Takahiko; Kajiya, Hiroshi; Kajiya, Yoshiki

    1995-01-01

    We report a trial of MR cholangiography in children with choledochal cyst. Recently, three-dimensional reconstruction using magnetic resolution imaging of biliary system (MR cholangiography) has been reported as the less-invasive diagnostic method for obstructive lesions of biliary system. Forty-eight cases of choledochal cyst were treated at Kagoshima University Hospital in the past ten years. In 22 of them, intrahepatic duct dilatation was revealed by preoperative or operative cholangiogram. We tried MR cholangiography in nine cases of 22 cases pre- and/or post-operatively. Five cases had MR cholangiography preoperatively. Intrahepatic biliary dilatation was revealed in all of them and intrahepatic biliary stenosis was revealed in two cases. These findings were almost the same as those by preoperative or operative cholangiogram. MR cholangiography was applied on seven cases postoperatively: 3 cases had fine construction of biliary system, because they still had intrahepatic biliary dilatation, and no dilatation was seen in 4 cases, because of good operative results. This method has advantages of less-invasive in children, no need of contrast dye, and fair delineation of biliary system as samely as endoscopic retrograde cholangiography (ERCP) and percutaneous transhepatic cholangiography (PTC). In cases of huge biliary dilatation, MR cholangiography provides more information concerning intrahepatic biliary than ERCP. (author)

  1. 4 T MRI of chondrocalcinosis in combination with three-dimensional CT, radiography, and arthroscopy: a report of three cases

    International Nuclear Information System (INIS)

    Suan, J.C.; Chhem, R.K.; Gati, J.S.; Norley, C.J.; Holdsworth, D.W.

    2005-01-01

    To describe 4 T MRI techniques in imaging chondrocalcinosis within the knee and examine the results together with those demonstrated using three-dimensional (3D) computed tomography, conventional radiography, and arthroscopy. From a larger clinical imaging study of early osteoarthritis, knee arthroscopy patients were imaged using high-field MRI and high-resolution 3D CT prior to their surgery. Retrospective review of the imaging data diagnosed three patients with chondrocalcinosis. Fat-suppressed 3D spoiled gradient (3D SPGR) and two-dimensional fat-suppressed fast spin echo (FSE) imaging was performed at 4 T. The MR images, multi-planar reformatted CT (MPR-CT) and maximum intensity projection CT (MIP-CT) images, and radiographs were examined by a musculoskeletal radiologist for the presence and location of chondrocalcinosis. The findings from arthroscopy were also included. MRI showed 16 sites of punctate hypointense regions from 18 articular surfaces and five of six menisci with similar signal characteristics. Both meniscal chondrocalcinosis and meniscal tears were clearly visible using the 3D SPGR sequence. Only three sites were demonstrated to have calcification using MPR-CT and MIP-CT revealed an additional three. In articular cartilage surfaces showing surface disruption, arthroscopy demonstrated 11 sites with crystal deposition. Arthroscopy also revealed five menisci with calcification present. Our preliminary findings suggest that imaging chondrocalcinosis using spoiled gradient 4 T MRI is superior and complementary to the other imaging modalities in the detection of crystal deposition in both articular cartilage and menisci. (orig.)

  2. 4 T MRI of chondrocalcinosis in combination with three-dimensional CT, radiography, and arthroscopy: a report of three cases

    Energy Technology Data Exchange (ETDEWEB)

    Suan, J.C.; Chhem, R.K.; Gati, J.S.; Norley, C.J.; Holdsworth, D.W. [Robarts Research Institute, Imaging Research Laboratories, London, Ontario (Canada)

    2005-11-01

    To describe 4 T MRI techniques in imaging chondrocalcinosis within the knee and examine the results together with those demonstrated using three-dimensional (3D) computed tomography, conventional radiography, and arthroscopy. From a larger clinical imaging study of early osteoarthritis, knee arthroscopy patients were imaged using high-field MRI and high-resolution 3D CT prior to their surgery. Retrospective review of the imaging data diagnosed three patients with chondrocalcinosis. Fat-suppressed 3D spoiled gradient (3D SPGR) and two-dimensional fat-suppressed fast spin echo (FSE) imaging was performed at 4 T. The MR images, multi-planar reformatted CT (MPR-CT) and maximum intensity projection CT (MIP-CT) images, and radiographs were examined by a musculoskeletal radiologist for the presence and location of chondrocalcinosis. The findings from arthroscopy were also included. MRI showed 16 sites of punctate hypointense regions from 18 articular surfaces and five of six menisci with similar signal characteristics. Both meniscal chondrocalcinosis and meniscal tears were clearly visible using the 3D SPGR sequence. Only three sites were demonstrated to have calcification using MPR-CT and MIP-CT revealed an additional three. In articular cartilage surfaces showing surface disruption, arthroscopy demonstrated 11 sites with crystal deposition. Arthroscopy also revealed five menisci with calcification present. Our preliminary findings suggest that imaging chondrocalcinosis using spoiled gradient 4 T MRI is superior and complementary to the other imaging modalities in the detection of crystal deposition in both articular cartilage and menisci. (orig.)

  3. The Contribution of Three-Dimensional Power Doppler Imaging in the Preoperative Assessment of Breast Tumors: A Preliminary Report

    Directory of Open Access Journals (Sweden)

    K. Kalmantis

    2009-01-01

    Methods. One hundred and twenty five women with clinically or mammographically suspicious findings were referred for 3D Power Doppler ultrasound prior to surgery. Histological diagnosis was conducted after surgery and compared with ultrasound findings. Sonographic criteria used for breast cancer diagnosis were based on a system that included morphological characteristics and criteria of the vascular pattern of a breast mass by Power Doppler imaging. Results. Seventy-two lesions were histopathologically diagnosed as benign and 53 tumors as malignant. Three-dimensional ultrasound identified 49 out of 53 histologically confirmed breast cancers resulting in a sensitivity of 92.4% and a specificity of 86.1% in diagnosing breast malignancy (PPV: 0.83, NPV:0.94. Conclusions. 3D ultrasonography is a valuable tool in identifying preoperatively the possibility of a tumor to be malignant.

  4. Investigation of hydrocephalus with three-dimensional constructive interference in steady state MRI

    International Nuclear Information System (INIS)

    Kurihara, N.; National Sendai Hospital; Takahashi, S.; Higano, S.; Furuta, S.; Umetsu, A.; Tamura, H.; Research Inst. of Brain and Blood Vessels, Akita; Jokura, H.

    2000-01-01

    We report four patients with various types of hydrocephalus in whom constructive interference in steady state (CISS) MRI disclosed the cause of the hydrocephalus. The imaging clearly delineated an abnormal contour of the ventricular system and intraventricular septa, essential information for surgical planning, including endoscopic surgery. Postoperative CISS images were useful for showing not only regression of hydrocephalus but also the patency of small fenestrations. (orig.)

  5. Bilateral symmetry analysis of breast MRI

    International Nuclear Information System (INIS)

    Alterson, Robert; Plewes, Donald B

    2003-01-01

    Mammographic interpretation often uses symmetry between left and right breasts to indicate the site of potential tumour masses. This approach has not been applied to breast images obtained from MRI. We present an automatic technique for breast symmetry detection based on feature extraction techniques which does not require any efforts to co-register breast MRI data. The approach applies computer-vision techniques to detect natural biological symmetries in breast MR scans based on three objective measures of similarity: multiresolution non-orthogonal wavelet representation, three-dimensional intensity distributions and co-occurrence matrices. Statistical distributions that are invariant to feature localization are computed for each of the extracted image features. These distributions are later compared against each other to account for perceptual similarity. Studies based on 51 normal MRI scans of randomly selected patients showed that the sensitivity of symmetry detection rate approached 94%. The symmetry analysis procedure presented in this paper can be applied as an aid in detecting breast tissue changes arising from disease

  6. Three-Dimensional Assessment of Temporomandibular Joint Using MRI-CBCT Image Registration.

    Directory of Open Access Journals (Sweden)

    Mohammed A Q Al-Saleh

    Full Text Available To introduce a new approach to reconstruct a 3D model of the TMJ using magnetic resonance imaging (MRI and cone-beam computed tomography (CBCT registered images, and to evaluate the intra-examiner reproducibility values of reconstructing the 3D models of the TMJ.MRI and CBCT images of five patients (10 TMJs were obtained. Multiple MRIs and CBCT images were registered using a mutual information based algorithm. The articular disc, condylar head and glenoid fossa were segmented at two different occasions, at least one-week apart, by one investigator, and 3D models were reconstructed. Differences between the segmentation at two occasions were automatically measured using the surface contours (Average Perpendicular Distance and the volume overlap (Dice Similarity Index of the 3D models. Descriptive analysis of the changes at 2 occasions, including means and standard deviation (SD were reported to describe the intra-examiner reproducibility.The automatic segmentation of the condyle revealed maximum distance change of 1.9±0.93 mm, similarity index of 98% and root mean squared distance of 0.1±0.08 mm, and the glenoid fossa revealed maximum distance change of 2±0.52 mm, similarity index of 96% and root mean squared distance of 0.2±0.04 mm. The manual segmentation of the articular disc revealed maximum distance change of 3.6±0.32 mm, similarity index of 80% and root mean squared distance of 0.3±0.1 mm.The MRI-CBCT registration provides a reliable tool to reconstruct 3D models of the TMJ's soft and hard tissues, allows quantification of the articular disc morphology and position changes with associated differences of the condylar head and glenoid fossa, and facilitates measuring tissue changes over time.

  7. Abducens nerve enhancement demonstrated by multiplanar reconstruction of contrast-enhanced three-dimensional MRI

    Energy Technology Data Exchange (ETDEWEB)

    Hosoya, T.; Adachi, M.; Sugai, Y. [Dept. of Radiology, Yamagata University School of Medicine (Japan); Yamaguchi, K.; Yamaguchi, K. [Dept. of Ophthalmology, Yamagata University School of Medicine (Japan); Kato, T. [3. Dept. of Internal Medicine, Yamagata University School of Medicine (Japan)

    2001-04-01

    We describe contrast enhancement of the cisternal portion of the abducens nerve and discuss its clinical significance. We examined 67 patients with ophthalmoplegia using contrast-enhanced 3-dimensional (3D) MRI with multiplanar reconstruction along the nerves and found 16 patients (ten men, six women), aged 10-73 years (mean 34.4 years), with contrast enhancement of the abducens nerve. Of the 36 patients who had an abducens palsy, 14 (39 %) showed contrast enhancement. In the 16 patients, 23 abducens nerves enhanced; 13 were symptomatic and 10 asymptomatic at the time. The causes were disseminated tumour (1), an inflammatory process (3), trauma (2), ischaemia (2) and autoimmune diseases (8), such as the Miller Fisher syndrome, acute ophthalmoparesis, polyneuropathy and multiple sclerosis. Abducens and/or oculomotor nerve enhancement was the only abnormality on MRI in the patients with traumatic or ischaemic neuropathy or autoimmune diseases. There were 14 patients who recovered fully within 1-6 months after treatment, and resolution of the enhancement correlated well with recovery. (orig.)

  8. Abducens nerve enhancement demonstrated by multiplanar reconstruction of contrast-enhanced three-dimensional MRI

    International Nuclear Information System (INIS)

    Hosoya, T.; Adachi, M.; Sugai, Y.; Yamaguchi, K.; Yamaguchi, K.; Kato, T.

    2001-01-01

    We describe contrast enhancement of the cisternal portion of the abducens nerve and discuss its clinical significance. We examined 67 patients with ophthalmoplegia using contrast-enhanced 3-dimensional (3D) MRI with multiplanar reconstruction along the nerves and found 16 patients (ten men, six women), aged 10-73 years (mean 34.4 years), with contrast enhancement of the abducens nerve. Of the 36 patients who had an abducens palsy, 14 (39 %) showed contrast enhancement. In the 16 patients, 23 abducens nerves enhanced; 13 were symptomatic and 10 asymptomatic at the time. The causes were disseminated tumour (1), an inflammatory process (3), trauma (2), ischaemia (2) and autoimmune diseases (8), such as the Miller Fisher syndrome, acute ophthalmoparesis, polyneuropathy and multiple sclerosis. Abducens and/or oculomotor nerve enhancement was the only abnormality on MRI in the patients with traumatic or ischaemic neuropathy or autoimmune diseases. There were 14 patients who recovered fully within 1-6 months after treatment, and resolution of the enhancement correlated well with recovery. (orig.)

  9. Breast radiotherapy with inclusion of internal mammary nodes: a comparison of techniques with three-dimensional planning

    International Nuclear Information System (INIS)

    Severin, Diane; Connors, Sherry; Thompson, Heather; Rathee, Satyapal; Stavrev, Pavel; Hanson, John

    2003-01-01

    Purpose: To compare the partially wide tangent (PWT) technique of breast and internal mammary chain irradiation with photon/electron (P/E) and standard tangent (ST) techniques in terms of dose homogeneity within breast and the dose to critical structures such as the heart and lung. Methods and Materials: Sixteen left breast cancer patients underwent CT simulation. The breasts, lungs, heart, and internal mammary chain were contoured and treatment plans generated on a three-dimensional planning system (Helax-TMS). Results: The mean dose to the left breast volume with the ST, P/E, and PWT techniques was 94.7%, 98.4%, and 96.5%, respectively (p=0.029). The left lung received the lowest mean dose with the ST technique (13.9%) compared with PWT (22.8%) and P/E (24.3%). The internal mammary chain volume was most consistently treated with the PWT (mean dose 99%) vs. P/E (86%) and ST (38.4%) techniques. The heart received the least dose with ST (mean dose 6.7%) vs. PWT (10.3%) and P/E (19%). The PWT treated the greatest amount of contralateral breast (mean dose 5.8%) vs. ST (3.2%) vs. P/E (2.8%). Conclusion: The PWT technique treats the internal mammary chain with acceptable toxicity to major organs, especially the heart, and with reasonable dose homogeneity in patients with mastectomy or intact breasts

  10. Accelerated partial breast irradiation using robotic radiotherapy: a dosimetric comparison with tomotherapy and three-dimensional conformal radiotherapy.

    Science.gov (United States)

    Rault, Erwann; Lacornerie, Thomas; Dang, Hong-Phuong; Crop, Frederik; Lartigau, Eric; Reynaert, Nick; Pasquier, David

    2016-02-27

    Accelerated partial breast irradiation (APBI) is a new breast treatment modality aiming to reduce treatment time using hypo fractionation. Compared to conventional whole breast irradiation that takes 5 to 6 weeks, APBI is reported to induce worse cosmetic outcomes both when using three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT). These late normal tissue effects may be attributed to the dose volume effect because a large portion of the non-target breast tissue volume (NTBTV) receives a high dose. In the context of APBI, non-coplanar beams could spare the NTBTV more efficiently. This study evaluates the dosimetric benefit of using the Cyberknife (CK) for APBI in comparison to IMRT (Tomotherapy) and three dimensional conformal radiotherapy (3D-CRT). The possibility of using surgical clips, implanted during surgery, to track target movements is investigated first. A phantom of a female thorax was designed in-house using the measurements of 20 patients. Surgical clips of different sizes were inserted inside the breast. A treatment plan was delivered to the mobile and immobile phantom. The motion compensation accuracy was evaluated using three radiochromic films inserted inside the breast. Three dimensional conformal radiotherapy (3D-CRT), Tomotherapy (TOMO) and CK treatment plans were calculated for 10 consecutive patients who received APBI in Lille. To ensure a fair comparison of the three techniques, margins applied to the CTV were set to 10 mm. However, a second CK plan was prepared using 3 mm margins to evaluate the benefits of motion compensation. Only the larger clips (VITALITEC Medium-Large) could be tracked inside the larger breast (all gamma indices below 1 for 1 % of the maximum dose and 1 mm). All techniques meet the guidelines defined in the NSABP/RTOG and SHARE protocols. As the applied dose volume constraints are very strong, insignificant dosimetric differences exist between techniques regarding the PTV

  11. Accelerated partial breast irradiation using robotic radiotherapy: a dosimetric comparison with tomotherapy and three-dimensional conformal radiotherapy

    International Nuclear Information System (INIS)

    Rault, Erwann; Lacornerie, Thomas; Dang, Hong-Phuong; Crop, Frederik; Lartigau, Eric; Reynaert, Nick; Pasquier, David

    2016-01-01

    Accelerated partial breast irradiation (APBI) is a new breast treatment modality aiming to reduce treatment time using hypo fractionation. Compared to conventional whole breast irradiation that takes 5 to 6 weeks, APBI is reported to induce worse cosmetic outcomes both when using three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT). These late normal tissue effects may be attributed to the dose volume effect because a large portion of the non-target breast tissue volume (NTBTV) receives a high dose. In the context of APBI, non-coplanar beams could spare the NTBTV more efficiently. This study evaluates the dosimetric benefit of using the Cyberknife (CK) for APBI in comparison to IMRT (Tomotherapy) and three dimensional conformal radiotherapy (3D-CRT). The possibility of using surgical clips, implanted during surgery, to track target movements is investigated first. A phantom of a female thorax was designed in-house using the measurements of 20 patients. Surgical clips of different sizes were inserted inside the breast. A treatment plan was delivered to the mobile and immobile phantom. The motion compensation accuracy was evaluated using three radiochromic films inserted inside the breast. Three dimensional conformal radiotherapy (3D-CRT), Tomotherapy (TOMO) and CK treatment plans were calculated for 10 consecutive patients who received APBI in Lille. To ensure a fair comparison of the three techniques, margins applied to the CTV were set to 10 mm. However, a second CK plan was prepared using 3 mm margins to evaluate the benefits of motion compensation. Only the larger clips (VITALITEC Medium-Large) could be tracked inside the larger breast (all gamma indices below 1 for 1 % of the maximum dose and 1 mm). All techniques meet the guidelines defined in the NSABP/RTOG and SHARE protocols. As the applied dose volume constraints are very strong, insignificant dosimetric differences exist between techniques regarding the PTV

  12. Three-dimensional cine MRI in free-breathing infants and children with congenital heart disease

    Energy Technology Data Exchange (ETDEWEB)

    Seeger, Achim; Fenchel, Michael C.; Kramer, Ulrich; Bretschneider, Christiane; Doering, Joerg; Claussen, Claus D.; Miller, Stephan [University of Tuebingen (Germany). Department of Diagnostic and Interventional Radiology; Greil, Gerald F. [St. Thomas Hospital, Division of Imaging Sciences, King' s College London (United Kingdom); Martirosian, Petros [University of Tuebingen, Section of Experimental Radiology, Tuebingen (Germany); Sieverding, Ludger [University of Tuebingen, Department of Pediatric Cardiology, Tuebingen (Germany)

    2009-12-15

    Patients with congenital heart disease frequently have complex cardiac and vascular malformations requiring detailed non-invasive diagnostic evaluation including functional parameters. To evaluate the morphological and functional information provided by a novel 3-D cine steady-state free-precession (SSFP) sequence. Twenty consecutive children (mean age 2.2 years, nine boys) were examined using a 1.5-T MR system including 2-D cine gradient-recalled-echo sequences, static 3-D SSFP and 3-D cine SSFP sequences. Measurement of ventricular structures and volumes showed close agreement between the 3-D cine SSFP sequence and the 2-D cine gradient-recalled-echo and static 3-D SSFP sequences (left ventricular volumes mean difference 1.0-1.9 ml and 8.8-11.4%, respectively; right ventricular volumes 1.7-2.1 ml and 9.9-16.9%, respectively). No systematic bias was observed. 3-D cine MRI provides anatomic as well as functional information with sufficient spatial and temporal resolution in free-breathing infants with congenital heart disease. (orig.)

  13. Three-dimensional cine MRI in free-breathing infants and children with congenital heart disease

    International Nuclear Information System (INIS)

    Seeger, Achim; Fenchel, Michael C.; Kramer, Ulrich; Bretschneider, Christiane; Doering, Joerg; Claussen, Claus D.; Miller, Stephan; Martirosian, Petros; Sieverding, Ludger

    2009-01-01

    Patients with congenital heart disease frequently have complex cardiac and vascular malformations requiring detailed non-invasive diagnostic evaluation including functional parameters. To evaluate the morphological and functional information provided by a novel 3-D cine steady-state free-precession (SSFP) sequence. Twenty consecutive children (mean age 2.2 years, nine boys) were examined using a 1.5-T MR system including 2-D cine gradient-recalled-echo sequences, static 3-D SSFP and 3-D cine SSFP sequences. Measurement of ventricular structures and volumes showed close agreement between the 3-D cine SSFP sequence and the 2-D cine gradient-recalled-echo and static 3-D SSFP sequences (left ventricular volumes mean difference 1.0-1.9 ml and 8.8-11.4%, respectively; right ventricular volumes 1.7-2.1 ml and 9.9-16.9%, respectively). No systematic bias was observed. 3-D cine MRI provides anatomic as well as functional information with sufficient spatial and temporal resolution in free-breathing infants with congenital heart disease. (orig.)

  14. Comparing three-dimensional serial optical coherence tomography histology to MRI imaging in the entire mouse brain

    Science.gov (United States)

    Castonguay, Alexandre; Lefebvre, Joël; Pouliot, Philippe; Lesage, Frédéric

    2018-01-01

    An automated serial histology setup combining optical coherence tomography (OCT) imaging with vibratome sectioning was used to image eight wild type mouse brains. The datasets resulted in thousands of volumetric tiles resolved at a voxel size of (4.9×4.9×6.5) μm3 stitched back together to give a three-dimensional map of the brain from which a template OCT brain was obtained. To assess deformation caused by tissue sectioning, reconstruction algorithms, and fixation, OCT datasets were compared to both in vivo and ex vivo magnetic resonance imaging (MRI) imaging. The OCT brain template yielded a highly detailed map of the brain structure, with a high contrast in white matter fiber bundles and was highly resemblant to the in vivo MRI template. Brain labeling using the Allen brain framework showed little variation in regional brain volume among imaging modalities with no statistical differences. The high correspondence between the OCT template brain and its in vivo counterpart demonstrates the potential of whole brain histology to validate in vivo imaging.

  15. Three-dimensional MRI-linac intra-fraction guidance using multiple orthogonal cine-MRI planes.

    Science.gov (United States)

    Bjerre, Troels; Crijns, Sjoerd; af Rosenschöld, Per Munck; Aznar, Marianne; Specht, Lena; Larsen, Rasmus; Keall, Paul

    2013-07-21

    The introduction of integrated MRI-radiation therapy systems will offer live intra-fraction imaging. We propose a feasible low-latency multi-plane MRI-linac guidance strategy. In this work we demonstrate how interleaved acquired, orthogonal cine-MRI planes can be used for low-latency tracking of the 3D trajectory of a soft-tissue target structure. The proposed strategy relies on acquiring a pre-treatment 3D breath-hold scan, extracting a 3D target template and performing template matching between this 3D template and pairs of orthogonal 2D cine-MRI planes intersecting the target motion path. For a 60 s free-breathing series of orthogonal cine-MRI planes, we demonstrate that the method was capable of accurately tracking the respiration related 3D motion of the left kidney. Quantitative evaluation of the method using a dataset designed for this purpose revealed a translational error of 1.15 mm for a translation of 39.9 mm. We have demonstrated how interleaved acquired, orthogonal cine-MRI planes can be used for online tracking of soft-tissue target volumes.

  16. Dosimetric comparison of proton and photon three-dimensional, conformal, external beam accelerated partial breast irradiation techniques

    International Nuclear Information System (INIS)

    Kozak, Kevin R.; Katz, Angela; Adams, Judith C.; Crowley, Elizabeth M.; Nyamwanda, Jacqueline A.C.; Feng, Jennifer K.C.; Doppke, Karen P.; DeLaney, Thomas F.; Taghian, Alphonse G.

    2006-01-01

    Purpose: To compare the dosimetry of proton and photon-electron three-dimensional, conformal, external beam accelerated partial breast irradiation (3D-CPBI). Methods and Materials: Twenty-four patients with fully excised, Stage I breast cancer treated with adjuvant proton 3D-CPBI had treatment plans generated using the mixed-modality, photon-electron 3D-CPBI technique. To facilitate dosimetric comparisons, planning target volumes (PTVs; lumpectomy site plus 1.5-2.0 cm margin) and prescribed dose (32 Gy) were held constant. Plans were optimized for PTV coverage and normal tissue sparing. Results: Proton and mixed-modality plans both provided acceptable PTV coverage with 95% of the PTV receiving 90% of the prescribed dose in all cases. Both techniques also provided excellent dose homogeneity with a dose maximum exceeding 110% of the prescribed dose in only one case. Proton 3D-CPBI reduced the volume of nontarget breast tissue receiving 50% of the prescribed dose by an average of 36%. Statistically significant reductions in the volume of total ipsilateral breast receiving 100%, 75%, 50%, and 25% of the prescribed dose were also observed. The use of protons resulted in small, but statistically significant, reductions in the radiation dose delivered to 5%, 10%, and 20% of ipsilateral and contralateral lung and heart. The nontarget breast tissue dosimetric advantages of proton 3D-CPBI were not dependent on tumor location, breast size, PTV size, or the ratio of PTV to breast volume. Conclusions: Compared to photon-electron 3D-CPBI, proton 3D-CPBI significantly reduces the volume of irradiated nontarget breast tissue. Both approaches to accelerated partial breast irradiation offer exceptional lung and heart sparing

  17. Three-dimensional MRI-linac intra-fraction guidance using multiple orthogonal cine-MRI planes

    DEFF Research Database (Denmark)

    Bjerre, Troels; Crijns, Sjoerd; Rosenschöld, Per Munck af

    2013-01-01

    The introduction of integrated MRI-radiation therapy systems will offer live intra-fraction imaging. We propose a feasible low-latency multi-plane MRI-linac guidance strategy. In this work we demonstrate how interleaved acquired, orthogonal cine-MRI planes can be used for low-latency tracking...... of the 3D trajectory of a soft-tissue target structure. The proposed strategy relies on acquiring a pre-treatment 3D breath-hold scan, extracting a 3D target template and performing template matching between this 3D template and pairs of orthogonal 2D cine-MRI planes intersecting the target motion path....... For a 60 s free-breathing series of orthogonal cine-MRI planes, we demonstrate that the method was capable of accurately tracking the respiration related 3D motion of the left kidney. Quantitative evaluation of the method using a dataset designed for this purpose revealed a translational error of 1.15 mm...

  18. Three-dimensional photon dose distributions with and without lung corrections for tangential breast intact treatments

    International Nuclear Information System (INIS)

    Chin, L.M.; Cheng, C.W.; Siddon, R.L.; Rice, R.K.; Mijnheer, B.J.; Harris, J.R.

    1989-01-01

    The influence of lung volume and photon energy on the 3-dimensional dose distribution for patients treated by intact breast irradiation is not well established. To investigate this issue, we studied the 3-dimensional dose distributions calculated for an 'average' breast phantom for 60Co, 4 MV, 6 MV, and 8 MV photon beams. For the homogeneous breast, areas of high dose ('hot spots') lie along the periphery of the breast near the posterior plane and near the apex of the breast. The highest dose occurs at the inferior margin of the breast tissue, and this may exceed 125% of the target dose for lower photon energies. The magnitude of these 'hot spots' decreases for higher energy photons. When lung correction is included in the dose calculation, the doses to areas at the left and right margin of the lung volume increase. The magnitude of the increase depends on energy and the patient anatomy. For the 'average' breast phantom (lung density 0.31 g/cm3), the correction factors are between 1.03 to 1.06 depending on the energy used. Higher energy is associated with lower correction factors. Both the ratio-of-TMR and the Batho lung correction methods can predict these corrections within a few percent. The range of depths of the 100% isodose from the skin surface, measured along the perpendicular to the tangent of the skin surface, were also energy dependent. The range was 0.1-0.4 cm for 60Co and 0.5-1.4 cm for 8 MV. We conclude that the use of higher energy photons in the range used here provides lower value of the 'hot spots' compared to lower energy photons, but this needs to be balanced against a possible disadvantage in decreased dose delivered to the skin and superficial portion of the breast

  19. Three dimensional dose distribution comparison of simple and complex acquisition trajectories in dedicated breast CT

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Jainil P., E-mail: jainil.shah@duke.edu [Department of Biomedical Engineering, Duke University, Durham, North Carolina 27705 and Multi Modality Imaging Lab, Duke University Medical Center, Durham, North Carolina 27710 (United States); Mann, Steve D. [Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina 27705 and Multi Modality Imaging Lab, Duke University Medical Center, Durham, North Carolina 27710 (United States); McKinley, Randolph L. [ZumaTek, Inc., Research Triangle Park, North Carolina 27709 (United States); Tornai, Martin P. [Department of Biomedical Engineering, Duke University, Durham, North Carolina 27705 (United States); Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina 27705 (United States); Multi Modality Imaging Lab, Duke University Medical Center, Durham, North Carolina 27710 (United States)

    2015-08-15

    Purpose: A novel breast CT system capable of arbitrary 3D trajectories has been developed to address cone beam sampling insufficiency as well as to image further into the patient’s chest wall. The purpose of this study was to characterize any trajectory-related differences in 3D x-ray dose distribution in a pendant target when imaged with different orbits. Methods: Two acquisition trajectories were evaluated: circular azimuthal (no-tilt) and sinusoidal (saddle) orbit with ±15° tilts around a pendant breast, using Monte Carlo simulations as well as physical measurements. Simulations were performed with tungsten (W) filtration of a W-anode source; the simulated source flux was normalized to the measured exposure of a W-anode source. A water-filled cylindrical phantom was divided into 1 cm{sup 3} voxels, and the cumulative energy deposited was tracked in each voxel. Energy deposited per voxel was converted to dose, yielding the 3D distributed dose volumes. Additionally, three cylindrical phantoms of different diameters (10, 12.5, and 15 cm) and an anthropomorphic breast phantom, initially filled with water (mimicking pure fibroglandular tissue) and then with a 75% methanol-25% water mixture (mimicking 50–50 fibroglandular-adipose tissues), were used to simulate the pendant breast geometry and scanned on the physical system. Ionization chamber calibrated radiochromic film was used to determine the dose delivered in a 2D plane through the center of the volume for a fully 3D CT scan using the different orbits. Results: Measured experimental results for the same exposure indicated that the mean dose measured throughout the central slice for different diameters ranged from 3.93 to 5.28 mGy, with the lowest average dose measured on the largest cylinder with water mimicking a homogeneously fibroglandular breast. These results align well with the cylinder phantom Monte Carlo studies which also showed a marginal difference in dose delivered by a saddle trajectory in the

  20. Three dimensional dose distribution comparison of simple and complex acquisition trajectories in dedicated breast CT

    International Nuclear Information System (INIS)

    Shah, Jainil P.; Mann, Steve D.; McKinley, Randolph L.; Tornai, Martin P.

    2015-01-01

    Purpose: A novel breast CT system capable of arbitrary 3D trajectories has been developed to address cone beam sampling insufficiency as well as to image further into the patient’s chest wall. The purpose of this study was to characterize any trajectory-related differences in 3D x-ray dose distribution in a pendant target when imaged with different orbits. Methods: Two acquisition trajectories were evaluated: circular azimuthal (no-tilt) and sinusoidal (saddle) orbit with ±15° tilts around a pendant breast, using Monte Carlo simulations as well as physical measurements. Simulations were performed with tungsten (W) filtration of a W-anode source; the simulated source flux was normalized to the measured exposure of a W-anode source. A water-filled cylindrical phantom was divided into 1 cm"3 voxels, and the cumulative energy deposited was tracked in each voxel. Energy deposited per voxel was converted to dose, yielding the 3D distributed dose volumes. Additionally, three cylindrical phantoms of different diameters (10, 12.5, and 15 cm) and an anthropomorphic breast phantom, initially filled with water (mimicking pure fibroglandular tissue) and then with a 75% methanol-25% water mixture (mimicking 50–50 fibroglandular-adipose tissues), were used to simulate the pendant breast geometry and scanned on the physical system. Ionization chamber calibrated radiochromic film was used to determine the dose delivered in a 2D plane through the center of the volume for a fully 3D CT scan using the different orbits. Results: Measured experimental results for the same exposure indicated that the mean dose measured throughout the central slice for different diameters ranged from 3.93 to 5.28 mGy, with the lowest average dose measured on the largest cylinder with water mimicking a homogeneously fibroglandular breast. These results align well with the cylinder phantom Monte Carlo studies which also showed a marginal difference in dose delivered by a saddle trajectory in the

  1. Initial dosimetric experience using simple three-dimensional conformal external-beam accelerated partial-breast irradiation

    International Nuclear Information System (INIS)

    Taghian, Alphonse G.; Kozak, Kevin R.; Doppke, Karen P.; Katz, Angela; Smith, Barbara L.; Gadd, Michele; Specht, Michelle; Hughes, Kevin; Braaten, Kristina; Kachnic, Lisa A.; Recht, Abram; Powell, Simon N.

    2006-01-01

    Purpose: Several accelerated partial-breast irradiation (APBI) techniques are being investigated in patients with early-stage breast cancer. We present our initial experience using three-dimensional conformal radiation therapy (3D-CRT). Methods and Materials: Sixty-one patients with tumors of 2 cm or less and negative axillary nodes were treated with 3D-CRT accelerated partial-breast irradiation (APBI) between August 2003 and March 2005. The prescribed radiation dose was 32 Gy in 4-Gy fractions given twice daily. Efforts were made to minimize the number of beams required to achieve adequate planning target volume (PTV) coverage. Results: A combination of photons and electrons was used in 85% of patients. A three-field technique that consisted of opposed, conformal tangential photons and enface electrons was employed in 43 patients (70%). Nine patients (15%) were treated with a four-field arrangement, which consisted of three photon fields and enface electrons. Mean PTV volumes that received 100%, 95%, and 90% of the prescribed dose were 93% ± 7%, 97% ± 4%, and 98% ± 2%, respectively. Dose inhomogeneity exceeded 10% in only 7 patients (11%). Mean doses to the ipsilateral lung and heart were 1.8 Gy and 0.8 Gy, respectively. Conclusions: Simple 3D-CRT techniques of APBI can achieve appropriate PTV coverage while offering significant normal-tissue sparing. Therefore, this noninvasive approach may increase the availability of APBI to patients with early-stage breast cancer

  2. Three-dimensional black-blood contrast-enhanced MRI improves detection of intraluminal thrombi in patients with acute ischaemic stroke.

    Science.gov (United States)

    Jang, Won; Kwak, Hyo Sung; Chung, Gyung Ho; Hwang, Seung Bae

    2018-03-19

    This study evaluated the utility of three-dimensional (3D), black-blood (BB), contrast-enhanced, magnetic resonance imaging (MRI) for the detection of intraluminal thrombi in acute stroke patients. Forty-seven patients with acute stroke involving the anterior circulation underwent MRI examination within 6 h of clinical onset. Cerebral angiography was used as the reference standard. In a blinded manner, two neuroradiologists interpreted the following three data sets: (1) diffusion-weighted imaging (DWI) + 3D BB contrast-enhanced MRI; (2) DWI + susceptibility weighted imaging (SWI); (3) DWI + 3D BB contrast-enhanced MRI + SWI. Of these patients, 47 had clots in the middle cerebral artery and four had clots in the anterior cerebral artery. For both observers, the area under the curve (Az) for data sets 1 and 3, which included 3D BB contrast-enhanced MRI, was significantly greater than it was for data set 2, which did not include 3D BB contrast-enhanced MR imaging (observer 1, 0.988 vs 0.904, p = 0.001; observer 2, 0.988 vs 0.894, p = 0.000). Three-dimensional BB contrast-enhanced MRI improves detection of intraluminal thrombi compared to conventional MRI methods in patients with acute ischaemic stroke. • BB contrast-enhanced MRI helps clinicians to assess the intraluminal clot • BB contrast-enhanced MRI improves detection of intraluminal thrombi • BB contrast-enhanced MRI for clot detection has a higher sensitivity.

  3. Three-dimensional anisotropy contrast MRI and functional MRI of the human brain. Clinical application to assess pyramidal tract in patients with brain tumor and infarction

    International Nuclear Information System (INIS)

    Morikawa, Minoru; Kaminogo, Makio; Ishimaru, Hideki; Nakashima, Kazuaki; Kitagawa, Naoki; Ochi, Makoto; Hayashi, Kuniaki; Shibata, Shobu; Kabasawa, Hiroyuki

    2001-01-01

    We describe and evaluate the findings of three-dimensional anisotropy contrast MR axonography (3DAC MRX) and functional MRI (fMRI) in brain tumor and infarction. We obtained diffusion-weighted images (DWI) in 28 patients including 23 brain tumors and 15 acute infarctions located in or near pyramidal tract. Three anisotropic DWIs were transformed into graduations color-coded as red, green and blue, and then composed to form a combined color 3DAC MRX. We also performed functional MRI in 7 of the 28 patients and compared with cortical mapping of 3DAC MRX. 3DAC MRX with 23 brain tumors showed that the ipsilateral pyramidal tract was either discontinuous due to impaired anisotropy (n=8) or compressed due to mass effect (n=15). In 10 patients of acute infarction with motor impairment, pyramidal tract involvement was visually more conspicuous on 3DAC MRX compared to standard DWI. On functional MRI, hand motor activation was observed between blue vertical directional colors of pre- and post central gyrus. In conclusion, 3DAC MRX is a new noninvasive approach for visualization of the white matter neuronal tract and provides the information concerning pyramidal tract involvement. (author)

  4. Design and realisation of a microwave three-dimensional imaging system with application to breast-cancer detection

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Rubæk, T.; Krozer, V.

    2010-01-01

    An active microwave-imaging system for non-invasive detection of breast cancer based on dedicated hardware is described. Thirty-two transceiving channels are used to measure the amplitude and phase of the scattered fields in the three-dimensional (3D) imaging domain using electronic scanning. The 3...... is created within 2 h using the single-frequency reconstruction algorithm. The performance of the system is illustrated by an analysis of the standard deviations in amplitude and phase of a series of measurements as well as by a simple image reconstruction example....... is important for measurement accuracy and reproducibility as well as for patient comfort. The dedicated hardware achieves a receiver noise figure of 2.3 dB at a gain of 97 dB. The operating frequency range is from 0.3 to 3 GHz. The image acquisition time at one frequency is approximately 50 s and an image...

  5. Metastatic breast cancer in the eye and orbit, use three-dimensional conformal radiotherapy. Our first experience

    International Nuclear Information System (INIS)

    Correa Pablos, Tamara; Caceres Toledo, Maria

    2009-01-01

    The eye and orbit metastases are a significant clinical problem, both by the inability and the deterioration in the quality of life that occur. The most common malignant tumors in the eye and orbit is metastasis. Cancer breast cancer is the most common tumor metastatic to the eye and orbit in a 40% and 50% of cases according to different series. With the introduction of Three-Dimensional Conformal Radiotherapy (3D-CRT) in our hospital from In 2007 we were able to treat patients with cancer different regions with the technique (2D) was impossible because caused irreparable damage to surrounding healthy tissue in this way thanks to potential of 3D technology to shape the planning volume will ensure greater protection for critical organs. (Author)

  6. Three dimensional conformal radiotherapy for synchronous bilateral breast irradiation using a mono iso-center technique

    Science.gov (United States)

    Mani, Karthick Raj; Basu, Saumen; Bhuiyan, Md Anisuzzaman; Ahmed, Sharif; Sumon, Mostafa Aziz; Haque, Kh Anamul; Sengupta, Ashim Kumar; Un Nabi, Md Rashid; Das, K. J. Maria

    2017-06-01

    Objective: The purpose of this study is to demonstrate the synchronous bilateral breast irradiation radiotherapy technique using a single isocenter. Materials and Methods: Six patients of synchronous bilateral breast were treated with single isocenter technique from February 2011 to June 2016. All the patients underwent a CT-simulation using appropriate positioning device. Target volumes and critical structures like heart, lung, esophagus, thyroid, etc., were delineated slice by slice in the CT data. An isocenter was placed above the sternum on the skin and both medial tangential and lateral tangential of the breast / chest wall were created using asymmetrical jaws to avoid the beam divergence through the lung and heart. The field weighting were adjusted manually to obtain a homogenous dose distribution. The planning objectives were to deliver uniform doses around the target and keep the doses to the organ at risk within the permissible limit. The beam energy of 6 MV or combination of 6 MV and 15 MV photons were used in the tangential fields according to the tangential separation. Boluses were used for all the mastectomy patients to increase the doses on the chest wall. In addition to that enhanced dynamic wedge and field in field technique were also used to obtain a homogenous distribution around the target volume and reduce the hot spots. The isocenter was just kept on the skin, such that the beam junctions will be overlapped only on the air just above the sternum. Acute toxicity during the treatment and late toxicity were recorded during the patient's follow-up. Results: During the radiotherapy treatment follow-up there were no acute skin reactions in the field junctions, but one patient had grade 1 esophagitis and two patients had grade 2 skin reactions in the chest wall. With a median follow-up of 38.5 months (range: 8 - 49 months), no patients had a local recurrence, but one patients with triple negative disease had a distant metastases in brain and died

  7. Three-Dimensional Microwave Hyperthermia for Breast Cancer Treatment in a Realistic Environment Using Particle Swarm Optimization.

    Science.gov (United States)

    Nguyen, Phong Thanh; Abbosh, Amin; Crozier, Stuart

    2017-06-01

    In this paper, a technique for noninvasive microwave hyperthermia treatment for breast cancer is presented. In the proposed technique, microwave hyperthermia of patient-specific breast models is implemented using a three-dimensional (3-D) antenna array based on differential beam-steering subarrays to locally raise the temperature of the tumor to therapeutic values while keeping healthy tissue at normal body temperature. This approach is realized by optimizing the excitations (phases and amplitudes) of the antenna elements using the global optimization method particle swarm optimization. The antennae excitation phases are optimized to maximize the power at the tumor, whereas the amplitudes are optimized to accomplish the required temperature at the tumor. During the optimization, the technique ensures that no hotspots exist in healthy tissue. To implement the technique, a combination of linked electromagnetic and thermal analyses using MATLAB and the full-wave electromagnetic simulator is conducted. The technique is tested at 4.2 GHz, which is a compromise between the required power penetration and focusing, in a realistic simulation environment, which is built using a 3-D antenna array of 4 × 6 unidirectional antenna elements. The presented results on very dense 3-D breast models, which have the realistic dielectric and thermal properties, validate the capability of the proposed technique in focusing power at the exact location and volume of tumor even in the challenging cases where tumors are embedded in glands. Moreover, the models indicate the capability of the technique in dealing with tumors at different on- and off-axis locations within the breast with high efficiency in using the microwave power.

  8. Results of Three-Dimensional Conformal Radiation Therapy for the Treatment of a Solitary Sternal Relapse of Breast Cancer

    International Nuclear Information System (INIS)

    Kim, Hae Young; Huh, Seung Jae; Park, Won; Choi, Do Ho; Kang, Min Kyu; Yang, Jung Hyun; Nam, Seok Jin; Im, Young Hyuck

    2008-01-01

    To evaluate the response and survival rate after three-dimensional conformal radiation therapy (3D-CRT) of patients with a solitary sternal relapse of breast cancer. Seventeen patients between May 1996 and June 2005 were evaluated with the salvage 3D-CRT treatment of a solitary sternal relapse of breast cancer. The treatment fields included the gross tumor volume with 2 cm margins. The total radiation dose was 35.0 ∼61.5 Gy (biologic effective dose of 43.7 ∼76.9 Gy10 using an α/β ratio of 10 Gy), with a daily dose of 1.8∼3.0 Gy. The tumor response was evaluated by the change in maximum tumor size via follow up CT scans 1∼3 months after the completion of treatment. An objective tumor response was achieved in all patients, with a complete response in 5 patients and a partial response in 12 patients. The 5-year overall survival rate was 51.9% (median survival time: 27 months), and the most important factor affecting overall survival was the disease-free interval (interval from primary surgery of breast cancer to the development of sternal metastasis): The 5-year overall survival rate was 61.8% for patients with a disease-free interval ≥12 months and 0.0% for patients < with disease-free interval <12 months (p=0.03). The response to 3D-CRT was good in patients with solitary sternal relapse of breast cancer. Particularly, patients with long disease-free interval from primary surgery survived significantly longer than patients with short disease-free interval from primary surgery

  9. Comparison of Diagnostic Performance of Three-Dimensional Positron Emission Mammography versus Whole Body Positron Emission Tomography in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Dong Dai

    2017-01-01

    Full Text Available Objective. To compare the diagnostic performance of three-dimensional (3D positron emission mammography (PEM versus whole body positron emission tomography (WBPET for breast cancer. Methods. A total of 410 women with normal breast or benign or highly suspicious malignant tumors were randomized at 1 : 1 ratio to undergo 3D-PEM followed by WBPET or WBPET followed by 3D-PEM. Lumpectomy or mastectomy was performed on eligible participants after the scanning. Results. The sensitivity and specificity of 3D-PEM were 92.8% and 54.5%, respectively. WBPET showed a sensitivity of 95.7% and specificity of 56.8%. After exclusion of the patients with lesions beyond the detecting range of the 3D-PEM instrument, 3D-PEM showed higher sensitivity than WBPET (97.0% versus 95.5%, P = 0.913, particularly for small lesions (<1 cm (72.0% versus 60.0%, P = 0.685. Conclusions. The 3D-PEM appears more sensitive to small lesions than WBPET but may fail to detect lesions that are beyond the detecting range. This study was approved by the Ethics Committee (E2012052 at the Tianjin Medical University Cancer Institute and Hospital (Tianjin, China. The instrument positron emission mammography (PEMi was approved by China State Food and Drug Administration under the registration number 20153331166.

  10. Dosimetric aspects of breast radiotherapy with three-dimensional and intensity-modulated radiotherapy helical tomotherapy planning modules

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Poonam [Department of Human Oncology, University of Wisconsin-Madison, Madison, WI (United States); Service of Radiation Therapy, University of Wisconsin Aspirus Cancer Center, Wisconsin Rapids, WI (United States); Yan, Yue, E-mail: yyan5@mdanderson.org [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Ignatowski, Tasha [Service of Radiation Therapy, University of Wisconsin Aspirus Cancer Center, Wisconsin Rapids, WI (United States); Olson, Anna [Department of Human Oncology, University of Wisconsin-Madison, Madison, WI (United States); Service of Radiation Therapy, University of Wisconsin Aspirus Cancer Center, Wisconsin Rapids, WI (United States)

    2017-04-01

    In this work, we investigated the dosimetric differences between the intensity-modulated radiotherapy (IMRT) plans and the three-dimensional (3D) helical plans based on the TomoTherapy system. A total of 15 patients with supine setup were randomly selected from the data base. For patients with lumpectomy planning target volume (PTV), regional lymph nodes were also included as part of the target. For dose sparing, the significant differences between the helical IMRT and helical 3D were only found in the heart and contralateral breast. For the dose to the heart, helical IMRT reduced the maximum point dose by 6.98 Gy compared to the helical 3D plan (p = 0.01). For contralateral breast, the helical IMRT plans significantly reduced the maximum point dose by 5.6 Gy compared to the helical 3D plan. However, compared to the helical 3D plan, the helical IMRT plan increased the volume for lower dose (13.08% increase in V{sub 5} {sub Gy}, p = 0.01). In general, there are no significant differences in dose sparing between helical IMRT and helical 3D plans.

  11. Dosimetric aspects of breast radiotherapy with three-dimensional and intensity-modulated radiotherapy helical tomotherapy planning modules

    International Nuclear Information System (INIS)

    Yadav, Poonam; Yan, Yue; Ignatowski, Tasha; Olson, Anna

    2017-01-01

    In this work, we investigated the dosimetric differences between the intensity-modulated radiotherapy (IMRT) plans and the three-dimensional (3D) helical plans based on the TomoTherapy system. A total of 15 patients with supine setup were randomly selected from the data base. For patients with lumpectomy planning target volume (PTV), regional lymph nodes were also included as part of the target. For dose sparing, the significant differences between the helical IMRT and helical 3D were only found in the heart and contralateral breast. For the dose to the heart, helical IMRT reduced the maximum point dose by 6.98 Gy compared to the helical 3D plan (p = 0.01). For contralateral breast, the helical IMRT plans significantly reduced the maximum point dose by 5.6 Gy compared to the helical 3D plan. However, compared to the helical 3D plan, the helical IMRT plan increased the volume for lower dose (13.08% increase in V 5 Gy , p = 0.01). In general, there are no significant differences in dose sparing between helical IMRT and helical 3D plans.

  12. Mammogram synthesis using a three-dimensional simulation. III. Modeling and evaluation of the breast ductal network

    International Nuclear Information System (INIS)

    Bakic, Predrag R.; Albert, Michael; Brzakovic, Dragana; Maidment, Andrew D. A.

    2003-01-01

    A method is proposed for realistic simulation of the breast ductal network as part of a computer three-dimensional (3-D) breast phantom. The ductal network is simulated using tree models. Synthetic trees are generated based upon a description of ductal branching by ramification matrices (R matrices), whose elements represent the probabilities of branching at various levels of a tree. We simulated the ductal network of the breast, consisting of multiple lobes, by random binary trees (RBT). Each lobe extends from the ampulla and consists of branching ductal segments of decreasing size, and the associated terminal ductal-lobular units. The lobes follow curved paths that project from the nipple toward the chest wall. We have evaluated the RBT model by comparing manually- traced ductal networks from 25 projections of ductal lobes in clinical galactograms and manually- traced networks from 23 projections of synthetic RBTs. A root-mean-square (rms) fractional error of 41%, between the R-matrix elements corresponding to clinical and synthetic images, was computed. This difference was influenced by projection and segmentation artifacts and by the limited number of available images. In addition, we analyzed 23 synthetic trees generated using R matrices computed from clinical images. A comparison of these synthetic and clinical images yielded a rms fractional error of 11%, suggesting the possibility that a more appropriate model of the ductal branching morphology may be developed. Rejection of the RBT model also suggests the existence of a relationship between ductal branching morphology and the state of mammary development and pathology

  13. Evaluation of a three-dimensional ultrasound localisation system incorporating probe pressure correction for use in partial breast irradiation.

    Science.gov (United States)

    Harris, E J; Symonds-Taylor, R; Treece, G M; Gee, A H; Prager, R W; Brabants, P; Evans, P M

    2009-10-01

    This work evaluates a three-dimensional (3D) freehand ultrasound-based localisation system with new probe pressure correction for use in partial breast irradiation. Accuracy and precision of absolute position measurement was measured as a function of imaging depth (ID), object depth, scanning direction and time using a water phantom containing crossed wires. To quantify the improvement in accuracy due to pressure correction, 3D scans of a breast phantom containing ball bearings were obtained with and without pressure. Ball bearing displacements were then measured with and without pressure correction. Using a single scan direction (for all imaging depths), the mean error was <1.3 mm, with the exception of the wires at 68.5 mm imaged with an ID of 85 mm, which gave a mean error of -2.3 mm. Precision was greater than 1 mm for any single scan direction. For multiple scan directions, precision was within 1.7 mm. Probe pressure corrections of between 0 mm and 2.2 mm have been observed for pressure displacements of 1.1 mm to 4.2 mm. Overall, anteroposterior position measurement accuracy increased from 2.2 mm to 1.6 mm and to 1.4 mm for the two opposing scanning directions. Precision is comparable to that reported for other commercially available ultrasound localisation systems, provided that 3D image acquisition is performed in the same scan direction. The existing temporal calibration is imperfect and a "per installation" calibration would further improve the accuracy and precision. Probe pressure correction was shown to improve the accuracy and will be useful for the localisation of the excision cavity in partial breast radiotherapy.

  14. Poster - 21: Verification of Monitor Unit Calculations for Breast Field-In-Field Three-Dimensional Conformal Radiotherapy Plans

    International Nuclear Information System (INIS)

    Kosztyla, Robert; Pierce, Greg; Ploquin, Nicolas; Roumeliotis, Michael; Schinkel, Colleen

    2016-01-01

    Purpose: To determine the source of systematic monitor unit (MU) calculation discrepancies between RadCalc and Eclipse treatment planning software for three-dimensional conformal radiotherapy field-in-field breast treatments. Methods: Data were reviewed for 28 patients treated with a field-in-field breast technique with MU calculations from RadCalc that were larger than MU calculations from Eclipse for at least one field. The distance of the calculation point from the jaws was measured in each field’s beam’s-eye-view and compared with the percentage difference in MU (%ΔMU) between RadCalc and Eclipse. 10×10, 17×13 and 20×20 cm 2 beam profiles were measured using the Profiler 2 diode array for 6-MV photon beams and compared with profiles calculated with Eclipse and RadCalc using a gamma analysis (3%, 3 mm). Results: The mean %ΔMU was 1.3%±0.3%. There was a statistically-significant correlation between %ΔMU and the distance of the calculation point from the Y jaw (r=−0.43, p<0.001). RadCalc profiles differed from measured profiles, especially near the jaws. The gamma pass rate for 6-MV fields of 17×13 cm 2 field size was 95%±1% for Eclipse-generated profiles and 53%±20% for RadCalc-generated profiles (p=0.01). Conclusions: Calculations using RadCalc for field-in-field breast plans resulted in MUs that were larger than expected from previous clinical experience with wedged plans with calculation points far from the jaws due to the position of the calculation point near the jaws in the beam’s-eye-view of each field.

  15. Poster - 21: Verification of Monitor Unit Calculations for Breast Field-In-Field Three-Dimensional Conformal Radiotherapy Plans

    Energy Technology Data Exchange (ETDEWEB)

    Kosztyla, Robert; Pierce, Greg; Ploquin, Nicolas; Roumeliotis, Michael; Schinkel, Colleen [Tom Baker Cancer Centre, Calgary, AB, Tom Baker Cancer Centre, Tom Baker Cancer Centre, Tom Baker Cancer Centre, Calgary, AB, Tom Baker Cancer Centre, Calgary, AB (Canada)

    2016-08-15

    Purpose: To determine the source of systematic monitor unit (MU) calculation discrepancies between RadCalc and Eclipse treatment planning software for three-dimensional conformal radiotherapy field-in-field breast treatments. Methods: Data were reviewed for 28 patients treated with a field-in-field breast technique with MU calculations from RadCalc that were larger than MU calculations from Eclipse for at least one field. The distance of the calculation point from the jaws was measured in each field’s beam’s-eye-view and compared with the percentage difference in MU (%ΔMU) between RadCalc and Eclipse. 10×10, 17×13 and 20×20 cm{sup 2} beam profiles were measured using the Profiler 2 diode array for 6-MV photon beams and compared with profiles calculated with Eclipse and RadCalc using a gamma analysis (3%, 3 mm). Results: The mean %ΔMU was 1.3%±0.3%. There was a statistically-significant correlation between %ΔMU and the distance of the calculation point from the Y jaw (r=−0.43, p<0.001). RadCalc profiles differed from measured profiles, especially near the jaws. The gamma pass rate for 6-MV fields of 17×13 cm{sup 2} field size was 95%±1% for Eclipse-generated profiles and 53%±20% for RadCalc-generated profiles (p=0.01). Conclusions: Calculations using RadCalc for field-in-field breast plans resulted in MUs that were larger than expected from previous clinical experience with wedged plans with calculation points far from the jaws due to the position of the calculation point near the jaws in the beam’s-eye-view of each field.

  16. Breast MRI scan

    Science.gov (United States)

    ... or breast ultrasound Evaluate for possible rupture of breast implants Find any cancer that remains after surgery or chemotherapy Show blood ... Mean Abnormal results may be due to: Breast cancer Cysts Leaking or ruptured breast implants Abnormal breast tissue that is not cancer Scar ...

  17. Three-Dimensional Intrafractional Motion of Breast During Tangential Breast Irradiation Monitored With High-Sampling Frequency Using a Real-Time Tumor-Tracking Radiotherapy System

    International Nuclear Information System (INIS)

    Kinoshita, Rumiko; Shimizu, Shinichi; Taguchi, Hiroshi; Katoh, Norio; Fujino, Masaharu; Onimaru, Rikiya; Aoyama, Hidefumi; Katoh, Fumi; Omatsu, Tokuhiko; Ishikawa, Masayori; Shirato, Hiroki

    2008-01-01

    Purpose: To evaluate the three-dimensional intrafraction motion of the breast during tangential breast irradiation using a real-time tracking radiotherapy (RT) system with a high-sampling frequency. Methods and Materials: A total of 17 patients with breast cancer who had received breast conservation RT were included in this study. A 2.0-mm gold marker was placed on the skin near the nipple of the breast for RT. A fluoroscopic real-time tumor-tracking RT system was used to monitor the marker. The range of motion of each patient was calculated in three directions. Results: The mean ± standard deviation of the range of respiratory motion was 1.0 ± 0.6 mm (median, 0.9; 95% confidence interval [CI] of the marker position, 0.4-2.6), 1.3 ± 0.5 mm (median, 1.1; 95% CI, 0.5-2.5), and 2.6 ± 1.4 (median, 2.3; 95% CI, 1.0-6.9) for the right-left, craniocaudal, and anteroposterior direction, respectively. No correlation was found between the range of motion and the body mass index or respiratory function. The mean ± standard deviation of the absolute value of the baseline shift in the right-left, craniocaudal, and anteroposterior direction was 0.2 ± 0.2 mm (range, 0.0-0.8 mm), 0.3 ± 0.2 mm (range, 0.0-0.7 mm), and 0.8 ± 0.7 mm (range, 0.1-1.8 mm), respectively. Conclusion: Both the range of motion and the baseline shift were within a few millimeters in each direction. As long as the conventional wedge-pair technique and the proper immobilization are used, the intrafraction three-dimensional change in the breast surface did not much influence the dose distribution

  18. Pre-operative CT angiography and three-dimensional image post processing for deep inferior epigastric perforator flap breast reconstructive surgery.

    Science.gov (United States)

    Lam, D L; Mitsumori, L M; Neligan, P C; Warren, B H; Shuman, W P; Dubinsky, T J

    2012-12-01

    Autologous breast reconstructive surgery with deep inferior epigastric artery (DIEA) perforator flaps has become the mainstay for breast reconstructive surgery. CT angiography and three-dimensional image post processing can depict the number, size, course and location of the DIEA perforating arteries for the pre-operative selection of the best artery to use for the tissue flap. Knowledge of the location and selection of the optimal perforating artery shortens operative times and decreases patient morbidity.

  19. Three-dimensional ultrashort echo time MRI and Short T2 images generated from subtraction for determination of tumor burden in lung cancer: Preclinical investigation in transgenic mice.

    Science.gov (United States)

    Müller, Andreas; Jagoda, Philippe; Fries, Peter; Gräber, Stefan; Bals, Robert; Buecker, Arno; Jungnickel, Christopher; Beisswenger, Christoph

    2018-02-01

    To investigate the potential of 3D ultrashort echo time MRI and short T 2 images generated by subtraction for determination of total tumor burden in lung cancer. As an animal model of spontaneously developing non-small cell lung cancer, the K-rasLA1 transgenic mouse was used. Three-dimensional MR imaging was performed with radial k-space acquisition and echo times of 20 µs and 1 ms. For investigation of the short T 2 component in the recorded signal, subtraction images were generated from these data sets and used for consensus identification of tumors. Next, manual segmentation was performed on all MR images by two independent investigators. MRI data were compared with the results from histologic investigations and among the investigators. Tumor number and total tumor burden from imaging experiments correlated strongly with the results of histologic investigations. Intra- and interuser comparison showed highest correlations between the individual measurements for ultra-short TE MRI. Three-dimensional MRI protocols facilitate accurate tumor identification in mice harboring lung tumors. Ultrashort TE MRI is the superior imaging strategy when investigating lung tumors of miscellaneous size with 3D MR imaging strategies. Magn Reson Med 79:1052-1060, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  20. MRI and three dimensional ultrasonography in the assessment of pulmonary hypoplasia in fetuses with urinary tract anomalies

    Directory of Open Access Journals (Sweden)

    Mariam Raafat

    2016-12-01

    Conclusion: There is a good concordance between 3D-US and MRI in the evaluation of PH in fetuses with UTM. MRI could be reserved for borderline cases of pulmonary hypoplasia and the difficult diagnostic situations.

  1. Three-dimensional dynamic contrast-enhanced MRI for the accurate, extensive quantification of microvascular permeability in atherosclerotic plaques

    NARCIS (Netherlands)

    Calcagno, Claudia; Lobatto, Mark E.; Dyvorne, Hadrien; Robson, Philip M.; Millon, Antoine; Senders, Max L.; Lairez, Olivier; Ramachandran, Sarayu; Coolen, Bram F.; Black, Alexandra; Mulder, Willem J. M.; Fayad, Zahi A.

    2015-01-01

    Atherosclerotic plaques that cause stroke and myocardial infarction are characterized by increased microvascular permeability and inflammation. Dynamic contrast-enhanced MRI (DCE-MRI) has been proposed as a method to quantify vessel wall microvascular permeability in vivo. Until now, most DCE-MRI

  2. FAST MRI breast screening revisited

    International Nuclear Information System (INIS)

    Jain, Manish; Jain, Arushi; Hyzy, Marek D.; Werth, Graziella

    2017-01-01

    Screening for breast cancer in high-risk women takes about 40 minutes to acquire an MRI scan and is time-intensive to report. There is recent interest in the performance of an abbreviated MRI protocol (FAST) in the screening setting. FAST scans have a reported negative predictive value of 99.8%. This study evaluates the false positive rates (FPR) and recall rates for FAST scans as compared to full diagnostic studies (FD). A database of all screening breast MRI scans performed at our institution between 30 June 2013 and 1 July 2014 (n = 591) was created by one of the researchers, who did not subsequently analyse the MRI scans. The T1W and first post-contrast and subtracted images from each of these scans (FAST protocol) were assessed by experienced breast MRI radiologists, blinded to the final diagnosis. The findings were then compared with the FD result. The recall rates were 6.6% for FAST scans and 5.8% for FD scans. FPR rates were 4.7% and 3.9% respectively. There is no statistically significant difference in the recall rates or FPR of FAST scans in comparison with full diagnostic studies. Given the absence of statistically significant difference in the FPR and recall rates in comparison with FD, FAST scans can replace FD for screening of breast cancer.

  3. Late radiation side effects, cosmetic outcomes and pain in breast cancer patients after breast-conserving surgery and three-dimensional conformal radiotherapy. Risk-modifying factors

    International Nuclear Information System (INIS)

    Hille-Betz, Ursula; Soergel, Philipp; Kundu, Sudip; Klapdor, Ruediger; Hillemanns, Peter; Vaske, Bernhard; Bremer, Michael; Henkenberens, Christoph

    2016-01-01

    The purpose of this work was to identify parameters influencing the risk of late radiation side effects, fair or poor cosmetic outcomes (COs) and pain in breast cancer patients after breast-conserving therapy (BCT) and three-dimensional conformal radiotherapy (3D-CRT). Between 2006 and 2013, 159 patients were treated at the Hannover Medical School. Physician-rated toxicity according to the LENT-SOMA criteria, CO and pain were assessed by multivariate analysis. LENT-SOMA grade 1-4 toxicity was observed as follows: fibrosis 10.7 %, telangiectasia 1.2 %, arm oedema 8.8 % and breast oedema 5.0 %. In addition, 15.1 % of patients reported moderate or severe breast pain, and 21.4 % complained about moderate or severe pain in the arm or shoulder. In multivariate analysis, axillary clearing (AC) was significantly associated with lymphoedema of the arm [odds ratio (OR) 4.37, p = 0.011, 95 % confidence interval (CI) 1.4-13.58]. Breast oedema was also highly associated with AC (OR 10.59, p = 0.004, 95 % CI 2.1-53.36), a ptosis grade 2/3 or pseudoptosis and a bra size ≥ cup C (OR 5.34, p = 0.029, 95 % CI 1.2-24.12). A ptosis grade 2/3 or pseudoptosis and a bra size ≥ cup C were the parameters significantly associated with an unfavourable CO (OR 3.19, p = 0.019, 95 % CI 1.2-8.4). Concerning chronic breast pain, we found a trend related to the prescribed radiation dose including boost (OR 1.077, p = 0.060, 95 % CI 0.997-1.164). Chronic shoulder or arm pain was statistically significantly associated with lymphoedema of the arm (OR 3.9, p = 0.027, 95 % CI 1.17-13.5). Chronic arm and breast oedema were significantly influenced by the extent of surgery (AC). Ptotic and large breasts were significantly associated with unfavourable COs and chronic breast oedema. Late toxicities exclusive breast pain were not associated with radiotherapy parameters. (orig.) [de

  4. Factors of influence on acute skin toxicity of breast cancer patients treated with standard three-dimensional conformal radiotherapy (3D-CRT) after breast conserving surgery (BCS)

    International Nuclear Information System (INIS)

    Kraus-Tiefenbacher, Uta; Sfintizky, Andreas; Welzel, Grit; Simeonova, Anna; Sperk, Elena; Siebenlist, Kerstin; Mai, Sabine; Wenz, Frederik

    2012-01-01

    Standard 3D-CRT after BCS may cause skin toxicity with a wide range of intensity including acute effects like erythema or late effects. In order to reduce these side effects it is mandatory to identify potential factors of influence in breast cancer patients undergoing standard three-dimensional conformal radiation therapy (3D-CRT) of the breast and modern systemic therapy. Between 2006 and 2010 a total of 211 breast cancer patients (median age 52,4 years, range 24–77) after BCS consecutively treated in our institution with 3D-CRT (50 Gy whole breast photon radiotherapy followed by 16 Gy electron boost to the tumorbed) were evaluated with special focus on documented skin toxicity at the end of the 50 Gy-course. Standardized photodocumentation of the treated breast was done in each patient lying on the linac table with arms elevated. Skin toxicity was documented according to the common toxicity criteria (CTC)-score. Potential influencing factors were classified in three groups: patient-specific (smoking, age, breast size, body mass index = BMI, allergies), tumor-specific (tumorsize) and treatment-specific factors (antihormonal therapy with tamoxifen or aromatase inhibitors, chemotherapy). Uni- and multivariate statistical analyses were done using IBM SPSS version 19. After 50 Gy 3D-CRT to the whole breast 28.9% of all 211 patients had no erythema, 62.2% showed erythema grade 1 (G1) and 8.5% erythema grade 2. None of the patients had grade 3/4 (G3/4) erythema. In univariate analyses a significant influence or trend on the development of acute skin toxicities (erythema G0 versus G1 versus G2) was observed for larger breast volumes (p=0,004), smoking during radiation therapy (p=0,064) and absence of allergies (p=0,014) as well as larger tumorsize (p=0,009) and antihormonal therapy (p=0.005). Neither patient age, BMI nor choice of chemotherapy showed any significant effect on higher grade toxicity. In the multivariate analysis, factors associated with higher grade

  5. Effects of emotional valence and three-dimensionality of visual stimuli on brain activation: an fMRI study.

    Science.gov (United States)

    Dores, A R; Almeida, I; Barbosa, F; Castelo-Branco, M; Monteiro, L; Reis, M; de Sousa, L; Caldas, A Castro

    2013-01-01

    Examining changes in brain activation linked with emotion-inducing stimuli is essential to the study of emotions. Due to the ecological potential of techniques such as virtual reality (VR), inspection of whether brain activation in response to emotional stimuli can be modulated by the three-dimensional (3D) properties of the images is important. The current study sought to test whether the activation of brain areas involved in the emotional processing of scenarios of different valences can be modulated by 3D. Therefore, the focus was made on the interaction effect between emotion-inducing stimuli of different emotional valences (pleasant, unpleasant and neutral valences) and visualization types (2D, 3D). However, main effects were also analyzed. The effect of emotional valence and visualization types and their interaction were analyzed through a 3 × 2 repeated measures ANOVA. Post-hoc t-tests were performed under a ROI-analysis approach. The results show increased brain activation for the 3D affective-inducing stimuli in comparison with the same stimuli in 2D scenarios, mostly in cortical and subcortical regions that are related to emotional processing, in addition to visual processing regions. This study has the potential of clarify brain mechanisms involved in the processing of emotional stimuli (scenarios' valence) and their interaction with three-dimensionality.

  6. Three-dimensional inversion recovery manganese-enhanced MRI of mouse brain using super-resolution reconstruction to visualize nuclei involved in higher brain function.

    Science.gov (United States)

    Poole, Dana S; Plenge, Esben; Poot, Dirk H J; Lakke, Egbert A J F; Niessen, Wiro J; Meijering, Erik; van der Weerd, Louise

    2014-07-01

    The visualization of activity in mouse brain using inversion recovery spin echo (IR-SE) manganese-enhanced MRI (MEMRI) provides unique contrast, but suffers from poor resolution in the slice-encoding direction. Super-resolution reconstruction (SRR) is a resolution-enhancing post-processing technique in which multiple low-resolution slice stacks are combined into a single volume of high isotropic resolution using computational methods. In this study, we investigated, first, whether SRR can improve the three-dimensional resolution of IR-SE MEMRI in the slice selection direction, whilst maintaining or improving the contrast-to-noise ratio of the two-dimensional slice stacks. Second, the contrast-to-noise ratio of SRR IR-SE MEMRI was compared with a conventional three-dimensional gradient echo (GE) acquisition. Quantitative experiments were performed on a phantom containing compartments of various manganese concentrations. The results showed that, with comparable scan times, the signal-to-noise ratio of three-dimensional GE acquisition is higher than that of SRR IR-SE MEMRI. However, the contrast-to-noise ratio between different compartments can be superior with SRR IR-SE MEMRI, depending on the chosen inversion time. In vivo experiments were performed in mice receiving manganese using an implanted osmotic pump. The results showed that SRR works well as a resolution-enhancing technique in IR-SE MEMRI experiments. In addition, the SRR image also shows a number of brain structures that are more clearly discernible from the surrounding tissues than in three-dimensional GE acquisition, including a number of nuclei with specific higher brain functions, such as memory, stress, anxiety and reward behavior. Copyright © 2014 John Wiley & Sons, Ltd.

  7. Extended endoscopic endonasal surgery using three-dimensional endoscopy in the intra-operative MRI suite for supra-diaphragmatic ectopic pituitary adenoma.

    Science.gov (United States)

    Fuminari, Komatsu; Hideki, Atsumi; Manabu, Osakabe; Mitsunori, Matsumae

    2015-01-01

    We describe a supra-diaphragmatic ectopic pituitary adenoma that was safely removed using the extended endoscopic endonasal approach, and discuss the value of three-dimensional (3D) endoscopy and intra-operative magnetic resonance imaging (MRI) to this type of procedure. A 61-year-old-man with bitemporal hemianopsia was referred to our hospital, where MRI revealed an enhanced suprasellar tumor compressing the optic chiasma. The tumor extended on the planum sphenoidale and partially encased the right internal carotid artery. An endocrinological assessment indicated normal pituitary function. The extended endoscopic endonasal approach was taken using a 3D endoscope in the intraoperative MRI suite. The tumor was located above the diaphragma sellae and separated from the normal pituitary gland. The pathological findings indicated non-functioning pituitary adenoma and thus the tumor was diagnosed as a supra-diaphragmatic ectopic pituitary adenoma. Intra-operative MRI provided useful information to minimize dural opening and the supra-diaphragmatic ectopic pituitary adenoma was removed from the complex neurovascular structure via the extended endoscopic endonasal approach under 3D endoscopic guidance in the intra-operative suite. Safe and effective removal of a supra-diaphragmatic ectopic pituitary adenoma was accomplished via the extended endoscopic endonasal approach with visual information provided by 3D endoscopy and intra-operative MRI.

  8. Dose modeling of noninvasive image-guided breast brachytherapy in comparison to electron beam boost and three-dimensional conformal accelerated partial breast irradiation.

    Science.gov (United States)

    Sioshansi, Shirin; Rivard, Mark J; Hiatt, Jessica R; Hurley, Amanda A; Lee, Yoojin; Wazer, David E

    2011-06-01

    To perform dose modeling of a noninvasive image-guided breast brachytherapy (NIIGBB) for comparison to electrons and 3DCRT. The novel technology used in this study is a mammography-based, noninvasive breast brachytherapy system whereby the treatment applicators are centered on the planning target volume (PTV) to direct (192)Ir emissions along orthogonal axes. To date, three-dimensional dose modeling of NIIGBB has not been possible because of the limitations of conventional treatment planning systems (TPS) to model variable tissue deformation associated with breast compression. In this study, the TPS was adapted such that the NIIGBB dose distributions were modeled as a virtual point source. This dose calculation technique was applied to CT data from 8 patients imaged with the breast compressed between parallel plates in the cranial-caudal and medial-lateral axes. A dose-volume comparison was performed to simulated electron boost and 3DCRT APBI. The NIIGBB PTV was significantly reduced as compared with both electrons and 3DCRT. Electron boost plans had a lower D(min) than the NIIGBB technique but higher V(100), D(90), and D(50). With regard to PTV coverage for APBI, the only significant differences were minimally higher D(90), D(100), V(80), and V(90), with 3DCRT and D(max) with NIIGBB. The NIIGBB technique, as compared with electrons and 3D-CRT, achieved a lower maximum dose to skin (60% and 10%, respectively) and chest wall/lung (70-90%). NIIGBB achieves a PTV that is smaller than electron beam and 3DCRT techniques. This results in significant normal tissue sparing while maintaining dosimetric benchmarks to the target tissue. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. How does knowledge of three-dimensional excision margins following breast conservation surgery impact upon clinical target volume definition for partial-breast radiotherapy?

    International Nuclear Information System (INIS)

    Kirby, Anna M.; Evans, Philip M.; Nerurkar, Ashutosh Y.; Desai, Saral S.; Krupa, Jaroslaw; Devalia, Haresh; Rovere, Guidubaldo Querci della; Harris, Emma J.; Kyriakidou, Julia; Yarnold, John R.

    2010-01-01

    Background and purpose: To compare partial-breast clinical target volumes generated using a standard 15 mm margin (CTV standard ) with those generated using three-dimensional surgical excision margins (CTV tailored30 ) in women who have undergone wide local excision (WLE) for breast cancer. Material and methods: Thirty-five women underwent WLE with placement of clips in the anterior, deep and coronal excision cavity walls. Distances from tumour to each of six margins were measured microscopically. Tumour bed was defined on kV-CT images using clips. CTV standard was generated by adding a uniform three-dimensional 15 mm margin, and CTV tailored30 was generated by adding 30 mm minus the excision margin in three-dimensions. Concordance between CTV standard and CTV tailored30 was quantified using conformity (CoI), geographical-miss (GMI) and normal-tissue (NTI) indices. An external-beam partial-breast irradiation (PBI) plan was generated to cover 95% of CTV standard with the 95% isodose. Percentage-volume coverage of CTV tailored30 by the 95% isodose was measured. Results: Median (range) coronal, superficial and deep excision margins were 15.0 (0.5-76.0) mm, 4.0 (0.0-60.0) mm and 4.0 (0.5-35.0) mm, respectively. Median CoI, GMI and NTI were 0.62, 0.16 and 0.20, respectively. Median coverage of CTV tailored30 by the PBI-plan was 97.7% (range 84.9-100.0%). CTV tailored30 was inadequately covered by the 95% isodose in 4/29 cases. In three cases, the excision margin in the direction of inadequate coverage was ≤2 mm. Conclusions: CTVs based on 3D excision margin data are discordant with those defined using a standard uniform 15 mm TB-CTV margin. In women with narrow excision margins, the standard TB-CTV margin could result in a geographical miss. Therefore, wider TB-CTV margins should be considered where re-excision does not occur.

  10. Three-dimensional quantification of vorticity and helicity from 3D cine PC-MRI using finite-element interpolations.

    Science.gov (United States)

    Sotelo, Julio; Urbina, Jesús; Valverde, Israel; Mura, Joaquín; Tejos, Cristián; Irarrazaval, Pablo; Andia, Marcelo E; Hurtado, Daniel E; Uribe, Sergio

    2018-01-01

    We propose a 3D finite-element method for the quantification of vorticity and helicity density from 3D cine phase-contrast (PC) MRI. By using a 3D finite-element method, we seamlessly estimate velocity gradients in 3D. The robustness and convergence were analyzed using a combined Poiseuille and Lamb-Ossen equation. A computational fluid dynamics simulation was used to compared our method with others available in the literature. Additionally, we computed 3D maps for different 3D cine PC-MRI data sets: phantom without and with coarctation (18 healthy volunteers and 3 patients). We found a good agreement between our method and both the analytical solution of the combined Poiseuille and Lamb-Ossen. The computational fluid dynamics results showed that our method outperforms current approaches to estimate vorticity and helicity values. In the in silico model, we observed that for a tetrahedral element of 2 mm of characteristic length, we underestimated the vorticity in less than 5% with respect to the analytical solution. In patients, we found higher values of helicity density in comparison to healthy volunteers, associated with vortices in the lumen of the vessels. We proposed a novel method that provides entire 3D vorticity and helicity density maps, avoiding the used of reformatted 2D planes from 3D cine PC-MRI. Magn Reson Med 79:541-553, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  11. Intracranial arterial wall imaging using three-dimensional high isotropic resolution black blood MRI at 3.0 Tesla.

    Science.gov (United States)

    Qiao, Ye; Steinman, David A; Qin, Qin; Etesami, Maryam; Schär, Michael; Astor, Brad C; Wasserman, Bruce A

    2011-07-01

    To develop a high isotropic-resolution sequence to evaluate intracranial vessels at 3.0 Tesla (T). Thirteen healthy volunteers and 4 patients with intracranial stenosis were imaged at 3.0T using 0.5-mm isotropic-resolution three-dimensional (3D) Volumetric ISotropic TSE Acquisition (VISTA; TSE, turbo spin echo), with conventional 2D-TSE for comparison. VISTA was repeated for 6 volunteers and 4 patients at 0.4-mm isotropic-resolution to explore the trade-off between SNR and voxel volume. Wall signal-to-noise-ratio (SNR(wall) ), wall-lumen contrast-to-noise-ratio (CNR(wall-lumen) ), lumen area (LA), wall area (WA), mean wall thickness (MWT), and maximum wall thickness (maxWT) were compared between 3D-VISTA and 2D-TSE sequences, as well as 3D images acquired at both resolutions. Reliability was assessed by intraclass correlations (ICC). Compared with 2D-TSE measurements, 3D-VISTA provided 58% and 74% improvement in SNR(wall) and CNR(wall-lumen) , respectively. LA, WA, MWT and maxWT from 3D and 2D techniques highly correlated (ICCs of 0.96, 0.95, 0.96, and 0.91, respectively). CNR(wall-lumen) using 0.4-mm resolution VISTA decreased by 27%, compared with 0.5-mm VISTA but with reduced partial-volume-based overestimation of wall thickness. Reliability for 3D measurements was good to excellent. The 3D-VISTA provides SNR-efficient, highly reliable measurements of intracranial vessels at high isotropic-resolution, enabling broad coverage in a clinically acceptable time. Copyright © 2011 Wiley-Liss, Inc.

  12. Evaluation of renal artery and renal masses using enhanced dynamic MRI. Three-dimensional volumetric interpolated breath-hold examination

    International Nuclear Information System (INIS)

    Ishikawa, Aimi; Kakizaki, Dai; Ito, Naoki; Shindou, Hiroaki; Ozuki, Taizou; Abe, Kimihiko; Sasaki, Kazuyoshi; Katsuyama, Hiroaki

    2003-01-01

    The purpose of this study was to evaluate of three-dimensional volumetric interpolated breathhold examination (3D-VIBE) for imaging renal arteries in renal tumor surgery. Twenty four patients to evaluate renal arteries, and 30 patients for staging of renal tumors. For evaluation of renal arteries, the number of renal arteries and secondary branches, and the RA ratio (renal artery diameter per aorta diameter) were investigated. For tumor evaluation, we investigated T factor and presence and condition of tumor capsule, 3D-VIBE was performed with a MAGNETOM Symphony (Siemens, Erlangen, Germany). Before the dynamic study, we measured renal artery acquisition time with 1 ml of contrast material (Gd-DTPA) and 20 ml of physiological saline solution injected into a hand vein at a rate of 3 ml/sec using an automatic injector. The first phase was set for arrival of the Gd-DTPA at the renal artery, the 2nd for 40 sec after the 1st phase, and the 3rd 180 sec after injection. Then we started scanning with 19 ml of Gd-DTPA and 20 ml of physiological saline solution. Maximum intensity projection (MIP) and multiplanar reconstruction (MFR) were reconstructed by the image data set. All renal arteries were correctly counted In one case, a branch of the superior mesenteric artery (SMA) was mistaken for a renal artery, but correctly identified using a stereo view. The rate of depiction of secondary branches was 86% compared with RA ratio which was significantly smaller than on aortic angiography (p<0.05). The findings for 5 tumors were confirmed by CT, but differed pathologically. We believe 3D-VIBE is useful dynamic CT for evaluation of renal arteries and preoperative classification of renal tumors. (author)

  13. Three-dimensional MRI Analysis of Femoral Head Remodeling After Reduction in Patients With Developmental Dysplasia of the Hip.

    Science.gov (United States)

    Tsukagoshi, Yuta; Kamada, Hiroshi; Kamegaya, Makoto; Takeuchi, Ryoko; Nakagawa, Shogo; Tomaru, Yohei; Tanaka, Kenta; Onishi, Mio; Nishino, Tomofumi; Yamazaki, Masashi

    2018-05-02

    Previous reports on patients with developmental dysplasia of the hip (DDH) showed that the prereduced femoral head was notably smaller and more nonspherical than the intact head, with growth failure observed at the proximal posteromedial area. We evaluated the shape of the femoral head cartilage in patients with DDH before and after reduction, with size and sphericity assessed using 3-dimensional (3D) magnetic resonance imaging (MRI). We studied 10 patients with unilateral DDH (all female) who underwent closed reduction. Patients with avascular necrosis of the femoral head on the plain radiograph 1 year after reduction were excluded. 3D MRI was performed before reduction and after reduction, at 2 years of age. 3D-image analysis software was used to reconstruct the multiplanes. After setting the axial, coronal, and sagittal planes in the software (based on the femoral shaft and neck axes), the smallest sphere that included the femoral head cartilage was drawn, the diameter was measured, and the center of the sphere was defined as the femoral head center. We measured the distance between the center and cartilage surface every 30 degrees on the 3 reconstructed planes. Sphericity of the femoral head was calculated using a ratio (the distance divided by each radius) and compared between prereduction and postreduction. The mean patient age was 7±3 and 26±3 months at the first and second MRI, respectively. The mean duration between the reduction and second MRI was 18±3 months. The femoral head diameter was 26.7±1.5 and 26.0±1.6 mm on the diseased and intact sides, respectively (P=0.069). The ratios of the posteromedial area on the axial plane and the proximoposterior area on the sagittal plane after reduction were significantly larger than before reduction (P<0.01). We demonstrated that the size of the reduced femoral head was nearly equal to that of the intact femoral head and that the growth failure area of the head before reduction, in the proximal posteromedial

  14. The role of Gd-enhanced three-dimensional MRI fast low-angle shot (FLASH) in the evaluation of symptomatic lumbosacral nerve roots

    Energy Technology Data Exchange (ETDEWEB)

    Kikkawa, Ichiro; Sugimoto, Hideharu; Saita, Kazuo; Ookami, Hitoshi; Nakama, Sueo; Hoshino, Yuichi [Jichi Medical School, Minamikawachi, Tochigi (Japan)

    2001-07-01

    In the field of lumbar spine disorders, three-dimensional (3-D) magnetic resonance imaging (MRI) can clearly depict a lumbar nerve root from the distal region to the dorsal root ganglion. In this study, we used a gadoliniumdiethylenetriaminepentaacetic acid (Gd-DTPA) enhanced-three-dimensional (3-D) fast low-angle shot (FLASH) sequence when examining lumbosacral disorders. The subjects were 33 patients (14 men and 19 women) in whom lumbosacral neural compression had been diagnosed clinically. Twenty-one patients had lumbar disc herniation, 11 had lumbar spinal stenosis, and 1 had lumbar radiculopathy caused by rheumatoid arthritis. Five subjects with low back pain were also studied as a control group. In all patients and in all 5 of the controls, the dorsal root ganglion of every root was enhanced clearly. There was no root enhancement in the 5 controls. Enhancement of the symptomatic nerve roots, caused by compression, was found in 11 of the 33 patients. All 11 patients had rediculopathy, and muscle weakness was more frequent in patients with enhanced nerve roots than in those without enhancement. There was no enhancement of the cauda equina, even in the patients with cauda syndrome. The enhancement effect may reflect some pathological condition of the compressed nerve root and needs to be studied further. (author)

  15. The role of Gd-enhanced three-dimensional MRI fast low-angle shot (FLASH) in the evaluation of symptomatic lumbosacral nerve roots

    International Nuclear Information System (INIS)

    Kikkawa, Ichiro; Sugimoto, Hideharu; Saita, Kazuo; Ookami, Hitoshi; Nakama, Sueo; Hoshino, Yuichi

    2001-01-01

    In the field of lumbar spine disorders, three-dimensional (3-D) magnetic resonance imaging (MRI) can clearly depict a lumbar nerve root from the distal region to the dorsal root ganglion. In this study, we used a gadoliniumdiethylenetriaminepentaacetic acid (Gd-DTPA) enhanced-three-dimensional (3-D) fast low-angle shot (FLASH) sequence when examining lumbosacral disorders. The subjects were 33 patients (14 men and 19 women) in whom lumbosacral neural compression had been diagnosed clinically. Twenty-one patients had lumbar disc herniation, 11 had lumbar spinal stenosis, and 1 had lumbar radiculopathy caused by rheumatoid arthritis. Five subjects with low back pain were also studied as a control group. In all patients and in all 5 of the controls, the dorsal root ganglion of every root was enhanced clearly. There was no root enhancement in the 5 controls. Enhancement of the symptomatic nerve roots, caused by compression, was found in 11 of the 33 patients. All 11 patients had rediculopathy, and muscle weakness was more frequent in patients with enhanced nerve roots than in those without enhancement. There was no enhancement of the cauda equina, even in the patients with cauda syndrome. The enhancement effect may reflect some pathological condition of the compressed nerve root and needs to be studied further. (author)

  16. Weekly bi-fractionated 40 Gy three-dimensional conformational accelerated partial irradiation of breast: results of a phase II French pilot study

    International Nuclear Information System (INIS)

    Bourgier, C.; Pichenot, C.; Verstraet, R.; Heymann, S.; Biron, B.; Delaloge, S.; Garbay, J.R.; Marsiglia, H.; Bourhis, J.; Taghian, A.; Marsiglia, H.

    2010-01-01

    The authors report the first French experience of three-dimensional conformational and accelerated partial irradiation of breast. Twenty five patients have been concerned by this phase II trial. The prescribed total dose was 40 Gy, was delivered over 5 days in two daily fractions. Irradiation was performed with two 6 MV tangential mini-beams and a 6-22 MeV front electron beams. The planning target volume coverage was very good. Toxicity has been assessed. Healthy tissues (heart, lungs) are considerably protected. The acute and late toxicity is correct. Short communication

  17. Preliminary experience with a novel method of three-dimensional co-registration of prostate cancer digital histology and in vivo multiparametric MRI.

    Science.gov (United States)

    Orczyk, C; Rusinek, H; Rosenkrantz, A B; Mikheev, A; Deng, F-M; Melamed, J; Taneja, S S

    2013-12-01

    To assess a novel method of three-dimensional (3D) co-registration of prostate cancer digital histology and in-vivo multiparametric magnetic resonance imaging (mpMRI) image sets for clinical usefulness. A software platform was developed to achieve 3D co-registration. This software was prospectively applied to three patients who underwent radical prostatectomy. Data comprised in-vivo mpMRI [T2-weighted, dynamic contrast-enhanced weighted images (DCE); apparent diffusion coefficient (ADC)], ex-vivo T2-weighted imaging, 3D-rebuilt pathological specimen, and digital histology. Internal landmarks from zonal anatomy served as reference points for assessing co-registration accuracy and precision. Applying a method of deformable transformation based on 22 internal landmarks, a 1.6 mm accuracy was reached to align T2-weighted images and the 3D-rebuilt pathological specimen, an improvement over rigid transformation of 32% (p = 0.003). The 22 zonal anatomy landmarks were more accurately mapped using deformable transformation than rigid transformation (p = 0.0008). An automatic method based on mutual information, enabled automation of the process and to include perfusion and diffusion MRI images. Evaluation of co-registration accuracy using the volume overlap index (Dice index) met clinically relevant requirements, ranging from 0.81-0.96 for sequences tested. Ex-vivo images of the specimen did not significantly improve co-registration accuracy. This preliminary analysis suggests that deformable transformation based on zonal anatomy landmarks is accurate in the co-registration of mpMRI and histology. Including diffusion and perfusion sequences in the same 3D space as histology is essential further clinical information. The ability to localize cancer in 3D space may improve targeting for image-guided biopsy, focal therapy, and disease quantification in surveillance protocols. Copyright © 2013 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  18. Real-time three dimensional CT and MRI to guide interventions for congenital heart disease and acquired pulmonary vein stenosis.

    Science.gov (United States)

    Suntharos, Patcharapong; Setser, Randolph M; Bradley-Skelton, Sharon; Prieto, Lourdes R

    2017-10-01

    To validate the feasibility and spatial accuracy of pre-procedural 3D images to 3D rotational fluoroscopy registration to guide interventional procedures in patients with congenital heart disease and acquired pulmonary vein stenosis. Cardiac interventions in patients with congenital and structural heart disease require complex catheter manipulation. Current technology allows registration of the anatomy obtained from 3D CT and/or MRI to be overlaid onto fluoroscopy. Thirty patients scheduled for interventional procedures from 12/2012 to 8/2015 were prospectively recruited. A C-arm CT using a biplane C-arm system (Artis zee, VC14H, Siemens Healthcare) was acquired to enable 3D3D registration with pre-procedural images. Following successful image fusion, the anatomic landmarks marked in pre-procedural images were overlaid on live fluoroscopy. The accuracy of image registration was determined by measuring the distance between overlay markers and a reference point in the image. The clinical utility of the registration was evaluated as either "High", "Medium" or "None". Seventeen patients with congenital heart disease and 13 with acquired pulmonary vein stenosis were enrolled. Accuracy and benefit of registration were not evaluated in two patients due to suboptimal images. The distance between the marker and the actual anatomical location was 0-2 mm in 18 (64%), 2-4 mm in 3 (11%) and >4 mm in 7 (25%) patients. 3D3D registration was highly beneficial in 18 (64%), intermediate in 3 (11%), and not beneficial in 7 (25%) patients. 3D3D registration can facilitate complex congenital and structural interventions. It may reduce procedure time, radiation and contrast dose.

  19. Breast density estimation from high spectral and spatial resolution MRI

    Science.gov (United States)

    Li, Hui; Weiss, William A.; Medved, Milica; Abe, Hiroyuki; Newstead, Gillian M.; Karczmar, Gregory S.; Giger, Maryellen L.

    2016-01-01

    Abstract. A three-dimensional breast density estimation method is presented for high spectral and spatial resolution (HiSS) MR imaging. Twenty-two patients were recruited (under an Institutional Review Board--approved Health Insurance Portability and Accountability Act-compliant protocol) for high-risk breast cancer screening. Each patient received standard-of-care clinical digital x-ray mammograms and MR scans, as well as HiSS scans. The algorithm for breast density estimation includes breast mask generating, breast skin removal, and breast percentage density calculation. The inter- and intra-user variabilities of the HiSS-based density estimation were determined using correlation analysis and limits of agreement. Correlation analysis was also performed between the HiSS-based density estimation and radiologists’ breast imaging-reporting and data system (BI-RADS) density ratings. A correlation coefficient of 0.91 (pdensity estimations. An interclass correlation coefficient of 0.99 (pdensity estimations. A moderate correlation coefficient of 0.55 (p=0.0076) was observed between HiSS-based breast density estimations and radiologists’ BI-RADS. In summary, an objective density estimation method using HiSS spectral data from breast MRI was developed. The high reproducibility with low inter- and low intra-user variabilities shown in this preliminary study suggest that such a HiSS-based density metric may be potentially beneficial in programs requiring breast density such as in breast cancer risk assessment and monitoring effects of therapy. PMID:28042590

  20. Late radiation side effects, cosmetic outcomes and pain in breast cancer patients after breast-conserving surgery and three-dimensional conformal radiotherapy. Risk-modifying factors

    Energy Technology Data Exchange (ETDEWEB)

    Hille-Betz, Ursula; Soergel, Philipp; Kundu, Sudip; Klapdor, Ruediger; Hillemanns, Peter [Hannover Medical School, Department of Obstetrics and Gynaecology, Hannover (Germany); Vaske, Bernhard [Hannover Medical School, Institute of Medical Biometry and Informatics, Hannover (Germany); Bremer, Michael; Henkenberens, Christoph [Hannover Medical School, Department of Radiation Oncology and Special Oncology, Hannover (Germany)

    2016-01-15

    The purpose of this work was to identify parameters influencing the risk of late radiation side effects, fair or poor cosmetic outcomes (COs) and pain in breast cancer patients after breast-conserving therapy (BCT) and three-dimensional conformal radiotherapy (3D-CRT). Between 2006 and 2013, 159 patients were treated at the Hannover Medical School. Physician-rated toxicity according to the LENT-SOMA criteria, CO and pain were assessed by multivariate analysis. LENT-SOMA grade 1-4 toxicity was observed as follows: fibrosis 10.7 %, telangiectasia 1.2 %, arm oedema 8.8 % and breast oedema 5.0 %. In addition, 15.1 % of patients reported moderate or severe breast pain, and 21.4 % complained about moderate or severe pain in the arm or shoulder. In multivariate analysis, axillary clearing (AC) was significantly associated with lymphoedema of the arm [odds ratio (OR) 4.37, p = 0.011, 95 % confidence interval (CI) 1.4-13.58]. Breast oedema was also highly associated with AC (OR 10.59, p = 0.004, 95 % CI 2.1-53.36), a ptosis grade 2/3 or pseudoptosis and a bra size ≥ cup C (OR 5.34, p = 0.029, 95 % CI 1.2-24.12). A ptosis grade 2/3 or pseudoptosis and a bra size ≥ cup C were the parameters significantly associated with an unfavourable CO (OR 3.19, p = 0.019, 95 % CI 1.2-8.4). Concerning chronic breast pain, we found a trend related to the prescribed radiation dose including boost (OR 1.077, p = 0.060, 95 % CI 0.997-1.164). Chronic shoulder or arm pain was statistically significantly associated with lymphoedema of the arm (OR 3.9, p = 0.027, 95 % CI 1.17-13.5). Chronic arm and breast oedema were significantly influenced by the extent of surgery (AC). Ptotic and large breasts were significantly associated with unfavourable COs and chronic breast oedema. Late toxicities exclusive breast pain were not associated with radiotherapy parameters. (orig.) [German] Ziel dieser Arbeit war es, Parameter zu identifizieren, die Spaetschaeden nach Radiotherapie, ein unguenstiges

  1. Three-dimensional computed tomographic angiography to predict weight and volume of deep inferior epigastric artery perforator flap for breast reconstruction.

    Science.gov (United States)

    Rosson, Gedge D; Shridharani, Sachin M; Magarakis, Michael; Manahan, Michele A; Stapleton, Sahael M; Gilson, Marta M; Flores, Jaime I; Basdag, Basak; Fishman, Elliot K

    2011-10-01

    Three-dimensional computed tomographic angiography (3D CTA) can be used preoperatively to evaluate the course and caliber of perforating blood vessels for abdominal free-flap breast reconstruction. For postmastectomy breast reconstruction, many women inquire whether the abdominal tissue volume will match that of the breast to be removed. Therefore, our goal was to estimate preoperative volume and weight of the proposed flap and compare them with the actual volume and weight to determine if diagnostic imaging can accurately identify the amount of tissue that could potentially to be harvested. Preoperative 3D CTA was performed in 15 patients, who underwent breast reconstruction using the deep inferior epigastric artery perforator flap. Before each angiogram, stereotactic fiducials were placed on the planned flap outline. The radiologist reviewed each preoperative angiogram to estimate the volume, and thus, weight of the flap. These estimated weights were compared with the actual intraoperative weights. The average estimated weight was 99.7% of the actual weight. The interquartile range (25th to 75th percentile), which represents the "middle half" of the patients, was 91-109%, indicating that half of the patients had an estimated weight within 9% of the actual weight; however, there was a large range (70-133%). 3D CTA with stereotactic fiducials allows surgeons to adequately estimate abdominal flap volume before surgery, potentially giving guidance in the amount of tissue that can be harvested from a patient's lower abdomen. Copyright © 2011 Wiley-Liss, Inc.

  2. Bioprinting-Based High-Throughput Fabrication of Three-Dimensional MCF-7 Human Breast Cancer Cellular Spheroids

    Directory of Open Access Journals (Sweden)

    Kai Ling

    2015-06-01

    Full Text Available Cellular spheroids serving as three-dimensional (3D in vitro tissue models have attracted increasing interest for pathological study and drug-screening applications. Various methods, including microwells in particular, have been developed for engineering cellular spheroids. However, these methods usually suffer from either destructive molding operations or cell loss and non-uniform cell distribution among the wells due to two-step molding and cell seeding. We have developed a facile method that utilizes cell-embedded hydrogel arrays as templates for concave well fabrication and in situ MCF-7 cellular spheroid formation on a chip. A custom-built bioprinting system was applied for the fabrication of sacrificial gelatin arrays and sequentially concave wells in a high-throughput, flexible, and controlled manner. The ability to achieve in situ cell seeding for cellular spheroid construction was demonstrated with the advantage of uniform cell seeding and the potential for programmed fabrication of tissue models on chips. The developed method holds great potential for applications in tissue engineering, regenerative medicine, and drug screening.

  3. Three-dimensional isotropic T2-weighted cervical MRI at 3 T: Comparison with two-dimensional T2-weighted sequences

    International Nuclear Information System (INIS)

    Kwon, J.W.; Yoon, Y.C.; Choi, S.-H.

    2012-01-01

    Aim: To compare three-dimensional (3D) isotropic T2-weighted magnetic resonance imaging (MRI) sequences and reformation with two-dimensional (2D) T2-weighted sequences regarding image quality of the cervical spine at 3 T. Materials and methods: A phantom study was performed using a water-filled cylinder. The signal-to-noise and image homogeneity were evaluated. Fourteen (n = 14) volunteers were examined at 3 T using 3D isotropic T2-weighted sagittal and conventional 2D T2-weighted sagittal, axial, and oblique sagittal MRI. Multiplanar reformation (MPR) of the 3D T2-weighted sagittal dataset was performed simultaneously with image evaluation. In addition to artefact assessment, the visibility of anatomical structures in the 3D and 2D sequences was qualitatively assessed by two radiologists independently. Cohen’s kappa and Wilcoxon signed rank test were used for the statistical analysis. Result: The 3D isotropic T2-weighted sequence resulted in the highest signal-to-noise ratio (SNR) and lowest non-uniformity (NU) among the sequences in the phantom study. Quantitative evaluation revealed lower NU values of the cerebrospinal fluid (CSF) and muscles in 2D T2-weighted sagittal sequences compared to the 3D volume isotropic turbo spin-echo acquisition (VISTA) sequence. The other NU values revealed no statistically significant difference between the 2D turbo spin-echo (TSE) and 3D VISTA sequences (0.059 < p < 0.959). 3D VISTA images showed significantly fewer CSF flow artefacts (p < 0.001) and better delineated intradural nerve rootlets (p = 0.001) and neural foramina (p = 0.016) compared to 2D sequences. Conclusion: A 3D T2 weighted sequence is superior to conventional 2D sequences for the delineation of intradural nerve rootlets and neural foramina and is less affected by CSF flow artefacts.

  4. Three dimensional strained semiconductors

    Science.gov (United States)

    Voss, Lars; Conway, Adam; Nikolic, Rebecca J.; Leao, Cedric Rocha; Shao, Qinghui

    2016-11-08

    In one embodiment, an apparatus includes a three dimensional structure comprising a semiconductor material, and at least one thin film in contact with at least one exterior surface of the three dimensional structure for inducing a strain in the structure, the thin film being characterized as providing at least one of: an induced strain of at least 0.05%, and an induced strain in at least 5% of a volume of the three dimensional structure. In another embodiment, a method includes forming a three dimensional structure comprising a semiconductor material, and depositing at least one thin film on at least one surface of the three dimensional structure for inducing a strain in the structure, the thin film being characterized as providing at least one of: an induced strain of at least 0.05%, and an induced strain in at least 5% of a volume of the structure.

  5. Background parenchymal enhancement in preoperative breast MRI.

    Science.gov (United States)

    Kohara, Satoko; Ishigaki, Satoko; Satake, Hiroko; Kawamura, Akiko; Kawai, Hisashi; Kikumori, Toyone; Naganawa, Shinji

    2015-08-01

    We aimed to assess the influence of background parenchymal enhancement (BPE) on surgical planning performed using preoperative MRI for breast cancer evaluation. Between January 2009 and December 2010, 91 newly diagnosed breast cancer patients (mean age, 55.5 years; range, 30-88 years) who underwent preoperative bilateral breast MRI followed by planned breast conservation therapy were retrospectively enrolled. MRI was performed to assess the tumor extent in addition to mammography and breast ultrasonography. BPE in the contralateral normal breast MRI at the early dynamic phase was visually classified as follows: minimal (n=49), mild (n=27), moderate (n=7), and marked (n=8). The correlations between the BPE grade and age, menopausal status, index tumor size, changes in surgical management based on MRI results, positive predictive value (PPV) of MRI, and surgical margins were assessed. Patients in the strong BPE groups were significantly younger (p=0.002) and generally premenopausal (p<0.001). Surgical treatment was not changed in 67 cases (73.6%), while extended excision and mastectomy were performed in 12 cases (13.2%), each based on additional lesions on MRI. Six of 79 (7.6%) patients who underwent breast conservation therapy had tumor-positive resection margins. In cases where surgical management was changed, the PPV for MRI-detected foci was high in the minimal (91.7%) and mild groups (66.7%), and 0% in the moderate and marked groups (p=0.002). Strong BPE causes false-positive MRI findings and may lead to overly extensive surgery, whereas MRI may be beneficial in select patients with weak BPE.

  6. Data of a fluorescent imaging-based analysis of anti-cancer drug effects on three-dimensional cultures of breast cancer cells

    Directory of Open Access Journals (Sweden)

    Junji Itou

    2015-12-01

    Full Text Available Three-dimensional (3D cell culture is a powerful tool to study cell growth under 3D condition. To perform a simple test for anti-cancer drugs in 3D culture, visualization of non-proliferated cells is required. We propose a fluorescent imaging-based assay to analyze cancer cell proliferation in 3D culture. We used a pulse-labeling technique with a photoconvertible fluorescent protein Kaede to identify non-proliferated cells. This assay allows us to observe change in cell proliferation in 3D culture by simple imaging. Using this assay, we obtained the data of the effects of anti-cancer drugs, 5-fluorouracil and PD0332991 in a breast cancer cell line, MCF-7.

  7. Three-dimensional shear wave elastography for differentiation of breast lesions: An initial study with quantitative analysis using three orthogonal planes.

    Science.gov (United States)

    Wang, Qiao

    2018-05-25

    To prospectively evaluate the diagnostic performance of three-dimensional (3D) shear wave elastography (SWE) for breast lesions with quantitative stiffness information from transverse, sagittal and coronal planes. Conventional ultrasound (US), two-dimensional (2D)-SWE and 3D-SWE were performed for 122 consecutive patients with 122 breast lesions before biopsy or surgical excision. Maximum elasticity values of Young's modulus (Emax) were recorded on 2D-SWE and three planes of 3D-SWE. Area under the receiver operating characteristic curve (AUC), sensitivity and specificity of US, 2D-SWE and 3D-SWE were evaluated. Two combined sets (i.e., BI-RADS and 2D-SWE; BI-RADS and 3D-SWE) were compared in AUC. Observer consistency was also evaluated. On 3D-SWE, the AUC and sensitivity of sagittal plane were significantly higher than those of transverse and coronal planes (both P 0.05). However, the combined set of BI-RADS and sagittal plane of 3D-SWE had significantly higher sensitivity than the combined set of BI-RADS and 2D-SWE. The sagittal plane shows the best diagnostic performance among 3D-SWE. The combination of BI-RADS and 3D-SWE is a useful tool for predicting breast malignant lesions in comparison with BI-RADS alone.

  8. Differentiation of benign from malignant solid breast masses: comparison of two-dimensional and three-dimensional shear-wave elastography.

    Science.gov (United States)

    Lee, Su Hyun; Chang, Jung Min; Kim, Won Hwa; Bae, Min Sun; Cho, Nariya; Yi, Ann; Koo, Hye Ryoung; Kim, Seung Ja; Kim, Jin You; Moon, Woo Kyung

    2013-04-01

    To prospectively compare the diagnostic performances of two-dimensional (2D) and three-dimensional (3D) shear-wave elastography (SWE) for differentiating benign from malignant breast masses. B-mode ultrasound and SWE were performed for 134 consecutive women with 144 breast masses before biopsy. Quantitative elasticity values (maximum and mean elasticity in the stiffest portion of mass, Emax and Emean; lesion-to-fat elasticity ratio, Erat) were measured with both 2D and 3D SWE. The area under the receiver operating characteristic curve (AUC), sensitivity and specificity of B-mode, 2D, 3D SWE and combined data of B-mode and SWE were compared. Sixty-seven of the 144 breast masses (47 %) were malignant. Overall, higher elasticity values of 3D SWE than 2D SWE were noted for both benign and malignant masses. The AUC for 2D and 3D SWE were not significantly different: Emean, 0.938 vs 0.928; Emax, 0.939 vs 0.930; Erat, 0.907 vs 0.871. Either 2D or 3D SWE significantly improved the specificity of B-mode ultrasound from 29.9 % (23 of 77) up to 71.4 % (55 of 77) and 63.6 % (49 of 77) without a significant change in sensitivity. Two-dimensional and 3D SWE performed equally in distinguishing benign from malignant masses and both techniques improved the specificity of B-mode ultrasound.

  9. Pulmonary function following adjuvant chemotherapy and radiotherapy for breast cancer and the issue of three-dimensional treatment planning

    International Nuclear Information System (INIS)

    Lind, P.A.R.M.; Glas, U.; Fornander, T.; Rosfors, S.; Bevegard, S.; Wennberg, B.

    1998-01-01

    Background and purpose: The frequency and grade of pulmonary complications following adjuvant radiotherapy for breast cancer are still debated. This study focuses on loss of pulmonary function. Materials and methods: We have measured the reduction of pulmonary function 5 months following radiotherapy in 144 node-positive stage II breast cancer patients by using pulmonary function tests. Results: No deterioration of pulmonary function was detected among the patients who were treated with local radiotherapy. On the contrary, there was a mean increase in diffusion capacity by 7% (P=0.004) following radiotherapy, which most likely was explained by the adjuvant chemotherapy administered prior to the baseline pulmonary function tests. Patients undergoing loco-regional radiotherapy showed a mean reduction in diffusion capacity by 5% (P<0.001) and in vital capacity by 3% (P=0.001). The subset of patients (9%) who were diagnosed with severe pulmonary complications needing cortisone treatment had significantly larger mean paired differences in vital capacity (-0.446 L, -15% (equivalent to 15 years of normal ageing or the loss of 3/4 of a lung lobe)) compared to the patients who were asymptomatic (-0.084 L) (P<0.05). When the effects of potential confounding factors and different radiotherapy techniques were tested on the reduction of pulmonary function by stepwise multiple regression analysis, a significant correlation was found only to loco-regional radiotherapy including the lower internal mammary lymph nodes. Conclusions: We conclude that a clinically important reduction of pulmonary function is seen in the subset of patients who are diagnosed with severe pulmonary complication following loco-regional radiotherapy for breast cancer. The results of this study warrant further studies based on individual lung dose volume histograms. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  10. Breast Cancer Cells in Three-dimensional Culture Display an Enhanced Radioresponse after Coordinate Targeting of Integrin ?5?1 and Fibronectin

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Jin-Min; Onodera, Yasuhito; Bissell, Mina J; Park, Catherine C

    2010-04-07

    Tactics to selectively enhance cancer radioresponse are of great interest. Cancer cells actively elaborate and remodel their extracellular matrix (ECM) to aid in survival and progression. Previous work has shown that {beta}1-integrin inhibitory antibodies can enhance the growth-inhibitory and apoptotic responses of human breast cancer cell lines to ionizing radiation, either when cells are cultured in three-dimensional laminin-rich ECM (3D lrECM) or grown as xenografts in mice. Here, we show that a specific {alpha} heterodimer of {beta}1-integrin preferentially mediates a prosurvival signal in human breast cancer cells that can be specifically targeted for therapy. 3D lrECM culture conditions were used to compare {alpha}-integrin heterodimer expression in malignant and nonmalignant cell lines. Under these conditions, we found that expression of {alpha}5{beta}1-integrin was upregulated in malignant cells compared with nonmalignant breast cells. Similarly, we found that normal and oncofetal splice variants of fibronectin, the primary ECM ligand of {alpha}5{beta}1-integrin, were also strikingly upregulated in malignant cell lines compared with nonmalignant acini. Cell treatment with a peptide that disrupts the interactions of {alpha}5{beta}1-integrin with fibronectin promoted apoptosis in malignant cells and further heightened the apoptotic effects of radiation. In support of these results, an analysis of gene expression array data from breast cancer patients revealed an association of high levels of {alpha}5-integrin expression with decreased survival. Our findings offer preclinical validation of fibronectin and {alpha}5{beta}1-integrin as targets for breast cancer therapy.

  11. Novel techniques for 7 tesla breast MRI

    NARCIS (Netherlands)

    van der Velden, T.A.

    2017-01-01

    This thesis introduced several new techniques to the field of 7 tesla breast MRI, enabling high field multi-parametric MR imaging and, potentially, patient specific treatment planning. Chapter 2 described the development of a RF coil setup for bilateral breast MR imaging and 31P spectroscopy. This

  12. In vivo hemodynamic analysis of intracranial aneurysms obtained by magnetic resonance fluid dynamics (MRFD) based on time-resolved three-dimensional phase-contrast MRI

    International Nuclear Information System (INIS)

    Isoda, Haruo; Takeda, Hiroyasu; Yamashita, Shuhei; Takehara, Yasuo; Sakahara, Harumi; Ohkura, Yasuhide; Kosugi, Takashi; Hirano, Masaya; Hiramatsu, Hisaya; Namba, Hiroki; Alley, Marcus T.; Bammer, Roland; Pelc, Norbert J.

    2010-01-01

    Hemodynamics is thought to play a very important role in the initiation, growth, and rupture of intracranial aneurysms. The purpose of our study was to perform in vivo hemodynamic analysis of unruptured intracranial aneurysms of magnetic resonance fluid dynamics using time-resolved three-dimensional phase-contrast MRI (4D-Flow) at 1.5 T and to analyze relationships between hemodynamics and wall shear stress (WSS) and oscillatory shear index (OSI). This study included nine subjects with 14 unruptured aneurysms. 4D-Flow was performed by a 1.5-T magnetic resonance scanner with a head coil. We calculated in vivo streamlines, WSS, and OSI of intracranial aneurysms based on 4D-Flow with our software. We evaluated the number of spiral flows in the aneurysms and compared the differences in WSS or OSI between the vessel and aneurysm and between whole aneurysm and the apex of the spiral flow. 3D streamlines, WSS, and OSI distribution maps in arbitrary direction during the cardiac phase were obtained for all intracranial aneurysms. Twelve aneurysms had one spiral flow each, and two aneurysms had two spiral flows each. The WSS was lower and the OSI was higher in the aneurysm compared to the vessel. The apex of the spiral flow had a lower WSS and higher OSI relative to the whole aneurysm. Each intracranial aneurysm in this study had at least one spiral flow. The WSS was lower and OSI was higher at the apex of the spiral flow than the whole aneurysmal wall. (orig.)

  13. In vivo hemodynamic analysis of intracranial aneurysms obtained by magnetic resonance fluid dynamics (MRFD) based on time-resolved three-dimensional phase-contrast MRI.

    Science.gov (United States)

    Isoda, Haruo; Ohkura, Yasuhide; Kosugi, Takashi; Hirano, Masaya; Takeda, Hiroyasu; Hiramatsu, Hisaya; Yamashita, Shuhei; Takehara, Yasuo; Alley, Marcus T; Bammer, Roland; Pelc, Norbert J; Namba, Hiroki; Sakahara, Harumi

    2010-10-01

    Hemodynamics is thought to play a very important role in the initiation, growth, and rupture of intracranial aneurysms. The purpose of our study was to perform in vivo hemodynamic analysis of unruptured intracranial aneurysms of magnetic resonance fluid dynamics using time-resolved three-dimensional phase-contrast MRI (4D-Flow) at 1.5 T and to analyze relationships between hemodynamics and wall shear stress (WSS) and oscillatory shear index (OSI). This study included nine subjects with 14 unruptured aneurysms. 4D-Flow was performed by a 1.5-T magnetic resonance scanner with a head coil. We calculated in vivo streamlines, WSS, and OSI of intracranial aneurysms based on 4D-Flow with our software. We evaluated the number of spiral flows in the aneurysms and compared the differences in WSS or OSI between the vessel and aneurysm and between whole aneurysm and the apex of the spiral flow. 3D streamlines, WSS, and OSI distribution maps in arbitrary direction during the cardiac phase were obtained for all intracranial aneurysms. Twelve aneurysms had one spiral flow each, and two aneurysms had two spiral flows each. The WSS was lower and the OSI was higher in the aneurysm compared to the vessel. The apex of the spiral flow had a lower WSS and higher OSI relative to the whole aneurysm. Each intracranial aneurysm in this study had at least one spiral flow. The WSS was lower and OSI was higher at the apex of the spiral flow than the whole aneurysmal wall.

  14. A Dosimetric Comparison of Accelerated Partial Breast Irradiation Techniques: Multicatheter Interstitial Brachytherapy, Three-Dimensional Conformal Radiotherapy, and Supine Versus Prone Helical Tomotherapy

    International Nuclear Information System (INIS)

    Patel, Rakesh R.; Becker, Stewart J.; Das, Rupak K.; Mackie, Thomas R.

    2007-01-01

    Purpose: To compare dosimetrically four different techniques of accelerated partial breast irradiation (APBI) in the same patient. Methods and Materials: Thirteen post-lumpectomy interstitial brachytherapy (IB) patients underwent imaging with preimplant computed tomography (CT) in the prone and supine position. These CT scans were then used to generate three-dimensional conformal radiotherapy (3D-CRT) and prone and supine helical tomotherapy (PT and ST, respectively) APBI plans and compared with the treated IB plans. Dose-volume histogram analysis and the mean dose (NTD mean ) values were compared. Results: Planning target volume coverage was excellent for all methods. Statistical significance was considered to be a p value mean dose of 1.3 Gy 3 and 1.2 Gy 3 , respectively. Both of these methods were statistically significantly lower than the supine external beam techniques. Overall, all four methods yielded similar low doses to the heart. Conclusions: The use of IB and PT resulted in greater normal tissue sparing (especially ipsilateral breast and lung) than the use of supine external beam techniques of 3D-CRT or ST. However, the choice of APBI technique must be tailored to the patient's anatomy, lumpectomy cavity location, and overall treatment goals

  15. Customized Computed Tomography-Based Boost Volumes in Breast-Conserving Therapy: Use of Three-Dimensional Histologic Information for Clinical Target Volume Margins

    International Nuclear Information System (INIS)

    Hanbeukers, Bianca; Borger, Jacques; Ende, Piet van den; Ent, Fred van der; Houben, Ruud; Jager, Jos; Keymeulen, Kristien; Murrer, Lars; Sastrowijoto, Suprapto; Vijver, Koen van de; Boersma, Liesbeth

    2009-01-01

    Purpose: To determine the difference in size between computed tomography (CT)-based irradiated boost volumes and simulator-based irradiated volumes in patients treated with breast-conserving therapy and to analyze whether the use of anisotropic three-dimensional clinical target volume (CTV) margins using the histologically determined free resection margins allows for a significant reduction of the CT-based boost volumes. Patients and Methods: The CT data from 49 patients were used to delineate a planning target volume (PTV) with isotropic CTV margins and to delineate a PTV sim that mimicked the PTV as delineated in the era of conventional simulation. For 17 patients, a PTV with anisotropic CTV margins was defined by applying customized three-dimensional CTV margins, according to the free excision margins in six directions. Boost treatment plans consisted of conformal portals for the CT-based PTVs and rectangular fields for the PTV sim . Results: The irradiated volume (volume receiving ≥95% of the prescribed dose [V 95 ]) for the PTV with isotropic CTV margins was 1.6 times greater than that for the PTV sim : 228 cm 3 vs. 147 cm 3 (p 95 was similar to the V 95 for the PTV sim (190 cm 3 vs. 162 cm 3 ; p = NS). The main determinant for the irradiated volume was the size of the excision cavity (p < .001), which was mainly related to the interval between surgery and the planning CT scan (p = .029). Conclusion: CT-based PTVs with isotropic margins for the CTV yield much greater irradiated volumes than fluoroscopically based PTVs. Applying individualized anisotropic CTV margins allowed for a significant reduction of the irradiated boost volume.

  16. Prone Whole-Breast Irradiation Using Three-Dimensional Conformal Radiotherapy in Women Undergoing Breast Conservation for Early Disease Yields High Rates of Excellent to Good Cosmetic Outcomes in Patients With Large and/or Pendulous Breasts

    Energy Technology Data Exchange (ETDEWEB)

    Bergom, Carmen; Kelly, Tracy; Morrow, Natalya; Wilson, J. Frank [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI (United States); Walker, Alonzo [Department of Surgery, Medical College of Wisconsin, Milwaukee, WI (United States); Xiang Qun; Ahn, Kwang Woo [Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI (United States); White, Julia, E-mail: jwhite@mcw.edu [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI (United States)

    2012-07-01

    Purpose: To report our institution's experience using prone positioning for three-dimensional conformal radiotherapy (3D-CRT) to deliver post-lumpectomy whole breast irradiation (WBI) in a cohort of women with large and/or pendulous breasts, to determine the rate of acute and late toxicities and, more specifically, cosmetic outcomes. We hypothesized that using 3D-CRT for WBI in the prone position would reduce or eliminate patient and breast size as negative prognostic indicators for toxicities associated with WBI. Methods and Materials: From 1998 to 2006, 110 cases were treated with prone WBI using 3D-CRT. The lumpectomy, breast target volumes, heart, and lung were contoured on all computed tomography scans. A dose of 45-50 Gy was prescribed to the breast volume using standard fractionation schemes. The planning goals were {>=}95% of prescription to 95% of the breast volume, and 100% of boost dose to 95% of lumpectomy planning target volume. Toxicities and cosmesis were prospectively scored using the Common Terminology Criteria for Adverse Effects Version 3.0 and the Harvard Scale. The median follow-up was 40 months. Results: The median body mass index (BMI) was 33.6 kg/m{sup 2}, and median breast volume was 1396 cm{sup 3}. The worst toxicity encountered during radiation was Grade 3 dermatitis in 5% of our patient population. Moist desquamation occurred in 16% of patients, with only 2% of patients with moist desquamation outside the inframammary/axillary folds. Eleven percent of patients had Grade {>=}2 late toxicities, including Grade 3 induration/fibrosis in 2%. Excellent to good cosmesis was achieved in 89%. Higher BMI was associated with moist desquamation and breast pain, but BMI and breast volume did not impact fibrosis or excellent to good cosmesis. Conclusion: In patients with higher BMI and/or large-pendulous breasts, delivering prone WBI using 3D-CRT results in favorable toxicity profiles and high excellent to good cosmesis rates. Higher BMI was

  17. Three dimensional canonical transformations

    International Nuclear Information System (INIS)

    Tegmen, A.

    2010-01-01

    A generic construction of canonical transformations is given in three-dimensional phase spaces on which Nambu bracket is imposed. First, the canonical transformations are defined as based on cannonade transformations. Second, it is shown that determination of the generating functions and the transformation itself for given generating function is possible by solving correspondent Pfaffian differential equations. Generating functions of type are introduced and all of them are listed. Infinitesimal canonical transformations are also discussed as the complementary subject. Finally, it is shown that decomposition of canonical transformations is also possible in three-dimensional phase spaces as in the usual two-dimensional ones.

  18. Three-dimensional neuroimaging

    International Nuclear Information System (INIS)

    Toga, A.W.

    1990-01-01

    This book reports on new neuroimaging technologies that are revolutionizing the study of the brain be enabling investigators to visualize its structure and entire pattern of functional activity in three dimensions. The book provides a theoretical and practical explanation of the new science of creating three-dimensional computer images of the brain. The coverage includes a review of the technology and methodology of neuroimaging, the instrumentation and procedures, issues of quantification, analytic protocols, and descriptions of neuroimaging systems. Examples are given to illustrate the use of three-dimensional enuroimaging to quantitate spatial measurements, perform analysis of autoradiographic and histological studies, and study the relationship between brain structure and function

  19. Breast MRI of ductal carcinoma in situ. Is there MRI role?

    International Nuclear Information System (INIS)

    Francescutti, G.E.; Londero, V.; Berra, I.; Del Frate, C.; Zuiani, C.; Bazzocchi, M.

    2002-01-01

    Background. The purpose of this study is to report our personal experience of 22 cases of ductal carcinoma in situ (DCIS) studied with magnetic resonance imaging (MRI). Patients and methods. From September 1995 to December 2001, 22 women diagnosed with DCIS lesions underwent contrast enhanced MRI within 7 days after mammographic examination. Dynamic MRI was performed with a 1 T system, using a three dimensional fast low angle shot (FLASH) pulse sequence before and after contrast media administration. We evaluated the morphologic features of the enhancement, the enhancement rate and the signal time intensity curve. Pathology was obtained in all cases. Results. The results of histopatological examination included: 15 DCIS and 7 DCIS with associated microinvasive component or microfoci of invasive ductal carcinoma (IDC). On MRI, 21 of 22 (95%) DCIS lesions showed contrast enhancement. Fourteen out of 15 pure DCIS lesions demonstrated respectively a low (3), undeterminate (5), and strong (6) enhancement. Morphologically, the enhancing lesion was focal in 7, segmental in 4, and with linear branching in 3 cases. Wash out was found in 4 cases, plateau curve in 8 and Type I curve in 2 cases. Multifocality was present in 5 cases. All DCIS with associated microinvasion demonstrated contrast enhancement: 1/7 cases showed a low enhancement, 2/7 showed an indeterminate enhancement and 4/7 showed a strong enhancement. Morphologically, the enhancing lesion was focal in 3/9, segmental in 5 and with linear branching in 1 case. The wash out was demonstrated in 3/7 cases, plateau curve in 3 and Type 1 curve in 1 case. Multifocality was present in 3 cases. Conclusions. In conclusion, the sensitivity of MRI for DCIS detection is lower than that achieved for invasive breast cancer; however, contrast-enhanced MRI can depict foci of DCIS that are mammographically occult. The MRI technique is of complementary value for a better description of tumor size and detection of additional

  20. Three-dimensional volumetric MRI with isotropic resolution: improved speed of acquisition, spatial resolution and assessment of lesion conspicuity in patients with recurrent soft tissue sarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Ahlawat, Shivani [The Johns Hopkins Medical Institutions, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Morris, Carol [The Johns Hopkins Medical Institutions, Department of Orthopedic Surgery, Baltimore, MD (United States); The Johns Hopkins Medical Institutions, Department of Oncology, Baltimore, MD (United States); Fayad, Laura M. [The Johns Hopkins Medical Institutions, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); The Johns Hopkins Medical Institutions, Department of Orthopedic Surgery, Baltimore, MD (United States); The Johns Hopkins Medical Institutions, Department of Oncology, Baltimore, MD (United States)

    2016-05-15

    To assess the acquisition speed, lesion conspicuity, and inter-observer agreement associated with volumetric T{sub 1}-weighted MR sequences with isotropic resolution for detecting recurrent soft-tissue sarcoma (STS). Fifteen subjects with histologically proven recurrent STS underwent MRI, including axial and coronal T{sub 1}-weighted spin echo (T{sub 1}-WSE) (5-mm slice thickness) and coronal 3D volumetric T{sub 1}-weighted (fat-suppressed, volume-interpolated, breath-hold examination; repetition time/echo time, 3.7/1.4 ms; flip angle, 9.5 ; 1-mm slice thickness) sequences before and after intravenous contrast administration. Subtraction imaging and multiplanar reformations (MPRs) were performed. Acquisition times for T{sub 1}-WSE in two planes and 3D sequences were reported. Two radiologists reviewed images for quality (>50 % artifacts, 25-50 % artifacts, <25 % artifacts, and no substantial artifacts), lesion conspicuity, contrast-to-noise ratio (CNR{sub muscle}), recurrence size, and recurrence-to-joint distance. Descriptive and intraclass correlation (ICC) statistics are given. Mean acquisition times were significantly less for 3D imaging compared with 2-plane T{sub 1}-WSE (183.6 vs 342.6 s; P = 0.012). Image quality was rated as having no substantial artifacts in 13/15 and <25 % artifacts in 2/15. Lesion conspicuity was significantly improved for subtracted versus unsubtracted images (CNR{sub muscle}, 100 ± 138 vs 181 ± 199; P = 0.05). Mean recurrent lesion size was 2.5 cm (range, 0.7-5.7 cm), and measurements on 3D sequences offered excellent interobserver agreement (ICC, 0.98 for lesion size and 0.96 for recurrence-to-joint distance with MPR views). Three-dimensional volumetric sequences offer faster acquisition times, higher spatial resolution, and MPR capability compared with 2D T{sub 1}-WSE for postcontrast imaging. Subtraction imaging provides higher lesion conspicuity for detecting recurrent STS in skeletal muscle, with excellent interobserver

  1. Incidental irradiation of internal mammary lymph nodes in breast cancer: conventional two-dimensional radiotherapy versus conformal three-dimensional radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Leite, Elton Trigo Teixeira; Ugino, Rafael Tsuneki; Lopes, Mauricio Russo; Pelosi, Edilson Lopes; Silva, Joao Luis Fernandes da, E-mail: eltontt@gmail.com [Hospital Sirio-Libanes, Sao paulo, SP (Brazil). Departamento de Radiologia e Oncologia; Santana, Marco Antonio; Ferreira, Denis Vasconcelos; Carvalho, Heloisa de Andrade [Universidade de Sao Paulo (FM/USP), Sao Paulo, SP (Brazil). Faculdade de Medicina. Departamento de Radiologia e Oncologia

    2016-05-15

    Objective: to evaluate incidental irradiation of the internal mammary lymph nodes (IMLNs) through opposed tangential fields with conventional two-dimensional (2D) or three-dimensional (3D) radiotherapy techniques and to compare the results between the two techniques. Materials and Methods: This was a retrospective study of 80 breast cancer patients in whom radiotherapy of the IMLNs was not indicated: 40 underwent 2D radiotherapy with computed tomography for dosimetric control, and 40 underwent 3D radiotherapy. The total prescribed dose was 50.0 Gy or 50.4 Gy (2.0 or 1.8 Gy/day, respectively). We reviewed all plans and defined the IMLNs following the Radiation Therapy Oncology Group recommendations. For the IMLNs, we analyzed the proportion of the volume that received 45 Gy, the proportion of the volume that received 25 Gy, the dose to 95% of the volume, the dose to 50% of the volume, the mean dose, the minimum dose (Dmin), and the maximum dose (Dmax). Results: Left-sided treatments predominated in the 3D cohort. There were no differences between the 2D and 3D cohorts regarding tumor stage, type of surgery (mastectomy, breast-conserving surgery, or mastectomy with immediate reconstruction), or mean delineated IMLN volume (6.8 vs. 5.9 mL; p = 0.411). Except for the Dmin, all dosimetric parameters presented higher mean values in the 3D cohort (p < 0.05). The median Dmax in the 3D cohort was 50.34 Gy. However, the mean dose to the IMLNs was 7.93 Gy in the 2D cohort, compared with 20.64 Gy in the 3D cohort. Conclusion: Neither technique delivered enough doses to the IMLNs to achieve subclinical disease control. However, all of the dosimetric parameters were significantly higher for the 3D technique. (author)

  2. Computerized Interpretation of Dynamic Breast MRI

    Science.gov (United States)

    2005-05-01

    The interpretation criteria in the current literature fall Breast MRI has emerged as a promising modality for the into two major categories: 5’ 14...is that theraphy , current interpretation schemes might not be sufficiently ro- Despite its well-recognized advantages, applications of bust. MRI in...postcontrast series For the manual delineation, a radiologist (U.B.), blinded were then taken with a time interval of 60 s. Each series to the histological

  3. CD44+/CD24- breast cancer cells exhibit phenotypic reversion in three-dimensional self-assembling peptide RADA16 nanofiber scaffold

    Directory of Open Access Journals (Sweden)

    Mi K

    2015-04-01

    Full Text Available Kun Mi,1 Zhihua Xing2 1Department of Biochemistry and Molecular Biology, Sichuan Cancer Hospital and Institute, 2Laboratory of Ethnopharmacology, Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu, People’s Republic of China Background: Self-assembling peptide nanofiber scaffolds have been shown to be a ­permissive biological material for tissue repair, cell proliferation, differentiation, etc. Recently, a subpopulation (CD44+/CD24- of breast cancer cells has been reported to have stem/progenitor cell properties. The aim of this study was to investigate whether this subpopulation of cancer cells have different phenotypes in self-assembling COCH3-RADARADARADARADA-CONH2 (RADA16 peptide nanofiber scaffold compared with Matrigel® (BD Biosciences, Two Oak Park, Bedford, MA, USA and collagen I.Methods: CD44 and CD24 expression was determined by flow cytometry. Cell proliferation was measured by 5-bromo-2'-deoxyuridine assay and DNA content measurement. Immunostaining was used to indicate the morphologies of cells in three-dimensional (3D cultures of different scaffolds and the localization of β-catenin in the colonies. Western blot was used to determine the expression of signaling proteins. In vitro migration assay and inoculation into nude mice were used to evaluate invasion and tumorigenesis in vivo.Results: The breast cancer cell line MDA-MB-435S contained a high percentage (>99% of CD44+/CD24- cells, which exhibited phenotypic reversion in 3D RADA16 nanofiber scaffold compared with collagen I and Matrigel. The newly formed reverted acini-like colonies reassembled a basement membrane and reorganized their cytoskeletons. At the same time, cells cultured and embedded in RADA16 peptide scaffold exhibited growth arrest. Also, they exhibited different migration potential, which links their migration ability with their cellular morphology. Consistent with studies in vitro, the in vivo tumor

  4. A statistical, task-based evaluation method for three-dimensional x-ray breast imaging systems using variable-background phantoms

    International Nuclear Information System (INIS)

    Park, Subok; Jennings, Robert; Liu Haimo; Badano, Aldo; Myers, Kyle

    2010-01-01

    Purpose: For the last few years, development and optimization of three-dimensional (3D) x-ray breast imaging systems, such as digital breast tomosynthesis (DBT) and computed tomography, have drawn much attention from the medical imaging community, either academia or industry. However, there is still much room for understanding how to best optimize and evaluate the devices over a large space of many different system parameters and geometries. Current evaluation methods, which work well for 2D systems, do not incorporate the depth information from the 3D imaging systems. Therefore, it is critical to develop a statistically sound evaluation method to investigate the usefulness of inclusion of depth and background-variability information into the assessment and optimization of the 3D systems. Methods: In this paper, we present a mathematical framework for a statistical assessment of planar and 3D x-ray breast imaging systems. Our method is based on statistical decision theory, in particular, making use of the ideal linear observer called the Hotelling observer. We also present a physical phantom that consists of spheres of different sizes and materials for producing an ensemble of randomly varying backgrounds to be imaged for a given patient class. Lastly, we demonstrate our evaluation method in comparing laboratory mammography and three-angle DBT systems for signal detection tasks using the phantom's projection data. We compare the variable phantom case to that of a phantom of the same dimensions filled with water, which we call the uniform phantom, based on the performance of the Hotelling observer as a function of signal size and intensity. Results: Detectability trends calculated using the variable and uniform phantom methods are different from each other for both mammography and DBT systems. Conclusions: Our results indicate that measuring the system's detection performance with consideration of background variability may lead to differences in system performance

  5. Breast MRI: EUSOBI recommendations for women's information

    NARCIS (Netherlands)

    Mann, R.M.; Balleyguier, C.; Baltzer, P.A.; Bick, U.; Colin, C.; Cornford, E.; Evans, A.; Fallenberg, E.; Forrai, G.; Fuchsjager, M.H.; Gilbert, F.J.; Helbich, T.H.; Heywang-Kobrunner, S.H.; Camps-Herrero, J.; Kuhl, C.K.; Martincich, L.; Pediconi, F.; Panizza, P.; Pina, L.J.; Pijnappel, R.M.; Pinker-Domenig, K.; Skaane, P.; Sardanelli, F.; Imaging, w.l.r.b.E.D.-T.E.B.C.C. European Societ

    2015-01-01

    This paper summarizes information about breast MRI to be provided to women and referring physicians. After listing contraindications, procedure details are described, stressing the need for correct scheduling and not moving during the examination. The structured report including BI-RADS(R)

  6. Breast MRI : EUSOBI recommendations for women's information

    NARCIS (Netherlands)

    Mann, Ritse M.; Balleyguier, Corinne; Baltzer, Pascal A.; Bick, Ulrich; Colin, Catherine; Cornford, Eleanor; Evans, Andrew; Fallenberg, Eva; Forrai, Gabor; Fuchsjaeger, Michael H.; Gilbert, Fiona J.; Helbich, Thomas H.; Heywang-Koebrunner, Sylvia H.; Camps-Herrero, Julia; Kuhl, Christiane K.; Martincich, Laura; Pediconi, Federica; Panizza, Pietro; Pina, Luis J.; Pijnappel, Ruud M.; Pinker-Domenig, Katja; Skaane, Per; Sardanelli, Francesco

    2015-01-01

    This paper summarizes information about breast MRI to be provided to women and referring physicians. After listing contraindications, procedure details are described, stressing the need for correct scheduling and not moving during the examination. The structured report including BI-RADSA (R)

  7. Three-dimensional cascaded system analysis of a 50 µm pixel pitch wafer-scale CMOS active pixel sensor x-ray detector for digital breast tomosynthesis.

    Science.gov (United States)

    Zhao, C; Vassiljev, N; Konstantinidis, A C; Speller, R D; Kanicki, J

    2017-03-07

    High-resolution, low-noise x-ray detectors based on the complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology have been developed and proposed for digital breast tomosynthesis (DBT). In this study, we evaluated the three-dimensional (3D) imaging performance of a 50 µm pixel pitch CMOS APS x-ray detector named DynAMITe (Dynamic Range Adjustable for Medical Imaging Technology). The two-dimensional (2D) angle-dependent modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE) were experimentally characterized and modeled using the cascaded system analysis at oblique incident angles up to 30°. The cascaded system model was extended to the 3D spatial frequency space in combination with the filtered back-projection (FBP) reconstruction method to calculate the 3D and in-plane MTF, NNPS and DQE parameters. The results demonstrate that the beam obliquity blurs the 2D MTF and DQE in the high spatial frequency range. However, this effect can be eliminated after FBP image reconstruction. In addition, impacts of the image acquisition geometry and detector parameters were evaluated using the 3D cascaded system analysis for DBT. The result shows that a wider projection angle range (e.g.  ±30°) improves the low spatial frequency (below 5 mm -1 ) performance of the CMOS APS detector. In addition, to maintain a high spatial resolution for DBT, a focal spot size of smaller than 0.3 mm should be used. Theoretical analysis suggests that a pixelated scintillator in combination with the 50 µm pixel pitch CMOS APS detector could further improve the 3D image resolution. Finally, the 3D imaging performance of the CMOS APS and an indirect amorphous silicon (a-Si:H) thin-film transistor (TFT) passive pixel sensor (PPS) detector was simulated and compared.

  8. Three dimensional visualization of medical images

    International Nuclear Information System (INIS)

    Suto, Yasuzo

    1992-01-01

    Three dimensional visualization is a stereoscopic technique that allows the diagnosis and treatment of complicated anatomy site of the bone and organ. In this article, the current status and technical application of three dimensional visualization are introduced with special reference to X-ray CT and MRI. The surface display technique is the most common for three dimensional visualization, consisting of geometric model, voxel element, and stereographic composition techniques. Recent attention has been paid to display method of the content of the subject called as volume rendering, whereby information on the living body is provided accurately. The application of three dimensional visualization is described in terms of diagnostic imaging and surgical simulation. (N.K.)

  9. Three-Dimensional Flows

    CERN Document Server

    Araujo, Vitor; Viana, Marcelo

    2010-01-01

    In this book, the authors present the elements of a general theory for flows on three-dimensional compact boundaryless manifolds, encompassing flows with equilibria accumulated by regular orbits. The book aims to provide a global perspective of this theory and make it easier for the reader to digest the growing literature on this subject. This is not the first book on the subject of dynamical systems, but there are distinct aspects which together make this book unique. Firstly, this book treats mostly continuous time dynamical systems, instead of its discrete counterpart, exhaustively treated

  10. Three dimensional system integration

    CERN Document Server

    Papanikolaou, Antonis; Radojcic, Riko

    2010-01-01

    Three-dimensional (3D) integrated circuit (IC) stacking is the next big step in electronic system integration. It enables packing more functionality, as well as integration of heterogeneous materials, devices, and signals, in the same space (volume). This results in consumer electronics (e.g., mobile, handheld devices) which can run more powerful applications, such as full-length movies and 3D games, with longer battery life. This technology is so promising that it is expected to be a mainstream technology a few years from now, less than 10-15 years from its original conception. To achieve thi

  11. Confidence in Assessment of Lumbar Spondylolysis Using Three-Dimensional Volumetric T2-Weighted MRI Compared With Limited Field of View, Decreased-Dose CT.

    Science.gov (United States)

    Delavan, Joshua Adam; Stence, Nicholas V; Mirsky, David M; Gralla, Jane; Fadell, Michael F

    2016-07-01

    Limited z-axis-coverage computed tomography (CT) to evaluate for pediatric lumbar spondylolysis, altering the technique such that the dose to the patient is comparable or lower than radiographs, is currently used at our institution. The objective of the study was to determine whether volumetric 3-dimensional fast spin echo magnetic resonance imaging (3D MRI) can provide equal or greater diagnostic accuracy compared with limited CT in the diagnosis of pediatric lumbar spondylolysis without ionizing radiation. Volumetric 3D MRI can provide equal or greater diagnostic accuracy compared with low-dose CT for pediatric lumbar spondylolysis without ionizing radiation. Clinical review. Level 2. Three pediatric neuroradiologists evaluated 2-dimensional (2D) MRI, 2D + 3D MRI, and limited CT examinations in 42 pediatric patients who obtained imaging for low back pain and suspected spondylolysis. As there is no gold standard for the diagnosis of spondylolysis besides surgery, interobserver agreement and degree of confidence were compared to determine which modality is preferable. Decreased-dose CT provided a greater level of agreement than 2D MRI and 2D + 3D MRI. The kappa for rater agreement with 2D MRI, 2D + 3D MRI, and CT was 0.19, 0.32, and 1.0, respectively. All raters agreed in 31%, 40%, and 100% of cases with 2D MRI, 2D + 3D MRI, and CT. Lack of confidence was significantly lower with CT (0%) than with 2D MRI (30%) and 2D + 3D MRI (25%). For diagnosing spondylolysis, radiologist agreement and confidence trended toward improvement with the addition of a volumetric 3D MRI sequence to standard 2D MRI sequences compared with 2D MRI alone; however, agreement and confidence remain significantly greater using decreased-dose CT when compared with either MRI acquisition. Decreased-dose CT of the lumbar spine remains the optimal examination to confirm a high suspicion of spondylolysis, with dose essentially equivalent to radiographs. If clinical symptoms are not classic for

  12. Three Dimensional Dirac Semimetals

    Science.gov (United States)

    Zaheer, Saad

    2014-03-01

    Dirac points on the Fermi surface of two dimensional graphene are responsible for its unique electronic behavior. One can ask whether any three dimensional materials support similar pseudorelativistic physics in their bulk electronic spectra. This possibility has been investigated theoretically and is now supported by two successful experimental demonstrations reported during the last year. In this talk, I will summarize the various ways in which Dirac semimetals can be realized in three dimensions with primary focus on a specific theory developed on the basis of representations of crystal spacegroups. A three dimensional Dirac (Weyl) semimetal can appear in the presence (absence) of inversion symmetry by tuning parameters to the phase boundary separating a bulk insulating and a topological insulating phase. More generally, we find that specific rules governing crystal symmetry representations of electrons with spin lead to robust Dirac points at high symmetry points in the Brillouin zone. Combining these rules with microscopic considerations identifies six candidate Dirac semimetals. Another method towards engineering Dirac semimetals involves combining crystal symmetry and band inversion. Several candidate materials have been proposed utilizing this mechanism and one of the candidates has been successfully demonstrated as a Dirac semimetal in two independent experiments. Work carried out in collaboration with: Julia A. Steinberg, Steve M. Young, J.C.Y. Teo, C.L. Kane, E.J. Mele and Andrew M. Rappe.

  13. The potential of multiparametric MRI of the breast

    Science.gov (United States)

    Pinker, Katja; Helbich, Thomas H

    2017-01-01

    MRI is an essential tool in breast imaging, with multiple established indications. Dynamic contrast-enhanced MRI (DCE-MRI) is the backbone of any breast MRI protocol and has an excellent sensitivity and good specificity for breast cancer diagnosis. DCE-MRI provides high-resolution morphological information, as well as some functional information about neoangiogenesis as a tumour-specific feature. To overcome limitations in specificity, several other functional MRI parameters have been investigated and the application of these combined parameters is defined as multiparametric MRI (mpMRI) of the breast. MpMRI of the breast can be performed at different field strengths (1.5–7 T) and includes both established (diffusion-weighted imaging, MR spectroscopic imaging) and novel MRI parameters (sodium imaging, chemical exchange saturation transfer imaging, blood oxygen level-dependent MRI), as well as hybrid imaging with positron emission tomography (PET)/MRI and different radiotracers. Available data suggest that multiparametric imaging using different functional MRI and PET parameters can provide detailed information about the underlying oncogenic processes of cancer development and progression and can provide additional specificity. This article will review the current and emerging functional parameters for mpMRI of the breast for improved diagnostic accuracy in breast cancer. PMID:27805423

  14. Accelerated partial breast irradiation with external beam three-dimensional conformal radiotherapy. Five-year results of a prospective phase II clinical study

    Energy Technology Data Exchange (ETDEWEB)

    Mozsa, Emoeke [National Institute of Oncology, Centre of Radiotherapy, Budapest (Hungary); Landesklinikum Wiener Neustadt, Department of Radiooncology and Radiotherapy, Wiener Neustadt (Austria); Meszaros, Norbert; Major, Tibor; Froehlich, Georgina; Stelczer, Gabor; Fodor, Janos; Polgar, Csaba [National Institute of Oncology, Centre of Radiotherapy, Budapest (Hungary); Sulyok, Zoltan [National Institute of Oncology, Centre of Surgery, Budapest (Hungary)

    2014-05-15

    The aim of this study was to report the 5-year results of accelerated partial breast irradiation (APBI) using external beam three-dimensional conformal radiotherapy (3D-CRT). Between 2006 and 2011, 44 patients with low-risk, stage I-II breast cancer underwent breast-conserving surgery. Postoperative APBI was given by means of 3D-CRT using three to five non-coplanar fields. The total dose of APBI was 36.9 Gy (nine fractions of 4.1 Gy b.i.d.). The mean follow-up time was 58.2 months for surviving patients. Survival results, side effects, and cosmetic results were assessed. One (2.3 %) local recurrence was observed, for a 5-year actuarial rate of 3.7 %. Neither regional nor distant failure was observed. Two patients died of internal disease. The 5-year disease-free, cancer-specific, and overall survival rates were 96.3, 100, and 95.1 %, respectively. Acute side effects included grade 1 (G1) erythema in 75 %, G1 parenchymal induration in 46 %, and G1 pain in 46 % of patients. No G2 or higher acute side effect occurred. Late side effects included G1, G2, and G3 fibrosis in 44, 7, and 2 % of patients, respectively, G1 skin pigmentation in 12 %, and G1 pain in 2 %. Asymptomatic fat necrosis occurred in 14 %. Cosmetic results were rated excellent or good in 86 % of cases by the patients themselves and 84 % by the physicians. The 5-year local tumor control, toxicity profile, and cosmetic results of APBI delivered with external beam 3D-CRT are encouraging and comparable to other APBI series. (orig.) [German] Evaluation der 5-Jahres-Ergebnisse bezueglich Ueberleben, Tumorkontrolle, Nebenwirkungen und Kosmetik nach Teilbrustbestrahlung (APBI) mittels 3-D-konformaler, akzelerierter Radiotherapie (3D-CRT). Zwischen 2006 und 2011 wurden 44 Patienten mit Brustkrebs im Stadium I-II und niedrigem Risikoprofil brusterhaltend operiert. Die adjuvante, 3-D-konformale APBI wurde mittels 3-5 nonkoplanarer Feldern durchgefuehrt. Die Gesamtdosis betrug 36,9 Gy bei 9 -mal 4,1 Gy b.i.d.. Nach

  15. Application of functional MRI in breast diseases

    International Nuclear Information System (INIS)

    Feng Yun; Liu Shiyuan; Wang Chenguang; Tao Xiaofeng; Wang Jinlin; Wang Jian

    2007-01-01

    Objective: To investigate the value of functional MRI in the diagnosis and differential diagnosis of breast diseases. Methods: Sixty-five patients with 68 lesions were enrolled in this study. Conventional T 1 WI and T 2 WI scan, dynamic contrast enhanced MRI, diffusion weighted imaging and 1 H single voxel MR spectroscopy were performed consequently. All lesions were verified by pathology, including 4 cases of breast adenosis, 22 fibroadenomas, 2 chronic inflammations, 3 cysts, 33 infitrating ductal carcinomas, 1 intraductal carcinoma and 3 cystosarcoma phyllodes tumors. Morphological features, maximum enhancement ratio, time-intensity curve, apparent diffusion coefficient and Choline peak were analyzed. Results: The detection rates of T 1 WI and T 2 WI were 14.7% (n=10) and 51.5% (n=35). The sensitivity, specificity, accuracy of dynamic contrast enhanced MRI for the malignant tumor were 94. 6%, 71.4% and 76.5% respectively. Retrospective study showed that diffusion weighted imaging, with the b value from 800 s/mm 2 to 1000 s/mm 2 , could be used to differentiate various types of breast lesions. 1 H signal voxel spectroscopy had a sensitivity of 51.4%, specificity of 82.6%, and accuracy of 67.6% for the malignent. The sensitivity, specificity and accuracy could reach 97.3%, 90.0% and 92.6% respectively by combining conventional scan, dynamic contrast enhanced MRI and MR spectroscopy. Conclusion: Functional MRI, with high sensitivity, specificity and accuracy, can be used widely in the diagnosis of malignant breast lesions. (authors)

  16. Human mammary fibroblasts stimulate invasion of breast cancer cells in a three-dimensional culture and increase stroma development in mouse xenografts

    International Nuclear Information System (INIS)

    Olsen, Charlotta J; Moreira, José; Lukanidin, Eugene M; Ambartsumian, Noona S

    2010-01-01

    Tumour phenotype is regulated in a complex fashion as a result of interactions between malignant cells and the tumour stroma. Fibroblasts are the most abundant and perhaps most active part of the tumour stroma. A better understanding of the changes that occur in fibroblasts in response to the presence of malignant cells may lead to the development of new strategies for cancer treatment. We explored the effects of fibroblasts on the growth and invasion of mammary carcinoma tumour cells in vitro and in vivo. In order to analyse secreted factors that affect invasive abilities of breast cancer cells we co-cultured human mammary fibroblasts (HMF3s) and cancer cells (MCF7S1) in three-dimensional (3D) growth conditions devoid of heterogeneous cell-cell contact. To study the possible influence of fibroblasts on MCF7S1 cancer cell growth in vivo we co-injected HMF3s and MCF7S1 cells in Balb/c nu/nu mice. In 3D co-culture both HMF3s and MCF7S1 cells demonstrated enhanced invasion into a Matrigel matrix. This was correlated with enhanced expression of the metastasis promoting S100A4 protein in fibroblasts, stimulation of the matrix metalloproteinase (MMP)-2 activity, and enhanced secretion of a range of different cytokines. Orthotopic injection of oestrogen-dependent MCF7S1 cancer cells together with fibroblasts showed stimulation of tumour growth in mice without an external oestrogen supply. The resulting tumours were characterized by increased development of extracellular matrix, as well as an increase of murine S100A4 concentration and activity of MMP-2 in the tumour interstitial fluid. Stimulation of the invasive phenotype of tumour cells in 3D co-cultures with fibroblasts could be correlated with increased production of S100A4 and MMP-2. We propose that enhanced development of mouse host-derived tumour stroma in a MCF7S1 co-injection xenograft model leads to oestrogen independency and is triggered by the initial presence of human fibroblasts

  17. An anatomically oriented breast model for MRI

    Science.gov (United States)

    Kutra, Dominik; Bergtholdt, Martin; Sabczynski, Jörg; Dössel, Olaf; Buelow, Thomas

    2015-03-01

    Breast cancer is the most common cancer in women in the western world. In the breast cancer care-cycle, MRIis e.g. employed in lesion characterization and therapy assessment. Reading of a single three dimensional image or comparing a multitude of such images in a time series is a time consuming task. Radiological reporting is done manually by translating the spatial position of a finding in an image to a generic representation in the form of a breast diagram, outlining quadrants or clock positions. Currently, registration algorithms are employed to aid with the reading and interpretation of longitudinal studies by providing positional correspondence. To aid with the reporting of findings, knowledge about the breast anatomy has to be introduced to translate from patient specific positions to a generic representation. In our approach we fit a geometric primitive, the semi-super-ellipsoid to patient data. Anatomical knowledge is incorporated by fixing the tip of the super-ellipsoid to the mammilla position and constraining its center-point to a reference plane defined by landmarks on the sternum. A coordinate system is then constructed by linearly scaling the fitted super-ellipsoid, defining a unique set of parameters to each point in the image volume. By fitting such a coordinate system to a different image of the same patient, positional correspondence can be generated. We have validated our method on eight pairs of baseline and follow-up scans (16 breasts) that were acquired for the assessment of neo-adjuvant chemotherapy. On average, the location predicted and the actual location of manually set landmarks are within a distance of 5.6 mm. Our proposed method allows for automatic reporting simply by uniformly dividing the super-ellipsoid around its main axis.

  18. Preoperative breast MRI in patients with invasive lobular breast cancer

    International Nuclear Information System (INIS)

    Schelfout, K.; Colpaert, C.; Van Goethem, M.; Verslegers, I.; Biltjes, I.; De Schepper, A.; Kersschot, E.; Leyman, P.; Thienpont, L.; Van den Haute, J.; Gillardin, J.P.; Tjalma, W.; Buytaert, Ph.

    2004-01-01

    To investigate the use of MRI in preoperative characterization of invasive lobular breast cancer (ILC) and in detection of multifocal/multicentric disease. We retrospectively reviewed T1-weighted FLASH 3D precontrast and postcontrast MR images together with subtraction images of 26 women with histopathologically proven invasive lobular cancer. Two experienced radiologists described tumor patterns of ILC independently. MR findings of unifocal, multifocal, single quadrant and multiquadrant disease were correlated with results of other imaging techniques and compared with histopathological findings as gold standard. Most ILC presented on MRI as a single spiculated/irregular, inhomogeneous mass (pattern 1, n=12) or as a dominant lesion surrounded by multiple small enhancing foci (pattern 2, n=8). Multiple small enhancing foci with interconnecting enhancing strands (pattern 3) and an architectural distortion (pattern 4) were both described in three cases. There was one case of a focal area of inhomogeneous enhancement (pattern 5) and one normal MR examination (pattern 6). Unifocal and multifocal lesions were identified on MRI in four patients with normal conventional imaging. In nine women, multiple additional lesions or more extensive multiquadrant disease were correctly identified only on MRI. MRI may play an important role in the evaluation of patients with ILC, which is often difficult to diagnose on clinical examination and conventional imaging and more likely occur in multiple sites and in both breasts. However, false-negative MR findings do occur in a small percentage of ILC. (orig.)

  19. Preoperative breast MRI in patients with invasive lobular breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Schelfout, K.; Colpaert, C. [Department of Pathology, University Hospital Antwerp, Wilrijkstraat 10, 2650, Edegem (Belgium); Van Goethem, M.; Verslegers, I.; Biltjes, I.; De Schepper, A. [Department of Radiology, University Hospital Antwerp, Wilrijkstraat 10, 2650, Edegem (Belgium); Kersschot, E.; Leyman, P. [Department of Radiology, O.L.V. Hospital Aalst, Moorselbaan 164, 9000, Aalst (Belgium); Thienpont, L. [Department of Pathology, O.L.V. Hospital Aalst, Moorselbaan 164, 9000, Aalst (Belgium); Van den Haute, J. [Department of Gynecology, O.L.V. Hospital Aalst, Moorselbaan 164, 9000, Aalst (Belgium); Gillardin, J.P. [Department of Surgery, O.L.V. Hospital Aalst, Moorselbaan 164, 9000, Aalst (Belgium); Tjalma, W.; Buytaert, Ph. [Department of Gynecology, University Hospital Antwerp, Wilrijkstraat 10, 2650, Edegem (Belgium)

    2004-07-01

    To investigate the use of MRI in preoperative characterization of invasive lobular breast cancer (ILC) and in detection of multifocal/multicentric disease. We retrospectively reviewed T1-weighted FLASH 3D precontrast and postcontrast MR images together with subtraction images of 26 women with histopathologically proven invasive lobular cancer. Two experienced radiologists described tumor patterns of ILC independently. MR findings of unifocal, multifocal, single quadrant and multiquadrant disease were correlated with results of other imaging techniques and compared with histopathological findings as gold standard. Most ILC presented on MRI as a single spiculated/irregular, inhomogeneous mass (pattern 1, n=12) or as a dominant lesion surrounded by multiple small enhancing foci (pattern 2, n=8). Multiple small enhancing foci with interconnecting enhancing strands (pattern 3) and an architectural distortion (pattern 4) were both described in three cases. There was one case of a focal area of inhomogeneous enhancement (pattern 5) and one normal MR examination (pattern 6). Unifocal and multifocal lesions were identified on MRI in four patients with normal conventional imaging. In nine women, multiple additional lesions or more extensive multiquadrant disease were correctly identified only on MRI. MRI may play an important role in the evaluation of patients with ILC, which is often difficult to diagnose on clinical examination and conventional imaging and more likely occur in multiple sites and in both breasts. However, false-negative MR findings do occur in a small percentage of ILC. (orig.)

  20. Dynamic MRI study for breast tumors

    International Nuclear Information System (INIS)

    Seki, Tsuneaki

    1990-01-01

    Application of MRI for diagnosis of breast tumors was retrospectively examined in 103 consecutive cases. Contrast enhancement, mostly by dynamic study, was performed in 83 cases using Gd-DTPA and 0.5 T superconductive apparatus. Results were compared to those of mammography and sonography. On dynamic study, carcinoma showed abrupt rise of signal intensity with clear-cut peak formation in early phase, while benign fibroadenoma showed slow rise of signal intensity and prolonged enhancement without peak formation. In 12 of 33 carcinomas (33%), peripheral ring enhancement was noted reflecting vascular stroma of histologic sections. All fibroadenomas showed homogenous enhancement without peripheral ring. In MRI, sensitivity, specificity, and accuracy were 86%, 96%, 91%. In mammography 82%, 95%, 87% and in ultrasonography 91%, 95%, 93%. Although MRI should not be regarded as routine diagnostic procedure because of expense and limited availability, it may afford useful additional information when standard mammographic findings are not conclusive. (author)

  1. Three dimensional energy profile:

    International Nuclear Information System (INIS)

    Kowsari, Reza; Zerriffi, Hisham

    2011-01-01

    The provision of adequate, reliable, and affordable energy has been considered as a cornerstone of development. More than one-third of the world's population has a very limited access to modern energy services and suffers from its various negative consequences. Researchers have been exploring various dimensions of household energy use in order to design strategies to provide secure access to modern energy services. However, despite more than three decades of effort, our understanding of household energy use patterns is very limited, particularly in the context of rural regions of the developing world. Through this paper, the past and the current trends in the field of energy analysis are investigated. The literature on rural energy and energy transition in developing world has been explored and the factors affecting households' decisions on energy use are listed. The and the factors affecting households' decisions on energy use are listed. The gaps identified in the literature on rural household energy analysis provide a basis for developing an alternative model that can create a more realistic view of household energy use. The three dimensional energy profile is presented as a new conceptual model for assessment of household energy use. This framework acts as a basis for building new theoretical and empirical models of rural household energy use. - Highlights: ► Reviews literature on household energy, energy transitions and decision-making in developing countries. ► Identifies gaps in rural household energy analysis and develops a new conceptual framework. ► The 3-d energy profile provides a holistic view of household energy system characteristics. ► Illustrates the use of the framework for understanding household energy transitions.

  2. Three-dimensional echocardiography

    International Nuclear Information System (INIS)

    Buck, Thomas

    2011-01-01

    Presents tips and tricks for beginners and experts Provides educational material for 3D training courses Features comprehensively illustrated cases Includes an accompanying DVD with video clips of all sample cases Three-dimensional echocardiography is the most recent fundamental advancement in echocardiography. Since real-time 3D echocardiography became commercially available in 2002, it has rapidly been accepted in echo labs worldwide. This book covers all clinically relevant aspects of this fascinating new technology, including a comprehensive explanation of its basic principles, practical aspects of clinical application, and detailed descriptions of specific uses in the broad spectrum of clinically important heart disease. The book was written by a group of well-recognized international experts in the field, who have not only been involved in the scientific and clinical evolution of 3D echocardiography since its inception but are also intensively involved in expert training courses. As a result, the clear focus of this book is on the practical application of 3D echocardiography in daily clinical routine with tips and tricks for both beginners and experts, accompanied by more than 150 case examples comprehensively illustrated in more than 800 images and more than 500 videos provided on a DVD. In addition to an in-depth review of the most recent literature on real-time 3D echocardiography, this book represents an invaluable reference work for beginners and expert users of 3D echocardiography. - Tips and tricks for beginners and experts - Educational material for 3D training courses - Comprehensively illustrated cases - DVD with video clips of all sample cases.

  3. Management of breast lesions detectable only on MRI

    International Nuclear Information System (INIS)

    Siegmann-Luz, K.C.; Bahrs, S.D.; Preibsch, H.; Hattermann, V.; Claussen, C.D.

    2014-01-01

    Breast MR imaging has become established as the most sensitive imaging method for diagnosing breast cancer. As a result of the increasing examination volume and improved image quality, the number of breast lesions detected only on MRI and requiring further clarification has risen in recent years. According to the S3-guideline 'Diagnosis, Therapy, and Follow-Up of Breast Cancer' as revised in July 2012, institutions performing breast MRI should provide the option of an MRI-guided intervention for clarification. This review describes the indications, methods and results of MRI-guided interventions for the clarification of breast lesions only visible on MRI. Recent guidelines and study results are also addressed and alternative methods and pitfalls are presented. (orig.)

  4. Comparison between breast MRI and contrast-enhanced spectral mammography.

    Science.gov (United States)

    Łuczyńska, Elżbieta; Heinze-Paluchowska, Sylwia; Hendrick, Edward; Dyczek, Sonia; Ryś, Janusz; Herman, Krzysztof; Blecharz, Paweł; Jakubowicz, Jerzy

    2015-05-12

    The main goal of this study was to compare contrast-enhanced spectral mammography (CESM) and breast magnetic resonance imaging (MRI) with histopathological results and to compare the sensitivity, accuracy, and positive and negative predictive values for both imaging modalities. After ethics approval, CESM and MRI examinations were performed in 102 patients who had suspicious lesions described in conventional mammography. All visible lesions were evaluated independently by 2 experienced radiologists using BI-RADS classifications (scale 1-5). Dimensions of lesions measured with each modality were compared to postoperative histopathology results. There were 102 patients entered into CESM/MRI studies and 118 lesions were identified by the combination of CESM and breast MRI. Histopathology confirmed that 81 of 118 lesions were malignant and 37 were benign. Of the 81 malignant lesions, 72 were invasive cancers and 9 were in situ cancers. Sensitivity was 100% with CESM and 93% with breast MRI. Accuracy was 79% with CESM and 73% with breast MRI. ROC curve areas based on BI-RADS were 0.83 for CESM and 0.84 for breast MRI. Lesion size estimates on CESM and breast MRI were similar, both slightly larger than those from histopathology. Our results indicate that CESM has the potential to be a valuable diagnostic method that enables accurate detection of malignant breast lesions, has high negative predictive value, and a false-positive rate similar to that of breast MRI.

  5. Breast density quantification using magnetic resonance imaging (MRI) with bias field correction: a postmortem study.

    Science.gov (United States)

    Ding, Huanjun; Johnson, Travis; Lin, Muqing; Le, Huy Q; Ducote, Justin L; Su, Min-Ying; Molloi, Sabee

    2013-12-01

    Quantification of breast density based on three-dimensional breast MRI may provide useful information for the early detection of breast cancer. However, the field inhomogeneity can severely challenge the computerized image segmentation process. In this work, the effect of the bias field in breast density quantification has been investigated with a postmortem study. T1-weighted images of 20 pairs of postmortem breasts were acquired on a 1.5 T breast MRI scanner. Two computer-assisted algorithms were used to quantify the volumetric breast density. First, standard fuzzy c-means (FCM) clustering was used on raw images with the bias field present. Then, the coherent local intensity clustering (CLIC) method estimated and corrected the bias field during the iterative tissue segmentation process. Finally, FCM clustering was performed on the bias-field-corrected images produced by CLIC method. The left-right correlation for breasts in the same pair was studied for both segmentation algorithms to evaluate the precision of the tissue classification. Finally, the breast densities measured with the three methods were compared to the gold standard tissue compositions obtained from chemical analysis. The linear correlation coefficient, Pearson's r, was used to evaluate the two image segmentation algorithms and the effect of bias field. The CLIC method successfully corrected the intensity inhomogeneity induced by the bias field. In left-right comparisons, the CLIC method significantly improved the slope and the correlation coefficient of the linear fitting for the glandular volume estimation. The left-right breast density correlation was also increased from 0.93 to 0.98. When compared with the percent fibroglandular volume (%FGV) from chemical analysis, results after bias field correction from both the CLIC the FCM algorithms showed improved linear correlation. As a result, the Pearson's r increased from 0.86 to 0.92 with the bias field correction. The investigated CLIC method

  6. Breast density quantification using magnetic resonance imaging (MRI) with bias field correction: A postmortem study

    International Nuclear Information System (INIS)

    Ding, Huanjun; Johnson, Travis; Lin, Muqing; Le, Huy Q.; Ducote, Justin L.; Su, Min-Ying; Molloi, Sabee

    2013-01-01

    Purpose: Quantification of breast density based on three-dimensional breast MRI may provide useful information for the early detection of breast cancer. However, the field inhomogeneity can severely challenge the computerized image segmentation process. In this work, the effect of the bias field in breast density quantification has been investigated with a postmortem study. Methods: T1-weighted images of 20 pairs of postmortem breasts were acquired on a 1.5 T breast MRI scanner. Two computer-assisted algorithms were used to quantify the volumetric breast density. First, standard fuzzy c-means (FCM) clustering was used on raw images with the bias field present. Then, the coherent local intensity clustering (CLIC) method estimated and corrected the bias field during the iterative tissue segmentation process. Finally, FCM clustering was performed on the bias-field-corrected images produced by CLIC method. The left–right correlation for breasts in the same pair was studied for both segmentation algorithms to evaluate the precision of the tissue classification. Finally, the breast densities measured with the three methods were compared to the gold standard tissue compositions obtained from chemical analysis. The linear correlation coefficient, Pearson'sr, was used to evaluate the two image segmentation algorithms and the effect of bias field. Results: The CLIC method successfully corrected the intensity inhomogeneity induced by the bias field. In left–right comparisons, the CLIC method significantly improved the slope and the correlation coefficient of the linear fitting for the glandular volume estimation. The left–right breast density correlation was also increased from 0.93 to 0.98. When compared with the percent fibroglandular volume (%FGV) from chemical analysis, results after bias field correction from both the CLIC the FCM algorithms showed improved linear correlation. As a result, the Pearson'sr increased from 0.86 to 0.92 with the bias field correction

  7. Deformable Registration for Longitudinal Breast MRI Screening.

    Science.gov (United States)

    Mehrabian, Hatef; Richmond, Lara; Lu, Yingli; Martel, Anne L

    2018-04-13

    MRI screening of high-risk patients for breast cancer provides very high sensitivity, but with a high recall rate and negative biopsies. Comparing the current exam to prior exams reduces the number of follow-up procedures requested by radiologists. Such comparison, however, can be challenging due to the highly deformable nature of breast tissues. Automated co-registration of multiple scans has the potential to aid diagnosis by providing 3D images for side-by-side comparison and also for use in CAD systems. Although many deformable registration techniques exist, they generally have a large number of parameters that need to be optimized and validated for each new application. Here, we propose a framework for such optimization and also identify the optimal input parameter set for registration of 3D T 1 -weighted MRI of breast using Elastix, a widely used and freely available registration tool. A numerical simulation study was first conducted to model the breast tissue and its deformation through finite element (FE) modeling. This model generated the ground truth for evaluating the registration accuracy by providing the deformation of each voxel in the breast volume. An exhaustive search was performed over various values of 7 registration parameters (4050 different combinations of parameters were assessed) and the optimum parameter set was determined. This study showed that there was a large variation in the registration accuracy of different parameter sets ranging from 0.29 mm to 2.50 mm in median registration error and 3.71 mm to 8.90 mm in 95 percentile of the registration error. Mean registration errors of 0.32 mm, 0.29 mm, and 0.30 mm and 95 percentile errors of 3.71 mm, 5.02 mm, and 4.70 mm were obtained by the three best parameter sets. The optimal parameter set was applied to consecutive breast MRI scans of 13 patients. A radiologist identified 113 landmark pairs (~ 11 per patient) which were used to assess registration accuracy. The results demonstrated that

  8. Three-dimensional ICT reconstruction

    International Nuclear Information System (INIS)

    Zhang Aidong; Li Ju; Chen Fa; Sun Lingxia

    2005-01-01

    The three-dimensional ICT reconstruction method is the hot topic of recent ICT technology research. In the context, qualified visual three-dimensional ICT pictures are achieved through multi-piece two-dimensional images accumulation by, combining with thresholding method and linear interpolation. Different direction and different position images of the reconstructed pictures are got by rotation and interception respectively. The convenient and quick method is significantly instructive to more complicated three-dimensional reconstruction of ICT images. (authors)

  9. Three-dimensional ICT reconstruction

    International Nuclear Information System (INIS)

    Zhang Aidong; Li Ju; Chen Fa; Sun Lingxia

    2004-01-01

    The three-dimensional ICT reconstruction method is the hot topic of recent ICT technology research. In the context qualified visual three-dimensional ICT pictures are achieved through multi-piece two-dimensional images accumulation by order, combining with thresholding method and linear interpolation. Different direction and different position images of the reconstructed pictures are got by rotation and interception respectively. The convenient and quick method is significantly instructive to more complicated three-dimensional reconstruction of ICT images. (authors)

  10. Breast MRI: EUSOBI recommendations for women's information

    International Nuclear Information System (INIS)

    Mann, Ritse M.; Balleyguier, Corinne; Baltzer, Pascal A.; Helbich, Thomas H.; Pinker-Domenig, Katja; Bick, Ulrich; Fallenberg, Eva; Colin, Catherine; Cornford, Eleanor; Evans, Andrew; Forrai, Gabor; Fuchsjaeger, Michael H.; Gilbert, Fiona J.; Heywang-Koebrunner, Sylvia H.; Camps-Herrero, Julia; Kuhl, Christiane K.; Martincich, Laura; Pediconi, Federica; Panizza, Pietro; Pina, Luis J.; Pijnappel, Ruud M.; Skaane, Per; Sardanelli, Francesco

    2015-01-01

    This paper summarizes information about breast MRI to be provided to women and referring physicians. After listing contraindications, procedure details are described, stressing the need for correct scheduling and not moving during the examination. The structured report including BI-RADS registered categories and further actions after a breast MRI examination are discussed. Breast MRI is a very sensitive modality, significantly improving screening in high-risk women. It also has a role in clinical diagnosis, problem solving, and staging, impacting on patient management. However, it is not a perfect test, and occasionally breast cancers can be missed. Therefore, clinical and other imaging findings (from mammography/ultrasound) should also be considered. Conversely, MRI may detect lesions not visible on other imaging modalities turning out to be benign (false positives). These risks should be discussed with women before a breast MRI is requested/performed. Because breast MRI drawbacks depend upon the indication for the examination, basic information for the most important breast MRI indications is presented. Seventeen notes and five frequently asked questions formulated for use as direct communication to women are provided. The text was reviewed by Europa Donna-The European Breast Cancer Coalition to ensure that it can be easily understood by women undergoing MRI. (orig.)

  11. Breast MRI: EUSOBI recommendations for women's information

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Ritse M. [Radboud University Nijmegen Medical Centre, Department of Radiology, Nijmegen (Netherlands); Balleyguier, Corinne [Gustave-Roussy Institute, Department of Radiology, Villejuif (France); Baltzer, Pascal A.; Helbich, Thomas H.; Pinker-Domenig, Katja [Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Vienna (Austria); Bick, Ulrich; Fallenberg, Eva [Universitaetsmedizin Berlin, Clinic of Radiology, Charite, Berlin (Germany); Colin, Catherine [Centre Hospitalo-Universitaire Lyon Sud, Radiology Unit, Hospices Civils de Lyon, Pierre Benite Cedex (France); Cornford, Eleanor [Nottingham University Hospitals, Nottingham Breast Institute, Nottingham (United Kingdom); Evans, Andrew [Ninewells Hospital and Medical School, Dundee Cancer Centre, Clinical Research Centre, Dundee (United Kingdom); Forrai, Gabor [MHEK Teaching Hospital University Semmelweis, Budapest (Hungary); Fuchsjaeger, Michael H. [Medical University of Graz, Department of Radiology, Graz (Austria); Gilbert, Fiona J. [University of Cambridge, School of Clinical Medicine, Department of Radiology, Cambridge (United Kingdom); Heywang-Koebrunner, Sylvia H. [National Reference Centre Mammography, Munich, Munich (Germany); Camps-Herrero, Julia [Hospital de la Ribera, Department of Radiology, Alzira, Valencia (Spain); Kuhl, Christiane K. [University Hospital of Aachen, Rheinisch-Westfaelische Technische Hochschule, Aachen (Germany); Martincich, Laura [IRCCS-FPO, Radiology Unit, Candiolo, Turin (Italy); Pediconi, Federica [Sapienza University, Department of Radiological, Oncological and Pathological Sciences, Rome (Italy); Panizza, Pietro [Fondazione IRCCS Istituto Nazionale dei Tumori, Department of Radiology 1, Milan (Italy); Pina, Luis J. [Clinica Universidad de Navarra, Department of Radiology, Pamplona, Navarra (Spain); Pijnappel, Ruud M. [University Medical Centre Utrecht, Department of Imaging, Utrecht (Netherlands); Skaane, Per [Oslo University Hospital Ullevaal, University of Oslo, Department of Radiology, Oslo (Norway); Sardanelli, Francesco [Universita degli Studi di Milano, Radiology Unit, IRCCS Policlinico San Donato, Department of Biomedical Sciences for Health, San Donato Milanese, Milan (Italy); Collaboration: for the European Society of Breast Imaging (EUSOBI), with language review by Europa Donna-The European Breast Cancer Coalition

    2015-12-15

    This paper summarizes information about breast MRI to be provided to women and referring physicians. After listing contraindications, procedure details are described, stressing the need for correct scheduling and not moving during the examination. The structured report including BI-RADS registered categories and further actions after a breast MRI examination are discussed. Breast MRI is a very sensitive modality, significantly improving screening in high-risk women. It also has a role in clinical diagnosis, problem solving, and staging, impacting on patient management. However, it is not a perfect test, and occasionally breast cancers can be missed. Therefore, clinical and other imaging findings (from mammography/ultrasound) should also be considered. Conversely, MRI may detect lesions not visible on other imaging modalities turning out to be benign (false positives). These risks should be discussed with women before a breast MRI is requested/performed. Because breast MRI drawbacks depend upon the indication for the examination, basic information for the most important breast MRI indications is presented. Seventeen notes and five frequently asked questions formulated for use as direct communication to women are provided. The text was reviewed by Europa Donna-The European Breast Cancer Coalition to ensure that it can be easily understood by women undergoing MRI. (orig.)

  12. Real-time 3-dimensional virtual reality navigation system with open MRI for breast-conserving surgery

    International Nuclear Information System (INIS)

    Tomikawa, Morimasa; Konishi, Kozo; Ieiri, Satoshi; Hong, Jaesung; Uemura, Munenori; Hashizume, Makoto; Shiotani, Satoko; Tokunaga, Eriko; Maehara, Yoshihiko

    2011-01-01

    We report here the early experiences using a real-time three-dimensional (3D) virtual reality navigation system with open magnetic resonance imaging (MRI) for breast-conserving surgery (BCS). Two patients with a non-palpable MRI-detected breast tumor underwent BCS under the guidance of the navigation system. An initial MRI for the breast tumor using skin-affixed markers was performed immediately prior to excision. A percutaneous intramammary dye marker was applied to delineate an excision line, and the computer software '3D Slicer' generated a real-time 3D virtual reality model of the tumor and the puncture needle in the breast. Under guidance by the navigation system, marking procedures were performed without any difficulties. Fiducial registration errors were 3.00 mm for patient no.1, and 4.07 mm for patient no.2. The real-time 3D virtual reality navigation system with open MRI is feasible for safe and accurate excision of non-palpable MRI-detected breast tumors. (author)

  13. Multiparametric and molecular imaging of breast tumors with MRI and PET/MRI

    International Nuclear Information System (INIS)

    Pinker, K.; Marino, M.A.; Meyer-Baese, A.; Helbich, T.H.

    2016-01-01

    Magnetic resonance imaging (MRI) of the breast is an indispensable tool in breast imaging for many indications. Several functional parameters with MRI and positron emission tomography (PET) have been assessed for imaging of breast tumors and their combined application is defined as multiparametric imaging. Available data suggest that multiparametric imaging using different functional MRI and PET parameters can provide detailed information about the hallmarks of cancer and may provide additional specificity. Multiparametric and molecular imaging of the breast comprises established MRI parameters, such as dynamic contrast-enhanced MRI, diffusion-weighted imaging (DWI), MR proton spectroscopy ( 1 H-MRSI) as well as combinations of radiological and MRI techniques (e.g. PET/CT and PET/MRI) using radiotracers, such as fluorodeoxyglucose (FDG). Multiparametric and molecular imaging of the breast can be performed at different field-strengths (range 1.5-7 T). Emerging parameters comprise novel promising techniques, such as sodium imaging ( 23 Na MRI), phosphorus spectroscopy ( 31 P-MRSI), chemical exchange saturation transfer (CEST) imaging, blood oxygen level-dependent (BOLD) and hyperpolarized MRI as well as various specific radiotracers. Multiparametric and molecular imaging has multiple applications in breast imaging. Multiparametric and molecular imaging of the breast is an evolving field that will enable improved detection, characterization, staging and monitoring for personalized medicine in breast cancer. (orig.) [de

  14. Three dimensional MEMS supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wei

    2011-10-15

    The overall objective of this research is to achieve compact supercapacitors with high capacitance, large power density, and long cycle life for using as micro power sources to drive low power devices and sensors. The main shortcoming of supercapacitors as a power source is that its energy density typically is about 1/10 of that of batteries. To achieve compact supercapacitors of large energy density, supercapacitors must be developed with high capacitance and power density which are mainly depended on the effective surface area of the electrodes of the supercapacitors. Many studies have been done to increase the effective surface area by modifying the electrode materials, however, much less investigations are focus on machining the electrodes. In my thesis work, micro- and nano-technologies are applied as technology approaches for machining the electrodes with three dimensional (3D) microstructures. More specific, Micro-electro-mechanical system (MEMS) fabrication process flow, which integrates the key process such as LIGA-like (German acronym for Lithographie, Galvanoformung, Abformung, which mean Lithography, Electroplating and Molding) technology or DRIE (deep reactive ion etching), has been developed to enable innovative designs of 3D MEMS supercapacitors which own the electrodes of significantly increased geometric area. Two types of 3D MEMS supercapcitors, based on LIGA-like and DRIE technology respectively, were designed and successfully created. The LIGA-like based 3D MEMS supercapacitor is with an interdigital 3D structure, and consists of silicon substrate, two electroplated nickel current collectors, two PPy (poly pyrrole) electrodes, and solid state electrolyte. The fabrication process flow developed includes the flowing key processes, SU-8 lithography, nickel electroplating, PPy polymerization and solid state electrolyte coating. Electrochemical tests showed that the single electrode of the supercapacitor has the specific capacitance of 0.058 F cm-2

  15. Fully three-dimensional reconstruction from data collected on concentric cubes in Fourier space: implementation and a sample application to MRI [magnetic resonance imaging

    International Nuclear Information System (INIS)

    Herman, G.T.; Roberts, D.; Axel, L.

    1992-01-01

    An algorithm is proposed for rapid and accurate reconstruction from data collected in Fourier space at points arranged on a grid of concentric cubes. The whole process has computational complexity of the same order as required for the 3D fast Fourier transform and so (for medically relevant sizes of the data set) it is faster than backprojection into the same size rectangular grid. The design of the algorithm ensures that no interpolations are needed, in contrast to methods involving backprojection with their unavoidable interpolations. As an application, a 3D data collection method for MRI has been designed which directly samples the Fourier transform of the object to be reconstructed on concentric cubes as needed for the algorithm. (author)

  16. High-resolution MRI in detecting subareolar breast abscess.

    Science.gov (United States)

    Fu, Peifen; Kurihara, Yasuyuki; Kanemaki, Yoshihide; Okamoto, Kyoko; Nakajima, Yasuo; Fukuda, Mamoru; Maeda, Ichiro

    2007-06-01

    Because subareolar breast abscess has a high recurrence rate, a more effective imaging technique is needed to comprehensively visualize the lesions and guide surgery. We performed a high-resolution MRI technique using a microscopy coil to reveal the characteristics and extent of subareolar breast abscess. High-resolution MRI has potential diagnostic value in subareolar breast abscess. This technique can be used to guide surgery with the aim of reducing the recurrence rate.

  17. The relationship between three-dimensional knee MRI bone shape and total knee replacement—a case control study: data from the Osteoarthritis Initiative

    Science.gov (United States)

    Barr, Andrew J.; Dube, Bright; Hensor, Elizabeth M. A.; Kingsbury, Sarah R.; Peat, George; Bowes, Mike A.; Sharples, Linda D.

    2016-01-01

    Objective. There is growing understanding of the importance of bone in OA. Our aim was to determine the relationship between 3D MRI bone shape and total knee replacement (TKR). Methods. A nested case-control study within the Osteoarthritis Initiative cohort identified case knees with confirmed TKR for OA and controls that were matched using propensity scores. Active appearance modelling quantification of the bone shape of all knee bones identified vectors between knees having or not having OA. Vectors were scaled such that −1 and +1 represented the mean non-OA and mean OA shapes. Results. Compared to controls (n = 310), TKR cases (n = 310) had a more positive mean baseline 3D bone shape vector, indicating more advanced structural OA, for the femur [mean 0.98 vs −0.11; difference (95% CI) 1.10 (0.88, 1.31)], tibia [mean 0.86 vs −0.07; difference (95% CI) 0.94 (0.72, 1.16)] and patella [mean 0.95 vs 0.03; difference (95% CI) 0.92 (0.65, 1.20)]. Odds ratios (95% CI) for TKR per normalized unit of 3D bone shape vector for the femur, tibia and patella were: 1.85 (1.59, 2.16), 1.64 (1.42, 1.89) and 1.36 (1.22, 1.50), respectively, all P < 0.001. After including Kellgren–Lawrence grade in a multivariable analysis, only the femur 3D shape vector remained significantly associated with TKR [odds ratio 1.24 (1.02, 1.51)]. Conclusion. 3D bone shape was associated with the endpoint of this study, TKR, with femoral shape being most associated. This study contributes to the validation of quantitative MRI bone biomarkers for OA structure-modification trials. PMID:27185958

  18. Extra-mammary findings in breast MRI

    Energy Technology Data Exchange (ETDEWEB)

    Rinaldi, Pierluigi; Costantini, M.; Belli, P.; Giuliani, M.; Bufi, E.; Fubelli, R.; Distefano, D.; Romani, M.; Bonomo, L. [Catholic University - Policlinic A. Gemelli, Department of Bio-Imaging and Radiological Sciences, Rome (Italy)

    2011-11-15

    Incidental extra-mammary findings in breast Magnetic Resonance Imaging (MRI) may be benign in nature, but may also represent a metastasis or another important lesion. We aimed to analyse the prevalence and clinical relevance of these unexpected findings. A retrospective review of 1535 breast MRIs was conducted. Only axial sequences were reassessed. Confirmation examinations were obtained in all cases. 285 patients had a confirmed incidental finding, which were located in the liver (51.9%), lung (11.2%), bone (7%), mediastinal lymph nodes (4.2%) or consisted of pleural/pericardial effusion (15.4%). 20.4% of incidental findings were confirmed to be malignant. Positive predictive value for MRI to detect a metastatic lesion was high if located within the bone (89%), lymph nodes (83%) and lung (59%), while it was low if located within the liver (9%) or if it consisted of pleural/pericardial effusion (6%). The axial enhanced sequence showed superior sensitivity to unenhanced images in detecting metastatic lesions, especially if only smaller ({<=}10 mm.) lesions were considered. The prevalence of metastatic incidental extra-mammary findings is not negligible. Particular attention should be to incidental findings located within the lung, bone and mediastinal lymph nodes. (orig.)

  19. Growth of breast cancer recurrences assessed by consecutive MRI

    International Nuclear Information System (INIS)

    Millet, Ingrid; Bouic-Pages, Emmanuelle; Hoa, Denis; Azria, David; Taourel, Patrice

    2011-01-01

    Women with a personal history of breast cancer have a high risk of developing an ipsi- or contralateral recurrence. We aimed to compare the growth rate of primary breast cancer and recurrences in women who had undergone prior breast magnetic resonance imaging (MRI). Three hundred and sixty-two women were diagnosed with breast cancer and had undergone breast MRI at the time of diagnosis in our institution (2005 - 2009). Among them, 37 had at least one prior breast MRI with the lesion being visible but not diagnosed as cancer. A linear regression of tumour volume measured on MRI scans and time data was performed using a generalized logistic model to calculate growth rates. The primary objective was to compare the tumour growth rate of patients with either primary breast cancer (no history of breast cancer) or ipsi- or contralateral recurrences of breast cancer. Twenty women had no history of breast cancer and 17 patients were diagnosed as recurrences (7 and 10 were ipsi- and contralateral, respectively). The tumour growth rate was higher in contralateral recurrences than in ipsilateral recurrences (growth rate [10 -3 days -1 ] 3.56 vs 1.38, p < .001) or primary cancer (3.56 vs 2.09, p = 0.01). Differences in tumour growth were not significant for other patient-, tumour- or treatment-related characteristics. These findings suggest that contralateral breast cancer presents accelerated growth compared to ipsilateral recurrences or primary breast events

  20. Three-dimensional contrast-enhanced MRI using an intravascular contrast agent for detection of traumatic intra-abdominal hemorrhage and abdominal parenchymal injuries: an experimental study

    International Nuclear Information System (INIS)

    Weishaupt, D.; Ruehm, S.G.; Patak, M.A.; Schmidt, M.; Debatin, J.F.; Hetzer, F.H.

    2000-01-01

    The aim of this study was to compare the performance of 3D MRI in conjunction with an intravascular contrast agent to spiral contrast-enhanced CT, regarding the detection of abdominal parenchymal injuries as well as peritoneal hemorrhage in an animal model. Liver and kidney injuries were created surgically in six female pigs under general anesthesia. All pigs underwent contrast-enhanced spiral CT and 3D MR imaging following administration of an intravascular contrast agent (NC100150 Injection). Two readers rated their confidence independently on MR and CT data sets using a five-point scale for the presence of organ injury and hemoperitoneum. Autopsy findings served as standard of reference. Sensitivity and specificity for MR in detecting hepatic and renal injuries as well as hemoperitoneum was 100 %. Computed tomography was less accurate with sensitivity and specificity values of 90 and 94 %, respectively. Receiver operating characteristics (ROC) analysis revealed a higher confidence when interpretation was based on MR images. In an animal model 3D MR imaging in conjunction with an intravascular contrast agent proved highly accurate in detecting and localizing parenchymal injuries to the upper abdomen as well as in detecting intraperitoneal blood collections. (orig.)

  1. Value of breast MRI as supplement to mammography and sonography for high risk breast cancer patients

    International Nuclear Information System (INIS)

    Schlossbauer, T.; Hellerhoff, K.; Reiser, M.

    2008-01-01

    The aim of this study is to give an overview on early detection of breast cancer in patients with an increased risk of breast cancer. Sensitivities and diagnostic accuracies of breast MRI, mammography and ultrasound were compared. A systematic literature search of the past 3 years was performed. Studies which compared breast imaging modalities and used image-guided biopsy results as standard of reference were included. Patients included had to have had an increased lifetime risk for breast cancer (>15%). Regarding sensitivity and diagnostic accuracy, breast MRI performed best in comparison to the other modalities within this collective of patients. Sensitivities ranged from 71-100%, 0-78%, and 13-65%, for MRI, mammography, and ultrasound, respectively Breast MRI is a well established tool for screening in patients at high risk for developing breast cancer and is a valuable supplement to mammography and ultrasound within this selected cohort of patients. (orig.) [de

  2. Breast MRI, digital mammography and breast tomosynthesis: comparison of three methods for early detection of breast cancer

    Directory of Open Access Journals (Sweden)

    Dragana Roganovic

    2015-11-01

    Full Text Available Breast cancer is the most common malignancy in women and early detection is important for its successful treatment. The aim of this study was to investigate the sensitivity and specificity of three methods for early detection of breast cancer: breast magnetic resonance imaging (MRI, digital mammography, and breast tomosynthesis in comparison to histopathology, as well as to investigate the intraindividual variability between these modalities.  We included 57 breast lesions, each detected by three diagnostic modalities: digital mammography, breast MRI, and breast tomosynthesis, and subsequently confirmed by histopathology. Breast Imaging-Reporting and Data System (BI-RADS was used for characterizing the lesions. One experienced radiologist interpreted all three diagnostic modalities. Twenty-nine of the breast lesions were malignant while 28 were benign. The sensitivity for digital mammography, breast MRI, and breast tomosynthesis, was 72.4%, 93.1%, and 100%, respectively; while the specificity was 46.4%, 60.7%, and 75%, respectively. Receiver operating characteristics (ROC curve analysis showed an overall diagnostic advantage of breast tomosynthesis over both breast MRI and digital mammography. The difference in performance between breast tomosynthesis and digital mammography was significant (p < 0.001, while the difference between breast tomosynthesis and breast MRI was not significant (p = 0.20. 

  3. Utility of three-dimensional method for diagnosing meniscal lesions

    International Nuclear Information System (INIS)

    Ohshima, Suguru; Nomura, Kazutoshi; Hirano, Mako; Hashimoto, Noburo; Fukumoto, Tetsuya; Katahira, Kazuhiro

    1998-01-01

    MRI of the knee is a useful method for diagnosing meniscal tears. Although the spin echo method is usually used for diagnosing meniscal tears, we examined the utility of thin slice scan with the three-dimensional method. We reviewed 70 menisci in which arthroscopic findings were confirmed. In this series, sensitivity was 90.9% for medial meniscal injuries and 68.8% for lateral meniscal injuries. There were 3 meniscal tears in which we could not detect tears on preoperative MRI. We could find tears in two of these cases when re-evaluated using the same MRI. In conclusion, we can get the same diagnostic rate with the three-dimensional method compared with the spin echo method. Scan time of the three-dimensional method is 3 minutes, on the other hand that of spin echo method in 17 minutes. This slice scan with three-dimensional method is useful for screening meniscal injuries before arthroscopy. (author)

  4. Breast MRI, digital mammography and breast tomosynthesis: comparison of three methods for early detection of breast cancer.

    Science.gov (United States)

    Roganovic, Dragana; Djilas, Dragana; Vujnovic, Sasa; Pavic, Dag; Stojanov, Dragan

    2015-11-16

    Breast cancer is the most common malignancy in women and early detection is important for its successful treatment. The aim of this study was to investigate the sensitivity and specificity of three methods for early detection of breast cancer: breast magnetic resonance imaging (MRI), digital mammography, and breast tomosynthesis in comparison to histopathology, as well as to investigate the intraindividual variability between these modalities. We included 57 breast lesions, each detected by three diagnostic modalities: digital mammography, breast MRI, and breast tomosynthesis, and subsequently confirmed by histopathology. Breast Imaging-Reporting and Data System (BI-RADS) was used for characterizing the lesions. One experienced radiologist interpreted all three diagnostic modalities. Twenty-nine of the breast lesions were malignant while 28 were benign. The sensitivity for digital mammography, breast MRI, and breast tomosynthesis, was 72.4%, 93.1%, and 100%, respectively; while the specificity was 46.4%, 60.7%, and 75%, respectively. Receiver operating characteristics (ROC) curve analysis showed an overall diagnostic advantage of breast tomosynthesis over both breast MRI and digital mammography. The difference in performance between breast tomosynthesis and digital mammography was significant (p tomosynthesis and breast MRI was not significant (p=0.20).

  5. Diagnostic value of dynamic and morphologic breast MRI analysis in the diagnosis of breast cancer

    International Nuclear Information System (INIS)

    Stusińska, Małgorzata; Szabo-Moskal, Jadwiga; Bobek-Billewicz, Barbara

    2014-01-01

    Mammography is the most widely used method of breast imaging. However, its low sensitivity poses a problem. Breast MRI is one of so the called “complementary” breast imaging methods. The purpose of this study was to improve the specificity of breast MRI by combining 2 methods: dynamic and morphologic analysis of enhancing lesions. 222 women aged 19–76 years, who underwent breast MRI examination between November 2002 and April 2004 at the Radiology Department of Oncology Center in Bydgoszcz, were included in this study. The pathological examination revealed cancer in 55 women (25%). No cancer was found in 167 women (75%), 56 of which were verified pathologically, 111 by cytology and/or during follow-up (at least 24 months). Results of breast MRI were positive in 80 women (36%), in 54 of which cancer was found during pathological examination, 26 breast MRI results were false positive. Sensitivity and specificity of breast MRI for dynamic analysis were 87% and 72%, respectively; in case of morphologic analysis 98% and 74%, respectively. The combined dynamic and morphologic analysis achieved high (84%) specificity without loss of sensitivity (98%). The difference in specificity between the evaluated methods was statistically significant (p<0.05). The combined dynamic and morphologic breast MRI analysis is a useful method for the diagnosis of breast cancer

  6. MRI evaluation of the contralateral breast in patients with recently diagnosed breast cancer

    International Nuclear Information System (INIS)

    Taneja, Sangeeta; Jena, Amarnath; Zaidi, Syed Mohd. Shuaib; Khurana, Anuj

    2012-01-01

    Contralateral breast cancer can be synchronous and/or metachronous in patients with cancer of one breast. Detection of a synchronous breast cancer may affect patient management. Dynamic contrast-enhanced MRI of the breast (DCE-MRI) is a sensitive technique for detecting contralateral lesions occult on the other imaging modalities in women already diagnosed with cancer of one breast. The aim was to assess the incidence of mammographically occult synchronous contralateral breast cancer in patients undergoing MRI mammography for the evaluation of a malignant breast lesion. A total of 294 patients with recently diagnosed breast cancer who underwent MRI of the breast were evaluated for lesions in the opposite breast. The incidence of synchronous contralateral malignancy detected by preoperative MRI mammography done for evaluation of extent of disease was 4.1%. Preoperative breast MRI may detect clinically and mammographically occult synchronous contralateral cancer, and can help the patient avoid an additional second surgery or a second course of chemotherapy later; also, as theoretically these lesions are smaller, there may be a survival benefit as well

  7. Agreement of mammographic measures of volumetric breast density to MRI.

    Directory of Open Access Journals (Sweden)

    Jeff Wang

    Full Text Available Clinical scores of mammographic breast density are highly subjective. Automated technologies for mammography exist to quantify breast density objectively, but the technique that most accurately measures the quantity of breast fibroglandular tissue is not known.To compare the agreement of three automated mammographic techniques for measuring volumetric breast density with a quantitative volumetric MRI-based technique in a screening population.Women were selected from the UCSF Medical Center screening population that had received both a screening MRI and digital mammogram within one year of each other, had Breast Imaging Reporting and Data System (BI-RADS assessments of normal or benign finding, and no history of breast cancer or surgery. Agreement was assessed of three mammographic techniques (Single-energy X-ray Absorptiometry [SXA], Quantra, and Volpara with MRI for percent fibroglandular tissue volume, absolute fibroglandular tissue volume, and total breast volume.Among 99 women, the automated mammographic density techniques were correlated with MRI measures with R(2 values ranging from 0.40 (log fibroglandular volume to 0.91 (total breast volume. Substantial agreement measured by kappa statistic was found between all percent fibroglandular tissue measures (0.72 to 0.63, but only moderate agreement for log fibroglandular volumes. The kappa statistics for all percent density measures were highest in the comparisons of the SXA and MRI results. The largest error source between MRI and the mammography techniques was found to be differences in measures of total breast volume.Automated volumetric fibroglandular tissue measures from screening digital mammograms were in substantial agreement with MRI and if associated with breast cancer could be used in clinical practice to enhance risk assessment and prevention.

  8. Agreement of mammographic measures of volumetric breast density to MRI.

    Science.gov (United States)

    Wang, Jeff; Azziz, Ania; Fan, Bo; Malkov, Serghei; Klifa, Catherine; Newitt, David; Yitta, Silaja; Hylton, Nola; Kerlikowske, Karla; Shepherd, John A

    2013-01-01

    Clinical scores of mammographic breast density are highly subjective. Automated technologies for mammography exist to quantify breast density objectively, but the technique that most accurately measures the quantity of breast fibroglandular tissue is not known. To compare the agreement of three automated mammographic techniques for measuring volumetric breast density with a quantitative volumetric MRI-based technique in a screening population. Women were selected from the UCSF Medical Center screening population that had received both a screening MRI and digital mammogram within one year of each other, had Breast Imaging Reporting and Data System (BI-RADS) assessments of normal or benign finding, and no history of breast cancer or surgery. Agreement was assessed of three mammographic techniques (Single-energy X-ray Absorptiometry [SXA], Quantra, and Volpara) with MRI for percent fibroglandular tissue volume, absolute fibroglandular tissue volume, and total breast volume. Among 99 women, the automated mammographic density techniques were correlated with MRI measures with R(2) values ranging from 0.40 (log fibroglandular volume) to 0.91 (total breast volume). Substantial agreement measured by kappa statistic was found between all percent fibroglandular tissue measures (0.72 to 0.63), but only moderate agreement for log fibroglandular volumes. The kappa statistics for all percent density measures were highest in the comparisons of the SXA and MRI results. The largest error source between MRI and the mammography techniques was found to be differences in measures of total breast volume. Automated volumetric fibroglandular tissue measures from screening digital mammograms were in substantial agreement with MRI and if associated with breast cancer could be used in clinical practice to enhance risk assessment and prevention.

  9. Differentiation between grade 3 and grade 4 articular cartilage defects of the knee: Fat-suppressed proton density-weighted versus fat-suppressed three-dimensional gradient-echo MRI

    Energy Technology Data Exchange (ETDEWEB)

    Lee, So Yeon; Jee, Won-Hee; Kim, Sun Ki (Dept. of Radiology, Seoul St Mary' s Hospital, Catholic Univ. of Korea, Seoul (Korea)), e-mail: whjee@catholic.ac.kr; Koh, In-Jun (Dept. of Joint Reconstruction Center, Seoul National Univ. Bundang Hospital, Seoul (Korea)); Kim, Jung-Man (Dept. of Orthopedic Surgery, Seoul St Mary' s Hospital, Catholic Univ. of Korea, Seoul (Korea))

    2010-05-15

    Background: Fat-suppressed (FS) proton density (PD)-weighted magnetic resonance imaging (MRI) and FS three-dimensional (3D) gradient-echo imaging such as spoiled gradient-recalled (SPGR) sequence have been established as accurate methods for detecting articular cartilage defects. Purpose: To retrospectively compare the diagnostic efficacy between FS PD-weighted and FS 3D gradient-echo MRI for differentiating between grade 3 and grade 4 cartilage defects of the knee with arthroscopy as the standard of reference. Material and Methods: Twenty-one patients who had grade 3 or 4 cartilage defects in medial femoral condyle at arthroscopy and knee MRI were included in this study: grade 3, >50% cartilage defects; grade 4, full thickness cartilage defects exposed to the bone. Sagittal FS PD-weighted MR images and FS 3D gradient-echo images with 1.5 T MR images were independently graded for the cartilage abnormalities of medial femoral condyle by two musculoskeletal radiologists. Statistical analysis was performed by Fisher's exact test. Inter-observer agreement in grading of cartilage was assessed using ? coefficients. Results: Arthroscopy revealed grade 3 defects in 17 patients and grade 4 defects in 4 patients in medial femoral condyles. For FS 3D gradient-echo images grade 3 defects were graded as grade 3 (n=15) and grade 4 (n=2), and all grade 4 defects (n=4) were correctly graded. However, for FS PD-weighted MR images all grade 3 defects were misinterpreted as grade 1 (n=1) and grade 4 (n=16), whereas all grade 4 defects (n=4) were correctly graded. FS 3D gradient-echo MRI could differentiate grade 3 from grade 4 defects (P=0.003), whereas FS PD-weighted imaging could not (P=1.0). Inter-observer agreement was substantial (?=0.70) for grading of cartilage using FS PD-weighted imaging, whereas it was moderate (?=0.46) using FS 3D gradient-echo imaging. Conclusion: FS 3D gradient-echo MRI is more helpful for differentiating between grade 3 and grade 4 cartilage

  10. Three-dimensional biomedical imaging

    International Nuclear Information System (INIS)

    Robb, R.A.

    1985-01-01

    Scientists in biomedical imaging provide researchers, physicians, and academicians with an understanding of the fundamental theories and practical applications of three-dimensional biomedical imaging methodologies. Succinct descriptions of each imaging modality are supported by numerous diagrams and illustrations which clarify important concepts and demonstrate system performance in a variety of applications. Comparison of the different functional attributes, relative advantages and limitations, complementary capabilities, and future directions of three-dimensional biomedical imaging modalities are given. Volume 1: Introductions to Three-Dimensional Biomedical Imaging Photoelectronic-Digital Imaging for Diagnostic Radiology. X-Ray Computed Tomography - Basic Principles. X-Ray Computed Tomography - Implementation and Applications. X-Ray Computed Tomography: Advanced Systems and Applications in Biomedical Research and Diagnosis. Volume II: Single Photon Emission Computed Tomography. Position Emission Tomography (PET). Computerized Ultrasound Tomography. Fundamentals of NMR Imaging. Display of Multi-Dimensional Biomedical Image Information. Summary and Prognostications

  11. Role of MRI in differentiating benign from malignant breast lesions ...

    African Journals Online (AJOL)

    Mohamed Ahmed Youssef

    2017-02-15

    Feb 15, 2017 ... renal dysfunction or previous reactions to contrast agents and will relieve the cost of examination.4,5. The aim of the study was to evaluate the role of the magnetic resonance imaging in differentiation of benign from malignant breast lesions using dynamic contrast enhanced MRI (DCE-MRI) and diffusion ...

  12. Association between breast cancer, breast density, and body adiposity evaluated by MRI

    International Nuclear Information System (INIS)

    Zhu, Wenlian; Huang, Peng; Macura, Katarzyna J.; Artemov, Dmitri

    2016-01-01

    Despite the lack of reliable methods with which to measure breast density from 2D mammograms, numerous studies have demonstrated a positive association between breast cancer and breast density. The goal of this study was to study the association between breast cancer and body adiposity, as well as breast density quantitatively assessed from 3D MRI breast images. Breast density was calculated from 3D T1-weighted MRI images. The thickness of the upper abdominal adipose layer was used as a surrogate marker for body adiposity. We evaluated the correlation between breast density, age, body adiposity, and breast cancer. Breast density was calculated for 410 patients with unilateral invasive breast cancer, 73 patients with ductal carcinoma in situ (DCIS), and 361 controls without breast cancer. Breast density was inversely related to age and the thickness of the upper abdominal adipose layer. Breast cancer was only positively associated with body adiposity and age. Age and body adiposity are predictive of breast density. Breast cancer was not associated with breast density; however, it was associated with the thickness of the upper abdominal adipose layer, a surrogate marker for body adiposity. Our results based on a limited number of patients warrant further investigations. (orig.)

  13. Comparison study of the partial-breast irradiation techniques: Dosimetric analysis of three-dimensional conformal radiation therapy, electron beam therapy, and helical tomotherapy depending on various tumor locations

    International Nuclear Information System (INIS)

    Kim, Min-Joo; Park, So-Hyun; Son, Seok-Hyun; Cheon, Keum-Seong; Choi, Byung-Ock; Suh, Tae-Suk

    2013-01-01

    The partial-breast irradiation (PBI) technique, an alternative to whole-breast irradiation, is a beam delivery method that uses a limited range of treatment volume. The present study was designed to determine the optimal PBI treatment modalities for 8 different tumor locations. Treatment planning was performed on computed tomography (CT) data sets of 6 patients who had received lumpectomy treatments. Tumor locations were classified into 8 subsections according to breast quadrant and depth. Three-dimensional conformal radiation therapy (3D-CRT), electron beam therapy (ET), and helical tomotherapy (H-TOMO) were utilized to evaluate the dosimetric effect for each tumor location. Conformation number (CN), radical dose homogeneity index (rDHI), and dose delivered to healthy tissue were estimated. The Kruskal-Wallis, Mann-Whitney U, and Bonferroni tests were used for statistical analysis. The ET approach showed good sparing effects and acceptable target coverage for the lower inner quadrant—superficial (LIQ-S) and lower inner quadrant—deep (LIQ-D) locations. The H-TOMO method was the least effective technique as no evaluation index achieved superiority for all tumor locations except CN. The ET method is advisable for treating LIQ-S and LIQ-D tumors, as opposed to 3D-CRT or H-TOMO, because of acceptable target coverage and much lower dose applied to surrounding tissue

  14. High field MRI of axillary lymph nodes and breast cancer

    NARCIS (Netherlands)

    Korteweg, M.A.

    2011-01-01

    In this thesis nodal characteristics have been assessed with high field Magnetic Resonance Imaging (MRI) using a clinical scanner in order to discriminate non-metastatic from metastatic nodes of breast cancer patients. The final goal is to non-invasively determine nodal and tumor stage of breast

  15. Role of MRI in differentiating benign from malignant breast lesions ...

    African Journals Online (AJOL)

    Mohamed Ahmed Youssef

    2017-02-15

    Feb 15, 2017 ... detecting breast lesions than either T1- or T2-weighted imaging, but it is better to be performed in con- junction with contrast ... of MRI in several aspects of breast cancer diagnosis and management.2 ..... Hayes DF.: Normal ...

  16. Evidence on Synthesized Two-dimensional Mammography Versus Digital Mammography When Using Tomosynthesis (Three-dimensional Mammography) for Population Breast Cancer Screening.

    Science.gov (United States)

    Houssami, Nehmat

    2017-09-28

    One limitation of using digital breast tomosynthesis (3-dimensional [3D] mammography) technology with conventional (2-dimensional [2D]) mammography for breast cancer (BC) screening is the increased radiation dose from dual acquisitions. To resolve this problem, synthesized 2D (s2D) reconstruction images similar to 2D mammography were developed using tomosynthesis acquisitions. The present review summarizes the evidence for s2D versus digital mammography (2D) when using tomosynthesis (3D) for BC screening to address whether using s2D instead of 2D (alongside 3D) will yield similar detection measures. Comparative population screening studies have provided consistent evidence that cancer detection rates do not differ between integrated 2D/3D (range, 5.45-8.5/1000 screens) and s2D/3D (range, 5.03-8.8/1000 screens). Also, although the recall measures were relatively heterogeneous across included studies, little difference was found between the 2 modalities. The mean glandular dose for s2D/3D was 55% to 58% of that for 2D/3D. In the context of BC screening, s2D/3D involves substantially less radiation than 2D/3D and provides similar detection measures. Thus, consideration of transitioning to tomosynthesis screening should aim to use s2D/3D to minimize harm. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Usefulness of 3D-VIBE method in breast dynamic MRI. Imaging parameters and contrasting effects

    International Nuclear Information System (INIS)

    Uchikoshi, Masato; Ueda, Takashi; Nishiki, Shigeo; Satou, Kouichi; Wada, Akihiko; Imaoka, Izumi; Matsuo, Michimasa

    2003-01-01

    MR imaging (MRI) has been reported to be a useful modality to characterize breast tumors and to evaluate disease extent. Contrast-enhanced dynamic MRI, in particular, allows breast lesions to be characterized with high sensitivity and specificity. Our study was designed to develop three-dimensional volumetric interpolated breath-hold examination (3D-VIBE) techniques for the evaluation of breast tumors. First, agarose/Gd-DTPA phantoms with various concentrations of Gd-DTPA were imaged using 3D-VIBE and turbo spin echo (TSE). Second, one of the phantoms was imaged with 3D-VIBE using different flip angles. Finally, water excitation (WE) and a chemical shift-selective (CHESS) pulse were applied to the images. Each image was analyzed for signal intensity, signal-to-noise ratio (1.25*Ms/Mb) (SNR), and contrast ratio [(Ms1-Ms2)/{(Ms1+Ms2)/2}]. The results showed that 3D-VIBE provided better contrast ratios with a linear fit than TSE, although 3D-VIBE showed a lower SNR. To reach the best contrast ratio, the optimized flip angle was found to be 30 deg for contrast-enhanced dynamic study. Both WE and CHESS pulses were reliable for obtaining fat- suppressed images. In conclusion, the 3D-VIBE technique can image the entire breast area with high resolution and provide better contrast than TSE. Our phantom study suggests that optimized 3D-VIBE may be useful for the assessment of breast tumors. (author)

  18. A new bias field correction method combining N3 and FCM for improved segmentation of breast density on MRI.

    Science.gov (United States)

    Lin, Muqing; Chan, Siwa; Chen, Jeon-Hor; Chang, Daniel; Nie, Ke; Chen, Shih-Ting; Lin, Cheng-Ju; Shih, Tzu-Ching; Nalcioglu, Orhan; Su, Min-Ying

    2011-01-01

    Quantitative breast density is known as a strong risk factor associated with the development of breast cancer. Measurement of breast density based on three-dimensional breast MRI may provide very useful information. One important step for quantitative analysis of breast density on MRI is the correction of field inhomogeneity to allow an accurate segmentation of the fibroglandular tissue (dense tissue). A new bias field correction method by combining the nonparametric nonuniformity normalization (N3) algorithm and fuzzy-C-means (FCM)-based inhomogeneity correction algorithm is developed in this work. The analysis is performed on non-fat-sat T1-weighted images acquired using a 1.5 T MRI scanner. A total of 60 breasts from 30 healthy volunteers was analyzed. N3 is known as a robust correction method, but it cannot correct a strong bias field on a large area. FCM-based algorithm can correct the bias field on a large area, but it may change the tissue contrast and affect the segmentation quality. The proposed algorithm applies N3 first, followed by FCM, and then the generated bias field is smoothed using Gaussian kernal and B-spline surface fitting to minimize the problem of mistakenly changed tissue contrast. The segmentation results based on the N3+FCM corrected images were compared to the N3 and FCM alone corrected images and another method, coherent local intensity clustering (CLIC), corrected images. The segmentation quality based on different correction methods were evaluated by a radiologist and ranked. The authors demonstrated that the iterative N3+FCM correction method brightens the signal intensity of fatty tissues and that separates the histogram peaks between the fibroglandular and fatty tissues to allow an accurate segmentation between them. In the first reading session, the radiologist found (N3+FCM > N3 > FCM) ranking in 17 breasts, (N3+FCM > N3 = FCM) ranking in 7 breasts, (N3+FCM = N3 > FCM) in 32 breasts, (N3+FCM = N3 = FCM) in 2 breasts, and (N3 > N3

  19. Abbreviated Breast MRI and Digital Tomosynthesis Mammography in Screening Women With Dense Breasts | Division of Cancer Prevention

    Science.gov (United States)

    This randomized phase II trial studies how well abbreviated breast magnetic resonance imaging (MRI) and digital tomosynthesis mammography work in detecting cancer in women with dense breasts. Abbreviated breast MRI is a low cost procedure in which radio waves and a powerful magnet linked to a computer and used to create detailed pictures of the breast in less than 10 minutes.

  20. The influence of preoperative MRI of the breasts on recurrence rate in patients with breast cancer

    International Nuclear Information System (INIS)

    Fischer, Uwe; Baum, Friedemann; Heyden, Dorit von; Zachariae, Olivier; Liersch, Torsten; Funke, Matthias

    2004-01-01

    Preoperative MRI of the breasts has been proven to be the most sensitive imaging modality in the detection of multifocal or multicentric tumor manifestations as well as simultaneous contralateral breast cancer. The aim of the presented retrospective study was to evaluate the benefit of preoperative MRI for patients with breast cancer. Preoperative MRI performed in 121 patients (group A) were compared to 225 patients without preoperative MRI (group B). Patients of group A underwent contrast-enhanced MR imaging of the breast using a 2D FLASH sequence technique (TR/TE/FA 336 ms/5 ms/90diam.; 32 slices of 4-mm thickness, time of acquisition 1:27 min, contrast agent dosage 0.1 mmol Gd-DTPA/kg bw). All patients had histologically verified breast cancer and follow-up for more than 20 months (mean time group A: 40.3 months, group B: 41 months). Both groups received the same types of systemic treatment after breast conserving surgery. The in-breast tumor recurrence rate in group A was 1/86 (1.2%) compared to 9/133 (6.8%) in group B. Contralateral carcinoma were detected within follow-up in 2/121 (1.7%) in group A vs. 9/225 (4%) in group B. All results were statistically significant (P<0.001). Based on these results, preoperative MRI of the breasts is recommended in patients with histopathologically verified breast cancer for local staging

  1. The influence of preoperative MRI of the breasts on recurrence rate in patients with breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Uwe; Baum, Friedemann; Heyden, Dorit von [Diagnostisches Brustzentrum Goettingen, Womens Health Care Center Goettingen, Bahnhofsallee 1d, 37081 Goettingen (Germany); Zachariae, Olivier; Liersch, Torsten [Department of General Surgery, Georg-August-University of Goettingen, Robert-Koch-Strasse 40, 37075 Goettingen (Germany); Funke, Matthias [Department of Radiology, Georg-August-University of Goettingen, Robert-Koch-Strasse 40, 37075 Goettingen (Germany)

    2004-10-01

    Preoperative MRI of the breasts has been proven to be the most sensitive imaging modality in the detection of multifocal or multicentric tumor manifestations as well as simultaneous contralateral breast cancer. The aim of the presented retrospective study was to evaluate the benefit of preoperative MRI for patients with breast cancer. Preoperative MRI performed in 121 patients (group A) were compared to 225 patients without preoperative MRI (group B). Patients of group A underwent contrast-enhanced MR imaging of the breast using a 2D FLASH sequence technique (TR/TE/FA 336 ms/5 ms/90{sup o}; 32 slices of 4-mm thickness, time of acquisition 1:27 min, contrast agent dosage 0.1 mmol Gd-DTPA/kg bw). All patients had histologically verified breast cancer and follow-up for more than 20 months (mean time group A: 40.3 months, group B: 41 months). Both groups received the same types of systemic treatment after breast conserving surgery. The in-breast tumor recurrence rate in group A was 1/86 (1.2%) compared to 9/133 (6.8%) in group B. Contralateral carcinoma were detected within follow-up in 2/121 (1.7%) in group A vs. 9/225 (4%) in group B. All results were statistically significant (P<0.001). Based on these results, preoperative MRI of the breasts is recommended in patients with histopathologically verified breast cancer for local staging.

  2. (Weakly) three-dimensional caseology

    International Nuclear Information System (INIS)

    Pomraning, G.C.

    1996-01-01

    The singular eigenfunction technique of Case for solving one-dimensional planar symmetry linear transport problems is extended to a restricted class of three-dimensional problems. This class involves planar geometry, but with forcing terms (either boundary conditions or internal sources) which are weakly dependent upon the transverse spatial variables. Our analysis involves a singular perturbation about the classic planar analysis, and leads to the usual Case discrete and continuum modes, but modulated by weakly dependent three-dimensional spatial functions. These functions satisfy parabolic differential equations, with a different diffusion coefficient for each mode. Representative one-speed time-independent transport problems are solved in terms of these generalised Case eigenfunctions. Our treatment is very heuristic, but may provide an impetus for more rigorous analysis. (author)

  3. Equilibrium: three-dimensional configurations

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    This chapter considers toroidal MHD configurations that are inherently three-dimensional. The motivation for investigation such complicated equilibria is that they possess the potential for providing toroidal confinement without the need of a net toroidal current. This leads to a number of advantages with respect to fusion power generation. First, the attractive feature of steady-state operation becomes more feasible since such configurations no longer require a toroidal current transformer. Second, with zero net current, one potentially dangerous class of MHD instabilities, the current-driven kink modes, is eliminated. Finally, three-dimensional configurations possess nondegenerate flux surfaces even in the absence of plasma pressure and plasma current. Although there is an enormous range of possible three-dimensional equilibria, the configurations of interest are accurately described as axisymmetric tori with superimposed helical fields; furthermore, they possess no net toroidal current. Instead, two different and less obvious restoring forces are developed: the helical sideband force and the toroidal dipole current force. Each is discussed in detail in Chapter 7. A detailed discussion of the parallel current constraint, including its physical significance, is given in section 7.2. A general analysis of helical sideband equilibria, along with a detailed description of the Elmo bumpy torus, is presented in sections 7.3 and 7.4. A general description of toroidal dipole-current equilibria, including a detailed discussion of stellarators, heliotrons, and torsatrons, is given in sections 7.5 and 7.6

  4. Relationship between preoperative breast MRI and surgical treatment of non-metastatic breast cancer.

    Science.gov (United States)

    Onega, Tracy; Weiss, Julie E; Goodrich, Martha E; Zhu, Weiwei; DeMartini, Wendy B; Kerlikowske, Karla; Ozanne, Elissa; Tosteson, Anna N A; Henderson, Louise M; Buist, Diana S M; Wernli, Karen J; Herschorn, Sally D; Hotaling, Elise; O'Donoghue, Cristina; Hubbard, Rebecca

    2017-12-01

    More extensive surgical treatments for early stage breast cancer are increasing. The patterns of preoperative MRI overall and by stage for this trend has not been well established. Using Breast Cancer Surveillance Consortium registry data from 2010 through 2014, we identified women with an incident non-metastatic breast cancer and determined use of preoperative MRI and initial surgical treatment (mastectomy, with or without contralateral prophylactic mastectomy (CPM), reconstruction, and breast conserving surgery ± radiation). Clinical and sociodemographic covariates were included in multivariable logistic regression models to estimate adjusted odds ratios and 95% confidence intervals. Of the 13 097 women, 2217 (16.9%) had a preoperative MRI. Among the women with MRI, results indicated 32% higher odds of unilateral mastectomy compared to breast conserving surgery and of mastectomy with CPM compared to unilateral mastectomy. Women with preoperative MRI also had 56% higher odds of reconstruction. Preoperative MRI in women with DCIS and early stage invasive breast cancer is associated with more frequent mastectomy, CPM, and reconstruction surgical treatment. Use of more extensive surgical treatment and reconstruction among women with DCIS and early stage invasive cancer whom undergo MRI warrants further investigation. © 2017 Wiley Periodicals, Inc.

  5. Comparative Analysis of Logistic Regression, Support Vector Machine and Artificial Neural Network for the Differential Diagnosis of Benign and Malignant Solid Breast Tumors by the Use of Three-Dimensional Power Doppler Imaging

    International Nuclear Information System (INIS)

    Chen, Shou Tung; Hsiao, Yi Hsuan; Kuo, Shou Jen; Tseng, Hsin Shun; Wu, Hwa Koon; Chen, Dar Ren; Huang, Yu Len

    2009-01-01

    Logistic regression analysis (LRA), Support Vector Machine (SVM) and a neural network (NN) are commonly used statistical models in computeraided diagnostic (CAD) systems for breast ultrasonography (US). The aim of this study was to clarify the diagnostic ability of the use of these statistical models for future applications of CAD systems, such as three-dimensional (3D) power Doppler imaging, vascularity evaluation and the differentiation of a solid mass. A database that contained 3D power Doppler imaging pairs of non-harmonic and tissue harmonic images for 97 benign and 86 malignant solid tumors was utilized. The virtual organ computer-aided analysis-imaging program was used to analyze the stored volumes of the 183 solid breast tumors. LRA, an SVM and NN were employed in comparative analyses for the characterization of benign and malignant solid breast masses from the database. The values of area under receiver operating characteristic (ROC) curve, referred to as Az values for the use of non-harmonic 3D power Doppler US with LRA, SVM and NN were 0.9341, 0.9185 and 0.9086, respectively. The Az values for the use of harmonic 3D power Doppler US with LRA, SVM and NN were 0.9286, 0.8979 and 0.9009, respectively. The Az values of six ROC curves for the use of LRA, SVM and NN for non-harmonic or harmonic 3D power Doppler imaging were similar. The diagnostic performances of these three models (LRA, SVM and NN) are not different as demonstrated by ROC curve analysis. Depending on user emphasis for the use of ROC curve findings, the use of LRA appears to provide better sensitivity as compared to the other statistical models

  6. A new three-dimensional conformal radiotherapy (3DCRT) technique for large breast and/or high body mass index patients: evaluation of a novel fields assessment aimed to reduce extra–target-tissue irradiation

    Science.gov (United States)

    Stimato, Gerardina; Ippolito, Edy; Silipigni, Sonia; Venanzio, Cristina Di; Gaudino, Diego; Fiore, Michele; Trodella, Lucio; D'Angelillo, Rolando Maria; Ramella, Sara

    2016-01-01

    Objective: To develop an alternative three-dimensional treatment plan with standardized fields class solution for whole-breast radiotherapy in patients with large/pendulous breast and/or high body mass index (BMI). Methods: Two treatment plans [tangential fields and standardized five-fields technique (S5F)] for a total dose of 50 Gy/25 fractions were generated for patients with large breasts [planning target volume (PTV) >1000 cm3 and/or BMI >25 kg m−2], supine positioned. S5F plans consist of two wedged tangential beams, anteroposterior: 20° for the right breast and 340° for the left breast, and posteroanterior: 181° for the right breast and 179° for the left breast. A field in field in medial–lateral beam and additional fields were added to reduce hot spot areas and extra–target-tissue irradiation and to improve dose distribution. The percentage of PTV receiving 95% of the prescribed dose (PTV V95%), percentage of PTV receiving 105% of the prescribed dose (PTV V105%), maximal dose to PTV (PTV Dmax), homogeneity index (HI) and conformity index were recorded. V10%, V20%, V105% and V107% of a “proper” normal tissue structure (body-PTV healthy tissue) were recorded. Statistical analyses were performed using SYSTAT v.12.0 (SPSS, Chicago, IL). Results: In 38 patients included, S5F improved HI (8.4 vs 10.1; p ≤ 0.001) and significantly reduced PTV Dmax and PTV V105%. The extra–target-tissue irradiation was significantly reduced using S5F for V105% (cm3) and V107% (cm3) with a very high difference in tissue irradiation (46.6 vs 3.0 cm3, p ≤ 0.001 for V105% and 12.2 vs 0.0 cm3, p ≤ 0.001 for V107% for tangential field and S5F plans, respectively). Only a slight increase in low-dose extra–target-tissue irradiation (V10%) was observed (2.2719 vs 1.8261 cm3, p = 0.002). Conclusion: The S5F technique in patients with large breast or high BMI increases HI and decreases hot spots in extra-target-tissues and can therefore be

  7. Contrast-enhanced breast MRI: factors affecting sensitivity and specificity

    Energy Technology Data Exchange (ETDEWEB)

    Piccoli, C.W. [Department of Radiology, Jefferson Medical College, Thomas Jefferson University Hospital, 132 South 10th Street, 7th floor, Philadelphia, PA 19107-5244 (United States)

    1997-12-31

    Contrast-enhanced MRI (CE-MRI) of the breast has been investigated for over 10 years. The reports of sensitivity for cancer detection have generally been greater than 90 %. However, estimates of specificity have varied greatly. Differing results are due to differences in study populations, technical methods and criteria for interpretation. Early and marked signal rise, detected using dynamic imaging technique following contrast administration, is the MRI hallmark of cancer. However, some malignant lesions may enhance slowly or minimally, and a variety of benign lesions may enhance rapidly with marked signal intensity. High resolution techniques generally requiring longer acquisition times are more likely to depict the slowly enhancing malignancies at the cost of a decrease in specificity due to lack of temporal resolution. This disadvantage may be offset by the improved visualization of lesion morphology with high resolution images. This report reviews the methods and results of the leading investigators of breast MRI. (orig.) With 3 figs., 70 refs.

  8. Contrast-enhanced breast MRI: factors affecting sensitivity and specificity

    International Nuclear Information System (INIS)

    Piccoli, C.W.

    1997-01-01

    Contrast-enhanced MRI (CE-MRI) of the breast has been investigated for over 10 years. The reports of sensitivity for cancer detection have generally been greater than 90 %. However, estimates of specificity have varied greatly. Differing results are due to differences in study populations, technical methods and criteria for interpretation. Early and marked signal rise, detected using dynamic imaging technique following contrast administration, is the MRI hallmark of cancer. However, some malignant lesions may enhance slowly or minimally, and a variety of benign lesions may enhance rapidly with marked signal intensity. High resolution techniques generally requiring longer acquisition times are more likely to depict the slowly enhancing malignancies at the cost of a decrease in specificity due to lack of temporal resolution. This disadvantage may be offset by the improved visualization of lesion morphology with high resolution images. This report reviews the methods and results of the leading investigators of breast MRI. (orig.)

  9. MRI Background Parenchymal Enhancement Is Not Associated with Breast Cancer.

    Directory of Open Access Journals (Sweden)

    Barbara Bennani-Baiti

    Full Text Available Previously, a strong positive association between background parenchymal enhancement (BPE at magnetic resonance imaging (MRI and breast cancer was reported in high-risk populations. We sought to determine, whether this was also true for non-high-risk patients.540 consecutive patients underwent breast MRI for assessment of breast findings (BI-RADS 0-5, non-high-risk screening (no familial history of breast cancer, no known genetic mutation, no prior chest irradiation, or previous breast cancer diagnosis and subsequent histological work-up. For this IRB-approved study, BPE and fibroglandular tissue FGT were retrospectively assessed by two experienced radiologists according to the BI-RADS lexicon. Pearson correlation coefficients were calculated to explore associations between BPE, FGT, age and final diagnosis of breast cancer. Subsequently, multivariate logistic regression analysis, considering covariate colinearities, was performed, using final diagnosis as the target variable and BPE, FGT and age as covariates.Age showed a moderate negative correlation with FGT (r = -0.43, p<0.001 and a weak negative correlation with BPE (r = -0.28, p<0.001. FGT and BPE correlated moderately (r = 0.35, p<0.001. Final diagnosis of breast cancer displayed very weak negative correlations with FGT (r = -0.09, p = 0.046 and BPE (r = -0.156, p<0.001 and weak positive correlation with age (r = 0.353, p<0.001. On multivariate logistic regression analysis, the only independent covariate for prediction of breast cancer was age (OR 1.032, p<0.001.Based on our data, neither BPE nor FGT independently correlate with breast cancer risk in non-high-risk patients at MRI. Our model retained only age as an independent risk factor for breast cancer in this setting.

  10. Progress of radiotherapy by three-dimensional treatment planning

    International Nuclear Information System (INIS)

    Imada, Hajime; Nomoto, Satoshi; Takahashi, Hiroyuki; Nakata, Hajime

    1998-01-01

    The recent progress of three-dimensional radiation treatment planning was reviewed. And clinical cases such as lung cancer and breast cancer are introduced. In the University of Occupational and Development Health, the treatment system FOCUS which is made up of CT simulator and linac was used mainly. Three-dimensional treatment planning was carried for about 90% of 330 patients who underwent radiotherapy for one year. The target becomes to be accurate and dose distribution with all CT slices in radiation field can be confirmed by using three-dimensional radiation treatment planning apparatus. High dose irradiation localized to tumor part is possible. Relations between total dose and volume of normal tissue and/or tumor can be estimated numerically and easily by DVH. A prediction of indication and affection became possible by this procedure. In conclusion, generalization of three-dimensional radiation treatment planning will bring progress of more effective radiotherapy with less adverse reaction. (K.H.). 21 refs

  11. Background parenchymal enhancement on breast MRI and mammographic breast density: correlation with tumour characteristics

    International Nuclear Information System (INIS)

    Kim, M.Y.; Choi, N.; Yang, J.-H.; Yoo, Y.B.; Park, K.S.

    2015-01-01

    Aim: To investigate the relationship between mammographic breast density (MGD) and background parenchymal enhancement (BPE) at breast MRI and histopathological features of invasive breast cancers. Materials and methods: A total of 178 women with unilateral invasive breast cancer who preoperatively underwent mammography and breast MRI were included in the study. Two radiologists rated MGD and BPE according to BI-RADS criteria in consensus. The relationship between MGD and BPE was investigated, and compared with histopathological features of invasive breast cancers according to the level of MGD and BPE. Results: At MRI, there is no significant difference in the distribution of MGD and BPE of the contralateral breast in women with invasive breast cancer according to menopausal status (p=0.226, 0.384). Women with high MGD (>50% glandular) were more likely to have oestrogen-receptor (ER)-positive breast cancer (p=0.045) and progesterone receptor (PR)-positive breast cancer (p=0.020). With regard to BPE, PR positivity correlated with moderate or marked BPE with borderline significance (p=0.054). Multivariate logistic regression analyses revealed that women with high MGD were less likely to have triple-negative (i.e., a cancer that is ER negative, PR negative, and human epidermal growth factor receptor type 2 [HER2] negative) breast cancer compared with ER (+)/HER2 (−) cancer (OR=0.231, 95% CI: 0.070, 0.760; p=0.016). No association between the histological tumour characteristics and BPE was observed. Conclusion: In women with invasive breast cancer, high MGD is associated with ER positivity of the invasive breast cancer. However, at MRI, BPE of the contralateral breast seems to be independent of tumour characteristics. -- Highlights: •There is no difference in distribution of MGD and BPE of contralateral breast on MRI. •High MGD is associated with ER positivity of the invasive breast cancer. •BPE of the contralateral breast on MRI is independent of tumor

  12. Magnetic Resonance Imaging (MRI and Spectroscopy (MRS in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Uma Sharma

    2008-01-01

    Full Text Available Breast cancer is a major health problem in women and early detection is of prime importance. Breast magnetic resonance imaging (MRI provides both physical and physiologic tissue features that are useful in discriminating malignant from benign lesions. Contrast enhanced MRI is valuable for diagnosis of small tumors in dense breast and the structural and kinetic parameters improved the specificity of diagnosing benign from malignant lesions. It is a complimentary modality for preoperative staging, to follow response to therapy, to detect recurrences and for screening high risk women. Diffusion, perfusion and MR elastography have been applied to breast lesion characterization and show promise.In-vivo MR spectroscopy (MRS is a valuable method to obtain the biochemical status of normal and diseased tissues. Malignant tissues contain high concentration of choline containing compounds that can be used as a biochemical marker. MRS helps to increase the specificity of MRI in lesions larger than 1cm and to monitor the tumor response. Various MR techniques show promise primarily as adjunct to the existing standard detection techniques, and its acceptability as a screening method will increase if specificity can be improved. This review presents the progress made in different MRI and MRS techniques in breast cancer management.

  13. Incidental extra-mammary findings in breast MRI

    International Nuclear Information System (INIS)

    Alduk, A.M.; Prutki, M.; Stern-Padovan, R.

    2015-01-01

    Aim: To investigate the frequency, distribution, and nature of incidental extra-mammary findings detected with breast MRI. Materials and methods: Incidental findings were defined as unexpected lesions outside the breast, not previously known or suspected at the time of referral. Five hundred consecutive breast MRI studies performed from June 2010 to September 2012 were reviewed in this retrospective study for which the institutional review board granted approval and waived the requirement for informed consent. MRI findings were compared with subsequent diagnostic procedures in order to differentiate benign from malignant lesions. Results: One hundred and thirty-eight incidental findings were found in 107 of the 500 (21.4%) examined patients. The most common site was the liver (61/138; 44.2%), followed by the lung (24/138; 17.4%), mediastinum (22/138; 15.9%), pleural cavity (15/138; 10.9%), bone tissue (9/138; 6.5%), spleen (3/138; 2.2%), major pectoral muscle (3/138; 2.2%), and kidney (1/138; 0.7%). Twenty-five of the 138 (18.1%) incidental findings were confirmed to be malignant, whereas the remaining 113 (81.9%) were benign. Malignant findings were exclusively detected in patients with known breast carcinoma, whereas incidental findings in patients without a history of carcinoma were all benign. Twenty-five of 100 (24.8%) incidental findings among patients with history of breast cancer were malignant. Conclusion: Although many of incidental findings were benign, some were malignant, altering the diagnostic work-up, staging, and treatment. Therefore, it is important to assess the entire field of view carefully for abnormalities when reviewing breast MRI studies. - Highlights: • 500 consecutive breast MRI studies were retrospectively reviewed. • Incidental findings were found in 107/500 (21.4%) of examined patients. • Incidental extra-mammary findings on breast MRI are common. • Malignant findings were exclusively detected in patients with known breast

  14. Three-dimensional aromatic networks.

    Science.gov (United States)

    Toyota, Shinji; Iwanaga, Tetsuo

    2014-01-01

    Three-dimensional (3D) networks consisting of aromatic units and linkers are reviewed from various aspects. To understand principles for the construction of such compounds, we generalize the roles of building units, the synthetic approaches, and the classification of networks. As fundamental compounds, cyclophanes with large aromatic units and aromatic macrocycles with linear acetylene linkers are highlighted in terms of transannular interactions between aromatic units, conformational preference, and resolution of chiral derivatives. Polycyclic cage compounds are constructed from building units by linkages via covalent bonds, metal-coordination bonds, or hydrogen bonds. Large cage networks often include a wide range of guest species in their cavity to afford novel inclusion compounds. Topological isomers consisting of two or more macrocycles are formed by cyclization of preorganized species. Some complicated topological networks are constructed by self-assembly of simple building units.

  15. Magnetic Resonance Imaging (MRI and Spectroscopy (MRS in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Uma Sharma

    2008-01-01

    Full Text Available Breast cancer is a major health problem in women and early detection is of prime importance. Breast magnetic resonance imaging (MRI provides both physical and physiologic tissue features that are useful in discriminating malignant from benign lesions. Contrast enhanced MRI is valuable for diagnosis of small tumors in dense breast and the structural and kinetic parameters improved the specificity of diagnosing benign from malignant lesions. It is a complimentary modality for preoperative staging, to follow response to therapy, to detect recurrences and for screening high risk women. Diffusion, perfusion and MR elastography have been applied to breast lesion characterization and show promise. In-vivo MR spectroscopy (MRS is a valuable method to obtain the biochemical status of normal and diseased tissues. Malignant tissues contain high concentration of choline containing compounds that can be used as a biochemical marker. MRS helps to increase the specificity of MRI in lesions larger than 1cm and to monitor the tumor response. Various MR techniques show promise primarily as adjunct to the existing standard detection techniques, and its acceptability as a screening method will increase if specificity can be improved. This review presents the progress made in different MRI and MRS techniques in beast cancer management.

  16. Risk-benefit analysis of preoperative breast MRI in patients with primary breast cancer

    International Nuclear Information System (INIS)

    Siegmann, K.C.; Baur, A.; Vogel, U.; Kraemer, B.; Hahn, M.; Claussen, C.D.

    2009-01-01

    Aim: To analyse and compare the risks and benefits of preoperative breast MRI (BMRI) in patients with primary breast cancer (PBC), and to determine the influence of mammographic breast density (BD) and histological tumour type (TT). Materials and Methods: One hundred and nineteen patients who underwent preoperative bilateral breast MRI for staging of PBC during a 1-year period from July 2005 to August 2006 were prospectively evaluated. Changes in clinical management due to BMRI findings were recorded. MRI-detected lesions were correlated with histology. Additional MRI-detected malignant lesions and spared additional biopsies because of negative MRI in case of unclear ultrasound findings were determined as beneficial for the patient. Biopsies of benign MRI detected lesions were defined as disadvantageous. The influence of BD (ACR 1-4) and TT on the change in clinical management and patient benefit was evaluated. Results: The findings of the BMRI examinations changed the clinical management in 48 patients (40.3%). Seventeen women underwent mastectomy instead of breast conservation, eight patients underwent extended excision, 21 additional lesions were clarified by MRI intervention, and two ultrasound-detected lesions were not biopsied because of negative MRI. Histologically malignant additional or extended biopsies (n = 34) and two cases of spared biopsies resulted in 36 (30.3%) women who benefited from preoperative BMRI. Twelve patients (10.1%) had additional biopsies of MRI-detected benign lesions, and therefore, had an unfavourable outcome due to BMRI. The change in clinical management and patient benefit were independent of BD and TT (p > 0.05). Conclusion: Preoperative BMRI was beneficial for 30.3% of 119 patients with PBC. The percentage of additional biopsies of benign lesions (10.1%) seems acceptable

  17. Preoperative axillary lymph node evaluation in breast cancer patients by breast magnetic resonance imaging (MRI): Can breast MRI exclude advanced nodal disease?

    International Nuclear Information System (INIS)

    Hyun, Su Jeong; Kim, Eun-Kyung; Moon, Hee Jung; Yoon, Jung Hyun; Kim, Min Jung

    2016-01-01

    To evaluate the diagnostic performance of breast magnetic resonance imaging (MRI) in preoperative evaluation of axillary lymph node metastasis (ALNM) in breast cancer patients and to assess whether breast MRI can be used to exclude advanced nodal disease. A total of 425 patients were included in this study and breast MRI findings were retrospectively reviewed. The diagnostic performance of breast MRI for diagnosis of ALNM was evaluated in all patients, patients with neoadjuvant chemotherapy (NAC), and those without NAC (no-NAC). We evaluated whether negative MRI findings (cN0) can exclude advanced nodal disease (pN2-pN3) using the negative predictive value (NPV) in each group. The sensitivity and NPV of breast MRI in evaluation of ALNM was 51.3 % (60/117) and 83.3 % (284/341), respectively. For cN0 cases on MRI, pN2-pN3 manifested in 1.8 % (6/341) of the overall patients, 0.4 % (1/257) of the no-NAC group, and 6 % (5/84) of the NAC group. The NPV of negative MRI findings for exclusion of pN2-pN3 was higher for the no-NAC group than for the NAC group (99.6 % vs. 94.0 %, p = 0.039). Negative MRI findings (cN0) can exclude the presence of advanced nodal disease with an NPV of 99.6 % in the no-NAC group. (orig.)

  18. Preoperative axillary lymph node evaluation in breast cancer patients by breast magnetic resonance imaging (MRI): Can breast MRI exclude advanced nodal disease?

    Energy Technology Data Exchange (ETDEWEB)

    Hyun, Su Jeong [Yonsei University College of Medicine, Department of Radiology, Breast Cancer Clinic, Severance Hospital, Research Institute of Radiological Science, Seoul (Korea, Republic of); Hallym University Medical Center, Department of Radiology, Kangnam Sacred Heart Hospital, Seoul (Korea, Republic of); Kim, Eun-Kyung; Moon, Hee Jung; Yoon, Jung Hyun; Kim, Min Jung [Yonsei University College of Medicine, Department of Radiology, Breast Cancer Clinic, Severance Hospital, Research Institute of Radiological Science, Seoul (Korea, Republic of)

    2016-11-15

    To evaluate the diagnostic performance of breast magnetic resonance imaging (MRI) in preoperative evaluation of axillary lymph node metastasis (ALNM) in breast cancer patients and to assess whether breast MRI can be used to exclude advanced nodal disease. A total of 425 patients were included in this study and breast MRI findings were retrospectively reviewed. The diagnostic performance of breast MRI for diagnosis of ALNM was evaluated in all patients, patients with neoadjuvant chemotherapy (NAC), and those without NAC (no-NAC). We evaluated whether negative MRI findings (cN0) can exclude advanced nodal disease (pN2-pN3) using the negative predictive value (NPV) in each group. The sensitivity and NPV of breast MRI in evaluation of ALNM was 51.3 % (60/117) and 83.3 % (284/341), respectively. For cN0 cases on MRI, pN2-pN3 manifested in 1.8 % (6/341) of the overall patients, 0.4 % (1/257) of the no-NAC group, and 6 % (5/84) of the NAC group. The NPV of negative MRI findings for exclusion of pN2-pN3 was higher for the no-NAC group than for the NAC group (99.6 % vs. 94.0 %, p = 0.039). Negative MRI findings (cN0) can exclude the presence of advanced nodal disease with an NPV of 99.6 % in the no-NAC group. (orig.)

  19. Clinical significance of three-dimensional sonohysterography

    International Nuclear Information System (INIS)

    Lee, Eun Hye; Lee, Mi Hwa; Lee, Chan; Kim, Jong Wook; Shin, Myung Choel

    1999-01-01

    To evaluate the usefulness of three dimensional sonohysterography (3D SHG) in the evaluation of uterine endometrial and submucosal lesions in comparison with conventional two-dimensional sonohysterography (2D SHG). Our series consisted of 26 patients (mean aged 41 years) who complained of uterine bleeding, menorrhagia, or dysmenorrhea. 2D SHG was performed, and then 3D SHG was done after the volume mode was switched on. Simultaneous display of three perpendicular two-dimensional planes and surface rendering of findings on particular section were obtained. We analyzed whether the endometrium was thickened or not, and the location, size, shape, echogenicity, posterior shadowing, and echogenic rim of the focal lesion. The results were compared with the pathologic findings or MRI. There were submucosal myomas (n=12), intramural myomas (n=2), endometrial polyps (n=7), placental polyp (n=1), and normal endometrial cavities (n=4) on SHG. Nineteen cases were confirmed by pathologic findings or MRI. The results were correlated in 89% (17/19) of the cases. We misdiagnosed 2 cases: focal endometrial hyperplasia and choriocarcinoma were misdiagnosed as endometrial polyp and placental polyp, respectively. Imaging diagnoses were same in the techniques. Comparing with 2D SHG, 3D SHG provided a subjective display of pathologic findings and an additional information about spatial relationship between focal lesion and surroundings.

  20. Clinical significance of three-dimensional sonohysterography

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Hye; Lee, Mi Hwa; Lee, Chan; Kim, Jong Wook; Shin, Myung Choel [Pochon Cha University College of Medicine, Pochon (Korea, Republic of)

    1999-12-15

    To evaluate the usefulness of three dimensional sonohysterography (3D SHG) in the evaluation of uterine endometrial and submucosal lesions in comparison with conventional two-dimensional sonohysterography (2D SHG). Our series consisted of 26 patients (mean aged 41 years) who complained of uterine bleeding, menorrhagia, or dysmenorrhea. 2D SHG was performed, and then 3D SHG was done after the volume mode was switched on. Simultaneous display of three perpendicular two-dimensional planes and surface rendering of findings on particular section were obtained. We analyzed whether the endometrium was thickened or not, and the location, size, shape, echogenicity, posterior shadowing, and echogenic rim of the focal lesion. The results were compared with the pathologic findings or MRI. There were submucosal myomas (n=12), intramural myomas (n=2), endometrial polyps (n=7), placental polyp (n=1), and normal endometrial cavities (n=4) on SHG. Nineteen cases were confirmed by pathologic findings or MRI. The results were correlated in 89% (17/19) of the cases. We misdiagnosed 2 cases: focal endometrial hyperplasia and choriocarcinoma were misdiagnosed as endometrial polyp and placental polyp, respectively. Imaging diagnoses were same in the techniques. Comparing with 2D SHG, 3D SHG provided a subjective display of pathologic findings and an additional information about spatial relationship between focal lesion and surroundings.

  1. Three-dimensional reconstruction of functional brain images

    International Nuclear Information System (INIS)

    Inoue, Masato; Shoji, Kazuhiko; Kojima, Hisayoshi; Hirano, Shigeru; Naito, Yasushi; Honjo, Iwao

    1999-01-01

    We consider PET (positron emission tomography) measurement with SPM (Statistical Parametric Mapping) analysis to be one of the most useful methods to identify activated areas of the brain involved in language processing. SPM is an effective analytical method that detects markedly activated areas over the whole brain. However, with the conventional presentations of these functional brain images, such as horizontal slices, three directional projection, or brain surface coloring, makes understanding and interpreting the positional relationships among various brain areas difficult. Therefore, we developed three-dimensionally reconstructed images from these functional brain images to improve the interpretation. The subjects were 12 normal volunteers. The following three types of images were constructed: routine images by SPM, three-dimensional static images, and three-dimensional dynamic images, after PET images were analyzed by SPM during daily dialog listening. The creation of images of both the three-dimensional static and dynamic types employed the volume rendering method by VTK (The Visualization Toolkit). Since the functional brain images did not include original brain images, we synthesized SPM and MRI brain images by self-made C++ programs. The three-dimensional dynamic images were made by sequencing static images with available software. Images of both the three-dimensional static and dynamic types were processed by a personal computer system. Our newly created images showed clearer positional relationships among activated brain areas compared to the conventional method. To date, functional brain images have been employed in fields such as neurology or neurosurgery, however, these images may be useful even in the field of otorhinolaryngology, to assess hearing and speech. Exact three-dimensional images based on functional brain images are important for exact and intuitive interpretation, and may lead to new developments in brain science. Currently, the surface

  2. Three-dimensional reconstruction of functional brain images

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Masato; Shoji, Kazuhiko; Kojima, Hisayoshi; Hirano, Shigeru; Naito, Yasushi; Honjo, Iwao [Kyoto Univ. (Japan)

    1999-08-01

    We consider PET (positron emission tomography) measurement with SPM (Statistical Parametric Mapping) analysis to be one of the most useful methods to identify activated areas of the brain involved in language processing. SPM is an effective analytical method that detects markedly activated areas over the whole brain. However, with the conventional presentations of these functional brain images, such as horizontal slices, three directional projection, or brain surface coloring, makes understanding and interpreting the positional relationships among various brain areas difficult. Therefore, we developed three-dimensionally reconstructed images from these functional brain images to improve the interpretation. The subjects were 12 normal volunteers. The following three types of images were constructed: routine images by SPM, three-dimensional static images, and three-dimensional dynamic images, after PET images were analyzed by SPM during daily dialog listening. The creation of images of both the three-dimensional static and dynamic types employed the volume rendering method by VTK (The Visualization Toolkit). Since the functional brain images did not include original brain images, we synthesized SPM and MRI brain images by self-made C++ programs. The three-dimensional dynamic images were made by sequencing static images with available software. Images of both the three-dimensional static and dynamic types were processed by a personal computer system. Our newly created images showed clearer positional relationships among activated brain areas compared to the conventional method. To date, functional brain images have been employed in fields such as neurology or neurosurgery, however, these images may be useful even in the field of otorhinolaryngology, to assess hearing and speech. Exact three-dimensional images based on functional brain images are important for exact and intuitive interpretation, and may lead to new developments in brain science. Currently, the surface

  3. Computerized Interpretation of Dynamic Breast MRI

    National Research Council Canada - National Science Library

    Chen, Weijie; Giger, Maryellen Lissak

    2005-01-01

    ... and prognosis of breast cancer. The research involves investigation of automatic methods for image artifacts correction, tumor segmentation, and extraction of computerized features that help distinguish between benign and malignant lesions...

  4. Breast MRI at 7 Tesla with a bilateral coil and robust fat suppression.

    Science.gov (United States)

    Brown, Ryan; Storey, Pippa; Geppert, Christian; McGorty, KellyAnne; Klautau Leite, Ana Paula; Babb, James; Sodickson, Daniel K; Wiggins, Graham C; Moy, Linda

    2014-03-01

    To develop a bilateral coil and fat suppressed T1-weighted sequence for 7 Tesla (T) breast MRI. A dual-solenoid coil and three-dimensional (3D) T1w gradient echo sequence with B1+ insensitive fat suppression (FS) were developed. T1w FS image quality was characterized through image uniformity and fat-water contrast measurements in 11 subjects. Signal-to-noise ratio (SNR) and flip angle maps were acquired to assess the coil performance. Bilateral contrast-enhanced and unilateral high resolution (0.6 mm isotropic, 6.5 min acquisition time) imaging highlighted the 7T SNR advantage. Reliable and effective FS and high image quality was observed in all subjects at 7T, indicating that the custom coil and pulse sequence were insensitive to high-field obstacles such as variable tissue loading. 7T and 3T image uniformity was similar (P=0.24), indicating adequate 7T B1+ uniformity. High 7T SNR and fat-water contrast enabled 0.6 mm isotropic imaging and visualization of a high level of fibroglandular tissue detail. 7T T1w FS bilateral breast imaging is feasible with a custom radiofrequency (RF) coil and pulse sequence. Similar image uniformity was achieved at 7T and 3T, despite different RF field behavior and variable coil-tissue interaction due to anatomic differences that might be expected to alter magnetic field patterns. Copyright © 2013 Wiley Periodicals, Inc.

  5. DCIS of the breast: the value of preoperative MRI

    International Nuclear Information System (INIS)

    Doyle, Anthony J.; Prakash, Sharath; Wang, Kaye; Cranshaw, Isaac; Taylor, Eletha; Oldfield, Robin

    2016-01-01

    Ductal carcinoma in situ (DCIS) of the breast is commonly treated surgically. The intent of this study was to evaluate whether preoperative MRI could add to mammography in predicting the extent of the disease. A series of patients with DCIS attending our surgical clinic for preoperative assessment were offered MRI as part of a prospective study. The extent of the disease indicated by mammography and MRI was compared with histopathology after definitive treatment. The null hypothesis was that MRI does not add to mammography in accurately predicting disease extent. Fifty patients make up the basis of this report. Mammography was concordant with the pathology in 31/50. MRI and mammography combined were concordant in 43/50. This is a statistically significant difference (P = 0.01, Fisher's exact test). Upstaging to mastectomy by MRI was correct in 7/8 patients, but downstaging was correct in only 2/4. The null hypothesis is rejected. MRI does add to mammography in accurately predicting the extent of DCIS. Upstaging by MRI is usually reliable.

  6. Breast MRI in pregnancy-associated breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Shin Jung; Shin, Sang Soo [Dept. of of Radiology, Chonnam National University Hospital, Gwangju (Korea, Republic of); Lim, Hyo Soon; Baek, Jang Mi; Seon, Hyun Ju; Heo, Suk Hee; Kim, Jin Woong; Park, Min Ho [Chonnam National University Medical School, Chonnam National University Hwasun Hospital, Hwasun (Korea, Republic of)

    2017-03-15

    The purpose of this study was to evaluate the usefulness of MR imaging and to describe the MR imaging findings of pregnancy-associated breast cancer. From 2006 to 2013, MR images of 23 patients with pregnancy-associated breast cancer were retrospectively evaluated. MR images were reviewed to evaluate lesion detection and imaging findings of pregnancy-associated breast cancer. MR images were analyzed by using the Breast Imaging Reporting and Data System and an additional MR-detected lesion with no mammographic or sonographic abnormality was determined. MR imaging depicted breast cancer in all patients, even in marked background parenchymal enhancement. Pregnancy-associated breast cancer was seen as a mass in 20 patients and as non-mass enhancement with segmental distribution in 3 patients. The most common features of the masses were irregular shape (85%), non-circumscribed margin (85%), and heterogeneous enhancement (60%). An additional site of cancer was detected with MR imaging in 5 patients (21.7%) and the type of surgery was changed. Pregnancy-associated breast cancer was usually seen as an irregular mass with heterogeneous enhancement on MR images. Although these findings were not specific, MR imaging was useful in evaluating the disease extent of pregnancy-associated breast cancer.

  7. Breast MRI in pregnancy-associated breast cancer

    International Nuclear Information System (INIS)

    Kim, Shin Jung; Shin, Sang Soo; Lim, Hyo Soon; Baek, Jang Mi; Seon, Hyun Ju; Heo, Suk Hee; Kim, Jin Woong; Park, Min Ho

    2017-01-01

    The purpose of this study was to evaluate the usefulness of MR imaging and to describe the MR imaging findings of pregnancy-associated breast cancer. From 2006 to 2013, MR images of 23 patients with pregnancy-associated breast cancer were retrospectively evaluated. MR images were reviewed to evaluate lesion detection and imaging findings of pregnancy-associated breast cancer. MR images were analyzed by using the Breast Imaging Reporting and Data System and an additional MR-detected lesion with no mammographic or sonographic abnormality was determined. MR imaging depicted breast cancer in all patients, even in marked background parenchymal enhancement. Pregnancy-associated breast cancer was seen as a mass in 20 patients and as non-mass enhancement with segmental distribution in 3 patients. The most common features of the masses were irregular shape (85%), non-circumscribed margin (85%), and heterogeneous enhancement (60%). An additional site of cancer was detected with MR imaging in 5 patients (21.7%) and the type of surgery was changed. Pregnancy-associated breast cancer was usually seen as an irregular mass with heterogeneous enhancement on MR images. Although these findings were not specific, MR imaging was useful in evaluating the disease extent of pregnancy-associated breast cancer

  8. [Radiologic follow-up after breast-conserving surgery: value of MRI examination of the breast].

    Science.gov (United States)

    Polgár, C; Forrai, G; Szabó, E; Riedl, E; Fodor, J; Fornet, B; Németh, G

    1999-11-21

    The aim of the study was to establish an objective method for evaluation the extent, topography and quantity of skin and soft tissue side effects after tele- and/or brachyradiotherapy of the conserved breast and to compare the sequales of different radiation methods. 26 patients operated on for T1-2 N0-1 breast cancer underwent the following kinds of postoperative radiotherapy: 1. 46-50 Gy whole breast teletherapy + 10-16 Gy electron boost (5 patients), 2. 46-50 Gy teletherapy + 10-15 Gy HDR brachytherapy boost (12 patients), 3. 46-50 Gy teletherapy (6 patients), 4. 36,4 Gy sole HDR brachytherapy of the tumour bed (5 patients). The postirradiation side effects were examined by MRI, mammogram, US and physical examination, as well. MRI was performed on a 0.5 T, double breast coil, with SE-T1, SE-T2 and 3D-GE sequences. The findings of MRI and mammography were compared to physically detectable side effects using the RTOG/EORTC late radiation morbidity scoring scheme. US is useful in the measurement of skin thickening and in the diagnosis of fat necrosis. Mammography and physical examination are very subjective and low specificity methods to evaluate postirradiation side effects. MRI is a suitable and more objective method to detect the real extent and quantity of skin thickening and fibrosis. The incidence of > or = G2 side effects of skin and breast parenchyma were 64.5 and 32.2%, respectively. The differences between the side effects of whole breast irradiation and sole brachytherapy of the tumour bed are also clearly demonstrated. Brachytherapy alone is feasible without compromising cosmetic results. The authors established the MRI criteria for categorization the extent and grade of skin thickening and fibrosis (focal vs diffuse, grade 1-4). Breast MRI is an objective tool for assisting to the evaluation of the side effects of postoperative radiotherapy.

  9. Three-dimensional morphologic description and visualization of brain anatomy from MR images

    International Nuclear Information System (INIS)

    Kraske, W.; George, F.W.; Zee, C.S.; Colletti, P.M.; Halls, J.M.; Boswell, W.O.

    1989-01-01

    The USC VOXAR-MRI system incorporates MR tissue classification algorithms to provide dynamic three- dimensional volumetric visualization and discrimination of brain anatomy and pathology for precision diagnosis, staging, and treatment planning. The VOXAR-MRI approach to tissue classification employs the three-dimensional reconstruction of various intracranial features from gray-scale morphologic erosion and dilation (GMED)-derived skeleton representation of the MR acquisition. Case presentations include an array of VOXAR-MRI-demonstrated tumors, abscesses, hematomas, and other lesions

  10. Three dimensional imaging of otoliths

    International Nuclear Information System (INIS)

    Barry, B.; Markwitz, A.; David, B.

    2008-01-01

    Otoliths are small structures in fish ears made of calcium carbonate which carry a record of the environment in which the fish live. Traditionally, in order to study their microchemistry by a scanning technique such as PIXE the otoliths have been either ground down by hand or thin sectioned to expose the otolith core. However this technique is subject to human error in judging the core position. In this study we have scanned successive layers of otoliths 50 and 100 μm apart by removing the otolith material in a lapping machine which can be set to a few μm precision. In one study by comparing data from otoliths from the two ears of a freshwater species we found that polishing by hand could miss the core and thus give misleading results as to the life cycle of the fish. In another example we showed detail in a marine species which could be used to build a three dimensional picture of the Sr distribution. (author)

  11. Three-Dimensional Rebar Graphene.

    Science.gov (United States)

    Sha, Junwei; Salvatierra, Rodrigo V; Dong, Pei; Li, Yilun; Lee, Seoung-Ki; Wang, Tuo; Zhang, Chenhao; Zhang, Jibo; Ji, Yongsung; Ajayan, Pulickel M; Lou, Jun; Zhao, Naiqin; Tour, James M

    2017-03-01

    Free-standing robust three-dimensional (3D) rebar graphene foams (GFs) were developed by a powder metallurgy template method with multiwalled carbon nanotubes (MWCNTs) as a reinforcing bar, sintered Ni skeletons as a template and catalyst, and sucrose as a solid carbon source. As a reinforcement and bridge between different graphene sheets and carbon shells, MWCNTs improved the thermostability, storage modulus (290.1 kPa) and conductivity (21.82 S cm -1 ) of 3D GF resulting in a high porosity and structurally stable 3D rebar GF. The 3D rebar GF can support >3150× the foam's weight with no irreversible height change, and shows only a ∼25% irreversible height change after loading >8500× the foam's weight. The 3D rebar GF also shows stable performance as a highly porous electrode in lithium ion capacitors (LICs) with an energy density of 32 Wh kg -1 . After 500 cycles of testing at a high current density of 6.50 mA cm -2 , the LIC shows 78% energy density retention. These properties indicate promising applications with 3D rebar GFs in devices requiring stable mechanical and electrochemical properties.

  12. Dynamic MRI of breast fibroadenoma: pathologic correlation

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Ki Keun; Hahm, Jin kyeung; Yoon, Pyong Ho; Jeong, Eun Kee [Yonsei University, College of Medicine, Seoul (Korea, Republic of)

    1995-09-15

    To analyze the dynamic MR imaging of breast fibroadenoma according to the histologic type for differentiation from breast carcinoma. Dynamic MR images of 26 lesions from 22 breasts in 19 patients showing atypical clinical features or film mammogram and ultrasound manifestations were performed. We analyzed the speed and the maximal amount of contrast enhancement and the patterns, such as shape, border, and internal signal intensity, among the histologic types during five minutes after contrast injection. The speed and maximal amount of contrast enhancement of fibroadenoma were in descending order of myxoid, sclerotic, glandular, and calcified types. Among these, the value of maximal amount of contrast enhancement of myxoid and sclerotic type were more than 700 NU, but only myxoid type was enhanced more than 700 NU within the first 1 minute after contrast injection, similar to the findings of carcinoma. In general, fibroadenoma showed the tendency of smooth surface(69%), well-defined border(88%) with safety rim, and internal homogeneous signal intensity(65%). However, sclerotic type of fibroadenoma had relatively high incidence of heterogeneous internal signal intensity(78%) after Gd-DTPA injection. Dynamic MR imaging of atypical breast fibroadenoma mimicking breast malignancy was very useful in differentiation it from carcinoma and had the benefit of classifying fibroadenoma according to its histologic types.

  13. Dynamic MRI of breast fibroadenoma: pathologic correlation

    International Nuclear Information System (INIS)

    Oh, Ki Keun; Hahm, Jin kyeung; Yoon, Pyong Ho; Jeong, Eun Kee

    1995-01-01

    To analyze the dynamic MR imaging of breast fibroadenoma according to the histologic type for differentiation from breast carcinoma. Dynamic MR images of 26 lesions from 22 breasts in 19 patients showing atypical clinical features or film mammogram and ultrasound manifestations were performed. We analyzed the speed and the maximal amount of contrast enhancement and the patterns, such as shape, border, and internal signal intensity, among the histologic types during five minutes after contrast injection. The speed and maximal amount of contrast enhancement of fibroadenoma were in descending order of myxoid, sclerotic, glandular, and calcified types. Among these, the value of maximal amount of contrast enhancement of myxoid and sclerotic type were more than 700 NU, but only myxoid type was enhanced more than 700 NU within the first 1 minute after contrast injection, similar to the findings of carcinoma. In general, fibroadenoma showed the tendency of smooth surface(69%), well-defined border(88%) with safety rim, and internal homogeneous signal intensity(65%). However, sclerotic type of fibroadenoma had relatively high incidence of heterogeneous internal signal intensity(78%) after Gd-DTPA injection. Dynamic MR imaging of atypical breast fibroadenoma mimicking breast malignancy was very useful in differentiation it from carcinoma and had the benefit of classifying fibroadenoma according to its histologic types

  14. Sensitivity of enhanced MRI for the detection of breast cancer: new, multicentric, residual, and recurrent

    International Nuclear Information System (INIS)

    Davis, P.L.; McCarty, K.S. Jr.

    1997-01-01

    Magnetic resonance imaging (MRI) of the breast brings the advantages of high resolution cross-sectional imaging to breast cancer diagnosis, treatment and research: improved cancer detection, staging, selection of therapy, evaluation of therapeutic response in vivo, detection of recurrence, and even the development of new therapies. Until now breast cancer treatment and research has been impeded by the limited means of evaluating the breast cancer in vivo: primarily clinical palpation and mammography of the breast tumor. A review of the initial studies shows that with the use of paramagnetic contrast agents, MRI has a sensitivity of 96 % for detecting breast cancers. MRI detects multicentric disease with a sensitivity of 98 %, superior to any other modality. The ability of MRI to detect recurrent local breast cancer in the conservatively treated breast is nearly 100 %. MRI is capable of monitoring tumor response to chemotherapy and actually guiding therapeutic interventions such as interstitial laser photocoagulation. (orig.)

  15. Reporting and management of breast lesions detected using MRI

    International Nuclear Information System (INIS)

    Dall, B.J.G.; Vinnicombe, S.; Gilbert, F.J.

    2011-01-01

    Magnetic resonance imaging (MRI) is the most accurate technique for diagnosing and delineating the extent of both invasive and in-situ breast cancer and is increasingly being used as part of the preoperative work-up to assess the local extent of disease. It is proving invaluable in providing information that allows successful single-stage surgery. An inevitable consequence of the high sensitivity of MRI is that it will identify additional lesions that may or may not represent significant extra disease. This may complicate and delay the preoperative process. This paper outlines a strategy for managing MRI-detected lesions to optimize the benefits of breast MRI as a local staging tool while minimizing the false-positive diagnoses. It discusses the importance of good technique to reduce the number of indeterminate lesions. Methods to refine the patient pathway to minimize delays are discussed. The format of MRI reporting is discussed in detail as is the usefulness of discussion of cases at multidisciplinary meetings. Illustrative cases are used to clarify the points made.

  16. A Case Report of Breast Sparganosis in a Patient with Ipsilateral Breast Cancer: MRI and Ultrasonographic Findings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yoo Jin; Bae, Young Tae; Kim, Jee Yeon [Pusan National University Hospital, Pusan National University School of Medicine, Busan (Korea, Republic of); Choo, Ki Seok [Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan (Korea, Republic of)

    2010-12-15

    Sparganosis of the breast is a quite rare parasitic infection of humans and presents as soft tissue masses that mimic breast malignancy or benign tumor, such as fibroadenoma. We present here a case of histologically confirmed breast sparganosis in the upper inner quadrant of the right breast with coexisting breast cancer in the ipsilateral breast upper outer quadrant. Ultrasonography of breast sparganosis showed a well defined, tubular hypoechoic mass with discrete multilayered wall and tubule-in tubule appearance, surrounded by heterogenous hyperechoic areas in the subcutaneous fat layer of the breast. MRI revealed an elongated tubular structure with persistent and progressive enhancement. This is the second report concerned with the MRI and ultrasonographic findings of breast sparganosis and the first report of breast sparganosis in a patient with ipsilateral breast cancer

  17. MRI of the breast - histopathologic correlation

    International Nuclear Information System (INIS)

    Heywang, S.H.; Fenzl, G.; Hahn, D.; Beck, R.; Krischke, I.; Bassermann, R.; Nathrath, W.; Eiermann, W.

    1987-01-01

    132 solid breast masses have been examined at our institution by MR and have consequently been histopathologically correlated. T1- and T2-weighted SE and multiecho sequences have been evaluated visually. It was found that signal intensities of tissues on T2-weighted images correlated with the contents of fibrosis, cells or water. Thus in some lesions (which consisted of different tissue components), a characteristic internal structure was visible on T2-weighted images, reflecting their histopathologic structure. Corresponding to their different composition, differences of signal intensity have also been noted between those fibroadenomas with a high contents of fibrosis and all other well-circumscribed breast lesions (fibroadenomas, carcinomas). However, for the majority of lesions with irregular contours a discrimination based on signal intensities or calculated T1- and T2-values did not seem possible. This overlap can also be explained by the macroscopically similar composition (amount of fibrosis, water or cells) of benign and malignant irregular lesions. (orig.)

  18. Three dimensional image alignment, registration and fusion

    International Nuclear Information System (INIS)

    Treves, S.T.; Mitchell, K.D.; Habboush, I.H.

    1998-01-01

    Combined assessment of three dimensional anatomical and functional images (SPECT, PET, MRI, CT) is useful to determine the nature and extent of lesions in many parts of the body. Physicians principally rely on their spatial sense of mentally re-orient and overlap images obtained with different imaging modalities. Objective methods that enable easy and intuitive image registration can help the physician arrive at more optimal diagnoses and better treatment decisions. This review describes a simple, intuitive and robust image registration approach developed in our laboratory. It differs from most other registration techniques in that it allows the user to incorporate all of the available information within the images in the registration process. This method takes full advantage of the ability of knowledgeable operators to achieve image registration and fusion using an intuitive interactive visual approach. It can register images accurately and quickly without the use of elaborate mathematical modeling or optimization techniques. The method provides the operator with tools to manipulate images in three dimensions, including visual feedback techniques to assess the accuracy of registration (grids, overlays, masks, and fusion of images in different colors). Its application is not limited to brain imaging and can be applied to images from any region in the body. The overall effect is a registration algorithm that is easy to implement and can achieve accuracy on the order of one pixel

  19. Supine breast US: how to correlate breast lesions from prone MRI.

    Science.gov (United States)

    Telegrafo, Michele; Rella, Leonarda; Stabile Ianora, Amato A; Angelelli, Giuseppe; Moschetta, Marco

    2016-01-01

    To evaluate spatial displacement of breast lesions from prone MR to supine ultrasound positions, and to determine whether the degree of displacement may be associated with breast density and lesion histotype. 380 patients underwent breast MR and second-look ultrasound. The MR and ultrasound lesion location within the breast gland, distances from anatomical landmarks (nipple, skin and pectoral muscle), spatial displacement (distance differences from the landmarks within the same breast region) and region displacement (breast region change) were prospectively evaluated. Differences between MR and ultrasound measurements, association between the degree of spatial displacement and both breast density and lesion histotypes were calculated. In 290/380 (76%) patients, 300 MR lesions were detected. 285/300 (95%) lesions were recognized on ultrasound. By comparing MR and ultrasound, spatial displacement occurred in 183/285 (64.3%) cases while region displacement in 102/285 (35.7%) cases with a circumferential movement along an arc centred on the nipple, having supine ultrasound as the reference standard. A significant association between the degree of lesion displacement and breast density was found (p < 0.00001) with a significant higher displacement in case of fatty breasts. No significant association between the degree of displacement and lesion histotype was found (p = 0.1). Lesion spatial displacement from MRI to ultrasound may occur especially in adipose breasts. Lesion-nipple distance and circumferential displacement from the nipple need to be considered for ultrasound lesion detection. Second-look ultrasound breast lesion detection could be improved by calculating the lesion-nipple distance and considering that spatial displacement from MRI occurs with a circumferential movement along an arc centred on the nipple.

  20. Indications for MRI of the breast - current status. Pt. 1

    International Nuclear Information System (INIS)

    Rieber, A.; Tomczak, R.; Nuessle, K.; Brambs, H.J.

    1997-01-01

    Since MRI is being applied as a diagnostic imaging method, there is no other field of application of MRI that has been causing debates and emotions of such controversial nature as has MRI of the breast. Advocates of the method emphasize the fact that MR mammography is capable of detecting carcinomas not shown by all other available methods, and diagnostic findings even permit identification of malignomas with a high accuracy. As a concluding statement of the analysis of the pros and cons it can be said that establishment of a routine diagnostic method offering higher sensitivity and specificity than other available methods, free of radiological risks at that, certainly would be appropriate. Those supporting MR mammography believe that this method is up to all requirements stated. However, financial constraints in the public health sector demand that the range of indications be well defined. (orig./AJ) [de

  1. Diagnosis of breast cancer at dynamic MRI in patients with breast augmentation by paraffin or silicone injection

    International Nuclear Information System (INIS)

    Youk, J.H.; Son, E.J.; Kim, E.-K.; Kim, J.-A.; Kim, M.J.; Kwak, J.Y.; Lee, S.M.

    2009-01-01

    Aim: To determine the diagnostic performance of dynamic magnetic resonance imaging (MRI) for breast cancer in breasts augmented with liquid paraffin or silicone injection. Materials and methods: Among 62 patients with breast augmentation by liquid paraffin or silicone injection who had undergone dynamic breast MRI at our institution, 27 women, who had pathological diagnosis or at least 1-year MRI follow-up, were included in this retrospective study and their MRI images were reviewed. For enhancing lesions on MRI, the morphological features, enhancement kinetics, and BI-RADS assessment category were analysed. The lesion characteristics at MRI were correlated with the final diagnosis based on the histopathological result or at least 1-year MRI follow-up. Results: Of the 27 patients, 17 enhancing lesions in 13 patients were found on MRI. All six lesions that were confirmed as malignancy showed suspicious morphological findings and type 2 or 3 enhancement kinetics, assigned to BI-RADS category 4 or 5. Of the remaining 11 benign lesions, 10 showed benign-favouring morphological findings, and all showed type 1 enhancement kinetics, assigned to BI-RADS category 2 or 4. Conclusion: In patients with breasts injected with foreign material, MRI was used to successfully diagnose malignant breast lesions and could be the diagnostic method of choice. Analysis of the morphological and kinetic features at MRI in conjunction with clinical findings is essential.

  2. Utility of a Novel Three-Dimensional and Dynamic (3DD Cell Culture System for PK/PD Studies: Evaluation of a Triple Combination Therapy at Overcoming Anti-HER2 Treatment Resistance in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Anusha Ande

    2018-05-01

    Full Text Available Background: Emergence of Human epidermal growth factor receptor 2 (HER2 therapy resistance in HER2-positive (HER2+ breast cancer (BC poses a major clinical challenge. Mechanisms of resistance include the over-activation of the PI3K/mTOR and Src pathways. This work aims to investigate a novel combination therapy that employs paclitaxel (PAC, a mitotic inhibitor, with everolimus (EVE, an mTOR inhibitor, and dasatinib (DAS, an Src kinase inhibitor, as a modality to overcome resistance.Methods: Static (two dimensional, 2D and three-dimensional dynamic (3DD cell culture studies were conducted using JIMT-1 cells, a HER2+ BC cell line refractory to HER2 therapies. Cell viability and caspase-3 expression were examined after JIMT-1 cell exposure to agents as monotherapy or in combination using a 2D setting. A pharmacokinetic/pharmacodynamic (PK/PD combination study with PAC+DAS+EVE was conducted over 3 weeks in a 3DD setting. PAC was administered into the system via a 3 h infusion followed by the addition of a continuous infusion of EVE+DAS 24 h post-PAC dosing. Cell counts and caspase-3 expression were quantified every 2 days. A semi-mechanistic PK/PD model was developed using the 2D data and scaled up to capture the 3DD data. The final model integrated active caspase-3 as a biomarker to bridge between drug exposures and cancer cell dynamics. Model fittings were performed using Monolix software.Results: The triple combination significantly induced caspase-3 activity in the 2D cell culture setting. In the 3DD cell culture setting, sequential dosing of PAC then EVE+DAS showed a 5-fold increase in caspase-3 activity and 8.5-fold decrease in the total cell number compared to the control. The semi-mechanistic PK/PD models fit the data well, capturing the time-course profiles of drug concentrations, caspase-3 expression, and cell counts in the 2D and 3DD settings.Conclusion: A novel, sequential triple combination therapeutic regimen was successfully evaluated

  3. Abbreviated MRI protocols for detecting breast cancer in women with dense breasts

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shung Qing; Huang, Min; Shen, Yu Ying; Liu, Chen Lu; Xu, Chuan Xiao [The Affiliated Suzhou Hospital, Nanjing Medical University, Suzhou (China)

    2017-06-15

    To evaluate the validity of two abbreviated protocols (AP) of MRI in breast cancer screening of dense breast tissue. This was a retrospective study in 356 participants with dense breast tissue and negative mammography results. The study was approved by the Nanjing Medical University Ethics Committee. Patients were imaged with a full diagnostic protocol (FDP) of MRI. Two APs (AP-1 consisting of the first post-contrast subtracted [FAST] and maximum-intensity projection [MIP] images, and AP-2 consisting of AP-1 combined with diffusion-weighted imaging [DWI]) and FDP images were analyzed separately, and the sensitivities and specificities of breast cancer detection were calculated. Of the 356 women, 67 lesions were detected in 67 women (18.8%) by standard MR protocol, and histological examination revealed 14 malignant lesions and 53 benign lesions. The average interpretation time of AP-1 and AP-2 were 37 seconds and 54 seconds, respectively, while the average interpretation time of the FDP was 3 minutes and 25 seconds. The sensitivities of the AP-1, AP-2, and FDP were 92.9, 100, and 100%, respectively, and the specificities of the three MR protocols were 86.5, 95.0, and 96.8%, respectively. There was no significant difference among the three MR protocols in the diagnosis of breast cancer (p > 0.05). However, the specificity of AP-1 was significantly lower than that of AP-2 (p = 0.031) and FDP (p = 0.035), while there was no difference between AP-2 and FDP (p > 0.05). The AP may be efficient in the breast cancer screening of dense breast tissue. FAST and MIP images combined with DWI of MRI are helpful to improve the specificity of breast cancer detection.

  4. Elastocapillary fabrication of three-dimensional microstructures

    NARCIS (Netherlands)

    van Honschoten, J.W.; Berenschot, Johan W.; Ondarcuhu, T.; Sanders, Remco G.P.; Sundaram, J.; Elwenspoek, Michael Curt; Tas, Niels Roelof

    2010-01-01

    We describe the fabrication of three-dimensional microstructures by means of capillary forces. Using an origami-like technique, planar silicon nitride structures of various geometries are folded to produce three-dimensional objects of 50–100 m. Capillarity is a particularly effective mechanism since

  5. Management of breast lesions detectable only on MRI; Abklaerung ausschliesslich MRT-detektierbarer Mammalaesionen

    Energy Technology Data Exchange (ETDEWEB)

    Siegmann-Luz, K.C.; Bahrs, S.D.; Preibsch, H.; Hattermann, V.; Claussen, C.D. [Universitaetsklinikum Tuebingen (Germany). Abt. Diagnostische und Interventionelle Radiologie

    2014-01-15

    Breast MR imaging has become established as the most sensitive imaging method for diagnosing breast cancer. As a result of the increasing examination volume and improved image quality, the number of breast lesions detected only on MRI and requiring further clarification has risen in recent years. According to the S3-guideline 'Diagnosis, Therapy, and Follow-Up of Breast Cancer' as revised in July 2012, institutions performing breast MRI should provide the option of an MRI-guided intervention for clarification. This review describes the indications, methods and results of MRI-guided interventions for the clarification of breast lesions only visible on MRI. Recent guidelines and study results are also addressed and alternative methods and pitfalls are presented. (orig.)

  6. [MRI findings and pathological features of occult breast cancer].

    Science.gov (United States)

    Zhang, J J; Yang, X T; Du, X S; Zhang, J X; Hou, L N; Niu, J L

    2018-01-23

    Objective: To investigate the magnetic resonance imaging (MRI) findings and clinicopathological features of primary lesions in patients with occult breast cancer (OBC). Methods: The imaging reports from the Breast Imaging Reporting and Data System in 2013 were retrospectively analyzed to investigate the morphology and the time signal intensity curve (TIC) of breast lesions in patients with OBC. The clinical and pathological characteristics of these patients were also included. Results: A total of 34 patients were enrolled. Among these patients, 24 patients underwent modified radical mastectomy and 18 of them had primary breast carcinoma in pathological sections. MRI detected 17 cases of primary lesions, including six masse lesions with a diameter of 0.6-1.2 cm (average 0.9 cm), and 11 non-mass lesions with four linear distributions, three segmental distributions, three focal distributions, and one regions distribution. Five patients had TIC typeⅠprimary lesions, ten had TIC type Ⅱ primary lesions, and two had TIC type Ⅲ primary lesions. Among all 34 cases, 23 of them had complete results of immunohistochemistry: 11 estrogen receptor (ER) positive lesions (47.8%), tenprogesterone receptor (PR) positive lesions (43.5%), seven human epidermal growth factor receptor 2 (HER-2) positive lesions (30.4%), and 20high expression(>14%) of Ki-67 (87.0%). The proportion of type luminal A was 4.3%, type luminal B was 43.5%, triple negative breast cancer (TNBC) was 30.4%, and HER-2 over expression accounted for 21.7%. Conclusions: The primary lesions of OBC usually manifested as small mass lesions, or focal, linear or segmental distribution of non-mass lesions. The positive rate of ER and PR was low, but the positive rate of HER-2 and the proliferation index of Ki-67 was high. Type luminal B is the most common molecular subtype.

  7. Breast cancer molecular subtype classifier that incorporates MRI features.

    Science.gov (United States)

    Sutton, Elizabeth J; Dashevsky, Brittany Z; Oh, Jung Hun; Veeraraghavan, Harini; Apte, Aditya P; Thakur, Sunitha B; Morris, Elizabeth A; Deasy, Joseph O

    2016-07-01

    To use features extracted from magnetic resonance (MR) images and a machine-learning method to assist in differentiating breast cancer molecular subtypes. This retrospective Health Insurance Portability and Accountability Act (HIPAA)-compliant study received Institutional Review Board (IRB) approval. We identified 178 breast cancer patients between 2006-2011 with: 1) ERPR + (n = 95, 53.4%), ERPR-/HER2 + (n = 35, 19.6%), or triple negative (TN, n = 48, 27.0%) invasive ductal carcinoma (IDC), and 2) preoperative breast MRI at 1.5T or 3.0T. Shape, texture, and histogram-based features were extracted from each tumor contoured on pre- and three postcontrast MR images using in-house software. Clinical and pathologic features were also collected. Machine-learning-based (support vector machines) models were used to identify significant imaging features and to build models that predict IDC subtype. Leave-one-out cross-validation (LOOCV) was used to avoid model overfitting. Statistical significance was determined using the Kruskal-Wallis test. Each support vector machine fit in the LOOCV process generated a model with varying features. Eleven out of the top 20 ranked features were significantly different between IDC subtypes with P machine-learning-based predictive model using features extracted from MRI that can distinguish IDC subtypes with significant predictive power. J. Magn. Reson. Imaging 2016;44:122-129. © 2016 Wiley Periodicals, Inc.

  8. Quantitative breast density analysis using tomosynthesis and comparison with MRI and digital mammography.

    Science.gov (United States)

    Moon, Woo Kyung; Chang, Jie-Fan; Lo, Chung-Ming; Chang, Jung Min; Lee, Su Hyun; Shin, Sung Ui; Huang, Chiun-Sheng; Chang, Ruey-Feng

    2018-02-01

    Breast density at mammography has been used as markers of breast cancer risk. However, newly introduced tomosynthesis and computer-aided quantitative method could provide more reliable breast density evaluation. In the experiment, 98 tomosynthesis image volumes were obtained from 98 women. For each case, an automatic skin removal was used and followed by a fuzzy c-mean (FCM) classifier which separated the fibroglandular tissues from other tissues in breast area. Finally, percent of breast density and breast volume were calculated and the results were compared with MRI. In addition, the percent of breast density and breast area of digital mammography calculated using the software Cumulus (University of Toronto, Toronto, ON, Canada.) were also compared with 3-D modalities. Percent of breast density and breast volume, which were computed from tomosynthesis, MRI and digital mammography were 17.37% ± 4.39% and 607.12 cm 3  ± 323.01 cm 3 , 20.3% ± 8.6% and 537.59 cm 3  ± 287.74 cm 3 , and 12.03% ± 4.08%, respectively. There were significant correlations on breast density as well as volume between tomosynthesis and MRI (R = 0.482 and R = 0.805), tomosynthesis and breast density with breast area of digital mammography (R = 0.789 and R = 0.877), and MRI and breast density with breast area of digital mammography (R = 0.482 and R = 0.857) (all P values density and breast volume evaluated from tomosynthesis, MRI and breast density and breast area of digital mammographic images have significant correlations and indicate that tomosynthesis could provide useful 3-D information on breast density through proposed method. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Avoiding preoperative breast MRI when conventional imaging is sufficient to stage patients eligible for breast conserving therapy

    Energy Technology Data Exchange (ETDEWEB)

    Pengel, Kenneth E., E-mail: k.pengel@nki.nl [Department of Radiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands); Loo, Claudette E. [Department of Radiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands); Wesseling, Jelle [Department of Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands); Pijnappel, Ruud M. [Department of Radiology/Image Sciences Institute, University Medical Center Utrecht Heidelberglaan 100, 3584 CX Utrecht (Netherlands); Rutgers, Emiel J.Th. [Department of Surgical Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands); Gilhuijs, Kenneth G.A. [Department of Radiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands); Department of Radiology/Image Sciences Institute, University Medical Center Utrecht Heidelberglaan 100, 3584 CX Utrecht (Netherlands)

    2014-02-15

    Aim: To determine when preoperative breast MRI will not be more informative than available breast imaging and can be omitted in patients eligible for breast conserving therapy (BCT). Methods: We performed an MRI in 685 consecutive patients with 692 invasive breast tumors and eligible for BCT based on conventional imaging and clinical examination. We explored associations between patient, tumor, and conventional imaging characteristics and similarity with MRI findings. Receiver operating characteristic (ROC) analysis was employed to compute the area under the curve (AUC). Results: MRI and conventional breast imaging were similar in 585 of the 692 tumors (85%). At univariate analysis, age (p < 0.001), negative preoperative lymph node status (p = 0.011), comparable tumor diameter at mammography and at ultrasound (p = 0.001), negative HER2 status (p = 0.044), and absence of invasive lobular cancer (p = 0.005) were significantly associated with this similarity. At multivariate analysis, these factors, except HER2 status, retained significant associations. The AUC was 0.68. Conclusions: It is feasible to identify a subgroup of patients prior to preoperative breast MRI, who will most likely show similar results on conventional imaging as on MRI. These findings enable formulation of a practical consensus guideline to determine in which patients a preoperative breast MRI can be omitted.

  10. Avoiding preoperative breast MRI when conventional imaging is sufficient to stage patients eligible for breast conserving therapy

    International Nuclear Information System (INIS)

    Pengel, Kenneth E.; Loo, Claudette E.; Wesseling, Jelle; Pijnappel, Ruud M.; Rutgers, Emiel J.Th.; Gilhuijs, Kenneth G.A.

    2014-01-01

    Aim: To determine when preoperative breast MRI will not be more informative than available breast imaging and can be omitted in patients eligible for breast conserving therapy (BCT). Methods: We performed an MRI in 685 consecutive patients with 692 invasive breast tumors and eligible for BCT based on conventional imaging and clinical examination. We explored associations between patient, tumor, and conventional imaging characteristics and similarity with MRI findings. Receiver operating characteristic (ROC) analysis was employed to compute the area under the curve (AUC). Results: MRI and conventional breast imaging were similar in 585 of the 692 tumors (85%). At univariate analysis, age (p < 0.001), negative preoperative lymph node status (p = 0.011), comparable tumor diameter at mammography and at ultrasound (p = 0.001), negative HER2 status (p = 0.044), and absence of invasive lobular cancer (p = 0.005) were significantly associated with this similarity. At multivariate analysis, these factors, except HER2 status, retained significant associations. The AUC was 0.68. Conclusions: It is feasible to identify a subgroup of patients prior to preoperative breast MRI, who will most likely show similar results on conventional imaging as on MRI. These findings enable formulation of a practical consensus guideline to determine in which patients a preoperative breast MRI can be omitted

  11. Volume based DCE-MRI breast cancer detection with 3D visualization system

    International Nuclear Information System (INIS)

    Chia, F.K.; Sim, K.S.; Chong, S.S.; Tan, S.T.; Ting, H.Y.; Abbas, S.F.; Omar, S.

    2011-01-01

    In this paper, a computer aided design auto probing system is presented to detect breast lesions based on Dynamic contrast enhanced Magnetic resonance imaging (DCE-MRI) images. The system is proposed in order to aid the radiologists and doctors in the interpretation of MRI breast images and enhance the detection accuracy. A series of approaches are presented to enhance the detection accuracy and refine the breast region of interest (Roil) automatically. Besides, a semi-quantitative analysis is used to segment the breast lesions from selected breast Roil and classify the detected tumour is whether benign, suspicious or malignant. The entire breast Roil including the detected tumour will display in 3D. The methodology has been applied on 104 sets of digital imaging and communications in medicine (Dico) breast MRI datasets images. The biopsy results are verified by 2 radiologists from Hospital Malaysia. The experimental results are demonstrated the proposed scheme can precisely identify breast cancer regions with 93% accuracy. (author)

  12. Diagnostic usefulness of segmental and linear enhancement in dynamic breast MRI

    International Nuclear Information System (INIS)

    Morakkabati-Spitz, N.; Leutner, C.; Schild, H.; Traeber, F.; Kuhl, C.

    2005-01-01

    The aim of this study was the evaluation of the diagnostic usefulness of ductal or segmental enhancement in dynamic breast MRI. Segmental and ductal enhancement have been established as the breast MRI hallmarks of intraductal breast cancer (DCIS); however, the positive predictive value of this imaging finding is still unknown. In our study, we analysed the overall prevalence of a segmental or a linear enhancement pattern on breast MRI for an unselected cohort of patients. The aim was to evaluate the diagnostic usefulness of segmental or linear enhancement. Second, we asked whether biopsy was necessary also in the absence of mammographic findings suggestive of DCIS. Prospective, consecutive evaluation of 1,003 patients undergoing bilateral dynamic breast MRI. Studies were interpreted by two experienced breast radiologists. A diagnostic or screening two-view mammogram was available for all patients. Biopsy or short-term breast MRI follow-up was recommended for patients showing a segmental or a linear enhancement pattern on breast MRI. The patients' final diagnoses were established by imaging guided excisional or core biopsy or by clinical plus conventional imaging follow-up for a period of 2 years. The prevalence of segmental or linear enhancement was determined for patients with a final diagnosis of benign breast disease compared with those with a diagnosis of breast cancer. One hundred twenty patients had invasive breast cancer, 24 patients had DCIS and 859 patients had unsuspicious breast MRI or benign breast disease. A segmental or a linear enhancement pattern was found for 50/1,003 (5%) patients (17 DCIS, 33 benign breast diseases). Accordingly, the positive predictive value of segmental and linear enhancement is 34% (17/50); the specificity of this criterion is 96% (826/859). For 4/24 (17%) patients, DCIS was visible as segmental or linear enhancement on dynamic breast MRI, whereas no abnormalities were visible on the corresponding mammogram. The overall

  13. Comparison of intraductal spread on dynamic contrast-enhanced MRI with clinicopathologic features in breast cancer

    International Nuclear Information System (INIS)

    Komatsu, Shuhei; Lee, Chol-Joo; Hosokawa, Yohei; Ichikawa, Daisuke; Hamashima, Takashi; Shirono, Koichi; Okabe, Harumi; Kurioka, Hideaki; Oka, Takahiro

    2004-01-01

    Contrast-enhanced magnetic resonance imaging (CE-MRI) has emerged as a new diagnostic technology in various breast cancer treatments. However, little is known about the correlation between intraductal spread on CE-MRI and clinicopathologic features. This study was designed to evaluate these correlations for the surgical planning of breast cancer. Twenty-six breast cancer lesions (in 26 female patients) treated by breast conserving surgery between March 2001 and March 2003 were evaluated retrospectively. CE-MRI was performed with a 1.5 T unit using a dedicated bilateral breast coil. In detecting intraductal spread of breast cancer, the sensitivity, specificity and accuracy of CE-MRI were 82.4%, 60.0% and 77.3%, respectively. On mammography (MMG), these were 21.1%, 100.0% and 42.3%, respectively. Therefore, CE-MRI has a higher sensitivity and accuracy, although with a lower specificity than MMG. Compared with breast cancer lesions without intraductal spread on CE-MRI, lesions with intraductal spread on CE-MRI were found more frequently in larger-sized tumors (P=0.0088). Preoperative evaluation for intraductal spread by CE-MRI should be more useful than by MMG for breast cancer. When making the surgical decision regarding excision range, particular attention should be paid to this consideration for patients with larger-sized cancer tumors. (author)

  14. Correlation between MRI results and intraoperative findings in patients with silicone breast implants

    NARCIS (Netherlands)

    N. Lindenblatt (Nicole); K. El-Rabadi (Karem); T. Helbich (Thomas); H. Czembirek (Heinrich); M. Deutinger (Maria); H. Benditte-Klepetko (Heike)

    2014-01-01

    textabstractBackground:Silicone gel breast implants may silently rupture without detection. This has been the main reason for magnetic resonance imaging (MRI) of the augmented or reconstructed breast. The aim of the present study was to investigate the accuracy of MRI for implant rupture.

  15. Image to physical space registration of supine breast MRI for image guided breast surgery

    Science.gov (United States)

    Conley, Rebekah H.; Meszoely, Ingrid M.; Pheiffer, Thomas S.; Weis, Jared A.; Yankeelov, Thomas E.; Miga, Michael I.

    2014-03-01

    Breast conservation therapy (BCT) is a desirable option for many women diagnosed with early stage breast cancer and involves a lumpectomy followed by radiotherapy. However, approximately 50% of eligible women will elect for mastectomy over BCT despite equal survival benefit (provided margins of excised tissue are cancer free) due to uncertainty in outcome with regards to complete excision of cancerous cells, risk of local recurrence, and cosmesis. Determining surgical margins intraoperatively is difficult and achieving negative margins is not as robust as it needs to be, resulting in high re-operation rates and often mastectomy. Magnetic resonance images (MRI) can provide detailed information about tumor margin extents, however diagnostic images are acquired in a fundamentally different patient presentation than that used in surgery. Therefore, the high quality diagnostic MRIs taken in the prone position with pendant breast are not optimal for use in surgical planning/guidance due to the drastic shape change between preoperative images and the common supine surgical position. This work proposes to investigate the value of supine MRI in an effort to localize tumors intraoperatively using image-guidance. Mock intraoperative setups (realistic patient positioning in non-sterile environment) and preoperative imaging data were collected from a patient scheduled for a lumpectomy. The mock intraoperative data included a tracked laser range scan of the patient's breast surface, tracked center points of MR visible fiducials on the patient's breast, and tracked B-mode ultrasound and strain images. The preoperative data included a supine MRI with visible fiducial markers. Fiducial markers localized in the MRI were rigidly registered to their mock intraoperative counterparts using an optically tracked stylus. The root mean square (RMS) fiducial registration error using the tracked markers was 3.4mm. Following registration, the average closest point distance between the MR

  16. The role of magnetic resonance imaging (MRI) and MRI-guided surgery in the evaluation of patients with early stage breast cancer for breast conserving therapy

    International Nuclear Information System (INIS)

    Tan, Jacqueline E.; Orel, Susan G.; Schnall, Mitchell D.; Solin, Lawrence J.

    1997-01-01

    Purpose: Mammography is the primary imaging modality for the detection of breast cancer and the evaluation of patients with early stage breast cancer for breast conserving therapy (BCT). MRI may be more sensitive than mammography for detecting breast cancer and may have an adjunctive role in assessing patients with early stage disease for BCT. Our experience with 83 patients undergoing breast MRI during consideration for breast conserving therapy is analyzed. Materials and Methods: We reviewed 83 consecutive cases of patients undergoing breast MRI during standard work-up and evaluation for BCT from 1993 to 1996. Analysis of cases was limited to women who were AJCC clinical Stage 0, I, or II and who received definitive therapy at our institution. All patients signed informed consent. MRI of the breast was performed at 1.5 Tesla. Sagittal T1 and T2 and 3-D gradient pre- and post-contrast images were obtained. All MRI studies were reviewed by two radiologists. All patients were evaluated by one radiation oncologist. The records of these 83 patients were reviewed for patient age, tumor size, AJCC stage, histology, physical examination findings, mammographic findings, ultrasound findings, MRI findings, timing of first MRI study with respect to excisional surgery, findings from MRI-guided surgery (when done), and whether the patient underwent BCT. Results: The median age at the time of presentation was 51.5 years (range 26-77 years). Of the 83 patients, 16% were AJCC clinical stage 0, 65% were stage I, and 19% were stage II. No patient presented with synchronous bilateral carcinoma. Two patients had a history of prior contralateral breast carcinoma; both received BCT for their initial disease. Sixteen percent of patients had intraductal carcinoma, 39% had intraductal and infiltrating carcinoma, 28% had infiltrating ductal carcinoma, 7% had infiltrating lobular carcinoma, 4% had tubular carcinoma, 2% had adenoid cystic carcinoma, 2% had medullary carcinoma, 1% had colloid

  17. three dimensional photoelastic investigations on thick rectangular

    African Journals Online (AJOL)

    user

    1983-09-01

    Sep 1, 1983 ... Thick rectangular plates are investigated by means of three-dimensional photoelasticity ... a thin plate theory and a higher order thick plate theory. 1. ..... number of fringes lest the accuracy of the results will be considerably.

  18. MRI of the breast: does the internet accurately report its beneficial uses and limitations?

    Science.gov (United States)

    Nekhlyudov, Larissa; Kiarsis, Keith; Elmore, Joann G

    2009-01-01

    As consumer use of the Internet for medical information grows, continuing evaluation of the medical content on the Internet is needed. We evaluated Internet sites describing breast magnetic resonance imaging (MRI), an emerging technology tool in breast cancer diagnosis and screening. We searched Google for sites describing breast MRI and abstracted the affiliation, content, media type, readability, and quality of 90 most popular unique sites. Over half (56%) of the sites were commercially sponsored. The content varied by site and included medical and procedural facts, information about clinical trials, grants and journal articles, as well as human interest stories. Most (82%) sites described potentially beneficial uses of breast MRI, such as further evaluation of newly diagnosed breast cancers (58%); screening women at high risk for breast cancer (54%); evaluation of abnormal breast findings (48%); screening women with dense breasts (48%) or implants (27%); and surveillance for breast cancer recurrences (24%). Approximately half (56%) of the sites described the limitations of breast MRI, most commonly false positive findings (44%) and costs (24%). Website quality, including the display of contact information, sponsorship, currency of information, authorship, and references varied. The reading level was close to high school graduate. Internet sites describing breast MRI were mostly commercially sponsored, more often described the potential beneficial uses of the procedure than its limitations, and were of variable quality and high reading level. With the lack of enforceable standards for display of medical information on the Internet, providers should encourage patients to direct their searches to the most credible sites.

  19. Unenhanced breast MRI (STIR, T2-weighted TSE, DWIBS): An accurate and alternative strategy for detecting and differentiating breast lesions.

    Science.gov (United States)

    Telegrafo, Michele; Rella, Leonarda; Stabile Ianora, Amato Antonio; Angelelli, Giuseppe; Moschetta, Marco

    2015-10-01

    To assess the role of STIR, T2-weighted TSE and DWIBS sequences for detecting and characterizing breast lesions and to compare unenhanced (UE)-MRI results with contrast-enhanced (CE)-MRI and histological findings, having the latter as the reference standard. Two hundred eighty consecutive patients (age range, 27-73 years; mean age±standard deviation (SD), 48.8±9.8years) underwent MR examination with a diagnostic protocol including STIR, T2-weighted TSE, THRIVE and DWIBS sequences. Two radiologists blinded to both dynamic sequences and histological findings evaluated in consensus STIR, T2-weighted TSE and DWIBS sequences and after two weeks CE-MRI images searching for breast lesions. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and diagnostic accuracy for UE-MRI and CE-MRI were calculated. UE-MRI results were also compared with CE- MRI. UE-MRI sequences obtained sensitivity, specificity, diagnostic accuracy, PPV and NPV values of 94%, 79%, 86%, 79% and 94%, respectively. CE-MRI sequences obtained sensitivity, specificity, diagnostic accuracy, PPV and NPV values of 98%, 83%, 90%, 84% and 98%, respectively. No statistically significant difference between UE-MRI and CE-MRI was found. Breast UE-MRI could represent an accurate diagnostic tool and a valid alternative to CE-MRI for evaluating breast lesions. STIR and DWIBS sequences allow to detect breast lesions while T2-weighted TSE sequences and ADC values could be useful for lesion characterization. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Three dimensional diffusion calculations of nuclear reactors

    International Nuclear Information System (INIS)

    Caspo, N.

    1981-07-01

    This work deals with the three dimensional calculation of nuclear reactors using the code TRITON. The purposes of the work were to perform three-dimensional computations of the core of the Soreq nuclear reactor and of the power reactor ZION and to validate the TRITON code. Possible applications of the TRITON code in Soreq reactor calculations and in power reactor research are suggested. (H.K.)

  1. Three-dimensional effects in fracture mechanics

    International Nuclear Information System (INIS)

    Benitez, F.G.

    1991-01-01

    An overall view of the pioneering theories and works, which enlighten the three-dimensional nature of fracture mechanics during the last years is given. the main aim is not an exhaustive reviewing but the displaying of the last developments on this scientific field in a natural way. This work attempts to envisage the limits of disregarding the three-dimensional behaviour in theories, analyses and experiments. Moreover, it tries to draw attention on the scant fervour, although increasing, this three-dimensional nature of fracture has among the scientific community. Finally, a constructive discussion is presented on the use of two-dimensional solutions in the analysis of geometries which bear a three-dimensional configuration. the static two-dimensional solutions and its applications fields are reviewed. also, the static three-dimensional solutions, wherein a comparative analysis with elastoplastic and elastostatic solutions are presented. to end up, the dynamic three-dimensional solutions are compared to the asymptotic two-dimensional ones under the practical applications point of view. (author)

  2. Preliminary study of in vivo hemodynamic analysis of intracranial aneurysms using time-resolved three-dimensional phase-contrast MRI and in-house software [Presidential award proceedings

    International Nuclear Information System (INIS)

    Isoda, Haruo; Ohkura, Yasuhide; Seo, Taro

    2007-01-01

    We calculated in vivo wall shear stress (WSS) and streamlines of intracranial aneurysms and analyzed the relationships between the hemodynamics and WSS of the aneurysms using time-resolved three-dimensional (3D) phase-contrast magnetic resonance (MR) imaging (4D-Flow) and in-house software. We studied 10 subjects with 11 aneurysms. 4D-flow was performed using a 1.5T GE MR scanner with head coil. 3D time-of-flight (TOF) MR angiography was performed for geometric information. The software calculated the WSS based on interpolated shearing velocity using the data set obtained by 4D-flow near the wall and provided us with 3D streamlines. We acquired 3D streamlines and WSS distribution maps in arbitrary directions during the cardiac phase for all intracranial aneurysms, and each intracranial aneurysm in this study had at least one spiral flow. We noted lower WSS with lower flow velocities at the apex of the spiral flow. (author)

  3. Breast MRI increases the number of mastectomies for ductal cancers, but decreases them for lobular cancers

    NARCIS (Netherlands)

    Lobbes, Marc B.I.; Vriens, Ingeborg J.H.; van Bommel, Annelotte C.M.; Nieuwenhuijzen, Grard A.P.; Smidt, Marjolein L.; Boersma, Liesbeth J.; van Dalen, Thijs; Smorenburg, Carolien; Struikmans, Henk; Siesling, Sabine; Voogd, Adri C.; Tjan-Heijnen, Vivianne C.G.

    2017-01-01

    Purpose In this retrospective population-based cohort study, we analyzed breast MRI use and its impact on type of surgery, surgical margin involvement, and the diagnosis of contralateral breast cancer. Methods All Dutch patients with cT1–4N0–3M0 breast cancer diagnosed in 2011–2013 and treated with

  4. A Cost Analysis of Preoperative Breast MRI Use for Patients with Invasive Lobular Cancer.

    Science.gov (United States)

    Bedrosian, Isabelle; Xing, Yan; Abdel Rahman, Shereen; Allen, Lisa; Le-Petross, Huong; Whitman, Gary J; Meric-Bernstam, Funda; Hunt, Kelly K; Babiera, Gildy V; Cormier, Janice N

    2016-01-01

    Whereas the impact of magnetic resonance imaging (MRI) of the breast on the surgical management of breast cancer patients is well documented, less is known about its effect on health care costs. This study aimed to evaluate whether MRI use for women with invasive lobular carcinoma (ILC) significantly changes the cost of care. Patients with ILC were recruited to a prospective registry study of breast MRI. Women who met the same inclusion criteria but had not undergone breast MRI were retrospectively identified for comparison. A micro-costing analysis using institutional billing records was conducted. Nonparametric bootstrapping was used to compare the unadjusted cost differences between the patients receiving MRI and those receiving no MRI. Of the patients in this study, 51 had preoperative MRI, and 60 did not. Method of diagnostic biopsy, disease stage, oncologic procedure, and rates of contralateral prophylactic mastectomy were similar between the two groups. The patients in the MRI group were younger (median age 55 vs. 64 years; p = 0.01) and more likely to undergo reconstruction (45.1 vs. 25 %; p = 0.03). The median costs of care were significantly higher in the MRI group ($24,781 vs. $18,921; p 1; p < 0.01), and use of reconstruction (p < 0.01). Preoperative breast MRI increases the median total cost of care per patient. However, the contribution to the overall cost of care is modest compared with the cost of other interventions.

  5. Breast MRI used as a problem-solving tool reliably excludes malignancy

    International Nuclear Information System (INIS)

    Spick, Claudio; Szolar, Dieter H.M.; Preidler, Klaus W.; Tillich, Manfred; Reittner, Pia; Baltzer, Pascal A.

    2015-01-01

    Highlights: • Breast MRI reliably excludes malignancy in conventional BI-RADS 0 cases (NPV: 100%). • Malignancy rate in the BI-RADS 0 population is substantial with 13.5%. • Breast MRI used as a problem-solving tool reliably excludes malignancy. - Abstract: Purpose: To evaluate the diagnostic performance of breast MRI if used as a problem-solving tool in BI-RADS 0 cases. Material and methods: In this IRB-approved, single-center study, 687 women underwent high-resolution-3D, dynamic contrast-enhanced breast magnetic resonance imaging (MRI) between January 2012 and December 2012. Of these, we analyzed 111 consecutive patients (mean age, 51 ± 12 years; range, 20–83 years) categorized as BI-RADS 0. Breast MRI findings were stratified by clinical presentations, conventional imaging findings, and breast density. MRI results were compared to the reference standard, defined as histopathology or an imaging follow-up of at least 1 year. Results: One hundred eleven patients with BI-RADS 0 conventional imaging findings revealed 30 (27%) mammographic masses, 57 (51.4%) mammographic architectural distortions, five (4.5%) mammographic microcalcifications, 17 (15.3%) ultrasound-only findings, and two palpable findings without imaging correlates. There were 15 true-positive, 85 true-negative, 11 false-positive, and zero false-negative breast MRI findings, resulting in a sensitivity, specificity, PPV, and NPV of 100% (15/15), 88.5% (85/96), 57.7% (15/26), and 100% (85/85), respectively. Breast density and reasons for referral had no significant influence on the diagnostic performance of breast MRI (p > 0.05). Conclusion: Breast MRI reliably excludes malignancy in conventional BI-RADS 0 cases resulting in a NPV of 100% (85/85) and a PPV of 57.7% (15/26)

  6. Dosimetric comparison of standard bi-dimensional radiotherapy, mono-isocentric three-dimensional and arc-therapy for a bilateral breast cancer case with ganglionary attack; Comparaison dosimetrique pour un cas de cancer du sein bilateral avec atteinte ganglionnaire de la radiotherapie bidimensionnelle standard, la radiotherapie tridimensionnelle mono-isocentrique et l'arctherapie

    Energy Technology Data Exchange (ETDEWEB)

    Arnaud, A. [Centre Leon-Berard, Lyon (France); Bodez, V.; Alric, K.; Chastel, D.; Mege, A. [Institut Sainte-Catherine, Avignon (France)

    2011-10-15

    The authors report a study which aimed at determining the optimal radiotherapy technique for a patient operated from a bilateral breast cancer with ganglionary attack and peculiar thoracic conformation. A dosimetric study has been performed. Target volumes and lung and heart coverages have been compared for three techniques: bi-dimensional and three-dimensional radiotherapy, and arc-therapy. It appears that arc-therapy would allow a dosimetric and therapeutic duration gain without improving the target volume coverage while increasing doses delivered to organs at risk. Short communication

  7. Rapid whole-brain resting-state fMRI at 3 T: Efficiency-optimized three-dimensional EPI versus repetition time-matched simultaneous-multi-slice EPI.

    Science.gov (United States)

    Stirnberg, Rüdiger; Huijbers, Willem; Brenner, Daniel; Poser, Benedikt A; Breteler, Monique; Stöcker, Tony

    2017-12-01

    State-of-the-art simultaneous-multi-slice (SMS-)EPI and 3D-EPI share several properties that benefit functional MRI acquisition. Both sequences employ equivalent parallel imaging undersampling with controlled aliasing to achieve high temporal sampling rates. As a volumetric imaging sequence, 3D-EPI offers additional means of acceleration complementary to 2D-CAIPIRINHA sampling, such as fast water excitation and elliptical sampling. We performed an application-oriented comparison between a tailored, six-fold CAIPIRINHA-accelerated 3D-EPI protocol at 530 ms temporal and 2.4 mm isotropic spatial resolution and an SMS-EPI protocol with identical spatial and temporal resolution for whole-brain resting-state fMRI at 3 T. The latter required eight-fold slice acceleration to compensate for the lack of elliptical sampling and fast water excitation. Both sequences used vendor-supplied on-line image reconstruction. We acquired test/retest resting-state fMRI scans in ten volunteers, with simultaneous acquisition of cardiac and respiration data, subsequently used for optional physiological noise removal (nuisance regression). We found that the 3D-EPI protocol has significantly increased temporal signal-to-noise ratio throughout the brain as compared to the SMS-EPI protocol, especially when employing motion and nuisance regression. Both sequence types reliably identified known functional networks with stronger functional connectivity values for the 3D-EPI protocol. We conclude that the more time-efficient 3D-EPI primarily benefits from reduced parallel imaging noise due to a higher, actual k-space sampling density compared to SMS-EPI. The resultant BOLD sensitivity increase makes 3D-EPI a valuable alternative to SMS-EPI for whole-brain fMRI at 3 T, with voxel sizes well below 3 mm isotropic and sampling rates high enough to separate dominant cardiac signals from BOLD signals in the frequency domain. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Template-based automatic breast segmentation on MRI by excluding the chest region

    OpenAIRE

    Lin, M; Chen, JH; Wang, X; Chan, S; Chen, S; Su, MY

    2013-01-01

    Purpose: Methods for quantification of breast density on MRI using semiautomatic approaches are commonly used. In this study, the authors report on a fully automatic chest template-based method. Methods: Nonfat-suppressed breast MR images from 31 healthy women were analyzed. Among them, one case was randomly selected and used as th e template, and the remaining 30 cases were used for testing. Unlike most model-based breast segmentation methods that use the breast region as the template, the c...

  9. Correlativity study on MRI morphologic features, pathology, and molecular biology of breast cancer

    International Nuclear Information System (INIS)

    Chen Rong; Gong Shuigen; Zhang Weiguo; Chen Jinhua; He Shuangwu; Liu Baohua; Li Zengpeng

    2004-01-01

    Objective: To investigate the correlation among MRI morphologic features, pathology, and molecular biology of breast cancer. Methods: MR scanning was performed in 78 patients with breast cancer before operation and MRI morphologic features of breast cancer were analyzed. The mastectomy specimens of the breast neoplasm were stained with immunohistochemistry, and the expression of estrogen receptor (ER), progesterone receptor (PR), C-erbB-2, p53, and the distribution of microvessel density (MVD) was measured. The pathologic results were compared with MRI features. Results: Among the 80 breast cancers, ER positive expression was positively correlated with the spiculate margin of breast cancer (P 0.05). Among the 41 breast cancers with dynamic MR scans, there was positive correlation between the spatial distribution of contrast agent and MVD (P<0.01). Conclusion: There exists some correlation among MRI morphologic features, pathology, and molecular biology factors in breast cancer to certain extent. The biologic behavior and prognosis of the breast cancer can be assessed according to MRI features

  10. Three-dimensional microbubble streaming flows

    Science.gov (United States)

    Rallabandi, Bhargav; Marin, Alvaro; Rossi, Massimiliano; Kaehler, Christian; Hilgenfeldt, Sascha

    2014-11-01

    Streaming due to acoustically excited bubbles has been used successfully for applications such as size-sorting, trapping and focusing of particles, as well as fluid mixing. Many of these applications involve the precise control of particle trajectories, typically achieved using cylindrical bubbles, which establish planar flows. Using astigmatic particle tracking velocimetry (APTV), we show that, while this two-dimensional picture is a useful description of the flow over short times, a systematic three-dimensional flow structure is evident over long time scales. We demonstrate that this long-time three-dimensional fluid motion can be understood through asymptotic theory, superimposing secondary axial flows (induced by boundary conditions at the device walls) onto the two-dimensional description. This leads to a general framework that describes three-dimensional flows in confined microstreaming systems, guiding the design of applications that profit from minimizing or maximizing these effects.

  11. Three-dimensional whole-brain perfusion quantification using pseudo-continuous arterial spin labeling MRI at multiple post-labeling delays: accounting for both arterial transit time and impulse response function.

    Science.gov (United States)

    Qin, Qin; Huang, Alan J; Hua, Jun; Desmond, John E; Stevens, Robert D; van Zijl, Peter C M

    2014-02-01

    Measurement of the cerebral blood flow (CBF) with whole-brain coverage is challenging in terms of both acquisition and quantitative analysis. In order to fit arterial spin labeling-based perfusion kinetic curves, an empirical three-parameter model which characterizes the effective impulse response function (IRF) is introduced, which allows the determination of CBF, the arterial transit time (ATT) and T(1,eff). The accuracy and precision of the proposed model were compared with those of more complicated models with four or five parameters through Monte Carlo simulations. Pseudo-continuous arterial spin labeling images were acquired on a clinical 3-T scanner in 10 normal volunteers using a three-dimensional multi-shot gradient and spin echo scheme at multiple post-labeling delays to sample the kinetic curves. Voxel-wise fitting was performed using the three-parameter model and other models that contain two, four or five unknown parameters. For the two-parameter model, T(1,eff) values close to tissue and blood were assumed separately. Standard statistical analysis was conducted to compare these fitting models in various brain regions. The fitted results indicated that: (i) the estimated CBF values using the two-parameter model show appreciable dependence on the assumed T(1,eff) values; (ii) the proposed three-parameter model achieves the optimal balance between the goodness of fit and model complexity when compared among the models with explicit IRF fitting; (iii) both the two-parameter model using fixed blood T1 values for T(1,eff) and the three-parameter model provide reasonable fitting results. Using the proposed three-parameter model, the estimated CBF (46 ± 14 mL/100 g/min) and ATT (1.4 ± 0.3 s) values averaged from different brain regions are close to the literature reports; the estimated T(1,eff) values (1.9 ± 0.4 s) are higher than the tissue T1 values, possibly reflecting a contribution from the microvascular arterial blood compartment

  12. Comparison of two-dimensional fast spin echo T2 weighted sequences and three-dimensional volume isotropic T2 weighted fast spin echo (VISTA) MRI in the evaluation of triangular fibrocartilage of the wrist.

    Science.gov (United States)

    Park, Hee Jin; Lee, So Yeon; Kang, Kyung A; Kim, Eun Young; Shin, Hun Kyu; Park, Se Jin; Park, Jai Hyung; Kim, Eugene

    2018-04-01

    To compare image quality of three-dimensional volume isotropic T 2 weighted fast spin echo (3D VISTA) and two-dimensional (2D) T 2 weighted images (T2WI) for evaluation of triangular fibrocartilage (TFC) and to investigate whether 3D VISTA can replace 2D T 2 WI in evaluating TFC injury. This retrospective study included 69 patients who received wrist MRIs using both 2D T 2 WI and 3D VISTA techniques for assessment of wrist pathology, including TFC injury. Two radiologists measured the signal-to-noise ratio (SNR) and the contrast-to-noise ratio (CNR) of the two sequences. The anatomical identification score and diagnostic performance were independently assessed by two interpreters. The diagnostic abilities of 3D VISTA and 2D T 2 WI were analysed by sensitivity, specificity and accuracy for diagnosing TFC injury using surgically or clinically confirmed diagnostic reference standards. 17 cases (25%) were classified as having TFC injury. 2 cases (12%) were diagnosed surgically, and 15 cases (88%) were diagnosed by physical examination. 52 cases (75%) were diagnosed as having intact TFC. 8 of these cases (15%) were surgically confirmed, while the others were diagnosed by physical examination and clinical findings. The 3D VISTA images had significantly higher SNR and CNR values for the TFC than 2D T 2 WI images. The scores of 3D VISTA's total length, full width and sharpness were similar to those of 2D T 2 WI. We were unable to find a significant difference between 3D VISTA and 2D T 2 WI in the ability to diagnose TFC injury. 3D VISTA image quality is similar to that of 2D T 2 WI for TFC evaluation and is also excellent for tissue contrast. 3D VISTA can replace 2D images in TFC injury assessment. Advances in knowledge: 3D VISTA image quality is similar to that of 2D T 2 WI for TFC evaluation and is also excellent for tissue contrast. 3D VISTA can replace 2D images in TFC injury assessment.

  13. Towards three-dimensional optical metamaterials

    Science.gov (United States)

    Tanaka, Takuo; Ishikawa, Atsushi

    2017-12-01

    Metamaterials have opened up the possibility of unprecedented and fascinating concepts and applications in optics and photonics. Examples include negative refraction, perfect lenses, cloaking, perfect absorbers, and so on. Since these metamaterials are man-made materials composed of sub-wavelength structures, their development strongly depends on the advancement of micro- and nano-fabrication technologies. In particular, the realization of three-dimensional metamaterials is one of the big challenges in this research field. In this review, we describe recent progress in the fabrication technologies for three-dimensional metamaterials, as well as proposed applications.

  14. Development of three dimensional solid modeler

    International Nuclear Information System (INIS)

    Zahoor, R.M.A.

    1999-01-01

    The work presented in this thesis is aimed at developing a three dimensional solid modeler employing computer graphics techniques using C-Language. Primitives have been generated, by combination of plane surfaces, for various basic geometrical shapes including cylinder, cube and cone. Back face removal technique for hidden surface removal has also been incorporated. Various transformation techniques such as scaling, translation, and rotation have been included for the object animation. Three dimensional solid modeler has been created by the union of two primitives to demonstrate the capabilities of the developed program. (author)

  15. Three-dimensional topological insulators and bosonization

    Energy Technology Data Exchange (ETDEWEB)

    Cappelli, Andrea [INFN, Sezione di Firenze,Via G. Sansone 1, 50019 Sesto Fiorentino - Firenze (Italy); Randellini, Enrico [INFN, Sezione di Firenze,Via G. Sansone 1, 50019 Sesto Fiorentino - Firenze (Italy); Dipartimento di Fisica e Astronomia, Università di Firenze,Via G. Sansone 1, 50019 Sesto Fiorentino - Firenze (Italy); Sisti, Jacopo [Scuola Internazionale Superiore di Studi Avanzati (SISSA),Via Bonomea 265, 34136 Trieste (Italy)

    2017-05-25

    Massless excitations at the surface of three-dimensional time-reversal invariant topological insulators possess both fermionic and bosonic descriptions, originating from band theory and hydrodynamic BF theory, respectively. We analyze the corresponding field theories of the Dirac fermion and compactified boson and compute their partition functions on the three-dimensional torus geometry. We then find some non-dynamic exact properties of bosonization in (2+1) dimensions, regarding fermion parity and spin sectors. Using these results, we extend the Fu-Kane-Mele stability argument to fractional topological insulators in three dimensions.

  16. Three-dimensional imaging utilizing energy discrimination

    International Nuclear Information System (INIS)

    Gunter, D.L.; Hoffman, K.R.; Beck, R.N.

    1990-01-01

    An algorithm is proposed for three-dimensional image reconstruction in nuclear medicine which uses scattered radiation rather than multiple projected images to determine the source depth within the body. Images taken from numerous energy windows are combined to construct the source distribution in the body. The gamma-ray camera is not moved during the imaging process. Experiments with both Tc-99m and Ga-67 demonstrate that two channels of depth information can be extracted from the low energy images produced by scattered radiation. By combining this technique with standard SPECT reconstruction using multiple projections the authors anticipate much improved spatial resolution in the overall three-dimensional reconstruction

  17. Clinical Study Pathologic Findings in MRI-Guided Needle Core Biopsies of the Breast in Patients with Newly Diagnosed Breast Cancer

    International Nuclear Information System (INIS)

    Siziopikou, K.P.; Jokich, P.; Cobleigh, M.

    2011-01-01

    The role of MRI in the management of breast carcinoma is rapidly evolving from its initial use for specific indications only to a more widespread use on all women with newly diagnosed early stage breast cancer. However, there are many concerns that such widespread use is premature since detailed correlation of MRI findings with the underlying histopathology of the breast lesions is still evolving and clear evidence for improvements in management and overall prognosis of breast cancer patients evaluated by breast MRI after their initial cancer diagnosis is lacking. In this paper, we would like to bring attention to a benign lesion that is frequently present on MRI-guided breast biopsies performed on suspicious MRI findings in the affected breast of patients with a new diagnosis of breast carcinoma

  18. Usefulness of breast MRI for diagnosing an extensive intraductal component of breast cancer: comparison with mammography and ultrasonography

    International Nuclear Information System (INIS)

    Kim, Tae Hee; Kang, Doo Kyung; Jung, Yong Sik; Yim, Hyun Ee

    2006-01-01

    An extensive intraductal component of breast cancer is a principal risk factor for local recurrence, and this is difficult to diagnose with performing only mammography. We investigated the usefulness of breast MRI for evaluating an extensive intraductal component of breast cancer, and we compared this modality with mammography and ultrasonography (US). From March 2003 to July 2004, 90 patients underwent breast MRI among all the patients who were suffering with breast cancer and for whom and EIC was ultimately revealed to be present or not. A total 83 patients with stage I and II breast cancer were finally included in this study. EIC positivity was defined according to the imaging data as follows: 1) microcalcifications beyond the tumor shadow or malignant microcalcifications without a tumor mass on mammography, 2) tubular hypoechoic structures adjacent to the tumor or architectural distortion with calcifications beyond the tumor on US, and 3) linear or ductal enhancement, segmental or regional clumped enhancement, and spotty nodular or reticular enhancement adjacent to the tumor on MRI. EIC was present in 41 patients and this finding was negative in 42 patients. The results were then compared those results from mammography and US. The sensitivities of detecting EIC by mammography, US and MRI were 48.6%, 67.5% and 80.5%, respectively, and the corresponding specificities were 92.3%, 73.2% and 69.0%, respectively. In the cases that were suspected to be EIC positive on more than two imaging modality, the positive predictive value (PPV) was 78.1%. In cases that were suspected of being EIC positive on just one imaging modality, the negative predictive value (NPV) was 75.0%. Breast MRI provides good information about an EIC of breast cancer and it is a more sensitive study than mammography and US, yet the specificity for the detection of EIC is highest on mammography. A combined evaluation by mammography, US and MRI is the most accurate way to diagnose an EIC of breast

  19. Dose response study of PVA-Fx gel for three dimensional dose distribution

    International Nuclear Information System (INIS)

    Brindha, S.; Ayyangar, Komanduri M.; Shen, Bin; Saw, Cheng B.

    2001-01-01

    Modern radiotherapy techniques involve complex field arrangements using conformal and intensity modulated radiation that requires three dimensional treatment planning. The verification of these plans poses even more challenge. In 1984, Gore et al., proposed that ferrous gel dosimeters combined with magnetic resonance imaging (MRI) could be used to measure three dimensional radiation dose distributions. Since then, there has been much interest in the development of gel dosimetry to aid the determination of three dimensional dose distributions during field arrangements. In this work, preparation and study of the MR characteristics of a PVA-Fx gel reported in the literature is presented

  20. Real-time virtual sonography (RVS)-guided vacuum-assisted breast biopsy for lesions initially detected with breast MRI.

    Science.gov (United States)

    Uematsu, Takayoshi

    2013-12-01

    To report on our initial experiences with a new method of real-time virtual sonography (RVS)-guided 11-gauge vacuum-assisted breast biopsy for lesions that were initially detected with breast MRI. RVS-guided 11-gauge vacuum-assisted biopsy is performed when a lesion with suspicious characteristics is initially detected with breast MRI and is occult on mammography, sonography, and physical examination. Live sonographic images were co-registered to the previously loaded second-look spine contrast-enhanced breast MRI volume data to correlate the sonography and MR images. Six lesions were examined in six consecutive patients scheduled to undergo RVS-guided 11-gauge vacuum-assisted biopsy. One patient was removed from the study because of non-visualization of the lesion in the second-look spine contrast-enhanced breast MRI. Five patients with non-mass enhancement lesions were biopsied. The lesions ranged in size from 9 to 13 mm (mean 11 mm). The average procedural time, including the sonography and MR image co-registration time, was 25 min. All biopsies resulted in tissue retrieval. One was fibroadenomatous nodules, and those of four were fibrocystic changes. There were no complications during or after the procedures. RVS-guided 11-gauge vacuum-assisted breast biopsies provide a safe and effective method for the examination of suspicious lesions initially detected with MRI.

  1. Three-Dimensional Messages for Interstellar Communication

    Science.gov (United States)

    Vakoch, Douglas A.

    One of the challenges facing independently evolved civilizations separated by interstellar distances is to communicate information unique to one civilization. One commonly proposed solution is to begin with two-dimensional pictorial representations of mathematical concepts and physical objects, in the hope that this will provide a foundation for overcoming linguistic barriers. However, significant aspects of such representations are highly conventional, and may not be readily intelligible to a civilization with different conventions. The process of teaching conventions of representation may be facilitated by the use of three-dimensional representations redundantly encoded in multiple formats (e.g., as both vectors and as rasters). After having illustrated specific conventions for representing mathematical objects in a three-dimensional space, this method can be used to describe a physical environment shared by transmitter and receiver: a three-dimensional space defined by the transmitter--receiver axis, and containing stars within that space. This method can be extended to show three-dimensional representations varying over time. Having clarified conventions for representing objects potentially familiar to both sender and receiver, novel objects can subsequently be depicted. This is illustrated through sequences showing interactions between human beings, which provide information about human behavior and personality. Extensions of this method may allow the communication of such culture-specific features as aesthetic judgments and religious beliefs. Limitations of this approach will be noted, with specific reference to ETI who are not primarily visual.

  2. Three-Dimensional Printing Surgical Applications.

    Science.gov (United States)

    AlAli, Ahmad B; Griffin, Michelle F; Butler, Peter E

    2015-01-01

    Three-dimensional printing, a technology used for decades in the industrial field, gains a lot of attention in the medical field for its potential benefits. With advancement of desktop printers, this technology is accessible and a lot of research is going on in the medical field. To evaluate its application in surgical field, which may include but not limited to surgical planning, surgical education, implants, and prosthesis, which are the focus of this review. Research was conducted by searching PubMed, Web of science, and other reliable sources. We included original articles and excluded articles based on animals, those more than 10 years old, and those not in English. These articles were evaluated, and relevant studies were included in this review. Three-dimensional printing shows a potential benefit in surgical application. Printed implants were used in patient in a few cases and show successful results; however, longer follow-up and more trials are needed. Surgical and medical education is believed to be more efficient with this technology than the current practice. Printed surgical instrument and surgical planning are also believed to improve with three-dimensional printing. Three-dimensional printing can be a very powerful tool in the near future, which can aid the medical field that is facing a lot of challenges and obstacles. However, despite the reported results, further research on larger samples and analytical measurements should be conducted to ensure this technology's impact on the practice.

  3. Electron crystallography of three dimensional protein crystals

    NARCIS (Netherlands)

    Georgieva, Dilyana

    2008-01-01

    This thesis describes an investigation of the potential of electron diffraction for studying three dimensional sub-micro-crystals of proteins and pharmaceuticals. A prerequisite for using electron diffraction for structural studies is the predictable availability of tiny crystals. A method for

  4. Three dimensional electrochemical system for neurobiological studies

    DEFF Research Database (Denmark)

    Vazquez, Patricia; Dimaki, Maria; Svendsen, Winnie Edith

    2009-01-01

    In this work we report a novel three dimensional electrode array for electrochemical measurements in neuronal studies. The main advantage of working with these out-of-plane structures is the enhanced sensitivity of the system in terms of measuring electrochemical changes in the environment...

  5. Imaging unsteady three-dimensional transport phenomena

    Indian Academy of Sciences (India)

    2014-01-05

    Jan 5, 2014 ... The image data can be jointly analysed with the physical laws governing transport and principles of image formation. Hence, with the experiment suitably carried out, three-dimensional physical domains with unsteady processes can be accommodated. Optical methods promise to breach the holy grail of ...

  6. Computerized three-dimensional normal atlas

    International Nuclear Information System (INIS)

    Mano, Isamu; Suto, Yasuzo; Suzuki, Masataka; Iio, Masahiro.

    1990-01-01

    This paper presents our ongoing project in which normal human anatomy and its quantitative data are systematically arranged in a computer. The final product, the Computerized Three-Dimensional Normal Atlas, will be able to supply tomographic images in any direction, 3-D images, and coded information on organs, e.g., anatomical names, CT numbers, and T 1 and T 2 values. (author)

  7. Three-Dimensional Shallow Water Acoustics

    Science.gov (United States)

    2016-03-30

    medium properties, so horizontal refraction and reflection of sound can occur and produce significant three-dimensional (3-D) sound propagation ...by the environmental factors existing commonly in the continental shelf and shelfbreak areas, such as slopes, submarine canyons, sub-bottom layers ...surface waves, internal waves and shelfbreak fronts. 15. SUBJECT TERMS Continental Shelf; 3-D Acoustics , Surface Waves, Sound Propagation 16

  8. Usefulness of breast-specific gamma imaging as an adjunct modality in breast cancer patients with dense breast. A comparative study with MRI

    International Nuclear Information System (INIS)

    Kim, Bom Sahn

    2012-01-01

    The aim of this study was to evaluate the adjunctive benefits of breast-specific gamma imaging (BSGI) versus magnetic resonance imaging (MRI) in breast cancer patients with dense breasts. This study included a total of 66 patients (44.1±8.2 years) with dense breasts (breast density >50%) and already biopsy-confirmed breast cancer. All of the patients underwent BSGI and MRI as part of an adjunct modality before the initial therapy. Of 66 patients, the 97 undetermined breast lesions were newly detected and correlated with the biopsy results. Twenty-six of the 97 breast lesions proved to be malignant tumors (invasive ductal cancer, n=16; ductal carcinoma in situ, n=6; mixed or other malignancies, n=4); the remaining 71 lesions were diagnosed as benign tumors. The sensitivity and specificity of BSGI were 88.8% (confidence interval (CI), 69.8-97.6%) and 90.1% (CI, 80.7-95.9%), respectively, while the sensitivity and specificity of MRI were 92.3% (CI, 74.9-99.1%) and 39.4% (CI, 28.0-51.7%), respectively (p<0.0001). MRI detected 43 false-positive breast lesions, 37 (86.0%) of which were correctly diagnosed as benign lesions using BSGI. In 12 malignant lesions <1 cm, the sensitivities of BSGI and MR imaging were 83.3% (CI, 51.6-97.9%) and 91.7% (CI, 61.5-99.8%), respectively. BSGI showed an equivocal sensitivity and a high specificity compared to MRI in the diagnosis of breast lesions. In addition, BSGI had a good sensitivity in discriminating breast cancers ≤1 cm. The results of this study suggest that BSGI could play a crucial role as an adjunctive imaging modality which can be used to evaluate breast cancer patients with dense breasts. (author)

  9. Fully automated chest wall line segmentation in breast MRI by using context information

    Science.gov (United States)

    Wu, Shandong; Weinstein, Susan P.; Conant, Emily F.; Localio, A. Russell; Schnall, Mitchell D.; Kontos, Despina

    2012-03-01

    Breast MRI has emerged as an effective modality for the clinical management of breast cancer. Evidence suggests that computer-aided applications can further improve the diagnostic accuracy of breast MRI. A critical and challenging first step for automated breast MRI analysis, is to separate the breast as an organ from the chest wall. Manual segmentation or user-assisted interactive tools are inefficient, tedious, and error-prone, which is prohibitively impractical for processing large amounts of data from clinical trials. To address this challenge, we developed a fully automated and robust computerized segmentation method that intensively utilizes context information of breast MR imaging and the breast tissue's morphological characteristics to accurately delineate the breast and chest wall boundary. A critical component is the joint application of anisotropic diffusion and bilateral image filtering to enhance the edge that corresponds to the chest wall line (CWL) and to reduce the effect of adjacent non-CWL tissues. A CWL voting algorithm is proposed based on CWL candidates yielded from multiple sequential MRI slices, in which a CWL representative is generated and used through a dynamic time warping (DTW) algorithm to filter out inferior candidates, leaving the optimal one. Our method is validated by a representative dataset of 20 3D unilateral breast MRI scans that span the full range of the American College of Radiology (ACR) Breast Imaging Reporting and Data System (BI-RADS) fibroglandular density categorization. A promising performance (average overlay percentage of 89.33%) is observed when the automated segmentation is compared to manually segmented ground truth obtained by an experienced breast imaging radiologist. The automated method runs time-efficiently at ~3 minutes for each breast MR image set (28 slices).

  10. Three-Dimensional Isotropic Fat-Suppressed Proton Density-Weighted MRI at 3 Tesla Using a T/R-Coil Can Replace Multiple Plane Two-Dimensional Sequences in Knee Imaging.

    Science.gov (United States)

    Homsi, R; Gieseke, J; Luetkens, J A; Kupczyk, P; Maedler, B; Kukuk, G M; Träber, F; Agha, B; Rauch, M; Rajakaruna, N; Willinek, W; Schild, H H; Hadizadeh, D R

    2016-10-01

    To evaluate whether a 3 D proton density-weighted fat-suppressed sequence (PDwFS) of the knee is able to replace multiplanar 2D-PDwFS. 52 patients (26 men, mean age: 41.9 ± 14.5years) underwent magnetic resonance imaging (MRI) of the knee at 3.0 Tesla using a T/R-coil. The imaging protocol included 3 planes of 2D-PDwFS (acquisition time (AT): 6:40 min; voxel sizes: 0.40 - 0.63 × 0.44 - 0.89 × 3mm³) and a 3D-PDwFS (AT: 6:31 min; voxel size: 0.63 × 0.68 × 0.63mm³). Homogeneity of fat suppression (HFS), artifacts, and image sharpness (IS) were evaluated on a 5-point scale (5[excellent] - 1[non-diagnostic]). The sum served as a measure for the overall image quality (OIQ). Contrast ratios (CR) compared to popliteal muscle were calculated for the meniscus (MEN), anterior (ACL) and posterior cruciate ligaments (PCL). In 13 patients who underwent arthroscopic knee surgery, two radiologists evaluated the presence of meniscal, ligamental and cartilage lesions to estimate the sensitivity and specificity of lesion detection. The CR was higher in the ACL, PCL and MEN in 3D- PDwFS compared to 2D-PDwFS (p Tesla Using a T/R-Coil Can Replace Multiple Plane Two-Dimensional Sequences in Knee Imaging. Fortschr Röntgenstr 2016; 188: 949 - 956. © Georg Thieme Verlag KG Stuttgart · New York.

  11. Variability of non-Gaussian diffusion MRI and intravoxel incoherent motion (IVIM) measurements in the breast.

    Science.gov (United States)

    Iima, Mami; Kataoka, Masako; Kanao, Shotaro; Kawai, Makiko; Onishi, Natsuko; Koyasu, Sho; Murata, Katsutoshi; Ohashi, Akane; Sakaguchi, Rena; Togashi, Kaori

    2018-01-01

    We prospectively examined the variability of non-Gaussian diffusion magnetic resonance imaging (MRI) and intravoxel incoherent motion (IVIM) measurements with different numbers of b-values and excitations in normal breast tissue and breast lesions. Thirteen volunteers and fourteen patients with breast lesions (seven malignant, eight benign; one patient had bilateral lesions) were recruited in this prospective study (approved by the Internal Review Board). Diffusion-weighted MRI was performed with 16 b-values (0-2500 s/mm2 with one number of excitations [NEX]) and five b-values (0-2500 s/mm2, 3 NEX), using a 3T breast MRI. Intravoxel incoherent motion (flowing blood volume fraction [fIVIM] and pseudodiffusion coefficient [D*]) and non-Gaussian diffusion (theoretical apparent diffusion coefficient [ADC] at b value of 0 sec/mm2 [ADC0] and kurtosis [K]) parameters were estimated from IVIM and Kurtosis models using 16 b-values, and synthetic apparent diffusion coefficient (sADC) values were obtained from two key b-values. The variabilities between and within subjects and between different diffusion acquisition methods were estimated. There were no statistical differences in ADC0, K, or sADC values between the different b-values or NEX. A good agreement of diffusion parameters was observed between 16 b-values (one NEX), five b-values (one NEX), and five b-values (three NEX) in normal breast tissue or breast lesions. Insufficient agreement was observed for IVIM parameters. There were no statistical differences in the non-Gaussian diffusion MRI estimated values obtained from a different number of b-values or excitations in normal breast tissue or breast lesions. These data suggest that a limited MRI protocol using a few b-values might be relevant in a clinical setting for the estimation of non-Gaussian diffusion MRI parameters in normal breast tissue and breast lesions.

  12. Three-dimensional isotropic fat-suppressed proton density-weighted MRI at 3 tesla using a T/R-coil can replace multiple plane two-dimensional sequences in knee imaging

    Energy Technology Data Exchange (ETDEWEB)

    Homsi, R.; Luetkens, J.A. [Bonn Univ. (Germany). Dept. of Radiology; Gieseke, J. [Philips Healthcare, Hamburg (Germany); and others

    2016-10-15

    To evaluate whether a 3D proton density-weighted fat-suppressed sequence (PDwFS) of the knee is able to replace multiplanar 2D-PDwFS. 52 patients (26 men, mean age: 41.9±14.5 years) underwent magnetic resonance imaging (MRI) of the knee at 3.0 Tesla using a T/R-coil. The imaging protocol included 3 planes of 2D-PDwFS (acquisition time (AT): 6:40 min; voxel sizes: 0.40-0.63 x 0.44-0.89 x 3 mm{sup 3}) and a 3D-PDwFS (AT: 6:31 min; voxel size: 0.63 x 0.68 x 0.63 mm{sup 3}). Homogeneity of fat suppression (HFS), artifacts, and image sharpness (IS) were evaluated on a 5-point scale (5[excellent] - 1[non-diagnostic]). The sum served as a measure for the overall image quality (OIQ). Contrast ratios (CR) compared to popliteal muscle were calculated for the meniscus (MEN), anterior (ACL) and posterior cruciate ligaments (PCL). In 13 patients who underwent arthroscopic knee surgery, two radiologists evaluated the presence of meniscal, ligamental and cartilage lesions to estimate the sensitivity and specificity of lesion detection. The CR was higher in the ACL, PCL and MEN in 3D- PDwFS compared to 2D-PDwFS (p<0.01 for ACL and PCL; p=0.07 for MEN). Compared to 2D images, the OIQ was rated higher in 3D-PDwFS images (p<0.01) due to fewer artifacts and HFS despite the lower IS (p<0.01). The sensitivity and specificity of lesion detection in 3D- and 2D-PDwFS were similar. Compared to standard multiplanar 2D-PDwFS knee imaging, isotropic high spatial resolution 3D-PDwFS of the knee at 3.0T can be acquired with high image quality in a reasonable scan time. Multiplanar reformations in arbitrary planes may serve as an additional benefit of 3D-PDwFS.

  13. Let's go out of the breast: prevalence of extra-mammary findings and their characterization on breast MRI.

    Science.gov (United States)

    Moschetta, Marco; Telegrafo, Michele; Rella, Leonarda; Stabile Ianora, Amato Antonio; Angelelli, Giuseppe

    2014-06-01

    The aim of this study is to assess the prevalence, the site and the nature of extra-mammary findings on breast magnetic resonance imaging (MRI) and to determine its accuracy in the characterization of the discovered lesions. A retrospective review of 308 female patients (mean age 50 ± 20) who underwent breast MRI with 1.5T device was performed. 125 out of 308 (40.5%) had a positive personal history of breast cancer (pre-operative n=80; follow-up n=45), while the remaining 183 without history of breast cancer (high familiar risk for breast cancer n=80; dense breast n=103). All incidental findings were characterized by means of additional imaging (US; Bone scintigraphy-MRI; CT-PET-CT). 59 incidental findings were found in 53/308 (17%) examined patients. 9/59 incidental findings (15%) were confirmed to be malignant while the remaining 50/59 (84%) benign. The most common site was the liver (33/59; 55.8%), followed by the lung (6/59; 10.1%), bone (6/59; 10.1%), diaphragm (6/59; 10.1%) spleen (3/59; 5%), kidney (2/59; 3.4%), gall bladder (1/5; 1.5%), ascending aorta (1/59; 1.5%), thyroid (1/59; 1.5%). The incidence of malignant incidental findings resulted to be higher in the group of patients with personal breast cancer (36%) than in the other one (8%). By comparing MRI findings with the additional definitive imaging tools, breast MRI allowed a correct diagnosis in 58/59 cases with a diagnostic accuracy value of 98%. Incidental extramammary findings on breast MRI are common. Benign lesions represent the most frequent findings, however malignant ones need to be searched especially in patients with personal history of breast cancer because they could influence the clinical patient management. Breast MRI can characterize incidental findings with high accuracy value. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Analysing breast tissue composition with MRI using currently available short, simple sequences

    International Nuclear Information System (INIS)

    Chau, A.C.M.; Hua, J.; Taylor, D.B.

    2016-01-01

    Aim: To determine the most robust commonly available magnetic resonance imaging (MRI) sequence to quantify breast tissue composition at 1.5 T. Materials and methods: Two-dimensional (2D) T1-weighted, Dixon fat, Dixon water and SPAIR images were obtained from five participants and a breast phantom using a 1.5 T Siemens Aera MRI system. Manual segmentation of the breasts was performed, and an in-house computer program was used to generate signal intensity histograms. Relative trough depth and relative peak separation were used to determine the robustness of the images for quantifying the two breast tissues. Total breast volumes and percentage breast densities calculated using the four sequences were compared. Results: Dixon fat histograms had consistently low relative trough depth and relative peak separation compared to those obtained using other sequences. There was no significant difference in total breast volumes and percentage breast densities of the participants or breast phantom using Dixon fat and 2D T1-weighted histograms. Dixon water and SPAIR histograms were not suitable for quantifying breast tissue composition. Conclusion: Dixon fat images are the most robust for the quantification of breast tissue composition using a signal intensity histogram. - Highlights: • Signal intensity histogram analysis can determine robustness of images for quantification of breast tissue composition. • Dixon fat images are the most robust. • The characteristics of the signal intensity histograms from Dixon water and SPAIR images make quantification unsuitable.

  15. Arching in three-dimensional clogging

    Science.gov (United States)

    Török, János; Lévay, Sára; Szabó, Balázs; Somfai, Ellák; Wegner, Sandra; Stannarius, Ralf; Börzsönyi, Tamás

    2017-06-01

    Arching in dry granular material is a long established concept, however it remains still an open question how three-dimensional orifices clog. We investigate by means of numerical simulations and experimental data how the outflow creates a blocked configuration of particles. We define the concave surface of the clogged dome by two independent methods (geometric and density based). The average shape of the cupola for spheres is almost a hemisphere but individual samples have large holes in the structure indicating a blocked state composed of two-dimensional force chains rather than three-dimensional objects. The force chain structure justifies this assumption. For long particles the clogged configurations display large variations, and in certain cases the empty region reaches a height of 5 hole diameters. These structures involve vertical walls consisting of horizontally placed stable stacking of particles.

  16. Three-dimensional bio-printing.

    Science.gov (United States)

    Gu, Qi; Hao, Jie; Lu, YangJie; Wang, Liu; Wallace, Gordon G; Zhou, Qi

    2015-05-01

    Three-dimensional (3D) printing technology has been widely used in various manufacturing operations including automotive, defence and space industries. 3D printing has the advantages of personalization, flexibility and high resolution, and is therefore becoming increasingly visible in the high-tech fields. Three-dimensional bio-printing technology also holds promise for future use in medical applications. At present 3D bio-printing is mainly used for simulating and reconstructing some hard tissues or for preparing drug-delivery systems in the medical area. The fabrication of 3D structures with living cells and bioactive moieties spatially distributed throughout will be realisable. Fabrication of complex tissues and organs is still at the exploratory stage. This review summarize the development of 3D bio-printing and its potential in medical applications, as well as discussing the current challenges faced by 3D bio-printing.

  17. Three dimensional imaging in cardiac nuclear medicine

    International Nuclear Information System (INIS)

    Torizuka, Kanji; Ishii, Yasushi; Yonekura, Yoshiharu; Yamamoto, Kazutaka; Tamaki, Takeyoshi

    1981-01-01

    Methods to obtain three dimensional images of the heart were reviewed. Gated three dimensional display reconstructed from images using bidirectional collimator, was a useful method to detect akinesis of the heart wall. Tomographic observation of the heart can be carried out by a pinhole collimator to image ischemia with high sensitivity. However the focusing plane must be carefully selected to prevent false positives. In the case of emission CT (ECT), utilization of positron emitters gave a quantitative image without correction, whereas single photon ECT needed the correction due to the absorption of γ-ray. Though the reliability of the images by ECT was high, the time required for data acquisition was much longer than that by a 7 pinhole or bidirectional collimator. (Nakanishi, T.)

  18. Three dimensional transport model for toroidal plasmas

    International Nuclear Information System (INIS)

    Copenhauer, C.

    1980-12-01

    A nonlinear MHD model, developed for three-dimensional toroidal geometries (asymmetric) and for high β (β approximately epsilon), is used as a basis for a three-dimensional transport model. Since inertia terms are needed in describing evolving magnetic islands, the model can calculate transport, both in the transient phase before nonlinear saturation of magnetic islands and afterwards on the resistive time scale. In the β approximately epsilon ordering, the plasma does not have sufficient energy to compress the parallel magnetic field, which allows the Alfven wave to be eliminated in the reduced nonlinear equations, and the model then follows the slower time scales. The resulting perpendicular and parallel plasma drift velocities can be identified with those of guiding center theory

  19. Three dimensional digital imaging of environmental data

    International Nuclear Information System (INIS)

    Nichols, R.L.; Eddy, C.A.

    1991-01-01

    The Environmental Sciences Section (ESS) of the Savannah River Laboratory has recently acquired the computer hardware (Silicon Graphics Personal Iris Workstations) and software (Dynamic Graphics, Interactive Surface and Volume Modeling) to perform three dimensional analysis of hydrogeologic data. Three dimensional digital imaging of environmental data is a powerful technique that can be used to incorporate field, analytical, and modeling results from geologic, hydrologic, ecologic, and chemical studies into a comprehensive model for visualization and interpretation. This report covers the contamination of four different sites of the Savannah River Plant. Each section of this report has a computer graphic display of the concentration of contamination in the groundwater and/or sediments of each site

  20. SNAP - a three dimensional neutron diffusion code

    International Nuclear Information System (INIS)

    McCallien, C.W.J.

    1993-02-01

    This report describes a one- two- three-dimensional multi-group diffusion code, SNAP, which is primarily intended for neutron diffusion calculations but can also carry out gamma calculations if the diffusion approximation is accurate enough. It is suitable for fast and thermal reactor core calculations and for shield calculations. SNAP can solve the multi-group neutron diffusion equations using finite difference methods. The one-dimensional slab, cylindrical and spherical geometries and the two-dimensional case are all treated as simple special cases of three-dimensional geometries. Numerous reflective and periodic symmetry options are available and may be used to reduce the number of mesh points necessary to represent the system. Extrapolation lengths can be specified at internal and external boundaries. (Author)

  1. Three-dimensional Imaging, Visualization, and Display

    CERN Document Server

    Javidi, Bahram; Son, Jung-Young

    2009-01-01

    Three-Dimensional Imaging, Visualization, and Display describes recent developments, as well as the prospects and challenges facing 3D imaging, visualization, and display systems and devices. With the rapid advances in electronics, hardware, and software, 3D imaging techniques can now be implemented with commercially available components and can be used for many applications. This volume discusses the state-of-the-art in 3D display and visualization technologies, including binocular, multi-view, holographic, and image reproduction and capture techniques. It also covers 3D optical systems, 3D display instruments, 3D imaging applications, and details several attractive methods for producing 3D moving pictures. This book integrates the background material with new advances and applications in the field, and the available online supplement will include full color videos of 3D display systems. Three-Dimensional Imaging, Visualization, and Display is suitable for electrical engineers, computer scientists, optical e...

  2. Three-dimensional imaging modalities in endodontics

    Science.gov (United States)

    Mao, Teresa

    2014-01-01

    Recent research in endodontics has highlighted the need for three-dimensional imaging in the clinical arena as well as in research. Three-dimensional imaging using computed tomography (CT) has been used in endodontics over the past decade. Three types of CT scans have been studied in endodontics, namely cone-beam CT, spiral CT, and peripheral quantitative CT. Contemporary endodontics places an emphasis on the use of cone-beam CT for an accurate diagnosis of parameters that cannot be visualized on a two-dimensional image. This review discusses the role of CT in endodontics, pertaining to its importance in the diagnosis of root canal anatomy, detection of peri-radicular lesions, diagnosis of trauma and resorption, presurgical assessment, and evaluation of the treatment outcome. PMID:25279337

  3. Three-dimensional imaging modalities in endodontics

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Teresa; Neelakantan, Prasanna [Dept. of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha University, Chennai (India)

    2014-09-15

    Recent research in endodontics has highlighted the need for three-dimensional imaging in the clinical arena as well as in research. Three-dimensional imaging using computed tomography (CT) has been used in endodontics over the past decade. Three types of CT scans have been studied in endodontics, namely cone-beam CT, spiral CT, and peripheral quantitative CT. Contemporary endodontics places an emphasis on the use of cone-beam CT for an accurate diagnosis of parameters that cannot be visualized on a two-dimensional image. This review discusses the role of CT in endodontics, pertaining to its importance in the diagnosis of root canal anatomy, detection of peri-radicular lesions, diagnosis of trauma and resorption, presurgical assessment, and evaluation of the treatment outcome.

  4. Three-dimensional imaging modalities in endodontics

    International Nuclear Information System (INIS)

    Mao, Teresa; Neelakantan, Prasanna

    2014-01-01

    Recent research in endodontics has highlighted the need for three-dimensional imaging in the clinical arena as well as in research. Three-dimensional imaging using computed tomography (CT) has been used in endodontics over the past decade. Three types of CT scans have been studied in endodontics, namely cone-beam CT, spiral CT, and peripheral quantitative CT. Contemporary endodontics places an emphasis on the use of cone-beam CT for an accurate diagnosis of parameters that cannot be visualized on a two-dimensional image. This review discusses the role of CT in endodontics, pertaining to its importance in the diagnosis of root canal anatomy, detection of peri-radicular lesions, diagnosis of trauma and resorption, presurgical assessment, and evaluation of the treatment outcome

  5. THREE DIMENSIONAL GRAPHICAL REPRESENTATION OF QUALITY

    Directory of Open Access Journals (Sweden)

    Vineet V. Kumar

    2014-03-01

    Full Text Available Quality is an important aspect for every firm in modern era of competition. Every product has tough competition in terms of market reach. The factor, which actually makes any product long run in market, is quality and hence quality is the stepping-stone for success of any firm. For everyone meaning of quality is different. We have seen several economists who have defined quality by considering different factors, but what all of them have common in them is Customer satisfaction. Customer satisfaction is the ultimate result of quality. In three-dimensional graphical representation of quality, optimum quality is obtained by using three-dimensional graph by considering some important factors governing quality of any product, limiting factor, and customer satisfaction.

  6. Three dimensional contact/impact methodology

    International Nuclear Information System (INIS)

    Kulak, R.F.

    1987-01-01

    The simulation of three-dimensional interface mechanics between reactor components and structures during static contact or dynamic impact is necessary to realistically evaluate their structural integrity to off-normal loads. In our studies of postulated core energy release events, we have found that significant structure-structure interactions occur in some reactor vessel head closure designs and that fluid-structure interactions occur within the reactor vessel. Other examples in which three-dimensional interface mechanics play an important role are: (1) impact response of shipping casks containing spent fuel, (2) whipping pipe impact on reinforced concrete panels or pipe-to-pipe impact after a pipe break, (3) aircraft crash on secondary containment structures, (4) missiles generated by turbine failures or tornados, and (5) drops of heavy components due to lifting accidents. The above is a partial list of reactor safety problems that require adequate treatment of interface mechanics and are discussed in this paper

  7. Three-dimensional simulation of vortex breakdown

    Science.gov (United States)

    Kuruvila, G.; Salas, M. D.

    1990-01-01

    The integral form of the complete, unsteady, compressible, three-dimensional Navier-Stokes equations in the conservation form, cast in generalized coordinate system, are solved, numerically, to simulate the vortex breakdown phenomenon. The inviscid fluxes are discretized using Roe's upwind-biased flux-difference splitting scheme and the viscous fluxes are discretized using central differencing. Time integration is performed using a backward Euler ADI (alternating direction implicit) scheme. A full approximation multigrid is used to accelerate the convergence to steady state.

  8. Impermeability effects in three-dimensional vesicles

    International Nuclear Information System (INIS)

    Biscari, P; Canevese, S M; Napoli, G

    2004-01-01

    We analyse the effects of the impermeability constraint on the equilibrium shapes of a three-dimensional vesicle hosting a rigid inclusion. A given alteration of the inclusion and/or vesicle parameters leads to shape modifications of different orders of magnitude, when applied to permeable or impermeable vesicles. Moreover, the enclosed-volume constraint wrecks the uniqueness of stationary equilibrium shapes, and gives rise to pear-shaped or stomatocyte-like vesicles

  9. Computer-aided detection in breast MRI : a systematic review and meta-analysis

    NARCIS (Netherlands)

    Dorrius, Monique D.; Jansen-van der Weide, Marijke C.; van Ooijen, Peter M. A.; Pijnappel, Ruud M.; Oudkerk, Matthijs

    To evaluate the additional value of computer-aided detection (CAD) in breast MRI by assessing radiologists' accuracy in discriminating benign from malignant breast lesions. A literature search was performed with inclusion of relevant studies using a commercially available CAD system with automatic

  10. Using deep learning to segment breast and fibroglandular tissue in MRI volumes

    NARCIS (Netherlands)

    Dalmis, M.U.; Litjens, G.J.; Holland, K.; Setio, A.A.A.; Mann, R.M.; Karssemeijer, N.; Gubern Merida, A.

    2017-01-01

    PURPOSE: Automated segmentation of breast and fibroglandular tissue (FGT) is required for various computer-aided applications of breast MRI. Traditional image analysis and computer vision techniques, such atlas, template matching, or, edge and surface detection, have been applied to solve this task.

  11. Design and characterization of Stormram 4 : an MRI-compatible robotic system for breast biopsy

    NARCIS (Netherlands)

    Groenhuis, Vincent; Siepel, Françoise Jeanette; Veltman, Jeroen; Stramigioli, Stefano

    2017-01-01

    Targeting of small lesions with high precision is essential in an early phase of breast cancer for diagnosis and accurate follow up, and subsequently determines prognosis. Current techniques to diagnose breast cancer are suboptimal, and there is a need for a small, MRI-compatible robotic system able

  12. 3T MRI of the breast with computer aided diagnosis, can it help to ...

    African Journals Online (AJOL)

    Objective: This study aimed to check the sensitivity of multiple newly developed 3T MRI breast sequences using CAD software, in pre sampling diagnosis of breast cancer, in an attempt to minimize unnecessary invasive sampling or surgical procedures. Patients and methods: This was a prospective study, included 120 ...

  13. Applicability of three-dimensional imaging techniques in fetal medicine

    Energy Technology Data Exchange (ETDEWEB)

    Werner Junior, Heron; Daltro, Pedro; Gasparetto, Emerson Leandro, E-mail: heronwerner@hotmail.com [Clinica de Diagnostico Por Imagem (CDPI), Rio de Janeiro, RJ (Brazil); Santos, Jorge Lopes dos; Belmonte, Simone; Ribeiro, Gerson [Pontificia Universidade Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil); Marchiori, Edson [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil)

    2016-09-15

    Objective: To generate physical models of fetuses from images obtained with three-dimensional ultrasound (3D-US), magnetic resonance imaging (MRI), and, occasionally, computed tomography (CT), in order to guide additive manufacturing technology. Materials and Methods: We used 3D-US images of 31 pregnant women, including 5 who were carrying twins. If abnormalities were detected by 3D-US, both MRI and in some cases CT scans were then immediately performed. The images were then exported to a workstation in DICOM format. A single observer performed slice-by-slice manual segmentation using a digital high resolution screen. Virtual 3D models were obtained from software that converts medical images into numerical models. Those models were then generated in physical form through the use of additive manufacturing techniques. Results: Physical models based upon 3D-US, MRI, and CT images were successfully generated. The postnatal appearance of either the aborted fetus or the neonate closely resembled the physical models, particularly in cases of malformations. Conclusion: The combined use of 3D-US, MRI, and CT could help improve our understanding of fetal anatomy. These three screening modalities can be used for educational purposes and as tools to enable parents to visualize their unborn baby. The images can be segmented and then applied, separately or jointly, in order to construct virtual and physical 3D models. (author)

  14. Applicability of three-dimensional imaging techniques in fetal medicine*

    Science.gov (United States)

    Werner Júnior, Heron; dos Santos, Jorge Lopes; Belmonte, Simone; Ribeiro, Gerson; Daltro, Pedro; Gasparetto, Emerson Leandro; Marchiori, Edson

    2016-01-01

    Objective To generate physical models of fetuses from images obtained with three-dimensional ultrasound (3D-US), magnetic resonance imaging (MRI), and, occasionally, computed tomography (CT), in order to guide additive manufacturing technology. Materials and Methods We used 3D-US images of 31 pregnant women, including 5 who were carrying twins. If abnormalities were detected by 3D-US, both MRI and in some cases CT scans were then immediately performed. The images were then exported to a workstation in DICOM format. A single observer performed slice-by-slice manual segmentation using a digital high resolution screen. Virtual 3D models were obtained from software that converts medical images into numerical models. Those models were then generated in physical form through the use of additive manufacturing techniques. Results Physical models based upon 3D-US, MRI, and CT images were successfully generated. The postnatal appearance of either the aborted fetus or the neonate closely resembled the physical models, particularly in cases of malformations. Conclusion The combined use of 3D-US, MRI, and CT could help improve our understanding of fetal anatomy. These three screening modalities can be used for educational purposes and as tools to enable parents to visualize their unborn baby. The images can be segmented and then applied, separately or jointly, in order to construct virtual and physical 3D models. PMID:27818540

  15. Multiparallel Three-Dimensional Optical Microscopy

    Science.gov (United States)

    Nguyen, Lam K.; Price, Jeffrey H.; Kellner, Albert L.; Bravo-Zanoquera, Miguel

    2010-01-01

    Multiparallel three-dimensional optical microscopy is a method of forming an approximate three-dimensional image of a microscope sample as a collection of images from different depths through the sample. The imaging apparatus includes a single microscope plus an assembly of beam splitters and mirrors that divide the output of the microscope into multiple channels. An imaging array of photodetectors in each channel is located at a different distance along the optical path from the microscope, corresponding to a focal plane at a different depth within the sample. The optical path leading to each photodetector array also includes lenses to compensate for the variation of magnification with distance so that the images ultimately formed on all the photodetector arrays are of the same magnification. The use of optical components common to multiple channels in a simple geometry makes it possible to obtain high light-transmission efficiency with an optically and mechanically simple assembly. In addition, because images can be read out simultaneously from all the photodetector arrays, the apparatus can support three-dimensional imaging at a high scanning rate.

  16. Three dimensional analysis of laterally loaded piles

    International Nuclear Information System (INIS)

    Yilmaz, C.

    1987-01-01

    In this study static analysis of laterally loaded pile is studied by the three models. The first model is the beam on discrete elastic springs. This model is analyzed using a flexibility method. The second model is the beam on a two-parameter elastic foundation. This model is analyzed using the linear finite element method. The third model is the finite element model, using the three-dimensional iso-parametric parabolic brick element. Three-dimensional pile group analysis is also performed using elastic constants of single pile obtained by any one of the above analyses. The main objective is to develop computer programs for each model related to single piles and to group analysis. Then, the deflections, rotations, moments, shears, stresses and strains of the single pile are obtained at any arbitrary point. Comparison is made between each model and with other studies such as Poulos 1971, Desai and Appel 1976. In addition, to provide a benchmark of three-dimensional finite element analysis, the Boussinesq problem is analyzed. (orig.)

  17. Three-Dimensional Reconstruction of Sandpile Interiors

    Science.gov (United States)

    Seidler, G. T.

    2001-03-01

    The granular bed, or sandpile, has become one of the condensed matter physicist's favorite systems. In addition to conceptual appeal, the simplest sandpile of monodisperse hard spheres is a valuable model system for understanding powders, liquids, and metallic glasses. Any fundamental approach to the transport and mechanical properties of three-dimensional mesoscale disordered materials must follow from a thorough understanding of their structure. However, in the overwhelming majority of cases, structure measurements have been limited to the mean filling fraction and the structural autocorrelation function. This is particularly unfortunate in the ongoing sandpile renaissance, where some of the most interesting questions concern structure and the relationship between structure and dynamics. I will discuss the combination of synchrotron x-ray microtomography and computer vision algorithms to perform three-dimensional virtual reconstructions of real sandpiles. This technique is rapid and noninvasive, and is applicable to samples large enough to separate bulk and boundary properties. The resulting complete knowledge of structure can be used to calculate otherwise inaccessible correlation functions. I will present results for several measures of the bond-orientational order in three-dimensional sandpiles, including fabric tensors and nematic order parameters.

  18. Three-dimensional deformation of orthodontic brackets

    Science.gov (United States)

    Melenka, Garrett W; Nobes, David S; Major, Paul W

    2013-01-01

    Braces are used by orthodontists to correct the misalignment of teeth in the mouth. Archwire rotation is a particular procedure used to correct tooth inclination. Wire rotation can result in deformation to the orthodontic brackets, and an orthodontic torque simulator has been designed to examine this wire–bracket interaction. An optical technique has been employed to measure the deformation due to size and geometric constraints of the orthodontic brackets. Images of orthodontic brackets are collected using a stereo microscope and two charge-coupled device cameras, and deformation of orthodontic brackets is measured using a three-dimensional digital image correlation technique. The three-dimensional deformation of orthodontic brackets will be evaluated. The repeatability of the three-dimensional digital image correlation measurement method was evaluated by performing 30 archwire rotation tests using the same bracket and archwire. Finally, five Damon 3MX and five In-Ovation R self-ligating brackets will be compared using this technique to demonstrate the effect of archwire rotation on bracket design. PMID:23762201

  19. Three-dimensional deformation of orthodontic brackets.

    Science.gov (United States)

    Melenka, Garrett W; Nobes, David S; Major, Paul W; Carey, Jason P

    2013-01-01

    Braces are used by orthodontists to correct the misalignment of teeth in the mouth. Archwire rotation is a particular procedure used to correct tooth inclination. Wire rotation can result in deformation to the orthodontic brackets, and an orthodontic torque simulator has been designed to examine this wire-bracket interaction. An optical technique has been employed to measure the deformation due to size and geometric constraints of the orthodontic brackets. Images of orthodontic brackets are collected using a stereo microscope and two charge-coupled device cameras, and deformation of orthodontic brackets is measured using a three-dimensional digital image correlation technique. The three-dimensional deformation of orthodontic brackets will be evaluated. The repeatability of the three-dimensional digital image correlation measurement method was evaluated by performing 30 archwire rotation tests using the same bracket and archwire. Finally, five Damon 3MX and five In-Ovation R self-ligating brackets will be compared using this technique to demonstrate the effect of archwire rotation on bracket design.

  20. MRI-Guided Intervention for Breast Lesions Using the Freehand Technique in a 3.0-T Closed-Bore MRI Scanner: Feasibility and Initial Results

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hye Young [Department of Radiology, Gyeongsang National University Hospital, Jinju 660-702 (Korea, Republic of); Kim, Sun Mi; Jang, Mijung; Yun, Bo La [Department of Radiology, Seoul National University Bundang Hospital, Seongnam 463-707 (Korea, Republic of); Kim, Sung-Won; Kang, Eunyoung [Department of Surgery, Seoul National University Bundang Hospital, Seongnam 463-707 (Korea, Republic of); Park, So Yeon [Department of Pathology, Seoul National University Bundang Hospital, Seongnam 463-707 (Korea, Republic of); Moon, Woo Kyung [Department of Radiology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul 110-744 (Korea, Republic of); Ko, Eun Sook [Department of Radiology, Samsung Medical Center, Seoul 135-710 (Korea, Republic of)

    2013-07-01

    To report the feasibility of magnetic resonance imaging (MRI)-guided intervention for diagnosing suspicious breast lesions detectable by MRI only, using the freehand technique with a 3.0-T closed-bore MRI scanner. Five women with 5 consecutive MRI-only breast lesions underwent MRI-guided intervention: 3 underwent MRI-guided needle localization and 2, MRI-guided vacuum-assisted biopsy. The interventions were performed in a 3.0-T closed-bore MRI system using a dedicated phased-array breast coil with the patients in the prone position; the freehand technique was used. Technical success and histopathologic outcome were analyzed. MRI showed that four lesions were masses (mean size, 11.5 mm; range, 7-18 mm); and 1, a nonmass-like enhancement (maximum diameter, 21 mm). The locations of the lesions with respect to the breast with index cancer were as follows: different quadrant, same breast - 3 cases; same quadrant, same breast - 1 case; and contralateral breast - 1 case. Histopathologic evaluation of the lesions treated with needle localization disclosed perilobular hemangioma, fibrocystic change, and fibroadenomatous change. The lesions treated with vacuum-assisted biopsy demonstrated a radial scar and atypical apocrine hyperplasia. Follow-up MRI after 2-7 months (mean, 4.6 months) confirmed complete lesion removal in all cases. MRI-guided intervention for breast lesions using the freehand technique with a 3.0-T closed-bore MRI scanner is feasible and accurate for diagnosing MRI-only lesions.

  1. MRI-Guided Intervention for Breast Lesions Using the Freehand Technique in a 3.0-T Closed-Bore MRI Scanner: Feasibility and Initial Results

    International Nuclear Information System (INIS)

    Choi, Hye Young; Kim, Sun Mi; Jang, Mijung; Yun, Bo La; Kim, Sung-Won; Kang, Eunyoung; Park, So Yeon; Moon, Woo Kyung; Ko, Eun Sook

    2013-01-01

    To report the feasibility of magnetic resonance imaging (MRI)-guided intervention for diagnosing suspicious breast lesions detectable by MRI only, using the freehand technique with a 3.0-T closed-bore MRI scanner. Five women with 5 consecutive MRI-only breast lesions underwent MRI-guided intervention: 3 underwent MRI-guided needle localization and 2, MRI-guided vacuum-assisted biopsy. The interventions were performed in a 3.0-T closed-bore MRI system using a dedicated phased-array breast coil with the patients in the prone position; the freehand technique was used. Technical success and histopathologic outcome were analyzed. MRI showed that four lesions were masses (mean size, 11.5 mm; range, 7-18 mm); and 1, a nonmass-like enhancement (maximum diameter, 21 mm). The locations of the lesions with respect to the breast with index cancer were as follows: different quadrant, same breast - 3 cases; same quadrant, same breast - 1 case; and contralateral breast - 1 case. Histopathologic evaluation of the lesions treated with needle localization disclosed perilobular hemangioma, fibrocystic change, and fibroadenomatous change. The lesions treated with vacuum-assisted biopsy demonstrated a radial scar and atypical apocrine hyperplasia. Follow-up MRI after 2-7 months (mean, 4.6 months) confirmed complete lesion removal in all cases. MRI-guided intervention for breast lesions using the freehand technique with a 3.0-T closed-bore MRI scanner is feasible and accurate for diagnosing MRI-only lesions

  2. Breast MRI in Invasive Lobular Carcinoma: A Useful Investigation in Surgical Planning?

    Science.gov (United States)

    Parvaiz, Muhammad Asad; Yang, Peiming; Razia, Eisha; Mascarenhas, Margaret; Deacon, Caroline; Matey, Pilar; Isgar, Brian; Sircar, Tapan

    2016-01-01

    Magnetic resonance imaging (MRI) is highly sensitive in detecting invasive lobular carcinoma (ILC) of the breast. In our institution, patients who are deemed to be suitable for breast conserving surgery (BCS) with unifocal small ILC on standard imaging are offered breast MRI to exclude multifocal and larger ILC. Our study investigates the usefulness of breast MRI in ILC. A prospective cohort study over a 58-month period, including all consecutive patients with ILC having breast MRI. Primary objective was to find out the proportion of ILC patients where preoperative MRI caused a change in the surgical treatment. Secondary objectives included finding mastectomy rate (initial & final), re-operation rate, cancer size correlation with different imaging modalities and final histopathology, loco-regional recurrence and disease-free survival. A total of 334 bilateral breast MRI were performed including 72 (21.5%) MRI for ILC patients. All these MRI were carried out within 2 week of patients given the diagnosis (median 5.5 days). Age range was 24-83 (median 56.5) years. Nineteen of 72 ILC patients (26.4%) had a change in their planned operation from BCS to a different operation owing to MRI findings (seven patients with multifocal cancers, 10 with significantly larger size of the cancer and two with contralateral malignancy). Initial mastectomy rate was 31.9%, final mastectomy rate was 36.1% and re-operation rate in BCS group was 18.3%. MRI correlated better with ILC histopathology cancer size than mammogram and ultrasound scans. There was no statistically significant difference (p = 0.999) between the cancer size on histology (median 23 mm) and MRI (median 25 mm). However, mammogram (median 17 mm) and ultrasound (median 14.5 mm) scans showed cancer sizes significantly different to final histology cancer size (p = 0.0008 and p = 0.0021 respectively). Over a 44 months median follow-up (range 27-85), 95.8% disease-free survival and 98.6% overall survival have been observed

  3. Quantitative Volumetric K-Means Cluster Segmentation of Fibroglandular Tissue and Skin in Breast MRI.

    Science.gov (United States)

    Niukkanen, Anton; Arponen, Otso; Nykänen, Aki; Masarwah, Amro; Sutela, Anna; Liimatainen, Timo; Vanninen, Ritva; Sudah, Mazen

    2017-10-18

    Mammographic breast density (MBD) is the most commonly used method to assess the volume of fibroglandular tissue (FGT). However, MRI could provide a clinically feasible and more accurate alternative. There were three aims in this study: (1) to evaluate a clinically feasible method to quantify FGT with MRI, (2) to assess the inter-rater agreement of MRI-based volumetric measurements and (3) to compare them to measurements acquired using digital mammography and 3D tomosynthesis. This retrospective study examined 72 women (mean age 52.4 ± 12.3 years) with 105 disease-free breasts undergoing diagnostic 3.0-T breast MRI and either digital mammography or tomosynthesis. Two observers analyzed MRI images for breast and FGT volumes and FGT-% from T1-weighted images (0.7-, 2.0-, and 4.0-mm-thick slices) using K-means clustering, data from histogram, and active contour algorithms. Reference values were obtained with Quantra software. Inter-rater agreement for MRI measurements made with 2-mm-thick slices was excellent: for FGT-%, r = 0.994 (95% CI 0.990-0.997); for breast volume, r = 0.985 (95% CI 0.934-0.994); and for FGT volume, r = 0.979 (95% CI 0.958-0.989). MRI-based FGT-% correlated strongly with MBD in mammography (r = 0.819-0.904, P K-means clustering-based assessments of the proportion of the fibroglandular tissue in the breast at MRI are highly reproducible. In the future, quantitative assessment of FGT-% to complement visual estimation of FGT should be performed on a more regular basis as it provides a component which can be incorporated into the individual's breast cancer risk stratification.

  4. Three dimensional illustrating - three-dimensional vision and deception of sensibility

    Directory of Open Access Journals (Sweden)

    Anita Gánóczy

    2009-03-01

    Full Text Available The wide-spread digital photography and computer use gave the opportunity for everyone to make three-dimensional pictures and to make them public. The new opportunities with three-dimensional techniques give chance for the birth of new artistic photographs. We present in detail the biological roots of three-dimensional visualization, the phenomena of movement parallax, which can be used efficiently in making three-dimensional graphics, the Zöllner- and Corridor-illusion. There are present in this paper the visual elements, which contribute to define a plane two-dimensional image in three-dimension: coherent lines, the covering, the measurement changes, the relative altitude state, the abatement of detail profusion, the shadings and the perspective effects of colors.

  5. Three-dimensional analysis of craniofacial bones using three-dimensional computer tomography

    International Nuclear Information System (INIS)

    Ono, Ichiro; Ohura, Takehiko; Kimura, Chu

    1989-01-01

    Three-dimensional computer tomography (3DCT) was performed in patients with various diseases to visualize stereoscopically the deformity of the craniofacial bones. The data obtained were analyzed by the 3DCT analyzing system. A new coordinate system was established using the median sagittal plane of the face (a plane passing through sella, nasion and basion) on the three-dimensional image. Three-dimensional profilograms were prepared for detailed analysis of the deformation of craniofacial bones for cleft lip and palate, mandibular prognathia and hemifacial microsomia. For patients, asymmetry in the frontal view and twist-formed complicated deformities were observed, as well as deformity of profiles in the anteroposterior and up-and-down directions. A newly developed technique allows three-dimensional visualization of changes in craniofacial deformity. It would aid in determining surgical strategy, including crani-facial surgery and maxillo-facial surgery, and in evaluating surgical outcome. (N.K.)

  6. Three-dimensional analysis of craniofacial bones using three-dimensional computer tomography

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Ichiro; Ohura, Takehiko; Kimura, Chu (Hokkaido Univ., Sapporo (Japan). School of Medicine) (and others)

    1989-08-01

    Three-dimensional computer tomography (3DCT) was performed in patients with various diseases to visualize stereoscopically the deformity of the craniofacial bones. The data obtained were analyzed by the 3DCT analyzing system. A new coordinate system was established using the median sagittal plane of the face (a plane passing through sella, nasion and basion) on the three-dimensional image. Three-dimensional profilograms were prepared for detailed analysis of the deformation of craniofacial bones for cleft lip and palate, mandibular prognathia and hemifacial microsomia. For patients, asymmetry in the frontal view and twist-formed complicated deformities were observed, as well as deformity of profiles in the anteroposterior and up-and-down directions. A newly developed technique allows three-dimensional visualization of changes in craniofacial deformity. It would aid in determining surgical strategy, including crani-facial surgery and maxillo-facial surgery, and in evaluating surgical outcome. (N.K.).

  7. Three-dimensional instability of standing waves

    Science.gov (United States)

    Zhu, Qiang; Liu, Yuming; Yue, Dick K. P.

    2003-12-01

    We investigate the three-dimensional instability of finite-amplitude standing surface waves under the influence of gravity. The analysis employs the transition matrix (TM) approach and uses a new high-order spectral element (HOSE) method for computation of the nonlinear wave dynamics. HOSE is an extension of the original high-order spectral method (HOS) wherein nonlinear wave wave and wave body interactions are retained up to high order in wave steepness. Instead of global basis functions in HOS, however, HOSE employs spectral elements to allow for complex free-surface geometries and surface-piercing bodies. Exponential convergence of HOS with respect to the total number of spectral modes (for a fixed number of elements) and interaction order is retained in HOSE. In this study, we use TM-HOSE to obtain the stability of general three-dimensional perturbations (on a two-dimensional surface) on two classes of standing waves: plane standing waves in a rectangular tank; and radial/azimuthal standing waves in a circular basin. For plane standing waves, we confirm the known result of two-dimensional side-bandlike instability. In addition, we find a novel three-dimensional instability for base flow of any amplitude. The dominant component of the unstable disturbance is an oblique (standing) wave oriented at an arbitrary angle whose frequency is close to the (nonlinear) frequency of the original standing wave. This finding is confirmed by direct long-time simulations using HOSE which show that the nonlinear evolution leads to classical Fermi Pasta Ulam recurrence. For the circular basin, we find that, beyond a threshold wave steepness, a standing wave (of nonlinear frequency Omega) is unstable to three-dimensional perturbations. The unstable perturbation contains two dominant (standing-wave) components, the sum of whose frequencies is close to 2Omega. From the cases we consider, the critical wave steepness is found to generally decrease/increase with increasing radial

  8. MRI screening for breast cancer in women at high risk; is the Australian breast MRI screening access program addressing the needs of women at high risk of breast cancer?

    Energy Technology Data Exchange (ETDEWEB)

    Schenberg, Tess [Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria (Australia); Familial Cancer Centre, Peter MacCallum Cancer Centre, Melbourne, Victoria (Australia); Mitchell, Gillian [Familial Cancer Centre, Peter MacCallum Cancer Centre, Melbourne, Victoria (Australia); Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria (Australia); Taylor, Donna [School of Surgery, University of Western Australia, Perth, Western Australia (Australia); Department of Radiology, Royal Perth Hospital, Perth, Western Australia (Australia); BreastScreen Western Australia, Adelaide Terrace, Perth, Western Australia (Australia); Saunders, Christobel [School of Surgery, University of Western Australia, Perth, Western Australia (Australia); Department of General Surgery, St John of God Hospital, Perth, Western Australia (Australia); Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria (Australia)

    2015-09-15

    Breast magnetic resonance imaging (MRI) screening of women under 50 years old at high familial risk of breast cancer was given interim funding by Medicare in 2009 on the basis that a review would be undertaken. An updated literature review has been undertaken by the Medical Services Advisory Committee but there has been no assessment of the quality of the screening or other screening outcomes. This review examines the evidence basis of breast MRI screening and how this fits within an Australian context with the purpose of informing future modifications to the provision of Medicare-funded breast MRI screening in Australia. Issues discussed will include selection of high-risk women, the options for MRI screening frequency and measuring the outcomes of screening.

  9. MRI screening for breast cancer in women at high risk; is the Australian breast MRI screening access program addressing the needs of women at high risk of breast cancer?

    International Nuclear Information System (INIS)

    Schenberg, Tess; Mitchell, Gillian; Taylor, Donna; Saunders, Christobel

    2015-01-01

    Breast magnetic resonance imaging (MRI) screening of women under 50 years old at high familial risk of breast cancer was given interim funding by Medicare in 2009 on the basis that a review would be undertaken. An updated literature review has been undertaken by the Medical Services Advisory Committee but there has been no assessment of the quality of the screening or other screening outcomes. This review examines the evidence basis of breast MRI screening and how this fits within an Australian context with the purpose of informing future modifications to the provision of Medicare-funded breast MRI screening in Australia. Issues discussed will include selection of high-risk women, the options for MRI screening frequency and measuring the outcomes of screening

  10. Additional findings at preoperative breast MRI: the value of second-look digital breast tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Clauser, Paola; Pancot, Martina; Girometti, Rossano; Bazzocchi, Massimo; Zuiani, Chiara [University of Udine, Azienda Ospedaliero-Universitaria, ' ' S.Maria della Misericordia' ' , Institute of Diagnostic Radiology, Department of Medical and Biological Sciences, Udine (Italy); Carbonaro, Luca A. [IRCCS Policlinico San Donato, Unit of Radiology, Milan (Italy); Sardanelli, Francesco [IRCCS Policlinico San Donato, Unit of Radiology, Milan (Italy); Universita degli Studi di Milano, Department of Biomedical Sciences of Health, Milan (Italy)

    2015-10-15

    To evaluate second-look digital breast tomosynthesis (SL-DBT) for additional findings (AFs) at preoperative MRI compared with second-look ultrasound (SL-US). We included 135 patients with breast cancer who underwent digital mammography (DM), DBT, US, and MRI at two centres. MR images were retrospectively evaluated to find AFs, described as focus, mass, or non-mass; ≤10 mm or >10 mm in size; BI-RADS 3, 4, or 5. DM and DBT exams were reviewed looking for MRI AFs; data on SL-US were collected. Reference standard was histopathology or ≥12-month negative follow-up. Fisher exact test and McNemar test were used. Eighty-four AFs were detected in 53/135 patients (39 %, 95 %CI 31-48 %). A correlate was found for 44/84 (52 %, 95 %CI 41-63 %) at SL-US, for 20/84 (24 %, 95 %CI 11-28 %) at SL-DM, for 42/84 (50 %, 95 %CI 39-61 %) at SL-DBT, for 63/84 (75 %, 95 %CI 64-84 %) at SL-DBT, and/or SL-US, the last rate being higher than for SL-US only, overall (p < 0.001), for mass or non-mass, ≤ or >10 mm, BI-RADS 4 or 5, or malignant lesions (p < 0.031). Of 21 AFs occult at both SLs, 17 were malignant (81 %, 95 %CI 58-94 %). When adding SL-DBT to SL-US, AFs detection increased from 52 % to 75 %. MR-guided biopsy is needed for the remaining 25 %. (orig.)

  11. Reproducible automated breast density measure with no ionizing radiation using fat-water decomposition MRI.

    Science.gov (United States)

    Ding, Jie; Stopeck, Alison T; Gao, Yi; Marron, Marilyn T; Wertheim, Betsy C; Altbach, Maria I; Galons, Jean-Philippe; Roe, Denise J; Wang, Fang; Maskarinec, Gertraud; Thomson, Cynthia A; Thompson, Patricia A; Huang, Chuan

    2018-04-06

    Increased breast density is a significant independent risk factor for breast cancer, and recent studies show that this risk is modifiable. Hence, breast density measures sensitive to small changes are desired. Utilizing fat-water decomposition MRI, we propose an automated, reproducible breast density measurement, which is nonionizing and directly comparable to mammographic density (MD). Retrospective study. The study included two sample sets of breast cancer patients enrolled in a clinical trial, for concordance analysis with MD (40 patients) and reproducibility analysis (10 patients). The majority of MRI scans (59 scans) were performed with a 1.5T GE Signa scanner using radial IDEAL-GRASE sequence, while the remaining (seven scans) were performed with a 3T Siemens Skyra using 3D Cartesian 6-echo GRE sequence with a similar fat-water separation technique. After automated breast segmentation, breast density was calculated using FraGW, a new measure developed to reliably reflect the amount of fibroglandular tissue and total water content in the entire breast. Based on its concordance with MD, FraGW was calibrated to MR-based breast density (MRD) to be comparable to MD. A previous breast density measurement, Fra80-the ratio of breast voxels with density changes and treatment response. 3 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018. © 2018 International Society for Magnetic Resonance in Medicine.

  12. Breast MRI: Are T2 IR sequences useful in the evaluation of breast lesions?

    Energy Technology Data Exchange (ETDEWEB)

    Ballesio, Laura [Department of Radiological Sciences, Umberto I Hospital, ' Sapienza' University of Rome, Viale Del Policlinico 155, 00161 Rome (Italy); Savelli, Sara [Department of Radiological Sciences, Umberto I Hospital, ' Sapienza' University of Rome, Viale Del Policlinico 155, 00161 Rome (Italy)], E-mail: sarasavelli@hotmail.it; Angeletti, Marco; Porfiri, Lucio Maria; D' Ambrosio, Ilaria; Maggi, Claudia; Castro, Elisabetta Di; Bennati, Paolo; Fanelli, Gloria Pasqua [Department of Radiological Sciences, Umberto I Hospital, ' Sapienza' University of Rome, Viale Del Policlinico 155, 00161 Rome (Italy); Vestri, Anna Rita [Department of Experimental Medicine, Umberto I Hospital, ' Sapienza' University of Rome, Viale Del Policlinico 155, 00161 Rome (Italy); Manganaro, Lucia [Department of Radiological Sciences, Umberto I Hospital, ' Sapienza' University of Rome, Viale Del Policlinico 155, 00161 Rome (Italy)

    2009-07-15

    Aim: To evaluate the potential role of signal intensities calculated in T2 images as an adjunctive parameter in the analysis of mass-like enhancements classified as BIRADS (Breast Imaging Reporting and Data System) assessment categories 2, 3, 4 or 5 with the standard T1 criteria. Materials and methods: After a retrospective review of 338-breast Magnetic Resonance Imaging (MRI) performed for the evaluation of a suspicious lesion we selected a group of 65 mass-like enhancements ranging from 5 to 20 mm, classified as BIRADS assessment categories 2, 3, 4 or 5, histologically proved. In all cases we calculated the ratio between the signal intensity (SI) of the nodule and the pectoralis major muscle (LMSIR, lesion to muscle signal intensity ratio) with a multiROIs (region of interest) analysis on T2 images. A ROC analysis was performed to test the ability of the two diagnostic parameters separately considered (BIRADS and LMSIR) and combined in a new mono-dimensional variable obtained by a computerized discriminant function. Results: Histological examination assessed 34 malignant lesions (52.3%) and 31 benign lesions (47.7%). The evaluation of ROC curves gave the following results: BIRADS area under the curve (AUC) 0.913, S.E. 0.0368, LMSIR AUC 0.854, S.E. 0.0487, combined BIRADS-LMSIR AUC 0.965, S.E. 0.0191 with a definitive increase in the AUC between the overall ROC area and those of the two diagnostic modalities separately considered. Discussion: T2-weighted SI assessment with LMSIR measurement improves the diagnostic information content of standard breast MRI and can be considered a promising potential tool in the differential diagnosis of mass-like enhancements judged as borderline lesions (BIRADS 3 and 4)

  13. A Retrospective Study Evaluating the Impact of Preoperative Breast MRI on Surgical Decision-Making in Young Patients (≤50 Years with Invasive Breast Cancer

    Directory of Open Access Journals (Sweden)

    Som D. Mukherjee

    2016-01-01

    Full Text Available Introduction Breast magnetic resonance imaging (MRI is considered a more sensitive diagnostic test for detecting invasive breast cancer than mammography or breast ultrasound. Breast MRI may be particularly useful in younger premenopausal women with higher density breast tissue for differentiating between dense fibroglandular breast tissue and breast malignancies. The main objective of this study was to determine the impact of preoperative breast MRI on surgical decision-making in young women with breast cancer. Methods A retrospective review of patients with newly diagnosed invasive breast cancer and age of ≤50 years was performed. All patients underwent physical examination, preoperative mammogram, breast ultrasound, and bilateral breast MRI. Two breast cancer surgeons reviewed the preoperative mammogram report, breast ultrasound report, and physical examination summary and were asked if they would recommend a lumpectomy, a quandrantectomy, or a mastectomy. A few weeks later, the two surgeons were shown the same information with the breast MRI report and were asked what type of surgery they would now recommend. In each case, MRI was classified by two adjudicators as having affected the surgical outcome in a positive, negative, or neutral fashion. A positive impact was defined as the situation where breast MRI detected additional disease that was not found on physical examination, mammogram, or breast ultrasound and led to an appropriate change in surgical management. A negative impact was defined as the situation where breast MRI led the surgeon to recommend more extensive surgery, with less extensive disease actually found at pathology. No impact was defined as the situation where MRI findings did not alter surgical recommendations or outcomes. Results Of 37 patients whose charts were reviewed, five patients were deemed to be ineligible due to having received neoadjuvant chemotherapy, having previous breast implants, or having had their

  14. Usefulness of preoperative chest multidetector CT for evaluation of breast cancer: comparison with breast MRI

    International Nuclear Information System (INIS)

    Chang, Yun Woo; Kim, Dong Hun; Lee, Min Hyuk

    2005-01-01

    To evaluate the efficacy of chest multidetector-row helical computed tomography (MDCT) in detecting breast cancer in preoperative metastasis work-ups and to assess the accuracy of MDCT compared with magnetic resonance imaging (MRI). MDCT were performed on 69 consecutive patients with 94 lesions of histologically proven breast cancer. Retrospectively, two radiologists performed a blind review of the MDCT images for margin, shape, mass enhancement pattern and the enhancing distribution of non-mass lesions with consensus. CT attenuation values were measured in the average HU on pre-enhancing and enhanced CT in gland, fat, muscle, and in masses with the largest region of interest (ROI). MDCT finding were analyzed and compared with breast MRI. Of the 91 breast lesions detected on MDCT, 64 were mass lesions and 24 were non-mass lesions on enhancement, 86 lesions were malignant and 5 were benign. Three pathologically proven malignant masses were not detected on MDCT. Positive predictive value, false positive rate and false negative rate were 94.5%, 5.3%, 3.2% respectively. The highly predictive features for malignancy were a spiculated or irregular margin, an irregular of round shape, and a heterogeneously or rim enhanced mass. Another highly predictive feature for malignancy was linear or segmentally distributed enhancing non-mass lesions. The CT values of masses in pre-enhanced scans were 38.6 ± 7.9 HU; these values increased to 110.9 ± 26.6 HU after contrast injection (90 sec). The attenuation values from enhancing CT of malignant lesions were significantly higher than those of non-enhancing lesions. The depiction of enhancing masses on MDCT compared with MR imaging were 88.6%. The extension of malignancy were equally well correlated MDCT with MR imaging. The diagnostic value of chest MDCT for preoperative staging is comparable with MR imaging for the detection and extension of lesions. Therefore, chest MDCT of breast cancer can add to the information obtained from

  15. Invasive lobular carcinoma of the breast: MRI pathological correlation following bilateral total mastectomy

    International Nuclear Information System (INIS)

    Stivalet, Aude; Pigneur, Frederic; Luciani, Alain

    2012-01-01

    Background: Invasive lobular carcinoma (ILC) is more often multifocal and bilateral than invasive ductal carcinoma. MRI is usually recommended for detection of all ILC sites. The performance of known diagnostic breast MRI criteria for ILC characterization has not been evaluated to date using bilateral mastectomy specimens as gold standard. Purpose: To determine the value of BI-RADS 2006 MRI criteria for ILC detection and characterization, using pathological examination of bilateral mastectomy specimens as the reference standard. Material and Methods: Between 2004 and 2007, we retrospectively included all patients with pathologically documented ILC referred to our institution for bilateral mastectomy and preoperative bilateral breast MRI. The location, diameter, and characteristics (BI-RADS) of all lesions were compared with pathological findings. The sensitivity and positive predictive value of bilateral breast MRI for the diagnosis of ILC were calculated. Association of MRI BI-RADS categorical variables and characterization of ILC were assessed (Fisher exact test). Results: Among 360 patients treated for ILC in 2004-2007, 15 patients qualified for this study. Thirty-one ILC foci were found on pathological examination (30 ipsilateral and 1 contralateral tumor; mean diameter 23 mm; range 2-60 mm) and all were identified on MRI, with 90% of masses and 10% non-mass-like enhancements; MRI features significantly associated with ILC included absence of smooth margins (P = 0.02) and rim-shaped enhancement (P = 0.039). Enhancement kinetics of the 31 foci were evenly distributed among wash-out, plateau, and persistent profiles. Eleven additional lesions were seen on MRI, mainly corresponding to fibrocystic disease; 91% presented as masses and 9% had a wash-out profile. Conclusion: Based on the 2006 BI-RADS criteria, breast MRI shows a high sensitivity for ILC detection, at the expense of a 26% false-positive rate, suggesting that a pathological proof by US- or MR

  16. Invasive lobular carcinoma of the breast: MRI pathological correlation following bilateral total mastectomy

    Energy Technology Data Exchange (ETDEWEB)

    Stivalet, Aude; Pigneur, Frederic (AP-HP, Groupe Henri Mondor Albert Chenevier, Imagerie Medicale, Creteil (France)); Luciani, Alain (AP-HP, Groupe Henri Mondor Albert Chenevier, Imagerie Medicale, Creteil (France); INSERM Unite U 955, Equipe 17, Univ. Paris Est Creteil, Creteil (France)), email: alain.luciani@hmn.aphp.fr (and others)

    2012-05-15

    Background: Invasive lobular carcinoma (ILC) is more often multifocal and bilateral than invasive ductal carcinoma. MRI is usually recommended for detection of all ILC sites. The performance of known diagnostic breast MRI criteria for ILC characterization has not been evaluated to date using bilateral mastectomy specimens as gold standard. Purpose: To determine the value of BI-RADS 2006 MRI criteria for ILC detection and characterization, using pathological examination of bilateral mastectomy specimens as the reference standard. Material and Methods: Between 2004 and 2007, we retrospectively included all patients with pathologically documented ILC referred to our institution for bilateral mastectomy and preoperative bilateral breast MRI. The location, diameter, and characteristics (BI-RADS) of all lesions were compared with pathological findings. The sensitivity and positive predictive value of bilateral breast MRI for the diagnosis of ILC were calculated. Association of MRI BI-RADS categorical variables and characterization of ILC were assessed (Fisher exact test). Results: Among 360 patients treated for ILC in 2004-2007, 15 patients qualified for this study. Thirty-one ILC foci were found on pathological examination (30 ipsilateral and 1 contralateral tumor; mean diameter 23 mm; range 2-60 mm) and all were identified on MRI, with 90% of masses and 10% non-mass-like enhancements; MRI features significantly associated with ILC included absence of smooth margins (P = 0.02) and rim-shaped enhancement (P = 0.039). Enhancement kinetics of the 31 foci were evenly distributed among wash-out, plateau, and persistent profiles. Eleven additional lesions were seen on MRI, mainly corresponding to fibrocystic disease; 91% presented as masses and 9% had a wash-out profile. Conclusion: Based on the 2006 BI-RADS criteria, breast MRI shows a high sensitivity for ILC detection, at the expense of a 26% false-positive rate, suggesting that a pathological proof by US- or MR

  17. Time to enhancement derived from ultrafast breast MRI as a novel parameter to discriminate benign from malignant breast lesions

    International Nuclear Information System (INIS)

    Mus, Roel D.; Borelli, Cristina; Bult, Peter; Weiland, Elisabeth; Karssemeijer, Nico; Barentsz, Jelle O.; Gubern-Mérida, Albert; Platel, Bram; Mann, Ritse M.

    2017-01-01

    Highlights: • New view-sharing sequences (e.g. TWIST) enable ultrafast dynamic breast MRI. • TWIST sequences accurately characterize the inflow of contrast in breast lesions. • TTE evaluation allows breast lesion classification with very high accuracy. • The use of TTE significantly increases the specificity of breast MRI. • TWIST imaging may increase the potential of breast MRI as screening tool. - Abstract: Objectives: To investigate time to enhancement (TTE) as novel dynamic parameter for lesion classification in breast magnetic resonance imaging (MRI). Methods: In this retrospective study, 157 women with 195 enhancing abnormalities (99 malignant and 96 benign) were included. All patients underwent a bi-temporal MRI protocol that included ultrafast time-resolved angiography with stochastic trajectory (TWIST) acquisitions (1.0 × 0.9 × 2.5 mm, temporal resolution 4.32 s), during the inflow of contrast agent. TTE derived from TWIST series and relative enhancement versus time curve type derived from volumetric interpolated breath-hold examination (VIBE) series were assessed and combined with basic morphological information to differentiate benign from malignant lesions. Receiver operating characteristic analysis and kappa statistics were applied. Results: TTE had a significantly better discriminative ability than curve type (p < 0.001 and p = 0.026 for reader 1 and 2, respectively). Including morphology, sensitivity of TWIST and VIBE assessment was equivalent (p = 0.549 and p = 0.344, respectively). Specificity and diagnostic accuracy were significantly higher for TWIST than for VIBE assessment (p < 0.001). Inter-reader agreement in differentiating malignant from benign lesions was almost perfect for TWIST evaluation (κ = 0.86) and substantial for conventional assessment (κ = 0.75). Conclusions: TTE derived from ultrafast TWIST acquisitions is a valuable parameter that allows robust differentiation between malignant and benign breast lesions with high

  18. Time to enhancement derived from ultrafast breast MRI as a novel parameter to discriminate benign from malignant breast lesions

    Energy Technology Data Exchange (ETDEWEB)

    Mus, Roel D., E-mail: aroel.mus@radboudumc.nl [Department of Radiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA Nijmegen (Netherlands); Borelli, Cristina, E-mail: cristinaborelli@hotmail.it [Department of Radiology, Scientific Institute “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013, San Giovanni Rotondo, Foggia (Italy); Department of Radiology, Radboud University Medical Center (internal address 766), Geert Grooteplein Zuid 10, 6525GA Nijmegen (Netherlands); Bult, Peter, E-mail: peter.bult@radboudumc.nl [Department of Pathology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA Nijmegen (Netherlands); Weiland, Elisabeth, E-mail: elisabeth.weiland@siemens.com [Siemens Healthcare, Erlangen (Germany); Karssemeijer, Nico, E-mail: nico.karssemeijer@radboudumc.nl [Department of Radiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA Nijmegen (Netherlands); Barentsz, Jelle O., E-mail: jelle.barentsz@radboudumc.nl [Department of Radiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA Nijmegen (Netherlands); Gubern-Mérida, Albert, E-mail: albert.gubernmerida@radboudumc.nl [Department of Radiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA Nijmegen (Netherlands); Platel, Bram, E-mail: bram.platel@radboudumc.nl [Department of Radiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA Nijmegen (Netherlands); Mann, Ritse M., E-mail: ritse.mann@radboudumc.nl [Department of Radiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA Nijmegen (Netherlands)

    2017-04-15

    Highlights: • New view-sharing sequences (e.g. TWIST) enable ultrafast dynamic breast MRI. • TWIST sequences accurately characterize the inflow of contrast in breast lesions. • TTE evaluation allows breast lesion classification with very high accuracy. • The use of TTE significantly increases the specificity of breast MRI. • TWIST imaging may increase the potential of breast MRI as screening tool. - Abstract: Objectives: To investigate time to enhancement (TTE) as novel dynamic parameter for lesion classification in breast magnetic resonance imaging (MRI). Methods: In this retrospective study, 157 women with 195 enhancing abnormalities (99 malignant and 96 benign) were included. All patients underwent a bi-temporal MRI protocol that included ultrafast time-resolved angiography with stochastic trajectory (TWIST) acquisitions (1.0 × 0.9 × 2.5 mm, temporal resolution 4.32 s), during the inflow of contrast agent. TTE derived from TWIST series and relative enhancement versus time curve type derived from volumetric interpolated breath-hold examination (VIBE) series were assessed and combined with basic morphological information to differentiate benign from malignant lesions. Receiver operating characteristic analysis and kappa statistics were applied. Results: TTE had a significantly better discriminative ability than curve type (p < 0.001 and p = 0.026 for reader 1 and 2, respectively). Including morphology, sensitivity of TWIST and VIBE assessment was equivalent (p = 0.549 and p = 0.344, respectively). Specificity and diagnostic accuracy were significantly higher for TWIST than for VIBE assessment (p < 0.001). Inter-reader agreement in differentiating malignant from benign lesions was almost perfect for TWIST evaluation (κ = 0.86) and substantial for conventional assessment (κ = 0.75). Conclusions: TTE derived from ultrafast TWIST acquisitions is a valuable parameter that allows robust differentiation between malignant and benign breast lesions with high

  19. Association between mammogram density and background parenchymal enhancement of breast MRI

    Science.gov (United States)

    Aghaei, Faranak; Danala, Gopichandh; Wang, Yunzhi; Zarafshani, Ali; Qian, Wei; Liu, Hong; Zheng, Bin

    2018-02-01

    Breast density has been widely considered as an important risk factor for breast cancer. The purpose of this study is to examine the association between mammogram density results and background parenchymal enhancement (BPE) of breast MRI. A dataset involving breast MR images was acquired from 65 high-risk women. Based on mammography density (BIRADS) results, the dataset was divided into two groups of low and high breast density cases. The Low-Density group has 15 cases with mammographic density (BIRADS 1 and 2), while the High-density group includes 50 cases, which were rated by radiologists as mammographic density BIRADS 3 and 4. A computer-aided detection (CAD) scheme was applied to segment and register breast regions depicted on sequential images of breast MRI scans. CAD scheme computed 20 global BPE features from the entire two breast regions, separately from the left and right breast region, as well as from the bilateral difference between left and right breast regions. An image feature selection method namely, CFS method, was applied to remove the most redundant features and select optimal features from the initial feature pool. Then, a logistic regression classifier was built using the optimal features to predict the mammogram density from the BPE features. Using a leave-one-case-out validation method, the classifier yields the accuracy of 82% and area under ROC curve, AUC=0.81+/-0.09. Also, the box-plot based analysis shows a negative association between mammogram density results and BPE features in the MRI images. This study demonstrated a negative association between mammogram density and BPE of breast MRI images.

  20. Travel Burden to Breast MRI and Utilization: Are Risk and Sociodemographics Related?

    Science.gov (United States)

    Onega, Tracy; Lee, Christoph I; Benkeser, David; Alford-Teaster, Jennifer; Haas, Jennifer S; Tosteson, Anna N A; Hill, Deirdre; Shi, Xun; Henderson, Louise M; Hubbard, Rebecca A

    2016-06-01

    Mammography, unlike MRI, is relatively geographically accessible. Additional travel time is often required to access breast MRI. However, the amount of additional travel time and whether it varies on the basis of sociodemographic or breast cancer risk factors is unknown. The investigators examined screening mammography and MRI between 2005 and 2012 in the Breast Cancer Surveillance Consortium by (1) travel time to the closest and actual mammography facility used and the difference between the two, (2) women's breast cancer risk factors, and (3) sociodemographic characteristics. Logistic regression was used to examine the odds of traveling farther than the closest facility in relation to women's characteristics. Among 821,683 screening mammographic examinations, 76.6% occurred at the closest facility, compared with 51.9% of screening MRI studies (n = 3,687). The median differential travel time among women not using the closest facility for mammography was 14 min (interquartile range, 8-25 min) versus 20 min (interquartile range, 11-40 min) for breast MRI. Differential travel time for both imaging modalities did not vary notably by breast cancer risk factors but was significantly longer for nonurban residents. For non-Hispanic black compared with non-Hispanic white women, the adjusted odds of traveling farther than the closest facility were 9% lower for mammography (odds ratio, 0.91; 95% confidence interval, 0.87-0.95) but more than two times higher for MRI (odds ratio, 2.64; 95% confidence interval, 1.36-5.13). Breast cancer risk factors were not related to excess travel time for screening MRI, but sociodemographic factors were, suggesting the possibility that geographic distribution of advanced imaging may exacerbated disparities for some vulnerable populations. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  1. Three-dimensional stereo by photometric ratios

    International Nuclear Information System (INIS)

    Wolff, L.B.; Angelopoulou, E.

    1994-01-01

    We present a methodology for corresponding a dense set of points on an object surface from photometric values for three-dimensional stereo computation of depth. The methodology utilizes multiple stereo pairs of images, with each stereo pair being taken of the identical scene but under different illumination. With just two stereo pairs of images taken under two different illumination conditions, a stereo pair of ratio images can be produced, one for the ratio of left-hand images and one for the ratio of right-hand images. We demonstrate how the photometric ratios composing these images can be used for accurate correspondence of object points. Object points having the same photometric ratio with respect to two different illumination conditions constitute a well-defined equivalence class of physical constraints defined by local surface orientation relative to illumination conditions. We formally show that for diffuse reflection the photometric ratio is invariant to varying camera characteristics, surface albedo, and viewpoint and that therefore the same photometric ratio in both images of a stereo pair implies the same equivalence class of physical constraints. The correspondence of photometric ratios along epipolar lines in a stereo pair of images under different illumination conditions is a correspondence of equivalent physical constraints, and the determination of depth from stereo can be performed. Whereas illumination planning is required, our photometric-based stereo methodology does not require knowledge of illumination conditions in the actual computation of three-dimensional depth and is applicable to perspective views. This technique extends the stereo determination of three-dimensional depth to smooth featureless surfaces without the use of precisely calibrated lighting. We demonstrate experimental depth maps from a dense set of points on smooth objects of known ground-truth shape, determined to within 1% depth accuracy

  2. Three-dimensional CT of the mandible

    International Nuclear Information System (INIS)

    Zinreich, S.J.; Price, J.C.; Wang, H.; Ahn, H.S.; Kashima, H.

    1988-01-01

    Seventeen patients with mandibular oblation for facial neoplasia, primary neoplasm, and trauma were evaluated with CT and three-dimensional CT. In eight of these patients, a computerized acrylic model was generated for preoperative planning and postoperative reconstruction. The ramus and body of the mandible were reconstructed with mirror image and fusion techniques. Reconstructions of the anterior mandible were generated from models including the midface, skull based, and residual mandibular fragments. The results are preliminary; however, the authors believe that these represent a powerful new tool and a significant advance in mandibular reconstructive technique, reduced anesthesia time, and the optimized restoration of dental alignment and facial contour

  3. Three-dimensional interpretation of TEM soundings

    Science.gov (United States)

    Barsukov, P. O.; Fainberg, E. B.

    2013-07-01

    We describe the approach to the interpretation of electromagnetic (EM) sounding data which iteratively adjusts the three-dimensional (3D) model of the environment by local one-dimensional (1D) transformations and inversions and reconstructs the geometrical skeleton of the model. The final 3D inversion is carried out with the minimal number of the sought parameters. At each step of the interpretation, the model of the medium is corrected according to the geological information. The practical examples of the suggested method are presented.

  4. Three Dimensional Double Layers in Magnetized Plasmas

    DEFF Research Database (Denmark)

    Jovanovic, D.; Lynov, Jens-Peter; Michelsen, Poul

    1982-01-01

    Experimental results are presented which demonstrate the formation of fully three dimensional double layers in a magnetized plasma. The measurements are performed in a magnetized stationary plasma column with radius 1.5 cm. Double layers are produced by introducing an electron beam with radius 0.......4 cm along the magnetic field from one end of the column. The voltage drop across the double layer is found to be determined by the energy of the incoming electron beam. In general we find that the width of the double layer along the external magnetic field is determined by plasma density and beam...

  5. Three-dimensional flow about penguin wings

    Science.gov (United States)

    Noca, Flavio; Sudki, Bassem; Lauria, Michel

    2012-11-01

    Penguins, contrary to airborne birds, do not need to compensate for gravity. Yet, the kinematics of their wings is highly three-dimensional and seems exceedingly complex for plain swimming. Is such kinematics the result of an evolutionary optimization or is it just a forced adaptation of an airborne flying apparatus to underwater swimming? Some answers will be provided based on flow dynamics around robotic penguin wings. Updates will also be presented on the development of a novel robotic arm intended to simulate penguin swimming and enable novel propulsion devices.

  6. Three-dimensional teletherapy treatment planning

    International Nuclear Information System (INIS)

    Panthaleon van Eck, R.B. van.

    1986-01-01

    This thesis deals with physical/mathematical backgrounds of computerized teletherapy treatment planning. The subjects discussed in this thesis can be subdivided into three main categories: a) Three-dimensional treatment planning. A method is evaluated which can be used for the purpose of simulation and optimization of dose distributions in three dimensions. b) The use of Computed Tomography. The use of patient information obtained from Computed Tomography for the purpose of dose computations is evaluated. c) Dose computational models for photon- and electron beams. Models are evaluated which provide information regarding the way in which the radiation dose is distributed in the patient (viz. is absorbed and/or dispersed). (Auth.)

  7. Creating three-dimensional thermal maps

    CSIR Research Space (South Africa)

    Price

    2011-11-01

    Full Text Available stream_source_info Price_2011.pdf.txt stream_content_type text/plain stream_size 30895 Content-Encoding ISO-8859-1 stream_name Price_2011.pdf.txt Content-Type text/plain; charset=ISO-8859-1 Creating Three...-Dimensional Thermal Maps Mathew Price Cogency cc Cape Town Email: mathew@cogency.co.za Jeremy Green CSIR Centre for Mining Innovation Johannesburg Email: jgreen@csir.co.za John Dickens CSIR Centre for Mining Innovation Johannesburg Email: jdickens...

  8. Three-dimensional cooling of muons

    CERN Document Server

    Vsevolozhskaya, T A

    2000-01-01

    The simultaneous ionization cooling of muon beams in all three - the longitudinal and two transverse - directions is considered in a scheme, based on bent lithium lenses with dipole constituent of magnetic field in them, created by a special configuration of current-carrying rod. An analysis of three-dimensional cooling is performed with the use of kinetic equation method. Results of numerical calculation for a specific beam line configuration are presented together with results of computer simulation using the Moliere distribution to describe the Coulomb scattering and the Vavilov distribution used to describe the ionization loss of energy.

  9. Abbreviated protocol for breast MRI: Are multiple sequences needed for cancer detection?

    International Nuclear Information System (INIS)

    Mango, Victoria L.; Morris, Elizabeth A.; David Dershaw, D.; Abramson, Andrea; Fry, Charles; Moskowitz, Chaya S.; Hughes, Mary; Kaplan, Jennifer; Jochelson, Maxine S.

    2015-01-01

    Highlights: • Abbreviated breast MR demonstrates high sensitivity for breast carcinoma detection. • Time to perform/interpret the abbreviated exam is shorter than a standard MRI exam. • An abbreviated breast MRI could reduce costs and make MRI screening more available. - Abstract: Objective: To evaluate the ability of an abbreviated breast magnetic resonance imaging (MRI) protocol, consisting of a precontrast T1 weighted (T1W) image and single early post-contrast T1W image, to detect breast carcinoma. Materials and methods: A HIPAA compliant Institutional Review Board approved review of 100 consecutive breast MRI examinations in patients with biopsy proven unicentric breast carcinoma. 79% were invasive carcinomas and 21% were ductal carcinoma in situ. Four experienced breast radiologists, blinded to carcinoma location, history and prior examinations, assessed the abbreviated protocol evaluating only the first post-contrast T1W image, post-processed subtracted first post-contrast and subtraction maximum intensity projection images. Detection and localization of tumor were compared to the standard full diagnostic examination consisting of 13 pre-contrast, post-contrast and post-processed sequences. Results: All 100 cancers were visualized on initial reading of the abbreviated protocol by at least one reader. The mean sensitivity for each sequence was 96% for the first post-contrast sequence, 96% for the first post-contrast subtraction sequence and 93% for the subtraction MIP sequence. Within each sequence, there was no significant difference between the sensitivities among the 4 readers (p = 0.471, p = 0.656, p = 0.139). Mean interpretation time was 44 s (range 11–167 s). The abbreviated imaging protocol could be performed in approximately 10–15 min, compared to 30–40 min for the standard protocol. Conclusion: An abbreviated breast MRI protocol allows detection of breast carcinoma. One pre and post-contrast T1W sequence may be adequate for detecting

  10. Abbreviated protocol for breast MRI: Are multiple sequences needed for cancer detection?

    Energy Technology Data Exchange (ETDEWEB)

    Mango, Victoria L., E-mail: vlm2125@columbia.edu [Columbia University Medical Center, Herbert Irving Pavilion, 161 Fort Washington Avenue, 10th Floor, New York, NY 10032 (United States); Memorial Sloan-Kettering Cancer Center, Breast and Imaging Center, 300 East 66th Street, New York, NY 10065 (United States); Morris, Elizabeth A., E-mail: morrise@mskcc.org [Memorial Sloan-Kettering Cancer Center, Breast and Imaging Center, 300 East 66th Street, New York, NY 10065 (United States); David Dershaw, D., E-mail: dershawd@mskcc.org [Memorial Sloan-Kettering Cancer Center, Breast and Imaging Center, 300 East 66th Street, New York, NY 10065 (United States); Abramson, Andrea, E-mail: abramsoa@mskcc.org [Memorial Sloan-Kettering Cancer Center, Breast and Imaging Center, 300 East 66th Street, New York, NY 10065 (United States); Fry, Charles, E-mail: charles_fry@nymc.edu [Memorial Sloan-Kettering Cancer Center, Breast and Imaging Center, 300 East 66th Street, New York, NY 10065 (United States); New York Medical College, 40 Sunshine Cottage Rd, Valhalla, NY 10595 (United States); Moskowitz, Chaya S. [Memorial Sloan-Kettering Cancer Center, Breast and Imaging Center, 300 East 66th Street, New York, NY 10065 (United States); Hughes, Mary, E-mail: hughesm@mskcc.org [Memorial Sloan-Kettering Cancer Center, Breast and Imaging Center, 300 East 66th Street, New York, NY 10065 (United States); Kaplan, Jennifer, E-mail: kaplanj@mskcc.org [Memorial Sloan-Kettering Cancer Center, Breast and Imaging Center, 300 East 66th Street, New York, NY 10065 (United States); Jochelson, Maxine S., E-mail: jochelsm@mskcc.org [Memorial Sloan-Kettering Cancer Center, Breast and Imaging Center, 300 East 66th Street, New York, NY 10065 (United States)

    2015-01-15

    Highlights: • Abbreviated breast MR demonstrates high sensitivity for breast carcinoma detection. • Time to perform/interpret the abbreviated exam is shorter than a standard MRI exam. • An abbreviated breast MRI could reduce costs and make MRI screening more available. - Abstract: Objective: To evaluate the ability of an abbreviated breast magnetic resonance imaging (MRI) protocol, consisting of a precontrast T1 weighted (T1W) image and single early post-contrast T1W image, to detect breast carcinoma. Materials and methods: A HIPAA compliant Institutional Review Board approved review of 100 consecutive breast MRI examinations in patients with biopsy proven unicentric breast carcinoma. 79% were invasive carcinomas and 21% were ductal carcinoma in situ. Four experienced breast radiologists, blinded to carcinoma location, history and prior examinations, assessed the abbreviated protocol evaluating only the first post-contrast T1W image, post-processed subtracted first post-contrast and subtraction maximum intensity projection images. Detection and localization of tumor were compared to the standard full diagnostic examination consisting of 13 pre-contrast, post-contrast and post-processed sequences. Results: All 100 cancers were visualized on initial reading of the abbreviated protocol by at least one reader. The mean sensitivity for each sequence was 96% for the first post-contrast sequence, 96% for the first post-contrast subtraction sequence and 93% for the subtraction MIP sequence. Within each sequence, there was no significant difference between the sensitivities among the 4 readers (p = 0.471, p = 0.656, p = 0.139). Mean interpretation time was 44 s (range 11–167 s). The abbreviated imaging protocol could be performed in approximately 10–15 min, compared to 30–40 min for the standard protocol. Conclusion: An abbreviated breast MRI protocol allows detection of breast carcinoma. One pre and post-contrast T1W sequence may be adequate for detecting

  11. Advantages of three-dimensional treatment planning in radiation therapy

    International Nuclear Information System (INIS)

    Attalla, E.M.; ELSAyed, A.A.; ElGantiry, M.; ElTahher, Z.

    2003-01-01

    This study was designed to demonstrate the feasibility of three-dimensional (3-D) treatment planning in-patients maxilla, breast, bladder, and lung tumors to explore its potential therapeutic advantage over the traditional dimensional (2-D) approach in these diseases. Conventional two-dimensional (2-D) treatment planning was compared to three-dimensional (3-D) treatment planning. In five selected disease sites, plans calculated with both types of treatment planning were compared. The (3-D) treatment planning system used in this work TMS version 5.1 B from helax AB is based on a monte Carlo-based pencil beam model. The other treatment planning system (2-D 0, introduced in this study was the multi data treatment planning system version 2.35. For the volumes of interest; quality of dose distribution concerning homogeneity in the target volume and the isodose distribution in organs at risk, was discussed. Qualitative and quantitative comparisons between the two planning systems were made using dose volume histograms (DVH's) . For comparisons of dose distributions in real-patient cases, differences ranged from 0.8% to 6.4% for 6 MV, while in case of 18 MV photon, it ranged from 1,8% to 6.5% and was within -+3 standard deviations for the dose between the two planning systems.Dose volume histogram (DVH) shows volume reduction of the radiation-related organs at risk 3-D planning

  12. The future of three-dimensional medical imaging

    International Nuclear Information System (INIS)

    Peter, T.M.

    1996-01-01

    The past 15 years have witnessed an explosion in medical imaging technology, and none more so than in the tomographic imaging modalities of CT and MRI. Prior to 1975, 3-D imaging was largely performed in the minds of radiologists and surgeons, assisted by the modalities of conventional x-ray tomography and stereoscopic radiography. However today, with the advent of imaging techniques which ower their existence to computer technology, three-dimensional image acquisition is fast becoming the norm and the clinician finally has access to sets of data that represent the entire imaged volume. Stereoscopic image visualization has already begun to reappear as a viable means of visualizing 3 D medical images. The future of 3-D imaging is exciting and will undoubtedly move further in the direction of virtual reality. (author)

  13. Three-dimensional radiation treatment planning

    International Nuclear Information System (INIS)

    Mohan, R.

    1989-01-01

    A major aim of radiation therapy is to deliver sufficient dose to the tumour volume to kill the cancer cells while sparing the nearby health organs to prevent complications. With the introduction of devices such as CT and MR scanners, radiation therapy treatment planners have access to full three-dimensional anatomical information to define, simulate, and evaluate treatments. There are a limited number of prototype software systems that allow 3D treatment planning currently in use. In addition, there are more advanced tools under development or still in the planning stages. They require sophisticated graphics and computation equipment, complex physical and mathematical algorithms, and new radiation treatment machines that deliver dose very precisely under computer control. Components of these systems include programs for the identification and delineation of the anatomy and tumour, the definition of radiation beams, the calculation of dose distribution patterns, the display of dose on 2D images and as three dimensional surfaces, and the generation of computer images to verify proper patient positioning in treatment. Some of these functions can be performed more quickly and accurately if artificial intelligence or expert systems techniques are employed. 28 refs., figs

  14. Three-dimensional fluorescence lifetime tomography

    International Nuclear Information System (INIS)

    Godavarty, Anuradha; Sevick-Muraca, Eva M.; Eppstein, Margaret J.

    2005-01-01

    Near-infrared fluorescence tomography using molecularly targeted lifetime-sensitive, fluorescent contrast agents have applications for early-stage cancer diagnostics. Yet, although the measurement of fluorescent lifetime imaging microscopy (FLIM) is extensively used in microscopy and spectroscopy applications, demonstration of fluorescence lifetime tomography for medical imaging is limited to two-dimensional studies. Herein, the feasibility of three-dimensional fluorescence-lifetime tomography on clinically relevant phantom volumes is established, using (i) a gain-modulated intensified charge coupled device (CCD) and modulated laser diode imaging system, (ii) two fluorescent contrast agents, e.g., Indocyanine green and 3-3'-Diethylthiatricarbocyanine iodide differing in their fluorescence lifetime by 0.62 ns, and (iii) a two stage approximate extended Kalman filter reconstruction algorithm. Fluorescence measurements of phase and amplitude were acquired on the phantom surface under different target to background fluorescence absorption (70:1, 100:1) and fluorescence lifetime (1:1, 2.1:1) contrasts at target depths of 1.4-2 cm. The Bayesian tomography algorithm was employed to obtain three-dimensional images of lifetime and absorption owing to the fluorophores

  15. Three-dimensional image signals: processing methods

    Science.gov (United States)

    Schiopu, Paul; Manea, Adrian; Craciun, Anca-Ileana; Craciun, Alexandru

    2010-11-01

    Over the years extensive studies have been carried out to apply coherent optics methods in real-time processing, communications and transmission image. This is especially true when a large amount of information needs to be processed, e.g., in high-resolution imaging. The recent progress in data-processing networks and communication systems has considerably increased the capacity of information exchange. We describe the results of literature investigation research of processing methods for the signals of the three-dimensional images. All commercially available 3D technologies today are based on stereoscopic viewing. 3D technology was once the exclusive domain of skilled computer-graphics developers with high-end machines and software. The images capture from the advanced 3D digital camera can be displayed onto screen of the 3D digital viewer with/ without special glasses. For this is needed considerable processing power and memory to create and render the complex mix of colors, textures, and virtual lighting and perspective necessary to make figures appear three-dimensional. Also, using a standard digital camera and a technique called phase-shift interferometry we can capture "digital holograms." These are holograms that can be stored on computer and transmitted over conventional networks. We present some research methods to process "digital holograms" for the Internet transmission and results.

  16. Three dimensional animated images of anorectal malformations

    International Nuclear Information System (INIS)

    Ueno, Shigeru; Yanagimachi, Noriharu; Muro, Isao; Komiya, Taizo; Yokoyama, Seishichi; Hirakawa, Hitoshi; Tajima, Tomoo; Mitomi, Toshio; Suto, Yasuzo.

    1996-01-01

    Accurate reconstruction of the pelvic structures is a most important factor in obtaining a desirable result after anorectoplasty for a patient with anorectal malformation. Preoperative evaluation of the anatomy is indispensable for choosing an appropriate operative method in each case. To facilitate preoperative evaluation, three dimensional animated images of the pelvic structure of patients with anorectal malformations were constructed by computer graphics based upon tomographic images obtained from magnetic resonance imaging. Axial 1-mm thick images of the pelvic portion were generated with spoiling pulse gradient echo sequences using short repetition times (13 msec TR) and short echo times (6 msec TE) with a flip angle of 25 degrees with the patient in the jack-knife position. Graphic data from MR images were transferred to a graphic work station and processed on it. The skin surface, the ano-rectum, the lower urinary tract and the sphincter musculature were segmented by thresholding images by the signal intensity. Three dimensional images were displayed by surface rendering method using the segmented data of each organ and then animation images of these organs were obtained. The anatomy of each type of anomaly was easily recognized by 3-D visualization, and animation of the pelvic viscera and the sphincter musculature made the images more realistic. Animated images of the musculature were especially useful for simulating surgical procedures and could be helpful for reviewing surgical results. (author)

  17. Three-dimensional analysis of antenna sheaths

    International Nuclear Information System (INIS)

    Myra, J.R.; D'Ippolito, D.A.; Ho, Y.L.

    1996-01-01

    The present work is motivated by the importance of r.f. sheaths in determining the antenna-plasma interaction and the sensitivity of the sheaths to the complicated three-dimensional structure of modern ion cyclotron range of frequency (ICRF) antennas. To analyze r.f. sheaths on the plasma facing regions of the launcher, we first calculate the contact points of the tokamak magnetic field lines on the surface of the antenna Faraday screen and nearby limiters for realistic three-dimensional magnetic flux surface and antenna geometries. Next, the r.f. voltage that can drive sheaths at the contact points is determined and used to assess the resulting sheath power dissipation, r.f.-driven sputtering, and r.f.-induced convective cells (which produce edge profile modification). The calculations are embodied in a computer code, ANSAT (antenna sheath analysis tool), and sample ANSAT runs are shown to highlight the physics- and geometry-dependent characteristics of the r.f. sheaths and their relationship to the antenna design. One use of ANSAT is therefore as a design tool, to assess the strengths and weaknesses of a given design with respect to critical voltage handling and edge plasma interaction issues. Additionally, examples are presented where ANSAT has been useful in the analysis and interpretation of ICRF experiments (orig.)

  18. Radiomics for ultrafast dynamic contrast-enhanced breast MRI in the diagnosis of breast cancer: a pilot study

    Science.gov (United States)

    Drukker, Karen; Anderson, Rachel; Edwards, Alexandra; Papaioannou, John; Pineda, Fred; Abe, Hiroyuke; Karzcmar, Gregory; Giger, Maryellen L.

    2018-02-01

    Radiomics for dynamic contrast-enhanced (DCE) breast MRI have shown promise in the diagnosis of breast cancer as applied to conventional DCE-MRI protocols. Here, we investigate the potential of using such radiomic features in the diagnosis of breast cancer applied on ultrafast breast MRI in which images are acquired every few seconds. The dataset consisted of 64 lesions (33 malignant and 31 benign) imaged with both `conventional' and ultrafast DCE-MRI. After automated lesion segmentation in each image sequence, we calculated 38 radiomic features categorized as describing size, shape, margin, enhancement-texture, kinetics, and enhancement variance kinetics. For each feature, we calculated the 95% confidence interval of the area under the ROC curve (AUC) to determine whether the performance of each feature in the task of distinguishing between malignant and benign lesions was better than random guessing. Subsequently, we assessed performance of radiomic signatures in 10-fold cross-validation repeated 10 times using a support vector machine with as input all the features as well as features by category. We found that many of the features remained useful (AUC>0.5) for the ultrafast protocol, with the exception of some features, e.g., those designed for latephase kinetics such as the washout rate. For ultrafast MRI, the radiomics enhancement-texture signature achieved the best performance, which was comparable to that of the kinetics signature for `conventional' DCE-MRI, both achieving AUC values of 0.71. Radiomic developed for `conventional' DCE-MRI shows promise for translation to the ultrafast protocol, where enhancement texture appears to play a dominant role.

  19. Incidental enhancing lesions found on preoperative breast MRI: management and role of second-look ultrasound.

    Science.gov (United States)

    Luciani, M L; Pediconi, F; Telesca, M; Vasselli, F; Casali, V; Miglio, E; Passariello, R; Catalano, C

    2011-09-01

    This study prospectively assessed second-look ultrasound (US) for the evaluation of incidental enhancing lesions identified on preoperative breast magnetic resonance imaging (MRI). Between 2004 and 2007, 182 patients with malignant breast lesions detected on US and/or X-ray mammography and confirmed by cytology/histology underwent preoperative breast contrast-enhanced (CE)-MRI. Patients with incidental lesions on breast MRI underwent second-look high-resolution US directed at the site of the incidental finding. Diagnosis of incidental lesions was based on biopsy or 24-month follow-up. Breast MRI detected 55 additional lesions in 46/182 (25.2%) patients. Forty-two of 55 (76.3%) lesions were detected on second-look US in 38/46 (82.6%) patients. Malignancy was confirmed for 24/42 (57.1%) correlate lesions compared with 7/13 (53.8%) noncorrelate lesions. Second-look US depicted 8/9 (88.8%) Breast Imaging Reporting and Data System (BI-RADS) 5, 16/22 (72.7%) BI-RADS 4 and 18/24 (75%) BI-RADS 3 lesions. Sensitivity, specificity, accuracy and positive and negative predictive values for lesion detection/diagnosis was 100%, 88.9%, 94.6%, 90.3% and 100% for MRI and 64.3%, 70.4%, 67.3%, 69.2% and 65.5% for second-look US. Improved performance for US was obtained when masslike lesions only were considered. Second-look US is a confirmatory method for incidental findings on breast MRI, particularly for mass-like lesions.

  20. Contrast-enhanced color Doppler ultrasound characteristics in hypervascular breast tumors: comparison with MRI

    International Nuclear Information System (INIS)

    Alamo, L.; Fischer, U.

    2001-01-01

    The aim of this study was to evaluate the accuracy of contrast-enhanced color Doppler ultrasound (CE-US) in comparison with contrast-enhanced MR imaging (CE-MRI) in the discrimination of hypervascularized breast tumors. An additional CE-US of the breast was preoperatively performed in 40 patients with a hypervascular breast lesion detected on CE-MRI. The presence of blood flow signals and the morphological characteristics of the vessels in the breast lesions were evaluated pre- and post-contrast administration, as well as the dynamic aspects of the Doppler signal, including time interval to maximum signal enhancement and persistence of the signal enhancement. Twenty-three carcinomas and 17 fibroadenomas were explored. Considering initial signal enhancement > 100 % after the administration of contrast material as a criterion suggesting malignancy, CE-MRI showed a sensitivity of 100 % and a specificity of 76.5 % in the detection of malignant breast tumors. Color Doppler signals were consistently demonstrated in all carcinomas and in 68.7 % of fibroadenomas after the administration of Levovist, with CE-US showing a sensitivity of 95.6 % and a specificity of 5.9 %. Neither the mean number of vessels per tumor, nor the location of vessels, the time to maximum increase of the Doppler signal or the persistence of signal enhancement showed significant differences between benign and malignant lesions. Additional CE-US does not increase the low specificity of MRI in patients with hypervascularized breast tumors. (orig.)

  1. MRI characteristics of ductal carcinoma in situ of the breast

    International Nuclear Information System (INIS)

    Xu Linghui; Peng Weijun; Gu Yajia; Li Ruimin; Liu Xiaohang; Wang Xiaohong; Mao Jian; Tang Feng; Ding Jianhui

    2011-01-01

    Objective: To evaluate and recognize the dynamic and morphological MRI characteristics of ductal carcinoma in situ (DCIS) of the breast and provide imaging information for the early detection and treatment planning. Methods: All MRI data in 71 patients with histologically proved DCIS were analyzed retrospectively. The 71 patients were divided into two groups, N1 (pure DCIS, 44 patients) and N2 (DCIS with microinvasion, 27 patients). According to the BI-RADS descriptors, all lesions were defined as a focus (smaller than 5 mm in diameter), mass and no-mass-like three enhancement types. The morphological features (M1 = focus, M2 =linear or linear-branched, M3 = branching-ductal, M4 = segmental, M5 = focal, M6 = regional, M7 = diffuse, M8 = mass) and the time-intensity curve (TIC) pattern [type Ⅰ (persistent enhancement curves), type Ⅱ (plateau), type Ⅲ (washout) and type Ⅳ (the same enhancement as glandular tissue)] were described. Chi-square test was used for the morphological characteristics of lesions. Results: The 73 DCIS lesions were found in 71 patients, and 5.5% (n=4) were stippled lesions, 87.7% (n=64) were no-mass like lesions, 6.8% (n=5) were mass-like lesions. In no-mass-like lesions (n= 64), M3 was found in 15 cases, M4 in 34 cases, M5 in 9 cases and M6 in 6 cases, respectively, M3 and M4 were the most common distribution patterns. In N1 group (n=45) and N2 group (n=28), M3, M4, M5, M6 were found in 7 and 8, 21 and 13, 7 and 2, 3 and 3 cases, respectively. There were no statistic differences between two groups (P>0.05). In 31 showed heterogeneous enhancement, both M3 and M4 were observed in 35.5% (11/31). In 26 clustered ring enhancement lesions, M4 was observed in 88.5% (23/26). Four lesions showed reticular enhancement, 2 lesions showed a clumped enhancement and 1 lesion showed homogeneous enhancement. In 5 mass-like lesions, N1 group had 3 cases, N2 group had 2 cases. Four lesions showed lobulated margin, 4 lesions showed speculated margin, 1

  2. Diagnostic imaging strategy for MDCT- or MRI-detected breast lesions: use of targeted sonography

    International Nuclear Information System (INIS)

    Nakano, Satoko; Ohtsuka, Masahiko; Mibu, Akemi; Karikomi, Masato; Sakata, Hitomi; Yamamoto, Masahiro

    2012-01-01

    Leading-edge technology such as magnetic resonance imaging (MRI) or computed tomography (CT) often reveals mammographically and ultrasonographically occult lesions. MRI is a well-documented, effective tool to evaluate these lesions; however, the detection rate of targeted sonography varies for MRI detected lesions, and its significance is not well established in diagnostic strategy of MRI detected lesions. We assessed the utility of targeted sonography for multidetector-row CT (MDCT)- or MRI-detected lesions in practice. We retrospectively reviewed 695 patients with newly diagnosed breast cancer who were candidates for breast conserving surgery and underwent MDCT or MRI in our hospital between January 2004 and March 2011. Targeted sonography was performed in all MDCT- or MRI-detected lesions followed by imaging-guided biopsy. Patient background, histopathology features and the sizes of the lesions were compared among benign, malignant and follow-up groups. Of the 695 patients, 61 lesions in 56 patients were detected by MDCT or MRI. The MDCT- or MRI-detected lesions were identified by targeted sonography in 58 out of 61 lesions (95.1%). Patients with pathological diagnoses were significantly older and more likely to be postmenopausal than the follow-up patients. Pathological diagnosis proved to be benign in 20 cases and malignant in 25. The remaining 16 lesions have been followed up. Lesion size and shape were not significantly different among the benign, malignant and follow-up groups. Approximately 95% of MDCT- or MRI-detected lesions were identified by targeted sonography, and nearly half of these lesions were pathologically proven malignancies in this study. Targeted sonography is a useful modality for MDCT- or MRI-detected breast lesions

  3. Screening for breast cancer with MRI: recent experience from the Australian Capital Territory

    International Nuclear Information System (INIS)

    Price, J.; Chen, S. W.

    2009-01-01

    Full text: The American Cancer Society now recommends annual MRI screening for women at 20-25% or greater lifetime risk of breast cancer. The role of MRI screening in other risk subgroups is unproved because of insufficient data. Our study comprised 209 breast MRI scans carried out in 171 asymptomatic patients (age range 22-67 years, mean 46 years), referred between January 2005 and June 2008. Targeted ultrasound was carried out in 32 episodes (15%) and biopsies were taken in 23 patients (13%). In four patients, MR-guided procedures were required to establish a diagnosis, two using hook-wire localization and two by means of vacuum-assisted biopsy. Seven cancers were detected by MRI in the 171 patients, with a yield of 4.1%. Only one of the seven cancers was also shown by x-ray mammography. Four patients had invasive ductal cancer (all axillary node negative) and three had high-grade ductal carcinoma in situ or pleomorphic lobular carcinoma in situ. The three women with in situ disease were all potentially high risk, based on the National Breast and Ovarian Cancer Centre (NBOCC) criteria. Three women with invasive breast cancer were at only average risk based on NBOCC criteria, but two of these had extremely dense breasts. A fourth patient, found to have multifocal invasive cancer, had a personal history of contralateral breast cancer, but no relevant family history. Our findings suggest that breast MRI could be used to screen a larger Australian population at increased risk of developing breast cancer.

  4. 3D MRI for Quantitative Analysis of Quadrant Percent Breast Density: Correlation with Quadrant Location of Breast Cancer.

    Science.gov (United States)

    Chen, Jeon-Hor; Liao, Fuyi; Zhang, Yang; Li, Yifan; Chang, Chia-Ju; Chou, Chen-Pin; Yang, Tsung-Lung; Su, Min-Ying

    2017-07-01

    Breast cancer occurs more frequently in the upper outer (UO) quadrant, but whether this higher cancer incidence is related to the greater amount of dense tissue is not known. Magnetic resonance imaging acquires three-dimensional volumetric images and is the most suitable among all breast imaging modalities for regional quantification of density. This study applied a magnetic resonance imaging-based method to measure quadrant percent density (QPD), and evaluated its association with the quadrant location of the developed breast cancer. A total of 126 cases with pathologically confirmed breast cancer were reviewed. Only women who had unilateral breast cancer located in a clear quadrant were selected for analysis. A total of 84 women, including 47 Asian women and 37 western women, were included. An established computer-aided method was used to segment the diseased breast and the contralateral normal breast, and to separate the dense and fatty tissues. Then, a breast was further separated into four quadrants using the nipple and the centroid as anatomic landmarks. The tumor was segmented using a computer-aided method to determine its quadrant location. The distribution of cancer quadrant location, the quadrant with the highest QPD, and the proportion of cancers occurring in the highest QPD were analyzed. The highest incidence of cancer occurred in the UO quadrant (36 out of 84, 42.9%). The highest QPD was also noted most frequently in the UO quadrant (31 out of 84, 36.9%). When correlating the highest QPD with the quadrant location of breast cancer, only 17 women out of 84 (20.2%) had breast cancer occurring in the quadrant with the highest QPD. The results showed that the development of breast cancer in a specific quadrant could not be explained by the density in that quadrant, and further studies are needed to find the biological reasons accounting for the higher breast cancer incidence in the UO quadrant. Copyright © 2017 The Association of University Radiologists

  5. Correlation between MRI results and intraoperative findings in patients with silicone breast implants.

    Science.gov (United States)

    Lindenblatt, Nicole; El-Rabadi, Karem; Helbich, Thomas H; Czembirek, Heinrich; Deutinger, Maria; Benditte-Klepetko, Heike

    2014-01-01

    Silicone gel breast implants may silently rupture without detection. This has been the main reason for magnetic resonance imaging (MRI) of the augmented or reconstructed breast. The aim of the present study was to investigate the accuracy of MRI for implant rupture. Fifty consecutive patients with 85 silicone gel implants were included in the study. The mean age of the patients was 51 (range 21-72) years, with a mean duration of implantation of 3.8 (range 1-28) years. All patients underwent clinical examination and breast MRI. Intraoperative implant rupture was diagnosed by the operating surgeon. Nineteen of the 50 patients suffered from clinical symptoms. An implant rupture was diagnosed by MRI in 22 of 85 implants (26%). In seven of 17 removed implants (41%), the intraoperative diagnosis corresponded with the positive MRI result. However, only 57% of these patients were symptomatic. Ultrasound imaging of the harvested implants showed signs of interrupted inner layers of the implant despite integrity of the outer shell. By microsurgical separation of the different layers of the implant shell, we were able to reproduce this phenomenon and to produce signs of implant rupture on MRI. Our results show that rupture of only the inner layers of the implant shell with integrity of the outer shell leads to a misdiagnosis on MRI. Correlation with clinical symptoms and the specific wishes of the patient should guide the indication for implant removal.

  6. Does the degree of background enhancement in breast MRI affect the detection and staging of breast cancer?

    International Nuclear Information System (INIS)

    Uematsu, Takayoshi; Kasami, Masako; Watanabe, Junichiro

    2011-01-01

    The purpose of this study was to assess the influence of background enhancement on the detection and staging of breast cancer using MRI as an adjunct to mammography or ultrasound. One hundred forty-six bilateral breast MRI examinations were evaluated to assess the extent of a known primary tumour and to problem solve after mammography or ultrasound without adjusting for the phase in the patients' menstrual cycle. The background enhancement was classified into four categories by visual evaluation: minimal, mild, moderate and marked. In total, 131 histologically confirmed abnormal cases (104 malignant and 27 benign) and 15 normal cases were included in the analysis. There was no tumour size-related bias between the groups (p = 0.522). For the primary index tumour, the sensitivities of MRI with minimal/mild and moderate/marked background enhancement were 100% and 76% (p = 0.001), respectively. Thus, the degree of background enhancement did not affect the specificity. For evaluating tumour extent (n = 104), the accuracy of MRI with moderate/marked background enhancement (52%) was significantly lower than that with minimal/mild background enhancement (84%; p = 0.002). The degree of background enhancement affected the detection and staging of breast cancer using MRI. (orig.)

  7. Does the degree of background enhancement in breast MRI affect the detection and staging of breast cancer?

    Energy Technology Data Exchange (ETDEWEB)

    Uematsu, Takayoshi [Shizuoka Cancer Center Hospital, Breast Imaging and Breast Intervention Section, Shizuoka (Japan); Kasami, Masako [Shizuoka Cancer Center Hospital, Department of Pathology, Naga-izumi, Shizuoka (Japan); Watanabe, Junichiro [Shizuoka Cancer Center Hospital, Division of Medical Oncology, Naga-izumi, Shizuoka (Japan)

    2011-11-15

    The purpose of this study was to assess the influence of background enhancement on the detection and staging of breast cancer using MRI as an adjunct to mammography or ultrasound. One hundred forty-six bilateral breast MRI examinations were evaluated to assess the extent of a known primary tumour and to problem solve after mammography or ultrasound without adjusting for the phase in the patients' menstrual cycle. The background enhancement was classified into four categories by visual evaluation: minimal, mild, moderate and marked. In total, 131 histologically confirmed abnormal cases (104 malignant and 27 benign) and 15 normal cases were included in the analysis. There was no tumour size-related bias between the groups (p = 0.522). For the primary index tumour, the sensitivities of MRI with minimal/mild and moderate/marked background enhancement were 100% and 76% (p = 0.001), respectively. Thus, the degree of background enhancement did not affect the specificity. For evaluating tumour extent (n = 104), the accuracy of MRI with moderate/marked background enhancement (52%) was significantly lower than that with minimal/mild background enhancement (84%; p = 0.002). The degree of background enhancement affected the detection and staging of breast cancer using MRI. (orig.)

  8. Breast MRI background parenchymal enhancement (BPE) correlates with the risk of breast cancer.

    Science.gov (United States)

    Telegrafo, Michele; Rella, Leonarda; Stabile Ianora, Amato Antonio; Angelelli, Giuseppe; Moschetta, Marco

    2016-02-01

    To investigate whether background parenchymal enhancement (BPE) and breast cancer would correlate searching for any significant difference of BPE pattern distribution in case of benign or malignant lesions. 386 patients, including 180 pre-menopausal (group 1) and 206 post-menopausal (group 2), underwent MR examination. Two radiologists evaluated MR images classifying normal BPE as minimal, mild, moderate or marked. The two groups of patients were subdivided into 3 categories based on MRI findings (negative, benign and malignant lesions). The distribution of BPE patterns within the two groups and within the three MR categories was calculated. The χ2 test was used to evaluate BPE type distribution in the three patient categories and any statistically significant correlation of BPE with lesion type was calculated. The Student t test was applied to search for any statistically significant difference between BPE type rates in group 1 and 2. The χ2 test demonstrated a statistically significant difference in the distribution of BPE types in negative patients and benign lesions as compared with malignant ones (p0.05). Normal BPE could correlate with the risk of breast cancer being such BPE patterns as moderate and marked associated with patients with malignant lesions in both pre and post-menopausal women. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Preclinical study of diagnostic performances of contrast-enhanced spectral mammography versus MRI for breast diseases in China.

    Science.gov (United States)

    Wang, Qingguo; Li, Kangan; Wang, Lihui; Zhang, Jianbing; Zhou, Zhiguo; Feng, Yan

    2016-01-01

    To evaluate diagnostic performances of CESM for breast diseases with comparison to breast MRI in China. Sixty-eight patients with 77 breast lesions underwent MR and CESM. Two radiologists interpreted either MRI or CESM images, separately and independently. BI-RADS 1-3 and BI-RADS 4-5 were classified into the suspicious benign and suspicious malignant groups. Diagnostic accuracy parameters were calculated. Receiver operating characteristic (ROC) curves were constructed for the two modalities. The agreement and correlation between maximum lesion diameter based on CESM and MRI, or CESM and pathology were analyzed. Diagnostic accuracy parameters for CESM were sensitivity 95.8 %, specificity 65.5 %, PPV 82.1 %, NPV 90.5 % and accuracy 84.4 %. The diagnostic accuracy parameters for breast MRI were sensitivity 93.8 %, specificity 82.8 %, PPV 88.2 %, NPV 92.3 %and accuracy 89.6 %. Area under the curve (AUC) of ROC was 0.96 for breast MRI and 0.88 for CESM. The Bland-Altman plots showed a mean difference of 0.7 mm with 95 % limits of agreement of 11.4 mm in tumor diameter measured using CESM and breast MRI. The differences of size measurement between CESM and breast MRI were significant, whereas no difference was observed between CESM and pathology as well as between breast MRI and pathology. The better correlation with pathological results was found in CESM than breast MRI. Our study demonstrates that CESM possesses better diagnostic performances than breast MRI in terms of diagnostic sensitivity and lesion size assessment. And CESM is a good alternative method of screening breast cancer in high-risk people.

  10. Steady, three-dimensional, internally heated convection

    International Nuclear Information System (INIS)

    Schubert, G.; Glatzmaier, G.A.; Travis, B.

    1993-01-01

    Numerical calculations have been carried out of steady, symmetric, three-dimensional modes of convection in internally heated, infinite Prandtl number, Boussinesq fluids at a Rayleigh number of 1.4x10 4 in a spherical shell with inner/outer radius of 0.55 and in a 3x3x1 rectangular box. Multiple patterns of convection occur in both geometries. In the Cartesian geometry the patterns are dominated by cylindrical cold downflows and a broad hot upwelling. In the spherical geometry the patterns consist of cylindrical cold downwellings centered either at the vertices of a tetrahedron or the centers of the faces of a cube. The cold downflow cylinders are immersed in a background of upwelling within which there are cylindrical hot concentrations (plumes) and hot halos around the downflows. The forced hot upflow return plumes of internally heated spherical convection are fundamentally different from the buoyancy-driven plumes of heated from below convection

  11. Exact solutions in three-dimensional gravity

    CERN Document Server

    Garcia-Diaz, Alberto A

    2017-01-01

    A self-contained text, systematically presenting the determination and classification of exact solutions in three-dimensional Einstein gravity. This book explores the theoretical framework and general physical and geometrical characteristics of each class of solutions, and includes information on the researchers responsible for their discovery. Beginning with the physical character of the solutions, these are identified and ordered on the basis of their geometrical invariant properties, symmetries, and algebraic classifications, or from the standpoint of their physical nature, for example electrodynamic fields, fluid, scalar field, or dilaton. Consequently, this text serves as a thorough catalogue on 2+1 exact solutions to the Einstein equations coupled to matter and fields, and on vacuum solutions of topologically massive gravity with a cosmological constant. The solutions are also examined from different perspectives, enabling a conceptual bridge between exact solutions of three- and four-dimensional gravit...

  12. Three-dimensional printing physiology laboratory technology.

    Science.gov (United States)

    Sulkin, Matthew S; Widder, Emily; Shao, Connie; Holzem, Katherine M; Gloschat, Christopher; Gutbrod, Sarah R; Efimov, Igor R

    2013-12-01

    Since its inception in 19th-century Germany, the physiology laboratory has been a complex and expensive research enterprise involving experts in various fields of science and engineering. Physiology research has been critically dependent on cutting-edge technological support of mechanical, electrical, optical, and more recently computer engineers. Evolution of modern experimental equipment is constrained by lack of direct communication between the physiological community and industry producing this equipment. Fortunately, recent advances in open source technologies, including three-dimensional printing, open source hardware and software, present an exciting opportunity to bring the design and development of research instrumentation to the end user, i.e., life scientists. Here we provide an overview on how to develop customized, cost-effective experimental equipment for physiology laboratories.

  13. Towards microscale electrohydrodynamic three-dimensional printing

    International Nuclear Information System (INIS)

    He, Jiankang; Xu, Fangyuan; Cao, Yi; Liu, Yaxiong; Li, Dichen

    2016-01-01

    It is challenging for the existing three-dimensional (3D) printing techniques to fabricate high-resolution 3D microstructures with low costs and high efficiency. In this work we present a solvent-based electrohydrodynamic 3D printing technique that allows fabrication of microscale structures like single walls, crossed walls, lattice and concentric circles. Process parameters were optimized to deposit tiny 3D patterns with a wall width smaller than 10 μm and a high aspect ratio of about 60. Tight bonding among neighbour layers could be achieved with a smooth lateral surface. In comparison with the existing microscale 3D printing techniques, the presented method is low-cost, highly efficient and applicable to multiple polymers. It is envisioned that this simple microscale 3D printing strategy might provide an alternative and innovative way for application in MEMS, biosensor and flexible electronics. (paper)

  14. Three-dimensional hologram display system

    Science.gov (United States)

    Mintz, Frederick (Inventor); Chao, Tien-Hsin (Inventor); Bryant, Nevin (Inventor); Tsou, Peter (Inventor)

    2009-01-01

    The present invention relates to a three-dimensional (3D) hologram display system. The 3D hologram display system includes a projector device for projecting an image upon a display medium to form a 3D hologram. The 3D hologram is formed such that a viewer can view the holographic image from multiple angles up to 360 degrees. Multiple display media are described, namely a spinning diffusive screen, a circular diffuser screen, and an aerogel. The spinning diffusive screen utilizes spatial light modulators to control the image such that the 3D image is displayed on the rotating screen in a time-multiplexing manner. The circular diffuser screen includes multiple, simultaneously-operated projectors to project the image onto the circular diffuser screen from a plurality of locations, thereby forming the 3D image. The aerogel can use the projection device described as applicable to either the spinning diffusive screen or the circular diffuser screen.

  15. Three-dimensional echocardiography in valve disease

    Directory of Open Access Journals (Sweden)

    Cesare Fiorentini

    2009-08-01

    Full Text Available This review covers the role of three-dimensional (3D echocardiography in the diagnosis of heart valve disease. Several factors have contributed to the evolution of this technique, which is currently a simple and routine method: rapid evolution in probe and computer technologies, demonstration that 3D data sets allowed more complete and accurate evaluation of cardiac structures, emerging clinical experience indicating the strong potential particularly in valve diseases, volume and function of the two ventricle measurements and several other fields. This report will review current and future applications of 3D echocardiography in mitral, aortic and tricuspid valve diseases underlying both qualitative (morphologic and quantitative advantages of this technique. (Heart International 2007; 3: 35-41

  16. Towards microscale electrohydrodynamic three-dimensional printing

    Science.gov (United States)

    He, Jiankang; Xu, Fangyuan; Cao, Yi; Liu, Yaxiong; Li, Dichen

    2016-02-01

    It is challenging for the existing three-dimensional (3D) printing techniques to fabricate high-resolution 3D microstructures with low costs and high efficiency. In this work we present a solvent-based electrohydrodynamic 3D printing technique that allows fabrication of microscale structures like single walls, crossed walls, lattice and concentric circles. Process parameters were optimized to deposit tiny 3D patterns with a wall width smaller than 10 μm and a high aspect ratio of about 60. Tight bonding among neighbour layers could be achieved with a smooth lateral surface. In comparison with the existing microscale 3D printing techniques, the presented method is low-cost, highly efficient and applicable to multiple polymers. It is envisioned that this simple microscale 3D printing strategy might provide an alternative and innovative way for application in MEMS, biosensor and flexible electronics.

  17. An Introduction of Three-dimensional Grammar

    Directory of Open Access Journals (Sweden)

    Fan Xiao

    2017-12-01

    Full Text Available This paper introduces some key points of Three-dimensional Grammar. As for the structure, it can be distinguished into syntactic structure, semantic structure and pragmatic structure from the perspectives of syntax, semantics and pragmatics. And the same is true with the followings, such as grammatical constituents, grammatical functions, grammatical meanings, grammatical focuses. Sentence types which is called sentence pattern, sentence model and sentence types respectively, and analysis methods. This paper proposes that grammatical researches should be done in accordance with the four principles, that is form and meaning co-verified, static and dynamic co-referenced, structure and function co-testified and description and interpretation co-promoted.

  18. Three-dimensional function photonic crystals

    Science.gov (United States)

    Zhang, Hai-Feng

    2017-11-01

    In this paper, the properties of the photonic band gaps (PBGs) of three-dimensional (3D) function photonic crystals (PCs) are theoretically investigated by a modified plane wave expansion (PWE) method, whose equations for computations are deduced. The configuration of 3D function PCs is the dielectric spheres inserted in the air background with simple-cubic (SC) lattices whose dielectric constants are the functions of space coordinates, which can be realized by the electro-optical or optical Kerr effect in the practice. The influences of the parameter for 3D function PCs on the PBGs also are discussed. The calculated results show that the bandwidths and number of PBGs can be tuned with different distributions of function dielectrics. Compared with the conventional 3D dielectric PCs with SC lattices, the larger and more PBGs can be obtained in the 3D function PCs. Those results provide a new way to design the novel practical devices.

  19. Three-dimensional tori and Arnold tongues

    Energy Technology Data Exchange (ETDEWEB)

    Sekikawa, Munehisa, E-mail: sekikawa@cc.utsunomiya-u.ac.jp [Department of Mechanical and Intelligent Engineering, Utsunomiya University, Utsunomiya-shi 321-8585 (Japan); Inaba, Naohiko [Organization for the Strategic Coordination of Research and Intellectual Property, Meiji University, Kawasaki-shi 214-8571 (Japan); Kamiyama, Kyohei [Department of Electronics and Bioinformatics, Meiji University, Kawasaki-shi 214-8571 (Japan); Aihara, Kazuyuki [Institute of Industrial Science, the University of Tokyo, Meguro-ku 153-8505 (Japan)

    2014-03-15

    This study analyzes an Arnold resonance web, which includes complicated quasi-periodic bifurcations, by conducting a Lyapunov analysis for a coupled delayed logistic map. The map can exhibit a two-dimensional invariant torus (IT), which corresponds to a three-dimensional torus in vector fields. Numerous one-dimensional invariant closed curves (ICCs), which correspond to two-dimensional tori in vector fields, exist in a very complicated but reasonable manner inside an IT-generating region. Periodic solutions emerge at the intersections of two different thin ICC-generating regions, which we call ICC-Arnold tongues, because all three independent-frequency components of the IT become rational at the intersections. Additionally, we observe a significant bifurcation structure where conventional Arnold tongues transit to ICC-Arnold tongues through a Neimark-Sacker bifurcation in the neighborhood of a quasi-periodic Hopf bifurcation (or a quasi-periodic Neimark-Sacker bifurcation) boundary.

  20. Multiscale modeling of three-dimensional genome

    Science.gov (United States)

    Zhang, Bin; Wolynes, Peter

    The genome, the blueprint of life, contains nearly all the information needed to build and maintain an entire organism. A comprehensive understanding of the genome is of paramount interest to human health and will advance progress in many areas, including life sciences, medicine, and biotechnology. The overarching goal of my research is to understand the structure-dynamics-function relationships of the human genome. In this talk, I will be presenting our efforts in moving towards that goal, with a particular emphasis on studying the three-dimensional organization, the structure of the genome with multi-scale approaches. Specifically, I will discuss the reconstruction of genome structures at both interphase and metaphase by making use of data from chromosome conformation capture experiments. Computationally modeling of chromatin fiber at atomistic level from first principles will also be presented as our effort for studying the genome structure from bottom up.

  1. Three-dimensional reconstruction of CT images

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Toshiaki; Kattoh, Keiichi; Kawakami, Genichiroh; Igami, Isao; Mariya, Yasushi; Nakamura, Yasuhiko; Saitoh, Yohko; Tamura, Koreroku; Shinozaki, Tatsuyo

    1986-09-01

    Computed tomography (CT) has the ability to provide sensitive visualization of organs and lesions. Owing to the nature of CT to be transaxial images, a structure which is greater than a certain size appears as several serial CT images. Consequently each observer must reconstruct those images into a three-dimensional (3-D) form mentally. It has been supposed to be of great use if such a 3-D form can be described as a definite figure. A new computer program has been developed which can produce 3-D figures from the profiles of organs and lesions on CT images using spline curves. The figures obtained through this method are regarded to have practical applications.

  2. Full three-dimensional isotropic transformation media

    International Nuclear Information System (INIS)

    García-Meca, C; Martí, J; Martínez, A; Ortuño, R

    2014-01-01

    We present a method that enables the implementation of full three-dimensional (3D) transformation media with minimized anisotropy. It is based on a special kind of shape-preserving mapping and a subsequent optimization process. For sufficiently smooth transformations, the resulting anisotropy can be neglected, paving the way for practically realizable 3D devices. The method is independent of the considered wave phenomenon and can thus be applied to any field for which a transformational technique exists, such as acoustics or thermodynamics. Full 3D isotropy has an additional important implication for optical transformation media, as it eliminates the need for magnetic materials in many situations. To illustrate the potential of the method, we design 3D counterparts of transformation-based electromagnetic squeezers and bends. (paper)

  3. The Three-Dimensional EIT Wave

    Science.gov (United States)

    Thompson, B. J.; Biesecker, D. A.; Gilbert, H. R.; Lawrence, G. R.; Ofman, L.; Wu, S. T.; Warmuth, A.; Fisher, Richard R. (Technical Monitor)

    2002-01-01

    An EIT wave is an impulsive disturbance which has been observed in the EUV, Soft X-ray and white light corona, with corresponding observations in the chromosphere. The effects of these disturbances can be observed across the entire solar disk of the Sun, and throughout the inner heliosphere as well. However, the picture is not complete; observations alone do not establish a complete understanding of the nature of this three-dimensional phenomenon. A number of associated phenomena have been documented, though in most cases causality has not determined. Additionally, it is unclear which factors govern the impulse's ability to affect regions of the corona and heliosphere. We discuss the various observations and the models which provided links between the associated phenomena.

  4. MRI follow-up after concordant, histologically benign diagnosis of breast lesions sampled by MRI-guided biopsy.

    Science.gov (United States)

    Li, Jie; Dershaw, D David; Lee, Carol H; Kaplan, Jennifer; Morris, Elizabeth A

    2009-09-01

    Follow-up MRI can be useful to confirm a benign diagnosis after MRI-guided breast biopsy. This retrospective study was undertaken to evaluate appropriate timing and imaging interpretation for the initial follow-up MRI when a benign, concordant histology is obtained using MRI-guided breast biopsy. Retrospective review was performed of 177 lesions visualized only by MRI in 172 women who underwent 9-gauge, vacuum-assisted core biopsy and marker placement with imaging-concordant benign histology. All underwent follow-up MRI within 12 months. Timing of the follow-up study, change in size, results of second biopsy if performed, and distance of localizing marker to the lesion on the follow-up study were recorded. At initial follow-up, 155 lesions were decreased or gone, 14 lesions were stable, and eight were enlarged. Seventeen (9.6%, 17/177) lesions underwent a second biopsy, including six enlarging, 10 stable, and one decreasing. Of these, four were malignant. Enlargement was seen in two carcinomas at 6 and 12 months. Two carcinomas, one stable at 2 months and another stable at 3 and 11 months, were rebiopsied because of suspicion of a missed lesion in the former and worrisome mammographic and sonographic changes in the latter. The distance of the marker from the lesion on follow-up did not correlate with biopsy accuracy. Follow-up MRI did not detect missed cancers because of lesion enlargement before 6 months after biopsy; two of four missed cancers were stable. The localizing marker can deploy away from the target despite successful sampling.

  5. Monitoring tumor response to neoadjuvant chemotherapy using MRI and 18F-FDG PET/CT in breast cancer subtypes

    NARCIS (Netherlands)

    Schmitz, Alexander M. Th; Teixeira, Suzana C.; Pengel, Kenneth E.; Loo, Claudette E.; Vogel, Wouter V.; Wesseling, Jelle; Rutgers, Emiel J. Th; Valdés Olmos, Renato A.; Sonke, Gabe S.; Rodenhuis, Sjoerd; Vrancken Peeters, Marie Jeanne T. F. D.; Gilhuijs, Kenneth G. A.

    2017-01-01

    To explore guidelines on the use of MRI and PET/CT monitoring primary tumor response to neoadjuvant chemotherapy (NAC), taking breast cancer subtype into account. In this prospective cohort study, 188 women were included with stages II and III breast cancer. MRI and 18F-FDG-PET/CT were acquired

  6. Monitoring tumor response to neoadjuvant chemotherapy using MRI and 18F-FDG PET/CT in breast cancer subtypes

    NARCIS (Netherlands)

    Schmitz, Alexander M Th; Teixeira, Suzana C; Pengel, Kenneth E; Loo, Claudette E; Vogel, Wouter V; Wesseling, Jelle; Rutgers, Emiel J Th; Valdés Olmos, Renato A; Sonke, Gabe S; Rodenhuis, Sjoerd; Vrancken Peeters, Marie Jeanne T F D; Gilhuijs, Kenneth G A

    2017-01-01

    PURPOSE: To explore guidelines on the use of MRI and PET/CT monitoring primary tumor response to neoadjuvant chemotherapy (NAC), taking breast cancer subtype into account. MATERIALS AND METHODS: In this prospective cohort study, 188 women were included with stages II and III breast cancer. MRI and

  7. Three-dimensional reconstruction of breast implants based on isocentric stereoscopic X-ray pictures (ISXP) for application monitoring and irradiation planning of a remote-controlled interstitial afterloading method

    Energy Technology Data Exchange (ETDEWEB)

    Loeffler, E.; Sauer, O.

    1988-01-01

    An individual irradiation planning and application monitoring by ISXP is presented for a remote-controlled interstitial afterloading technique using /sup 192/Ir wires which is applied in breast-preserving radiotherapy. The errors of reconstruction of the implants are discussed. The consideration of errors for ISXP can be extended to other stereoscopic methods. In this case the quality considerations made by other authors have to be enlarged. The maximum reconstruction error was investigated for a given digitalization precision, focus size, and object blur by patient's movements in dependence on the deviation angle. The optimum deviation angle is about 45/sup 0/, depending on the importance given to the individual parts and almost without being influenced by the relation between the distance isocenter-film and the distance focus-isocenter. In case of an optimized deviation angle, a displacement of an implant point of 1 mm leads to a maximum reconstruction error of 2 mm. The dosage is made according to the Paris system. If the circumcircle radius of the application triangle is modified by 1 mm, a dosage modification of 14% will be the consequence in case of very short wires and a small side length. A verification in a phantom showed a positioning error below 0.5 mm. The dosage error is 2% due to the mutual compensation of the direction-isotropic reconstruction errors of the needles the number of which is between seven and nine.

  8. Using deep learning to segment breast and fibroglandular tissue in MRI volumes.

    Science.gov (United States)

    Dalmış, Mehmet Ufuk; Litjens, Geert; Holland, Katharina; Setio, Arnaud; Mann, Ritse; Karssemeijer, Nico; Gubern-Mérida, Albert

    2017-02-01

    Automated segmentation of breast and fibroglandular tissue (FGT) is required for various computer-aided applications of breast MRI. Traditional image analysis and computer vision techniques, such atlas, template matching, or, edge and surface detection, have been applied to solve this task. However, applicability of these methods is usually limited by the characteristics of the images used in the study datasets, while breast MRI varies with respect to the different MRI protocols used, in addition to the variability in breast shapes. All this variability, in addition to various MRI artifacts, makes it a challenging task to develop a robust breast and FGT segmentation method using traditional approaches. Therefore, in this study, we investigated the use of a deep-learning approach known as "U-net." We used a dataset of 66 breast MRI's randomly selected from our scientific archive, which includes five different MRI acquisition protocols and breasts from four breast density categories in a balanced distribution. To prepare reference segmentations, we manually segmented breast and FGT for all images using an in-house developed workstation. We experimented with the application of U-net in two different ways for breast and FGT segmentation. In the first method, following the same pipeline used in traditional approaches, we trained two consecutive (2C) U-nets: first for segmenting the breast in the whole MRI volume and the second for segmenting FGT inside the segmented breast. In the second method, we used a single 3-class (3C) U-net, which performs both tasks simultaneously by segmenting the volume into three regions: nonbreast, fat inside the breast, and FGT inside the breast. For comparison, we applied two existing and published methods to our dataset: an atlas-based method and a sheetness-based method. We used Dice Similarity Coefficient (DSC) to measure the performances of the automated methods, with respect to the manual segmentations. Additionally, we computed

  9. Comparison of conventional DCE-MRI and a novel golden-angle radial multicoil compressed sensing method for the evaluation of breast lesion conspicuity.

    Science.gov (United States)

    Heacock, Laura; Gao, Yiming; Heller, Samantha L; Melsaether, Amy N; Babb, James S; Block, Tobias K; Otazo, Ricardo; Kim, Sungheon G; Moy, Linda

    2017-06-01

    To compare a novel multicoil compressed sensing technique with flexible temporal resolution, golden-angle radial sparse parallel (GRASP), to conventional fat-suppressed spoiled three-dimensional (3D) gradient-echo (volumetric interpolated breath-hold examination, VIBE) MRI in evaluating the conspicuity of benign and malignant breast lesions. Between March and August 2015, 121 women (24-84 years; mean, 49.7 years) with 180 biopsy-proven benign and malignant lesions were imaged consecutively at 3.0 Tesla in a dynamic contrast-enhanced (DCE) MRI exam using sagittal T1-weighted fat-suppressed 3D VIBE in this Health Insurance Portability and Accountability Act-compliant, retrospective study. Subjects underwent MRI-guided breast biopsy (mean, 13 days [1-95 days]) using GRASP DCE-MRI, a fat-suppressed radial "stack-of-stars" 3D FLASH sequence with golden-angle ordering. Three readers independently evaluated breast lesions on both sequences. Statistical analysis included mixed models with generalized estimating equations, kappa-weighted coefficients and Fisher's exact test. All lesions demonstrated good conspicuity on VIBE and GRASP sequences (4.28 ± 0.81 versus 3.65 ± 1.22), with no significant difference in lesion detection (P = 0.248). VIBE had slightly higher lesion conspicuity than GRASP for all lesions, with VIBE 12.6% (0.63/5.0) more conspicuous (P < 0.001). Masses and nonmass enhancement (NME) were more conspicuous on VIBE (P < 0.001), with a larger difference for NME (14.2% versus 9.4% more conspicuous). Malignant lesions were more conspicuous than benign lesions (P < 0.001) on both sequences. GRASP DCE-MRI, a multicoil compressed sensing technique with high spatial resolution and flexible temporal resolution, has near-comparable performance to conventional VIBE imaging for breast lesion evaluation. 3 Technical Efficacy: Stage 3 J. MAGN. RESON. IMAGING 2017;45:1746-1752. © 2016 International Society for Magnetic Resonance in Medicine.

  10. Three-dimensional (3D) analysis of the temporomandibular joint

    DEFF Research Database (Denmark)

    Kitai, N.; Kreiborg, S.; Murakami, S.

    Symposium Orthodontics 2001: Where are We Now? Where are We Going?, three-dimensional analysis, temporomandibular joint......Symposium Orthodontics 2001: Where are We Now? Where are We Going?, three-dimensional analysis, temporomandibular joint...

  11. Impact of menopausal status on background parenchymal enhancement and fibroglandular tissue on breast MRI

    International Nuclear Information System (INIS)

    King, Valencia; Gu, Yajia; Kaplan, Jennifer B.; Morris, Elizabeth A.; Brooks, Jennifer D.; Pike, Malcolm C.

    2012-01-01

    To evaluate the effect of menopausal status on the background parenchymal enhancement (BPE) and amount of fibroglandular tissue (FGT) on breast MRI. Retrospective review identified 1,130 women who underwent screening breast MRI between July and November 2010. In 28 of these women, breast MRI was performed both at one time point while pre- and one time point while post-menopausal (median interval 49 months). Two independent readers blinded to menopausal status used categorical scales to rate BPE (minimal/mild/moderate/marked) and FGT (fatty/scattered/heterogeneously dense/dense). Consensus was reached when there was disagreement. The sign test was used to assess changes in rating categories, and the Spearman rank and Fisher's exact tests were used to measure correlations and associations between variables. Significant proportions of women demonstrated decreases in BPE and FGT on post-menopausal breast MRI (P = 0.0001 and P = 0.0009). BPE category was unchanged in 39 % (11/28) and decreased in 61 % (17/28) of women. FGT category was unchanged in 61 % (17/28) and decreased in 39 % (11/28) of women. Age, reason for menopause, or interval between MRIs had no significant impact on changes in BPE and FGT. On MRI, BPE, and FGT decrease after menopause in significant proportions of women; BPE decreases more than FGT. (orig.)

  12. Breast Dynamic Contrast Enhanced MRI: Fibrocystic Changes Presenting as a Non-mass Enhancement Mimicking Malignancy.

    Science.gov (United States)

    Milosevic, Zorica C; Nadrljanski, Mirjan M; Milovanovic, Zorka M; Gusic, Nina Z; Vucicevic, Slavko S; Radulovic, Olga S

    2017-06-01

    We aimed to analyse the morphokinetic features of breast fibrocystic changes (nonproliferative lesions, proliferative lesions without atypia and proliferative lesions with atypia) presenting as a non-mass enhancement (NME)in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) examination. Forty-six patients with histologically proven fibrocystic changes (FCCs) were retrospectively reviewed, according to Breast Imaging Reporting and Data System (BI-RADS) lexicon. Prior to DCE-MRI examination, a unilateral breast lesion suspicious of malignancy was detected clinically, on mammography or breast ultrasonography. The predominant features of FCCs presenting as NME in DCE-MRI examination were: unilateral regional or diffuse distribution (in 35 patients or 76.1%), heterogeneous or clumped internal pattern of enhancement (in 36 patients or 78.3%), plateau time-intensity curve (in 25 patients or 54.3%), moderate or fast wash-in (in 31 patients or 67.4%).Nonproliferative lesions were found in 11 patients (24%), proliferative lesions without atypia in 29 patients (63%) and lesions with atypia in six patients (13%), without statistically significant difference of morphokinetic features, except of the association of clustered microcysts with proliferative dysplasia without atypia. FCCs presenting as NME in DCE-MRI examination have several morphokinetic features suspicious of malignancy, therefore requiring biopsy (BI-RADS 4). Nonproliferative lesions, proliferative lesions without atypia and proliferative lesions with atypia predominantly share the same predefined DCE-MRI morphokinetic features.

  13. Impact of menopausal status on background parenchymal enhancement and fibroglandular tissue on breast MRI

    Energy Technology Data Exchange (ETDEWEB)

    King, Valencia [Memorial Sloan-Kettering Cancer Center, Department of Radiology, Breast Imaging Section, New York, NY (United States); Memorial Sloan-Kettering Cancer Center, Department of Radiology, New York, NY (United States); Gu, Yajia [Fudan University Shanghai Cancer Center, Department of Radiology, Shanghai (China); Fudan University, Department of Oncology, Shanghai Medical College, Shanghai (China); Kaplan, Jennifer B.; Morris, Elizabeth A. [Memorial Sloan-Kettering Cancer Center, Department of Radiology, Breast Imaging Section, New York, NY (United States); Brooks, Jennifer D.; Pike, Malcolm C. [Memorial Sloan-Kettering Cancer Center, Department of Epidemiology and Biostatistics, New York, NY (United States)

    2012-12-15

    To evaluate the effect of menopausal status on the background parenchymal enhancement (BPE) and amount of fibroglandular tissue (FGT) on breast MRI. Retrospective review identified 1,130 women who underwent screening breast MRI between July and November 2010. In 28 of these women, breast MRI was performed both at one time point while pre- and one time point while post-menopausal (median interval 49 months). Two independent readers blinded to menopausal status used categorical scales to rate BPE (minimal/mild/moderate/marked) and FGT (fatty/scattered/heterogeneously dense/dense). Consensus was reached when there was disagreement. The sign test was used to assess changes in rating categories, and the Spearman rank and Fisher's exact tests were used to measure correlations and associations between variables. Significant proportions of women demonstrated decreases in BPE and FGT on post-menopausal breast MRI (P = 0.0001 and P = 0.0009). BPE category was unchanged in 39 % (11/28) and decreased in 61 % (17/28) of women. FGT category was unchanged in 61 % (17/28) and decreased in 39 % (11/28) of women. Age, reason for menopause, or interval between MRIs had no significant impact on changes in BPE and FGT. On MRI, BPE, and FGT decrease after menopause in significant proportions of women; BPE decreases more than FGT. (orig.)

  14. Identification of Breast Cancer Using Integrated Information from MRI and Mammography.

    Directory of Open Access Journals (Sweden)

    Shih-Neng Yang

    Full Text Available Integration of information from corresponding regions between the breast MRI and an X-ray mammogram could benefit the detection of breast cancer in clinical diagnosis. We aimed to provide a framework of registration from breast MRI to mammography and to evaluate the diagnosis using the combined information.43 patients with 46 lesions underwent both MRI and mammography scans, and the interval between the two examinations was around one month. The distribution of malignant to benign lesions was 31/46 based on histological results. Maximum intensity projection and thin-plate spline methods were applied for image registration for MRI to mammography. The diagnosis using integrated information was evaluated using results of histology as the reference. The assessment of annotations and statistical analysis were performed by the two radiologists.For the cranio-caudal view, the mean post-registration error between MRI and mammography was 2.2±1.9 mm. For the medio-lateral oblique view, the proposed approach performed even better with a mean error of 3.0±2.4 mm. In the diagnosis using MRI assessment with information of mammography, the sensitivity was 91.9±2.3% (29/31, 28/31, specificity 70.0±4.7% (11/15, 10/15, accuracy 84.8±3.1% (40/46, 38/46, positive predictive value 86.4±2.1% (29/33, 28/33 and negative predictive value 80.8±5.4% (11/13, 10/13.MRI with the aid of mammography shows potential improvements of sensitivity, specificity, accuracy, PPV and NPV in clinical breast cancer diagnosis compared to the use of MRI alone.

  15. Textural kinetics: a novel dynamic contrast-enhanced (DCE)-MRI feature for breast lesion classification.

    Science.gov (United States)

    Agner, Shannon C; Soman, Salil; Libfeld, Edward; McDonald, Margie; Thomas, Kathleen; Englander, Sarah; Rosen, Mark A; Chin, Deanna; Nosher, John; Madabhushi, Anant

    2011-06-01

    Dynamic contrast-enhanced (DCE)-magnetic resonance imaging (MRI) of the breast has emerged as an adjunct imaging tool to conventional X-ray mammography due to its high detection sensitivity. Despite the increasing use of breast DCE-MRI, specificity in distinguishing malignant from benign breast lesions is low, and interobserver variability in lesion classification is high. The novel contribution of this paper is in the definition of a new DCE-MRI descriptor that we call textural kinetics, which attempts to capture spatiotemporal changes in breast lesion texture in order to distinguish malignant from benign lesions. We qualitatively and quantitatively demonstrated on 41 breast DCE-MRI studies that textural kinetic features outperform signal intensity kinetics and lesion morphology features in distinguishing benign from malignant lesions. A probabilistic boosting tree (PBT) classifier in conjunction with textural kinetic descriptors yielded an accuracy of 90%, sensitivity of 95%, specificity of 82%, and an area under the curve (AUC) of 0.92. Graph embedding, used for qualitative visualization of a low-dimensional representation of the data, showed the best separation between benign and malignant lesions when using textural kinetic features. The PBT classifier results and trends were also corroborated via a support vector machine classifier which showed that textural kinetic features outperformed the morphological, static texture, and signal intensity kinetics descriptors. When textural kinetic attributes were combined with morphologic descriptors, the resulting PBT classifier yielded 89% accuracy, 99% sensitivity, 76% specificity, and an AUC of 0.91.

  16. Dose Tc-99m MIBI scintimammography provide more information additive to contrast enhanced MRI in highly suspected breast cancer patients?

    International Nuclear Information System (INIS)

    Kim, Seong Jang; Kim, In Ju; Kim, Yong Ki; Bae, Young Tae

    2000-01-01

    The aim of this study was to investigate whether Tc-99m MIBI scintimammography (SMM) provide more information than contrast enhanced MRI in highly suspected breast cancer patients. This study included 32 breast lesions of 29 highly suspected patients having breast cancer. All patients were performed SMM and contrast enhanced MRI. The SMMs and contrast enhanced MRI were correlated with histopathologic results. Thirty breast lesions were diagnosed malignant diseases and 2 were diagnosed benign diseases. SMM showed 29 true positives (TP), 1 true negative (TN), 1 false positive (FP), and 1 false negative (FN). The sensitivity was 96.6%. Contrast enhanced MRI revealed 24 TP, 0 TN, 1 FP, 3 FN and 4 indeterminate cases. The sensitivity was 88.8%. In the assessment of axillary lymph node metastasis, SMM showed 9 TP, 10 TN, 0 FP, and 3 FN. The sensitivity and specificity were 75% and 100%. Contrast enhanced MRI revealed 6 TP, 9 TN, 1 FP, and 6 FN. The sensitivity and specificity were 50% and 90%. Among 4 indeterminate cases with MRI findings, SMM correctly diagnosed malignant breast diseases in 3 lesions. However, SMM showed false positive in 1 lesion. SMM could correctly diagnosed malignant breast diseases more 5 lesions than contrast enhanced MRI. SMM revealed higher sensitivity in detection of primary breast cancer and axillary LN metastasis than contrast enhanced MRI. SMMs could correctly diagnosed malignant breast diseases even if the MRI showed indeterminate findings. In highly suspected patients having breast cancer, SMM may provide additive information in detection of breast cancer if contrast enhanced MRI showed indeterminate findings but this is to be determined later by large population based study

  17. Three-dimensional display of magnetic source imaging (MSI)

    International Nuclear Information System (INIS)

    Morioka, Takato; Yamamoto, Tomoya; Nishio, Shunji; Hasuo, Kanehiro; Fujii, Kiyotaka; Fukui, Masashi; Nitta, Koichi.

    1995-01-01

    Magnetic source imaging (MSI) is a relatively new, noninvasive technique for defining the relationship between brain structure and function of individual patients, and to establish comparisons from one patient to another. This is achieved by combining detailed neurophysiological data derived via magnetoencephalography (MEG) with neuroimaging data such as computed tomographic scan and magnetic resonance imaging (MRI). The noninvasive presurgical mapping of cortical functional somatosensory activity and the direct mapping of epilepsy-associated activity are among the neurosurgical uses that are emerging for MSI. Although the procedure provides clinically useful data, there are still limitations to two-dimensional MSI. We employ three-dimensional (3-D) MSI, superimposing MSI localizations on 3-D volumetric reconstruction of MRI. 3-D MSI enhances the visualization of the entire sensory homunculus and clearly demonstrates the spatial relationship with structural lesions. The functional localization of the epileptic focus in spatial relation to the lesion provides important clues for preoperative planning and on the epileptogenicity of the lesion. 3-D MSI improves localization of the sensory cortex and generator areas of epileptic activity. (author)

  18. Arterial spin labelling perfusion MRI of breast cancer using FAIR TrueFISP: Initial results

    International Nuclear Information System (INIS)

    Buchbender, S.; Obenauer, S.; Mohrmann, S.; Martirosian, P.; Buchbender, C.; Miese, F.R.; Wittsack, H.J.; Miekley, M.; Antoch, G.; Lanzman, R.S.

    2013-01-01

    Aim: To assess the feasibility of an unenhanced, flow-sensitive, alternating inversion recovery-balanced steady-state free precession (FAIR TrueFISP) arterial spin labelling (ASL) magnetic resonance imaging (MRI) technique for quantification of breast cancer perfusion. Materials and methods: Eighteen untreated breast tumour patients (mean age 53 ± 17 years, range 30–68 years) and four healthy controls (mean age 51 ± 14 years, range 33–68 years) were enrolled in this study and were imaged using a clinical 1.5 T MRI machine. Perfusion measurements were performed using a coronal single-section ASL FAIR TrueFISP technique in addition to a routine breast MRI examination. T1 relaxation time of normal breast parenchyma was determined in four healthy volunteers using the variable flip angle approach. The definitive diagnosis was obtained at histology after biopsy or surgery and was available for all patients. Results: ASL perfusion was successfully acquired in 13 of 18 tumour patients and in all healthy controls. The mean ASL perfusion of invasive ductal carcinoma tissue was significantly higher (88.2 ± 39.5 ml/100 g/min) compared to ASL perfusion of normal breast parenchyma (24.9 ± 12.7 ml/100 g/min; p < 0.05) and invasive lobular carcinoma (30.5 ± 4.3 ml/100 g/min; p < 0.05). No significant difference was found between the mean ASL perfusion of normal breast parenchyma and invasive lobular carcinoma tissue (p = 0.97). Conclusion: ASL MRI enables quantification of breast cancer perfusion without the use of contrast material. However, its impact on diagnosis and therapy management of breast tumours has to be evaluated in larger patient studies

  19. Three-dimensional magnetic resonance imaging for ruptures of the lateral ligaments of the ankle

    International Nuclear Information System (INIS)

    Verhaven, E.; Handelberg, F.; Opdecam, P.; Shahabpour, M.; Osteaux, M.; Vaes, P.

    1990-01-01

    The accuracy has been determined of three-dimensional MRI in visualizing the anterior talofibular and the calcaneofibular ligament in young athletes with an acute severe sprain of the lateral ligaments of the ankle by comparing these findings with those found at operation and evaluating three-dimensional fast imaging with steady state precession (3D FISP) as a diagnostic aid to operative planning for tears of both the anterior talofibular and the calcaneofibular ligament in younger competitive athletes. (author). 20 refs.; 2 figs

  20. Fully automated deformable registration of breast DCE-MRI and PET/CT

    Science.gov (United States)

    Dmitriev, I. D.; Loo, C. E.; Vogel, W. V.; Pengel, K. E.; Gilhuijs, K. G. A.

    2013-02-01

    Accurate characterization of breast tumors is important for the appropriate selection of therapy and monitoring of the response. For this purpose breast imaging and tissue biopsy are important aspects. In this study, a fully automated method for deformable registration of DCE-MRI and PET/CT of the breast is presented. The registration is performed using the CT component of the PET/CT and the pre-contrast T1-weighted non-fat suppressed MRI. Comparable patient setup protocols were used during the MRI and PET examinations in order to avoid having to make assumptions of biomedical properties of the breast during and after the application of chemotherapy. The registration uses a multi-resolution approach to speed up the process and to minimize the probability of converging to local minima. The validation was performed on 140 breasts (70 patients). From a total number of registration cases, 94.2% of the breasts were aligned within 4.0 mm accuracy (1 PET voxel). Fused information may be beneficial to obtain representative biopsy samples, which in turn will benefit the treatment of the patient.

  1. Study on three dimensional seismic isolation system

    International Nuclear Information System (INIS)

    Morishita, Masaki; Kitamura, Seiji

    2003-01-01

    Japan Nuclear Cycle Development Institute (JNC) and Japan Atomic Power Company (JAPC) launched joint research programs on structural design and three-dimensional seismic isolation technologies, as part of the supporting R and D activities for the feasibility studies on commercialized fast breeder reactor cycle systems. A research project by JAPC under the auspices of the Ministry of Economy, Trade, and Industry (METI) with technical support by JNC is included in this joint study. This report contains the results of the research on the three-dimensional seismic isolation technologies, and the results of this year's study are summarized in the following five aspects. (1) Study on Earthquake Condition for Developing 3-dimensional Base Isolation System. The case study S2 is one of the maximum ground motions, of which the records were investigated up to this time. But a few observed near the fault exceed the case study S2 in the long period domain, depending on the fault length and conditions. Generally it is appropriate that the response spectra ratio (vertical/horizontal) is 0.6. (2) Performance Requirement for 3-dimensional Base Isolation System and Devices. Although the integrity map of main equipment/piping dominate the design criteria for the 3-dimensional base isolation system, the combined integrity map is the same as those of FY 2000, which are under fv=1Hz and over hv=20%. (3) Developing Targets and Schedule for 3-dimensional Isolation Technology. The target items for 3-dimensional base isolation system were rearranged into a table, and developing items to be examined concerning the device were also adjusted. A development plan until FY 2009 was made from the viewpoint of realization and establishment of a design guideline on 3-dimensional base isolation system. (4) Study on 3-dimensional Entire Building Base Isolation System. Three ideas among six ideas that had been proposed in FY2001, i.e., '3-dimensional base isolation system incorporating hydraulic

  2. Correlative study of the parameters of dynamic contrast-enhanced MRI and angiogenesis in breast lesions

    International Nuclear Information System (INIS)

    Tang Guangyu; Xiao Xiangsheng; Liu Yong; Yao Yiping; Li Wei; Zhao Wenrong; Li Peng

    2007-01-01

    Objective: To evaluate the relationship between dynamic contrast-enhanced MRI (DCE-MRI)-derived parameters and tumor angiogenesis in malignant and benign breast lesions. Methods: Fifty-one patients with malignant and benign breast lesions underwent DCE-MRI using a Philips Intera 1.5 T MR System and dedicated breast coil prospectively before operation. DCE-MRI derived parameters such as steepest slope (S max )), peak height (PH), time-to-peak (T peak ) were calculated based on time-signal intensity curve. The micro-vessel density (MVD) was counted and vascular endothelial growth factor (VEGF) expression was assessed in these patients after operation with immunohistochemical staining method. The parameters were correlated statistically with MVD counts and VEGF expression in breast cancer. The MVD counts and VEGF expression were also compared among the patients with breast cancer (29 cases), with fibroadenoma (12 cases), mastopathy (10 cases) and the normal tissue (10 cases). Results: The enhancement parameters S max (r=0.807, P peak (69 ± 38) correlated negatively with MVD counts (r=-0.425, P< 0.05). The mean value of MVD (65.09±15.81/200 times field) in patients with breast cancer were significantly higher than those with fibroadenoma, mastopathy or normal tissue (P=0.043, 0.018, 0.002 respectively). 69% (20/29 cases) of breast cancers demonstrated positive VEGF expression, which were significantly more than that of fibroadenoma, mastopathy or normal tissue (P=0.035, 0.007, 0.001 respectively). Moreover, the MVD counts (60.38±24.14) in the peripheral region of breast cancer were more than those in central region (37.64±16.52; t=2.635, P=0.016). There was a significant difference in MVD counts between breast cancers with metastasis to axillary lymph nodes (73.23±23.02) and those without metastasis (59.34±18.03), (t=2.303, P=0.031). Conclusions: Some parameters derived from DCE-MRI correlated positively with MVD counts and VEGF expression in patients with breast

  3. Contrast-enhanced spectral mammography (CESM) versus breast magnetic resonance imaging (MRI): A retrospective comparison in 66 breast lesions.

    Science.gov (United States)

    Li, L; Roth, R; Germaine, P; Ren, S; Lee, M; Hunter, K; Tinney, E; Liao, L

    2017-02-01

    The purpose of this study was to retrospectively compare the diagnostic performance of contrast-enhanced spectral mammography (CESM) with that of breast magnetic resonance imaging (BMRI) in breast cancer detection using parameters, including sensitivity, positive predictive value (PPV), lesion size, morphology, lesion and background enhancement, and examination time. A total of 48 women (mean age, 56years±10.6 [SD]) with breast lesions detected between October 2012 and March 2014 were included. Both CESM and BMRI were performed for each patient within 30 days. The enhancement intensity of lesions and breast background parenchyma was subjectively assessed for both modalities and was quantified for comparison. Statistical significance was analyzed using paired t-test for mean size of index lesions in all malignant breasts (an index lesion defined as the largest lesion in each breast), and a mean score of enhancement intensity for index lesions and breast background. PPV, sensitivity, and accuracy were calculated for both CESM and BMRI. The average duration time of CESM and MRI examinations was also compared. A total of 66 lesions were identified, including 62 malignant and 4 benign lesions. Both CESM and BMRI demonstrated a sensitivity of 100% for detection of breast cancer. There was no statistically significant difference between the mean size of index lesions (P=0.108). The enhancement intensity of breast background was significantly lower for CESM than for BMRI (P0.05). The average examination time for CESM was significantly shorter than that of BMRI (P<0.01). CESM has similar sensitivity than BMRI in breast cancer detection, with higher PPV and less background enhancement. CESM is associate with significantly shorter exam time thus a more accessible alternative to BMRI, and has the potential to play an important tool in breast cancer detection and staging. Copyright © 2016 Éditions françaises de radiologie. Published by Elsevier Masson SAS. All rights

  4. Study of breast implant rupture: MRI versus surgical findings.

    Science.gov (United States)

    Vestito, A; Mangieri, F F; Ancona, A; Minervini, C; Perchinunno, V; Rinaldi, S

    2012-09-01

    This study evaluated the role of breast magnetic resonance (MR) imaging in the selective study breast implant integrity. We retrospectively analysed the signs of breast implant rupture observed at breast MR examinations of 157 implants and determined the sensitivity and specificity of the technique in diagnosing implant rupture by comparing MR data with findings at surgical explantation. The linguine and the salad-oil signs were statistically the most significant signs for diagnosing intracapsular rupture; the presence of siliconomas/seromas outside the capsule and/or in the axillary lymph nodes calls for immediate explantation. In agreement with previous reports, we found a close correlation between imaging signs and findings at explantation. Breast MR imaging can be considered the gold standard in the study of breast implants.

  5. The quality of tumor size assessment by contrast-enhanced spectral mammography and the benefit of additional breast MRI.

    Science.gov (United States)

    Lobbes, Marc B I; Lalji, Ulrich C; Nelemans, Patty J; Houben, Ivo; Smidt, Marjolein L; Heuts, Esther; de Vries, Bart; Wildberger, Joachim E; Beets-Tan, Regina G

    2015-01-01

    Background - Contrast-enhanced spectral mammography (CESM) is a promising new breast imaging modality that is superior to conventional mammography for breast cancer detection. We aimed to evaluate correlation and agreement of tumor size measurements using CESM. As additional analysis, we evaluated whether measurements using an additional breast MRI exam would yield more accurate results. Methods - Between January 1(st) 2013 and April 1(st) 2014, 87 consecutive breast cancer cases that underwent CESM were collected and data on maximum tumor size measurements were gathered. In 57 cases, tumor size measurements were also available for breast MRI. Histopathological results of the surgical specimen served as gold standard in all cases. Results - The Pearson's correlation coefficients (PCC) of CESM versus histopathology and breast MRI versus histopathology were all >0.9, p1 cm between the two imaging modalities and histopathological results, we did not observe any advantage of performing an additional breast MRI after CESM in any of the cases. Conclusion - Quality of tumor size measurement using CESM is good and matches the quality of these measurement assessed by breast MRI. Additional measurements using breast MRI did not improve the quality of tumor size measurements.

  6. High resolution MRI of the breast at 3 T: which BI-RADS registered descriptors are most strongly associated with the diagnosis of breast cancer?

    International Nuclear Information System (INIS)

    Pinker-Domenig, K.; Helbich, T.H.; Bogner, W.; Gruber, S.; Bickel, H.; Duffy, S.; Schernthaner, M.; Dubsky, P.; Pluschnig, U.; Rudas, M.; Trattnig, S.

    2012-01-01

    To identify which breast lesion descriptors in the ACR BI-RADS registered MRI lexicon are most strongly associated with the diagnosis of breast cancer when performing breast MR imaging at 3 T. 150 patients underwent breast MR imaging at 3 T. Lesion size, morphology and enhancement kinetics were assessed according to the BI-RADS registered classification. Sensitivity, specificity and diagnostic accuracy were assessed. The effects of the BI-RADS registered descriptors on sensitivity and specificity were evaluated. Data were analysed using logistic regression. Histopathological diagnoses were used as the standard of reference. The sensitivity, specificity and diagnostic accuracy of breast MRI at 3 T was 99%, 81% and 93%, respectively. In univariate analysis, the final diagnosis of malignancy was positively associated with irregular shape (p registered breast lesion descriptors that are mostly strongly associated with breast cancer in breast MR imaging at 3 T are lesion shape, lesion margin, internal enhancement pattern and Type 3 enhancement kinetics. (orig.)

  7. Bifurcation analysis of a three dimensional system

    Directory of Open Access Journals (Sweden)

    Yongwen WANG

    2018-04-01

    Full Text Available In order to enrich the stability and bifurcation theory of the three dimensional chaotic systems, taking a quadratic truncate unfolding system with the triple singularity equilibrium as the research subject, the existence of the equilibrium, the stability and the bifurcation of the system near the equilibrium under different parametric conditions are studied. Using the method of mathematical analysis, the existence of the real roots of the corresponding characteristic equation under the different parametric conditions is analyzed, and the local manifolds of the equilibrium are gotten, then the possible bifurcations are guessed. The parametric conditions under which the equilibrium is saddle-focus are analyzed carefully by the Cardan formula. Moreover, the conditions of codimension-one Hopf bifucation and the prerequisites of the supercritical and subcritical Hopf bifurcation are found by computation. The results show that the system has abundant stability and bifurcation, and can also supply theorical support for the proof of the existence of the homoclinic or heteroclinic loop connecting saddle-focus and the Silnikov's chaos. This method can be extended to study the other higher nonlinear systems.

  8. Three-dimensional dynamics of protostellar evolution

    International Nuclear Information System (INIS)

    Cook, T.L.

    1977-06-01

    A three-dimensional finite difference numerical methodology was developed for self-gravitating, rotating gaseous systems. The fully nonlinear equations for time-varying fluid dynamics are solved by high speed computer in a cylindrical coordinate system rotating with an instantaneous angular velocity, selected such that the net angular momentum relative to the rotating frame is zero. The time-dependent adiabatic collapse of gravitationally bound, rotating, protostellar clouds is studied for specified uniform and nonuniform initial conditions. Uniform clouds can form axisymmetric, rotating toroidal configurations. If the thermal pressure is high, nonuniform clouds can also collapse to axisymmetric toroids. For low thermal pressures, however, the collapsing cloud is unstable to initial perturbations. The fragmentation of protostellar clouds is investigated by studying the response of rotating, self-gravitating, equilibrium toroids to non-axisymmetric perturbations. The detailed evolution of the fragmenting toroid depends upon a non-dimensional function of the initial entropy, the total mass in the toroid, the angular velocity of rotation, and the number of perturbation wavelengths around the circumference of the toroid. For low and intermediate entropies, the configuration develops into co-rotating components with spiral streamers. In the spiral regions retrograde vortices are observed in some examples. For high levels of entropy, barred spirals can exist as intermediate states of the fragmentation

  9. Three-dimensional dynamics of protostellar evolution

    International Nuclear Information System (INIS)

    Cook, T.L.; Harlow, F.H.

    1978-01-01

    A three-dimensional finite difference numerical methodology has been developed for self-gravitating, rotating gaseous systems. The fully nonlinear equations for time-varying fluid dynamics are solved by high-speed computer in a cylindrical coordinate system rotating with an instantaneous angular velocity. The time-dependent adiabatic collapse of gravitationally bound, rotating, protostellar clouds is studied for specified uniform and nonuniform initial conditions. Uniform clouds can form axisymmetric, rotating toroidal configurations. If the thermal pressure is high, nonuniform clouds can also collapse to axisymmetric ellipsoids. For low thermal pressures, however, the collapsing cloud is unstable to perturbations. The resulting fragmentation of unstable protostellar clouds is investigated by studying the response of rotating, self-gravitating, equilibrium toroids to nonaxisymmetric perturbations. The detailed evolution of the fragmentation toroid depends upon a nondimensional function of the initial entropy, the total mass in the toroid, the angular velocity of rotation, and the number of perturbation wave-lengths around the circumference of the toroid. For low and intermediate entropies, the configuration develops into corotating components with spiral streamers. In the spiral regions retrograde vortices are observed in some examples. For high levels of entropy, barred spirals can exist as intermediate states of the fragmentation

  10. Three dimensional characterization and archiving system

    International Nuclear Information System (INIS)

    Sebastian, R.L.; Clark, R.; Gallman, P.

    1995-01-01

    The Three Dimensional Characterization and Archiving System (3D-ICAS) is being developed as a remote system to perform rapid in situ analysis of hazardous organics and radionuclide contamination on structural materials. Coleman Research and its subcontractors, Thermedics Detection, Inc. (TD) and the University of Idaho (UI) are in the second phase of a three phase program to develop 3D-ICAS to support Decontamination and Decommissioning (D ampersand D) operations. Accurate physical characterization of surfaces and the radioactive and organic is a critical D ampersand D task. Surface characterization includes identification of potentially dangerous inorganic materials, such as asbestos and transite. Real-time remotely operable characterization instrumentation will significantly advance the analysis capabilities beyond those currently employed. Chemical analysis is a primary area where the characterization process will be improved. Chemical analysis plays a vital role throughout the process of decontamination. Before clean-up operations can begin the site must be characterized with respect to the type and concentration of contaminants, and detailed site mapping must clarify areas of both high and low risk. During remediation activities chemical analysis provides a means to measure progress and to adjust clean-up strategy. Once the clean-up process has been completed the results of chemical analysis will verify that the site is in compliance with federal and local regulations

  11. MORPHOLOGICAL DESCRIPTIONS USING THREE-DIMENSIONAL WAVEFRONTS

    Directory of Open Access Journals (Sweden)

    Jean Serra

    2011-05-01

    Full Text Available The present study deals with the analysis of three-dimensional binary objects whose structure is not obvious nor generally clearly visible. Our approach is illustrated through three examples taken from biological microscopy. In one of our examples, we need to extract the osteocytes contained in sixty confocal sections. The cells are not numerous, but are characterized by long branches, hence they will be separated using a directional wavefront The two other objects are more complex and will be analysed by means of a spherical wavefront In the first case, a kidney of a rat embryo, the tissue grows like a tree, where we want to detect the branches, their extremities,and their spatial arrangement. The wavefront method enables us to define precisely branches and extremities, and gives flexible algorithms. The last example deals with the embryonic growth of the chicken shinbone. The central part of the bone (or shaft is structured as a series of nested cylinders following the same axis, and connected by more or less long bridges. Using wavefronts, we show that it is possible to separate the cylinders,and to extract and count the bridges that connect them.

  12. Multimodal three-dimensional dynamic signature

    Directory of Open Access Journals (Sweden)

    Yury E. Kozlov

    2017-11-01

    Full Text Available Reliable authentication in mobile applications is among the most important information security challenges. Today, we can hardly imagine a person who would not own a mobile device that connects to the Internet. Mobile devices are being used to store large amounts of confidential information, ranging from personal photos to electronic banking tools. In 2009, colleagues from Rice University together with their collaborators from Motorola, proposed an authentication through in-air gestures. This and subsequent work contributing to the development of the method are reviewed in our introduction. At the moment, there exists a version of the gesture-based authentication software available for Android mobile devices. This software has not become widespread yet. One of likely reasons for that is the insufficient reliability of the method, which involves similar to its earlier analogs the use of only one device. Here we discuss the authentication based on the multimodal three-dimensional dynamic signature (MTDS performed by two independent mobile devices. The MTDS-based authentication technique is an advanced version of in-air gesture authentication. We describe the operation of a prototype of MTDS-based authentication, including the main implemented algorithms, as well as some preliminary results of testing the software. We expect that our method can be used in any mobile application, provided a number of additional improvements discussed in the conclusion are made.

  13. Three-Dimensional Printed Thermal Regulation Textiles.

    Science.gov (United States)

    Gao, Tingting; Yang, Zhi; Chen, Chaoji; Li, Yiju; Fu, Kun; Dai, Jiaqi; Hitz, Emily M; Xie, Hua; Liu, Boyang; Song, Jianwei; Yang, Bao; Hu, Liangbing

    2017-11-28

    Space cooling is a predominant part of energy consumption in people's daily life. Although cooling the whole building is an effective way to provide personal comfort in hot weather, it is energy-consuming and high-cost. Personal cooling technology, being able to provide personal thermal comfort by directing local heat to the thermally regulated environment, has been regarded as one of the most promising technologies for cooling energy and cost savings. Here, we demonstrate a personal thermal regulated textile using thermally conductive and highly aligned boron nitride (BN)/poly(vinyl alcohol) (PVA) composite (denoted as a-BN/PVA) fibers to improve the thermal transport properties of textiles for personal cooling. The a-BN/PVA composite fibers are fabricated through a fast and scalable three-dimensional (3D) printing method. Uniform dispersion and high alignment of BN nanosheets (BNNSs) can be achieved during the processing of fiber fabrication, leading to a combination of high mechanical strength (355 MPa) and favorable heat dispersion. Due to the improved thermal transport property imparted by the thermally conductive and highly aligned BNNSs, better cooling effect (55% improvement over the commercial cotton fiber) can be realized in the a-BN/PVA textile. The wearable a-BN/PVA textiles containing the 3D-printed a-BN/PVA fibers offer a promising selection for meeting the personal cooling requirement, which can significantly reduce the energy consumption and cost for cooling the whole building.

  14. Three-dimensional printing for craniomaxillofacial regeneration.

    Science.gov (United States)

    Gaviria, Laura; Pearson, Joseph J; Montelongo, Sergio A; Guda, Teja; Ong, Joo L

    2017-10-01

    Craniomaxillofacial injuries produce complex wound environments involving various tissue types and treatment strategies. In a clinical setting, care is taken to properly irrigate and stabilize the injury, while grafts are molded in an attempt to maintain physiological functionality and cosmesis. This often requires multiple surgeries and grafts leading to added discomfort, pain and financial burden. Many of these injuries can lead to disfigurement and resultant loss of system function including mastication, respiration, and articulation, and these can lead to acute and long-term psychological impact on the patient. A main causality of these issues is the lack of an ability to spatially control pre-injury morphology while maintaining shape and function. With the advent of additive manufacturing (three-dimensional printing) and its use in conjunction with biomaterial regenerative strategies and stem cell research, there is an increased potential capacity to alleviate such limitations. This review focuses on the current capabilities of additive manufacturing platforms, completed research and potential for future uses in the treatment of craniomaxillofacial injuries, with an in-depth discussion of regeneration of the periodontal complex and teeth.

  15. Three-dimensional supersonic vortex breakdown

    Science.gov (United States)

    Kandil, Osama A.; Kandil, Hamdy A.; Liu, C. H.

    1993-01-01

    Three-dimensional supersonic vortex-breakdown problems in bound and unbound domains are solved. The solutions are obtained using the time-accurate integration of the unsteady, compressible, full Navier-Stokes (NS) equations. The computational scheme is an implicit, upwind, flux-difference splitting, finite-volume scheme. Two vortex-breakdown applications are considered in the present paper. The first is for a supersonic swirling jet which is issued from a nozzle into a supersonic uniform flow at a lower Mach number than that of the swirling jet. The second is for a supersonic swirling flow in a configured circular duct. In the first application, an extensive study of the effects of grid fineness, shape and grid-point distribution on the vortex breakdown is presented. Four grids are used in this study and they show a substantial dependence of the breakdown bubble and shock wave on the grid used. In the second application, the bubble-type and helix-type vortex breakdown have been captured.

  16. Three-dimensional laparoscopy: Principles and practice

    Directory of Open Access Journals (Sweden)

    Rakesh Y Sinha

    2017-01-01

    Full Text Available The largest challenge for laparoscopic surgeons is the eye–hand coordination within a three-dimensional (3D scene observed on a 2D display. The 2D view on flat screen laparoscopy is cerebrally intensive. The loss of binocular vision on a 2D display causes visual misperceptions, mainly loss of depth perception and adds to the surgeon's fatigue. This compromises the safety of laparoscopy. The 3D high-definition view with great depth perception and tactile feedback makes laparoscopic surgery more acceptable, safe and cost-effective. It improves surgical precision and hand–eye coordination, conventional and all straight stick instruments can be used, capital expenditure is less and recurring cost and annual maintenance cost are less. In this article, we have discussed the physics of 3D laparoscopy, principles of depth perception, and the different kinds of 3D systems available for laparoscopy. We have also discussed our experience of using 3D laparoscopy in over 2000 surgeries in the last 4 years.

  17. Three dimensional characterization and archiving system

    Energy Technology Data Exchange (ETDEWEB)

    Sebastian, R.L.; Clark, R.; Gallman, P. [Coleman Research Corp., Springfield, VA (United States)] [and others

    1995-10-01

    The Three Dimensional Characterization and Archiving System (3D-ICAS) is being developed as a remote system to perform rapid in situ analysis of hazardous organics and radionuclide contamination on structural materials. Coleman Research and its subcontractors, Thermedics Detection, Inc. (TD) and the University of Idaho (UI) are in the second phase of a three phase program to develop 3D-ICAS to support Decontamination and Decommissioning (D&D) operations. Accurate physical characterization of surfaces and the radioactive and organic is a critical D&D task. Surface characterization includes identification of potentially dangerous inorganic materials, such as asbestos and transite. The 3D-ICAS system robotically conveys a multisensor probe near the surface to be inspected. The sensor position and orientation are monitored and controlled by Coherent laser radar (CLR) tracking. The ICAS fills the need for high speed automated organic analysis by means of gas chromatography-mass spectrometry sensors, and also by radionuclide sensors which combines alpha, beta, and gamma counting.

  18. Three dimensional characterization and archiving system

    International Nuclear Information System (INIS)

    Sebastian, R.L.; Clark, R.; Gallman, P.

    1996-01-01

    The Three Dimensional Characterization and Archiving System (3D-ICAS) is being developed as a remote system to perform rapid in situ analysis of hazardous organics and radionuclide contamination on structural materials. Coleman Research and its subcontractors, Thermedics Detection, Inc. (TD) and the University of Idaho (UI) are in the second phase of a three phase program to develop 3D-ICAS to support Decontamination and Decommissioning (D and D) operations. Accurate physical characterization of surfaces and the radioactive and organic is a critical D and D task. Surface characterization includes identification of potentially dangerous inorganic materials, such as asbestos and transite. Real-time remotely operable characterization instrumentation will significantly advance the analysis capabilities beyond those currently employed. Chemical analysis is a primary area where the characterization process will be improved. The 3D-ICAS system robotically conveys a multisensor probe near the surfaces to be inspected. The sensor position and orientation are monitored and controlled using coherent laser radar (CLR) tracking. The CLR also provides 3D facility maps which establish a 3D world view within which the robotic sensor system can operate

  19. Three-dimensional RAMA fluence methodology benchmarking

    International Nuclear Information System (INIS)

    Baker, S. P.; Carter, R. G.; Watkins, K. E.; Jones, D. B.

    2004-01-01

    This paper describes the benchmarking of the RAMA Fluence Methodology software, that has been performed in accordance with U. S. Nuclear Regulatory Commission Regulatory Guide 1.190. The RAMA Fluence Methodology has been developed by TransWare Enterprises Inc. through funding provided by the Electric Power Research Inst., Inc. (EPRI) and the Boiling Water Reactor Vessel and Internals Project (BWRVIP). The purpose of the software is to provide an accurate method for calculating neutron fluence in BWR pressure vessels and internal components. The Methodology incorporates a three-dimensional deterministic transport solution with flexible arbitrary geometry representation of reactor system components, previously available only with Monte Carlo solution techniques. Benchmarking was performed on measurements obtained from three standard benchmark problems which include the Pool Criticality Assembly (PCA), VENUS-3, and H. B. Robinson Unit 2 benchmarks, and on flux wire measurements obtained from two BWR nuclear plants. The calculated to measured (C/M) ratios range from 0.93 to 1.04 demonstrating the accuracy of the RAMA Fluence Methodology in predicting neutron flux, fluence, and dosimetry activation. (authors)

  20. Three-Dimensional Printed Graphene Foams.

    Science.gov (United States)

    Sha, Junwei; Li, Yilun; Villegas Salvatierra, Rodrigo; Wang, Tuo; Dong, Pei; Ji, Yongsung; Lee, Seoung-Ki; Zhang, Chenhao; Zhang, Jibo; Smith, Robert H; Ajayan, Pulickel M; Lou, Jun; Zhao, Naiqin; Tour, James M

    2017-07-25

    An automated metal powder three-dimensional (3D) printing method for in situ synthesis of free-standing 3D graphene foams (GFs) was successfully modeled by manually placing a mixture of Ni and sucrose onto a platform and then using a commercial CO 2 laser to convert the Ni/sucrose mixture into 3D GFs. The sucrose acted as the solid carbon source for graphene, and the sintered Ni metal acted as the catalyst and template for graphene growth. This simple and efficient method combines powder metallurgy templating with 3D printing techniques and enables direct in situ 3D printing of GFs with no high-temperature furnace or lengthy growth process required. The 3D printed GFs show high-porosity (∼99.3%), low-density (∼0.015g cm -3 ), high-quality, and multilayered graphene features. The GFs have an electrical conductivity of ∼8.7 S cm -1 , a remarkable storage modulus of ∼11 kPa, and a high damping capacity of ∼0.06. These excellent physical properties of 3D printed GFs indicate potential applications in fields requiring rapid design and manufacturing of 3D carbon materials, for example, energy storage devices, damping materials, and sound absorption.

  1. Brain volume measurement using three-dimensional magnetic resonance images

    International Nuclear Information System (INIS)

    Ishimaru, Yoshihiro

    1996-01-01

    This study was designed to validate accurate measurement method of human brain volume using three dimensional (3D) MRI data on a workstation, and to establish optimal correcting method of human brain volume on diagnosis of brain atrophy. 3D MRI data were acquired by fast SPGR sequence using 1.5 T MR imager. 3D MRI data were segmented by region growing method and 3D image was displayed by surface rendering method on the workstation. Brain volume was measured by the volume measurement function of the workstation. In order to validate the accurate measurement method, phantoms and a specimen of human brain were examined. Phantom volume was measured by changing the lower level of threshold value. At the appropriate threshold value, percentage of error of phantoms and the specimen were within 0.6% and 0.08%, respectively. To establish the optimal correcting method, 130 normal volunteers were examined. Brain volumes corrected with height weight, body surface area, and alternative skull volume were evaluated. Brain volume index, which is defined as dividing brain volume by alternative skull volume, had the best correlation with age (r=0.624, p<0.05). No gender differences was observed in brain volume index in contrast to in brain volume. The clinical usefulness of this correcting method for brain atrophy diagnosis was evaluated in 85 patients. Diagnosis by 2D spin echo MR images was compared with brain volume index. Diagnosis of brain atrophy by 2D MR image was concordant with the evaluation by brain volume index. These results indicated that this measurement method had high accuracy, and it was important to set the appropriate threshold value. Brain volume index was the appropriate indication for evaluation of human brain volume, and was considered to be useful for the diagnosis of brain atrophy. (author)

  2. Should breast MRI be performed with adjustment for the phase in patients’ menstrual cycle? Correlation between mammographic density, age, and background enhancement on breast MRI without adjusting for the phase in patients’ menstrual cycle

    International Nuclear Information System (INIS)

    Uematsu, Takayoshi; Kasami, Masako; Watanabe, Junichiro

    2012-01-01

    Purpose: The purpose of this study was to assess the correlation between mammographic density, age, and background enhancement on breast MRI without adjusting for the phase in patients’ menstrual cycle. Material and methods: The background enhancement of bilateral breast MRI and the breast density of mammography in 146 consecutive women without adjusting for the phase in patients’ menstrual cycle were reviewed. The breast density was classified into four categories according to the American College of Radiology the Breast Imaging Reporting and Data System lexicon. The background enhancement was classified into four categories: minimal, mild, moderate, and marked. The correlations of mammographic breast density as well as age with background enhancement on breast MRI were examined. Results: There was a significant correlation between mammographic breast density and background enhancement (p = 0.011). All nine cases with almost completely fat mammographic breast density showed minimal (78%) or mild (12%) background enhancement on breast MRI. There was a significant inverse correlation between age and background enhancement (p < 0.0001). Younger patients with dense breasts were more likely to demonstrate moderate/marked background enhancement. Conclusion: When no adjusting for the phase in patients’ menstrual cycle, a significant correlation was observed between background enhancement and mammographic density. A significant inverse correlation was also observed between age and background enhancement.

  3. Relationship between DCE-MRI morphological and functional features and histopathological characteristics of breast cancer

    International Nuclear Information System (INIS)

    Montemurro, Filippo; Redana, Stefania; Aglietta, Massimo; Martincich, Laura; Bertotto, Ilaria; Cellini, Lisa; Sarotto, Ivana; Ponzone, Riccardo; Sismondi, Piero; Regge, Daniele

    2007-01-01

    We studied whether dynamic contrast-enhanced MRI (DCE-MRI) could identify histopathological characteristics of breast cancer. Seventy-five patients with breast cancer underwent DCE-MRI followed by core biopsy. DCE-MRI findings were evaluated following the scoring system published by Fischer in 1999. In this scoring system, five DCE-MRI features, three morphological (shape, margins, enhancement kinetic) and two functional (initial peak of signal intensity (SI) increase and behavior of signal intensity curve), are defined by 14 parameters. Each parameter is assigned points ranging from 0 to 1 or 0 to 2, with higher points for those that are more likely to be associated with malignancy. The sum of all the points defines the degree of suspicion of malignancy, with a score 0 representing the lowest and 8 the highest degree of suspicion. Associations between DCE-MRI features and tumor histopathological characteristics assessed on core biopsies (histological type, grading, estrogen and progesterone receptor status, Ki67 and HER2 status) were studied by contingency tables and logistic regression analysis. We found a significant inverse association between the Fischer's score and HER2-overexpression (odds ratio-OR 0.608, p = 0.02). Based on our results, we suggest that lesions with intermediate-low suspicious DCE-MRI parameters may represent a subset of tumor with poor histopathological characteristics. (orig.)

  4. Application of Simulated Three Dimensional CT Image in Orthognathic Surgery

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Don; Park, Chang Seo [Dept. of Dental Radiology, College of Dentistry, Yensei University, Seoul (Korea, Republic of); Yoo, Sun Kook; Lee, Kyoung Sang [Dept. of Medical Engineering, College of Medicine, Yensei University, Seoul (Korea, Republic of)

    1998-08-15

    In orthodontics and orthognathic surgery, cephalogram has been routine practice in diagnosis and treatment evaluation of craniofacial deformity. But its inherent distortion of actual length and angles during projecting three dimensional object to two dimensional plane might cause errors in quantitative analysis of shape and size. Therefore, it is desirable that three dimensional object is diagnosed and evaluated three dimensionally and three dimensional CT image is best for three dimensional analysis. Development of clinic necessitates evaluation of result of treatment and comparison before and after surgery. It is desirable that patient that was diagnosed and planned by three dimensional computed tomography before surgery is evaluated by three dimensional computed tomography after surgery, too. But Because there is no standardized normal values in three dimension now and three dimensional Computed Tomography needs expensive equipment and because of its expenses and amount of exposure to radiation, limitations still remain to be solved in its application to routine practice. If postoperative three dimensional image is constructed by pre and postoperative lateral and postero-anterior cephalograms and preoperative three dimensional computed tomogram, pre and postoperative image will be compared and evaluated three dimensionally without three dimensional computed tomography after surgery and that will contribute to standardize normal values in three dimension. This study introduced new method that computer-simulated three dimensional image was constructed by preoperative three dimensional computed tomogram and pre and postoperative lateral and postero-anterior cephalograms, and for validation of new method, in four cases of dry skull that position of mandible was displaced and four patients of orthognathic surgery, computer-simulated three dimensional image and actual postoperative three dimensional image were compared. The results were as follows. 1. In four cases of

  5. Application of Simulated Three Dimensional CT Image in Orthognathic Surgery

    International Nuclear Information System (INIS)

    Kim, Hyun Don; Park, Chang Seo; Yoo, Sun Kook; Lee, Kyoung Sang

    1998-01-01

    In orthodontics and orthognathic surgery, cephalogram has been routine practice in diagnosis and treatment evaluation of craniofacial deformity. But its inherent distortion of actual length and angles during projecting three dimensional object to two dimensional plane might cause errors in quantitative analysis of shape and size. Therefore, it is desirable that three dimensional object is diagnosed and evaluated three dimensionally and three dimensional CT image is best for three dimensional analysis. Development of clinic necessitates evaluation of result of treatment and comparison before and after surgery. It is desirable that patient that was diagnosed and planned by three dimensional computed tomography before surgery is evaluated by three dimensional computed tomography after surgery, too. But Because there is no standardized normal values in three dimension now and three dimensional Computed Tomography needs expensive equipment and because of its expenses and amount of exposure to radiation, limitations still remain to be solved in its application to routine practice. If postoperative three dimensional image is constructed by pre and postoperative lateral and postero-anterior cephalograms and preoperative three dimensional computed tomogram, pre and postoperative image will be compared and evaluated three dimensionally without three dimensional computed tomography after surgery and that will contribute to standardize normal values in three dimension. This study introduced new method that computer-simulated three dimensional image was constructed by preoperative three dimensional computed tomogram and pre and postoperative lateral and postero-anterior cephalograms, and for validation of new method, in four cases of dry skull that position of mandible was displaced and four patients of orthognathic surgery, computer-simulated three dimensional image and actual postoperative three dimensional image were compared. The results were as follows. 1. In four cases of

  6. Controlling the Stormram 2: An MRI-compatible Robotic System for Breast Biopsy

    NARCIS (Netherlands)

    Abdelaziz, Mohamed E.M.K.; Groenhuis, Vincent; Veltman, Jeroen; Siepel, Françoise Jeanette; Stramigioli, Stefano

    2017-01-01

    Breast cancer is the most frequently life-threatening diagnosed type of cancer among women. Early and accurate diagnosis by acquiring a tissue sample using biopsy techniques is essential. However, small lesions only visible by MRI are often missed in standard methods, indicating the need for a

  7. Breast dynamic contrast enhanced MRI: fibrocystic changes presenting as a non-mass enhancement mimicking malignancy

    Directory of Open Access Journals (Sweden)

    Milosevic Zorica C.

    2017-06-01

    Full Text Available We aimed to analyse the morphokinetic features of breast fibrocystic changes (nonproliferative lesions, proliferative lesions without atypia and proliferative lesions with atypia presenting as a non-mass enhancement (NMEin dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI examination.

  8. Assessment of three different software systems in the evaluation of dynamic MRI of the breast

    International Nuclear Information System (INIS)

    Kurz, K.D.; Steinhaus, D.; Klar, V.; Cohnen, M.; Wittsack, H.J.; Saleh, A.; Moedder, U.; Blondin, D.

    2009-01-01

    Objective: The aim was to compare the diagnostic performance and handling of dynamic contrast-enhanced MRI of the breast with two commercial software solutions ('CADstream' and '3TP') and one self-developed software system ('Mammatool'). Materials and methods: Identical data sets of dynamic breast MRI from 21 patients were evaluated retrospectively with all three software systems. The exams were classified according to the BI-RADS classification. The number of lesions in the parametric mapping was compared to histology or follow-up of more than 2 years. In addition, 25 quality criteria were judged by 3 independent investigators with a score from 0 to 5. Statistical analysis was performed to document the quality ranking of the different software systems. Results: There were 9 invasive carcinomas, one pure DCIS, one papilloma, one radial scar, three histologically proven changes due to mastopathy, one adenosis and two fibroadenomas. Additionally two patients with enhancing parenchyma followed with MRI for more than 3 years and one scar after breast conserving therapy were included. All malignant lesions were classified as BI-RADS 4 or 5 using all software systems and showed significant enhancement in the parametric mapping. 'CADstream' showed the best score on subjective quality criteria. '3TP' showed the lowest number of false-positive results. 'Mammatool' produced the lowest number of benign tissues indicated with parametric overlay. Conclusion: All three software programs tested were adequate for sensitive and efficient assessment of dynamic MRI of the breast. Improvements in specificity may be achievable

  9. Assessment of three different software systems in the evaluation of dynamic MRI of the breast.

    Science.gov (United States)

    Kurz, K D; Steinhaus, D; Klar, V; Cohnen, M; Wittsack, H J; Saleh, A; Mödder, U; Blondin, D

    2009-02-01

    The aim was to compare the diagnostic performance and handling of dynamic contrast-enhanced MRI of the breast with two commercial software solutions ("CADstream" and "3TP") and one self-developed software system ("Mammatool"). Identical data sets of dynamic breast MRI from 21 patients were evaluated retrospectively with all three software systems. The exams were classified according to the BI-RADS classification. The number of lesions in the parametric mapping was compared to histology or follow-up of more than 2 years. In addition, 25 quality criteria were judged by 3 independent investigators with a score from 0 to 5. Statistical analysis was performed to document the quality ranking of the different software systems. There were 9 invasive carcinomas, one pure DCIS, one papilloma, one radial scar, three histologically proven changes due to mastopathy, one adenosis and two fibroadenomas. Additionally two patients with enhancing parenchyma followed with MRI for more than 3 years and one scar after breast conserving therapy were included. All malignant lesions were classified as BI-RADS 4 or 5 using all software systems and showed significant enhancement in the parametric mapping. "CADstream" showed the best score on subjective quality criteria. "3TP" showed the lowest number of false-positive results. "Mammatool" produced the lowest number of benign tissues indicated with parametric overlay. All three software programs tested were adequate for sensitive and efficient assessment of dynamic MRI of the breast. Improvements in specificity may be achievable.

  10. Model–Free Visualization of Suspicious Lesions in Breast MRI Based on Supervised and Unsupervised Learning

    NARCIS (Netherlands)

    Twellmann, T.; Meyer-Bäse, A.; Lange, O.; Foo, S.; Nattkemper, T.W.

    2008-01-01

    Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has become an important tool in breast cancer diagnosis, but evaluation of multitemporal 3D image data holds new challenges for human observers. To aid the image analysis process, we apply supervised and unsupervised pattern recognition

  11. Panoramic three-dimensional CT imaging

    International Nuclear Information System (INIS)

    Kawamata, Akitoshi; Fujishita, Masami

    1998-01-01

    Panoramic radiography is a unique projection technique for producing a single image of both maxillary and mandibular arches and many other anatomical structures. To obtain a similar panoramic image without panoramic radiography system, a modified three-dimensional (3D) CT imaging technique was designed. A set of CT slice image data extending from the chin to the orbit was used for 3D reconstruction. The CT machine used in this study was the X-Vision (TOSHIBA, Japan). The helical scan technique was used. The slice thickness of reconstructed image was one or 1.5 mm. The occlusal plane or Frankfort horizontal (FH) plane was used as the reference line. The resultant slice image data was stored on a magnetic optical disk and then used to create panoramic 3D-CT images on a Macintosh computer systems (Power Macintosh 8600/250, Apple Computer Inc., USA). To create the panoramic 3D-CT image, the following procedure was designed: Design a curved panoramic 3D-CT imaging layer using the imaging layer and the movement of the x-ray beam in panoramic radiography system as a template; Cut this imaging layer from each slice image, then the trimmed image was transformed to a rectangular layer using the ''still image warping'' special effect in the Elastic Reality special effects system (Elastic Reality Inc., USA); Create panoramic 3D-CT image using the Voxel View (Vital Images Inc., USA) rendering system and volume rendering technique. Although the image quality was primitive, a panoramic view of maxillofacial region was obtained by this technique. (author)

  12. Comparative analysis of nonlinear dimensionality reduction techniques for breast MRI segmentation

    Energy Technology Data Exchange (ETDEWEB)

    Akhbardeh, Alireza; Jacobs, Michael A. [Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 (United States); Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 (United States) and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 (United States)

    2012-04-15

    Purpose: Visualization of anatomical structures using radiological imaging methods is an important tool in medicine to differentiate normal from pathological tissue and can generate large amounts of data for a radiologist to read. Integrating these large data sets is difficult and time-consuming. A new approach uses both supervised and unsupervised advanced machine learning techniques to visualize and segment radiological data. This study describes the application of a novel hybrid scheme, based on combining wavelet transform and nonlinear dimensionality reduction (NLDR) methods, to breast magnetic resonance imaging (MRI) data using three well-established NLDR techniques, namely, ISOMAP, local linear embedding (LLE), and diffusion maps (DfM), to perform a comparative performance analysis. Methods: Twenty-five breast lesion subjects were scanned using a 3T scanner. MRI sequences used were T1-weighted, T2-weighted, diffusion-weighted imaging (DWI), and dynamic contrast-enhanced (DCE) imaging. The hybrid scheme consisted of two steps: preprocessing and postprocessing of the data. The preprocessing step was applied for B{sub 1} inhomogeneity correction, image registration, and wavelet-based image compression to match and denoise the data. In the postprocessing step, MRI parameters were considered data dimensions and the NLDR-based hybrid approach was applied to integrate the MRI parameters into a single image, termed the embedded image. This was achieved by mapping all pixel intensities from the higher dimension to a lower dimensional (embedded) space. For validation, the authors compared the hybrid NLDR with linear methods of principal component analysis (PCA) and multidimensional scaling (MDS) using synthetic data. For the clinical application, the authors used breast MRI data, comparison was performed using the postcontrast DCE MRI image and evaluating the congruence of the segmented lesions. Results: The NLDR-based hybrid approach was able to define and segment

  13. Comparative analysis of nonlinear dimensionality reduction techniques for breast MRI segmentation

    International Nuclear Information System (INIS)

    Akhbardeh, Alireza; Jacobs, Michael A.

    2012-01-01

    Purpose: Visualization of anatomical structures using radiological imaging methods is an important tool in medicine to differentiate normal from pathological tissue and can generate large amounts of data for a radiologist to read. Integrating these large data sets is difficult and time-consuming. A new approach uses both supervised and unsupervised advanced machine learning techniques to visualize and segment radiological data. This study describes the application of a novel hybrid scheme, based on combining wavelet transform and nonlinear dimensionality reduction (NLDR) methods, to breast magnetic resonance imaging (MRI) data using three well-established NLDR techniques, namely, ISOMAP, local linear embedding (LLE), and diffusion maps (DfM), to perform a comparative performance analysis. Methods: Twenty-five breast lesion subjects were scanned using a 3T scanner. MRI sequences used were T1-weighted, T2-weighted, diffusion-weighted imaging (DWI), and dynamic contrast-enhanced (DCE) imaging. The hybrid scheme consisted of two steps: preprocessing and postprocessing of the data. The preprocessing step was applied for B 1 inhomogeneity correction, image registration, and wavelet-based image compression to match and denoise the data. In the postprocessing step, MRI parameters were considered data dimensions and the NLDR-based hybrid approach was applied to integrate the MRI parameters into a single image, termed the embedded image. This was achieved by mapping all pixel intensities from the higher dimension to a lower dimensional (embedded) space. For validation, the authors compared the hybrid NLDR with linear methods of principal component analysis (PCA) and multidimensional scaling (MDS) using synthetic data. For the clinical application, the authors used breast MRI data, comparison was performed using the postcontrast DCE MRI image and evaluating the congruence of the segmented lesions. Results: The NLDR-based hybrid approach was able to define and segment both

  14. Effectiveness of dynamic MRI for diagnosing pericicatricial minimal residual breast cancer following excisional biopsy

    International Nuclear Information System (INIS)

    Kawashima, Hiroko; Tawara, Mari; Suzuki, Masayuki; Matsui, Osamu; Kadoya, Masumi

    2001-01-01

    The purpose of this study was to investigate the effectiveness of dynamic MRI for diagnosing pericicatricial minimal residual breast cancer following excisional biopsy. Twenty-six patients who underwent excisional biopsy of a tumor or calcified lesion of the breast underwent gadolinium-enhanced dynamic MRI by the fat-saturated 2D fast spoiled gradient echo (SPGR) sequence (group 1), 24 patients by the spectral IR enhanced 3D fast gradient echo (Efgre3d) sequence (group 2). Pericicatricial residual cancer was confirmed histologically in 29 of the 50 patients. The overall sensitivity, specificity, accuracy, positive predictive value, and negative predictive value of MRI for residual cancer diagnosis was 66, 81, 72, 83 and 63%. A nodular, thick and discontinuous enhanced rim around the scar is indicative of a residual tumor. However, false-positive findings due to granulation or proliferative fibrocystic change remain limitations

  15. Effectiveness of dynamic MRI for diagnosing pericicatricial minimal residual breast cancer following excisional biopsy

    Energy Technology Data Exchange (ETDEWEB)

    Kawashima, Hiroko E-mail: hirokok@med.kanazawa-u.ac.jp; Tawara, Mari; Suzuki, Masayuki; Matsui, Osamu; Kadoya, Masumi

    2001-10-01

    The purpose of this study was to investigate the effectiveness of dynamic MRI for diagnosing pericicatricial minimal residual breast cancer following excisional biopsy. Twenty-six patients who underwent excisional biopsy of a tumor or calcified lesion of the breast underwent gadolinium-enhanced dynamic MRI by the fat-saturated 2D fast spoiled gradient echo (SPGR) sequence (group 1), 24 patients by the spectral IR enhanced 3D fast gradient echo (Efgre3d) sequence (group 2). Pericicatricial residual cancer was confirmed histologically in 29 of the 50 patients. The overall sensitivity, specificity, accuracy, positive predictive value, and negative predictive value of MRI for residual cancer diagnosis was 66, 81, 72, 83 and 63%. A nodular, thick and discontinuous enhanced rim around the scar is indicative of a residual tumor. However, false-positive findings due to granulation or proliferative fibrocystic change remain limitations.

  16. Visualization of suspicious lesions in breast MRI based on intelligent neural systems

    Science.gov (United States)

    Twellmann, Thorsten; Lange, Oliver; Nattkemper, Tim Wilhelm; Meyer-Bäse, Anke

    2006-05-01

    Intelligent medical systems based on supervised and unsupervised artificial neural networks are applied to the automatic visualization and classification of suspicious lesions in breast MRI. These systems represent an important component of future sophisticated computer-aided diagnosis systems and enable the extraction of spatial and temporal features of dynamic MRI data stemming from patients with confirmed lesion diagnosis. By taking into account the heterogenity of the cancerous tissue, these techniques reveal the malignant, benign and normal kinetic signals and and provide a regional subclassification of pathological breast tissue. Intelligent medical systems are expected to have substantial implications in healthcare politics by contributing to the diagnosis of indeterminate breast lesions by non-invasive imaging.

  17. Three dimensional time reversal optical tomography

    Science.gov (United States)

    Wu, Binlin; Cai, W.; Alrubaiee, M.; Xu, M.; Gayen, S. K.

    2011-03-01

    Time reversal optical tomography (TROT) approach is used to detect and locate absorptive targets embedded in a highly scattering turbid medium to assess its potential in breast cancer detection. TROT experimental arrangement uses multi-source probing and multi-detector signal acquisition and Multiple-Signal-Classification (MUSIC) algorithm for target location retrieval. Light transport from multiple sources through the intervening medium with embedded targets to the detectors is represented by a response matrix constructed using experimental data. A TR matrix is formed by multiplying the response matrix by its transpose. The eigenvectors with leading non-zero eigenvalues of the TR matrix correspond to embedded objects. The approach was used to: (a) obtain the location and spatial resolution of an absorptive target as a function of its axial position between the source and detector planes; and (b) study variation in spatial resolution of two targets at the same axial position but different lateral positions. The target(s) were glass sphere(s) of diameter ~9 mm filled with ink (absorber) embedded in a 60 mm-thick slab of Intralipid-20% suspension in water with an absorption coefficient μa ~ 0.003 mm-1 and a transport mean free path lt ~ 1 mm at 790 nm, which emulate the average values of those parameters for human breast tissue. The spatial resolution and accuracy of target location depended on axial position, and target contrast relative to the background. Both the targets could be resolved and located even when they were only 4-mm apart. The TROT approach is fast, accurate, and has the potential to be useful in breast cancer detection and localization.

  18. MRI evaluation of post-mastectomy irradiated breast implants: prevalence and analysis of complications.

    Science.gov (United States)

    Rella, L; Telegrafo, M; Nardone, A; Milella, A; Stabile Ianora, A A; Lioce, M; Angelelli, G; Moschetta, M

    2015-09-01

    To evaluate the effect of post-mastectomy radiation therapy (RT) on breast implants as detected by magnetic resonance imaging (MRI) searching for short-term complications. One hundred and forty patients (total of 144 implants) were evaluated by MRI; 80 (group 1) had undergone RT, whereas the remaining 60 patients (group 2) underwent mastectomy with implant reconstruction without RT. Two radiologists evaluated MRI images searching for implant rupture signs, sub-capsular seromas, capsular contracture, soft-tissue oedema, peri-implant fluid collections. Implant ruptures were classified as severe complications; seromas and capsular contractures as moderate complications; oedema and fluid collections as mild complications. The prevalence of MRI findings in the two groups was calculated and compared by unpaired t-test. Cohen's kappa statistics was used to assess interobserver agreement. Sixty-nine out of 144 (48%) implants presented pathological findings at MRI with complication rates of 47.5 and 48.4 for groups 1 and 2, respectively. Two (5%) severe complications, 10 (26%) moderate complications, and 26 (69%) mild complications occurred in group 1 and surgical treatment was performed in 10 cases. Two (6%) severe complications, seven (23%) moderate complications, and 22 (71%) mild complications occurred in group 2 and surgical treatment was performed in eight cases. No significant difference between the two groups was found (p>0.1). Almost perfect agreement between the two radiologists was found for MRI image detection (k=0.86). RT does not seem to cause a significant effect on breast implants in terms of complication rate in patients undergoing implant-based breast reconstruction. One-stage immediate implant-based breast reconstruction performed at the same time as mastectomy could be proposed. Copyright © 2015 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  19. Three-Dimensional Liver Surgery Simulation: Computer-Assisted Surgical Planning with Three-Dimensional Simulation Software and Three-Dimensional Printing.

    Science.gov (United States)

    Oshiro, Yukio; Ohkohchi, Nobuhiro

    2017-06-01

    To perform accurate hepatectomy without injury, it is necessary to understand the anatomical relationship among the branches of Glisson's sheath, hepatic veins, and tumor. In Japan, three-dimensional (3D) preoperative simulation for liver surgery is becoming increasingly common, and liver 3D modeling and 3D hepatectomy simulation by 3D analysis software for liver surgery have been covered by universal healthcare insurance since 2012. Herein, we review the history of virtual hepatectomy using computer-assisted surgery (CAS) and our research to date, and we discuss the future prospects of CAS. We have used the SYNAPSE VINCENT medical imaging system (Fujifilm Medical, Tokyo, Japan) for 3D visualization and virtual resection of the liver since 2010. We developed a novel fusion imaging technique combining 3D computed tomography (CT) with magnetic resonance imaging (MRI). The fusion image enables us to easily visualize anatomic relationships among the hepatic arteries, portal veins, bile duct, and tumor in the hepatic hilum. In 2013, we developed an original software, called Liversim, which enables real-time deformation of the liver using physical simulation, and a randomized control trial has recently been conducted to evaluate the use of Liversim and SYNAPSE VINCENT for preoperative simulat